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Abstract. Using interval-valued data and computing, researchers have
reported significant quality improvements of the stock market annual
variability forecasts recently. Through studying the entropy of interval-
valued datasets, this work provides both information theoretic and
empirical evidences on that the significant quality improvements are
very likely come from interval-valued datasets. Therefore, using interval-
valued samples rather than point-valued ones is preferable in making
variability forecasts. This study also computationally investigates the
impacts of data aggregation methods and probability distributions on
the entropy of interval-valued datasets. Computational results suggest
that both min-max and confidence intervals can work well in aggregating
point-valued data into intervals. However, assuming uniform probability
distribution should be a good practical choice in calculating the entropy
of an interval-valued dataset in some applications at least.
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1 Introduction

Recently, researchers have very successfully applied interval-valued data in infor-
mation processing and uncertainty management. Related works on applications
of interval-valued data include [13,21-25], and many more. With broad appli-
cations of interval computing, the IEEE Standard Association has released the
IEEE Standards for Interval Arithmetic [19] and [20] recently.

This work is a continuation of the stock market interval-valued annual vari-
ability forecasts reported in [10,11,13,14,16], and [17]. In which, a real world
six-dimensional point-valued monthly dataset is first aggregated into an interval-
valued annual sample. Then, interval-valued annual predictions are made with
interval least-squares (ILS) regression [15]. Comparing against the commonly used
point-valued confidence interval predictions with ordinary least-squares (OLS),
the interval approach increased the average accuracy ratio of annual stock market
forecasts from 12.6% to 64.19%, and reduced the absolute mean error from 72.35%
to 5.17% [14] with the same economical model [4] and the same raw dataset.
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The quality improvements are significant. However, several questions arising
from previous results still need to be answered. Among them are:

1. What is the theoretic reason for such a significant quality improvements?

2. What are the impacts of data aggregation methods on the results? and

3. What are the impacts of probability distributions on the entropy of an
interval-valued dataset?

In this paper, we investigate these questions from the perspective of informa-
tion theory [9]. To be able to calculate and compare entropies of interval-valued
datasets, it is necessary to establish the concepts and algorithms on probabil-
ity and entropy for interval-valued datasets. In our work [18], also published in
this volume, we lay down both theoretic and algorithmic foundations for the
investigation reported in this work. In which, point-valued statistic, probabilis-
tic, and entropy measures for interval-valued datasets are established in details
with practical algorithms. Interested readers should refer that article for a solid
theoretical foundation.

In the rest of this paper, we briefly review related previous work, such as
the stock market annual variability forecasting, the dataset, and information
entropy in Sect. 2. We try to answer the question why interval-valued data lead-
ing better quality forecasts through comparing information entropy of interval-
valued samples against point-valued ones in Sect. 3. We calculate and compare
the impacts of two aggregation methods (min-max and confidence intervals) asso-
ciated together with commonly used probability distributions (uniform, normal,
and beta) in Sect.4. We summarize the main results and possible future work
in Sect. 5.

2 Related Previous Works

We first briefly review the dataset and the stock market annual variability fore-
casts; and then introduce related concepts and algorithms of calculating entropies
of a point-valued dataset and of an interval-valued dataset.

2.1 The Stock Market Annual Variability Forecasting and the
Dataset

The S & P 500 index is broadly used as a indicator for the overall stock market.
The main challenge in studying the stock market is its volatility and uncertainty.
Modeling the relationship between the stock market and relevant macroeconomic
variables, Chen, Roll, and Ross [4] established a broadly accepted model in eco-
nomics to forecast the overall level of the stock market. According to their model,
the changes in the overall stock market value (SP;) are linearly determined by
the following five macroeconomic factors:

IP;: the growth rate variations of adjusted Industrial Production Index,
DI;: changes in expected inflation,
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Ul;: and changes in unexpected inflation,
DF;: default risk premiums, and
T M;: unexpected changes in interest rates.

This relationship can be expressed as:
SP,=ar+ I;(IP;) + Uy(UL) + D:(DI;) + Fy(DF;) + To(T M) (1)

By using historic data, one may estimate the coefficients of (1) to forecast
changes of the overall stock market. The original dataset used in [14] and [17]
consists of monthly data from January 1930 to December 2004 in 75 years for
the six variables. Here are few sample lines of the data:

Yr-mth UI DI SP IP DF ™

30-Jan -0.00897673 0 0.014382062 -0.003860512 0.0116 -0.0094
30-Feb -0.00671673 -0.0023 0.060760088 -0.015592832 -0.0057 0.0115
30-Mar -0.00834673 0.0016 0.037017628 -0.00788855 0.0055 0.0053
30-Apr 0.00295327 0.0005 0.061557893 -0.015966279 0.01  -0.0051
30-May -0.00744673 -0.0014 -0.061557893 -0.028707502 -0.0082 0.0118
30-Jun -0.00797673 0.0005 -0.106567965 -0.046763234 0.0059 0.0025

04-Jul -0.00182673 0.0002 -0.024043354 0.00306212 0.0029 0.0147
04-Aug 0.00008127 0.0002 -0.015411102 -0.002424198 O 0.0385
04-Sep 0.00156327 0.0001 0.026033651 0.007217235 0.0005 0.0085
04-0ct 0.00470327 0 0.000368476 0.002001341 0.001 0.0143
04-Nov -0.00002273 0 0.044493038 0.006654848 0.0034 -0.0245
04-Dec -0.00461673 0.0004 0.025567309 0.001918659 0.0007 0.0235

To make an annual stock market forecast, a commonly used approach is
to make a point-valued annual sample first, such as the end of each year, i.e.,
December data, or annual minimum for predicting the min, or annual maximum
for estimating the max. Applying OLS to estimate the coefficients in (1), people
are able to make a point-valued prediction. By adding and subtracting a factor
(usually denoted as Z) of the standard deviation to the point-valued prediction,
one form a confidence interval as an annual variability forecast. However, such
confidence interval forecasting methods have never been widely used in the liter-
ature because of the poor forecasting quality [2] and [7] in forecasting the stock
market. Normally, the forecasting intervals are so narrow that there is only a
50% chance, or even less, that a future point lies inside the interval [5] and [6].
In other cases, the forecasting intervals can be so wide that the forecasts are
meaningless. This poor forecasting quality is deeply rooted in the methodology
of point-based confidence interval forecasting.

Instead of commonly used point-valued approach, an interval-valued method
has been proposed and applied for the annual stock market variability forecasts
[14]. In which, the annual minimum and maximum form an interval-valued (min-
max) sample of the year. By applying an interval least-squares algorithm [13]
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with the interval-valued sample, significant quality improvements of predictions
are obtained. Figure 1 illustrates the interval-valued annual forecasts comparing
against the actual variations of S & P 500 from 1940-2004. In which, a ten-year
sliding window was used to make an out of sample forecast.

Out-of-Sample 10-Year Rolling Interval Forecasts

0.2

Chenges in Stock Market

-0.2

Year

[—o—SP Lower Bound ——Predicted Loweer —«—SP Upper Bound —»— Predicted Upper |

Fig. 1. Annual interval forecasts vs. actual market variations from 1940-2004

Further studies on forecasting the stock market [10] and [11], variability of
mortgage rates [12], crude oi price prediction [29], and others, have consistently
reported that the quality of variability forecasts with interval-valued samples
and interval least-squares are significantly better than that of with point-valued
samples and OLS.

As the main objective of this work, we want to investigate the major reason
for such significant quality improvements through computing and comparing the
entropies of point- and interval-valued samples.

2.2 Information Entropy of a Point- and an Interval-Valued Dataset

Our investigations are carried out through calculating and comparing informa-
tion entropy, i.e., the average rate at which information produced by a stochastic
source of data [28].

Shannon defines the entropy for a discrete dataset X = {x1,z2,...,2,} in
his seminal paper “A mathematical theory of communication” [26] as:

n

H(z) = - ZP(%) log p(z;) (2)

i=1
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where p(x;) is the probability of event z;. In information theory, Shannon’s
entropy has been referred as information entropy, and it has been used as a
measure of information in data. Viewing the stock market as a stochastic source
of data, we try to measure and compare the amount of information contained in
datasets.

For a point-valued dataset X, we may estimate its entropy practically with
the algorithm below:

Algorithm 1: (Calculating entropy of a discrete point-valued dataset)
Input: a point-valued length n dataset X
m, an integer for the number of bins in constructing a histogram
Output: entropy(X)

# Finding empirical probability of the dataset X
# Constructing an m-bin histogram for X
For ¢ from 1 to m:
¢; = the frequency count of z in the ¢-th bin
pi =ci/|X]
# Calculating the entropy of X
entropy(X) = 0 # initialization
For ¢ from 1 to m:
entropy(X) — = p;logp;.

Return entropy(X)

Applying available software tools, one can easily implement the steps in Algo-
rithm 1 above. For example, calling the histogram method in Python numpy
module returns the counts and bins in a histogram of a dataset. The rests are
straightforward to implement.

However, it is not that straightforward to calculate information entropy of
an interval-valued dataset. By the term interval, we mean a connected subset
of R. An interval-valued dataset is a collection of intervals. Using a boldfaced
lowercase letter to denote an interval, and a boldfaced uppercase letter to specify
an interval-valued dataset, we have X = (1, @2,...,®,) as an interval-valued
dataset consisting of n intervals @i, @s,...x,. Applying (2) to calculate the
entropy of X demands a probability distribution of X. Our paper [18] provides
the theoretic and algorithmic foundations needed for calculating a point-valued
probability of an interval-valued dataset. For readers’ convenience, here are two
related definitions and a theorem from that paper:

Definition 1. A function f(x) is called a probability density function, pdf of
an interval-valued dataset X if and only if f(x) satisfies all of the conditions:

F(z) > 0 Va € (—00,00);
{Z?:l oex J(B)dt =1. (3)

Using pdf; to denote the probability density function for x; € X, we have
the theorem below to obtain a pdf for X practically.
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Theorem 1. Let X = (x1,T2,...,&,) be an interval-valued dataset; and
pdfi(x) be the pdf of @; provided i € {1,2,...,n}. Then,

n

flz) = (4)
s a pdf of X.
With (4), we define the entropy for an interval-valued dataset X as

Definition 2. Let P be an interval partition of the real axis and pdf (x) be the
probability density function of P. Then, the probability of an interval ) € P
is pj = [, pdf(t)dt, and the entropy of P is

entropy(X) = — ij log p; (5)
P

Ezample 1. Find a pdf and entropy for the interval-valued sample dataset Xy =
{[1,5],[1.5,3.5], [2,3],[2.5,7], [4,6]}.
For simplicity, we assume a uniform distribution for each x; € Xy, i.e.,

1
= ifrex;,and z;, #7;
pdfi(x) = 00 - if 2, = T
0, otherwise.
0.05 if z € [1,1.5]
0.15 ifz € (1.5,2]
0.35 if z € (2,2.5]
. 0.39 ifz € (2.5,3]
Yrapdfi(z) ) 019 if z € (3,3.5]
F(Xo) = === 0,09 if e (35,4] (6)
0.19 if z € (4,5]
0.14 if z € (5,6]
0.044 if x € (6,7]
0 otherwise.

The pdf of the example in (6) is a stair function. This is because of the uniform
distribution assumption on each x; € Xg. The five intervals in X form a par-
tition of R in eleven intervals including (—oo,1) and (7, 00). Using (5), we have
the entropy of the interval-valued sample dataset entropy(Xo) = 2.019 O

Example 1 illustrates the availability of a point-valued pdf for an interval-
valued dataset. For more theoretic and algorithmic details, please refer [18]. We
are ready now to investigate the question: why does the interval-valued approach
significantly improve the quality of variability forecasts?
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3 Why Does the Interval-Valued Approach Significantly
Improve the Quality of Variability Forecasts?

Previous results have evidenced that the interval-valued approach can signif-
icantly improve the quality of forecasts in different areas (such as the stock
market annual variability, the variability of the mortgage rate [12], and the vari-
ability of crude oil price [15]). However, using the same economical model and
the same original dataset but point-valued samples, the quality of forecasts are
much worse. To investigate the possible cause, we should examine the entropies
of interval-valued and point-valued input datasets evidently.

Applying Algorithm 1 on point-valued annual samples of the six-dimensional
financial dataset, we calculate their attribute-wise entropy. The four point-valued
annual samples are December only, annual minimum, annual maximum, and
annual midpoint!. With the Algorithm 3 in [18], we calculate the attribute-wise
entropy of the annual min-max interval-valued sample. Table 1 summarizes the
results. In which, the first row lists each of the six attributes in the dataset. The
second to the last rows provide values of attribute-wise entropy of five different
samples: December only, Annual minimum, Annual maximum, Annual midpoint,
and Annual min-max interval, respectively.

Table 1. Entropy comparisons of different samples

Ul DI SP P DF T™
December only 2.32855|2.01183 | 2.12941 | 2.05978 | 2.39706 | 2.33573
Annual minimum 2.33076 | 2.16933 | 2.28035 | 2.09871 | 2.19422 | 2.62452
Annual maximum 1.88469 | 2.30266 | 1.53328 | 1.88045 | 2.34693 | 2.35843
Annual mean 2.04877 | 2.55961 | 2.31651 | 2.07323 | 2.09817 | 2.47341
Annual min-max intvl. | 4.34192 | 3.06851 | 3.95838 | 4.30213 | 3.95359 | 4.31941

Figure 2 provides a visualized comparison of these entropy. From which, we
can observe the followings:

The attribute-wise information entropies vary along with different samples.
However, the attribute-wise entropies of the interval-valued sample are clearly
much higher than that of any point-valued ones. Comparatively, the entropies of
point-valued samples do not differ significantly. This indicates that the amount of
information in these point-valued samples measured with entropies are somewhat
similar. But, they are significantly less than that of the interval-valued ones.
The greater the entropy is, the more information may possibly be extracted
from. This is why the interval-valued forecasts can produce significantly better
forecasts in [10,11,14], and others.

In both theory and practice, meaningless noises and irregularities may
increase the entropy of a dataset too. However, it is not the case here in this study.

! The arithmetic average of annual min and annual max.
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Entropy comparisons of point- and interval-valued samples
T T T T T T

4.5 T

— =~ Dec.
—%— Min
—*— Max
——%~Mid
—H— Interval

Fig. 2. Attribute-wise entropy comparison of point- and interval-valued samples

The interval rolling least-squares algorithm [16] has successfully extracted the
additional information and made significant quality improvements. The advan-
tages of using interval-valued samples instead of point-valued ones have also been
observed in predicting variations of the mortgage rate [12], the crude oil price
[15], and others. The interval-valued samples indeed contain more meaningful
information. Therefore, in making variability forecasts like the stock market, it
is preferable of using interval-valued samples rather than point-valued ones.

Here is an additional note. The attribute-wise entropies of the annual min-
max interval-valued sample in Table1 and the sum of entropies of the point-
valued annual minimum and maximum are similar. If one uses the point-valued
annual minimum and annual maximum separately, can he obtain quality fore-
casts similar to that of using the min-max interval-valued sample? Unfortunately,
an empirical study show that is not the case. In [11], a comparison of the following
two approaches is reported. One of the two is of applying the point-valued annual
minimum and maximum samples to predict annual lower and upper bounds of
the market with the OLS separately. Then, confidence intervals are constructed
as annual variability forecasts. The other applies the ILS with the min-max
interval-valued sample. The quality of forecasts produced in the later approach
is still much better than that of the former approach. In [10], using the sample
of annual midpoints is studied for the same reason of performance comparison.
The ILS with interval-valued annual sample still significantly outperform the
point-valued approach in terms of higher average accuracy ratio, lower mean
error, and a higher stability in terms of less standard deviation. This suggests
that, to extract information from an interval-valued sample, one should use the
ILS instead of OLS.
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4 Impacts of Data Aggregation Strategies
and Probability Distributions on Calculating
the Entropy of an Interval-Valued Dataset

Yes, an interval-valued sample may contain more information than a point-valued
sample does. But, there are various strategies, such as in [1,8] and others, to
aggregate data other than the min-max method. What are the impacts of dif-
ferent aggregation strategies on the entropy of resulting interval-valued dataset?
Furthermore, in calculating the entropy of an interval-valued dataset, Eq. (4)
requires the pdf; for each x; € X. What are the impacts of these pdf;s on calcu-
lating the entropy of X7 We now investigate these two questions computationally
again.

In studying probability distribution of interval-valued annual stock market
forecasts, point-valued data are aggregated with confidence intervals instead of
annual min-max intervals [17]. In which, the points within a year are first fit
with a normal distribution attribute-wise. Then, confidence intervals are formed
at a selected level of probabilistic confidence with an intention of filtering out
possible outliers. With different levels of confidence (by adjusting the Z-values),
the interval-valued samples vary. So do the variability forecasts. However, we
have observed that the variations are not very significant at all when Z is between
1.25 to 2, see [17]. Specifically, the average accuracy ratio associated with the Z-
values are: 61.75% with Z = 1.25, 64.23% with Z = 1.50, 64.55% with Z = 1.75,
and 62.94% with Z = 2.00. These accuracy ratios are very similar to 64.19%
reported in [14] with the min-max aggregation.

In calculating the attribute-wise entropy of the annual min-max interval-
valued sample with Algorithm 3 in [18] earlier, we have assumed a uniform
distribution for each interval. In addition to uniform distribution, we consider
both normal and beta distributions in this work because of their popularity in
applications. In this study, we computationally investigate the impacts of a com-
bination of an aggregation strategy associated with a probabilistic distribution
on the entropy of resulting interval-valued data. We report our numerical results
on each of the following four combinations:

(a) Min-max interval with uniform distribution;

(b) Fitting data with a normal distribution then forming confidence interval
with Z = 1.5, using normal distribution in entropy calculation;

(c¢) Fitting data with a normal distribution then forming confidence interval
with Z = 1.5, then assuming uniform distribution on each interval in entropy
calculation; and

(d) Min-max interval fitting with a beta distribution.

Table 2 lists attribute-wise entropies for each of the four cases above. Figure 3
provides a visual comparison. Python modules numpy and scipy are used as the
main software tools in carrying out the computational results.

We now analyze each of the outputs from (a)-(d) in Fig. 3.
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Table 2. Entropy comparison of data aggregation methods and pdf selection

Ul DI SP 1P DF T™
(a) Min-max, unif. 4.34192 | 3.06851 | 3.95838 | 4.30213 | 3.95359 | 4.31941
(b) Conf. intvl, normal | 2.69246 | 2.67623 | 2.61681 | 2.69736 | 2.73824 | 2.74129
(c) Conf. intvl, unif. 3.79327 | 3.76349 | 3.61804 | 3.80710 | 3.91177 | 3.91903
(d) Min-max, beta 1.96865 | 2.07197 | 2.04587 | 1.95605 | 2.08885 | 1.86871

Impacts of aggregation strategy and probability distribution on entropy
T T T T T T T

—E—a@)
- - (b)
J[7*©

..... 0 (d)

Fig. 3. Entropy comparison of data aggregation methods with pdf selection

The line (a) is exactly the same as the min-max interval line in Fig. 2. This
is because of that we have already assumed uniform distribution in calculating
the attribute-wise entropy for each of the min-max intervals.

The line (b) indicates that the entropies of the interval-valued sample formed
with the method (b) are much less than that of the interval-valued one, i.e., the
line (a). This is not by an accident. Equation (4) uses the arithmetic average
of 3. pdf; as the pdf of an interval-valued dataset X. As we know, the sum of
normal random variables follows a normal distribution. Therefore, the resulting
interval-valued dataset obtained with (b) follows a normal distribution, which is
determined only by its mean and standard deviation with much less irregularity.
Therefore, the calculated entropy is much less than that of (a). However, one
should not abolish confidence interval aggregation at all. The only thing caus-
ing the relatively less entropy is the entropy calculation, in which, we assumed
normal distribution for each pdf;. This is further explained on the line (c) below.

The line (c) shows the results obtained with the same confidence intervals in
(b) but then assuming a uniform distribution for each interval in calculating the
entropy. The Corollary 2 in [18] makes this practically doable. Notice that the
lines (c) and (a) are fairly close to each other comparing against (b) and (d). This
means that using a confidence interval to aggregate points can still be a valid
practical approach. Computational results in [17] repeated below further verify
the claim as an evidence. By adjusting the Z-values of normal distribution, sev-
eral interval-valued annual samples are formed at different levels of probabilistic
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confidence. Using them, that work reports some changes in overall quality of
the stock market annual forecasts. The average accuracy ratio associated with
the Z-values are: 61.75% with Z = 1.25, 64.23% with Z = 1.50, 64.55% with
Z = 1.75, and 62.94% with Z = 2.00. They are very close to 64.19% reported in
[14] with the min-max intervals. The relatively overall closeness of line (c) and
(a) can be an explanation for the similarity of the average accuracy ratios. The
closeness of (a) and (c) also implies that adjusting the Z-value in data aggrega-
tion may slightly improve the quality of forecasts but not significantly. Lastly,
the ILS algorithm [15] does not depend on any specific probability distribution
but the calculation of entropy does. Therefore, in calculating entropy of samples
formed with confidence intervals, assuming a uniform distribution can be a good
choice like in the reported case study of stock market forecasting. Unless, each
attribute follows a normal distribution indeed.

The line (d) is much lower than the rests. However, we ignore it because of
the reasons explained below. In our implementation, we call the beta.fit in
scipy.stats module to estimate the parameters of a beta distribution, which
fits the data best. During run time, we have encountered multiple run-time warn-
ings although our implementation returns the reported attribute-wise entropy.
After checking our code carefully without finding any bugs, we examine the
latest available official documentation of scipy updated on December 19, 2019.
Regarding beta fit, it states “The returned answer is not guaranteed to be the
globally optimal MLE (Maximum Likelihood Estimate), it may only be locally
optimal, or the optimization may fail altogether” [27]. We do not have any other
explanations for the numerical results. Due to the run-time warnings and cur-
rent software documentation, we accept that the specific computational results
on (d) are not reliable as a fact.

5 Conclusions and Possible Future Work

Applying interval-valued data rather than point-valued ones, researchers have
made very significant quality improvements of variability forecasts. This work
strongly suggests that the significant quality improvements in previous studies
very much likely come from the interval-valued inputs. Figure?2 clearly shows
that the attribute-wise entropies of an interval-valued sample are much higher
than that of those point-valued samples. The more information contained in
the input data, the higher quality outputs could be expected. Furthermore, the
interval least-squares algorithm [15] can be applied to successfully extract infor-
mation from an interval-valued sample rather than using the traditional ordinary
least-squares approaches as reported in [11] and others.

Computational results also conclude that both min-max and confidence inter-
vals can be effectively used to aggregate point-valued data into intervals. Both of
them may lead to similarly well quality variability forecasts with the evidence on
the stock market reported in [3] and [17]. This is because of that they may result
in interval-valued samples with similar entropies as illustrated in Fig. 3 lines (a)
and (c). While the interval least-squares algorithm itself does not demand proba-
bility distribution information at all, calculating the entropy of an interval-valued
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dataset does. The lines (b) and (¢) in Fig. 3 suggest that a uniform probability
distribution on each interval can be a good choice in calculating the entropy of
an interval-valued dataset.

In summary, this work provides information theoretic evidences, in addition
to empirical results published previously, on the followings:

— Using interval-valued samples together with ILS is preferable than using
point-valued ones with OLS in variability forecasts like predicting annual
variability of the stock market and others.

— Applying min-max interval and/or confidence interval (at an appropriate level
of confidence) to aggregate points into intervals may result in interval-valued
samples containing similar amount of information.

— When estimating the entropy of an interval-valued dataset with (5), it can be
a good choice of assuming a uniform distribution on each interval. Unless, it
follows a normal distribution indeed.

The future work may consist of both sides of application and theory. With the
information theoretic evidence, we have validated previously published results
with interval-valued data and ILS. Therefore, applying interval methods in vari-
ability forecasts with uncertainty has a high priority. On the theoretic side, we
should indicate that attribute-wise entropy is not exactly the same as the entropy
of a multidimensional dataset. Investigating attribute-wise entropy in this study
is not only because of its simplicity, but also because [18] only provides point-
valued probability and entropy for single dimensional interval-valued datasets.
Therefore, establishing point-valued probability and entropy for a multidimen-
sional interval-valued dataset is among future works too.
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ciations to the contributors of the freely available high quality Python software tools.
Especially, the spyder IDLE, and the numpy and scipy modules have helped us greatly
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