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Abstract. Quasi-Nelson algebras are a non-involutive generalisation of
Nelson algebras that can be characterised in several ways, e.g. as (i)
the variety of bounded commutative integral (not necessarily involutive)
residuated lattices that satisfy the Nelson identity; (ii) the class of (0, 1)-
congruence orderable commutative integral residuated lattices; (iii) the
algebraic counterpart of quasi-Nelson logic, i.e. the (algebraisable) exten-
sion of the substructural logic FLew by the Nelson axiom. In the present
paper we focus on the subreducts of quasi-Nelson algebras obtained
by eliding the implication while keeping the two term-definable nega-
tions. These form a variety that (following A. Sendlewski, who studied
the corresponding fragment of Nelson algebras) we dub weakly pseudo-
complemented quasi-Kleene algebras. We develop a Priestley-style dual-
ity for these algebras (in two different guises) which is essentially an
application of the general approach proposed in the paper A duality for
two-sorted lattices by A. Jung and U. Rivieccio.
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1 Introduction

Nelson’s constructive logic with strong negation N (introduced in [10]; see also
[14,20,25]) is a well-known non-classical logic that combines the constructive
approach of (the {∧,∨,→}-fragment of) intuitionistic logic with a De Morgan
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involutive negation. The algebraic models of N form the variety of Nelson alge-
bras (alias Nelson residuated lattices), and have been studied since the late 1950’s
(first by Rasiowa; see [14] and references therein). One of the main algebraic
insights on this variety is that every Nelson algebra can be represented as a
special binary power (here called a twist-algebra) of a Heyting algebra. This cor-
respondence was formulated as a categorical equivalence (first by A. Sendlewski)
between Nelson algebras and a category of enriched Heyting algebras, and this
made it possible to transfer a number of fundamental results from the theory of
Heyting algebras to the Nelson realm.

More recent is the discovery (due to Spinks and Veroff [23,24]) that Nelson
logic can be viewed as one of the so-called substructural logics. This entails that
the class of Nelson algebras is term equivalent to a variety of bounded, com-
mutative, integral residuated lattices [4]; hence the alternative name of Nelson
residuated lattices. Given the recent flourish of studies on substructural log-
ics and residuated structures, this alternative perspective also proved fruitful.
Indeed, it made it possible, in the first place, to recover or recast a number of
results on Nelson algebras by specialising more general ones about residuated
structures. Furthermore, and maybe more interestingly, it allows us to formulate
new questions on Nelson algebras/logic that can be best appreciated within the
framework of residuated lattices. Among these is the problem that led to the
introduction of quasi-Nelson algebras, which can be phrased as follows.

By the results of [23,24], Nelson algebras are term equivalent to a the class
of (bounded, commutative, integral) residuated lattices that additionally satisfy
the involutive law (x ≈ (x ⇒ 0) ⇒ 0) and the Nelson identity :

(x ⇒ (x ⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼x)) ≈ x ⇒ y.

Thus, all results that are specific to Nelson algebras (as opposed to general
residuated lattices), including the connection with Heyting algebras given by
twist-algebras, essentially depend on involutivity and on the Nelson identity.

The papers [17,18] are aimed at establishing to which extent the structure
theory of Nelson algebras can be reconstructed (within the context of residu-
ated lattices) in the presence of the Nelson identity but without relying on the
involutive law. It turns out that some of the most characteristic results indeed
do not depend on the involutive law. In particular, it is shown in [17,18] that (a
suitable generalisation of) the twist-algebra construction can be performed in a
not-necessarily involutive context: thus making it possible to recover the connec-
tion between Heyting algebras and ‘non-involutive Nelson algebras’, a variety we
dubbed quasi-Nelson algebras (alias quasi-Nelson residuated lattices). This class
can also be characterised by a purely congruence-theoretical property introduced
in [22] under the name of (0, 1)-congruence orderability ; the main result being
that among (bounded, commutative, integral) residuated lattices, quasi-Nelson
algebras are precisely the (0, 1)-congruence orderable ones. This generalises the
result of [22] that, the (0, 1)-congruence orderable involutive residuated lattices
are precisely the Nelson residuated lattices.

The very recent paper [15] extends the investigation of quasi-Nelson algebras
initiated in [17,18] to the implication-free fragment; in turn, [15] relies on [16],
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in which the {∧,∨,∼}- fragment of quasi-Nelson logic was characterised. More
precisely, [15] elides the implication operation → from the language while keeping
the two negation operators (the primitive ∼ and a second one ¬ that is defined,
in the full language of quasi-Nelson algebras, by ¬x := x → 0). It turns out that
a twist-algebra construction (see Definition 5 below) can be used to characterise
the class of algebras corresponding to the two-negation fragment of quasi-Nelson
algebras, dubbed in [15] weakly pseudo-complemented quasi-Kleene algebras.

In fact, [15] can be viewed as a non-involutive counterpart of Sendlewski’s
study on the two-negation subreducts of Nelson algebras [21]. Sendlewski shows
that those subreducts form a variety (called wp-Kleene algebras) which corre-
sponds via a twist-algebra construction to pseudo-complemented distributive
lattices (i.e., the subreducts of Heyting algebras with negation but no implica-
tion). This entails that the functor between Nelson and Heyting algebras can be
extended to one with similar properties relating the subreducts of both classes.
Indeed, most results contained in [21] can be retrieved from [15] by restricting
one’s attention to involutive algebras.

In the present paper, we take advantage of the twist representa-
tion introduced in [15] to develop a Priestley-style duality for weakly
pseudo-complemented quasi-Kleene algebras (thereby obtaining a duality for
Sendlewski’s wp-algebras as well). We present our duality in two guises based on
the two twist representations introduced in [15]; both can be viewed as applica-
tions of the two-sorted approach to dualities proposed in [7].

2 WPQK-algebras and Their Representation

In this section we sum up the results from [15,16] that shall be needed for our
present purposes. We begin by introducing quasi-Nelson algebras, the algebras
in the full language (we refer the reader to [17,18] for further details and proofs;
see also [4] for all unexplained algebraic and logical terminology). The most
convenient way to do so is by taking the substructural route, starting from the
notion of residuated lattice.

A commutative integral bounded residuated lattice (CIBRL) is an algebra
A = 〈A;∧,∨, ∗,⇒, 0, 1〉 of type 〈2, 2, 2, 2, 0, 0〉 such that:

(i) 〈A; ∗, 1〉 is a commutative monoid, (Mon)
(ii) 〈A;∧,∨, 0, 1〉 is a bounded lattice (with order ≤), (Lat)
(iii) a ∗ b ≤ c iff a ≤ b ⇒ c for all a, b, c ∈ A. (Res)

CIBRLs form a variety that is the algebraic counterpart of the logic FLew,
i.e. the extension of the Full Lambek Calculus FL obtained by adding the rules
of exchange (e) and weakening (w), as well as a propositional constant (usually
denoted ⊥ or by 0) to be interpreted as the least element on the algebras. The
negation connective/operation is defined by the term ∼ x := x ⇒ 0.

Definition 1. A quasi-Nelson residuated lattice or quasi-Nelson algebra is a
CIBRL that satisfies the Nelson identity:

(x ⇒ (x ⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼x)) ≈ x ⇒ y. (Nelson)
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A Nelson residuated lattice (or Nelson algebra) is a quasi-Nelson residuated
lattice that additionally satisfies the involutive identity ∼ ∼x ≈ x.

On every quasi-Nelson algebra, one can define a connective → (called weak
implication, while the residuated ⇒ is known as the strong implication) by
the term x → y := x ⇒ (x ⇒ y). The weak implication is indeed a gen-
uine implication; it is, in fact, the connective that gives (quasi-)Nelson logic a
classical deduction-detachment theorem [9, Thm. 2]. As such, the weak impli-
cation can be used to introduce an alternative negation ¬ (distinct from ∼)
given by the term ¬x := x → 0. This observation led Sendlewski [21] to the
study of weakly pseudo-complemented Kleene algebras, alias the {∧,∨,∼,¬, 0, 1}-
subreducts of Nelson algebras. The {∧,∨,∼,¬, 0, 1}-subreducts of quasi-Nelson
algebras are characterised in [15], and the corresponding variety dubbed weakly
pseudo-complemented quasi-Kleene algebras. We proceed to introduce formally
these classes of algebras, starting from the {∧,∨,∼}-fragment of quasi-Nelson
algebras, which was studied in [16].

Definition 2 ([19]). An algebra A = 〈A;∧,∨,∼, 0, 1〉 of type 〈2, 2, 1, 0, 0〉 is a
semi-De Morgan algebra if the following properties and identities are satisfied:

(SD1) 〈A;∧,∨, 0, 1〉 is a bounded distributive lattice,
(SD2) ∼ 0 ≈ 1 and ∼ 1 ≈ 0,
(SD3) ∼(x ∨ y) ≈ ∼x ∧ ∼ y,
(SD4) ∼∼(x ∧ y) ≈ ∼∼x ∧ ∼∼ y,
(SD5) ∼x ≈ ∼∼ ∼x.

A lower quasi-De Morgan algebra is a semi-De Morgan algebra that satisfies:

(QD) x � ∼ ∼x,

(in the present paper, we take α � β as an abbreviation for the formal identity
α ∧ β ≈ α). A De Morgan algebra can be defined as a semi-De Morgan algebra
that further satisfies the involutive identity ∼∼ x ≈ x.

Besides De Morgan algebras, another well-known subvariety of semi-De Mor-
gan algebras is the class of pseudo-complemented distributive lattices (also called
distributive p-algebras or simply – as we will here – p-lattices). This class
can be axiomatised, relative to semi-De Morgan algebras, by adding the lower
quasi-De Morgan identity (QD) together with the following one [19, Cor. 2.8]:
∼x ∧ ∼ ∼x ≈ 0. The variety of p-lattices is precisely the class of {∧,∨,∼, 0, 1}-
subreducts of Heyting algebras [1, Chapter VIII]. Alternatively, a p-lattice can
be defined as a bounded distributive lattice 〈A;∧,∨, 0, 1〉, with order ≤, bottom
0 and top 1, additionally satisfying the property that, for all a, b ∈ A,

(P) a ≤ ∼ b if and only if a ∧ b = 0. (pseudo-complement)

We shall refer to (P) as to the property of the pseudo-complement. It is useful
to keep in mind that, on every distributive lattice A, the pseudo-complement
∼ b of each b ∈ A (if it exists) is uniquely determined by the lattice structure in
the following way: ∼ b =

∨{a ∈ A : a ∧ b = 0} = max
∨{a ∈ A : a ∧ b = 0}.

Every p-lattice is a quasi-Kleene algebra (as defined below), but not necessarily
a Kleene algebra.
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Definition 3 ([16]). A quasi-Kleene algebra is a semi-De Morgan algebra A
that additionally satisfies the following identities:

(QK1) x ∧ ∼x � y ∨ ∼ y. (the Kleene identity)
(QK2) x � ∼∼x (thus A is a lower quasi-De Morgan algebra)
(QK3) ∼∼ x ∧ ∼(x ∧ y) � ∼ x ∨ ∼ y.
(QK4) ∼∼ x ∧ ∼ x � x.

A Kleene algebra can be defined as a quasi-Kleene algebra that satisfies the invo-
lutive identity: ∼ ∼x ≈ x.

Every Nelson algebra has a Kleene algebra reduct; indeed, Kalman’s results
[8] easily entail that Kleene algebras are precisely the {∧,∨,∼}-subreducts of
Nelson algebras. Similarly, it is shown in [16, Cor. 6.6] that quasi-Kleene algebras
are the {∧,∨,∼}-subreducts of quasi-Nelson algebras.

Given an algebra A having a quasi-Kleene algebra reduct and given a, b ∈ A,
we write a � b as a shorthand for a ≤ ∼ a ∨ b and a ≡ b as a shorthand
for (a � b and b � a). The binary relation associated with � is reflexive and
transitive on every quasi-Kleene algebra. It is also clear that a ≤ b implies a� b,
for all a, b ∈ A. Thus, in particular, we have 0� a� 1 for all a ∈ A.

Definition 4. A weakly pseudo-complemented quasi-Kleene algebra (WPQK-
algebra) is an algebra A = 〈A;∧,∨,∼,¬, 0, 1〉 of type 〈2, 2, 1, 1, 0, 0〉 such that:

(i) 〈A;∧,∨,∼, 0, 1〉 is a quasi-Kleene algebra,
(ii) for all a, b, c, d ∈ A,

1. a� ¬b iff a ∧ b� 0 (WP)
2. ∼¬a ≡ ∼ ∼ a.

Item ii.1 in Definition 4 (the property of the weak pseudo-complement) can
be equivalently replaced by the following conditions: for all a, b ∈ A,

(i) ¬1 = 0,
(ii) ¬(a ∧ ∼ a) = 1,
(iii) a ∧ ¬(a ∧ b) ≡ a ∧ ¬b.

Thus, the class of WPQK-algebras is a variety [15, Prop. 4.12]. The prime exam-
ples of WPQK-algebras are obviously the reducts of (quasi-)Nelson algebras [15,
Prop. 4.4]. It is also easy to check that every p-lattice 〈A;∧,∨¬, 0, 1〉 forms a
WPQK-algebra if we let ∼ x := ¬x (cf. [19, Cor. 2.8]). Sendlewski’s wp-Kleene
algebras are precisely the subvariety of WPQK-algebras satisfying the involutive
identity ∼ ∼x ≈ x [15, Prop. 4.15]. The reduct 〈A;∧,∨,¬, 0, 1〉 of a WPQK-
algebra need not be a quasi-Kleene algebra, for the analogue of (QK2) for ¬
need not be satisfied. In fact, (SD4) and (SD5) may also fail, suggesting that
〈A;∧,∨,¬, 0, 1〉 may not even be a semi-De Morgan algebra. For further exam-
ples and properties of WPQK-algebras, see [15].

Proposition 1 ([15], Cor. 5.5). The class of {∧,∨,∼,¬, 0, 1}-subreducts of
quasi-Nelson algebras is precisely the variety of WPQK-algebras, and the class
of {∧,∨,∼,¬, 0, 1}-subreducts of Nelson algebras is the variety of wp-Kleene
algebras.
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We note that Proposition 1 is informative also because, in general, the class of
subreducts of a variety of algebras (in some proper subsignature) forms a quasi-
variety but not necessarily a variety. The next and most fundamental result about
WPQK-algebras is the representation as twist-algebras over pairs of p-lattices.
Given a p-lattice L = 〈L;∧,∨,¬, 0, 1〉 and a lattice filter ∇ ⊆ L, we say that ∇
is dense if D(L) ⊆ ∇, where D(L) := {a ∨ ¬a : a ∈ L} = {a ∈ L : ¬a = 0}.
Notice that D(L) is itself a lattice filter.

Definition 5. A WPQK-twist-structure is a tuple L = 〈L+,L−, n, p,∇〉 where
L+ = 〈L+;∧+,∨+,¬+, 0+, 1+〉 is a p-lattice (with order ≤+), ∇ ⊆ L+ a dense
filter, L− = 〈L−;∧−,∨−, 0−, 1−〉 a bounded distributive lattice (with order ≤−),
and n : L+ → L− and p : L− → L+ are maps satisfying the following properties:

(i) n is a bounded lattice homomorphism,
(ii) p preserves finite meets and both lattice bounds,
(iii) n ◦ p = IdL− and IdL+ ≤+ p ◦ n.

The algebra L+ �� L− = 〈L+ × L−;∧,∨,∼,¬, 0, 1〉 is defined as follows. For all
〈a+, a−〉, 〈b+, b−〉 ∈ L+ × L−,

1 := 〈1+, 0−〉, 0 := 〈0+, 1−〉,
∼〈a+, a−〉 := 〈p(a−), n(a+)〉, ¬〈a+, a−〉 := 〈¬+a+, n(a+)〉,

〈a+, a−〉 ∧ 〈b+, b−〉 := 〈a+ ∧+ b+, a− ∨− b−〉,
〈a+, a−〉 ∨ 〈b+, b−〉 := 〈a+ ∨+ b+, a− ∧− b−〉.

The weakly pseudo-complemented quasi-Kleene twist-algebra (WPQK twist-
algebra) Tw(L) is the {∧,∨,∼,¬, 0, 1}-subreduct of L+ �� L− with universe:

{〈a+, a−〉 ∈ L+ × L− : a+ ∨+ p(a−) ∈ ∇, a+ ∧+ p(a−) = 0+}.

While the whole algebra L+ �� L− does not need to be a WPQK-algebra,
every WPQK twist-algebra is a WPQK-algebra [15, Prop. 4.3]. Moreover, every
WPQK-algebra arises in this way [15, Thm. 6.2]. Before demonstrating this, let
us comment on a few consequences of Definition 5 that will be useful in the next
sections.

The maps n and p form an adjoint pair between the posets 〈L+,≤+〉 and
〈L−,≤−〉. As is well known, this entails that n preserves arbitrary existing
joins and p arbitrary existing meets. Moreover, the lattice L− is also pseudo-
complemented, with the pseudo-complement given by ¬−a− = n(¬+p(a−)) for
all a− ∈ A−. Both maps n and p preserve the pseudo-complement operation [15,
Prop. 3.4].

Let A = 〈A;∧,∨,∼,¬, 0, 1〉, be a WPQK-algebra. Then the relation ≡ intro-
duced above is a congruence of the {∼}-free reduct of A [15, Cor. 4.7], and the
quotient algebra A+ = 〈A/≡;∧,∨,¬, 0, 1〉 is a p-lattice [15, Prop. 4.8]. This
gives us the first factor for the twist representation. The second can be obtained
as follows. Endow the set A− := {[∼ a] : a ∈ A} ⊆ A+ with operations given,
for all a, b ∈ A, by:
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[∼ a] ∧− [∼ b] := [∼(a ∨ b)] = [∼ a ∧ ∼ b] = [∼ a] ∧+ [∼ b],
[∼ a] ∨− [∼ b] := [∼(a ∧ b)],
0− := [∼ 1] = [0] = 0+, 1− := [∼ 0] = [1] = 1+.

The pseudo-complement operation on A− can be defined by ¬−[∼ a] :=
[¬∼ a] = ¬+[∼ a], obtaining a second p-lattice A− = 〈A−,∧−,∨−,¬−, 0−, 1−〉;
see [15, Prop. 4.9]. The maps pA : A− → A+ and nA : A+ → A− between A+ and
A− are given as follows: pA is the identity map on A−, and nA([a]) := [∼ ∼ a] for
all a ∈ A. Note that nA is well-defined because a ≡ b entails ∼∼ a ≡ ∼∼ b [16,
Prop. 3.15.viii]. To obtain the dense filter ∇A, we consider the set F (A) := {a ∈
A : ∼ a ≤ a} and we let [F (A)] := {[a] : a ≡ b for some b ∈ F (A)}.

Theorem 1 ([15], Thm. 6.2). Let A be a WPQK-algebra.

(i) ∇A := [F (A)] is a lattice filter of A+ and D(A+) ⊆ ∇A.
(ii) A ∼= Tw(〈A+,A−, nA, pA,∇A〉) via the map ιA : A → A+ × A− given by

ιA(a) := 〈[a], [∼ a]〉 for all a ∈ A.

By Theorem 1, every WPQK-algebra A is uniquely determined by a tuple
〈A+,A−, nA, pA,∇A〉. This correspondence at the object level can be extended
to suitably defined morphisms, obtaining a (co-variant) categorical equivalence
between the algebraic category WPQK of WPQK-algebras (with algebraic homo-
morphisms) and the category TW defined as follows.

Definition 6. Let TW be the category having the WPQK-twist-structure given
in Definition 5 as objects and as morphisms between objects L and L

′ the pairs
〈h+, h−〉, where h+ : L+ → L′

+ is a p-lattice homomorphism such that h+[∇] ⊆
∇′, h− : L− → L′

− is a bounded lattice homomorphism, h+ ◦ p = p′ ◦h− and n′ ◦
h+ = h− ◦n. The composition of morphisms is given componentwise, that is, the
composition of two composable morphisms 〈h+, h−〉 and 〈k+, k−〉 is 〈h+◦k+, h−◦
k−〉. The identity morphism for each L ∈ TW is the morphism 〈IdL+ , IdL−〉.

Checking that TW is indeed a category is straightforward. We define the
functors F : TW → WPQK and G : WPQK → TW as follows. For every
object L ∈ TW, we let F (L) := Tw(L). For a TW-morphism 〈h+, h−〉
from L to L

′, we let F (〈h+, h−〉) be given, for all 〈a+, a−〉 ∈ L+ × L−,
by F (〈h+, h−〉)(〈a+, a−〉) := 〈h+(a+), h−(a−)〉. Conversely, for every WPQK-
algebra A, we let G(A) := 〈A+,A−, nA, pA,∇A〉. For a WPQK-homomorphism
k : A → A′, we let k+ : A+ → A

′
+ and k− : A− → A′

− be the homomorphisms
defined, respectively, by setting k+([a]) := [k(a)] and k−([∼ a]) := [k(∼ a)] for
every a ∈ A. We then let G(k) := 〈k+, k−〉. It is easy to check that F and G
are well-defined functors (concerning the role of the filter ∇, see e.g. [6]). Given
L ∈ TW, we define the morphism ιL = 〈ιL+ , ιL−〉 from L to G(F (L)) by setting
ιL+(a+) := [〈a+, n(¬+a+)〉] for every a+ ∈ L+ and ιL−(a−) := [∼〈¬+p(a−), a−〉]
for every a− ∈ L−. The morphism ιL is an isomorphism between L and GF (L).
In this way we have a natural isomorphism from the identity functor on TW and
the functor G ◦ F .

Theorem 2. The functors F,G establish an equivalence between TW and
WPQK.
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3 Two-Sorted Duality

We are now going to introduce a Priestley-style duality for the category TW,
which (in the light of Theorem 2) we view as a two-sorted alter ego of WPQK.
We assume the reader is familiar with the basic duality results on distributive
lattices [11], which we now briefly recall.

Priestley duality concerns the category D of bounded distributive lattices and
bounded lattice homomorphisms. To every bounded distributive lattice L, one
associates the set X(L) of its prime filters. On X(L) one imposes the Priestley
topology τ , generated by the sets φ(a) := {P ∈ X(L) : a ∈ P} and φ′(a) :=
{P ∈ X(L) : a �∈ P}, and the inclusion relation between prime filters as an
order. The resulting ordered topological structures are called Priestley spaces1.
A homomorphism h between bounded distributive lattices L and L′ gives rise
to a function X(h) : X(L′) → X(L), defined by X(h)(P ) = h−1[P ], that is
continuous and order preserving. Taking functions with these properties (called
Priestley functions) as morphisms between Priestley spaces, one obtains the
category PrSp, and X is a contravariant functor from D to PrSp. For a functor
in the opposite direction, one associates to every Priestley space X = 〈X, τ,≤〉
the set L(X) of clopen up-sets. This is a bounded distributive lattice with respect
to the set-theoretic operations ∩,∪, ∅, and X. To a Priestley function f : X →
X ′ one associates the function L(f), given by L(f)(U ′) = f−1[U ′], which is
a bounded lattice homomorphism from L(X ′) to L(X). Then L constitutes a
contravariant functor from PrSp to D. The two functors are adjoint to each
other with the units given by:

ΦL : L → L(X(L)) ΦL(a) := {P ∈ X(L) : a ∈ P}
ΨX : X → X(L(X)) ΨX(x) := {U ∈ L(X) : x ∈ U}.

These are the components of a natural transformation from the identity functor
on D to L ◦ X, and from the identity functor on PrSp to X ◦ L, respectively. In
particular, they are morphisms in their respective categories. Furthermore, they
are isomorphisms and thus the central result of Priestley duality is obtained:
the categories D and PrSp are dually equivalent.

A description of spaces dual to p-lattices can be found in [12,13]; see also [1].
We recall here the basic results that shall be needed. For a subset Y ⊆ X of a
Priestley space X, we let ↓ Y := {x ∈ X : x ≤ y for some y ∈ Y }.

Proposition 2 ([12], Prop. 1). A distributive lattice L is a p-lattice (i.e. can
be endowed with a pseudo-complement operation) if and only if, for every clopen
up-set U ∈ L(X(L)), the set ↓ U is open in 〈X(L),⊆, τL〉.
Definition 7. A p-space is a Priestley space 〈X,≤, τ〉 such that ↓ U is τ -open
for all U ∈ L(X).

1 Abstractly, a Priestley space is defined as a compact ordered topological space
〈X, τ, ≤〉 such that, for all x, y ∈ X, if x �≤ y, then there is a clopen up-set U ⊆ X
with x ∈ U and y /∈ U . It follows that 〈X, τ〉 is a Stone space.
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Let 〈X,≤, τ〉 be a p-space and U ∈ L(X). Then, defining

¬U := X − ↓U = {x ∈ X : ↑ x ∩ U = ∅},

where ↑ x := {y ∈ X : x ≤ y}, we have that ¬U ∈ L(X) is the pseudo-complement
of U in L(X), turning the distributive lattice of clopen up-sets into a p-lattice.
Given a Priestley space 〈X,≤, τ〉, let max(X) := {y ∈ X : y is ≤-maximal}
and, for x ∈ X, max(x) := {y ∈ X : x ≤ y and y is ≤ -maximal}.

Definition 8. A morphism between p-spaces 〈X,≤, τ〉 and 〈X ′,≤′, τ ′〉 is a con-
tinuous order-preserving map f : X → X ′ such that f [max(x)] = max(f(x)) for
all x ∈ X.

Proposition 3 ([13], Prop. 3). Let 〈X,≤, τ〉 and 〈X ′,≤′, τ ′〉 be p-spaces, and
let f : X → X ′ be a continuous order-preserving map. Then f is a morphism
of p-spaces if and only if f−1 : L(X ′) → L(X) preserves the pseudo-complement
operation.

The above results entail that the Priestley functors L and X establish a dual
equivalence between the category of p-lattices (with algebraic homomorphisms)
and the category of p-spaces with the morphisms given as per Definition 8. Upon
this result we will build our two-sorted duality.

Let L = 〈L+,L−, n, p,∇〉 ∈ TW. Then 〈L+,L−, n, p〉 is a two-sorted lattice
in the sense of [7, Definition 4.1]. We thus follow [7] in defining its dual, the two-
sorted Priestley space X(L) = 〈X(L+),X(L−),X(n),X(p),X(∇)〉, as follows:

(i) 〈X(L+), τ+,≤+〉 is the Priestley space of L+;
(ii) 〈X(L−), τ−,≤−〉 is the Priestley space of L−;
(iii) X(p) ⊆ X(L+)×X(L−) and X(n) ⊆ X(L−)×X(L+) are relations defined

as follows:
X(n) := {〈P−, P+〉 ∈ X(L−) × X(L+) : n−1[P−] ⊆ P+}

X(p) := {〈P+, P−〉 ∈ X(L+) × X(L−) : p−1[P+] ⊆ P−};

(iv) X(∇) := {P+ ∈ X(L+) : ∇ ⊆ P+}.

For item (iii), besides [7, Definition 4.1], we refer the reader to [3]. For (iv)
and the subsequent treatment of ∇A (as well as its dual alter ego C+), see [6,
Sec. 3.3]. Given sets X,Y , a relation R ⊆ X × Y and a subset X ′ ⊆ X, define:
R[X ′] = {y ∈ Y : there is x ∈ X ′ s.t. 〈x, y〉 ∈ R}. In particular, for X ′ = {x},
we write R[x] instead of R[{x}]. For Y ′ ⊆ Y , let:

�RY ′ = {x ∈ X : R[x] ⊆ Y ′}. (BoxR)

The following proposition characterises the spaces that correspond to objects
in TW.

Proposition 4. Let L = 〈L+,L−, n, p,∇〉 ∈ TW, and let the corresponding two-
sorted Priestley space be X(L) = 〈X(L+),X(L−),X(n),X(p),X(∇)〉. Then:
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(i) X(n)[x−] ⊆ X(L+) and X(p)[x+] ⊆ X(L−) are non-empty closed up-sets;
(ii) �Rn

◦ ΦL+ = ΦL− ◦ n and �Rp
◦ ΦL− = ΦL+ ◦ p.

(iii) X(n) is functional, i.e., for all x− ∈ X(L−) there is x+ ∈ X(L+) such that
↑ x+ = X(n)[x−].

(iv) ≤−= X(p) ◦ X(n).
(v) (X(n) ◦ X(p)) ⊆ ≤+.
(vi) X(∇A) is a τ+-closed set such that X(∇) ⊆ max(X(L+)).

Proof. For items (i) and (ii), see [7, Prop. 4.2]. Item (iii) follows from [7,
Prop. 5.1]. Items (iv) and (v) follow from [7, Prop. 5.3]. For (vi), see [6, Sec. 3.3].

We turn Proposition 4 into our official definition of two-sorted p-spaces.

Definition 9 (cf. [7], Def. 4.3). A two-sorted p-space is a structure X =
〈X+,X−, Rn, Rp, C+〉 such that:

(i) X+ = 〈X, τ+,≤+〉 and X− = 〈X, τ−,≤−〉 are p-spaces.
(ii) Rn ⊆ X− × X+, Rp ⊆ X+ × X− satisfy:

1. Rn[x−] and Rp[x+] are non-empty closed up-sets, for all x− and x+;
2. for all U− ∈ L(X−), U+ ∈ L(X+), we have �Rp

U− ∈ L(X+) and
�Rn

U+ ∈ L(X−).
(iii) For all x− ∈ X− there is x+ ∈ X+ such that ↑ x+ = Rn[x−].
(iv) ≤−= Rp ◦ Rn.
(v) (Rn ◦ Rp) ⊆ ≤+.
(vi) C+ is a τ+-closed set such that C+ ⊆ max(X+).

Given a two-sorted p-space X = 〈X+,X−, Rn, Rp, C+〉, the dual L(X) =
〈L(X+), L(X−),�Rn

,�Rp
,∇C+〉 is constructed in the expected way: L(X+) and

L(X−) are as prescribed by Priestley duality (for p-lattices), �Rn
,�Rp

are given
as in (BoxR), and ∇C+ := {U+ ∈ L(X+) : C+ ⊆ U+}.

Definition 10. Let X = 〈X+,X−, Rn, Rp, C+〉 and X ′ = 〈X ′
+,X ′

−, R′
n, R′

p, C′
+〉

be two-sorted p-spaces and let f+ : X+ → X ′
+ and f− : X− → X ′

− be maps. The
pair f = 〈f+, f−〉 is a two-sorted p-space morphism if the following conditions
hold:

(i) f+ and f− are p-space morphisms.
(ii) f preserves Rp and Rn, that is, if 〈x+, x−〉 ∈ Rp, then 〈f+(x+), f−(x−)〉 ∈

R′
p, etc.

(iii) f+ and f− are bounded morphisms, that is,
1. if 〈f+(x+), x′

−〉 ∈ R′
p, then there is x− ∈ X− such that f−(x−) ≤′

− x′
−

and 〈x+, x−〉 ∈ Rp.
2. if 〈f−(x−), x′

+〉 ∈ R′
n, then there is x+ ∈ X+ such that f+(x+) ≤′

+ x′
+

and 〈x−, x+〉 ∈ Rn.
(iv) f+[C+] ⊆ C′

+.
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We denote by 2pSP the category whose objects are two-sorted p-spaces
and whose morphisms are given as in Definition 10. For every TW-morphism
h = 〈h+, h−〉, the dual pair of maps 〈X(h+),X(h−)〉 form a 2pSP-morphism
(see [7, Prop. 4.8], [6, Lemma 3.5]). Conversely, for every 2pSP-morphism
f = 〈f+, f−〉, the dual pair of maps 〈L(f+), L(f−)〉 forms a TW-morphism
according to Definition 6 (see [7, Prop. 4.8], [6, Lemma 3.6]). These observa-
tions, together with the above-mentioned results from Priestley duality (for D)
easily entail the following.

Theorem 3. The functors L and X establish a dual equivalence between TW
and 2pSP. In consequence, the composite functors F ◦ L and X ◦ G establish a
dual equivalence between WPQK and 2pSP.

4 Nuclear Duality

In this section we propose an alternative duality based on the alternative rep-
resentation for WPQK-algebras introduced in [15, Sec. 8], which in turn arises
from the following observations.

Let L = 〈L+,L−, n, p,∇〉 ∈ TW. Define the operation � : L+ → L+ by
�a+ := pn(a+) for all a+ ∈ L+. Then � is a (dense) nucleus on L+ in the
sense of e.g. [2]. One can further show that L− is isomorphic to the algebra
L�
+ := 〈L�

+;∧+,∨�
+, 0+, 1+〉 with universe L�

+ := {�a+ : a+ ∈ A+} and oper-
ations given by the restrictions of those of L+ except for the join, which is
defined as a+ ∨�

+ b+ := �(a+ ∨+ b+) for all a+, b+ ∈ L�
+. This suggests that a

tuple 〈L+,L−, n, p,∇A〉 can be represented by a pair 〈L,∇〉, with L a p-lattice
enriched with a nucleus (the maps n and p being replaced by, respectively, the
map � : L → L� = {�a : a ∈ L} and the identity map on L�). In this way one
obtains an alternative representation for WPQK-algebras [15, Sec. 8].

Definition 11. A nuclear p-lattice (np-lattice for short) is an algebra L =
〈L;∧,∨,¬,�, 0, 1〉 of type 〈2, 2, 1, 1, 0, 0〉 such that:

(i) 〈L;∧,∨,¬, 0, 1〉 is a p-lattice (with order ≤).
(ii) The operator � is a dense nucleus on L, that is, for all a, b ∈ L,

1. �0 = 0
2. �(a ∧ b) = �a ∧ �b
3. a ≤ �a = ��a.

Given an np-lattice L and a dense filter ∇ ⊆ L, we can define a bounded
distributive lattice L� and maps � : L → L� and IdL� : L� → L, so that
〈L,L�,�, IdL� ,∇〉 ∈ TW. This gives us the following representation for WPQK-
algebras.

Theorem 4 ([15], Thm. 8.5). Every WPQK-algebra A is isomorphic to the
WPQK twist-algebra Tw〈A+,A�

+,�, IdL�
+
,∇A〉, where A�

+ arises from the np-
lattice (A+,�) obtained from A+ with the nucleus given by �[a] := [∼ ∼ a] for
all a ∈ A, and ∇A ⊆ A+ is the dense filter of the twist representation of A.
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Relying on Theorem 4, we can proceed in parallel to Sect. 3.

Definition 12. Let NP be the category whose objects are tuples L = 〈L,∇〉, with
L an np-lattice and ∇ ⊆ L a dense filter. A morphism between objects L = 〈L,∇〉
and L

′ = 〈L′,∇′〉 is an np-lattice homomorphism h such that h[∇] ⊆ ∇′.

Given L = 〈L,∇〉 ∈ NP, the WPQK twist-algebra Tw〈L,L�,�, IdL� ,∇〉
will be denoted by Tw(L). The equivalence between NP and WPQK is given
by the functors H : NP → WPQK and K : WPQK → NP defined as follows. For
every L = 〈L,∇〉 ∈ NP, we let H(L) := Tw(L). For an NP-morphism h : L → L

′

between L = 〈L,∇〉 and L
′ = 〈L′,∇′〉, we let H(h) : H(L) → H(L′) be given,

for all 〈a, b〉 ∈ L × L�, by H(h)(〈a, b〉) := 〈h(a), h(b)〉. Conversely, for every
WPQK-algebra A, let K(A) := 〈〈A+,�〉,∇A〉. For a WPQK-homomorphism
k : A → A′, let K(k) : K(A) → K(A′) be defined by setting K(k)([a]) := [k(a)]
for every a ∈ A.

Theorem 5. The functors H and K establish a co-variant equivalence between
NP and WPQK.

As with Theorem 2, we can rely on Theorem 5 to introduce a duality for
the category NP viewed as another alter ego of WPQK. In doing so, since the
nucleus is a modal-like operator, we shall rely on duality for distributive lattices
with operators (see [5]).

As expected, the dual of L = 〈L,∇〉 is defined as a structure X(L) =
〈X(L),X(�),X(∇)〉, where:

(i) 〈X(L), τ+,≤+〉 is the p-space of L;
(ii) X(�) ⊆ X(L) × X(L) is a relation given by:

X(�) := {〈P,Q〉 ∈ X(L) × X(L) : �−1[P ] ⊆ Q};

(iii) X(∇) := {P ∈ X(L) : ∇ ⊆ P}.

It is well known that the relation R corresponding to an operation � that
preserves (at least) finite meets and the top element satisfies the following:

(i) ≤ ◦R ◦ ≤⊆ R, where ≤ is the Priestley order on X(L);
(ii) R[P ] := {Q ∈ X(L) : 〈P,Q〉 ∈ R} is a closed set in the Priestley topology;
(iii) R−1[U ] := {P ∈ X(L) : 〈P,Q〉 ∈ R for some Q ∈ U} is clopen, for all

U ∈ L(X(L)).

We shall say that a relation R on a Priestley space satisfying the above properties
is a �-relation, i.e., a relation corresponding to an operator � on the distributive
lattice dual to the space. We list below four further properties that the Priestley
dual of every np-lattice satisfies.

Proposition 5. Let 〈X(L),X(�)〉 be the dual space of an np-lattice L and
P,Q ∈ X(L).
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(i) There is Q′ ∈ X(L) such that 〈P,Q′〉 ∈ X(�).
(ii) If 〈P,Q〉 ∈ X(�), then there is Q′ ∈ X(L) s.t. 〈P,Q′〉 ∈ X(�) and

〈Q′, Q〉 ∈ X(�).
(iii) If 〈P,Q〉 ∈ X(�), then P ⊆ Q.
(iv) X(∇) is a closed set such that X(∇) ⊆ max(X(L)).

Items (i)–(iii) of Proposition 5 are saying that the relation X(�) is serial,
dense and included in the Priestley order (regarding item (iv) see [6, Lemma
3.1]). We include these properties in our official definition of np-spaces.

Definition 13. An np-space is a structure X = 〈X,R, C〉 where X is a p-space,
C is a closed set such that C ⊆ max(X), and R is a �-relation which is serial,
dense and included in the Priestley order.

We note that it is possible to show that Properties (i) to (iii) in Definition 13
can be equivalently replaced by the following one (considered e.g. in [2]): for all
x, y ∈ X, 〈x, y〉 ∈ R iff there is z ∈ X s.t. 〈z, z〉 ∈ R and x ≤ z ≤ y.

Given an np-space X = 〈X,R, C〉 and a clopen up-set U ∈ L(X), we define
�RU := {x ∈ X : R[x] ⊆ U}. Defining the filter ∇C ⊆ L(X) as in the preced-
ing section, it is easy to show that 〈L(X),�R,∇C〉 ∈ NP. It follows from the
duality for distributive lattices with a �-operator [5] that every np-lattice L is
isomorphic to its double dual 〈L(X(L)),�R�〉. Conversely, for every np-space
X = 〈X,R, C〉, we have (by the duality for p-lattices) that the p-space X is
homeomorphic to its double dual X(L(X)); furthermore, 〈X,≤, R〉 is isomor-
phic, as a relational structure, to 〈X(L(X)),⊆, R�R

〉. It is also easy to check
that the Priestley isomorphisms respect ∇ and C [6, Lemmas 3.7 and 3.8].

Definition 14. Let X = 〈X,R, C〉 and X ′ = 〈X ′, R′, C′〉 be np-spaces, and let
f : X → X ′ be a p-space morphism. We say that f is an np-space morphism if
the following conditions hold:

(i) If 〈x, y〉 ∈ R, then 〈f(x), f(y)〉 ∈ R′, for all x, y ∈ X.
(ii) If 〈f(x), x′〉 ∈ R′, then there is y ∈ X such that f(y) ≤′ x′ and 〈x, y〉 ∈ R,

for every x ∈ X and x′ ∈ X ′.
(iii) f [C] ⊆ C′.

Denote by npSP the category having as objects np-spaces and as morphisms
the maps given in Definition 14. The following propositions are immediate conse-
quences of Priestley duality for distributive lattices with a �-operator, together
with [6, Lemmas 3.5 and 3.6].

Proposition 6. Let L = 〈L,∇〉, L′ = 〈L′,∇′〉 ∈ NP, and let h : L → L′ be an
NP-morphism. Then h−1 : X(L′) → X(L) is an np-space morphism.

Proposition 7. Let X = 〈X,R, C〉 and X ′ = 〈X ′, R′, C′〉 be np-spaces, and let
f : X → X ′ be an np-morphism. Then f−1 : L(X ′) → L(X) is an NP-morphism.

As in the previous cases, it is straightforward to check that the above-defined
categories are dually equivalent via the Priestley functors.
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Theorem 6. The functors L,X establish a dual equivalence between NP and
npSP. In consequence, the composite functors F ◦ L and X ◦ G establish a dual
equivalence between WPQK and npSP.

Appendix: Proofs of Theorems 2 and 5

Theorem 2. The functors F,G establish a co-variant equivalence between TW
and WPQK.

Proof. First of all, we shall prove that F is a functor. Given
L = 〈L+,L−, n, p,∇〉 and L

′ = 〈L′
+,L

′
−, n′, p′,∇′〉 two objects in TW and

〈h+, h−〉 a TW-morphism from L to L
′, we will prove that F (〈h+, h−〉) is a

WPQK-morphism from F (L) to F (L′). Let 〈a+, a−〉, 〈b+, b−〉 be elements of the
universe of F (L). For ∧ we have:

F (〈h+, h−〉)(〈a+, a−〉 ∧ 〈b+, b−〉) = F (〈h+, h−〉)(〈a+ ∧ b+, a− ∨ b−〉)
= 〈h+(a+ ∧ b+), h−(a− ∨ b−)〉
= 〈h+(a+) ∧ h+(b+), h−(a−) ∨ h−(b−)〉
= 〈h+(a+), h−(a−)〉 ∧ 〈h+(b+), h−(b−)〉
= F (〈h+, h−〉)(〈a+, a−〉) ∧ F (〈h+, h−〉)(〈b+, b−〉).

The proof for ∨ is analogous and will be omitted. For ∼ we have:

F (〈h+, h−〉)(∼〈a+, a−〉) = F (〈h+, h−〉)〈p(a−), n(a+)〉 (1)
= 〈(h+ ◦ p)(a−), (h− ◦ n)(a+)〉 (2)
= 〈(p′ ◦ h−)(a−), (n′ ◦ h+)(a+)〉 (3)
= ∼〈h+(a+), h−(a−)〉 (4)
= ∼F (〈h+, h−〉)(〈a+, a−〉) (5)

From (3) to (4) we used the fact that h+ ◦ p = p′ ◦ h− and h− ◦ n = n′ ◦ h+. For
¬ we have:

F (〈h+, h−〉)(¬〈a+, a−〉) = F (〈h+, h−〉)(〈¬+a+, n(a+)〉) (6)
= 〈h+(¬+a+), h− ◦ n(a+)〉 (7)
= 〈¬+h+(a+), n′ ◦ h+(a+)〉 (8)
= ¬〈h+(a+), h−(a−)〉 (9)
= ¬F (〈h+, h−〉)(〈a+, a−〉) (10)

From (7) to (8) we used the identity (h− ◦ n) = (n′ ◦ h+). Now we move to
prove that given an object L = 〈L+,L−, n, p,∇〉 in TW and the identity mor-
phism IdL := 〈IdL+ , IdL−〉 for L, F (IdL) = IdF (L), i.e. the identity homomor-
phism for F (L). Notice that if 〈a+, a−〉 is an element of the universe of F (L)
and F (〈IdL+ , IdL−〉)(〈a+, a−〉) = 〈IdL+(a+), IdL−(a−)〉 = 〈a+, a−〉. Therefore,
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F (IdL) = IdF (L). Finally, given two TW-morphisms 〈h+, h−〉 : L → L
′ and

〈f+, f−〉 : L′ → L
′′, we shall prove that F (〈h+, h−〉 ◦ 〈f+, f−〉) = F (〈h+, h−〉) ◦

F (〈f+, f−〉). Let 〈a+, a−〉 be an element of the universe of F (L). Then

F (〈h+, h−〉 ◦ 〈f+, f−〉)(〈a+, a−〉) = F (〈h+ ◦ f+, h− ◦ f−〉)(〈a+, a−〉)
= 〈(h+ ◦ f+)(a+), (h− ◦ f−)(a−)〉
= F (〈h+, h−〉)(〈f+(a), f−(a)〉)
= (F (〈h+, h−〉) ◦ F (〈f+, f−〉))(〈a+, a−〉).

We now prove that G is a functor. Let A and A′ be two WPQK-algebras and
k : A → A′ a homomorphism between them. In order to prove that G(k) is a
TW-morphism from G(A) to G(A′), we prove first that k+ : A+ → A′

+ is a p-
lattice homomorphism and k− : A− → A′

− is a bounded lattice homomorphism.
Notice that for every a ∈ A, k+([a]) := [k(a)] and since k is a homomorphism of
WPQK-algebras, the morphism k+ : A/≡ → A′/≡ is a morphism of p-lattices.
In order to prove that k− is a bounded lattice homomorphism, let a, b ∈ A. We
have:

k−([∼ a] ∧ [∼ b]) = k−([∼(a ∨ b)]) = [k(∼(a ∨ b))] = [∼ k(a ∨ b)] =
[∼(k(a) ∨ k(b))] = [∼ k(a)] ∧ [∼ k(b)] =

[k(∼ a) ∧ k(∼ b)] = [k(∼ a)] ∧ [k(∼ b)] =
k−([∼ a]) ∧ k−([∼ b]).

For ∨ we have:

k−([∼ a] ∨ [∼ b]) = k−([∼(a ∧ b)]) = [k(∼(a ∧ b))] = [∼ k(a ∧ b)] =
[∼(k(a) ∧ k(b))] = [∼ k(a)] ∨ [∼ k(b)] =

[k(∼ a)] ∨ [k(∼ b)] =
k−([∼ a]) ∨ k−([∼ b]).

We now prove that k+ ◦ pA = pA′ ◦ k− and nA′ ◦ k+ = k− ◦ nA. Recall
that pA : A− → A+ is the identity map on A− and that nA : A+ → A−
is the function defined by nA([a]) = [∼∼ a] for all a ∈ A. Given a ∈ A, we
have (k+ ◦ pA)([∼ a]) = k+([∼ a]), while (pA′ ◦ k−)([∼ a]) = pA′(k−([∼ a])) =
pA′([k(∼ a)]) = k+([∼ a]). Therefore, (k+ ◦ pA)([∼ a]) = (pA′ ◦ k−)([∼ a]). We
have that (nA′ ◦k+)([a]) = nA′(k+([a])) = [∼ ∼ k(a)] = [k(∼ ∼ a)] = k−([∼ ∼ a]),
while (k− ◦ nA)([a]) = k−([∼ ∼ a]). Hence, (nA′ ◦ k+)([a]) = (k− ◦ nA)([a]). We
also need to prove that k+[∇A] ⊆ ∇A′ . If [a] ∈ ∇A, then ∼ a ≤ a. Since k is
a WPQK-morphism, we have ∼ k(a) ≤ k(a) and therefore k(a) ∈ F (A), which
implies k+([a]) ∈ ∇A′ .

Given A ∈ WPQK, thanks to Theorem 1 we know that the morphism ιA
defined in its statement is an isomorphism between A and F (G(A)). Thus the
morphisms ιA are the elements of a natural isomorphism from the identity func-
tor on WPQK to the functor F ◦ G.

We now prove that, for every L ∈ TW, one has that ιL = 〈ιL+ , ιL−〉 : L →
G(F (L)) is a natural isomorphism. Let L = 〈L+,L−, n, p,∇〉 ∈ TW. We have
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F (L) = Tw(〈L+,L−, n, p,∇〉). Let us denote by A the WPQK-algebra F (L) so
that then G(F (L)) = 〈A+,A−, nA, pA,∇A〉. Recall that, for every a+ ∈ L+, we
have ιL+(a+) = [〈a+, n(¬+a+)〉], and, for every a− ∈ L−, we have ιL−(a−) =
[∼ 〈¬+p(a−), a−〉]. First of all, we need to prove that the maps ιL+ and ιL−
are respectively maps from L+ to A+ and from L− to A−. To this end, it
is enough to prove that given 〈a+, n(¬+a+)〉 and 〈¬+p(b−), b−〉 in L+ × L−,
the pairs 〈a+, n(¬+a+)〉 and 〈¬+p(b−), b−〉 belong to A, that is, that we have
a+ ∨+ p(n(¬+a+)) ∈ ∇,¬+p(b−) ∨+ p(b−) ∈ ∇, a+ ∧+ p(n(¬+a+)) = 0+, and
¬+p(b−) ∧+ p(b−) = 0+. We have that a+ ∨+ ¬+a+ ≤+ a+ ∨+ p(n(¬+a+)).
Since ∇ is a filter and a+ ∨+ ¬+a+ ∈ ∇, then a+ ∨+ p(n(¬+a+)) ∈ ∇. We
have trivially that ¬+p(b−) ∨+ p(b−) ∈ ∇, given that ∇ is a dense filter. Now,
since IdA+ ≤+ p · n and p, n, preserve finite meets and the bounds, then a+ ∧+

p(n(¬+a+)) ≤+ p(n(a+))∧+p(n(¬+a+)) = p(n(a+∧+¬+a+)) = p(n(0+)) = 0+.
Moreover, since ¬+ is a pseudo-complement, then ¬+p(b−) ∧+ p(b−) = 0+.

In order to prove that ιL is a morphism, we have to prove that ιL+ is a p-lattice
homomorphism from L+ to A+ and ιL− is a bounded lattice homomorphism
from L− to A−. Before we proceed, notice that given a+, b+ ∈ L+ and a−, b− ∈
L−, by [15, Lemma 3.5.iii] we have [〈a+, a−〉] = [〈b+, b−〉] iff a+ = b+, and by
[15, Lemma 3.5.ii] we have [∼〈a+, a−〉] = [∼〈b+, b−〉] iff a− = b−. We will use
these facts.

We first show that ιL+ is a p-lattice homomorphism. Let a+, b+ ∈ L+. Then:

(∧+) On the one hand, ιL+(a+ ∧+ b+) = [〈a+ ∧+ b+, n(¬+(a+ ∧+ b+)〉]). On
the other hand, ιL+(a+) ∧ ιL+(b+) = [〈a+, n(¬+a+)〉] ∧ [〈b+, n(¬+b+)〉] =
[〈a+∧+ b+, n(¬+a+)∨− n(¬+b+)〉]. It follows from [15, Lemma 3.5.iii] that
ιL+(a+ ∧+ b+) = ιL+(a+) ∧ ιL+(b+).

(∨+) On the one hand, ιL+(a+ ∨+ b+) = [〈a+ ∨+ b+, n(¬+(a+ ∨+ b+)〉]). On
the othert hand, ιL+(a+)∨ ιL+(b+) = [〈a+, n(¬+a+)〉]∨ [〈b+, n(¬+b+)〉] =
[〈a+∨+ b+, n(¬+a+)∧− n(¬+b+)〉]. It follows from [15, Lemma 3.5.iii] that
ιL+(a+ ∨+ b+) = ιL+(a+) ∨ ιL+(b+).

(¬) We have ιL+(¬+a) = [〈¬+a, n(¬+¬+a)〉]. Also, ¬+ιL+(a) =
¬[〈a+, n(¬+a+)〉] = [〈¬+a+, n(n(¬+a+))〉]. It follows from [15, Lemma
3.5.iii] that ιL+(¬+a) = ¬+ιL+(a).

Now we prove that ιL− is a bounded lattice homomorphism. Let a−, b− ∈ L−.
Then:

(∧−) First notice that ιL−(a− ∧− b−) = [∼〈¬+p(a− ∧− b−), a− ∧− b−〉]. Sec-
ondly that ιL−(a−) ∧ ιL−(b−) = [∼〈¬+p(a−), a−〉] ∧ [∼〈¬+p(b−), b−〉] =
[∼(〈¬+p(a−), a−〉 ∨ 〈¬+p(b−), b−〉)] = [∼(¬+p(a−) ∨+ ¬+p(b−), a− ∧−
b−)]. It follows from [15, Lemma 3.5.ii] that ιL−(a− ∧− b−) = ιL−(a−) ∧
ιL−(b−).

(∨−) On the one hand, ιL−(a− ∨− b−) = [∼〈¬+p(a− ∨− b−), a− ∨− b−〉]. On the
other hand, ιL−(a−)∨ιL−(b−) = [∼〈−¬+p(a−), a−〉]∨[∼〈¬+p(b−), b−〉] =
[∼(〈¬+p(a−), a−〉 ∧ 〈¬+p(b−), b−〉)] = [∼(¬+p(a−) ∧+ ¬+p(b−), a− ∨−
b−)]. It follows from [15, Lemma 3.5.ii] that ιL−(a− ∨ b−) = ιL−(a−) ∨
ιL−(b−).
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We proceed to prove that ιL+ ◦ p = pA ◦ ιL− , nA ◦ ιL+ = ιL− ◦ n and that
ιL+ [∇] ⊆ ∇A. Notice that given a− ∈ L−, ιL+(p(a−)) = [〈p(a−), n(¬+p(a−))〉]
and (pA◦ιL−)(a−) = [∼〈¬+p(a−), a−〉] = [〈p(a−), n(¬+p(a−))〉]. Thus we obtain
that ιL+ ◦ p = pA ◦ ιL− . To prove that nA ◦ ιL+ = ιL− ◦ n, notice that given
a+ ∈ L+, nA ◦ ιL+(a+) = [∼ ∼〈a+, n(¬+a+)〉] = [∼〈p(n(¬+a+)), n(a+)〉] and
(ιL− ◦ n)(a+) = [∼〈¬+p(n(a+)), n(a+)〉]. Thus, the desired equality follows.
Finally, to prove that ιL+ [∇] ⊆ ∇A, notice that ∇A = [F (A)] and thanks
to [15, Prop. 6.1], F (A) = {〈a+, 0−〉 : 〈a+, 0−〉 ∈ A} and therefore [F (A)] =
{[〈a+, 0−〉] : 〈a+, 0−〉 ∈ F (A)}. Let now a+ ∈ ∇. We prove that 〈a+, 0−〉 ∈ A.
To this end we need to show that a+ ∨+ p(0−) ∈ ∇ and a+ ∧+ p(0−) = 0−.
Notice that a+ ∨+ p(0−) = a+ ∨+ 0+ = a+ and by hypothesis a+ ∈ ∇. Also,
a+ ∧+ p(0−) = a+ ∧+ 0+ = 0+. Since ιL+(a+) = [〈a+, n(¬+a+)〉] using that
[〈a+, 0−〉] = [〈a+, n(¬+a+)〉] ([15, Lemma 3.5.iii]), we obtain ιL+(a+) ∈ ∇A.

It remains to prove that ιL+ and ιL− are injective and surjective. We prove
first injectivity.

ιL+ If ιL+(a+) = ιL+(b+), then [〈a+, n(¬+a+)〉] = [〈b+, n(¬+b+)〉]; and from
[15, Lemma 3.5.iii] it follows that a+ = b+.

ιL− If ιL−(a−) = ιL−(b−), then [∼〈¬+p(a−), a−〉] = [∼〈¬+p(b−), b−〉], and from
[15, Lemma 3.5.ii] it follows that a− = b−.

Now we prove that ιL+ and ιL− are surjective:

ιL+ Let [〈a+, a−〉] ∈ A+ (so that 〈a+, a−〉 belongs to the universe of F (L)).
By [15, Lemma 3.5.iii] [〈a+, a−〉] = [〈a+, n(¬+a+)〉]. Therefore ιL+(a+) =
[〈a+, a−〉].

ιL− Let [∼〈a+, a−〉] ∈ A− (so that 〈a+, a−〉 belongs to the universe of F (L)).
From [15, Lemma 3.5.ii], it follows that [∼〈a+, a−〉] = [∼〈¬+p(a−), a−〉].
Therefore ιL−(a−) = [∼〈a+, a−〉].

Theorem 5. The functors H,K establish a co-variant equivalence between NP
and WPQK.

Proof. We prove first that H is a functor. Let L = 〈L,∇〉 and L
′ = 〈L′,∇′〉

be two objects in NP and h : L′ → L
′ a NP-morphism. The proof that H(h) :

H(L) → H(L′) is a WPQK-homomorphism is similar to the proof above for
morphsims in TW and the functor F , because H(L) = Tw〈L,L�,�, IdL� ,∇〉
and H(L′) = Tw〈L′,L′�′

,�, IdL′�′ ,∇′〉.
Given A,A′ objects in WPQK and k : A → A′ a WPQK-homomorphism,

we shall prove that K(k) : K(A) → K(A′) is a NP-morphism. Since k is a
morphism of WPQK algebras, it easily follows that K(k) is a homomorphism
from 〈A+,�〉 to 〈A′

+,�′〉. Let a, b ∈ A. Then:

K(k)([a] ∧ [b]) = K(k)([a ∧ b]) = ([k(a ∧ b)]) =
([k(a) ∧ k(b)]) = [k(a)] ∧ [k(b)] =

K(k)([a]) ∧ K(k)([b]),
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K(k)([a] ∨ [b]) = K(k)([a ∨ b]) = ([k(a ∨ b)]) =
([k(a) ∨ k(b)]) = [k(a)] ∨ [k(b)] =

K(k)([a]) ∨ K(k)([b]),

K(k)(¬[a]) = [k(¬a)] = [¬k(a)] = ¬K(k)([a]),

K(k)(�[a]) = [k(�a)] = [k(∼ ∼ a)] = [∼ ∼ k(a)] = [�k(a)] = �K(k)([a]).

It remains to prove that K(k)[∇A] ⊆ ∇A′ . Given [a] ∈ ∇A, we have a ∈ F (A)
and ∼ a ≤ a, since k is a morphism of WPQK-algebras, then k(∼ a) ≤ k(a) and
it follows that ∼ k(a) ≤ k(a). Therefore [∼ k(a)] ≤ [k(a)] and we conclude that
k[a] ∈ ∇A.

Given an object A in WPQK and the identity morphism IdA : A → A, we
shall prove that K(IdA) = IdK(A). Let [a] be an element of the universe of
K(A). Notice that K(IdA)[a] = [IdA(a)] = [a]. So we are done. Given WPQK-
homomorphisms f : A → A′ and g : A′ → A′′, we shall prove that K(g ◦ f) =
K(g) ◦ K(f). Let [a] be an element of the universe of K(A).

K(g ◦ f)([a]) = [(g ◦ f)(a)]
= [g(f(a))]
= K(g)([f(a)])
= K(g)(K(f)[a])
= K(f) ◦ K(g)([a]).

From [15, Theorem 7.11] it is easy to obtain the natural isomorphism between
the identity functor on WPQK and the functor H ◦ K.

We proceed to prove that, for every L ∈ NP, the map ιNP defined by ιNP(a) =
[〈a,�¬a〉] for all a ∈ L is an isomorphism between L and K(H(L)). This will
provide the natural isomorphism between the identity functor on NP and the
functor K ◦ H.

Let L = 〈L,∇〉 ∈ NP. We have H(L) = Tw〈L,L�,�, IdL� ,∇〉. Let us
denote by A the WPQK-algebra H(L), with A its universe, so that K(H(L)) =
〈〈A+,�〉,∇A〉. First of all, we need to prove that ιNP is a map from L to
K(H(L)). To this end, it is enough to notice that for every a ∈ L, the ele-
ment 〈a,�¬a〉 belongs to the twist-algebra, that is, that a ∨ IdL�(�¬a) ∈ ∇
and a ∧ IdL�(�¬a) = 0. Since IdL� is the identity map, we shall prove
that a ∨ �¬a ∈ ∇ and a ∧ �¬a = 0. We have that, a ∨ ¬a ≤ a ∨ �¬a.
Since ∇ is a filter and a ∨ ¬a ∈ ∇, we have a ∨ �¬a ∈ ∇. We have that
a ∧ �¬a ≤ �a ∧ �¬a = �(a ∧ ¬a) = �(0) = 0. Therefore, a ∧ �¬a = 0.

We now prove that ιNP is a NP-morphism. Before we proceed, notice that
given a, b ∈ L and c, d ∈ L�, by [15, Lemma 3.5.iii], we have [〈a, c〉] = [〈b, d〉]
iff a = b. Also note that given 〈a, b〉 ∈ A, according to the definition of � in
Theorem 4, we have �[〈a, b〉] = [∼∼〈a, b〉] = [∼〈b,�a〉] = [〈�a,�b〉].
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(∧) ιNP(a ∧ b) = [〈a ∧ b,�(¬(a ∧ b))〉]. While, ιNP(a) ∧ ιNP(b) = [〈a,�(¬a)〉] ∧
[〈b,�(¬b)〉] = [〈a ∧ b,�(¬a) ∨ �(¬b)〉]. It follows from [15, Lemma 3.5.iii]
that ιNP(a ∧ b) = ιNP(a) ∧ ιNP(b).

(∨) ιNP(a ∨ b) = [〈a ∨ b,�(¬(a ∨ b))〉]. While, ιNP(a) ∨ ιNP(b) = [〈a,�(¬a)〉] ∨
[〈b,�(¬b)〉] = [〈a ∨ b,�(¬a) ∧ �(¬b)〉]. It follows from [15, Lemma 3.5.iii]
that ιNP(a ∨ b) = ιNP(a) ∨ ιNP(b).

(¬) ιNP(¬a) = [〈¬a,�(¬(¬a)))〉]. While ¬ιNP(a) = ¬[〈a,�a〉] =
[〈¬a, n(�(¬a))〉]. It follows from [15, Lemma 3.5.ii] that ιNP(¬a) =
¬ιNP(a).

(�) ιNP(�a) = [〈�a,�¬�a〉]. While �ιNP(a) = �[〈a,�(¬a)〉] =
[〈�a,��¬a〉] It follows from [15, Lemma 3.5.iii] that ιNP(�a) = �ιNP(a).

We shall prove now that ιNP is injective and surjective. Notice that if ιNP(a) =
ιNP(b), then [〈a,�(¬a)〉] = [〈b,�(¬b)〉] and again from [15, Lemma 3.5.iii] it
follows that a = b. Therefore ιNP is injective. Let 〈a, b〉 ∈ A and notice that
ιNP(a) = [〈a,�(¬a)〉] = [〈a, b〉] by [15, Lemma 3.5.iii]; therefore ιNP is surjective.
It remains to prove that ιNP[∇] ⊆ ∇A. Notice that ∇A = [F (A)] and thanks
to [15, Prop. 6.1], F (A) = {〈a, 0〉 : 〈a, 0〉 ∈ A} and therefore [F (A)] = {[〈a, 0〉] :
〈a, 0〉 ∈ F (A)}. Let a ∈ ∇. In order to prove that ιNP(a) ∈ ∇A, we show first that
〈a, 0〉 ∈ A. We have that a∨IdL�(0) = a∨0 = a. Therefore, since by assumption
a ∈ ∇, a ∨ IdL�(0) ∈ ∇. Notice also that a ∧ IdL�(0) = a ∧ 0 = 0. We thus
obtain 〈a, 0〉 ∈ A. From [15, Lemma 3.5.iii] we have [〈a,�(¬a)〉] = [〈a, 0〉]. Since
ιNP(a) = [〈a,�(¬a)〉], it follows that ιNP(a) ∈ ∇A.
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