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Preface

We are very pleased to present you with the proceedings of the 18th International
Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems (IPMU 2020), held during June 15–19, 2020. The con-
ference was scheduled to take place in Lisbon, Portugal, at the Instituto Superior
Técnico, University of Lisbon, located in a vibrant renovated area 10 minutes from
downtown. Unfortunately, due to the COVID-19 pandemic and international travel
restrictions around the globe, the Organizing Committee made the decision to make
IPMU 2020 a virtual conference taking place as scheduled.

The IPMU conference is organized every two years. Its aim is to bring together
scientists working on methods for the management of uncertainty and aggregation of
information in intelligent systems. Since 1986, the IPMU conference has been pro-
viding a forum for the exchange of ideas between theoreticians and practitioners
working in these areas and related fields. In addition to many contributed scientific
papers, the conference has attracted prominent plenary speakers, including the Nobel
Prize winners Kenneth Arrow, Daniel Kahneman, and Ilya Prigogine.

A very important feature of the conference is the presentation of the Kampé de
Fériet Award for outstanding contributions to the field of uncertainty and management
of uncertainty. Past winners of this prestigious award are Lotfi A. Zadeh (1992), Ilya
Prigogine (1994), Toshiro Terano (1996), Kenneth Arrow (1998), Richard Jeffrey
(2000), Arthur Dempster (2002), Janos Aczel (2004), Daniel Kahneman (2006), Enric
Trillas (2008), James Bezdek (2010), Michio Sugeno (2012), Vladimir N. Vapnik
(2014), Joseph Y. Halpern (2016), and Glenn Shafer (2018). This year, the recipient
of the Kampé de Fériet Award is Barbara Tversky. Congratulations!

The IPMU 2020 conference offers a versatile and comprehensive scientific program.
There were four invited talks given by distinguished researchers: Barbara Tversky
(Stanford University and Columbia University, USA), Luísa Coheur (Universidade de
Lisboa, Instituto Superior Técnico, Portugal), Jim Keller (University of Missouri,
USA), and Björn Schuller (Imperial College London, UK). A special tribute was
organized to celebrate the life and achievements of Enrique Ruspini who passed away
last year. He was one of the fuzzy-logic pioneers and researchers who contributed
enormously to the fuzzy sets and systems body of knowledge. Two invited papers are
dedicated to his memory. We would like to thank Rudolf Seising, Francesc Esteva,
Lluís Godo, Ricardo Oscar Rodriguez, and Thomas Vetterlein for their involvement
and contributions.

The IPMU 2020 program consisted of 22 special sessions and 173 papers authored
by researchers from 34 different countries. All 213 submitted papers underwent the
thorough review process and were judged by at least three reviewers. Many of them
were reviewed by more – even up to five – referees. Furthermore, all papers were
examined by the program chairs. The review process respected the usual



conflict-of-interest standards, so that all papers received multiple independent
evaluations.

Organizing a conference is not possible without the assistance, dedication, and
support of many people and institutions.

We are particularly thankful to the organizers of special sessions. Such sessions,
dedicated to variety of topics and organized by experts, have always been a charac-
teristic feature of IPMU conferences. We would like to pass our special thanks to Uzay
Kaymak, who helped evaluate many special session proposals.

We would like to acknowledge all members of the IPMU 2020 Program Committee,
as well as multiple reviewers who played an essential role in the reviewing process,
ensuring a high-quality conference. Thank you very much for all your work and efforts.

We gratefully acknowledge the technical co-sponsorship of the IEEE Computational
Intelligence Society and the European Society for Fuzzy Logic and Technology
(EUSFLAT).

A huge thanks and appreciation to the personnel of Lisbon’s Tourism Office
‘Turismo de Lisboa’ (www.visitlisboa.com) for their eagerness to help, as well as their
enthusiastic support.

Our very special and greatest gratitude goes to the authors who have submitted
results of their work and presented them at the conference. Without you this conference
would not take place. Thank you!

We miss in-person meetings and discussions, yet we are privileged that despite these
difficult and unusual times all of us had a chance to be involved in organizing the
virtual IPMU conference. We hope that these proceedings provide the readers with
multiple ideas leading to numerous research activities, significant publications, and
intriguing presentations at future IPMU conferences.

April 2020 Marie-Jeanne Lesot
Marek Z. Reformat

Susana Vieira
Bernadette Bouchon-Meunier

João Paulo Carvalho
Anna Wilbik

Ronald R. Yager
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Abstract. In this paper, imprecise approaches to model the risk reserve
process of an insurer’s portfolio, which consists of a catastrophe bond
and external help, and with a special penalty function in the case of
a bankruptcy event, are presented. Apart from the general framework,
two special cases, when parameters of the portfolio are described by L-R
fuzzy numbers or shadowed sets, are discussed and compared. In a few
examples based on the real-life data for these two types of impreciseness,
some important characteristics of the portfolio, like the expected value
and the probability of the ruin, are estimated, analysed and compared
using the Monte Carlo simulations.

Keywords: Risk process · Fuzzy numbers · Shadowed sets · Insurance
portfolio · Numerical simulations

1 Introduction

Due to the global warming effect, changes in land use, and other effects related
to humans’ activities, number and severity of natural catastrophes (like tsunamis,
earthquakes, floods etc.) are still increasing. Rising demand for related compen-
sations is a serious problem for the insurers, so they have to introduce new
financial and insurance instruments to compensate for their losses. A catastro-
phe bond (abbreviated as a cat bond, see, e.g., [7,11,12,14]) is an example of
such an instrument, which transfer risks from an insurance market to financial
markets (which is known as “securitization of losses”). But these new instruments
require more complex approaches to the classical problem: how to calculate the
probability of the insurer’s ruin? Simulations (like the Monte Carlo method) can
be applied to analyse even very complex insurer’s portfolios (see, e.g., [18,20]),
which consist of many different instruments (i.e. layers), like the classical risk
process, issued catastrophe bonds, a reinsurance contract, etc. A numerical app-
roach is a very convenient tool also in other areas (see, e.g., [9,15,16]).

Moreover, future characteristics of natural catastrophes and other aspects
of the insurer’s market (e.g., level of possible external help after a serious natural
catastrophe) are not known precisely. Therefore, an imprecise setting (related to,
e.g., fuzzy numbers or shadowed sets) is a natural approach to overcome problems
with such partially unknown parameters (see, e.g., [18,23]).
c© Springer Nature Switzerland AG 2020
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The literature devoted to insurance mathematics, especially to the problem
of the ruin probability of the insurer, is abundant (see, e.g., [2,7,10]). However,
the imprecise approach in this area is still underdeveloped (see, e.g., [5] for
a review of the literature). The following paper can be treated as a further
development of the ideas presented in [18–20,22]. Then, a generalized form of the
classical risk process is considered and additional layers of the insurance portfolio
(like a catastrophe bond and an external help) under an assumption about the
value of money in time are analysed using the MC simulations. Moreover, the
imprecise setting is used to describe some parameters of the considered models.

A contribution of this paper is fourfold. First, a general simulation framework
which enables us to use many, not only one, imprecise parameters (with values
based, e.g., on the experts’ opinions) of the considered models for the insurer’s
portfolio, is presented. Second, this general framework is discussed in a more
detailed way for two practically important types of imprecise values: fuzzy num-
bers (especially L-R fuzzy numbers) and shadowed sets. Third, a generalization
of the classical risk reserve process for the complex insurer’s portfolio, which con-
sists of an issued catastrophe bond and a (possible) external (e.g., governmental
or from other institution) help, together with an embedded penalty function
(applied in the case of a bankruptcy event), is presented. Moreover, this gen-
eralization uses the assumption about the value of money in time. Fourth, the
two imprecise approaches (i.e. for L-R fuzzy numbers and shadowed sets) are
numerically compared in a few examples. In these examples, the Monte Carlo
(MC) simulations are used to calculate various characteristics of the portfolio,
which are important for the insurer (like the expected value of this portfolio
or the probability of the insurer’s ruin in finite time).

This paper is organized as follows. In Sect. 2, the classical risk process is
generalized to take into account the previously mentioned additional layers and
the assumption about the value of money in time. In Sect. 3, necessary definitions
concerning fuzzy numbers and shadowed sets are recalled. In Sect. 4, the general
approach for imprecise settings of the considered models is presented and then
applied for L-R fuzzy numbers and shadowed sets in simulations discussed in
Sect. 5. The paper is concluded in Sect. 6 with some final remarks.

2 Model of Insurance Portfolio

The classical risk reserve process Rt is defined as a model of the financial reserves
of an insurer depending on time t, i.e.

Rt = u + pt − C∗
t (1)

where u is an initial reserve of the insurer, p is a rate of premiums paid by the
insureds per unit time and C∗

t is a claim process of the form

C∗
t =

Nt∑

i=1

Ci (2)
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where C1, C2, . . . are iid random values of the claims. Usually, these claims have
the same values as the losses caused by the natural catastrophes Ui, i.e. Ci = Ui,
so we have an additional process of the losses

U∗
t =

Nt∑

i=1

Ui. (3)

In [20], the claims were modelled as a deterministic or random part of the losses,
i.e. Ci = αclaimZiUi , where αclaim ∈ [0, 1], Zi ∼ U [cmin, cmax], and Zi, Ui are
mutually independent variables. Then, αclaim describes a deterministic share of
the considered insurer in the whole insurance market (for the given region) and
Zi models a random part of the claim Ci in the loss Ui. In the following, we
assume that αclaim is given in the imprecise way to model share of the insurer in
the market in a more real-life way, e.g., when this share is not exactly stated, its
level varies depending on a region of a possible natural catastrophe or its source,
etc. It can lead to some hedging problems (see, e.g., [19,20] for additional details).

The process of a number of the claims (and the losses) Nt ≥ 0 is usually driven
by some Poisson process, e.g., a non-homogeneous Poisson process (NHPP).
In this paper, we assume an intensity function for this NHPP of the form

λNHPP(t) = a + bt + c sin (2π (t + d)) + m exp
(
cos

(
2πt

ω

))
(4)

with linear, cyclic and exponential parts, which was proposed in [6] and applied
in [22]. To generate values from (4), the thinning method (see, e.g., [18]) is then
used. Because of using (4), we assume that the premium in (1) is a constant,
fixed value for some deterministic moment T , and

p(T ) = (1 + νp)ECi

∫ T

0

λNHPP(s)ds (5)

where νp is a safety loading (security loading) of the insurer (usually about
10%–20%, see, e.g, [2]).

In this paper, the classical risk reserve process (1) is generalized to take
into account additional financial and insurance instruments (like a catastro-
phe bond), a penalty function, and the value of money in time (which is mod-
elled using a stochastic interest rate, i.e., the one-factor Vasicek model, given by
drt = κ (θ − rt) dt+ σdWt). We enrich the classical insurance portfolio with two
additional layers: a catastrophe bond and an external (e.g., governmental or from
another institution) help. There are also other possible layers (like a reinsurance
contract, see, e.g., [22]).

A catastrophe bond is an example of a complex financial-insurance instru-
ment. When it is issued, the insurer pays an insurance premium pcb in exchange
for coverage, when a triggering point (usually some catastrophic event, like an
earthquake) occurs. The investors purchase insurance-linked security for cash.
The above-mentioned premium and cash flows are usually managed by an SPV
(Special Purpose Vehicle), which also issues the catastrophe bonds. The investors
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hold the issued assets, whose coupons and/or principal depend on the occurrence
of the mentioned triggering point. If such a catastrophic event occurs during the
specified period, then the SPV compensates the insurer with a payment f i

cb(U
∗
T )

and the cash flows for the investors are changed. Usually, these flows are low-
ered, i.e. there is full or partial forgiveness of the repayment of principal and/or
interest. However, if the triggering point does not occur, the investors usually
receive the full payment from a cat bond (see, e.g., [7,18,20]).

We assume that the mentioned insurance premium pcb is proportional to
both a part αcb of the whole price of the single catastrophic bond Icb, and to a
number of the issued bonds ncb, i.e. pcb = αcbncbIcb. To calculate the price Icb
of a catastrophe bond, the martingale method together with the MC simulations
are applied (see, e.g., [11,12,18]).

The third layer is an external (e.g., governmental or related to another enter-
prise from the insurer’s consortium) help of the value fhlp(U∗

T ). We assume, that
this help is supplied only if the losses surpass some given minimal limit Ahlp,
and it is also limited to some maximal value Bhlp. In some way, this help is sim-
ilar to a reinsurance contract, but, contrary to such an instrument, there is no
additional payment for this help and its limits can be modelled in an imprecise
way (see Sect. 4). Moreover, we assume that only part αhlp of this help lowers
the expenditures of the insurer, because this help can be directed to both the
insureds and the insurer. In practice, the formal requirements and the legal reg-
ulations can state that such external help is not allowed. But special financial
help from the government was directed to banks (which were “too big to fail”)
during the global financial crisis in 2007–08 and this can happen again under
some extreme circumstances. There is also a list, which was published by the
Financial Stability Board, of “specially treated” insurance companies (also “too
big to fail”). Moreover, it may be profitable even for smaller insurers to analyse
the whole set of possible scenarios during their stress tests to check if with and
without the external help their portfolios lead to similar levels of probabilities
of insolvency.

And in real-life situations, bankruptcy can be very dangerous for the insurer.
Apart from simple lack of necessary funds, this event could lead to addi-
tional financial problems, bankruptcy of other enterprises, problems with the
law, reputational damages, etc. Therefore, we introduce a special penalty func-
tion fpen(RT ) which is related to the bankruptcy event itself or its value (see,
e.g., [22]). Then we have a constant penalty function

fpen(RT ) = bpen1 (RT < 0) (6)

or, e.g., a linear penalty function (related directly to a level of the bankruptcy)

fpen(RT ) = apen max {0,−RT } + bpen1 (RT < 0) , (7)

where apen, bpen are respective parameters.
Taking into account the previously assumed value of money in time and the

additional layers, the classical risk reserve process (1) should be modified into the
form
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RT = FVT (u − pcb) + FVT (p(T )) − FVT (C∗
T ) + ncbf

i
cb(U

∗
T )

+ αhlp 1(U∗
T ≥ Ahlp)fhlp(U∗

T ) , (8)

where FVT (.) is future value of the cash flow in time T , and together with the
penalty function we have

R∗
T = RT − fpen(RT ). (9)

In the following, we will be interested in estimation of some important character-
istics of the introduced insurer’s portfolio, like ERT (the mean of the generalized
risk reserve process in T ), Pr(RT < 0) (probability of the ruin in the finite time
horizon T ), ER∗

T (the mean of the generalized risk reserve process with the
penalty function).

3 Fuzzy Numbers and Shadowed Sets

In Sect. 4, the general approach to the insurer’s portfolio based on both crisp
and imprecise settings is discussed. There are many mathematical setups which
can be used to model impreciseness. We focus on trapezoidal fuzzy numbers
(TPFNs), L-R fuzzy numbers (left-right fuzzy numbers, LRFNs) and shadowed
sets (SHSs), but other types of fuzzy sets can be also applied (see, e.g., [1,3,
8,11,13,15,16,18] for additional definitions, notation and applications of fuzzy
numbers and shadowed sets). In the case of TPFN, its membership function has
the form

A(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x−a1
a2−a1

if a1 < x � a2,

1 if a2 � x � a3,
a4−x
a4−a3

if a3 � x < a4,

0 otherwise,

(10)

where a1, a2, a3, a4 ∈ R, and a1 � a2 � a3 � a4. A trapezoidal fuzzy number
ã will be further denoted as [a1, a2, a3, a4], and its α-level cuts are given by
intervals ã[α] = [aL[α], aU [α]]. If a2 = a3, then ã is said to be a triangular fuzzy
number (TRFN) and we have ã = [a1, a2, a4]. The operations on fuzzy numbers
are defined as in [3].

An SHS S in a universe of discourse X is a set-valued mapping S : X →
{0, [0, 1], 1} interpreted as follows: all elements of X for which S(x) = 1 are called
a core of S and they embrace all elements that are fully compatible with the
concepts conveyed by S, all elements of X for which S(x) = 0 are completely
excluded from the concept described by S, and all elements of X for which
S(x) = [0, 1], called a shadow, are uncertain. The usage of the unit interval
for the shadow shows that any element from this shadow could be excluded or
exhibit partial membership or could be fully allocated to S. In the following we
consider X = R, then a SHS will be denoted by [s1, s2, s3, s4]SH, where its core
is given by the interval [s2, s3], its shadow by (s1, s2) ∪ (s3, s4), and its support
by [s1, s4].
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There exist important links between concepts of a fuzzy set and a shadowed
set. Based on the initial fuzzy set, a corresponding shadowed set, that captures
“the essence” of this fuzzy set, reduces computational efforts related to a mem-
bership function (because only two “cuts” are necessary, instead of all possible
α ∈ [0, 1]), and simplifies the interpretation, can be constructed (see, e.g., [13]).
This resultant shadowed set is created from the initial fuzzy set using an elevation
of some membership values (“close to 1” or “high enough”) and with a reduction
of others (which are “close to 0” or “low enough”). In [8], the respective procedure,
which is related to the optimization of two weighting functions, was introduced.

4 Imprecise Approaches

In [19,20,22], the models of the insurer’s portfolios with only some parameters
given by fuzzy numbers have been described. Now we present a generalization of
this approach where all respective parameters are described by imprecise values
(if such an assumption is appropriate in the considered real-life case) or crisp (i.e.
real) values (when the respective parameters are precisely stated, e.g., in trade
agreements). In Sect. 5, we focus on TRFNs/TPFNs and SHSs to model the
mentioned impreciseness but other types of fuzzy numbers (like LRFNs) can be
also applied.

Let us suppose, that our aim is to calculate the value of some function f(x)
for x, e.g., ER∗

T (using its respective estimator, i.e. the average R̄∗
T based on

the MC approach) for a. To approximate a fuzzy value f̃(x̃) for a fuzzy coun-
terpart x̃, monotonicity of f(x) should be checked. If f(x) is a non-decreasing
function (or a non-increasing, respectively), then for the given α ∈ [0, 1], the
respective α-cut of f̃(x̃) is calculated as the crisp interval [f(xL[α]), f(xU [α])] (or
[f(xU [α]), f(xL[α])], respectively), following the Zadeh’s extension rule (see also,
e.g., [21]). If monotonicity of f(x) is more complex or, e.g., unknown, then this
interval is given as [min{f(xL[α]), f(xU [α])},max{f(xL[α]), f(xU [α])}], which
complicates the necessary calculations. This step is repeated for all desired val-
ues of α (usually we start from α = 0 with some increment Δα > 0 till α = 1),
with an additional approximation of “missing” α-level sets based on some (rather
simple, e.g., linear) function. In the same manner, probability of the ruin in
the finite time T can be estimated using qruin = nruin/n (i.e. ratio of trajecto-
ries with final ruin to number of all trajectories of the portfolio) and its fuzzy
counterpart q̃ruin.

This approach can be generalized, if more than only one parameter x is
fuzzified, e.g., if we would like to find R̃∗

T (i.e. the fuzzy counterpart for R̄∗
T )

for both ã and b̃ (i.e. the fuzzy counterparts of a and b). A respective example
for R̃∗

T and some parameters of the considered models is summarized in Table 1,
where the plus sign indicates non-decreasing dependency and the minus sign –
non-increasing dependency. In the case of q̃ruin, these dependencies are reverse.
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Table 1. Examples of dependencies between ER∗
T and some parameters of the models.

a b αclaim ζLN apen bpen Ahlp Bhlp

− − − − − − − +

The similar approach can be also applied if the parameters are described by
SHSs, but then only two “levels” (i.e. α = 0, 1) for the respective simulations
should be used, and the whole idea is related to interval calculations. The appli-
cation of SHSs instead of fuzzy numbers significantly reduces the necessary time
of the MC simulations, but it can also lead to different results (see Sect. 5). This
approach can be profitable if monotonicity of the considered function for some
parameters is too complex to asses analytically.

5 Numerical Simulations

To make our simulations more realistic, we focus on the values of the parame-
ters, which have been fitted to real-life data in the literature. But because many
future aspects of the considered models are uncertain, some of these parame-
ters are transformed to imprecise values, i.e. they are given as fuzzy numbers
(modelled by TPFNs/TRFNs) or SHSs. Then, to describe each Ui, we apply the
lognormal distribution with the parameters ζLN, σLN fitted in [6] to real-life data
(collected by PCS, USA). The parameters of the intensity function (4) have been
also fitted in [6]. The parameters of the one-factor Vasicek model are based on
estimators from [4]. To describe the limits for a catastrophe bond and external
help, quantiles of the cumulated value of the losses for the process (3), denoted
by QC∗

T
(x), are also applied (see also, e.g., [20]). A piecewise function is used

as the payment function f i
cb(U

∗
T ) of the issued catastrophe bond (for additional

details about these payments and the pricing method, see [18,22]).
Some of the above-mentioned parameters are given as imprecise values in the

following simulations. To make our analysis clearer, we limit the number of these
parameters, however, the approach presented in Sect. 4 is more general.

The above-mentioned impreciseness can have many sources. It can be related
to future unknown behaviour of the introduced models (like the parameters in (4)
or for the distribution of Ui, so the fuzzified value ã reflects our doubts concerning
the future possible increase of intensity of the number of the catastrophic events
caused by the global warming effect), lack of our knowledge because of the rarity
of similar events in the past (then the experts’ knowledge has to be applied, e.g.,
to estimate the parameters of the penalty function or the external help from
another enterprise, so Ãhlp is related to the unknown minimum level of the
possible external help, which can be smaller or bigger depending on political
restrictions or available financial resources of another company), rapid changes
in the market or lack of full information concerning the given region or the
specified segment of the market (e.g., if there is a new competitor on the market
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or a natural catastrophe causes the losses only in some region or to some kind
of properties, hence the share of the insurer in this market can be imprecise).
Other parameters can be given exactly as crisp values because, e.g., they are
precisely stated in contracts or directly known (like pcb, u or the parameters of
a cat bond). We consider one-year time horizon in our simulations (i.e. T = 1),
and for each example one million simulations are used.

First, we assume that the imprecise values are modelled by TPFNs/TRFNs,
so we set

u = QC∗
T
(0.25), νp = 0.1, Icb = 0.809896, αcb = 0.1, ncb = 1000, w1 = 1,
K0 = QC∗

T
(0.7),K1 = QC∗

T
(0.9), αhlp = 0.5, phlp = 1,

Ãhlp =
[
QC∗

T
(0.95) − 1000, QC∗

T
(0.95), QC∗

T
(0.95) + 1000

]
,

B̃hlp =
[
QC∗

T
(0.99) − 1000, QC∗

T
(0.99), QC∗

T
(0.99) + 1000

]
,

κ = 0.1779, θ = 0.086565, r0 = 0.03, σ = 0.02, a = [23.93, 24.93, 25.93],
b = [0.025, 0.026, 0.027], c = 5.6, d = 7.07,m = 10.3, ω = 4.76,
ζLN = [18.08, 18.58, 19.08], σLN = 1.49, αclaim = [0.4, 0.5, 0.6],

apen = [1, 2, 3, 4], bpen = [5, 10, 15, 20], (11)

then, e.g., the insurer issued 1000 catastrophe bonds, the parameter a in the
intensity function (4) is “about its value estimated in [6] plus/minus 1”, determin-
istic share of the insurer in the insurance market αclaim is “about 50% plus/minus
10%”, the constant value bpen in the penalty function is given by TPFN with the
core [10, 15] and the support [5, 20], etc.

During our simulations, the insurer’s portfolios without the penalty function
and without the external help (Example F1), without the penalty function and
with the external help (Example F2), and their counterparts with the linear
penalty function (Example F3/Example F4), have been analysed. The simulated
values of R̃∗

T and q̃ruin can be found in Fig. 1 and Fig. 2, respectively. They are
clearly LRFNs with rather wide supports (especially in the cases without the
external help), very narrow cores, left-skewed (in the case of R̃∗

T ) or right-skewed
ones (q̃ruin). Interestingly, the existence of the external help or/and the linear
penalty function has limited influence on the right arms of R̃∗

T and the left arms
of q̃ruin (whereas very significant on their left/right counterparts, respectively).
The external help narrows the supports of both R̃∗

T and q̃ruin almost twice, but
its influence on the cores of R̃∗

T is more limited.
The insurer can easily evaluate the impacts of different scenarios on his finan-

cial results using the simulated outputs. For example, the insurer can be inter-
ested if the increasing intensity of the number of natural catastrophes in future
can lead to additional problems with his portfolio. Then, instead of the values
of a, b given in (11), TPFNs with wider right arms (because we suspect that the
intensity will be rather bigger than smaller)

a = [23.93, 24.93, 26.93, 28.93], b = [0.025, 0.03, 0.026, 0.028] (12)
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Fig. 1. Simulated values of R̃∗
T in Example F1 (circles), Example F2 (rectangles),

Example F3 (diamonds), Example F4 (triangles).
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Fig. 2. Simulated values of q̃ruin in Example F1/F3 (circles), Example F2/F4 (rectangles).

can be used, together with the setting without the external help and the penalty
function (Example F5). The simulated value of R̃∗

T is similar to the one for
Example F1 (see Fig. 3a), but the core in Example F5 is wider. Hence, the
obtained results for α = 1 are given by the wider interval. On the other hand,
the insurer can suspect that his share in the insurance market is given by more
imprecise TPFN

αclaim = [0.3, 0.4, 0.6, 0.7] (13)
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than the value set in (11) (Example F6). In this case, both the core and the
support of R̃∗

T are much wider than in Example F1 (see Fig. 3b), so the implicated
impreciseness of this result is really high.

7000 8000 9000 10000 11000 12000

0.2

0.4

0.6

0.8

1.0

7000 8000 9000 10000 11000 12000

0.2

0.4

0.6

0.8

1.0

Fig. 3. Simulated values of R̃∗
T .

Other important characteristics of the insurer’s portfolio can be also found
similarly. In Table 2 some examples of statistics for the final value of the portfolio
in Example F1 for T = 1 and α = 0, 1 are given. Especially the median can be
interesting for the insurer, because of the skewness which is seen for R̃∗

T .

Table 2. Selected statistics of the portfolio in Example F1.

Minimum Q1 Median Q3 Maximum

α = 0 [−260405,−85962] [6450, 10657] [10074, 11729] [12561, 13285] [15537, 23950]

α = 1 [−227392,−222036] [9224, 9225] [11443, 11448] [13146, 13148] [18407, 18802]

Now we compare the simulated outputs when, instead of fuzzy numbers, their
SHSs counterparts are applied. To do this, we apply the procedure from [8] to
transform the fuzzy numbers in (11) to respective SHSs. We consider similar
examples to the previous ones, i.e. without the penalty function and without
the external help (Example S1 instead of F1), without the penalty function and
with the external help (S2 instead of F1), etc. Then, the simulated values of R̃∗

T

and q̃ruin can be found in Fig. 4 and Fig. 5, respectively. The previously obtained
plots for Examples F1–F4 are also added there for easier comparison of both
approaches.

In general, the obtained SHSs are “similar” to the previously considered
LRFNs, especially their skewness can be directly seen. However, the supports
of SHSs are much shorter and their cores wider. Therefore, instead of LRFNs
with almost the “crisp” cores (like in Example F1 or F2), we obtain rather wide
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(a) Example S1 vs F1
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(b) Example S2 vs F2
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(c) Example S3 vs F3
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(d) Example S4 vs F4

Fig. 4. Simulated values of R̃∗
T .

intervals for “fully compatible” values. And, on the contrary, the shorter sup-
ports can also lead us to different (from the insurer’s point of view) evaluation
of “fully excluded” values. It can be treated as some drawback of the approach
based on SHSs, while its advantage is related to the previously mentioned reduc-
tion of time of simulations. However, the general shapes of the calculated SHSs
and LRFNs are very similar, so the insurer can obtain a general idea concerning
impreciseness of the evaluated values even for the approach based on SHSs. This
kind of comparison between both approaches can be also made for other areas
of applied sciences (see, e.g., [17]).
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(a) Example S1/S3 vs F1/F3
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(b) Example S2/S4 vs F2/F4

Fig. 5. Simulated values of q̃ruin.
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Table 3. Selected statistics of the portfolio in Example S1.

Minimum Q1 Median Q3 Maximum

α = 0 [−218936,−113416] [7730, 10349] [10632, 11722] [12780, 13332] [16464, 23950]

α = 1 [−383767,−149285] [8319, 9881] [11124, 11628] [12970, 13277] [17638, 18802]

Other statistics of the final value of the portfolio can be also compared as
in the case of Table 2 for Example F1 and Table 3 for its SHS counterpart (i.e.
Example S1). To provide additional insight into statistical characteristics of the
above-mentioned values, respective quantile plots are plotted for the left and
right ends of the cores for both of these examples in Fig. 6. The obtained results
are very similar for “middle quantiles” (like 0.5th quantile) and differ significantly
for lower and upper quantiles, but the overall shapes of the plots are comparable.

0.2 0.4 0.6 0.8 1.0
Quantile

5000

10000

15000

Value

(a) Left end of the core

0.2 0.4 0.6 0.8 1.0
Quantile

5000

10000

15000

Value

(b) Right end of the core

Fig. 6. Quantile plots for Example F1 (circles) vs S1 (rectangles).

6 Conclusion

In this paper, the general imprecise approach to the model of the risk reserve
process is discussed. The presented insurance portfolio consists of the classical
risk reserve process, the issued catastrophe bond and the external help. In the
case of the insurer’s bankruptcy, the special penalty function is applied. Apart
from the general approach, two special cases, when the considered parameters are
given by triangular/trapezoidal fuzzy numbers or shadowed sets, are discussed
in a more detailed way. Then these cases are applied and compared using the
Monte Carlo simulations for which the parameters based on real-life values are
used. The obtained results for both of the previously mentioned approaches
seem to be similar, but there are some important differences. The calculated
fuzzy numbers give us more detailed information, especially in the case of their
cores (i.e. about “sure values”), which can be very useful for the insurer (because
of the above-mentioned “certainty” of these values for α = 1). Exact knowledge
of the whole membership function of fuzzy number has also a serious drawback
related to the expenditure of time of necessary simulations (let’s say, 5–10 times
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more than in the case of the second approach). In the contrary, an application
of shadowed sets leads us to a fast, intuitively understandable but rather coarse
approximation of the expected output. It can be useful for the insurer as a first
attempt to solve the considered problem. Nevertheless, the overall “shapes” of
the outputs for both approaches remain very similar.
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Abstract. We use the Steinhaus transform of metric distances to deal
with inconsistency in linguistic classification. We focus on data due to
G. Longobardi’s school: languages are represented through yes-no strings
of length 53, each string position corresponding to a syntactic feature
which can be present or absent. However, due to a complex network of
logical implications which constrain features, some positions might be
undefined (logically inconsistent). To take into account linguistic incon-
sistency, the distances we use are Steinhaus metric distances generalizing
the normalized Hamming distance. To validate the robustness of classifi-
cations based on Longobardi’s data we resort to randomized transforms.
Experimental results are provided and commented upon.

Keywords: Steinhaus distance · Linguistic classification · �Lukasiewicz
logic · Fuzzy logic

1 Introduction

The linguist G. Longobardi and his school have an ambitious project on language
classification which is based on syntactic rules rather than lexical or phonetic data
[1,11–13]: the idea is that syntactic rules have a definitely slower time-drift and
so, by being able to reach back deeper into the past, one might obtain precious
information on linguistic macrofamilies which have been proposed, but whose ade-
quacy is still a moot point. In a way, one should like to mimic what evolutionary
bioinformatics has been able to achieve in the genetic domain of quaternary DNA
strings; it is no surprise that tools of bioinformatics, e.g. those used in character-
based and distance-based classifications, have been exported into linguistics, cf.
e.g. [1,12], a fact we shall comment upon below. Longobardi’s approach is defended
in [1,11–13], to which the linguistic-minded reader is referred. In linguistics, binary
strings are obtained by specifying n linguistic features which can be present= 1
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or absent = 0 in a given language L. Since the length n is the same for all strings
describing the languages L, Λ, . . . one intends to classify, a distance like Hamming
distance, which counts the number of distinct features, appears to be adequate to
gauge the dissimilarity between two languages L and Λ (between the correspond-
ing strings), were it not that Longobardi’s features are constrained by a complex
network of logical implications. This has lead Longobardi’s school to the use of
a string distance which modifies the Hamming definition so as to get rid of posi-
tions corresponding to undefined (and undefinable) positions; the drawback is that
the generalized distance they resort to is not metric, as instead often required by
clustering techniques used to obtain the corresponding classification trees. Due to
reasons discussed in next section, also a non-metric generalization the Jaccard dis-
tance has been used by Longobardi’s school: the Jaccard distance “ignores” posi-
tions corresponding to features which are absent in both languages L and Λ, and so
are linguistically “irrelevant”, cf. next section. Now, the original 0–1 Jaccard dis-
tance (no inconsistency) can be obtained from the standard Hamming distance by
means of a powerful mathematical tool called the Steinhaus transform: this trans-
form needs the specification of a pivot, which in the Jaccard case is precisely the
all-zero string; we stress that the Steinhaus transform of a metric distance is itself
metric. In [8] one has already used Steinhaus transforms to deal with old fuzzy lin-
guistic data due to Ž. Muljačić, where logical values can be intermediate between
0 and 1: this gave us the idea to represent logical inconsistency by the “ambigu-
ous” value 1

2 which is equidistant from both crisp logical values 0 and 1, cf. Sects. 3
and 4, and to use as pivot the “totally ambiguous” string, i.e. the all-12 string. The
results which we obtain with this Steinhaus transform are surprisingly good, as
commented upon in Sects. 3 and 4. The fact that moving from the original Lon-
gobardi’s non-metric distance to our Steinhaus metric distance leaves the classi-
fication tree largely unchanged may be interpreted as a proof of the robustness of
Longobardi’s data: this is in puzzling contrast with results obtained by bootstrap-
ping techniques described and used in [1,11,12] and suggested by bioinformatics,
which seemed to show that Longobardi’s original classification is not that robust.
Below, in Sects. 3 and 4, we argue that this seeming non-robustness might be due to
the inadequacy of tools exported from bioinformatics to linguistics. Rather than by
bootstrapping, we prefer to validate the robustness of data by randomly perturbing
our Steinhaus distance, or rather by randomly perturbing the pivot which is used:
results are shown and commented upon in Sects. 3 and 4.

2 A Detour: From Muljačić to Steinhaus

In the past, the authors have been working on old and new linguistic data [6–10];
the starting point is the same: languages L, Λ, ... are described by n linguistic
features fi, 1 ≤ i ≤ n, which in each language can be either present (1 = true) or
absent (0 = false). The usual (crisp) Hamming distance, which counts the number
of positions i where the corresponding bits are different, would be to the point,
but both in the old Muljačić data and in the new ones due to Longobardi there
is a stumbling block, since “ambiguous” situations are possible. Even if in both
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cases the symbols we will be using1 are 0, 1
2 , 1, the symbol 1

2 , i.e. neither true
nor false, neither present nor absent, has a distinct meaning.

In the case of Muljačić [14], 1
2 can be interpreted as a logical value inter-

mediate between 0 and 1 in a multivalued logic as is fuzzy logic, for which cf.
e.g. [5]. In ampler generality one may consider strings x = x1x2 . . . xn where
each component xi may belong to the whole interval [0,1] allowing for all possi-
ble “shadings” of logical values. To define an adequate distance between fuzzy
strings, suitably generalizing the usual Hamming distance between crisp strings,
the relevant question to be posed is: if x and y are the logical values of feature
f in the two languages L and Λ represented by the two strings x and y, is f
{present in L and absent in Λ} or {absent in L and present in λ}? Let ⊥ and
� be the disjunction or and the conjunction and in the multi-valued logic we
choose to use; as for the negation, denoted by an overline, we will always use the
1-complement: x = 1 − x (the symbols � and ⊥ which we are using for abstract
conjunctions and disjunctions remind one of ∧ and ∨, and are common when
dealing with T-norms, cf. e.g. [5]). Assuming additivity w.r. to the n features,
one gets for the distance d(x, y) between two strings x and y, and so for the
corresponding distance d(L, Λ) between languages L and Λ:

d(x, y) =
∑

1≤i≤n

(
xi� yi

) ⊥ (
xi �yi

)
(1)

In the case of standard fuzzy logic, conjunction and and disjunction or are com-
puted through minima ∧ and maxima ∨, respectively, x�y = x ∧ y = min[x, y],
x⊥y = x ∨ y = max[x, y]. The distance one obtains from (1) is a fuzzy gen-
eralization of the usual crisp Hamming distance; rather than fuzzy Hamming
distance as in [15], or even Sgarro distance as in [3], we found it proper to call
it Muljačić distance. We stress that use of the latter distance has proved to be
quite successful in the case of Muljačić data, which, unlike Longobardi’s, are
genuinely fuzzy. The curious reader is referred to [6,7].

Already in [7] we tried several other logical operators of multi-valued logics,
for example �Lukasiewicz operators x⊥y = (x+y)∧1 = min[x+y, 1], x�y = (x+
y−1)∨0 = max[x+y−1, 0]. The results were in general uninteresting, since the
distances one obtains were metrically unacceptable, cf. [7]; instead, �Lukasiewicz
case was surprising: as a straightforward computation shows one re-obtains the
very well-known Manhattan distance or taxicab distance or Minkowski distance

dT (x, y) =
∑

1≤i≤n

|xi − yi|

which in this context might even be called �Lukasiewicz distance. It is precisely
this distance that we shall use below, rather than Muljačić; for a more extensive
discussion cf. [7,9].

1 Longobardi instead of 0 1
2

1 uses − 0 +.
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Before moving to Longobardi’s data, we tackle Steinhaus transforms. The
starting point was Longobardi’s observation that positions i where both lan-
guages have a zero are linguistically irrelevant, and so should be ignored: math-
ematically, one has to move from Hamming distances to Jaccard distances2.
What if the strings are not crisp? How should one go from Hamming distances
or Muljačić distances to their Jaccard-like counterparts? The answer is precisely
the Steinhaus transform, cf. e.g. [3]:

δSt(x, y) =
2δ(x, y)

δ(x, y) + δ(x, z) + δ(y, z)
(3)

where δ(x, y) is any metric distance between objects which are not necessarily
strings, and where z is a chosen fixed object called the pivot of the transforma-
tion. As it can be proved, the Steinhaus transform is itself a metric distance;
it is normalized to 1, and is equal to 1 when x, z, y form an aligned triple
δ(x, z)+δ(z, y) = δ(x, y) for the original distance to be transformed. Now, going
back to our strings x, y, . . . , the Jaccard case corresponds to taking an all-zero
pivot string z = 00 . . . 0, in which case the distance from the pivot is nothing
else but the fuzzy weight w(x) = d(x, z) =

∑
i xi both with Muljačić and the

taxicab distance.
The reason why we mentioned here irrelevance is simply that it paves the

way to the use of Steinhaus transforms, even if with a different pivot, as we are
going to do in the next section.

3 Dealing with Inconsistency

We move to Longobardi’s ternary strings3, where a complex network of logical
implications involves features, of the type: if f2 is false and f4 is true, then f6
does not make sense, it is logically inconsistent. In the case of inconsistency we
use once more the symbol 1

2 : in the example just given f2 = 0 and f4 = 1 implies
f6 = 1

2 .
The distance used by Longobardi’s school is simply a normalized Hamming

distance, where the positions where one or both languages have a 1
2 are ignored :

in practice, one deals with shorter strings, possibly much shorter. Since Lon-
gobardi’s distance is not metric, we took a bold step to preserve metricity. In
Muljačić case, the numeric value 1

2 represents suitably total logical ambiguity,
but certainly not logical inconsistency, as however we shall now do. In the case
of irrelevance an all-0 string did the job and got us rid of positions which are

2 Actually, in as yet unpublished Longobardi’s research this point of view has been
relinquished and only inconsistency is taken care of, as we are doing below.

3 Data we shall work on refer to 38 world languages described by means of 53 syn-
tactic features, cf. [13] and Sect. 4, but Longobardi’s group are constantly updating,
improving and extending their database.
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irrelevant. Forgetting about irrelevance, but of course not about inconsistency,
here we shall take a totally ambiguous or rather totally inconsistent pivot string,
which is the all- 12 string z = 1

2
1
2 ...12 ; this gets us rid of positions where there is

inconsistency in both languages L and Λ, but not, as instead Longobardi’s own
distance does, of positions where only one of the two is inconsistent: actually,
this turns out to be a possible source of weakness in Longobardi’s choice, since
few positions might survive if far-off languages are compared.

Now, rather than weights, cf. Sect. 2, one has consistencies, i.e. distances
d(x, 1

2
1
2 ...12 ) from the new pivot4: �Lukasiewicz consistency turns out to be, as is

proper,
∑

i |xi − 1
2 | =

∑
i

(
1
2 − f(xi)

)
, where f(xi) = x ∧ (1 − x) is often seen as

the fuzziness of the logical value x, since it is the Euclidean distance from the
totally ambiguous fuzzy value 1

2 .
Let us move to Longobardi’s data, so as to illustrate our methodology. The

tree we obtain, fig. (b), is definitely and surprisingly5 good, as it is virtually
undistinguishable from the original Longobardi’s tree (a) [13] based on a non-
metric distance, and is linguistically equally sound. The fact that two distinct
distances perform so similarly appears to be an indication that data are quite
robust. Instead, use of statistical bootstrap techniques as done by Longobardi’s
school seemed to show that data are not that robust, cf. [1,11–13]. Actually,
bootstrapping works quite well with the strings of bioinformatics, whose length
is by magnitudes larger than ours, hundreds of thousands vs 53 (also in the case
of DNA strings the assumptions of independence between positions, particularly
if nearby, is untenable, but this weak point is smoothed out by the huge length
of the strings involved). In our case strings are comparatively short and the
structure of dependences is pervasive and strong, so the poor performance of
bootstrapping might be simply an indication that the network of logical rather
than statistical dependences makes the use of bootstrapping inadequate.

Instead, we propose an alternative to check robustness: let us perturb the dis-
tance, and see what happens. We shall take at random the pivot string Z (totally
at random with uniform distribution on [0, 1]n), and check which sort of trees we
obtain, taking also into account the taxicab distance between the observed ran-
dom pivot and the “correct” all-12 pivot (capital letters denote random variables
or random n-tuples).

Since the n terms in the random distance dT (x,Z) =
∑

1≤i≤n |xi − Zi| are
independent, not only the expectation, but also the variance is additive, and so

4 Muljačić consistency, based on maxima and minima, is unusable, being always n
2

independent of x; cf. [7,9].
5 Farsi (modern Persian) appears to be poorly classified, which is true also with Lon-

gobardi’s original tree. Also Bulgarian is poorly classified, but Longobardi uses only
features relative to the syntax of nouns, and the Bulgarian noun, due to substratum
influences, is well-known to be an outsider among Slavic languages. Be as it may,
the aim of this paper is simply to check mathematical tools and robustness of data,
rather than outperforming current classifications; cf. instead [4].
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(a) Longobardi’s tree

it will be enough to assume n = 1. Straightforward computations show that,
for given x ∈ [0, 1]:

E
[
dT (x,Z)

]
= x(x − 1) +

1
2

, var
[
dT (x,Z)

]
= −x2(x − 1)2 +

1
12

For XZ uniform on [0, 1]2 one has E
[
dT (X,Z)

]
= 1

3 , while for x crisp, i.e. x = 0
or x = 1, the taxicab expectation is 1

2 and the taxicab variance is 1
12 .

Rather, we are interested in the case when x has the “correct” pivot value
1
2 : then expectation and variance are equal to 1

4 and 1
48 , respectively, and so, for

n ≥ 1 the standard deviation σ = σ
[
dT (x,Z)

]
is approximately 0.144

√
n ≈ 1.05

with n = 53. Since the random distance dT ( 12 . . . 1
2 , Z) is the sum of n = 57 i.i.d.

terms, the central limit theorem allows one to resort to a normal approximation,
and so the three intervals of semi-width iσ, i = 1, 2, 3 centered in the expected
distance have probability ≈ 0.68, 0.95, 0.997, respectively. Correspondingly, the
trees will be called of type α (observed distance inside the first and most probable
interval), β (outside the first interval but inside the second), γ (outside the
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second interval but inside the third), else δ. So, trees of type α, β and γ have
approximately probability 0.68, 0.27 and 0.04, respectively.

4 Experimental Results

We reproduce ten trees for Longobardi’s data, the first (b) with the correct
pivot all-12 , the others, (c) to (k), with a random pivot string; α and β-trees
are virtually identical with the unperturbed tree, and in particular preserve the
Indoeuropean standard groups; the γ-tree is weaker, e.g. it creates a single large
family for Semitic and Celtic languages. For more random trees obtained in
successive trials cf. [16].

The languages are 38, namely Sic = Sicilian, Cal = Calabrese as spoken in
South Italy, It = Italian, Sal = Salentine as spoken in Salento, South Italy,
Sp = Spanish, Fr= French, Ptg = Portuguese, Rm= Romanian, Lat = Latin,
CIG = Classical Attic Greek, NTG = New Testament Greek, BoG = Bova Greek
as spoken in the village of Bova, Italy, Gri = Grico, a variant of Greek spo-
ken in South Italy, Grk= Greek, Got = Gothic, OE = Old English, E = English,
D = German, Da = Danish, Ice = Icelandic, Nor = Norwegian, Blg = Bulgarian,
SC = Serbo(Croatian), Slo = Slovenian, Po = Polish, Rus = Russian, Ir= Gaelic
Irish, Wel = Welsh, Far = Farsi, Ma= Marathi, Hi = Hindi, Ar = Arabic,
Heb = Hebrew or ’ivrit, Hu = Hungarian, Finn = Finnish, StB = standard
Basque, wB = Western Basque, Wo = Wolof as spoken mainly in Senegal.

Cf. the supplementary material [16] for more information, inclusive of the
38 × 53 ternary matrix with the strings of length n = 53 associated to the 38
languages.

Final remarks. Unsurprisingly, the trees exhibited perform all very well when
compared to ours and the original Longobardi’s tree, cf. [1,11–13]; cf. also foot-
note 5. A finer statistical analysis to gauge tree similarity might require suitable
distances between trees like tree edit distances, as we are currently doing in [4];
here we have been more easy-going, since observed similarities are quite obvious
to the eye of the linguist. Note that phylogenetic tree distances as we would need,
cf. [3], are known to raise nasty computational problems. Unsurprisingly, think-
ing of Gray’s classification tree [2], largely recognized by the linguistic community
as a sort of reference benchmark, use of tree distances shows that Longobardi’s
tree and our own tree have virtually the same distance from Gray’s tree, even if
the distances used are quite distinct, one of the two not even metric, cf. [4]; once
more, this appears to be an indication that Longobardi’s data are quite robust.
The statistical technique of random perturbation might be readily extended to
the generalized Steinhaus distance used in [9], where one copes jointly with
irrelevance and inconsistency; cf. however footnote 2.

The idea we are trying to defend in this paper is that, rather than mimicking
bioinformatics, evolutionary linguistic should try to create its own new tools.
This need has become more and more evident in Longobardi’s research, where
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strings are dramatically shorter than those of bioinformatics and where the dis-
tances used, including our own metric distances, are quite different from those
used in bioinformatics for distance-based classifications.

Our current work takes into account the new larger data tables provided by
Longobardi’s school; these data include many non-Indoeuropean languages, so as
to get rid of an unwanted prominence of “usual” languages. This much enhances
the linguistic significance of the results obtained.

(b) Correct ( 1
2
, . . . , 1

2
) pivot (c) α tree

(d) β tree (e) γ tree
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(f) α tree (g) α tree

(h) α tree (i) β tree

(j) α tree (k) β tree
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Abstract. Uncertain data are observations that cannot be uniquely
mapped to a referent. In the case of uncertainty due to incomplete-
ness, possibility theory can be used as an appropriate model for process-
ing such data. In particular, granular counting is a way to count data
in presence of uncertainty represented by possibility distributions. Two
algorithms were proposed in literature to compute granular counting:
exact granular counting, with quadratic time complexity, and approxi-
mate granular counting, with linear time complexity. This paper extends
approximate granular counting by computing bounds for exact granular
count. In this way, the efficiency of approximate granular count is com-
bined with certified bounds whose width can be adjusted in accordance
to user needs.

Keywords: Granular counting · Possibility theory · Uncertain data

1 Introduction

Data uncertainty may arise as a consequence of several conditions and require
proper management [1]. The simplest approach is to ignore uncertainty by esti-
mating a precise value for each observation, but this simplistic approach, though
of very simple application, can lead to a distortion in the subsequent processing
stages that is difficult to detect. A more comprehensive approach should take
into account data uncertainty and propagate its footprint throughout the entire
data processing flow. In this way, the results of data processing reveal their
uncertainty, which can be evaluated to assess their ultimate usefulness.

Several theories can be applied to represent and process uncertainty, such as
Probability Theory [2], which is however a particular case falling in the Granular
Computing paradigm. Granular Computing also includes classical Set Theory
[3], Rough Sets Theory [4], Evidence Theory [5] and Possibility Theory [6]. The
choice of a particular theory depends on the nature of uncertainty; in particular,
possibility theory deals with uncertainty due to incomplete information, e.g.
when the value of an observation cannot be precisely determined: we will use
the term uncertain data to denote data characterized by this specific type of
uncertainty, therefore we adopt the possibilistic framework in this paper.

A common process on data is counting, which searches for the number of
data samples with a specific value. Data counting is often a preliminary step for
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different types of analysis, such as descriptive statistics, comparative analysis,
etc. It is a fairly simple operation when data are accurate, but it becomes non-
trivial when data are uncertain. In fact, the uncertainty in the data should
propagate in the count, so that the results are granular rather than precise.

Recently, a definition of granular count through Possibility Theory was pro-
posed [7]. It was shown that the resulting counts are fuzzy intervals in the domain
of natural numbers. Based on this result, two algorithms for granular counting
were defined: an exact granular counting algorithm with quadratic-time complex-
ity and an approximate counting algorithm with linear-time complexity. Approx-
imate granular counting is appealing in applications dealing with large amounts
of data due to its low complexity, but a compromise must be accepted in terms
of accuracy of the resulting fuzzy interval. In particular, it is not immediate
to know how far is the result of the approximate count from the fuzzy interval
resulting from the exact granular count.

In this paper an algorithm is proposed for bounded granular counting, which
computes an interval-valued fuzzy set representing the boundaries in which the
exact granular count is located. In this way, the efficiency of approximate gran-
ular count is combined with certified bounds whose width can be adjusted in
accordance to user needs.

The concept of granular count and related algorithms are briefly described
in Sect. 2, while the proposal of bounded granular count is introduced in Sect. 3.
Section 4 reports some numerical experiments to assess the efficiency of the pro-
posed algorithm, as well as an outline of an application in Bioinformatics.

2 Granular Count

A brief summary of Granular Counting is reported in this Section. Further details
can be found in the original papers [7,8].

We assume that data are manifested through observations, which refer to
some objects or referents. The relation between observations and referents—
which is called reference—may be uncertain in the sense that an unequivocal
reference of the observation to one of the referents is not possible. We model
such uncertainty with Possibility Theory [6] as we assume that uncertainty is
due to the imprecision of the observation, i.e. the observation is not complete
enough to make reference unequivocal.

Given a set R of referents and an observation o ∈ O, a possibility distribution
is a mapping

πo : R �→ [0, 1]
such that ∃r ∈ R : πo (r) = 1. The value πo (r) = 0 means that it is impossible
that the referent r is referred by the observation, while πo (r) = 1 means that
the referent r is absolutely possible (though not certain). Intermediate values of
πo (r) stand for gradual values of possibility, which quantify the completeness
of information resulting from an observation. (More specifically, the lower the
possibility degree, the more information we have to exclude a referent.) The
possibility distributions of all observations can be arranged in a possibilistic
assignment table, as exemplified in Table 1.
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Table 1. Example of possibilistic assignment table. Each row is a possibility distribu-
tion πoj .

r1 r2 r3

o1 1 0.3 0.54

o2 0.8 1 0.6

o3 1 0 0

o4 0.864 0.91 1

o5 1 0 0

o6 0.5 1 0.64

o7 1 0.8 1

o8 0.2 0.5 1

o9 1 0 0

o10 0.6 1 0.78

2.1 Definition of Granular Count

By using the operators of Possibility Theory, as well as the assumption that
observations are non-interactive (i.e. they do not influence each other), the pos-
sibility degree, that a subset Ox ⊆ O of x ∈ N observations is exactly1 the set
of observations referring to a reference ri ∈ R, is defined as:

πOx
(ri) = min

{
min
o∈Ox

πo (ri) , min
o/∈Ox

max
r �=ri

πo (r)
}

(1)

with the convention that min ∅ = 1. Informally speaking, Eq. (1) defines the
possibility degree that Ox is the subset of all and only the observations of ri

by computing the least possibility degree of two simultaneous events: (i) all
observations of Ox refer to ri, and (ii) all the other observations refer to a
different referent.

In order to compute the possibility degree that the number of observations
referring to a referent ri is Ni, we are not interested in a specific set Ox, but
in any set of x elements. We can therefore define the possibility value that the
number of observations for a referent ri is x as:

πNi
(x) = max

Ox⊆O
πOx

(ri) (2)

for x ≤ m and πNi
(x) = 0 for x > m. Equation (2) provides a granular definition

of count. Counting is imprecise because observations are uncertain.
It is possible to prove that a granular count as in Eq. (2) is a fuzzy interval

in the domain of natural numbers. A fuzzy interval is a convex and normal
fuzzy set on a numerical domain (in our case, it is N). Convexity of a fuzzy
set can be established by proving that all α-cuts are intervals, while normality
1 In the sense that any observation non belonging to Ox does not refer to ri.
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Fig. 1. Exact granular count of referent r1 as in Table 1

of the granular count is guaranteed because of the normality of the possibility
distributions πo for all o ∈ O. Figure 1 depicts an example of granular count.

2.2 Algorithms for Granular Counting

The direct application of Eq. (2) leads to an intractable counting procedure as all
possible subsets of O must be considered. On the other hand, a polynomial-time
algorithm can be devised by taking profit of the representation of a granular
count as a fuzzy interval. In particular, the granular counting algorithm builds
the fuzzy interval by considering the α-cut representation of fuzzy sets. On such
basis, two variants of granular counting algorithms can be devised:

– Exact granular counting uses all the values of α that correspond to some
possibility degree in the possibilistic assignment table;

– Approximate granular counting uses the values of α taken from a finite set
of evenly spaced numbers over [0, 1]. The number of such values depend on a
user-defined parameter nα.

The approximate granular counting is more efficient than the exact version
because it does not require to scan the possibilistic assignment table, though
at the price of a new required parameter.

Exact granular counting (Algorithm1) and approximate granular counting
(Algorithm 2) share the same core algorithm (Algorithm 3) and only differ by
how the set of α-values are computed. In essence, the core algorithm computes
the granular count in an incremental way, by reckoning the α-cuts of the fuzzy
interval for each α value provided in input.

In brief, the core algorithm works as follows. Given the possibilistic assign-
ment table R, the index i of the referent and the set A of α-cuts, the array r
represents the possibility degrees that an observation refers to ri, i.e. rj = πoj

(ri)
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Algorithm 1: ExactGranularCount

Data: R, i
/* R: possibil. assignment table */

/* i: index of referent to count */

Result: N ∈ [0, 1]m

1 A ← {α ∈ R : α �= 0};
2 return granularCount(R, i, A);

Algorithm 2: approximateGranularCounting

Data: R, i, nα

/* R: possibil. assignment table */

/* i: index of referent to count */

/* nα: number of α-levels */

Result: N ∈ [0, 1]m

1 ε ← 10−12;
2 A ← {ε + k · 1−ε

nα−1
: k = 0, 1, . . . , nα − 1};

3 return granularCount(R, i, A);

(line 1), while r̄ represents the possibility degrees that an observation refers to
any other referent different from ri (line 2). N is the array representing the
granular count (line 3). The main cycle (lines 4–17) loops over each α ∈ A and
computes the bounds xmin and xmax of the corresponding α-cut (line 5). These
bounds are calculated by looping over all observations (lines 6–13), so that xmax

is incremented if the possibility degree that the current observation refers to ri is
greater than or equal to α (lines 7–8), while xmin further requires that the possi-
bility degree that the observation refers to any other referent is less than α (lines
9–10). When both xmin and xmax are computed, the degrees of membership of
the granular count are updated accordingly (lines 14–16).

For a fixed referent, the time-complexity of exact granular count is O (
nm2

)
(being n the number of referents and m the number of observations), while
the time-complexity of approximate granular count drops to O (m (n + nα)).
In consideration that, in typical scenarios, the number of observations is very
large (i.e., m 	 n), especially in comparison with the number of referents, it is
deduced that approximate granular counting is the preferred choice in the case
of very large amounts of uncertain data.

3 Bounding the Exact Granular Count

The time-complexity of approximate granular count linearly depends on the
number of α values which, in turn, depend on the value of the parameter nα.
On one hand, low values of nα lead to fast computation of granular counts; on
the other hand, low values of nα may lead to a rough estimate of the possibility
degrees of the exact granular count.
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Algorithm 3: granularCount

Data: R, i, A
Result: N ∈ [0, 1]m

/* m is the number of observations */

1 r ← [Rji] for j = 1, 2, . . . , m;
2 r̄ ← [maxk �=i Rjk] for j = 1, 2, . . . , m;
3 N ← [0, 0, . . . , 0] (m + 1 times);
4 for α ∈ A do
5 xmin ← 0; xmax ← 0;

/* Compute α-cut */

6 for k = 1, 2, . . . , m do
7 if Rki ≥ α then
8 xmax ← xmax + 1;
9 if r̄k < α then

10 xmin ← xmin + 1;
11 end

12 end

13 end
/* Update granular count */

14 for x ∈ xmin, . . . , xmax do
15 N [x] ← max{N [x], α} ;
16 end

17 end
18 return N

In Fig. 2 the Jaccard similarity2 measure between approximate granular count
and exact granular count is reported for nα between 2 and 100: even though
similarity values close to 1 are reached for nα � 20, for smaller values a significant
dissimilarity can be observed. In order to assess whether the discrepancy between
approximate and exact granular counts is acceptable for a problem at hand, it
is important to identify some bounds for the exact granular count when only an
approximate count is available.

3.1 α-Cut Computation

In order to identify such bounds, a closer look at Algorithm3 is necessary. The
algorithm computes the granular count for the i-th referent given a possibilistic
assignment table R and a set A of α-values. The main cycle within the algorithm
computes the α-cut of the granular count, which is represented by the array

2 Given the exact granular count πN and an approximate count π̃N , the Jaccard
similarity index is computed as

S =

∑m
x=0 min {πN (x) , π̃N (x)}

∑m
x=0 max {πN (x) , π̃N (x)}

.
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Fig. 2. Similarity of approximate count to exact granular count for referent r1 in Table 1

N and corresponds to the possibility distribution πN . For a given value of α,
the variable xmax counts the number of observations that refer to ri with a
possibility degree ≥ α; on the other hand, the variable xmin counts the number
of observations that refer to ri with a possibility degree ≥ α and refer to any
other referent with possibility degree < α. As a consequence, xmin ≤ xmax. Since
in our analysis we will consider different values of α, we shall denote the two
variables as x

(α)
min and x

(α)
max respectively.

By construction, the value x
(α)
max corresponds to the cardinality of the set

O(α)
max = {o ∈ O|πo (ri) ≥ α} (3)

while the value x
(α)
min is the cardinality of the set

O
(α)
min =

{
o ∈ O|πo (ri) ≥ α ∧ max

r �=ri

πo (r) < α

}
(4)

with the obvious relation that O
(α)
min ⊆ O

(α)
max. On this basis, it is possible to prove

the following lemmas:

Lemma 1. If x
(α)
min > 0, then for all x < x

(α)
min: πN (x) < α.

Proof. By Definition (1), we can write

πOx
(ri) = min {P,Q} (5)

where P = mino∈Ox
πo (ri) and Q = mino/∈Ox

maxr �=ri
πo (r). We focus on Q.
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Let Ox ⊂ O be a subset of x observations. Since x < x
(α)
min, there exists at

least one observation o′ belonging to O
(α)
min but not to Ox, i.e. o′ ∈ O

(α)
min \ Ox.

Since o′ ∈ O
(α)
min, by definition maxr �=ri

πo′ (r) < α, therefore Q < α because
o′ /∈ Ox. As a consequence, πOx

(ri) < α. This is true for all subsets of cardinality
x < x

(α)
min, therefore:

πN (x) = max
Ox

πOx
(ri) < α

Lemma 2. For all x > x
(α)
max: πN (x) < α.

Proof. Let Ox ⊆ O be a subset of x observations. If x
(α)
max = m then Ox = ∅

because there is not a number of observations greater than m; in such a case,
πN (x) = 0 < α.

Similarly to the proof of the previous lemma, we split Definition (1) as in
Eq. (5) but now we focus on P . Since x > x

(α)
max there exists an observation

o′ ∈ Ox that does not belong to O
(α)
max, therefore πo′ (ri) < α. As a consequence,

P < α, thus πOx
(ri) < α. This is true for all subsets of cardinality x > x

(α)
max,

thus proving the thesis.

Lemma 3. For all x
(α)
min ≤ x ≤ x

(α)
max, πN (x) ≥ α

Proof. Obvious from Definitions (3) and (4).

The previous lemmas show that, for a given value of α, the exact granular
count must satisfy the following relations:

πN (x) ∈ [0, α[ if x < x
(α)
min ∨ x > x(α)

max

πN (x) ∈ [α, 1] if x
(α)
min ≤ x ≤ x(α)

max

that is:

Theorem 1. The interval
[
x
(α)
min, x

(α)
max

]
is the α-cut of πN .

In Fig. 3 the 0.3- and 0.7- cuts are used to depict the regions that bound the
values of πN . Notice that such regions have been computed without knowing the
actual values of the exact granular count.

3.2 Bounds for Exact Granular Count

Thanks to the properties of α-cuts, it is possible to identify tight bounds for an
exact granular count by using the results of an approximate granular count. In
fact, given two values α′ < α′′, the α′′-cut is included in the α′-cut, therefore

[
x
(α′′)
min , x

(α′′)
max

]
⊆

[
x
(α′)
min , x

(α′)
max

]
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Fig. 3. α values bound the exact granular count πN

and it is easy to verify the following properties:

x < x
(α′)
min ⇒ πN (x) < α′

x
(α′)
min ≤ x < x

(α′′)
min ⇒ α′ ≤ πN (x) < α′′

x
(α′′)
min ≤ x ≤ x

(α′′)
max ⇒ πN (x) ≥ α′′

x
(α′′)
max < x ≤ x

(α′)
max ⇒ α′ ≤ πN (x) < α′′

x > x
(α′)
max ⇒ πN (x) < α′

The previous relations suggest a strategy for computing the bounds of an
exact granular count: supposing that, for some x, it is known that α1 ≤ πN (x) ≤
α2 and a new value α is considered: if x

(α)
min ≤ x ≤ x

(α)
max than it is possible to

assert that πN (x) ≥ α, therefore max {α, α1} ≤ πN (x) ≤ α2; if x is outside this
interval, then πN (x) < α therefore α1 ≤ πN (x) ≤ min {α, α2}.

On the basis of such strategy, it is possible to define a bounded granular
counting algorithm to compute bounds of the exact granular count when a set A
of α-cuts is given, which is reported in Algorithm 4. In this algorithm the bounds
are represented by the arrays Nl and Nu (lines 3–4) and they are updated for
each α ∈ A so as to satisfy the above-mentioned relations (lines 15–22).

The resulting bounded granular count is an Interval-Valued Fuzzy Set (IVFS)
[9] which assigns, to each x ∈ N, an interval [πNL

(x) , πNU
(x)] representing the

possibility distribution of πN (x), which may be unknown. In Fig. 4 it is shown
an example of bounded granular count by generating the set of α-values as in
approximate granular count with nα = 5. It is possible to observe that the core
of the granular count (i.e. the set of x values such that πN (x) = 1) is precisely
identified because the approximate granular counting algorithm includes α = 1
in the set of α-values to be considered. Also, since a value of α very close to 0
is also included (namely, 10−12), the impossible counts (i.e. the values of x such
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Algorithm 4: boundedGranularCount

Data: R, i, A
Result: N ∈ [0, 1]m

/* m is the number of observations */

1 r ← [Rji] for j = 1, 2, . . . , m;
2 r̄ ← [maxk �=i Rjk] for j = 1, 2, . . . , m;

/* Nl, Nu are lower and upper bounds */

3 Nl ← [0, 0, . . . , 0] (m + 1 times);
4 Nu ← [1, 1, . . . , 1] (m + 1 times);
5 for α ∈ A do
6 xmin ← 0; xmax ← 0;

/* Compute α-cut */

7 for k = 1, 2, . . . , m do
8 if Rki ≥ α then
9 xmax ← xmax + 1;

10 if r̄k < α then
11 xmin ← xmin + 1;
12 end

13 end

14 end
/* Update bounds */

15 for x ∈ xmin, . . . , xmax do
16 Nl[x] ← max{Nl[x], α} ;

17 end
18 for x ∈ 0, . . . , xmin − 1 do
19 Nu[x] ← min{Nu[x], α} ;
20 end
21 for x ∈ xmax + 1, . . . , m do
22 Nu[x] ← min{Nu[x], α} ;
23 end

24 end
25 return Nl, Nu

that πN (x) = 0) are also detected. Finally, since the values of α are equally
spaced in ]0, 1], the lengths of the bounding intervals are constant.

It also possible to set nα in order to achieve a desired precision. By looking
at Algorithm 2, it is possible to observe that the values of α are equally spaced
at distance

Δα =
1 − ε

nα − 1
where the value Δα coincides with the maximum length of the intervals com-
puted by the bounded granular counting algorithm. By reversing the problem,
it is possible to set the value of nα so that the maximum length is less than a
desired threshold β. Since ε � 0, it suffices to set

nα =
⌈

1
β

⌉
+ 1
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Fig. 4. Bounded granular count of r1 for nα = 5. Middle dots represent the values of
exact granular count.

4 Experimental Results

4.1 Efficiency Evaluation

The evaluation of efficiency has been performed on synthetically generated data.
In particular, a number of random possibilistic assignment tables have been
generated by varying the number of observations on a geometrical progression
with common ratio 10 but keeping the number of referents fixed to three.3

For each possibilistic assignment table, both exact and bounded granular
counting algorithms (with nα = 10) have been applied on the first referent, and
the time required to complete operations has been recorded.4 Each experiment
has been repeated 7 times and average time has been recorded. For each rep-
etition, the experiment has been looped for 10 times and the best timing has
been retained. The average execution time is reported in Table 2 and depicted
in Fig. 5.

A linear regression in the log-log scale confirms the quadratic trend of the
time required for exact granular counting and the linear trend for bounded gran-
ular counting algorithm. Noticeably, the change of complexity is most exclusively
due to the way the set of α-values have been generated: the selection of all val-
ues occurring in the possibilistic assignment table—which is required for exact
granular counting—determines a significant reduction of the overall efficiency.

3 Each possibilistic assignment table has been generated by taking care that each row
corresponds to a normal possibility distribution.

4 Experiments have been executed on a machine equipped by an Intel i7 CPU, 16GiB
RAM, Linux SO. Scripts were written in Python 3.7 and executed in Jupyter Note-
book. The NumPy library has been used for fast numerical computations, but the
scripts were not implemented with the objective of maximizing performance.
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Table 2. Average execution time on synthetic data (time in secs.)

m Bounded g.c Exact g.c.

10 140µs ± 1.06µs 206µs ± 3.26µs

100 750µs ± 3.22µs 12.5 ms ± 995µs

1,000 7.14 ms ± 182µs 1.14 s ± 27.6 ms

10,000 72 ms ± 569µs 1min 55 s ± 639ms

100,000 825 ms ± 65 ms 3 h 22min

Fig. 5. Average execution time on synthetic data

On the other hand, bounded granular counting takes profit of the advantages of
approximate granular counting for light-weight computations but, at the same
time, it offers certified bounds on the possibility degrees of the exact granular
count.

4.2 Application: Gene Expression Estimation

In Bioinformatics, RNA-Seq is a protocol that allows to examine the gene expres-
sion in a cell by sampling fragments of RNA called “reads”. When RNA-Seq out-
put is mapped against a reference database of known genes, a high percentage
of reads—called multireads—map to more than one gene [10]. Multireads are
a source of uncertainty in the quantification of gene expression, which should
be managed in order to provide significant results. To this end, the mapping
procedure provides a quality index that is a biologically plausible estimate of
the possibility that a read can be associated to a gene [11]. However, a high
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Fig. 6. Bounded granular counting of reads mapping to a sample gene

quality index does not mean certainty in association: two or more genes can be
candidate for mapping a read because they can be mapped with similar high
quality.

Granular counting finds a natural application in the specific problem of count-
ing the number of reads that are possibly associated to a gene. (Reads are con-
sidered as observations, while genes are referents.) However, the amount of data
involved in such process may be overwhelming. For example, the public dataset
SRP014005 downloaded from NCBI-SRA archive5, contains a case-control study
of the Asthma disease with 55,579 reads mapped on 14,802 genes (16% are mul-
tireads). Nonetheless, accurate granular counting can be achieved by the use of
the proposed algorithm. As an example, in Fig. 6 the bounded granular count has
been computed for gene OTTHUMG00000189570—HELLPAR with nα = 10. It
is noteworthy observing how imprecise is the count of this gene, which is due to
a large number of multireads (with different quality levels).

5 Conclusions

The proposed bounded granular counting algorithm is an extended version of
approximate granular counting where efficient computation is combined with the
ability of bounding the exact granular count within intervals whose granularity
can be decided by the user. In most cases, it is more than enough that the exact
possibility degrees of exact granular count are assured to be within a small range
from some approximate values. When such type of imprecision is tolerated, a
significant speed-up in calculations can be achieved, thus opening the door of
granular counting to big-data problems.

5 ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByStudy/sra/SRP/
SRP014/SRP014005.

ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByStudy/sra/SRP/SRP014/SRP014005
ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-instant/reads/ByStudy/sra/SRP/SRP014/SRP014005
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Abstract. Financial interval time series (ITS) is a time series whose
value at each time step is an interval composed by the low and the high
price of an asset. The low-high price range is related to the concept
of volatility because it inherits intraday price variability. Accurate fore-
casting of price ranges is essential for derivative pricing, trading strate-
gies, risk management, and portfolio allocation. This paper suggests a
fuzzy rule-based approach to model and to forecast interval-valued time
series. The model is a collection of functional fuzzy rules with affine
consequents capable to express the nonlinear relationships encountered
in interval-valued data. An application concerning one-step-ahead fore-
cast of interval-valued EUR/USD exchange rate using actual data is
also addressed. The forecast performance of the fuzzy rule-based model
is compared to that of traditional econometric time series methods and
alternative interval models employing statistical criteria for both, low and
high exchange rate prices. The results show that fuzzy rule-based model-
ing approach developed in this paper outperforms the random walk, and
other competitive approaches in out-of-sample interval-valued exchange
rate forecasting.

Keywords: Interval-valued data · Exchange rate forecast · Fuzzy
modeling

1 Introduction

Exchange rates play an important role in international trade and in economic
competitiveness of a country because they influence the balance of payments.
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These rates also have a significant impact on production decision of firms, port-
folio allocation, risk management and derivatives pricing [12,25]. Since the semi-
nal study of Meese and Rogoff [16], the forecasting performance of exchange rate
models has turned out to be frequently inferior to the näıve random walk bench-
marking. This phenomenon constitutes the “exchange rate disconnect puzzle”,
which states that exchange rates are largely disconnected from economic fun-
damentals [1]. Despite the Meese and Rogoff puzzle, the problem of predicting
the movement of exchange rates still attracts increasing attention from academy
and practitioners [17].

The works of [4,5,19] and [21] give encouraging results for certain statistical
forecasting methods regarding the predictability of exchange rates. Their models
are shown to outperform random walk in some cases. Additionally, the literature
also reports the high performance achieved by computational intelligence tech-
niques for exchange rate forecasting, e.g., using neural networks [12,22], genetic
algorithms [13,23], genetic programming [25], fuzzy sets [7], and hybrid methods
[9,28].

Despite the recent advances and increasing performance of computational
intelligence techniques, the majority of research efforts are devoted to standard
forecasting modeling approaches, i.e., the temporal evolution of exchange rates
is observed as a single-valued financial time series. For instance, if only the open-
ing (or closing) exchange rate is measured daily, the resulting time series will
hide the intraday variability and loose important information [8]. An alterna-
tive to alleviate this limitation is when both, the highest and the lowest values
of prices are measured at each time step, which results in interval time series
(ITS). In particular, considering the high and low values of asset prices, financial
ITS modeling and forecasting have received considerable attention in the recent
literature with the introduction of several interval-valued time series forecasting
methods [11,14,26].

This paper introduces an interval fuzzy rule-based model (iFRB) for exchange
rate ITS forecasting. The iFRB is a collection of functional fuzzy rules in which
the base variables are intervals instead of real numbers. The construction of
the iFRB concerns the identification of the rule antecedents, and parameter
estimation of the corresponding affine consequents. Rules antecedents are iden-
tified using a fuzzy clustering approach for symbolic interval-valued data using
the adaptive City-Block distance recently proposed by [6]. The advantage of the
adaptive City Block clustering is its ability to accommodate outliers, an essential
feature in financial time series forecasting. This is because financial time series
values are affected by news and shocks, which reflect in the data as outliers.
The parameters of the affine consequents are estimated using a least squares
algorithm designed for interval-valued data.

Empirical evaluation of iFRB concerns one-step ahead forecasting the
interval-valued Euro/Dollar (EUR/USD) exchange rate for the period from Jan-
uary 2005 to December 2016. The ITS is constructed using actual financial data
to extract the daily high and low exchange rate values to assemble the exchange
rate intervals. The performance of iFRB is compared with the random walk,
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ARIMA and VECM, with the linear and nonlinear interval Holt’s exponential
smoothing (HoltI) [15], and with an interval multilayer perceptron neural net-
work (iMLP) [20]. Forecast performance is evaluated using root mean squared
error, mean absolute percentage error, and direction accuracy measures, consid-
ering statistical tests.

After this introduction, this paper proceeds as follows. Section 2 details the
structure and identification of the interval fuzzy rule-based models (iFRB). Fore-
casting of the EUR/USD exchange rate is addressed in Sect. 3. Finally, Sect. 4
concludes the paper and lists topics for future research.

2 Interval Fuzzy Rule-Based Modeling

2.1 Interval-Valued Time Series

An interval-valued variable X is a closed and bounded set of real numbers
indexed by t ∈ Ω, that is:

Xt = [XL
t ,XH

t ] ∈ �, (1)

where � = {[XL
t ,XH

t ] : XL
t ,XH

t ∈ �,XL
t ≤ XH

t }, ∀ t ∈ Ω is the set of closed
intervals of the real line �. In finance data XL

t and XH
t are the daily low and

high exchange rate prices for X at time t, respectively.
An interval-valued time series (ITS) is a sequence of interval-valued variables

observed in successive time steps t (t = 1, 2, . . . , n) expressed as a two dimen-
sional vector Xt = [XL

t ,XH
t ]T ∈ �, where n denotes the sample size, the number

of intervals in the time series.
Processing of interval-valued variables requires interval arithmetic. Interval

arithmetic extends traditional arithmetic to operate on intervals. This paper
uses the arithmetic operations introduced by [18].

2.2 iFRB Model Structure

The interval-valued fuzzy rule-based model (iFRB) with affine interval conse-
quents consists of a set of fuzzy functional rules of the following form:

Ri : IF X is μi THEN Yi = [Y L
i , Y H

i ], (2)

where Ri is the i-th fuzzy rule, i = 1, 2, . . . , c, c is the number of fuzzy rules.
X = [X1,X2, . . . , Xp]T , Xj = [XL

j ,XH
j ] ∈ �, j = 1, . . . , p is the input, μi is the

fuzzy set of the antecedent of the i-th fuzzy rule whose membership function is
μi(X) : � → [0, 1], Yi = [Y L

i , Y H
i ] ∈ � is the output of the i-th rule, with:

Y L
i = βL

i0 + βL
i1X

L
1 + . . . + βL

ipX
L
p ,

Y H
i = βH

i0 + βH
i1XL

1 + . . . + βH
ipXH

p , (3)

{βL
i0, . . . , β

L
ip} and {βH

i0 , . . . , βH
ip}, j = 1, . . . , p, are real-valued parameters of the

consequent of the i-th rule associated with the output intervals.
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The model output is computed as follows:

Y =
c∑

i=1

(
μi(X)Yi∑c
j=1 μj(X)

)
. (4)

The expression (4) can be rewritten, using normalized degrees of activation, as:

Y =
c∑

i=1

λiYi, (5)

where λi = µi(X)∑c
j=1 µj(X) is the normalized firing level of the i-th rule.

iFRB modeling requires: i) learning the antecedent part of the model using
e.g. an interval fuzzy clustering algorithm, and ii) estimation of the parameters
of the affine consequents. Notice that all computations of the iFRB clustering
and parameter estimation tasks must consider interval-valued data.

2.3 Antecedent Identification

iFRB antecedent identification uses the adaptive fuzzy clustering algorithm for
interval-valued data with City-Block distances [6]. The City-Block distance is
more robust to the presence of outliers in the data set than the Euclidean dis-
tance. Further, the advantage of using adaptive City Block distance is that the
clustering algorithm finds clusters of different shapes and sizes that represents
the structures found in data sets better than alternative distances [6].

Let N = {1, . . . , n} be a set of n patterns (each pattern is indexed by t)
describing p symbolic interval variables X1, . . . , Xp (each variable is indexed
by j). Each pattern t is a vector of intervals X = [X1, . . . , Xp], where Xj =
[XL

j ,XH
j ] ∈ �. Additionally, each prototype Vi of cluster i, i = 1, . . . , c, is a

vector of intervals Vi = [Vi1, . . . , Vip], where Vij = [V L
ij , V H

ij ] ∈ �, j = 1, . . . , p.
The interval fuzzy clustering algorithm aims at finding a fuzzy partition of a

set of patterns in c clusters and a corresponding set of prototypes {Vi, . . . ,Vc}
that minimize a W criterion that measures how well the clusters and their rep-
resentatives (prototypes) fits the data set. In this paper W is defined as

W =
c∑

i=1

n∑

t=1

(μit)mφi(Xt,Vi),

=
c∑

i=1

n∑

t=1

(μit)m
p∑

j=1

θij
(|XL

j − V L
ij | + |XH

j − V H
ij |), (6)

where φ(·) is an adaptive City-Block distance that access the dissimilarity
between a pair of vectors of intervals. It is defined for each class and is param-
eterized by vectors of weights θθθi = [θi1, . . . , θip], Xt = [X1t, . . . .Xpt] is the t-th
pattern vector of intervals, Vi = [Vi1, . . . , Vip] is a prototype vector of intervals
of cluster i, μit is the membership degree of pattern t in cluster i, and m is a
fuzzification parameter (usually m = 2).
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The optimal fuzzy partition is obtained via Picard iterations to find the
(local) minimum of W in (6). The algorithm starts with an initial partition and
alternates between a representation step and an allocation step until convergence
(W reaches a stationary value, often a local minimum) [6]. The representation
step sets the best prototypes and the best distances in two stages. The first stage
fixes the membership degrees μit of each pattern t in cluster i and the vector
of weights θθθi = [θi1, . . . , θip]. Prototypes Vi = [Vi1, . . . , Vip], for i = 1, . . . , c and
j = 1, . . . , p that minimize the clustering criterion W are found solving:

n∑

t=1

(uit)m
(|XL

j − V L
ij | + |XH

j − V H
ij |) → Min. (7)

Solution of (7), in turn, results in two minimization problems: find V L
ij ∈ �

and V H
ij ∈ � that minimizes, respectively:

n∑

t=1

(uit)m
(|XL

j − V L
ij |) → Min. and

n∑

t=1

(uit)m
(|XH

j − V H
ij |) → Min. (8)

Each of these these two problems are equivalent to the minimization of:

n∑

t=1

|yt − azt|, (9)

where yt = (uit)mXL
j (respectively, yt = (uit)mXH

j ), zk = (uit)m and a = V L
ij

(respectively, a = V H
ij ).

Since there is no closed solution for this problem, an heuristic solution can
be derived using the following algorithm [6]:

1. Rank (yt, zt) such that yt1
zk1

≤ . . . ≤ ytn

zkn
;

2. For −∑n
l=1 |zkl

| add successive values of 2|zkl
| and find r such that

−∑n
l=1 |zkl

| + 2
∑r

s=1 |zks
| < 0 and −∑n

l=1 |zkl
| + 2

∑r+1
s=1 |zks

| > 0;
3. Set a = ykr

zkr
;

4. If −∑n
l=1 |zkl

| + 2
∑r

s=1 |zks
| = 0 and −∑n

l=1 |zkl
| + 2

∑r+1
s=1 |zks

| = 0, then

a =
ykr
zkr

+
ykr+1
zkr+1
2 .

The second stage of the representation step (or weighting step) fixes the
membership degrees μit and the prototypes Vi. The vector of weights θθθi =
[θi1, . . . , θip] minimizing W under θij > 0 and

∏p
j=1 θij = 1, for i = 1, . . . , c and

j = 1, . . . , p is updated using the following expression:

θij =

{∏p
h=1

[∑n
t=1 (μit)m

(|XL
j − V L

ij | + |XH
j − V H

ij |)]}
1
p

∑n
t=1 (μit)m

[(|XL
j − V L

ij | + |XH
j − V H

ij |)] . (10)
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Finally, the allocation step defines the best fuzzy partition fixing the proto-
types Vi and the vector of weights θθθi. Next, the membership degrees μit that
minimize W under μit ≥ 0 and

∑c
t=1 μit = 1 are found as follows:

μit =

⎡

⎢⎣
c∑

h=1

⎛

⎝
∑p

j=1 θij
[
(XL

jt − V L
ij )2 + (XH

jt − V H
ij )2

]

∑p
j=1 θhj

[
(XL

jt − V L
hj)2 + (XH

jt − V H
hj )2

]

⎞

⎠

1
m−1

⎤

⎥⎦

−1

. (11)

After fixing the number of clusters c (2 ≤ c < n), an iteration limit kmax,
and an error tolerance value ε, the algorithm iterates between the representation
and allocation steps. The process produces the vector of clusters prototypes
Vi = [Vi1, . . . , Vip] and the respective membership degrees μit of each pattern
t in each cluster i, for t = 1, . . . , n and i = 1, . . . , c, that locally minimize W .
Derivations of expressions (7)–(11) are found in [2] and [6].

2.4 Consequents Identification

In this paper, iFRB consequent parameter identification uses the min-max app-
roach suggested by [3], which is based on the minimization of the errors from
two independent linear regression models on the lower and upper bounds of the
intervals.

Consider a set of t = 1, . . . , n samples of p + 1 symbolic interval-valued
variables Yt, X1t, . . . , Xpt. Each fuzzy rule i, i = 1, . . . , c corresponds to a linear
regression relationship. To keep notation clearer, henceforth we omit the index
i related to each cluster or fuzzy rule. The output of iFRB for each fuzzy rule
can be rewritten as

Y L
t = βL

0 + βL
1 XL

1t + . . . + βL
p XL

pt + εLt ,

Y H
t = βH

0 + βH
1 XL

1t + . . . + βH
p XH

pt + εHt , (12)

where εL and εH are the corresponding residuals for lower and upper interval
bounds equations, respectively.

The sum of the squares of the deviations in the min-max method is [3]:

S =
n∑

t=1

(εLt )2 + (εHt )2 =
n∑

t=1

(Y L
t − βL

0 − βL
1 XL

1t − . . . − βL
p XL

pt)
2

+
n∑

t=1

(Y H
t − βH

0 − βH
1 XH

1t − . . . − βH
p XH

pt )
2, (13)

which is the sum of the lower bound square error plus the sum of the upper
bound square error.

The least squares estimates of {βL
0 , βL

1 , . . . , βL
p } and {βH

0 , βH
1 , . . . , βH

p } that
minimize the expression (13), written in matrix notation, is

β̂̂β̂β = [β̂L
0 , β̂L

1 , . . . , β̂L
p , β̂H

0 , β̂H
1 , . . . , β̂H

p ]T = A−1b, (14)
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where A is a 2(p + 1) × 2(p + 1) matrix and b is a 2(p + 1) × 1 vector:

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n
∑

t xL
1 (t) · · · ∑

t xL
p (t) 0 · · · 0∑

t xL
1 (t)

∑
t (xL

1 (t))2 · · · ∑t xL
p (t)xL

1 (t) 0 · · · 0
...

...
...

...
...

...
...∑

t xL
p (t)

∑
t xL

1 (t)xL
p (t) · · · ∑

t (xL
p (t))2 0 · · · 0

0 0 · · · 0 n · · · ∑
t xU

p (t)
0 0 · · · 0

∑
t xU

1 (t) · · · ∑t xU
p (t)xU

1 (t)
...

...
...

...
...

...
...

0 0 · · · 0
∑

t xU
1 (t)xU

p (t) · · · ∑
t (xU

p (t))2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

and

b =
[∑

t yL(t),
∑

t yL(t)xL
1 (t), . . . ,

∑
t yL(t)xL

p (t),
∑

t yU (t),
∑

t yU (t)xU
1 (t), . . . ,

∑
t yU (t)xU

p (t)
]T . (16)

Notice that the least squares estimates of consequent parameters of (14) are
computed for each fuzzy rule. Therefore, β̂̂β̂βi are the estimates of the parameters
in the consequent of the i-th fuzzy rule.

3 Exchange Rate Forecasting

3.1 Data

The ITS data concerns the exchange rate of the Euro (EUR) against the US
Dollar (USD). The sample data are daily interval data for the period from Jan-
uary 3, 2005 to December 31, 2016 with a total of 3,164 and 3,130 observations,
respectively1. The low and high prices of the exchange rates are the lower and
upper bounds in the interval time series.

The data were divided into in-sample and out-of-sample sets. The in-sample
set, used for model training, is for the period from January 2005 to December
2012. The remaining four years of data, from January 2013 to December 2016,
is the out-of-sample set. The forecasting performance of the methods is assessed
based on one-step-ahead forecasts of the out-of-sample data.

3.2 Performance Measures

Evaluation of the forecasting performance of iFRB and selected benchmark
approaches are done using the root mean square error (RMSE), and the mean
absolute percentage error (MAPE) measures. They are computed as follows:

RMSEB =

√√√√ 1
n

n∑

t=1

(
Y B
t − Ŷ B

t

Y B
t

)2

, (17)

1 Data were collected from the Yahoo Finance website (http://finance.yahoo.com/).

http://finance.yahoo.com/
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MAPEB =
100
n

n∑

t=1

|Y B
t − Ŷ B

t |
Y B
t

, (18)

where B = {L,H} represents the low and high prices (i.e., the interval bounds),
Yt = [Y L

t , Y H
t ]T and Ŷt = [ŶtL , ŶtH ]T are the actual and predicted intervals

exchange rate at t, respectively, n is the sample size, and RMSEL (MAPEL)
and RMSEH (MAPEH) are the RMSE (MAPE) for the ITS lows and highs,
respectively.

As stated in [4], the correct prediction of the direction of change can be
more important than the magnitude of the error. Therefore, the results are also
evaluated using the following measure of direction accuracy:

DAB =
1
n

n∑

t=1

ZB
t , (19)

where

ZB
t =

{
1, if

(
Ŷ B
t+1 − Y B

t

) (
Y B
t+1 − Y B

t

)
> 0,

0, otherwise.
(20)

Statistical significance test of proportions is done to verify if the direction
accuracy is significantly different from zero. Rejection of H0 : DA = 0 indicates
that the underlying model is superior to the random walk in predicting the
direction of changes. One may use DA = 0.5 to evaluate the superiority of
a model over a random walk, based on the rationale that the random walk
“predicts the exchange rate with an equal chance to go up or down”, i.e., a
50–50 situation. However, the random walk without drift produces no-change
forecasts, since the forecast for each point in time t is the actual value at t − 1.
Hence for a random walk without drift DA = 0, the null hypothesis should be
H0 : DA = 0, rather than H0 : DA = 0.5 [19].

In addition to the accuracy measurement, significant differences between a
pair of forecasting models are evaluated using the Diebold-Mariano test [10] with
5% significance level.

3.3 Results and Analysis

This section details the experiments performed to analyze and to evaluate the
interval fuzzy rule-based model (iFRB) for interval-valued EUR/USD exchange
rate forecasting. The results are for one-step-ahead forecasts of the out-of-sample
data from January 2013 to December 2016.

Concerning exchange rate one-step-ahead forecasting, iFRB inference system
is represented as follows:

Ŷt+1 ≈ fiFRB (Yt, Yt−1, . . . , Yt−l) , (21)

where f(·)iFRB represents the nonlinear mapping by iFRB.
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iFRB modeling requires the following control parameters: number of fuzzy
rules c, and the number l of lagged time series values used as input as in Eq. (21)
- exogenous variables can also be included as model input. Simulations were
performed on the in-sample data by running the iFRB algorithm for different
values of c and l. The best values in terms of RMSE were achieved for c = 3 and
l = 2. All methods were implemented using MATLAB.

Table 1 shows the prediction performance of the models in terms of RMSE,
MAPE, and DA. Notice that these metrics are computed individually for both,
low (L) and high (H) exchange rate time series. Best results are highlighted in
bold. From the point of view of RMSE, iFRB outperforms all competitors in
forecasting EUR/USD exchange rate lows and highs. Similar results are found
for MAPE as well. Notice that RMSE and MAPE values for highs and lows
forecasts of iFRB and random walk models are very similar, which is consistent
with the Meese and Rogoff puzzle [16].

Table 1. Performance evaluation of EUR/USD exchange rate forecasting for out-of-
sample data (January 2013–December 2016).

Metric Method

RW ARIMA VECM HoltI iMLP iFRB

RMSEL 0.00483 0.00796 0.00740 0.00834 0.00714 0.00429

RMSEH 0.00530 0.00816 0.00808 0.00869 0.00771 0.00514

MAPEL 0.32927 0.59371 0.54494 0.64138 0.52192 0.32634

MAPEH 0.35945 0.61473 0.58631 0.64781 0.55776 0.35876

DAL – 0.50928* 0.50557 0.52876* 0.54545* 0.61114*

DAH – 0.52783* 0.53989 0.54824* 0.59184* 0.57721*

(∗) Significantly different from zero at the 5% level for testing a propor-
tion with critical value of 1.96

The forecasting results produced by the interval-valued models iFRB and
iMLP achieved better results than the traditional ARIMA, VECM and HoltI

for EUR/USD exchange rate lows and highs (Table 1). It is conceivable to pos-
tulate that the reason why ARIMA and VECM models are inferior is that they
ignore the possible mutual dependency between the daily highs and lows of the
ITS. iFRB and iMLP forecasts are the best among the models, except the ran-
dom walk. As we move from linear ARIMA, VECM and HoltI to the nonlinear
iFRB and iMLP, the improvement is significant, indicating that modeling non-
linearities improve predictive power of interval-valued exchange rates. However,
concerning the lower bound of intervals, the differences among iFRB, iMLP and
VECM accuracy are lower (RMSEL and MAPEL values are slightly distinct).

As shown in [19], dynamic models may outperform random walk in out-of-
sample forecasting if forecasting power is measured by direction accuracy and
profitability. Table 1 summarizes the results in terms of direction accuracy (DA)
and adjusted RMSE (ARMSE) measures for both, low and high EUR/USD
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exchange rate. Because the random walk without drift predicts no change in the
exchange rate, it has zero direction accuracy, and hence a confusion rate of 1,
which makes the RMSE and ARMSE equal. In terms of direction accuracy, all
the alternative approaches, ARIMA, VECM, HoltI , iMLP and iFRB are superior
to the random walk once the null hypothesis H0 : DA = 0 is rejected for both,
exchange rate lows and highs, which means that the models overwhelmingly
outperform the random walk in terms of direction accuracy (Table 1).

In addition to goodness of fit, as measured by forecast errors, the models
were evaluated using the Diebold-Mariano [10] test statistics for lows and highs
of the EUR/USD exchange rate. The results are summarized in Table 2. The
test is performed for each pair of models. The null hypothesis of equal predictive
accuracy is rejected at the 5% confidence level if |DM | > 1.96. From this point
of view, for both the lows and highs of the EUR/USD exchange rate, the random
walk, iMLP and iFRB approaches can be considered equally accurate (|DM | <
1.96), but they produce statistically superior forecasts against ARIMA, VECM
and HoltI (|DM | > 1.96) – see Table 2. The ARIMA, VECM and HoltI can be
considered equally accurate as well, except for EUR/USD highs, in which the
VECM model gives statistically more accurate results than ARIMA.

Table 2. Diebold-Mariano statistics of EUR/USD exchange rate low and high prices
for out-of-sample forecasts (January 2013–December 2016).

Method ARIMA VECM HoltI iMLP iFRB

Panel A: EUR/USD exchange rate low prices

RW −11.595* −10.920* −9.920* −1.323 −1.049

ARIMA – 5.056* −3.762* 8.853* 9.352*

VECM – – −4.448* 4.168* 5.271*

HoltI – – – 4.221* 4.871*

iMLP – – – – 1.781

Panel B: EUR/USD exchange rate high prices

RW −11.999* −10.078* −8.781* −1.532 −1.342

ARIMA – 1.455 −3.517* 5.852* 6.526*

VECM – – −4.910* 5.253* 5.251*

HoltI – – – 8.665* 8.917*

iMLP – – – – 1.098

(∗) Statistically significant at the 5% level

Figure 1 shows the EUR/USD candlesticks based on the observed prices of
the exchange rates with the corresponding high-low bands predicted by iFRB
for the last three months of data in the out-of-sample sets. Notice that iFRB
forecast values follow closely the actual data. Interestingly, the iFRB gives a good
fit of the high-low dispersion for both exchange rates, indicating its potential to
enhance chart analysis, a tool used by technical traders worldwide.
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Fig. 1. EUR/USD exchange rates and iFRB high-low forecasts.

4 Conclusion

This paper has suggested an interval fuzzy rule-based model (iFRB) for exchange
rate ITS forecasting. Fuzzy rules antecedents are identified with a fuzzy cluster-
ing approach for symbolic interval-valued data using adaptive City-Block dis-
tances. The parameters of rules consequents are estimated using a least squares
algorithm designed for interval-valued data. The iFRB one-step ahead fore-
casting performance was evaluated in forecasting interval-valued Euro/Dollar
(EUR/USD) exchange rate for the period from January 2005 to December 2016.
The results show that the iFRB model has higher accuracy than the random
walk and alternative approaches for out-of-sample forecasting of interval-valued
EUR/USD exchange rate. Future work shall include the automatic selection of
the number of clusters in iFRB antecedent identification, performance analysis
of medium- and long-term forecasting horizons, and applications in risk man-
agement using range-based volatility estimators.
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Abstract. Text mining and topic identification models are becoming
increasingly relevant to extract value from the huge amount of unstruc-
tured textual information that companies obtain from their users and
clients nowadays. Soft approaches to these problems are also gaining rel-
evance, as in some contexts it may be unrealistic to assume that any
document has to be associated to a single topic without any further con-
sideration of the involved uncertainties. However, there is an almost total
lack of reference documents allowing a proper assessment of the perfor-
mance of soft classifiers in such soft topic identification tasks. To address
this lack, in this paper a method is proposed that generates topic identi-
fication reference documents with a soft but objective nature, and which
proceeds by combining, in random but known proportions, phrases of
existing documents dealing with different topics. We also provide a com-
putational study illustrating the application of the proposed method on
a well-known benchmark for topic identification, as well as showing the
possibility of carrying out an informative evaluation of soft classifiers in
the context of soft topic identification.

Keywords: Soft classification · Text mining · Topic identification

1 Introduction

In recent years, there has been a significant growth in the volume of available
data for companies from different industries regarding their clients. With the
aim of being able to exploit such information, the application of mathematical
and machine learning methods allowing to identify patterns and relationships
useful for decision making purposes has also known an important proliferation.

Frequently, data regarding or coming from clients have an unstructured nature,
and particularly it is estimated that approximately 80% of that information is in
textual form [1]. Consequently, the analytical field denominated as Text Mining, a
multidisciplinary area based on natural language processing (NLP) and machine
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learning techniques focused on extracting value from such texts, has experienced a
considerable development. In this field, solutions oriented towards the identifica-
tion of topics in texts have specially gained relevance, as they enable useful appli-
cations for the analysis of contents in social media (Facebook, Twitter, blogs, etc.)
or document classification (spam filtering, sentiment analysis, customer complaint
classification, etc.) [2].

It is important to note that the manual supervision process of a whole doc-
ument corpus can be quite costly, which makes the employment of methods
allowing to automatically label the texts highly convenient. To some extent, it
is possible to manually label just a sample of the available documents, and then
apply a supervised method to classify the remaining texts in the corpus from
that training sample. However, this forces these new documents to be classified
in some of the categories found in the supervised sample, even when their con-
tents do not actually fit into any of them. This fact motivates that unsupervised
methods are frequently applied instead of supervised ones.

Nevertheless, even when unsupervised methods are used, it is useful to have
some labelled texts available in order to allow the assessment of their perfor-
mance. In this way, for instance, it is usual to omit at first any knowledge about
the topics of the labelled documents, then obtain the topic clusters, and finally
validate whether the words that characterize the documents of each cluster are
related to the known topics.

Another remark is that it is not realistic to assume that any document has
to be always associated to a single topic. To address this situation, many soft
classification techniques exist that allow simultaneously assigning a document to
a set of topics up to different degrees. However, we have found an important lack
regarding the assessment of the performance of such methods, as soft reference
corpus for topic identification do not exist or are hardly available. For this reason,
in this paper we propose a method to generate topic identification reference
documents with a soft nature.

Specifically, the proposed method generates texts that combine phrases of
previously available texts associated to different topics. The result is then a cor-
pus of new documents such that, for each of these new documents, soft reference
values are provided informing of the relative proportion of phrases it contains
from each of the combined topics.

To illustrate the application of the proposed method and the possibilities it
enables, a computational study based on a well-known benchmark corpus in topic
identification is also included in this work.

This paper is structured as follows. Section 2 is devoted to discuss with more
detail the need for soft reference datasets. The proposed method to generate soft
reference corpuses for topic identification is then described in Sect. 3, and the com-
putational study illustrating its usage is presented in Sect. 4. Finally, some conclu-
sions and future work are provided in Sect. 5.

2 TheNeed for Soft Reference Data In topic Identification

The need for soft reference data in some classification contexts has since long
been established. In such contexts, the very nature of the classification variable to
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predict is soft, in such a way that objects to be classified can naturally belong or
be assigned to different classes, simultaneously and up to a degree. For instance,
in the field of land cover estimation at sub-pixel level, the objects to be classified
are pixels in a terrain image, and the classes to be assigned are different terrain
types, such as water, wetland, forest, and so on. For many years, the usual image
classification approach to this problem consisted in assigning just one class, i.e. a
single terrain type, to each pixel [3,4]. However, due to the limited resolution of
the images, a pixel may cover an area of several squared meters, in which different
terrain types can coexist. For this reason, assigning each image pixel to a single
type of cover can be misleading, particularly in applications in which a more pre-
cise assessment of land cover is needed, or whenever the spatial resolution of pixels
is rather low. In either case, it is important to notice that this kind of crisp assign-
ment omits the complex nature of the problem, and can provide a false appearance
of lack of uncertainty regarding the mix of terrain types actually occurring at pixel
level.

One could think that a multilabel or label ranking model, respectively asso-
ciating each pixel to a set or ranking of terrain types, should alleviate this prob-
lematic. However, these kinds of solution may be again insufficient, as neither
one can fully represent the involved uncertainty regarding the composition of
the land cover within each pixel. For instance, if the area associated to a given
pixel is composed of a 70% water and a 30% wetland, a label ranking output
given by the ordered pair (water, wetland) just informs that water is more pre-
dominant at this area than wetland, but fails to adequately inform about the
relative abundance of each cover. Of course, a multilabel (non-ordered) output
of the type {water, wetland} would be even less informative.

Rather, as this example illustrates, the appropriate, most informative repre-
sentation estimates the proportion of the pixel area that is covered by each ter-
rain type. Thus, it is a soft output the one that actually allows representing and
managing the uncertainty associated to the land cover estimation problem. For
this reason, the standard approach to address this problem gradually switched
from crisp image classification to linear mixture models [5], and later to more
accurate soft classification schemes, as e.g. fuzzy unsupervised and supervised
classifiers or neural networks [6,7].

However, it is important to remark that the successful application of soft
techniques in the land cover estimation context crucially depended on the avail-
ability of contextual soft reference data. Even when a soft supervised approach
can be developed without an explicitly soft reference, the proper evaluation of
both supervised and unsupervised techniques would have been impossible with-
out adequate soft reference data.

This is also our point concerning some currently developing tasks in text min-
ing, and particularly in topic identification. For instance, this last field is finding
an increasing application in the analysis of customer complaint texts. The auto-
matic analysis and understanding of complaint forms is becoming more and more
relevant for companies in order to carry out adequate actions to improve their ser-
vices. Within this context, the usual aim is to classify complaints according to their
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causes from the basis of the text written by the customers at the complaint forms
[8].

It is important to notice the link between this complaint causes classification
problemand the previous land cover estimation problem.Particularly, it is possible
that a complaint text (object to be classified) refers to more than one cause (classes
to be assigned) simultaneously, and each of these causes can have a different weight
within the text of a single complaint form. That is, it may be convenient to model
the complaint classification problem as a soft classification problem, similarly to
the land cover estimation problem described above.

Let us at this point introduce some notation to formalize in a general way the
notions being discussed. Let X denote the set of objects to be classified, and let k
denote the number of classes being considered. Then, in a soft classification frame-
work each object x ∈ X has to be assigned to a vector (c1(x), . . . , ck(x)), where
ci(x) ∈ [0, 1] denotes the degree (or proportion) in which object x belongs to class
i, i = 1, . . . , k. If the soft class estimations ci actually represent proportions, it is
then usual (see e.g. [9]) to impose the constraint

k∑

i=1

ci(x) = 1 (1)

A soft classification problem can be addressed in either a supervised or unsuper-
vised way, depending on the available data and the specific context requirements.
For instance, in the complaint classification context sometimes an unsupervised
approach may be more adequate, since the number k of possible complaint causes
may not be perfectly determined apriori, and new complaint causes may always
arise that are not present in the supervised data. At this respect, let us recall that
soft supervised data is not necessarily needed to fit a soft supervised classification
model. Even when trained with crisp data, most current supervised classifica-
tion methodologies produce some kind of soft scores (probabilities, fuzzy degrees,
etc.) in an intermediate stage of their process, before applying a decision rule
(typically the well-known maximum rule) to map these soft scores into a crisp,
single-class output (and see [10] for a discussion on potential drawbacks of such
a decision rule).

In either way, whenever a classification problem is modeled in a soft (super-
vised or unsupervised) form, the crucial question is how the resulting model’s
performance is going to be evaluated. In this sense, it is important to notice
that, if a practical task is modeled in soft terms, but crisp supervised data is
used to evaluate the resulting soft model, then many misleading situations may
occur.

To see it, suppose two different soft classifiers SC1 and SC2 are fitted to the
same data in a binary classification task, in such a way that for a given object
x ∈ X the soft scores they respectively assign are SC1(x) = (0.51, 0.49) and
SC2(x) = (0.49, 0.51). Suppose also that the crisp supervision of x has assessed
it actually belongs to the first class, i.e. the correct crisp degrees are (1, 0).
Then, if the soft scores SC1(x), SC2(x) are mapped into a single class through
the maximum-rule, then the first classifier would predict x into the first class,
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while the second classifier would predict it into the second one. Therefore, one
classifier would be evaluated as correctly classifying x while the other would do
it wrongly. However, the difference between the real soft outputs SC1(x) and
SC2(x) is actually not as significant. Even more, suppose the actual soft class-
composition of object x before the crisp supervision is (0.6, 0.4). In this situation,
both SC1 and SC2 would be doing a similar more or less accurate estimation
of such a class mix, but imposing a crisp evaluation framework would lead to
a totally different assessment of their performance. And if the soft degrees for
x and SC2(x) remain as before, but now it is SC1(x) = (0.98, 0.02), then SC1

would be committing a much greater error than SC2, though however a crisp
evaluation would just assess that SC1 is right and SC2 is wrong.

These reasons led us to devise a procedure to generate soft reference datasets
for topic identification, that can enable the performance of soft classification
procedures to be properly evaluated.

3 Soft Reference Documents Generation

This section is devoted to describe the proposed method to automatically gen-
erate soft reference documents for the task of topic identification.

Basically, the method departs from a dataset or corpus of documents, each
of which is associated in a crisp way to a single topic, and generates an output
corpus containing new documents in which the specified topics from the original
documents are mixed following different randomly determined proportions.

More specifically, the inputs of the method are the following:

– InputData: The name of the input database containing the topic identifica-
tion corpus. This database has to contain the following fields:

• documentID: An identifier for each of the documents in the database.
This identifier is a primary key and, as such, it can not present repeated
values.

• text: A free-format character field with the text associated to each docu-
ment.

• topic: A character variable identifying the topic associated to each docu-
ment.

– Topics: This parameter specifies the topics that will take part in the genera-
tion of the documents with mixed topics in the output corpus. These topics
names have to be contained in the set of topic names under the topic field of
the database.

– OutputCorpusSize: This parameter specifies the size of the output corpus,
that is, the number of documents it has to contain.

– OutputData: The name of the output corpus to be generated. This corpus
will contain the following fields:

• documentID: An identifier for each of the documents in the output cor-
pus. As before, this identifier is a primary key and, as such, it will not
present repeated values.

• text: A free-format character field with the text of each document.
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• topicProportion[i]: A numerical variable giving the proportion of phrases
in each document that are associated to the i-th topic provided in the
Topics parameter of the method. Therefore, the output corpus will con-
tain as much topicProportion variables as different topics have been
selected in the Topics parameter to be mixed in the output documents.

Regarding the method itself, it proceeds as follows:

1. For each topic i in the Topics parameter, a list Li is generated that stores
in each position a different phrase of the documents in the input corpus
InputData associated to topic i. Therefore, the length of Li is equal to the
total number of phrases of the set of documents in the input corpus associated
to topic i. We consider that a ‘phrase’ is any text between two consecutive
periods, or the text between the beginning of a document and the first period.

2. Another list L is generated with as many positions as documents in the input
corpus associated to any of the topics in the Topics parameter. Let us denote
by N the length of this list. The number of phrases of each document in the
input corpus associated to any of the topics in the Topics parameter is stored
at the corresponding position of L. We shall use this list to create documents
in the output corpus in such a way that their number of phrases follows a
similar distribution to that of the documents in the input corpus.

3. For each j = 1, . . . , OutputCorpusSize, a random number k between 1 and
N is generated, and the number of phrases to be placed in the j-th document
of the output corpus is assigned as L[k]. Then, draw |Topics| − 1 random
numbers from a uniform U(0, 1) distribution, and sort them in ascending
order, so that u(l) denotes the l-th element of the sorted sequence. Assign
u(0) = 0 and u(|Topics|) = 1. For i = 1, . . . , |Topics|, select (u(i) −u(i−1)) ·L[k]
phrases at random from Li, and successively write them in the text field of
the j-th document of the output corpus. Similarly, for each document of the
output corpus assign documentID = j and topicProportion[i] = u(i)−u(i−1).
This completes the construction of the output corpus OutputData.

Figure 1 illustrates the generation of an OutputData document from the N
documents of the InputData corpus that we assume deal with 3 selected topics.
List L records the number of phrases of each of these N documents. Lists L1,
L2, L3 respectively contain the phrases of the documents associated to each of
the 3 topics, and thus it is N = |L1| + |L2| + |L3|. The number of phrases to
be contained in document 1 of OutputData (let us refer to it as OutDoc1) is
obtained by randomly selecting a value from L, say 8 (second position in L).
Then, two random U(0, 1) values are drawn and sorted, and stored as u(1), u(2).
Let say we get u(1) = 0.125, u(2) = 0.625. Hence, 12.5% (0.125) of the 8 phrases
in OutDoc1 are to come from topic 1, 50% (0.625–0.125) from topic 2, and
37.5% (1–0.625) from topic 3. Applying these proportions to the 8 phrases of
OutDoc1, we get that 1,4 and 3 are the number of phrases to be respectively
taken from topics 1 to 3. These number of phrases are then randomly drawn from
lists L1, L2 and L3, respectively, and written in OutDoc1. Notice that this draw
is made with replacement, and thus some of the input phrases (as for instance
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Phrase2,|L2| in Fig. 1) may be repeated in the output documents. The reason
behind this selection with replacement is that the number of phrases to select
from a topic i may be greater than the number of phrases in the corresponding
list Li.

Fig. 1. Example of output document generation combining 3 topics.

Therefore, after this method is applied, a new corpus of documents is pro-
duced, in such a way that each of the new documents mixes text from the spec-
ified topics in different proportions. As these proportions are recorded together
with the new text, the new corpus constitutes a soft reference dataset for topic
identification. Furthermore, a main feature of the corpus provided by the pro-
posed method is that the soft reference scores (i.e., the proportions of the dif-
ferent topics) assigned to each document are obtained in an objective way, not
relying on subjective judgements from human supervisors.

4 Computational Study

In this section, we carry out an small computational experiment on unsupervised
soft topic identification with data obtained by applying the soft reference gener-
ation method introduced in last section. The aim of this study is to illustrate the
application of the proposed method on real data, as well as to provide a compar-
ison of some well-known unsupervised classification techniques on soft reference
data.

Therefore, this setting somehow mimics a real-world situation (as that
described in Sect. 2 regarding soft complaint classification) in which a corpus of
documents is available, in such a way that each document is known to simulta-
neously deal, up to a (possibly unknown) degree, with a set of topics. From this
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knowledge, a model is searched that allows quantifying the proportion up to which
each document deals with each of the topics being considered. To this aim, we con-
template the following steps:

1. Let k denote the number of topics being considered. Configure a soft reference
corpus by applying the method described in Sect. 3, in such a way that each
document i in this corpus mixes the k topics in proportions pi ∈ [0, 1]k.

2. Apply natural language processing (NLP) techniques to translate the unstruc-
tured textual information of the documents in the corpus into a matrix with
as many rows as documents, and with as many columns as relevant terms, so
that it can be processed in the next step.

3. Apply an unsupervised soft classification algorithm to the matrix obtained in
the previous step, only assuming that the number of topics k is known. The
output of this algorithm then provides an estimation p̂i ∈ [0, 1]k of the topics’
weights for each document.

4. Obtain an estimation of the performance of the unsupervised algorithm in
the task to be performed by comparing the estimations p̂i with the real pro-
portions pi.

In the present study we focus on comparing the performance of two unsupervised
techniques, the classic k-means (KM) algorithm and the fuzzy k-means (FKM).
To this aim, we apply a fuzzyfication step from the final centroids provided by
the KM algorithm, so that a soft output is obtained that can be compared in
fair terms with that of the FKM. Taking into account that the documents to
be clustered present a mix of topics, and thus that the classification variable to
predict is soft in nature, the hypothesis we would like to test is whether the FKM
outperforms the post-fuzzified KM in providing a more accurate estimation of
the actual weights of the topics in the documents to be processed.

4.1 Experimental Setting

Let us now describe the details of the computational study carried out. First
of all, we applied the proposed soft reference generation method on the 20-
Newsgroup (NG20) dataset [11], which constitutes a well-known benchmark
in topic identification. This corpus contains a total of 20,000 documents, with
exactly 1000 texts dealing with each of the 20 different topics shown in Table 1.

The proposed method has been setup to provide two different corpus
typologies:

– A first kind of corpus contains documents mixing the topics of Atheism (NG1)
and Graphics (NG2). Therefore, in this case it is Topics = {NG1 NG2}, and
both topics are combined in proportions pi = (ui, 1−ui), where ui is a random
U(0, 1) value drawn for each document i.

– A second kind combines the topics of Graphics (NG2), Baseball (NG10),
and Space (NG15). Then, now it is Topics = {NG2 NG10 NG15}, and for
each document i a pair of random U(0, 1) values ui, vi are drawn. Assuming
without loss of generality that ui < vi, the proportions of the mix of the 3
topics are given by pi = (ui, vi − ui, 1 − vi).
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Table 1. Thematic blocks and topics of the 20-Newsgroup dataset.

Block Topics [NG]

Alternative Atheism [1]

Computing Graphics [2], os.ms-windows [3], sys.ibm [4], sys.mac [5],
windows.x [6]

Miscellaneous Forsale [7]

Recreation Autos [8], motorcycles [9], baseball [10], hockey [11]

Science Cryptography [12], electronics [13], medicine [14], space [15]

Social issues Religion.christian [16]

Talk Guns [17], Mideast [18], politics.miscellaneous [19],
religion.misc [20]

Each of these corpus typologies will be used in a different comparison experiment.
To provide a more robust comparison through non-parametric statistical tests,
30 corpus of each typology are produced, each containing OutputCorpusSize =
1000 documents.

Once these 60 corpuses were generated through the proposed method, the
following NLP steps were applied to each of the 60,000 documents:

– Tokenization [12]: The text of each document is separated in tokens (terms),
generating a variable associated to each token.

– Stopwords removal: Non-significant words as conjunctions, determiers, etc.
are removed.

– Stemming [13]: Process by which each token is reduced to its root form, so
that different inflections are concentrated in a single token independent of
number, gender, verbal conjugation, etc. To this aim, the Porter algorithm
[14] has been applied.

As a result, for each corpus a matrix with as many rows as documents and as
many columns as tokens is produced. Each position of this matrix is filled with
the tf − idf metric [15], that represents the relative frequency (term frequency,
tf) of each token in a document, penalizing those words that appear with a
relatively high frequency in a corpus. This penalization (applied through the so
called inverse document frequency, idf) is introduced since a given term should
not characterize too strongly a document whenever that term appears frequently
in other documents of the corpus. Specifically, the tf − idf metric is defined as
follows:

tf − idfij = tfij · idfj , (2)

where
tfij =

# of times term j appears in document i

total # of terms in document i
(3)

and

idfj = log

(
total # of documents

1 + total # of documents containing the term j

)
. (4)
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Once these tf − idf matrices are produced, the textual information gets struc-
tured in a form allowing the application of unsupervised classification techniques.
However, before that, some dimension reduction steps are applied. Firstly, as the
corpuses still contain a huge number of tokens (variables), some of which may
occur quite infrequently within a corpus, a relevance thresholding step is applied.
This consist in removing those tokens for which their accumulated tf − idf in a
corpus is lower than a given threshold. This threshold, known as the transition
point [16], is set to the 95th percentile of the distribution of accumulated tf−idf
of all tokens in the corpus.

Finally, principal component analysis (PCA) has been applied on the remain-
ing tokens in order to further reduce the dimension of the corpus matrices to a
few variables. The number of components to use for each corpus typology has
been determined through sedimentation graphs. As shown in Fig. 2, the number
of components to be used depends on the number of topics considered. Particu-
larly, just the first two components are retained for corpuses of the first typology
(NG1/NG2), and three for corpuses of the second typology (NG2/NG10/NG15).
Therefore, a 1000 × 2 matrix is finally obtained for each corpus of the first type,
and a 1000 × 3 matrix is associated to each corpus of the second type.

Fig. 2. Sedimentation graphics NG1/NG2 (left) and NG2/NG10/NG15 (right).

The KM and FKM algorithms are then applied on these matrices. The num-
ber of clusters k to form are set to the number of topics being combined for
each corpus, i.e. k = 2 for the first typology and k = 3 for the second one.
In both methods, 30 random starting centroids are tried for each corpus, allow-
ing a maximum of 100 iterations after each initialization. Only the best result in
terms of the intra-cluster variance objective function is keep. In all runs of the
FKM the fuzziness parameter was set to m = 2.

As KM actually provides a crisp output, but the reference class variable is
soft, a fuzzification step is needed in order to allow a fair comparison. This step is
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applied only after the best final KM centroids (out of the 30 random starts) are
obtained. Specifically, the applied post-fuzzification follows the same scheme used
in the FKM to obtain degrees from centroids in each iteration. Particularly, as in
the FKM, the fuzzified degrees sum up to 1, and thus they can be interpreted as
proportions. Therefore, let dij denote the Euclidian distance between document
i and the j-th centroid (j = 1, .., k) reached by KM. Then, for the sake of
the comparison with the soft reference, we consider the KM estimation of the
proportion in which document i deals with topic j to be given by

p̂ij =

(
k∑

l=1

d2ij
d2il

)−1

(5)

The performance metric, actually an error measure, will be given by the mean
difference between the proportions estimated by the clustering methods p̂i =
(p̂i1, . . . , p̂ik) and the real proportions pi = (pi1, . . . , pik) [17]. Thus, for a corpus
with S documents and k topics, the error measure is given by

errCorp =
1
Sk

S∑

i=1

k∑

j=1

|pij − p̂ij | (6)

Finally, let us mention that a matching step has to be applied due to the unsu-
pervised character of the algorithms considered. A clustering method estimate
k proportions, but the order in which they appear does not have to be the same
as that of the reference clusters. This matching process is applied by corpus.

4.2 Results

This section presents the results of the two experiments carried out to compare
the performance of the (post-fuzzified) KM and the FKM algorithms on the
described soft topic identification task. As exposed above, both comparisons are
performed on a set of 30 corpus generated by the proposed method. Each corpus
contains S = 1000 documents, that combine k = 2 topics in the first comparison
and k = 3 topics in the second one.

The SAS software has been used to implement the soft reference generation
method, as well as for preprocessing the data and perform PCA. The R software
(packages stats and fclust) has been used for fitting the models and compute the
errors shown in this section.

Table 2 shows the mean error of the KM and FKM algorithms and its stan-
dard deviation for each of the 30 corpuses analyzed. Clearly, in average both
algorithms estimate the real proportions of each topic with similar accuracy.
However, it is also important to notice that FKM tends to consistently produce
slightly lower error rates than KM. Following [18], to rigorously analyze the sta-
tistical significance of this behaviour, a Wilcoxon signed rank test is applied on
the results in Table 2. The results of this test are shown in Table 3, from which it
is possible to conclude that FKM provides corpus error rates with a significantly
lower median than KM.
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Table 2. Error by corpus (mean ± standard deviation)

2 Topics 3 Topics

FKM KM FKM KM

1 .146 ± .110 .146 ± .109 .120 ± .069 .135 ± .081

2 .147 ± .107 .149 ± .109 .123 ± .070 .127 ± .072

3 .135 ± .100 .138 ± .103 .121 ± .070 .127 ± .075

4 .135 ± .103 .137 ± .104 .130 ± .072 .142 ± .079

5 .129 ± .100 .129 ± .100 .119 ± .068 .120 ± .070

6 .145 ± .106 .147 ± .107 .125 ± .068 .133 ± .075

7 .144 ± .109 .148 ± .112 .123 ± .073 .132 ± .077

8 .153 ± .114 .156 ± .117 .123 ± .071 .121 ± .070

9 .138 ± .103 .138 ± .103 .116 ± .070 .120 ± .070

10 .139 ± .101 .140 ± .103 .117 ± .067 .117 ± .067

11 .140 ± .104 .141 ± .106 .127 ± .074 .133 ± .079

12 .144 ± .111 .144 ± .111 .137 ± .075 .144 ± .079

13 .135 ± .110 .135 ± .109 .122 ± .072 .125 ± .074

14 .128 ± .103 .127 ± .102 .115 ± .070 .113 ± .068

15 .138 ± .104 .140 ± .106 .124 ± .073 .130 ± .077

16 .146 ± .102 .145 ± .102 .119 ± .071 .122 ± .072

17 .146 ± .112 .146 ± .114 .114 ± .069 .122 ± .071

18 .130 ± .098 .132 ± .098 .119 ± .070 .133 ± .080

19 .147 ± .108 .149 ± .111 .123 ± .073 .135 ± .076

20 .140 ± .107 .143 ± .109 .112 ± .066 .124 ± .075

21 .140 ± .106 .140 ± .106 .124 ± .076 .133 ± .078

22 .142 ± .109 .144 ± .111 .121 ± .068 .124 ± .071

23 .136 ± .107 .137 ± .109 .119 ± .076 .123 ± .077

24 .140 ± .101 .141 ± .102 .112 ± .065 .112 ± .064

25 .141 ± .101 .144 ± .104 .115 ± .068 .116 ± .067

26 .141 ± .107 .140 ± .106 .123 ± .069 .210 ± .113

27 .141 ± .103 .144 ± .104 .123 ± .073 .199 ± .106

28 .151 ± .110 .152 ± .111 .125 ± .076 .129 ± .079

29 .146 ± .106 .145 ± .105 .119 ± .070 .125 ± .072

30 .153 ± .106 .159 ± .112 .124 ± .071 .124 ± .072

Mean .141± .0064 .143 ± .0071 .121± .0063 .132 ± .021

In summary, the final centroids produced by the KM and FKM algorithms
provide a similar degree of accuracy when estimating the topic composition of
the documents in the generated soft reference corpuses. Nevertheless, the inner
fuzzification step of the FKM seems to slightly but consistently improve the final
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Table 3. Wilcoxon test to compare fuzzy k-means (R−) against k-means (R+). For
each experiment the differences in error rates for each corpus i are expressed as
FKMi −KMi = sign(FKMi −KMi) |FKMi −KMi|, and sorted in increasing order
of the absolute differences. This allows assigning a rank to each difference. The sums
of ranks of positive and negative difference are denoted by R+ and R−. Under the null
hypothesis of equal median error rates these statistics should be similar.

Comparison R− R+ p-val

FKM vs. KM 2 Topics 431 34 6.918e-06

FKM vs. KM 3 Topics 451 14 2.049e-07

FKM centroids with respect to those finally achieved by the KM algorithm, which
instead performs a crisp cluster assignment in each iteration and has only been
fuzzified after its conclusion.

5 Conclusions

A method to generate documents to be used as soft reference data in topic
identification tasks has been introduced in this work. The method proceeds by
combining phrases of previously available texts associated to different topics, in
random but known proportions. As a consequence, a main feature of this method
is that it allows generating reference data with objective soft degrees, not relying
on subjective judgements from human supervisors. Reference corpuses containing
any number of documents that combine a wide variety of topics can be thus
obtained through the proposed method. Corpuses of this kind can then be used
to allow evaluating the performance of soft topic classification techniques, both
supervised and unsupervised. We consider this a relevant contribution as soft
reference data for topic identification were nonexistent or hardly available.

A complete computational study was also carried out in this work, illustrating
the application of the proposed method on real data and showing the possibility
of conducting a proper comparison of the performance of two soft unsupervised
classification methods. Particularly, this study allowed to conclude that the inner
fuzzification step of the fuzzy k-means algorithm provide slightly but consistently
better centroids for soft topic identification than those of the classic k-means
algorithm, at least under certain conditions of the soft reference documents.

Future work regarding the proposed method will consider its extension to
allow generating documents that combine phrases of different subsets of the
specified topics, not necessarily combining all them simultaneously. This will
allow more realistic soft reference documents to be generated, particularly for
the context of complaint classification. Further work will also be devoted to
assess the performance of soft unsupervised methods under various probabil-
ity distributions of the random numbers used to determine the proportions of
phrases of the different topics being combined.
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Abstract. Recently, the explainability of Artificial Intelligence (AI)
models and algorithms is becoming an important requirement in real-
world applications. Indeed, although AI allows us to address and solve
very difficult and complicated problems, AI-based tools act as a black
box and, usually, do not explain how/why/when a specific decision has
been taken. Among AI models, Fuzzy Rule-Based Systems (FRBSs) are
recognized world-wide as transparent and interpretable tools: they can
provide explanations in terms of linguistic rules. Moreover, FRBSs may
achieve accuracy comparable to those achieved by less transparent mod-
els, such as neural networks and statistical models. In this work, we
introduce SK-MOEFS (acronym of SciKit-Multi Objective Evolution-
ary Fuzzy System), a new Python library that allows the user to eas-
ily and quickly design FRBSs, employing Multi-Objective Evolutionary
Algorithms. Indeed, a set of FRBSs, characterized by different trade-offs
between their accuracy and their explainability, can be generated by SK-
MOEFS. The user, then, will be able to select the most suitable model
for his/her specific application.

Keywords: Explainable Artificial Intelligence · Multi-objective
Evolutionary Algorithms · Fuzzy Rule-Based Systems · Python ·
Scikit-Learn

1 Introduction

The proliferation of Artificial Intelligence (AI) has a significant impact on soci-
ety [1]. Indeed, AI has already become ubiquitous in personal life and the modern
industry. As regards the latter, we are experiencing the “Industry 4.0 Era”, and
Machine Learning (ML) and AI play a crucial role among its enabling technologies
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[12]. Models based on ML and AI are learnt from the input data and are gener-
ally very accurate. However, in most cases, they are highly non-transparent, i.e.,
it is not clear which information in the input data causes the generated output.
In the context of Industry 4.0, making decisions has a crucial impact, so modern
approaches are shifting towards AI models with understandable outcomes.

Recently, a new trend is gaining importance within AI, namely, eXplain-
able Artificial Intelligence (XAI). XAI methodologies and algorithms aim to
make AI-based models and methods more transparent while maintaining high-
performance levels of accuracy and precision [5]. Fuzzy Rule-Based Systems
(FRBSs) are a category of models strongly oriented towards explainability.
FRBSs are highly interpretable and transparent because of the linguistic def-
initions of fuzzy rules and fuzzy sets, which represent the knowledge base of
these models. Moreover, the simplicity of the reasoning method, adopted for
providing a decision based on input facts, ensures also a high explainability level
of FRBSs [10].

In the last decade, Multi-Objective Evolutionary Algorithms (MOEAs) have
been successfully adopted for designing FRBSs from data, leading to the so-
called Multi-Objective Evolutionary Fuzzy Systems (MOEFSs) [8,9]. MOEFSs
are designed to concurrently optimize the accuracy and explainability of FRBSs,
which are two conflicting objectives. Indeed, in general, very accurate models are
characterized by low explainability and vice-versa.

Regarding software tools to generate and evaluate XAI models, there are not
many options. For example, GUAJE [13] and ExpliClas [2] are examples of tools
for designing interpretable models. They also handle FRBSs, but without the
boost of MOEAs for optimizing their accuracy and explainability.

In this paper, we propose and discuss SK-MOEFS, a new Python library
that helps data scientists to define, build, evaluate, and use MOEFSs, under the
Scikit-Learn environment [14]. The latter is an Open Source toolbox that pro-
vides state-of-the-art implementations of many well-known ML algorithms. We
designed SK-MOEFS according to Scikit-Learn’s design principles. Indeed, we
exploited the available data structures and methods in the Scikit-Learn library.
As a result, the user is allowed, under the same framework, to easily and quickly
design, evaluate, and use several ML models, including MOEFSs. The current
version of SK-MOEFS includes an implementation of a specific MOEFS, namely
PAES-RCS, introduced in [3]. PAES-RCS selects a reduced number of rules and
conditions, from an initial set of rules, during the multi-objective evolutionary
learning process. Precisely, we implemented PAES-RCS-FDT, which adopts a
fuzzy decision tree (FDT) for generating the initial set of rules [7]. We also high-
light that SK-MOEFS is an extendable framework that allows easy integration
of different types of MOEFSs.

The paper is organized as follows. Section 2 introduces FRBSs and the gen-
eral multi-objective evolutionary learning scheme for designing them. Afterward,
Sect. 3 illustrates the design of SK-MOEFS, focusing on the functionalities pro-
vided. Then, we describe in detail the implementation of a specific MOEFS
for classification problems in Sect. 4. Section 5 is devoted to show an example
of building and evaluating a MOEFS tested with a real-world dataset. Finally,
Sect. 6 draws some conclusions.
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2 Multi-objective Evolutionary Fuzzy Systems

2.1 Fuzzy Rule-Based Systems

A Fuzzy Rule-Based System (FRBS) is characterized by two main components,
namely the Knowledge Base (KB) and the fuzzy inference engine. The KB is
composed by a set of linguistic rules and by a set of parameters which describe
the fuzzy sets on which the rules are defined. The fuzzy inference engine is
in charge of generating a prediction, given a new input pattern, based on the
content of the KB.

Let X = {X1, . . . , XF } be the set of input attributes and XF+1 be the output
attribute. Let Uf , with f = 1, ..., F + 1, be the universe of the f th attribute Xf .
Let Pf = {Af,1, . . . , Af,Tf

} be a fuzzy partition of Tf fuzzy sets on attribute Xf .
Finally, we define the training set {(x1, xF+1,1), . . . , (xN , xF+1,N )} as a collection
of N input-output pairs, with xt = [xt,1 . . . , xt,F ] ∈ , t = 1, . . . , N .

In regression problems, XF+1 is a continuous attribute and, therefore, ∀t ∈
[0..N ], xF+1,t ∈ . With the aim of estimating the output value corresponding
to a given input vector, we can adopt a Fuzzy Rule-Based Regressor (FRBR)
with a rule base (RB) composed of M linguistic fuzzy rules expressed as:

Rm : IF X1 is A1,jm,1 AND . . .AND Xf is Af,jm,f
AND

. . .AND XF is AF,jm,F
THEN XF+1 is AF+1,jm,F+1 (1)

where jm,f ∈ [1, Tf ], f = 1, ..., F +1, identifies the index of the fuzzy set (among
the Tf linguistic terms of partition Pf ), which has been selected for Xf in rule
Rm.

In classification problems, XF+1 is categorical and xF+1,t ∈ C, where C =
{C1, . . . , CK} is the set of K possible classes. With the aim of determining the
class of a given input vector, we can adopt a Fuzzy Rule-Based Classifier (FRBC)
with an RB composed of M rules expressed as:

Rm : IF X1 is A1,jm,1 AND . . .AND Xf is Af,jm,f
AND

. . .AND XF is AF,jm,F
THEN XF+1 is Cjm with RWm (2)

where Cjm is the class label associated with the mth rule, and RWm is the
rule weight, i.e., a certainty degree of the classification in the class Cjm for a
pattern belonging to the fuzzy subspace delimited by the antecedent of the rule
Rm. Different definitions of the rule weight RWm are commonly found in the
literature [4]:

Given a new input pattern x̂ ∈ , the estimated output value or class label
is provided by the FRBR or by the FRBC, respectively, adopting a specific
inference engine. In both cases, the output depends on the strength of activation
of each rule with the input. Details on the different inference engines can be
found in [4].

In the current version of SK-MOEFS, we adopt strong triangular fuzzy parti-
tions. As shown in Fig. 1, each partition is made up of triangular fuzzy sets Af,j ,
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whose membership function can be represented by the tuples (af,j , bf,j , cf,j),
where af,j and cf,j correspond to the left and right extremes of the support of Af,j ,
and bf,j to its core. Other typologies of FRBSs, such as TSK-FRBSs, FRBSs with
DNF rules and FRBSs based on multiple granularities, have also been considered
in the MOEFS specialized literature [9]. For the sake of brevity, in this Section
we have described only the two types of FRBSs which have been mostly discussed
and experimented in the last years, mainly due to their high explainability level.
However, the SK-MOEFS toolbox has been designed for allowing the programmer
to easily implement multi-objective evolutionary learning schemes for any kind of
FRBS, both for regression and classification problems.

Fig. 1. An example of a strong triangular fuzzy partition with three fuzzy sets.

2.2 Multi-objective Evolutionary Learning Schemes

The FRBS design process aims: i) to determine the optimal set of rules for
managing regression or classification problems, and ii) to find the appropriate
number of fuzzy sets for each attribute and their parameters. The objective of
the design process is to concurrently maximize the system accuracy and, possi-
bly, the model explainability. The accuracy of an FRBR is usually maximized
by means of a minimization process of the estimation error of the output values.
On the other hand, the accuracy of an FRBC is usually calculated in terms of
percentage of correctly classified patterns. As regards the explainability, when
dealing with FRBS we usually talk about their intepretability, namely the capa-
bility of explaining how predictions have been done, using terms understandable
to humans. Thus, the simplicity of the fuzzy inference engine, adopted to deduce
conclusions from facts and rules, assumes a special importance. Moreover, the
intepretability is strictly related to the transparency of the model, namely to
the capability of understanding the structure of the model itself. FRBSs can be
characterized by a high transparency level, whenever the linguistic RB is com-
posed of a reduced number of rules and conditions and the fuzzy partitions have
a good integrity. The integrity of fuzzy partitions depends on some properties,
such as order, coverage, distinguishability and normality [4]. The work in [11]
discusses several measures for evaluating the interpretability of an FRBS, taking
into consideration semantic and complexity aspects of both the RB and of the
fuzzy partitions.

As stated in the Introduction, in the last decade, MOEAs have been success-
fully adopted for designing FRBSs by concurrently optimizing both their accu-
racy and explainability, leading to the so-called MOEFSs [9]. Indeed, MOEAs
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allow us to approach an optimization process in which two or more conflicting
objectives should be optimized at the same time, such as accuracy and explain-
ability of FRBSs. MOEAs return a set of non-dominated solutions, characterized
by different trade-offs between the objectives, which represents an approximation
of Pareto front [6]. Adopting a Multi-Objective Learning Scheme (MOEL) it is
possible to learn the structure of FRBSs using different strategies, such as learn-
ing only the RB considering pre-defined fuzzy partitions, optimizing only the
fuzzy set parameters, selecting rules and conditions, from an initial set of rules,
and learning/selecting rules concurrently with the optimization of the fuzzy set
parameters. A complete taxonomy of MOEFSs can be found in [8].

In general, an MOEL scheme includes a chromosome coding, which is related
to the type of FRBS and to the specific learning strategy, and a set of mating
operators, namely mutation and crossover, appropriately defined for acting on
the chromosome and generating offsprings. Obviously, an MOEL scheme must
use a specific MOEA for handling the multi-objective evolutionary optimization
process. During this process, a candidate solution is evaluated decoding its chro-
mosome for building the actual FRBS. Specifically, its accuracy is calculated
adopting a training set provided as an input. The explainability is evaluated on
the basis of a pre-defined measure, such as the number of rules or the total num-
ber of conditions in the RB (also called Total Rule Length (TRL)). At the end
of the optimization, a set of FRBSs, characterized by different trade-off between
accuracy and intepretability, is returned. In the following sections, we show how
to design and implement an MOEL scheme in our SK-MOEFS toolbox.

3 SK-MOEFS Design

Previously, we argued about the importance of MOEFSs in the context of XAI. In
this Section, we discuss the design of SK-MOEFS, a Python library for generat-
ing explainable FRBSs. SK-MOEFS extends the functionalities of Scikit-Learn1,
a popular Open Source tool for predictive data analysis [14]. Data scientists
and researchers deeply adopt Scikit-Learn due to its ease-of-use. Moreover, it is
highly efficient both in terms of memory occupancy and computational costs.
Indeed, Scikit-Learn takes advantage of other Python libraries, such as NumPy,
SciPy, and MatplotLib, largely employed in the data analysis field.

Similarly to Scikit-Learn, SK-MOEFS allows us also to adopt the generated
models for making predictions and evaluating the models in terms of different
metrics. However, since SK-MOEFS creates a collection of different FRBSs, we
had to appropriately design data structures and methods for handling more
than one model. Indeed, classically, Scikit-Learn algorithms allow the user to
define, train, evaluate, and use just one model. Finally, we have also designed
the methods for extracting explainability metrics, such as TRL, number of rules,
and partition integrity indices [11].

1 https://scikit-learn.org/.

https://scikit-learn.org/
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3.1 Class Hierarchy

To design and implement SK-MOEFS, we followed the official Scikit-Learn guide-
lines for developers2.

Fig. 2. UML class diagram describing the class hierarchy of SK-MOEFS.

As depicted in Fig. 2, the principal abstract class of SK-MOEFS, that we
labeled as MOELScheme, derives from the BaseEstimator class of Scikit-Learn
library. Moreover, to define the infrastructure of an abstract class, MOELScheme
must extend the ABC class. A MOELScheme represents a general multi-objective
evolutionary learning scheme for generating a set of FRBSs characterized by dif-
ferent trade-offs between accuracy and explainability. We recall that the chromo-
some coding and the mating operators depend on the selected learning scheme.
As regards the fitness functions, the accuracy measure depends on the type of
problems to be approached (classification or regression), and the explainability
measure can be defined in several ways, as discussed in the previous section.

In general, a classifier or a regressor is an instance of a specific class derived
by the BaseEstimator and by a ClassifierMixin or RegressorMixin classes: it is
an object that fits a model based on some training data and is capable of making
predictions on new data.

Since we aim to provide a general scheme for approaching both classification
and regression problems by using MOEFSs, we derive two abstract classes from
the MOELScheme one, namely MOEL FRBC and MOEL FRBR. They define,
respectively, the MOEL scheme for Fuzzy Rule-based Classifiers (FRBCs) and
the one for Fuzzy Rule-based Regressors (FRBRs). The former includes methods
from the ClassifierMixin class and the latter from RegressorMixin class.

Finally, from the MOEL FRBC and the MOEL FRBR classes, actual MOEL
schemes (we labeled them as Multi-objective Evolutionary Fuzzy Classifier
(MOEFC) or Regressor (MOEFR)) can be derived, such as the PAES-RCS that
has been implemented and experimented, as discussed in the following sections.

2 https://scikit-learn.org/stable/developers.

https://scikit-learn.org/stable/developers
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3.2 Description of the Main Methods

Each MOEL scheme must provide the typical Scikit-Learn methods, for both
classifiers and regressors adapted explicitly for handling multiple models. In
Fig. 3 we show another UML class diagram that describes the main features of
MOELScheme, MOEL FRBC, and MOEL FRBS classes.

Fig. 3. UML class diagrams describing the main methods of SK-MOEFS

In Scikit-Learn, the methods fit, predict, and score are typically implemented
on each classifier or regressor. They allow, respectively, creating a model, using
the model for making predictions, and extracting some metrics for evaluating
the model. In the following, we describe these and other specific methods that
must be implemented for each new MOEL scheme:

– fit : this method estimates the model parameters, namely the RB and the
fuzzy partitions, exploiting the provided training set. We recall that in Scikit-
Learn a training set must be provided in terms of an N×F NumPy matrix X,
describing the input patterns in terms of F features, and a vector y with N
elements representing the actual label or value associated with a specific input
pattern. In the beginning, the method initializes a MOEL scheme according
to a specific learning strategy and to the type of problem to be handled,
namely classification or regression. Then, an MOEA is in charge of carrying
out the learning process, which stops when a specific condition is reached (for
example, when the algorithm reaches the maximum number of fitness func-
tion evaluations). Finally, it returns an approximated Pareto front of FRBSs,
which are sorted by an ascending order per accuracy. The first model, labeled
as the FIRST solution, is the one characterized by the highest accuracy and
by the lowest explainability. On the contrary, we marked the model with
the highest explainability but the lowest accuracy as the LAST solution.
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Finally, the MEDIAN model is the middle ground between the two. Indeed,
its accuracy is the median among the solutions.

– predict : this method is in charge of predicting the class labels or the val-
ues associated with a new set of input patterns. It returns a vector of esti-
mated labels or values. Since the MOEL scheme generates multiple mod-
els, the method takes as input also an index for selecting the model into
the Pareto front. By default, the function adopts the most accurate model
(FIRST) for making predictions. Notice that all the learning schemes that
extend from MOEL FRBC or MOEL FRBR, must implement the predict
method to define different and specific behaviors.

– score: this method takes as inputs a matrix X, which contains data described
in the feature space of F values, and the vector y of the r labels or values asso-
ciated with each input. Moreover, it takes the position of a model belonging
to the Pareto front, and it generates the values of the accuracy and explain-
ability measures for that selected model. Also in this case, the FIRST solution
is selected by default.

– show pareto: this method extracts and plots the values of the accuracy and
the explainability. By default, for each model of the Pareto front generated
by an MOEL scheme, it runs the fit method on the training set. SK-MOEFS
allows the user to provide also a test set; in this case, show pareto calculates
the accuracies considering the additional data. As a result, it returns a plot
of the approximated Pareto front, both on the training and the test sets.

– show model : given the position of a model in the Pareto front, this method
shows the set of fuzzy linguistic rules and the fuzzy partitions associated
with each linguistic attribute. The predefined model of choice is, as always,
the FIRST solution.

Finally, since Scikit-Learn provides methods for performing a k-fold cross-
validation analysis, we re-designed these methods for handling the fact that
a MOEL scheme generates a set of solutions. Specifically, we redefined the
cross val score which usually returns an array of k scores, one for each fold.
Here, the method returns a k × 6 matrix, where each row contains the accuracy,
calculated on the test set, and the explainability of the FIRST, MEDIAN, and
LAST solutions. Moreover, when performing cross-validation with MOEFSs [4],
we decided to act as follows: first, we compute the mean values of the accuracy
and the explainability of the FIRST, MEDIAN and LAST solutions, then we
plot them on a graph.

4 An Example of an MOEL Scheme Implementation:
PAES-RCS-FDT for Classification Problems

In this Section, we describe the actual implementation of an MOEL scheme for
classification problems in SK-MOEFS, namely PAES-RCS-FDT [7]. The imple-
mented algorithm adopts the rule and condition selection (RCS) learning scheme
[3] for classification problems. The multi-objective evolutionary learning scheme
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is based on the (2 + 2)M-PAES, which is an MOEA successfully employed in the
context of MOEFSs during the last years. The algorithm concurrently optimizes
two objectives: the first objective considers the TRL as explainability measure;
the second objective takes into account the accuracy, assessed in terms of clas-
sification rate.

In the learning scheme, an initial set of candidate rules must be generated
through a heuristic or provided by an expert. In our implementation, the set
of candidate rules is generated exploiting the fuzzy multi-way decision trees
(FMDT) [15]: each path from the root to a leaf node translates into a rule. Before
learning the FMDT, we need to define an initial strong fuzzy partition for each
attribute. The adopted FMDT algorithm embeds a discretization algorithm that
is in charge of generating such partitions.

During the evolutionary process, the most relevant rules and their conditions
are selected. Moreover, each triangular strong fuzzy partition Pf is concurrently
tuned, by adapting the positions of the cores bf,j .

In PAES-RCS, a chromosome C codifies a solution for the problem. The
former is composed of two parts (CR, CT ), which define, respectively, the RB
and the positions of the representatives of the fuzzy sets, namely the cores.

Let JDT be the initial set of MDT rules generated from the decision tree.
Compact and interpretable RBs are desirable, so we allow that the RB of a
solution contains at most Mmax rules. The CR part, which codifies the RB, is a
vector of Mmax pairs pm = (km,vm), where km ∈ [0,MDT ] identifies the selected
rule of JDT and vm = [vm,1, . . . , vm,F ] is a binary vector which indicates, for each
attribute Xf , if the condition is present or not in the selected rule. In particular,
if km = 0 the mth rule is not included in the RB. Thus, we can generate RBs
with a lower number of rules than Mmax. Further if vm,f = 0 the f th condition
of the mth rule can be replaced by a “don’t care” condition.

CT is a vector containing F vectors of Tf − 2 real numbers: the f th vector[
bf,2, . . . , bf,Tf−1

]
determines the positions of the cores of the partition Pf . We

recall that using strong fuzzy partitions ensures the partition integrity. Indeed,
order, coverage, distinguishability and normality are always ensured. In order to
increase the integrity level, we can define constrains on the intervals on which
cores can assume valid values. For more details check [3].

In order to generate the offspring populations, we exploit both crossover and
mutation. We apply separately the one-point crossover to CR and the BLX-α-
crossover, with α = 0.5, to CT . As regards the mutation, we apply two distinct
operators for CR and an operator for CT . More details regarding the mating
operators and the steps of PAES-RCS can be found in [3]. In the next Section,
we will briefly introduce the main parameters that must be set for running
PAES-RCS-FDT.

In Fig. 4, we show a detailed UML class diagram describing the main classes
and methods that we implemented. First of all, we have derived from the
MOEL FRBC the class MPAES RCS, which is in charge of handling the rule
and condition selection multi-objective learning scheme, by means of (2 + 2)M-
PAES algorithm. This class needs the RCSProblem, which is a class derived
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Fig. 4. UML class diagram of PAES-RCS-FDT in SK-MOEFS.

from the Problem class of the Package Platypus, a Python framework for multi-
objective evolutionary optimization. It defines operations on a possible solution
(a chromosome) such as its encoding, feasibility checks, evaluation of objectives,
and generation of a random solution. Moreover, the MPAES RCS class adopts
an RCS Variator, a particular implementation of the Platypus Variator, which
includes all the mating operators that we discussed before. Two additional classes
are adopted as compositions by the MPAES RCS class, namely the MPAES2 2
and the RCSInitializer. Specifically, the MPAES2 2 class extends the Abstract-
GeneticAlgorithm class of Platypus and implements (2 + 2)M-PAES. Finally,
the RCSInitializer implements the methods for the definition of the initial strong
fuzzy partitions and for generating the initial set of rules. To this aim, this class
uses the fuzzy discretizer (implemented by the FuzzyDiscretizer class) and the
Multi-way Fuzzy Decision Tree (implemented by the MFDT class), respectively.
Both the discretizer and the algorithm for generating the fuzzy decision tree are
described in detail in [15]. More information on the organization of the Platypus
framework can be found in the official guide3 and github repository4. The code
of SK-MOEFS, including the implementation of PAES-RCS-FDT as a standard
Python program, is available on a GitHub repository5, along with a detailed
documentation describing all the classes and its methods.

3 https://platypus.readthedocs.io/en/latest/.
4 https://github.com/Project-Platypus/Platypus.
5 https://github.com/GionatanG/skmoefs.

https://platypus.readthedocs.io/en/latest/
https://github.com/Project-Platypus/Platypus
https://github.com/GionatanG/skmoefs
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5 Examples of Usage of SK-MOEFS

In this Section, we show some examples of usage of SK-MOEFS. Specifically,
we show how to generate a set of FRBCs, characterized by different trade-offs
between accuracy and explainability, using our PAES-RCS-FDT implementa-
tion. To this aim, we have selected the NewThyroid dataset6: the classification
task associated with this dataset is to detect if a given patient is normal (Class
1), suffers from hyperthyroidism (Class 2) or hypothyroidism (Class 3). We recall
that the objective of this work is not to assess the goodness of the PAES-RCS-
FDT. Indeed, as stated before, PAES-RCS was introduced in 2014 in [3], where a
wide experimental analysis was conducted, adopting its original implementation
in C++ (the initial set of rules was generated using the C4.5 algorithm). More-
over, additional experimentation, carried out utilizing the FDT for generating
the initial set of rules, has also been discussed in [7]. However, we have verified
that the results obtained using PAES-RCS-FDT implemented in SK-MOEFS
are in line with those discussed in [3] and in [7].

Table 1 shows the parameters of (2 + 2)M-PAES-FDT used in the examples.
These values have been set also as default parameters of our PAES-RCS-FDT
implementation.

Table 1. Values of the parameters used in the examples

Nval Total number of fitness evaluations 30000

AS (2 + 2)M-PAES archive size 32

Mmax Maximum number of rules for each RB 50

PCR
Probability of applying crossover operator to CR 0.1

PCT
Probability of applying crossover operator to CT 0.5

PMRB1 Probability of applying first mutation operator to CR 0.1

PMRB2 Probability of applying second mutation operator to CR 0.7

PMT
Probability of applying mutation operator to CT 0.2

Tmax Maximum number of fuzzy sets for each attribute 5

Listing 1.1: Example for generating and plotting a Pareto front approximation
of FRBCs

6 https://sci2s.ugr.es/keel/dataset.php?cod=66.

https://sci2s.ugr.es/keel/dataset.php?cod=66
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In code Listing 1.1, we show an example of usage, in which we first load a
dataset from a file and then we divide it into training and test sets. Second, we
instantiate an MPAES-RCS object passing to its constructor the RCSVariator
and an RCSInitializer. The latter will partition each input attributes into a pre-
defined number of fuzzy sets and will generate the matrix JDT . Afterward, we call
the fit method, which returns the fitted model having now a list of the FRBCs
characterized by different trade-offs between accuracy and explainability. Then,
we call the method for showing the Pareto front approximation (in Fig. 5(a)),
both on the training and test sets. Finally, we show the RB and the fuzzy
partitions (in Fig. 6) of the MEDIAN solution in the Pareto Front approximation.
In this example, we labeled the five fuzzy sets of each partition as Very Low (VL),
Low (L), Medium (M), High (H), and Very High (VH). As we can see, the set of
linguistic rules allows the user to understand the motivation of a decision: simply
speaking, based on the levels of each input attribute describing a new patient,
a specific class is associated with him/her. As regards the fuzzy partitions, it
is worth noting, especially for the last two, that they moved from the initial
uniform shape. However, they are still strong fuzzy partitions, thus ensuring a
good integrity level, in terms of order, distinguishability, coverage and normality.

Fig. 5. Two examples of plots

Listing 1.2: Example for performing the cross validation
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Fig. 6. Fuzzy partitions and rule base of the MEDIAN solution

Finally, in the code Listing 1.2, we also show how to perform a 5-fold cross-
validation. As a result, we draw a graph with the average values of accuracy and
explainability of the FIRST, MEDIAN, and LAST solutions on the test set, as
shown in Fig. 5(b).

6 Conclusions

In this paper, we have introduced a new Python library for generating, evalu-
ating and using both accurate, and explainable AI-based models, namely fuzzy
rule-based systems (FRBSs). The library, called SK-MOEFS, allows the users
to adopt multi-objective evolutionary learning (MOEL) schemes for identifying,
from data, the structure of a set of FRBSs, characterized by different trade-
offs between accuracy and explainability. Specifically, we designed the overall
software infrastructure, i.e. all the class hierarchy, for handling a generic multi-
objective evolutionary learning scheme. Moreover, we show an example of an
actual implementation of a well known MOEL scheme, namely PAES-RCS-FDT.
This scheme, during the evolutionary process, selects rules and conditions from
an initial set of candidate classification rules, generated using a fuzzy decision
tree. Additionally, the parameters of the fuzzy partitions can be learned concur-
rently with the set of rules. Finally, we have shown a simple example on how our
SK-MOEFS can be used in Python for generating and evaluating a set of fuzzy
classifiers on a benchmark dataset.
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2. Alonso, J.M., Bugaŕın, A.: ExpliClas: automatic generation of explanations in nat-
ural language for weka classifiers. In: 2019 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), pp. 1–6. IEEE (2019)

3. Antonelli, M., Ducange, P., Marcelloni, F.: A fast and efficient multi-objective
evolutionary learning scheme for fuzzy rule-based classifiers. Inf. Sci. 283, 36–54
(2014)

4. Antonelli, M., Ducange, P., Marcelloni, F.: Multi-objective evolutionary design of
fuzzy rule-based systems. In: Handbook on Computational Intelligence: Volume 2:
Evolutionary Computation, Hybrid Systems, and Applications, pp. 635–670. World
Scientific (2016)

5. Carletti, M., Masiero, C., Beghi, A., Susto, G.A.: Explainable machine learning
in industry 4.0: evaluating feature importance in anomaly detection to enable
root cause analysis. In: 2019 IEEE International Conference on Systems, Man
and Cybernetics (SMC), pp. 21–26. IEEE (2019)

6. Coello, C.A.C., Lamont, G.B.: Applications of Multi-objective Evolutionary Algo-
rithms, vol. 1. World Scientific, Singapore (2004)
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Abstract. The problem of comparing variability of two populations
with fuzzy data is considered. A new permutation two-sample test for
dispersion based on fuzzy random variables is proposed. A case-study
illustrating the applicability of the suggested testing procedure is also
presented.
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1 Introduction

Various two-sample statistical tests are designed to determine whether given
two populations differ significantly. In such case we assume that the universe of
discourse consists of two populations, say X and Y , with cumulative distribution
functions F and G, respectively. Then, having a random sample of size n drawn
from the X population and another random sample of size m drawn from the Y
population, we consider the null hypothesis that these two samples are actually
drawn from the same population, i.e. H0 : F = G. One may verify H0 against the
general alternative hypothesis that the populations just differ in some way. The
Kolmogorov-Smirnov test or the Wald-Wolfowitz run test are often used in this
context (see e.g. [5]). However, they are really useful in preliminary studies only
since affected by any type of difference between distributions, they are not very
efficient in detecting any specific type of the difference like difference in location
or difference in variablity. Other tests, like the Mann-Whitney-Wilcoxon test, the
median test, etc. (see e.g. [5]) are particularly sensitive to differences in location
when the populations are identical otherwise and hence cannot be expected to
perform extremely well against other alternatives.

However, sometimes we need statistical procedures designed to detect dif-
ferences in variability or dispersion instead of location. Indeed, comparison of
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variability might be of interest in many areas including social sciences, biology,
clinical trials, engineering, manufacturing and quality control, etc. Moreover,
tests for the equality of variances are often required as a preliminary tool for the
analysis of variance (ANOVA), dose–response modeling, discriminant analysis,
etc.

It is important to emphasize that comparing variability is much harder than
comparing measures of location. The famous F test assumes that both underlying
populations are normally distributed and is not robust to departures from nor-
mality even asymptotically. Thus many nonparametric two-sample tests based
on the ranks have been proposed for the scale problem. The best-known tests
are the Ansari-Bradley test, the Mood test, the Siegel-Tukey test, the Klotz
normal-scores test, the Sukhatme test, etc.

Designing tests for the dispersion problem turns out to be much more difficult
in the case of imprecise or vague data which appear quite often in the real-life
problems. In particular, human ratings based on opinions or associated with per-
ceptions often lead to data that cannot be expressed in a numerical scale because
they consist of intrinsically imprecise or fuzzy elements. Since they are also real-
izations of some random experiment, we are faced with random fuzzy structures
that cannot be analyzed with classical statistical methods. Obviously, one may
try to neglect, hide or remove imprecision but the most recommended approach
is to consider it as a challenge for modeling and developing new inferential tools.

A general framework for such modeling is given by fuzzy random variables.
However, besides mathematical elegence they also bring some fundamental dif-
ficulties. For instance, random fuzzy numbers are not linearly ordered so the
aforementioned tests based on ranks cannot be directly applied in fuzzy envi-
ronment. Depending on the context various test constructions have been pro-
posed in the literature (for the overview we refer the reader e.g. to [7,8,11–
14,16,18,19,21,26]). However, the dispersion problem with imprecise data has
not beed considered very often. Ramos-Guajardo and Lubiano [26] proposed the
bootstrap generalization of the Levene test for random fuzzy sets to examine
homoscedasticity of k populations. Grzegorzewski [15] introduced two general-
izations of the Sukhatme test for interval-valued data.

In this paper we suggest a permutation test for fuzzy data to compare vari-
ability of two populations. For motivations we turned back to the classical infer-
ence showing that permutation tests, like the bootstrap, require extremly limited
assumptions. Indeed, permutation tests are totally distribution-free and require
only exchangeability (i.e., under the null hypothesis we can exchange the labels
on the observations without affecting the results). Classical permutation test
are often more powerful than their bootstrap counterparts (see [9]). Permuta-
tion test are exact if all permutation are considered, while bootstrap tests are
exact only for very large samples. Moreover, asymptotically permutation tests
are usually as powerful as the most powerful parametric tests (see [1]). Keeping
this in mind we combine the Pan test [22] and the Marozzi test [20] and then
generalize them into the permutation testing procedure that handle fuzzy data.
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The paper is organized as follows: in Sect. 2 we recall basic concepts related
to fuzzy data modeling and operations on fuzzy numbers. Section 3 is devoted
to fuzzy random variables. In Sect. 4 we introduce the two-sample test for the
dispersion dedicated to fuzzy data. Next, in Sect. 5 we present some results of the
simulation study and the case study with the proposed test. Finally, conclusions
and some indications for the futher research are given in Sect. 6.

2 Fuzzy Data

A fuzzy number is an imprecise value characterized by a mapping A : R →
[0, 1], called a membership function), such that its α-cut defined by

Aα =

{
{x ∈ R : A(x) � α} if α ∈ (0, 1],
cl{x ∈ R : A(x) > 0} if α = 0,

(1)

is a nonempty compact interval for each α ∈ [0, 1]. Operator cl in (1) denotes
for the closure. Thus every fuzzy number is completely characterized both by
its memberschip function A(x) or by a family of its α-cuts {Aα}α∈[0,1]. Two
α-cuts are of special interest: A1 = core(A) known as the core, which contains
all values which are fully compatible with the concept described by the fuzzy
number A and A0 = supp(A) called the support, which are compatible to some
extent with the concept modeled by A.

The most often used fuzzy numbers are trapezoidal fuzzy numbers (some-
times called fuzzy intervals) with membership functions of the form

A(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x−a1
a2−a1

if a1 � x < a2,

1 if a2 � x � a3,
a4−x
a4−a3

if a3 < x � a4,

0 otherwise,

(2)

where a1, a2, a3, a4 ∈ R such that a1 � a2 � a3 � a4. A trapezoidal fuzzy
number (2) is often denoted as Tra(a1, a2, a3, a4). Obviously, a1 = inf supp(A),
a2 = inf core(A), a3 = sup core(A) and a4 = sup supp(A), which means that
each trapezoidal fuzzy numbers is completely described by its support and core.

A fuzzy number A is said to be a triangular fuzzy number if a2 = a3,
while if a1 = a2 and a3 = a4 we have the so-called interval (or rectangular)
fuzzy number. The families of all fuzzy numbers, trapezoidal fuzzy numbers,
triangular fuzzy number and interval fuzzy numbers will be denoted by F(R),
F

T (R), FΔ(R) and F
I(R), respectively, where F

I(R) ⊂ F
Δ(R) ⊂ F

T (R) ⊂ F(R).
Basic arithmetic operations in F(R) are defined through natural α-cut-wise

operations on intervals. In particular, the sum of two fuzzy numbers A and B is
given by the Minkowski addition of corresponding α-cuts, i.e.

(A + B)α =
[
inf Aα + inf Bα, sup Aα + supBα

]
,
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for all α ∈ [0, 1]. Similarly, the product of a fuzzy number A by a scalar θ ∈ R

is defined by the Minkowski scalar product for intervals, i.e. for all α ∈ [0, 1]

(θ · A)α = [min{θ inf Aα, θ supAα},max{θ inf Aα, θ sup Aα}] .

It is worth noting that a sum of trapezoidal fuzzy numbers is also a trape-
zoidal fuzzy number: if A = Tra(a1, a2, a3, a4) and B = Tra(b1, b2, b3, b4) then

A + B = Tra(a1 + b1, a2 + b2, a3 + b3, a4 + b4). (3)

Moreover, the product of a trapezoidal fuzzy number A = Tra(a1, a2, a3, a4) by
a scalar θ is a trapezoidal fuzzy number

θ · A =

{
Tra(θ · a1, θ · a2, θ · a3, θ · a4) if θ � 0,

Tra(θ · a4, θ · a3, θ · a2, θ · a1) if θ < 0.
(4)

Unfortuntely,
(
F(R),+, ·) has not linear but semilinear structure since in

general A + (−1 · A) �= 1{0}. Consequently, the Minkowski-based difference does
not satisfy, in general, the addition/subtraction property that (A+(−1·B))+B =
A. To overcome this problem the so-called Hukuhara difference was defined as
follows:

C := A −H B if and only if B + C = A

Although now A −H A = 1{0} or (A −H B) + B = A hold but the Hukuhara
difference does not always exist. Therefore, one should be aware that subtraction
in F(R) generally leads to critical problems and should be avoided, if possible.

At least some of the problems associated with the lack of a satisfying differ-
ence in constructing statistical tools for reasoning based on fuzzy observations
could be overcome by using adequate metrics defined in F(R) – for the general
overview see [2]. Obviously, one can define various metrics in F(R) but perhaps
the most often used in statistical context is the one proposed by Gil et al. [6]
and by Trutschnig et al. [27].

Let λ be a normalized measure associated with a continuous distribution
having support in [0, 1] and let θ > 0. Then for any A,B ∈ F(R) we define a
metric Dλ

θ as follows

Dλ
θ (A,B) =

( ∫ 1

0

[
(mid Aα − mid Bα)2 + θ · (spr Aα − spr Bα)2

]
dλ(α)

)1/2

, (5)

where mid Aα = 1
2 (inf Aα + supAα) and sprAα = 1

2 (sup Aα − inf Aα) denote
the mid-point and the radius of the α-cut Aα, respectively.

Both λ and θ correspond to some weighting: λ allows to weight the influence
of each α-cut, while by a particular choice of θ one may weight the impact of the
distance between the mid-points of the α-cuts (i.e. the deviation in location) in
contrast to the distance between their spreads (i.e. the deviation in vagueness).
In practice, the most common choice of λ is the Lebesgue measure on [0, 1]), while
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the most popular choice is θ = 1 or θ = 1
3 . It is worth noting that assuming θ = 1

we obtain

Dλ
1 (A,B) =

( ∫ 1

0

[1
2
(inf Aα − inf Bα)2 +

1
2
(supAα − supBα)2

]
dλ(α)

)1/2

, (6)

i.e. the metric which weights uniformly the two squared Euclidean distances
and is equivalent to the distance considered in [4,10]. One may also notice that
assuming θ = 1

3 we obtain

Dλ
1/3(A,B) =

√∫ 1

0

(∫ 1

0

[
A

[t]
α − B

[t]
α

]2
dt

)
dλ(α), (7)

where A
[t]
α = (1 − t) inf Aα + t sup Aα, which means that Dλ

1/3(A,B) aggregates
uniformly the squared Euclidean distances between the convex combination of
points in α-cuts representing A and B.

It should be stressed that whatever (λ, θ) is chosen Dλ
θ is an L2-type metric in

F(R) having some important and useful properties. It is translational invariant,
i.e. Dλ

θ (A + C,B + C) = Dλ
θ (A,B) for all A,B,C,∈ F(R), and it is rotational

invariant, i.e. Dλ
θ

(
(−1) · A, (−1) · B

)
= Dλ

θ (A,B) for all A,B ∈ F(R). More-
over, (F(R),Dλ

θ ) is a separable metric space and for each fixed λ all Dλ
θ are

topologically equivalent.

3 Fuzzy Random Variables

Suppose that the result of an experiment consists of random samples of impre-
cise data described by fuzzy numbers. To cope with such problem we need a
model which grasps both aspects of uncertainty that appear in data, i.e. ran-
domness (associated with data generation mechanism) and fuzziness (connected
with data nature, i.e. their imprecision). To handle such data Puri and Ralescu
[24] introduced the notion of a fuzzy random variable (also called a random
fuzzy number).

Definition 1. Given a probability space (Ω,A, P ), a mapping X : Ω → F(R)
is called a fuzzy random variable if for all α ∈ [0, 1] the α-cut function Xα is a
compact random interval.

In other words, X is a random fuzzy variable if and only if X is a Borel
measurable function w.r.t. the Borel σ-field generated by the topology induced
by Dλ

θ .
Puri and Ralescu [24] defined also the Aumann-type mean of a fuzzy random

variable X as the fuzzy number E(X) ∈ F(R) such that for each α ∈ [0, 1] the
α-cut

(E(X)
)
α

is equal to the Aumann integral of Xα. It is seen that

(E(X)
)
α

=
[
E(mid Xα) − E(spr Xα),E(mid Xα) + E(spr Xα)

]
.
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To characterize dispersion of a fuzzy random variable X we can also define (see
[17]) the Dλ

θ -Fréchet-type variance V(X), which is a nonnegative real number
such that

V(X) = E

([
Dλ

θ (X, E(X))
]2

)
=

∫ 1

0

Var(mid Xα)dλ(α) + θ

∫ 1

0

Var(sprXα)dλ(α).

Given a sample of random fuzzy numbers X = (X1, . . . , Xn) a natural estimator
of E(X) is the average X ∈ F(R) such that for each α ∈ [0, 1]

Xα =
[ 1
n

n∑
i=1

inf(Xi)α,
1
n

n∑
i=1

sup(Xi)α

]
(8)

=
[ 1
n

n∑
i=1

mid (Xi)α − 1
n

n∑
i=1

spr (Xi)α,
1
n

n∑
i=1

mid (Xi)α +
1
n

n∑
i=1

spr (Xi)α

]
,

while the estimator of V(X) is the Dλ
θ -type sample variance S2 ∈ R given by

S2 =
1

n − 1

n∑
i=1

Dλ
θ

(
Xi,X

)2
. (9)

Although aforementioned constructions preserve many properties known
from the real-valued inference, one should be aware of the problems typical
of statistical reasoning with fuzzy data. As it was noted in Sect. 2, there are
problems with subtraction of fuzzy numbers. Similar problems appear in the
case of division of fuzzy numbers. Hence, it is advisable to avoid both opera-
tions wherever it is possible. Moreover, some difficulties in fuzzy data analysis is
caused by the lack of universally accepted total ranking between fuzzy numbers.
Another source of possible problems that appear in conjunction of randomness
and fuzziness is the absence of suitable models for the distribution of fuzzy ran-
dom variables. Even worse, there are not yet Central Limit Theorems for fuzzy
random variables which can be applied directly in statistical inference.

The disadvantages mentioned above make the straightforward generalization
of the classical statistical methodology into the fuzzy context either difficult or,
sometimes, even impossible. For instance, in most cases we are not able to find
the null distribution of a test statistic based on fuzzy data and, consequently, to
find either the critical value or to compute the p-value required for rejection or
acceptance of the hypothesis under study. To break through that problem some
researchers propose to use the bootstrap [7,8,18,19,21,25,26].

In this paper we suggest another methodology based on permutations. For
motivations we turn back to the classical inference which shows that permutation
tests, like the bootstrap, require extremly limited assumptions. Bootstrap tests
usually rely on assumption that successive observations are independent, while
permutation tests require only exchangeability, i.e. under the null hypothesis we
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can exchange the labels on the observations without affecting the results (obvi-
ously, if the observations in a sample are independent and identically distributed
then they are exchangeable). In the real-valued framework one can also indicate
two advantages of the permutation tests over the bootstrap tests. Firstly, permu-
tation test are often more powerful than their bootstrap counterparts (see [9]).
Secondly, permutation test are exact if all permutation are considered, while
bootstrap tests are exact only for very large samples. Moreover, asymptotically
permutation tests are usually as powerful as the most powerful parametric tests
(see [1]). For more information on classical permutation tests we refer the reader
to [9,23]. All these reasons indicate that the permutation test applied to fuzzy
random variables might be also a competitive tool useful in statistical inference
for imprecise data.

4 Permutation Test for Fuzzy Data to Compare
Variability

Suppose, we observe independently two fuzzy random samples X = (X1, . . . , Xn)
and Y = (Y1, . . . , Ym) drawn from populations with unknown distributions func-
tion F and G, respectively. We want to verify the null hypothesis that both
samples come from the same distribution, i.e.

H0 : F (t) = G(t) for all t ∈ R, (10)

against the alternative hypothesis that the dispersion of the distributions F and
G differ (or against the one-sided alternative that the indicated distribution is
more dispersed that the other one).

Most of the tests for scale assume that the distributions under study do not
differ in location since possible location differences may mask differences in dis-
persion. Otherwise, the sample observations should be adjusted by subtrating the
respective location parameters, like means or medians. If the true characteristics
of location are not known we usually subtract their estimators.

Following remarks of Marozzi [20] on the resampling version of the Pan
test [22] and the resampling framework for scale testing described by Boos and
Brownie [3], we’ll try to eliminate the location effects with sample means. How-
ever, keeping in mind problems with subtratiion in fuzzy environment described
in Sect. 2, contrary to the crisp case, we do not consider the differences but
the distances between sample observations and corresponding sample means
calculated as in (8). Therefeore, further on instead of X = (X1, . . . , Xn) and
Y = (Y1, . . . , Ym) we consider the adjusted samples V = (V1, . . . , Vn) and
W = (W1, . . . , Wm), respectively, where

Vi = Dλ
θ (Xi,X), for i = 1, . . . , n

Wj = Dλ
θ (Yj , Y ), for j = 1, . . . , m.

Now let us consider the following test statistics

T (X,Y) =
ln V − lnW√
1
n

S2
V

V
2 + 1

m

S2
W

W
2

(11)
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where S2
V and S2

W denote sample variances of V and W, respectively, calcu-
lated by (9). Obviously, too big or too small values of (11) indicate that the
null hypothesis should be rejected since the considered distributions differ in
dispersion.

In the original Pan test [22] the decision whether to reject the null hypothesis
is based on the test statistic valued with respect to some quantile from the
t-Student distribution. However, Marozzi [20] showed that the resampling version
of the Pan test should be rather preferred to the original one. In the case of fuzzy
data any assumptions on the type of the underlying distribution of the samples
are much more dubious than in the crisp case. For this reason we also consider
here the permutation version of the Pan test. To carry out such a test we adapt
the general idea of permutation tests to our fuzzy context.

The crucial idea of the proposed test construction is that the null hypothesis
implies total exchangeability of observed data with respect to groups. Indeed, if
H0 holds then all available observations may be viewed as if they were randomly
assigned to two groups but they come from the same population.

Let Z = X � Y, where � stands for the vector concatenation, so that the
two samples are pooled into one, i.e. Zi = Xi if 1 � i � n and Zi = Yi−n if
n + 1 � i � N , where N = n + m.

Now, let Z
∗ denote a permutation of the initial dataset Z. More formally, if

ν = {1, 2, . . . , N} and πν is a permutation of the integers ν, then Z∗
i = Zπν(i)

for i = 1, . . . , N . Then the first n elements of Z∗ is assigned to the first sample
Z

∗ and the remaining m elements to Z
∗. In other words, it works like a random

assignment of elements into two samples of the size n and m, respectively. Each
permutation corresponds to some relabeling of the combined dataset Z. Please,
note that if H0 holds then we are completely free to exchange the labels X or Y
attributed to particular observations.

As a consequence of elements’ exchangeability in Z
∗ under H0 we can esti-

mate the distribution of the test statistic T by considering all permutations of
the initial dataset Z and computing a value of T (Z∗) corresponding to each per-
mutation. Namely, given Z = z, where z = x � y, we take its permutation z∗

and determine its adjustment with respect to sample means, i.e. we create two
samples v∗ = (v∗

1 , . . . , v∗
n) and w∗ = (w∗

1 , . . . , w∗
m) as follows

v∗
i = Dλ

θ (z∗
i ,

1
n

n∑
j=1

z∗
j ), if i = 1, . . . , n

w∗
j = Dλ

θ (z∗
i ,

1
m

m∑
i=j

z∗
j ), if i = n + 1, . . . , N.

Next, following (11) we compute its actual value corresponding to given permu-
tation z∗, i.e.
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T (z∗) =
ln v∗ − ln w∗√

1
n

S2
v∗

(w∗)2 + 1
m

S2
w∗

(w∗)2

. (12)

Finally, assuming K denotes a fixed number of drawings (usually not smaller
than 1000), we calculate the p-value of our test. In the case on the one-sided
upperer-tail test, i.e. when verifying H0 : F = G vs. H1 stating that F is more
disperded than G, we obtain

p-value =
1
K

K∑
k=1

1
(
T (z∗

k) � t0
)
, (13)

where each z∗
k ∈ P(z), z∗

k = x∗
k�y∗

k, and t0 = T (x,y) stands for the test statistic
value obtained for the original fuzzy samples x and y.

For the one-sided lower-tail test, i.e. when verifying H0 : F = G vs. H1 : F
is less disperded than G, we have

p-value =
1
K

K∑
k=1

1
(
T (z∗

k) � t0
)
, (14)

while for the two-sided test, i.e. when verifying H0 : F = G vs. H1 : F and G
differ in dispersion, we obtain

p-value =
1
K

[
K∑

k=1

1
(
T (z∗

k) � |t0|
)

+ 1
(
T (z∗

k) � −|t0|
)]

. (15)

5 Empirical Study

5.1 Simulations

We conducted some simulations to illustrate the behavior of the proposed test.
To generate fuzzy samples from a trapezoidal-valued fuzzy random variable X =
Tra(ξ1, ξ2, ξ3, ξ4), where ξ1, ξ2, ξ3, ξ4 are real-valued random variables such that
ξ1 � ξ2 � ξ3 � ξ4, the following characterization appears to be useful (see [19]):
c = 1

2 (ξ3 + ξ2) = mid1X, s = 1
2 (ξ3 − ξ2) = spr1X, l = ξ2 − ξ1 and r = ξ4 − ξ3.

Conversely, we have Tra〈c, s, l, r〉 = Tra(c − s − l, c − s, c + s, c + s + r).
In our study we generated fuzzy observations x = (x1, . . . , xn) and y =

(y1, . . . , ym) by simulating the four real-valued random variables xi = 〈cXi, sXi,
lXi, rXi〉 and yi = 〈cY j , sY j , lY j , rY j〉, respectively, with the last three ones ran-
dom variables in each quartet being nonnegative. In particular, we generated
trapezoidal-valued fuzzy random variables using the following real-valued ran-
dom variables: cXi, cY j from the normal distribution and sXi, sY j , lXi, lY j , rXi

and rY j from the uniform or chi-square distribution.
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Fig. 1. Empirical null distribution of the permutation test with red vertical line indi-
catinges the value of the test statistic. (Color figure online)

An illustration how the test works, is shown in Fig. 1 and Fig. 2. Figure 1
shows a histogram made for the test statistic (11) null distribution obtained for
two fuzzy samples of sizes n = 10 and m = 12. Both samples were generated
as follows: cX and cY came from the standard normal distribution N(0, 1) and
sX , sY , lX , lY and rX , rY from the uniform distribution U(0.0.5). In this case we
have obtained t0 = 0.3088, which is illustrated by a vertical line, while p-value =
0.384. A decision suggested by our test is: do not reject H0.

Fig. 2. Empirical null distribution of the permutation test with red vertical line indi-
catinges the value of the test statistic. (Color figure online)

On the other hand, in Fig. 2 we have a histogram made for the test statistic
(11) null distribution obtained for two fuzzy samples of the same samle sizes
as before but which differ in dispersion. Namely, cX was generated from the
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standard normal distribution N(0, 1), but cY from N(0, 2), while sX , sY , lX , lY
and rX , rY were, as befor, uniformly distributed from U(0.0.5). In this case we
have obtained t0 = −3.5373, illustrated by a vertical line, and p-value = 0.007,
leading to the decision: reject H0.

Table 1. Empirical size of the test for various sample sizes.

n m empirical size n m empirical size
10 10 0.021 10 15 0.024
20 20 0.024 10 20 0.015
50 50 0.023 10 50 0.009
100 100 0.034 50 100 0.026

We also examined the proposed permutation test with respect to its size.
Therefore, 1000 simulations of the test performed on independent fuzzy samples
comming from the same distribution were generated at the significance level
0.05. In each test K = 1000 permutations were drawn. Then empirical percent-
ages of rejections under H0 were determined. The results both for equal and
nonequal sample sizes are gathered in Table 1. It is seen that our test is con-
servative. Moreover, this tendency deepens significantly as the imbalance of the
sample sizes increases. These interesting results of the preliminary study of the
proposed test properties indicate that further and more extensive study is highly
recommended.

5.2 Case Study

Some statistical analyses of fuzzy data related to the Gamonedo cheese quality
inspection was performed by Ramos-Guajardo and Lubiano [26] and Ramos-
Guajardo et al. [25]. The Gamonedo cheese is a kind of a blue cheese produced
Asturias, Spain. It experiences a smoked process and later on is let settle in
natural caves or a dry place. To keep the quality of a cheese the experts (or
tasters) usually express their subjective perceptions about different characteris-
tics of the cheese, like visual parameters (shape, rind and appearance), texture
parameters (hardness and crumbliness), olfactory-gustatory parameters (smell
intensity, smell quality, flavour intensity, flavour quality and aftertaste) and their
overall impression of the cheese.

Recently some of the tasters were proposed to express their subjective per-
ceptions about the quality of the Gamonedo cheese by using trapezoidal fuzzy
numbers. These fuzzy sets were determined in the following way: the set of val-
ues considered by the expert to be fully compatible with his/her opinion led to
α = 1-cut, while the set of values that he/she considered to be compatible with
his/her opinion at some extent (i.e., the taster thought that it was not possi-
ble that the quality was out of this set) led to α = 0-cut of a fuzzy number.
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Then these two α-cuts were linearly interpolated to get the trapezoidal fuzzy set
representing exppert’s personal valuation. For more details on the data aquisition
and analysis we refer the reader to Ramos-Guajardo et al. [25].

Table 2. Sample of the opinions of Expert 1 and 2 concerning the overall impression
of the Gamonedo cheese (see [25])

Opinion Expert 1 Expert 2 Opinion Expert 1 Expert 2
1 (65, 75, 85, 85) (50, 50, 63, 75) 21 (65, 70, 76, 80) (60, 64, 75, 85)
2 (35, 37, 44, 50) (39, 47, 52, 60) 22 (75, 80, 86, 90) (54, 56, 64, 75)
3 (66, 70, 75, 80) (60, 70, 85, 90) 23 (65, 70, 73, 80) (50, 50, 60, 66)
4 (70, 74, 80, 84) (50, 56, 64, 74) 24 (70, 80, 84, 84) (44, 46, 55, 57)
5 (65, 70, 75, 80) (39, 45, 53, 57) 25 (55, 64, 70, 70) (59, 63, 74, 80)
6 (45, 50, 57, 65) (55, 60, 70, 76) 26 (64, 73, 80, 84) (49, 50, 54, 58)
7 (60, 66, 70, 75) (50, 50, 57, 67) 27 (50, 56, 64, 70) (55, 60, 70, 75)
8 (65, 65, 70, 76) (65, 67, 80, 87) 28 (55, 55, 60, 70) (44, 47, 53, 60)
9 (60, 65, 75, 80) (50, 50, 65, 75) 29 (60, 70, 75, 80) (19, 20, 30, 41)
10 (55, 60, 66, 70) (50, 55, 64, 70) 30 (64, 71, 80, 80) (40, 44, 50, 60)
11 (60, 65, 70, 74) (39, 46, 53, 56) 31 (50, 50, 55, 65) (50, 50, 59, 66)
12 (30, 46, 44, 54) (19, 29, 41, 50) 32 (50, 54, 60, 65) (50, 53, 60, 66)
13 (60, 65, 75, 75) (40, 47, 52, 56) 33 (65, 75, 80, 86) (50, 52, 58, 61)
14 (70, 75, 85, 85) (54, 55, 65, 76) 34 (50, 55, 60, 66) (60, 65, 72, 80)
15 (44, 45, 50, 56) (59, 65, 75, 85) 35 (40, 44, 50, 50) (50, 50, 55, 60)
16 (51, 56, 64, 70) (50, 52, 57, 60) 36 (70, 76, 85, 85) (30, 34, 43, 47)
17 (40, 46, 54, 60) (60, 60, 70, 80) 37 (44, 50, 53, 60) (19, 25, 36, 46)
18 (55, 60, 65, 70) (50, 54, 61, 67) 38 (34, 40, 46, 46) (53, 63, 74, 80)
19 (80, 85, 90, 94) (40, 46, 50, 50) 39 (40, 45, 51, 60)
20 (80, 84, 90, 90) (44, 50, 56, 66) 40 (84, 90, 95, 95)

Here we utilize some data given in [25] to compare the opinions of the two
experts about the overall impression of the Gamonedo cheese (the trapezoidal
fuzzy sets corresponding to their opinions are gathered in Table 2). Thus we have
two independent fuzzy samples of sizes n = 40 and m = 38 comming from the
unknown distributions F and G, respectively. Our problem is to check whether
there is a general agreement between these two experts. To reach the goal we
verify the following null hypothesis H0 : F = G, stating there is no significant
difference between experts’ opinions, against H1 : ¬H0 that their opinions on
the cheese quality differ.

Substituting data from Table 2 into formula (11) we obtain t0 = 1.355. Then,
after combining samples and generating K = 10 000 random permutations we
have obtained the p-value of 0.082. Hence, assuming the typical 5% significant
level we may conclude that there is no significant difference between the disper-
sion of experts’ opinion on the overal impression of the Gamonedo cheese. In
Fig. 3 one can find the empirical null distribution of the permutation test with
red vertical line indicating the value t0 of the test statistic.
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Fig. 3. Empirical null distribution of the permutation test with red vertical line indi-
cating the value of the test statistic.

6 Conclusions

Hypothesis testing with samples which consist of random fuzzy numbers is nei-
ther easy nor straightforward. Most of statistical tests developed in this area are
based on the bootstrap. In this paper another approach for constructing tests
for fuzzy data is proposed. Namely, the two-sample permutation test for disper-
sion is suggested. Some simulations to illustrate its behavior and to examine its
properties are given. Moreover, the case study dedicated to fuzzy rating problem
is performed.

The results obtained seem to be promissing, but further research including
power studies and a comparison with other tests are still intended in the nearest
future. In particular, the behavior of the test under strong imbalance in the
sample sizes is worth of further examination. Next, we would like to perform
an extensive simulation study to compare the performance of our permuatation
test and the bootstrap test for the dispersion.

Moreover, some other topics related to the dispersion problem with fuzzy
data seem to be of interest. Firstly, we plan to design other two-sample tests
for scale, like the permutation test for fuzzy data based on the classical O’Brien
test, as well as a permutation test for the homogeneity of more than two fuzzy
samples. Secondly, a permutation test for fuzzy data to compare jointly the
central tendency and variability of two populations would be of desirable.
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Abstract. In collaboration with the Civil Hospitals of Lyon, we aim to
develop a “transparent” classification system for medical purposes. To
do so, we need clear definitions and operational criteria to determine
what is a “transparent” classification system in our context. However,
the term “transparency” is often left undefined in the literature, and
there is a lack of operational criteria allowing to check whether a given
algorithm deserves to be called “transparent” or not. Therefore, in this
paper, we propose a definition of “transparency” for classification sys-
tems in medical contexts. We also propose several operational criteria
to evaluate whether a classification system can be considered “transpar-
ent”. We apply these operational criteria to evaluate the “transparency”
of several well-known classification systems.

Keywords: Explainable AI · Transparency of algorithms · Health
information systems · Multi-label classification

1 Introduction

In collaboration with the Civil Hospitals of Lyon (HCL), in France, we aimed
to develop and to propose decision support systems corresponding to the clin-
icians’ needs. In 2018, the HCL received more than one million patients for
medical consultations. Therefore, the decision has been made to build a decision
support system focused on supporting physicians during their medical consul-
tations. After some observations and analyses of medical consultations in the
endocrinology department of the HCL [31], we drew two conclusions: physicians
mainly need data on patients to reach diagnoses, and getting these data from
their information system is quite time-consuming for physicians during consul-
tations. To reduce physicians’ workload, we decided to support them by using
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a classification system learning which data on patients physicians need in which
circumstance. By doing this, we should be able to anticipate and provide the
data that physicians will need at the beginning of their future consultations.
This can be formalized as a multi-label classification problem, as presented in
Table 1 with fictitious data.

In this paper, a “classification system” refers to the combination of a “learn-
ing algorithm” and the “type of classifier” produced by this learning algorithm.
For example, a classification system based on decision trees can use a learning
system such as C4.5 [30], the type of classifier produced by this learning system
being a decision-tree. This distinction is necessary because a learning algorithm
and a classifier produced by this learning algorithm are not used in the same
way and do not perform the same functions.

Table 1. Example of multi-label dataset based on our practical case

X: data known on patient Y : data on patient needed by physician

Sex Age BMI Disease HbA1c Blood sugar HDL LDL Creatinine Microalbumin

♀ 42 34.23 DT2 1 1 0 0 0 0

♂ 52 27.15 HChol 0 0 1 1 0 0

♂ 24 21.12 DT1 1 1 0 0 1 1

♀ 67 26.22 HChol 0 0 1 1 0 0

However, in the case of clinical decision support systems (CDSSs), a well-
known problem is the lack of acceptability of support systems by clinicians [5,19].
More than being performant, a CDSS has first to be accepted by clinicians, and
“transparent” support systems are arguably more accepted by clinicians [22,
33]. Mainly because “transparency” allows clinicians to better understand the
proposals of CDSSs and minimize the risk of misinterpretation. Following these
results, we posit that the “transparency” of support systems is a way to improve
the “acceptability” of CDSSs by clinicians.

In the literature, one can find several definition of the concept of “trans-
parency”: “giving explanations of results” [9,10,15,20,26,28,33,36], “having a
reasoning process comprehensible and interpretable by users” [1,11,12,24,27,34],
“being able to trace-back all data used in the process” [2–4,16,40], but also “being
able to take into account feedbacks of users” [7,40]. Individually, each of the above
definitions highlights an aspect of the concept of “transparency” of classification
systems, but do not capture all aspects of “transparent” classification systems
in our context. In addition, definitions are abstract descriptions of concepts and
there is a lack of operational criteria, in the sense of concrete properties one can
verify in practice, to determine whether a given algorithm deserves to be called
“transparent” or not.

The main objective of this paper is to propose a definition of transparency,
and a set of operational criteria, applicable to classification systems in a med-
ical context. These operational criteria should allow us to determine which
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classification system is “transparent” for users in our use case. Let us specify
that, in this paper, the term “users” refers to physicians.

In Sect. 2 we detail the definition and operational criteria we propose to eval-
uate the transparency of classification systems. In Sect. 3, based to our definition
of transparency, we explain why we choose a version of the naive bayes algorithm
to handle our practical case. We briefly conclude in Sect. 4, with a discussion on
the use of an evaluation of “transparency” for practical use cases.

2 Definition of a “Transparent” Classification System

Even though the concept of algorithm “transparency” is as old as recommenda-
tion systems, the emergence and the ubiquity of “black-box” learning algorithms
nowadays, such as neural networks, put “transparency” of algorithms back in
the limelight [14]. As detailed in Sect. 1, numerous definitions have been given
to the concept of “transparency” of classification systems, and there is a lack of
operational criteria to determine whether a given algorithm deserves to be called
“transparent” or not.

In this paper, we propose the definition below, based on definitions of “’trans-
parency” in the literature. Let us recall that our aim here is to propose a defi-
nition, and operational criteria, of what we called a “transparent” classification
system in a medical context with a user-centered point-of-view.

Definition 1. A classification system is considered to be “transparent” if, and
only if:

– the classification system is understandable
– the type of classifier and learning system used are interpretable
– results produced are traceable
– classifiers used are revisable.

2.1 Understandability of the Classification System

Although transparency is often defined as “giving explanations of results”, sev-
eral authors have highlighted that these explanations must be “understandable”,
or “comprehensible”, by users [12,26,33]. As proposed by Montavon [28], the fact
that something is “understandable” by users can be defined as its belonging to
a domain that human beings can make sense of.

However, we need an operational criterion to be sure that users can make
sense of what we will provide them. In our case, users being physicians, we can
consider that users can make sense of anything they have studied during their
medical training. Therefore, we define as “understandable” anything based on
notions/concepts included in the school curriculum of all potential users. Based
on this operational criterion, we propose the definition below of what we call an
“understandable” classification systems.
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Definition 2. A classification system is considered to be understandable by
users if, and only if, each of its aspects is based on notions/concepts included in
the school curriculum of all potential users.

Let us consider a classification system based on a set C of notions/concepts,
and a set S of notions/concepts included in the school curriculum of all potential
users, such than S ∩C can be empty. Defined like this, the “understandability”
of a classification system is a continuum extending from S∩C = ∅ to S∩C = C.

2.2 Interpretability of Classifiers and Learning System

According to Spagnolli [34], the aim of being “transparent” is to ensure that users
are in a position to make informed decisions, without bias, based on the results
of the system. A classification system only “understandable” does not prevent
misinterpretations of its results or misinformed decisions by users. Therefore, to
be considered “transparent” a classification system must also be “interpretable”
by users. The criterion of “interpretability” is even more important when applied
to sensitive issues like those involved in medical matters. But what could be
operational criteria to establish whether a classification system is “interpretable”
or not by users?

Let us look at the standard example of a classification system dedicated to
picture classification [17]. In practice, the user will use the classifier produced
by the learning algorithm and not directly the learning algorithm. Therefore,
if the user gives a picture of an animal to the classifier and the classifier says
“it’s a human”, then the user can legitimately ask “Why did you give me this
result?” [33]. Here, we have two possibilities: the classifier provides a good clas-
sification and the user wants to better understand the reasons underlying this
classification, or the classifier provides a wrong classification and the user wants
to understand why the classifier didn’t provide the right classification.

In the first case, the user can expect “understandable” explanations on the
reasoning process that conducted to a specific result. Depending on the classi-
fier used, explanations can take different forms such as “because it has clothes,
hair and no claws” or “because the picture is similar to these others pictures
of humans”. In addition, to prevent misinterpretations, the user can also legiti-
mately wonder “To what extent can I trust this classification?” and expect the
classifier to give the risk of error of this result.

In the second case, the user needs to have access to an understandable ver-
sion of the general process of the classifier and not only the reasoning process
that conducts to the classification. This allows the user to understand under
which conditions the classifier can produce wrong classifications. In addition,
the user can legitimately wonder “To what extent can I trust this classifier in
general?”. To answer this question, the classifier must be able to provide general
performances rates such as its error rate, its precision, its sensitivity and its
specificity.

Based on all the above aspects, we are now able to propose the following def-
inition of the “interpretability” of the type of classifier used in the classification
system.
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Definition 3. A type of classifier is considered to be “interpretable” by users if,
and only if, it is able to provide to users:

– understandable explanations of results, including:
• the reasoning process that conducts to results
• the risk of error of results

– an understandable version of its general process
– its global error, precision, sensitivity and specificity rates.

Nevertheless, although the classifier can answer the question “Why this
result?”, it will not be able to answer if the user asks, still to prevent a poten-
tial misinterpretation, “How the process of classification have been built? Where
does it come from?”. Only the learning algorithm used by the classification sys-
tem can be able to bring elements of a response to users because the function
of the learning system is to build classifiers, whereas the function of classifiers is
to classify.

Therefore, a “transparent” classification system must be based on a type
of classifier “interpretable”, as defined in Definition 3, but it must also use an
“interpretable” learning algorithm, still to ensure that users are in a position to
make informed decisions. A first way to establish whether a learning algorithm
is “interpretable” could be to evaluate if users can easily reproduce the pro-
cess of the algorithm. However, evaluating “interpretability” in this way would
be tedious for users. We have then to establish operational criteria of learning
algorithms that can contribute to its “interpretability” by users.

First, the more linear it is, the more reproducible it is by users. However,
linearity alone is not enough to allow “interpretability”. For example, this is the
case if the various steps of the algorithm fail to be understandable by users or
if branching and ending conditions are not understandable by users. Accord-
ingly, we proposed the following definition of the “interpretability” of a learning
algorithm.

Definition 4. A learning algorithm is considered to be “interpretable” by users
if, and only if it has:

– a process as linear as possible
– understandable steps
– understandable branching and ending conditions.

The use of concept such as “possibility” of the algorithm implies that we
cannot tell that a learning algorithm is absolutely “interpretable”. By corollary,
the assessment algorithm’s “interpretability” is quite subjective and dependent
on what we consider as “possible” in terms of linearity for an learning algorithm.

2.3 Traceability of Results

Another aspect we have to take into account is the capacity to traceback data
used to produce a specific classification. As introduced by Hedbom [18], a user
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has the right to know which of her/his personal data are used in a classification
system, but also how and why. This is all the more true in medical contexts,
where the data used are sensitive.

The “understandability” and “interpretability” criteria alone are not enough
to ensure the ability to traceback the operations and data used to produce a
given result. For example, let us suppose we have a perfectly understandable and
interpretable classification system, if this system does some operations randomly,
it becomes difficult to traceback operations made from a given result.

By contrast, if a classification system is totally “understandable” and “inter-
pretable”, the determinism of classifiers and the learning system is a necessary
and sufficient condition to allow “traceability”. We can then propose the follow-
ing definition of the traceability of results.

Definition 5. The results of a classification system are considered to be “trace-
able” if, and only if, the learning system and the type of classifier used have a
non-stochastic process.

2.4 Revisability of Classifiers

Lastly, the concept of “transparency” can be associated with the possibility for
users to make feedbacks to the classification system to improve future results [40].
When a classification system allows users to make feedbacks that are taken into
account, this classification system appears less as a “black-box” system to users.

For example, in the medical context, Caruana et al. [7] have reported that
physicians had a better appreciation of a rule-based classifier than of a neural
network, in the case of predicting pneumonia risk and hospital readmission. This
is despite the fact that neural network had better results than the rule-based
classifier. According to the authors, the possibility to modify directly wrong rules
of the classifier played a crucial role in the preference of physicians.

However, not all classifiers can be directly modified by users. Another way
to take account of users’ feedbacks is to use continuous learning algorithms (or
online learning). The majority of learning algorithms are offline algorithms, but
all can be modified, more or less easily, to become online learning algorithms. In
that case, the classifier is considered to be partly “revisable”. We then obtain
the following definition of “revisability” of the type of classifier used by a clas-
sification system.

Definition 6. A type of classifier used by a classification system is considered
to be “revisable” by users if, and only if, users can directly modify the classifier’s
process or, at least, the learning algorithm can easily become an online learning
algorithm.

3 Evaluation of Different Classification Systems

In this section, we use the operational criteria we have established in Sect. 2
to evaluate the degree of “transparency” of several well-known classification
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systems. With this evaluation, we aim to determine whether one of these clas-
sification systems can be used in our use case, from a “transparency” point of
view.

We also evaluate the performances of these algorithms on datasets similar to
our use case, to evaluate the cost of using a “transparent” alogrithm in terms of
performances.

3.1 “Transparency” Evaluation

Our evaluation of “transparency” has been made on six different classification
systems. The BPMLL algorithm (based on artificial neural networks) [42], the
MLkNN algorithm (based on k-Nearest Neighbors) [41], the Naive Bayes algo-
rithm (producing probability-based classifiers) [23], the C4.5 algorithm (produc-
ing decision-tree classifiers) [30], the RIPPER algorithm (producing rule-based
classifiers) [8] and the SMO algorithm (producing SVM classifiers) [25,29].

Figure 1 displays a summary of the following evaluation of our different clas-
sification systems. Due to their similarities in terms of “transparency”, C4.5 and
RIPPER algorithms have been considered as the same entity.

Understandable? Interpretable? Traceable? Revisable?
Not at all

Not really

Yes, Partly

Yes, Totally

BPMLL MLkNN Naive Bayes

C4.5 or RIPPER SMO

Fig. 1. Graphical representation of the potential “transparency” of different classifica-
tion systems according to our operational criteria. (Color figure online)

Let us start with the evaluation of a classification system based on the
BPMLL algorithm [42] (red circles in Fig. 1). The BPMLL algorithm is based
on a neural network and neural networks are based on notions/concepts that
are not included in the school curriculum of users such as back-propagation and
activation functions. Therefore, the steps of the BPMLL algorithm, as well as its
branching/ending conditions, cannot be considered to be “understandable” by
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users. In addition, the learning process of neural networks is not what might be
called a linear process. Accordingly, we cannot consider this classification system
to be “understandable” and “interpretable” by users. However, neural networks
are generally determinist but, due to their low “understandability”, they can
only be considered to be partly “traceable”. Finally, concerning the “revisabil-
ity” of such a classification system, users cannot directly modify a wrong part of
the classifier process and neural networks are not really adapted to continuous
learning due to the vanishing gradient problem [21].

The ML-KNN algorithm [41] (violet diamonds in Fig. 1) is considered to be
fully “understandable” because it is based on notions like distances and probabil-
ities. Classifiers produced by the ML-KNN algorithm can produce explanations
such as “x is similar to this other example”. However, due to nested loops and
advanced use of probabilities, the learning algorithm does not fit our criteria
of “interpretable”. In addition, the k-Nearest Neighbors algorithm [13], used by
ML-KNN, is generally not determinist which makes the classification system not
“traceable”. Nevertheless, although classifiers produced by the ML-KNN algo-
rithm cannot be directly modified by users, ML-KNN can easily be modified to
become online learning. Consequently, it is partly “revisable”.

The Naive Bayes algorithm [23] (green squares in Fig. 1) is considered to be
fully “understandable” because, in our context, probabilities and the Bayes theo-
rem are included in the school curriculum of all potential users. The Naive Bayes
algorithm is also quite linear and all its steps, as well as its branching/ending con-
ditions, are “understandable”. Accordingly, the Naive Bayes algorithm is consid-
ered to be fully “interpretable” by users. In addition, the Naive Bayes algorithm
is fully determinist, so considered to be fully “traceable”. Lastly, users cannot
easily modify the classifier, because its a set of probabilities, but the Naive
Bayes algorithm can update these probabilities with users’ feedbacks, becoming
an online learning algorithm. The Naive Bayes algorithm is then considered to
be partly “revisable”.

The C4.5 and RIPPER algorithms are considered to be partly “understand-
able” because, even though decision trees or rulesets are notions fully “under-
standable” by users, these two learning algorithms are based on the notion of
Shannon’s entropy [32], a notion that is not included into the school curricu-
lum of all potential users. With the same logic, even though decision trees or
rulesets are fully “interpretable” classifiers, these learning algorithms are quite
linear but their steps and branching/ending are not “understandable” by users
because based on Shannon’s entropy. The only difference between C4.5 and RIP-
PER could be on the linearity of their learning algorithm, because RIPPER may
be considered to be less linear than C4.5, so less “interpretable”. Accordingly,
C4.5 and RIPPER are considered to be partly “interpretable” by users. In addi-
tion, the C4.5 and RIPPER algorithms are determinists, so fully traceable, and
they are considered to be fully “revisable”, because users can modify directly
classifiers such as decision trees or rulesets.

Lastly, concerning the SMO algorithm, it is mainly based on mathematical
notions, such as a combination of functions, that are not necessarily included in
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the school curriculum of all potential users. The SMO algorithm is not considered
to be really “understandable” and “interpretable” by users. The SMO algorithm
is determinist but, due to its low “interpertability” it could be more diffcult to
traceback its results. It is then considered to be partly “traceable”. In addition,
the SMO algorithm can become online [35], but not as easily as ML-kNN or Naive
Bayes algorithms (for example), it is not considered to be really “revisable”.

Consequently, if we start from the classification system with less operational
criteria of “transparency” checked, to the classification system with a majority
of operational criteria checked, we obtain: BPMLL, SMO, MLkNN, RIPPER,
C4.5 and Naive Bayes. Accordingly, a classification system based on the Naive
Bayes algorithm can be considered as the best alternative, from a “transparency”
perspective, to treat our medical use case.

3.2 Naive Bayes Algorithm for Multi-label Classification

As developed in Sect. 3.1, the Naive Bayes algorithm can be considered to be
“transparent” according to our operational criteria. A common way to apply a
one-label classification system to a multi-label classification problem, like in our
case, is to use the meta-learning algorithm RAkEL [37]. However, the use of
RAkEL, which is stochastic and combine several classifiers, makes classification
systems less “interpretable” and “traceable”. We proposed then a version of the
Naive Bayes algorithm, developed in Algorithm 1, to treat directly multi-label
classification problems staying as “transparent” as possible.

Algorithm 1: A Naive Bayes algorithm for multi-label classification
Data: a learning dataset I, a set of variables X and a set of labels Y
Result: sets of approximated probabilities PY and PX|Y

// Computing subsets of numerical variables

1 foreach variable X ∈ X do
2 Discretize domain of X according to its values in I

// Counting occurences of Y and X ∩ Y
3 foreach instance I ∈ I do
4 foreach label Y ∈ Y do
5 yI ← value of Y for instance I
6 Increment by one the number of occurences of Y = yI
7 foreach variable X ∈ X do
8 tIX ← the subset of X corresponding to its value in instance I

9 Increment by one the number of occurences of Y = yI ∩ X = tIX

10 Compute probabilities PY and PX|Y from computed number of occurences

11 return PY and PX|Y
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To treat numerical variables, the first step of our algorithm is to discretize
these numerical variables into several subsets (Algorithm 1, line 2). Discretiz-
ing numerical variables allows us to treat them as nominal variables. For each
instance of the learning dataset, we get the subset corresponding to the value of
each variable for the instance (Algorithm 1, line 8). Then, our algorithm counts
occurences of each value of label and variables, and computes their frequency of
occurence.

To discretize numerical variables, we first decided to use the fuzzy c-means
clustering algorithm [6]. The fuzzy c-means allows to determine an “inter-
pretable” set of subsets TX of a variable X based on the distribution of observed
values in this variable domain. Therefore, the subset t corresponding to a new
value x ∈ X is the subset t ∈ TX with the highest membership degree µt(x)
(Eq. 1).

tX ← arg max
t∈TX

µt(x) (1)

However, we see here that the use of the fuzzy c-means algorithm requires
introducing new concepts such as fuzzy sets, membership functions and mem-
bership degrees [39]. These concepts are not included into the school curriculum
of users, reducing the “transparency” of the classification systems.

Therefore, we propose to use another discretizing method, more “transpar-
ent”. This method, inspired by histograms, consists in splitting the variable
domain into n subsets of equal size. Therefore, the subset t corresponding to a
new value x ∈ X is the subset t ∈ TX such as min(t) ≤ x < max(t). This method
was preferred due to its simplicity and its potential better “transparency”.

3.3 The Search for a Right Balance Between Performances
and Transparency

Now that we have evaluated the “transparency” of several classifier systems,
and we have identified the Naive Bayes algorithm as the most “transparent”
alternative in our context, a question still remains: Does “transparency” have a
cost in terms of performances?

To answer this question we evaluated classifiers presented at the beginning of
this section on performance criteria for different well-known multi-label datasets
and a dataset named consultations corresponding to our use case. Table 1 is an
example based on this dataset. Currently, our dataset contains 50 instances with
4 features (patients’ age, sex, BMI and disease) and 18 labels corresponding to
data potentially needed by endocrinologists during consultations.

Our aim in this sub-section is to determine if the use of our version of the
Naive Bayes algorithm offers suitable performances in our use case. If this is not
the case, we won’t have the choice but to envisage using a less “transparent”
algorithm if it offers better performances.
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Fig. 2. Distribution of macro-averaged F-measures of several multi-label classification
systems for different datasets. Results obtained by cross-validation.

These evaluations were made by using the Java library Mulan [38], which
allowed to use several learning systems and cross-validation metrics. The pro-
gram to reproduce these evaluations can be found on the GitLab of the LAM-
SADE1.

Figure 2 shows the distribution of macro-averaged F-measures of classifier
systems computed for different multi-label datasets. The F-measure is a har-
monic mean of the precision and the recall of evaluated classification systems.
These results have been obtained by cross-validation. Classification systems have
been ordered by their degree of “transparency” according to the definition devel-
oped in Sect. 2. Green for the most “transparent”, red for the less “transparent”.
Although a macro-averaged F-measure alone does not allow a precise evaluation,
it allows us to have an overview of classification systems’ performances.

We can see that the most “transparent” classification systems (greenest
squares in Fig. 2) are not necessarily offering the worst performances. We can
also see that, in some cases, “transparent” classification systems can offer per-
formances close to the performances of the less “transparent” ones. In our case,
represented by the consultations dataset, although the BPMLL algorithm offers
the best F-Measure with 0.57, we can see that our version of the Naive Bayes
algorithm (HistBayes) offers a quite close F-Measure with 0.53. Note that these
results have to be nuanced by the small size of our dataset.

1 https://git.lamsade.fr/a richard/transparent-performances.

https://git.lamsade.fr/a_richard/transparent-performances
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4 Discussion

As introduced in Sect. 2, the definition and operational criteria of “transparency”
we proposed are centered on our use case: classification systems in medical con-
texts. Because this context is sensitive, we had to establish clear operational
criteria of what we called a “transparent” classification system. Based on these
definitions we have been able to determine what kind of classification system we
must use in priority. Besides, we can suppose that the operational criteria we
proposed can be used to evaluate the “transparency” of healthcare information
systems in general. It would also be interesting to establish operational criteria
of “transparent” systems in other contexts than medicine and to compare these
operational criteria.

However, these definitions and operational criteria have their limitations.
First, they are mainly based on our definitions of “transparency” and on our
understanding of the medical context(as computer scientist and engineers). Con-
sequently, they are not exhaustive and can be improved. And secondly, opera-
tional criteria were chosen to be easily evaluated without creating additional
workload to clinicians, but it could be interesting to integrate them in the eval-
uation process. For example, the “understandability” of provided explanations
could be evaluated directly in practice by clinicians.

Nevertheless, we claim that establishing clear operational criteria of “trans-
parency” can be useful for decision-makers to determine which systems or algo-
rithm is more relevant in which context. These operational criteria of “trans-
parency” must be balanced with performance criteria. Depending on the use
case, performances could be more important than “transparency”. In our case,
the medical context requires to be as “transparent” as possible. Fortunately, as
developed in Subsect. 3.3, in our case being “transparent” had not a lot of impact
on performances and did not implies the use of a less “transparent” classification
system with better performances.
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Abstract. Recent advancements and applications in artificial intelli-
gence (AI) and machine learning (ML) have highlighted the need for
explainable, interpretable, and actionable AI-ML. Most work is focused
on explaining deep artificial neural networks, e.g., visual and image cap-
tioning. In recent work, we established a set of indices and processes for
explainable AI (XAI) relative to information fusion. While informative,
the result is information overload and domain expertise is required to
understand the results. Herein, we explore the extraction of a reduced
set of higher-level linguistic summaries to inform and improve communi-
cation with non-fusion experts. Our contribution is a proposed structure
of a fusion summary and method to extract this information from a
given set of indices. In order to demonstrate the usefulness of the pro-
posed methodology, we provide a case study for using the fuzzy integral
to combine a heterogeneous set of deep learners in remote sensing for
object detection and land cover classification. This case study shows the
potential of our approach to inform users about important trends and
anomalies in the models, data and fusion results. This information is
critical with respect to transparency, trustworthiness, and identifying
limitations of fusion techniques, which may motivate future research and
innovation.

Keywords: Deep learning · Machine learning · Information fusion ·
Information aggregation · Fuzzy integral · Explainable artificial
intelligence · XAI · Protoform · Linguistic summary

1 Introduction

We live in a world that is recognizing the potential of artificial intelligence (AI)
and machine learning (ML) in everyday settings. These tools have been inte-
grated into many aspects of our daily lives—whether we realize it or not. These
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M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1239, pp. 114–127, 2020.
https://doi.org/10.1007/978-3-030-50153-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50153-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-50153-2_9


Information Fusion-2-Text 115

Fig. 1. Graphical illustration of fusion-2-text for the case study explored herein involv-
ing object detection and land cover classification in remote sensing. First, multiple
machine learning (ML) models are trained in a cross validation context. Next, fusion
is used to combat the fact that no single ML architecture is best across all data and
classes. However, what have we learned? Fusion-2-text is used to discover a succinct
set of important summaries or anomalies for a user in or across models.

tools, which were birthed from academic exercise, are no longer just in academia;
they have found home in many different applications. Various AIs are being used
to solve real-world problems, or they simply make our lives more convenient.
Many of these algorithms are built on data-driven methods which scientists,
researchers, and engineers have creatively developed and applied mathematics
to build. Despite the mathematical foundations, it has become common for these
tools to produce solutions that are not understandable. However, many applica-
tions require an explanation as to why a machine made a particular decision.

One task in the AI community is data or information fusion. One type of
fusion revolves around the Choquet Integral (ChI), which can be learned from
data. There are many ways to learn the ChI, the reviewer can refer to [18] for
a recent review. However, once these parameters are learned, explanations can
be derived from the data and learned model. In [9], we exploited properties
of the ChI to understand which parameters in a learned model are supported
by data. In [17], we exploited this knowledge to produce indices that describe
different properties of a learned ChI. Unfortunately, the large quantity of values
that our indices produce can be daunting and can lead to information overload.
For example, when fusing multiple deep convolutional neural networks (DCNN)
for classification, there will be one ChI learned per class—a set of XAI indices
for each learned ChI. As a result, there is a need to summarize these results to
explain the model at a higher-level as well as reduce the amount of information
that they produce.
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This begs the question of how do we reduce the number of outputs while
maintaining the integrity of our XAI descriptions. Herein, we explore the pro-
duction of linguistic summaries that concisely describe the relevant information
coming from the XAI indices. Linguistic protoform summaries (LPS) are an
efficacious mechanism of describing data because natural language is easier for
humans to interpret. LPSs are statements with a specific format that are used
to describe data in natural language. LPSs have been shown to be an effective
means to more easily comprehend a set of data. For example, in [14] LPSs were
applied to time-series data, the authors of [26] utilized LPSs to describe the
restlessness of eldercare residents for healthcare, and LPSs have also been used
for data mining for knowledge discovery [15].

An LPS generally follows one of several templates. These templates fall into
the category of simple protoforms or extended protoforms. The simple protoform,
first introduced in [29], is constructed from three different concepts: the quan-
tifier, summarizer, and truth value. An example of a simple protoform is “most
papers are readable”. In this example, the quantifier is “most,” the summarizer
is “readable,” and the truth value would be computed to determine the degree to
which that statement is valid. As time passed, others have extended the simple
protoform’s template [14,28]. While there are several extensions, one example of
an extended protoform (that includes an additional summarizer) is “few papers
are readable and noteworthy”. Not only has the LPS template been modified,
but Yager’s original computation of truth values has been scrutinized. In [25], it
was shown that Yager’s original equations to compute truth may not suited for
all membership functions that model the protoforms because they may produce
non intuitive summaries. As such, [25] and [12] used the Sugeno integral to over-
come shortcomings in Yager’s equations. Moreover, the authors of [3] present a
holistic view of the development of quantifying sentences and the equations that
drive this process.

The main contributions of this paper are as follows. First, we explore the
potential for LPSs to reduce the complexity and amount of XAI information
for the ChI. To the best of our knowledge, this has not been explored to date.
Second, at a high-level, we explore what type of summaries are useful and rele-
vant and should be reported. Third, we propose a way to derive LPSs from two
of our data-centric and model-centric indices. While this is only performed on
two indices herein, due to space, we discuss how our procedures generalize to
other XAI indices. Last, we give a case study for aggregating a set of heteroge-
neous architecture DCNNs for object detection and land cover classification on
a benchmark remote sensing dataset. The benefit of this study is to show actual
summaries and assess if they are useful.

The breakdown of this paper is as follows. In Sect. 2, we give a brief overview
of the ChI and its optimization, and we identify its data supported parameters.
In Sect. 3, we present the XAI indices, Sect. 4 describes how to construct LPSs,
and Sect. 5 shows how to construct fuzzy sets with respect to our indices. Last,
we present our case study in Sect. 6 and insights are drawn from our data and
LPSs. Figure 1 shows the technical breakdown of our fusion-2-text and Fig. 1
shows our remote sensing case study.
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2 Choquet Integral

The utility of the ChI has been demonstrated in numerous applications, e.g.,
[4,6,21,24]. The ChI is a powerful, nonlinear aggregation operator that is param-
eterized by a fuzzy measure (FM). Let X = {x1, ..., xN} be a set of N information
sources. With respect to a finite domain, the FM, μ : 2X → R, is a function that
satisfies: (i) (boundary condition) μ(∅) = 0, and (ii) (monotonicity) if A,B ⊆ X,
and A ⊆ B, μ(A) ≤ μ(B)1. It is often convenient to think about the FM as not
just free parameters but as a modeling of interactions (e.g., possibly correlations)
between subsets. The ChI2 is

∫
h ◦ μ =

N∑
j=1

hπ(j)

(
μ(Aj) − μ(Aj−1)

)
, (2)

where π is an ordering of h = (h(x1), ..., h(xN ))3. Furthermore, h(xi) = hi ∈ R

is the input from source i, such that hπ(1) ≥ hπ(2) ≥ . . . ≥ hπ(N). Last, Aj

corresponds to the subset {xπ(1), ..., xπ(j)}.
The ChI can alternatively be thought about as N ! linear convex sums

(LCS)4,5, as each sort of the data yields an LCS. Herein, we follow the nomen-
clature defined in [17], and we call each sort of the data a walk (in the Hasse
diagram).

2.1 Optimization

Defining the FM variables in the ChI is not a trivial task and there are many
ways to identify them, e.g., [5,10,11,16]. However, in our current data-driven
era, it is common place to learn the FM variables. Herein, we use our learning
algorithm put forth in [9]. We do not describe the algorithm due to limited page
length. The techniques proposed herein extend beyond a specific learner, they
are applicable to any ChI derived from data.

2.2 Data Supported Variables

In [9], we established that data supported variables can be identified for the ChI.
A variable is called supported if any walk of the data includes it. For example, let
N = 3 and h3 > h1 > h2. The FM variables that are encountered are μ({h3}),
μ({h1, h3}) and μ(X). By considering all the given inputs in the training data,
we can easily determine all data supported variables. This fact is important to
many of the upcoming indices (Fig. 2).
1 While not required, it is common in practice to impose µ(X) = 1.
2 It is important to note that when a FM is set (values are specified), the ChI becomes a

specific aggregation operator. For example, consider µ(A) = 1, ∀A ∈ X, except µ(∅).
As such, the ChI reduces to the max operator.

3 Hereafter, h(xi) will be shortened to hi for simplicity.
4 When µ(X) = 1.
5 Who share 2N weights.
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Fig. 2. Illustration of computational stages in our fusion-2-text.

3 Existing Low-Level XAI Indices

In [17], we proposed a set of XAI indices—measures/functions that summarize
and highlight important properties about the FM and ChI—in the context of
data-driven learning. In [18], we expanded our initial set of indices, including the
Shapley and interaction index, to operate more accurately on partially observed
domains. In general, our indices can be partitioned into three sets: information
about the FM (the sources and their interactions), inquiries about the FM-ChI
(e.g., what is the specific aggregation), and inquiries about the data relative to
the ChI (e.g., what parts of our model are missing). While each of our indices
provide valuable and different insights, we limit the scope herein to one data
specific index, walk visitation, and one model specific index, the walk centric
Shapley index.

3.1 Walk Centric Shapley

The Walk Centric Shapley (WCS) index is an extension of the Shapley index
[20]. The WCS defines the relative worth of each source with respect to its data
supported variables. This extension is valuable because the traditional Shapley
may be drastically over- or under-estimate the worth of sources as it assumes
that the FM is fully observable. The WC Shapley is



Information Fusion-2-Text 119

Φ̄μ(i) =
∑

K⊆X\{i}
ζX,2(K) (μ(K ∪ {i}) − μ(K)) , (3a)

ζX,2(K) =
(|X| − |K| − 1)!|K|!

|X|! 1(K∪{i})1(K), (3b)

Φ̃μ(i) =
Φ̄μ(i)∑i

j=1 Φ̄μ(j)
, (3c)

where K ⊆ X\{i} denotes all proper subsets from X that do not include source
i and 1 is an indicator function that is 1 if the FM value is data-supported and 0
otherwise. The Shapley values of μ is the vector Φ̃μ = [Φ̃μ(1), ..., Φ̃μ(N)]t where∑N

i=1 Φ̃μ(i) = 1. The WCS values are important because they inform us about
the relative worth of each information source.

3.2 Walk Visitation

Understanding the quality of the information sources is merely one aspect of the
big XAI picture. It is also important to understand the quality (e.g., complete-
ness) of a learned ChI. Herein, we use the walk visitation metric [17], which
describes how many unique walks were taken within the training data. We
quickly summarize the index due to limited page count. The index works by
sorting all samples (according to their input values), finding which walks were
encountered, and dividing the number of times that they were observed by the
total number of samples. The goal of this metric is to determine the degree to
which each walk was observed. If a probability is zero, then a walk was never
seen. Furthermore, if we get a new input for the ChI and its walk was not encoun-
tered in training, then one should question the ChI output. In [17], this index
was used to derive additional indices, like to what degree should we trust an
output of the ChI.

4 Protoforms

Protoform-based linguistic summaries are often an effective liaison between data
the data interpreter. As such, deriving linguistic summaries with respect to the
XAI indices has the potential to effectively reduce the amount of information
by producing concise summaries. Furthermore, as less is often more, there is
also the potential to remediate confusion due to complexity, which can improve
decision making. While there are multiple LPS templates to follow, the simple
protoform will suffice for the insights that we are drawing herein. The simple
protoform takes the following format,

Qy’s are P. (4)

Within the protoform, Q is a linguistic quantifier, y is a set of objects, and P is the
summarizer. Both Q and P are modelled by fuzzy sets over the desired domains.
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Examples of a quantifier that are suitable for our problem are words like “few”,
“many”, or “most”; whereas examples of a summarizer may be “important” or
“observed” when referencing the sources or the walks, respectively. Moreover, an
example of a protoform with respect to the XAI indices may be “few walks are
observed”. With respect to the XAI indices, we produce summaries that describe
the importance of each of the sources across all models and how many walks are
observed in each model. To do this, we use the vocabulary in Fig. 3.

Fig. 3. Vocabulary used herein to produce fusion LPSs.

An LPS has a value of truth associated with it. This concept, first introduced
by Yager [29], utilizes Zadeh’s calculus to use Eq. 5 to determine the truth value,
T , associated with the linguistic summary. This equation is as follows,

T (Ay’s areP ) = A(
1
N

ΣN
i=1P (yi)). (5)

However, Eq. 5 may produce non-intuitive results, as noted in [25] and then in
[12]. As a result, the fuzzy integral can also be employed to determine the truth
value; however, for the scope of our case study, Eq. 5 will suffice.

5 Fuzzy Sets

As mentioned in Sect. 4, Q(x) and P (x) are fuzzy sets. In each case, we use
the trapezoidal membership function for the fuzzy sets, and we have empirically
determined their parameters. This is acceptable for our initial work, as we have
spent a good amount of time working with the ChI and the benchmark data set.
However, in future work these sets and their values clearly should be learned
from data or a set of experts.

5.1 Walk Centric Shapley

To define the fuzzy sets with respect to the WCS, a fuzzy set must be defined for
P (x) (i.e. important) and Q(x) (few, some, many, most). The fuzzy set is defined
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by the trapezoidal membership values from the WCS values. In an ideal fusion
solution, all Shapley values would be equal to 1

N , meaning equal contribution.
As a result, we consider the source to be important if it has a value greater
than or equal to 1

N . Once P (x) is defined, Q(x) can be modelled. The output
of averaging P (x) is passed to Q(x), and it is between [ 1

N , 1] because at least 1
source will be important. As such, the domain of Q(x) is [17 , 1]. Using Eq. 5, we
can compute the truth value of each of the statements allowing us to isolate the
most relevant summaries that are produced.

5.2 Walk Visitation

Similar to the fuzzy sets that govern the WCS values, fuzzy sets are used to
model the walk visitation index. For P (x), the fuzzy sets model the concept of
observed and unobserved. In an ideal case, we desire each walk to have an equal
walk visitation index, so with this in mind, we consider the walk to be observed
if z ≥ 1

N ! . Next, the fuzzy set for Q(x) must be modelled. At least 1 walk will
be observed, and it is possible to observe up to however many training samples
exist. As such, the domain of Q(x) is [ 1

M , 1], which is approximately [0, 1]. The
values of each of the fuzzy sets can be found in Table 1.

Table 1. Trapezoidal membership function parameters.

Walk Visitation Quantifier a b c d WC Shapley Quantifier a b c d

Few 0 0 1
7

2
7

Few 1
7

1
7

2
7

3
7

Some 1
7

2
7

3
7

4
7

Some 2
7

2.5
7

3.5
7

5
7

Many 3
7

4
7

5
7

6
7

Many 3
7

4.5
7

5.5
7

6
7

Most 5
7

6
7

1 1 Most 5
7

6
7

1 1

Summarizers a b c d

Important 0 1
7

1 1

Observed 0 1
7!

1 1

6 Case Study

To show how these indices work in a real-world application, we consider the
fusion of a set of 7 different DCNNs for object detection and land classification
of remote sensing data. The DCNNs that we fuse are CaffeNet [13], GoogleNet
[23], ResNet 50 [7], ResNet 101, DenseNet [8], InceptionResNetV2 [22], and
Xception [2]. The dataset is the AID remote sensing data set [27]. This dataset
is composed of 10,000 images over 30 different aerial scene types.

The complete training procedure of how these networks were trained can
be found in [19]. Furthermore, the complete description of how these DCNNs
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are fused can be found in [1]. Due to the nature of the multistep classification
problem (DCNNs and ChI), it is an important step to determine how to split
the data into training and testing. For the DCNNs, five-fold cross validation was
used. This means that four folds are used for training, and one fold is used for
evaluation. From the evaluation fold, two-fold cross validation is used, due to the
limited number of samples in AID. To ensure that each class is approximately
balanced in each of the folds, an approximately equal number of samples were
chosen from each class. There are multiple ways to perform fusion across the
DCNNs. Herein, we train a ChI for each of the 30 classes. As a result, there are
30 × 7! walk visitation values produced, and 30 × 7 Shapley values produced (a
total of 151, 410 values). Using the proposed LPS configuration, we reduce the
XAI indices to a few sets of LPSs that are more easily comprehended.

6.1 Source Summaries

XAI Question: How Many Sources are Important?
With respect to each ChI, we can determine how many important sources there
are for each class. To produce this set of summaries, we treat each of the 30 ChIs
(one per class) as our objects, y. The linguistic summarizer is “important”, and
our quantifiers are “few”, “several”, “many”, and “most”. Figure 4 illustrates
the quantity of summaries that are assigned each of the quantifiers.

Fig. 4. Actual versus the ideal distribution of quantifier.

In an ideal case, “most” of the sources would be important, meaning all
sources are contributing to the fusion solution. However, our experiment pro-
duced no summaries of “most sources are important”. The majority of the ChIs
are summarized by “several sources are important.” This begs the question of
which sources are important because we now know that not all are important.

XAI Question: How Important is Each Source?
Taking our knowledge from the last set of summaries, it is logical to now
isolate the important sources. To do this, we produce a set of summaries
specifically for each of the sources. We treat each DCNN across all models as
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our objects, y. For example, one set of objects will be GoogleNets, such that
GoogleNets = {GoogleNets1,GoogleNets2, ...,GoogleNets30}. In Fig. 4, we show
the resulting summaries (Fig. 5).

Fig. 5. LPSs describing the importance of each DCNN with truth degree (gray).

From this set of summaries (with strong truth degrees), we can conclude that
ResNet 50 and ResNet 100 are not contributing to the fusion solution; however,
InceptionNet and XceptionNet are important in most of the ChIs, meaning they
are strong contributors. This leads us to conclude that ResNet 50 and ResNet
100 can likely be removed, speeding up inference by reducing DCNNs.

XAI Question: How Many Walks are Observed Per Model?
In this case, the summarizer is “observed,” the objects are each ChI, and the
quantifier is again, “few”, “several”, “many”, and “most”. However, for this
set, there was only one summary ever found, “few walks are observed.” This
quickly magnifies the flaw with these models because many of the possible walks
have not been observed—meaning the FM values of many of the walks are not
actually learned from data. In order to fully learn the ChI, “most” walks must
be observed. Observing few walks means that there is not much diversity in the
data. This highlights that we may have a dominant walk, or that we only ever
observe a relatively low number of walks.

XAI Question: How Observed is Each Walk Across the Data?
Whereas the last summary encapsulated information pertaining to how many
walks are observed per model, this set of summaries answers the question of
how observed is each walk across the entire data set. We consider each specific
walk as an object; for example the walk [1, 2, 3, 4, 5, 6, 7] = {[1, 2, 3, 4, 5, 6, 7]1,
[1, 2, 3, 4, 5, 6, 7]2, ..., [1, 2, 3, 4, 5, 6, 7]30}. When producing these summaries,
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there would be one summary per walk, so in our example, this would gener-
ate 7! summaries, which is far too many for anyone to digest. However, by only
evaluating the walks that are observed in “most” ChIs with a high truth degree,
we only consider 5 of the walks. The summaries shown in Fig. 6 are produced.

Fig. 6. Most specific walks are observed.

While each of these 5 walks have a truth value of 1, they are also the only
walks to have the quantifier “most”. There are 4,978 walks that are observed
a “few” times with a truth degree of 1. This leaves 67 walks that are observed
“few”, “several”, or “most” with a truth values less than 1 for each of them. These
summaries clearly highlight that there may be some bias in the data. Specifically,
the first 4 sources are typically encountered in the same order, which shows that
something is not quite right. This allows us to dig into the data to figure out
what might be going on.

6.2 Code

The ability to reproduce an experiment is a cornerstone in the scientific commu-
nity. As such, we provide the code that produced these summaries at the follow-
ing repository, https://github.com/B-Mur/ChoquetIntegral.git. Moreover, the
data set that was used can be found at the following repository, https://github.
com/aminb99/remote-sensing-nn-datasets.

7 Summary and Future Work

Herein, we have proposed and implemented the use of LPSs to reduce a high num-
ber of metrics to a short number of concise and more useful summaries. To our
knowledge, this is the first work that produces linguistic summaries to explain
fusion, without a doubt relative to data-driven learning. Before producing the
summaries, the indices produce a large quantity of metrics that are complex to

https://github.com/B-Mur/ChoquetIntegral.git
https://github.com/aminb99/remote-sensing-nn-datasets
https://github.com/aminb99/remote-sensing-nn-datasets
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interpret. By producing the summaries, the indices effectively reduce the infor-
mation that must be digested, while maintaining the integrity of the indices. By
first determining only few sources are important, it is a logical step to deter-
mine which sources are important. If all sources were important, it would be
unnecessary to determine the important sources as they are all important.

The walk visitation summaries tell a similar story. Only few walks are ever
observed; this leads us to produce summaries determining the walks are observed
across all data (only 5). Before we produce these summaries, these metrics are a
raw stream of data that are not intuitive, and interpretable only by those with
significant domain experience. However, the summaries allow someone unfamiliar
with the indices (and the values they produce) to be practitioners of XAI with
their fusion. To our knowledge, has never been done before.

In the future, we hope to generate summaries from the remaining XAI indices
to provide more complete and comprehensive insights. By doing this, we will
likely produce extended LPSs such that a single, extended LPS contains more
information than a simple protoform can provide. We will also explore how
to present, in a textual or visual fashion, this information to a human. This
foundation also excites us because it is a structured format or language in which
information can be extracted and then subsequently computed with. Possibilities
including deriving higher-level conclusions about the data, models, and systems,
or perhaps using the information to improve the training and/or use of fusion.
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Abstract. We introduce twelve operators called fuzzy quantifier-based
operators. They are proposed as a new tool to help to deepen the analysis
of data in fuzzy formal concept analysis. Moreover, we employ them to
construct a graded extension of Aristotle’s square, namely the graded
decagon of opposition.

Keywords: Fuzzy formal concept analysis · Evaluative linguistic
expressions · Square of opposition · �Lukasiewicz MV-algebra

1 Introduction

Formal Concept Analysis (FCA) is a mathematical theory applied to the analysis
of data (see [6]). The input of FCA is a triple called formal context that consists
of a set of objects, a set of attributes, and a binary relation between objects and
attributes. FCA techniques extract a collection of formal concepts from every
formal context.

Formal concepts are special clusters that correspond to concepts such as
“numbers divisible by 5”, or “white roses in the garden”. Fuzzy Formal Con-
cept Analysis (FFCA) generalizes formal concept analysis to include also vague
information. The input of FFCA is an L-context (X,Y, I) where L is a support
of an algebra of truth values, X is a set of objects, Y a set of attributes, and I
is a fuzzy relation I : X × Y −→ L.

A fuzzy concept is a pair (A,B) where A,B are fuzzy sets A : X −→ L,
B : Y −→ L. A is called extent and it is a fuzzy set of all objects x ∈ X
that have all attributes of B, and B is called intent and it is a fuzzy set of all
attributes y ∈ Y being satisfied by all objects of A. Namely, A(x) is the degree to
which “x has all attributes of B”, and B(y) is the degree to which “the attribute
y is satisfied by all objects of A”.
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project LQ1602 “IT4Innovations excellence in science”.
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In this article, we define twelve special operators as a tool to deepen the
analysis of data. To explain their function, let us consider the following situation.

Let (X,Y, I) be an L-context, where X is a set of students, Y are their skills,
I(x, y) is the degree to which “a student x has the skill y”. Thus, given a fuzzy
concept (A,B), we know that A is the fuzzy set representing all students with
all skills in B.

Let us now ask, how many students share “almost all skills in B” (“most skills
in B”, or “many skills in B”). Additionally, we may need to classify students with
respect to how many skills of B they do not have and exactly, to consider the
following fuzzy sets of X: students sharing “few skills in B”, students who do not
have “most skills in B”, or students “do not have many skills in B”. Similarly,
we can also consider a fuzzy set of Y formed of all skills shared by “almost all”
(“most”, “many”, or “few”) students of A, and the fuzzy set of Y made of all
skills that are not shared by “most” (or “many”) students in A. Each of the
previous sets is generated by a fuzzy quantifier-based concept-forming operator,
that allows us to introduce an extended notion of fuzzy concept.

Fuzzy quantifier-based operators are defined taking into account expressions
of natural language extremely big, very big, and not small that are formalized
within the theory of evaluative linguistic expressions [8]. Finally, starting from
the �Lukasiewicz MV-algebra, we employ the fuzzy quantifier-based operators
to represent a graded decagon of opposition, which is a graded extension of
Aristotle’s square (see Fig. 1).

I: at least one in P is a Q

A: all P ’s are Q’s

O: at least one P is not a Q

E: all P ’s are not Q’s

Fig. 1. Aristotle’s square. The lines , , , denote that the corre-
sponding propositions are contradictories, sub-contraries, sub-alterns, and contraries,
respectively.

The article is organized as follows. Section 2 reviews some basic notions and
results regarding MV-algebras, fuzzy formal concept analysis, and the graded
square of opposition. Section 3 introduces the fuzzy quantifier-based operators
and the corresponding new notions of fuzzy concepts. In Sect. 4, we construct
a graded decagon of opposition using the former. Finally, in the last section we
discuss further possible development of our results.
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2 Preliminaries

This section describes some fundamental notions and results regarding MV-
algebras, fuzzy formal concept analysis, and the graded square of opposition.

2.1 MV-Algebras

Definition 1. A lattice 〈L,∨,∧〉 is complete if and only if all subsets of L have
both supremum and infimum.

Definition 2. A residuated lattice is an algebra 〈L,∨,∧,⊗,→,0,1〉 where

(i) 〈L,∧,∨,0,1〉 is a bounded lattice,
(ii) 〈L,⊗,1〉 is a commutative monoid, and
(iii) a ⊗ b ≤ c iff a ≤ b → c, for all a, b, c ∈ L (adjunction property).

Definition 3 ([3,11]). An MV-algebra is a residuated lattice

L = 〈L,∨,∧,⊗,→,0,1〉

where a∨b = (a → b) → b, for each a, b ∈ L. We will also work with the following
additional operations on L:

(i) ¬a = a → 0 (negation),
(ii) a ⊕ b = ¬(¬a ⊗ ¬b) (strong disjunction),
(iii) a ↔ b = (a → b) ∧ (b → a) (biresiduation).

Example 1. A special MV-algebra is the standard �Lukasiewicz MV-algebra

L�L = 〈[0, 1],∨,∧,⊗,→, 0, 1〉

where a ∨ b = max(a, b), a ∧ b = min(a, b), a ⊗ b = max(0, a + b − 1) and
a → b = min(1, 1 − a + b), ¬a = 1 − a and a ⊕ b = min{1, a + b}, for all a, b ∈ L.

In the following lemma, we list some properties of complete MV-algebras1

that will be used below.

Lemma 1. Let L = 〈L,∨,∧,⊗,→,0,1〉 be a complete MV-algebra. Then the
following holds for all a, b, c, d, e ∈ L:

(a) If a ≤ b and c ≤ d, then a ∧ c ≤ b ∧ d.
(b) Let I be any index set. Then for each k ∈ I,

∧
i∈I ai ≤ ak and ak ≤ ∨

i∈I ai.
(c) If ai ≤ bi for each i ∈ I, then

∨
i∈I ai ≤ ∨

i∈I bi.
(d) a ⊕ ¬a = 1 and a ⊗ ¬a = 0.
(e) If a ⊗ b ≤ e, then (a ∧ c) ⊗ (b ∧ d) ≤ e.
(f) If a ≤ b and c ≤ d, then a ⊗ c ≤ b ⊗ d and a ⊕ c ≤ b ⊕ d.

1 More generally, the properties (a), (b) and (c) hold in any complete lattice.
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2.2 Fuzzy Formal Concept Analysis

In this subsection, we recall the definition of two pairs of fuzzy concept-forming
operators (↑, ↓), and (∩, ∪) existing in literature. Given a complete residuated
lattice L, by a fuzzy set of the universe X we mean a function A : X −→ L.
If A is a fuzzy set on X, then we write A ⊂∼ X. For each A,B ⊂∼ X, we put
SX(A,B) =

∧
x∈X(A(x) → B(x)), which represents the degree of inclusion of A

in B2.

Definition 4 ([1,12]). Let (X,Y, I) be an L-context and A ⊂∼ X, B ⊂∼ Y . We
put

A↑(y) =
∧

x∈X

(A(x) → I(x, y)) and B↓(x) =
∧

y∈Y

(B(y) → I(x, y)),

for all x ∈ X and y ∈ Y .

The A↑(y) and B↓(x) correspond to the truth degrees of the statements “an
attribute y is shared by all objects of A” and “an object x has all attributes of
B”, respectively.

Definition 5 ([13]). Let (X,Y, I) be an L-context. If A ⊂∼ X and B ⊂∼ Y , then

A∩(y) =
∨

x∈X

(A(x) ⊗ I(x, y)) and B∪(x) =
∧

y∈Y

(I(x, y) → B(y)),

for all x ∈ X and y ∈ Y .

The operators ∩ and ∪ are borrowed from the rough set theory. Namely, A∩(y)
and B∪(x) correspond to the truth degrees of the statements “an attribute y is
shared by at least one object of A” and “an object x has no attributes outside
B”, respectively.

Each pair (A,B) ∈ LX × LY such that A↑ = B and B↓ = A is called
standard L-concept. Analogously, each pair (A,B) ∈ LX ×LY such that A∩ = B
and B∪ = A is called property-oriented L-concept.

Theorem 1. The pair of mappings ↑ : LX → LY and ↓ : LY → LX forms an
antitone Galois connection between X and Y , i.e. SX(A,B↓) = SY (B,A↑), for
each A ⊂∼ X and B ⊂∼ Y .

Theorem 2. The pair of mappings ∩ : LX → LY and ∪ : LY → LX forms an
isotone Galois connection between X and Y , i.e. SX(A,B∪) = SY (A∩, B), for
each A ⊂∼ X and B ⊂∼ Y .

Definition 6. Given a set X and a complete residuated lattice L, by a fuzzy
preposet we mean a pair (X,R) where R is a fuzzy relation on X that is reflexive,
i.e. R(x, x) = 1 for each x ∈ X, and ⊗-transitive, i.e. R(x, y) ⊗ R(y, z) ≤
R(x, z), for each x, y, z ∈ X.
2 Note that this formula is interpretation of the logical formula (∀x)(A(x) ⇒⇒⇒ B(x))

defining classical inclusion between (fuzzy) sets in a model of fuzzy predicate logic.
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2.3 Graded Square of Opposition and Fuzzy Concept-Forming
Operators

In this subsection, we define graded square of opposition referring to [5], and we
enunciate a theorem that shows how this square can be obtained using the fuzzy
concept-forming operators introduced in Subsect. 2.2.

Definition 7. Let PA and PB be properties represented by A,B ⊂∼ X, then we
say that

1. PA and PB are contraries if and only if A(x) ⊗ B(x) = 0 for each x ∈ X,
2. PA and PB are sub-contraries if and only if A(x)⊕B(x) = 1 for each x ∈ X,
3. PA and PB are sub-alterns if and only if A(x) → B(x) = 1 for each x ∈ X,
4. PA and PB are contradictories if and only if A(x) = ¬B(x) for each x ∈ X.

Definition 8. In a graded square of opposition the vertices A, E, I, and O
are fuzzy sets representing the propositions PA, PE, PI, and PO such that the
following conditions hold:

1. PA and PE are contraries;
2. PI and PO are sub-contraries;
3. PA and PI are sub-alterns, as well as PE and PO;
4. PA and PO are contradictories, as well as PE and PI.

From now, given the L-contexts (X,Y, I), we suppose that L is the �Lukasiewicz
MV-algebra, because we will need the double negation law, i.e. ¬¬a = a for each
a ∈ L. Moreover, we put (¬I)(x, y) = ¬I(x, y). In the standard �Lukasiewicz
algebra, ¬I(x, y) = 1 − I(x, y), for all x ∈ X and y ∈ Y .

This lemma follows from the results found in [5].

Lemma 2. Let A ⊂∼ X be a normal fuzzy set3, then

1. A↑
I(y) ⊗ A↑

¬I(y) = 0,
2. A∩

I (y) ⊕ A∩
¬I(y) = 1,

3. A↑
I(y) ≤ A∩I (y), and A↑

¬I(y) ≤ A∩
¬I(y),

4. ¬A↑
I(y) = A∩

¬I(y), and ¬A∩
I (y) = A↑

¬I(y),

for each y ∈ Y .

Theorem 3. Let A ⊂∼ X. If A is normal, then A↑
I , A↑

¬I , A∩
I and A∩

¬I are the
vertices of a graded square of opposition, and they represent proprieties that are
in relation of contrary, sub-contrary, sub-altern, and contradictory as shown in
Fig. 2.

Observe that we obtain the graded square of opposition defined in [4] when fixing
y ∈ Y .

Example 2. Let (X,Y, I) be an L-context, where X = {x1, x2, x3, x4},
Y = {y1, y2, y3, y4}, and I(x1, y1) = 0.25, I(x2, y1) = 0.6, I(x3, y1) =
1, I(x4, y1) = 0.25. The graded square of opposition associated to A =
{x1, 0.5/x2, 0.6/x3, 0.5/x4} and y1 is depicted in Fig. 3.
3 There exists x ∈ X such that A(x) = 1.
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A∩
I

A↑
I

A∩
¬I

A↑
¬I

Fig. 2. Graded square of opposition

A∩
I (y1) = 0.6

A↑
I(y1) = 0.25

A∩
¬I(y1) = 0.75

A↑
¬I(y1) = 0.4

Fig. 3. Example of graded square of
opposition

3 Fuzzy Quantifier-Based Operators

In this section, we introduce the fuzzy

0

1

1

0.5

0.5 0.910.67 0.79

VeBi

0.970.75 0.86

ExBi

0.1 0.360.24

Sm ¬Sm

Fig. 4. Shapes of the fuzzy sets BiEx,
BiVe, ¬Smν.

quantifier based-operators extending
the notion of fuzzy concept. Our the-
ory is based on the theory of interme-
diate quantifiers presented in [7,9] and
elsewhere. The theory is based on the
concept of evaluative linguistic expres-
sion. These are expressions of natu-
ral language such as “small, very big,
rather medium”, etc. In this paper we
confine only to “not small”, “very big” and “extremely big” and use a simplified
model in which we consider only extensions in the (linguistic) context 〈0, 0.5, 1〉4
that are fuzzy sets BiEx,BiVe,¬Smν depicted in Fig. 4. For justification of this
model, see [8,10].

Remark 1. It is clear that BiEx(x) ≤ BiVe(x) ≤ ¬Smν(x) holds for all x ∈ [0, 1].

The cardinality of A ⊂∼ X is defined by |A| =
∑

x∈X A(x). Furthermore,
given A,B ⊂∼ X, we consider the following measure that expresses how large the
size of A is w.r.t. the size of B (see [9])

μB(A) =

⎧
⎪⎨

⎪⎩

1 if B = ∅ or A = B,
|A|
|B| if B �= ∅ and A ⊆ B,

0 otherwise.

For our further reasoning, we need a special operation called cut of a fuzzy
set. It is motivated by the need to form a new fuzzy set from a given one by
extracting several elements together with their membership degrees and putting
the other membership degrees equal to 0.

4 By a linguistic context for evaluative expressions, we understand a triple of numbers
〈vL, vS , vR〉 that determines an interval [vL, vS ] ∪ [vS , vR] in which all values range.
For the more detailed explanation, see [10].
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Definition 9 ([7]). Let A,B ⊂∼ X. The cut of A with respect to B is the fuzzy
set

(A|B)(x) =

{
A(x) if A(x) = B(x),
0 otherwise.

(1)

Now, we give the definition of positive and negative fuzzy quantifier based-
operators that are based on the relation I, and on the functions ¬Smv,BiVe and
BiEx. Our aim is to capture positive, or negative information in (X,Y, I).

Definition 10 (Fuzzy quantifier-based operators). Let us consider an
L-context (X,Y, I), A ⊂∼ X, B ⊂∼ Y , x ∈ X, and y ∈ Y . Let Ev ∈
{¬Smv,BiVe,BiEx}. Then we put:

(i) Positive fuzzy quantifier based-operators

A↑
I,Ev(y) =

∨

Z⊂∼X

(
∧

x∈X

((A|Z)(x) → I(x, y)) ∧ Ev(μA(A|Z))), (2)

and

B↓
I,Ev(x) =

∨

Z⊂∼Y

(
∧

y∈Y

((B|Z)(y) → I(x, y)) ∧ Ev(μB(B|Z))), (3)

(ii) Negative fuzzy quantifier based-operators

A↑
¬I,Ev(y) =

∨

Z⊂∼X

(
∧

x∈X

((A|Z)(x) → ¬I(x, y)) ∧ Ev(μA(A|Z))), (4)

and

B↓
¬I,Ev(x) =

∨

Z⊂∼Y

(
∧

y∈Y

((B|Z)(y) → ¬I(x, y)) ∧ Ev(μB(B|Z))), (5)

Informal explanation of the formulas in Definition 10 is the following:

(i) A↑
I,Ev(y) is the truth degree to which there exists a cut of A such that “all

its objects have the attribute y” and “its size is Ev (not small, very big or
extremely big) w.r.t. the size of A”. Analogous statement holds for B↓

I,Ev(y).
(ii) A↑

¬I,Ev(x) is the truth degree to which there exists a cut of A such that “all
its objects do not have the attribute y” and “its size is Ev (not small, very
big or extremely big) w.r.t. the size of A”. Analogous statement holds for
and B↓

¬I,Ev(y).

Remark 2. (a) If Z ⊂∼ X and y ∈ Y , then
∧

x∈X((A|Z)(x) → I(x, y)) =

(A|Z)↑
I(y) and

∧
x∈X((A|Z)(x) → ¬I(x, y)) = (A|Z)↑

¬I(y).
(b) If Z ⊂∼ Y and x ∈ X, then

∧
y∈Y ((B|Z)(y) → I(x, y)) = (B|Z)↓

I(y) and
∧

y∈Y ((B|Z)(y) → ¬I(x, y)) = (B|Z)↓
¬I(x).
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Since BiEx, BiVe and ¬Smv lay behind the definition of the intermediate quan-
tifiers almost, most and many (cf. [9]), formulas A↑

I,Ev(y), A↑
¬I,Ev(y), B↓

I,Ev(x)
and B↓

¬I,Ev(x) can be understood as interpretation of the linguistic expressions
summarized in Table 1.

Table 1. Verbal description of the fuzzy quantifier-based operators

Truth degree Statement

A↑
I,BiEx(y) y is shared by almost all objects of A

B↓
I,BiEx(x) x has almost all attributes of B

A↑
I,BiVe(y) y is shared by most objects of A

B↓
I,BiVe(x) x has most attributes of B

A↑
I,¬Smv(y) y is shared by many objects of A

B↓
I,¬Smv(x) x has many attributes of B

A↑
¬I,BiEx(y) y is shared by few objects of A

B↓
¬I,BiEx(x) x has few attributes of B

A↑
¬I,BiVe(y) y is not shared by most objects of A

B↓
¬I,BiVe(x) most attributes of B are not satisfied by x

A↑
¬I,¬Smv(y) y is not shared by many objects of A

B↓
¬I,¬Smv(x) many attributes of B are not satisfied by x

In the sequel, new notions of fuzzy concepts are introduced considering addi-
tional information generated by the fuzzy-quantifier-based operators.

Definition 11. Let Ev ∈ {¬Smv,BiVe,BiEx} and H ∈ {I,¬I}. For each
A, Ã ⊂∼ X, and B, B̃ ⊂∼ Y , we set

(i) A⇑
H,Ev = (A↑

H , A↑
H,Ev) and (B, B̃)⇓

H,Ev = B↓
H ,

(ii) (A, Ã)

H,Ev = A↑

H and B�
H,Ev = (B↓

H , B↓
H,Ev).

Definition 12 (Extended fuzzy concepts). Let Ev ∈ {¬Smv,BiVe,BiEx},
A, Ã ⊂∼ X, and B, B̃ ⊂∼ Y . Then, we say that

(i) (A, (B, B̃)) is a positive concept with Ev-attributes if and only if A =
(B, B̃)⇓

I,Ev and (B, B̃) = A⇑
I,Ev.

(ii) (A, (B, B̃)) is a negative concept with Ev-attributes if and only if A =
(B, B̃)⇓

¬I,Ev and (B, B̃) = A⇑
¬I,Ev.

(iii) ((A, Ã), B) is a positive concept with Ev-objects if and only if (A, Ã) =
B�

I,Ev and B = (A, Ã)

I,Ev.

(iv) ((A, Ã), B) is a negative concept with Ev-objects if and only if if (A, Ã) =
B�

¬I,Ev and B = (A, Ã)

¬I,Ev.
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The following theorems state that the pairs of operators given by Definition 11
are both Galois connections between fuzzy preposets (see Definition 6). Given a
set X, for each A,B,C,D ⊂∼ X, we set

RX((A,B), (C,D)) = SX(C,A). (6)

Theorem 4. Let Ev ∈ {¬Smv,BiVe,BiEx} and H ∈ {I,¬I}. Then,

(a) the pair of mappings ⇑
H,Ev : LX → LY × LY and ⇓

H,Ev : LY × LY → LX is a
Galois connection between the fuzzy preposets (LX ,SX) and (LY × LY ,RY ),
i.e. SX(A, (B, B̃)⇓

H,Ev) = RY (A⇑
H,Ev, (B, B̃)) for each A ⊂∼ X and B, B̃ ⊂∼ Y ,

(b) the pair of mappings 

H,Ev : LY × LY → LX and �

H,Ev : LX → LY × LY is a
Galois connection between the fuzzy preposets (LY × LY ,RY ) and (LX ,SX),
i.e. RY ((A, Ã), B�

H,Ev) = SX((A, Ã)

H,Ev, B) for each A, Ã ⊂∼ X and B ⊂∼ Y .

Proof. We prove only item (a), because item (b) can be proved analogously.
Let A ⊂∼ X, and B, B̃ ⊂∼ Y . By Definition 11(i), SX(A, (B, B̃)⇓

H,Ev) =

SX(A,B↓
H). Moreover, by Theorem 1, we know that SX(A,B↓

H) =
∧

x∈X(A(x) → B↓
H(x)) is equal to SY (B,A↑

H) =
∧

y∈Y (B(y) → A↑
H(y)).

Eventually, by (6), SY (B,A↑
H) = RY (A⇑

H,Ev, (B, B̃)). Then, we conclude that
SX(A, (B, B̃)⇓

H,Ev) = RY (A⇑
H,Ev, (B, B̃)). ��

4 Graded Decagon of Opposition with Fuzzy
Quantifier-Based Operators

In this section,we introduce the definition of gradeddecagon of opposition,which is
a generalization of the graded square of opposition given in Definition 8. Moreover,
we construct a graded decagon of opposition using some fuzzy quantifier-based
operators.

Definition 13 (Graded decagon of opposition). A graded decagon of oppo-
sition consists of vertices A1, . . . , A5 ⊂∼ X, and N1, . . . , N5 ⊂∼ X representing the
propositions PA1 , . . . , PA5 , PN1 , . . . , PN5 such that:

1. PAi
and PNj

are contraries, for each i, j ∈ {1 . . . , 4},
2. PA5 and PN5 are sub-contraries,
3. PAi

and PAi+1 are sub-alterns, as well as PNi
and PNi+1 , for each i ∈

{1, . . . , 4},
4. PA1 and PN5 are contradictories, as well as PA5 and PN1 .

The graded decagon of opposition is depicted in Fig. 5.
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A5

A4

N5

N4

N3A3

N2A2

A1 N1

Fig. 5. Graded decagon of opposition

In the sequel, we prove a few lemmas in order to construct a graded decagon
of opposition with the fuzzy quantifier-based operators.

Lemma 3. For each A ⊂∼ X and y ∈ Y , the following properties hold:

(a) A↑
I(y) ≤ A↑

I,BiEx(y) ≤ A↑
I,BiVe(y) ≤ A↑

I,¬Smv(y),
(b) A↑

¬I(y) ≤ A↑
¬I,BiEx(y) ≤ A↑

¬I,BiVe(y) ≤ A↑
¬I,¬Smv(y).

Proof. We give the proof of item (a) only. The proof of item (b) is analogous.

Let Ev ∈ {¬Smv,BiVe,BiEx}. Trivially, A↑
I(y) = (A|A)↑

I(y) ∧ Ev(μA(A|A)).
By Lemma 1(b),

(A|A)↑
I(y) ∧ Ev(μA(A|A)) ≤

∨

Z⊂∼X

((A|Z)↑
I(y) ∧ Ev(μA(A|Z))),

namely A↑
I(y) ≤ A↑

I,Ev(y). By Remark 1, for each Z ⊂∼ X,

BiEx(μA(A|Z)) ≤ BiVe(μA(A|Z)) ≤ ¬Smv(μA(A|Z)).

Consequently, by Lemma 1(a),

(A|Z)↑
I(y) ∧ BiEx(μA(A|Z)) ≤ (A|Z)↑

I(y) ∧ BiVe(μA(A|Z)) ≤
(A|Z)↑

I(y) ∧ ¬Smv(μA(A|Z)).

Finally, by Lemma 1(c), A↑
I,BiEx(y) ≤ A↑

I,BiVe(y) ≤ A↑
I,¬Smv(y). ��

In some relations, it is necessary to add the assumption that the fuzzy set
in concern is non-empty. In classical logic, we add the formula (∃x)A(x) that
assures us that “there exists at least one element x” and speak about existential
import (or presupposition). In fuzzy logic, the quantifier ∃ is interpreted by
supremum. This leads us to the following definition.
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Definition 14. Let A ⊂∼ X, y ∈ Y , Ev ∈ {¬Smv,BiVe,BiEx}, and H ∈ {I,¬I}.
Then the following formulas have existential import:

(i) (A↑
H(y))∗ =

∧
x∈X(A(x) → H(x, y)) ⊗ ∨

x∈X A(x),
(ii) (A↑

H,Ev(y))∗ =
∨

Z⊂∼X [(
∧

x∈X((A|Z)(x) → H(x, y)) ∧ Ev(μA(A|Z))) ⊗
∨

x∈X(A|Z)(x)].

The existential import is used in the following lemmas.

Lemma 4. Let A ⊂∼ X, y ∈ Y , Ev ∈ {¬Smv,BiVe,BiEx}, and H ∈ {I,¬I}.
Then,

(A↑
H,Ev(y))∗ ≤

(
∨

x∈X

A(x)

)

→ A∩
H(y).

Proof. By Lemma 1(b), the following inequality holds: for each Z ⊂∼ X and
x ∈ X

(A|Z)↑
H(y) ≤ (A|Z)(x) → H(x, y).

By the adjunction property, (A|Z)↑
H(y) ⊗ (A|Z)(x) ≤ H(x, y). By Lemma 1(f),

(A|Z)↑
H(y) ⊗ (A|Z)(x) ⊗ A(x) ≤ A(x) ⊗ H(x, y).

Hence,

(A|Z)↑
H(y) ⊗

∨

x∈X

(A|Z)(x) ⊗
∨

x∈X

A(x) ≤
∨

x∈X

A(x) ⊗ H(x, y).

By Lemma 1(e),

((A|Z)↑
H(y) ∧ Ev(μA(A|Z))) ⊗

∨

x∈X

(A|Z)(x) ⊗
∨

x∈X

A(x) ≤
∨

x∈X

A(x) ⊗ H(x, y).

Using the adjunction property, we conclude that (A↑
H,Ev(y))∗ ≤ (

∨
x∈X A(x)) →

A∩
H(y). ��

Lemma 5. Let A ⊂∼ X, y ∈ Y , and Ev1, Ev2 ∈ {¬Smv,BiVe,BiEx}. Then,

(A↑
I,Ev1

(y))∗ ⊗ (A↑
¬I,Ev2

(y))∗ = 0.

Proof. Let y ∈ Y , x ∈ X and Z1, Z2 ⊂∼ X. By Definition 4, and by Lemma 1(b),

(A|Z1)
↑
I(y) ≤ (A|Z1)(x) → I(x, y), and (A|Z2)

↑
¬I(y) ≤ (A|Z2)(x) → ¬I(x, y).

Then, by the adjunction property,

(A|Z1)
↑
I(y) ⊗ (A|Z1)(x) ≤ I(x, y), and (A|Z2)

↑
¬I(y) ⊗ (A|Z2)(x) ≤ ¬I(x, y).

By Lemma 1(e), ((A|Z1)
↑
I(y) ∧ Ev1(μA(A|Z1))) ⊗ (A|Z1)(x) ≤ I(x, y), and

((A|Z2)
↑
¬I(y) ∧ Ev2(μA(A|Z2))) ⊗ (A|Z2)(x) ≤ ¬I(x, y).
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By Lemma 1(d), (f),

((A|Z1)
↑
I(y) ∧ Ev1(μA(A|Z1))) ⊗ (A|Z1)(x) ⊗ ((A|Z)↑

¬I(y) ∧ Ev2(μA(A|Z)))⊗
(A|Z1)(x) = 0,

Finally,

∨

Z1⊂∼X

(

(A|Z1)
↑
I(y) ∧ Ev1(μA(A|Z1)) ⊗

∨

x∈X

(A|Z1)(x)

)

⊗

∨

Z2⊂∼X

(

((A|Z2)
↑
¬I(y) ∧ Ev2(μA(A|Z2))) ⊗

∨

x∈X

(A|Z2)(x)

)

= 0,

and hence, (A↑
I,Ev1

(y))∗ ⊗ (A↑
¬I,Ev2

(y))∗ = 0. ��
Lemma 6. Let A ⊂∼ X, y ∈ Y , and Ev ∈ {¬Smv,BiVe,BiEx}. Then,

(A↑
I,Ev(y))∗ ⊗ (A↑

¬I(y))∗ = 0 and (A↑
I(y))∗ ⊗ (A↑

¬I,Ev(y))∗ = 0.

Proof. The proof is similar to that of Lemma 5. ��
The following theorem shows that we can obtain a decagon of oppositions

starting from our operators.

Theorem 5. Let (X,Y, I) be an L-context, where L is the standard �Lukasiewicz
MV-algebra, and let A ⊂∼ X. If A is normal, then

A↑
I , A

↑
I,BiEx, A

↑
I,BiVe, A

↑
I,¬Smv, A

∩
I , A↑

¬I , A
↑
¬I,BiEx, A

↑
¬I,BiVi, A

↑
¬I,¬Smv, A

∩
¬I

are the vertices of a graded decagon of opposition, and they represent proprieties
that are in relation of contrary, sub-contrary, sub-altern, and contradictory as
shown in Fig. 6.

Proof. The proof follows by Theorem 3, Lemma 3, Lemma 4, Lemma 5, and
Lemma 6. ��

Example 3. Let (X,Y, I) be an L-context, where X = {x1, . . . , x24}, Y = {y1,
. . . , y10}, and the L-relation I between the objects of X and the attribute y1

of Y is defined by Table 2. Let us fix the context 〈0, 0.5, 1〉. Then the functions
¬Smv : [0, 1] → [0, 1], BiVe : [0, 1] → [0, 1], and BiEx : [0, 1] → [0, 1] are defined
in [10] (cf. also Fig. 4). Furthermore, put

A = {1/
x1, . . . , 1

/
x7, 0.6/

x8, 0.93/
x9, 0.5/

x10, 1
/
x11, 0.7/

x12, 0.98/
x13,

1/
x14, . . . , 1

/
x16, 0.8/

x17, 1
/
x18, . . . , 1

/
x20, 0.5/

x21, 1
/
x22, 1

/
x23,

0.66/
x24, 1

/
x25, 1

/
x26}.

Then we obtain the graded decagon of opposition depicted in Fig. 7.
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Table 2. The fuzzy relation I between the objects of X and attribute y1.

I x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

y1 0.5 0.15 0.31 0.5 0.66 0.5 0.5 0 0.73 0 0.5 0.8

I x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26

y1 0.98 0.25 0.5 0.5 0.27 0.5 0.5 0.6 0 0.37 0.5 0.02 0.5 0.6

A∩
I

A↑
I,¬Smv

A∩
¬I

A↑
¬I,¬Smv

A↑
¬I,BiVeA↑

I,BiVe

A↑
¬I,BiExA↑

I,BiEx

A↑
I A↑

¬I

Fig. 6. Graded decagon of opposi-
tion

A∩
I (y1) = 0.96

A↑
I,¬Smv(y1) = 0.5

A∩
¬I(y1) = 0.85

A↑
¬I,¬Smv(y1) = 0.5

A↑
¬I,BiVe(y1) = 0.4A↑

I,BiVe(y1) = 0.37

A↑
¬I,BiEx(y1) = 0.34A↑

I,BiEx(y1) = 0.31

A↑
I(y1) = 0.15 A↑

¬I(y1) = 0.04

Fig. 7. Example of graded decagon of opposi-
tion

5 Future Directions

In this article, a graded decagon of opposition is introduced as a graded gener-
alization of Aristotle’s square, and it is constructed using some fuzzy quantifier-
based operators. As future work, we intend to analyze more deeply the role that
the fuzzy quantifier-based operators could have in fuzzy formal concept analy-
sis. Moreover, fixed an evaluative linguistic expression Ev1, we will find another
evaluative linguistic expression Ev2 such that the pair of operators ↑

I,Ev1
and

↓
I,Ev2

forms a Galois connection. Finally, we would like to propose our opera-
tors as fuzzy generalizations of the scaling quantifiers used in Relational concept
analysis [2].

References

1. Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles, vol. 20.
Springer, New York (2012). https://doi.org/10.1007/978-1-4615-0633-1

2. Braud, A., Dolques, X., Huchard, M., Le Ber, F.: Generalization effect of quantifiers
in a classification based on relational concept analysis. Knowl. Based Syst. 160,
119–135 (2018)

3. Cignoli, R.L., d’Ottaviano, I.M., Mundici, D.: Algebraic Foundations of Many-
Valued Reasoning, vol. 7. Springer, Dordrecht (2013). https://doi.org/10.1007/
978-94-015-9480-6

https://doi.org/10.1007/978-1-4615-0633-1
https://doi.org/10.1007/978-94-015-9480-6
https://doi.org/10.1007/978-94-015-9480-6


144 S. Boffa et al.

4. Ciucci, D., Dubois, D., Prade, H.: Structures of opposition induced by relations.
Ann. Math. Artif. Intell. 76(3–4) 351–373 (2015). https://doi.org/10.1007/s10472-
015-9480-8

5. Dubois, D., Prade, H., Rico, A.: Graded cubes of opposition and possibility theory
with fuzzy events. Int. J. Approx. Reason. 84, 168–185 (2017)

6. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-59830-2
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Abstract. In our previous papers, we formally analyzed the generalized
Aristotle’s square of opposition using tools of higher-order fuzzy logic.
Namely, we introduced general definitions of selected intermediate quan-
tifiers, constructed a generalized square of opposition consisting of them
and syntactically analyzed the emerged properties. The main objective
of this paper is to extend the graded Peterson’s square of opposition into
the graded cube of opposition with intermediate quantifiers.

Keywords: Intermediate quantifiers · Fuzzy natural logic · Evaluative
linguistic expressions · Generalized peterson square · Graded cube of
opposition

1 Introduction

This paper continues the work on intermediate quantifiers. Fuzzy natural logic
(FNL) is a formal mathematical theory that consists of three theories: (1) a
formal theory of evaluative linguistic expressions explained in detail in [1], (2) a
formal theory of fuzzy IF-THEN rules and approximate reasoning presented in
[2,3], and (3) a formal theory of intermediate and generalized fuzzy quantifiers
presented in [4–7]. This paper is a contribution to the latter.

Intermediate quantifiers are special linguistic expressions, for example, almost
all, a few, many, a large part of, etc. which were introduced and deeply studied
by Thompson in [8] and later by Peterson in his book in [9]. Peterson introduced
a square of opposition as a generalization of the Aristotle’s one [10–13]. It consists
of five basic intermediate quantifiers.

Formalization of Peterson’s square was introduced by Murinová and Novák
in [14,15]. The main objective of this paper is to extend this approach to a
graded 5-cube of opposition and prove its forming properties.

The work was supported from ERDF/ESF by the project “Centre for the develop-
ment of Artificial Intelligence Methods for the Automotive Industry of the region” No.
CZ.02.1.01/0.0/0.0/17-049/0008414 and partially also by the MŠMT project NPU II
project LQ1602 “IT4Innovations excellence in science”.
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Note that the idea to extend the square of opposition to a cube was already
studied by Dubois in [16–18]. The authors introduced a graded Aristotle’s square
of opposition extended to a cube that associates the traditional square of oppo-
sition with a dual one. Ciucci, Dubois, and Prade [19,20] then introduced an
application of the graded cube within the possibility theory.

2 Preliminaries

In this section, we will remind the main concepts and properties of the fuzzy
type theory (higher-order fuzzy logic) and the theory of evaluative linguistic
expressions. The reader can find details in several papers [1,14,21].

2.1 Fuzzy Type Theory

The formal theory of intermediate quantifiers is developed within �Lukasiewicz
fuzzy type theory (�L-FTT). The algebra of truth values is a linearly ordered
MVΔΔΔ-algebra extended by the delta operation (see [22,23]). A special case is the
standard �Lukasiewicz MVΔ-algebra.

L = 〈[0, 1],∨,∧,⊗,→, 0, 1,Δ〉 (1)

where

∧ = minimum, ∨ = maximum,

a ⊗ b = 0 ∨ (a + b − 1), a → b = 1 ∧ (1 − a + b),

¬a = a → 0 = 1 − a, Δ(a) =

{
1 if a = 1,

0 otherwise.

The basic syntactical objects of �L-FTT are classical (cf. [24]), namely the
concepts of type and formula. The atomic types are ε (elements) and o (truth
values). General types are denoted by Greek letters α, β, . . .. We will omit the
type whenever it is clear from the context. A set of all types is denoted by Types.
The (meta-)symbol “:= ” used below means “is defined by”.

The language consists of variables xα, . . ., special constants cα, . . . (α ∈
Types), symbol λ, and parentheses. The connectives (which are special con-
stants) are fuzzy equality/equivalence ≡, conjunction ∧∧∧, implication ⇒⇒⇒, negation
¬¬¬, strong conjunction &&&, strong disjunction ∇∇∇, disjunction ∨∨∨, and delta ΔΔΔ.

Formulas are formed of variables, constants (each of specific type), and the
symbol λ. Each formula A is assigned a type and we write it as Aα.1 A set of
formulas of type α is denoted by Formα. The set of all formulas is Form =⋃

α∈Types Formα.

1 Each formula has a unique type assigned to it. Hence, if α, β are different types then
Aα and Aβ are different formulas. To increase clarity of explanation, however, we
will usually denote different formulas by different letters.
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A model is M = {(Mα,�α) | α ∈ Types} where �α is a fuzzy equality on
a set Mα. If M is a model then M(Ao) ∈ Mo is a truth value, M(Aε) ∈ Mε is
some element and M(Aβα) : Mα → Mβ is a function. For example, M(Aoα) :
Mα → Mo is a fuzzy set and M(A(oα)α) : Mα × Mα → Mo a fuzzy relation. A
formula Ao is true in T , T |= Ao, if it is true in the degree 1 in all models of T .

The fuzzy type theory is complete, i.e., a theory T is consistent iff it has a
(Henkin) model. We sometimes apply its equivalent version: T � Ao iff T |= Ao.

The following special formulas play a role in our theory below:

Υoo ≡ λzo · ¬¬¬ΔΔΔ(¬¬¬zo), (nonzero truth value)

Υ̂oo ≡ λzo · ¬¬¬ΔΔΔ(zo ∨∨∨ ¬¬¬zo). (general truth value)

Thus, M(Υ (Ao)) = 1 iff M(Ao) > 0, and M(Υ̂ (Ao)) = 1 iff M(Ao) ∈ (0, 1)
holds in any model M.

2.2 Theory of Evaluative Linguistic Expressions

Evaluative linguistic expressions are expressions of a natural language such as
small, medium, big, very short, more or less deep, quite roughly strong, extremely
high, etc. Their theory is the basic constituent of the fuzzy natural logic.

The semantics of evaluative linguistic expressions is formulated in a spe-
cial formal theory TEv of �L-FTT that was introduced in [1] and less formally
explained in [25] where also formulas for direct computation are provided.

The evaluative expressions are construed by special formulas Sm ∈
Formoo(oo) (small), Me ∈ Formoo(oo) (medium), Bi ∈ Formoo(oo) (big), and
Ze ∈ Formoo(oo) (zero) that can be extended by several selected linguistic hedges.
Recall that a hedge, i.e., usually (but not necessarily) an adverb such as “very, sig-
nificantly, about, roughly”, etc. is in general construed by a formula ννν ∈ Formoo

with specific properties. To classify that a given formula is a hedge, we intro-
duced a formula Hedge ∈ Formo(oo). Then TEv � Hedge ννν means that ννν is a
hedge. We refer the reader to [1] for the technical details. We assume that the
following is provable: TEv � Hedge ννν for all ννν ∈ {Ex, Si, V e,ML,Ro,QR, V R}.

2.3 Theory of Intermediate Quantifiers

The theory of intermediate quantifiers is a special formal theory T IQ[S] of
�L-FTT extending TEv. A detailed structure of T IQ[S] and precise definitions
can be found in [5,6,14].

As discussed in the Introduction, the semantics of the intermediate quantifiers
requires the idea of a “size” of a (fuzzy) set that can be characterized by the
concept of a measure.
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Definition 1. Let R ∈ Formo(oα)(oα) be a formula2.

(i) A formula μ ∈ Formo(oα)(oα) defined by

μo(oα)(oα) := λzoα λxoα (Rzoα)xoα (2)

represents a measure on fuzzy sets in the universe of type α ∈ Types if it
has the following properties:

(M1) ΔΔΔ(xoα ⊆ zoα)&&&ΔΔΔ(yoα ⊆ zoα)&&&ΔΔΔ(xoα ⊆ yoα) ⇒⇒⇒ ((μzoα)xoα ⇒⇒⇒
(μzoα)yoα),

(M2) ΔΔΔ(xoα ⊆ zoα) ⇒⇒⇒ ((μzoα)(zoα \ xoα) ≡ ¬¬¬(μzoα)xoα),
(M3) ΔΔΔ(xoα ⊆ yoα)&&&ΔΔΔ(xoα ⊆ zoα)&&&ΔΔΔ(yoα ⊆ zoα) ⇒⇒⇒ ((μzoα)xoα ⇒⇒⇒

(μyoα)xoα).
(ii) The following formula characterizes measurable fuzzy sets of a given type

α:

Mo(oα) := λzoα · ΔΔΔ¬¬¬(zoα ≡ ∅oα)&&&ΔΔΔ(μzoα)zoα &&&
(∀xoα)(∀yoα)ΔΔΔ((M1)&&& (M3))&&&(∀xoα)ΔΔΔ(M2) (3)

where, for the simplicity of expression, we write (M1)–(M3) to stand for the
axioms from (i).

Definition 2. Let S ⊆ Types be a selected set of types, P = {R ∈
Formo(oα)(oα) | α ∈ S} be a set of new constants. Let T be a consistent extension
of the theory TEv in the language J(T ) ⊇ JEv ∪ P . We say that the theory T
contains intermediate quantifiers w.r.t. the set of types S if for all α ∈ S the
following is provable:

(i)
T � (∃zoα)Mo(oα)zoα. (4)

(ii)

T � (∀zoα)(∃xoα)(Mo(oα)zoα ⇒⇒⇒ (ΔΔΔ(xoα ⊆ zoα)&&& Υ̂ ((μzoα)xoα)). (5)

Formula (5) assures the existence of fuzzy sets in each measurable fuzzy set that
have non-trivial measure. Obviously, formulas (4) and (5) can be also introduced
as special axioms of T . In the sequel, we will denote a theory that contains
intermediate quantifiers due to Definition 2 by T IQ.

For the definition of intermediate quantifiers, we need to define a special
operation called cut of a fuzzy set, which will be formally defined as follows: Let
y, z ∈ Formoα. The cut of y by z is the fuzzy set

y|z ≡ λxα · zx&&&ΔΔΔ(Υ (zx) ⇒⇒⇒ (yx ≡ zx)).

The following lemma can be proved.
2 This formula can be understood as a procedure providing computation of the output

(a value in L) on the basis of a given input—two fuzzy sets. Formula (2) says that
the measure is a function.



Graded Cube of Opposition with Intermediate in Fuzzy Natural Logic 149

Lemma 1 ([15]). Let M be a model and p an assignment such that B =
Mp(y) ⊂∼ Mα, Z = Mp(z) ⊂∼ Mα. Then for any m ∈ Mα

Mp(y|z)(m) = (B|Z)(m) =

{
B(m), if B(m) = Z(m),
0 otherwise.

One can see that the operation B|Z takes only those elements m ∈ Mα from the
fuzzy set B whose membership B(m) is equal to Z(m), otherwise (B|Z)(m) = 0.
If there is no such an element, then B|Z = ∅. We can thus use various fuzzy sets
Z to “picking up proper elements” from B.

The following lemma will play a significant role in proofs of properties of the
graded cube of opposition.

Lemma 2. Let M be a model and p an assignment such that B = Mp(y) ⊂∼ Mα,
Z = Mp(z) ⊂∼ Mα, Z ′ = Mp(z′) ⊂∼ Mα. Then for any m ∈ Mα

(a) (B|Z)(m) ⊗ (¬¬¬B|Z ′)(m) = 0,
(b) (B|Z)(m) ⊗ ¬¬¬(B|Z ′)(m) = 0.

Proof. (a) Let p(x) = m and B(m) = 0. Then the property is trivially fulfilled.
Let B(m) = Z(m) > 0 and ¬¬¬B(m) = Z ′(m) > 0. Then from Lemma 1

it follows that B(m) = (B|Z)(m) as well as ¬¬¬B(m) = (¬¬¬B|Z ′)(m). Because
B(m) ⊗ ¬¬¬B(m) = 1 holds for any m ∈ Mα, then (B|Z)(m) ⊗ (¬¬¬B|Z ′)(m) = 0.

(b) Obviously as (a).

Definition 3. Let T IQ be a theory containing intermediate quantifiers w.r.t. a
set of types S due to Definition 2. Let Ev ∈ Formoo be an intension of some
evaluative expression. Finally, let z ∈ Formoα, x ∈ Formα be variables and
A,B ∈ Formoα be formulas where T IQ � Mo(oα)Boα, α ∈ S. An intermediate
generalized quantifier construes the sentence “〈Quantifier〉 B’s are A” is one of
the following formulas:

(Q∀
Ev x)(B,A) ≡ (∃z)[(∀x)((B|z)x ⇒⇒⇒ Ax) ∧∧∧ Ev((μB)(B|z))], (6)

(Q∃
Ev x)(B,A) ≡ (∃z)[(∃x)((B|z)x ∧∧∧ Ax) ∧∧∧ Ev((μB)(B|z))]. (7)

The following special intermediate quantifiers can be introduced:

A: All B are A := (Q∀
BiΔΔΔx)(B,A) ≡ (∀x)(Bx ⇒⇒⇒ Ax),

E: No B are A := (Q∀
BiΔΔΔx)(B,¬¬¬A) ≡ (∀x)(Bx ⇒⇒⇒ ¬¬¬Ax),

P: Almost all B’s are A := (Q∀
Bi Exx)(B,A)

B: Almost all B’s are not A := (Q∀
Bi Exx)(B,¬¬¬A)

T: Most B’s are A := (Q∀
Bi Vex)(B,A)

D: Most B’s are not A := (Q∀
Bi Vex)(B,¬¬¬A)

K: Many B’s are A := (Q∀
¬Smx)(B,A)
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G: Many B’s are not A := (Q∀
¬Smx)(B,¬¬¬A)

I: Some B are A := (Q∃
BiΔΔΔx)(B,A) ≡ (∃x)(Bx ∧∧∧ Ax),

O: Some B are not A := (Q∃
BiΔΔΔx)(B,¬¬¬A) ≡ (∃x)(Bx ∧∧∧ ¬¬¬Ax).

3 Graded Cube of Opposition

3.1 From the Graded Square to the Graded Cube of Opposition

The graded Aristotle’s square of opposition is formed by two positive and two
negative intermediate quantifiers that fulfil the generalized properties of con-
traries, contradictories, sub-contraries, and sub-alterns. Below, we recall the
main definitions from [14].

Definition 4. Let T be a consistent theory of �L-FTT, M |= T be a model,
p ∈ Asg(M) be an assignment, and P1, P2 ∈ Formo be closed formulas of type o.

(i) P1 and P2 are contraries in the model M if

Mp(P1) ⊗ Mp(P2) = 0. (8)

They are contraries in the theory T if T � ¬¬¬(P1 &&& P2). By completeness,
this is equivalent to (8) for every model M |= T .

(ii) P1 and P2 are subcontraries in the model M if

Mp(P1) ⊕ Mp(P2) = 1. (9)

They are subcontraries in the theory T if T � (P1 ∇∇∇ P2). By completeness,
this is equivalent to (9) for every model M |= T .

(iii) P1 and P2 are contradictories in the model M if both

Mp(ΔΔΔP1) ⊗ Mp(ΔΔΔP2) = 0 as well as Mp(ΔΔΔP1) ⊕ Mp(ΔΔΔP2) = 1. (10)

They are contradictories in the theory T if both T � ¬¬¬(ΔΔΔP1 &&&ΔΔΔP2) as well
as T � ΔΔΔP1 ∇∇∇ΔΔΔP2. By completeness, this means that (10) hold for every
model M |= T .

(iv) P2 is a subaltern of P1 (P1 is superaltern of P2) in the model M if

Mp(P1) ≤ Mp(P2). (11)

P2 is subaltern of P1 in the theory T (P1 is superaltern of P2 in the theory
T ) if T � P1 ⇒⇒⇒ P2. By completeness, this means that inequality (11) holds
true in every model M |= T .

All these definitions were introduced as a generalization of the corresponding
classical ones. In our previous paper [14], we syntactically proved all the men-
tioned properties which form the graded Aristotle’s square of opposition.
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Theorem 1 ([14]). The following is true in T IQ:

(a) formulas A and O are contradictories in T IQ,
(b) formulas E and I are contradictories in T IQ.
(c) formulas A and E are contraries with the presupposition in T IQ.
(d) the formula A is subaltern of I.

Changing B and A into their negation, ¬¬¬B and ¬¬¬A respectively, leads to
another similar square of opposition aeio, provided that we also assume that the
fuzzy set ¬¬¬B is non-empty. It means that we assume presupposition3 (existential
import) which was in detail discussed in our previous papers. The corresponding
quantifier with presupposition is denoted by a star. To extend the graded Aris-
totle’s square to a graded cube of opposition, we have to define new formulas as
follows:

∗a: All ¬¬¬B are not A (∀x)(¬¬¬Bx ⇒⇒⇒ ¬¬¬Ax)&&&(∃x)¬¬¬Bx, (12)
e: All ¬¬¬B are A (∀x)(¬¬¬Bx ⇒⇒⇒ Ax), (13)
i: Some ¬¬¬B are not A (∃x)(¬¬¬Bx ∧∧∧ ¬¬¬Ax), (14)

∗o: Some ¬¬¬Bare A (∃x)(¬¬¬Bx ∧∧∧ Ax)∇∇∇¬¬¬(∃x)¬¬¬Bx. (15)

We can see that the new logical square of opposition (aeio) develops from the
graded Aristotle’s one (AEIO) by replacing formulas Bx and Ax by ¬¬¬Bx and
¬¬¬Ax, respectively. It means that the “basic” properties between the intermediate
quantifiers inside aeio can be proved similarly to AEIO.

Theorem 2. The following is true in T IQ:

(a) formulas a and o are contradictories in T IQ,
(b) formulas e and i are contradictories in T IQ.
(c) formulas a and e are contraries with the presupposition in T IQ.
(d) formula a is subaltern of i.

Proof. The properties (a)–(d) can be proved similarly as the properties of the
graded Aristotle’s square AEIO in [14].

3.2 Relations Between “AEIO” and “aeio”

Lemma 3. The following is provable:

(a) T IQ � ¬¬¬(A&&& e)∗,
(b) T IQ � ¬¬¬(a&&&E)∗.

3 It is necessary that the universal quantifiers carry a presupposition of existential
import for the entailments to their respective particular forms to hold.
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Proof. (a) By properties of �L-FTT we have

T IQ � (Bx ⇒⇒⇒ Ax) ⇒⇒⇒ (¬¬¬Ax ⇒⇒⇒ ¬¬¬Bx) (16)

as well as
T IQ � (¬¬¬Bx ⇒⇒⇒ Ax) ⇒⇒⇒ (¬¬¬Ax ⇒⇒⇒ Bx). (17)

By T IQ � (¬¬¬Ax&&&(¬¬¬Ax ⇒⇒⇒ Bx)) ⇒⇒⇒ Bx and T IQ � (¬¬¬Ax&&&(¬¬¬Ax ⇒⇒⇒
¬¬¬Bx)) ⇒⇒⇒ ¬¬¬Bx we obtain the following provable formula

T IQ � (¬¬¬Ax&&&(¬¬¬Ax ⇒⇒⇒ Bx))&&&(¬¬¬Ax&&&(¬¬¬Ax ⇒⇒⇒ ¬¬¬Bx)) ⇒⇒⇒ ⊥
which, using the properties of �L-FTT, is equivalent with

T IQ � ((¬¬¬Ax ⇒⇒⇒ Bx)&&&(¬¬¬Ax ⇒⇒⇒ ¬¬¬Bx)) ⇒⇒⇒ (¬¬¬Ax)2 ⇒⇒⇒ ⊥ (18)

From (16), (17) and (18) by transitivity and using MP, we conclude that

T IQ � ((Bx ⇒⇒⇒ Ax)&&&(¬¬¬Bx ⇒⇒⇒ Ax)) ⇒⇒⇒ ((¬¬¬Ax)2 ⇒⇒⇒ ⊥). (19)

Finally, by the quantifier properties, we have

T IQ � ((∀x)(Bx ⇒⇒⇒ Ax)&&&)(∀x)(¬¬¬Bx ⇒⇒⇒ Ax)) ⇒⇒⇒ ((∃x)(¬¬¬Ax)2 ⇒⇒⇒ ⊥) (20)

which uses the definition of the negation equivalent with

T IQ � ¬¬¬((∀x)(Bx ⇒⇒⇒ Ax)&&&)(∀x)(¬¬¬Bx ⇒⇒⇒ Ax))&&&(∃x)(¬¬¬Ax)2

(b) It can be proved analogously.

Theorem 3. The following holds true:

(a) Formulas a and E are contraries in T IQ.
(b) Formulas A and e are contraries in T IQ.

Proof. It follows from Lemma 3.

Lemma 4. Let the following be true:

(a) T IQ � (i∇∇∇O)∗,
(b) T IQ � (I∇∇∇o)∗.

Proof. (a) From Lemma 3(a), we have the following provable formula

T IQ � ¬¬¬((∀x)(Bx ⇒⇒⇒ Ax)&&&)(∀x)(¬¬¬Bx ⇒⇒⇒ Ax))&&&(∃x)(¬¬¬Ax)2.

Then by properties of the negation, we have

T IQ � (∃x)¬¬¬(Bx ⇒⇒⇒ Ax)∇∇∇(∃x)¬¬¬(¬¬¬Bx ⇒⇒⇒ Ax))∇∇∇¬¬¬(∃x)(¬¬¬Ax)2

which is equivalent with

T IQ � (∃x)(Bx&&&¬¬¬Ax)∇∇∇(∃x)(¬¬¬Bx&&&¬¬¬Ax))∇∇∇¬¬¬(∃x)(¬¬¬Ax)2.

Finally by properties of &&& with ∧, we conclude that

T IQ � (∃x)(Bx ∧ ¬¬¬Ax)∇∇∇(∃x)(¬¬¬Bx ∧ ¬¬¬Ax))∇∇∇¬¬¬(∃x)(¬¬¬Ax)2.

(b) Analogously as (a).
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Theorem 4. The following is true:

(a) Formulas i and O are subcontraries in T IQ.
(b) Formulas I and o are subcontraries in T IQ.

Proof. It follows from Lemma 4.

Lemma 5. The following is provable:

(a) T IQ � A∗ ⇒⇒⇒ i T IQ � a ⇒⇒⇒ I,
(b) T IQ � E ⇒⇒⇒ o∗ T IQ � e ⇒⇒⇒ O.

Proof. (a) By the properties of �L-FTT, we have

T IQ � (∀x)(Bx ⇒⇒⇒ Ax) ⇒⇒⇒ (∀x)(¬¬¬Ax ⇒⇒⇒ ¬¬¬Bx) (21)

as well as

T IQ � (∀x)(¬¬¬Ax ⇒⇒⇒ ¬¬¬Bx) ⇒⇒⇒ ((∃x)¬¬¬Ax ⇒⇒⇒ (∃x)(¬¬¬Ax ∧ ¬¬¬Bx)). (22)

Finally, by (21) and (22), we obtain

T IQ � (∀x)(Bx ⇒⇒⇒ Ax)&&&(∃x)¬¬¬Ax ⇒⇒⇒ (∃x)(¬¬¬Ax ∧ ¬¬¬Bx).

(b) is proved analogously.

Theorem 5. The following is true:

(a) Formula A is subaltern of i, and I is superaltern of a.
(b) Formula E is subaltern of o, and e is superaltern of O.

Proof. It follows from Lemma 5.

Example 1 (Interpretation of Cube of opposition in T IQ).

(a) Construction of AEIO as follows:
Let us consider a model M |= T IQ such that T IQ � (∃x)Bx. Let M(A) = a > 0
(e.g., a = 0.2). Since [A,E] are contraries, we have M(E) = e ≤ 1 − a. Because
the formulas [A,O] are contradictories, it follows from the definition of contra-
dictories that M(ΔΔΔA) = 0 and so M(ΔΔΔO) = 1 because M(ΔΔΔA)⊗M(ΔΔΔO) = 0
and M(ΔΔΔA) ⊕ M(ΔΔΔO) = 1. Consequently, O is subaltern of E. The I is sub-
altern of A and thus M(I) = i ≥ 0.2. However, I is contradictory with E and
so M(I) = i = 1. Finally, I is sub-contrary with O because M(O∇∇∇ I) = 1 and
I is subaltern of A.

(b) Construction of aeio as follows:
Let us consider the same model M |= T IQ such that T IQ � (∃x)¬¬¬Ax. Let
M(a) = a′ > 0 (e.g., a′ = 0.8), M(e) = e′, M(i) = i′ and M(o) = o′.
Since [A, e], as well as [E, i] are contraries, we have M(e) = e′ ≤ 0.2 and
M(a) = a′ ≤ 0.8. Similarly, formulas [i,O] and [I,o] are sub-contraries in T IQ

then M(i) = i′ = 1 as well as M(i) = i′ = 1. Both of these results correspond
with contradictories of the pairs [a,o] and [e, i]. Finally, A is subaltern of i as
well as E is subaltern of o.

These results are summarized in the following scheme. Recall that the straight
lines mark contradictories, the dashed lines contraries, and the dotted lines sub-
contraries. The arrows indicate the relation superaltern–subaltern (Fig. 1).
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M(A) = a = 0.8 M(E) = e ≤ 0.2

M(I) = i = 1 M(O) = o = 1

M(a) = a′ ≤ 0.8 M(e) = e′ ≤ 0.2

M(i) = i′ = 1 M(o) = o′ = 1

Fig. 1. The example of graded Aristotle’s cube of opposition

4 Graded Cube with Intermediate Quantifiers

We continue with an extension of graded the 5-square of opposition AEPBT-
DKGIO, which was introduced as a generalization of Peterson’s square, to the
graded 5-cube of opposition aepbtdkgio with intermediate quantifiers. Below
we introduce new forms of intermediate quantifiers as follows:

(Q∀
Ev x)(¬¬¬B,¬¬¬A) ≡ (∃z)[(∀x)((¬¬¬B|z)x ⇒⇒⇒ ¬¬¬Ax) ∧∧∧ Ev((μ(¬¬¬B))(¬¬¬B|z))],

(23)

(Q∃
Ev x)(¬¬¬B,¬¬¬A) ≡ (∃z)[(∃x)((¬¬¬B|z)x ∧∧∧ ¬¬¬Ax) ∧∧∧ Ev((μ(¬¬¬B))(¬¬¬B|z))]. (24)

Either of the quantifiers (23) or (24) construes the sentence

“〈Quantifier〉 not B’s are not A”.

4.1 Contraries

Lemma 6. Let B ∈ Formoα be a formula and z, z′ ∈ Formoα be variables. Then
the following is provable:

T IQ � ¬¬¬[(∃z)(∃z′)[(∀x)((B|z)x ⇒⇒⇒ Ax) ∧∧∧ Ev((μB)(B|z))&&&
(∀x)((¬¬¬B|z′)x ⇒⇒⇒ Ax) ∧∧∧ Ev((μ(¬¬¬B))((¬¬¬B|z′))) &&& (∃x)(¬¬¬(Ax))2]. (25)
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Proof. The proof of (25) is based on the following provable formulas:

T IQ � ((B|z)x ⇒⇒⇒ Ax) ⇒⇒⇒ (¬¬¬Ax ⇒⇒⇒ ¬¬¬(B|z)x)

and
T IQ � ((¬¬¬B|z′)x ⇒⇒⇒ Ax) ⇒⇒⇒ (¬¬¬Ax ⇒⇒⇒ ¬¬¬(¬¬¬B|z′)x).

Using quantifier properties and by Lemma 2 we obtain from these formulas that

T IQ � (∀x)((B|z)x ⇒⇒⇒ Ax)&&&(∀x)((¬¬¬B|z′)x ⇒⇒⇒ Ax) ⇒⇒⇒ ((∃x)(¬¬¬Ax)2 ⇒⇒⇒ ⊥).
(26)

By the adjunction, the properties of ∧∧∧, the quantifier properties and the defini-
tion of negation, we obtain (25) using the rules of �L-FTT.

Theorem 6. The pairs of quantifiers

(i) [(Q∀
Bi Ex x)(B,A), (Q∀

Bi Ex x)(¬¬¬B,A)], (i.e., [P,b]),
(ii) [(Q∀

Bi Ve x)(B,A), (Q∀
Bi Ve x)(¬¬¬B,A)], (i.e., [T,d]),

(iii) [(Q∀
¬¬¬(Sm ν̄νν) x)(B,A), (Q∀

¬¬¬(Sm ν̄νν) x)(B,¬¬¬A)], (i.e., [K,g]),

are contraries in T IQ.

Proof. It follows from Lemma 6 when replacing Ev by concrete evaluative lin-
guistic expressions.

Lemma 7. Let B ∈ Formoα be a formula and z, z′ ∈ Formoα be variables. Then
the following is provable:

T IQ � ¬¬¬[(∃z)(∃z′)[(∀x)((¬¬¬B|z)x ⇒⇒⇒ ¬¬¬Ax) ∧∧∧ Ev((μ(¬¬¬B))((¬¬¬B|z)))&&&
(∀x)((B|z′)x ⇒⇒⇒ ¬¬¬Ax) ∧∧∧ Ev((μB)(B|z′))&&&(∃x)(¬¬¬(Ax))2]. (27)

Proof. Similarly to Lemma 6, the proof of (27) is based on the following provable
formula:

T IQ � (∀x)((¬¬¬B|z)x ⇒⇒⇒ ¬¬¬Ax)&&&(∀x)((B|z′)x ⇒⇒⇒ ¬¬¬Ax) ⇒⇒⇒ ((∃x)(Ax)2 ⇒⇒⇒ ⊥).
(28)

By the adjunction, the properties of ∧∧∧, the quantifier properties and the defini-
tion of negation, we obtain (28) using the rules of �L-FTT.

Theorem 7. The pairs of quantifiers

(i) [(Q∀
Bi Ex x)(¬¬¬B,¬¬¬A), (Q∀

Bi Ex x)(B,¬¬¬A)], (i.e., [p,B]),
(ii) [(Q∀

Bi Ve x)(¬¬¬B,¬¬¬A), (Q∀
Bi Ve x)(B,¬¬¬A)], (i.e., [t,D]),

(iii) [(Q∀
¬¬¬(Sm ν̄νν) x)(¬¬¬B,¬¬¬A), (Q∀

¬¬¬(Sm ν̄νν) x)(B,¬¬¬A)], (i.e., [k,G]),

are contraries in T IQ.

Proof. It follows from Lemma 7 when replacing Ev by concrete evaluative lin-
guistic expressions.
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4.2 Sub-alterns

Lemma 8. The following is provable in �L-FTT:

(a) T IQ � a ⇒⇒⇒ p T IQ � e ⇒⇒⇒ b,
(b) T IQ � p ⇒⇒⇒ t T IQ � b ⇒⇒⇒ d,
(c) T IQ � t ⇒⇒⇒ k T IQ � d ⇒⇒⇒ g,
(d) T IQ � k ⇒⇒⇒ i T IQ � g ⇒⇒⇒ o.

Proof. This proceeds similarly as in [14] using monotonicity of the corresponding
evaluative linguistic expressions.

Below, we introduce a 5-graded cube of opposition with five basic interme-
diate quantifiers as a generalization of the graded Peterson’s square (Fig. 2).
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Fig. 2. Graded cube of opposition with generalized intermediate quantifiers

5 Future Applications

As we mentioned above, the idea of this paper was to introduce new forms
of generalized intermediate quantifiers forming graded cube of opposition. An
idea for future is to apply the theory of syllogistic reasoning introduced in our
previous papers [6,26]. Using inferred new forms of valid syllogisms to derive new
information which is not included in real data. For example, below we introduce
examples of sentences which can be used:
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– Most people who live in an area affected by heavy industry suffer from asthma.
– Almost all shares grow with growing economy.

New idea is to work with examples of natural language linguistic expressions
which form graded cube of opposition as follows:

– Most people who do not smoke have higher lung capacity.
– Most children who do not live in an area affected by heavy industry do not

suffer from inflammation of the respiratory tract.

6 Conclusion

In this paper, we extended the theory of the graded classical Aristotle square of
opposition to the graded Aristotle cube of opposition. Furthermore, we suggested
a generalization of the Peterson’s square of opposition to a graded generalized
cube, i.e., the cube whose vertices contain intermediate quantifiers.

The future work will focus on a more detailed analysis of the properties
of the graded generalized cube of opposition and to extend by new forms of
intermediate quantifiers.
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14. Murinová, P., Novák, V.: Analysis of generalized square of opposition with inter-
mediate quantifiers. Fuzzy Sets and Systems 242, 89–113 (2014)
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Abstract. This paper continues the research in formal theory of inter-
mediate quantifiers. We present some new properties, introduce interme-
diate quantifiers of type 〈1〉, and also new quantifiers MORE-THAN and
LESS-THAN.

Keywords: Generalized quantifiers · Fuzzy quantifiers · Fuzzy type
theory · Mathematical fuzzy logic

1 Introduction

Quantifiers are special expressions of natural language that characterize quantity
of objects having a given property. Typical examples are the classical ones “all,
exists”, but also “most, almost all, many, few”, etc. As they are quite frequently
used in common language, they raised interest of logicians who tried to suggest
logical models of them. The general theory was initiated by Mostowski [8] and
further elaborated by many logicians (cf. [21] and citations therein).

A general and widely accepted definition originated by Lindström in [7] is
to take quantifiers as n-ary relations among subsets of powers of a given set M ,
i.e., subsets of P (Mk1)×· · ·×P (Mkn). Adoption of this definition to fuzzy logic
is the following (cf. [12]): a generalized fuzzy quantifier of type 〈k1, . . . , kn〉 is a
functional Q that assigns to each non-empty set M a fuzzy relation

QU : F(Mk1) × · · · × F(Mkn) −→ E (1)

where by F(·) we denote a set of all fuzzy sets on a given universe and E is a
support of the algebra of truth values. Note that (1) is an n-ary fuzzy relation
over ki-ary fuzzy relations, i = 1, . . . , n. This definition is semantic which means
that (1) interprets a certain formula Q(Ak1

1 , . . . , Akn
n ) of a suitable formal logic

where A1, . . . , An are formulas and the exponents Aki
i , i = 1, . . . , n denote ki-ary

conjunctions of them.
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An important class of quantifiers are intermediate ones, for example most,
few, almost all, a lot of, many, a great deal of, a large part of, a small part of,
etc. Intermediate quantifiers occur in sentences of natural language of the form

Q Bs are A (2)

where Q is a quantifier and B,A are properties of elements. Example of (2) is the
sentence “Most (Q) young people (B) are happy (A)”. Semantics of intermediate
quantifiers lays between the two limit cases: the classical general (universal) ∀ and
the existential ∃ ones (hence the name). From the point of view of (1), intermediate
quantifiers are special generalized quantifiers of type 〈1, 1〉 (cf. [6,19]).

An in-depth linguistic and logical analysis of intermediate quantifiers was pro-
vided by Peterson in [20]. He specified their basic semantic properties, and, using
informal tools, demonstrated that 105 generalized syllogisms with five selected
intermediate quantifiers should be valid. These results inspired Novák to develop
a mathematical model of the meaning of intermediate quantifiers (see [15]). The
primary formal tool is higher-order fuzzy logic (namely, �Lukasiewicz fuzzy type
theory (FTT)). This logic is a generalization of classical higher-order logic (also
called λ-calculus), and it was chosen because of its very high explication power.
Note that the classical λ-calculus became a standard tool used by linguists when
studying the semantic properties of natural language.

The core idea of the mentioned formalization consists in the assumption that
intermediate quantifiers can be taken as the classical ∀ or ∃ quantifiers applied
over a universe whose size is characterized by a measure that can be modified
and linguistically evaluated. Note that the idea of using the measure in fuzzy
quantifiers also occurs in [3,5]).

Using formal language, sentence (2) can be construed by a certain formula
(Qx)(B,A) where B and A are subformulas representing properties. This formula
is precisely defined in Sect. 4. The theory of intermediate quantifiers is already
quite well developed and presented in many papers (see, e.g., [9–11]).

The main objective of this paper is to continue development of the theory of
intermediate quantifiers. We introduce simpler quantifiers of type 〈1〉 that are
time to time needed in some reasoning, and also introduce new intermediate
quantifiers MORE-THAN and LESS-THAN, and prove validity of the related
generalized syllogisms.

By a fuzzy set in a universe Mα we mean a function A : Mα −→ E where E
is the support of a suitable algebra of truth values. If A is a fuzzy set on Mε then
we write A ⊂∼ Mα. The kernel of A is the set Ker(A) = {x | x ∈ Mα, A(x) = 1}.

2 Preliminaries

2.1 Fuzzy Type Theory

The theory of intermediate quantifiers has been developed in �Lukasiewicz fuzzy
type theory (�L-FTT) whose algebra of truth values is a linearly ordered MV-
algebra. Note that �L-FTT is a gneralization of the classical type theory (see [1]
and elsewhere).
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The basic syntactical objects of �L-FTT are classical, namely the concepts of
type and formula. Recall that by type we understand a certain symbol expressing
a kind of objects that are denoted by a formula in concern. The types are recur-
sively formed starting with the atomic types ε (elements), and o (truth values).
Complex types are defined as follows: if α, β are types then (βα) is a type. We
denote types by Greek letters and the set of all types by Types. Each formula is
assigned a type and we write Aα where A is a formula and α a type.

The language J of �L-FTT consists of variables xα, . . ., special constants cα, . . .
(α ∈ Types), the symbol λ, and brackets. We will consider the following concrete
special constants: E(oα)α (fuzzy equality) for every α ∈ Types, C(oo)o (conjunc-
tion), D(oo) (delta operation on truth values) and the description operator ιε(oε).

Formulas are formed of variables, constants (each of specific type), and the
symbol λ. A set of all formulas of type α is denoted by Formα. The set of all
formulas is Form =

⋃
α∈Types Formα

1.
If B ∈ Formβα and A ∈ Formα then (BA) ∈ Formβ . Similarly, if A ∈ Formβ

and xα ∈ J , α ∈ Types, is a variable then (λxα A) ∈ Formβα.
A formal theory T ⊂ Formo is a set of formulas of type o (truth values).

Provability is defined classically. If Ao is provable in T then we write T 
 Ao.
The algebra of truth values of �L-FTT is supposed to be a linearly ordered

MV-algebra 〈E,∨,∧,⊗,→,0,1,Δ〉 extended by the operation Δ (see [2,18]). A
special case of it is the standard �Lukasiewicz MVΔ-algebra

LΔ = 〈[0, 1],∨,∧,⊗,→, 0, 1,Δ〉 (3)

where

∧ = minimum, ∨ = maximum,

a ⊗ b = 0 ∨ (a + b − 1), a → b = 1 ∧ (1 − a + b),

¬a = a → 0 = 1 − a, Δ(a) =

{
1 if a = 1,

0 otherwise.

Note that the Δ operation sends all truth values smaller than 1 to 0.
A model is M = {(Mα,�α) | α ∈ Types} where �α is a fuzzy equality on a set

Mα (a binary fuzzy relation on Mα that is reflexive, symmetric, and ⊗-transitive).
If M is a model then M(Ao) ∈ Mo is a truth value, M(Aε) ∈ Mε is some element
and M(Aβα) : Mα −→ Mβ is a function. For example, M(Aoα) : Mα −→ Mo is
a fuzzy set and M(A(oα)α) : Mα × Mα −→ Mo a fuzzy relation. A formula Ao is
true in T , T |= Ao, if it is true in the degree 1 in all models of T .

The fuzzy type theory is complete, i.e., the completeness theorem stating that
a theory T is consistent iff it has a (Henkin) model holds true. We sometimes
apply its equivalent version: T 
 Ao iff T |= Ao.

1 To improve readability of formulas, we quite often write the type only once in the
beginning of the formula and then omit it. Alternatively, we write A ∈ Formα to
emphasize that A is a formula of type α and do not repeat its type again.
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In the explanation below, we need to characterize that a given formula Ao

represents a nonzero truth value, and also a general truth value that is neither
equal to 0 nor to 1. The following two formulas will do the job:

Υoo ≡ λzo · ¬¬¬ΔΔΔ(¬¬¬zo), (zo is a nonzero truth value)

Υ̂oo ≡ λzo · ¬¬¬ΔΔΔ(zo ∨∨∨ ¬¬¬zo) (zo is a general truth value).

It can be proved that T |= ΥAo implies that M(Ao) > 0, and T |= Υ̂Ao implies
that M(Ao) ∈ (0, 1), in any model M of the theory T .

The following lemma characterizes a few basic properties of ΔΔΔ and Υ .

Lemma 1. Let z ∈ Formoα, x ∈ Formo. Then

(a) 
 Υ (ΔΔΔx) ≡ ΔΔΔx
(b) 
 ((Ao ⇒⇒⇒ Bo) ∧∧∧ (Ao ⇒⇒⇒ Co)) ⇒⇒⇒ (Ao ⇒⇒⇒ Bo ∧∧∧ Co)
(c) 
 ((Ao ⇒⇒⇒ Bo) ∨∨∨ (Ao ⇒⇒⇒ Co)) ⇒⇒⇒ (Ao ⇒⇒⇒ Bo ∨∨∨ Co)

Proof. (a) is obtained by the following sequence of inferences:

(L.1) 
 Υ (ΔΔΔx) ≡ ¬¬¬ΔΔΔ¬¬¬ΔΔΔx (definition of Υ )
(L.2) 
 ΔΔΔ⊥ ≡ ⊥ (properties of ΔΔΔ)
(L.3) 
 ΔΔΔ� ≡ � (properties of ΔΔΔ)
(L.4) 
 ¬¬¬⊥ ≡ � (properties of FTT)
(L.5) 
 ¬¬¬� ≡ ⊥ (properties of FTT)
(L.6) 
 Υ (⊥) ≡ ⊥ (L.1–L.5 using Rule (R))
(L.7) 
 Υ (�) ≡ � (L.1–L.5 using Rule (R))
(L.8) 
 Υ (ΔΔΔx) ≡ ΔΔΔx (L.6, L.7 by [13, Theorem 14])

(b), (c) are proved using the standard means of FTT (cf. also [4, Lemma
2.2.9]).

We will also work with the derived connective

�(oo)o ≡ λxo λyo · x&&&¬¬¬y

that is in the standard �Lukasiewicz algebra interpreted by the operation a� b =
a ⊗ ¬b = max{0, a − b}. Finally, we define the formula

xo <(oo)o yo ≡ (xo ⇒⇒⇒ yo)&&&¬¬¬ΔΔΔ(xo ≡ yo).

Note that a fuzzy set in a universe Mα is in FTT represented by a formula
Xoα. Indeed, let M be a model. Then M(Aα) : Mα −→ E2. In the same way, a
λ-formula3 λxα Bo also represents a fuzzy set.

Our explanation below proceeds mostly on the level of syntax because it is
the most general way how to express various kinds of properties, and the results
are universally valid in all models. W.r.t. the previous paragraph, we will freely
call formulas of type oα “fuzzy sets” instead of more precise “formulas (variables)
representing fuzzy sets”. For example, we say “a fuzzy set xoα” or “a fuzzy set
Aoα”. The reader, however, should be aware that fuzzy sets are obtained only
in a model after proper interpretation of these formulas.
2 Recall that we identify a fuzzy set with its membership function.
3 In type theory, λ-formulas are often called λ-terms.



Intermediate Quantifiers and the Quantifier “MORE-THAN” 163

2.2 Evaluative Linguistic Expressions

The theory of intermediate quantifiers is based on the theory of evaluative lin-
guistic expressions that are expressions of natural language such as “small,
medium, big, very short, more or less deep, quite roughly strong, extremely
high”, etc. Semantics of them is also formalized using the language of �L-FTT
(see [14]). Less formally, including formulas for the direct computation is their
theory presented in [17].

The theory of evaluative linguistic expressions is a special formal theory TEv

of �L-FTT. Its language JEv has the following special symbols:

(i) The constants �,⊥ ∈ Formo for truth and falsity and † ∈ Formo for the
middle truth value4.

(ii) A special constant ∼∈ Form(oo)o for an additional fuzzy equality on the
set of truth values E.

(iii) A set of special constants ννν, . . . ∈ Formoo for linguistic hedges and a set
of triples of additional constants aννν ,bννν , cννν , . . . ∈ Formo where each triple
is associated with one hedge ννν. The JEv is supposed to contain the special
constants {Ex ,Si ,Ve, ML,Ro,QR,VR} that represent the linguistic hedges
(extremely, significantly, very, roughly, more or less, rather, quite roughly,
very roughly, respectively).

The logical theory of evaluative expressions contains models of the stan-
dard logical and linguistic concepts of intension and extension (see [14] for the
technical details). Evaluative expressions considered in this paper are construed
by special formulas of type oo(oo): Sm (small), Me (medium), Bi (big), and
Ze (zero) that can be extended by the linguistic hedges introduced above. For
example, SmVe is a formula whose interpretation is intension of the linguistic
expression “very small’. If the concrete expression is not important, we use in
the sequel a metavariable Ev for intension of an arbitrary evaluative expression.

3 Cuts of Fuzzy Sets

To define intermediate quantifiers, we need a special operation called cut of a
fuzzy set. It is motivated by the need to form a new fuzzy set from a given
one by extracting several elements together with their membership degrees and
putting the other membership degrees equal to 0. For example, given a fuzzy
set A = {0.3/

x1, 1
/
x2, 0.7/

x3, 0.9/
x4}, we may need to work with its part only,

say a fuzzy set A′ = {0.3/
x1, 0.9/

x4}. We thus cut from A the singletons 0.3/
x1

and 0.9/
x4 and put them into A′. The elements of A′ can be specified by means

of some other fuzzy set, say B = {0.3/
x1, 0.7/

x2, 0.9/
x4} whose elements of

interest (i.e., x1, x4) have membership degrees equal to those of A. The resulting
fuzzy set A′ is thus obtained by a cut of A by B, i.e., A′ = A|B.

4 The formula † is in the standard �Lukasiewicz MV-algebra interpreted by the value
0.5.
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This operation is formally defined as follows: Let y, z ∈ Formoα be variables
of type oα, α ∈ Types. The cut of yoα by zoα is the fuzzy set

yoα|zoα ≡ λxα · zoαxα &&&ΔΔΔ(Υ (zoαxα) ⇒⇒⇒ (yoαxα ≡ zoαxα)).

This formula says the following: the fuzzy set y|z is a function that to each xα

assigns a truth value of the conjunction of truth values zx5 and ΔΔΔ(Υ (zx) ⇒⇒⇒
(yx ≡ zx)) where the latter has the truth value 1, if zx is nonzero and the truth
values yx and zx are equal. Otherwise, it has the truth value 0.

The following lemma shows that thus defined operation does precisely what
we want.

Lemma 2 ([11]). Let M be a model and p an assignment of elements to vari-
ables yoα, zoα such that Mp(y) = B ⊂∼ Mα, Mp(z) = Z ⊂∼ Mα. Then for any
m ∈ Mα

Mp(y|z)(m) = (B|Z)(m) =

{
B(m), if B(m) = Z(m),
0 otherwise.

Let us also introduce the following special fuzzy sets: A fuzzy set Xoα is crisp
if it has the property

Crispo(oα) Xoα ≡ (∀uα)(Xu ≡ ΔΔΔ(Xu)).

Hence, a crisp fuzzy set has elements with membership degrees equal either to
1 or 0.

Support of a fuzzy set Xoα is a set defined by

Supp(oα)(oα) Xoα ≡ λuα · Υ (Xoαuα).

The universal set is defined by

Vα ≡ λxα �. (4)

Note that interpretation of Vα in a model M is M(Vα) = Mα.
The following are basic properties of cut.

Lemma 3. Let B ∈ Formoα, α ∈ Types.

(a) 
 B|B ≡ B.
(b) 
 B|∅ ≡ ∅.
(c) 
 Crisp ∅oα.
(d) 
 Crisp(SuppB).
(e) Crisp B 
 (V |B ≡ B).
(f) Crisp B 
 (∀zoα)Crisp(B|z).
(g) B ⊂ B′ 
 (∃z)¬¬¬(B|z ⊆ B′|z).

5 In fact, zoαxα is a membership degree of xα in zoα.
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Proof. (a), (b) are proved in [11], (c), (d) in [16].
(e)

(L.1) 
 (V |B)x ≡ Bx&&&ΔΔΔ(Υ (Bx) ⇒⇒⇒ (V x ≡ Bx)) (definition of |)
(L.2) 
 Bx ≡ ΔΔΔBx (assumption)
(L.3) 
 (V |B)x ≡ Bx&&&ΔΔΔ(Υ (ΔΔΔ(Bx)) ⇒⇒⇒ (� ≡ ΔΔΔ(Bx))) (L.1, L.2, Rule (R))
(L.4) 
 (V |B)x ≡ Bx&&&ΔΔΔ(ΔΔΔ(Bx) ⇒⇒⇒ (ΔΔΔ(Bx))) (L.3, Lemma 1(a), Rule (R))
(L.5) 
 (V |B)x ≡ Bx (L.4, properties of FTT)

(g) Let v be a constant, and zoα a fuzzy set such that 
 (Bv < B′v)∧∧∧ (zv ≡
Bv). Then 
 (B′|z)v ≡ ⊥ which implies (g) using the ∃-substitution axiom.

4 Intermediate Quantifiers

The theory of intermediate quantifiers is based on the concepts of measure of a
fuzzy set, and linguistic evaluation of its size. All technical details not mentioned
in this paper can be found in [11].

The measure is defined below. Note that we consider a relative measure, i.e.,
a measure of a fuzzy set xoα w.r.t. a fuzzy set zoα.

Definition 1. Let R ∈ Formo(oα)(oα) be a formula6.

(i) A formula μ ∈ Formo(oα)(oα) defined by

μo(oα)(oα) := λzoα λxoα (Rzoα)xoα (5)

represents a measure on fuzzy sets in the universe of type α ∈ Types if it
has the following properties:

(M1) ΔΔΔ(xoα ⊆ zoα)&&&ΔΔΔ(yoα ⊆ zoα)&&&ΔΔΔ(xoα ⊆ yoα) ⇒⇒⇒

((μzoα)xoα ⇒⇒⇒ (μzoα)yoα),
(M2) ΔΔΔ(xoα ⊆ zoα) ⇒⇒⇒ ((μzoα)(zoα \ xoα) ≡ ¬¬¬(μzoα)xoα),
(M3) ΔΔΔ(xoα ⊆ yoα)&&&ΔΔΔ(xoα ⊆ zoα)&&&ΔΔΔ(yoα ⊆ zoα) ⇒⇒⇒

((μzoα)xoα ⇒⇒⇒ (μyoα)xoα).
(ii) The following formula characterizes measurable fuzzy sets of a given type α:

Mo(oα) := λzoα · ¬¬¬ΔΔΔ(zoα ≡ ∅oα)&&&ΔΔΔ(μzoα)zoα &&&
(∀xoα)(∀yoα)ΔΔΔ((M1)&&& (M3))&&&(∀xoα)ΔΔΔ(M2) (6)

where, for the simplicity of expression, we write (M1)–(M3) to stand for the
axioms from (i).

6 This formula can be understood as a procedure for computation of the output on the
basis of a given input. In our case, the output is size (element of E) of the measure
of a fuzzy set with respect to another one.
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Axioms (M1) and (M3) characterize monotonicity of measure; namely that it is
isotone w.r.t. xoα and antitone w.r.t. zoα. Axiom (M2) characterizes measure of
a complement of xoα w.r.t. zoα.

We consider a formal theory T IQ in which intermediate quantifiers are defin-
able in the sense of the definition below. The theory must contain the theory of
evaluative expressions and measurable fuzzy sets (see [11] for the details).

Definition 2. Let T IQ be a theory containing intermediate quantifiers and Ev ∈
Formoo be an intension of some evaluative linguistic expression. Finally, let
z ∈ Formoα, x ∈ Formα be variables, and A,B ∈ Formoα be formulas where
T IQ 
 Mo(oα)Boα. An intermediate generalized quantifier is one of the following
formulas:

(Q∀
Ev xα)(B,A) ≡ (∃z)[(∀x)((B|z)x ⇒⇒⇒ Ax) ∧∧∧ Ev((μB)(B|z))], (7)

(Q∃
Ev xα)(B,A) ≡ (∃z)[(∃x)((B|z)x ∧∧∧ Ax) ∧∧∧ Ev((μB)(B|z))]. (8)

Either of the quantifiers (7) or (8) construes the sentence

“〈Quantifier〉 B’s are A”

where 〈Quantifier〉 is some intermediate quantifier. The formula Boα represents
a universe of quantification and Aoα a property of elements of type α.

Formula (7) has a clear meaning: all elements from a certain part zoα of
the universe Boα have the property Aoα, and size of the cut B|z w.r.t. whole
B is linguistically evaluated by Ev . For example the sentence “Most B are A”
is construed by the formula (Q∀

Bi Ve x)(B,A) which, using (7), is equivalent to
(∃z)[(∀x)((B|z)x ⇒⇒⇒ Ax) ∧∧∧ (Bi Ve)((μB)(B|z))]. Similarly for (8).

Remark 1. The original definition of intermediate quantifiers introduced, e.g.,
in [15] considered all fuzzy subsets zoα of Boα. When computing intermediate
quantifiers on real data, however, it turned out that we obtain counterintuitive
results. For example, “Most young women have long hair”. If a given woman
is young in the degree 0.7, it would be strange to consider her to be young in
the degree 0.3. This is the reason why we introduced the operation of cut in (7)
and (8).

Theorem 1. Let A,B,C, z ∈ Formoα be formulas representing properties of
objects and Ev ∈ Formoo be an intension of some evaluative expression.

(a) T IQ ∪ {A ⊆ C} 
 (Q∀
Ev xα)(B,A) ⇒⇒⇒ (Q∀

Ev xα)(B,C),

(b) T IQ 
 (Q∀
Ev xα)(B,A) ∨∨∨ (Q∀

Ev xα)(B,C) ⇒⇒⇒ (Q∀
Ev xα)(B,A ∪ C).

Proof. (a) follows from and 
 (∀xα)(Bx ⇒⇒⇒ Ax) ⇒⇒⇒ (∀xα)(Bx ⇒⇒⇒ Cx) and the
assumption.
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(b) Using Lemma 1(b) and the properties of FTT, we can prove that


 (∀xα)((B|z)x ⇒⇒⇒ Ax) ∨∨∨ (∀xα)((B|z)x ⇒⇒⇒ cx) ⇒⇒⇒ (∀xα)((B|z)x ⇒⇒⇒ Ax ∧∧∧ Cx)

Adding Ev((μB)(B|z)) to both sides of this implication, we obtain valid impli-
cation. Then, using distributivity of ∨∨∨,∧∧∧ and the property 
 (∃z)(Pz ∨∨∨ Qz) ⇒⇒⇒
((∃z)Pz ∨∨∨ (∃z)Qz) we obtain (b).

The quantifiers defined above are of type 〈1, 1〉. It is possible, however, to
introduce also simpler quantifiers of type 〈1〉 that make quantification over the
whole universe (similarly as the classical quantifiers ∀ and ∃ do).

Definition 3 (Quantifiers of type 〈1〉). Let A ∈ Formoα, x ∈ Formα and
Voα be the universal set (4). Let 
 M(Voα). Then the formula

(Q∀
Ev x)A ≡ (Q∀

Ev x)(V,A) ≡ (∃z)[(∀x)((V |z)x ⇒⇒⇒ Ax) ∧∧∧ Ev((μV )(V |z))] (9)

is an intermediate quantifier of type 〈1〉7.
Theorem 2. Let A, z ∈ Formoα and Ev ∈ {Bi ννν | ννν ∈ {Ex ,Si ,Ve,ML,Ro,QR,
VR}}. Then

(Q∀
Ev x)A ≡ (∃z)[(∀x)((SuppA|z)x ⇒⇒⇒ Ax) ∧∧∧ Ev((μV )(SuppA|z)).

Proof. By Lemma 3(f), V |z is crisp for all fuzzy sets z ∈ Formoα. Let M be a
model, p an assignment, and zoα be such that Mp(V |z)∩(Mα\Mp(SuppA)) �= ∅.
Then Mp((∀x)((V |z)x ⇒⇒⇒ Ax)) = 0. From it follows that the latter is (in general)
non-zero only if Mp(V |z) ⊆ Mp(SuppA).

This theorem suggests a simplified way how intermediate quantifiers of type 〈1〉
can be computed. Namely, it is sufficient to confine only to the support of parts
of A.

5 The Quantifier “MORE-THAN”

This kind of quantifier is studied in the theory of generalized quantifiers [6,19].
An example of such quantifier is the following:

More girls than boys are diligent. (10)

Classical model of this quantifier is

MT (B,C,A) = 1 iff |B ∩ A| > |C ∩ A| (11)

where MT is the quantifier and | · | denotes number of elements (in a finite
set). This definition does not consider hedging, i.e., modifying by hedges such as
7 From the point of view of general theory, this quantifier trivially fulfills the property

of relativization.
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“much” or “a lot of”. Introducing them would already require specification of
the context w.r.t. which we could specify, how much greater |B ∩A| than |C ∩A|
should be. This problem is solved in our definition below, in which we explicitly
consider a universe U .

Note that in (10), we do not claim that all girls are more diligent than all
boys; only certain part of girls are diligent and the same for boys. We compare
sizes of these (fuzzy) sets w.r.t. a certain universe U that can be, e.g., all children
at school, or a some more specific part of them.

Definition 4. Let A,B,C, z1, z2 ∈ Formoα be formulas representing properties
of objects and U ∈ Formoα be a measurable universe, i.e., T IQ 
 M(U) holds.
Let T IQ 
 (B ⊆ U) ∧∧∧ (C ⊆ U). Then:

(i) The expression

More B than C are A (in a universe U)

is construed by the formula

(MT∀ xα)(B,C,A;U) ≡ (∃z1)(∃z2)[(∀xα)((B|z1)x ⇒⇒⇒ Ax) ∧∧∧
(∀xα)((C|z2)x ⇒⇒⇒ Ax) ∧∧∧ Υ ((μU)(B|z1) � (μU)(C|z2))]. (12)

(ii) The modified expression of the form

〈Hedge〉 more B than C are A (in a universe U)

where 〈Hedge〉 can be, e.g., “much”, “a lot”, “a little”, etc. In formal lan-
guage, it is construed by the formula

MT∀
Ev (B,C,A;U) ≡ (∃z1)(∃z2)[(∀x)((B|z1)x ⇒⇒⇒ Ax)∧∧∧

(∀x)((C|z2)x ⇒⇒⇒ Ax) ∧∧∧ (Ev)((μU)(B|z) � (μU)(C|z))]. (13)

The evaluative expression Ev can be the following:

(i) 〈Hedge〉 := Much: we put Ev := Bi ν̄νν (simple “big”),
(ii) 〈Hedge〉 := Very much: we put Ev := BiVe (“very big”),
(iii) 〈Hedge〉 := A little: we put Ev := SmVe (“very small”).

Analogously, we can define other similar kinds of hedges in (ii).
There is one problem with this definition. When analyzing the linguistic

expression (10), we see that it internally consists of two propositions:

(a) Girls are diligent.
(b) Boys are diligent.

In our definition we suggest to model both expressions by the implication

(∀x)(Bx ⇒⇒⇒ Ax).
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The classical definition (11), however, would suggest the model

(∃x)(Bx ∧∧∧ Ax).

In this case, Definition (12) would change into

(MT∃ xα)(B,C,A;U) ≡ (∃z1)(∃z2)[(∃x)((B|z1)x ∧∧∧ Ax)∧∧∧
(∃x)((C|z2)x ∧∧∧ Ax) ∧∧∧ Υ ((μU)(B|z) � (μU)(C|z))]. (14)

We need more investigation to give the definite answer. At this moment, let us
only remark that definition (12) corresponds to (7).

Theorem 3. Let A,B,C ∈ Formoα be formulas. Let T IQ 
 (Q∀
Evx)(C,A) where

Ev ∈ {¬¬¬Sm ν̄νν,Bi Ve,Bi Ex} and T IQ 
 (MT∀ xα)(B,C,A;U). Then T IQ 

(Q∀

Evx)(B,A).

Proof. Semantic: Let M be a model of T IQ. For better readability, we put
Mp(z1) = Z1, Mp(z2) = Z2, Mp(B) = B, Mp(C) = C, Mp(U) = U , and
similarly the other symbols.

By the assumption,
∨

Mp(z2)=Z2⊂∼Mα

Mp((∀x)((C|z2)x ⇒⇒⇒ Ax)) ∧∧∧ Ev((μC)(C|Z2)) =1, (15)

∨

Mp(z1)=Z1⊂∼Mα

∨

Mp(z2)=Z2⊂∼Mα

[Mp((∀x)((B|z1)x ⇒⇒⇒ Ax))∧∧∧

Mp((∀x)((C|z2)x ⇒⇒⇒ Ax)) ∧∧∧ Υ ((μU)(B|Z1) � (μU)(C|Z2))] =1. (16)

Hence, to every a, 0 < a ≤ 1, we have a ≤ (15), and also a ≤ (16). The latter
means that there are Z1, Z2 ⊂∼ Mα such that

(μU)(C|Z2) < (μU)(B|Z1). (17)

Furthermore, B,C ⊆ U . Let us consider a = (μU)(C|Z2) for some Z2. Then a ≤
Ev((μC)(C|Z2)) because (μU)(C|Z2) ≤ (μC)(C|Z2) by the properties of mea-
sure. But then by (17) and the properties of measure, we obtain a ≤ (μB)(B|Z1)
for some Z1 which means that a ≤ Ev((μB)(B|Z1)) because of the increasing
character of the assumed Ev . Since we considered arbitrary 0 < a ≤ 1, we con-
clude that

∨
Mp(z1)=Z1⊂∼Mα

Mp((∀x)((B|z1)x ⇒⇒⇒ Ax)) ∧∧∧ Ev((μB)(B|Z1)) = 1.

By this theorem, if we surely know, e.g., that “More B than C are A” and
“Most C are A” then it is valid to conclude that surely “Most (Almost all, All)
B are A”.

From the previous theorem, validity of the following (weak)8 syllogisms
immediately follows.
8 By a strong syllogism with a major premise Ao, a minor premise Bo, and a conclu-

sion Co we understand provability of the formula � Ao &&& Bo ⇒⇒⇒ Co. Note that the
syllogism in Corollary 1 is weaker.
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Corollary 1.

T IQ 
 (Q∀
Evx)(C,A)

T IQ 
 (MT∀ xα)(B,C,A;U)
T IQ 
 (Q∀

Evx)(B,A)

where Ev ∈ {¬¬¬Sm ν̄νν,Bi Ve,Bi Ex}.
We can also symmetrically consider the quantifier

Less C than B are A (in a universe U)

which can be defined by

(LT∀ xα)(C,B,A;U) ≡ (MT∀ xα)(B,C,A;U).

Of course, we can also add 〈Hedge〉 to this quantifier.
By similar arguments as in Theorem 3, we can prove the following.

Theorem 4. Let A,B,C ∈ Formoα be formulas. Let T IQ 
 (Q∀
Evx)(B,A) where

Ev ∈ {+Sm Ve,+ Sm Si} and T IQ 
 LTU (C,B,A). Then T IQ 
 (Q∀
Evx)(C,A).

Corollary 2.

T IQ 
 (Q∀
Evx)(B,A)

T IQ 
 (LT∀ xα)(C,B,A;U)
T IQ 
 (Q∀

Evx)(C,A)

where Q ∈ {A few, Several}.
We may now ask whether the quantifier MORE-THAN is transitive as in the

following example:

More young girls than young boys like yoga.
More young boys than managers like yoga.
More young girls than managers like yoga.

Theorem 5. Let A,B,C,D ∈ Formoα be formulas. Let T IQ 
 (MT∀ xα)(B,C,
A;U) and T IQ 
 (MT∀ xα)(C,D,A;U). Then T IQ 
 (MT∀ xα)(B,D,A;U).

Proof. Semantic: Let M be a model of T IQ. For better readability, we put
Mp(z1) = Z1, Mp(z2) = Z2, Mp(z3) = Z3, Mp(A) = A, Mp(D) = D,
Mp(B) = B, Mp(C) = C, Mp(U) = U .

By the assumption,
∨

Mp(z1)=Z1⊂∼Mα

∨

Mp(z2)=Z2⊂∼Mα

[Mp((∀x)((B|z1)x ⇒⇒⇒ Ax))∧∧∧

Mp((∀x)((C|z2)x ⇒⇒⇒ Ax)) ∧∧∧ Υ ((μU)(B|Z1) � (μU)(C|Z2))] =1. (18)
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∨

Mp(z2)=Z2⊂∼Mα

∨

Mp(z3)=Z3⊂∼Mα

[Mp((∀x)((C|z2)x ⇒⇒⇒ Ax))∧∧∧

Mp((∀x)((D|z3)x ⇒⇒⇒ Ax)) ∧∧∧ Υ ((μU)(C|Z2) � (μU)(D|Z3))] =1. (19)

Similarly as above, to every a, 0 < a ≤ 1, one can see that a ≤ (18) and a ≤
(19). From these assumptions it follows that there are Z1, Z2, Z3 ⊂∼ Mα such
that

(μU)(C|Z2) < (μU)(B|Z1) as well as (μU)(D|Z3) < (μU)(C|Z2) (20)

which implies that
(μU)(D|Z3) < (μU)(D|Z1). (21)

By the properties of �L-FTT we have

Mp((∀x)((B|z1)x ⇒⇒⇒ Ax)) ∧∧∧ Mp((∀x)((C|z2)x ⇒⇒⇒ Ax)) ≤
Mp((∀x)((B|z1)x ⇒⇒⇒ Ax)) (22)

Mp((∀x)((C|z2)x ⇒⇒⇒ Ax)) ∧∧∧ Mp((∀x)((D|z3)x ⇒⇒⇒ Ax))] ≤
Mp((∀x)((D|z3)x ⇒⇒⇒ Ax)) (23)

Considering arbitrary 0 < a ≤ 1 and using (21), (22), (23) we conclude that
∨

Mp(z1)=Z1⊂∼Mα

∨

Mp(z3)=Z3⊂∼Mα

[Mp((∀x)((B|z1)x ⇒⇒⇒ Ax))∧∧∧

Mp((∀x)((D|z3)x ⇒⇒⇒ Ax)) ∧∧∧ Υ ((μU)(B|Z1) � (μU)(D|Z3))] = 1 (24)

by the properties of supremum.

6 Conclusion

In this paper, we continued the research in the formal theory of intermediate
quantifiers. We proved a few new results, introduced intermediate quantifiers
of type 〈1〉, and also new quantifiers MORE-THAN and LESS-THAN. We also
proved validity of weak syllogisms with these quantifiers.

The future study will be focused on new forms of generalized syllogisms with
the proposed quantifiers. Note that they can be used for a linguistic summariza-
tion in human reasoning.
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3. Dvořák, A., Holčapek, M.: L-fuzzy quantifiers of the type 〈1〉 determined by mea-
sures. Fuzzy Sets Syst. 160, 3425–3452 (2009)
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9. Murinová, P., Novák, V.: A formal theory of generalized intermediate syllogisms.
Fuzzy Sets Syst. 186, 47–80 (2012)
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Antońın Dvořák and Michal Holčapek(B)
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Abstract. The article investigates important semantic properties of
fuzzy quantifiers, namely restriction and living on a (fuzzy) set. These
properties are introduced in the novel frame of fuzzy quantifiers over fuzzy
universes.
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1 Introduction

In this paper, we continue our investigation of fuzzy quantifiers and their seman-
tic properties [3–5,8]. We are working with the general concept of generalized
quantifiers originating from works of Mostowski [12], Lindström [11] and many
others. For details, we refer to monograph [13]. For example, a generalized quan-
tifier Q with one argument (so-called type 〈1〉1) over a set universe M can be
understood as a mapping from the powerset of M to the set of truth values {0, 1}
(i.e., false and true, respectively).

At first [3,8], we investigated a straightforward generalization of these gen-
eralized quantifiers, where arguments of fuzzy quantifiers were fuzzy sets and
the set of truth values {0, 1} has been replaced by some more general structure.
Namely, we used a residuated lattice L and defined fuzzy quantifiers on M as
mappings from the power set of M to L. However, these generalized quantifiers
were still defined over a crisp universe M . Gradually, we started to be aware of
severe limitations of this approach. For example, it was not possible to define the
important operation of relativization in a satisfactory way (see [5]). The reason
1 This notation originated in [11], where quantifiers are understood as classes of rela-
tional structures of a certain type (representing a number of arguments and variable
binding). It is widely used in the literature on generalized quantifiers [13].
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is that in the definition of relativization, the first argument of a quantifier (i.e., a
fuzzy set) becomes a new universe for the relativized quantifier. But, only crisp
sets have been permitted as universes for fuzzy quantification. To overcome this
limitation, in [5] we defined the so-called C-fuzzy quantifiers, where a fuzzy set
C served as a universe of quantification. We showed there that relativization can
be satisfactorily defined in this frame. However, also the approach of C-fuzzy
quantifiers has its limitations. In this contribution, we present initial observa-
tions on a more general approach, in which pairs (M,C), where M is a crisp set
and C is a fuzzy subset of M , serve as universes for fuzzy quantification. As case
studies, important semantic notions of restriction and of living on a fuzzy set in
the setting of fuzzy quantifiers over fuzzy universes are investigated.

This paper is structured as follows: In Sect. 2, we summarize necessary
notions on algebras of truth values and on fuzzy sets. Section 3 contains basic
definitions of generalized quantifiers, restricted quantifiers and quantifiers living
on a set. These notions are then generalized in Sect. 4. Finally, Sect. 5 contains
conclusions and directions of further research.

2 Preliminaries

2.1 Algebraic Structures of Truth Values

In this article we assume that the algebraic structure of truth values is a complete
residuated lattice, i.e., an algebraic structure L = 〈L,∧,∨,⊗,→, 0, 1〉 with four
binary operations and two constants such that 〈L,∧,∨, 0, 1〉 is a complete lattice,
where 0 is the least element and 1 is the greatest element of L, 〈L,⊗, 1〉 is a
commutative monoid (i.e., ⊗ is associative, commutative and the identity a⊗ 1 =
a holds for any a ∈ L) and the adjointness property is satisfied, i.e.,

a ≤ b → c iff a ⊗ b ≤ c (1)

holds for each a, b, c ∈ L, where ≤ denotes the corresponding lattice ordering,
i.e., a ≤ b if a∧ b = a for a, b ∈ L. A residuated lattice L is said to be divisible if
a ⊗ (a → b) = a∧b holds for arbitrary a, b ∈ L. The operation of negation on L is
defined as ¬a = a → 0 for a ∈ L. A residuated lattice L satisfies the law of double
negation if ¬¬a = a holds for any a ∈ L. A divisible residuated lattice satisfying
the law of double negation is called an MV-algebra. A residuated lattice is said
to be linearly ordered if the corresponding lattice ordering is linear, i.e., a ≤ b
or b ≤ a holds for any a, b ∈ L.

Obviously, the two elements residuated lattice, i.e., L = {0, 1}, is a Boolean
algebra. We put 2 = L = {0, 1}. Other examples of complete residuated lattices
can be determined from left-continuous t-norms on the unit interval:

Example 1. The algebraic structure

LT = 〈[0, 1],min,max, T,→T , 0, 1〉,
where T is a left continuous t-norm on [0, 1] and a →T b =

∨{c ∈ [0, 1] |
T (a, c) ≤ b}, defines the residuum, is a complete residuated lattice (see, e.g.,
[2,7,10]).
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2.2 Fuzzy Sets

Let L be a complete residuated lattice, and let M be a non-empty universe of
discourse. A function A : M → L is called a fuzzy set (L-fuzzy set) on M . A
value A(m) is called a membership degree of m in the fuzzy set A. The set of all
fuzzy sets on M is denoted by F(M). A fuzzy set A is called crisp if there is a
subset Z ⊆ M such that A = 1Z , where 1Z denotes the characteristic function
of Z. Obviously, a crisp fuzzy set can be uniquely identified with a subset of M .
The symbol ∅ denotes the empty fuzzy set on M , i.e., ∅(m) = 0 for any m ∈ M .
The set of all crisp fuzzy sets on M (i.e., the power set of M) is denoted by
P(M). The set Supp(A) = {m ∈ M | A(m) > 0} is called the support of a fuzzy
set A.

Let A,B ∈ F(M). We say that A is less than or equal to B and denoted it
as A ⊆ B if A(m) ≤ B(m) for any m ∈ M . Moreover, A is equal to B if A ⊆ B
and B ⊆ A.

Let {Ai | i ∈ I} be a non-empty family of fuzzy sets on M . Then the union
and intersection of Ai are defined as

(
⋃

i∈I

Ai

)

(m) :=
∨

i∈I

Ai(m) and

(
⋂

i∈I

Ai

)

(m) :=
∧

i∈I

Ai(m), (2)

for any m ∈ M , respectively. Further, extensions of the operations ⊗ and → on
L to the operations on F(M) are given by

(A ⊗ B)(m) := A(m) ⊗ B(m) and (A → B)(m) := A(m) → B(m), (3)

respectively, for any A,B ∈ F(M) and m ∈ M . Finally, we introduce the differ-
ence of fuzzy sets A and B on M as follows:

(A \ B)(m) = A(m) ⊗ ¬B(m) (4)

for any m ∈ M .

3 NL-Quantifiers and Generalized Quantifiers

By NL-quantifiers, we in this paper understand natural language expressions
such as “for all”, “many”, “several”, etc. For our purposes it is not necessary to
delineate the class of NL-quantifiers formally. In fact, we are interested in general
mathematical models of these NL-quantifiers. For the sake of comprehensibility,
we in the following informal explanation consider NL-quantifiers with two argu-
ments, such as “some” in the sentence “Some people are clever.”

3.1 Generalized Quantifiers

Generally (see [13]), a model of the NL-quantifier “some” takes the form of a
functional (the so-called global quantifier) some that to any universe of discourse
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M assigns a local quantifier someM . This local quantifier is a mapping that to any
two subsets A and B of M assigns a truth value someM (A,B). In the following,
if we speak about a quantifier Q, we have in mind some global quantifier, that
is, the functional as above. If we consider only (classical) sets A and B and the
truth value of someM (A,B) can be only either true or false, we say that this
some is a generalized quantifier. If A and B are fuzzy sets and the truth value
of someM (A,B) is taken from some many-valued structure of truth degrees, we
say that this some is a fuzzy quantifier.

Definition 1 (Local generalized quantifier). Let M is a universe of dis-
course. A local generalized quantifier QM of type 〈1n, 1〉 over M is a function
P(M)n × P(M) → 2 that to any sets A1, . . . , An and B from P(M) assigns a
truth value QM (A1, . . . , An, B) from 2.

Definition 2 (Global generalized quantifier). A global generalized quan-
tifier Q of type 〈1n, 1〉 is a functional that to any universe M assigns a local
generalized quantifier QM : P(M)n × P(M) → 2 of type 〈1n, 1〉.

Among the most important examples of generalized quantifiers of type 〈1〉
belong the classical quantifiers ∀ and ∃. Their definitions are as follows: ∀M (B) =
1 if and only if B = M and ∃M (B) = 1 if and only if B �= ∅ for any B ∈ P(M).
Formally, these definitions can be also expressed as ∀M (B) := B = M and
∃M (B) := B �= ∅. The important examples of type 〈1, 1〉 generalized quanti-
fiers are all and some, defined as allM (A,B) = 1 if and only if A ⊆ B and
someM (A,B) = 1 if and only if A ∩ B �= ∅ for any A,B ∈ P(M). Note that the
universe M does not appear on the right side of definitions of all and some, which
is a difference from the quantifier ∀M , therefore, the truth values of these quanti-
fiers are not directly influenced by their universes. The quantifiers, which possess
this essential (semantic) property, are in the generalized quantifier theory said to
satisfy the extension. Among further essential properties of generalized quanti-
fiers belong the permutation and isomorphism invariance or the conservativity.
More about these properties can be found in [9,13].

Let us recall the definition of the relativization of generalized quantifiers [13]
mentioned in Sect. 1.

Definition 3. Let Q be a global generalized quantifier of type 〈1n, 1〉. The rel-
ativization of Q is a global generalized quantifier Qrel of type 〈1n+1, 1〉 defined
as

(Qrel)M (A,A1, . . . , An, B) := QA(A ∩ A1, . . . , A ∩ An, A ∩ B) (5)

for all A,A1, . . . , An, B ∈ P(M). For the most common case of relativization
from type 〈1〉 to type 〈1, 1〉,

(Qrel)M (A,B) = QA(A ∩ B). (6)

It is well known that ∀rel = all and ∃rel = some. In [13], the authors argue
that all models of NL-quantifiers of the most common type 〈1, 1〉 should be
conservative and satisfy the property of extension. It is very interesting that
each type 〈1, 1〉 generalized quantifier, which possesses the above mentioned
properties, is the relativization of a type 〈1〉 generalized quantifier.
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3.2 Restriction

In the theory of generalized quantifiers, we can distinguish two interesting
notions, namely, global generalized quantifiers restricted to a set and local gen-
eralized quantifiers living on a set, that play an undoubtedly important rôle in
the characterization of generalized quantifiers, but they have not been taken into
account for fuzzy quantifiers yet. Note that these notions are considered in [13]
for quantifiers of type 〈1〉. In this part, we recall (for type 〈1〉) and extend (for
type 〈1n, 1〉) the concept of the generalized quantifier restricted to a set.

Definition 4. Let Q be a type 〈1〉 global generalized quantifier, and let A be a
set. The quantifier Q is restricted to A if for any M and B ⊆ M we have

QM (B) = QA(A ∩ B). (7)

The set of all type 〈1〉 global generalized quantifiers restricted to A is denoted by
RST〈1〉(A).

A natural generalization of the concept of generalized quantifiers restricted
to a set for quantifiers of type 〈1n, 1〉 can be provided as follows:

Definition 5. Let Q be a type 〈1n, 1〉 global generalized quantifier, and let A be
a set. The quantifier Q is restricted to A if for any M and A1, . . . , An, B ⊆ M
we have

QM (A1, . . . , An, B) = QA(A ∩ A1, . . . , A ∩ An, A ∩ B). (8)

The set of all type 〈1n, 1〉 global generalized quantifiers restricted to A is denoted
by RST〈1n,1〉(A).

One can see that if a global generalized quantifier Q is restricted to a set A,
then its evaluations over all considered universes are determined from the local
generalized quantifier QA.

Lemma 1. If Q is a type 〈1n, 1〉 global generalized quantifier restricted to a set
A, then Q is restricted to any set A′ such that A ⊆ A′, i.e., RST〈1n,1〉(A) ⊆
RST〈1n,1〉(A′).

Now we show that global generalized quantifiers restricted to sets can be
used to introduce the relativization of a global generalized quantifier Q. More
precisely, let Q be a type 〈1n, 1〉 generalized quantifier. Then, for each set A, we
can introduce the type 〈1n, 1〉 global generalized quantifier Q[A] as

(Q[A])M (A1, . . . , An, B) = QA(A ∩ A1, . . . , A ∩ An, A ∩ B)

for any M and A1, . . . , An, B ⊆ M . It is easy to show that Q[A] ∈ RST〈1n,1〉(A).
It should be noted that Q and Q[A] are different quantifiers. They become iden-
tical if Q is already restricted to A. Now, if we define the global generalized
quantifier Q′ of type 〈1n+1, 1〉 as

Q′
M (A,A1, . . . , An, B) = (Q[A])M (A1, . . . , An, B) (9)

for all M and A1, . . . , An, B ⊆ M , then it is easy to show that Q′ = Qrel, where
Qrel has been defined in Definition 3.
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3.3 Generalized Quantifiers Living on a Set

A concept related to that of a global generalized quantifier restricted to a set is
the concept of a local generalized quantifier living on a set.

Definition 6. Let M and A be sets. A local generalized quantifier QM of type
〈1〉 lives on A if, for any B ⊆ M , we have

QM (B) = QM (A ∩ B). (10)

One can see that each local generalized quantifier QM , where Q ∈ RST〈1〉(A)
(that is, Q is a global generalized quantifier restricted to A and QM is the
corresponding local quantifier over M), lives on A. Indeed, by (7), we have

QM (B) = QA(A ∩ B) = QA(A ∩ (A ∩ B)) = QM (A ∩ B).

Note that A need not be the smallest set on which QM lives (Q ∈ RST〈1〉(A)).
Moreover, the concept of conservativity can be introduced in terms of local
generalized quantifiers living on sets. Let Q be a global conservative quantifier
of type 〈1, 1〉.2 For any M and A ⊆ M , define a type 〈1〉 local quantifier (Q[A])M
as follows

(Q[A])M (B) = QM (A,B) (11)

for all B ⊆ M . One can see that, as a simple consequence of the conservativity
of Q, we obtain that (Q[A])M lives on A. Vice versa, if each local generalized
quantifier (Q[A])M lives on A for any M , then Q is conservative. Note that
Barwise and Cooper expressed the concept of conservativity as we described
above using the live-on property [1].

A natural generalization of the concept of a local generalized quantifier living
on a set for quantifiers of type 〈1n, 1〉 can be defined as follows:

Definition 7. Let M and A be sets. The local generalized quantifier QM of type
〈1n, 1〉 lives on A if, for any A1, . . . , An, B ⊆ M , we have

QM (A1, . . . , An, B) = QM (A ∩ A1, . . . , A ∩ An, A ∩ B). (12)

Also in this case, a conservativity of global generalized quantifiers of type 〈1n, 1〉
can be expressed in terms of the live-on property. Indeed, let Q be a global
quantifier of type 〈1n, 1〉 for n ≥ 1. For any M and A1, . . . , An ⊆ M , define local
quantifier (Q[A1, . . . , An])M of type 〈1〉 as

(Q[A1, . . . , An])M (B) = QM (A1, . . . , An, B). (13)

2 Recall that a type 〈1, 1〉 global generalized quantifier is conservative if QM (A,B) =
QM (A,B′) holds for any A,B,B′ ∈ P(M) such that A ∩ B = A ∩ B′. The con-
servativity for a type 〈1n, 1〉 generalized quantifier is defined analogously such that
QM (A1, . . . , An, B) = QM (A1, . . . , An, B

′) holds for any A1, . . . , An, B,B′ ∈ P(M)
such that Ai ∩ B = Ai ∩ B′ for i = 1, . . . , n.
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It is easy to see that Q is conservative if and only if each local generalized
quantifier (Q[A1, . . . , An])M lives on A =

⋃n
i=1 Ai.

The following lemma contains useful facts about generalized quantifiers living
on sets (cf. [13, Section 3.2.2]).

Lemma 2. Let Q be a type 〈1n, 1〉 global generalized quantifier, and let M be a
set. Then

(i) QM lives on M .
(ii) QM lives on ∅ if and only if QM is trivial (i.e., QM (A1, . . . , An, B) = 0 for

any A1, . . . , An, B ⊆ M or QM (A1, . . . , An, B) = 1 for any A1, . . . , An, B ⊆
M).

(iii) If QM lives on C1 and C2, then it lives on C1 ∩ C2. Hence, if M is finite,
there is always a smallest set on which QM lives. This fails, however, when
M is infinite.

(iv) (Q[A])M lives on A and its supersets. If (Q[A])M is non-trivial, A need not
be the smallest set on which (Q[A])M lives.

4 Fuzzy Quantifiers over Fuzzy Universes

The aim of this section is to introduce the concept of fuzzy quantifiers defined
over fuzzy universes. We start with the introduction of (local and global) fuzzy
quantifiers over crisp universes, where we demonstrate the limitation of their
definitions. This motivates us to introduce the concept of fuzzy universe and
define (local and global) fuzzy quantifiers over such universes.

4.1 Fuzzy Quantifiers over Crisp Universes

An immediate generalization of Definitions 1 and 2 consists of replacing classical
sets A1, . . . , An and B by fuzzy subsets of M and of using a residuated lattice
L instead of the Boolean algebra 2 (see [6,8]).

Definition 8 (Local fuzzy quantifier). Let M be a universe of discourse. A
local fuzzy quantifier QM of type 〈1n, 1〉 over M is a function QM : F(M)n ×
F(M) → L that to any fuzzy sets A1, . . . , An and B from F(M) assigns a truth
value QM (A1, . . . , An, B) from L.

Definition 9 (Global fuzzy quantifier). A global fuzzy quantifier Q of type
〈1n, 1〉 is a functional that to any universe M assigns a local fuzzy quantifier
Q : F(M)n × F(M) → L of type 〈1n, 1〉. The set of all global fuzzy quantifiers
of type 〈1n, 1〉 will be denoted by QUANT〈1n,1〉.

Among the important examples of global fuzzy quantifiers of type 〈1〉 are,
again, ∀ and ∃. They are standardly defined as

∀M (B) :=
∧

m∈M

B(m) (14)
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and
∃M (B) :=

∨

m∈M

B(m). (15)

Important examples of global fuzzy quantifiers of type 〈1, 1〉 are all and some,
defined as

allM (A,B) :=
∧

m∈M

(A → B)(m) (16)

and
someM (A,B) :=

∨

m∈M

(A ∩ B)(m). (17)

As we have mentioned in Sect. 1, there is a principal problem to introduce the
relativization of a fuzzy quantifier, because one argument of a fuzzy quantifier
becomes a universe and a fuzzy set as the universe is not permitted. Therefore, in
[8], the relativization of a global fuzzy quantifier Q of type 〈1〉 has been proposed:

Qrel
M (A,B) := QSupp(A)(A ∩ B), (18)

where Supp(A) is used as the universe of the fuzzy quantifier Q instead of A,
which is the fuzzy set in the first argument of fuzzy quantifier Qrel

M . Unfortunately,
this solution is generally not satisfactory. For example, one can simply derive that

(∀rel)M (A,B) :=
∧

m∈Supp(A)

(A ∩ B)(m) �= allM (A,B),

which is counter-intuitive. Hence, the definition of relativization does not seem
to be well established. Another concept called weak relativization was also pro-
vided in [8], but again it generally fails. In [5], it was proved that there is no
satisfactory definition of relativization of fuzzy quantifiers of type 〈1〉. However,
an introduction of fuzzy sets as universes for fuzzy quantifiers is not motivated
only by relativization of fuzzy quantifiers. The second example can be the con-
cept of restriction of a fuzzy quantifier to a fuzzy set (see Definition 5). Thus,
the absence of fuzzy sets as universes for fuzzy quantifiers brings significant lim-
itations in the development of the fuzzy quantifier theory that should possibly
cover a wide part of topics studied in the field of generalized quantifiers.

4.2 Fuzzy Universes

Let A be a fuzzy set on N , and let M be a set. Define AM : M → L as

AM (m) =

{
A(m), if m ∈ M ∩ N,

0, otherwise.
(19)

The fuzzy set AM represents A (or its part) on the universe M . Obviously, if
A ∈ F(M), then AM = A. It is easy to see that Supp(AM ) = Supp(A) ∩ M .
Moreover, if A,B are fuzzy sets on N and M is a set, then we have (A∩B)M =
AM ∩ BM and (A ∪ B)M = AM ∪ BM .
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A pair (M,A), where M is a set and A is a fuzzy set on M , is called a fuzzy
universe. Obviously, if M = ∅ in (M,A), then A = ∅ is the empty function. A
fuzzy universe (M,A) is said to be crisp if A is crisp and A = 1M . Let (M,A) and
(N,B) be fuzzy universes. The basic (fuzzy) set operations for fuzzy universes
are defined as follows:

• (M,A) ∩ (N,B) = (K,AK ∩ BK), where K = M ∩ N ;3

• (M,A) ∪ (N,B) = (K,AK ∪ BK), where K = M ∪ N ;
• (M,A) \ (N,B) = (M,AM \ BM ).

For the sake of simplicity, we write simply (M,A) ∩ (N,B) = (M ∩ N,A ∩ B)
and assume that A ∩ B is well introduced on the universe M ∩ N according to
the definition above. A similar notation can be also used for the union and the
difference of fuzzy universes.

A non-empty class U of fuzzy universes is said to be well defined if

C1) (M,A) ∈ U implies (M,B) ∈ U for any B ∈ F(M);
C2) U is closed under the intersection, union and difference.

In what follows, we assume that each class of fuzzy universes is well defined.
Fundamental binary relations for fuzzy universes in a class U can be intro-

duced as follows. We say that (M,A) is equal to (N,B), and denote it by
(M,A) = (N,B), if M = N and A = B. Moreover, we say that (M,A) is
equal to (N,B) up to negligible elements, and denote it by (M,A) ∼ (N,B), if
Supp(A) = Supp(B) and ASupp(A) = BSupp(A). Obviously, (M,A) ∼ (N,B) if
and only if (Supp(A), ASupp(A)) = (Supp(B), BSupp(B)).4 Note that if Supp(A) =
∅ = Supp(B), then A = ∅ on M and B = ∅ on N . It is easy to see that for any
(M,A) and a set N ⊇ M , there exists exactly one fuzzy set A′ on N such that
(M,A) ∼ (N,A′). This fuzzy set A′ is called the extension of A from M to N .
We say that (M,A) is a subset of (N,B), and denote it by (M,A) ⊆ (N,B), if
(M,A) ∩ (N,B) ∼ (M,A) (or, equivalently, (M,A) ∪ (N,B) ∼ (N,B)).

The following two statements show properties of the equality relation up to
negligible elements.

Lemma 3. If (M,A) ∼ (M ′, A′), then (N,AN ) = (N,A′
N ) for any set N such

that (N,AN ) ∈ U .

Theorem 1. The binary relation ∼ on U is a congruence with respect to the
intersection, union and difference of fuzzy universes.

3 If K = M ∩ N = ∅, then AK ∩ BK is the empty mapping.
4 Note that (Supp(A), ASupp(A)) �∈ U in general, but it is not a problem to extend the
class U by such fuzzy universes. Then we can use this equality for the verification
that (M,A) ∼ (N,B).
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4.3 Fuzzy Quantifiers over Fuzzy Universes

In Sect. 4.1, we demonstrated the limitations of the definition of fuzzy quantifiers
over set universes. In this subsection we introduce the concept of fuzzy quantifiers
defined over fuzzy universes (see Sect. 4.2) in such a way that it overcomes these
limitations.

Definition 10 (Local fuzzy quantifier over a fuzzy universe). Let (M,C)
be a fuzzy universe. A local fuzzy quantifier Q(M,C) of type 〈1n, 1〉 on (M,C) is
a function Q(M,C) : F(M)n × F(M) → L that to any fuzzy sets A1, . . . , An and
B from F(M) assigns a truth value Q(M,C)(A1, . . . , An, B) from L and

Q(M,C)(A1, . . . , An, B) = Q(M,C)(A′
1, . . . , A

′
n, B

′) (20)

holds for any A1, . . . , An, B,A′
1, . . . , A

′
n, B

′ ∈ F(M) such that Ai ∩ C = A′
i ∩ C

for any i = 1, . . . , n and B ∩ C = B′ ∩ C.

One can see that the local fuzzy quantifier Q(M,C), which is defined over
a fuzzy universe (M,C), is, in fact, a fuzzy quantifier defined on M that lives
on a fuzzy set C (cf. Definition 14). Hence, an analysis of properties of fuzzy
quantifiers over fuzzy universes can be practically restricted to fuzzy subsets of
the fuzzy set C as it was proposed in [5].

Definition 11 (Global fuzzy quantifier over fuzzy universes). Let U be a
class of fuzzy universes. A global fuzzy quantifier Q of type 〈1n, 1〉 is a functional
assigning to any fuzzy universe (M,C) ∈ U a local fuzzy quantifier Q(M,C) of
type 〈1n, 1〉 such that for any (M,C), (M ′, C ′) ∈ U with (M,C) ∼ (M ′, C ′), it
holds that

Q(M,C)(A1, . . . , An, B) = Q(M ′,C′)(A′
1, . . . , A

′
n, B

′) (21)

for any A1, . . . , An, B ∈ F(M) and A′
1, . . . , A

′
n, B

′ ∈ F(M ′) such that (M,Ai) ∼
(M ′, A′

i) for any i = 1, . . . , n and (M,B) ∼ (M ′, B′).

We should note that condition (21) ensures that if two fuzzy universes are
equal up to negligible elements, then the fuzzy quantifiers defined over them are
practically identical. More precisely, their evaluations coincide for fuzzy sets that
together with their universes are equal up to negligible elements.

Before we provide an example of fuzzy quantifiers defined over fuzzy uni-
verses, let us define a binary fuzzy relation of fuzzy equivalence for fuzzy
sets on a fuzzy universe. Let (M,C) ∈ U be a fuzzy universe. A mapping
∼=(M,C) : F(M) × F(M) → L defined as

(A ∼=(M,C) B)(m) =
∧

m∈M

((A ∩ C)(m) ↔ (B ∩ C)(m)) (22)

is called a fuzzy equivalence on (M,C).
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Example 2. Let U be a family of fuzzy universes. A global fuzzy quantifier over
fuzzy universes ∀ of type 〈1〉 assigns to any (M,C) ∈ U a local fuzzy quantifier
over fuzzy universes ∀(M,C) : F(M) → L defined for any B ∈ F(M) as

∀(M,C)(B) := B ∼=(M,C) C,

where ∼=(M,C) is the fuzzy equivalence (22) on (M,C).5

Due to the definition of the fuzzy equivalence on (M,C), we can write

∀(M,C)(B) = B ∼=(M,C) C =
∧

m∈M

((B ∩ C)(m) ↔ (C ∩ C)(m)) =

∧

m∈M

((B ∩ C)(m) ↔ C(m)) =
∧

m∈M

((B(m) ∧ C(m)) ↔ C(m)) =

∧

m∈M

(C(m) → B(m)) =
∧

m∈M

(C → B)(m), (23)

where we used the equality (a∧ b) ↔ b = b → a holding for any a, b ∈ L in every
residuated lattice L. If (M,C) is crisp, then

∀(M,C)(B) =
∧

m∈M

(C(m) → B(m)) =
∧

m∈M

(1 → B(m)) =
∧

m∈M

B(m),

that is, it coincides with the standard definition of the fuzzy quantifier ∀M

provided in (14).

Finally, we define relativization for fuzzy quantifiers defined over fuzzy uni-
verses as follows (cf. Definition 3).

Definition 12 (Relativization of fuzzy quantifiers over fuzzy uni-
verses). Let Q be a global fuzzy quantifier of type 〈1n, 1〉 over fuzzy universes.
The relativization of Q is a global fuzzy quantifier Qrel of type 〈1n+1, 1〉 over
fuzzy universes defined as

(Qrel)(M,C)(A,A1, . . . , An, B) := Q(M,C∩A)(A ∩ A1, . . . , A ∩ An, A ∩ B) (24)

for all A,A1, . . . , An, B ∈ F(M). For the most common case of relativization
from type 〈1〉 to type 〈1, 1〉,

(Qrel)(M,C)(A,B) = Q(M,C∩A)(A ∩ B). (25)

4.4 Restriction

As we mentioned in Subsect. 4.1, we are unable to extend the concept of restric-
tion for fuzzy quantifiers defined over crisp universes. In this part, we show that if
we employ fuzzy universes for fuzzy quantification, we can introduce this concept

5 Note the structural similarity of this definition with the definition of the generalized
quantifier ∀M (B) := B = M given below Definition 2.
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in an elegant way following the standard definition. In the rest of the paper, by
a fuzzy quantifier we mean a fuzzy quantifier over fuzzy universes unless stated
otherwise.

The concept of fuzzy quantifiers of type 〈1n, 1〉 restricted to a fuzzy set can
be introduced as follows.

Definition 13. Let Q be a type 〈1n, 1〉 global fuzzy quantifier, and let A be a
fuzzy set on N . The fuzzy quantifier Q is restricted to A if for any (M,C) ∈ U
and A1, . . . , An, B ∈ F(M) we have

Q(M,C)(A1, . . . , An, B) =
Q(N,A)(A∩ (C ∩ A1)N , . . . , A ∩ (C ∩ An)N , A ∩ (C ∩ B)N ).

(26)

The set of all type 〈1n, 1〉 global fuzzy quantifiers restricted to a fuzzy set A on
a universe N is denoted by FRST〈1n,1〉(N,A).

Similarly to the classical case of the restriction to a set, a global fuzzy quanti-
fier, which is restricted to a fuzzy set A on a universe N , is determined from the
local fuzzy quantifier Q(N,A). One can simply verify that the previous definition
of the restriction to a fuzzy set is correct in the sense of Definition 11. Note that
such verification is useless for the global generalized quantifiers, because their
definition has no requirement on the functionals defining them. Obviously, an
equivalent definition could be as follow. A fuzzy quantifier Q is restricted to a
fuzzy set A on a universe N if for any (M,C) ∈ U and A1, . . . , An, B ∈ F(M)
we have

Q(M,C)(A1, . . . , An, B) = Q(N,A∩CN )(A ∩ A1,N , . . . , A ∩ An,N , A ∩ BN ). (27)

The following lemma is a generalization of Lemma 1 for fuzzy quantifiers
defined over fuzzy universes.

Lemma 4. If Q is a type 〈1n, 1〉 global generalized quantifier restricted to a fuzzy
set A on N , then Q is restricted to any fuzzy set A′ on an arbitrary universe N ′

such that (N,A) ⊆ (N ′, A′), i.e., FRST〈1n,1〉(N,A) ⊆ FRST〈1n,1〉(N ′, A′).

Let us show that the global fuzzy quantifiers restricted to fuzzy sets can be
used to introduce the relativization of global fuzzy quantifiers. Let Q be a type
〈1n, 1〉 fuzzy quantifier. Then, for each fuzzy set A on a universe N , we can
introduce the type 〈1n, 1〉 global fuzzy quantifier Q[(N,A)] as

(Q[(N,A)])(M,C)(A1, . . . , An, B) =
Q(N,A)(A∩ (C ∩ A1)N , . . . , A ∩ (C ∩ An)N , A ∩ (C ∩ B)N )

for any (M,C) ∈ U and A1, . . . , An, B ∈ F(M). It is easy to see that
Q[(N,A)] ∈ FRST〈1n,1〉(N,A). It should be noted that Q and Q[(N,A)] are dif-
ferent quantifiers. They become identical if Q is already restricted to the fuzzy
set A on the universe N . Now, if we define the global fuzzy quantifier Q′ of type
〈1n+1, 1〉 as

Q′
(M,C)(A,A1, . . . , An, B) = (Q[(M,A)])(M,C)(A1, . . . , An, B) (28)
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for all (M,C) ∈ U and A1, . . . , An, B ∈ F(M), then using (27) it is easy to show
that Q′ = Qrel, where Qrel has been defined in Definition 12.

4.5 Fuzzy Quantifiers Living on a Fuzzy Set

A concept related to that of a global fuzzy quantifier restricted to a fuzzy set is
the concept of a local fuzzy quantifier living on a fuzzy set.

Definition 14. Let (M,C) ∈ U and A be a fuzzy set on a universe N . The local
fuzzy quantifier Q(M,C) of type 〈1n, 1〉 lives on A if, for any A1, . . . , An, B ∈
F(M), we have

Q(M,C)(A1, . . . , An, B) = Q(M,C)(AM ∩ A1, . . . , AM ∩ An, AM ∩ B). (29)

If the distributivity of ∧ over
∨

is satisfied in a residuated lattice L (e.g., L
is an MV-algebra), the conservativity of global fuzzy quantifiers of type 〈1n, 1〉
can be expressed in terms of the live-on property.6 Indeed, let Q be a global
fuzzy quantifier of type 〈1n, 1〉 for n ≥ 1. For any fuzzy universe (M,C) and
A1, . . . , An ∈ F(M), define local quantifier (Q[A1, . . . , An])(M,C) of type 〈1〉 as

(Q[A1, . . . , An])(M,C)(B) = Q(M,C)(A1, . . . , An, B). (30)

One can show that Q is conservative if and only if each local generalized quan-
tifier (Q[A1, . . . , An])M lives on A =

⋃n
i=1 Ai. Note that the distributivity of ∧

over
∨

ensures the crucial equality (
⋃n

i=1 Ai) ∩B =
⋃n

i=1(Ai ∩B) important in
the proof of a characterization of the conservativity of type 〈1n, 1〉 global fuzzy
quantifiers.

The following lemma specifies basic facts about fuzzy quantifiers living on
fuzzy sets (cf. Lemma 2).

Lemma 5. Let Q be a type 〈1n, 1〉 global fuzzy quantifier, let (M,C) be a fuzzy
universe from U , and let C1 ∈ F(N) and C2 ∈ F(N ′) be fuzzy sets. Then

(i) Q(M,C) lives on C.
(ii) Q(M,C) lives on ∅ if and only if Q(M,C) is trivial (Q(M,C)(A1, . . . , An, B) = a

for any A1, . . . , An, B ∈ F(M) with a ∈ L).
(iii) If Q(M,C) lives on C1 and C2, then it lives on C1,N∩N ′ ∩ C2,N∩N ′ .
(iv) (Q[(N,A)])(M,C) lives on A.

5 Conclusion

In this article, we proposed a novel framework for fuzzy quantifiers which are
defined over fuzzy universes. We introduced the concept of a fuzzy universe and
define a class of fuzzy universes closed under the operations of intersection, union
6 A global fuzzy quantifier Q of type 〈1n, 1〉 over fuzzy universes is conservative, if for
any (M,C) ∈ U and A1, . . . , An, B,B′ ∈ F(M) it holds that if Ai ∩B = Ai ∩B′ for
i = 1, . . . , n, then Q(M,C)(A1, . . . , An, B) = Q(M,C)(A1, . . . , An, B

′).
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and difference. Moreover, we established a binary relation called the equivalence
up to negligible elements, which is essential in the definition of global fuzzy quan-
tifiers over fuzzy universes. Further, we generalized the fuzzy quantifiers defined
over crisp universes to fuzzy quantifiers defined over fuzzy universes. The novel
conception of fuzzy quantifiers naturally allows us to introduce, for example,
the notion of relativization of fuzzy quantifiers, which principally could not be
defined in the case of fuzzy quantifiers if only crisp universes are permitted. For
an illustration, we investigated the important semantic notions of restriction to
a fuzzy set and living on a fuzzy set in our novel framework for fuzzy quantifiers
defined over fuzzy universes. It should be noted that the notion of restriction to
a fuzzy set also could not be introduced for fuzzy quantifiers defined over crisp
universes. Although the presented work is only an initial study, it shows that the
fuzzy quantifiers over fuzzy universes enable us to develop the fuzzy quantifier
theory in the same fashion as in the theory of generalized quantifiers. In our
future research, we will concentrate on investigation of further semantic proper-
ties of fuzzy quantifiers over fuzzy universes, e.g., the property of extension and
isomorphism invariance.

References

1. Barwise, J., Cooper, R.: Generalized quantifiers and natural language. Linguist.
Philos. 4, 159–219 (1981)
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Abstract. Relational variants of categories of Čech closure or interior
L-valued operators, categories of L-fuzzy pretopological and L-fuzzy co-
pretopological operators, category of L-valued fuzzy relation, categories
of upper and lower F -transforms and the category of spaces with fuzzy
partitions are introduced. The existence of relationships defined by func-
tors among these categories are investigated and a key role of a relational
category of spaces with fuzzy partitions is described.

1 Introduction

In this paper we want to build on our previous paper [8] and to analyse the rela-
tionships between categories that represent various structures generally included
under the term fuzzy topological structures. These structures include variants
of fuzzy topological spaces, fuzzy rough sets, fuzzy approximation spaces, fuzzy
closure operators, fuzzy pretopological operators and their dual terms. In con-
trast to the original paper [8], however, the relationships between these fuzzy
structures are not represented by classical mappings between supports of these
fuzzy structures, but in a more general way, i.e., as a fuzzy relations or a fuzzy
relations with other properties. This more general approach is based on current
trends in the field of fuzzy structures which are based on the application of fuzzy
relations as morphisms in suitable categories. A typical example of that use of
fuzzy relations is the category of sets as objects and L-valued fuzzy relations
between sets as morphisms which is frequently used in approximation theory.

The main result of this paper are two theorems describing the existence of func-
tors among categories of these generalized lattice-valued fuzzy topological struc-
tures, where a given lattice L is either a complete residuated lattice or a complete
MV -algebra. From both these theorems it follows the key position of a relational
version of the category of spaces with fuzzy partitions which represents a structure
from which all other considered fuzzy topological structures can be derived.
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2 Preliminaries

In this section we repeat basic terminology from residuated lattices and we also
introduce principal categories and some subcategories we use in the paper. To
be self-contained, in this section we repeat most of definitions related to these
structures.

We refer to [6,9] for additional details regarding residuated lattices.

Definition 1. A residuated lattice is an algebra L = (L,∧,∨,⊗,→, 0, 1) such
that

1. (L,∧,∨, 0, 1) is a bounded lattice with the least element 0 and the greatest
element 1;

2. (L,⊗, 1) is a commutative monoid, and
3. ∀a, b, c ∈ L, a ⊗ b ≤ c ⇐⇒ a ≤ b → c.

A residuated lattice (L,∧,∨,⊗,→, 0, 1) is complete if it is complete as a lattice.
The following is the derived unary operations of negation ¬:

¬a = a → 0,

A residuated lattice L is called an MV -algebra if it satisfies (a → b) → b = a∨ b.
Throughout this paper, a complete residuated lattice L = (L,∧,∨,⊗,→, 0, 1)
will be fixed. For simplicity, instead of L we use only L if there is no danger of
misunderstanding.

Let X be a nonempty set and LX be a set of all L-fuzzy sets (=L-valued
functions) of X. For all α ∈ L, α(x) = α is a constant L-fuzzy set on X. For
all u ∈ LX , the core(u) is a set of all elements x ∈ X, such that u(x) = 1. An
L-fuzzy set u ∈ LX is called normal, if core(u) �= ∅. An L-fuzzy set χX

{y} ∈ LX

is a singleton, if it has the following form

χX
{y}(x) =

{
1, if x = y,

0, otherwise.

We repeat basic definitions of above mentioned fuzzy topological structures.
The original notions of Kuratowski closure and interior operators were intro-
duced in several papers, see [1–5]. In the paper we use a more general form of
these operators, called Čech operators or preclosure operators, where the idem-
potence of operators is not required.

Definition 2. The map i : LX → LX is called a Čech (L-fuzzy) interior opera-
tor, if for every α, u, v ∈ LX , it fulfills

1. i(α) = α,
2. i(u) ≤ u,
3. i(u ∧ v) = i(u) ∧ i(v).
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We say that a Čech interior operator i : LX → LX is a strong Čech-Alexandroff
interior operator, if

i(α → u) = α → i(u) and i(
∧
j∈J

uj) =
∧
j∈J

i(uj).

Definition 3. The map c : LX → LX is called a Čech (L-fuzzy) closure opera-
tor, if for every α, u, v ∈ LX , it fulfils

1. i(α) = α,
2. i(u) ≥ u,
3. i(u ∨ v) = i(u) ∨ i(v).

We say that a Čech closure operator c : LX → LX is a strong Čech-Alexandroff
closure operator, if

c(α ⊗ u) = α ⊗ c(u) and c(
∨
j∈J

uj) =
∨
j∈J

c(uj).

We remind the notion of an L-fuzzy pretopological space and L-fuzzy co-
pretopological space as it has been introduced in [11].

Definition 4. An L-fuzzy pretopology on X is a set of functions τ = {px ∈
LLX

: x ∈ X}, such that for all u, v ∈ LX , α ∈ L and x ∈ X,

1. px(α) = α,
2. px(u) ≤ u(x),
3. px(u ∧ v) = px(u) ∧ px(v).

We say that an L-fuzzy pretopological space (X, τ) is a strong Čech-Alexandroff
L-fuzzy pretopological space, if

px(α → u) = α → px(u) and px(
∧
j∈J

uj) =
∧
j∈J

px(uj).

Definition 5. An L-fuzzy co-pretopology on X is a set of functions η = {px ∈
LLX

: x ∈ X}, such that for all u, v ∈ LX , α ∈ L and x ∈ X,

1. px(α) = α,
2. px(u) ≥ u(x),
3. px(u ∨ v) = px(u) ∨ px(v).

We say that an L-fuzzy co-pretopological space (X, τ) is a strong Čech-
Alexandroff L-fuzzy co-pretopological space, if

px(α ⊗ u) = α ⊗ px(u) and px(
∨
j∈J

uj) =
∨
j∈J

px(uj).

We recall the notion of an L-fuzzy partition (see [7] or [10]), which is the
basic structure for lattice-valued fuzzy transform, introduced in [10].
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Definition 6. A set A of normal fuzzy sets {Aα : α ∈ Λ} in X is an L-fuzzy
partition of X, if

1. the corresponding set of ordinary subsets {core(Aα) : α ∈ Λ} is a partition of
X, and

2. core(Aα) = core(Aβ) implies Aα = Aβ.

Instead of the index set Λ from A we use |A|.
We need the following notation. If R : X×Y → L is an L-fuzzy relation, then

the upper and lower approximation maps R↑ : LX → LY and R↓ : LY → LX

are defined by

t ∈ LX , y ∈ Y, R↑(t)(y) =
∨

x∈X

t(x) ⊗ R(x, y),

s ∈ LY , x ∈ X, R↓(s)(x) =
∧

y∈Y

R(x, y) → s(y).

Finally, from a set X and a lattice-valued fuzzy partition A defined on X
we can construct examples of upper and lower approximation maps, defined
by special fuzzy relations which is derived from a space with a fuzzy partition
(X,A). In fact, we can define a fuzzy relation R : X × |A| → L by

x ∈ X,λ ∈ |A|, R(x, λ) = Aλ(x),

where A = {Aλ : λ ∈ |A|}. Fuzzy approximation operators R↑ and R↓ derived
from R are then called upper and lower F -transforms based on a fuzzy partition
A. Namely, we have

Definition 7. An upper F -transform on a set X defined by a fuzzy partition A
is a map F ↑

X,A : LX → L|A|, such that

∀u ∈ LX , λ ∈ |A|, F ↑
X,A(u)(λ) =

∨
x∈X

Aλ(x) ⊗ u(x).

Definition 8. A lower F -transform on a set X defined by a fuzzy partition A
is a map F ↓

X,A : LX → L|A|, such that

∀u ∈ LX , λ ∈ |A|, F ↓
X,A(u)(λ) =

∧
x∈X

Aλ(x) → u(x).

In the previous paper [8] we discussed the issue of relations, i.e., functors,
between categories that have relationships to categories of fuzzy topological
structures and whose common features are that morphisms in these categories
are special mappings between sets. In this paper, which is a natural continuation
of the previous paper [8], we will look at the relationships between analogous
categories, where, unlike the original categories, morphisms are defined as spe-
cial L-valued relations. This shift in understanding relationships between fuzzy
objects corresponds to the current trend, where fuzzy relations between different
fuzzy structures are of increasing importance.
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The categories we will deal with in the paper have the same objects as the
categories introduced in [8], the only difference concerns morphisms. Instead
of classical maps between sets we use special fuzzy relations as morphisms. To
emphasize the link between the original categories in [8], if the original category
was labelled K, the new category with relational morphisms will be labelled
RK.

Definition 9. In what follows by X,Y we denote sets from the standard category
Set and by . a composition of morphisms in this category.

1. The category RCInt is defined by
(a) objects are pairs (X, i), where i : LX → LX is a Čech L-fuzzy interior

operator,
(b) R : (X, i) → (Y, j) is a morphism, if R : X × X → L is an L-fuzzy

relation and
i.R↓ ≥ R↓.j.

2. The category RCClo is defined by
(a) objects are pairs (X, c), where c : LX → LX is a Čech L-fuzzy closure

operator,
(b) R : (X, c) → (Y, d) is a morphism, if R : X × Y → L is an L-fuzzy

relation, and
R↑.c ≤ d.R↑.

3. The category RFPreTop is defined by
(a) objects are L-fuzzy pretopological spaces (X, τ),
(b) R : (X, τ) → (Y, σ) is a morphism, where τ = {px ∈ LLX

: x ∈ X},
σ = {qy ∈ LLY

: y ∈ Y }, if R : X × Y → L is an L-fuzzy relation, and
for all x ∈ X, ∧

z∈Y

(R(x, z) → qz) ≤ px.R↓.

4. The category RFcoPreTop is defined by
(a) objects are L-fuzzy co-pretopological spaces (X, τ),
(b) R : (X, τ) → (Y, σ) is a morphism, where τ = {px ∈ LLX

: x ∈ X},
σ = {qy ∈ LLY

: y ∈ Y }, if R : X × Y → L is an L-fuzzy relation, and
for all x ∈ X, y ∈ Y ,

qy.R↑ ≥ px ⊗ R(x, y).

5. The category RFRel is defined by
(a) objects are pairs (X, r), where r is a reflexive L-fuzzy relation on X,
(b) R : (X, r) → (Y, s) is a morphism, if R : X × Y → L is an L-fuzzy

relation, and
s ◦ R ≥ R ◦ r,

where ◦ is the composition of L-fuzzy relations.
6. The category RSFP is defined by

(a) objects are sets with an L-fuzzy partition (X,A),
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(b) (R,Σ) : (X,A) → (Y,B) is a morphism if R : X × Y → L and Σ : |A| ×
|B| → L are L-fuzzy relations and for each α ∈ |A|, β ∈ |B|, x ∈ X, y ∈ Y ,

Aα(x) ⊗ Σ(α, β) ≤ Bβ(y) ⊗ R(x, y),
Aα(x) ⊗ R(x, y) ≤ Bβ(y) ⊗ Σ(α, β).

7. The category RFTrans↑ is defined by
(a) objects are upper F -transforms F ↑

X,A : LX → L|A|, where (X,A) are sets
with L-fuzzy partitions,

(b) (R,Σ) : F ↑
X,A → F ↑

Y,B is a morphism if R : X×Y → L and Σ : |A|×|B| →
L are L-fuzzy relations and

Σ↑.F ↑
X,A ≤ F ↑

Y,B.R↑.

8. The category RFTrans↓ is defined by
(a) objects are lower F -transforms F ↓

X,A : LX → L|A|, where (X,A) are sets
with L-fuzzy partitions,

(b) (R,Σ) : F ↓
X,A → F ↓

Y,B is a morphism if R : X×Y → L and Σ : |A|×|B| →
L are L-fuzzy relations and

Σ↓.F ↓
Y,B ≤ F ↓

X,A.R↓.

Analogously as in the paper [8] we consider the following full subcategories
of the above categories:

1. The full subcategory RsACClo of RCClo with strong Čech-Alexandroff
L-fuzzy closure operators as objects.

2. The full subcategory RsACInt of RCInt with strong Čech-Alexandroff
L-fuzzy interior operators as objects.

3. The full subcategory RsAFPreTop of RFPreTop with strong Čech-
Alexandroff L-fuzzy pretopological spaces as objects.

4. The full subcategory RsAFcoPreTop of RFcoPreTop with strong Čech-
Alexandroff L-fuzzy co-pretopological spaces.

3 Relationships Among Relational Categories of L-valued
Fuzzy Topological Structures

The main result of the paper are the following two theorems, which use functors
to describe the relationships between individual categories from the Definitions 7
and 8. Because each of the category K listed in [8]; Theorem 1 and Theorem 2,
can be embedded into the corresponding category RK and the embedding is
done using a graph of the morphisms from K, these new theorems generalize
results from [8]. In fact, the following simple proposition holds.

Proposition 1. Let K be any of categories listed in [8]; Theorem 1 and
Theorem 2. Then there exists an embedding functor IK : K ↪→ RK.
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From these two theorems it follows that relationships among relational ver-
sions of categories associated with F-transforms are analogical to relationships
among categories with maps as morphisms.

The first theorem describes the relationships between these categories of
L-valued fuzzy topological structures where L is a complete residuated lattice.

Theorem 1. Let L be a complete residuated lattice. Then the following diagram
of functors commutes,

RFcoPreTop
F

>

<
F−1 RCClo

RFTrans↑ Q↑
> RsAFcoPreTop

∪

∧
G
>

<
G−1 RsACClo

∪

∧

RSFP

W
∧

T
>

U↑
<

RFRel

M

∧
M−1

∨

RFTrans↓ Q↓
>

U↓

<
RsAFPreTop

V

∨

where (F, F−1), (G,G−1) and (M,M−1) are inverse pairs of functors.

The rather long proof of this theorem will be published elsewhere. We show only
how the object functions of the functors are defined. For (X,A) ∈ RSFP we set

T (X,A) = (X, r), r(x, x′) = AwA(x)(x′),

W (X,A) = (X, {px : x ∈ X}), px(u) =
∨
t∈X

u(t) ⊗ AwA(t)(x),

V (X,A) = (X, {px : x ∈ X}), px(u) = F ↓
X,A(u)(wA(x)),

U↑(X,A) = F ↑
X,A,

U↓(X,A) = F ↓
X,A,

where wA(t) ∈ |A| is such that AwA(t)(t) = 1. For other functors we set

(X, {px : x ∈ X}) ∈ RFcoPrTop, F (X, {px : x ∈ X}) = (c, u), c(u)(x) = px(u),

(X, r) ∈ RFRel, M(X, r) = (X, c), c(u)(x) = r↑(u)(x),

(X, c) ∈ RsACClo, M−1(X, c) = (X, r), r(x, x′) = c(χX
{x})(x

′).

If L is a complete MV -algebra, we obtain a stronger form of the previous
theorem.

Theorem 2. Let L be a complete MV -algebra. Then the following diagram
of functors from Theorem 1 and new functors commutes, where (H,H−1) and
(N,N−1) are inverse pairs of functors.
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RFcoPreTop
F

>

<
F−1 RCClo

RFTrans↑ Q↑
> RsAFcoPreTop

∪

∧
G
>

<
G−1 RsACClo

∪

∧

RSFP

W
∧

T
>

U↑
<

RFRel

M

∧
M−1

∨

RFTrans↓ Q↓
>

U↓

<
RsAPreTop

V

∨ H
>

<
H−1 RsACInt.

N

∧
N−1

∨

In the following examples we show how a fuzzy topological structure of one
type can be transformed into a fuzzy topological structure of another type using
these theorems.

Example 1. Let L be a complete residuated lattice. Using Theorem 1 we show
how a strong Čech-Alexandroff L-fuzzy closure operator c in a set X can be
constructed from an equivalence relation σ on X. In fact, using σ we can define a
fuzzy partition A = {Aα : α ∈ X/σ}, where X/σ is the set of equivalence classes
defined by σ and Aα(x) = 1 iff x ∈ α, otherwise the value is 0. Using functors
from the Theorem 1, the strong Čech-Alexandroff L-fuzzy closure operator c in
X can be defined by (X, c) = M.T (X,A), i.e., for arbitrary u ∈ LX , x ∈ X,

c(u)(x) =
∨
t∈X

u(t) ⊗ AwA(x)(t) =
∨

t∈X,(t,x)∈σ

u(t).

Example 2. Let L be a complete MV -algebra. Using the Theorem 2 we show how
from a strong Čech-Alexandroff L-fuzzy pretopological space (X, τ) a strong Čech-
Alexandroff L-fuzzy co-pretopological space (X, ρ) can be defined. In fact, we can
put (X, ρ) = G−1.M.N.H(X, τ). If τ = {px : x ∈ X} then ρ = {px : x ∈ X}
is defined by

px(u) =
∨
t∈X

u(t) ⊗ ¬px(¬χX
{x})(t),

as it can be verified by a simple calculation. If R : (X, τ) → (Y, σ) is a mor-
phisms in RsAFPreTOP, then R is also a morphism G−1.M.N.H(X, τ) →
G−1.M.N.H(Y, σ) in RsAFcoPreTop.

4 Conclusions

The article follows our previous work [8], in which we dealt with the issue of
relationships between categories motivated by topological structures. We looked
at a more general situation where morphisms in these categories are not map-
pings, but L-fuzzy relations. In detail, we considered categories and some of
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their subcategories of Čech closure or interior L-valued operators, categories
of L-fuzzy pretopological and L-fuzzy co-pretopological operators, category of
L-valued fuzzy relation, categories of upper and lower F -transforms and the
category of spaces with fuzzy partitions, where morphisms between objects are
based on L-valued relations. As an interesting consequence of these relationships
among relational categories, it follows that the category of relational spaces with
fuzzy partitions plays a key role, i.e., the objects of this category can be used to
create objects of any of the above categories of topological structures.
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Abstract. This work presents an application of interactive fuzzy frac-
tional differential equation, with Caputo derivative, to an HIV model for
seropositive individuals under antiretroviral treatment. The initial con-
dition of the model is given by a fuzzy number and the differentiability
is given by a fuzzy interactive derivative. A discussion about the model
considering these notions are presented. Finally, a numerical solution to
the problem is provided, in order to illustrate the results.

Keywords: Fuzzy fractional differential equation · Interactive
arithmetic · F-correlated fuzzy process · HIV dynamics

1 Introduction

Fractional Differential Equations (FDE) can be seen as a generalization of Ordi-
nary Differential Equations (ODE) to arbitrary non-integer order [14]. The con-
cept of Fuzzy Fractional Differential Equation (FFDE) was introduced by Agar-
wal et al. in [1]. There are several papers that solve FFDEs, for example [26,35].

Here we consider the Fuzzy Fractional Differential Equations (FFDE) under
the interactive derivative of Caputo, that is, the differentiability is given by
an interactive derivative, as proposed by Santo Pedro et al. [26]. We use the
fractional interactive derivative to describe a viral dynamics in seropositive indi-
viduals under antiretroviral treatment (ART). An HIV population dynamics has
already been considered as a process with memory. In this case, it was described
by a system of delay-differential equations associated mainly to pharmacolog-
ical delay, defined as the time interval required to absortion, distribution and
penetration of the drug in the target cells of the virus [16].
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The dynamics of biological systems usually evolve with some uncertainty,
which may be inherent in the phenomenon or result from environmental varia-
tion. It seems pertinent modeling a biological system as a process with memory,
so it cannot depend on instant time alone. For these reasons, the fractional
differential equation is used [2,3].

Our goal in this work is to provide new insight into well-known models of
HIV. For this, we will use fractional differential equations, which are used to
treat processes with memories [2,3], and the interactive derivative, which con-
siders both correlated processes and variability at the initial condition [5,27].
Current studies consider interactivity in the modeling of biological processes, in
particular, in the dynamics of HIV, when assuming the existence of a memory
coefficient [15].

This work is structured as follows. Section 2 presents preliminary concepts
about fuzzy set theory, as well as the fuzzy derivative for autocorrelated
processes. Section 3 presents fuzzy interactive fractional derivatives. Section 4
presents the fuzzy interactive fractional differential equation under the Caputo
derivative. Section 5 presents HIV dynamics under Caputo derivative and Sect. 6
presents the final comments.

2 Preliminary

A fuzzy subset A of R
n is described by its membership function μ

A
: Rn −→

[0, 1], where μA(u) means the degree in which u belongs to A. The r-levels of
the fuzzy subset A are classical subsets defined as:

[A]r = {u ∈ R
n : μ

A
(u) ≥ r} for 0 < r ≤ 1 and

[A]0 = {u ∈ Rn : μ
A
(u) > 0}.

The fuzzy subset A of R is a fuzzy number if its r-levels are closed and
nonempty intervals of R and the support of A, supp(A) = {u ∈ R : μ

A
(u) > 0},

is limited [4]. The family of the fuzzy subsets of Rn with nonempty compact and
convex r-levels is denoted by R

n
F , while the family of fuzzy numbers is denoted

by RF .
The Pompeiu-Hausdorff distance d∞ : Rn

F × R
n
F → R+ ∪ {0}, is defined by

d∞(A,B) = sup
0≤r≤1

dH([A]r, [B]r), (1)

where dH is the Pompeiu-Hausdorff distance for compact subsets of R
n. If A

and B are fuzzy numbers, that is, A,B ∈ RF , then (1) becomes

d∞(A,B) = sup
0≤r≤1

max{|a−
r − b−

r |, |a+
r − b+r |}.

From now on, the continuity of a fuzzy function is associated with the metric
d∞. The symbols + and − stands for the traditional (Minkowski) sum and dif-
ference between fuzzy numbers, which can be also defined via Zadeh’s extension
principle [19].
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Let A,B ∈ RF and J ∈ FJ(R2). The fuzzy relation J is a joint possibility
distribution of A and B if, [8]

max
v

μJ (u, v) = μ
A
(u) and max

u
μJ(u, v) = μ

B
(v), ∀ u, v ∈ R.

In this case, A and B are called marginal possibility distributions of J .
The fuzzy numbers A and B are said to be non-interactive if, and only if, its

joint possibility distribution J is given by μ
J
(u, v) = min{μ

A
(u), μ

B
(v)} for all

u, v ∈ R. Otherwise, the fuzzy numbers are said to be interactive [8,10].
Let A and B be fuzzy numbers with joint possibility distribution J and

f : R2 → R. The extension of f with respect to J , applied to the pair (A,B), is
the fuzzy subset f

J
(A,B) with membership function defined by [7]

μ
f

J
(A,B)(u) =

{
sup

(w,v)∈f−1(u)

μJ(w, v) if f−1(u) �= ∅
0 if f−1(u) = ∅

, (2)

where f−1(u) = {(w, v) : f(w, v) = u}.
If J is given by the minimum t-norm, then fJ(A,B) is the Zadeh’s extension

principle of f at A and B [7].

Theorem 1 [7,12]. Let A,B ∈ RF , J be a joint possibility distribution whose
marginal possibility distributions are A and B, and f : R2 −→ R a continuous
function. In this case, fJ : RF × RF −→ RF is well-defined and

[fJ (A,B)]r = f([J ]r) for all r ∈ [0, 1]. (3)

Let A ∈ RF . The length of the r-level set of A is defined by

len([A]r) = a+
r − a−

r , for all r ∈ [0, 1].

If r = 0, then len([A]0) = diam(A).
A strongly measurable and limited integrable fuzzy function is called inte-

grable. The fuzzy integral of Aumann of x : [a, b] → RF , with [x(t)]r =
[x−

r (t), x+
r (t)] is defined by [13]

[ ∫ b

a

x(t)dt

]
r

=
∫ b

a

[x(t)]rdt =
∫ b

a

[x−
r (t), x+

r (t)]dt

=
{ ∫ b

a

y(t)dt|y : [a, b] → R is a measurable selection for [x(·)]r
}

,

(4)
for all r ∈ [0, 1], provided (4) define a fuzzy number.

Let us focus on the special relationship called interactivity. There are several
types of joint possibility distributions that generate different interactivities. This
manuscript studies the interactivity called linear correlation, which is obtained
as follows.
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Let A,B ∈ RF \ R and a function F : R → R. The fuzzy numbers A and B
are called F -correlated if its joint possibility distribution is given by [8]

μJ(x, y) = χ{(u,v=F (u))}(x, y)μA(x) = χ{u,v=F (u)}(x, y)μB(y) (5)

Note that the fuzzy number B coincides with the Zadeh’s extension principle
of the function F evaluated at the fuzzy number A. If F is invertible, then
A = F−1(B) and, in this case,

[J ]r = {(u, F (u)) ∈ R
2|u ∈ [A]r} = {(F−1(v), v) ∈ R

2|v ∈ [B]r}. (6)

Also, if F is a continuous function, then the r-levels of B are given by [4]

[B]r = F ([A]r).

The fuzzy numbers are called linearly correlated (or linearly interactive), if
the function F is given by F (u) = qu + r. Let A and B be F -correlated fuzzy
numbers. The operation B ⊗F A is defined by [7],

μB⊗
F

A(w) =

⎧⎨
⎩

sup
u∈Φ−1

⊗ (w)

μA(u) if Φ−1
⊗ (w) �= ∅

0 if Φ−1
⊗ (w) = ∅

, (7)

where Φ−1
⊗ (w) = {u|w = u ⊗ v, v = F (u)}, and ⊗ ∈ {+,−,×,÷}.

From Theorem 1, the four arithmetic operations of F -correlated fuzzy num-
bers, for all r ∈ [0, 1], are given by

[B +F A]r = {F (w) + w ∈ R|w ∈ [A]r}; (8)
[B −F A]r = {F (w) − w ∈ R|w ∈ [A]r}; (9)
[B ·F A]r = {wF (w) ∈ R|w ∈ [A]r}; (10)
[B ÷F A]r = {F (w) ÷ w ∈ R|w ∈ [A]r}, 0 /∈ [A]0. (11)

Moreover, the scalar multiplication of λB, with B = F (A), is given by
[λB]r = {λF (w) ∈ R|w ∈ [A]r}.

Proposition 1 [27]. Let A and B be F -correlated fuzzy numbers, i.e., [B]r =
F ([A]r), with F monotone differentiable, [A]r = [a−

r , a+
r ] and [B]r = [b−

r , b+r ],
thus, for all r ∈ [0, 1],

1) [B −F A]r = {F (w) − w|w ∈ [A]r} =⎧⎨
⎩

i. [b−
r − a−

r , b+r − a+
r ] if F ′(z) > 1, ∀z ∈ [A]r

ii. [b+r − a+
r , b−

r − a−
r ] if 0 < F ′(z) ≤ 1, ∀z ∈ [A]r

iii. [b−
r − a+

r , b+r − a−
r ] if F ′(z) ≤ 0, ∀z ∈ [A]r

; (12)

2) [B +F A]r = {F (w) + w|w ∈ [A]r} =⎧⎨
⎩

i. [b−
r + a−

r , b+r + a+
r ] if F ′(z) > 0, ∀z ∈ [A]r

ii. [b+r + a−
r , b−

r + a+
r ] if −1 < F ′(z) ≤ 0, ∀z ∈ [A]r

iii. [b−
r + a+

r , b+r + a−
r ] if F ′(z) ≤ −1, ∀z ∈ [A]r

. (13)
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In the first case (12)-i., we have len([A]r) < len([B]r), and −F coincides with
Hukuhara difference [13], while in (12)-ii., we have len([A]r) > len([B]r) and,
−F coincides with generalized Hukuhara difference [6,34]. In fact, the generalized
Hukuhara and Hukuhara differences are particular cases of an interactive differ-
ence [34]. Additionally, −F coincides with standard difference when F ′(z) ≤ −1,
and +F coincides with standard sum when F ′(z) > 0.

Assuming A and B linearly correlated fuzzy numbers, that is F (u) = qu+ r,
and [B]r = q[A]r + r, with [A]r = [a−

r , a+
r ] and [B]r = [b−

r , b+r ], (12) and (13)
becomes

[B −L A]r =

⎧⎨
⎩

i. [b−
r − a−

r , b+r − a+
r ] if q ≥ 1

ii. [b+r − a+
r , b−

r − a−
r ] if 0 < q < 1

iii. [b−
r − a+

r , b+r − a−
r ] if q < 0

(14)

and

[B +L A]r =

⎧⎨
⎩

i. [b−
r + a−

r , b+r + a+
r ] if q > 0

ii. [b+r + a−
r , b−

r + a+
r ] if − 1 ≤ q < 0

iii. [b−
r + a+

r , b+r + a−
r ] if q < −1

. (15)

It is worth to notice that +L coincides with standard sum when q is positive,
and −L coincides with standard difference when q is negative [11]. Moreover, −L

coincides with generalized Hukuhara difference [6] when q is positive and when
q > 1 it coincides with Hukuhara difference [13]. It is interesting to mention that
the authors of [25] used linearly interactive fuzzy numbers to fit an HIV dataset.

2.1 Autocorrelated Fuzzy Processes

Autocorrelated fuzzy processes are similar to autocorrelated statistical processes
[5,11,27,28]. These types of fuzzy processes have been carried out in areas such
as, epidemiology [30,33] and population dynamics [27,29].

Let L([a, b],RF ) be the set of all Lebesgue integrate functions from the
bounded interval [a, b] into RF , and AC([a, b],RF ) be the set of all absolutely
continuous functions from [a, b] into RF . A fuzzy process x is defined by a fuzzy-
number-valued function x : [a, b] −→ RF . Considering [x(t)]r = [x−

r (t), x+
r (t)],

for all r ∈ [0, 1], the process x is δ-locally F -autoregressive at t ∈ (a, b) (F -
autoregressive for short) if there exists a family of real functions Ft,h such that,
for all 0 < |h| < δ [27],

[x(t + h)]r = Ft,h([x(t)]r), ∀r ∈ [0, 1]. (16)

If x : [a, b] → RF is a F -autoregressive fuzzy process, then the function x is
F -correlated differentiable (F -differentiable for short) at t0 ∈ [a, b] if there exists
a fuzzy number x

′
F (t0) such that [27]

x
′
F (t0) = lim

h→0

x(t0 + h) −F x(t0)
h

, (17)

where the above limit exists and it is equal to x
′
F (t0) (using the metric d∞). If

x′
F exists, for all t ∈ [a, b], then we say that x is F -differentiable.

Next theorem provides a characterization of the F derivative by means of
r-levels.
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Theorem 2 [27]. Let x : [a, b] → RF be F -differentiable at t0 ∈ [a, b], with
[x(t)]r = [x−

r (t), x+
r (t)], where the corresponding family of functions Ft0,h : I →

R is monotone continuously differentiable for each h, for r ∈ [0, 1] and Ft,h,
∀t ∈ [a, b]. Then,

[x
′
F (t0)]r =

⎧⎪⎪⎨
⎪⎪⎩

[
(x−

r )
′
(t0), (x+

r )
′
(t0)

]
if F ′

t,h(w) > 1[
(x+

r )
′
(t0), (x−

r )
′
(t0)

]
if 0 < F ′

t,h(w) ≤ 1

{(x−
r )

′
(t0)} = {(x+

r )
′
(t0)} if F ′

t,h(w) ≤ 0

.

for each 0 < |h| < δ, δ > 0, and ∀w ∈ [x(t)]r.

The process x is called expansive if, the diameter of x(t) is a non-decreasing
function at t, and equivalently, x is called contractive if, the diameter of x(t) is
a non-increasing function at t.

Theorem 3 [26]. Let x ∈ AC([a, b],RF ) be F -differentiable, where [x(t)]r =
[x−

r (t), x+
r (t)].

I. Suppose x is expansive, that is, len([x(t)]r) is an increase function on [a, b].
If function x

′
F is Aumann integrable then (x−

r )
′
(t) and (x+

r )
′
(t) are integrable

on t ∈ [a, b], and[ ∫ t

a

x
′
F (s)ds

]
r

=
[ ∫ t

a

(x−
r )

′
(s)ds,

∫ t

a

(x+
r )

′
(s)ds

]
.

II. Suppose x is contractive, that is, len([x(t)]r) is a decrease function on [a, b].
If function x

′
F is Aumann integrable then (x−

r )
′
(t) and (x+

r )
′
(t) are integrable

on t ∈ [a, b], and[ ∫ t

a

x
′
F (s)ds

]
r

=
[ ∫ t

a

(x+
r )

′
(s)ds,

∫ t

a

(x−
r )

′
(s)ds

]
.

2.2 Fuzzy Fractional Integral and Fuzzy Fractional Derivative

The Riemann-Liouville fractional integral Iα
a+f of a function f ∈ (L[a, b],R), of

order α ∈ (0, 1] is defined by [31],

(Iα
a+f)(t) =

1
Γ (α)

∫ t

a

(t − s)α−1f(s)ds, for t > a (18)

where Γ (α) is the gamma function. If α = 1, we have (I1a+f)(t) =
∫ t

a
f(s)ds.

The Riemann-Liouville derivative of order α ∈ (0, 1], is defined by [31]

(Dαf)(t) =
d

dt
I1−αf(t) =

1
Γ (1 − α)

d

dt

∫ t

a

(t − s)−αf(s)ds, (19)

for t > a.
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Definition 1 [31]. The Riemann-Liouville derivative of order α ∈ (0, 1], is
defined by

(RLDα
a+f)(t) =

d

dt
I1−α
a+ f(t) =

1
Γ (1 − α)

d

dt

∫ t

a

(t − s)−αf(s)ds, for t > a.

(20)

Definition 2 [31]. Let f ∈ (L[a, b],R) and suppose there exists RLDα
a+f on

[a, b]. The Caputo fractional derivative CDα
a+f is defined by

(CDα
a+f)(t) =

(RL

Dα
a+ [f(·) − f(a)]

)
(t), for t ∈ (a, b]. (21)

Besides that, if f ∈ AC([a, b],R), then

(CDα
a+f)(t) =

1
Γ (1 − α)

∫ t

a

(t − s)−αf ′(s)ds, ∀t ∈ (a, b] (22)

and

(RLDα
a+f)(t) = (CDα

a+f)(t) +
(t − a)−α

Γ (1 − α)
f(a), ∀t ∈ (a, b]. (23)

The next section considers the fuzzy process x in the above definitions,
instead of the deterministic function f . The idea is to use the concepts of fuzzy
integral and fuzzy F -correlated derivative.

3 Fuzzy Interactive Fractional Derivative

The fuzzy integral fractional Riemann-Liouville, of order α > 0, of x is defined by

[(Iα
a+x)(t)]r =

1
Γ (α)

[ ∫ t

a

(t − s)α−1x−
r (s)ds,

∫ t

a

(t − s)α−1x+
r (s)ds

]
, t > a.

(24)
For fuzzy fractional derivative consider x ∈ L([a, b],RF ) and the fuzzy process

x1−α(t) =
∫ t

a

(t − s)−α

Γ (1 − α)
x(s)ds, for all t ∈ (a, b], (25)

where x1−α(a) = limt→a+ x1−α(t) in the sense of Pompeiu-Hausdorff metric.
Recall that for all 0 < α ≤ 1, the fuzzy function x1−α : (a, b] → RF defines a
fuzzy number.

Definition 3 [26]. The fuzzy Riemann-Liouville fractional derivative of order
0 < α ≤ 1 of x with respect to F -derivative is defined by

(RLF Dα
a+x)(t) =

1
Γ (1 − α)

(∫ t

a

(t − s)−αx(s)ds

)′

F

= (x1−α(t))′
F , (26)

where
∫ t

a
(t − s)−αx(s)ds is a F -correlated fuzzy process, F -differentiable for all

t ∈ (a, b].
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It is important to highlight that,
∫ t

a
(t − s)−αx(s)ds can be an expansive or

contractive fuzzy process. However, it is expansive if x(·) is expansive [31]. So,
if x1−α(·) or x(·) is expansive, then

[RLFDα
a+x(t)]r =

1
Γ (1 − α)

[
d

dt

∫ t

a

(t − s)−αx−
r (s)ds,

d

dt

∫ t

a

(t − s)−αx+
r (s)ds

]
.

(27)
Thus,

[RLFDα
a+x(t)]r =

{
i. [Dα

a+x−
r (t),Dα

a+x+
r (t)] if x1−α(·) or x(·) is expansive)

ii. [Dα
a+x+

r (t),Dα
a+x−

r (t)] if x1−α(·) is contractive .

(28)

Definition 4. Let x be a F -correlated fuzzy process. The fuzzy Caputo fractional
derivative CF Dα

a+x with respect to F -derivative is defined by

(CF Dα
a+x)(t) =

(RLF

Dα
a+ [x(·) −F x(a)]

)
(t), for t ∈ (a, b]. (29)

Thus,

(CF Dα
a+x)(t) =

1
Γ (1 − α)

(∫ t

a

(t − s)−α(x(s) −F x(a))ds

)′

F

. (30)

From (26) if x1−α(·) is contractive, then

[(CF Dα
a+x)(t)]r =

{[
(CDα

a+x−
r )(t), (CDα

a+x+
r )(t)

]
if x(·) is expansive[

(CDα
a+x+

r )(t), (CDα
a+x−

r )(t)
]

if x(·) is contractive . (31)

Theorem 4 [26]. Let x ∈ AC([a, b],RF ) be a F -correlated fuzzy process, F -
differentiable with [x(t)]r = [x−

r (t), x+
r (t)], for r ∈ [0, 1], and 0 < α ≤ 1. In this

case, [(CF Dα
a+x)(t)]r =⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[ ∫ t

a
(t−s)−α

Γ (1−α) (x−
r )′(s)ds,

∫ t

a
(t−s)−α

Γ (1−α) (x+
r )′(s)ds

]
if x is expansive

[ ∫ t

a
(t−s)−α

Γ (1−α) (x+
r )′(s)ds,

∫ t

a
(t−s)−α

Γ (1−α) (x−
r )′(s)ds

]
if x is contractive

, (32)

for t ∈ [a, b].

In the fuzzy fractional calculus the derivative that the researchers usually
used is the generalized Hukuhara derivative (gH). Our results via F-correlated
derivative are similar to those obtained via gH. However, the domains of arith-
metic operations via F -correlated process and via gH are different as can be
seen in (8)–(11). Although the difference (9) coincides with the difference gH,
the multiplication and division operations F-correlated do not coincide with
standard arithmetic operations, which are used with gH. These facts imply that
the solutions of fuzzy differential equations via gH and via F can be different.
For example via numerical simulations [32].
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4 Fuzzy Interactive Fractional Differential Equations

Consider the following fuzzy fractional initial value problem given by the F -
correlated fractional Caputo derivative of order α ∈ (0, 1]

(CF Dα
a+x)(t) = f(t, x(t)),

x(a) = x0 ∈ RF ,
(33)

where f : (a, b] × RF → RF is fuzzy continuous function on Pompeiu-Hausdorff
metric. The F -correlated fuzzy process x : [a, b] → RF is said to be a solution
of (33) if x ∈ C([a, b],RF ), x(a) = x0 and (CF Dα

a+x)(t) = f(t, x(t)), for all
t ∈ (a, b].

For all r ∈ [0, 1], consider [x0]r = [x−
0r, x

+
0r] and

[f(t, x)]r = [f−
r (t, x−

r (t), x+
r (t)), f+

r (t, x−
r (t), x+

r (t))].

Thus, for all r ∈ [0, 1], the solutions x(·) of (33) satisfy [26]

– if x is expansive on [a, b]

(CF Dα
a+x−

r )(t) = f−
r (t, x−

r (t), x+
r (t)); x−

r (a) = x−
0r

(CF Dα
a+x+

r )(t) = f+
r (t, x−

r (t), x+
r (t)); x+

r (a) = x+
0r

(34)

– if x is contractive on [a, b]

(CF Dα
a+x+

r )(t) = f−
r (t, x−

r (t), x+
r (t))]; x−

r (a) = x−
0r

(CF Dα
a+x−

r )(t) = f+
r (t, x−

r (t), x+
r (t)); x+

r (a) = x+
0r

. (35)

The Fuzzy Fractional Initial Value Problems (FFIVPs) given by (34) and
(35) boil down to classical Fractional Initial Value Problems. Hence, numerical
solution for the FFIVP can be provided by the method proposed by [22], which
is based on the modified trapezoidal rule and the fractional Euler’s method, for
Caputo fractional derivative. The generalization of this method for FFIVPs can
be founded in [17].

Consider a fractional initial (classical) value problem given by
CDα

a+x(t) = f(t, x(t)), x(0) = x0.

Let [0, a] be an interval divided in k subintervals [ti, ti+1] with equal size h. Then
the solution x(tj), for each tj ∈ [0, a], is given by

x(tj) = x0 + M((j − 1)α+1 − (j − α − 1)jα)f(t0, x(t0)) (36)

+ M

j−1∑
i=1

((j − i + 1)α+1 − 2(j − i)α+1 + (j − i − 1)α+1)f(ti, x(ti))

+ M(f(tj , x(tj−1)) + Nf(tj−1, x(tj−1))),

where
M =

hα

Γ (α + 2)
and M =

hα

Γ (α + 1)
.

Next an application of this method is applied in a HIV model that describes
the viral dynamics of individuals, under antiretroviral treatment.
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5 Viral Dynamics for Seropositive Individuals Under
Antiretroviral Treatment (ART)

Data obtained in various studies [20,24] suggests that the virus concentration
decay in bloodstream is approximately exponential after the patient was placed
on a potent antiretroviral drug. One of the simplest models of viral dynamics
consider the effect of antiretroviral as Eq. (37)

dv

dt
= P − cv, (37)

where P is the rate of virus production, c is the clearance rate and v = v(t) is
the virus concentration. This model assumes that the treatment is initiated at
t = 0 and that the efficiency of the treatment is partial when P > 0, once the
drug could not instantly block all viral production [23].

Although Eq. (37) describes the viral dynamics considering the effect of the
drugs, the classical differential equation does not take some behaviours of this
dynamic into account. For instance, there is a time interval between the infection
of the cell and the release of new infectious viral particles, called virions. This
means that there exists an intracellular delay, which can be modeled by a system
of delay differential equation [9]. For this reason consider the gamma distribution.
According to Mittler et al. [18] the gamma distribution can be used to describe
the delay presented in the HIV dynamic, because the curves of the gamma
distribution are more realistic than the curves of normal distribution, since some
cells may take a long time to release virus.

The gamma distribution is widely used to deal with fractional differential
equations. Due to the well-established fractional calculus theory, here we adopt
the Caputo derivative. To this end, consider the intracellular delay given by the
difference t − s, where 0 < s < t. The Caputo derivative of v of order α ∈ [0, 1]
is given by

Dα
Cv(t) =

1
Γ (1 − α)

∫ t

0

v′(s)(t − s)−α
ds, (38)

which can be rewritten as

Dα
Cv(t) =

∫ t

0

[f(t − s)et−s]v′(s)ds, (39)

where f(t − s) is the gamma distribution of t − s, that is, for 0 < s < t and
α ∈ [0, 1],

f(t − s) =
(t − s)−α

e−(t−s)

Γ (1 − α)
. (40)

Therefore, as a non local operator, the Caputo derivative provides the effect
of intracellular delay at the virus concentration. In this case, it is weighted by
the exponential function et−s, which assign more weight to a shorter delay, as
depicted in Fig. 1.
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Fig. 1. Representation of wheighted gamma distribution of intracellular delay.

Now, since the initial value of the virus concentration is usually uncertain, the
initial condition to this model is described by a fuzzy number, which gives raise
to the following Fuzzy Fractional Differential Equation with Caputo derivative{

(CF Dαv)(t) + cv(t) = P,

v(0) = V0 ∈ RF
(41)

where c, P ∈ R
+.

Here we consider two cases for this dynamic. The first one is when the fuzzy
process is expansive i.e, the diameter of the process is a non-decreasing function
at t, and the second one is when the fuzzy process is contractive, i.e, the diameter
of the process is a non-increasing function at t. So, the function f(ti, x(ti))) that
appears in the formula (36) must be adapted for each case, using the formulas
(34) and (35).

Figure 2 illustrates the numerical solution for the FFIVP considering different
fuzzy processes. In the case where one expects that uncertainty increases over
time, then we must take an expansive process into account, as Subfigure (a) of
Fig. 2 depicts. On the other hand, in the case where one expects that uncertainty
decreases over time, then we must take a contractive process into account, as
Subfigure (b) of Fig. 2 depicts.

Note that the numerical solution for the expansive process assumes nega-
tive values. Since we are dealing with the number of infected individuals, the
numerical solution obtained from the expansive process is not consistent. This
implies that only the contractive process is appropriated for this model. Now,
we can still interpret the expansive process for this case. Although it assumes
negative values, we verify that the evolution of the disease increases over time.
In addition, its width increases, illustrating a chaotic scenario with increasing
uncertainty.

Also observe that, in both cases, there is an oscillation in the beginning of
the solutions. This is a typical behavior of problems involving FDEs.
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(a) Numerical solution for an expansive
process

(b) Numerical solution for a contrac-
tive process

Fig. 2. Numerical solution to the HIV model given by (41). The gray lines represent
the r-levels of the fuzzy solutions, where their endpoints for r varying from 0 to 1
are represented respectively from the gray-scale lines varying from white to black. The
initial condition is given by v0 = (470; 670; 870), h = 0.125 and α = 0.3.

6 Final Comments

In this manuscript, we present an HIV viral dynamics model for individuals
under antiretroviral treatment. The modeling was done by considering Interac-
tive Fuzzy Fractional Differential Equations (IFFDE), that considers an under-
lying interactivity in the process and its use is justified by the fact that biological
processes have memories in their dynamics [2,3].

Viral load, as an autocorrelated process, considers that there is a memory coef-
ficient in its modeling, this means that the instant of time t is associated to the
previous instant time t − 1. Specifically, the Caputo fractional derivative allows
us to take the intracellular delay as a non fixed value into account, by means of
the gamma distribution. This distribution assigns more weight to a lower intra-
cellular delay and it carries biological informations, in contrast to the classical
derivatives. The FFIVP via Caputo derivative provides solutions related to the
value of α ∈ [0, 1], once the bigger the value of α, the faster the viral load decays.

The uncertainty in the number of viral particles produced by each infected
cell suggests that the viral load can be represented as a fuzzy number. Through
IFFDE, it was possible to describe the phenomenon from two points of view:
expansive process (the diameter of the solution is a non-decreasing function
in t) and contractive process (the diameter of the solution is a non-increasing
function in t), in contrast to other methods given in the literature.

Finally, we present a numerical solution to illustrate the obtained results. In
both cases, a decrease in plasma viremia in the bloodstream is obtained, which
corroborates the data presented in the literature [21].
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Abstract. This manuscript presents a model for HIV dynamics of
seropositive individuals under antiretroviral treatment described from
fuzzy set theory by two different approaches considering interactivity:
differential equation with interactive derivative and differential equation
with Fréchet derivative. It also establishes an identity between interactive
derivative and fuzzy Fréchet derivative. With this identity, we establish
when the solutions of the two differential equations coincide. Lastly, we
present biological interpretations for both cases.

Keywords: HIV · Antiretroviral treatment · Fuzzy interactive
differential equation · Fréchet derivative · Fuzzy interactive derivative

1 Introduction

HIV dynamics considering antiretroviral treatment (ART) has already been
studied in several articles [11,16,18,20]. The major target of HIV are CD4+
T cells, a class of immune cells. Antiviral drugs act blocking biological pro-
cesses involved in life cycle virus into cell cytoplasm. Most common therapies
combine protease inhibitors and reverse transcriptase inhibitors. The first ones
block HIV protease, so that noninfectious viral particles start being produced by
infected T-cells, and the last ones prevent the successfully infection of T-cells.
Data obtained in previous studies [17,18] show that under combination of pro-
tease inhibitors and RT inhibitors, a viral decline in the bloodstream is followed
by the increase of CD4+ population are expected.

Fuzzy set theory applied to HIV dynamics under treatment was already
studied using fuzzy rule-based systems [12–14] and Choquet Calculus [15], both
considering an intracellular delay assigned maily to the pharmacological delay,
defined as the interval of time required for the absorption of the antiviral drugs
in the bloodstream. Viral dynamics represented as an interactive process is a new
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approach in the literature and provides results subject to new interpretations for
already known HIV models.

The existence of memory in biological processes was already considered in
previous studies [1,2]. Current studies consider the existence of memory in bio-
logical processes, in particular, in the dynamics of HIV, when representing them
by fuzzy fractional derivatives with interactivity [25]. Autocorrelated processes
take into account the dependence between their states in consecutive instants.
This type of approach allows us to describe processes that are hidden or inherent
to the phenomenon when considering a memory coefficient ft,h. This coefficient
changes with the process and is determined by the current moment. Thus, there
may exist memories with different properties for different periods of time. There-
fore, it is necessary a derivative operator that incorporates the memory of the
system, being responsible for its variation.

There are various different theories of fuzzy differential equations for fuzzy-
set-valued functions [4,5,21,24], that is, functions f : [a, b] → RF , where RF is
the space of fuzzy numbers, that is, fuzzy subsets of R whose α-levels are closed
intervals in real line [3]. In this work we will represent an HIV intracellular
model throught two interactive derivatives defined in an autocorrelated process.
In particular, we assume that it is a linearly correlated process [8,23].

Firstly we describe the dynamics via the linearly correlated derivative, based
on the difference between fuzzy sets, that is, the difference obtained from possi-
bility distributions of fuzzy sets envolved [26]. This derivative provides two pos-
sible behaviors for the solution, expansive or contractive. In the first case, the
fuzziness of the solution increase with time while in the second one, it decreases.
In this work, the fuzziness is measured accordingly to the diameter of the fuzzy
number. The larger the diameter of the fuzzy number, the greater its fuzziness.

On the other hand, fuzzy differential equation via Fréchet derivative is based
on the isomorphim ΨA : R2 → RF(A), where RF(A) is the set of all fuzzy numbers
linearly correlated to A ∈ RF [10]. This allows us to define the induced sum and
scalar multiplication in RF(A) given by B+AC = ΨA(ΨA

−1(B) + ΨA
−1(C)) and

η·AB = ΨA(ηΨA
−1(B)),∀B,C ∈ RF(A) and η ∈ R. With this operations it is

possible to confer a Banach space structure to the space RF(A) and, therefore,
develop a calculus theory for the family of fuzzy functions linearly correlated to
A ∈ RF , as it was done in [22].

This work is structured as follows. Section 2 provides the mathematical con-
cepts necessary to understand the development of this work. Section 3 presents
HIV dynamics in two different approaches: via L-derivative and Fréchet deriva-
tive. Section 4 presents final comments.

2 Mathematical Background

A fuzzy subset A of R is described by its membership function μA : R → [0, 1],
where μA(x) is the degree of membership of x in A. The α-cuts of A are subsets
of R given by [A]α = {x ∈ R : A(x) ≥ α}, for α ∈ (0, 1], and [A]0 is the closure
of the support of A, that is, [A]0 = {x ∈ R : A(x) > 0}.
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The fuzzy subset A of R is a fuzzy number if all the α-cuts are closed and
nonempty intervals of R and the support of A is bounded [3]. The set of all fuzzy
numbers is denoted by RF . We define the diam(A) = |a+

0 − a−
0 |, where a−

0 and
a+
0 are the endpoints of [A]0, for all A ∈ RF .

Let a, b, c ∈ R such that a ≤ b ≤ c, a triangular fuzzy number A is a well-
known example of fuzzy number given by the following membership function:

μA(x) =
{

0, x ≤ a or x ≥ b
x−a
b−a ∧ c−x

c−b otherwise, (1)

where ∧ is the minimum operator. In this case, we denote A by the symbol
(a; b; c).

Next, we recall some concepts necessary to understand the theory of inter-
active derivative in the space of fuzzy numbers.

A possibility distribution on R
n is a fuzzy subset J of Rn with membership

function μJ : Rn → [0, 1] satisfying μJ(x0) = 1 for some x0 ∈ R
n. The family of

possibility distributions of Rn will be denoted by FJ(Rn).

Definition 1 [6]. Let A,B ∈ RF and J ∈ FJ(R2). Then μJ is a joint possibil-
ity distribution of A and B if max

y
μJ(x, y) = μA(x) and max

x
μJ(x, y) = μB(y),

for any x, y ∈ R.
In this case, μA and μB are called marginal possibility distributions of J .

Definition 2 [9]. The fuzzy numbers A and B are said to be non-interactive
if and only if their joint possibility distribution J satisfies the relationship
μJ(x, y) = min(μA(x), μB(y)) for all x, y ∈ R. Otherwise, are said to be inter-
active.

Definition 3 [6,9]. The fuzzy numbers A and B are said to be completely
correlated if there exist q, r ∈ R, q �= 0 such that joint possibility distribution is
defined by

μC(x, y) = μA(x)χqx+r=y(x, y) = μB(y)χqx+r=y(x, y) (2)

where χqx+r(x, y) represents the characteristic function of the line {(x, y) ∈ R
2 :

qx + r = y}.
Definition 4 [8]. Two fuzzy numbers A and B are said linearly correlated if
there exist q, r ∈ R such that their α-levels satisfy [B]α = q[A]α + r for all
α ∈ [0, 1]. In this case, we write B = qA + r.

Definition 5. The four arithmetic operations between linearly correlated fuzzy
numbers are defined, in levels, by:

• [B +L A]α = (q + 1)[A]α + r, ∀α ∈ [0, 1];
• [B −L A]α = (q − 1)[A]α + r, ∀α ∈ [0, 1];
• [B ·L A]α = {qx2

1 + rx1 ∈ R|x1 ∈ [A]α}, ∀α ∈ [0, 1];
• [B ÷L A]α = {q + r

x1
∈ R|x1 ∈ [A]α}, ∀α ∈ [0, 1].
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The Pompeiu-Hausdorff distance d∞ : Rn
F × R

n
F → R+ ∪ {0} is defined by

d∞(A,B) = sup
0≤α≤1

dH([A]α, [B]α), (3)

where dH is the Pompeiu-Hausdorff distance for sets in R
n. If A and B are fuzzy

numbers, then (3) becomes

d∞(A,B) = sup
0≤α≤1

max{|a−
α − b−α|, |a+

α − b+α |}. (4)

The derivative enunciated in this subsection is related to an autocorrelated
process F : [a, b] → RF , that is, for h with absolute value sufficiently small,
F (t+h) = q(h)F (h)+ r(h), for all t ∈ [a, b], q(h), r(h) ∈ R. This formula means
that [F (t + h)]α = q(h)[F (t)]α + r(h), ∀α ∈ [0, 1].

Definition 6 [8]. Let F : [a, b] → RF be a fuzzy-number-valued function and
for each h with absolute value sufficiently small, let F (t0 + h) and F (t0) with
t0 ∈ [a, b] be linearly correlated fuzzy numbers. F is called L-differentiable at t0
if there exists a fuzzy number DLF (t0) ∈ RF such that the limit

lim
h→0

F (t0 + h) −L F (t0)
h

(5)

exists and is equal to DLF (t0), using the metric d∞. DLF (t0) is called linearly
correlated fuzzy derivative of F at t0. At the endpoints of [a, b] we consider only
one-sided derivative.

The next theorem provides a practical formula to calculate the L-derivative
of an autocorrelated process.

Theorem 1 [8]. Let F : [a, b] → RF be L-differentiable in t0 and Fα(t0) =
[F (t0)]α = [f−

α (t0), f+
α (t0)], for all α ∈ [0, 1]. Then f−

α and f+
α are differentiable

in t0 and for all |h| < δ, for some δ > 0 and

[DLF (t0)]α =

⎧⎨
⎩

i. [(f−
α )′(t0), (f+

α )′(t0)] if q(h) ≥ 1
ii. [(f+

α )′(t0), (f−
α )′

t0] if 0 < q(h) ≤ 1
iii. [(f−

α )′(t0), (f−
α )′(t0)] if q(h) < 0

(6)

where DLF (t0) is the L-derivative.

Next, we present important results related to the theory of calculus developed
in the space of fuzzy numbers linearly correlated to a given fuzzy number A.

A fuzzy number A ∈ RF is said to be symmetric with respect to x ∈ R if
A(x − y) = A(x + y), ∀y ∈ R, and it is said to be non-symmetric if there exists
no x such that A is symmetric. For example, the fuzzy number A = (−1; 0; 1) is
symmetric with respect to 0 and the fuzzy number B = (2; 3; 5) is not symmetric.

Given A ∈ RF , we can define the operator ΨA : R2 → RF so that ΨA(q, r) =
qA + r, that is, the image of the pair (q, r) is the fuzzy number ΨA(q, r) whose
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α-cuts are given by [ΨA(q, r)]α = {qx + r ∈ R|x ∈ [A]α} = q[A]α + r. The range
of the operator ΨA is denoted by RF(A) = {ΨA(q, r)|(q, r) ∈ R

2}. This operator
defines an isomorphism between R

2 and RF(A) whenever A is a non-symmetric
fuzzy number [10]. Since R

2 is a Banach space, we can conclude that RF(A) is
also a Banach space.

Let A be a non-symmetric fuzzy number. We say that a fuzzy-number-valued
function f : [a, b] → RF(A) ⊆ RF is continuous in RF(A) when it is continuous
with respect to the norm ‖ · ‖ΨA

. These functions are called A-linearly correlated
fuzzy processes. The following lemma characterizes this type of function.

Lemma 1 [10]. Let A ∈ RF be non-symmetric. There exists unique (q, r) = p :
R → R

2 such that f = ΨA ◦ p.

Theorem 2 [10]. Let B = ΨA(q, r) ∈ RF for some A ∈ RF and some pair
(q, r) ∈ R

2 with q �= 0. Then the ranges of operators ΨA and ΨB are identical,
that is, RF(A) = RF(B).

The next theorem establishes sufficient and necessary conditions to an A-
linearly correlated fuzzy process to be continuous.

Theorem 3 [22]. Let A be non-symmetric and f = ΨA ◦ p : [a, b] −→ RF(A).
The function f : [a, b] −→ RF(A) is continuous if, and only if, p : [a, b] → R

2 is
continuous.

Since, for A ∈ RF non-symmetric, RF(A) is a Banach space, it is possible to
define the Fréchet derivative of f as it was done in [10]. The next proposition
presents a necessary and sufficient condition to f : R → RF(A) to be Fréchet
differentiable.

Proposition 1 [10]. Let A ∈ RF be non-symmetric and f : [a, b] −→ RF(A) ⊂
RF . The function f is Fréchet differentiable at t if, and only if, Ψ−1

A ◦f : [a, b] −→
R

2 is Fréchet differentiable at t.

Theorem 4 [10]. Let A ∈ RF be non-symmetric, the functions q, r : R → R and
f : R → RF(A) such that f(t) = ΨA(q(t), r(t)), ∀t ∈ R. The function f is Fréchet
differentiable (F -differentiable) at t ∈ R if and only if q′(t) and r′(t) exist.
Additionally, the F -derivative of f at t is given by f ′(t, h) = ΨA(q′(t)h, r′(t)h),
∀h ∈ R.

Fuzzy interactive derivatives studied in this paper can be related algebraically
throught Theorem 5.

Theorem 5. Let A be a non-symmetric fuzzy number, f : R → RF(A) given
by f(t) = ΨA(p(t), q(t)), where p, q are real functions for all t ∈ R. Then f is
Fréchet differentiable if, and only if, f is L-differentiable, where the L-derivative
is the interactive derivative [8]. Moreover, the Fréchet derivative of f coincide
with the L-derivative of f , that is

ΨA(p′(t), q′(t)) = DLf(t), ∀t ∈ R. (7)
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Proof. Let f : R → RF(A) be given by f(t) = p(t)A + q(t), for all t ∈ R such
that f(t) �= R, ∀t ∈ R.

For h ∈ R, we have that f(t + h) = p(t + h)A + q(t + h) and, therefore,

f(t + h) =
(

p(t + h)
p(t)

)
f(t) +

(
q(t + h) − p(t + h)

q(t)
p(t)

)
. (8)

Denoting p̃(h) = p(t+h)
p(t) and q̃(h) = q(t + h) − p(t+h)q(t)

p(t) , we may write

f(t + h) = p̃(h)f(t) + q̃(h), ∀h ∈ R. (9)

Thus, if f(t) = ΨA(p(t), q(t)), ∀t ∈ R, f represents a linearly correlated fuzzy
process. So, we have that

f(t + h) −L f(t) = (p̃(h) − 1)f(t) + q̃(h) (10)

for all t, h ∈ R. If f is Fréchet differentiable, then the derivatives p′, q′ : R → R

exist for all t ∈ R, according to Theorem 4. Moreover,

lim
h→0

p̃(h) = lim
h→0

p(t + h)
p(t)

= 1 (11)

and

lim
h→0

q̃(h) = lim
h→0

q(t + h) − q(t)
p(t + h)

p(t)
= 0, (12)

once p and q are continuous in t. Therefore, lim
h→0

[f(t+h)−L f(t)] = lim
h→0

[(p̃(h)−
1)f(t) + q̃(h)] = 0.

For all α ∈ [0, 1] we have that

lim
h→0

[f(t + h) −L f(t)]α
h

= lim
h→0

[(
p̃(h) − 1

h

)
[f(t)]α +

(
˜q(h)
h

)]
(13)

Note that

lim
h→0

(
p̃(h) − 1

h

)
= lim

h→0

(
p(t+h)

p(t) − 1
)

h
=

p′(t)
p(t)

(14)

and

lim
h→0

q̃(h)
h

= lim
h→0

q(t + h) − p(t+h)q(t)
p(t)

h
= q′(t) − q(t)p′(t)

p(t)
(15)

for all t ∈ R. Therefore,

[DLf(t)]α = lim
h→0

(
p̃(h) − 1

h

)
[f(t)]α + lim

h→0

(
q̃(h)
h

)
(16)

=
p′(t)
p(t)

[f(t)]α + q′(t) − q(t)p′(t)
p(t)

, (17)

for all t ∈ R and α ∈ [0, 1].
Since [f(t)]α = p(t)[A]α + q(t) for all α ∈ [0, 1], we have

DL(f)(t) = p′(t)A + q′(t) = ΨA(p′(t), q′(t)), ∀t ∈ R. (18)

The converse implication is immediate, from Theorem 1.
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3 HIV Dynamics Under Antiretroviral Treatment (ART)

Data obtained in various studies [17] appear to show that the decay of plasma
viraemia in bloodstream is approximately exponential after the patient was
placed on a potent antiretroviral drug. One of the simplest models of viral
dynamics consider the effect of antiretroviral in viral population as in Eq. (19)

dV

dt
= P − cV, V (0) = V0 (19)

where P is the rate of virus production, c is the clearance rate and V = V (t) is
the virus concentration in bloodstream. This model assumes that the treatment
is initiated at t = 0 and that the efficiency of the treatment is partial, so that
P > 0. With this assumption, virus decay is not perfectly “exponential”, so that
the solution of (19) is given by

V (t) = V0e
−ct +

P

c
− P

c
e−ct. (20)

Equation (20) means viral load declines whenever V0 > 1
c , where 1

c is the
average life time of the viruses when the efficiency of the treatment is total, that
is, P = 0.

Next, we will establish two different fuzzy approaches to HIV dynamics
described in (19), both considering interactivity into the process V .

3.1 Fuzzy Interactive Differential Equation via L-Derivative

Analysis of models considering CD4+ cell population suggests that, when start-
ing the treatment, viral load is related to parameters such as virus and infected
cells elimination rates, as well as and the number of viral particles produced by
each infected CD4+ cell [19]. The uncertainty of these rates suggests that the
viral load may be well represented when V is a fuzzy number.

We will consider that viral dynamics described in (19) is an autocorrelated
fuzzy process. According to Definition 6, this means that for each h with absolute
value sufficiently small, V (t + h) = q(h)V (t) + r(h) for all t ≥ 0, where q, r are
real functions. Then, the corresponding Fuzzy Initial Value Problem (FIVP) via
L-derivative is given by

{
V ′

L(t) = P −L cV (t)
V (0) = V0 ∈ RF ,

(21)

where P, c > 0 are real constants.
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According to Theorem 1, there are two cases to consider:

i) q ≥ 1:
In this case, the solution of (21) for V (t) = [v−

α (t), v+
α (t)], in levels, is given

by
[V (t)]α = [kα

1 ect + kα
2 e−ct + P

c ,−kα
1 ect + kα

2 e−ct + P
c ], (22)

where kα
1 = − v+

α (0)−v−
α (0)

2 and kα
2 = v+

α (0)+v−
α (0)

2 − P
c . As expected in the

expansive solution, we have that lim
t→∞ diam(V0) = lim

t→∞ |v+
0 (0) − v−

0 (0)|ect =
+∞, that is, the fuzziness raises with time, as depicted in Fig. 1.

Fig. 1. Viral load as an expansive fuzzy process for P = 700 virions/day, c = 0.5/day
and V0 = (470; 670; 870) virions [18,19]. Only positive values for V should be
considered.

ii) 0 < q < 1:
In this case, the solution of (21) for V (t)α = [v−

α (t), v+
α (t)], in levels, is given

by
[V (t)]α = [(v−

α (0) − P
c )e−ct + P

c , (v+
α (0) − P

c )e−ct + P
c ]. (23)

As expected in the contractive solution, lim
t→∞ v−

α (t) = lim
t→∞ v+

α (t) = P
c and,

therefore, diam(V (t)) → 0, that is, the fuzziness vanishes with time. We have
that v−

α (t), v+
α (t) ≥ 0, ∀t ≥ 0 if, and only if, v−

α (0), v+
α (0) ≥ P

c (1−ect) for all
t ≥ 0, that is, v−

α (0), v+
α (0) ≥ P

c . Viral load declines whenever v−
α (0), v+

α (0) >
P
c as depicted in Fig. 2. This represents a constraint on the initial condition
to the solution to be consistent with the expected immune recovery expected
in individuals under ART.
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Fig. 2. Viral load as a contractive fuzzy process for P = 500 virions/day, c = 1.5/day
and V0 = (470; 670; 870) virions [18,19].

3.2 Fuzzy Interactive Differential Equation via Fréchet Derivative

Natural history of HIV suggests that after the primary infection, a large phase
is observed where the viral concentration remains almost constant [7,20]. This
set-point level can be represented in (19) as dV

dt = 0, that is, P = cV0 when
treatment is started. This means the viral production rate P may be considered
linearly correlated to initial viral concentration V0.

We will assume that there is A ∈ RF such that V (t) = ΨA(p(t), q(t)) =
p(t)A+q(t) for all t ≥ 0. We will also assume that p, q : R → R are differentiable.
Then, the FIVP corresponding to (19) is given by

{
V ′(t) = P −ΨA

cV

V (0) = V0 ∈ RF(A),
(24)

where P ∈ RF(A), that is, there are p1, p2 ∈ R such that P = p1A + p2 =
ΨA(p1, p2), and c ∈ R is constant. Note that, in this case, we have that

P =
p1
p0

(p0A + q0) +
(

p2 − p1q0
p0

)
=

p1
p0

V0 +
(

p2 − p1q0
p0

)
, (25)

that is, P is linearly correlated to V0. Theorem 4 ensures that

V ′(t) = ΨA(p′(t), q′(t)) = p′(t)A + q′(t). (26)

Then, (24) can be rewritten as

ΨA(p′(t), q′(t)) = ΨA(p1, p2) + c·A(p(t), q(t)) (27)

and by the linearity of ΨA, we have that

ΨA(p′(t), q′(t)) = ΨA(p1 − cp(t), p2 − cq(t)). (28)
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As A ∈ RF is non-symmetric, the operator ΨA is injective, so that (28) is
equivalent to two real systems, given by

{
p′(t) = p1 − cp(t)
p(0) = p0

(29)

and {
q′(t) = p2 − cq(t)
q(0) = q0,

(30)

whose solutions are given by p(t) =
(
p0 − p1

c

)
e−ct + p1

c and q(t) =(
q0 − p2

c

)
e−ct + p2

c , respectively. Therefore, the solution of (24) is given by

V (t) =
[(

p0 − p1
c

)
e−ct +

p1
c

]
A +

(
q0 − p2

c

)
e−ct +

p2
c

, ∀t ∈ R. (31)

Since V (t) = p(t)A + q(t), we have that diam(V (t)) = diam(p(t)A)→
diam(p1

c A) when t → ∞. Moreover, if A ∈ RF is such that 0 ∈ [A]1, then
we can consider that A is a fuzzy number around 0. In this case, we may expect
that viral load to be around p2

c when t → ∞. Once P = p1A + p2, this result
coincides with the classic case when P ∈ R.

Lastly, we have three cases to consider:

i) c < p1
p0

:
In this case, p′(t) = −c

(
p0 − p1

c

)
e−ct > 0, that is, diam(V (t)) =

diam(p(t)A) is an increasing function, as depicted in Fig. 3. Therefore, the
fuzziness of V increases with time, as seen in the expansive case described
in Subsection B.

ii) c = p1
p0

:
In this case, p′(t) = 0, that is, diam(V (t)) = diam(p(t)A) = diam(p1

c A)
is constant with time. Therefore, the fuzziness of V remains constant, as
depicted in Fig. 4.

Fig. 3. Viral load for A = (−0.5; 0; 1), V0 = (470; 670; 870), c = 3/day, p0 = 1500,
q0 = 670, p1 = 1500 and p2 = 800 [18,19].
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Fig. 4. Viral load for A = (−0.5; 0; 1), V0 = (470; 670; 870), c = 3/day, p0 = 1500,
q0 = 670, p1 = 600 and p2 = 700 [18,19].

iii) c > p1
p0

:
In this case, p′(t) = −c

(
p0 − p1

c

)
e−ct < 0, that is, diam(V (t)) =

diam(p(t)A) is a decreasing function. Therefore, the fuzziness of V decreases
with time, as depicted in Fig. 5.

When viral production rate P is a real constant, that is, when p1 = 0,
the representation of P in the space RF(A) is P = ΨA(0, p2) = 0A + p2 ∈ R.
Theorem 5 ensures that, in this case, the Initial Value Problems (21) and (24)
are equivalent if the initial conditions are the same.

However, only solutions (23) and (31) may coincide. As we observed pre-
viously, if p1 = 0, then diam(V (t)) → 0 when t → ∞, that is, the fuzziness
of the solution vanishes with time, as represented in Fig. 6. For HIV dynamics
predicting viral drop, the autocorrelated process described by Fréchet derivative
is always contractive if P ∈ R, being expansive exclusively when P is a fuzzy
number.

Fig. 5. Viral load for A = (−0.5; 0; 1), V0 = (470; 670; 870), c = 3/day, p0 = 1500,
q0 = 670, p1 = 150 and p2 = 700 [18,19].
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Fig. 6. Viral load for A = (−0.5; 0; 1), V0 = (570; 670; 870), c = 1.5/day, p0 = 200,
q0 = 670, p1 = 0 and p2 = 800 [18,19].

4 Final Comments

In this work we presented an HIV dynamics for individuals under ART as an
application of two different approaches from fuzzy set theory: differential equa-
tion via interactive derivative and differential equation via Fréchet derivative.
Biological processes may be considered as processes with memory, or from the
point of view of fuzzy interactivity, autocorrelated processes. Viral dynamics was
considered as an autocorrelated process in this manuscript.

Differential equation via interactive derivative provided two different types
of solutions: the contractive and the expansive one. The underlying memory
coefficient determines if the fuzziness of the solution decreases with time, as in
the first case, or increases, as in the second case. Viral dynamics predicted a
drop on viral load in bloodstream as was also observed in the two cases. For
interactive derivative, viral production rate P was a real constant and it was not
related to the stability of the solution.

Diferential equation via Fréchet derivative provided three different types of
solution: the contractive, the expansive and also a third kind, that one with con-
stant fuzziness with time. Modelling HIV via Fréchet derivative allowed us to eval-
uate the viral production rate P as a fuzzy number linearly correlated to A ∈ RF .
This was adopted due to the set-point that seropositive individuals remain after
the primary infection, according to the natural history of HIV. It suggests that the
viral production rate is linearly correlated to initial viral load V0, with the coeffi-
cient p1

p0
. The lower this coefficient is in relation to clearance rate c, the lower is the

fuzziness of viral load in bloodstream. It also means that the representation of P
on the space RF(A) determined the fuzziness of the solution V .

Furthermore, for HIV dynamics presented in this work, when P is a real con-
stant, the FIVP determined by differential equation with Fréchet derivative is
equivalent to the FIVP determined by differential equation with interactive deriva-
tive. In this case, only the solutions (23) and (31) coincide and diam(V (t)) → 0
when t → ∞. We can conclude that, for HIV dynamics, the interactive process
determined by Fréchet derivative has an underlying memory coefficient in (0, 1),
that is, only provides solution whose fuzziness vanishes with time.



224 B. Laiate et al.

Acknowledgements. This research was partially supported by CNPq under grant
no. 306546/2017-5, and 142309/2019-2 and FAPESP under grant 2016/26040-7.

References

1. Arafa, A., Rida, S., Khalil, M.: Fractional modeling dynamics of HIV and CD4+
T-cells during primary infection. Nonlinear Biomed. Phys. 6(1), 1 (2012)

2. Arafa, A., Rida, S., Khalil, M.: A fractional-order model of HIV infection with
drug therapy effect. J. Egypt. Math. Soc. 22(3), 538–543 (2014)

3. Barros, L.C.d., Bassanezi, R.C., Lodwick, W.A.: A first course in fuzzy logic, fuzzy
dynamical systems, and biomathematics: theory and applications (2017)

4. Bede, B., Gal, S.G.: Generalizations of the differentiability of fuzzy-number-valued
functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 151(3),
581–599 (2005)

5. Bede, B., Stefanini, L., et al.: Generalized differentiability of fuzzy-valued functions.
Fuzzy Sets Syst. 230(1), 119–141 (2013)

6. Carlsson, C., Fullér, R., et al.: Additions of completely correlated fuzzy num-
bers. In: 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.
04CH37542), vol. 1, pp. 535–539. IEEE (2004)

7. Coutinho, F.A.B., Lopez, L., Burattini, M.N., Massad, E.: Modelling the natural
history of HIV infection in individuals and its epidemiological implications. Bull.
Math. Biol. 63(6), 1041–1062 (2001)

8. De Barros, L.C., Santo Pedro, F.: Fuzzy differential equations with interactive
derivative. Fuzzy Sets Syst. 309, 64–80 (2017)

9. Dubois, D., Prade, H.: Additions of interactive fuzzy numbers. IEEE Trans. Autom.
Control. 26(4), 926–936 (1981)

10. Esmi, E., Santo Pedro, F., de Barros, L.C., Lodwick, W.: Fréchet derivative for
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Abstract. This paper investigates the essential connections among sev-
eral categories with a weaker structure than that of L-fuzzifying topology,
namely category of L-fuzzifying approximation spaces based on reflexive
L-fuzzy relations, category of L-fuzzifying pretopological spaces and cat-
egory of L-fuzzifying interior (closure) spaces. The interrelations among
these structures are established in categorical setup.
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1 Introduction

Since the introduction of the rough set by Pawlak [11], this powerful theory
drawn the attention of many researchers due to its importance in the study of
intelligent systems with insufficient and incomplete information. Several gener-
alizations of rough sets have been made by replacing the equivalence relation by
an arbitrary relation. Dubois and Prade [3] generalized this theory and intro-
duced the concept of fuzzy rough set. Various types of fuzzy rough approxima-
tion operators have been introduced and studied (c.f. [9,17–21]) in the context
of fuzzy rough set theory. The most well known introduced fuzzy rough set is
obtained by replacing the crisp relations with fuzzy relations and the crisp subset
of the universe by fuzzy sets. Further, a rough fuzzy set was introduced in [23]
by considering the fuzzy approximated subsets and crisp relations. In [25] Yao,
introduced another kind of fuzzy rough set which is based on fuzzy relations
and crisp approximated subsets, and is further studied by Pang [10] through
the constructive and axiomatic approach. Several interesting studies have been
carried on relating the theory of fuzzy rough sets with fuzzy topologies (cf.,
[2,6,13,16,19,22]). Further, Ying [26] introduced a logical approach to study
the fuzzy topology and proposed the notion of fuzzifying topology. In brief, a
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fuzzifying topology on a set X assigns to every crisp subset of X a certain degree
of being open. A number of articles were published based on this new approach
(cf., [4,5,8,24,29,30]). Fang [4,5] showed the one to one correspondence between
fuzzifying topologies and fuzzy preorders and Shi [24] discussed the relationship
of fuzzifying topology and specialization preorder in the sense of Lai and Zhang
[7]. In 1999, Zhang [28] studied the fuzzy pretopology through the categori-
cal point of view and Perfilieva et al. in [12,14] discussed its relationship with
F-transform. Further following the approach of Ying [26], Lowen and Xu [8],
Zhang [30] discussed the categorical study of fuzzifying pretopology.

Recently, Pang [10] followed the approach of Ying [26] and studied
L-fuzzifying approximation operators through the constructive and axiomatic
approaches. So far, the relationship among L-fuzzifying pretopological spaces,
Čech L-fuzzifying interior (closure) spaces and L-fuzzifying approximation
spaces has not been studied yet. In this paper, we will discuss such relation-
ship in more details. It is worth to mention that our motivation is different
from Qiao and Hu [15], in which such connection is established in the sense of
Zhang [28] rather than L-fuzzifying pretopological setting. Specifically, we estab-
lished the Galois connection between L-fuzzifying reflexive approximation space
and L-fuzzifying pretopological spaces. Finally, we investigate the categorical
relationship between Čech L-fuzzifying interior spaces and L-fuzzy relational
structure.

2 Preliminaries

Throughout this paper, L denotes a De Morgan algebra (L,∨,∧,′ , 0, 1), where
(L,∨,∧, 0, 1) is a complete lattice with the least element 0 and greatest element
1 and an order reversing involution “ ′ ”. For any a ⊆ L,

∨
a and

∧
a are respec-

tively the least upper bound and the greatest lower bound of a. In particular,
we have

∨
φ = 0 and

∧
φ = 1.

Let X be a nonempty set. The set of all subsets of X will be denoted by
P(X) and called powerset of X. For λ ∈ P(X), λc is the complement of λ and
characteristic function of λ is 1λ. Let X,Y be two nonempty sets and f : X → Y
be a mapping, then it can be extended to the powerset operator f→ : P(X) →
P(Y ) and f← : P(Y ) → P(X) such that for each C ∈ P(X), f→(C) =
{f(x) : x ∈ C} and for each D ∈ P(Y ), f←(D) = f−1(D) = {x : f(x) ∈ D}.

A map f : X → Y can be extended to the powerset operators f→ : LX → LY

and f← : LY → LX such that λ ∈ LX , μ ∈ LY , y ∈ Y ,

f→(λ)(y) =
∨

x,f(x)=y

λ(x), f←(μ) = μ ◦ f.

For a nonempty set X, LX denotes the collection of all L-fuzzy subsets of X, i.e.
a mapping λ : X → L. Also, for all a ∈ L, a(x) = a is a constant L-fuzzy set on
X. The greatest and least element of LX is denoted by 1X and 0X respectively.
For the sake of terminological economy, we will use the notation λ for both crisp
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set and L-fuzzy set. Further, an L-fuzzy set 1y ∈ LX is called a singleton, if it
has the following form

1y(x) =

{
1, if x = y,

0, otherwise.

Let X be a nonempty set. Then for λ, μ ∈ LX , we can define new L-fuzzy sets
as follows:

λ = μ ⇐⇒ λ(x) = μ(x), λ ≤ μ ⇐⇒ λ(x) ≤ μ(x),
(λ ∧ μ)(x) = λ(x) ∧ μ(x), (λ ∨ μ)(x) = λ(x) ∨ μ(x),
(λ)′(x) = (λ(x))′,∀x ∈ X.

Let I be a set of indices, λi ∈ LX , i ∈ I. The meet and join of elements from
{λi | i ∈ I} are defined as follows:

(
∧

i∈I

λi)(x) =
∧

i∈I

λi(x), (
∨

i∈I λi)(x) =
∨

i∈I λi(x).

Throughout this paper, all the considered categories are concrete. A concrete
category (or construct) [1] is defined over Set. Specifically, it is a pair (C,U),
with C as a category and U : C → Set is a faithful (forgetful) functor. We say
U(X) the underlying set for each C-object X. We write simply C for the pair
(C,U), since U is clear from the context.

A concrete functor between concrete categories (C,U) and (D,V) is a functor
F : C → D with U = V ◦F. It means, F only changes structures on the underlying
sets. For more on category we refer to [1].

Now we recall the following definition of L-fuzzy relation from [27].

Definition 1 [27]. Let X be a nonempty set. An L-fuzzy relation θ on X is an
L-fuzzy subset of X × X. An L-fuzzy relation θ is called reflexive if θ(x, x) = 1,
∀ x ∈ X.

A set X equipped with an L-fuzzy relation θ is denoted by (X, θ) and is called
a L-fuzzy relational structure.

Below we define the category FRS of L-fuzzy relational structures.

1. The pairs (X, θ) with reflexive L-fuzzy relation θ on X are the objects, and
2. for the pairs (X, θ) and (Y, ρ) a morphism f : (X, θ) → (Y, ρ) is a map

f : X → Y such that ∀ x, y ∈ X, θ(x, y) ≤ ρ(f(x), f(y)).

3 L-Fuzzifying Approximation Operators

In this section, we recall the notion of L-fuzzifying approximation operators
and its properties presented in [10]. We also define the category of L-fuzzifying
approximation space and show that this category is isomorphic to the category
of fuzzy relational structures.
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Definition 2 [10]. Let θ be an L-fuzzy relation on X. Then upper (lower)
L-fuzzifying approximation of λ is a map θ, θ : P(X) → LX defined by;

(∀λ ∈ P(X), x ∈ X), θ(λ)(x) =
∨

y∈λ

θ(x, y),

(∀λ ∈ P(X), x ∈ X), θ(λ)(x) =
∧

y/∈λ

θ(x, y)′.

We call θ, θ the lower L-fuzzifying approximation operator and the upper
L-fuzzifying approximation operator respectively. Further, the pair (θ, θ) is called
L-fuzzifying rough set and (X, θ) is called an L-fuzzifying approximation space
based on L-fuzzy relation θ.

(i) It is important to note that, if λ = {y} ∈ P(X) for some y ∈ X, then
we have the upper L-fuzzifying approximation θ({y})(x) = θ(x, y) for each
x ∈ X. If λ = X − {y} ∈ P(X) for some y ∈ X, then we have the lower
L-fuzzifying approximation θ(X − {y})(x) = θ(x, y)′ for each x ∈ X.

(ii) Let X be a nonempty set and θ be reflexive L-fuzzy relation on X. We call
the pair (X, θ), an L-fuzzifying reflexive approximation space.

Now, we give some useful properties of L-fuzzifying upper (lower) approximation
operators from [10]. These properties will be used in the further text.

Proposition 1 [10]. Let (X, θ) be an L-fuzzifying reflexive approximation
space. Then for λ ∈ P(X) and {λi | i ∈ I} ⊆ P(X), the following holds.

(i) θ(φ) = 0X , θ(X) = 1X ,
(ii) θ(λ) = θ(λc)′, θ(λ) = θ(λc)′,
(iii) θ(λ) ≥ 1λ, θ(λ) ≤ 1λ,
(iv) θ(

⋃
i∈I λi) =

∨
i∈I θ(λi), θ(

⋂
i∈I λi) =

∧
i∈I θ(λi).

Below we give the notion of morphism between two L-fuzzifying reflexive approx-
imation spaces.

Definition 3. The morphism f : (X, θ) → (Y, ρ) between two L-fuzzifying
reflexive approximation spaces (X, θ) and (Y, ρ) is given by

f←(ρ(λ)) ≤ θ(f←(λ)) ∀λ ∈ P(Y ).

It is easy to verify that all L-fuzzifying reflexive approximation spaces as objects
and morphism defined above form a category. We denote this category by
L-FYAPP.

Theorem 1. The category L-FYAPP is isomorphic to the category FRS.

Proof. The proof is divided into two parts. On one hand we can see that both
the categories have the identical objects. It only remains to show that both the
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categories have the identical morphisms. Let f : (X, θ) → (Y, ρ) be a morphism
in the category FRS, then for any λ ∈ P(Y ) and x ∈ X we have

θ(f←(λ))(x) =
∧

y/∈f←(λ)

θ(x, y)′ ≥
∧

f(y)/∈λ

ρ(f(x), f(y))′

≥
∧

t/∈λ

ρ(f(x), t)′ = f←(ρ(λ))(x).

On the other hand, let f be a morphism in the category L-FYAPP. Then for
all x, y ∈ X we have

ρ(f(x), f(y))′ =
∧

t/∈(Y −{f(y)})
ρ(f(x), t)′ = ρ(Y − {f(y)})(f(x))

= f←(ρ(Y − {f(y)}))(x) ≤ θ(f←(Y − {f(y)}))(x)

=
∧

y/∈f←(Y −{f(y)})
θ(x, y)′

= θ(X − {y})(x) = θ(x, y)′.

Hence we get ρ(f(x), f(y))′ ≤ θ(x, y)′. Since “ ′ ” is order reversing, hence
θ(x, y) ≤ ρ(f(x), f(y)) holds and f is a morphism in the category FRS. We
denote this isomorphism by N.

4 L-Fuzzifying Approximation Space and L-Fuzzifying
Pretopological Space

This section is towards the categorical relationship among L-fuzzifying pretopo-
logical space, Čech (L-fuzzifying) interior space and L-fuzzifying approximation
space. We discuss how to generate an L-fuzzifying pretopology by an reflexive
L-fuzzy relation and our approach is based on the L-fuzzifying approximation
operator studied in L-fuzzifying rough set theory.

Below, we present the definition of L-fuzzifying pretopological space which
is similar (but not identical) to that in [8].

Definition 4. A set of functions τX = {px : P(X) → L | x ∈ X} is called an
L-fuzzifying pretopology on X if for each λ, μ ∈ P(X), and x ∈ X, it satisfies,

(i) px(X) = 1,
(ii) px(λ) ≤ 1λ(x),
(iii) px(λ ∩ μ) = px(λ) ∧ px(μ).

For an L-fuzzifying pretopology τX , the pair (X, τX) is called an L-fuzzifying
pretopological space.

An L-fuzzifying pretopological space (X, τX) is called Alexandroff, if

(iv) px(
⋂

i∈I λi) =
∧

i∈I px(λi).
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With every L-fuzzifying pretopological space τX = {px : P(X) → L | x ∈ X}
and each λ ∈ P(X), we can associate another L-fuzzy set φλ ∈ LX such that
for all x ∈ X, φλ(x) = px(λ). Obviously, φ : λ �→ φλ is an operator on X.

A mapping f : (X, τX) → (Y, τY ) between two L-fuzzifying pretopological
spaces is called continuous if for all x ∈ X and for each λ ∈ P(Y ), qf(x)(λ) ≤
px(f←(λ)),where τX = {px : P(X) → L | x ∈ X}, τY = {qf(x) : P(Y ) → L |
f(x) ∈ Y } and f←(λ) = {x : f(x) ∈ λ}. It can be verified that all L-fuzzifying
pretopological spaces as objects and their continuous maps as morphisms form
a category, denoted by L-FYPT.

Now, we define the concepts of Čech L-fuzzifying interior (closure) operators
by considering the domain as crisp power set P(X) rather than L-fuzzy set LX .

Definition 5. A mapping î : P(X) → LX is called a Čech (L-fuzzifying) inte-
rior operator on X if for each λ, μ ∈ P(X), and x ∈ X, it satisfies

(i) î(X) = 1X ,
(ii) î(λ) ≤ 1λ,
(iii) î(λ ∩ μ) = î(λ) ∧ î(μ).

The pair (X, î) is called a Čech (L-fuzzifying) interior space.
A Čech (L-fuzzifying) interior operator (X, î) is called Alexandroff, if

(iv) î(
⋂

i∈I λi) =
∧

i∈I î(λi).

The map f : (X, î) → (Y, ĵ) between two Čech L-fuzzifying interior spaces is
called continuous if for each x ∈ X and λ ∈ P(Y ), ĵ(λ)(f(x)) ≤ î(f←(λ))(x).
It is trivial to verify that all Čech (L-fuzzifying) interior spaces as objects and
continuous maps as morphisms form a category. We denote this category by
L-FYIC. Moreover, we denote the subcategory (full) L-AFYIC of L-FYIC
with Čech Alexandroff L-fuzzifying interior operators as objects.

The notion of Čech (L-fuzzifying) closure operator can be defined using the
duality of L.

Definition 6. A mapping cX : P(X) → LX is called a Čech (L-fuzzifying)
closure operator on X if for each λ, μ ∈ P(X), and x ∈ X, it satisfies

(i) cX(φ) = 0X ,
(ii) cX(λ) ≥ 1λ,
(iii) cX(λ ∪ μ) = cX(λ) ∨ cX(μ).

The pair (X, cX) is called a Čech L-fuzzifying closure space.
A Čech (L-fuzzifying) closure space (X, cX) is called Alexandroff, if

(iv) cX(
⋃

i∈I λi) =
∨

i∈I cX(λi).

A mapping f : (X, cX) → (Y, cY ) between two Čech (L-fuzzifying) closure spaces
is called continuous if for all x ∈ X and λ ∈ P(X), f→(cX(λ)) ≤ cY (f→(λ)).
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Remark 1. For a De Morgan algebra L, the L-fuzzifying pretopologies, Čech
L-fuzzifying interior operators and Čech L-fuzzifying closure operators are gen-
erally considered as equivalent and can be defined using the immanent duality
of L in the following manner.

cX(λ) = (iX(λc))c, ∀λ ∈ P(X)

From now on, we will only study the relationship between L-fuzzifying approxi-
mation spaces, L-fuzzifying pretopological spaces and Čech L-fuzzifying interior
spaces. Since the similar results can be obtained for Čech L-fuzzifying closure
spaces.

The following Proposition is an easy consequence of Definitions 4 and 5.

Proposition 2. The set of functions τX = {px : P(X) → L | x ∈ X} is an
L-fuzzifying pretopology on X iff the map îτX

: P(X) → LX such that for all
x ∈ X,

îτX
(λ)(x) = px(λ), (1)

is a Čech L-fuzzifying interior operator. Moreover, if L-fuzzifying pretopology
τX is Alexandroff, then the map îτX

is a Čech-Alexandroff L-fuzzifying interior
operator.

Theorem 2. The category L-FYPT and L-FYIS are isomorphic.

Proof. Let f : (X, τX) → (Y, τY ) is a morphism (continuous map) in L-FYPT.
We define the functor G as follows

G :

⎧
⎨

⎩

L-FYPT −→ L-FYIS
(X, τX) �−→ (X, îτX

)
f �−→ f,

and for all λ ∈ P(X), x ∈ X, îτX
(λ)(x) = px(λ). Since (X, îτX

) is the
object of category L-FYIS, then f : (X, îτX

) → (Y, ĵτY
) is a continuous map,

i.e. ∀λ ∈ P(Y ), ĵτY
(λ)(x) = qf(x)(λ) ≤ px(f←(λ)) = îτX

(f←(λ))(x).
Conversely, let f : (X, îτX

) → (Y, ĵτY
) is a continuous map in the category

L-FYIS. We define the inverse functor G
−1 as follows

G :

⎧
⎨

⎩

L-FYIS −→ L-FYPT
(X, îτX

) �−→ (X, τX)
f �−→ g,

and for all λ ∈ P(X), px(λ) = îτX
(λ)(x). Then clearly G

−1 is an inverse functor
with the inverse G.

In the next proposition, we show that an L-fuzzifying pretopology on X can
be represented by an L-fuzzifying lower approximations of sets on X with respect
to a reflexive L-fuzzy relation.
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Proposition 3. Suppose that (X, θ) be an L-fuzzifying reflexive approximation
space. Let for all λ ∈ P(X), x ∈ X, we denote

pθ
x(λ) =

∧

y/∈λ

θ(x, y)′. (2)

Then τθ = {pθ
x : P(X) → L|x ∈ X}, is an L-fuzzifying pretopology on X.

Proof. For all x ∈ X and λ ∈ P(X), from Proposition 1, it can be easily verified
that τθ as defined in Eq. 2 satisfies the properties (i)–(iii) of lower L-fuzzifying
approximation operator.

Proposition 4. Let (X, τX) be an L-fuzzifying pretopological space. Then for
any x ∈ X, we define

ΘτX
(x, y) = px(X − {y})′.

Then, ΘτX
is a reflexive L-fuzzy relation and (X,ΘτX

) is an L-fuzzifying reflexive
approximation space.

Proof. For all x ∈ X and from the Definition 4 we have, ΘτX
(x, x) = px(X −

{x})′ ≤ 1X−{x}(x)′ = 0′ = 1. Which shows that ΘτX
is a reflexive L-fuzzy

relation and hence (X,ΘτX
) is an L-fuzzifying reflexive approximation space.

Proposition 5. If f : (X, θ) → (Y, ρ) is a morphism between two L-fuzzifying
reflexive approximation spaces. Then f is continuous function between two
L-fuzzifying pretopological spaces (X, τθ) and (Y, τρ).

Proof. The proof directly follows from Proposition 3.

Thus from the Propositions 3 and 5 we obtain a concrete functor τ as follows:

τ :

⎧
⎨

⎩

L-FYAPP −→ L-FYPT
(X, θ) �−→ (X, τθ)

f �−→ f.

Next, we prove a result, which gives a concrete functor Θ : FYPT → FYAPP.

Proposition 6. If f is a continuous function between two L-fuzzifying pretopo-
logical spaces (X, τX) and (Y, τY ). Then f : (X,ΘτX

) → (Y,ΘτY
) is a morphism

between two L-fuzzifying reflexive approximation spaces.
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Proof. Let λ ∈ P(Y ) and x ∈ X, we have

f←(ΘτY
(λ))(x) = ΘτY

(λ)(f(x)) =
∧

t/∈λ

ΘτY
(f(x), t)′

=
∧

t/∈λ

qf(x)(Y − {t}) =
∧

f(y)/∈λ

qf(x)(Y − {f(y)})

≤
∧

y/∈f←(λ)

px(f←(Y − {f(y)}))

≤
∧

y/∈f←(λ)

px(X − {y}) =
∧

y/∈f←(λ)

ΘτX
(x, y)′

= ΘτX
(f←(λ))(x).

Hence, we have f : (X,ΘτX
) → (Y,ΘτY

) is a morphism between two L-fuzzifying
reflexive approximation spaces (X,ΘτX

) and (Y,ΘτY
). In particular, we obtain

a concrete functor Θ as follows:

Θ :

⎧
⎨

⎩

L-FYPT −→ L-FYAPP
(X, τX) �−→ (X,ΘτX

)
f �−→ f.

In the next theorem we prove the adjointness between the categories L-FYAPP
and L-FYPT. Now we have the following.

Theorem 3. Let (X, θ) be an L-fuzzifying reflexive approximation space. Then
τ : L-FYAPP → L-FYPT is a left adjoint of Θ : L-FYPT → L-FYAPP.
Moreover Θ ◦ τ(X, θ) = (X, θ) i.e., Θ is a left inverse of τ .

Proof: The proof is divided into two parts. At first, we show that for any L-
fuzzifying reflexive approximation space (X, θ), IX : (X, θ) → (X,Θτθ

) is a
morphism between L-fuzzifying reflexive approximation spaces.

For any λ ∈ P(X) and x ∈ X, we have

Θτθ
(λ)(x) =

∧

y/∈λ

Θτθ
(x, y)′

=
∧

y/∈λ

(pθ
x(X − {y})′)′ (from Proposition 4)

=
∧

y/∈λ

pθ
x(X − {y}) (by involution of “ ′ ”)

=
∧

y/∈λ

θ(X − {y}) =
∧

y/∈λ

θ(x, y)′ = θ(λ)(x).

Hence, IX : (X, θ) → (X,Θτθ
) is a morphism between L-fuzzifying reflexive

approximation spaces.
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On the other hand, for any λ ∈ P(X), x ∈ X, we have

p
ΘτX
x (λ) = ΘτX

(λ)(x) =
∧

y/∈λ

ΘτX
(x, y)′

=
∧

y/∈λ

(px(X − {y})′)′

=
∧

y/∈λ

px(X − {y}) (by involution of “ ′ ”)

≥ px

⋂

y/∈λ

(X − {y}) = px(λ).

Hence, we show that IX : (X, τΘτX
) → (X, τX) is continuous.

Therefore, τ : L-FYAPP → L-FYPT is a left adjoint of Θ : L-FYPT →
L-FYAPP (Fig. 1).

�

�

�

K

Θ

τ
L-FYPT

SIYF-L SRF

L-FYAPP

N-isoG-iso

Fig. 1. Commutative diagram of Theorems 1, 2 and 3.

5 L-Fuzzy Relational Structures and Čech L-Fuzzifying
Interior Space

In this section, we establish the categorical relationship between the category
FRS of L-fuzzy relational structures and the category L-FYIS of Čech L-
fuzzifying interior spaces. Now we have the following.

Proposition 7. Let f : (X, θ) → (Y, ρ) be a morphism in the category FRS,
then f : (X, îθ) → (Y, ĵρ) is a continuous function (morphism) in the category
L-AFYIS.

Proof: Given that f : (X, θ) → (Y, ρ) be a morphism in the category FRS. We
define a functor F as follows;

F :

⎧
⎨

⎩

FRS −→ L-AFYIS
(X, θ) �−→ (X, îθ)

f �−→ f,
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and ∀λ ∈ P(X), x ∈ X, îθ(λ)(x) = ∧y/∈λθ(x, y)′. As (X, îθ) is the object of
category L-AFYIS, we need to show that f : (X, îθ) → (Y, ĵρ) is a continuous
function (morphism) in the category L-AFYIS. For all λ ∈ P(Y ), x ∈ X we
have

ĵρ(λ)(f(x)) =
∧

z/∈λ

ρ(f(x), z)′ ≤
∧

f(y)/∈λ

ρ(f(x), f(y))′

≤
∧

y/∈f←(λ)

θ(x, y)′ = îθ(f←(λ))(x).

Hence F is a functor.

Proposition 8. Let f : (X, îθ) → (Y, ĵρ) be a continuous function (morphism)
in the category L-FYIS, then f : (X, θ) → (Y, ρ) is a morphism in the category
FRS.

Proof: Let f : (X, îθ) → (Y, ĵρ) is a continuous function. Define a functor K as
follows;

K :

⎧
⎨

⎩

L-FYIS −→ FRS
(X, îθ) �−→ (X, θ),

f �−→ f,

and θ(x, y) = îθ(X − {y})′(x). Clearly θ is reflexive. Since îθ is anti-extensive,
hence θ(x, x) = îθ(X − {x})′(x) ≤ (X − {x})′(x) = 0′ = 1. It remains to show
that f : (X, θ) → (Y, ρ) is a morphism in the category FRS, i.e., θ(x, y) ≤
ρ(f(x), f(y)), or

îθ(X − {y})′(x) ≤ ĵρ(Y − {f(y)})′(f(x)),

or, îθ(X − {y})(x) ≥ ĵρ(Y − {f(y)})(f(x)). (3)

Since f : (X, îθ) → (Y, ĵρ) is a continuous function, we have ĵρ(λ)(f(x)) ≤
îθ(f←(λ))(x). Therefore for λ = (Y − {f(y)}), we get

ĵρ(Y − {f(y)})(f(x)) ≤ îθ(f←(Y − {f(y)}))(x)

≤ îθ(X − {y})(x).

Hence (3) holds and f : (X, θ) → (Y, ρ) is a morphism in the category FRS.

Proposition 9. Let (X, îθ) be a Čech Alexandroff L-fuzzifying interior space
and F : FRS → L-AFYIS, K: L-AFYIS → FRS be the concrete functors.
Then FK(X, îθ) = (X, îθ) (Fig. 2).

Proof: Let FK(X, îθ) = (X, ĵρ), where,

∀λ ∈ P(X), ĵρ(λ)(x) =
∧

y/∈λ

îθ(X − {y})(x) =
∧

y/∈λ

θ(x, y)′.
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�

�

�

�

1L-AFYIS

K

L-FYIS

SIYFA-L SIYFA-L

FRS

Fincl.

Fig. 2. Commutative diagram of Proposition 9.

As we know that, any arbitrary set λ ∈ P(X) can be decomposed as

λ =
⋂

y/∈λ

(X − {y}).

Therefore for Čech Alexandroff L-fuzzifying interior operator îθ, we have

îθ(λ)(x) = îθ

⎛

⎝
⋂

y/∈λ

(X − {y})(x)

⎞

⎠ =
∧

y/∈λ

îθ(X − {y})(x)

=
∧

y/∈λ

θ(x, y)′ = ĵρ(λ)(x).

Hence we have FK(X, îθ) = (X, îθ).
In the end, we give a graph to collect the relationships among the discussed

categories.

�
�

�
�

�
�

�
���

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
�
�

�

�

KG-iso

Θτ

L-FYAPP

FRSL-FYISL-FYPT

N-iso



238 A. P. Singh and I. Perfilieva

6 Conclusion

This paper contributes to the theory of L-fuzzifying topology, which originates
from [26]. We have considered various categories that are weaker than the cat-
egory of L-fuzzifying topology, e.g., category of L-fuzzifying reflexive approxi-
mation spaces, category of L-fuzzifying pretopological spaces and the category
of Čech L-fuzzifying interior (closure) spaces. At first, we have shown how an
L-fuzzifying pretopology can be generated by a reflexive L-fuzzy relation. Fur-
ther, we have shown interconnections among these categories and some of their
subcategories using the commutative diagram. Finally, we have established the
relationship between L-fuzzy relational structure and Čech L-fuzzifying interior
space by means of Galois connection.
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Abstract. The goal is to introduce and study the measure of quality
of approximation of a given fuzzy set by its lattice-valued F -transform.
Further, we show that this measure is connected with an Alexandroff
LM -fuzzy topological (co-topological) spaces. Finally, we discuss the cat-
egorical relationship between the defined structures.

Keywords: M -valued partition · Direct F -transforms · Fuzzy
inclusion measure · LM -fuzzy (co)topology · Ditopology

1 Introduction

The importance of various kinds of transforms such as Fourier, Laplace, inte-
gral, wavelet are well-known in classical mathematics. The main idea behind
these techniques consists of transforming an original space of functions into a
new computationally simpler space. Inverse transformations back to the orig-
inal spaces and produce either the original functions or their approximations.
The notion of F -transforms were proposed in [17] has now been significantly
developed. Through the viewpoint of application purpose, this theory represent
new methods which have turned out to be useful in denoising, time series, cod-
ing/decoding of images, numerical solutions of ordinary and partial differential
equations (cf., [3,13,24]) and many other applications.

In the seminal paper [17], F -transforms were defined on real-valued functions
and another type of F -transform was also introduced based on a residuated lat-
tice in the interval [0,1]. A number of researchers have initiated the study of
F -transforms, where they are applied to L-valued functions in a space defined by
L-valued fuzzy partitions (cf., [15,16,18,19,25]), where L is a complete residuated
lattice. Among these studies, a categorical study of L-partitions of an arbitrary
universe is presented in [15] and an interesting relationship among F -transforms,
L-topologies/co-topologies and L-fuzzy approximation spaces are established in
[19]. The relationships between F -transforms and similarity relations are inves-
tigated in [16], axiomatic study of F -transforms have been done in [14], while
F -transforms based on a generalized residuated lattice are studied in [25].

c© Springer Nature Switzerland AG 2020
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In the past few years, some studies have been conducted on the theoreti-
cal development of lattice-valued F -transforms. Among them, the papers [18–
20,22] are focused on establishing the relationship between the lattice-valued
F -transform and various structured spaces, namely, fuzzy (co) topological/pre-
(co)topological space, fuzzy approximation space and fuzzy interior/closure
spaces. The ground structure for the above-mentioned studies is the lattice-valued
F -transform defined on a space with a fuzzy partition [19]. There are many papers
[2,12,28], where implications are used to evaluate the measure of inclusion in the
same lattice L. To our knowledge, the first attempt to measure the degree of rough-
ness of a given fuzzy set in fuzzy rough set theory was undertaken in [6,7]. In [7],
an approach to measure the quality of rough approximation of fuzzy set is dis-
cussed. Motivated by this work, we aim at studying the measure of approximation
by the lattice-valued direct F -transforms. In other words, we measure the degree
of inclusion of lattice-valued F -transforms into the L-fuzzy set.

For this purpose, in Sect. 3, we consider a more general version of lattice-
valued F -transform defined on space with an M -valued partition. Specifically,
we define the lattice-valued F -transform operators of an L-fuzzy subset of a
set endowed with an M -valued partition. These operators, as special cases,
contain various rough approximation-type operators used by different authors
[10,11,21,26]. Interestingly, as a main result of this contribution, in Sect. 4,
we show that the M -valued measure of F -transform operators based on space
with M -valued partition determine the Alexandroff LM -fuzzy topological (co-
topological) spaces. We also discuss the mentioned relationship through a cate-
gorical viewpoint. It is worth mentioning that our work differs from the existing
study in the sense that here we consider the lattice-valued F -transform operator
based on the M -valued partition represented by M -fuzzy preorder relation and
showed that with this M -fuzzy preorder relation, Alexandroff LM -fuzzy topol-
ogy (co-topology) can be induced by defining the M -valued measure of direct
F -transforms. Finally, we give some direction for further research.

2 Preliminaries

Here, we recall the basic notions and terminologies related to residuated lattices,
integral commutative cl-monoid, measure of inclusion between two fuzzy sets and
fuzzy topological spaces. These terminologies will be used in the remaining text.

Definition 1 [1,8,9]. An integral commutative cl-monoid (in short, iccl
monoid) is an algebra (L,�,∨,∧,⊗) where (L,�,∨,∧) is a complete lattice
with the bottom element 0L and top element 1L, and (L,⊗, 1L) is a commu-
tative monoid such that binary operation ⊗ distributes over arbitrary joins, i.e.,

a ⊗ (∨i∈Ibi) = ∨i∈I(a ⊗ bi), for all a ∈ L, {bi | i ∈ I} ⊆ L.

Given an iccl-monoid (L,�,∨,∧,⊗), we can define a binary operation “→”,
for all a, b, c ∈ L,

a → b = ∨{c ∈ L | c ⊗ a ≤ b},
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which is adjoint to the monoidal operation ⊗, i.e.,

a ⊗ b ≤ c ⇐⇒ a ≤ b → c.

A particular example of residuated lattice is Lukasiewicz algebra

LL = ([0, 1],∨,∧,⊗,→, 0, 1),

where the binary operations “⊗” and “ →” are defined as, a⊗b = min(a+b−1, 1)
and a → b = max(1 − a + b, 0).

The following properties of residuated lattice will be used, for proof refer to
[1,5,9].

Proposition 1. Let (L,�,∧,∨,⊗,→) be a residuated lattice. Then for all
a, b, c ∈ L,

(i) a ≤ b → (a ⊗ b), a ⊗ (a → b) ≤ b,
(ii) a ⊗ (b → c) ≤ (a → b) → c,
(iii) a ⊗ (∨j∈Jbj) = ∨j∈J(a ⊗ bj),
(iv) a ⊗ (∧j∈Jbj) ≤ ∧j∈J(a ⊗ bj),
(v) ∨j∈J(aj → b) ≤ ∧j∈Jaj → b,
(vi) a → (b → c) = (a ⊗ b) → c = b → (a → c),
(vii) a → ∧j∈Jbj = ∧j∈J(a → bj),
(viii) ∨j∈Jaj → b = ∧j∈J(aj → b),
(ix) a → ∨j∈Jbj ≥ ∨j∈J(a → bj).

Given a nonempty set X, LX denotes the collection of all L-fuzzy subsets
of X, i.e. a mapping λ : X → L. Also, for all a ∈ L, a(x) = a is a constant
L-fuzzy set on X. The greatest and least element of LX is denoted by 1X and
0X respectively. For all λ ∈ LX , the core(λ) is a set of all elements x ∈ X, such
that λ(x) = 1. An L-fuzzy set λ ∈ LX is called normal, if core(λ) �= ∅.

The notion of powerset structures are well known and have been widely
used in several constructions and applications. According to Zadeh’s principle,
any map f : X → Y can be extended to the powerset operators f→ : LX →
LY and f← : LY → LX such that for λ ∈ LX , μ ∈ LY , y ∈ Y , f→(λ)(y) =
∨x,f(x)=yλ(x), f←(μ) = μ ◦ f.

Definition 2. [4] Let X be a nonempty set. Then for given two L-fuzzy sets λ, μ
and for each x ∈ X, following are the new L-fuzzy sets defined:

λ = μ ⇐⇒ λ(x) = μ(x), λ ≤ μ ⇐⇒ λ(x) ≤ μ(x),
(λ ∧ μ)(x) = λ(x) ∧ μ(x), (λ ∨ μ)(x) = λ(x) ∨ μ(x),
(λ ⊗ μ)(x) = λ(x) ⊗ μ(x), (λ → μ)(x) = λ(x) → μ(x).
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Let I be a set of indices, λi ∈ LX , i ∈ I. The meet and join of elements from
{λi | i ∈ I} are defined as follows:

(∧i∈Iλi)(x) = ∧i∈Iλi(x), (∨i∈Iλi)(x) = ∨i∈Iλi(x).

In this paper, we work with two independent iccl-monoids L = (L,�,∨,∧,⊗L)
and M = (M,�,∨,∧,⊗M ). The iccl-monoid L is used as range for L-fuzzy
sets (i.e. for the approximative objects), while M is used as the range of values
taken by the measure estimating the precision of the approximation. Both the
iccl-monoids are unrelated, however for proving some results based on measure
of approximation, a connection between them is required, for this purpose we
define fixed mappings φ : L → M and ψ : M → L such that the top and
bottom elements are preserved i.e., for {ai | i ∈ I} ⊆ L, {bi | i ∈ I} ⊆
M , φ(∧i∈Iai) = ∧i∈Iφ(ai), ψ(∨i∈Ibi) = ∨i∈Iψ(bi). Additionally, we need that
φ(α⊗L a) = φ(α)⊗L φ(a), ∀α, a ∈ L and ψ(β⊗M b) = ψ(β)⊗M ψ(b), ∀β, b ∈ M .

Now we recall the following definition of M -fuzzy relation from [27].

Definition 3. [27] Let X be a nonempty set. An M -fuzzy relation δ on X is an
M -fuzzy subset of X × X. An M -fuzzy relation δ is called

(i) reflexive if δ(x, x) = 1 ∀x ∈ X,
(ii) transitive if δ(x, y) ⊗ δ(y, z) ≤ δ(x, z), ∀x, y, z ∈ X.

A reflexive and transitive M -fuzzy relation δ is called an M -fuzzy preorder.

Here, we define the measure of inclusion between two given L-fuzzy sets as
it was introduced in [7].

Definition 4. Let the iccl-monoids L, M be given and φ : L → M be the fixed
mapping. The M -valued measure of inclusion of the L-fuzzy set λ into the L-fuzzy
set μ is a map ↪→: LX × LX → M defined as

λ ↪→ μ = ∧x∈Xφ(λ(x) → μ(x)), for all λ, μ ∈ LX .

In other words, the measure of inclusion function ↪→ can be defined by λ ↪→
μ = φ(∧(λ → μ)), where the infimum of the L-fuzzy set λ ↪→ μ is taken in the
lattice LX .

Below, we give some useful properties of the map ↪→, which is similar (in
some sense) to the properties of residuated lattices.

Proposition 2. [7] The inclusion map ↪→: LX ×LX → M satisfies the following
properties.

(i) (∨i∈Iλi) ↪→ μ = ∧i∈I(λi ↪→ μ), ∀{λi | i ∈ I} ⊆ LX , μ ∈ LX ,
(ii) λ ↪→ (∧i∈Iμi) = ∧i∈I(λi ↪→ μ), ∀λ ∈ LX , {μi | i ∈ I} ⊆ LX ,
(iii) λ ↪→ μ = 1 ⇔ λ ≤ μ,
(iv) 1X ↪→ λ = φ(∧xλ(x)), ∀λ ∈ LX ,
(v) λ ↪→ μ ≤ (λ ⊗ c ↪→ μ ⊗ c), ∀λ, μ, c ∈ LX ,
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(vi) (∧iλi) ↪→ (∧iμi) ≥ ∧i(λi ↪→ μi), ∀{λi | i ∈ I}, {μi | i ∈ I} ⊆ LX ,
(vii) (∨iλi) ↪→ (∨iμi) ≥ ∧i(λi ↪→ μi), ∀{λi | i ∈ I}, {μi | i ∈ I} ⊆ LX .

We close this section by recalling the following definition of LM -fuzzy topol-
ogy presented by [23].

Definition 5. [23] An LM -fuzzy topology T on universe X is a mapping T :
LX → M , such that for each λ, μ ∈ LX , {λi | i ∈ I} ⊆ LX it satisfies,

(i) T(φ) = T(X) = 1,
(ii) T(λ ∧ μ) ≥ T(λ) ∧ T(μ),
(iii) T(∨i∈Iλi) ≥ ∧i∈IT(λi).

For an LM -fuzzy topology T on nonempty set X, the pair (X,T) is called an
LM -fuzzy topological space. Further, (X,T) is

(vi) strong, if T(a ⊗ λ) ≥ T(λ),
(v) Alexandroff, if T(∧i∈Iλi) ≥ ∧i∈IT(λi).

Given two LM -fuzzy topological space (X,TX) and (Y,TY ) a map f :
(X,TX) → (Y,TY ) is called continuous if for all λ ∈ LY , TX(f←(λ)) ≥ TY (λ).
We denote by LM-ToP, the category of Alexandroff LM -fuzzy topological
spaces.

The notion of LM -fuzzy co-topology [23] T can be defined similarly. Given
two LM -fuzzy co-topological space (X,TX) and (Y,TY ) a map f : (X,TX) →
(Y,TY ) is called continuous if λ ∈ LY , TX(f←(λ)) ≥ TY (λ). We denote by
LM-CToP, the category of Alexandroff LM -fuzzy co-topological spaces.

3 M -valued Partition and Direct F -transforms

In this section, we recall the notion of M -valued partitions and lattice-valued
F -transforms [19]. We also discuss its behaviour based on ordering in spaces
with M -valued partition. We begin with the following definition of M -valued
partition as introduced in [19].

Definition 6. Let X be a nonempty set. A collection P of normal M -valued
sets {Aξ : ξ ∈ Λ} in X is an M -valued partition of X, if {core(Aξ) : ξ ∈ Λ} is
a partition (crisp) of X. A pair (X,P), where P is an M -valued partition of X,
is called a space with an M -valued partition.

Let P = {Aξ : ξ ∈ Λ} be an M -valued partition of X. With this partition, we
associate the following surjective index-function iP : X → Λ:

iP(x) = ξ ⇐⇒ x ∈ core(Aξ). (1)

Then M -valued partition P can be uniquely represented by the reflexive M -fuzzy
relation δP on X, such that

δP(x, y) = AiP(x)(y). (2)
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In [19], it has been proved that the relation (2) can be decomposed into a con-
stituent M -fuzzy preorder relation δPξ

(x, y), where for each ξ ∈ Λ

δPξ
(x, y) =

⎧
⎪⎨

⎪⎩

AiP(x)(y), if x ∈ core(AiP(x)),
1, if x = y,

0, otherwise.

For given two spaces with M -valued partitions, following is the notion of mor-
phism between them.

Definition 7. [15] Let (X,P = {Aξ : ξ ∈ Λ)} and (Y,Q = {Bω : ω ∈ Ω)} be
two spaces with M -valued partitions. A morphism in the space with M -valued
partitions is a pair of maps (f, g), where f : X → Y and g : Λ → Ω are maps
such that for each x ∈ X, ∀ ξ ∈ Λ, Aξ(x) ≤ Bg(ξ)(f(x)).

It can be easily verified that all spaces with M -valued partition as objects
and the pair of maps (f, g) defined above as morphisms form a category [15],
denoted by SMFP. If there is no danger of misunderstanding, the object-class
of SMFP will be denoted by SMFP as well.

Let L, M be iccl-monoids and ψ : M → L be the fixed mapping. Here, we
define the following concept of lattice-valued direct F ↑(F ↓)-transforms.

Definition 8. Let X be a nonempty set and P = {Aξ : ξ ∈ Λ} be M -valued
partition of X. Then for all λ ∈ LX , and for all x ∈ X,

(i) direct F ↑-transform of L-valued function λ is defined by

F ↑
ξ (λ) = ∨y∈X(ψ(Aξ(y)) ⊗ λ(y)),

(ii) direct F ↓-transform of L-valued function λ is defined by

F ↓
ξ (λ) = ∧y∈X(ψ(Aξ(y)) → λ(y)).

It has been shown in [19] that for M -valued partition P = {Aξ : ξ ∈ Λ} repre-
sented by M -fuzzy preorder relation δPξ

and with the associated index-function
iP , we can associate two operators F ↑

Pξ
and F ↓

Pξ
corresponding to direct F ↑ and

F ↓-transforms. Where, for each λ ∈ LX ,

F ↑
Pξ

(λ)(x) = F ↑
iP(x)(λ) = ∨y∈X(ψ(δPξ

(x, y)) ⊗ λ(y)), (3)

F ↓
Pξ

(λ)(x) = F ↓
iP(x)(λ) = ∧y∈X(ψ(δT

Pξ
(x, y)) → λ(y)). (4)

In [19], it has been proved that the operators defined in Eqs. 3 and 4 connect the
iP(x)-th upper (lower) F ↑(F ↓)-transform approximation with a closure (interior)
operators in corresponding L-fuzzy co-topology (topology).
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Remark 1. Initially, the notion of lattice-valued direct F -transforms were intro-
duced in [17], where the fuzzy partition Aξ was considered as a fuzzy subset of
[0, 1] (i.e., Aξ : X → [0, 1]) fulfilling the covering property, (∀x) (∃ξ), Aξ(x) > 0.
Later, this notion were extended to the case where they are applied to L-valued
functions in a space defined by L-valued fuzzy partitions, where L is a complete
residuated lattice. Here, if we consider the case where L = M and ψ = id is
an identity map, then the above definition of lattice-valued direct F -transforms
will be similar to the lattice-valued direct F -transforms appeared in [17–20].

The following properties of the operators F ↑
Pξ

and F ↓
Pξ

were presented in
[17,19]. All of them are formulated below for arbitrary a, λ, λi ∈ LX .

Proposition 3. Let X be a nonempty set and P be the M -valued partition of
X. Then for all a, λ ∈ LX , and {λi | i ∈ I} ⊆ LX , the operators F ↑

Pξ
: LX → LX

and F ↓
Pξ

: LX → LX satisfies the following properties.

(i) F ↑
Pξ

(a) = a, F ↓
Pξ

(a) = a,

(ii) λ ≤ F ↑
Pξ

(λ), F ↓
Pξ

(λ) ≤ λ,

(iii) F ↑
Pξ

(∨i∈Iλi) = ∨i∈IF
↑
Pξ

(λi), F ↓
Pξ

(∧i∈Iλi) = ∧i∈IF
↓
Pξ

(λi),

(iv) F ↑
Pξ

(a ⊗ λ) = a ⊗ F ↑
Pξ

(λ), F ↓
Pξ

(a → λ) = a → F ↓
Pξ

(λ).

Below, we investigate the properties of lattice-valued direct F -transforms
with respect to ordering between spaces with M -valued partition. We have the
following.

Proposition 4. Let (f, g) : (X,P) → (Y,Q) be a morphism between spaces with
M -valued partition and fixed mapping ψ is monotonic decreasing. Then,

(i) F ↑
ξ (f←(λ)) ≤ F ↑

g(ξ)(λ),

(ii) F ↓
ξ (f←(λ)) ≥ F ↓

g(ξ)(λ),

(iii) F ↑
g(ξ)(f

→(λ)) ≥ F ↑
ξ (λ),

(iv) F ↓
g(ξ)(f

→(λ)) ≤ F ↓
ξ (λ).

Proof. (i) Let λ ∈ LY . From Definition 8, we have

F ↑
ξ (f←(λ)) = ∨x∈Xψ(Aξ(x)) ⊗ f←(λ)(x) = ∨x∈Xψ(Aξ(x)) ⊗ λ(f(x))

≤ ∨x∈Xψ(Bg(ξ)(f(x))) ⊗ λ(f(x)) ≤ ∨y∈Y ψ(Bg(ξ)(y)) ⊗ λ(y)

= F ↑
g(ξ)(λ).

(ii) Let λ ∈ LY . From Definition 8, we get

F ↓
ξ (f←(λ)) = ∧x∈Xψ(Aξ(x)) → f←(λ)(x) = ∧x∈Xψ(Aξ(x)) → λ(f(x))

≥ ∧x∈Xψ(Bg(ξ)(f(x))) → λ(f(x)) ≥ ∧y∈Y ψ(Bg(ξ)(y)) → λ(y)

= F ↓
g(ξ)(λ).
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(iii) Let λ ∈ LX . From Definition 8, we obtain
F ↑

g(ξ)(f
→(λ))

= ∨y∈Y

(
f→(λ)(y) ⊗ ψ(Bg(ξ)(y))

)
= ∨y∈Y

(
∨x:f(x)=y λ(x) ⊗ ψ(Bg(ξ)(y))

)

≥ ∨x∈Xλ(x) ⊗ ψ(Bg(ξ)(f(x))) ≥ ∨x∈Xλ(x) ⊗ ψ(Aξ(x)) = F ↑
ξ (λ).

(iv) Let λ ∈ LX . From Definition 8, we obtain
F ↓

g(ξ)(f
→(λ))

= ∧y∈Y

(
ψ(Bg(ξ)(y)) → f→(λ)(y)

)
= ∧y∈Y

(
ψ(Bg(ξ)(y)) → ∨x:f(x)=yλ(x)

)

= ∧x∈Xψ(Bg(ξ)(y)(f(x)) → λ(x) ≤ ∧x∈Xψ(Aξ(x)) → λ(x) = F ↓
ξ (λ).

4 Main Results

In this section, we introduce and study the measure of lattice-valued direct
F -transforms of an L-fuzzy set. The defined measure determines the amount
of preciseness of L-fuzzy subset into L-fuzzy set. Further, we investigate the
topologies induced by the measure of lattice-valued direct F -transform operators.
In particular, we show that every measure of lattice-valued direct F -transform
operators determine strong Alexandroff LM -fuzzy topological and co-topological
spaces.

Definition 9. Let X be a nonempty set and P be the M -valued partition of
X. Then for an L-fuzzy set λ ∈ LX . The M -valued measure of direct F ↑-
transform Fu(λ) = F ↑

Pξ
(λ) ↪→ λ and M -valued measure of direct F ↓-transform

Fl(λ) = λ ↪→ F ↓
Pξ

(λ) are maps Fu,Fl : LX → M and defined as,

Fu(λ) = φ
(
∧x∈X(F ↑

Pξ
(λ)(x) → λ(x))

)
, Fl(λ) = φ

(
∧x∈X(λ(x) → F ↓

Pξ
(λ)(x))

)
.

To investigate in more detail how the M -valued measure of F -transform
operators preserve the inclusion of two sets defined in the real interval [0,1],
instead of a general complete residuated lattice L, we will use the specific example
of residuated lattices.

Example 1. Consider the case L = M , and φ = ψ = id and the Lukasiewicz
algebra

LL = ([0, 1],∨,∧,⊗,→, 0, 1).

Then the measure of lattice-valued F -transform operators of an L-fuzzy set
is obtained as below,

Fu = ∧x,y∈X(2 − λ(x) + λ(y) − AiP(y)(x)),
Fl = ∧x,y∈X(2 − λ(x) + λ(y) − AiP(x)(y)).
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Proposition 5. Let X be a nonempty set and P be the M -valued partition of
X. Then for each a, λ ∈ LX and for all {λi | i ∈ I} ⊆ LX , the M -valued measure
of F -transform operators Fu,Fl : LX → M satisfy the following properties.

(i) Fu(a) = 1M , Fl(a) = 1M ,
(ii) Fu(∨i∈Iλi) ≥ ∧i∈IFu(λi), Fl(∨i∈Iλi) ≥ ∧i∈IFl(λi),
(iii) Fu(∧i∈Iλi) ≥ ∧i∈IFu(λi), Fl(∧i∈Iλi) ≥ ∧i∈IFl(λi),
(iv) Fu(a ⊗ λ) ≥ Fu(λ), Fl(a → λ) ≥ Fl(λ).

Proof. We give only proof for the M -valued measure of direct F transform oper-
ator Fu. The proof for operator Fl follows similarly.

(i) For all a ∈ LX , and from Proposition 3, we have,

Fu(a) = F ↑
Pξ

(a) ↪→ a = φ(∧x∈X(F ↑
Pξ

(a)(x) → a(x)))

= φ(∧x∈X(a(x) → a(x))) = 1M .

(ii) For all λ ∈ LX , and {λi | i ∈ I} ⊆ LX , from Proposition 2, we have

Fu(∨i∈Iλi) = F ↑
Pξ

(∨i∈Iλi) ↪→ (∨i∈Iλi)

= ∨i∈I(F
↑
Pξ

(λi)) ↪→ (∨i∈Iλi) ≥ ∧i∈I(F
↑
Pξ

(λi)) ↪→ (λi))

= ∧i∈IFu(λi).

(iii) For all λ ∈ LX , and {λi | i ∈ I} ⊆ LX , from Proposition 2, we have

Fu(∧i∈Iλi) = F ↑
Pξ

(∧i∈Iλi) ↪→ (∧i∈Iλi)

≥ ∧i∈I(F
↑
Pξ

(λi)) ↪→ (∧i∈Iλi) ≥ ∧i∈I(F
↑
Pξ

(λi)) ↪→ (λi))

= ∧i∈IFu(λi).

(iv) For all a, λ ∈ LX , from Proposition 3, we have,

Fu(a ⊗ λ) = F ↑
Pξ

(a ⊗ λ) ↪→ (a ⊗ λ)

= φ(∧x∈X(∨y∈X(ψ(AiP(x)(y)) ⊗ (a ⊗ λ)(y)) → (a ⊗ λ)(x)))
≥ φ(∧x∈X(∨y∈X(ψ(AiP(x)(y)) ⊗ λ(y)) → λ(x)))

= φ(∧x∈X(F ↑
Pξ

(λ)(x) → λ(x))) = Fu(λ).

4.1 Measure of Direct F ↓-transform Operator and LM-fuzzy
Topology

In this subsection, we show that the M -valued measure of direct F ↓-transform
induces LM -fuzzy topology.
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Theorem 1. Let (X,P) be a space with an M -valued partition, δPξ
representing

M -fuzzy preorder relation and F ↓
Pξ

: LX → LX be the corresponding F ↓-operator.
Then the pair (X,TP), where TP = {Fl(·)(x) : LX → M | x ∈ X} is such that
for every λ ∈ LX and x ∈ X,

Fl(λ) = λ ↪→ F ↓
Pξ

(λ)

is a strong Alexandroff LM -fuzzy topological space.

Proof. Let P = {Aξ : ξ ∈ Λ} be an M -valued partition and iP be the correspond-
ing index-function, such that for all x ∈ X, the value iP(x) determines the unique
partition element AiP(x), where x ∈ core(AiP(x)). For every x ∈ X, λ ∈ LX , we
claim that F ↓

Pξ
(λ)(x) = F ↓

iP(x)(λ), where the right-hand side is the iP(x)-th F ↓-

transform component of λ. Indeed, for a particular x ∈ X, F ↓
iP(x)(λ) is computed

in accordance with (4) and by this, coincides with F ↓
Pξ

(λ)(x). Now it only remains
to verify that the collection TP = {Fl(·)(x) : LX → M | x ∈ X}, where for every
λ ∈ LX , Fl(λ) = λ ↪→ F ↓

iP(x)(λ) is a strong Alexandroff LM -fuzzy topological
space. It can be seen that the properties (i)–(iv) of Proposition 5 characterize
the M -valued measure of direct F ↓-transform operator Fl : LX → M as strong
Alexandroff LM -fuzzy topological space.

Theorem 2. Let (f, g) : (X,P) → (Y,Q) be a morphism between the spaces with
M -valued partition, characterized by index-functions iP and kP , respectively. Let,
moreover, Alexandroff LM -fuzzy topologies TX = {F iP

l : LX → M | x ∈ X} on
X and TY = {FkP

l : LY → M | y ∈ Y } on Y be induced by the F ↓-transform.
Then f : (X,TX) → (Y,TY ) is a continuous map.

Proof. Since (f, g) : (X,P) → (Y,Q) be an FP -map. Then from Definition 7,
for all ξ ∈ Λ, Aξ(x) ≤ Bg(ξ)(f(x)). Now we have to show that for all λ ∈ LY ,
TX(f←(λ)) ≥ TY (λ), where

TX(f←(λ)) = F iP
l (f←(λ)) = f←(λ) ↪→ F ↓

iP(x)(f
←(λ))

= φ
(
∧x∈X(f←(λ)(x) → F ↓

iP(x)(f
←(λ)(x)))

)

= φ
(
∧x∈X(λ(f(x)) → ∧t∈X(ψ(AiP(x)(t)) → λ(f(t)))

)

= φ
(
∧x∈X ∧t∈X (λ(f(x)) → (ψ(AiP(x)(t)) → λ(f(t)))

)

≥ φ
(
∧x∈X ∧t∈X (λ(f(x)) → (ψ(BkP(x)(f(t))) → λ(f(t)))

)

≥ φ
(
∧z∈X ∧y∈X (λ(z) → (ψ(BkP(x)(y)) → λ(y))

)

≥ φ
(
∧z∈X(λ(z) → ∧y∈X(ψ(BkP(x)(y)) → λ(y))

)

= λ ↪→ F ↓
kP(z)(λ) = FkP

l (λ) = TY (λ).

Thus f : (X,TX) → (Y,TY ) is a continuous map.
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From Theorems 1, 2, we obtain a functor G as follows:

G :

⎧
⎪⎨

⎪⎩

SMFP �−→ LM−ToP
(X,P) �−→ (X,TX)
(f, g) �−→ f,

where P = {Aξ : ξ ∈ Λ} is an M -valued partition of X, TX = {F iP
l : LX → M |

x ∈ X} is the induced strong Alexandroff LM -fuzzy topology on X by the M -
valued measure of direct F ↓-transform operator Fl, and (f, g) : (X,P) → (Y,Q)
is a morphism between the spaces with M -valued partition.

4.2 Measure of Direct F ↑ -transform Operator and LM-fuzzy
Co-topology

Here, we show that the M -valued measure of direct F ↑-transform induces LM -
fuzzy co-topology.

Theorem 3. Let (X,P) be a space with an M -valued partition, δPξ
representing

M -fuzzy preorder relation and F ↑
Pξ

: LX → LX be the corresponding F ↑-operator.
Then the pair (X, TP), where TP = {Fu(·)(x) : LX → M | x ∈ X} is such that
for every λ ∈ LX and x ∈ X,

Fu(λ) = F ↑
Pξ

(λ) ↪→ λ

is a strong Alexandroff LM -fuzzy co-topological space.

Proof. The proof is analogous to Theorem1.

Theorem 4. Let (f, g) : (X,P) → (Y,Q) be a morphism between the spaces with
M -valued partition, characterized by index-functions iP and kP , respectively. Let,
moreover, Alexandroff LM -fuzzy co-topologies TX = {F iP

u : LX → M | x ∈ X}
on X and TY = {FkP

u : LY → M | y ∈ Y } on Y be induced by the F ↑-transform.
Then f : (X, TX) → (Y, TY ) is a continuous map.

Proof. Since (f, g) : (X,P) → (Y,Q) be a morphism between space with M -
valued partitions. Then from Definition 7, for all ξ ∈ Λ, Aξ(x) ≤ Bg(ξ)(f(x)).
Now we have to show that for all λ ∈ LY , TX(f←(λ)) ≥ TY (λ), where

TX(f←(λ)) = F iP
u (f←(λ)) = F ↑

iP(x)(f
←(λ)) ↪→ f←(λ)

= φ
(
∧x∈X(F ↑

iP(x)(f
←(λ)(x)) → f←(λ)(x))

)

= φ
(
∧x∈X(∧t∈X(ψ(AiP(x)(t)) ⊗ λ(f(t))) → λ(f(x))

)

= φ
(
∧x∈X ∧t∈X (ψ(AiP(x)(t)) ⊗ λ(f(t))) → λ(f(x))

)

≥ φ
(
∧x∈X ∧t∈X (ψ(BkP(x)(f(t))) ⊗ λ(f(t))) → λ(f(x))

)

≥ φ
(
∧z∈X ∧y∈X (ψ(BkP(x)(y)) ⊗ λ(y)) → λ(z)

)

≥ φ
(
∧z∈X ∧y∈X (ψ(BkP(x)(y)) ⊗ λ(y)) → (λ(z)

)

= F ↑
kP(z)(λ) ↪→ λ = FkP

u (λ) = TY (λ).
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Thus f : (X, TX) → (Y, TY ) is a continuous map.

From Theorems 3, 4, we obtain a functor H as follows:

H :

⎧
⎪⎨

⎪⎩

SMFP �−→ LM−CToP
(X,P) �−→ (X, TX)
(f, g) �−→ f,

where P = {Aξ : ξ ∈ Λ} is an M -valued partition of X, TX = {F iP
u : LX → M |

x ∈ X} is the induced strong Alexandroff LM -fuzzy co-topology on X by the
measure of direct F ↑-transform operator Fu, and (f, g) : (X,P) → (Y,Q) is a
morphism between the spaces with M -valued partition.

Below, we show that the M -valued measure of F -transform operators Fu,
Fl together with its induced LM -fuzzy topologies T, T can be interpreted as
LM -fuzzy ditopology.

Corollary 1. Let (X,P) be space with M -valued partition, TP = {Fl(·)(x) :
LX → M | x ∈ X} and TP = {Fu(·)(x) : LX → M | x ∈ X} be the
induced strong Alexandroff LM -fuzzy topology and co-topology. Then the triple
(X,TPX

, TPX
) is a strong Alexandroff LM -fuzzy ditopology.

The following proposition is an easy consequence of Theorems 2 and 4.

Proposition 6. Let (f, g) : (X,P) → (Y,Q) be a morphism between the spaces
with M -valued partition. Let, moreover, assume that the assumptions of Theo-
rems 2 and 4 holds. Then f : (X,TPX

, TPX
) → (Y,TPY

, TPY
) is a continuous

mapping between two strong Alexandroff LM -fuzzy ditopological spaces.

From the above two results we obtain a functor L as follows:

L :

⎧
⎪⎨

⎪⎩

SMFP �−→ LM−DIToP
(X,P) �−→ (X,TPX

, TPX
)

(f, g) �−→ f.

5 Conclusion

The paper is an effort to show that by defining the M -valued measure of F -
transform operators, we can associate Alexandroff LM -fuzzy topological and
co-topological spaces. Specifically, we have introduced and studied the M -valued
measure of inclusion defined between the lattice-valued F ↑ and F ↓-transform and
L-fuzzy set. The basic properties of defined operators are studied. The M -valued
measure of F -transforms defined here are essentially in some sense determine the
amount of preciseness of given L-fuzzy set. We have discussed such connections
through the categorical point of view.
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We believe that the M -valued measure of F -transform operators propose an
abstract approach to the notion of “precision of approximation” and naturally
arise in connection with applications to image and data analysis etc. Which will
be one of our directions for the future work. In another direction, we propose
to investigate the categorical behavior of the operators Fu,Fl in a more deeper
way.

Acknowledgment. The work of first author is supported by University of Ostrava
grant IRP201824 “Complex topological structures” and the work of Irina Perfilieva
is partially supported by the Grant Agency of the Czech Republic (project No. 18-
06915S).

References

1. Blount, K., Tsinakis, C.: The structure of residuated lattices. Int. J. Algebr. Com-
put. 13(04), 437–461 (2003)

2. Bustince, H.: Indicator of inclusion grade for interval-valued fuzzy sets. Application
to approximate reasoning based on interval-valued fuzzy sets. Int. J. Approximate
Reasoning 23(3), 137–209 (2000)

3. Di Martino, F., Loia, V., Perfilieva, I., Sessa, S.: An image coding/decoding method
based on direct and inverse fuzzy transforms. Int. J. Approximate Reasoning 48(1),
110–131 (2008)

4. Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–174 (1967)
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Abstract. In this paper, we apply special fuzzy techniques to analyze
the gold price historical data. The main tools are the higher degree fuzzy
transform and specific methods of fuzzy natural logic. First, we show
how to apply the former for the estimation of the trend-cycle. Then, we
provide methodologies for identifying monotonous periods in the trend-
cycle and describe them by sentences in natural language.

Keywords: Fuzzy transform · Fuzzy modeling · Financial time series ·
Data mining

1 Introduction

The crises of the global financial environment in recent years have put many
financial markets into complicated situations, e.g., the drop in oil prices, the
unusual fluctuation of gold prices, the unprecedented boom of digital currencies.
These make it difficult for people who would like to optimize their profit when
trading in such financial markets. Facing this situation, any knowledge of how
a market behaves is significantly helpful. In this paper, we devote several tech-
niques to mine information behind a market based on its historical data. Our
focus is on the gold market.

First, we apply the fuzzy transform (F-transform) technique for estimation
of the trend-cycle of the gold price historical data. The F-transform is a fuzzy
approximation technique proposed by I. Perfilieva in [21] and later elaborated
by several authors in [5,10,13,22] and elsewhere. It has been successfully applied
in many branches of applied sciences [6,8,12,14,25,26], and especially, in time
series analysis [3,4,17,18,27] that inspires our investigation in this paper. From
those contributions, it is known that the trend-cycle of a time series can be
estimated by the F-transform technique, successfully. However, the quality of
this estimation strongly depends on practical experience in setting parameters
of the latter. Therefore, in addition to the application of the fuzzy transform
to the trend-cycle estimation, we introduce a technique for choosing parameters
to make it possible to achieve an efficient estimation without requiring much
practical experience.
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M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1239, pp. 254–266, 2020.
https://doi.org/10.1007/978-3-030-50153-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50153-2_19&domain=pdf
https://doi.org/10.1007/978-3-030-50153-2_19


Gold Price: Trend-Cycle Analysis Using Fuzzy Techniques 255

To help investors have a better understanding of the behavior of a market
(particularly the gold market), we introduce the concept of bull and bear periods
on the trend-cycle to characterize the monotonous stages on it. These concepts
are inspired through the notions of bull and bear markets in finance [2,19]. For
practical purposes, an algorithm is provided for identifying bull and bear periods
on the estimated trend-cycle.

Finally, we employ one of the important tasks in mining information from
time series that is to extract linguistic characterization of the trend-cycle. Let us
note that mining linguistic information or time series summarization has been
studied for quite a while, recently. There are several approaches that have been
proposed to this issue such as [1,9,15,20,24,28] and elsewhere. Being motivated
by fuzzy natural logic techniques used for describing the behavior of the trend-
cycle [15], we develop a methodology to extract linguistic characteristics of bull
and bear periods on the trend-cycle of the gold price market and represent them
by sentences.

The paper is structured as follows. The next section provides a brief intro-
duction to the (higher degree) F-transform and specific tools in fuzzy natural
logic. The main contribution of this paper is described in Sect. 3, where we ana-
lyze the trend-cycle of the gold price data. This consists of the estimating of the
trend-cycle, identifying of monotonous periods on it, and describing its course
in natural language (by sentences). The last section is the conclusion.

2 Preliminaries

Let N, Z and R denote the set of natural numbers, integers and real numbers,
respectively.

2.1 The Higher Degree Fuzzy Transform

The central notion in the theory of fuzzy transform is the fuzzy partition. Stan-
dardly, a fuzzy partition is a set of fuzzy sets on R that satisfy the Ruspini’s
condition.1 Together with the development of the fuzzy transform, this concept
has several modified versions such as: the generalized (uniform) fuzzy partition
[7], the adjoint fuzzy partition [23]. For the practical purposes of this paper,
we restrict our consideration on a particularly simple one, called the triangular
generalized uniform fuzzy partition.

Definition 1. Let t0 ∈ R, and two positive constants h and r be such that
h/r ∈ Z. Let A = {Ak | k ∈ Z} be a set of fuzzy sets on R, defined by

Ak(t) =
r

h
· max

{
1 −

∣∣∣∣ t − t0 − kr

h

∣∣∣∣ , 0
}

, k ∈ Z.

1 The sum of all membership functions corresponding to fuzzy sets in a fuzzy partition
over each point in R is one.
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Then, A is called a triangular generalized uniform fuzzy partition of the real line
R determined by the triplet (t0, h, r). Each fuzzy set in this fuzzy partition is
called a basic function.

Note that basic functions determined in Definition 1 need not to be normal,
because there can be more than one basic function covering their peak, in general
(see [7]).

In the sequel, since t0 does not affect the theoretical results concerning the
fuzzy transform, for the sake of simplicity, we restrict our investigation to the
fuzzy partitions with t0 = 0. Moreover, we fix r = h/2. Therefore, we omit the
reference both to t0 as well as r in the triplet (h, r, t0) and deal with h only. We
call h the bandwidth of the fuzzy partition.

The higher degree fuzzy transform (Fm-transform, m ∈ N) is a fuzzy approx-
imation technique that can provide both local and global approximation of func-
tions. The first phase, called direct Fm-transform, transforms a given function
to a family of polynomials of degree up to m. These polynomials are orthogonal
projections of the given function onto polynomial approximation spaces con-
cerning specific inner products defined with respect to basic functions of a fuzzy
partition. Below, we briefly introduce how the direct Fm-transform of a function
is computed.

Let f be a locally square Lebesgue integrable function on R, and A be a
fuzzy partition of the latter in the sense of Definition 1. Let K : R → [0, 1] be
defined by2

K(t) =
1
2

· max{1 − |t|, 0}.

The direct Fm-transform of f with respect to A is the family

Fm
A [f ] = {Fm

k [f ] | k ∈ Z} ,

where, for any k ∈ Z,

Fm
k [f ](t) = Ck,0 + Ck,1

(
t − tk

h

)
+ . . . + Ck,m

(
t − tk

h

)m

, t ∈ [tk − h, tk + h],

with tk = kh
2 ,

(Ck,0, Ck,1, . . . , Ck,m)T = (Zm)−1 · Ym,k, (1)

where Zm = (Zij) is an (m + 1) × (m + 1) invertible matrix defined by

Zij =
∫ 1

−1

ti+j−2K(t) dt, i, j = 1, . . . , m + 1,

and Ym,k = (Yk,1, . . . , Yk,m+1)T is defined by

Yk,� =
∫ 1

−1

f(ht + tk) · t�−1K(t) dt, � = 1, . . . ,m + 1. (2)

2 This function is known as a generating function of the fuzzy partition A (see in [7]).
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The polynomial Fm
k [f ] is called the k-th component of the direct Fm-transform

of f . It provides an approximation of the latter on the region covered by the
basic function Ak.

The second phase called the inverse Fm-transform of f transforms the vector
of components to a function defined as the linear-like combination of the direct
F-transform components and the corresponding basic functions, i.e.,

f̂m
A (t) =

∑
k∈Z

Fm
k [f ](t) · Ak(t), t ∈ R.

Being motivated by fuzzy natural logic techniques used for characterizing
behavior of the trend-cycle in time series, we develop a methodology to extract
linguistic characteristics of bull and bear periods on the trend-cycle of the gold
price market and represent them by sentences. This function provides an approx-
imation to f on its domain R (global approximation). The quality of this approx-
imation depends on the settings of fuzzy partition A, particularly, the band-
width h. By contrast, under reasonable setting of the bandwidth, the inverse
Fm-transform can suppress high frequencies in the function f . Namely, f̂m

A is a
smoothed function of the latter. In the sequel, when needing to emphasize the
influence of the bandwidth to the inverse function, we use the notation f̂m

h .

2.2 Evaluative Linguistic Expressions: A Formal Theory in Fuzzy
Natural Logic

The fuzzy natural logic (FNL) was established as the formal logic aiming at
modeling of natural human reasoning which proceeds in natural language. It is
an extension of mathematical fuzzy logic, and its paradigm extends the classical
concepts of natural logic suggested by Lakoff in [11]. FNL is a class of several
formal theories such as: theory of evaluative linguistic expressions, theory of
fuzzy IF-THEN rules, etc. For the purposes of this paper, we only focus on the
theory of evaluative linguistic expressions.

Evaluative linguistic expressions are special expressions of natural language
that are used to specify the course of development of some processes, to evaluate
a phenomenon or to make a decision. These expressions may have a complicated
structure, but in this paper, we simply consider evaluative linguistic expressions
of the following form:

〈linguistic hedge〉〈atomic evaluative expression〉, (3)

where the atomic evaluative expression comprises any of the canonical adjectives:
small, medium, big, and the linguistic hedge is a specific adverb, for example,
extremely, significantly, very, rather, roughly, very roughly. The linguistic hedge
makes the meaning of the atomic expression more or less precise. An evaluative
expression of the form (3) will be denoted by a script letter, for example, A or B.

When using an evaluative expression to evaluate values of a variable X, the
resulting expression is of the form

X is A , (4)
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is called the evaluative (linguistic) predication. To make such a predication mean-
ingful, one must specify the context (the state of the world ) in which variable X
is considered. The context is characterized by a triplet w = 〈υL, υM , υR〉, where
υL, υM , υR ∈ R and υL < υM < υR. These numbers characterize the minimal,
typically middle, and maximal values, respectively, of the evaluated character-
istics (e.g., “height”, “distance”) in the specified context of use. Only when a
context is specified to X, the meaning of the predication in (4) is well-defined
and interpreted by a fuzzy set on R. Moreover, if a context w is known then one
can determine an evaluative linguistic expression A characterizing a given value
x0 of X by using a function of local perception

LPerc(x0, w) = A .

For the details of this function as well as tools in FNL, we refer to the book [16].

3 Gold Price: Trend-Cycle Model and Analysis

Our investigation employs the Gold Future Historical Data published in the site
investing.com. This is the daily data of the price, the open, high, and low prices
in the US Dollar of one Troy Ounce of gold. Our methodology is focused on the
price only. A similar analysis can be applied to the rest of the data. This section
aims at developing techniques based on the fuzzy transform and tools developed
in the theory of evaluative linguistic expressions for estimation of the trend-cycle
of the data, classifying periods in the trend-cycle into specific stages concerning
its monotonousness, and finally, for extraction of the linguistic characterization
of the course of the trend-cycle. Established methods are applied to the data
from October 1, 2018, to December 3, 2019, of the length 312, as presented in
Fig. 1.

Fig. 1. The daily gold price from October 1, 2018, to December 3, 2019.

http://www.investing.com/
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3.1 Time Series Model

Let us consider the gold price values as a time series {X(t), t ∈ T}, where
T = {0, 1, . . . , T}. Standardly, a time series can be additively (multiplicatively)
decomposed into a trend-cycle, a seasonal component and an irregular fluctua-
tion. However, we know that the influence of the seasonality to the gold market
is weak, and even, unclear. Therefore, let us assume that the time series X can
be decomposed as follows:

X(t) = TC(t) + R(t), t ∈ T, (5)

where TC is the trend-cycle component and R(t) is a realization of a random
process characterized by quick decay of its autocorrelation function ρ, i.e.,

∫ �

0

|ρ(τ)|dτ = o(�), for � → ∞. (6)

3.2 Trend-Cycle Estimation

This task has been elaborated in several papers as mentioned in the introduction.
Most of these investigations are to show that the (higher degree) F-transform is
a good technique for estimating the trend-cycle of a time series. More precisely,
the inverse Fm-transform of X provides an estimation of the trend-cycle TC,

TC(t) ≈ X̂m
h (t), t ∈ T. (7)

However, one can see that the quality of this estimation depends on the degree m
of the fuzzy transform and the construction of the fuzzy partition (the bandwidth
h). In what follows, we describe a methodology for setting these parameters such
that the trend-cycle is well estimated by (7) without requiring much practical
experience.

– Choosing of the degree m: The more the time series changes its course (or
has higher volatility), the higher the degree m should be chosen. A rule of
thumb says that if the observed trend-cycle is a nearly linear function then
we should choose m = 0 or m = 1; otherwise, choose m = 2 or m = 3.

– Choosing of the bandwidth h: Let R̃h(t) = X(t)− X̂m
h (t) and ρ̂h be its sample

autocorrelation function. The chosen bandwidth h0 is the value satisfying
that

Nmax∑
k=0

|ρ̂h0(k)| = min

{
Nmax∑
k=0

|ρ̂h(k)| | h = 1, 2, . . . ,Hmax

}
,

where Nmax and Hmax are two positive integers chosen by the users.

Applying these rules to the gold price data displayed in Fig. 1, we find m = 2
with the bandwidth h0 = 6. Namely, the trend-cycle of the considered data
is estimated by the inverse F2-transform with respect to the fuzzy partition
determined as in Definition 1 with h = 6. The estimated trend-cycle is depicted
in Fig. 2.
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Fig. 2. The trend-cycle estimated by the fuzzy transform (dark/blue line). (Color figure
online)

3.3 Identification of Monotonous Periods on the Trend-Cycle

This section provides a method for identification of monotonous periods on the
trend-cycle TC of time series X. These periods are determined based on duration
and market move constraints. Inspired by the notion of bull and bear markets in
finance [2,19], we classify monotonous periods into three categories: bull, bear
and neutral ones, corresponding to the increasing, decreasing and stagnating of
the trend-cycle. To characterize the monotonousness of the trend-cycle, we use
the forward difference defined as follows.

Definition 2. Let f(t), t = 1, 2, . . . , N be a discrete function. The forward
difference Δ[f ] of f is a discrete function determined by

Δ[f ](t) = f(t + 1) − f(t), t = 1, 2, . . . , N − 1.

Below, we define the bull, bear and neutral periods in the trend-cycle.

Definition 3. Let S = {s, s+1, . . . , s+p} be a time period in T. Let βbull, βbear

and Lmin be three positive real numbers. The period S = {TC(t) | t ∈ S} in TC
is said to be a bull (or bear) period with respect to βbull (or βbear) and Lmin if
the following statements hold true:

(i) Δ[TC](t) > 0 (or Δ[TC](t) < 0), for any t ∈ S,
(ii) If S′ ⊇ S is a time period satisfying that Δ[TC](t) > 0 (or Δ[TC](t) < 0),

for any t ∈ S
′, then S

′ = S,
(iii) TC(s+p)−TC(s)

p ≥ βbull (or
TC(s+p)−TC(s)

p ≤ −βbear) and p + 1 ≥ Lmin.

S is said to be a neutral period if it is neither bull nor bear period.

In Definition 3, Lmin is the smallest length of the bull and bear periods,
while βbull and βbear are thresholds characterize the steepness of the trend-
cycle. From (iii), one can see that βbull and βbear are chosen to categorize long
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stages with little change of the trend-cycle to the neutral periods. In practice,
Lmin is the shortest time period, chosen by traders based on the time frame
of their trading strategy. Knowing bull and bear periods with lengths greater
than Lmin is significantly insightful. For example, if one would like to trade
on the gold market weekly based on the given data, he would choose Lmin = 5.
Moreover, βbull and βbear are chosen based on the market move and the duration
constraints. Let us assume that one is interested to discover bull (or bear) periods
in the gold market with at least 20$ jump in at most a half of the month (10
days). In this specific case, he should choose βbull = 2 (or βbear = 2).3

In what follows, we describe an informal algorithm for identifying the bull
and bear periods on a trend-cycle.

Algorithm 1. Identification of the bull, bear and neutral period in the trend-
cycle TC of X

Input:
trend-cycle TC(t), t = 0, 1, . . . , T ;
three thresholds βbull, βbear, and Lmin;

Processing:
compute Δ[TC](t), t = 0, 1, . . . , T − 1;
classify points TC(t), t = 0, 1, . . . , T − 1 into distinct segments based on the sign
(positive and negative) of Δ[TC](t);
evaluate each obtained segment with respect to the thresholds βbull, βbear, and Lmin

to determine bull, bear and neutral periods;
Output:
bull, bear and neutral periods in TC and their position

Apply Algorithm 1 to the considered gold price data where the inputs are
the estimated trend-cycle obtained in the previous subsection, Lmin = 5 and
βbull = βbear = 2. We obtain the result as in Fig. 3.

3.4 Evaluation of the Trend-Cycle in Natural Language

In this subsection, we describe how the course of the trend-cycle can be evaluated
in natural language. Namely, we focus on the bull and bear periods of the trend-
cycle TC and introduce a method for generating the linguistic characterization
of these stages. Each bull and bear period is characterized by the following
sentence,

Period is 〈price change evaluation〉
in 〈time period evaluation〉 period, (8)

3 βbull and βbear can be different. The setting is up to users.
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Fig. 3. The bull (dark/blue lines), bear (dotted/red lines) and neutral (grey/green
lines) periods on the estimated trend-cycle. (Color figure online)

where

〈price change evaluation〉 :=〈evaluative expression 1〉〈sign〉,
〈time period evaluation〉 :=〈evaluative expression 2〉,

with

〈evaluative expression 1〉 :=〈linguistic hedge〉〈weak | moderate | strong〉,
〈sign〉 :=〈increasing | decreasing〉,

〈evaluative expression 2〉 :=〈linguistic hedge〉〈short | medium | long〉.
Neutral stages are evaluated as “stagnating”.

Let S = {TC(t) | t = s, s + 1, . . . , s + p} be a bull (bear) period on the
trend-cycle TC. From Definition 3, this stage is characterized by two essential
components: the change of price and the length of the stage. Let δS and lS
be the change of price and the length of S, respectively. In this case, δS =
TC(s + p) − TC(s) and lS = p + 1. Then,

〈evaluative expression 1〉 = LPerc(|δS |, w1),

〈sign〉 =

{
increasing, δS > 0
decreasing, δS < 0

,

〈evaluative expression 2〉 = LPerc(lS , w2),

where w1 and w2 are the contexts corresponding to the change of price and the
length of periods, respectively. For details how to set the context, we refer the
readers to [16].

In what follows, we apply the proposed technique for extracting the linguis-
tic characteristics of the trend-cycle of the considered gold price data depicted
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Table 1. Linguistic characterization of the trend-cycle.

Time period Identified stage Linguistic characterization

[0, 3] neutral stagnating

[3, 12] bull ML moderate increasing in VR short period

[12, 24] neutral stagnating

[24, 30] bear Ro weak decreasing in Ra short period

[30, 38] neutral stagnating

[38, 48] bull QR weak increasing in ML medium period

[48, 51] neutral stagnating

[51, 74] bull Ty moderate increasing in Ra long period

[74, 80] bear Ro weak decreasing in Ra short period

[80, 89] bull Ra moderate increasing in VR short period

[89, 98] neutral stagnating

[98, 104] bull ML weak increasing in Ra short period

[104, 113] bear Ra moderate decreasing in VR short period

[113, 126] bull QR weak increasing in Ty medium period

[126, 132] bear QR weak decreasing in Ra short period

[132, 137] neutral stagnating

[137, 145] bear VR weak decreasing in QR short period

[145, 151] bull Si weak increasing in Ra short period

[151, 155] neutral stagnating

[155, 161] bull Ex weak increasing in Ra short period

[161, 168] bear Ra weak decreasing in ML short period

[168, 171] neutral stagnating

[171, 180] bull Ra moderate increasing in VR short period

[180, 185] neutral stagnating

[185, 194] bull ML strong increasing in VR short period

[194, 202] neutral stagnating

[202, 212] bull Ro weak increasing in ML medium period

[212, 216] neutral stagnating

[216, 229] bull Si strong increasing in Ty medium period

[229, 233] neutral stagnating

[233, 239] bull QR weak increasing in Ra short period

[239, 244] neutral stagnating

[244, 251] bear Ra moderate decreasing in ML short period

[251, 258] bull ML weak increasing in ML short period

[258, 264] bear VR weak decreasing in Ra short period

[264, 268] neutral stagnating

[268, 275] bear Ra weak decreasing in ML short period

[275, 287] neutral stagnating

[287, 293] bear Ra moderate decreasing in Ra short period

[293, 299] bull Ve weak increasing in Ra short period

[299, 305] bear Ra weak decreasing in Ra short period

[305, 311] neutral stagnating
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in Fig. 3. Since the exact trend-cycle is unknown, we mine the information
on its estimation. Namely, we form the linguistic characterization of the bull,
bear, and neutral periods (cf. Fig. 3). To do this, we set w1 = 〈9, 43, 92〉 and
w2 = 〈5, 14, 26〉. The obtained results are presented in Table 1, where linguis-
tic hedges are abbreviated as follows: Ex (Extremely), Si (Significantly), Ra
(Rather), Ve (Very), ML (More or Less), Ro (Roughly), QR (Quite Roughly),
Ty (Typically) and VR (Very Roughly). From this table, one can extract sen-
tences characterizing the behavior of the bull and bear stages on the trend-cycle
of the given data, for example, “the bull period on [51, 74] is Ty moderate
increasing in Ra long period”, or “the bear period on [137, 145] is VR weak
decreasing in QR short period”.

4 Conclusions

We applied special fuzzy techniques, consisting of the F-transform and the FNL
techniques, for analyzing the gold price historical data. We focused on three
critical tasks in mining information of financial time series, including in esti-
mating the trend-cycle, classifying periods in the trend-cycle into bull, bear and
neutral stages, and extracting linguistic characterization of the course of the
trend-cycle. In this paper, we restricted our consideration on the gold market.
However, since the suggested methodologies are described in general schemes,
this makes it possible to apply them to other financial data. This is one of the
topics for our future researches.
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6. Holčapek, M., Tichý, T.: A smoothing filter based on fuzzy transform. Fuzzy Sets
Syst. 180, 69–97 (2011)

https://doi.org/10.1007/978-3-319-40581-0_57


Gold Price: Trend-Cycle Analysis Using Fuzzy Techniques 265
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26. Vlašánek, P., Perfilieva, I.: Patch based inpainting inspired by the F1-transform.
Int. J. Hybrid Intell. Syst. 13(1), 39–48 (2016)

https://doi.org/10.1007/978-3-319-40596-4_54
https://doi.org/10.1007/s00500-017-2658-8


266 L. Nguyen et al.
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Abstract. Zadeh’s extension is a powerful principle in fuzzy set theory
which allows to extend a real-valued continuous map to a map having
fuzzy sets as its arguments. In our previous work we introduced an algo-
rithm which can compute Zadeh’s extension of given continuous piece-
wise linear functions and then to simulate fuzzy dynamical systems given
by them. The purpose of this work is to present results which general-
ize our previous approach to a more complex class of maps. For that
purpose we present an adaptation on optimization algorithm called par-
ticle swarm optimization and demonstrate its use for simulation of fuzzy
dynamical systems.

Keywords: Zadeh’s extension · Particle swarm optimization · Fuzzy
dynamical systems

1 Introduction

Zadeh’s extension principle plays an important role in the fuzzy set theory. Math-
ematically it describes a principle due to which each map f : X → Y induces
a map zf : F(X) → F(Y ) between some spaces of fuzzy sets F(X) (resp. F(Y ))
defined on X (resp. Y ).

In general the calculation of Zadeh’s extension principle is a difficult task.
This is caused mainly by difficult computation of inverses of the map f . Only
some cases, e.g. when f satisfies some assumptions like monotonicity, one can
find an easier solution. Consequently, the problem of approximation of the image
of a fuzzy set A ∈ F(X) under Zadeh’s extension zf has been attracted by many
mathematicians. For example, in [2] and [3] the authors introduced a method
approximating Zadeh’s extension zf (A) which is based on decomposition of
a fuzzy set A and multilinearization of a map f . Later in [1] another method
using an optimization algorithm applied to α-cuts of a chosen fuzzy set was pro-
posed and tested. Further some specific representations of fuzzy numbers have
also been used. For example, a parametric LU-representation of fuzzy numbers

The support of the grant “Support of talented PhD students at the University of
Ostrava” from the programme RRC/10/2018 “Support for Science and Research in
the Moravian-Silesian Region 2018” is kindly announced.

c© Springer Nature Switzerland AG 2020
M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1239, pp. 267–280, 2020.
https://doi.org/10.1007/978-3-030-50153-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50153-2_20&domain=pdf
https://doi.org/10.1007/978-3-030-50153-2_20


268 J. Kupka and N. Škorupová

was proposed and elaborated in [5] and [15]. The authors claim that the LU-fuzzy
representation allows a fast and easy simulation of fuzzy dynamical systems and,
thus, it avoids the usual massive computational work. However this method is
restricted for fuzzy numbers only. Further, the authors of [14] presented another
simple parametric representations of fuzzy numbers or intervals, based on the
use of piecewise monotone functions of different forms. And finally, another more
general procedure allowing to approximate Zadeh’s extension of any continuous
map using the F-transform technique was introduced in [9].

We contributed to the problem above in [10] where we introduced an algo-
rithm which can compute Zadeh’s extension of a given continuous piecewise lin-
ear map and, consequently, to simulate a fuzzy dynamical system given by this
map. We first focused on continuous one-dimensional piecewise linear interval
maps and piecewise linear fuzzy sets. These assumptions allowed us to precisely
calculate Zadeh’s extension for the class of piecewise linear fuzzy sets, for which
we do not necessarily assume even the continuity. This feature should be consid-
ered as an advantage of our approach because discontinuities naturally appear
in simulations of fuzzy dynamical systems. Still the algorithm proposed in [10]
covered a topologically large, i.e. dense, class of interval maps.

The aim of this contribution is to extend the use of our previous algorithm
(from [10]) for a more complex class of maps, namely, for the class of continuous
interval maps. In order to do this, we intend to linearize a given map f , which is
an approximation task leading to an optimization problem (of the determination
of appropriate points of the linearization) minimizing the distance between the
original function f and its piecewise linear linearization f̃ . As there is no fea-
sible analytical solution of the minimization problem, we can approach it from
the perspective of the stochastic optimization. For that purpose, we chose the
particle swarm optimization algorithm (PSO) that helps us to find appropriate
distributions of points in a given space defining piecewise linear approximations
as close as possible to the original function f . PSO is one of the most known
stochastic algorithms from the group of swarm algorithms. We considered this
algorithm due to several reasons. For example, it was the best among algorithms
used for a similar task e.g. in [13]. Of course, there are naturally other options
to be considered and deeper analysis in this direction is in preparation. Due to
page limit we present several preliminary observations only, although we have
prepared much more tests.

The structure of this paper is the following. In Sect. 2, some basic terms
and definitions used in the rest of this manuscript are introduced. In Sect. 3, we
introduce a modification of the original PSO algorithm applied to the problem
mentioned in the previous paragraph and then we demonstrate the lineariza-
tion procedure on a few examples. Further in Sect. 4 we provide a testing of the
proposed algorithm, taking into account mainly its accuracy and the choice of
parameters. And in the final section (Sect. 5) the proposed algorithm for approx-
imation of Zadeh’s extension is shortly introduced and, finally, the whole process
is demonstrated on several examples.
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2 Preliminaries

In this subsection we shortly introduce some elementary notions. For more
detailed explanation we refer mainly to [8,9] and references therein.

A fuzzy set A on a given (compact) metric space (X, dX), where X is a non-
empty space (often called a universe), is a map A : X → [0, 1]. The number A(x)
is called a membership degree of a point x ∈ X in the fuzzy set A. For a given
α ∈ (0, 1] an α-cut of A is the set [A]α = {x ∈ X | A(x) ≥ α}. Let us remark
that if a fuzzy set A is upper semi-continuous then every α-cut of A is a closed
subset of X. This helps us later to define a metric on the family of upper semi-
continuous fuzzy sets on X which will be denoted by F(X). Note that if X is
not compact then an assumption that every A ∈ F(X) has a compact support
is required.

Before to define fuzzy dynamical systems it is necessary to define a metric
on the family of fuzzy sets F(X) and such metrics are usually based on the well
known Hausdorff metric DX which measures distance between two nonempty
closed subsets of X. For instance, one of the most used metrics on F(X) is
a supremum metric d∞ defined as

d∞(A,B) = sup
α∈(0,1]

DX([A]α, [B]α),

for A,B ∈ F(X). Considering a metric topology on F(X) induced by some
metric, e.g. by d∞, we can obtain a topological structure on F(X).

Thus, let X be a (compact) metric space and f : X → X be a continuous
map. Then a pair (X, f) is called a (discrete) dynamical system. Dynamics of an
initial state x ∈ X is given by a sequence {fn(x)}n∈N of forward iterates of x,
i.e. x, f(x), f2(x) = f(f(x)), f3(x) = f(f(f(x))), . . . . The sequence {fn(x)}n∈N

is called a forward trajectory of x under the map f . Now properties of given
points are given by properties carried by their trajectories. For instance, a fixed
point of the function f is a point x0 ∈ X such that f(x0) = x0. A periodic point
is a point x0 ∈ X for which there exists p ∈ N such that fp(x0) = x0. However,
usual trajectories are much more complicated as it is demonstrated on Fig. 1.

In this manuscript we deal with a fuzzy dynamical system which admits
the standard definition of a discrete dynamical system and, at the same time,
forms a natural extension of a given crisp, i.e. not necessarily fuzzy, discrete
dynamical system on X. Discrete dynamical systems of the form (X, f) are used
in many applications as mathematical models of given processes, see e.g. [11].
Fuzzy dynamical systems studied in this paper are defined with the help of
Zadeh’s extension which was firstly mentioned by L. Zadeh in 1975 [17] in a
more general context. Later in [7] P. Kloeden elaborated a mathematical model
of discrete fuzzy dynamical system (F(X), zf ), which is induced from a given
discrete (crisp) dynamical system (X, f). This direction was further elaborated
by many mathematicians.
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Fig. 1. Trajectories of the dynamical system of a given map, where the initial points
are around the value 0.4.

So, formally, let a discrete dynamical system (X, f) be given. Then a contin-
uous map f : X → X induces a map zf : F(X) → F(X) by the formula

(zf (A))(x) = sup
y∈f−1(x)

{A(y)}.

The map zf is called a fuzzification (or Zadeh’s extension) of the map f : X → X.
The map zf fulfils many natural properties, for instance the following equality
[zf (A)]α = f([A]α), for any A ∈ F(X) and α ∈ (0, 1], which shows a natural
relation to the family of compact subsets (α-cuts) of X. It was proved earlier
(see e.g. [7] and [8]) that in the most common topological structures on F(X)
(e.g. for the metric topology induced from the metric d∞), the continuity of
f : X → X is equivalent to the continuity of the fuzzification zf : F(X) → F(X).
Consequently a pair (F(X), zf ) fulfils a formal definition of a discrete dynamical
system and this dynamical system is called a fuzzy dynamical system. For more
information we again refer to [7], [8] and references therein.

3 Particle Swarm Optimization

Particle swarm optimization (abbr. PSO) is an evolutionary optimization
algorithm based on stochastic searching in the domain which was originally
attributed to R. Eberhart and J. Kennedy in 1995 [4]. The reason of the algo-
rithm, whose behavior is inspired by a social behavior of species, is usually to
optimize a given problem. For example, it can be used to find the global opti-
mum of a function of one or more variables. Roughly speaking, population is
composed from particles moving around in a given search space according to
simple mathematical formulas. In every step of the algorithm, some characteris-
tics (e.g. velocity, the best found solution of every particle, or the best solution in
the population) are computed and used to show how the particles move towards
the desired solutions. Naturally PSO can stop after a certain number of itera-
tions or after fulfilling some predefined conditions like, for example, accuracy or
required size of errors etc. [6,12,16].

3.1 Pseudocode of PSO

The aim of this algorithm is an optimization, i.e. searching for a global optima of a
function of one or more variables, which is an essential thing in many applications.
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Initially, a finite number of particles xi is placed into the domain and each parti-
cle is evaluated by a given function. Each particle then determines its movement
in the domain, with the help of its historical (personal) best position and of the
neighbouring particles combined together with some random parameters.

Below we can see the pseudocode of the original version of PSO which can
search for a global optima of a given function. Let f : R → R be a function
for which we search for a global optimum. Now, a number of particles is equal
to n and a vector x = (x1, . . . , xn) gives a position of each particle xi ∈ R,
p = (p1, . . . , pn) is a vector of the best found positions of each particle in its
history, pg is the best position of a particle from the population called the best
neighbour and vi is a velocity of each particle. Because it is an iterative algorithm,
in each iteration, the function f is evaluated in all particles. If the value f(xi)
is better than the previous best value pi, then this point is rewritten as the best
point (pi := xi) and the value of the function f(pi) is saved to the value of pbesti .
The new position of the particles is then reached by updating the velocity vi.
Now we can explain the parameters which are used in the equation defining the
velocity vi of the next iteration of a particle position. The elements UΦ1 , UΦ2

indicate random points given by a uniform distribution of each component from
intervals [0, Φ1], [0, Φ2], where Φ1, Φ2 ∈ R. Parameters Φ1, Φ2 are called accelera-
tion coefficients, where Φ1 gives the importance of the personal best value and Φ2

gives the importance of the neighbors best value. If both of these parameters are
too high then the algorithm can be unstable because the velocity could grow up
faster. Parameter χ called a constriction factor, multiplies the newly calculated
velocity and it can affect the movement propagation given by the last veloc-
ity value. The original version of PSO works with χ = 2/(Φ − 2 +

√
Φ2 − 4Φ),

where Φ = Φ1 + Φ2. The value of this parameter is not changed in time and it
has restrictive effect to the result.

1. Initialization (functions, variables, constants, . . . )
2. Cycle - for all i calculate f(xi)
3. Comparison

– compare pbesti and f(xi)
– if pbesti ≤ f(xi), then pi := xi and pbesti := f(pi)

4. Best neighbour
– find the best neighbour of i and assign it j
– if f(pg) ≤ f(xj), then pg := xj and f(pg) := f(xj)

5. Calculation
– vi := χ(vi + UΦ1(pi − xi) + UΦ2(pg − xi))
– xi := xi + vi

3.2 The Use of PSO for Linearization

This algorithm is an adaptation of the one-dimensional algorithm introduced
above to a higher-dimensional case. We have a map given by a formula f(x) and
we want to search for a particle, i.e. a vector of � points, which gives us the best
possible linearization of f . These points indicate a dimension � of the problem
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under consideration and it defines a size of each particle x in the population.
Because the idea is to get points (particles) which give us a piecewise linear
function, it becomes a problem in which we want to minimalize distances between
the original function f and approximating functions given by particles.

The distance between the initial function f and the approximating piecewise
linear function is calculated with the help of the following Manhattan metric dM

on a finite number of points D in the domain of f . This metric is given by a
function dM : RD × R

D → R defined by

dM (x,y) =
D∑

i=1

|xi − yi|,

where x = {x1, x2, . . . , xD} and y = {y1, y2, . . . , yD}.

4 Testing

4.1 Parameter Selection

In this subsection we briefly describe the choice of selected parameters and then
we study their influence to the accuracy of the proposed algorithm. For each
parameter settings the results are calculated 50 times and then evaluated by
means of mean and standard deviation.

In general the choice of PSO parameters can have a large impact on opti-
mization performance. In our optimization problem we look for the best setting
of the constriction factor χ and acceleration coefficients Φ1, Φ2. If both of the
parameters Φ1, Φ2 are too high then the algorithm can be unstable because the
related velocity could grow up faster. There are some recommendations that can
be found in the literature. For example, the authors of the original algorithm [4]
recommended the values of Φ1, Φ2 to be set to 2.05 and they also recommended
the following equation Φ1 + Φ2 > 4 to be satisfied. However, parameter setting
can be different model by model and therefore we did it for our purpose as well.

In our testing we set the parameter χ ∈ {0.57, 0.61, 0.65, 0.69, 0.73} and
parameters Φ1, Φ2 ∈ {1.65, 1.85, 2.05, 2.25, 2.45}. Thus we have 125 possible com-
binations of parameters (i.e. 25 combinations for Φ1, Φ2 and 5 possibilities for χ).
For each of these combinations the proposed algorithm runs 50 times to get
the mean and standard deviation from computed outcomes. Some of the initial
parameters are fixed - namely, all results are calculated for fixed numbers defin-
ing linear parts of approximating function (� = 12), the number of particles in
population (x = 25), the number of iterations of PSO (I = 100) and the num-
ber of points at which the metric dM is computed (D = 80). These parameters
are chosen only for our testing, therefore for the use of this algorithm it should
always be considered what the best initial parameters are for our linearized func-
tion. For instance the recommended number of linear parts � should definitely be
much bigger that the number of monotone parts of the function under consider-
ation to be able somehow cover at least all monotone parts of the approximated
function.
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4.2 Testing Functions

For the purpose of testing we have chosen functions g1, g2 given by the following
expressions:

g1(x) = 0.9 + (−1 + x)(0.9 + (−0.16 + (5.4 + (−27 + (36 + (510+
(−120 − 2560(−0.9 + x))(−0.1 + x))(−0.6 + x))(−0.2 + x))

(−0.8 + x))(−0.4 + x))x),

g2(x) = 1/25(sin 20x + 20x · sin 20x · cos 20x) + 1/2.
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Fig. 2. The graphs of the functions g1(x) (the left one) and g2(x) (the right one).

4.3 Parameters Selection

In Tables 1 and 2 below one can see that the choice of parameters χ, Φ1, Φ2 can
affect the results of the linearization procedure. After some preliminary testing
on several functions we can provide some introductory observations. Namely, the
best setting was found when the constriction factor χ was taken among values
0.57, 0.61, 0.65 and in a few cases also for the value 0.69. However for χ lying
outside of the interval [0.61, 0.73], the results were much worse and did not meet
our expectations. Concerning parameters Φ1, Φ2, again, our general observation
is that better results are obtained when Φ1 ≥ Φ2.

It is natural for stochastic methods, that in particular tasks you can get more
specific combination of parameters - in the following two tables we emphasize
in bold the best 3 combinations of attributes for particular functions g1 and g2.
More extensive testing is planned as the continuation of this manuscript.

4.4 Examples

In this subsection we demonstrate the use of the proposed algorithm on three
nontrivial functions g1, g2 and g3, where the first two functions were defined in
Subsect. 4.2, and we consider the best settings of random parameters selected in
Subsect. 4.3.
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Table 1. The values of mean and standard deviation for the function g1(x).

χ Φ1 = 1.65, Φ2 = 1.65 Φ1 = 1.65, Φ2 = 2.05 Φ1 = 1.65, Φ2 = 2.45 Φ1 = 2.05, Φ2 = 2.05 Φ1 = 2.05, Φ2 = 2.45
0.57 1.63547±0.238939 1.67338±0.266557 1.65651±0.266593 1.57143±0.213432 1.54162±0.198801
0.61 1.62098±0.281265 1.60798±0.247689 1.59534±0.222001 1.60351±0.226622 1.6108±0.252729
0.65 1.68093±0.257731 1.58062±0.214022 1.59761±0.21376 1.57592±0.224728 1.52531±0.189646
0.69 1.62679±0.227925 1.59228±0.235681 1.9139±0.34237 1.65493±0.276727 1.98223±0.355166
0.73 1.62422±0.214448 1.83744±0.276758 3.10602±0.67275 2.26001±0.571314 4.03971±0.787626

χ Φ1 = 2.45, Φ2 = 2.45 Φ1 = 2.45, Φ2 = 2.05 Φ1 = 2.45, Φ2 = 1.65 Φ1 = 2.05, Φ2 = 1.65 Φ1 = 1.65, Φ2 = 1.85
0.57 1.63376±0.249797 1.53581±0.194398 1.54222±0.197587 1.58635±0.233554 1.59812±0.229893
0.61 1.55107±0.191518 1.55327±0.205339 1.58552±0.22103 1.57803±0.227844 1.60375±0.242386
0.65 1.57619±0.219947 1.57579±0.204595 1.51653±0.178176 1.56608±0.222457 1.63805±0.218378
0.69 3.421±0.689219 1.57886±0.239874 1.54552±0.217573 1.53172±0.20908 1.617±0.223034
0.73 5.72016±0.834381 2.50061±0.643045 1.60521±0.212556 1.53968±0.200264 1.54681±0.205785

χ Φ1 = 1.65, Φ2 = 2.25 Φ1 = 1.85, Φ2 = 1.85 Φ1 = 1.85, Φ2 = 2.05 Φ1 = 1.85, Φ2 = 2.25 Φ1 = 1.85, Φ2 = 2.45
0.57 1.59498±0.216631 1.60299±0.243964 1.62142±0.226532 1.56213±0.22595 1.66831±0.217123
0.61 1.62145±0.209883 1.57229±0.184818 1.58244±0.228172 1.57339±0.212051 1.57717±0.229499
0.65 1.63451±0.232793 1.595±0.241515 1.53383±0.189491 1.60258±0.228966 1.58079±0.222188
0.69 1.65213±0.278563 1.58664±0.221945 1.59723±0.234288 1.61548±0.218672 1.86881±0.415271
0.73 1.99725±0.391979 1.6464±0.257361 1.89429±0.301735 2.86462±0.545212 3.5004±0.789913

χ Φ1 = 2.05, Φ2 = 2.25 Φ1 = 2.25, Φ2 = 2.25 Φ1 = 2.25, Φ2 = 2.45 Φ1 = 2.45, Φ2 = 2.25 Φ1 = 2.45, Φ2 = 1.85
0.57 1.53667±0.217165 1.57757±0.208589 1.63313±0.241569 1.56437±0.223043 1.59828±0.211077
0.61 1.57841±0.220252 1.51553±0.19691 1.57972±0.230095 1.54784±0.250593 1.57163±0.223167
0.65 1.56308±0.216044 1.56444±0.235687 1.53595±0.189361 1.62629±0.235062 1.58514±0.220281
0.69 1.70348±0.29063 1.64649±0.242506 2.72718±0.626525 2.27222±0.527745 1.5791±0.202365
0.73 3.2433±0.546781 3.93251±0.809978 5.04399±0.684256 3.92034±0.91482 2.20619±0.495479

χ Φ1 = 2.25, Φ2 = 2.05 Φ1 = 2.25, Φ2 = 1.85 Φ1 = 2.25, Φ2 = 1.65 Φ1 = 2.05, Φ2 = 1.85 Φ1 = 1.85, Φ2 = 1.65
0.57 1.57289±0.220332 1.49649±0.18915 1.5457±0.195436 1.56029±0.208285 1.61812±0.239638
0.61 1.56538±0.204659 1.56143±0.209023 1.57824±0.221359 1.59234±0.234838 1.53362±0.194484
0.65 1.60941±0.238231 1.60536±0.219927 1.52257±0.213785 1.57849±0.21733 1.58347±0.247829
0.69 1.54909±0.20935 1.53217±0.192154 1.5495±0.180544 1.58344±0.210707 1.57927±0.2096
0.73 2.61903±0.579384 1.71432±0.33481 1.50373±0.166186 1.73587±0.267968 1.53825±0.173687

a Compiled in Mathematica 12.0 on a laptop with processor 1,8 GHz Intel Core i5.

Table 2. The values of mean and standard deviation for the function g2(x).

χ Φ1 = 1.65, Φ2 = 1.65 Φ1 = 1.65, Φ2 = 2.05 Φ1 = 1.65, Φ2 = 2.45 Φ1 = 2.05, Φ2 = 2.05 Φ1 = 2.05, Φ2 = 2.45
0.57 4.48464±0.808152 4.33324±0.670205 4.43686±0.774412 4.24214±0.707924 4.43853±0.737978
0.61 4.31768±0.682493 4.49225±0.749727 4.21937±0.63087 4.24245±0.755797 4.30317±0.677813
0.65 4.53499±0.531912 4.14321±0.657339 4.29982±0.670138 4.18762±0.674639 4.64488±0.94961
0.69 4.43666±0.719598 4.18925±0.727941 5.7266±1.06469 4.70045±0.902873 6.64708±1.16885
0.73 4.23356±0.74098 5.4096±1.10863 7.88197±0.951119 6.76307±1.05201 8.72105±0.956886

χ Φ1 = 2.45, Φ2 = 2.45 Φ1 = 2.45, Φ2 = 2.05 Φ1 = 2.45, Φ2 = 1.65 Φ1 = 2.05, Φ2 = 1.65 Φ1 = 1.65, Φ2 = 1.85
0.57 4.20244±0.667743 4.22678±0.549085 4.18617±0.510273 4.4319±0.685112 4.4517±0.706558
0.61 4.20342±0.764773 4.22028±0.520342 4.10346±0.603738 4.23213±0.711974 4.32719±0.636389
0.65 5.42939±1.16048 4.4184±0.802053 3.99467±0.590382 4.18327±0.635378 4.26412±0.781714
0.69 8.30996±0.983165 5.46925±0.995767 3.90281±0.646766 4.03962±0.527906 4.17317±0.555974
0.73 8.31745±1.04308 8.02816±1.0483 6.02647±1.24507 4.58364±0.833236 4.56542±0.978583

χ Φ1 = 1.65, Φ2 = 2.25 Φ1 = 1.85, Φ2 = 1.85 Φ1 = 1.85, Φ2 = 2.05 Φ1 = 1.85, Φ2 = 2.25 Φ1 = 1.85, Φ2 = 2.45
0.57 4.76712±0.819473 4.46511±0.841069 4.19868±0.648816 4.33206±0.617926 4.32131±0.780307
0.61 4.46591±0.645347 4.47089±0.791886 4.33041±0.483959 4.21253±0.815479 4.26108±0.471753
0.65 4.08529±0.640999 4.39325±0.749726 4.08447±0.641931 4.30325±0.79269 4.47726±0.719004
0.69 4.86003±0.80498 4.09351±0.600797 4.61469±0.862227 5.39318±0.93059 6.07631±1.1166
0.73 6.91749±1.08444 5.06067±1.0387 5.79045±0.991023 7.78185±1.09352 8.15509±1.11355

χ Φ1 = 2.05, Φ2 = 2.25 Φ1 = 2.25, Φ2 = 2.25 Φ1 = 2.25, Φ2 = 2.45 Φ1 = 2.45, Φ2 = 2.25 Φ1 = 2.45, Φ2 = 1.85
0.57 4.33195±0.763994 4.23792±0.618683 4.27062±0.71422 4.26326±0.707052 4.31927±0.729022
0.61 4.27319±0.596503 4.29391±0.724273 4.14659±0.812527 4.20238±0.573447 4.18677±0.682581
0.65 4.30942±0.741097 4.25068±0.734095 4.73966±0.798268 4.6961±0.934194 4.10398±0.530543
0.69 5.87982±0.967094 6.35378±1.00249 7.23311±1.22546 7.43348±1.08212 4.84346±0.956979
0.73 8.18012±0.796192 8.64843±0.990123 8.77355±0.937052 8.30777±1.15618 6.78641±1.22497

χ Φ1 = 2.25, Φ2 = 2.05 Φ1 = 2.25, Φ2 = 1.85 Φ1 = 2.25, Φ2 = 1.65 Φ1 = 2.05, Φ2 = 1.85 Φ1 = 1.85, Φ2 = 1.65
0.57 4.26443±0.661071 4.30843±0.643455 4.24803±0.727079 4.16216±0.593539 4.4644±0.712637
0.61 4.22633±0.68801 4.34254±0.67098 4.20053±0.648986 4.25709±0.687653 4.31687±0.55673
0.65 4.23431±0.701167 4.22943±0.691592 4.14209±0.633141 4.12123±0.646354 4.15398±0.577304
0.69 5.41382±1.04234 4.28741±0.7065 4.13273±0.713539 4.23241±0.641686 4.33662±0.707127
0.73 6.98054±1.18231 6.47896±1.11268 5.11513±0.968546 5.39849±1.12682 4.22943±0.885804

a Compiled in Mathematica 12.0 on a laptop with processor 1,8 GHz Intel Core i5.
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Example 1. We have the function g1 whose graph is depicted in Fig. 2. The initial
parameters are set to χ = 0.69, Φ1 = 2.45, Φ2 = 1.65. In our testing we choose
� = 6, 12, 18, I = 100 and D = 80. This function g1 has 5 monotone parts,
thus if our intention is to linearize the function g1 the smallest number � to be
considered is 6. Naturally, the higher � we take, the smoother result we obtain.
This is demonstrated on the following figure (Fig. 3).
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Fig. 3.Graphs of the original function g1 (black lines) and the piecewise linear functions
(red lines) approximating g1, where � = 6, 12, 18. (Color figure online)

Example 2. Consider a function g2 (see Fig. 2) and take the initial parameters
χ = 0.69, Φ1 = 2.45, Φ2 = 1.65, D = 80, I = 100, � = 15, 18, 25 (see Fig. 4).

In this example, 14 monotone parts are divided almost equidistantly. Natu-
rally, for better accuracy the number of linear parts should be higher as we can
see in the next figure.
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Fig. 4. Graphs of the original function g2 (black lines) and its piecewise linear approx-
imations (red lines), where � = 15, 18, 25. (Color figure online)

Another simple observation is that for better accuracy, it need not help to
increase the number of linear parts only, but we need to increase also the num-
ber D of discretization points accordingly. To demonstrate this, we choose D to
be equal to 200, where � = 25, � = 50 and I = 100 (see Fig. 5).
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Fig. 5. Graphs of the original function g2 (black lines) and its piecewise linear approx-
imations of g2 (red lines). (Color figure online)
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Fig. 6.Graphs of the original function g3 (black lines) and the piecewise linear functions
(red lines) approximating g3, where � = 12, 25, 40 and D = 80. (Color figure online)
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Fig. 7.Graphs of the original function g3 (black lines) and the piecewise linear functions
(red lines) approximating g3, where � = 25, 40, 100 and D = 1000. (Color figure online)

Example 3. Consider a function g3(x) = (x − 1/2)(sin(1/(x − 1/2))) + 1/2 (see
the picture below). The initial parameters are χ = 0.69, Φ1 = 2.45, Φ2 = 1.65. In
Fig. 6, � = 12, 25, 40, I = 100 and D = 80 while in Fig. 7, � = 25, 40, 60, I = 100
and D = 1000.

We intentionally consider the function g3 to demonstrate limits of the pro-
posed algorithm because g3 has infinitely many monotone parts at arbitrary
small neighborhood of the point 1/2. Consequently, in this case it is not possible
to approximate all monotone parts correctly. Despite of this drawback we can
see in Figs. 6 and 7 that when we increase the number D of discretization points
and the number � of linear pairs appropriately, the proposed algorithm works
smoothly outside of some neighborhood of the “oscillating” point 1/2.

4.5 Computational Complexity

In this section, we briefly discuss computation complexity of the proposed algo-
rithm. Naturally, the computation time depends on more factors, mainly on the
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Table 3. Computing time in seconds.

Function g1 D = 80 D = 200 D = 500 D = 1000

� = 12 35.92 78.38 189.95 372.82
� = 18 50.33 111.92 273.8 537.57
� = 25 65.75 163.33 364.63 734.85
� = 50 126.28 322.48 775.28 1462.72

a Compiled in Mathematica 12.0 on a laptop with processor 1,8 GHz Intel Core i5.

number � of linear parts, the number I of iterations, the number D of discretiza-
tion points and also on computer which is used for compiling. In the table below,
we show the time in dependence on number of pairs � and number of discretiza-
tion points D , which are the most important parameters for the accuracy of
this algorithm. The test was executed on function g1 defined above and with
parameters χ = 0.69, Φ1 = 2.45, Φ2 = 1.65 and I = 100 (Table 3).

5 Approximation of Zadeh’s Extension

5.1 Algorithm

In this subsection we briefly recall an algorithm for calculation of Zadeh’s exten-
sion of a given function f . For a more detailed description of this algorithm we
refer to [10]. The algorithm in [10] was proposed for one-dimensional continuous
functions f : X → X, i.e. we assume X = [0, 1], but one can consider any closed
subinterval of R. The algorithm was proposed for piecewise linear maps f and
piecewise linear fuzzy sets A. In this section we demonstrate a generalization of
the algorithm from [10] to maps which are not necessarily piecewise linear.

The purpose of the algorithm was to compute a trajectory of a given discrete
fuzzy dynamical subsystem (F(X), zf ), which is obtained as a unique and natural
extension of a given discrete dynamical system (X, f).

Thus we consider a continuous map f : [0, 1] → [0, 1] and a piecewise linear
fuzzy set A representing an initial state of induced fuzzy dynamical system
(F([0, 1]), zf ). First we use the PSO-based linearization (described in Sect. 5) to
get an approximated piecewise linear function f̃ , and then we use the algorithm
from [10] to calculate a trajectory of the initial state A in the fuzzy dynamical
system (F([0, 1]), zf̃ ). This simple and natural generalization is demonstrated in
the following subsection.

5.2 Examples

Let us see two examples of the procedure described in the previous subsection.

Example 4. Let a function f1 be given by a formula

f1(x) = (−2.9+ (−4.1+ (−15.6− 14(−0.8+x))(−0.2+x))(−0.6+x))(−1+x)x
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Fig. 8. The graph of a function f1 (the left figure, black line) and the linearization of
f1 given by PSO (the left figure, red line), the graph of a fuzzy set A (the right figure).
(Color figure online)
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Fig. 9. The graphs of A, zf̃1(A), . . . , z30
f̃1
(A) (the left one) and z30

f̃1
(A) (the right one).
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Fig. 10. The graph of a function f2 (the left figure, black line) and the linearization of
f2 given by PSO (the left figure, red line), the graph of a fuzzy set A (the right figure).
(Color figure online)

and let A(y) be a fuzzy set depicted on Fig. 8. As the first step of the algorithm
we linearize the function f1. For that reason, we use the PSO-based algorithm
with parameters � = 12,D = 80, I = 100. After the linearization process we
obtain a piecewise linear function f̃1 and we can compute a plot containing the
first 30 iterations of the fuzzy set A (see Fig. 9).

Example 5. Let a function f2 be given by the following formula f2(x) = 3.45(x−
x2) and A(y) be a fuzzy set depicted in Fig. 10. Again, we need to linearize the
function f2. To do this we use the PSO-based algorithm with the following
parameters � = 18,D = 80, I = 100.

Finally we can see a plot of the images of the fuzzy set A for the first 30
iterations (see Fig. 11).
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Fig. 11. The graphs of A, zf̃2(A), . . . , z30
f̃2
(A) (the left one) and z30

f̃2
(A) (the right one).

6 Conclusion

In this contribution we generalized our previous algorithm from [10]. The main
idea of this algorithm was to calculate Zadeh’s extension for a piecewise linear
function and a fuzzy set. Because we restricted our attention only to piecewise
linear functions the next natural step becomes a generalization of the previous
approach to arbitrary continuous functions. Consequently, we took an evolution-
ary algorithm called particle swarm optimization and we adapt this algorithm
to searching for the best possible linearization of a given function. This natu-
rally extends the use of our previous algorithm of an approximation of Zadeh’s
extension, which now gives us an approximated trajectory of the initial state A
in a more general fuzzy dynamical system.

The newly proposed algorithm has been briefly tested from several points of
view, mainly parameters selection has been taken into account. In our future
work we plan more extensive testing involving also computational complexity
of the algorithm given by Big O notation which will deal, for example, with
the size of the population, number of iterations, number of linear parts, etc.
Another natural step is to provide a deep comparison of the original trajectory
derived by the Zadeh’s extension with the one given by our algorithm, to provide
various comparisons to previously known approaches, and, eventually, to involve,
dynamic adaptation of parameters in our PSO-based algorithm. After that, the
algorithm should be naturally extended to higher dimensions.
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1 Introduction

One of the basic assumptions in a mathematical modelling of the standard eco-
nomic model is the continuity of the excess demand function involved. There are
reasons to maintain that the necessity of this assumption is caused by the meth-
ods provided by mathematics. First of all the fixed points theorems of Brouwer
and Kakutani have to be mentioned, since both require the continuity of the
maps. They are the main tools for establishing the existence of an equilibrium.
However, the necessity of the assumption of continuity has also some economic
motivation: in a neoclassical exchange economy due to the strict convexity and
strict monotony of the preferences of all consumers the excess demand function
is continuous (s. [2], Th.1.4.4).

The paper offers a possibility to substitute the continuity of the excess
demand function by the w-discontinuity of this function and therefore to deal,
in some extent, with unstable economies. We will examine the properties of w-
discontinuous mappings and finally, under some additional conditions, we prove
the existence of a generalized equilibrium. The concept w-discontinuity includes
uncertainty about the deviation of a function from continuity.

The classical microeconomic models have their origins mainly in the work of
L. Walras [18], (1954), a wider discussion of them is presented by K. J. Arrow
and G. Debreu [3], (1954) and also by K.J. Arrow and F.H. Hahn [4], (1991). An
extended description of the classical model can also be found in textbooks on
c© Springer Nature Switzerland AG 2020
M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1239, pp. 281–294, 2020.
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microeconomics, for example, H. Varian [17], (1992), D.M. Kreps [14], (1990),
W. Nicholson [15], (1992) or R.M. Starr [16], (2011). For a strictly functional-
analytic approach we refer to the book of C.D. Aliprantis, D.J. Brown and O.
Burkinshaw [2], (1990).

2 w-Discontinuous Mappings and Their Properties

A class of discontinuous mappings is defined as follows. Let (X, d) and (Y, �) be
two metric spaces and w a positive number.

Definition 1. A mapping f : X → Y is said to be w-discontinuous at the point
x0 ∈ X if for every ε > 0 there exists δ such that whenever x ∈ X and d(x0, x) <
δ follows that �(f(x0), f(x)) < ε + w.

The constant w may not be the best possible (smallest) one. Very often, espe-
cially in economic applications, there is known only a rough upper estimation
for the “jump”. Exactly the constant w includes uncertainty about the division
of a function from continuity.

A mapping f is called w-discontinuous in X if it is w-discontinuous at all
points of X.

The notion of w-discontinuous maps is not new. It is already found in [12]
as the concept of oscillation or as continuity defect in [8]. The notion of w-
discontinuity (former w-continuity) was introduced by the author in [5].

Example 1. The usual Dirichlet function on R and also the generalized Dirichlet
function f : Rn → {a, b}, a, b ∈ R, a �= b, defined for all x = (x1, x2, ..., xn) ∈ Rn

by

f(x) =
{

a, if all components xi ∈ Q
b, if there exists i0 such that xi0 ∈ R \ Q

are |a − b|-discontinuous (and for any w ≥ |a − b| also w-discontinuous)
functions. �

If X, Y , V are real normed vector spaces the following properties of w-
discontinuous mappings are established (similar as for continuous mappings).
For proofs see [7].

Proposition 1. Let be fi : X → Y, αi ∈ R, i = 1, . . . , k and g = α1f1 + · · · +
αkfk. Suppose wi > 0 and that fi is wi- discontinuous on the set X for each
i = 1, . . . , k. Then g = α1f1+ · · ·+αkfk is a |α1|w1+ · · ·+ |αk|wk- discontinuous
mapping.

From the Definition 1, which makes sense also for w = 0, immediately follows
that the 0-discontinuous mappings are exactly the continuous ones.

Corollary 1. Suppose that f, g : X → Y , f is w′- discontinuous and g is w′′-
discontinuous. Then f + g and f − g are w′ + w′′- discontinuous mappings. In
particular, if one of the mappings (f or g) is continuous, then f ± g are w′-
discontinuous (or w′′- discontinuous).
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Corollary 2. If f : X → Y is w- discontinuous and c is a constant then c · f is
a |c|w- discontinuous mapping.

Proposition 2. Let f : domf → R and g : dom g → R be w′-, w′′-discontinuous
functions, respectively. Then the functions f ∧ g and f ∨ g are w′ + w′′-
discontinuous on domf ∩ dom g.

Corollary 3. If f is w- discontinuous and g is continuous then f ∨ g is w-
discontinuous.

In order to consider the product of mappings we need the notation of the product
in a normed space.

Definition 2 ([13]). Let X,Y,Z be real normed vector spaces. A mapping
π : X × Y → Z is called a product if it satisfies the following conditions: for
all a, b ∈ X, u, v ∈ Y and λ ∈ R one has

1. π((a + b, v)) = π((a, v)) + π((b, v))
2. π((a, u + v)) = π((a, u)) + π((a, v))
3. π((λa, u)) = λπ((a, u)) = π((a, λu))
4. ‖π((a, u))‖Z ≤ ‖a‖X‖u‖Y .

A simple example is given by X = Y = Rn, Z = R and π((x, y)) = 〈x, y〉 – the

scalar product in Rn, i.e., 〈x, y〉 =
n∑

i=1

xi yi.

Let V,X, Y, Z be real normed vector spaces and let π : X × Y → Z be a
product. The product of the mappings f : domf ⊆ V → X and g : dom g ⊆ V →
Y is understood pointwise, i.e.,

(f · g)(v) = π
(
f(v), g(v)

)
, ∀v ∈ domf ∩ dom g,

where domf, dom g ⊆ V .

Proposition 3. Suppose that f : domf → X is w′-discontinuous and
g : dom g → Y is w′′-discontinuous on domf ∩ dom g. Then f · g is a
(w′w′′ + w′‖g(x0)‖Y + w′′‖f(x0)‖X)-discontinuous mapping at every point x0 ∈
domf ∩ dom g.

Corollary 4. If f : V → X is w-discontinuous and g : V → Y is continuous
then f · g is a ‖g(x0)‖Y w- discontinuous mapping at every point x0 ∈ V .

For the division we reconcile with simplified situation, where (X, d) is again a
metric space.

Proposition 4. Let the function f : X → R be w-discontinuous at the point x0

and f(x0) �= 0. If there exists a neighborhood U of x0 and a number α0 > 0 such
that |f(x)| ≥ α0 for all x ∈ U then the function 1

f is w
α0|f(x0)| -discontinuous at x0.
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As a special case we get

Corollary 5. If f : X → [1,+∞[ is w-discontinuous then 1
f is a w

f(x0)
- discon-

tinuous mapping for every point x0 ∈ X

If the domain of definition for a continuous mapping is compact, then its range
is also compact and, in particular, bounded. The boundedness of the range is
guaranteed for w-discontinuous mappings as well, however, compactness may
not hold.

Example 2. Define f : [0; 2] → [0; 2] as

f(x) =
{

1, if x ∈ {0, 2}
x, if x ∈ ]0, 2[.

The function f is 1-discontinuous and its range ]0, 2[ is bounded, but not
compact. �

Theorem 1. Suppose that A ⊂ X is compact and let f : A → X be w-
discontinuous. Then f(A) is bounded.

The following essential result is proved by O. Zaytsev in [19] and can be consid-
ered as a generalization of the Bohl-Brouwer-Schauder fixed point theorem for
w-discontinuous mappings.

Theorem 2. Let K be a nonempty, compact and convex subset in a normed
vector space X. For every w-discontinuous mapping f : K → K (w > 0) there
exists a point x∗ ∈ K such that ‖ x∗ − f(x∗) ‖≤ w.

3 Market Equilibrium of the Standard Economic Model

We give the description of a simple economic model E considered by Arrow and
Hahn in [4].

Let there be n (n ∈ N) different goods (commodities) on the market: services
and wares, and a finite number of economic agents: households and firms, where
each household can be considered as a firm, and, vice versa, each firm can be
considered as a household.

Let xhi be the quantity of good i which is needed to the household h. If
xhi < 0 then |xhi| denotes the quantity of good i which is supplied by the
household h. If xhi ≥ 0 then xhi is the (real) demand of good i by h, including the
zero demand. The summation over all households will be indicated by xi =

∑
h

xhi

– the total demand of good i, i = 1, . . . , n.
The quantity of good i that is supplied by the firm f will be denoted by yfi.

Again, if yfi < 0 then |yfi| is the demand (input) of good i by f . If yfi ≥ 0 then
yfi is the supplied quantity (output) of i by f , where the zero supply again is
included. The summation over all firms will be indicated by yi =

∑
f

yfi – the

supply of good i, i = 1, . . . , n.
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The initially available amount (or resources) of good i in all households will
be denoted by xi. Note that xi must be non-negative.

A market equilibrium, which is one of the most important characteristics of
any economy (see f. e. [1,2,4,9,11,16]), describes the economic situation that
the total demand of each good in the economy is satisfied by its total supply.
This fact is obviously expressed by saying that the difference between the total
demand of each good and its total supply is less than or equal to zero. The total
supply of good i is understood as the sum of the supply of the good i and the
quantity of i which is already available, i.e. the total supply of the good i equals
to yi +xi. The excess demand of good i is then defined as xi −yi −xi, i = 1, ..., n.

If economic agents at the market are faced with a system of prices, i.e. with
a price vector p = (p1, . . . , pn), where pi is the price of one unit of good i, then
the quantities xhi, yfi and also xi, yi, xi depend on p. Now we denote the excess
demand of the good i by zi(p), i.e.

zi(p) = xi(p) −
(
yi(p) + xi(p)

)
.

If prices are involved then an equilibrium price (a price system at which an
equilibrium is reached) clears the markets.

Further on we frequently make use of the natural order in Rn introduced by
the positive cone

Rn
+ = {x = (x1, . . . , n) ∈ Rn | xi ≥ 0, i = 1, . . . , n},

i.e. for two vectors x = (x1, . . . , xn), y = (y1, . . . , yn) we write x ≤ y iff xi ≤ yi

for all i = 1, . . . , n, we write x < y iff x ≤ y and xi0 < yi0 for at least one index
i0. The norm we will use in the space Rn is defined as

‖x‖ =
n∑

i=1

|xi|, x = (x1, ..., xn) ∈ Rn.

This norm is equivalent to the euclidean norm which is introduced by means

of the scalar product 〈x, y〉 =
n∑

i=1

xi yi. Note that in economic publications the

scalar product of two vectors x, y ∈ Rn is usually written as x y.
For the standard economic model the following four assumptions have to be

met (see [4]).

Assumption 1. Let p = (p1, ..., pn) be an n-dimensional price vector with the
prices pi for one unit of good i as components, i = 1, 2, ..., n. For any p let
the excess demand for i be characterized by a unique number zi(p) and so the
unique vector z(p) = (z1(p), . . . , zn(p)) - the excess demand function with excess
demand functions for i as components (i = 1, 2, ..., n) - is well defined.

Assumption 2. z(p) = z(λp), ∀p > 0 and λ > 0.
The Assumption 2 asserts that z is a homogeneous vector-function of degree

zero. Economically this means that the value of the excess demand function
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does not depend on the price system if the latter is changed for all the goods
simultaneously by the same portion.

From the Assumption 2 follows that prices can be normalized (see [4], p.20
or [9], p.10). If for some price p one has z(p) = 0 then z(λp) = 0 for all prices
of the ray {λp : λ > 0}. Therefore, further on we consider only prices from the
n − 1-dimensional simplex of Rn

Δn = {p = (p1, p2, ..., pn) | pi ≥ 0 and
n∑

i=1

pi = 1}.

We rule out the situations when all the prices are zero or some of them are
negative. Note that Δn is a compact and convex set in the space Rn equipped
with one of its (equivalent) norms.

Assumption 3 or Walras’ Law. p z(p) = 0, ∀p ∈ Δn.
Walras’ Law can be regarded as an attempt to have a model sufficiently

truly reflecting rationally motivated activities of economic agents. According
to Walras’ Law all the firms and all the households both spend their financial
resources completely [9].

Assumption 4. The excess demand function z is continuous on its domain of
definition Δn.

It means that a small change of a price system will imply only a small change
in the excess demand. As a consequence from continuity of z, the standard model
can be used only for the description of economies with continuous excess demand
functions. Sometimes they are called stable economies.

In economies such prices are important at which the excess demand for each
good is nonpositive, i.e. the total supply of each good satisfies at least its total
demand.

Definition 3. A price p∗ ∈ Δn is called an equilibrium (price) if z(p∗) ≤ 0.

If p∗ is an equilibrium price then
n∑

i=1

zi(p∗) ≤ 0.

For the standard model of an economy with a finite number of goods and
agents such prices always exist as is proved in the following theorem.

Theorem 3 ([4]). If an economy E with a finite number of goods and agents
satisfies the Assumptions 1–4, then there exists an equilibrium in E.

4 Economic Models with Discontinuous Excess Demand
Functions

If z is the excess demand function for a neoclassical exchange economy, then z
is continuous on the set

S = {p ∈ Δn | pi > 0, i = 1, 2, ..., n}
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(see [2], Th.1.4.4 and Th.1.4.6). A neoclassical exchange economy (see [2]) is
characterized by a finite set of agents, where each agent i has a non-zero initial
endowment ωi and his preference relation �i is continuous (a preference relation
� is continuous if, given a two sequences (xn)∞

n=1, (yn)∞
n=1 with lim

n→∞ xn = x,

lim
n→∞ yn = y and xn � yn, n = 1, 2..., then x � y), strictly monotone and

strictly convex (on Rn
+) or else his preference relation �i is continuous, strictly

monotone and strictly convex on interior of Rn
+, and everything in the interior

is preferred to anything on the boundary and the total endowment ω =
∑
i

ωi is

strictly positive. If the preference relation �i is continuous, strictly monotone and
strictly convex then the corresponding utility function and the excess demand
function are continuous on the set S. We will consider the situation with a
discontinuous excess demand function. It is clear that in this case the properties
of the preference relations differ from them in the neoclassical exchange economy.
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Fig. 1. The indifference curves of utility function u(x, y) = max{x, y} for the values
1, 2, 3, 4 and 5.

For example, consider the preference relation on R2
+ that is represented by

the utility function u(x, y) = max{x, y} and an initial endowment ω = (2, 2).
The utility function is continuous, but it is not strictly monotone (for example,
(2, 2) > (2, 1) but u(2, 2) = 2 = u(2, 1)) and it is not strictly concave, it is convex.
The indifference curves for the values 1, 2, 3, 4 and 5 are illustrated in Fig. 1. Let
p = (α, 1−α) be a fixed price vector for some 0 < α < 1. We maximize the utility
function u subject to the budget constraint αx+(1−α)y = 2α+2(1−α) = 2. This
line goes through the point (2, 2) and intersects the axis in the points (0, 2

1−α )
and ( 2

α , 0). From Fig. 1 we see that the maximal vector of u over budget set
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(the dotted region in Fig. 1) is the point (0, 2
1−α ) if α > 1

2 and ( 2
α , 0) if α < 1

2 ,
respectively. If α = 1

2 then 2
1−α = 2

α and therefore we have two maximizing
vectors. The demand function in this case is

d(p) = d(α, 1 − α) =

⎧⎨
⎩

(0, 2
1−α ), α > 1

2 ,

{(0, 4), (4, 0)}, α = 1
2 ,

( 2
α , 0), α < 1

2 .

In the point (12 , 1
2 ) the demand multifunction is discontinuous.

In [1] it is proved that in a neoclassical exchange economy the condition
pn → p ∈ ∂S with (pn)n∈N ⊂ S implies lim

n→∞ ||z(pn)|| = ∞. It is also not our

case (see Theorem 1). In [1] it is shown that a utility function u : X → R (X -
topological space) representing a continuous preference relation is not necessar-
ily continuous. If we start with an arbitrary chosen discontinuous utility func-
tion then we have no mathematical tools for finding the corresponding demand
function (in the classical situation an agent maximizes the utility function with
respect to the budget constraint and uses the Lagrange multiplier method for
finding demand function). We note that there exist preference relations which
cannot be represented by a real-valued function, for example, the lexicographic
preference ordering of R2 (by definition (a, b) � (c, d) if (1) a > c or (2) a = c
and b > d) (see [10], notes to chapt.4).

The above situation inspires one to consider models without explicitly given
preference relations. In which cases is the excess demand function discontinuous?
Consider some good i and a fixed price system p. In the case that this good is,
e.g. an aeroplane or a power station, its demand xi(p) is naturally an integer. A
function like xi(p) =

[
30000
1+α

]
, where [x] denotes the integer part of x, provides an

example. Obviously, if the good is a piece-good (table, shoes, flower and other)
then the demand for this good is an integer. Similarly, the supply of piece-goods
is an integer. Therefore the demand and supply functions for piece-goods are
discontinuous and consequently the excess demand function too.

We will analyse some model of an economy with w-discontinuous excess
demand functions.

For the economies under consideration we keep the two first assumptions
from the standard model and change the two last as follows.

Assumption 4’. The excess demand function z is w-discontinuous on its domain
of definition Δn.

The w-discontinuity of the excess demand function makes our model available
to describe some properties of an unstable economy as well.

It is quite natural that for every price vector p ∈ Δn there exist at least one
good i with the price pi > 0 and such that the demand for them is satisfied, i.e.
zi(p) ≤ 0.
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If for some economy E with the excess demand vectors z(p), p ∈ Δn there
holds the Walras’ Law, i.e. p z(p) = 0 for any p ∈ Δn, then for each p ∈ Δn the
inequality

γp =
∑

i:zi(p)≤0

pi > 0

is satisfied. (We write further “zi(p) ≤ 0” instead of “i : zi(p) ≤ 0” and in similar
cases.) Indeed, if for some p = (p1, . . . , pn) ∈ Δn there would be

∑
zi(p)≤0

pi = 0,

then ∑
zi(p)≤0

pi +
∑

zi(p)>0

pi =
n∑

i=1

pi = 1

would imply the existence of an index i0 such that pi0 > 0 and zi0(p) > 0,

which hold then, because of
n∑

i=1

pi = 1, for some i0 there must be pi0 > 0 and

zi0(p) > 0, which yields p z(p) =
n∑

i=1

pizi(p) ≥ pi0zi0(p) > 0, a contradiction to

Walras’ Law.
Our next assumption requires the existence of a uniform lower bound for the

sums
∑

zi(p)≤0

pi, for all p ∈ Δn.

Assumption 3’. γ = inf
p∈Δn

γp > 0.

It seems to be clear that it would be hard to find out why an equilibrium
exists in our model. But it will be possible if we can estimate the unsatisfied
aggregate demand. This leads to the concept of quasi- or k-equilibrium.

Definition 4. Let k be a positive real. A price vector p∗ ∈ Δn is called a k-
equilibrium if it satisfies the condition

∑
zi(p∗)>0

zi(p∗) ≤ k.

The constant k ∈ R+ as a numerical value of the maximally possible unsatisfied
demand for a given price p∗ ∈ Δn characterizes to what state the economy differs
from the market equilibrium (Definition 3).

We can prove now the following

Theorem 4. Let E be an economy with n goods that satisfies the Assumptions
1, 2 and the Assumption 3’ with some number γ > 0. Put

w+ = w+(n, γ) =
1
2n

(
−(n + 1) +

√
(n + 1)2 + 8nγ

)
.

If now the Assumption 4’ is satisfied with w ∈ [0, w+), then the economy E
possesses a k-equilibrium for each k ≥ nw2+(n+1)w

2γ−nw2−(n+1)w .
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Proof. For p ∈ Δn define z+i (p) = max{0, zi(p)}, i = 1, ..., n, z+(p) =
(z+1 (p), . . . , z+n (p)),

ν(p) = 〈p + z+(p), e〉 = 1 +
∑

zi(p)>0

zi(p) and ti(p) =
pi + z+i (p)

ν(p)
, i = 1, ..., n,

where e = (1, . . . , 1) denotes the vector of Rn with all components equal to 1.
Note that ‖e‖ = n.

Define now a map T : Δn → Δn by T (p) = p+z+(p)
〈p+z+(p),e〉 , then T (p) =

(t1(p), ..., tn(p)). Since 0 ≤ ti(p) ≤ 1 for each i and

n∑
i=1

ti(p) =

n∑
i=1

(pi + z+i (p))

ν(p)
=

1 +
∑

zi(p)>0

zi(p)

ν(p)
= 1

one has T (p) : Δn → Δn.

Now the particular maps which the map T consists of, possess the follow-
ing properties. The identity map id on Δn is continuous, by Assumption 4’
the map z : Δn → Rn is w-discontinuous and by Corollary 3 so is z+. By
Corollary 1 the map id + z+ is w-discontinuous, what by Corollary 4 implies
the w‖e‖-discontinuity, i.e. the nw-discontinuity of ν(p) = 〈p + z+(p), e〉. Since
ν : Δn → [1,∞) the function 1

ν is nw
ν(p) -discontinuous as a consequence of Corol-

lary 5. Finally, based on Proposition 3, the map T (p) = (p + z+(p)) 1
ν(p) is w0-

discontinuous at a every point p ∈ Δn, where

w0 = w0(p) =
nw2

ν(p)
+

w

ν(p)
+

nw‖p + z+(p)‖
ν(p)

=
nw2 + w

ν(p)
+nw ≤ nw2 +(n+1)w

(1)
and so, the map T is also nw2 + (n + 1)w-discontinuous on the set Δn.

Since Δn is a convex and compact subset in the normed vector space Rn and
T (p) : Δn → Δn we conclude by means of Theorem 2 that there exists a vector
p∗ ∈ Δn satisfying the inequality

‖T (p∗) − p∗‖ ≤ nw2 + (n + 1)w.

Using the norm in Rn this yields

‖T (p∗) − p∗‖ =
∥∥∥p∗+z+(p∗)

ν(p∗) − p∗
∥∥∥ =

n∑
i=1

∣∣∣p∗
i +z+

i (p∗)
ν(p∗) − p∗

i

∣∣∣
=

n∑
i=1

∣∣∣∣∣
p∗
i +z+

i (p∗)−p∗
i −p∗

i

∑

zi(p
∗)>0

zi(p
∗)

ν(p∗)

∣∣∣∣∣ ≤ nw2 + (n + 1)w.

Since 1 +
∑

zi(p∗)>0

zi(p∗) > 0 one has

n∑
i=1

∣∣∣∣∣∣z
+
i (p∗) − p∗

i

∑
zi(p∗)>0

zi(p∗)

∣∣∣∣∣∣ ≤ (
nw2 + (n + 1)w

)
ν(p∗). (2)
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The left side of inequality (2) can be splitted into two sums

∑
zi(p∗)≤0

∣∣∣∣∣∣z
+
i (p∗) − p∗

i

∑
zi(p∗)>0

zi(p∗)

∣∣∣∣∣∣ +
∑

zi(p∗)>0

∣∣∣∣∣∣zi(p∗) − p∗
i

∑
zi(p∗)>0

zi(p∗)

∣∣∣∣∣∣

=
∑

zi(p∗)≤0

p∗
i

∑
zi(p∗)>0

zi(p∗) +
∑

zi(p∗)>0

∣∣∣∣∣∣zi(p∗) − p∗
i

∑
zi(p∗)>0

zi(p∗)

∣∣∣∣∣∣ . (3)

Using the triangle inequality we get the estimation∣∣∣∣∣∣
∑

zi(p∗)>0

⎛
⎝zi(p∗) − p∗

i

∑
zi(p∗)>0

zi(p∗)

⎞
⎠

∣∣∣∣∣∣ ≤
∑

zi(p∗)>0

∣∣∣∣∣∣zi(p∗) − p∗
i

∑
zi(p∗)>0

zi(p∗)

∣∣∣∣∣∣(4)

and further the left hand side of (4) calculates as
∣∣∣∣∣∣

∑
zi(p∗)>0

⎛
⎝zi(p∗) − p∗

i

∑
zi(p∗)>0

zi(p∗)

⎞
⎠

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

zi(p∗)>0

zi(p∗)

⎛
⎝1 −

∑
zi(p∗)>0

p∗
i

⎞
⎠

∣∣∣∣∣∣

=
∑

zi(p∗)>0

zi(p∗)

⎛
⎝1 −

∑
zi(p∗)>0

p∗
i

⎞
⎠ =

∑
zi(p∗)>0

zi(p∗)
∑

zi(p∗)≤0

p∗
i . (5)

By means of the equalities (3), (5) and the inequalities (2), (4) we obtain now

2
∑

zi(p∗)>0

zi(p∗)
∑

zi(p∗)≤0

p∗
i ≤

∑
zi(p∗)>0

zi(p∗)
∑

zi(p∗)≤0

p∗
i

+
∑

zi(p∗)>0

∣∣∣∣∣∣zi(p∗) − p∗
i

∑
zi(p∗)>0

zi(p∗)

∣∣∣∣∣∣ ≤ (
nw2 + (n + 1)w

)
ν(p∗).

It follows by means of the Assumption 3’

2γ
∑

zi(p∗)>0

zi(p∗) ≤ 2
∑

zi(p∗)>0

zi(p∗)
∑

zi(p∗)≤0

p∗
i ≤ (

nw2 + (n + 1)w
)

ν(p∗).

Since ν(p∗) = 1 +
∑

zi(p∗)>0

zi(p∗) the last inequality yields

∑
zi(p∗)>0

zi(p∗) ≤ nw2 + (n + 1)w
2γ − nw2 − (n + 1)w

, i.e.
∑

zi(p∗)>0

zi(p∗) ≤ k,

where k satisfies k ≥ nw2+(n+1)w
2γ−nw2−(n+1)w .

In order to have the number 2γ − nw2 − (n + 1)w positive the value of w
must belong to the interval [0, w+), where w+ is the positive root of the equation
w2 + n+1

n w − 2γ
n = 0. ��
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Fig. 2. No classical equilibrium, but k-equilibrium exists.

5 Conclusions

We make some remarks.

1. Let n and γ > 0 be fixed. Then w+ = w+(n, γ) is defined as indicated in the
theorem. For w ∈ [0, w+) put

k0(n,w) =
nw2 + (n + 1)w

2γ − nw2 − (n + 1)w
.

The number k0(n,w) is non-negative as was shown above. Note that a sharper
estimation (our estimation is based on the rough inequality ν(p) ≥ 1) in (1)
would yield a smaller value of k0(n,w) and, therefore, would give a better
result. In view of Theorem 2, however, an estimation has be obtained inde-
pendently on p.

2. In Fig. 2 for n = 2 there is shown a situation without a classical equilibrium.
It is clear that there is no p ∈ Δ2 which satisfies the inequality z(p) =
(z1(p), z2(p)) ≤ 0. The Assumptions 1, 2, 4’ are obviously fulfilled. The
Assumption 3’ also holds. Indeed, represent p = (p1, p2) ∈ Δ2 as

p = (1 − t)p′ + tp′′, t ∈ [0, 1],

then t ∈ [0, 1
2 ] implies z1(p) > 0, z2(p) < 0 and so γp = p2 and t ∈ ( 12 , 1]

implies z1(p) = 0, z2(p) > 0 and so γp = p1. In both cases we get γp ≥ 1
2

which shows that the Assumption 3’ holds with γ = 1
2 . Theorem 4 guarantees

the existence of a k-equilibrium for k ≥ 2w2+3w
1−2w2−3w if w < − 3

4 +
√
17
4 . Note

that Walras’ Law is not satisfied.
3. The number w+(n, γ) is positive for each n and fixed γ > 0. If one takes w = 0

then k0(n, γ) = 0 and with k = 0 there is obtained the classical case. Observe
that in this case it is not necessary to use the Walras’ Law for establishing a
classical equilibrium.
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4. Note that in the classical situation it is impossible to carry out any quanti-
tative analysis. On the contrary, the inequalities from Theorem4

w < w+(n, γ) and k ≥ k0(n,w)

give a chance to analyse the behaviour of an economy for different numerical
values of the parameters n,w, γ included in our model. From

0 ≤ w+(n, γ) =
−(n + 1) +

√
(n + 1)2 + 8nγ

2n

<
−(n + 1) + (n + 1) +

√
8nγ

2n
=

√
2γ

n

it follows that lim
n→∞ w+(n, γ) = +0. Since k0(n, 0) = 0, the positive number

k can be chosen arbitrary small. This shows that the larger the number of
goods the better the chance for a classical equilibrium.

5. It is reasonable to put k0(n,w+(n, γ)) = +∞. If for fixed n and γ the value
w is sufficiently close to w+(n, γ), then k is very large. In such a case the
existence of an k-equilibrium seems to be of low economic meaning.

6. The results of this paper have been developed in a collaboration with prof.
M. R. Weber from the Dresden University of Technology [7].

7. Other application of w-discontinuous mappings is to find a of quasi-
equilibrium in economic models that the author has developed in [6] in a
collaboration with a student D. Rika.
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Hana Zámečńıková(B) and Irina Perfilieva

IRAFM, University of Ostrava, 30. dubna 22, 701 03 Ostrava, Czech Republic
p18113@student.osu.cz, irina.perfilieva@osu.cz

http://www.osu.eu/

Abstract. Differential operators play an important role in the mathe-
matical modeling of dynamic processes and the analysis of various struc-
tures. However, there are certain limitations in their use. To remove
them, nonlocal differential operators have been proposed. In this work,
we focus on nonlocal Laplace operator, which has become increas-
ingly useful in image processing. We introduce the representation of F-
transform based Laplace operator in a space with a fuzzy partition. Many
useful properties of this operator are proposed and their proofs are also
included.

Keywords: Nonlocal Laplace operator · Proximity · Basic functions ·
Fuzzy transform

1 Introduction

Image processing requires quick and efficient processing of large amounts of data.
The most important factor here is the speed of processing, which can be generally
in conflict with quality. For this reason, the classical metric spaces are gradually
being replaced by more general spaces based on the notion of proximity. The
direction of research is moving towards nonlocal differential operators defined
on these spaces.

Methods based on nonlocal Laplace operator have become widely used in
many application fields. Dimensionality reduction (extracting low dimensional
structure from high dimensional data) [1] or clustering (automatic identification
of groups of similar objects) [2] can be mentioned. This approach also turned out
to be successful for image colorization [3], image denoising or segmentation [4].

In our approach we try to extend the theory of fuzzy transforms, that was
proved to be useful in image processing. The purpose is to focus on similarities
between approach based on the theory of fuzzy transform and framework based
on nonlocal Laplace operator, mentioned above. We assume, that the use of
nonlocal operators-based methods in spaces determined by fuzzy partition can
somehow enhance the research in this direction.

c© Springer Nature Switzerland AG 2020
M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1239, pp. 295–303, 2020.
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Let f be a real function, f : Ω → R, Ω ⊂ R
n. Laplace operator is a

second order differential operator in the n-dimensional Euclidean space, given
by the divergence of the gradient of a function f . Equivalently it can be defined
by the sum of all the unmixed second partial derivatives of function f in the
Cartesian coordinates xi, Δf =

∑n
i=1

∂2f
∂x2

i
. This formula incorporates the partial

derivatives, that should fulfill certain well-known conditions. However, this puts
limitations on sets of functions, that can be differentiated as required.

For this reason, the notion of derivative was extended to a nonlocal version
by defining [5]:

∂yf(x) =
f(y) − f(x)

d̃(x, y)
, ∀x, y ∈ Ω (1)

where d̃, 0 < d̃(x, y) ≤ ∞, defines a positive distance measure between x and y.

Definition 1. Let function w : Ω × Ω → R be non-negative (0 ≤ w(x, y) < ∞)
and symmetrical (w(x, y) = w(y, x)), then w is called a measure of proximity. A
pair (Ω,w) defines a proximity space.

Remark 1. A proximity space (Ω,w) can be also introduced with the reference
to a distance measure, e.g. defining

w(x, y) = d̃−2(x, y). (2)

In (Ω,w), a nonlocal derivative can be defined as follows [5]:

∂yf(x) = (f(y) − f(x))
√

w(x, y). (3)

This notion can be extended for functions of several real variables. In a similar
way, other operators of vector field can be defined in a nonlocal form.

The nonlocal gradient ∇wf(x) : Ω → Ω × Ω, which is defined as a vector of
all partial derivatives, has a form [5]:

(∇wf)(x, y) = (f(y) − f(x))
√

w(x, y), ∀x, y ∈ Ω. (4)

Assume vector v = v(x, y) ∈ Ω × Ω, then nonlocal divergence
divwv(x) : Ω × Ω → Ω can be written as follows [5]:

(divwv)(x) =
∫

Ω

(v(x, y) − v(y, x))
√

w(x, y)dy. (5)

It is well known that the Laplace operator can be defined by the divergence
of the gradient up to a constant multiplication, therefore with the notions men-
tioned above we can define nonlocal Laplace operator in this case by:

Δwf(x) =
∫ b

a

(f(y) − f(x))w(x, y)dy, (6)

for each function f : Ω → R and [a, b] ⊂ Ω.
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2 Fuzzy Partition

The choice of proper proximity function is extremely important. In this article
we proposed one, where proximity is determined by fuzzy partition A1, . . . , An.

Definition 2. Fuzzy sets A1, . . . , An, establish a fuzzy partition of a real interval
[a, b] with nodes x1 < · · · < xn if for k = 1, . . . , n holds [6]:

1. Ak : [a, b] → [0, 1], Ak(xk) = 1, Ak(x) > 0 if x ∈ (xk−1, xk+1)
2. Ak(x) = 0 if x 	∈ (xk−1, xk+1), where x0 = a and xn+1 = b
3. Ak(x) is continuous
4. Ak(x), for k = 2, . . . , n, strictly increases on [xk−1, xk] and Ak(x) strictly

decreases on [xk, xk+1] for k = 1, . . . , n − 1,
5. ∀x ∈ [a, b]

n∑

k=1

Ak(x) = 1. (7)

The membership functions A1, . . . , An are called basic functions.

Definition 3. The fuzzy partition A1, . . . , An, for n ≥ 2 is h-uniform [6] if
nodes x0 < · · · < xn+1 are h-equidistant, i.e. for all k = 1, . . . , n + 1, xk =
xk−1 + h, where h = (b − a)/(n + 1) and the following additional properties are
fulfilled:

1. for all k = 1, . . . , n and for all x ∈ [0, h], Ak(xk − x) = Ak(xk + x),
2. for all k = 2, . . . , n and for all x ∈ [xk−1, xk+1], Ak(x) = Ak−1(x − h).

Definition 4. If the fuzzy partition A1, . . . , An of [a, b] is h-uniform, then there
exists [7] an even function A0 : [−1, 1] → [0, 1], such that for all k = 1, . . . , n:

Ak(x) = A0

(
x − xk

h

)

, x ∈ [xk−1, xk+1].

A0 is called a generating function of uniform fuzzy partition.

Corollary 1. Generating function A0 produces infinitely many rescaled func-
tions [8] AH : R → [0, 1] with the scale factor H > 0, so that:

AH(x) = A0

( x

H

)
.

A (h,H)-uniform partition of R is then a collection of translations
{AH(x − k · h), k ∈ Z}.

3 Fuzzy Transform

Direct Fuzzy transform or F-transform is a result of weighted linear integral trans-
formation of a continuous function with weights determined by basic functions.
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Definition 5. Let A1, . . . , An be basic functions which form a fuzzy partition of
[a, b] and f be any function from C([a, b]). We say that n-tuple of real numbers
F [f ] = (F1, . . . , Fn) given by [6]

Fk =

∫ b

a
f(x)Ak(x)dx
∫ b

a
Ak(x)dx

, k = 1, . . . , n, (8)

is the direct integral F-transform of f with respect to A1, . . . , An.

F-transform establishes a correspondence between a set of continuous func-
tions on [a, b] and the set of n-dimensional vectors. Inverse F-transform then
converts an n-dimensional vector of components (F1, . . . , Fn) into another con-
tinuous function:

f̂(x) =
n∑

k=1

FkAk(x), (9)

which approximates the original one.

4 Proximity Function Determined by Fuzzy Partition

Let [a, b] ⊂ R, f ∈ L2([a, b]), h > 0 and Ah be a h-rescaled generating function.
Assume the measure of proximity as follows:

w(x, y) =
1
h

Ah(x − y). (10)

Proposition 1. Let a generalized h-uniform fuzzy partition of [a, b] be given by
the infinite set of basic functions {Ay(x)|y ∈ [a, b]}, where Ay(x) = Ah(x − y).
Then for all x ∈ [a, b]:

ΔFT
w f(x) = Fx − f(x), (11)

defines nonlocal Laplace operator. Fx denotes the particular xth F-transform
component of F-transform F [f ] of function f .

Proof.

ΔFT
w f(x) =

∫

Ω

(f(y) − f(x))ω(x, y) dy

=
∫ b

a

(f(y) − f(x))
1
h

Ah(x − y) dy

=

∫ b

a
f(y)Ah(x − y) dy

h
− f(x)

h

∫ b

a

Ah(x − y) dy

= Fx − f(x).

��
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5 Properties of FT-Laplace Operator ΔF T
w

In this section we propose several properties of the operator ΔFT
w .

Proposition 2. For all x, y ∈ [a, b], the operator ΔFT
w admits following

properties:

1. If f(x) = const, then ΔFT
w f(x) = 0.

2. For w(x, y) > 0, if ΔFT
w f(x) = 0, then f(x) = const.

3. If f(x0) ≥ f(x), then ΔFT
w f(x) ≤ 0.

4. Similarly for a minimum, if f(x1) ≤ f(x), then ΔFT
w f(x1) ≥ 0.

5. ΔFT
w is a positive semi-definite operator, i.e.

〈−ΔFT
w f(x), f(x)〉 ≥ 0, (12)

where 〈·, ·〉 denotes inner product on L2, defined as 〈f, g〉 =
∫ b

a
f(x)g(x) dx.

6. The following equation holds:
∫ b

a

ΔFT
w f(x) dx = 0. (13)

Proof. Property 1:

ΔFT
w f(x) =

∫ b

a

(f(y) − f(x))
1
h

Ah(x − y) dy

=
f(x)

h

∫ b

a

Ah(x − y) dy − f(x) = 0.

Property 2:

ΔFT
w f(x) =

1
h

∫ b

a

f(y)Ah(x − y) dy − f(x)

=
f(c)
h

∫ b

a

Ah(x − y) dy − f(x)

= f(c) − f(x) = 0
⇒ f(x) = const. ∀x ∈ [a, b].

Property 3:

ΔFT
w f(x0) =

1
h

∫ b

a

(f(y) − f(x0))Ah(x − y) dy

=
1
h

∫ b

a

f(y)Ah(x − y) dy − f(x0)
h

∫ b

a

Ah(x − y) dy

≤ f(x0)
h

∫ b

a

Ah(x − y) dy − f(x0)
h

∫ b

a

Ah(x − y) dy = 0

⇒ ΔFT
w f(x0) ≤ 0.
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Property 4:

ΔFT
w f(x1) =

1
h

∫ b

a

(f(y) − f(x1))Ah(x − y) dy

=
1
h

∫ b

a

f(y)Ah(x − y) dy − f(x1)
h

∫ b

a

Ah(x − y) dy

≥ f(x1)
h

∫ b

a

Ah(x − y) dy − f(x1)
h

∫ b

a

Ah(x − y) dy = 0

⇒ ΔFT
w f(x1) ≥ 0.

Property 5:

〈−ΔFT
w f(x), f(x)〉 = 〈f(x) − 1

h

∫ b

a

f(y)Ah(x − y) dy, f(x)〉

=
1
h

∫ b

a

∫ b

a

(f2(x) − f(x)f(y))Ah(x − y) dydx

=
1
2h

∫ b

a

∫ b

a

[(f2(x) − f(x)f(y))Ah(x − y)

+ (f2(x) − f(x)f(y))Ah(x − y)] dydx

=
1
2h

∫ b

a

∫ b

a

[(f2(x) − f(x)f(y))Ah(x − y)

+ (f2(y) − f(y)f(x))Ah(x − y)] dydx

=
1
2h

∫ b

a

∫ b

a

(f(x) − f(y))2Ah(x − y) dydx ≥ 0

⇒ 〈−ΔFT
w f(x), f(x)〉 ≥ 0.

Property 6:
∫ b

a
ΔFT

w f(x) dx

=
1

2

∫ b

a

∫ b

a
[(f(y)− f(x))Ah(x − y) + (f(y)− f(x))Ah(x − y)] dxdy

=
1

2

[∫ b

a

∫ b

a
((f(y)− f(x))Ah(x − y)dxdy−

∫ b

a

∫ b

a
((f(x)− f(y))Ah(x − y)dxdy

]

= 0.

��

6 Application to Image Processing

Image regularization that uses the nonlocal Laplace operator is proved to be
very efficient [9]. The regularization of an image function f0 corresponds to an



Nonlocal Laplace Operator in a Space with the Fuzzy Partition 301

optimization problem, which can be formalized by the minimization of a weighted
sum of two energy terms [9]:

min
f

{

Ep
w(f, f0, λ) = Rp

w(f) +
λ

2
‖f − f0‖22

}

, (14)

where Rp
w(f) = 1

p

∑
u∈V |∇wf(u)|p (details can be found in [9]). When assuming

p = 2, this problem has a unique solution.
In [9], linearized Gauss-Jacobi iterative method was used to solve this prob-

lem. Let t be an iteration step, and let f (t) be the solution at the step t. The
method is given by the following algorithm:

f (0) = f0 (15)

f (t+1)(u) =
λf0(u) +

∑
v∼u γf(t)

w (u, v)f (t)(v)

λ +
∑

v∼u γf(t)

w (u, v)
, ∀u ∈ V. (16)

It describes a family of discrete diffusion processes, which is parametrized
by the structure of the graph, the edge weights, the parameter λ and the
parameter p.

In our case, p = 2, the equation of the (t + 1)th step is simplified to:

f (t+1)(u) =
λf0(u) + 2

∑
v∼u w(u, v)f (t)(v)

λ + 2
∑

v∼u w(u, v)
. (17)

The minimization problem and the discrete diffusion processes can be used
to regularize any function defined on a finite set of discrete data. This is realized
by constructing a weighted graph G = (V,E,w), and by selecting the function
to be regularized as a function f0, defined on the vertices of the graph.

Graph is produced as follows. Each pixel is identified with one vertex and
semantically related pixels are connected by edges. The edges weights are com-
puted according to a symmetric similarity function m : V × V → R. If
between vertices u and v does not exist an edge, then w(u, v) = 0, otherwise
w(u, v) = m(u, v).

Every data u ∈ V is assigned with a feature vector F (f0, u) ∈ R
q. In the

simplest case, one can consider F (f0, u) = f0(u).
Also the choice of graph topology plays an important role, because different

types of graphs are suitable to use for different types of problems.

6.1 Image Denoising

Consider an image damaged by additional noise and the goal of this method
is to restore the initial uncorrupted image. In our case RGB noise was added.
We analyzed the case of weight function depending on the fuzzy partition for a
fixed value of parameter p. The scalar feature vector was used, F (f0, u) = f(u).
And for this configuration, we considered a standard 4-adjacency grid graph.
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Various values of parameter λ were tested. For illustration we selected the one
best output after 15 iterations of regularization process. Figure 1 shows, that the
noise was partly removed and this process caused minimal damage to geometric
features.

Fig. 1. Image denoising illustration, original image (first), image corrupted by a noise
(second) and recovered image (third). Parameters: RGB noise (noise level 0.4 in each
channel, random seed set to 222), 4-adjacency grid graph, F (f0, u) = f(u), weight
function based on fuzzy partition, λ = 2.

7 Conclusion

A new representation of nonlocal Laplace operator in a space with a fuzzy parti-
tion is proposed and analysed. It stems from the theory of fuzzy transform, where
the weight assignment is based on a generating function of a fuzzy partition and
represents proximity between points. We proved validity of all important prop-
erties of this operator and illustrated its usefulness in image denoising.

In the future work, we would like to continue in this direction, we are now
focusing on how a new expression of nonlocal Laplace operator can be applied
to image processing tasks, specifically we would like to turn the attention to
image segmentation and filtering, that are connected to the regularization. This
nonlocal approach is significantly computationally simpler, so we expect that
compared to classical methods it will be a significantly lower time consuming,
which is one of the main priorities in this field.
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Abstract. Computer simulations have been carried out to investigate the per-
formance of two measures for abductive inference, Maximum Likelihood (ML),
and Product Coherence Measure (PCM), by comparing them with a third
approach, Most Probable Explanation (MPE). These have been realized through
experiments that compare outcomes from a specified model (the correct model)
with those from incorrect models which assume that the hypotheses are mutually
exclusive or independent. The results show that PCM tracks the results of MPE
more closely than ML when the degree of competition is greater than 0 and
hence is able to infer explanations that are more likely to be true under such a
condition. Experiments on the robustness of the measures with respect to
incorrect model assumptions show that ML is more robust in general, but that
MPE and PCM are more robust when the degree of competition is positive. The
results also show that in general it is more reasonable to assume the hypotheses
in question are independent than to assume they are mutually exclusive.

Keywords: Inference to the Best Explanation (IBE) � Explanatory reasoning �
Hypotheses competition � Abduction

1 Introduction

In modern literature, abduction refers to the study of explanatory reasoning in justifying
hypotheses, or Inference to the Best Explanation (IBE) that considers a number of
plausible candidate hypotheses in a given evidential context and then compares these
hypotheses in order to make an inference to the one that best explains the relevant
evidence [1–11].

In conventional studies involving IBE, significant attention has been paid to dealing
with the hypotheses being mutually exclusive [12–15], and the measure for identifying
the most plausible hypothesis was typically chosen as the maximized posterior prob-
ability [16, 17] termed Most Probable Explanation (MPE). However, modern studies
have highlighted situations where hypotheses can be in competition even though they
are not mutually exclusive and can compete to varying degrees [18, 19]. Meanwhile,
alternative measures to MPE have been considered and applied [12, 19–29], such as
Maximum Likelihood (ML) and Product Coherence Measure (PCM) [11]. The reality
that hypotheses often have various degrees of competition gives rise to the necessity of
examining the characteristics of abductive inference in such a context, along with the
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characteristics of the functioning and performance of the explanatory measures used to
make inferences in these contexts. This then motivates a study to compare the per-
formance of several measures when conducting abductive inference under the
assumption that they may be competing to some extent, with an objective of identifying
the most suitable measure(s) as the criteria/criterion for the inference to the best
explanation, thus benefiting abductive inference research. Therefore, in this study,
comparison of the performance and functionality among the measures MPE, ML, and
PCM in identifying the best explanation has been carried out. We consider a number of
different probability model settings, as an extension of the study of abductive inference
under various degrees of competition between candidate hypotheses [19].

2 Competing Hypotheses and Degree of Competition

We start by giving an example to illustrate the competition concept. Suppose a
detective has two main suspects in a murder inquiry, Smith and Jones. The detective
tries to determine which hypothesis best explains all the relevant evidence by treating
the suspects as two competing hypotheses and reasoning abductively. The hypotheses
can be represented as:

HS: Smith committed the murder
HJ: Jones committed the murder

In general, the hypotheses need not be assumed to be mutually exclusive, since
both Smith and Jones could have colluded in committing the murder and hence it
would be improper to assume that P(HS&HJ) = 0. Clearly, if the two hypotheses are
known to be mutually exclusive (if Smith and Jones could not have colluded), then they
are competing hypotheses. In reality, it might be difficult to establish mutual exclusion,
but in many cases, it would still be reasonable to treat them as competing hypotheses.
Perhaps, for example, in light of the evidence it is very unlikely but not impossible that
Smith and Jones colluded.

Glass [19] proposed a definition for competing hypotheses: Let each of H1 and H2

be hypotheses and E evidence under consideration and suppose that P(H1&E) and P
(H2&E) are greater than zero. Hypotheses H1 and H2 are said to be competing
hypotheses with respect to evidence E if and only if P (H1| H2&E) < P(H1|E). Because
the competition is a symmetric concept, the formula can also be expressed as P (H2|
H1&E) < P(H2|E).

Schupbach and Glass [18] recently defined a measure of the degree of competition
between two hypotheses, H1 and H2, with respect to evidence E, as the average degree
to which H1 and H2 disconfirm each other given E:

Comp(H1;H2jEÞ ¼ 1
2
� ½ClðH1;:H2jEÞþClðH2;:H1jEÞ� ð1Þ
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where Cl is the likelihood ratio measure of confirmation conditioned on E, that is,

Cl H1; H2 jEð Þ = log
P ðH1 jH2&EÞ
P ðH1 j :H2&EÞ ð2Þ

By the definition, Comp has increasingly positive values to the extent that H1 and
H2 disconfirm one another given E, and increasingly negative values to the extent that
H1 and H2 confirm one another given E, and zero when H1 and H2 are probabilistically
independent given E. Note that if H1 and H2 are assumed to be mutually exclusive, then
P(H1| H2&E) = 0 and hence this would be a case with the highest possible degree of
competition. H1 and H2 can be said to compete with respect to E if Comp > 0. It can
then be shown that H1 and H2 compete with respect to E if the condition in the
definition is met. Since the measure of competition lies in the range [− ∞, ∞], their
alternative measure, which lies in the range [− 1, 1], has been used for convenience in
this study. It is given by [18]

dcomp ¼ 1
2
� ½CkðH1;:H2 jEÞþCkðH2;:H1 jEÞ� ð3Þ

where Ck is the confirmation measure proposed by Kemeny and Oppenheim [30] when
conditioned on E,

CkðH1; H2 jEÞ ¼ P ðH1 jH2&EÞ�PðH1 j :H2&EÞ
P (H1 jH2&EÞþPðH1 j :H2&EÞ ð4Þ

3 Probability Model and Experiment Design

Computer simulations were carried out to investigate the performance and functionality
of the different measures when incorrectly assuming hypotheses to be mutually
exclusive or independent, on making inferences. Each of the experiments concerned
generating a probability model involving evidence E and hypotheses H1, H2 and a
catchall hypothesis, Hc = ¬H1&¬H2, with a specified degree of competition between
H1 and H2 given E [19]. This model was stipulated to be the correct model, Prob0, and
three different incorrect probability models, modified from that of Prob0, in which H1

and H2 were treated as mutually exclusive for two experiments (named MEx1 and
MEx2 respectively), and treated as independent for a third experiment (named IND),
were used for the inference.

These are intended to represent simplifying assumptions that might be made in
practice when the true probability model is unknown. The goal is then to evaluate
several versions of abductive inference under these assumptions. Each of the experi-
ments were repeated a large number of times (N = 106) to sample the distribution over
the variables and obtain a meaningful average, and a Degree of Agreement (DA) is
defined as follows:
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Let N_identified be the number of times the hypothesis identified by the incorrect
model agrees with the correct model, N_total be the total number of observations,
under a given degree of competition dcomp, then

DA %ð Þ ¼ 100� N identified
N total

ð5Þ

Note that the DA is a parameter closely linked to the degree of competition, or the
DA is a function of dcomp, because N_identified is a function of dcomp.

We also use DA Index (DAI) to represent the average Degree of Agreement over the
interval [−1, 1] containing successively (with a certain step) n points of dcomp:

DAI ¼
Pn

k¼1 DAð Þk
n

ð6Þ

The simulations are an extension of a study in which the measure MPE was used as
the standard for hypothesis identification [19] since here ML and PCM are also used.
Details of how the correct probability model and the incorrect models were constructed
can be found in [19]. Design of the extended experiments can be sketched as follows
[11, 19]:

Firstly, for a specified value of the degree of competition, dcomp (Eq. (3)), a
probability model was defined and stipulated as the correct model Prob0, involving
hypotheses H1, H2, a catchall Hc, and evidence E, where H1 and H2 are not assumed to
be mutually exclusive; the initial parameters in the model are randomly generated from
a uniform distribution.

For MEx1, a mutually exclusive probability model Prob1 is obtained from the
original model, Prob0, by replacing H1 with H1&¬H2 and H2 with H2&¬H1, setting:

Prob1 H1ð Þ = Prob0 H1&:H2ð Þ ð7Þ

Prob1 H2ð Þ = Prob0 H2&:H1ð Þ ð8Þ

Prob1 H1&H2ð Þ¼ 0 ð9Þ

Prob1 Hcð Þ¼ 1� Prob1 H1ð Þ � Prob1 H2ð Þ ð10Þ

Prob1 E j H1ð Þ = Prob0 E j H1&:H2ð Þ ð11Þ

Prob1 E j H2ð Þ = Prob0 E jH2&:H1ð Þ ð12Þ

Prob1 E j Hcð Þ = Prob0 E j Hcð Þ ð13Þ
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In the second experiment MEx2, another mutually exclusive probability model,
Prob2, is obtained from the original model Prob0,

Prob2 H1ð Þ ¼ Prob0 H1ð Þ � Prob0 H1 _ H2ð Þ
Prob0 H1Þþ Prob0ðH2ð Þ ð14Þ

Prob2 H2ð Þ ¼ Prob0 H2ð Þ � Prob0 H1 _ H2ð Þ
Prob0 H1Þþ Prob0ðH2ð Þ ð15Þ

The probabilities for the likelihood terms are set in the same way as for Prob1, and
the probability for the catchall hypothesis, Hc, is similarly set to

Prob2 Hcð Þ = 1 � Prob2 H1ð Þ � Prob2 H2ð Þ ð16Þ

since H1 and H2 are assumed to be mutually exclusive [19]; and we have:

Prob2 H1&H2ð Þ¼ 0 ð17Þ

Prob2 E j H1ð Þ = Prob0 E j H1&:H2ð Þ ð18Þ

Prob2 E j H2ð Þ = Prob0 E j H2&:H1ð Þ ð19Þ

In contrast to the models Prob1 and Prob2, the third experiment IND treats H1 and
H2 as independent:

Prob3 H1ð Þ ¼ Prob0 H1ð Þ � Prob0 H1 _ H2ð Þ
Prob0 H1Þþ Prob0ðH2ð Þ ð20Þ

Prob3 H2ð Þ ¼ Prob0 H2ð Þ � Prob0 H1 _ H2ð Þ
Prob0 H1Þþ Prob0ðH2ð Þ ð21Þ

Prob3 H1&H2ð Þ¼ Prob3 H1ð Þ � Prob3 H2ð Þ ð22Þ

Prob3 Hcð Þ¼ 1� Prob3ðH1 _ H2Þ ð23Þ

Prob3 EjH1ð Þ¼
Prob0 EjH1&H2ð Þ � Prob3 H2ð Þþ Prob0 EjH1&:H2ð Þ � Prob3 :H2ð Þ ð24Þ

Prob3 EjH2ð Þ¼
Prob0 EjH2&H1ð Þ � Prob3 H1ð Þþ Prob0 EjH2&:H1ð Þ � Prob3 :H1ð Þ ð25Þ
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This is because Prob3 provides a compromise between incorrectly treating hypotheses
as mutually exclusive and fully taking into account the dependence between them; we
need to consider that in some cases hypotheses aremodelled as being independent aswell.

Secondly, abductive inference was carried out under a given degree of competition
dcomp, for the correct models to find the hypothesis which maximizes the selected
measure (MPE, ML, PCM) for evidence E. If an inference made by the incorrect model
(mutually exclusive or independent) in identifying the hypothesis agreed with the
inference made using the correct model, this inference is then counted as a success.

Thirdly, the above process was repeated N = 106 times and the number of total
successful inferences S was obtained. The accuracy, or the degree of agreement
between the inference of the incorrect model (mutually exclusive or independent) and
the correct model, was defined as S/N (percentage success). The accuracy values reflect
how often an incorrect model identifies the same hypothesis as the correct model.

Finally, the process was repeated for a range of values of the degree of competition
between −0.9 and 0.9, with a step of 0.1.

There are a number of different measures proposed in the literature, to quantify how
well a hypothesis H explains evidence E. For example, the Measure of Explanatory
Power proposed by Schupbach and Sprenger [22]; the measure proposed by Crupi and
Tentori [24]; the measure by Good [25] and McGrew [26]; the Likelihood Ratio
measure [19]; the Overlap Coherence Measure used to rank explanations by Glass [27–
29]; and the Product Coherence Measure by Glass [11, 12]. In this study, the following
measures have been used for the inference in the computer simulation:

(1) MPE: Most Probable Explanation; selects the hypothesis with the maximum
posterior probability, of the hypotheses in light of the evidence,

MPE ¼ argmax
Hi;i2 1;2;Cf g

PðHijEÞ ð26Þ

(2) ML: selects the hypothesis with the Maximum Likelihood,

ML ¼ argmax
Hi;i2 1;2;Cf g

PðEjHiÞ ð27Þ

(3) PCM: selects the hypothesis with the maximum value of the Product Coherence
Measure [11]:

PCM ¼ argmax
Hi;i2 1;2;Cf g

P HijEð Þ � P (E jHi½ Þ� ð28Þ

Arguably, MPE is not a good measure of explanation [20–27]. In the example of the
murder suspects, the probability that both Smith and Jones are guilty, P(HS&HJ|E), will
obviously always be less than or equal to that of the individual hypotheses, P(HS|E) or P
(HJ|E). However, if MPE is used as a measure of explanation, this means that the joint

A Comparison of Explanatory Measures in Abductive Inference 309



explanation that Smith and Jones committed the murder can never provide a better
explanation than the individual explanations that Smith (or Jones) committed the murder.
More generally, this means that it only makes sense to use MPE for a fixed number of
explanatory variables, but arguably in various contexts, such as explanation in Bayesian
networks, it is desirable to compare different numbers of explanatory variables in order to
obtain explanations that are neither too simple nor too complex [21].

But MPE is still a useful measure to include for comparison since we are interested
in whether inferences made using explanatory measures such as ML and PCM have a
high probability of being correct.

As a further extension of [19], the performance of these three measures was
examined and compared in the computer simulation of abductive inference for iden-
tifying the most probably correct explanation. The computer simulations were carried
out with the procedures described earlier. In reality we typically do not know the true
model, so we are evaluating how well abductive inference works with different
incorrect assumptions, mutually exclusive or independent. Bearing this in mind, within
each of the experiments, two groups of comparisons were made:

Group 1: Here the assumption is that explanatory approaches (ML and PCM)
should be compared against MPE as the standard to see how good ML and PCM are at
inferring hypotheses that are probably true. Thus, with MPE as a standard in the
hypothesis identification in the correct model, this group is to find out the degree of
agreement of hypothesis identification made from the correct model against that from
an incorrect model, with MPE, ML, and PCM respectively as the criterion in the
hypothesis identification in the incorrect model. These experiments are repeated for
each of the incorrect models (MEx1, MEx2, IND). The inferences with the three
measures have been abbreviated as:

• MPE_F versus MPE_T: using MPE criterion in the incorrect (False or _F) model
against using MPE criterion in the correct (True or _T) model to infer a hypothesis;

• ML_F versus MPE_T: using Maximum Likelihood (ML) criterion in the incorrect
(_F) model against using MPE criterion in the correct (_T) model to infer a
hypothesis;

• PCM_F versus MPE_T: using Product Coherence Measure (PCM) criterion in the
incorrect (_F) model against using MPE criterion in the correct (_T) model to infer a
hypothesis;

Group 2: In abductive inference we do not necessarily need to consider MPE as the
only standard. Therefore, in this group, each of the three measures was applied in the
inference as the criterion for both incorrect model and the correct model, i.e., taking
each of the three measures as the standard, to find out the degree of agreement of
hypothesis identification made from the correct model against that from an incorrect
model. These experiments can be seen as evaluating the robustness of each of the
measures with respect to the incorrect model assumptions (mutually exclusive or
independent). Again, these experiments are repeated for each of the incorrect models
(MEx1, MEx2, IND). The inferences have been abbreviated as:

• MPE_F versus MPE_T: this is the same as in the Group1;
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• ML_F versus ML_T: using Maximum Likelihood (ML) criterion in the incorrect
(_F) model against using ML criterion in the correct (_T) to infer a hypothesis;

• PCM_F versus PCM_T: using Product Coherence Measure (PCM) criterion in the
incorrect (_F) model against using PCM criterion in the correct (_T) model to infer
a hypothesis;

The output of the two groups are expressed by Degree of Agreement, DA, and DAI,
formulated in (5) and (6). It should be noted that this metric should be interpreted in
one of two ways, depending on what comparison is being made. For Group 1, the DA
reflects the Accuracy of the corresponding measure, i.e., given that we presume that
MPE is a standard for identifying the true hypothesis, the degree of agreement with the
identification by MPE is then viewed as the accuracy of the relevant measure, and the
higher the DA is, the better the Accuracy the measure possesses. In Group 2, the same
measure is used in the incorrect model and the correct model, and in this case the output
of the three experiments will show how close the three series of output will be, i.e., the
degree of consistency of the same measure under different experiments. In this case we
say that the higher the degree of agreement the more robust the measure is. Therefore,
under the circumstance of Group 2, we say that the Degree of Agreement reflects the
Robustness of the measure. Accuracy and Robustness are then used in this work to
represent the relevant properties of the explanatory measures.

4 Results

Graphs were plotted to illustrate the results of MEx1, MEx2 and IND, for comparison
of the performance (Accuracy and Robustness) of the three explanatory measures, MPE
(Most Probable Explanation), ML (Maximum Likelihood), and PCM (Product
Coherence Measure).

Figure 1-1 shows that when the MPE is used as the standard, ML and the PCM
have lower degree of agreement with the identification using MPE, but PCM is much
closer to MPE than ML as found in [12]. When dcomp < 0, the curves drop to below
50%, suggesting that for negative degree of competition all three measures result in
poor agreement with the output of using the standard MPE and PCM performs slightly
better than MPE.

Figure 1-2 and 1-3 exhibit a similar trend as in Fig. 1-1 when dcomp > 0; but in the
range of dcomp < 0, the curves are better ordered from high to low without crossing.
As expected, the MPE curve is higher than those of ML and PCM, and noticeably the
MPE and PCM curves are all above 50% in the whole range [−0.9, 0.9]. The degree of
agreement for the measure ML appears lower, with the value less than 50% in the
majority of the interval for all three experiments.

In Fig. 1-3, all the curves for MPE and PCM are above 60% when dcomp > 0,
showing that the PCM performs very well compared to ML in identifying the most
probably correct explanation, with MPE as the standard. For dcomp < 0, the output of
MPE and PCM still have their accuracy greater than 50%. However, the ML curve
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between the output of the incorrect model
(in MEx1, MEx2, and IND) using each of the
measures and the correct model (Prob0) using
MPE to infer a hypothesis.
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output drops to below 30% when dcomp is in [−0.8,−0.6]. In all the three curves, PCM
performs much better than ML.

In Fig. 1-1 through 1-3, it appears that the curves of the MPE measure are higher
than PCM’s for dcomp > 0 but the PCM curve is higher than the MPE curve for MEx1
from −0.6 to 0. In the majority of the range [−0.9, 0.9], MPE curves are higher.
For MPE itself, it shows good degrees of agreement with the correct model in iden-
tifying the hypotheses when dcomp > 0; whilst in the case of dcomp < 0, it results in
poor agreement with the output of the correct model.

In general, the experiment results indicate that, with the MPE measure and correct
model used as the standard in hypothesis identification (a) for dcomp > 0 (or
dcomp > 0.1 for MEx1), the MPE curves are all above 90%; for dcomp < 0, the curves
are above 50% for MEx2 and IND. This is the same as one of the results in [19],
implying that to presume the hypotheses to be mutually exclusive or independent
appears reasonable especially for the situation in which the hypotheses compete to
some degree (dcomp > 0), in the context of the experiments; (b) the measure ML has
low degree of agreement with MPE in hypotheses identification; and (c) PCM results in
closer degrees of agreement with the output of the MPE measure.

However, the above features do not necessarily mean that the ML and PCM are
‘worse’ measures than the MPE measure. Although MPE is often referred to in the
artificial intelligence literature as the most probable explanation, arguably, this is an
inadequate definition of ‘best explanation’ [11, 12, 19] but it nevertheless provides a
standard against which to compare the various explanatory measures to determine how
good they are at identifying hypotheses that are probably true.

The curves merely reflect the degree of agreement of the identifications made by
ML or PCM with MPE. Therefore, a further comparison as illustrated in Fig. 2,
examines the performance and Robustness when using the measures of ML and PCM
with the correct model as the standard for the same measures with the incorrect models
(experiment Group 2). This shall reveal more significant information on the perfor-
mance of the measures.

It can be seen in Figs. 2-1 to 2-3, that in the range of dcomp > 0, MPE and PCM
show a better degree of agreement with the identification of the correct model in the
hypothesis identification (greater than 90%), whilst when dcomp < 0, ML performs
better than the other two, with the degree of agreement largely above 50%, and for IND
it goes up to 90% in (−0.6,−0.2). These features reflect that MPE does not always
perform better than the other measures. PCM has a high degree of agreement similar to
the MPE when dcomp > 0 (the difference is less than 5%) but ML performs better than
MPE and PCM in the majority of the range of dcomp < 0.

Among the three figures of Fig. 2-1 through 2-3, ML has its highest curve in Fig. 2-
3 (for the experiment IND), and PCM has its highest one in Fig. 2-3 as well. The
curves of PCM are only slightly lower than MPE in all three figures when dcomp > 0,
i.e. the PCM curve and the MPE curve are very close when dcomp > 0.
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Moreover, curves for PCM are above their MPE counterparts in the majority of the
range of dcomp < 0. For dcomp < 0, PCM perform better than MPE whilst when
dcomp > 0 the two measures perform similarly.

The PCM curve for IND in Fig. 2-3 is above 60% in the whole range −0.9 to 0.9. It
is obvious that, with PCM as the standard, presuming the hypotheses to be mutually
exclusive and independent are both reasonable when dcomp > 0; and presuming them
as being independent appears more reasonable when dcomp < 0, under the condition of
the experiments.

Further, for a quantitative understanding of the properties of the measures, Fig. 3
and 4 give the average values of the Degree of Agreement over the interval [−0.9, 0],

[0, 0.9] and the whole range of [−0.9, 0.9], with Fig. 3 reflecting the Accuracy of the
measures and Fig. 4 the Robustness of the measures. It can be seen that PCM has much
higher Accuracy than ML but ML has slightly higher Robustness.

5 Conclusions

Computer simulations have been carried out to investigate the performance, in terms of
Accuracy and Robustness, of two measures for abductive inference, Maximum Like-
lihood (ML), and Product Coherence Measure (PCM). This has been done by
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comparing them with a third approach, Most Probable Explanation (MPE), for the
identification of the best explanation. The results show that:

1. It appears appropriate to represent the functioning characteristics of the measures
separately according to the sign of the degree of competition (dcomp) of the
hypotheses, which can be calculated in practice using the Eqs. (1) through (4).

2. In terms of Accuracy, the results show that PCM tracks the results of MPE much
more closely than ML especially when the degree of competition is positive, hence
it is able to infer explanations that are much more likely to be true under such a
condition.

3. Experiments on the Robustness of the measures with respect to incorrect model
assumptions show that ML is in general more robust, although it is only slightly
more robust than PCM. It performs better than MPE and PCM when the hypotheses
are not competing (dcomp < 0) and in general. MPE and PCM are more robust and
similar to each other when the degree of competition is positive; in general, PCM is
more robust than MPE.

4. Presuming the hypotheses in question to be mutually exclusive appears reasonable
when the hypotheses are competing (dcomp > 0) but could result in a low degree of
agreement (accuracy) when they are not (dcomp < 0).

5. The experimental results also show that it is more reasonable to assume that the
hypotheses are independent than to assume that they are mutually exclusive, both in
the case of competing hypotheses and non-competing hypotheses.

Overall, the results show that PCM performs much better in terms of accuracy and
only slightly worse in terms of robustness than ML. Hence, PCM seems preferable to
ML as a measure for abductive inference. One limitation of the current work is that
MPE has been used as a standard for determining accuracy. Future work will include
simulations that designate hypotheses as true or false and then evaluate all three
measures (MPE, PCM and ML) on an equal footing. Also, in the current work the
different measures are used to infer the single best hypothesis, but since the hypotheses
are not assumed to be mutually exclusive more than one hypothesis could be true.
There is scope for comparing single hypotheses such as H1 or H2 with conjunctive
hypotheses involving two or more hypotheses such as H1&H2. Clearly, such a con-
junction cannot be more probable than one of its conjuncts, so PCM and ML might be
expected to have benefits over MPE in such contexts.
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Abstract. The article aims to introduce four types of integral trans-
forms for functions whose function values belong to a complete residu-
ated lattice. The integral transforms are defined using so-called qualita-
tive residuum based fuzzy integrals and integral kernels in the form of
binary fuzzy relations. We present some of the basic properties of pro-
posed integral transforms including a linearity property that is satisfied
under specific conditions for comonotonic functions.

Keywords: Integral transform · Fuzzy transform · Residuated
lattice · Integral kernel · Fuzzy integral

1 Introduction

Mathematical operators known as integral transforms produce a new function
g(y) by integrating the product of an existing function f(x) and an integral kernel
function K(x, y) between suitable limits. The Fourier and Laplace transforms
belong among the most popular integral transforms and are applied for real or
complex-valued functions. The importance of the integral transforms is mainly
in solving (partial) differential equations, algebraic equations, signal and image
processing, spectral analysis of stochastic processes (see, e.g., [2,21,23]).

In fuzzy set theory we often deal with functions whose function values belong
to an appropriate algebra of truth values as a residuated lattice and its special
variants as the BL-algebra, MV-algebra, IMTL-algebra (see, e.g. [1,5,18]). In
[20], Perfilieva introduced lattice-valued upper and lower fuzzy transforms that
are, among others, used for an approximation of functions. A deeper investiga-
tion of fuzzy transforms properties can be found in [13–17,19,22]. In a recent
article [9], we demonstrated that the lower and upper fuzzy transforms can be
introduced as two type of integral transforms, where the multiplication based
fuzzy integral is applied [3,4]. Namely, for a fuzzy measure space (X,F , μ), an
integral kernel K : X ×Y → L and a function f : X → L, where L is a complete
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residuated lattice, we proposed the integral transforms given by the following
formulas:

F⊗
(K,⊗)(f)(y) =

∫ ⊗
K(x, y) ⊗ f(x) dμ,

F→
(K,⊗)(f)(y) =

∫ ⊗
K(x, y) → f(x) dμ,

where F⊗
(K,⊗) becomes the upper fuzzy transform if μ(A) = 1 for any A ∈ F =

P(X) such that A �= ∅ and F→
(K,⊗)(f) becomes the lower fuzzy transform if

μ(A) = 0 for any A ∈ F = P(X) such that A �= X.1 Moreover, to get the
exact definitions of lower and upper fuzzy transforms, the family of fuzzy sets
{K(·, y) | y ∈ Y } has to form a fuzzy partition of X (see [20]).

The aim of this article is to introduce further integral transforms for resid-
uated lattice-valued functions and analyze their basic properties for which we
consider the residuum based fuzzy integrals that were proposed by Dvořák and
Holčapek in [4] and Dubois, Prade and Rico in [3]. Together with the integral
transform with the multiplication based fuzzy integral introduced in [9] we get a
class of nonstandard integral transforms for the residuated lattice-valued func-
tions based on fuzzy (or also qualitative) integrals that are often used in data
processing. Note that the fuzzy integrals aggregate data and, in this way, provide
summary information that is not directly visible from data. Obviously, the pro-
posed integral transforms also provide an aggregation of function values, mainly,
if the set Y has a significantly smaller size than the set X. This can be used,
for example, in hierarchical decision making, classification problem or signal and
image processing, where kernels can express relationships between different lev-
els of criteria, object attributes and classes or introduce windows for some kind
of filtering, respectively.

The article is structured as follows. In the next section, we recall the definition
of complete residuated lattices and the basic concepts of fuzzy set theory and
the theory of fuzzy measure spaces. The third section introduces two types of
the residuum based fuzzy integrals and shows their basic properties. The integral
transforms for residuated lattice-valued functions are established in the fourth
section. We present their elementary properties and demonstrate the linearity
property under the restriction to comonotonic functions. The last section is a
conclusion.

Because of the space limitation almost all proofs are omitted in this article.

2 Preliminary

2.1 Truth Value Structures

We assume that the structure of truth values is a complete residuated lattice,
i.e., an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 with four binary operations and two
1 Note that we use here the denotation of the integral transforms employed in this

article which is slightly different from [9].
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constants such that 〈L,∧,∨, 0, 1〉 is a complete lattice, where 0 is the least ele-
ment and 1 is the greatest element of L, 〈L,⊗, 1〉 is a commutative monoid (i.e.,
⊗ is associative, commutative and the identity a ⊗ 1 = a holds for any a ∈ L)
and the adjointness property is satisfied, i.e.,

a ≤ b → c iff a ⊗ b ≤ c (1)

holds for each a, b, c ∈ L, where ≤ denotes the corresponding lattice ordering,
i.e., a ≤ b if a∧ b = a for a, b ∈ L. A residuated lattice L is said to be divisible if
a⊗(a → b) = a∧b holds for arbitrary a, b ∈ L. The operation of negation on L is
defined as ¬a = a → 0 for a ∈ L. A residuated lattice L satisfies the law of double
negation if ¬¬a = a holds for any a ∈ L. A divisible residuated lattice satisfying
the law of double negation is called an MV-algebra. A residuated lattice is said
to be linearly ordered if the corresponding lattice ordering is linear, i.e., a ≤ b
or b ≤ a holds for any a, b ∈ L.

Theorem 1. Let {bi | i ∈ I} be a non-empty set of elements from L, and let
a ∈ L. Then

(a) a ⊗ (
∨

i∈I bi) =
∨

i∈I(a ⊗ bi),
(b) a → ∧

i∈I bi =
∧

i∈I(a → bi),
(c) (

∨
i∈I bi) → a =

∧
i∈I(bi → a),

(d) a ⊗ ∧
i∈I bi ≤ ∧

i∈I(a ⊗ bi),
(e)

∨
i∈I(a → bi) ≤ a → ∨

i∈I bi,
(f)

∨
i∈I(bi → a) ≤ ∧

i∈I bi → a.

If L is a complete MV-algebra the above inequalities may be replaced by equalities.

For more information about residuated lattices, we refer to [1,18]. In what fol-
lows, we present two examples of linearly ordered lattice.

Example 1. It is easy to prove that the algebra

LT = 〈[0, 1],min,max, T,→T , 0, 1〉,
where T is a left continuous t-norm (see, e.g., [11]) and a →T b =

∨{c ∈ [0, 1] |
T (a, c) ≤ b}, defines the residuum, is a complete residuated lattice. In this article,
we will refer to complete residuated lattices determined by the �Lukasiewicz t-
norm and nilpotent minimum, i.e.,

T�L(a, b) = max(a + b − 1, 0),

TnM (a, b) =
{

0, if a + b ≤ 1,
min(a, b), otherwise,

respectively. Their residua are as follows:

a →�L b = min(1, 1 − a + b),

a →nM b =
{

1, if a ≤ b,
max(1 − a, b), otherwise.
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In the first case, the complete residuated lattice will be denoted by L�L. Note that
L�L is a complete MV-algebra called the �Lukasiewicz algebra (on [0, 1]), where,
for example, the distributivity of ⊗ over

∧
is satisfied.2 The residuated lattice

determined by the nilpotent minimum is an example of a residuated lattice in
which the above-mentioned distributivity fails.

Example 2. Let a, b ∈ [0,∞] be such that a < b. One checks easily that L[a,b] =
〈[a, b],min,max,min,→, a, b〉, where

c → d =
{

b, if c ≤ d,
d, otherwise, (2)

is a complete residuated lattice. Note that L[a,b] is a special example of a more
general residuated lattice called a Heyting algebra.3

In the end of this section, we introduce two families of subsets of L from
which important algebras of sets are later generated. Let u : P(L) → P(L) be
defined as

u(X) = {x ∈ L | ∃a ∈ X, a ≤ x} (3)

for any X ∈ P(L). Obviously, X ⊆ u(X). A set X ∈ P(L), for which u(X) = X
holds, is called the upper set or upset. We use U(L) to denote the family of all
upsets in L, i.e., U(L) = {u(X) | X ∈ P(L)}.4 Similarly, let � : P(L) → P(L)
be defined as

�(X) = {x ∈ L | ∃a ∈ X, a ≥ x} (4)

for any X ∈ P(L). A set X ∈ P(L) for which �(X) = X holds is called the lower
set or loset. The family of all losets in L is denoted L(L).

2.2 Fuzzy Sets

Let L be a complete residuated lattice, and let X be a non-empty universe of
discourse. A function A : X → L is called a fuzzy set (L-fuzzy set) on X. A value
A(x) is called a membership degree of x in the fuzzy set A. The set of all fuzzy
sets on X is denoted by F(X). A fuzzy set A on X is called crisp if A(x) ∈ {0, 1}
for any x ∈ X. Obviously, a crisp fuzzy set can be uniquely identified with a
subset of X. The symbol ∅ denotes the empty fuzzy set on X, i.e., ∅(x) = 0 for
any x ∈ X. The set of all crisp fuzzy sets on X (i.e., the power set of X) is denoted
by P(X). A constant fuzzy set A on X (denoted as aX) satisfies A(x) = a for
any x ∈ X, where a ∈ L. The sets Supp(A) = {x | x ∈ X & A(x) > 0} and
Core(A) = {x | x ∈ X & A(x) = 1} are called the support and the core of a
fuzzy set A, respectively. A fuzzy set A is called normal if Core(A) �= ∅.

2 Here we mean that
∧

i∈I(a ⊗ bi) = a ⊗ ∧
i∈I bi holds.

3 A Heyting algebra is a residuated lattice with ⊗ = ∧.
4 In [8], a type of topological spaces derived from upsets in L was proposed.
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Let A,B be fuzzy sets on X. The extension of the operations ∧, ∨, ⊗ and →
on L to the operations on F(X) is given by

(A ∧ B)(x) = A(x) ∧ B(x) and (A ∨ B)(x) = A(x) ∨ B(x)
(A ⊗ B)(x) = A(x) ⊗ B(x) and (A → B)(x) = A(x) → B(x)

(5)

for any x ∈ X. Obviously, A ∧ B and A ∨ B are the standard definitions of the
intersection and union of fuzzy sets A and B, respectively, but we prefer here
the symbols of infimum (∧) and supremum (∨) over the classical ∩ and ∪.

Let X,Y be non-empty universes. A fuzzy set K : X × Y → L is called
a (binary) fuzzy relation. A fuzzy relation K is said to be normal, whenever
Core(K) �= ∅, and normal in the first coordinate, whenever Core(K(x, ·)) �= ∅
for any x ∈ X. Similarly, a fuzzy relation is normal in the second component.
A fuzzy relation K is said to be complete normal whenever K is normal in the
first and the second coordinates. A relaxation of the normality of fuzzy relation
is a semi–normal fuzzy relation defined as K �= ∅, i.e., K(x, y) > 0 for certain
(x, y) ∈ X × Y . Similarly one can define semi-normal in the the first (second)
coordinate and complete semi-normal fuzzy relation.

2.3 Fuzzy Measure Spaces

Measurable spaces and functions. Let us consider algebras of sets as follows.

Definition 1. Let X be a non-empty set. A subset F of P(X) is an algebra of
sets on X provided that.

(A1) X ∈ F ,
(A2) if A ∈ F , then X \ A ∈ F ,
(A3) if A,B ∈ F , then A ∪ B ∈ F .

Definition 2. An algebra F of sets on X is a σ-algebra of sets if

(A4) if Ai ∈ F , i = 1, 2, . . . , then
⋃∞

i=1 Ai ∈ F .

It is easy to see that if F is an algebra (σ-algebra) of sets, then the intersection
of finite (countable) number of sets belongs to F . A pair (X,F) is called a
measurable space (on X) if F is an algebra (σ-algebra) of sets on X. Let (X,F)
be a measurable space and A ∈ F(X). We say that A is F-measurable if A ∈ F .
Obviously, the sets {∅,X} and P(X) are σ-algebras of fuzzy sets on X.

A beneficial tool how to introduce an algebra or a σ-algebra of sets on X is
an algebra (σ-algebra) generated by a non-empty family of sets.

Definition 3. Let G ⊆ P(X) be a non-empty family of sets. The smallest alge-
bra (σ-algebra) on X containing G is denoted by alg(G) (σ(G)) and is called the
generated algebra (σ-algebra) by the family G.

Note that the intersection of algebras (σ-algebras) is again an algebra
(σ-algebra), hence, the smallest algebra (σ-algebra) on X containing G always
exists and its unique. Moreover, the generated algebra alg(G), in contrast to
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σ(G), can be simply constructed from the elements G as the set which consists of
all finite unions applied on the set of all finite intersections over the elements of
G and their complements. Note that the construction of a generated σ-algebra
needs a transfinite approach. In this article, we will consider the algebras gener-
ated from the families of upsets U(L) and losets L(L).

Let (X,F) and (Y,G) be measurable spaces, and let f : X → Y be a function.
We say that f is F-G-measurable if f−1(Z) ∈ F for any Z ∈ G. The following
theorem shows that the verification of F-G-measurability of functions can be
simplified if G is a generated algebra (σ-algebra).

Theorem 2. Let G ⊆ P(Y ) be a subset such that Y ∈ G, and let (X,F) be a
measurable space. A function f : X → Y is F-alg(G)-measurable if and only if
f−1(Z) ∈ F for any Z ∈ G.

Proof. (⇒) The implication is a simple consequence of G ⊆ alg(G).
(⇐) Let Q = {Z | f−1(Z) ∈ F}. Note that Q is called the preimage algebra

on Y . From the definition of the generated algebra alg(G) by the family G, we
find that alg(G) ⊆ Q. Hence, we obtain that f−1(Z) ∈ F for any Z ∈ alg(G),
which means that f is F-alg(G)-measurable.

Note that the previous theorem remains true if alg(G) is replaced by σ(G).
In the following three statements we provide sufficient conditions under which
the functions obtained applying the operations to measurable functions remain
measurable. For the purpose of this article, we restrict to fuzzy sets and algebras
determined by upsets and losets.

Theorem 3. Let L be linearly ordered, let (X,F) be an algebra, and let B ⊆
F(X) be a set of all F-alg(U(L))-measurable fuzzy sets. Then f ∧ g, f ∨ g ∈ B
for any f, g ∈ B.

Theorem 4. Let (X,F) be an algebra, and let B ⊆ F(X) be a set of all F-
alg(U(L))-measurable fuzzy sets. If F is closed over arbitrary unions, then

f ⊗ g, f ∧ g, f ∨ g, f, g ∈ B.

Theorem 5. Let L be linearly ordered and dense. Let (X,F) be an algebra, and
let B ⊆ F(X) be a set of all F-alg(U(L))-measurable fuzzy sets. If F is closed
over arbitrary unions, then

f → g ∈ B, f, g ∈ B.

The previous theorems become true if the algebra alg(U(L)) is replaced by
alg(L(L)) and the F-alg(L(L))-measurability is considered.

Fuzzy Measures. The concept of a fuzzy measure on a measurable space (X,F)
is a slight extension of the standard definition of the normed measure where
the unit interval (or the real line) is replaced by a complete residuated lattice L
(e.g., [6,12]).
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Definition 4. A map μ : F → L is called a fuzzy measure on a measurable
space (X,F) if

(i) μ(∅) = 0 and μ(X) = 1,
(ii) if A,B ∈ F such that A ⊆ B, then μ(A) ≤ μ(B).

A triplet (X,F , μ) is called a fuzzy measure space whenever (X,F) is a measur-
able space and μ is a fuzzy measure on (X,F).

Example 3. Let LT be an algebra from Example 1, where T is a continuous
t-norm. Let X = {x1, . . . , xn} be a finite non-empty set, and let F be an arbitrary
algebra. A relative fuzzy measure μr on (X,F) can be given as

μr(A) =
|A|
|X|

for all A ∈ F , where |A| and |X| denote the cardinality of A and X, respectively.
Let ϕ : L → L be a monotonically non-decreasing map with ϕ(0) = 0 and
ϕ(1) = 1. The relative measure μr can be generalized as a fuzzy measure μr

ϕ on
(X,F) given by μr

ϕ(A) = ϕ(μr(A)) for any A ∈ F .

3 Residuum Based Fuzzy Integrals

In the following part, we introduce two types of fuzzy (qualitative) integrals
based on the operation of residuum. The first type of this fuzzy integral was
proposed by Dvořák and Holčapek in [4] for fuzzy quantifiers modelling, the
second type was proposed by Dubois, Prade and Rico in [3], known also under
the name desintegral, for the reasoning with a decreasing evaluation scale. A
comparison of both fuzzy integrals can be found in [10].

3.1 →DH–Fuzzy Integral

The integrated functions are fuzzy sets on X. We consider a modified version of
the original definition of the residuum based fuzzy integral presented in [4].

Definition 5. Let (X,F , ν) be a complementary fuzzy measure space, and let
f : X → L. The →DH-fuzzy integral of f on X is given by

∫ →

DH

f dν =
∧

A∈F

( ∧
x∈A

f(x)

)
→ ν(A). (6)

Note that the original definition in [4] and the previous definition of residuum
based integrals coincide on MV-algebras. The following statement presents basic
properties of →DH-fuzzy integral.

Theorem 6. For any f, g ∈ F(X) and a ∈ L, we have

(i)
∫ →
DH

f dν ≥ ∫ →
DH

g dν if f ≤ g;
(ii)

∫ →
DH

aX dν = ¬a;
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(iii)
∫ →
DH

aX ⊗ f dν ≤ a → ∫ →
DH

f dν;
(iv)

∫ →
DH

aX → f dν ≥ a ⊗ ∫ →
DH

f dν.

Note that the inequality (iii) of the previous theorem becomes the equality
in a complete MV-algebra. An equivalent, and useful from the practical point
of view, definition of →DH–fuzzy integrals can be obtained for F-alg(U(L))-
measurable functions.

Theorem 7. If f : X → L be F-alg(U(L))-measurable, then
∫ →

DH

f dν =
∧
a∈L

(a → ν({x ∈ X | f(x) ≥ a})) . (7)

We say that f, g ∈ F(X) are comonotonic if and only if there is no pair
x1, x2 ∈ X such that f(x1) < f(x2) and simultaneously g(x1) > g(x2). Note that
the Sugeno integral preserves the infimum and supremum for the commonotonic
functions, i.e., it is comonotonically minitive and comonotonically maxitive, (see,
[7, Theorem 4.44]). A similar result for the residuum based fuzzy integral can
be simply derived using the following lemma whose proof can be found in [9].

Lemma 1. Let L be linearly ordered, and let f, g ∈ F(X). Denote Cf =
{Cf (a) | a ∈ L}, where Cf (a) = {x ∈ X | f(x) ≥ a}. Then Cf is a chain
with respect to ⊆, and if f and g are comonotonic, then Cf�g(a) = Cf (a) or
Cf�g(a) = Cg(a) for any a ∈ L, where � ∈ {∧,∨}.
Theorem 8. Let L be linearly ordered, and let f, g ∈ F(X) be comonotonic
F-alg(U(L)-measurable functions. Then

∫ →

DH

(f ∨ g) dν =
∫ →

DH

f dν ∧
∫ →

DH

g dν. (8)

Note that a dual formula to (8), where the infimum is replaced by the supre-
mum and vice versa, is not true in general even if we restrict ourselves to linearly
ordered Heyting algebra (cf. Theorem 3.4 in [9] for the multiplication based fuzzy
integral).

3.2 →DPR–Fuzzy Integrals

The integrated functions are again fuzzy sets on X.

Definition 6. Let (X,F , μ) be a fuzzy measure space, and let f : X → L. The
→DPR-fuzzy integral of f on X is given by

∫ →

DPR

f dμ =
∧

A∈F

(
μc(A) →

∨
x∈A

f(x)

)
. (9)

Note that if A = ∅, then μc(X \∅) → ∨ ∅ = 0 → 0 = 1, hence, the empty set has
no influence on the value of the →DPR–fuzzy integral. The following statement
presents basic properties of →DPR-fuzzy integral.
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Theorem 9. For any f, g ∈ F(X) and a ∈ L, we have

(i)
∫ →
DPR

f dμ ≤ ∫ →
DPR

g dμ if f ≤ g;
(ii)

∫ →
DPR

aX dμ = a;
(iii)

∫ →
DPR

aX ⊗ f dμ ≥ a ⊗ ∫ →
DPR

f dμ;
(iv)

∫ →
DPR

aX → f dμ ≤ a → ∫ →
DPR

f dμ.

Note that the inequality (iv) of the previous theorem becomes the equality in
a complete MV-algebra. An equivalent formula to (9) under the assumption of
F-alg(L(L))-measurability of functions is as follows.

Theorem 10. Let (X,F , μ) be a fuzzy measure space, and let f : X → L be
F-alg(L(L))-measurable. Then∫ →

DPR

f dμ =
∧
a∈L

(μc({x ∈ X | f(x) ≤ a}) → a) . (10)

Lemma 2. Let L be linearly ordered, and let f, g ∈ F(X). Denote Bf =
{Bf (a) | a ∈ L}, where Bf (a) = {x ∈ X | f(x) ≤ a}. Then Bf is a chain
with respect to ⊆, and if f and g are comonotonic, then Bf�g(a) = Bf (a) or
Bf�g(a) = Bg(a) for any a ∈ L, where � ∈ {∧,∨}.
Theorem 11. Let L be linearly ordered, and let f, g ∈ F(X) be comonotonic
F-alg(L(L))-measurable functions. Then∫ →

DPR

(f ∧ g) dμ =
∫ →

DPR

f dμ ∧
∫ →

DPR

g dμ.

4 Integral Transforms for Lattice-Valued Functions

In this section, we propose four types of integral transforms for functions whose
function values are evaluated in a complete residuated lattice. For their def-
initions, we use the residuum based fuzzy integral introduced in Sect. 3. The
integral transforms transform fuzzy sets from F(X) to fuzzy sets from F(Y ).

4.1 →DH–Integral Transforms

In this part, we propose two types of integral transform based on →DH–fuzzy
integral. For their definitions we are inspired by a straightforward generalization
of the lower and upper fuzzy transforms in terms of the multiplication based
fuzzy integral presented in [9]. We start with the definition of →DH–integral
transforms merging an integral kernel and a transformed function by the multi-
plication operation.

Definition 7. Let (X,F , ν) be a complementary fuzzy measure space, and let
K : X × Y → L be a semi-normal in the second component fuzzy relation. A
map F⊗

(K,→DH) : F(X) → F(Y ) defined by

F⊗
(K,→DH)(f)(y) =

∫ →

DH

K(x, y) ⊗ f(x) dν (11)

is called a (K,⊗,→DH)–integral transform.
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It is easy to see that a complementary measure ν and a semi-normal in
the second component fuzzy relation K are parameters of (K,⊗,→DH)–integral
transform. The fuzzy relation K will be called the integral kernel, which corre-
sponds to the standard notation in the theory of integral transforms. Note that
the semi-normality in the second component of integral kernels is considered as
a natural assumption avoiding the trivial case, namely, if K(x, y) = 0 for any
x ∈ X and some y ∈ Y , we trivially obtain F⊗

(K,→DH)(f)(y) = 1 as a consequence
of

∫ →
DH

0X dν = ¬0 = 1 (see Theorem 6(b)).

Remark 1. If an integral kernel K is normal in the second component for any
y ∈ Y and, moreover, the family of sets {Core(K(·, y)) | y ∈ Y } forms a parti-
tion of X, the family of fuzzy sets {K(·, y) | y ∈ Y } is called a fuzzy partition of
X, which is a crucial concept in the definition of lower and upper fuzzy trans-
forms [20]. In this article, we significantly relax the concept of fuzzy partition
because we require only that K(·, y) > 0 for any y ∈ Y . Nevertheless, the fulfill-
ment of certain integral transforms properties usually forces to introduce specific
conditions for integral kernels (see Theorems 4.4 and 4.7 in [9]).

The following theorem shows basic properties of (K,⊗,→DH)–integral trans-
forms.

Theorem 12. For any f, g ∈ F(X) and a ∈ L, we have

(i) F⊗
(K,→DH)(f) ≥ F⊗

(K,→DH)(g) if f ≤ g;
(ii) F⊗

(K,→DH)(f ∧ g) ≥ F⊗
(K,→DH)(f) ∨ F⊗

(K,→DH)(g);
(iii) F⊗

(K,→DH)(f) ∧ F⊗
(K,→DH)(g) ≥ F⊗

(K,→DH)(f ∨ g);
(iv) F⊗

(K,→DH)(aX ⊗ f) ≤ a → F⊗
(K,→DH)(f);

(v) F⊗
(K,→DH)(aX → f) ≥ a ⊗ F⊗

(K,→DH)(f).

Moreover, if L is a complete MV-algebra, the equality in (iv) holds.

Proof. The first three statements are trivial consequences of the monotonicity of
the operation ⊗ (i.e., monotonically non-decreasing) and the →DH–fuzzy integral
(Theorem 6(i)). Using Theorem 6(iii) and the commutativity of ⊗, for any y ∈ Y ,
we have

F⊗
(K,→DH)(aX ⊗ f)(y) =

∫ →

DH

K(x, y) ⊗ (aX(x) ⊗ f(x)) dν

≤ a →
∫ →

DH

K(x, y) ⊗ f(x) dν = a → F⊗
(K,→DH)(f)(y).

Moreover, if L is a complete MV-algebra, the previous inequality becomes the
equality and hence, the equality in (iv) holds. Since K(x, y)⊗ (a → f(x)) ≤ a →
(K(x, y) ⊗ f(x)), using (i) and (iv) of Theorem 6, one can simply prove (v). ��

Let us continue with another type of →DH–integral transforms, where the
integral kernels are combined with the transformed functions using the residuum
operation.
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Definition 8. Let (X,F , ν) be a complementary fuzzy measure space, and let
K : X × Y → L be a semi-normal in the second component fuzzy relation. A
map F→

(K,→DH) : F(X) → F(Y ) defined by

F→
(K,→DH)(f)(y) =

∫ →

DH

K(x, y) → f(x) dν (12)

is called a (K,→,→DH)-integral transform.

Note that if K is not semi-normal in the second component, i.e., K(x, y) = 0
for some y ∈ Y and any x ∈ X, we trivially obtain F→

(K,→DH)(f)(y) = 0 as a
consequence of

∫ →
DH

1X dν = ¬1 = 0 (see Theorem 6(b)). In what follows, we
present some basic properties of the (K,→,→DH)–integral transform.

Theorem 13. For any f, g ∈ F(X) and a ∈ L, we have

(i) F→
(K,→DH)(f) ≥ F→

(K,→DH)(g) if f ≤ g;
(ii) F→

(K,→DH)(f ∧ g) ≥ F→
(K,→DH)(f) ∨ F→

(K,→DH)(g);
(iii) F→

(K,→DH)(f ∨ g) ≤ F→
(K,→DH)(f) ∧ F→

(K,→DH)(g);
(iv) F→

(K,→DH)(aX ⊗ f) ≤ a → F→
(K,→DH)(f);

(v) F→
(K,→DH)(aX → f) ≥ a ⊗ F→

(K,→DH)(f).

Proof. The first three statements are trivial consequences of the monotonicity of
the operation → (i.e., monotonically non-decreasing in the second component)
and the →DH–fuzzy integral (Theorem 6(i)). Since K(x, y) → (a ⊗ f(x)) ≥ a ⊗
(K(x, y → f(x)), then using (i) and (iii) of Theorem 6, for any y ∈ Y , we obtain

F⊗
(K,→DH)(aX ⊗ f)(y) =

∫ →

DH

K(x, y) → (a ⊗ f(x)) dν

≤
∫ →

DH

a ⊗ (K(x, y) → f(x)) dν ≤ a → F⊗
(K,→DH)(f)(y).

Since K(x, y) → (a → f(x)) = a → (K(x, y) → f(x)), using Theorem 6(iv), one
can simply prove (v). ��

One could see that, although, the →DH–integral transforms are defined by
different operations, i.e., ⊗ and →, their basic properties coincide.

We showed in Theorem 8 that under the assumption of the linearity of com-
plete residuated lattices, the →DH–fuzzy integral is a linear operator in the
sense that the →DH–fuzzy integral of the supremum of comonotonic functions
is the infimum of →DH–fuzzy integrals of these functions. The linearity prop-
erty of →DH–fuzzy integral can be used to prove the analogous property for
→DH–integral transforms.

Theorem 14. Let L be a linearly ordered and assume that the algebra F is
closed over arbitrary unions. Let f, g,K(·, y) be F-alg(U(L))-measurable for any
y ∈ Y . If K(·, y) � f and K(·, y) � g are comonotonic for � ∈ {⊗,→}, then

F �
(K,→DH)(f ∨ g) = F �

(K,→DH)(f) ∧ F �
(K,→DH)(g) (13)
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4.2 →DPR–Integral Transform

Similarly to the previous subsection we propose two types of integral transforms
based now on the →DPR–fuzzy integral. Again we start with the definition of
integral transform, where integral kernels and transformed functions are merged
by the multiplication operation.

Definition 9. Let (X,F , μ) be a fuzzy measure space, and let K : X × Y → L
be a semi-normal in the second component fuzzy relation. A map F⊗

(K,→DPR) :
F(X) → F(Y ) defined by

F⊗
(K,→DPR)(f)(y) =

∫ →

DPR

K(x, y) ⊗ f(x) dμ (14)

is called a (K,⊗,→DPR)–integral transform.

The following theorem shows several basic properties of (K,⊗,→DPR)–
integral transforms.

Theorem 15. For any f, g ∈ F(X) and a ∈ L, we have

(i) F⊗
(K,→DPR)(f) ≤ F⊗

(K,→DPR)(g) if f ≤ g;
(ii) F⊗

(K,→DPR)(f ∧ g) ≤ F⊗
(K,→DPR)(f) ∧ F⊗

(K,→DPR)(g);
(iii) F⊗

(K,→DPR)(f ∨ g) ≥ F⊗
(K,→DPR)(f) ∨ F⊗

(K,→DPR)(g);
(iv) F⊗

(K,→DPR)(aX ⊗ f) ≥ a ⊗ F⊗
(K,→DPR)(f);

(v) F⊗
(K,→DPR)(aX → f) ≤ a → F⊗

(K,→DPR)(f);

Proof. Similarly to the proof of Theorem12 one can simply prove all the state-
ments using the properties of →DPR–fuzzy integral presented in Theorem 9. ��
Definition 10. Let (X,F , μ) be a fuzzy measure space, and let K : X × Y → L
be a semi-normal in the second component fuzzy relation. A map F→

(K,→DPR) :
F(X) → F(Y ) defined by

F→
(K,→DPR)(f)(y) =

∫ →

DPR

K(x, y) → f(x) dμ (15)

is called a (K,→,→DPR)–integral transform.

Some of basic properties of (K,→,→DPR)-integral transform are presented
in the following theorem.

Theorem 16. For any f, g ∈ F(X) and a ∈ L, we have

(i) F→
(K,→DPR)(f) ≤ F→

(K,→DPR)(g) if f ≤ g;
(ii) F→

(K,→DPR)(f ∧ g) ≤ F→
(K,→DPR)(f) ∧ F→

(K,→DPR)(g);
(iii) F→

(K,→DPR)(f ∨ g) ≥ F→
(K,→DPR)(f) ∨ F→

(K,→DPR)(g);
(iv) F→

(K,→DPR)(a ⊗ f) ≥ a ⊗ F→
(K,→DPR)(f);
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(v) F→
(K,→DPR)(a → f) ≤ a → F→

(K,→DPR)(f).

Moreover, if L is a complete MV-algebra, the equality in (v) holds.

Again one could notice that although, the →DPR–integral transforms are defined
by different operations, their basic properties are identical. The following linear
property ensured for comonotonic functions is a straightforward consequence of
Theorem 11.

Theorem 17. Let L be a linearly ordered and assume that the algebra F is
closed over arbitrary unions. Let f, g,K(·, y) be F-alg(L(L))-measurable for any
y ∈ Y . If K(·, y) � f and K(·, y) � g are comonotonic for � ∈ {⊗,→}, then

F �
(K,→DPR)(f ∧ g) = F �

(K,→DPR)(f) ∧ F �
(K,→DPR)(g) (16)

5 Conclusion

In this article, we introduced four types of integral transforms, where we used
the residuum based fuzzy (qualitative) integrals, namely, the →DH–fuzzy integral
proposed by Dvořák and Holčapek in [4] and the →DPR–fuzzy integral proposed
by Dubois, Prade and Rico in [3]. We presented some of the basic properties of
the residuum based fuzzy integrals including a linearity property for the comono-
tonic functions which holds in the linearly ordered complete residuated lattices.
Using these properties we provided an initial analysis of elementary properties
of proposed integral transforms. The further development of the theory of inte-
gral transforms for residuated lattice-valued functions is a subject of our future
research, where, among others, we want to focus on the seeking of inverse integral
kernels to be able to approximate the original functions from the transformed
functions. Our motivation comes from the relationship between the lower and
upper fuzzy transforms and their related inverse fuzzy transforms.
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4. Dvořák, A., Holčapek, M.: L-fuzzy quantifiers of type 〈1〉 determined by fuzzy
measures. Fuzzy Sets Syst. 160(23), 3425–3452 (2009)

5. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics, Studies in Logic and Foundations of Mathematics,
vol. 151. Elsevier, Amsterdam (2007)

6. Grabisch, M., Murofushi, T., Sugeno, M. (eds.): Fuzzy Measures and Integrals.
Theory and Applications. Studies in Fuzziness and Soft Computing. Physica Ver-
lag, Heidelberg (2000)



On Integral Transforms for Residuated Lattice-Valued Functions 331

7. Grabish, M.: Set Functions, Games and Capacities in Decision Making. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30690-2

8. Holdon, L.: New topology in residuated lattices. Open Math. 2018(16), 1104–1127
(2018)
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Abstract. This paper is devoted to an optimal trajectory planning prob-
lem with uncertainty in location conditions considered as a problem of con-
strained optimal control for dynamical systems. Fuzzy numbers are used to
incorporate uncertainty of constraints into the classical setting of the prob-
lemunder consideration.The proposed approach applied to dynamical sys-
tems associated with the second order linear differential equations allows
to find an optimal control law at each α-level using spline-based methods
developed in the framework of the theory of splines in convex sets. The
solution technique is illustrated by numerical examples.

Keywords: Dynamical system · Fuzzy constraints · Optimal control

1 Introduction

Optimal control is the process of determining control and state trajectories for
a dynamical system over a period of time to minimize an objective function. In
this paper we analyse the special case of the following control theory problem:

x′(t) = Mx(t) + βu(t), y(t) = γ�x(t), t ∈ [a, b], (1)

considered with the initial condition

x(a) = c. (2)

Here x is a vector-valued absolutely continuous function defined on [a, b], M is a
given quadratic constant matrix and β, γ are given constant vectors of compatible
dimensions. We consider system (1) as the curve z = y(t) generator. The goal is
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to find a control law u ∈ L2[a, b] which drives the scalar output trajectory close
to a sequence of set points at fixed times

{(ti, zi) : i = 1, 2, . . . , n}, where a < t1 < t2 < . . . < tn ≤ b, (3)

by minimization of the objective functional
b∫

a

(u(t))2dt. (4)

In some applications of such type of control problems, for example, doing
trajectory planning in traffic control, we need to be able to generate curves that
pass through predefined states at given times since we need to be able to specify
the position in which the system will be in at a sequence of times (see, e.g., [1]).
In this case we refer to the classical setting of the problem under consideration:

∫ b

a

(u(t))2dt → min
u∈L2[a,b]: x(a)=c, y(ti)=zi, i=1,...,n

, (5)

where x and y depend on u by means of (1). It is shown in [1] and the references
therein that a number of interpolation and path planning problems can be incor-
porated into control problem and studied using control theory and optimization
techniques on Hilbert spaces with efficient numerical spline-based schemes. Con-
trol splines give a richer class of smoothing curves relative to polynomial curves.
They have been proved to be useful for trajectory planning in [2], mobile robots
in [3], contour modelling of images in [4], probability distribution estimation in
[5] and so on.

However, in many situations, it is not really crucial that we pass a trajectory
through these points exactly, but rather that we go reasonably close to them,
while minimizing the objective functional. Such approach is closely related to the
idea of smoothing under fuzzy interpolation conditions. We propose to use fuzzy
numbers Zi, i = 1, . . . , n, in (5) instead of crisp zi, i = 1, . . . , n, to incorporate
uncertainty of location conditions (3) into the model. According to this idea, we
rewrite optimisation problem (5) in the following way:

∫ b

a

(u(t))2dt → min
u∈L2[a,b]: x(a)=c, y(ti)is Zi, i=1,...,n

, (6)

where x and y depend on u by means of (1).
In this paper, the main attention is paid to the special case of problem (1):

M =
(

0 1
−q −p

)
, x =

(
x1

x2

)
, β =

(
0
1

)
, γ =

(
γ1
γ2

)
, c =

(
c1
c2

)
.

For this case problem (6) can be rewritten as

b∫

a

(g′′(t) + pg′(t) + qg(t))2dt −→ min
g∈L2

2[a,b]: g(a)=c1, g′(a)=c2,

y(ti)is Zi, i=1,...,n

, (7)
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where
y(t) = γ1g(t) + γ2g

′(t),

u(t) = g′′(t) + pg′(t) + qg(t),

and g is used to denote x1.

2 Control Problem at α-Levels

In this paper we suggest a method for construction of solutions of (7) and finding
corresponding control laws at each α-level with respect to fuzzy numbers used
in the model by applying results from the theory of splines in convex sets.

To rewrite (7) for α-levels we introduce notations to deal with fuzzy numbers
Zi, i = 1, . . . , n. Fuzzy real number Zi is a normal fuzzy subset of IR that satisfies
the condition: all α-cuts of Zi are closed bounded intervals.

Fig. 1. Triangular fuzzy number

The α-cut (α ∈ (0, 1]) of fuzzy number Zi is the crisp set (Zi)α defined as

(Zi)α = {τ ∈ IR | Zi(τ) ≥ α}.

If α = 0, then α-cut (Zi)0 can be defined as the support of function Zi. The
constraints “y(ti) is Zi, i = 1, . . . , n,” can be written at α-levels using α-cuts:

y(ti) ∈ (Zi)α, i = 1, . . . , n.

For each α-level the α-cut of Zi is the closed interval

(Zi)α = [ZL
i (α), ZU

i (α)].

Therefore problem (7) at α-level can be written in the following form:

b∫

a

(g′′(t) + pg′(t) + qg(t))2dt −→ min
g∈L2

2[a,b]: g(a)=c1, g′(a)=c2,

ZL
i (α)≤y(ti)≤ZU

i (α),i=1,...,n

, (8)
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where
y(t) = γ1g(t) + γ2g

′(t), u(t) = g′′(t) + pg′(t) + qg(t).

We apply triangular fuzzy numbers Zi (see Fig. 1) given by triples
(zL

i , zM
i , zU

i ):

Zi(τ) =

⎧⎨
⎩

(τ − zL
i )(zM

i − zL
i )−1 if τ ∈ [zL

i , zM
i ],

(zU
i − τ)(zU

i − zM
i )−1 if τ ∈ (zM

i , zU
i ],

0, otherwise.

Then

ZL
i (α) = zL

i + α(zM
i − zL

i ), ZU
i (α) = zU

i − α(zU
i − zM

i ) for all α ∈ [0, 1].

3 Spline-Based Approach

We consider problem (8) as the special case of the following more general con-
ditional minimization problem:

||Tg||L2[a,b] −→ min
g∈Lr

2[a,b]: (Ag)0=c1, (Ag)n+1=c2,

ZL
i (α)≤(Ag)i≤ZU

i (α), i=1,...,n

, (9)

where linear operators T : Lr
2[a, b] → L2[a, b], and A : Lr

2[a, b] → IRn+2 are
continuous (here Lr

2[a, b] is the Sobolev space), vector c ∈ IR2 is given and
ZL

i (α), ZU
i (α), i = 1, . . . , n, are known. We assume that A(Lr

2[a, b]) = IRn+2. In
the case under consideration r = 2 and

Tg = g′′ + pg′ + qg = u, (Ag)i = γ1g(ti) + γ2g
′(ti), i = 1, ..., n,

(Ag)0 = g(a), (Ag)n+1 = g′(a). (10)

The solution of problem (9) will be considered for different α-levels. Value α = 1
corresponds to the case when we pass the output trajectory through points (3)
exactly (the case zi = zM

i ). In this case problem (9) turns into the interpolating
problem. For α < 1 problem (9) will be considered applying smoothing splines.

3.1 Interpolating Splines

Problem (9) in the case α = 1 corresponds to the following interpolating problem:

||Tg||L2[a,b] −→ min
g∈Lr

2[a,b]: (Ag)0=c1, (Ag)n+1=c2,

(Ag)i=zM
i , i=1,...,n

. (11)

The conditions of existence and uniqueness of solution of (11) and its charac-
terization follow from the well known theorems (see, e.g., Theorems 4.4.2. and
4.5.9. in [6]).
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Proposition 1. Under the assumption, that kerT ∩ ker(A) = {0} and kerT
is finite-dimensional, the unique solution of problem (11) exists. An element
s ∈ Lr

2[a, b], such as (As)0 = c1, (As)i = zM
i , i = 1, . . . , n, and (As)n+1 = c2,

is a solution of (11) if and only if there exists vector λ ∈ IRn+2 such that

T ∗Ts = A∗λ. (12)

This result implies that a solution of problem (11) is a spline from the space

S(T,A) = {s ∈ Lr
2[a, b] | ∀x ∈ kerA 〈Ts, Tx〉 = 0}.

Here and in the sequel the corresponding inner product is denoted by 〈·, ·〉, and
kerA is the kernel of operator A.

The view of splines from the space S(T,A) in depending on parameters p
and q for the considered case of operators (10) is obtained in [7] using the
general theorem (see Theorem 1 in [8]) and applying functional analysis tools. For
example, if p = q = 0 then elements of S(T,A) are polynomial cubic splines from
C1[a, b], i.e., they are cubic polynomials on each interval [ti−1, ti], i = 1, . . . , n+1,
where t0 = a and tn+1 = b.

3.2 Splines in Convex Sets

Problem (9) in the case α < 1 corresponds to the following smoothing problem
(problem on splines in a convex set):

||Tg||L2[a,b] −→ min
g∈Lr

2[a,b]: (Ag)0=c1, (Ag)n+1=c2,

ZL
i (α)≤(Ag)i≤ZU

i (α), i=1,...,n

(13)

considered under assumption ZL
i (α) < ZU

i (α).
The conditions of existence and uniqueness of solution of (13) follow from

the known theorem (see Theorem 7 in [8]).

Proposition 2. Under the assumption that kerT is finite-dimensional a solu-
tion of problem (13) exists. An element s ∈ Lr

2[a, b], such as (As)0 = c1,
(As)n+1 = c2, ZL

i (α) ≤ (As)i ≤ ZU
i (α), i = 1, . . . , n, is a solution of (13)

if and only if there exists vector λ ∈ IRn+2 such that

T ∗Ts = A∗λ (14)

and components λi, i = 1, . . . , n, satisfy the conditions

λi = 0, if ZL
i (α) < (As)i < ZU

i (α),
λi ≥ 0, if (As)i = ZL

i (α),
λi ≤ 0, if (As)i = ZU

i (α).
(15)

Under the additional assumption kerT ∩ ker(A) = {0} this solution is unique.
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This result implies that a solution of problem (13) belongs to the space
S(T,A). To find it we can use the method of adding-removing interpolation
knots which is considered in details, for example, in [9] or [10]. It is an iterative
method. On the k-th step of it we need to solve the following interpolation
problem: to construct a spline sk ∈ S(T,A) such that the initial conditions
(Ask)0 = c1, (Ask)n+1 = c2, and the interpolation conditions written in the
form (Ask)i = dk

i , i ∈ Ik, are satisfied. The set of indices Ik ⊂ {1, . . . , n}
and numbers dk

i are specified during the iterations. The knots ti for i ∈ Ik are
considered as interpolation knots on the k-th step. We start with a solution s1
obtained using only the initial conditions, i.e., I1 = ∅. The iterative step from Ik

to Ik+1 is done by adding to Ik all indices i ∈ {1, . . . , n} such that the restriction
ZL

i ≤ (Ask)i ≤ ZU
i is not satisfied. For the added index i we take dk+1

i = ZL
i (α)

if ZL
i (α) > (Ask)i, and we take dk+1

i = ZU
i (α) if (Ask)i > ZU

i (α). On the other
hand, we remove from Ik all indices i ∈ Ik such that the rule (15) is not satisfied
for the corresponding coefficient of sk. To finish the k-th step we also denote
dk+1

i = dk
i for i ∈ Ik+1 ∩ Ik. If Ik+1 = Ik then the algorithm ends and the

obtained sk is a solution of (13).

4 Numerical Solutions

In this paper we consider problem (8) as (9) with operator T and A defined
by (10). According to Proposition 1 and Proposition 2 in this case solutions of
(8) at each α-level belong to the space S(T,A). The view of splines from the
corresponding S(T,A) (i.e., the view of solutions of problem (8)) is obtained
in [7]. This view in [7] is given depending on the roots r1, r2 of the equation
r2 + pr + q = 0:

• Class 1 (exponential splines with polynomial coefficients): r1 = r2 ∈ IR \ {0}.
• Class 2 (exponential splines): r1, r2 ∈ IR, r1 �= r2.
• Class 3 (polynomial-exponential splines): r1, r2 ∈ IR, r1 �= r2, r1 �= 0, r2 = 0.
• Class 4 (polynomial splines): r1 = r2 = 0.
• Class 5 (trigonometric splines with polynomial coefficients): r1,2 = ±iη �= 0.
• Class 6 (trigonometric splines with exponential-polynomial coefficients):

r1,2 = ζ ± iη with η �= 0 and ζ �= 0.

The simplest case with p = q = 0, i.e., Tg = g′′, corresponds to the classical
smoothing problem in the theory of splines according to which a solution of (8)
without the initial conditions is a cubic spline. Taking into account the initial
conditions we get the following form for solution s of problem (8) for this case:

s(t) = c1 + c2(t − a) +
λ0

6
(t − a)3+ − λn+1

2
(t − a)2+ +

n∑

i=1

λi(
γ1

6
(t − ti)

3
+ − γ2

2
(t − ti)

2
+)

with the following conditions on coefficients
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λ0 +
n∑

i=1

λi(γ1 + γ2) = 0, λ0a + λn+1 +
n∑

i=1

λi(γ1ti + γ2) = 0.

Here and in the sequel the truncated power function is defined as

(t − tj)k
+ =

{
(t − tj)k, t ≥ tj ,

0, t < tj .

The corresponding control function u could be obtained as u = s′′.
Two numerical examples corresponding to more complicated cases are con-

sidered below for illustration of the proposed technique. Numerical results are
obtained by using Maple.

4.1 Example 1: Exponential Splines

We consider the numerical example for the case p = −3 and q = 2, γ1 = 1 and
γ2 = 0, interval [a, b] = [0, 0.5], the initial conditions are with c1 = 1, c2 = 1. At
equally spaced points of interval [0.1, 0.5] with step size 0.1 we take the following
fuzzy numbers Zi, i = 1, . . . , 5: (4, 5, 6), (1, 2, 3), (5, 6, 7), (2, 3, 4), (6, 7, 8). This
case corresponds to the case of two nonzero roots of characteristic equation
r1 = 1, r2 = 2, i.e., to the case when solutions belong to the class of exponential
splines.

As it is obtained in [7], the class of exponential splines for problem (8) consists
of splines

s(t) = μ1e
r1(t−a) + μ2e

r2(t−a) +
1

2(r21 − r22)
(
(λ0 − λn+1r1)er1(t−a)

r1

− (λ0 − λn+1r2)er2(t−a)

r2
+

n∑
i=1

λi(
γ1
r1

er1|t−ti| + γ2(er1(ti−t)+ − er1(t−ti)+)

− γ1
r2

er2|t−ti| − γ2(er2(ti−t)+ − er2(t−ti)+))). (16)

For the solution of (8) the coefficients are expressed by using the following sys-
tem:

(γ1 + γ2r1)
n∑

i=1

λie
r1ti + (λ0 + λn+1r1)er1a = 0,

(γ1 + γ2r2)
n∑

i=1

λie
r2ti + (λ0 + λn+1r2)er2a = 0, (17)

and the system of interpolating conditions for g(ti) = zM
i , i = 1, . . . , n, in case

α = 1. For α < 1 the interpolating conditions are precised by iterations of the
method of adding-removing knots.
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The corresponding control function u is given by

u(t) =
n∑

i=1

λi(ti − t)0+
r1 − r2

(γ1(er1(ti−t) − er2(ti−t)) + γ2(r1er1(ti−t) − r2e
r2(ti−t))).

(18)
For the considered case the conditions of the uniqueness of solution are satis-

fied. This solution is constructed for four α-levels: α1 = 0, α2 = 0.25, α3 = 0.5
and α4 = 1. The solution of problem (8) in this case is the exponential spline (16)
with coefficients from Table 1. The control law u is obtained by (18). The corre-
sponding graphs are considered in Fig. 2 and Fig. 3. The values of the objective
functional for these α-levels are compared (see Table 2).

Table 1. Coefficients of the solution at α-level for Example 1

α1 = 0 α2 = 0.25 α3 = 0.5 Interpolation (α4 = 1)

μ1 −5.3984 × 101 −4.0037 × 101 −4.4686 × 101 −5.3984 × 101

μ2 5.4984 × 101 4.1037 × 101 4.5686 × 101 5.4984 × 101

λ0 −1.9715 × 104 −1.3245 × 104 −1.5402 × 104 −1.9715 × 104

λ1 5.5236 × 104 3.5234 × 104 4.1902 × 104 5.5236 × 104

λ2 −7.4174 × 104 −4.4561 × 104 −5.4432 × 104 −7.4174 × 104

λ3 7.2526 × 104 4.2014 × 104 5.2185 × 104 7.2526 × 104

λ4 −4.6963 × 104 −2.6943 × 104 −3.3617 × 104 −4.6963 × 104

λ5 1.3092 × 104 7.4793 × 103 9.3504 × 103 1.3092 × 104

λ6 −1.5895 × 102 −1.1711 × 102 −1.3105 × 102 −1.5895 × 102

By comparison of the objective functional at these α-levels from Table 2
we see that the minimum of this functional is obtained for α1 = 0 and the
interpolating spline gives the biggest value.

Table 2. Comparison of the values of the objective functional for Example 1

α α1 = 0 α2 = 0.25 α3 = 0.5 Interpolation (α4 = 1)

‖u‖ 2.8622 × 102 3.7282 × 102 4.5988 × 102 6.34657 × 102

4.2 Example 2: Trigonometric Splines with Polynomial Coefficients

We consider the second numerical example for the case p = 0 and q = 1,
γ1 = 1 and γ2 = 0, interval [a, b] = [0, 0.5], the initial conditions are given
with c1 = 1 and c2 = 1. At equally spaced points in interval [0.1, 0.5] with
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Fig. 2. State trajectories for Example 1 (solid line for α = 1, dash line for α = 0.25,
dash dot line for α = 0.5, long dash line for α = 0)

step size 0.1 we take the following values of fuzzy numbers Zi, i = 1, . . . , 5:
(2, 3, 4), (0, 1, 2), (4, 5, 6), (1, 2, 3), (3, 4, 5). This case corresponds to the case of
complex roots of characteristic equation r1,2 = ± i (for this case η = 1), i.e.,
to the case when solutions belongs to the class of trigonometric splines with
polynomial coefficients.

As it is obtained in [7], the class of trigonometric splines with polynomial
coefficients for problem (8) in the considered case consists of splines

s(t) = c1cos (η(t−a))+
c2
η

sin (η(t−a))+
λ0

2η3
(η(t−a)cos (η(t−a))−sin (η(t−a)))

+
λn+1

2η
(t − a)sin (η(t − a)) +

1
2

n∑
i=1

λi(
γ1
η3

sin (η(t − ti)+)

− (t − ti)+
η2

(γ1cos (η(t − ti)) + γ2ηsin (η(t − ti))). (19)

The coefficients fulfil the following conditions

n∑
i=1

λi(γ1sin (ηti) + γ2ηcos (ηti)) + λ0sin (ηa) + λn+1ηcos (ηa) = 0,
n∑

i=1

λi(γ1cos (ηti) − γ2ηsin (ηti)) + λ0cos (ηa) − λn+1ηsin (ηa) = 0,
(20)

and the system of the interpolating conditions

γ1s(ti) + γ2s
′(ti) = zM

i , i = 1, . . . , n,

in case α = 1. For α < 1 the interpolating conditions are specified by iterations
of the method of adding-removing knots.
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Fig. 3. Control law for Example 1 (solid line for α = 1, dash line for α = 0.25, dash
dot line for α = 0.5, long dash line for α = 0)

The corresponding control function u is given by

u(t) =
n∑

i=1

λi(
γ1
η

sin η(ti − t)+ + γ2(ti − t)0+cos η(ti − t)). (21)

For the considered case the conditions on the uniqueness of solution are satisfied.
This solution is constructed for four α-levels: α1 = 0, α2 = 0.5, α3 = 0.75 and
α4 = 1. The solution of problem (8) in this case is the trigonometric splines
with polynomial coefficients (19) with coefficients from Table 3. The control law
u could be obtained by (21). The corresponding graphs are considered in Fig. 4
and Fig. 5. The values of the objective functional for considered α-levels are
compared (see Table 4).

Table 3. Coefficients of the solutions at α-levels for Example 2

α1 = 0 α2 = 0.5 α3 = 0.75 Interpolation (α4 = 1)

λ0 9.0736 × 103 1.8084 × 104 2.2590 × 104 2.7095 × 104

λ1 2.0746 × 104 4.1800 × 104 5.2327 × 104 6.2854 × 104

λ2 −3.1238 × 104 −6.1490 × 104 −7.6616 × 104 −9.1742 × 104

λ3 5.6274 × 104 1.1130 × 105 1.3881 × 105 1.6633 × 105

λ4 −1.3993 × 105 −2.8177 × 105 −3.5268 × 105 −4.2360 × 105

λ5 8.6636 × 105 1.7523 × 105 2.1953 × 105 2.63837 × 105

λ6 4.6398 × 102 8.6472 × 102 1.0650 × 103 1.2654 × 103
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Table 4. The values of the objective functional for Example 2

α α1 = 0 α2 = 0.5 α3 = 0.75 Interpolation (α4 = 1)

‖u‖ 2.8012 × 103 5.6865 × 103 7.1292 × 103 8.5718 × 103

Fig. 4. State trajectories for Example 2 (solid line for α = 1, dash line for α = 0.5,
dash dot line for α = 0.75, long dash line for α = 0)

Fig. 5. Control law for Example 2 (solid line for α = 1, dash line for α = 0.5, dash dot
line for α = 0.75, long dash line for α = 0)

By comparison of the values of the objective functional from Table 4 we see
that the minimum of this functional is obtained for α1 = 0 and the interpolating
spline gives the biggest value.
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5 Conclusion

The proposed method can be effectively used for dynamical systems associated
with linear differential equations (the restriction on the order of equations is not
essential) when uncertainty in location conditions is described by fuzzy num-
bers Zi, i = 1, . . . , n (the restriction on the triangular type of fuzzy numbers
is not essential). It seems natural to incorporate into the model also uncer-
tainty of the sequence of times to be considered. For such purpose fuzzy numbers
Ti, i = 1, . . . , n, could be used instead of crisp ti, i = 1, . . . , n. In this case the
constraints

y(ti) is Zi, i = 1, . . . , n,

could be rewritten using IF-THEN rules as

IF t is Ti THEN y(t) is Zi, i = 1, . . . , n.

The future research could be devoted to development of the proposed approach
for the following problem

∫ b

a

(u(τ))2dτ → min
u ∈ L2[a, b] : x(a) = c,

IF t is Ti THEN y(t) is Zi, i = 1, . . . , n

considered in the context of (1)–(4).
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Abstract. This article develops a regression framework with a symmet-
ric tensor response and vector predictors. The existing literature involv-
ing symmetric tensor response and vector predictors proceeds by vec-
torizing the tensor response to a multivariate vector, thus ignoring the
structural information in the tensor. A few recent approaches have pro-
posed novel regression frameworks exploiting the structure of the sym-
metric tensor and assume symmetric tensor coefficients corresponding to
scalar predictors to be low-rank. Although low-rank constraint on coef-
ficient tensors are computationally efficient, they might appear to be
restrictive in some real data applications. Motivated by this, we propose
a novel class of regularization or shrinkage priors for the symmetric ten-
sor coefficients. Our modeling framework a-priori expresses a symmetric
tensor coefficient as sum of low rank and sparse structures, with both
these structures being suitably regularized using Bayesian regulariza-
tion techniques. The proposed framework allows identification of tensor
nodes significantly influenced by each scalar predictor. Our framework
is implemented using an efficient Markov Chain Monte Carlo algorithm.
Empirical results in simulation studies show competitive performance of
the proposed approach over its competitors.

Keywords: Low-rank structure · Symmetric tensor predictor ·
Shrinkage prior · Spike and slab prior

1 Introduction

This article is motivated by a variety of applications, in which a sample of sym-
metric tensors is available along with a few scalar variables of interest. Analogous
to rows and columns of a matrix, various axes of a tensor are known as tensor
modes and the indices of a tensor mode are often referred to as “tensor nodes”.
A tensor is known to be symmetric if interchanging modes results in the same
tensor. Entries in a tensor are known as “tensor cells”. In our motivating appli-
cations, each sample point is represented by its own symmetric tensor, and the
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tensor nodes are labeled and shared across all sample points through a regis-
tration process. The goals of such scientific applications are two fold. First, it
is important to build a predictive model to assess the change of the symmetric
tensor response as the predictors of interest vary. A more important scientific
goal becomes identifying nodes of the symmetric tensor significantly impacted
by each predictor.

Although there is a gamut of applications involving symmetric tensors, our
work is specifically motivated by scientific applications pertaining to brain con-
nectomics. In such applications the dataset contains brain network information
along with a few observable phenotypes (e.g., IQ, presence or absence of any neu-
ronal disorder, age) for multiple subjects. Brain network information for each
subject is encoded within a symmetric matrix of dimension V × V , with V as
the number of regions of interest (ROI) a human brain is parceled into following
a popular brain atlas. The (k, l)th cell of the matrix consists of the number of
neuron connections between the k-th and l-th regions of interest (ROI). Thus,
each mode of this symmetric matrix (when viewed as a 2-D symmetric tensor)
consists of V nodes (V = 68 when Desikan-Killany brain atlas is followed [1]),
each corresponding to a specific ROI in the human brain. The most important
scientific goal here boils down to making inference on brain regions of interest
(ROIs) and their inter-connections significantly associated with each phenotypic
predictor [9].

One approach is to vectorize the symmetric tensor and cast the modeling
problem as a high dimensional multivariate reduced rank sparse regression frame-
work with the vectorized tensor response and scalar predictors. There are ade-
quate literature on frequentist penalized optimization [15], as well as on Bayesian
shrinkage [2] which deal with model fitting and computational issues with high
dimensional multivariate reduced rank regression models. Although computa-
tionally efficient, these approaches treat the cells of the symmetric tensor coeffi-
cients as if they were fully exchangeable, ignoring the fact that coefficients that
involve common tensor nodes can be expected to be correlated a priori. Ignoring
this correlation may appear to be detrimental in terms of model performance.
Additionally, such modeling framework does not directly lead to the identifica-
tion of nodes significantly associated with each predictor.

We develop a symmetric tensor response regression model with a symmetric
tensor response and scalar predictors. The symmetric tensor coefficients cor-
responding to each predictor in this regression is assigned a novel Bayesian
shrinkage prior that combines ideas from low-rank parallel factor (PARAFAC)
decomposition methods, spike-and-slab priors and Bayesian high dimensional
regularization techniques to generate a model that respects the tensor structure
of the response. These structures are introduced to achieve several inferential
goals simultaneously. The low-rank structure is primarily assumed to capture
the interactions between different pairs of tensor nodes, the node-wise sparsity
offers inference on various tensor nodes significantly associated with a predictor.
The Bayesian regularization structure allows appropriate shrinkage of unimpor-
tant cell coefficients towards zero while minimally shrinking the important cell
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coefficients. All structures jointly achieve parsimony and deliver accurate char-
acterization of uncertainty for estimating parameters and identifying significant
tensor nodes. The proposed approach finds excellent synergy with the recent
literature on bilinear relational data models [4,7], multiway regression models
[6] and other object oriented regression models [3], where low-rank and/or reg-
ularization structures are imposed on parameters.

The proposed framework is similar to but distinct from the recent devel-
opments in high dimensional regressions with multidimensional arrays (tensors)
and other object oriented data. For example, recent literature that builds regres-
sion models with a scalar response and tensor predictors [6] is less appealing in
this context, since it does not incorporate the symmetry constraint in the tensor.
In the same vein, [5] formulate a Bayesian tensor response regression approach
that is built upon a novel multiway stick breaking shrinkage prior on the tensor
coefficients. While [5] is able to identify important tensor cells, it does not allow
detection of tensor nodes influenced by a predictor. Moreover, these approaches
have not been extended to accommodate scenarios other than a tensor response
with continuous cell entries and do not directly incorporate the symmetry con-
straint in the tensor coefficient corresponding to a predictor. Also, unlike these
approaches, our approach does not assume a low-rank representation of ten-
sor coefficients; hence allowing more flexible structure to analyze impact of the
predictors on tensor cells and interaction between tensor nodes. A work closely
related to our framework develops shrinkage priors in a regression framework
with a scalar response and an undirected network predictor, expressed in the
form of a symmetric matrix [3]. However, they treat the tensor as a predictor,
whereas we treat it as a response. This difference in the modeling approach leads
to a different focus and interpretation. The symmetric tensor predictor regres-
sion focuses on understanding the change of a scalar response as the symmetric
tensor predictor varies, while regression with symmetric tensor response aims to
study the change of the symmetric tensor as the predictors vary.

Rest of the article flows as follows. In Sect. 2 the model and prior distributions
on parameters are introduced. Section 2 also briefly discusses posterior compu-
tation, where as Sect. 3 presents simulation studies to validate our approach.
Finally, Sect. 4 concludes the article with an eye to the future work.

2 Model Development and Posterior Computation

2.1 Model and Prior Distributions

For i = 1, ..., n, let yi = ((yi,(k1,...,kD)))V
k1,...,kD=1 ∈ Y ⊆ R

V ×···×V denote
the D-way symmetric tensor response with dummy diagonal entries and zi =
(zi1, ..., zip)′ be p predictors of interest corresponding to the ith individ-
ual. The symmetric constraint in the tensor response implies yi,(k1,...,kD) =
yi,(P (k1),...,P (kD)), with P (·) being any permutation of {k1, ..., kD}. Due to the diag-
onal entries being dummies in the symmetric tensor response, it is enough to build a
probabilistic model for yupper = {yi,k : k = (k1, ..., kD), 1 ≤ k1 < · · · < kD ≤ V }.
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For the sake of this article, we assume yi,k ∈ R and propose

yi,k = γ0 + Γ1,kzi1 + · · · + Γp,kzip + εi,k , εi,k
iid∼ N(0, σ2), (1)

where Γ1,k , ..., Γp,k are the k = (k1, ..., kD)th cells of the V × · · · × V symmetric
coefficient tensors Γ 1, ...,Γ p with dummy diagonal entries, respectively. Here
Γs,k , s = 1, ..., p, is the coefficient corresponding to the sth predictor of interest
on the k = (k1, ..., kD)th cell of the symmetric tensor response. The coefficient
γ0 ∈ R is the intercept in the regression model (4).

To account for association between the tensor response y and predictors
z1, ..., zp, we propose a shrinkage prior distribution on Γs,k , s = 1, ..., p, repre-
sented as a location and scale mixture of normal distributions. In particular, the
distribution of Γs,k is assumed to be conditionally independent normal distribu-
tion with

Γs,k ∼ N

(
R∑

r=1

λs,rγ
(r)
s,k1

· · · γ(r)
s,kD

, κs,k σ2

)
, k = (k1, ..., kD), 1 ≤ k1 < · · · < kD ≤ V.

(2)
(2) implies E[Γs,k |σ2, κs,k ] =

∑R
r=1 λs,rγ

(r)
s,k1

· · · γ(r)
s,kD

, i.e., the prior distribu-
tion of Γ s is centered on a rank-R PARAFAC [10] decomposed tensor. The
PARAFAC or parallel factor decomposition is a multiway analogue to the two-
dimensional factor modeling of matrices. In particular it provides a low-rank
structure to the mean function of Γ s. Note that, in the tensor regression litera-
ture, it is a fairly common practice to assume a low-rank structure for Γ s directly
[6]. In contrast, the prior distribution in (2) centers on a low-rank PARAFAC/CP
representation [10], precluding any additional imposition of a low-rank structure
on Γ s a priori. This allows more flexibility in the structure of the coefficients.
κs,k is the scale parameter corresponding to each Γs,k controlling the local vari-
ability of each coefficient a priori and λs,r ∈ {0, 1}, r = 1, ..., R, are introduced to
assess the effect of the r-th summand on the mean of Γs,k . In particular, λs,r = 0
implies that the r-th summand of the low-rank factorization is not informative
to predict the response.

To develop a data dependent learning of nonzero λs,r’s, we propose λs,r ∼
Ber(θs,r), θs,r ∼ Beta(1, rc), c > 1, a priori. The hyper-parameters in the beta
distribution are set so as to penalize the usage of large number of summands in
the PARAFAC decomposition, which protects the model from over-fitting. Define
γs,v = (γ(1)

s,v , ..., γ
(R)
s,v )′ ∈ R

R as the tensor node specific vectors (for v = 1, ..., V )
describing Γ s. In the course of identifying important tensor nodes significantly
associated with the sth predictor, we note that the v-th node has minimal effect
on the sth predictor if γs,v = 0. Thus, in order to directly infer on γs,v, a
spike-and-slab mixture distribution prior [8] is assigned on γs,v as below

γs,v ∼
{

N(0,Hs), if ξs,v = 1
δ0, if ξs,v = 0 (3)

where δ0 is the Dirac-delta function at 0 and Hs is a covariance matrix of order
R×R. The rest of the hierarchy is completed by setting κs,k ∼ Exp(ζ2/2), ξs,v ∼
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Ber(Δs), Hs ∼ IW (I, ν), Δs ∼ U(0, 1), where IW stands for the inverse wishart
distribution. Finally, γ0 and σ2 are assigned N(μγ , σ2

γ) and IG(a,b) priors respec-
tively, IG corresponding to the inverse gamma density. The posterior distribution
of ξs,v is monitored and the vth tensor node is related to the sth predictor if the
posterior probability of {ξs,v = 1} turns out to be greater than 0.5.

A few remarks are in order. Note that, if κs,k = 0 for all k, then Γ s assumes
an exact low-rank decomposition given by, Γs,k =

∑R
r=1 λs,rγ

(r)
s,k1

· · · γ(r)
s,kD

. Also,
if γs,v = 0, then a priori Γs,k follows an ordinary Bayesian lasso shrinkage prior
distribution [12] for all k with some kl = v. In general, Γs,k a priori can be
expressed as Γs,k =

∑R
r=1 λs,rγ

(r)
s,k1

· · · γ(r)
s,kD

+ Γs,2,k , where Γs,2,k following an
ordinary Bayesian lasso shrinkage prior [12].

2.2 Posterior Computation

Although summaries of the posterior distribution cannot be computed in closed
form, full conditional distributions for all the parameters are available and cor-
respond, in most cases, to standard families. Thus, posterior computation can
proceed through a Markov chain Monte Carlo algorithm. Details of the Markov
chain Monte Carlo algorithm with the conditional posterior distributions are
provided in the Appendix. We run the MCMC chain for 15000 iterations. With
the first 5000 as burn-ins, the posterior inference is drawn on the L = 10000 post
burn-in draws suitably thinned. In order to identify whether the v-th tensor node
is significantly related to the sth predictor, we rely on the post burn-in L samples
ξ
(1)
s,v , . . . ., ξ

(L)
s,v of ξs,v. Node v is said to be influential if 1

L

∑L
l=1 ξ

(l)
s,v > 0.5. Here

1
L

∑L
l=1 ξ

(l)
s,v corresponds to the empirical estimate of the posterior probability of

{ξs,v = 1}. We also assess the point estimates on tensor cell coefficients Γs,k and
present uncertainty in the estimation procedure.

3 Simulation Studies

3.1 Simulation Settings

This article illustrates the performance of our proposed approach referred to as
the symmetric tensor regression (STR) along with some of its competitors under
various simulation scenarios. In fitting our model, we fix the hyper-parameters
at a = 1, b = 1, μγ = 0, σγ = 1, ν = 10 and ζ = 1. We compare our approach
to ordinary least squares (LS), which proposes a cell by cell regression of the
response on the predictors. Although a naive approach, LS is included due to
its widespread use in neuro-imaging applications. Additionally, we employ the
Higher-Order Low-Rank Regression (HOLRR) [14] as a competitor. HOLRR
provides a framework for higher order regression with a tensor response and
scalar predictors. A comparative assessment of these three methods will help
evaluate possible gains in inference in our method for taking into account the
symmetry in the tensor response.
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For the sake of simplicity, we work with p = 1 (hence get rid of the subscript
s hereon), with the scalar variable of interest zi’s are drawn iid from N(0, 1).
We also set D = 2. The response is simulated from the following model

yi,k = γ∗
0 + Γ ∗

k zi + εi,k , εi,k
iid∼ N(0, σ∗2), (4)

where γ∗
0 is the true intercept and Γ ∗ = ((Γ ∗

k ))V
k1,k2=1 is the true symmetric

tensor coefficient. The true intercept γ∗
0 is set to be 0.2. To simulate the true

symmetric tensor coefficient Γ ∗, we draw V tensor node specific latent variables
γ∗

v = (γ∗(1)
v , ..., γ

∗(R∗)
v )′, v = 1, ..., V , each of dimension R∗, from a mixture

distribution given by γ∗
v ∼ π∗

1NR∗(0.61, 0.5I) + (1 − π∗
1)δ0. We then construct

Γ ∗ under two different simulation scenarios, referred to as Simulation 1 and
Simulation 2, as described below.

Simulation 1
Simulation 1 constructs cell coefficients Γ ∗

k =
∑R∗

r=1 γ
∗(r)
k1

· · · γ∗(r)
kD

. Thus, the
coefficient tensor assumes a symmetric rank-R∗ PARAFAC decomposition. Note
that, if γ∗

v = 0, then the vth tensor node specific variable has no impact in
describing the relationship between y and z. Hence (1 − π∗

1) is the probability
of a tensor node being not related to zi. We refer to it as the node sparsity
parameter. In particular, the node sparsity parameter indicates the proportion
of nodes in the tensor response (among the total of V tensor nodes) which
are not related to the predictor. Notably, this data generation mechanism in
Simulation 1 is quite similar (although not identical) to our fitted model. Hence,
the goal of this first simulation is to evaluate the ability of the model to recover
the true data-generation mechanism. In particular, we consider four cases under
Simulation 1 (see Table 1) by varying the fitted rank of PARAFAC (R), true
rank of Γ ∗ (R∗), sample size (n), no. of tensor nodes (V ) and the tensor node
sparsity (defined before).

Table 1. First six columns present the cases under Simulation 1. The next seven
columns present the cases under Simulation 2.

Simulation 1 Simulation 2

Cases R R∗ n V π∗
1 Cases R R∗ n V π∗

1 π∗
2

1 4 2 70 30 0.4 1 4 2 70 30 0.4 0.5

2 3 2 70 60 0.6 2 3 2 70 60 0.6 0.5

3 5 2 100 30 0.5 3 4 2 70 30 0.4 0.7

4 5 3 100 60 0.7 4 4 2 70 30 0.6 0.7
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Simulation 2
Under Simulation 2, we first simulate node specific latent variables, similar to
Simulation 1. If either of γ∗

k1
, ...,γ∗

kD
is 0, we set Γ ∗

k = 0. Otherwise, Γ ∗
k is

simulated from a mixture distribution π∗
2N(0, 1) + (1 − π∗

2)δ0, where (1 − π∗
2) is

referred to as the cell sparsity parameter and δ0 refers to the Dirac delta function
at 0. Unlike Simulation 1, Simulation 2 does not necessarily leads to a low-rank
structure of Γ ∗. Hence this simulation is ideal for investigating the performance
under model mis-specification. Table 1 shows different cases under Simulation 2
where the model is investigated.

We compare the three competitors in terms of their accuracy of estimating
Γ ∗. The accuracy of estimating Γ ∗ is measured by the scaled mean squared
error (MSE) defined as ||Γ ∗ − Γ̂ ||2/||Γ ∗||2, where Γ̂ corresponds to a suitable
point estimate of Γ , e.g., the posterior mean of Γ for STR. || · || refers to the
Frobenius norm of a matrix. Additionally, we quantify the uncertainty offered by
each these competitors through the coverage and length of 95% credible intervals
of Γk , averaged over all k. Length and coverage of posterior 95% credible intervals
for each Γk are available empirically from the post burn-in MCMC samples of
Γ for our proposed approach. On the other hand, the 95% confidence intervals
of frequentist competitors are constructed using a bootstrap approximation. To
infer on the performance of STR in terms of identifying tensor nodes significantly
associated with zi, we present True Positive Rate (TPR) and False Positive Rate
(FPR) with different choices of the cut-off t for all simulation cases. As mentioned
earlier, such measures are not available for our competitors since they are not
designed to detect tensor nodes related to the predictor of interest.

3.2 Simulation Results

Scaled MSE, coverage and length of 95% CI for all competitors are presented
under Simulations 1 and 2 in Tables 2 and 3, respectively. With no model mis-
specification under Simulation 1, STR is showing significantly better perfor-
mance than LS and HOLRR under all four cases. The low-rank structure of
HOLRR facilitates its superior performance over LS for larger V/n ratio. How-
ever, as V/n ratio increases, HOLRR loses its edge over LS. All three competitors
show over-coverage under Simulation 1, with STR producing substantially nar-
rower credible intervals. Moreover, for a fixed n, the credible intervals tend to
be more narrow with increasing V for all competitors.

Even under model mis-specification in Simulation 2, STR outperforms all
competitors in cases with smaller V and higher node sparsity (Cases 1 and
3), as seen in Table 3. However, with a larger V in case 2, LS and STR are
competitive to each other. Since HOLRR is constructed on variants of sparsity
within low-rank principle, it loses edge over LS in terms of MSE in these cases.
Comparing MSE of STR between cases 3 and 4, we find that MSE increases as
the node sparsity decreases. Similarly, comparing Cases 1 and 3 reveals adverse
effect of decreasing cell sparsity on MSE of STR. It is generally found that the
effect of node sparsity is more profound than the effect of cell sparsity on the
performance.
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Table 2. Mean Squared Error (MSE), average coverage and average length of 95%
credible interval for STR, LS and HOLRR are presented for cases under Simulation 1,
with the lowest MSE in each case is boldfaced.

Case Competitors

SGTM LS HOLRR

1 MSE ×103 3.4 46 42

Avg. cov 0.99 0.99 0.99

Avg. length 0.10 1.74 1.68

2 MSE ×103 1.3 18 12

Avg. cov 0.99 0.99 0.99

Avg. length 0.08 2.79 2.63

3 MSE ×103 1.9 26 35

Avg. cov 0.99 0.99 0.99

Avg. length 0.10 2.53 2.37

4 MSE ×103 0.8 5.1 8.5

Avg. cov 0.99 1.00 0.99

Avg. length 0.21 4.82 4.74

Table 3. Mean Squared Error (MSE), average coverage and average length of 95%
credible interval for STM, LS and HOLRR are presented for cases under Simulation 2,
with the lowest MSE in each case in boldfaced.

Case Competitors

SGTM LS HOLRR

1 MSE 0.09 0.21 0.30

Avg. cov 0.96 0.97 0.89

Avg. length 0.12 0.95 0.78

2 MSE 0.23 0.29 0.21

Avg. cov 0.89 0.98 0.81

Avg. length 0.14 1.53 0.78

3 MSE 0.13 0.22 0.30

Avg. cov 0.96 0.98 0.92

Avg. length 0.15 1.09 0.88

4 MSE 0.16 0.15 0.32

Avg. cov 0.92 0.99 0.92

Avg. length 0.26 1.69 1.29

Moving onto uncertainty characterization, STR shows close to nominal cover-
age along with its competitors in cases 1, 2 and 4 when V is small. With increasing
V , coverage of STR and HOLRR drops below 0.90. Similar to Simulation 1, STR
demonstrates sufficiently narrower credible intervals than HOLRR in all cases. LS
offers over-coverage with much wider 95% credible intervals in all cases.
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Table 4. True Positive Rates (TPR) and False Positive Rates (FPR) in identifying
nodes which are significantly related to the predictor under all cases with cut-offs
t = 0.1, 0.5, 0.9.

Simulation Accuracy of tensor node identification

TPR
(t = 0.1)

TPR
(t = 0.5)

TPR
(t = 0.9)

FPR
(t = 0.1)

FPR
(t = 0.5)

FPR
(t = 0.9)

1 Case 1 1.00 1.00 1.00 0.00 0.00 0.00

Case 2 1.00 1.00 1.00 0.00 0.00 0.00

Case 3 1.00 1.00 1.00 0.00 0.00 0.00

Case 4 1.00 1.00 1.00 0.00 0.00 0.00

2 Case 1 1.00 0.90 0.60 0.00 0.00 0.00

Case 2 1.00 1.00 0.84 0.00 0.00 0.00

Case 3 0.98 0.80 0.55 0.24 0.00 0.00

Case 4 1.00 1.00 0.76 0.24 0.15 0.00

Since LS and HOLRR are not designed to detect nodes significantly related
to the predictor, we focus our inference on STR for node detection. To this end,
we choose three cur-off values t = 0.1, 0.5, 0.9 and present TPR and FPR values
for our approach. STR yields the posterior probability of a node being related
to the predictor of interest to be very close to 1 or 0 for all reasonable values of
cut-off t, depending on whether a tensor node is related or not to the predictor of
interest in the truth, respectively. As a consequence, TPR and FPR values (see
Table 4) turn out to be close to 1 and 0, respectively, for all the simulation cases,
indicating a close to perfect active node detection. The posterior distributions
of γ0 also appear to be centered around the truth (not shown here).

4 Conclusion and Future Work

The overarching goal of this article is to propose a symmetric tensor regression
framework with a symmetric tensor response and scalar predictors. The model is
aimed at identifying tensor nodes significantly related to each scalar predictor.
Unlike the existing approaches, the proposed framework does not assume any
low-rank constraint on the symmetric tensor coefficients. Rather, we propose a
tensor shrinkage prior which decomposes the symmetric tensor coefficients into
low-rank and sparse components a priori. The low-rank component is further
assigned a novel hierarchical mixture prior to enable identification of tensor
nodes related to each predictor. The sparse component is equipped with Bayesian
regularization or shrinkage priors to enable accurate estimation of tensor cell
coefficients. Detailed simulation study with data generated under the true model
and mis-specified model demonstrates superior performance of our approach
compared to its competitors.
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Although there is a considerable literature on theoretical understanding of
Bayesian shrinkage priors in high dimensional regression, there is a limited liter-
ature on theoretical aspects of shrinkage prior on tensor coefficients. In future,
we will focus on developing conditions for posterior consistency of the proposed
approach under suitable conditions imposed on tensor shrinkage priors. It is also
instructive to employ other shrinkage priors on Γs,2,k from the class of global-
local shrinkage prior distributions [13] and provide a comparative understanding
of their performances. Finally, we would like to extend our approach when each
entry in yi,k are categorical or count in nature. Some of these constitute our
future work.

Appendix

The full conditional distributions of parameters for implementing the MCMC is
given by following.

1. γ0|− ∼ N
[∑n

i=1 1T (y i−
∑p

s=1 Γ szis)/σ2

(nq)/σ2+1 , 1
(nq)/σ2+1

]

2. κs,k | − ∼ RGIG

[
1
2 ,

(Γs,k −∑R
r=1 λs,rγ

(r)
s,k1

···γ(r)
s,kD

)2

σ2 , ζ2
]

, s = 1, ..., p; 1 ≤ k1 <

· · · < kD ≤ V
3. Let Z be an n × p matrix with the ith row as (zi1, ..., zip). Let yk =

(y1,k , ..., yn,k )′, Dk = diag(κ1,k , ..., κp,k ), mk = (
∑R

r=1 λs,rγ
(r)
s,k1

· · · γ(r)
s,kD

:
1 ≤ s ≤ p)′ and γk = (Γ1,k , ..., Γp,k)′. Let ΣΓ = σ2(Z ′Z + D−1

k )−1,
μΓ = ΣΓ

[
Z ′(yk − γ01) + D−1

k mk

]
/σ2. Then γk |− ∼ N(μΓ ,ΣΓ ).

4. σ2|− ∼ IG(a + (nq)/2 + (pq)/2, b +
∑n

i=1 ||yi − ∑p
s=1 Γ szis||2/2 +

∑p
s=1

∑
k(Γs,k − ∑R

r=1 λs,rγ
(r)
s,k1

· · · γ(r)
s,kD

)2)
5. Let Kv = {k : ∃ l, s.t., kl = v} υs = (Γs,k : k ∈

Kv). Define J as a matrix of the order #Kv × R with a rep-
resentative row (

∏
kl �=v λs,1γ

(1)
s,kl

, ...,
∏

kl �=v λs,Rγ
(R)
s,kl

). Define, wγ s,v
=

(1−Δs)N(υs|0,σ2I)
(1−Δs)N(υs|0,σ2I)+ΔsN(υs|J H sJ ′+σ2I) , M s = diag(κs,k : k ∈ Kv) Σγ s,v

=
(
J ′M−1

s J/σ2 + H−1
s

)−1
, μγ s,v

= Σγ s,v
J ′M−1

s γs,v/σ2. Then
γs,v|− ∼ wγ s,v

δ0 + (1 − wγ s,v
)N(μγ s,v

,Σγ s,v
)

6. Hs|− ∼ IW (I +
∑

v:γ s,v �=0 γs,vγ′
s,v, ν + {#v : γs,v �= 0}), s = 1, ..., p

7. θs,r|− ∼ Beta(1 + λs,r, r
c + 1 − λs,r), s = 1, ..., p; r = 1, ..., R

8. Δs|− ∼ Beta(1 +
∑V

v=1 ξs,v, 1 +
∑V

v=1(1 − ξs,v)), s = 1, ..., p
9. λs,r | − ∼ Ber(pλs,r

), where
pλs,r

= θs,rNs,r

θs,rNs,r+(1−θs,r)Ds,r
, where Ns,r =

∏
k N(yi,k |∑R

r′=1,r′ �=r λs,r′

γ
(r′)
s,k1

· · · γ(r′)
s,kD

+γ
(r)
s,k1

· · · γ(r)
s,kD

, σ2), Ds,r =
∏

k N(yi,k |∑R
r′=1,r′ �=r λs,r′γ

(r′)
s,k1

· · ·
γ
(r′)
s,kD

, σ2) for r = 1, .., R.
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Abstract. Clinical imaging relies heavily on X-ray computed tomogra-
phy (CT) scans for diagnosis and prognosis. Many research applications
aim to perform population-level analyses, which require images to be
put in the same space, usually defined by a population average, also
known as a template. We present an open-source, publicly available,
high-resolution CT template. With this template, we provide voxel-wise
standard deviation and median images, a basic segmentation of the cere-
brospinal fluid spaces, including the ventricles, and a coarse whole brain
labeling. This template can be used for spatial normalization of CT scans
and research applications, including deep learning. The template was cre-
ated using an anatomically-unbiased template creation procedure, but is
still limited by the population it was derived from, an open CT data set
without demographic information. The template and derived images are
available at https://github.com/muschellij2/high res ct template.

Keywords: CT imaging · CT template · Brain template · Computed
tomography

1 Introduction

Many research applications of neuroimaging use magnetic resonance imaging
(MRI). MRI allows researchers to study a multitude of applications and diseases,
including studying healthy volunteers as it poses minimal risk. Clinical imaging,
however, relies heavily on X-ray computed tomography (CT) scans for diagnosis
and prognosis. Studies using CT scans cannot generally recruit healthy volun-
teers or large non-clinical populations due to the radiation exposure and lack of
substantial benefit. As such, much of head CT data is gathered from prospec-
tive clinical trials or retrospective studies based on health medical record data
and hospital PACS (picture archiving and communication system). Most of this
research is on patients with neuropathology, which can cause deformations of
the brain, such as mass effects, lesions, stroke, or tumors.
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Many clinical protocols perform axial scanning with a high within-plane res-
olution (e.g. 0.5 mm × 0.5 mm) but lower out-of-plane resolution (e.g. 5 mm).
High resolution scans (out of plane resolution ≈ 0.5 mm) may not be collected
or reconstructed as the lower resolution scans are typically those read by the clin-
ician or radiologist for diagnosis and prognosis. Recently, a resource of a large
number of CT scans were made available, denoted as CQ500 (Chilamkurthy et
al. 2018). These scans include people with a number of pathologies, including
hemorrhagic stroke and midline shifts. Fortunately, this data also includes people
without indicated pathology with high resolution scanning, which is what
we will use in this study.

The goal of this work is to create an anatomically unbiased, high-resolution
CT template of the brain. That is, we wish to create a template that represents
the population, regardless of any initial templates we start with. The first, and
we believe the only, publicly-available CT template was released by Rorden et
al. (2012) (https://www.nitrc.org/projects/clinicaltbx/). That template was cre-
ated with the specific purpose of creating a template with a similar age range as
those with stroke, using 30 individuals with a mean age of 65 years old (17 men).
The associated toolbox released contained a high resolution (1 × 1 × 1 mm) tem-
plate, with the skull on, in Montreal Neurological Institute (MNI) space. Subse-
quent releases have included skull-stripped brain templates, but only in a lower
(2 × 2 × 2 mm) space (https://github.com/neurolabusc/Clinical). This lower res-
olution template matches what is used in many MRI and functional MRI analyses.

Thus, the current CT templates available are a high-resolution template
(1 mm3), but not of the brain only (and skull stripping the template performs
marginally well), and a low-resolution template of the brain only, both in MNI
space. We have used these templates in previous analyses, but would like a brain
template that was 1) constructed using an unbiased anatomical procedure, 2) uses
more patients, 3) uses high-resolution scans to achieve a higher resolution, and 4)
provide an image which dimensions are easily used in deep learning frameworks.

As the CQ500 data was released under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 (CC-NC-SA) International License, we can
release the template under the same license.

2 Methods

All code, analysis, and reporting was done the R statistical programming lan-
guage (R Core Team 2015) and a number of packages from the R medical imaging
package platform Neuroconductor (Muschelli et al. 2019).

2.1 Data

We defined a high-resolution patient scan as having a within-axial resolution of
0.7 × 0.7 mm or less, with full coverage of the brain. For example, if the cere-
bellum was not imaged, that image was discarded. All scans were non-contrast
CT scans with a soft-tissue convolution kernel. As CT scans are generally well

https://www.nitrc.org/projects/clinicaltbx/
https://github.com/neurolabusc/Clinical
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calibrated across sites and are measured in standard units of Hounsfield Units
(HU), no intensity normalization was done. Intensities less than (−1024) HU
(the value for air) and greater than 3071 HU were Winsorized (Dixon and Yuen
1974) to those values, as values outside of these are likely artifact or areas outside
the field of view.

All data was converted from DICOM files to NIfTI (Neuroimaging Informat-
ics Technology Initiative) using dcm2niix (Li et al. 2016) using the dcm2niir
package (Muschelli 2018). This conversion corrects for any gantry tilt and
enforces one fixed voxel size for the image, which is necessary if different areas of
the image are provided at different resolutions, which is sparsely seen in clinical
CT images.

From the CQ500 data set, 222 subjects had no indication of pathology, of
which 141 had a high-resolution scan (if multiple were present, the one with
the highest resolution was used). From these 141 people, 130 had “thick-slice”
scans where the out-of-plane resolution was greater than 4 mm. We used these
130 scans for construction of the template. The 11 scans were discarded as we
wish to perform the same operation using low-resolutions scans to see the effect
of initial resolution on template creation, but that is not the focus of this work.

For all images, the head was skull-stripped so that only brain tissue and
cerebrospinal fluid (CSF) spaces were kept, using a previously validated method
(Muschelli et al. 2015) using the brain extraction tool (BET) from FSL (FMRIB
Software Library) (Smith 2002; Jenkinson et al. 2012). We chose an image
(patient 100 from CQ500), for template creation. This choice was based on a
within-plane resolution close to 0.5 × 0.5 mm (0.488 × 0.488 mm), an axial slice
size of 512 × 512, and an out-of-plane resolution of 0.5 mm. The image was
resampled to 0.5 × 0.5 × 0.5 mm resolution so that the voxels are isotropic. We
would like the image to be square; we padded the image back to 512 × 512 after
resampling, and the image had 336 coronal-plane slices.

2.2 Template Creation

The process of template creation can be thought of as a gradient descent algo-
rithm to estimate the true template image as inspired by the advanced normal-
ization tools (ANTs) software and the R package ANTsR that implements the
registration and transformation was used (https://github.com/ANTsX/ANTsR)
(Avants et al. 2011). The process is as follows:

1. Let Ii represent the image where i represents subjects. We registered all
images to the template, denoted T̄k where k represents iteration, using an
affine registration followed by symmetric normalization (SyN), a non-linear
deformation/diffeomorphism, where the composed transformation is denoted
as Gi,k (Avants et al. 2008). Let the transformed image be denoted as Ti,k.

In other words, Ii
Gi,k→ Ti,k. The transformation Gi,k is represented by a 4D

warping image. Let T1 be the original template chosen above and Gi,1 be the
transformation for an image to the original template.

https://github.com/ANTsX/ANTsR
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2. Calculate the mean, median, and standard deviation images, where the mean

image is T̄k = 1
n

n∑

i=1

Ti,k, using a voxel-wise average.

3. Calculate the average warping transformation: Ḡk = 1
n

n∑

i=1

Gi,k. A gradient

descent step size of 0.2 was specified for SyN gradient descent, such that:
T̄k+1 = T̄k×(−0.2 ∗ Ḡk

)
. The median and standard deviation are transformed

accordingly.

For each iteration k, we can calculate a number of measures to determine
if the template has converged compared to the previous iteration k − 1. We
calculated the Dice Similarity Coefficient (DSC) (Dice 1945) between the mask
of iteration k and k−1, where the mask for iteration k is defined as T̄k > 0. The
DSC measures if the overall shape is consistent across iterations. We also the
root mean squared error (RMSE) of voxel intensities, e.g. 1

V

∑(
T̄k − T̄k−1

)2,
where V is the number of voxels in the volume. The RMSE can be calculated
over a series of volumes, either 1) the entire image, 2) over the non-zero voxels
in iteration k, 3) in iteration k − 1, or 4) the union (or intersection) of the 2
masks. Calculation over the entire image gives an optimistic estimate as most
of the image are zeroes, and the choice of either iteration k or k − 1 masks is
arbitrary, so we calculated the RMSE over the union of the 2 masks. The RMSE
represents if the values of the image are close across iterations.

To define convergence, we would like a high DSC between the masks and a
low RMSE. Ideally, the convergence criteria would set a DSC of 1 and a RMSE
less than 1 Hounsfield Unit (HU), which would indicate the voxel intensity is
changing less than 1 HU on average. As CT scans are measured in integers, this
RMSE would likely be as good as possible. We set a DSC cutoff of 0.95 and
chose the template with the lowest RMSE. As this procedure is computationally
expensive, we ran 40 iterations, which was adequate for achieving stable results
(Fig. 1).

Values of the final template that were lower than 5 HU were boundary
regions, outside the region of the brain and likely due to average of one or a small
few of images, incongruent with the remainder of the template (Supplemental
Figure 1). We did not constrain the DSC and RMSE calculation excluding these
regions, but excluded values less than 5 HU from the final template.

After the template was created, we padded the coronal plane so that the
template was 512 × 512 × 512. The intention is that these dimensions allow it
easier to create sub-sampled arrays that are cubes and multiples of 8, such as
256 × 256 × 256, 128 × 128 × 128, or 64 × 64 × 64 with isotropic resolution.

2.3 Segmentation

Though the template itself is the main goal of the work, many times researchers
use or are interested in annotations/segmentations of the template space. The
contrast between gray matter and white matter in CT imaging is not as high
as T1-weighted MRI. Some areas, such as the cerebellum, corpus callosum, and
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basal ganglia can be delineated well. Thus, segmentation methods based on
intensity may not differentiate gray and white matter adequately. We instead
used a multi-atlas registration approach using previously-published set of 35
MRI atlases from Landman et al. (2012), which had whole brain segmentations,
including tissue-class segmentations.

We registered each brain MRI to the CT template using SyN and applied
the transformation to the associated tissue segmentation and whole brain seg-
mentation from that MRI template. Thus, we had 35 tissue segmentations of
the CT template in template space, and the segmentations were combined using
STAPLE (Warfield et al. 2004) via the stapler package (Muschelli 2019). The
whole brain structures were combined using majority vote.

Separating the brain from the cerebrospinal fluid areas (mainly ventricles)
are of interest in many applications, such as Alzheimer’s disease (Leon et al.
1989; Braak et al. 1999). In addition, we segmented the template using Atropos
(Avants et al. 2011), which used a k-means clustering approach with 2 clus-
ters (CSF/tissue) to obtain a CSF mask. Additionally, we registered the MNI
T1-weighted template to the CT Template using SyN, and applied the trans-
formation used the ALVIN (Automatic Lateral Ventricle delIneatioN) mask of
the ventricles (Kempton et al. 2011). We masked the CSF mask with this trans-
formed ALVIN mask to get a mask of lateral ventricles as well.

3 Results

As we see in Fig. 1A, the DSC quickly increases and reaches a high score, where
the horizontal line indicates a DSC of 0.99. The red dot and vertical line indicate
the iteration that had the maximum DSC (0.9896). As the DSC is high for all
iterations past iteration 15, we chose the template based on the minimum RSE.
In Fig. 1B, we see a similar pattern of improving performance, but by lowering
the RMSE. The lowest RMSE is noted by the red point with a value of 1.47.
Thus, this iteration (iteration 37) is the template we will choose.

The template for this image can be seen in Fig. 2, along with the standard
deviation image, and a histogram of the intensities of the template. Areas outside
the brain mask were removed for visualization. We see the template is relatively
smooth, with values from 5 HU to around 65 HU. The standard deviation image
shows high variability around the lateral horns, which may be due to calcifi-
cations in a set of patients, which have abnormally high HU values. The high
standard deviation areas near the midline are likely due to dense areas of the
falx cerebri, including potential falx calcifications.

In Figure 3, we see the template again, with the tissue-class segmentation
(Panel B), whole brain structural segmentation (Panel C), and Atropos lateral
ventricle segmentation. Overall, we see some differences between the segmenta-
tion of the CSF based on Atropos and the multi-atlas labeling approach. We
have provided a lookup table for each structure label with its corresponding
value in the image.
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Fig. 1. Convergence of Shape and Intensity of the Template over Iterations. Here we see
the Dice Similarity Coefficient (DSC) increase between an iteration and the previous
iteration, achieving high degrees of overlap, indicating the shape of the surface of the
image is similar and converging (panel A). We also see the root mean-squared error
(panel B) drops as the iterations increase and then levels off around 4 Hounsfield units
(HU), the horizontal line. The red dot indicates the iteration chosen for the template.

Fig. 2. Template Image, Standard Deviation Image, and Histogram of Intensities. Here
we show the template in the left panel, the voxel-wise standard deviation, denoting
areas of variability (which include biological and technical variability), and the his-
togram of the template intensities/Hounsfield Units (HU). Overall the template is
smooth and values fall in the range of 5 to 65 HU.
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(A) Template (B) Tissues (C) Structures (D) Lat. Ventricles

Fig. 3. Template Image, Tissue Segmentation, Whole Brain Segmentation, and Lateral
Ventricle Segmentation. We see the areas of white matter, gray matter, cebebrospinal
fluid (CSF) in Panel B. We see the whole brain structural segmentation in Panel C,
and the lateral ventricle segmentation from Atropos in Panel D.

4 Discussion

We present a high-resolution, publicly-available CT template with associated
segmentations and other annotations of the template. The data used was from a
publicly-available dataset, the CQ500. The main downside with the CQ500 data
set is that no demographic or clinical information was released for each patient,
save for indication for pathology. Therefore, we cannot attest the general popu-
lation of interest for this template. Furthermore, we cannot fully assume these
patients were disease-free as a lack of pathology only applies to the categories
of interest in the CQ500 dataset (intracranial/subdural/subarachnoid/epidural
hematoma, calvarial or other fractures, mass effect and midline shifts). In future
work, we hope to prepare age- and sex-specific templates for each population
based on hospital scans and records, where we have demographic information
and confirmation of lack of neuropathology.

In addition to the template, we have provided a set of segmentations. This
includes a whole brain segmentation of over 150 structures. Though this may
prove useful, we caution users to how well this template can provide an accurate
segmentation of these structures. At least, the accuracy of the segmentation may
have variable accuracy at different areas of the brain.

The resulting image dimensions was 512 × 512 × 512, with a resolution of
0.5 × 0.5 × 0.5 mm. The fact that the image dimension is a multiple of 8 allows
it to be resampled to 1 × 1 × 1 mm and 2 × 2 × 2 mm and remain as a cube.
These dimensions are particularly important in certain deep learning architec-
tures and frameworks. Though most templates are given using the mean image,
we believe the standard deviation image represents variability in the area. This
variability represents true systematic and biologic variability. One important
area of systemic variability is registration errors. Therefore this template allows
for the creation of z-score images, where a new image is registered to the mean
image, the mean image is subtracted, and then divided by the standard-deviation
image, so that voxels represent standard deviations away from the mean voxel.
This image may be a useful tool in feature extraction. Thus, we believe this
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template provides a standard, isotropic space that is conducive to machine
learning and can reduce the burden of standardization for medical imaging
applications.

CQ500 is Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. Therefore, the template is released under the same
license. The images are located on https://github.com/muschellij2/high res
ct template and can be accessed at https://johnmuschelli.com/high res ct
template/template/.
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Abstract. Harmonization of magnetic resonance imaging (MRI) and positron
emission tomography (PET) scans from multi-scanner and multi-site studies
presents a challenging problem. We applied the Removal of Artificial Voxel
Effect by Linear regression (RAVEL) method to normalize T1-MRI intensities
collected on two different scanners across two different sites as part of the
Neurodegeneration in Aging Down syndrome (NiAD) study. The effects on
FreeSurfer regional cortical thickness and volume outcome measures, in addi-
tion to FreeSurfer-based regional quantification of amyloid PET standardized
uptake value ratio (SUVR) outcomes, were evaluated. A neuroradiologist
visually assessed the accuracy of FreeSurfer hippocampus segmentations with
and without the application of RAVEL. Quantitative results demonstrated that
the application of RAVEL intensity normalization prior to running FreeSurfer
significantly impacted both FreeSurfer volume and cortical thickness outcome
measures. Visual assessment demonstrated that the application of RAVEL
significantly improved FreeSurfer hippocampal segmentation accuracy.
The RAVEL intensity normalization had little impact on PET SUVR measures.

Keywords: Harmonization � MRI � PET

1 Introduction

Positron emission tomography (PET) and structural magnetic resonance imaging
(MRI) are two neuroimaging modalities frequently used in studies of Alzheimer’s
Disease (AD). [11C] Pittsburgh Compound B (PiB) PET standardized uptake value
ratio (SUVR) and T1-weighted MRI-based volumetric measures, such as hippocampal
volume and entorhinal cortical thickness, play a crucial role in studying the progression
of AD in the elderly (Jack et al. 2017; Schwarz et al. 2016; Villemagne et al. 2011),
autosomal dominant AD mutation carriers (Yau et al. 2015), and Down Syndrome
(DS) populations (Lao et al. 2017).
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Adults with DS are at high risk to reveal AD pathology in part due to the tripli-
cation of chromosome 21 encoding the amyloid precursor protein. Adults with DS are
typically affected by AD pathology by their 30s, demonstrate AD-associated structural
and functional brain changes in midlife, and have a 70–80% chance of clinical
dementia by their 60s (Lao et al. 2017; Tudorascu et al. 2019).

Multi-site multimodal neuroimaging studies are becoming increasingly popular in
studying neurodegenerative diseases, but there is a lack of statistical methods for
combining data acquired across multiple sites and scanners. The use of different
scanner types for data acquisition can introduce a significant amount of variability in
the image processing, which propagates into the statistical analysis pipeline. Therefore,
data harmonization should be considered a key element in the analysis of data from
multi-site studies.

Previous research in addressing the multi-site confound and data harmonization has
focused on either characterizing differences in derived imaging measures obtained
across different scanners (Tummala et al. 2016) or on harmonizing derived measures
using statistical models that account for scanner variability (Fortin et al. 2018; Johnson,
Li and Rabinovic 2007). In both cases the focus has been on post-image processing
derived measures.

Heinen and colleagues (Heinen et al. 2016) have characterized the robustness of
measures from 1.5T and 3T MRI on the same subjects, using multiple automated
techniques and evaluating accuracy using manual segmentations, and show that all
automated methods demonstrate variability in accuracy depending on the segmented
compartment/tissue type (Heinen et al. 2016). Pfefferbaum et al. characterized agree-
ment between volume measures acquired at 1.5T and 3T using two techniques
(FreeSurfer and SRI24) (Pfefferbaum et al. 2012). Their results demonstrated varying
degrees of agreement depending on region and analysis method. Notably, the globus
pallidus showed particularly poor agreement with either method. It has also been
shown that including acquisition site as a confounding variable does not improve
prediction accuracy of a cognitive outcome from imaging data (Rao, Monteiro and
Mourao-Miranda 2017).

The focus of our study was to investigate the impact of a T1-weighted MRI
intensity normalization method, Removal of Artificial Voxel Effect by Linear regres-
sion (RAVEL) (Fortin et al. 2016), on MRI- and PET-based outcome measures. The
purpose of RAVEL is to remove unwanted variation from and standardize MRI voxel
intensity values. RAVEL consists of two main steps: (1) factor analysis of control
voxels within cerebrospinal fluid (CSF) space, where voxel intensities are known to be
unassociated with disease status and clinical covariates, to estimate the principal
directions of unwanted technical variability; and (2) linear regression at the whole brain
level, including both covariates of biological interest and direction of unwanted
variation.

We specifically focused on investigating MRI intensity normalization using
RAVEL for improving neuroimaging outcomes derived from intensity normalized
images. Four major steps were combined to create a novel characterization of the
effects of RAVEL normalization on neuroimaging derived outcomes. The processes in
place were: 1) RAVEL intensity normalization, 2) MRI segmentation using FreeSurfer
v5.3 (FS) and derivation of cortical thickness and Region-of-Interest (ROI) volumes, 3)
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PET SUVR quantification using ROIs derived from MRI images processed with and
without RAVEL intensity normalization, and 4) neuroradiological evaluation to assess
the accuracy of hippocampus segmentation derived with and without RAVEL intensity
normalization. The effect of RAVEL normalization on MRI- and PET-based outcome
measures was explicitly assessed. However, the harmonization of outcome measures
was not, as the assessed cohort did not include same-subject data scanned across
multiple scanners and/or sites, which would be necessary to explicitly and accurately
assess harmonization.

2 Methods

2.1 Study Participants

Forty subjects with Down syndrome were selected from two sites participating in the
Neurodegeneration in Aging Down Syndrome (NiAD) study, 20 subjects from the
University of Pittsburgh (UPitt) and 20 from the University of Wisconsin (UWisc). The
20 subjects from each site were selected to span the age range of total study participants
(32–54 y/o from UPitt, 30–54 y/o from UWisc), and the frequency of amyloid burden
positivity as assessed by PiB PET (D. L. Tudorascu et al. 2018) was matched across
sites. In all, 10 subjects with PiB scans indicative of amyloid deposition (PiB (+)) and
30 subjects without indication of deposition (PiB (−)) were used in this work. Amyloid
classification was established as part of our existing standard analysis of the data and
based on previously published methods from our group (Cohen et al. 2013).

2.2 Image Acquisition

MRI. Sagittally acquired structural T1-weighted MRIs were acquired at both sites.
A Siemens MAGNETOM Prisma 3T scanner was employed at the UPitt (TE = 2.95
ms; TI = 900.0 ms; TR = 2300 ms; Weighting = PD; Flip Angle = 11.0° ; Pulse
Sequence = GR/IR). A General Electric Discovery MR750 scanner was used at the
UWisc (TE = 3.04 ms; TI = 400.0 ms; TR = 7.35 ms; Weighting = T1; Flip
Angle = 11.0° ; Pulse Sequence = GR). MRIs from both sites had an in-plane pixel
spacing of 1.05 mm and a sagittal thickness of 1.2 mm.

PET. PiB PET imaging was performed on a Siemens mCT Biograph PET/CT scanner
(UPitt) and a Siemens EXACT HR + PET scanner (UWisc). For both sites, a nominal
dose of 15 mCi PiB was delivered as a bolus injection over approximately 30 s,
followed by a saline flush, and subjects were imaged over 50–70 min post-injection.
PET images were reconstructed into four 5-min time frames using the manufacturers’
software and included corrections for scatter, deadtime, random coincidences, and
radioactive decay.

Reconstruction at the UPitt site was via ordered subset expectation maximization
(OSEM) using 4 iterations of 12 subsets with no post filtering. Data required for
attenuation and scatter correction were derived from a low-dose CT-scan, without
contrast, acquired at the start of the scan session. Voxel size of the reconstructed PET
image was 1.02 mm � 1.02 mm � 2.03 mm (axial).
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PET images at the UWisc site were also produced via OSEM (4 iterations, 16
subsets) with no post filtering. Attenuation data were acquired in transmission scans
performed using Ge-68/Ga-68 rotating rod sources. PET image voxel size was
2.57 mm � 2.57 mm � 2.43 mm (axial).

2.3 RAVEL Intensity Normalization

The application of RAVEL to a set of T1-weighted MRIs requires 3 conditions:
(Condition 1) MRIs to be in a common anatomical space, (Condition 2) MRIs to be
skull-stripped, and (Condition 3) a single control ROI indicating common CSF voxels
across all images. Condition 2 is, in fact, not an explicit requirement of the RAVEL
process but is for the WhiteStripe WM normalization step which precedes RAVEL
[https://cran.rproject.org/web/packages/WhiteStripe/index.html]. The MRI preprocess-
ing steps undertaken to meet these conditions are outlined below.

First, MRIs were processed through the Statistical Parametric Mapping v12
(SPM12) Segment tool (Ashburner and Friston 2005) in order to generate forward and
inverse nonlinear registration transforms to SPM12-defined Montreal Neurological
Institute (MNI) space and subject-specific GM, WM, and CSF tissue probability maps
in both subject native space and MNI space. Incidentally, the application of SPM
Segment tool is commonly used as part of the Centiloid process in amyloid PET
imaging studies of Alzheimer’s disease and aging in Down syndrome (Klunk et al.
2015; Tudorascu et al. 2018).

To satisfy Condition 1, native-space MRIs were warped to MNI space using
subject-specific SPM12-defined forward transforms. In addition, MNI-space MRIs
were bias corrected using the “N4BiasFieldCorrection” function implemented within
the “ANTsR” library (Avants 2019), applied in RStudio version 1.2.1335.

To satisfy Condition 2, a single MNI-space intracranial mask was generated by
summing the GM, WM, and CSF tissue prior probability maps provided within SPM12
(TPM.nii), thresholding the sum image at 0.1 and binarizing the result. To remove
noncontiguous extracranial voxels from the MNI-space intracranial mask, the “cluster”
function within FSL FMRIB Software Library v5.0 (Jenkinson et al. 2012) was used to
identify and isolate the largest cluster. All MNI-space bias-corrected MRIs were then
masked using the intracranial mask to generate skull-stripped MRIs.

To satisfy Condition 3, MNI-space CSF tissue probability maps were first
thresholded at a value of 0.3 and binarized to generate subject-specific MNI-space CSF
ROIs. The intersection of all MNI-space CSF ROIs was then calculated to generate a
single CSF control ROI indicating all common CSF voxels across subjects.

RAVEL intensity normalization was subsequently performed using the “normal-
izeRAVEL” function within the “RAVEL” R library (https://github.com/Jfortin1/
RAVEL) with MNI-space bias-corrected skull-stripped MRIs as “input.files” input,
MNI-space intracranial mask as “brain.mask” input, and MNI-space CSF ROI as
“control.mask” input. Default parameters were used. Resulting RAVEL-intensity
normalized MRIs were also in MNI space with WM voxel intensities centered on a
value of 0, such that GM and CSF voxel intensities were negative. This is a conse-
quence of WhiteStripe normalization, which is run by default within the “normal-
izeRAVEL” function.
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To remove negative voxel intensities from RAVEL-normalized images, the mini-
mum voxel value across all images was added to each RAVEL-normalized MRI. The
voxel intensity-shifted MNI-space RAVEL-normalized MRIs were subsequently spa-
tially warped back to subject-specific native space using the SPM12 Segment-derived
inverse nonlinear transforms.

2.4 MRI Processing

Native-space unnormalized and RAVEL-normalized T1-weighted MRIs were pro-
cessed using FreeSurfer v5.3 (FS) to generate regional cortical thicknesses, volumes,
and binary ROI images for sampling PiB PET images. Unnormalized MRIs were
processed through FS using default parameters. RAVEL-normalized images were
processed using the “-noskullstrip” flag given that skull-stripping had already been
performed as part of the RAVEL normalization process.

2.5 PiB PET Processing

The multi-frame (5 min/frame) PiB PET images were visually inspected for frame-to-
frame motion, and motion corrected when appropriate, using PMOD software version
3.711 (PMOD Technologies LLC, https://www.pmod.com/). Single-frame PET images
were generated by averaging the time frames from 50–70 min post-injection. The
single-frame PET images were subsequently registered to subject-specific unnormalized
T1-weighted MRIs using the “Coregister: Estimate and Reslice” tool within SPM12.
Previously described PiB-specific composite ROIs were used to sample single-frame
PET images, generating regional PiB radioactivity concentration values (Tudorascu
et al. 2018). Regional values were normalized by dividing by the FS-defined cerebellar
GM radioactivity, resulting in regional SUVRs. PiB regional SUVR values were derived
using both unnormalized MRI-derived FS ROIs and RAVEL-normalized MRI-derived
FS ROIs. However, the PiB-PET images were not re-registered to RAVEL-normalized
MRIs. The results of this process, for each subject, were two sets of PiB-PET SUVR
measures based on FS ROIs: one set from the unnormalized MRI and one set from the
RAVEL-normalized MRI. For the purposes of this work, we evaluated PET results
using a striatal ROI, a region of early accumulation of amyloid deposition in DS
(Tudorascu et al., 2019), and a global ROI that is the union of all our standard amyloid
quantitation regions. Amyloid status (PiB (−) or PiB (+)) was not reevaluated as part of
this work.

2.6 Statistical Evaluation

Descriptive statistics including means and standard deviations (SD) were computed for
each cortical thickness and ROI volume as well as for the global PiB SUVR derived
measures with and without the use of RAVEL. Group differences were determined using
Cohen’s d effect sizes for each measure between PiB (−) and PiB (+) subject groups.
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Intraclass correlation coefficients (ICCs) and their corresponding 95% confidence
intervals (CI) were calculated to measure agreement between the derived measures from
unnormalized MRI and RAVEL-normalized MRI-derived FS cortical thicknesses,
volumes, and PiB SUVR values. FS volumes were normalized to FS-reported total
intracranial volume (tICV) before statistical assessment to account for sex-specific
differences in anatomical volumes (Schwarz et al. 2016).

A neuroradiologist (JMM) visually rated unnormalized and RAVEL-normalized
MRI-derived FS hippocampal masks on unnormalized MRIs using a four-point scale to
rate the accuracy of the segmentations (1 = poor, 2 = some errors, 3 = good,
4 = excellent). The rater was blinded to subject information, including age, gender,
amyloid status and to the origin and methodology from which hippocampal masks were
derived. The Wilcoxon signed-rank test was used to assess pairwise differences in rater
ranking between unnormalized MRI-derived FS hippocampal masks and RAVEL-
normalized MRI-derived FS hippocampal masks.

3 Results

Density plots, smoothed versions of histograms, of MRI voxel intensities are shown by
site and amyloid status at multiple preprocessing steps (Raw, after applying n4 cor-
rection, after applying White Stripe and, last, after RAVEL) in Fig. 1. It can be
observed that after RAVEL intensity normalization the histograms of intensities have a
much greater overlap, reinforcing that RAVEL normalization significantly reduces
MRI voxel intensity variability.

Descriptive statistics and PiB(−) to PiB(+) effect sizes for volumes, cortical
thicknesses, and SUVR are presented in Table 1. The derived PET global SUVR and
striatum SUVR measures were almost identical with or without the use of RAVEL in
the preprocessing stream. The estimated regional brain volumes obtained using
RAVEL were larger for left and right hippocampus in both PiB(−) and PiB (+) groups.
For assessing variability, standard deviations were larger for the PiB (+) group,
SD = 0.67 for left hippocampus and SD = 0.52 for right hippocampus when RAVEL
was used compared to SD = 0.57 for left hippocampus and SD = 0.50 for right hip-
pocampus when RAVEL was not used. In the PiB (-) group, the SD was smaller and
almost identical regardless of the use of RAVEL.

However, the cortical thickness values were much more variable, with no clear
pattern observed. For example, the means and SDs for the right entorhinal values are
almost identical across methods, while left entorhinal values diverged (3.77 mm mean
with SD = 0.40 for PiB (−) when RAVEL was not used and 3.69 mm mean with
SD = 0.39 when RAVEL was used). Similarly, in the PiB (+) group, the values were
3.37 mm, SD = 0.44 without RAVEL and 3.49 mm, SD = 0.42 with RAVEL. The
computed Cohen’s d effect sizes between PiB (+) and PiB (−) were 0.95 without
RAVEL and 0.45 with RAVEL.
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ICCs are shown for SUVR, volumes, and cortical thickness between outcomes
obtained with and without RAVEL in Table 2. The ICCs show very good agreement
between PET SUVR measures, with values greater than 0.9. The ICC values were
lower for volumes, with a range of ICC = 0.365 (95% CI: 0.066, 0.604) in the right
amygdala up to ICC = 0.830 (95% CI: 0.703, 0.906) for the right hippocampus. The
ICCs for the cortical thicknesses were much lower, specifically for middle temporal left
(0.228 (95% CI: −.083, 0.5)) and middle temporal right (0.33 (95% CI: 0.028, 0.579)).
Areas with highest ICC values for the cortical thickness were left fusiform (0.851 (95%
CI: 0.589, 0.864)) and right fusiform (0.871 (95% CI: 0.77, 0.929)).

Fig. 1. Density plots of MRI voxel intensities by site (University of Pittsburgh [UPitt] and
University of Wisconsin [UWisc]), amyloid classification status (PiB (−) and PiB (+)), and tissue
type (cerebrospinal fluid [CSF], grey matter [GM], and white matter [WM]) for multiple steps of
the RAVEL intensity normalization process (unnormalized [Raw], bias corrected [n4],
WhiteStripe-normalized [WhiteStripe], and RAVEL-normalized [RAVEL]). Results shown for
RAVEL are prior to the constant intensity shift described in the text.
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Neuroradiological ratings revealed that RAVEL intensity normalization signifi-
cantly improved right hippocampal segmentation accuracy (Wilcoxon W-value = 69,
p-value = 0.02) as shown in Fig. 2. When RAVEL was used, the right hippocampal
segmentation was excellent for 18 subjects as compared to only 10 when RAVEL was
not used. A single case is illustrated in Fig. 3, showing the hippocampus segmentation
by method with arrows pointing to the areas that were incorrectly segmented without
RAVEL normalization. The arrows point to voxels that were incorrectly classified as
hippocampus when RAVEL was not implemented (in red).

Table 1. Descriptive statistics for MRI- and PET- based outcome measures stratified by amyloid
status (PiB (−) and PiB (+)) and MRI intensity normalization method (unnormalized [Raw] and
RAVEL-normalized [RAVEL]), and Cohen’s d effect sizes between PiB (−) and PiB (+) groups.

Region Mean (SD) Effect size

PiB (−) PiB (+) Raw RAVEL

N = 30 N = 10
Raw RAVEL Raw RAVEL

PiB SUVR
Global 1.10

(0.07)
1.11 (0.07) 1.78 (0.40) 1.80 (0.39) 3.19 3.26

Striatum 1.28 (0.18) 1.31 (0.19) 2.26 (0.37) 2.30 (0.38) 3.86 3.80
Volume (tICV normalized)
Left Hippo-campus 3.00

(0.32)
3.22 (0.33) 2.24 (0.57) 2.38 (0.67) 1.83 1.83

Right Hippo-campus 3.02
(0.31)

3.16 (0.30) 2.27 (0.50) 2.47 (0.52) 1.97 1.81

Left
Amygdala

1.45
(0.18)

1.32
(0.25)

1.07
(0.32)

0.96 (0.26) 1.64 1.34

Right
Amygdala

1.56
(0.26)

1.32
(0.28)

1.13
(0.32)

1.06 (0.21) 1.51 0.93

Cortical thickness (mm)
Left
Entorhinal

3.77
(0.40)

3.68 (0.39) 3.37 (0.44) 3.49 (0.42) 0.95 0.45

Right
Entorhinal

3.93 (0.37) 3.94 (0.38) 3.55 (0.48) 3.55 (0.48) 0.91 0.90

Left
Fusiform

2.82
(0.20)

2.87 (0.18) 2.65 (0.21) 2.71 (0.16) 0.81 0.90

Right
Fusiform

2.95 (0.19) 2.94 (0.18) 2.78 (0.27) 2.82 (0.26) 0.77 0.53

Left Inferior Temporal 2.79 (0.27) 2.93 (0.20) 2.65 (0.22) 2.82 (0.14) 0.50 0.59
Right Inferior Temporal 2.86 (0.26) 2.92 (0.21) 2.75 (0.20) 2.82 (0.19) 0.41 0.47
Left Middle Temporal 2.86 (0.26) 3.09 (0.20) 2.75 (0.21) 2.94 (0.21) 0.43 0.71
Right Middle Temporal 2.80 (0.27) 3.01 (0.25) 2.70 (0.27) 2.86 (0.28) 0.37 0.58
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Table 2. Intraclass correlation coefficients (ICC) between unnormalized and RAVEL-intensity
normalized FreeSurfer-based regions of interest outcome measures for both sites (University of
Pittsburgh and University of Wisconsin) combined.

Region ICC (95% CI)

PiB SUVR

Global 0.998 (0.996, 0.999)

Striatum 0.995 (0.992, 0.998)

Volume

Left Hippocampus 0.754 (0.583, 0.862)

Right Hippocampus 0.830 (0.703, 0.906)

Left Amygdala 0.616 (0.382, 0.776)

Right Amygdala 0.365 (0.066, 0.604)

Cortical thickness

Left Entorhinal 0.683 (0.477, 0.819)

Right Entorhinal 0.758 (0.589, 0.864)

Left Fusiform 0.851 (0.738, 0.918)

Right Fusiform 0.871 (0.770, 0.929)

Left Inferior Temporal 0.474 (0.197, 0.682)

Right Inferior Temporal 0.647 (0.425, 0.796)

Left Middle Temporal 0.228 (−0.083, 0.500)

Right Middle Temporal 0.330 (0.028, 0.579)

Fig. 2. Visual ratings of FreeSurfer-based right hippocampus segmentations based on unnor-
malized (Raw) and RAVEL-intensity normalized (RAVEL) MRIs. A four-point rating scale was
used, such that 1 = poor, 2 = some errors, 3 = good, and 4 = excellent. (Color figure online)
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4 Discussion

In this study we show that using the RAVEL intensity normalization technique in a
multi-site imaging study of neurodegeneration in Down syndrome leads to increased
accuracy in hippocampal segmentation, an area of high significance for characterizing
Alzheimer’s disease pathology. However, it remains unclear if RAVEL intensity
normalization removes site- and scanner- specific variability in derived structural MRI
outcomes, such as volume and cortical thickness.

In terms of PET SUVR measures, observed differences were small between the
values obtained when RAVEL was used compared to when it was not used (Table 2).
This is likely due to the differences in spatial resolution of PET imaging (*5 mm)
relative to MRI (*1 mm), such that voxel-level differences in MRI-based ROI seg-
mentation may have little impact on the related PET ROI outcome measure.

Unlike the results for the PET SUVRs, the MRI-measured cortical thickness and
regional volume data exhibited much larger variability between the two preprocessing
methods (with and without RAVEL). RAVEL clearly impacted volume and cortical
thickness measures as exhibited by low levels of ICC agreement (<0.5 ICC) in the right
amygdala volume and left inferior temporal, left middle temporal, and right middle
temporal cortical thicknesses. It is, however, unclear whether the application of
RAVEL resulted in superior cortical thickness measures given the seemingly random
pattern of change in effect size between PiB (−) and PiB (+) subjects with and without
RAVEL.

PiB (+) subjects exhibiting amyloid deposition are further along the spectrum of
AD pathophysiology than PiB (−) subjects and thus may demonstrate an increased
level of cortical atrophy, or smaller volumes and cortical thicknesses, than PiB (−)
subjects (Jack et al. 2013). Therefore, it is expected that a method which improves
MRI-based regional segmentation accuracy would increase the effect sizes of volumes

Fig. 3. Sagittal, coronal, and axial slices of a single subject MRI with right hippocampal
segmentations overlaid generated without the use of RAVEL (red) and with RAVEL (green).
Arrows indicate extraneous non-hippocampus voxels classified as hippocampus prior to RAVEL
intensity normalization. (Color figure online)
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and cortical thicknesses between PiB (−) and PiB (+) groups. Five of the eight cortical
thickness regions presented in Table 1 had improved effect sizes with the application of
RAVEL, but the greatest difference in cortical thickness effect size was observed in the
left entorhinal region with no normalization outperforming RAVEL-intensity normal-
ization. For cortical thickness measurements, the features of the cortical ribbon present
challenges in processing that are dependent on size, shape and location within the
particular ribbon.

In conclusion, applying RAVEL normalization during preprocessing of image data
acquired at different sites using different scanners reduced variability in the distribution
of voxel intensities and improved the accuracy of hippocampal segmentation but not
the discriminatory power of quantitative FS-based outcome measures. The primary
purpose of this work was to assess the effects of RAVEL intensity normalization on
MRI- and PET-derived outcome measures. However, the efficacy of RAVEL in
removing site- and scanner- specific variability from volume and cortical thickness
measures was not assessed. Future work will address this by applying RAVEL on
same-subject data acquired on multiple scanners to more accurately assess RAVEL’s
effect on harmonization of imaging outcome measures than was possible with this
cohort. The effect of each preprocessing step (n4 bias correction, skull-stripping, and
WhiteStripe intensity normalization) on the accuracy and harmonization of MRI- and
PET- based outcome measures of same-subject data across different scanners will also
be more thoroughly characterized.

RAVEL can be easily incorporated into the preprocessing stream, and the code is
available online (https://github.com/Jfortin1/RAVEL) (Fortin et al. 2016).
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Abstract. Statistical image analysis is an extensive field that includes
problems such as noise-reduction, de-blurring, feature enhancement, and
object detection/identification, to name a few. Bayesian image analysis
can improve image quality, by balancing a priori expectations of image
characteristics, with a model for the noise process via Bayes Theorem. We
have previously given a reformulation of the conventional Bayesian image
analysis paradigm in Fourier space, i.e. the prior distribution (the prior)
and likelihood are given in terms of spatial frequency signals. By spec-
ifying the Bayesian model in Fourier space, spatially correlated priors,
that are relatively difficult to model and compute in conventional image
space, can be efficiently modeled as a set of independent processes across
Fourier space. The originally inter-correlated and high-dimensional prob-
lem in image space is thereby broken down into a series of (trivially
parallelizable) independent one-dimensional problems. In this paper we
adapt this Fourier space process into a data-driven framework in which
the Fourier space priors are built empirically from a database of images
and then used to enhance future images. We will describe the data-driven
Bayesian image analysis in Fourier space (DD-BIFS) modeling approach,
illustrate it’s computational efficiency and speed. Finally, we give specific
applications of DD-BIFS to improve the quality of arterial-spin-labeling
(ASL) perfusion images via a database of human brain positron emission
tomography (PET) images.

Keywords: Bayesian image analysis · Data-driven priors · Fourier
space

1 Introduction

Bayesian image analysis models provide a solution for improving image qual-
ity in image reconstruction/enhancement problems by incorporating a priori
expectations of image characteristics along with a model for image noise. We
have previously presented an approach to reformulating the Bayesian Image
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analysis in Fourier Space (BIFS) [15]. Spatially correlated prior distributions
(priors) that are difficult to model and compute in conventional image space
can be modeled as independent across locations in Fourier space. The original
high-dimensional problem in image space is thereby broken down into a series of
one-dimensional problems, leading to easier specification and implementation,
and faster computation.

2 BIFS Modeling Framework

Consider x to be a true (or idealized) image that we wish to recover from a sub-
optimal image dataset y. (We use the common shorthand notation of not explic-
itly distinguishing the random variables and the corresponding image realizations
[5], i.e., we use lower case x and y throughout.) The Bayesian image analysis
paradigm incorporates a priori desired spatial characteristics (e.g., smoothness)
via a prior distribution for the true image x and defines the noise degradation
process via the likelihood.

Instead of the conventional Bayesian image analysis approach of generating
prior and likelihood models for the true image x based on image data y directly,
we formulate them via their discrete Fourier transforms representations: Fx and
Fy. After applying Bayes’ Theorem, the posterior becomes

π(Fx|Fy) ∝ π(Fx)π(Fy|Fx). (1)

The key component of the BIFS formulation that leads to its useful prop-
erties of easy definition and computational speed, is that we define both the
prior and likelihood (and therefore the posterior) to consist of a set of indepen-
dent distributions across Fourier space locations. Desired spatial correlation in
image space is induced by allowing the parameters of the distributions to change
over Fourier space [18,20]. This independence definition can be contrasted with
conventional Bayesian image analysis using Markov random field (MRF) priors,
where Markovian neighborhood structures are used to induce correlation struc-
tures across pixels via joint or conditional distributional specifications [4,5,9].

When defining a spatially correlated prior in image space via a set of inde-
pendent processes across Fourier space, the full conditional posterior at a Fourier
space location k = (kx, ky), or for volumetric data (kx, ky, kz), now only depends
on the prior at that location k, i.e.,

π(Fxk|Fy) ∝ π(Fxk)π(Fyk|Fxk), (2)

where we use Fxk as shorthand for (Fx)k. The joint posterior density for the
image is then

π(Fx|Fy) ∝
∏

k∈K

π(Fxk)π(Fyk|Fxk), (3)

where K is the set of all Fourier space point locations.
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2.1 The Data-Driven BIFS Prior (DD-BIFS)

The standard process of generating the BIFS prior distribution given in Kornak
[15] is based on choosing a pair of distributions to be applied as priors at each
location in Fourier space (one for the modulus and the other for the argument
of the complex value signal) and a set of parameter functions to define how the
parameters of the distributions vary over Fourier space. In contrast, for the data-
driven approach, although we again choose the probability distribution forms
across Fourier space, the parameters are estimated empirically from a database
of transformed images. That is, all of the images in the database are Fourier
transformed, the data at each location in Fourier space are extracted, and the
distribution parameters for that Fourier space location are estimated from that
data. In this way empirical maps of parameter estimates is generated over space.
These parameter estimates are then used as the parameters for the prior at each
Fourier space location.

Separate priors and associated parameter functions are defined for each of
the modulus and argument of the complex value at each Fourier space location.
Working with the modulus and argument provides a more natural framework for
defining prior information at specific Fourier space locations (i.e., specific spatial
frequencies) than working with the real and imaginary components, because
prior information (e.g., smoothness, edges, or features of interest) most strongly
relates to the magnitude of the process involved.

2.2 BIFS Likelihood

As for the prior, the BIF likelihood is again modeled separately for the Modulus
and Argument of the signal at each Fourier space location. Because we model
based on independence across Fourier space points, a range of different noise
structures (defined in Fourier space) can readily be incorporated into the likeli-
hood π(Fyk|Fxk). For example, the combination of independent and identically
distributed (i.i.d. ) zero mean Rayleigh noise/Rician likelihood [19] for the mod-
ulus with uniform argument on the circle in Fourier space corresponds to the
likelihood model of i.i.d.Gaussian noise in image space.

2.3 Posterior Estimation

It is at the posterior estimation stage that the computational gains of the
independent BIFS formulation are ultimately realized. Posterior estimation in
conventional Bayesian image analysis tends to focus on maximum a posteri-
ori (MAP) estimation (minimizing a 0–1 loss function), because it is the most
computationally tractable. In the BIFS formulation the MAP estimate can be
estimated with added efficiency by maximizing the posterior distribution sepa-
rately at each Fourier space location and then taking the inverse Fourier trans-
form of the Fourier space MAP estimates, i.e, xMAP = F−1(FxMAP) where
FxMAP = {Fxk,MAP, k = 1, . . . ,K} and Fxk,MAP = maxFxk

{π(Fxk|Fyk)}.
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This computational efficiency contrasts with conventional Bayesian image anal-
ysis, where even the most computationally convenient MAP estimate requires
iterative computation methods such as conjugate gradients or expectation-
maximization to obtain it.

2.4 Implementation of DD-BIFS

Implementation of DD-BIFS modeling requires the following steps:

1. Fast Fourier transform (FFT) all images in the database that are to be used
to build the DD-BIFS prior, i.e., from image space into Fourier space.

2. Choose the distributional form of the prior at each location in Fourier space
3. Estimate the parameters of the prior at each location in Fourier space using

the data from the corresponding Fourier space locations across the subjects
in the database.

4. Define the likelihood in Fourier space.
5. FFT the dataset to be reconstructed from image space into Fourier space.
6. Combine the DD-BIFS prior and likelihood for the image at each Fourier

space location via Bayes’ Theorem to generate the DD-BIFS posterior
7. Generate Fourier space MAP estimate by maximizing the posterior at each

Fourier space location.
8. Inverse FFT the Fourier space MAP estimate back to image space and display

3 Simulated Dataset Example – Lesion Enhancement

In this example we use simulations to drive the formulation of a DD-BIFS prior
which is subsequently applied to independent data. We simulated 1000 256 × 256
images representing lesions/tumor patterns. The number of lesions was modeled
as a Poisson process and the lesions were simulated as randomly positioned trun-
cated Gaussian probability density functions (resembling bumps) with random
intensity, and standard deviation on each axis, and with correlation distributed
uniformly between −1 and 0, so that the process was anisotropic (i.e. so the
spatial autocorrelation was not uniform in all directions).

We use the following model applied at each Fourier space location:

– Gaussian (normal) prior for the modulus: Mod(Fxk) ∼ N(μk, τ2
k )

– Uniform prior on the circle for the argument: Arg(Fxk) ∼ U(0, 2π) (uninfor-
mative prior)

– Gaussian noise model for the modulus Mod(εk) ∼ N(0, σ2)
– Uniform noise model for the argument Arg(εk) ∼ U(0, 2π)

where εk is the complex noise at Fourier space location k. (Note this model is not
Gaussian noise in image space, for which we use a Rayleigh noise model/Rician
likelihood, for the modulus.)

The prior for the modulus at each Fourier space location was then generated
from the empirical estimates of the mean (μk) and standard deviation (τk) at
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the corresponding location across the simulated datasets. The global posterior
mode was then be obtained by generating the posterior mode at each Fourier
space location based on conjugate Bayes for the Gaussian distribution [8] with
Mod(xk,MAP) = (μk

τ2
k

+ yk

σ2 )/( 1
τ2
k

+ 1
σ2 ) and Arg(xk,MAP) = Arg(xk,MAP) (when

the prior for the argument is uninformative).
Figure 1 shows a single new realization (i.e. that was not included in the

simulation set) of the process at the top-left, the same image with added noise
at the top-right, a parameter function-based BIFS MAP reconstruction on the
bottom-left (approximating a pairwise absolute difference MRF prior Bayesian
reconstruction); and the DD-BIFS prior on the bottom-right. The parameter
function-based BIFS prior does a reasonable job of enhancing lesions, in particu-
lar the blurred lesion furthest to the right. However, the DD-BIFS reconstruction
clearly improves the enhancement of the simulated lesions beyond that of the
parameter function-based BIFS. The DD-BIFS reconstruction is able to better
retain the detail of the lesions, in particular, their non-isotropic elongated form.

Truth Truth + noise

   BIFS problem specific priorBIFS simple (~abs.diff. MRF)

Fig. 1. Simulation study and reconstruction of lesion/tumor patterns. Top-left: new pro-
cess realization; top-right: with added noise; bottom left: pairwise difference prior approx-
imation BIFS reconstruction; bottom right: simulation-driven BIFS reconstruction.
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It should be noted here that primary objective of the study lies with visual-
ization and not direct quantification of image intensities. If the clinical goal is
to detect tumors then the objective of reconstruction is to have visually clear
tumors that the radiologist can readily identify. Alternatively, if the goal is dif-
ferentiation of benign vs cancer tumors, the decision may be based on shape
characteristics so that accentuating them may help the clinician to visually dif-
ferentiate between the lesion types.

4 Perfusion/PET Imaging of the Brain Example

The overall objective of this study is to process arterial spin labeling (ASL)
perfusion MRI to enhance blood flow patterns in the brain associated with
frontotemporal lobar dementia (FTLD). ASL perfusion has been shown to be
sensitive to FTLD pathology, showing hypoperfusion in frontal regions, poten-
tially providing a cheaper and radiation free alternative to the conventional
(FDG)-PET (fluorodeoxyglucose positron emission tomography) [7,12]. Prelim-
inary data indicates that ASL based perfusion patterns associated with FTLD
are coherent with PET, albeit with reduced image quality due to increased noise
(Fig. 2). The objective of our BIFS modeling procedure is to improve ASL perfu-
sion maps toward the quality of PET by using a DD-BIFS prior generated from
a database of PET images.

Structural MRI Perfusion MRI FDG-PET

Fig. 2. Comparison ASL perfusion MRI and FDG-PET cerebro-blood-flow (CBF)
maps for the same subject.

4.1 Data

PET and ASL perfusion pairs for individuals acquired around the same time
are taken from the Frontotemporal Lobar Degeneration Neuroimaging Initia-
tive (FTLDNI), a multi-center biomarker trial aimed at identifying promising
markers as surrogate endpoints for FTLD disease progression in clinical trials.
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Structural MRI T1 and ASL Perfusion MRI Data: Volumetric MPRAGE
sequences at UCSF were used to acquire T1-weighted structural images of the
entire brain (Sagital slice orientation; slice thickness = 1.0 mm; slices per slab
= 160; in-plane resolution = 1.0 × 1.0 mm; matrix = 240 × 256; TR = 2,300
ms; TE = 2.98 ms; TI = 900 ms; flip angle = 9◦). Pulsed ASL (PASL) imaging
was acquired using QUIPSSII with Thin-slice TI1 Periodic Saturation (Q2TIPS)
sequence incorporated in a PICORE (Proximal Inversion with Control of Off-
Resonance Effects) labeling scheme [16]. The periodic saturation pulses started
at the postlabeling delay inversion time TI1 = 700 ms after the in-plan presat-
uration radio infrequency pulse; the readout started at the postlabeling delay
inversion time TI2 = 1800 ms. The repetition and echo time were TR/TE =
2500/11 ms. Sixteen slices were acquired, each 6 mm thick with a 7.2 mm center
to center distance and a matrix 64 × 56 of 4 × 4 mm2 in-plane voxel resolution.

PET Data: PET data were acquired at the Lawrence Berkeley National Labo-
ratory on a Siemens ECAT EXACT HR scanner or a Siemens Biograph PET/CT
scanner. FDG was supplied by a radiopharmacy (IBA Molecular). Six emission
frames lasting 5 min each were acquired starting 30 min post-injection. Attenu-
ation correction was performed using a 10 min transmission scan on the ECAT
scanner or a low-dose CT scan on the Biograph, both being acquired prior to
PET acquisition. For both scanners, PET data were reconstructed using an
ordered subset expectation maximization algorithm with weighted attenuation
and images were smoothed with a 4 mm Gaussian kernel with scatter correc-
tion. Final resolution was calculated using Hoffman phantom: 7 × 7 × 7.5 mm
for ECAT and 6.5 × 6.5 × 7.25 mm for Biograph.

Pre-processing: Before any prepossessing of the images, all T1-weighted
images were visually inspected for quality control. Images with excessive motion
or image artifact were excluded. T1-weighted images underwent bias field correc-
tion using N3 algorithm, the segmentation was performed using SPM12 (Well-
come Trust Center for Neuroimaging, London, UK, http://www.fil.ion.ucl.ac.
uk/spm) unified segmentation [10]. A customized group template was gener-
ated from the segmented gray and white matter tissues and cerebrospinal fluid
by non-linear registration template generation using Large Deformation Diffeo-
morphic Metric Mapping framework [2]. Native subjects space gray and white
matter were geometrically normalized to the group template, modulated and
then smoothed in the group template. The applied smoothing used a Gaussian
kernel with 8 mm full width half maximum. All steps of the transformation were
carefully inspected from the native space to the group template. Linear and
non-linear transformations between the group template space and International
Consortium of Brain Mapping (ICBM) [17] was applied.

Frames of the ASL acquisition were corrected for motion, co-registered with
the first frame (M0) using FSL [13]. An automatic quality control process
removed tagged/untagged pairs of frames when the relative root mean square
(RMS) distance value between two consecutive frames was higher than 0.5 mm.

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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The subject was dropped if this RMS value was higher than 1 mm. Differential
perfusion images were created by subtracting unlabeled from adjacent labeled
frames and averaging these subtraction images [1]. Susceptibility artifacts along
the phase-encoding direction were corrected for the M0 frame and perfusion
map using ANTs [3] restricted to the coronal axis of the patient. Cerebral Blood
Flow (CBF) was calculated by applying the Buxton kinetic model to the perfu-
sion map [6]. CBF data was processed to obtain partial volume corrected maps
of gray matter perfusion, based on the tissue segmentation using transformation
matrix from T1 to M0 as previously described [7,11,14]. Normalized CBF val-
ues were obtained by dividing the voxel CBF value by the mean Calacarin CBF
value region of interest. Calcarine was selected based on the observation that
FTD variants do not impact this area neither the acquisition field of view.

Analyses on partial volume corrected, non-partial volume corrected and nor-
malized perfusion images was performed in MNI space using the structural set
of geometric transformations and smoothed with an isotropic 12 mm Gaussian
kernel full width half maximum. All CBF images were visually inspected in the
native and MNI spaces. Poor quality images out of the field of view, with large
susceptibility or motion artifacts were removed from the study.

Finally, voxels in the ASL image were rescaled to match the dynamic range
of the PET images. To do this the voxels in the ASL were first ordered by
intensity, ignoring their spatial coordinates. Then a 10% random sample was
drawn from all the voxels in all the PET images of the database, and they were
ordered by intensity. The n’th brightest voxel in the ASL to be processed was
reassigned the intensity of the m’th brightest voxel in the PET sample, where
m = round

(
n ∗ np

na

)
, and where np and na are the sizes of the PET subsample

and the ASL image respectively, and n ranges from 0 to na − 1.

4.2 Reconstruction Results

The same DD-BIFS model set as that used for the lesion simulation study.
101 subjects were used to build the PET prior and 1 individual with corre-
sponding ASL-perfusion scan was reserved for evaluation.

Figure 3 shows the results of the reconstruction of an individual’s ASL image.
In the top-left panel is the PET image that we would like to emulate and in the
top-right the corresponding original ASL perfusion MRI for the same individual.
In the bottom left the DD-BIFS prior reconstruction is displayed (with mask
applied) and at the bottom right is DD-BIFS prior reconstruction with additional
shrinkage on the prior variance (specifically the standard deviation is multiplied
by a factor of 0.01). The reconstructed image does adjust the ASL-perfusion
MRI so that it emulates the characteristics of the PET, and shrinking the prior
variance (essentially putting more weight on the prior) serves to further move
the original ASL to an image that emulates what the clinician might see with
PET.

Ongoing work on this project will focus on performing full clinical validation
of DD-BIFS to assess clinical applicability as a surrogate for PET.
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Fig. 3. Individual reconstruction of ASL data to resemble PET. Top-left: Original PET
image; top-right: ASL for the same individual; bottom left: DD-BIFS prior reconstruc-
tion; bottom right: DD-BIFS reconstruction with additional shrinkage on the prior
variance.

5 Conclusion

The DD-BIFS modeling framework provides a powerful new approach to using
information available in large databases to improve reconstruction in individual
images. In particular, the independence across Fourier space specification allows
for fast and efficient computation which can be further improved with paral-
lelization. Additionally, the ability to efficiently use empirical prior information
from a database of images without the need for explicit modeling provides a
powerful approach to improving image quality. Our preliminary application to
the reconstruction of ASL perfusion MRI shows great promise and large-scale
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validation work is currently under way to determine its applicability in clinical
practice.

Acknowledgements. Thanks To: Renaud La Joie and Amelia Strom for providing
information on the PET dataset acquisitions.
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Abstract. Electroencephalography (EEG) studies produce region-
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ple typically developing (TD) children and children with autism spec-
trum disorder (ASD). In such cases, valid group-level inference requires
characterization of the complex EEG dependency structure as well as
covariate-dependent heteroscedasticity, such as changes in variation over
developmental age. In our motivating study, resting state EEG is col-
lected on both TD and ASD children aged two to twelve years old.
The peak alpha frequency (PAF), defined as the location of a prominent
peak in the alpha frequency band of the spectral density, is an impor-
tant biomarker linked to neurodevelopment and is known to shift from
lower to higher frequencies as children age. To retain the most amount
of information from the data, we model patterns of alpha spectral varia-
tion, rather than just the peak location, regionally across the scalp and
chronologically across development for both the TD and ASD diagnostic
groups. We propose a covariate-adjusted hybrid principal components
analysis (CA-HPCA) for region-referenced functional EEG data, which
utilizes both vector and functional principal components analysis while
simultaneously adjusting for covariate-dependent heteroscedasticity. CA-
HPCA assumes the covariance process is weakly separable conditional on
observed covariates, allowing for covariate-adjustments to be made on
the marginal covariances rather than the full covariance leading to sta-
ble and computationally efficient estimation. A mixed effects framework
is proposed to estimate the model components coupled with a boot-
strap test for group-level inference. The proposed methodology provides
novel insights into neurodevelopmental differences between TD and ASD
children.
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1 Introduction

Despite the numerous developmental delays observed in children with autism
spectrum disorder (ASD) compared to their typically developing peers (TD),
the neural mechanisms underpinning these delays are not well characterized. To
address this gap, our motivating study collected resting-state electroencephalo-
grams (EEG) on TD and ASD children aged two to twelve years old, making it
possible to contrast neural processes between the two diagnostic groups over a
wide developmental range. EEG and magnetoencephalography (MEG) charac-
terize cortical and intracortical brain activity, respectively, via the measurement
of electrical potentials and their corresponding oscillatory dynamics (i.e. spec-
tral characteristics). Recent studies in cognitive development using both EEG
and MEG highlight the peak alpha frequency (PAF), defined as the location
of a single prominent peak in the spectral density within the alpha frequency
band (6–14 Hz), as a potential biomarker associated with autism diagnosis [7–9].
Specifically, the location of the PAF tends to shift from lower to higher fre-
quencies as TD children age but this chronological shift is notably delayed or
absent in ASD children [7,8,12,16]. This trend is observed in our motivating
data from a temporal electrode (T8) where the PAF, identifiable as ‘humps’ in
age-specific slices of the group-specific bivariate mean spectral density (across
age and frequency), increases in frequency with age for TD children but not for
ASD children (Fig. 1(a)).

Fig. 1. (a) The group-specific bivariate mean alpha band spectral density (across age
and frequency (6–14 Hz)) at ages 50, 70, 90 and 110 months from the T8 electrode.
(b) A diagram of the 25 electrode montage used in our motivating data with the T8
electrode marked by a star.

Although the PAF holds promise as a biomarker for neural development in
TD and ASD children, emphasis on the identification of a single peak produces
considerable drawbacks. Estimation of a subject-electrode specific PAF can be
error prone due to the presence of noise and multiple local maxima [6] and mea-
surement of PAF inherently reduces the information from the alpha spectral
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band to a single scalar summary resulting in a loss of information. To avoid
these limitations, we follow Scheffler et al. [15] and consider the entire spectral
density across the alpha band as a functional measurement of neural activity. We
focus on modeling and contrasting patterns of alpha spectral variation regionally
across the scalp and chronologically across development for both the ASD and
TD diagnostic groups. While Scheffler et al. [14] proposed a hybrid principal
components analysis (HPCA) decomposition that models variation in region-
referenced functional EEG data, it does not allow for the covariance structure
to change across development as needed in our application. Previous research
clearly shows that alpha spectral dynamics differ as a function of age between
TD and ASD children and to assume a constant covariance structure across
development risks missing important findings. To avoid this misspecification, we
propose a covariate-adjusted hybrid principal components analysis (CA-HPCA)
that models variation in high-dimensional functional data while simultaneously
allowing the patterns of variation to change as a function of subject-specific
covariates. CA-HPCA assumes the covariance process is weakly separable con-
ditional on observed covariates, allowing for covariate-adjustments to be made
on the marginal covariances rather than the full covariance leading to stable and
computationally efficient estimation.

In the simplified context of one-dimensional functional data, existing methods
allow for covariate-adjustments to the functional covariance in two ways: (1) both
the eigenvalues and eigenfunctions of the functional covariance are allowed to
change as a function of observed covariates or (2) the eigenfunctions are assumed
to be constant across the covariate dimension but their corresponding eigenvalues
(hence principal scores) are covariate-dependent. In the former class, Cardot [2]
proposed a non-parametric covariate-adjusted functional principal components
analysis (FPCA) in the context of dense functional data and Jiang and Wang
[10] extended covariate-adjusted FPCA to noisy or sparse settings by estimating
subject-specific scores using conditional expectation. In both cases, covariance
estimation is performed non-parametrically by simultaneous smoothing across
the covariate and functional domains via kernel methods. By fixing eigenfunc-
tions across the covariate domain, Chio et al. [5] introduced a semi-parametric
functional regression model that estimates covariate-dependent principal scores
using a single-index model and Backenroth et al. [1] developed a heteroscedastic
FPCA for repeatedly measured curves that models eigenvalues as an exponential
function of covariate and subject-dependent effects.

Our proposed covariate-adjusted hybrid principal components analysis com-
bines existing one-dimensional methods for covariate-dependent functional het-
eroscedasticity with recent advances in multi-dimensional FPCA to allow
covariate-adjustments in the context of high-dimensional functional data. We
briefly explore the methodological contributions of our proposed model and the
resulting computational gains. A central theme in FPCA decompositions for
multi-dimensional functional data is the use of simplifying assumptions regard-
ing the covariance structure to ease estimation. A flexible approach in modeling
two-dimensional functional data is to assume weak separability of the covariance
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process [4,11] in which the marginal covariances along each dimension are tar-
geted and the full covariance is projected onto a tensor basis formed from the
corresponding marginal eigenfunctions. Thus, estimation is reduced from that
of the total covariance in four-dimensions to the marginal covariances in two-
dimensions for which efficient two-dimensional smoothers exist. Scheffler et al.
[14] extended weak separability to region-referenced functional EEG data (simi-
lar to our motivating study) by allowing a discrete regional dimension via HPCA.
We leverage the simplifying assumptions and computational efficiency of HPCA
through the proposed CA-HPCA which introduces covariate-dependence to the
marginal covariances rather than the total covariance and allows the marginal
eigenvalues and eigenfunctions to change across the covariate domain.

CA-HPCA provides a flexible modeling framework but introduces potential
compute burden through the addition of a covariate dimension to estimation
of the marginal covariances which for a scalar covariate requires smoothing
across three dimensions. Previous methods such as Cardot [2] and Jiang and
Wang [10] utilized kernel methods to estimate covariate-dependent marginal
covariances but these approaches are computationally intensive and scale poorly
with the introduction of additional covariates. To address this challenge, we
extend the fast functional covariance smoothing proposed by Cederbaum et al.
[3] to allow for covariate-adjustments by including an additional basis along
the covariate dimension. Thus, CA-HPCA generalizes covariate-adjustments to
high-dimensional functional covariances and substantially reduces the resulting
computational burden by applying adjustments to the marginal covariances and
introducing covariate-dependence to cutting-edge fast covariance smoothers. A
mixed effects framework is proposed to estimate the model components and is
paired with parametric bootstrap resampling to perform inference across the
covariate domain. The remaining sections are organized as follows. Section 2
introduces the proposed CA-HPCA and Sect. 3 describes the corresponding esti-
mation procedure. Application of the proposed method to our resting state EEG
data follows in Sect. 4. Section 5 concludes with a brief summary and discussion.

2 Covariate-Adjusted Hybrid Principal Components
Analysis (CA-HPCA)

Let Ydi(ai, r, ω) be a random function observed in the presence of some contin-
uous non-functional covariate ai ∈ A, for subject i, i = 1, . . . , nd, from group
d, d = 1, . . . , D, in region r, r = 1, . . . , R, and at frequency ω, ω ∈ Ω. We
decompose Ydi(ai, r, ω) additively such that the expectation and covariance of
the process depend on the covariate ai,

Ydi(ai, r, ω) = ηd(ai, r, ω) + Zdi(ai, r, ω) + εdi(ai, r, ω),

where ηd(ai, r, ω) = E{Ydi(ai, r, ω)|ai} denotes the group-region mean func-
tion, Zdi(ai, r, ω) denotes a mean zero region-referenced stochastic process with
total variance Σd,T (ai; r, ω; r′, ω′) = cov{Zdi(ai, r, ω), Zdi(ai, r

′, ω′)|ai}, and
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εdi(ai, r, ω) denotes measurement error with mean zero and variance σ2
d that is

independent across the regional and functional domains. We assume the group-
region means ηd(a, r, ω) are smooth in both the functional domain Ω and the
non-functional domain A though we place no restrictions across the regional
domain R

R.
In the proposed CA-HPCA model, we assume that the total covariance

Σd,T (a; r, ω; r′, ω′) is weakly separable for each a ∈ A. Weak separability, a
concept recently proposed by Lynch and Chen [11] and adapted by Scheffler
et al. [14] to region-referenced functional EEG data, implies that a covariance
can be approximated by a weighted sum of separable covariance components
and that the direction of variation (i.e. eigenvectors/eigenfunctions) along one
dimensions of the EEG data is the same across fixed slices of the other dimen-
sion. Note that weak separability is more flexible than strong separability (i.e.
separability) commonly utilized in spatiotemporal modeling which requires the
total covariance, not just the directions of variation, is the same up to a constant
for fixed slices of the other dimensions. Unlike previously applications of weak
separability, we assume that the total covariance is weakly separable conditional
on observed covariates and the marginal covariance functions vary smoothly
along the covariate domain. Let the covariate-adjusted regional and functional
marginal covariances be defined as

{Σd,R(ai)}r,r′ =

∫
Ω
cov{Zdi(ai, r, ω), Zdi(ai, r

′, ω)}dω =
R∑

k=1

τdk,R(ai)vdk(ai, r)vdk(ai, r
′),

Σd,Ω(ai, ω, ω′) =
R∑

r=1

cov{Zdi(ai, r, ω), Zdi(ai, r, ω
′)} =

∞∑
�=1

τd�,Ω(ai)φd�(ai, ω)φd�(ai, ω
′),

where vdk(a, r) are covariate-adjusted marginal eigenvectors, φd�(a, ω) are
covariate-adjusted marginal eigenfunctions, and τdk,R(a) and τd�,Ω(a) are their
respective covariate-adjusted marginal eigenvalues. Utilizing the covariate-
dependent eigenvectors and eigenfunctions, the covariate-adjusted hybrid prin-
cipal components decomposition (CA-HPCA) of Ydi(ai, r, ω) is given as,

Ydi(ai, r, ω) = ηd(ai, r, ω) + Zdi(ai, r, ω) + εdi(ai, r, ω)

= ηd(ai, r, ω) +
R∑

k=1

∞∑

�=1

ξdi,k�(ai)vdk(ai, r)φd�(ai, ω) + εdi(ai, r, ω),

where ξdi,k�(ai) are subject-specific scores defined through the projection
〈Zdi(ai, r, ω), vdk(ai, r)φd�(ai, ω)〉 =

∑R
r=1

∫
Zdi(ai, r, ω) vdk(ai, r)φd�(ai, ω)dω.
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Weak separability of the total covariance at each covariate value implies that
the scores ξdi,k�(ai) are uncorrelated leading to the decomposition of the total
covariance Σd,T (a; r, ω; r′, ω′) as follows,

Σd,T (a; r, ω; r′, ω′) = cov{Zdi(a, r, ω), Zdi(a, r′, ω′)|a}+ σ2
dδ(a; r, ω; r′, ω′)

=
R∑

k=1

∞∑
�=1

τd,k�(a)vdk(a, r)vdk(a, r′)φd�(a, ω)φd�(a, ω′) + σ2
dδ(a; r, ω; r′, ω′),

where τd,k�(a) = var{ξdi,k�(a)}. Note, the above model assumes that both the
marginal directions of variation and their associated tensor weights are allowed
to vary across the covariate domain. In practice, the CA-HPCA decomposition
is truncated to include only Kd and Ld covariate-adjusted marginal eigencom-
ponents for the regional and functional domains, respectively, with the number
of components initially selected on the marginal fraction of variance explained
(FVE). One guideline is to include the minimum number of covariate-adjusted
marginal eigencomponents in the CA-HPCA expansion that explain at least 90%
of variation in their respective covariate-adjusted marginal covariances. The final
number of components can be fixed after the subject-specific scores and their
associated variance components are estimated in Sect. 3 which allow enumeration
of the overall FVE in the observed data not just the marginal covariances.

3 Estimation of Model Components and Inference

The following section outlines the CA-HPCA estimation procedure, provides
detailed descriptions of each step, and outlines how to perform inference via
parametric bootstrap.

(1) Estimation of group-region mean functions: We estimate the group-region
mean function ηd(a, r, ω) for each region via smoothing performed by projection
onto a tensor basis formed by penalized marginal B-splines in the regional and
functional domains. Smoothing parameter selection and variance components
are estimated using restricted maximum likelihood (REML) methods.

(2) Estimation of covariate-adjusted marginal covariances and measurement
error variance: We estimate the covariate-adjusted marginal covariances by
assuming each two-dimensional marginal covariance varies smoothly over the
covariate dimension. For the functional marginal covariance, Σd,Ω(a, ω, ω′), we
extend the fast bivariate covariance smoother of Cederbaum et al. [3] to include a
third covariate dimension a ∈ A. The resulting trivariate smoother maintains the
computational efficiency of Cederbaum et al. [3] while simultaneously allowing
the marginal functional covariance to vary smoothly along the covariate dimen-
sion. As an added bonus, we also obtain an initial estimate of the measurement
error variance σ̂2

d,Ω.
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Algorithm: CA-HPCA Estimation Procedure

1. Estimation of group-region mean functions
(a) Calculate η̂d(ai, r, ω) by applying a bivariate penalized spline smoother

to all observed data {ai, ω, Ydi(ai, r, ω) : i = 1, . . . , nd; ai ∈ A;ω ∈ Ω}.
(b) Mean center each observation, Ŷ c

di(ai, r, ω) = Ydi(ai, r, ω) − η̂d(ai, r, ω).
2. Estimation of covariate-adjusted marginal covariances and measurement

error variance
(a) Calculate Σ̂d,Ω(a, ω, ω′) and σ̂2

d,Ω by applying trivariate penalized spline
smoothers to the products,
{ai, ω, ω′, Ŷ c

di(ai, r, ω)Ŷ c
di(ai, r, ω

′) :b i = 1, . . . , nd; ai ∈ A;ω, ω′ ∈ Ω}.
(b) Calculate Σ̂d,R(a) by smoothing each (r, r′) entry across A. For r �= r′,

estimate {Σ̂d,R(a)}(r,r′) by applying a univariate kernel smoother to
{ai, r, r

′, Ŷ c
di(ai, r, ω)Ŷ c

di(ai, r
′, ω) : i = 1, . . . , nd;ai ∈ A}. For r = r′,

estimate {Σ̂d,R(a)}(r,r) by applying a univariate penalized smoother to
{ai, r, r, Ŷ

c
di(ai, r, ω)Ŷ c

di(ai, r, ω) − σ̂2
d,Ω : i = 1, . . . , nd; ai ∈ A}.

3. Estimation of covariate-adjusted marginal eigencomponents
(a) For each unique value of a observed, employ FPCA on Σ̂d,Ω(a, ω, ω′) to

estimate the eigenvalue, eigenfunction pairs,
{τd�,Ω(a), φd�(a, ω) : 
 = 1, . . . , Ld}.

(b) For each unique value of a observed, employ PCA on Σ̂d,R(a) and to
estimate the eigenvalue, eigenvector pairs {τdk,R(a), vdk(a, r) :
k = 1, . . . Kd}.

4. Estimation of covariate-adjusted variance components and subject-specific
scores via linear mixed effects models
(a) Calculate τ̂dg(ai) = cov{ζ̂dig(ai)} and σ̂2

d by fitting the proposed linear
mixed effects model.

(b) Select G′
d such that FV EdG′ > .8 for d = 1, . . . , D and form predictions

Ŷdi(ai, r, ω).
(c) Calculate ζ̂dig{ai as the BLUP ζ̂dig(ai) = E {ζdig(ai)|Ydi}.

5. Inference via parametric bootstrap.

For fixed slices of the covariate domain, the regional marginal covariance
{Σd,R(a)}r,r′ is discrete and thus not amenable to trivariate smoothers as the
functional marginal covariance above. Therefore, we estimate the raw regional
marginal covariance at each covariate-value, remove the measurement variance
from the diagonals as in Scheffler et al. [14] and then apply a Nadarya-Watson ker-
nel smoother to the resulting matrices entry-by-entry along the covariate domain.
Our kernel smoother is the kernel weighted-average, {Σ̂d,R(ao)}(r,r′) =

∑nd

i=1∑
ω∈Ω Kλ(ao, ai)Ŷ c

di(ai, r, ω)Ŷ c
di(ai, r

′, ω)/|Ω|∑nd

i=1 Kλ(ao, ai), where Kλ(· , · ) is
some kernel with smoothness parameter λ and |Ω| is the number of observed
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functional grid points. The smoothing parameter λ is selected to minimize
the LOSOCV(λ) statistic across all channel pairs (r, r′), LOSOCV(λ) =∑R

r=1

∑
r′<r LOSOCV(λ, r, r′), LOSOCV(λ, r, r′) = (1/|Ω|nd)

∑nd

i=1

∑
ω∈Ω[

Ŷ c
di(ai, r, ω) Ŷ c

di(ai, r
′, ω)−{Σ̂(−i)

d,R (ai)}(r,r′)
]2, where {Σ̂(−i)

d,R (ai)} is the smoothed
marginal covariance matrix with the ith subject left out. Thus, we introduce two
novel covariate-adjusted smoothers that allow for calculation of the covariate-
adjusted marginal covariances which are then used for subsequent covariate-
adjusted eigendecompositions.

(3) Estimation of covariate-adjusted marginal eigencomponents: To estimate the
covariate-adjusted marginal eigencomponents we perform eigendecompositions
at each fixed covariate-value as described in Scheffler et al. [14] retaining a com-
mon number of Kd and Ld covariate-adjusted eigencomponents.

( 4) Estimation of covariate-adjusted variance components and subject-specific
scores via linear mixed effects models: We make use of the estimated func-
tional fixed effects and marginal eigencomponents to propose a linear mixed
effects framework for modeling covariate-adjusted region-referenced functional
data. Under the assumption of joint normality of the covariate-adjusted subject-
specific scores and measurement error, the proposed mixed effects framework
induces regularization and stability in modeling the data by enforcing a low-rank
structure on the covariate-adjusted variance components τdg(a). The resulting
variance components can be used to select the number of eigencomponents to
include in the CA-HPCA decomposition by quantifying the proportion of vari-
ance explained and for hypothesis testing and point-wise confidence bands via
parametric bootstrap. We present the linear mixed effects modeling framework
below.

To make the notation more compact, we replace the double index k
 in CA-
HPCA truncated at Kd and Ld with a single index g = (k − 1) + Kd(
 − 1) + 1,

Ydi(ai, r, ω) = ηd(ai, r, ω) +
Gd∑

g=1

ξdi,g(ai)ϕdg(ai, r, ω) + εdi(ai, r, ω),

where ϕdg(ai, r, ω) = vdk(ai, r)φd�(ai, ω), ζdig(ai) = 〈Zdi(ai, r, ω), ϕdg(ai, r, ω)〉,
τdg = cov{ζdig(ai)}, and Gd = KdLd. Let Ydi(ai) represent the vectorized form
of Ydi(ai, r, ω) for subject i, i = 1, . . . , nd, observed along with covariate value ai.
Note, an argument for the covariate domain a is included to stress that a subject’s
covariance is covariate-dependent. Analogous vectorized forms for the covariate-
adjusted functional fixed effects, ηd(ai, r, ω), the region-referenced stochastic
process Zdi(ai, r, ω), multidimensional orthonormal basis ϕdg(ai, r, ω), and the
measurement error εdi(ai, r, ω) are denoted by ηdi(ai), Zdi(ai), ϕdg(ai), and εdi,
respectively. Under the assumption that ζdi(ai) = {ζdi1(ai), . . . , ζdiGd

(ai)} and
εdi are jointly Gaussian and cov{ζdi(ai), εdi} = 0 at a fixed value of ai, the
proposed linear mixed effects model is given as
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Ydi(ai) = ηdi(ai) + Zdi(ai) + εdi

= ηdi(ai) +
Gd∑

g=1

ζdig(ai)ϕdg(ai) + εdi, for i = 1, . . . , nd. (1)

The model can be fit separately in each group, d = 1, . . . , D and the regional
and functional dependencies in Ydi(ai) are induced through the subject-specific
random effects ζdig(ai) in (1). Given the assumption that the total covari-
ance is weakly separable for fixed values of a, cov{ζdig(ai), ζdig′(ai)} = 0 for
g �= g′ and thus the covariance of the subject-specific scores possess a diago-
nal diagonal structure, cov{ζdi(ai)} = Td(ai) = diag{τd(ai)}, where τd(ai) =
{τd1(ai), . . . , τdG(ai)}. We further assume that Td(a) evolves smoothly along
the covariate domain and target the smooth variance components through their
corresponding precision components. Given previous estimates for ηdi(ai) and
ϕdg(ai), estimates of the variance components and subject-specific scores are
obtained using REML methods [17].

The assumption that the variance components evolve smoothly over the
covariate domain resolves several challenges that emerge when modeling the
covariate-adjusted subject-specific scores. First, the estimation procedure is able
to borrow strength across the covariate-domain when modeling variation, a
necessity when specific covariate values may only be observed once as in our
motivating data. Second, we are able to project the precision components onto a
smooth low-rank basis which induces regularization and control over the speed
at which τg(a) is allowed to vary. Alternatively, a projection based approach
is less computationally burdensome with estimates of the subject-specific scores
obtained directly by numerical integration, ζ̂dig(ai) = 〈Zdi(ai, r, ω), ϕ̂dg(ai, r, ω)〉
and their corresponding variance components calculated empirically, τ̂dg =
cov{ ˆζdig(a)}, but the resulting estimates are unstable due to the limited num-
ber of observations at each point along the covariate domain. Therefore, despite
the added compute time, our proposed linear mixed effects framework is better
suited for providing covariate-adjustments to the region-referenced functional
process in a controlled and principled manner.

The estimated variance components are used to choose the number of
eigencomponents included in the CA-HPCA decomposition where G′

d denotes
a set of eigencomponents such that the total fraction of variance explained
(FV EdG′

d
) is greater than 0.8 in each group d = 1, . . . , D. We recommend

starting with a larger number Gd = KdLd of eigencomponents in the mixed
effects modeling used for the estimation of {τdg(ai) : g = 1, . . . , Gd} and
then reducing or adding components as appropriate to fix the final value
of G′

d. In order to estimate the group-specific fraction of total variance
explained via the G′

d eigencomponents, we consider the quantity, FV EdG′
d

=
∫ {∑nd

i=1

∑G′
d

g=1 τ̂dg(ai)}da/
∫

[
∑nd

i=1{||Ydi(ai, r, ω) − η̂d(ai, r, ω)|| − R
∫

σ̂2
dda}]da,

where ||f(ai, r, ω)||2 =
∑R

r=1

∫
f(ai, r, ω)2dω. Once G′

d is selected, the subject-
specific scores can be obtained using their best linear unbiased predictor (BLUP)
as in Scheffler et al. [14].
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(5) Inference via parametric bootstrap: Inference in the form of hypothesis testing
and point-wise confidence intervals can be performed via a parametric bootstrap
based on the estimated CA-HPCA model components. To test the null hypoth-
esis that all groups have equal means in the region r for a fixed covariate value
a ∈ A, i.e. H0 : ηd(a, r, ω) = η(a, r, ω) for d = 1, . . . D, we propose a parametric
bootstrap procedure based on the CA-HPCA decomposition. For b = 1, . . . , B,
the proposed parametric bootstrap generates outcomes based on the estimated
model components under the null hypothesis as Y b

di(ai, r, ω) = η̂(ai, r, ω) +
Zb

di(ai, r, ω) + εb
di(ai, r, ω) = η̂(ai, r, ω) +

∑G′
d

g=1 ζb
dig(ai)ϕ̂dg(ai, r, ω) + εb

di(ai, r, ω)
in region r and as Y b

di(ai, r, ω) = η̂d(ai, r, ω) + Zb
di(ai, r, ω) + εb

di(ai, r, ω) =
η̂d(ai, r, ω) +

∑G′
d

g=1 ζb
digϕ̂dg(ai, r, ω) + εb

di(ai, r, ω) in the other regions, where
subject-specific scores and measurement error are sampled from ζb

dig(ai) ∼
N{0, τ̂dg(ai)} and εb

di(ai, r, ω) ∼ N (0, σ̂2
d). The proposed test statistic Tr(a) =

[
∑D

d=1

∫ {η̂d(a, ω, s) − η̂(a, r, ω)}2dω]1/2 is based on the norm of the sum of the
departures of the estimated group-region shifts η̂d(a, r, ω) from the estimate of
the common shift across groups, η̂(a, r, ω). The common region shift estimate
η̂(a, r, ω), under the null, is set to the point-wise average of the group-region
shift estimates, η̂d(a, r, ω), d = 1, . . . , D. We utilize the proposed parametric
bootstrap to estimate the distribution of the test statistic Tr(a) which can be
used to evaluate the null hypothesis along the covariate domain.

To generate point-wise confidence intervals for estimates of η̂d(a, r, ω), we
repeat the above parametric bootstrap procedure but instead generate outcomes
from the model Y b

di(ai, r, ω) = η̂d(ai, r, ω) +
∑G′

d
g=1 ζb

digϕ̂dg(ai, r, ω) + εb
di(ai, r, ω).

At each iteration of the bootstrap, estimate η̂b
d(a, r, ω) from the simulated data

and then form point-wise confidence intervals based on percentiles of the esti-
mated group-region mean functions as a function of a, r and ω across iterations,
{η̂b

dg(a, r, ω) : b = 1, . . . , B}.

4 Application to the Task-Free Paradigm Data

Data structure: In our motivating data application, EEG signals were sampled
at 500 Hz for two minutes from a 128-channel HydroCel Geodesic Sensor Net on
58 ASD and 39 TD children aged 25 to 146 months old (diagnostic groups were
age matched). EEG recordings were collected during an ‘eyes-open’ paradigm
in which bubbles were displayed on a screen in a sound-attenuated room to
subjects at rest [7]. We describe the dataset in our previous work and present an
abbreviated description here, though the reader may reference Scheffler et al. [15]
for technical details related to pre-processing and data acquisition. EEG data
for each subject is interpolated down to a standard 10–20 system 25 electrode
montage (R = 25) using spherical interpolation as detailed in Perrin et al. [13],
producing 25 electrodes with continuous EEG signal (Fig. 1 (b)). Alpha spectral
density (Ω = (6Hz, 14Hz)) estimates for each electrode were obtained and the
resulting electrode-specific alpha spectral estimates form an instance of region-
referenced functional data.
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Data analysis results: We present the results from our application of CA-HPCA
to the EEG data collected under the ‘eyes-open’ paradigm. While the main focus of
our analysis is to characterize differences in alpha spectral dynamics between TD
and ASD children over the course of development via inference on the group-region
mean functions, we begin by briefly discussing the eigencomponents produced by
the decomposition. The leading four; four and four; six covariate-adjusted regional
and functional marginal eigencomponents are collectively found to explain 1.006
and 0.895 of the total FVE (FV EdG′

d
) in the TD and ASD groups, respectively.

In the functional dimension along the covariate domain, the first least leading
covariate-adjusted marginal eigenfunctions φd1(a, ω) (Fig. 2(a), top row) display
maximal variation at approximately 6 and 10 Hz (in opposing directions), where
the location of maximal variation shifts in TD children from higher to lower fre-
quencies as age increases but remains relatively constant in ASD children. The sec-
ond leading covariate-adjusted marginal eigenfunctions φd2(a, ω) (Fig. 2(a), bot-
tom row) show maximal variation at 6 Hz, 8.5 Hz, 10.5 Hz and 6 Hz, 7.5 Hz in the
TD and ASD groups, respectively, where again peak variation moves from higher
to lower frequencies as age increases in the TD group but not the ASD group
which instead displays shifts in the magnitude of maximal variation across devel-
opment. The first two leading covariate-adjusted marginal eigenfunctions together
explain at least 65% of the variation in the covariate-adjusted functional marginal
covariances. In the regional dimension along the covariate domain, the first lead-
ing covariate-adjusted marginal eigenvectors vd1(a, r) (Fig. 2(b), top row) display
maximal variation in the central; right temporal; left posterior and central; mid-
dle posterior electrodes at younger ages with a shift to right posterior and frontal;
right temporal electrodes at older ages in the TD and ASD groups, respectively.
The second leading covariate-adjusted marginal eigenvector vd2(a, r) (Fig. 2(b),
bottom row) shows maximal variation in the frontal and right frontal; right tem-
poral electrodes at younger ages which moves to frontal; right posterior (opposing
directions) and central; left posterior (opposing directions) at older ages in the TD
and ASD groups, respectively. The first two covariate-adjusted marginal eigenvec-
tors together explain at least 70%of the variation in the covariate-adjusted regional
marginal covariances.

To test for differences between TD and ASD groups in the alpha spectrum
over development, we utilize the parametric bootstrap procedure described in
Sect. 3 under the null hypothesis that the TD and ASD group-region mean func-
tions are equal for every electrode r at each age a = 25, . . . , 145 months which
takes the form H0 : ηd(r, ω, a) = η(r, ω, a), d = 1, 2. Figure 3(a) displays the
results of the hypothesis tests for all electrodes and ages with p-values trans-
formed to the −log10 scale to better stratify results where values greater than
−log10(0.05) = 1.30 denote significance at level α = .05. Nearly all electrodes
show significant differences between diagnostic groups in the alpha spectrum at
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Fig. 2. (a) Estimated first and second leading covariate-adjusted eigenfunctions
φd1(a, ω) and φd2(a, ω) at a = 50, 70, 90, 110 months. (b) Estimated first and second
leading covariate-adjusted eigenvectors vd1(a, r) and vd2(a, r) at a = 50, 70, 90, 110
months.

some point over development (with the exception of the P3 and P7 electrodes)
with the strongest group differences occurring at younger ages (30–50 months)
and older ages (100–130 months) in the frontal, central, temporal, and posterior
regions.

The greatest differences in the group-region mean functions across develop-
ment are observed in the T8 and T10 electrodes displayed in Fig. 3(b) along with
their 95% point-wise confidence intervals generated as described in Sect. 3. At
both electrodes, the TD group displays a well-defined peak in the alpha spec-
trum that shifts from 8 Hz–10 Hz moving from 50–110 months, whereas the ASD
group generally has less clearly-defined peaks that tend to center around 9 Hz
throughout development. Differences in the estimated group-region mean func-
tions mirror the results found from the parametric bootstrap procedure with
separation of the point-wise confidence intervals occurring at 50; 90; 110 months
and 110 months for the T8 and T10 electrodes, respectively. When aggregated,
the observations and inferences obtained from the CA-HPCA model compo-
nents provide evidence for differences in both the mean structure and patterns
of covariation between the two diagnostic groups that shift and change over
development highlighting the need to provide covariate-adjustments in modeling
the high-dimensional EEG data.



Covariate-Adjusted Hybrid Principal Components Analysis 403

Fig. 3. (a) The −log10 transformed p-values from the hypothesis test for each electrode
from the parametric bootstrap test for a = 25, . . . , 145 months. (b) The estimated
group-region mean functions ηd(a, r, ω) at ages a = 50, 70, 90, 110 months from the T8
and T10 electrodes. Grey shading denotes 95% point-wise confidence intervals for each
estimate.

5 Discussion

We proposed a covariate-adjusted hybrid principal components analysis (CA-
HPCA) which decomposes region-referenced functional data and accounts for
covariate-dependent heteroscedasticity by assuming the high-dimensional covari-
ance structure is weakly separable conditional on observed covariates. The pro-
posed estimation procedure develops computationally efficient fast-covariance
smoothers that incorporate covariate-dependence when estimating marginal
covariances as well as a mixed effects framework which admits inference along
the covariate-domain via bootstrap sampling. The CA-HPCA decomposition was
developed to model EEG data over a broad developmental range but may be
applied to other settings where high-dimensional data is expected to exhibit
differential covariation as a function heterogenous covariates.
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Abstract. Applying interval-valued data and methods, researchers have
made solid accomplishments in information processing and uncertainty
management. Although interval-valued statistics and probability are
available for interval-valued data, current inferential decision making
schemes rely on point-valued statistic and probabilistic measures mostly.
To enable direct applications of these point-valued schemes on interval-
valued datasets, we present point-valued variational statistics, proba-
bility, and entropy for interval-valued datasets. Related algorithms are
reported with illustrative examples.
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1 Introduction

1.1 Why Do We Study Interval-Valued Datasets?

Statistic and probabilistic measures play a very important role in processing
data and managing uncertainty. In the literature, these measures are mostly
point-valued and applied to point-valued dataset. While a point-valued datum
intends to record a snapshot of an event instantaneously in theory, it is often
imprecise in real world due to system and random errors. Applying interval-
valued data to encapsulate variations and uncertainty, researchers have devel-
oped interval methods for knowledge processing. With data aggregation strate-
gies [1,5,21], and others, we are able to reduce large size point-valued data into
smaller interval-valued ones for efficient data management and processing. By
doing so, researchers are able to focus more on qualitative properties and ignore
insignificant quantitative differences.

Studying interval-valued data, Gioia and Lauro developed interval-valued
statistics [4] in 2005. Lodwick and Jamison discussed interval-valued probability
[17] in the analysis of problems containing a mixture of possibilistic, proba-
bilistic, and interval uncertainty in 2008. Billard and Diday reported regres-
sion analysis of interval-valued data in [2]. Huynh et al. established a justifica-
tion on decision making under interval uncertainty [13]. Works on applications
of interval-valued data in knowledge processing include [3,8,16,19,20,22], and
c© Springer Nature Switzerland AG 2020
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many more. Applying interval-valued data in the stock market forecasting, Hu
and He initially reported an astonishing quality improvements in [9]. Specif-
ically, comparing against the commonly used point-valued confidence interval
predictions, the interval approaches have increased the average accuracy ratio of
annual stock market forecasts from 12.6% to 64.19%, and reduced the absolute
mean error from 72.35% to 5.17% [9]. Additional results on the stock market
forecasts reported in [6,7,10], and others have verified the advantages of using
interval-valued data. The paper [12], published in the same volume as this one,
further validates the advantages from the perspective of information theory.

Using interval-valued data can significantly improve efficiency and effective-
ness in information processing and uncertainty management. Therefore, we need
to study interval-valued datasets.

1.2 The Objective of this Study

As a matter of fact, powerful inferential decision making schemes in the cur-
rent literature use point-valued statistic and probabilistic measures, not interval-
valued ones [4] and [17], mostly. To enable direct applications of these schemes
and theory on analyzing interval-valued datasets, we need to supply point-valued
statistics and probability for interval-valued datasets. Therefore, the primary
objective of this work is to establish and to calculate such point-valued mea-
sures for interval-valued datasets.

To make this paper easy to read, it includes brief introductions on necessary
background information. It also provides easy to follow illustrative examples for
novel concepts and algorithms in addition to pseudo-code. Numerical results
of these examples are obtained with a recent version of Python 3. However,
readers may use any preferred general purpose programming language to verify
the results.

1.3 Basic Concepts and Notations

Prior to our discussion, let us first clarify some basic concepts and notations
related to intervals in this paper. An interval is a connected subset of R. We
denote an interval-valued object with a boldfaced letter to distinguish it from a
point-valued one. We further specify the greatest lower bound and least upper
bound of an interval object with an underline and an overline of the same letter
but not boldfaced, respectively. For example, while a is a real, the boldfaced
letter a denotes an interval with its greatest lower bound a, and least upper
bound a. That is a = {a : a ≤ a ≤ a, a ∈ R} = [a, a]. The absolute value of
a, defined as |a| = a − a, is also called the length (or norm) of a. This is the
greatest distance between any two numbers in a.

The midpoint and radius of an interval a are defined as mid(a) =
a + a

2
and

rad(a) =
a − a

2
, respectively. Because the midpoint and radius of an interval a

are point-valued, we simply denote them as mid(a) and rad(a) without bold-
facing the letter a. We call [a, a] the endpoint (or min-max) representation of



Statistics, Probability, and Entropy for Interval-Valued Datasets 409

a. We can specify an interval a with mid(a) and rad(a) too. This is because of
a = mid(a) − rad(a) and a = mid(a) + rad(a). In the rest of this paper, we use
both min-max and mid-rad representations for an interval-valued object.

While we use a boldfaced lowercase letter to indicate an interval, we denote
an interval-valued dataset, i.e., a collection of real intervals, with a boldfaced
uppercase letter. For instance, X = {x1, x2, . . . , xn} is an interval-valued dataset.
The sets X = {x1, x2, . . . , xn} and X = {x1, x2, . . . , xn} are the left- and right-
end sets of X, respectively. Although items in a set are not ordered, the xi ∈ X
and xi ∈ X are related to the same interval xi ∈ X. For convenience, we denote
both X and X as ordered tuples. They are the left- and right-endpoints of X.
That is X = (x1, x2, . . . , xn) and X = (x1, x2, . . . , xn). Similarly, the midpoint
and radius of X are point-valued tuples. They are mid(X) = (mid(x1),mid(x2),
. . . , mid(xn)) and rad(X) = (rad(x1), rad(x2), . . . , rad(xn)) , respectively.

Example 1. Provided an interval-valued sample dataset X0 = {[1, 5], [1.5, 3.5],
[2, 3], [2.5, 7], [4, 6]}. Then, its left-endpoint is X0 = (1, 1.5, 2, 3, 2.5, 4), and right-

endpoint is X0 = (5, 3.5, 3, 7, 6). The midpoint of X0 is mid(X0) =
X0 + X0

2
=

(3, 2.5, 2.5, 4.75, 5), and the radius is rad(X0) =
X0 − X0

2
= (2, 1, 0.5, 2.25, 1).

We use this sample dataset X0 in the rest of this paper to illustrate concepts
and algorithms for its simplicity.

In the rest of this paper, we discuss statistics of an interval-valued dataset
in Sect. 2; define point-valued probability distributions for an interval-valued
dataset in Sect. 3; introduce point-valued information entropy in Sect. 4; and
summarize the main results and future work in Sect. 5.

2 Descriptive Statistics of an Interval-Valued Dataset

We introduce positional statistics for an interval-valued dataset first, and then
discuss its point-valued variance and standard deviation.

2.1 Positional Statistics of an Interval-Valued Dataset X

The left-, right-endpoints, midpoint, and radius X,X,mid(X), and rad(X) are
among positional statistics of an interval-valued dataset X as presented in
Example 1. The mean of X, denoted as μX, is the arithmetic average of X.
Because

∑n
i=1 xi = [

∑n
i=1 xi,

∑n
i=1 xi] in interval arithmetic1, we have

μX =
1
n

n∑

i=1

xi =
[∑n

i=1 xi

n
,

∑n
i=1 xi

n

]

=
[
μX, μx

]
(1)

We now define few more observational statistics for X.
1 For readers who want to know more about standardized interval arithmetic, please
refer the IEEE Standards for Interval Arithmetic [14] and [15].
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Definition 1. Let X be an interval-valued dataset, then

1. The envelope of X is the interval env(X) =
[
min(X),max(X)

]
;

2. The core of X is the interval core(X) =
n⋂

i=1

xi = [max(X),min(X)]; and

3. The mode of X is a tuple, mode(X) = (
⋂

s∈Sj
xs, k), where

⋂
s∈Sj

xs �= ∅,
Sj is a cardinality k subset of {1, 2, . . . , n}, and for any Si ⊆ {1, 2, . . . , n} if⋂

s∈Si
xs �= ∅ then |Si| ≤ k.

In other words, ∀xi ∈ X, xi is a subset of env(X), and core(X) is a subset of xi.
Furthermore, mode(X) is an ordered tuple. In which,

⋂
s∈Sj

xs is the non-empty
intersection of xs for all s ∈ Sj , such that, the cardinality of Sj is the greatest.
For a given X, its mode may not be unique. This is because of that, there
may be multiple cardinality k subsets of {1, 2, . . . , n} satisfying the nonempty
intersection requirement

⋂
s∈Sj

xs �= ∅.

Corollary 1. Let X be an interval-valued dataset, then

1. For all xi ∈ X, xi ⊆ env(X);
2. The core of X is not empty if and only if max(X) ≤ min(X); and
3. The mode of X is (core(X), n) if and only if core(X) �= ∅.

Corollary 1 is straightforward.
Instead of providing a proof, we provide the mean, envelop, core and mode

for the sample dataset X0 = {[1, 5], [1.5, 3.5], [2, 3], [2.5, 7], [4, 6]}. In addition to
its endpoints, midpoint, and radius presented in Example 1, we have its mean
μX0 = [2.2, 4.9]; env(X0) = [1, 7]; core(X0) = ∅ because of max(X0) = 4 is
greater than min(X0) = 3; and mode(X0) = ([2.5, 3], 4). Figure 1 illustrates the
sample dataset X0. From which, one may visualize the env(X0) and mode(X0)
by imaging a vertical line, like the y-axis, continuously moving from left to right.
The first and last points the line touches any xi ∈ X0 determine the envelop
env(X0) = [1, 7]. The line touches at most four intervals for all xi ∈ X0 between
[2.5, 3]. Hence, the mode is mode(X0) = ([2.5, 3], 4).

While finding the envelop, core, and mean of X is straightforward, determin-
ing the mode of X involves the 2n numbers in X and X, which divide env(X)
into 2n−1 sub-intervals in general (though some of them maybe degenerated as
points.) Each of these 2n − 1 sub-intervals can be a candidate of the nonempty
intersection part in the mode. For any xi ∈ X, it may cover some of these
2n− 1 sub-intervals (candidates) consecutively. For each of these candidates, we
accumulate its occurrences in each xi ∈ X. The mode(s) for X is (are) the can-
didate(s) with the (same) highest occurrence. As a special case, if core(X) is not
empty, then mode(X) = (core(X), n). We summarize the above as an algorithm.

Algorithm 1: (Finding the mode for an interval dataset X)
Input: X: an n-element interval dataset.

Output: mode(X).

If max(X) < min(X)
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mode(X) = ([max(X),min(X)], n)
Else

# Initialization:

Concatenating X and X as a single list c
Sort the list c.
For i from 0 to 2n − 1:

candi = ([ci, ci+1], counti = 0)
End for

# Counting frequency:

For each xi ∈ X
Find j and k, such that cj = xi and ck = xi

For l from j to k:
candl.countl+ = 1

End for

End for

# Find the mode:

m = max{cand.count}
For j from 0 to 2n − 1:

If candj .countj = m,

mode(X) = ([cj , cj+1],m)
End for

Return mode(X).

Algorithm 1 is O(n2). This is because of that for each interval xi, it may
update the count in each of the 2n − 1 candidates takes O(n2).

Fig. 1. The sample interval-valued dataset X0.
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2.2 Point-Valued Variational Statistics of an Interval-Valued
Dataset

In the literature, the variance of a point-valued dataset X is defined as

V ar(X) =
1
n

n∑

i=1

|xi − μ|2 (2)

in which, the term |xi − μ| is the distance between xi ∈ X and μ, which is the
mean of X.

Using (2) to define a variance for an interval-valued X, we need a notion of
point-valued distance between two intervals, xi ∈ X and the interval μX. May
we simply use |a−b|, the absolute value of the difference between two intervals
a and b, as their distance? Unfortunately, it does not work.

In interval arithmetic [18], the difference between two intervals a and b is
defined as the follow:

a − b = [min{a − b, a − b, a − b, a − b},max{a − b, a − b, a − b, a − b}] (3)

Equation (3) ensures ∀a ∈ a,∀b ∈ b, a − b ∈ a − b. However, it also implies
|a − b| = max{|a − b|,∀a ∈ a,∀b ∈ b}, which is the maximum distance between
a ∈ a and b ∈ b.

Mathematically, a distance between two nonempty sets A and B is usually
defined as the minimum distance between a ∈ A and b ∈ B but not the maxi-
mum. Hence, we need to define a notion of distance between two intervals.

Definition 2. Let a and b be two nonempty intervals. The distance between a
and b is defined as

dist(a, b) = |mid(a) − mid(b)| + |rad(a) − rad(b)| (4)

Definition 2 satisfies all mathematical requirements for a distance. They are
dist(a, b) ≥ 0; dist(a, b) = 0 if and only if a = b; dist(a, b) = dist(b, a); and for
any nonempty intervals a,b, and c, dist(a, c) ≤ dist(a, b)+dist(b, c). Definition 2
is in fact an extension of the distance between two reals. This is because of that
the radius of a real is zero and the midpoint of a real is itself always.

Replacing xi − μ in Equation (2) with dist(xi, μX) defined in (4), we have
the point-valued variance of X as the follow:

V ar(X) =
1

n

n∑

1

dist2(xi, µX) =
n∑

i=1

[|mid(xi) − mid(µX)| + |rad(xi) − rad(µX)|]2

=
1

n

n∑

i=1

(|mid(xi) − mid(µX)|)2 + 1

n

n∑

i=1

(|rad(xi) − rad(µX)|)2

+
2

n

n∑

1

(|mid(xi) − mid(µX)|)(|rad(xi) − rad(µX)|).

The expression above has three terms. All of them involve mid(μX) and
rad(μX).
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Since μX =
[∑n

i=1 xi

n
,

∑n
i=1 xi

n

]

, mid(μX) =
1
2

(
n∑

i=1

xi/n +
n∑

i=1

xi/n

)

=
1
n

n∑

i=1

(
xi + xi

2

)

=
1
n

n∑

i=1

mid(xi) = μmid(X). Therefore, the first term in the

expression above
1
n

n∑

1

(|mid(xi) − mid(μX)|)2 =
1
n

n∑

1

(mid(xi) − μmid(X))2 =

V ar(mid(X)) according to (2). Similarly, the second term
1
n

n∑

i=1

(|rad(xi) −

rad(μX)|)2 = V ar(rad(X)).
The third term is related to the absolute covariance between mid(X) and

rad(X). Let Δmi = mid(xi) − mid(μX) and Δri = rad(xi) − rad(μX), then

we can rewrite the term
2
n

n∑

1

(|mid(xi) − μmid(X))|)(|rad(xi) − μrad(X))|) as

2
n

n∑

1

|ΔmiΔri|.
Summarizing the discussion above, we have the point-valued variance for an

interval-valued dataset X as the follow.

Definition 3. Let X = (x1, x2, . . . , xn) be an interval-valued dataset, then the
point-valued variance of X is

V ar(X) = V ar(mid(X)) + V ar(rad(X)) +
2
n

n∑

i=1

|ΔmiΔri| (5)

Because midpoints and radii of interval-valued objects are point-valued, the vari-
ance defined in (5) is also point-valued. Hence, we have the point-valued standard
deviation of X as usual:

Std(X) =
√

V ar(X) (6)

In evaluating (5) and (6), one does not need interval computing at all.
For the sample dataset X0, we have its point-valued variance V ar(X0) =

var(mid(X0))+var(rad(X0))+
2
5

5∑

i=1

|ΔmiΔri| = 1.5125+0.55+1.282 = 3.3445;

and the standard deviation Std(X0) = 1.8288.
It is worthwhile to note that, Eq. (5) is an extension of (2) and applicable to

point-valued datasets too. This is because of that, for all xi in a point-valued
X, rad(xi) = 0 and mid(xi) = xi always. Hence, V ar(X) = V ar(mid(X)) for a
point-valued X.
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3 Probability Distributions of an Interval-Valued
Population

An interval-valued dataset X can be viewed as a sample of an interval-valued
population. In this section, we study practical ways to find probability distri-
butions for an interval-valued dataset X. Our discussion addresses two different
cases. One assumes distribution information for all xi ∈ X. The other does not.

3.1 On Probability Distribution of X with Distribution Information
for Each xi ∈ X

Our discussion involves the concept of a probability distribution over an interval.
Let us very briefly review the literature first.

A function f(x) is a probability density function (pdf) of a random variable

x on the interval x = [x, x] if and only if f(x) ≥ 0,∀x ∈ R, and
∫ ∞

−∞
f(t)dt =

∫ x

x

f(t)dt = 1. Well-known pdfs in the literature include the uniform distri-

bution: f(x) =
{

1 if x ∈ [0, 1],
0 otherwise. ; normal distribution: f(x) =

1
σ
√

2π
e

(x−μ)2

2σ2 ;

and beta distribution: f(x) =
xα−1(1 − x)β−1

B(α, β)
, where B(α, β) =

Γ (α)Γ (β)
Γ (α + β)

and

both parameters α and β are positive, and Γ (t) is the gamma function. There
are software tools available to fit point-valued sample data, which means com-
putationally determining the parameter values in a chosen type of distribution.
For instance, the Python scipy.stats module is available to find the optimal
μ and σ to fit a point-valued dataset in a normal distribution, and/or α and β
in a beta distribution.

It is safe to assume an availability of a pdf for each xi ∈ X both theoretically
and computationally. In practice, an interval xi ∈ X is often obtained through
aggregating observed points. For instances, in [9] and [11], min-max and confi-
dence intervals are applied to aggregate points into intervals, respectively. If an
interval is provided directly, one can always pick points from the interval and fit
these points with a selected probability distribution computationally. Hereafter,
we denote the pdf of xi ∈ X as pdfi(x).

We now define a notion of pdf for an interval-valued dataset X.

Definition 4. A function f(x) is called a probability density function of an
interval-valued dataset X = {x1, x2, . . . , xn} if and only if f(x) satisfies all of the
conditions: {

f(x) ≥ 0 ∀x ∈ (−∞,∞);∑n
i=1

∫
xi∈X

f(t)dt = 1.
(7)

The theorem below provides a practical way to calculate a pdf for X.
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Theorem 1. Let X = (x1, x2, . . . , xn) be an interval-valued dataset; and pdfi(x)
be the pdf of xi provided i ∈ {1, 2, . . . , n}. Then,

f(x) =
∑n

i=1 pdfi(x)
n

(8)

is a pdf of X.

Proof. Because pdfi(x) ≥ 0 ∀i ∈ {1, 2, . . . , n}, we have
n∑

i=1

pdfi(x) ≥ 0. Hence,

f(x) ≥ 0. In addition,
∫ ∞

−∞
pdfi(t)dt = 1 for all i ∈ {1, 2, . . . , n}, we have

n∑

i=1

∫

xi

f(t)dt =
∫ ∞

−∞

∑n
i=1 pdfi(x)

n
dx =

∑n
i=1

∫ ∞
−∞ pdfi(t)dt

n
=

n

n
= 1. Equa-

tion (7) satisfied. Hence, the f(x) is a pdf of X. �

Equation (8) actually provides a practical way of calculating the pdf of X.
Provided pdfi(x) for each xi ∈ X, we have the algorithm in pseudo-code below:

Algorithm 2: (Finding a pdf for X)
Input: an n-item interval-valued dataset X;

pdfi(x) for every xi ∈ X
Output: pdf(X)

# Initialization:

Concatenating x and x as a list c
Sort c
For i from 1 to 2n − 1:

segmenti = (ci, ci+1, 0)
End for

# Accumulating pdf on each segment:

For each xi ∈ X find the j and k, such that

cj = xi and ck = xi

For l from j to k:
segmentl.pdf + = pdfi

End for

End for

# Calculating the pdf:

For i from 0 to 2n − 1:
segmenti.pdf / = n

End for

Return segmenti for all i ∈ {1, 2, . . . , 2n − 1}
Example 2. Find a pdf from the sample dataset X0 = {[1, 5], [1.5, 3.5],
[2, 3], [2.5, 7], [4, 6]}. For simplicity, we assume a uniform distribution for each
pdfi’s, i.e.,

pdfi(x) =

⎧
⎨

⎩

1
xi − xi

if x ∈ xi

0, otherwise.
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Applying Algorithm 2, we have

f(X0) =
∑5

i=1 pdfi(x)
5

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.05 if x ∈ [1, 1.5]
0.15 if x ∈ (1.5, 2]
0.35 if x ∈ (2, 2.5]
0.39 if x ∈ (2.5, 3]
0.19 if x ∈ (3, 3.5]
0.09 if x ∈ (3.5, 4]
0.19 if x ∈ (4, 5]
0.14 if x ∈ (5, 6]
0.044 if x ∈ (6, 7]
0 otherwise.

(9)

The pdf in the example is a stair function. This is because the uniform distribu-
tion assumption on each xi ∈ X. ��

Here are few additional notes on finding a pdf for X with Algorithm 2 .
If assuming uniform distribution, how do we handle the case if ∃i such that

xi = xi? First of all, an interval element xi is usually not degenerated as a
constant. Even there is an i such that xi = xi, we can always assign an arbitrary
non-negative pdf value at that point. This does not impact the calculation of
probability in integrating the pdf function.

Algorithm 2 assumes pdfi(x) = 0,∀x �∈ xi. If it is not the case,
the 2n numbers in X and X divide R in 2n + 1 sub-intervals. They are
(−∞,min(X)), (max(X),∞) together with the 2n − 1 sub-intervals in env(x).
Therefore, the accumulation loop in Algorithm 2 should run through all of the
2n + 1 sub-intervals, and then normalize them by dividing n.

Another implicit assumption of Theorem 1 is that, all xi ∈ X are equally
weighted. However, that is not necessary. If needed, one may place a positive
weight wi on each of pdfi’s as stated in the Corollary 2.

Corollary 2. Let X = (x1, x2, . . . , xn) be an interval-valued dataset and pdfi be
the pdf of xi ∈ X, then the function

f(x) =
∑n

i=1 wi pdfi(x)
∑n

i=1 wi
where ∀i wi > 0 (10)

is a pdf of X.

A proof of Corollary 2 is straightforward too. We have successfully applied
the Corollary in computationally studying the stock market [12].

3.2 Probability Distribution of an Interval-Valued X Without
Distribution Information for Any xi ∈ X

It is not necessary to assume the probability distribution for all xi ∈ X to find a
pdf of X. An interval x is determined by its midpoint and radius. Let u = mid(x)
and v = rad(x) be two point-valued random variables. Then, the pdf of x is a
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non-negative function f(u, v) ≥ 0, such that
∫ ∞

−∞

∫ ∞

−∞
f(u, v)dudv = 1. If we

assume a normal distribution for au + bv, then f(u, v) is a bivariate normal
distribution [25]. The pdf of a bivariate normal distribution is:

p(u, v) =
1

2πσuσv

√
1 − ρ2

e
−z

2(1−ρ2) (11)

where z =
(u − μu)2

σ2
u

− 2ρ(u − μu)(v − μv)
σuσv

+
(v − μv)2

σ2
v

and ρ is the normalized

correlation between u and v, i.e., the ratio of their covariance and the product
of σu and σv. Applying the pdf, we are able to estimate the probability over a
region u = [u1, u2], v = [v1, v2] as

P (x) =
∫ v2

v1

∫ u2

u1

p(u, v)dudv (12)

To calculate the probability of an interval x, whose midpoint and radius are
u0 and v0, we need a marginal pdf for either u or v. If we fix u = u0, then the
marginal pdf of v follows a single variable normal distribution. Thus,

p(v) =
1

σv

√
2π

e− 1
2 (

v−μv
σv

)2 , (13)

and the probability of x is

P (x) =
∫ v0

−v0

p(v)dv (14)

An interval-valued dataset X provides us its mid(X) and rad(X). They are
point-valued sample sets of u and v, respectively. All of μmid(X), μrad(X), σmid(X),
and σrad(X) can be calculated as usual to estimate the μu, μv, σu, and σv in (11).
For instance, from the sample X0, we have μmid(X0) = 3.55, μrad(X0) = 1.35,
σmid(X0) = 1.1, σrad(X0) = 0.66, and ρ = 0.404, respectively. Furthermore, using
μrad(X0) = 1.35 and σrad(X0) = 0.66 in (13), we can estimate the probability of
an arbitrary interval x with (14).

So far, we have established practical ways to calculate point-valued variance,
standard deviation, and probability distribution for an interval-valued dataset X.
With them, we are able to directly apply commonly available inferential decision
making schemes based on interval-valued dataset.

4 Information Entropy of Interval-Valued Datasets

While it is out of the scope of this paper to discuss specific applications of
inferential statistics on an interval-valued dataset, we are interested in measuring
the amount of information in an interval-valued dataset. Information entropy
is the average rate at which information is produced by a stochastic source
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of data [24]. Shannon introduced the concept of entropy in his seminal paper
“A Mathematical Theory of Communication” [23]. The measure of information
entropy associated with each possible data value is:

H(x) = −
n∑

i=1

p(xi) log p(xi) (15)

where p(xi) is the probability of xi ∈ X.
An interval-valued dataset X = (x1, x2, . . . , xn) divides the real axis into

2n + 1 sub-intervals. Using P to denote the partition and x(j) to specify its j-th
element, we have P =

(
x(1), x(2), . . . , x(2n+1)

)
. As illustrated in Example 2, we

can apply Algorithm 2 to find the pdfj for each x(j) ∈ P. Then, the probability
of x(j) =

∫
x(j) pdfj(t)dt is available. Hence, we can apply (15) to calculate the

entropy of an interval-valued dataset X. For reader’s convenience, we summarize
the steps of finding the entropy of X as an algorithm below.

Algorithm 3: (Finding the entropy for an interval-valued dataset X)
Input: an n-item interval dataset X

pdfi for all xi ∈ X
Output: Entropy(X)

# Find the partition for the real axis:

Concatenating x and x as a list c
Sort c
The c forms a 2n+ 1 partition P of (−∞,∞)
# Find the probability for each x(j) ∈ P:

For j from 1 to 2n+ 1
Find a pdfj on x(j) with Algorithm 2

Calculate pj =

∫

x(j)
pdfj(x)dx

End for

# Calculate the entropy:

Entropy(X) = 0

For j from 1 to 2n+ 1
Entropy(X) − = pj log pj

End for

Return Entropy(X)

The example below finds the entropy of the sample dataset X0 with the same
assumption of uniform distribution in Example 2.

Example 3. Equation (9) in Example 2 provides the pdf of X0. Applying it, we
obtain the probability of each interval x(j) as
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p(x) =
∫

x(j)
pdf(t)dt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.025, x(1) = [1, 1.5]
0.075, x(2) = [1.5, 2]
0.175, x(3) = [2, 2.5]
0.197, x(4) = [2.5, 3]
0.098, x(5) = [3, 3.5]
0.048, x(6) = [3.5, 4]
0.194, x(7) = [4, 5]
0.144, x(8) = [5, 6]
0.044, x(9) = [6, 7]
0, otherwise

(16)

The entropy of X0 is Entropy(X0) = −
∑

i

pi log pi = 2.019. ��

Algorithm 3 provides us a much needed tool in studying point-valued infor-
mation entropy of an interval-valued dataset. Applying it, we have investigated
entropies of the real world financial dataset, which has used in the study of stock
market forecasts [6,7], and [9], from the perspective of information theory. The
results are reported in [12]. It not only reveals the deep reason of the signifi-
cant quality improvements reported before, but also validates the concepts and
algorithms presented here in this paper as a successful application.

5 Summary and Future Work

Recent advances have shown that using interval-valued data can significantly
improve the quality and efficiency of information processing and uncertainty
management. For interval-valued datasets, this work establishes much needed
concepts of point-valued variational statistics, probability, and entropy for
interval-valued datasets. Furthermore, this paper contains practical algorithms
to find these point-valued measures. It provides additional theoretic foundations
of applying point-valued methods in analyzing interval-valued datasets.

These point-valued measures enable us to directly apply currently available
powerful point-valued statistic, probabilistic, theoretic results to interval-valued
datasets. Applying these measures in various applications is definitely among
a high priority of our future work. In fact, using this work as the theoretic
foundation, we have successfully analyzed the entropies of the real world financial
dataset related to the stock market forecasting mentioned in the introduction
of this paper. The obtained results are reported in [12] and published in the
same volume as this one. On a theoretic side, future work includes extending the
concepts in this paper from single dimensional to multi-dimensional interval-
valued datasets.
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Abstract. Using interval-valued data and computing, researchers have
reported significant quality improvements of the stock market annual
variability forecasts recently. Through studying the entropy of interval-
valued datasets, this work provides both information theoretic and
empirical evidences on that the significant quality improvements are
very likely come from interval-valued datasets. Therefore, using interval-
valued samples rather than point-valued ones is preferable in making
variability forecasts. This study also computationally investigates the
impacts of data aggregation methods and probability distributions on
the entropy of interval-valued datasets. Computational results suggest
that both min-max and confidence intervals can work well in aggregating
point-valued data into intervals. However, assuming uniform probability
distribution should be a good practical choice in calculating the entropy
of an interval-valued dataset in some applications at least.

Keywords: Interval-valued dataset · Stock market variability
forecasting · Data aggregation · Probability distribution · Information
entropy

1 Introduction

Recently, researchers have very successfully applied interval-valued data in infor-
mation processing and uncertainty management. Related works on applications
of interval-valued data include [13,21–25], and many more. With broad appli-
cations of interval computing, the IEEE Standard Association has released the
IEEE Standards for Interval Arithmetic [19] and [20] recently.

This work is a continuation of the stock market interval-valued annual vari-
ability forecasts reported in [10,11,13,14,16], and [17]. In which, a real world
six-dimensional point-valued monthly dataset is first aggregated into an interval-
valued annual sample. Then, interval-valued annual predictions are made with
interval least-squares (ILS) regression [15]. Comparing against the commonly used
point-valued confidence interval predictions with ordinary least-squares (OLS),
the interval approach increased the average accuracy ratio of annual stock market
forecasts from 12.6% to 64.19%, and reduced the absolute mean error from 72.35%
to 5.17% [14] with the same economical model [4] and the same raw dataset.
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The quality improvements are significant. However, several questions arising
from previous results still need to be answered. Among them are:

1. What is the theoretic reason for such a significant quality improvements?
2. What are the impacts of data aggregation methods on the results? and
3. What are the impacts of probability distributions on the entropy of an

interval-valued dataset?

In this paper, we investigate these questions from the perspective of informa-
tion theory [9]. To be able to calculate and compare entropies of interval-valued
datasets, it is necessary to establish the concepts and algorithms on probabil-
ity and entropy for interval-valued datasets. In our work [18], also published in
this volume, we lay down both theoretic and algorithmic foundations for the
investigation reported in this work. In which, point-valued statistic, probabilis-
tic, and entropy measures for interval-valued datasets are established in details
with practical algorithms. Interested readers should refer that article for a solid
theoretical foundation.

In the rest of this paper, we briefly review related previous work, such as
the stock market annual variability forecasting, the dataset, and information
entropy in Sect. 2. We try to answer the question why interval-valued data lead-
ing better quality forecasts through comparing information entropy of interval-
valued samples against point-valued ones in Sect. 3. We calculate and compare
the impacts of two aggregation methods (min-max and confidence intervals) asso-
ciated together with commonly used probability distributions (uniform, normal,
and beta) in Sect. 4. We summarize the main results and possible future work
in Sect. 5.

2 Related Previous Works

We first briefly review the dataset and the stock market annual variability fore-
casts; and then introduce related concepts and algorithms of calculating entropies
of a point-valued dataset and of an interval-valued dataset.

2.1 The Stock Market Annual Variability Forecasting and the
Dataset

The S & P 500 index is broadly used as a indicator for the overall stock market.
The main challenge in studying the stock market is its volatility and uncertainty.
Modeling the relationship between the stock market and relevant macroeconomic
variables, Chen, Roll, and Ross [4] established a broadly accepted model in eco-
nomics to forecast the overall level of the stock market. According to their model,
the changes in the overall stock market value (SPt) are linearly determined by
the following five macroeconomic factors:

IPt: the growth rate variations of adjusted Industrial Production Index,
DIt: changes in expected inflation,
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UIt: and changes in unexpected inflation,
DFt: default risk premiums, and
TMt: unexpected changes in interest rates.

This relationship can be expressed as:

SPt = at + It(IPt) + Ut(UIt) + Dt(DIt) + Ft(DFt) + Tt(TMt) (1)

By using historic data, one may estimate the coefficients of (1) to forecast
changes of the overall stock market. The original dataset used in [14] and [17]
consists of monthly data from January 1930 to December 2004 in 75 years for
the six variables. Here are few sample lines of the data:

Yr-mth UI DI SP IP DF TM

30-Jan -0.00897673 0 0.014382062 -0.003860512 0.0116 -0.0094

30-Feb -0.00671673 -0.0023 0.060760088 -0.015592832 -0.0057 0.0115

30-Mar -0.00834673 0.0016 0.037017628 -0.00788855 0.0055 0.0053

30-Apr 0.00295327 0.0005 0.061557893 -0.015966279 0.01 -0.0051

30-May -0.00744673 -0.0014 -0.061557893 -0.028707502 -0.0082 0.0118

30-Jun -0.00797673 0.0005 -0.106567965 -0.046763234 0.0059 0.0025

... ...... ... ... ... ... ...

04-Jul -0.00182673 0.0002 -0.024043354 0.00306212 0.0029 0.0147

04-Aug 0.00008127 0.0002 -0.015411102 -0.002424198 0 0.0385

04-Sep 0.00156327 0.0001 0.026033651 0.007217235 0.0005 0.0085

04-Oct 0.00470327 0 0.000368476 0.002001341 0.001 0.0143

04-Nov -0.00002273 0 0.044493038 0.006654848 0.0034 -0.0245

04-Dec -0.00461673 0.0004 0.025567309 0.001918659 0.0007 0.0235

To make an annual stock market forecast, a commonly used approach is
to make a point-valued annual sample first, such as the end of each year, i.e.,
December data, or annual minimum for predicting the min, or annual maximum
for estimating the max. Applying OLS to estimate the coefficients in (1), people
are able to make a point-valued prediction. By adding and subtracting a factor
(usually denoted as Z) of the standard deviation to the point-valued prediction,
one form a confidence interval as an annual variability forecast. However, such
confidence interval forecasting methods have never been widely used in the liter-
ature because of the poor forecasting quality [2] and [7] in forecasting the stock
market. Normally, the forecasting intervals are so narrow that there is only a
50% chance, or even less, that a future point lies inside the interval [5] and [6].
In other cases, the forecasting intervals can be so wide that the forecasts are
meaningless. This poor forecasting quality is deeply rooted in the methodology
of point-based confidence interval forecasting.

Instead of commonly used point-valued approach, an interval-valued method
has been proposed and applied for the annual stock market variability forecasts
[14]. In which, the annual minimum and maximum form an interval-valued (min-
max) sample of the year. By applying an interval least-squares algorithm [13]
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with the interval-valued sample, significant quality improvements of predictions
are obtained. Figure 1 illustrates the interval-valued annual forecasts comparing
against the actual variations of S & P 500 from 1940–2004. In which, a ten-year
sliding window was used to make an out of sample forecast.

Out-of-Sample 10-Year Rolling Interval Forecasts
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Fig. 1. Annual interval forecasts vs. actual market variations from 1940–2004

Further studies on forecasting the stock market [10] and [11], variability of
mortgage rates [12], crude oi price prediction [29], and others, have consistently
reported that the quality of variability forecasts with interval-valued samples
and interval least-squares are significantly better than that of with point-valued
samples and OLS.

As the main objective of this work, we want to investigate the major reason
for such significant quality improvements through computing and comparing the
entropies of point- and interval-valued samples.

2.2 Information Entropy of a Point- and an Interval-Valued Dataset

Our investigations are carried out through calculating and comparing informa-
tion entropy, i.e., the average rate at which information produced by a stochastic
source of data [28].

Shannon defines the entropy for a discrete dataset X = {x1, x2, . . . , xn} in
his seminal paper “A mathematical theory of communication” [26] as:

H(x) = −
n∑

i=1

p(xi) log p(xi) (2)
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where p(xi) is the probability of event xi. In information theory, Shannon’s
entropy has been referred as information entropy, and it has been used as a
measure of information in data. Viewing the stock market as a stochastic source
of data, we try to measure and compare the amount of information contained in
datasets.

For a point-valued dataset X, we may estimate its entropy practically with
the algorithm below:

Algorithm 1: (Calculating entropy of a discrete point-valued dataset)
Input: a point-valued length n dataset X

m, an integer for the number of bins in constructing a histogram

Output: entropy(X)

# Finding empirical probability of the dataset X

# Constructing an m-bin histogram for X
For i from 1 to m:

ci = the frequency count of x in the i-th bin

pi = ci/|X|
# Calculating the entropy of X

entropy(X) = 0 # initialization

For i from 1 to m:

entropy(X) − = pi log pi.

Return entropy(X)

Applying available software tools, one can easily implement the steps in Algo-
rithm 1 above. For example, calling the histogram method in Python numpy
module returns the counts and bins in a histogram of a dataset. The rests are
straightforward to implement.

However, it is not that straightforward to calculate information entropy of
an interval-valued dataset. By the term interval, we mean a connected subset
of R. An interval-valued dataset is a collection of intervals. Using a boldfaced
lowercase letter to denote an interval, and a boldfaced uppercase letter to specify
an interval-valued dataset, we have X = (x1,x2, . . . ,xn) as an interval-valued
dataset consisting of n intervals x1,x2, . . .xn. Applying (2) to calculate the
entropy of X demands a probability distribution of X. Our paper [18] provides
the theoretic and algorithmic foundations needed for calculating a point-valued
probability of an interval-valued dataset. For readers’ convenience, here are two
related definitions and a theorem from that paper:

Definition 1. A function f(x) is called a probability density function, pdf of
an interval-valued dataset X if and only if f(x) satisfies all of the conditions:

{
f(x) ≥ 0 ∀x ∈ (−∞,∞);∑n

i=1

∫
xi∈X

f(t)dt = 1. (3)

Using pdfi to denote the probability density function for xi ∈ X, we have
the theorem below to obtain a pdf for X practically.
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Theorem 1. Let X = (x1,x2, . . . ,xn) be an interval-valued dataset; and
pdfi(x) be the pdf of xi provided i ∈ {1, 2, . . . , n}. Then,

f(x) =
∑n

i=1 pdfi(x)
n

(4)

is a pdf of X.

With (4), we define the entropy for an interval-valued dataset X as

Definition 2. Let P be an interval partition of the real axis and pdf(x) be the
probability density function of P. Then, the probability of an interval x(j) ∈ P
is pj =

∫
x(j) pdf(t)dt, and the entropy of P is

entropy(X) = −
∑

P
pj log pj (5)

Example 1. Find a pdf and entropy for the interval-valued sample dataset X0 =
{[1, 5], [1.5, 3.5], [2, 3], [2.5, 7], [4, 6]}.

For simplicity, we assume a uniform distribution for each xi ∈ X0, i.e.,

pdfi(x) =

⎧
⎪⎨

⎪⎩

1
xi − xi

if x ∈ xi, and xi �= xi

∞ if xi = xi

0, otherwise.

f(X0) =
∑5

i=1 pdfi(x)
5

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.05 if x ∈ [1, 1.5]
0.15 if x ∈ (1.5, 2]
0.35 if x ∈ (2, 2.5]
0.39 if x ∈ (2.5, 3]
0.19 if x ∈ (3, 3.5]
0.09 if x ∈ (3.5, 4]
0.19 if x ∈ (4, 5]
0.14 if x ∈ (5, 6]
0.044 if x ∈ (6, 7]
0 otherwise.

(6)

The pdf of the example in (6) is a stair function. This is because of the uniform
distribution assumption on each xi ∈ X0. The five intervals in X0 form a par-
tition of R in eleven intervals including (−∞, 1) and (7,∞). Using (5), we have
the entropy of the interval-valued sample dataset entropy(X0) = 2.019 ��

Example 1 illustrates the availability of a point-valued pdf for an interval-
valued dataset. For more theoretic and algorithmic details, please refer [18]. We
are ready now to investigate the question: why does the interval-valued approach
significantly improve the quality of variability forecasts?
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3 Why Does the Interval-Valued Approach Significantly
Improve the Quality of Variability Forecasts?

Previous results have evidenced that the interval-valued approach can signif-
icantly improve the quality of forecasts in different areas (such as the stock
market annual variability, the variability of the mortgage rate [12], and the vari-
ability of crude oil price [15]). However, using the same economical model and
the same original dataset but point-valued samples, the quality of forecasts are
much worse. To investigate the possible cause, we should examine the entropies
of interval-valued and point-valued input datasets evidently.

Applying Algorithm 1 on point-valued annual samples of the six-dimensional
financial dataset, we calculate their attribute-wise entropy. The four point-valued
annual samples are December only, annual minimum, annual maximum, and
annual midpoint1. With the Algorithm 3 in [18], we calculate the attribute-wise
entropy of the annual min-max interval-valued sample. Table 1 summarizes the
results. In which, the first row lists each of the six attributes in the dataset. The
second to the last rows provide values of attribute-wise entropy of five different
samples: December only, Annual minimum, Annual maximum, Annual midpoint,
and Annual min-max interval, respectively.

Table 1. Entropy comparisons of different samples

UI DI SP IP DF TM

December only 2.32855 2.01183 2.12941 2.05978 2.39706 2.33573

Annual minimum 2.33076 2.16933 2.28035 2.09871 2.19422 2.62452

Annual maximum 1.88469 2.30266 1.53328 1.88045 2.34693 2.35843

Annual mean 2.04877 2.55961 2.31651 2.07323 2.09817 2.47341

Annual min-max intvl. 4.34192 3.06851 3.95838 4.30213 3.95359 4.31941

Figure 2 provides a visualized comparison of these entropy. From which, we
can observe the followings:

The attribute-wise information entropies vary along with different samples.
However, the attribute-wise entropies of the interval-valued sample are clearly
much higher than that of any point-valued ones. Comparatively, the entropies of
point-valued samples do not differ significantly. This indicates that the amount of
information in these point-valued samples measured with entropies are somewhat
similar. But, they are significantly less than that of the interval-valued ones.
The greater the entropy is, the more information may possibly be extracted
from. This is why the interval-valued forecasts can produce significantly better
forecasts in [10,11,14], and others.

In both theory and practice, meaningless noises and irregularities may
increase the entropy of a dataset too. However, it is not the case here in this study.
1 The arithmetic average of annual min and annual max.
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Fig. 2. Attribute-wise entropy comparison of point- and interval-valued samples

The interval rolling least-squares algorithm [16] has successfully extracted the
additional information and made significant quality improvements. The advan-
tages of using interval-valued samples instead of point-valued ones have also been
observed in predicting variations of the mortgage rate [12], the crude oil price
[15], and others. The interval-valued samples indeed contain more meaningful
information. Therefore, in making variability forecasts like the stock market, it
is preferable of using interval-valued samples rather than point-valued ones.

Here is an additional note. The attribute-wise entropies of the annual min-
max interval-valued sample in Table 1 and the sum of entropies of the point-
valued annual minimum and maximum are similar. If one uses the point-valued
annual minimum and annual maximum separately, can he obtain quality fore-
casts similar to that of using the min-max interval-valued sample? Unfortunately,
an empirical study show that is not the case. In [11], a comparison of the following
two approaches is reported. One of the two is of applying the point-valued annual
minimum and maximum samples to predict annual lower and upper bounds of
the market with the OLS separately. Then, confidence intervals are constructed
as annual variability forecasts. The other applies the ILS with the min-max
interval-valued sample. The quality of forecasts produced in the later approach
is still much better than that of the former approach. In [10], using the sample
of annual midpoints is studied for the same reason of performance comparison.
The ILS with interval-valued annual sample still significantly outperform the
point-valued approach in terms of higher average accuracy ratio, lower mean
error, and a higher stability in terms of less standard deviation. This suggests
that, to extract information from an interval-valued sample, one should use the
ILS instead of OLS.



430 C. Hu and Z. H. Hu

4 Impacts of Data Aggregation Strategies
and Probability Distributions on Calculating
the Entropy of an Interval-Valued Dataset

Yes, an interval-valued sample may contain more information than a point-valued
sample does. But, there are various strategies, such as in [1,8] and others, to
aggregate data other than the min-max method. What are the impacts of dif-
ferent aggregation strategies on the entropy of resulting interval-valued dataset?
Furthermore, in calculating the entropy of an interval-valued dataset, Eq. (4)
requires the pdfi for each xi ∈ X. What are the impacts of these pdfis on calcu-
lating the entropy of X? We now investigate these two questions computationally
again.

In studying probability distribution of interval-valued annual stock market
forecasts, point-valued data are aggregated with confidence intervals instead of
annual min-max intervals [17]. In which, the points within a year are first fit
with a normal distribution attribute-wise. Then, confidence intervals are formed
at a selected level of probabilistic confidence with an intention of filtering out
possible outliers. With different levels of confidence (by adjusting the Z-values),
the interval-valued samples vary. So do the variability forecasts. However, we
have observed that the variations are not very significant at all when Z is between
1.25 to 2, see [17]. Specifically, the average accuracy ratio associated with the Z-
values are: 61.75% with Z = 1.25, 64.23% with Z = 1.50, 64.55% with Z = 1.75,
and 62.94% with Z = 2.00. These accuracy ratios are very similar to 64.19%
reported in [14] with the min-max aggregation.

In calculating the attribute-wise entropy of the annual min-max interval-
valued sample with Algorithm 3 in [18] earlier, we have assumed a uniform
distribution for each interval. In addition to uniform distribution, we consider
both normal and beta distributions in this work because of their popularity in
applications. In this study, we computationally investigate the impacts of a com-
bination of an aggregation strategy associated with a probabilistic distribution
on the entropy of resulting interval-valued data. We report our numerical results
on each of the following four combinations:

(a) Min-max interval with uniform distribution;
(b) Fitting data with a normal distribution then forming confidence interval

with Z = 1.5, using normal distribution in entropy calculation;
(c) Fitting data with a normal distribution then forming confidence interval

with Z = 1.5, then assuming uniform distribution on each interval in entropy
calculation; and

(d) Min-max interval fitting with a beta distribution.

Table 2 lists attribute-wise entropies for each of the four cases above. Figure 3
provides a visual comparison. Python modules numpy and scipy are used as the
main software tools in carrying out the computational results.

We now analyze each of the outputs from (a)–(d) in Fig. 3.
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Table 2. Entropy comparison of data aggregation methods and pdf selection

UI DI SP IP DF TM

(a) Min-max, unif. 4.34192 3.06851 3.95838 4.30213 3.95359 4.31941

(b) Conf. intvl, normal 2.69246 2.67623 2.61681 2.69736 2.73824 2.74129

(c) Conf. intvl, unif. 3.79327 3.76349 3.61804 3.80710 3.91177 3.91903

(d) Min-max, beta 1.96865 2.07197 2.04587 1.95605 2.08885 1.86871

Fig. 3. Entropy comparison of data aggregation methods with pdf selection

The line (a) is exactly the same as the min-max interval line in Fig. 2. This
is because of that we have already assumed uniform distribution in calculating
the attribute-wise entropy for each of the min-max intervals.

The line (b) indicates that the entropies of the interval-valued sample formed
with the method (b) are much less than that of the interval-valued one, i.e., the
line (a). This is not by an accident. Equation (4) uses the arithmetic average
of

∑
i pdfi as the pdf of an interval-valued dataset X. As we know, the sum of

normal random variables follows a normal distribution. Therefore, the resulting
interval-valued dataset obtained with (b) follows a normal distribution, which is
determined only by its mean and standard deviation with much less irregularity.
Therefore, the calculated entropy is much less than that of (a). However, one
should not abolish confidence interval aggregation at all. The only thing caus-
ing the relatively less entropy is the entropy calculation, in which, we assumed
normal distribution for each pdfi. This is further explained on the line (c) below.

The line (c) shows the results obtained with the same confidence intervals in
(b) but then assuming a uniform distribution for each interval in calculating the
entropy. The Corollary 2 in [18] makes this practically doable. Notice that the
lines (c) and (a) are fairly close to each other comparing against (b) and (d). This
means that using a confidence interval to aggregate points can still be a valid
practical approach. Computational results in [17] repeated below further verify
the claim as an evidence. By adjusting the Z-values of normal distribution, sev-
eral interval-valued annual samples are formed at different levels of probabilistic
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confidence. Using them, that work reports some changes in overall quality of
the stock market annual forecasts. The average accuracy ratio associated with
the Z-values are: 61.75% with Z = 1.25, 64.23% with Z = 1.50, 64.55% with
Z = 1.75, and 62.94% with Z = 2.00. They are very close to 64.19% reported in
[14] with the min-max intervals. The relatively overall closeness of line (c) and
(a) can be an explanation for the similarity of the average accuracy ratios. The
closeness of (a) and (c) also implies that adjusting the Z-value in data aggrega-
tion may slightly improve the quality of forecasts but not significantly. Lastly,
the ILS algorithm [15] does not depend on any specific probability distribution
but the calculation of entropy does. Therefore, in calculating entropy of samples
formed with confidence intervals, assuming a uniform distribution can be a good
choice like in the reported case study of stock market forecasting. Unless, each
attribute follows a normal distribution indeed.

The line (d) is much lower than the rests. However, we ignore it because of
the reasons explained below. In our implementation, we call the beta.fit in
scipy.stats module to estimate the parameters of a beta distribution, which
fits the data best. During run time, we have encountered multiple run-time warn-
ings although our implementation returns the reported attribute-wise entropy.
After checking our code carefully without finding any bugs, we examine the
latest available official documentation of scipy updated on December 19, 2019.
Regarding beta fit, it states “The returned answer is not guaranteed to be the
globally optimal MLE (Maximum Likelihood Estimate), it may only be locally
optimal, or the optimization may fail altogether” [27]. We do not have any other
explanations for the numerical results. Due to the run-time warnings and cur-
rent software documentation, we accept that the specific computational results
on (d) are not reliable as a fact.

5 Conclusions and Possible Future Work

Applying interval-valued data rather than point-valued ones, researchers have
made very significant quality improvements of variability forecasts. This work
strongly suggests that the significant quality improvements in previous studies
very much likely come from the interval-valued inputs. Figure 2 clearly shows
that the attribute-wise entropies of an interval-valued sample are much higher
than that of those point-valued samples. The more information contained in
the input data, the higher quality outputs could be expected. Furthermore, the
interval least-squares algorithm [15] can be applied to successfully extract infor-
mation from an interval-valued sample rather than using the traditional ordinary
least-squares approaches as reported in [11] and others.

Computational results also conclude that both min-max and confidence inter-
vals can be effectively used to aggregate point-valued data into intervals. Both of
them may lead to similarly well quality variability forecasts with the evidence on
the stock market reported in [3] and [17]. This is because of that they may result
in interval-valued samples with similar entropies as illustrated in Fig. 3 lines (a)
and (c). While the interval least-squares algorithm itself does not demand proba-
bility distribution information at all, calculating the entropy of an interval-valued
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dataset does. The lines (b) and (c) in Fig. 3 suggest that a uniform probability
distribution on each interval can be a good choice in calculating the entropy of
an interval-valued dataset.

In summary, this work provides information theoretic evidences, in addition
to empirical results published previously, on the followings:

– Using interval-valued samples together with ILS is preferable than using
point-valued ones with OLS in variability forecasts like predicting annual
variability of the stock market and others.

– Applying min-max interval and/or confidence interval (at an appropriate level
of confidence) to aggregate points into intervals may result in interval-valued
samples containing similar amount of information.

– When estimating the entropy of an interval-valued dataset with (5), it can be
a good choice of assuming a uniform distribution on each interval. Unless, it
follows a normal distribution indeed.

The future work may consist of both sides of application and theory. With the
information theoretic evidence, we have validated previously published results
with interval-valued data and ILS. Therefore, applying interval methods in vari-
ability forecasts with uncertainty has a high priority. On the theoretic side, we
should indicate that attribute-wise entropy is not exactly the same as the entropy
of a multidimensional dataset. Investigating attribute-wise entropy in this study
is not only because of its simplicity, but also because [18] only provides point-
valued probability and entropy for single dimensional interval-valued datasets.
Therefore, establishing point-valued probability and entropy for a multidimen-
sional interval-valued dataset is among future works too.
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Abstract. This work investigates tolerance and control solutions to
a two-sided interval linear system. Their semantics are different, even
though, we would be able to interchange the role of the interval infor-
mation algebraically. We present necessary and sufficient conditions of
their solvabilities as the inequalities depending on center and radius of
coefficient interval matrices on both sides of the system. In a situation
when the vector of variables is nonnegative, the conditions can simply
be modified as the inequalities depending on boundaries of the inter-
val matrices. This result helps to find out the feasible solutions of a
quadratic programming problem with two-sided interval linear equation
constraints.
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1 Introduction

An interval linear system of equations is normally referred to as a system Ax = b,
where A is an interval matrix and b is an interval vector, while x is a vector of
variables. As the matrix and the right hand side vector information of the system
is not precise, it is impossible to provide a solution x to the system without any
appropriate meaning.

Some literature presented different types of solutions of the system Ax = b
depending on the purposes of the solutions. These solution types include weak,
strong, tolerance and control solutions whose names reflect well on their math-
ematical definitions. For example, “x is a weak solution to Ax = b” means
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that
∃A ∈ A,∃b ∈ b such that Ax = b,

while “x is a strong solution to Ax = b” means that

∀A ∈ A,∀b ∈ b such that Ax = b.

Beaumont presented in [1] an efficient method derived from the simplex algo-
rithm to compute inner and outer inclusion of the weak (united) solution set.
A full analysis of the solvability and the conditions for checking whether x is a
particular solution type to the system Ax = b was also provided in the literature
[2–4,8–12].

The background on a tolerance solution arose from the crane construction
problem in [8] and the input-output planning problem with inexact data in
[11]. The characteristic of a tolerance solution x is to make Ax stay in the
boundary of b. Shary [12] first motivated an idea of a control solution, which is
the opposite case of a tolerance solution. In addition, Tian et al. developed in
[13] a tolerance-control solution for the case when each row index of the system
Ax = b performs either tolerance or control. Recently, Leela-apiradee, [6] , have
provided its solution set in terms of level set.

Instead of the system Ax = b, the goal of this paper is to deal with a two-
sided interval linear system. “Two-sided” means that the right hand side interval
vector b is substituted by the term By. The paper then presents the tolerance
and control solutions of a two-sided interval linear system together with their
solvability conditions.

To lead to the main idea of the paper, let us first introduce some basic
notation of an interval matrix and an interval vector that can be seen as a
matrix and a vector of interval components as follows.

– An m × n interval matrix A is defined by

A =

⎛
⎜⎜⎜⎝

[a11, a11] [a12, a12] · · · [a1n, a1n]
[a21, a21] [a22, a22] · · · [a2n, a2n]

...
...

. . .
...

[am1, am1] [am2, am2] · · · [amn, amn]

⎞
⎟⎟⎟⎠ ,

where aij and aij are real numbers such that aij ≤ aij for each i ∈
{1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}.

– The interpretation of the interval matrix A can be written as the set of
matrices, that is,

A =
[
A,A

]
=

{
A ∈ R

m×n : A ≤ A ≤ A
}

,

where

A =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⎞
⎟⎟⎟⎠ and A =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎞
⎟⎟⎟⎠ .
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The ordering ‘≤’ between two matrices A and A is referred to componentwise
inequality, i.e.,

A ≤ A if and only if aij ≤ aij ∀i ∈ {1, 2, . . . ,m},∀j ∈ {1, 2, . . . , n}.

Therefore, we note here that A ∈ A means A ≤ A ≤ A.

Moreover, we can use the following notation to represent the interval matrixA.

A =
[
A,A

]
= [Ac − ΔA, Ac + ΔA] , (1)

where Ac = 1
2 (A + A) and ΔA = 1

2 (A − A).
Fiedler et al. proved in [2] that the lower and upper bounds of the interval

vector Ax, denoted by Ax and Ax for any x = (x1, x2, . . . , xn)T ∈ R
n, can be

viewed by
Ax =

[
Ax,Ax

]
= [Acx − ΔA|x|, Acx + ΔA|x| ] , (2)

where |x| is defined as the absolute of vector x, i.e., |x| = (|x1|, |x2|, . . . , |xn|)T .
Given B be another interval matrix and y be another vector of variables.

In the situation when we have the term By on the right hand side instead of
the vector b, the system “Ax = b” would become “Ax = By”, which is called
a two-sided interval linear system. The dimensions of x and y do not need to
be the same but the number of rows of interval matrices A and B does. The
definitions of weak, strong, tolerance control and tolerance-control solutions of
Ax = By would mathematically be defined in the same fashion as the case of
Ax = b.

In this paper, we focus on the tolerance, control and tolerance-control solu-
tions of the system Ax = By. In Sect. 2 we give the definitions and their char-
acterizations by equivalent conditions. Usually, two sets of quantities are equal
when the left and the right quantities are the same. However, there is often a
situation with imprecise information that one set of quantities is being controlled
by the other. This means that if the two sets of quantities are not precise with
having interval information, then one set of quantities must be subset of the
other. Moreover, one set of the interval information could be more important
to the system than the other. The other set of the interval information must
follow the semantics of the context. This leads to the interpretation of tolerance
and control solutions of a two-sided interval linear system discussed in Sect. 3. A
couple of application examples are demonstrated in Sect. 4, which can be mod-
eled by a two-sided interval linear system and a quadratic programming problem
with two-sided interval linear constraints. The conclusion is addressed in the last
section.
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2 Tolerance and Control Solutions of Two-Sided Interval
System of Linear Equations

To see how the two-sided interval systems are motivated, consider two systems
of standard linear equations below:

Ax = By, (3)
Ax − By = 0, (4)

where A ∈ R
m×n, B ∈ R

m×p, and m,n and p are positive integers. Any (x, y) in
R

n × R
p satisfying System (3) (or (4)) is called a solution of the system. It is

clear that Systems (3) and (4) are algebraically equivalent. The set of solutions of
(3) is the same as the set of solutions of (4). However, if the entries of coefficient
matrices A and B in (3) and (4) are interval data, Systems (3) and (4) turn into

Ax = By, (5)
Ax − By = 0, (6)

respectively, where coefficient terms A and B in (5) and (6) are interval matrices
as defined in the introduction section. System (6) could not be well-defined in
general since the left-hand side may be represented as interval vector with non-
zero width as a result of Moore’s standard interval arithmetic [7], while the
right-hand side is a real zero vector with zero width. Therefore, we would not be
able to move By to the same side as Ax of the equality as usual, when we deal
with interval data. However, System (5) called a two-sided interval system
of linear equations is well-defined since both sides of the equation are interval
vectors. A solution (x, y) ∈ R

n × R
p to System (5) is not as simple as the case

of standard matrices A and B, but it comes with its semantics.
In [2], Fiedler et al. defined tolerance and control solutions to an interval

linear system Ax = b. Based on the concepts of these solutions, Tian et al. later
proposed a tolerance-control solution in [13].

Definition 1 (see [2] and [13]). A vector x ∈ R
n is called

1. a tolerance solution of Ax = b if for each A ∈ A there exists b ∈ b such
that Ax = b,

2. a control solution of Ax = b if for each b ∈ b there exists A ∈ A such that
Ax = b,

3. a tolerance-control solution of Ax = b if each row index of the system is
either tolerance or control.

As we expand an interval linear system Ax = b to a two-sided interval linear
system Ax = By, the types of solutions of Ax = By presented in the following
definition are developed in similar fashion as the solution concepts in Ax = b.

Definition 2. A vector (x, y) ∈ R
n × R

p is called

1. a tolerance solution of Ax = By if for each A ∈ A there exists B ∈ B
such that Ax = By,
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2. a control solution of Ax = By if for each B ∈ B there exists A ∈ A such
that Ax = By,

3. a tolerance-control solution of Ax = By if each row index of the system
is either tolerance or control.

Without semantics, the mathematical expression of tolerance and control solu-
tions are the same. In Sect. 3, we will mention more about these two solutions
and separately redefine them according to their semantics.

We now consecutively establish Theorems 1–3 based on Definition 2 to find
necessary and sufficient conditions for checking tolerance and tolerance-control
solvabilities of Ax = By. The conditions presented in Theorems 2 and 3 are in
a form of inequalities depending on center and radius of the coefficient interval
matrices A and B with absolute terms |x| and |y|.
Theorem 1. A vector (x, y) is a tolerance solution of Ax = By if and only if
it satisfies Ax ⊆ By.

Proof. Assume that (x, y) is a tolerance solution of Ax = By. Let A ∈ A. Then,
there exists B ∈ B such that Ax = By. Thus,

Ax = By ∈ By =
[
By,By

]
,

that is,
By ≤ Ax ≤ By for any A ∈ A,

which concludes Ax ⊆ By. Conversely, we suppose that (x, y) satisfies Ax ⊆ By.
Then, Ax ∈ By for all A ∈ A. Therefore, Ax = By for all A ∈ A and for some
B ∈ B . Hence, (x, y) is a tolerance solution. �

Theorem 2. A vector (x, y) is a tolerance solution of Ax = By if and only if
it satisfies

|Acx − Bcy| ≤ ΔB |y| − ΔA|x|. (7)

Proof. Let (x, y) be a tolerance solution of Ax = By. By Theorem 1 and (2),

[Acx − ΔA|x|, Acx + ΔA|x| ] = Ax ⊆ By = [Bcy − ΔB |y|, Bcy + ΔB |y| ] .
Thus,

Bcy − ΔB |y| ≤ Acx − ΔA|x| ≤ Acx + ΔA|x| ≤ Bcy + ΔB |y|,
which implies

− (ΔB |y| − ΔA|x|) ≤ Acx − Bcy ≤ ΔB |y| − ΔA|x|. (8)

Conversely, let (x, y) satisfy condition (7) Then, it gives (8), which means

By = Bcy − ΔB |y| ≤ Acx − ΔA|x| = Ax

and
Ax = Acx + ΔA|x| ≤ Bcy + ΔB |y| = By.

Therefore, Ax ⊆ By and (x, y) becomes a tolerance solution. �



Tolerance and Control Solutions of Two-Sided Interval Linear System 441

We can use inequality (7) to verify whether a given vector (x, y) is a toler-
ance solution to our two-sided interval linear system. The system of inequality
(7) has the absolute terms |x| and |y|, which means it is not the system of linear
inequalities, in general. It depends on the signs of x and y components. How-
ever, when we consider the nonnegative domain of vector variables x and y, the
inequality becomes a simple form as

ΔAx − ΔBy ≤ Acx − Bcy ≤ ΔBy − ΔAx,

which is obtained by substituting |x| = x and |y| = y. This turns into

(Bc − ΔB)y ≤ (Ac − ΔA)x and (Ac + ΔA)x ≤ (ΔB + Bc)y. (9)

According to (1), the inequalities (9) can be concluded as the corollary below.

Corollary 1. Let x and y be nonnegative vector variables. A vector (x, y) is a
tolerance solution of Ax = By if and only if it satisfies

By ≤ Ax and Ax ≤ By.

The similar statements of Theorems 1–2 and Corollary 1 for a control solution
can be done easily by interchanging the roles of “A and B” and “x and y”.

Theorem 3. A vector (x, y) is a tolerance-control solution of Ax = By if and
only if it satisfies

|Acx − Bcy| ≤ ΔA|x| + ΔB |y| − 2δ, (10)
where δ is a vector in R

m with the following components

δi =

{
(ΔA|x|)i, if i ∈ P;
(ΔB |y|)i, if i ∈ M \ P,

and P = {i ∈ M : (Ax)i ⊆ (By)i}, M = {1, 2, . . . ,m}.
Proof. Assume that (x, y) is a tolerance-control solution of Ax = By. Let P be
a subset of M such that row i ∈ P of the system is tolerance. Then, the other
i ∈ M \ P of the system is control. Using Theorem 2, we have

|(Acx)i − (Bcy)i| ≤ (ΔB |y|)i − (ΔA|x|)i for each i ∈ P (11)

and
|(Acx)i − (Bcy)i| ≤ (ΔA|x|)i − (ΔB |y|)i for each i ∈ M \ P (12)

By putting Inequalities (11) and (12) together,

|Acx − Bcy| ≤
(

ΔA|x| − 2
∑
i∈P

(ΔA|x|)iei
)

+
(

ΔB |y| − 2
∑

i∈M\P
(ΔB |y|)iei

)

= ΔA|x| + ΔB |y| − 2
(∑

i∈P

(ΔA|x|)iei +
∑

i∈M\P
ΔB |y|)iei

)

= ΔA|x| + ΔB |y| − 2δ,

where ei is a m-column vector containing 1 at the ith row and 0 elsewhere.
Conversely, let (x, y) satisfy condition (10), which implies Inequalities (11) and
(12). Therefore, (x, y) turns into a tolerance-control solution. �
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3 Semantics of Tolerance and Control Solutions

Looking at the mathematical definitions in the previous section, it may seem that
tolerance and control solutions are algebraically the same. So, why would we need
to define them both? This is because one interval information could be more impor-
tant than another. There are some missing details in Definition 2 about the priority
of the interval information A and B , which may not be represented clearly by just
the mathematical quantification; “for all” and “for some”.

To be able to achieve a control solution of the system Ax = By and justify
the semantics of the word “control”, the boundary matrices A and A of A must
be more important than the ones of B . It could be the interval information that
is given by an expert so that any quantity on the right must be controlled in the
boundary of quantities on the left.

Similarly, to get the semantics of the word “tolerance” in a tolerance solution,
the boundary matrices A and A of A must be more important. They provide
the range of left hand side quantities. Moreover, the situation to come up with
a tolerance solution is such that we need every element in the range to be under
the control of the range of the right hand side quantities. In other words, the
left hand side quantities tolerate themselves within the range of the right hand
side quantities.

For those reasons, we cannot simply substitute A with B and x with y, and
infer that tolerance and control solutions are the same. Therefore, the priority
of the information A and B need to be stated in their definitions as rewritten
below.

Definition 3. Let an interval matrix A play more important role to the two-
sided interval system of linear equations Ax = By. A vector (x, y) ∈ R

n ×R
p is

called

1. a tolerance solution of Ax = By if for each A ∈ A there exists B ∈ B
such that Ax = By. It is in the sense that the range of Ax tolerates within
the range of By,

2. a control solution of Ax = By if for each B ∈ B there exists A ∈ A such
that Ax = By. It is in the sense that the range of Ax controls the range of
By.

4 Applications on Tolerance and Control Solutions of a
Two-Sided Interval Linear System

In this section, we illustrate two small examples to show the difference between
tolerance and control solutions. These examples could be parts of any relevant
application systems.

– Problem Statement 1 is formulated as a tolerance solution to a two-sided
interval linear system, which can be solved by system of inequalities.
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– Problem Statement 2 is formulated as a quadratic programming with control
solutions to two-sided interval linear constraints, whose numerical example is
demonstrated in Example 1.

Problem Statement 1. An animal food manufacturing company has its own
quality control for its three formulas of chicken food: I, II, and III. These for-
mulas must be checked for the level of carbohydrate, fiber, protein, and vitamins
per kilogram per bag. The qualified bags must have the nutrients within the given
boundaries as shown in the table below. The company also has a nutritionist who
can advise customers about using these three formulas of chicken food for meat
and egg chickens. To raise chickens for healthy meat and chickens for healthy
eggs, those chickens should have nutrients within the range represented also in
the table.

Type of nutrients Interval amount of nutrient (kg)

Formula I Formula II Formula III Meat chicken Egg chicken

1. Carbohydrate [a11, a11] [a12, a12] [a13, a13]
[
b11, b11

] [
b12, b12

]

2. Fiber [a21, a21] [a22, a22] [a23, a23]
[
b21, b21

] [
b22, b22

]

3. Protein [a31, a31] [a32, a32] [a33, a33]
[
b31, b31

] [
b32, b32

]

4. Vitamins [a41, a41] [a42, a42] [a43, a43]
[
b41, b41

] [
b42, b42

]

The nutritionist suggests customers to mix three formulas together before
feeding. The total amount of nutrients in the mixed chicken food must be within
the range of the total amount of all needed nutrients to guarantee that all chickens
provide healthy products. This relationship can be represented as a two-sided
interval linear system (13)

⎛
⎜⎜⎝

[a11, a11] [a12, a12] [a13, a13]
[a21, a21] [a22, a22] [a23, a23]
[a31, a31] [a32, a32] [a33, a33]
[a41, a41] [a42, a42] [a43, a43]

⎞
⎟⎟⎠

⎛
⎝

x1

x2

x3

⎞
⎠ =

⎛
⎜⎜⎝

[
b11, b11

] [
b12, b12

]
[
b21, b21

] [
b22, b22

]
[
b31, b31

] [
b32, b32

]
[
b41, b41

] [
b42, b42

]

⎞
⎟⎟⎠

(
y1
y2

)
, (13)

where xj is the amount of bags of animal food formula I, II and III
that should be mixed, when j = 1, 2, 3, respectively,

yk is the amount of meat and egg chickens
that the customer should raise, when k = 1, 2, respectively.

From the company’s point of view, it is important to control the nutrients in
each formula of chicken foods. It turns out that the set of solutions to System (13) is
the set of tolerance solutions as the total of the nutrients created by the mixed food
must be within the range of healthy nutrients. On the other hand, when considering
the customer’s side, the interval information about the nutrients needed for each
chicken is the priority for the customer. In this case, the customer must control the
nutrients in the mixed food by the range of the total amount of all needed nutrients
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for healthy chicken meat and eggs. Then, the set of solutions to System (13) can also
be viewed as the tolerance solution set. Obviously, vector variables x = (x1, x2, x3)T

and y = (y1, y2)T are nonnegative. From Corollary 1, the tolerance solution (x, y)
is obtained by solving the system of inequalities as follows:

bi1y1 + bi2y2 − ai1x1 − ai2x2 − ai3x3 ≤ 0

and
ai1x1 + a2x2 + ai3x3 − bi1y1 − bi2y2 ≤ 0,

for each i ∈ {1, 2, 3, 4}. �

Problem Statement 2. A famous family bakery shop sells homemade fruit
cakes and fruit tarts. The owner uses three grades of mixed dried berries: A, B,
and C, by mixing them together to get the best dessert according to the family
recipe. Suppose the owner determines the initial amount of fruit cakes and fruit
tarts he/she wanted to make as α1 and α2, respectively, and sets up the initial
amount of mixed dried berries grades A, B and C that he/she aims to buy as
β1, β2 and β3, respectively. One kilogram of each mixed dried fruit grade contains
dried blueberries, dried cranberries, dried raspberries, and dried strawberries in
the different uncertain quantities. The table below provides the interval quantities
per kilogram of each mixed dried berries grade.

Type of dried berries Interval amount of berry (kg)

Grade A Grade B Grade C

1. Blueberries
[
b11, b11

] [
b12, b12

] [
b13, b13

]

2. Cranberries
[
b21, b21

] [
b22, b22

] [
b23, b23

]

3. Raspberries
[
b31, b31

] [
b32, b32

] [
b33, b33

]

4. Strawberries
[
b41, b41

] [
b42, b42

] [
b43, b43

]

To control the quality of the desserts, the recipe says that the dessert must
contain each type of dried berries in a certain level as shown in the following
table.

Type of dried berries Interval amount of berry (kg)

Fruit cake Fruit tart

1. Blueberries [a11, a11] [a12, a12]

2. Cranberries [a21, a21] [a22, a22]

3. Raspberries [a31, a31] [a32, a32]

4. Strawberries [a41, a41] [a42, a42]

The relationship of how many kilograms of the mixed dried berries grades A,
B, and C that the shop should have and how many fruit cakes and fruit tarts
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that the shop should make to guarantee the overall quality of the dessert becomes
a two-sided interval linear system as follows:

⎛
⎜⎜⎝

[a11, a11] [a12, a12]
[a21, a21] [a22, a22]
[a31, a31] [a32, a32]
[a41, a41] [a42, a42]

⎞
⎟⎟⎠

(
x1

x2

)
=

⎛
⎜⎜⎝

[
b11, b11

] [
b12, b12

] [
b13, b13

]
[
b21, b21

] [
b22, b22

] [
b23, b23

]
[
b31, b31

] [
b32, b32

] [
b33, b33

]
[
b41, b41

] [
b42, b42

] [
b43, b43

]

⎞
⎟⎟⎠

⎛
⎝

y1
y2
y3

⎞
⎠ , (14)

where xj is the amount of fruit cakes and fruit tarts that should be made,
when j = 1, 2, respectively,

yk is the amount of mixed dried berries grades A, B and C,
when k = 1, 2, 3, respectively.

The quality of desserts is very important to the bakery shop. The owner wants
to re-evaluate the amount x1, x2 and y1, y2, y3 to make sure that the mixed dried
berries the shop has would be covered by the range of the total amount of the
mixed fruits in all dessert items. This way the shop would be able to guarantee
the quality of the desserts. The set of solutions satisfies System (14) is considered
to be the control solution set. In a situation when the owner wants the amount
x1, x2 and y1, y2, y3 as close as possible to the given values α1, α2 and β1, β2, β3,
respectively, it is the same as to minimize the function below:

‖(x, y)T − (α, β)T ‖2 =
2∑

j=1

(xj − αj)2 +
3∑

k=1

(yk − βk)2

=
2∑

j=1

(x2
j − 2αjxj + α2

j ) +
3∑

k=1

(y2
k − 2βkyk + β2

k). (15)

It is sufficient to remove the constant terms α2
j and β2

k from Eq. (15) for every
j ∈ {1, 2} and k ∈ {1, 2, 3}. Therefore, we can model this problem as a quadratic
program P1 with a two-sided interval linear constraint (14), whose constraints
are obtained by using the statement of Corollary 1 for a control solution in the
following way:

P1 : minimize f(x, y) =
2∑

j=1

(x2
j − 2αjxj) +

3∑
k=1

(y2
k − 2βkyk)

subject to
2∑

j=1

aijxj −
3∑

k=1

bikyk ≤ 0, ∀i ∈ {1, 2, 3, 4}

−
2∑

j=1

aijxj +
3∑

k=1

bikyk ≤ 0, ∀i ∈ {1, 2, 3, 4}

xj , yk ≥ 0. ∀j ∈ {1, 2} ∀k ∈ {1, 2, 3}
The Lagrangian function for Problem P1 can be written by

L(z, μ) = cT z +
1
2
zTQz + μ(A′z − b′), (16)
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where

c =

⎛
⎜⎜⎜⎜⎝

−2α1

−2α2

−2β1

−2β2

−2β3

⎞
⎟⎟⎟⎟⎠

, Q =

⎛
⎜⎜⎜⎜⎝

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

⎞
⎟⎟⎟⎟⎠

, z =

⎛
⎜⎜⎜⎜⎝

x1

x2

y1
y2
y3

⎞
⎟⎟⎟⎟⎠

and

A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 −b11 −b12 −b13
a21 a22 −b21 −b22 −b23
a31 a32 −b31 −b32 −b33
a41 a42 −b41 −b42 −b43

−a11 −a12 b11 b12 b13
−a21 −a22 b21 b22 b23
−a31 −a32 b31 b32 b33
−a41 −a42 b41 b42 b43

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and μ = (μ1, μ2, . . . , μ8) ≥ 0 is the Lagrange multiplier with 5-dimensional row
vector. Let u and v be surplus and slack variables to the inequalities

c + Qz + (A′)TμT ≥ 0 and A′z − b′ ≤ 0,

respectively. As shown in [5], we can represent (16) in the following linear con-
straints form:

Qz + (A′)TμT − u = −c, (17)
A′z + v = b′, (18)

z ≥ 0, μ ≥ 0, u ≥ 0, v ≥ 0, (19)

uT z = 0, μv = 0, (20)

where the equations shown in (20) prescribe complementary slackness. Since it
can clearly be seen that the matrix Q is positive definite, the conditions (17)–(20)
are necessary and sufficient for a global optimum. To create the appropriate lin-
ear program, we add thirteen artificial variables a1, a2, . . . , a13 to each constraint
of (17) and (18) together with minimizing their sum, that is,

P2 : minimize a1 + a2 + · · · + a13

subject to Qz + (A′)TμT − u + a′ = −c,

A′z + v + a′′ = b′,
z ≥ 0, μ ≥ 0, u ≥ 0, v ≥ 0,

uT z = 0, μv = 0,

where a′ = (a1, a2, . . . , a5)T and a′′ = (a6, a7, . . . , a13)T . Hence, the optimal
solution to the quadratic program P1 is found out by solving the linear program
P2. �
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Type of dried berries Interval amount of berry (kg)

Fruit cake Fruit tart Grade A Grade B Grade C

1. Blueberries [0.25, 0.32] [0.20, 0.41] [0.15, 0.30] [0.60, 0.70] [0.22, 0.25]

2. Cranberries [0.05, 0.18] [0.26, 0.35] [0.20, 0.20] [0.23, 0.35] [0.08, 0.12]

3. Raspberries [0.03, 0.15] [0.24, 0.64] [0.10, 0.16] [0.04, 0.10] [0.45, 0.55]

4. Strawberries [0.04, 0.36] [0.34, 0.45] [0.32, 0.48] [0.14, 0.28] [0.18, 0.20]

Example 1. According to Problem statement 2, we provide the numerical infor-
mation in the following table.

– The initial amount of fruit cakes and fruit tarts is α1 = 16 and α2 = 24,
respectively.

– The initial amount of mixed dried berries grade A, B and C is β1 = 15, β2 = 12
and β3 = 10, respectively.

As explained in Problem statement 2 with the above information, our problem
can be represented by Problem P2, that is,

minimize a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10 + a11 + a12 + a13

subject to

2x1 + 0.25µ1 + 0.05µ2 + 0.03µ3 + 0.04µ4 − 0.32µ5 − 0.18µ6 − 0.15µ7 − 0.36µ8 − u1 + a1 = 32,

2x2 + 0.20µ1 + 0.26µ2 + 0.24µ3 + 0.34µ4 − 0.41µ5 − 0.35µ6 − 0.64µ7 − 0.45µ8 − u2 + a2 = 48,

2y1 − 0.15µ1 − 0.20µ2 − 0.10µ3 − 0.32µ4 + 0.30µ5 + 0.20µ6 + 0.16µ7 + 0.48µ8 − u3 + a3 = 30,

2y2 − 0.60µ1 − 0.23µ2 − 0.04µ3 − 0.14µ4 + 0.70µ5 + 0.35µ6 + 0.10µ7 + 0.28µ8 − u4 + a4 = 24,

2y3 − 0.22µ1 − 0.08µ2 − 0.45µ3 − 0.18µ4 + 0.25µ5 + 0.12µ6 + 0.55µ7 + 0.20µ8 − u5 + a5 = 20,

0.25x1 + 0.20x2 − 0.15y1 − 0.60y2 − 0.22y3 + v1 + a6 = 0,

0.05x1 + 0.26x2 − 0.20y1 − 0.23y2 − 0.08y3 + v2 + a7 = 0,

0.03x1 + 0.24x2 − 0.10y1 − 0.04y2 − 0.45y3 + v3 + a8 = 0,

0.04x1 + 0.34x2 − 0.32y1 − 0.14y2 − 0.18y3 + v4 + a9 = 0,

−0.32x1 − 0.41x2 + 0.30y1 + 0.70y2 + 0.25y3 + v5 + a10 = 0,

−0.18x1 − 0.35x2 + 0.20y1 + 0.35y2 + 0.12y3 + v6 + a11 = 0,

−0.15x1 − 0.64x2 + 0.16y1 + 0.10y2 + 0.55y3 + v7 + a12 = 0,

−0.36x1 − 0.45x2 + 0.48y1 + 0.28y2 + 0.20y3 + v8 + a13 = 0,

where all variables are nonnegative and complementary conditions are satis-
fied. By applying the simplex method, the optimal solution to this problem is
eventually displayed as

(
x1

x2

)
=

(
18.49
22.16

)
and

⎛
⎝

y1
y2
y3

⎞
⎠ =

⎛
⎝

17.49
11.01
8.19

⎞
⎠ . 	


In this section we have presented two particular situations to show the dif-
ference between tolerance and control solutions together with the processes for
solving them. The tolerance solution as Problem Statement 1 can directly be



448 W. Leela-apiradee et al.

accomplished using system of inequalities. The quadratic programming problem
constrained with control solutions as Problem Statement 2 was transformed to
become an appropriate linear program. Then, the simplex method enables us to
obtain the optimal solution of the problem as displayed in the above example.

5 Conclusion

This paper presents the concepts of tolerance and control solutions of a two-sided
interval linear system together with their semantics to the system Ax = By.
The conditions to verify that (x, y) is a tolerance or a control or a tolerance-
control solution are also achieved in Theorems 1–3. In application problems,
the vectors x and y are normally specified by nonnegative variables. Therefore,
we simplify Theorem 2 to be Corollary 1 and applied it to implement a two-
sided interval linear system and a quadratic programming with two-sided interval
linear constraints. This work should be beneficial to any applications that have
the restrictions in the format of two-sided interval linear system.
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60203 Compiègne, France
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Abstract. We consider the (inverse) problem of finding back the param-
eter values of a physical model given a set of measurements. As the deter-
ministic solution to this problem is sensitive to measurement error in the
data, one way to resolve this issue is to take into account uncertainties
in the data. In this paper, we explore how interval-based approaches
can be used to obtain a solution to the inverse problem, in particular
when measurements are inconsistent with one another. We show on a set
of experiments, in which we compare the set-based approach with the
Bayesian one, that this is particularly interesting when some measure-
ments can be suspected of being outliers.

Keywords: Inverse problem · Interval uncertainty · Outlier detection

1 Introduction

Identifying the parameters of a physical model from a set of measurements is a
common task in many fields such as image processing (tomographic reconstruc-
tion [1]), acoustic (source identification [2]), or mechanics (material properties
identification [3]). Such a problem is known as the inverse problem and is the
converse of the so-called forward problem. While the forward problem is usually
well-posed, it is not the case of the inverse problem. Indeed, whenever there is
noise in the measurements or error in the model, such a problem may well end-up
having no solutions [4]. Common recourse to this issue that have been proposed
in the literature is to consider either Least-square minimization techniques [5]
or Bayesian approaches [6] modeling the noise in measurements.
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Both these approaches, however, can be quite sensitive to outliers [7,8] or
aberrant measurements. In addition to that, a lot of researchers argued that
probabilistic methods such as Bayesian inverse methods are not well suited for
representing and propagating uncertainty when information is missing or in case
of partial ignorance [9–11]. In contrast, interval-valued methods [12–15] make a
minimal amount of assumptions about the nature of the associated uncertainties,
as they only require to define the region in which should be the measurement. In
this paper, we propose an inverse strategy relying on interval analysis to deal with
uncertain measurements and to detect inconsistent measurements (outliers). We
apply the proposed strategy in experimentation concerning the identification of
material elastic parameters in the presence of possibly inconsistent measurements
(here, full-field displacements [16]).

This paper is organized as follows. Section 2 describes the identification strat-
egy based on a set-valued approach and outlier detection method to select a set
of consistent measurements as well as the numerical implementation of the iden-
tification strategy, including the discrete description of sets [11]. In Sect. 3, we
present an application to static tensile tests of homogeneous plates to identify
material parameters using the proposed outlier detection method and we com-
pare it to the Bayesian inference method with sensitive data.

2 Identification Strategy and Outlier Detection Method

This section is composed of four parts. In Sect. 2.1, we introduce the inverse
problem. The identification strategy with a set-valued approach based on inter-
vals is described in Sect. 2.2. Section 2.3 introduces the outlier detection method
to select a subset of consistent measurements. Section 2.4 describes the numeri-
cal implementation of the identification strategy with the discrete description of
sets.

2.1 Inverse Problem Introduction

We consider an inverse problem where we want to identify some parameters of a
model y = f(θ) from N measurements made on quantity y. The model f yields
the relationship between the M model parameters θ ∈ R

M and the measured
quantity. We will denote by ỹ ∈ R

N the measurements made on y. A typical
example introduced in Sect. 3 is where θ corresponds to elastic Lamé parameters
(λ and μ) and y is full-field displacement data obtained after applying a given
load on the material specimen. In this paper, we consider the case where the
discrepancy between f(θ) and ỹ is mainly due to measurement errors, i.e., we
leave the issue of model error to future investigations.

2.2 Set-Valued Inverse Problem

In this Section, we propose a set-valued inverse problem strategy based on the
interval-valued measurements.
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Intervals to Model Uncertainty. Within the framework of Interval analysis,
an interval [x] in R is a closed set of connected real values noted by [x] =
[x, x] = {x ∈ R | x ≤ x ≤ x} where x ∈ R is the lower bound and x is the upper
bound [17]. In our work, we choose to describe uncertainty on the measurements
in interval form, as such a description requires almost no assumption regarding
the nature and source of uncertainty [14]. To describe prior information about
parameters, we use a multidimensional extension of intervals, i.e. hypercube or
box of Rn defined as the Cartesian product of n intervals. For example, in the
case of two parameters, x1 and x2, information on them is described by set X

such that X = [x1] × [x2] = [x1, x1] × [x2, x2]. Boxes are the easiest way to
describe multidimensional sets.

Identification Strategy. In the proposed approach, intervals describe the
uncertainty on the measurements and an hyper-cube describes the prior infor-
mation about parameters. Hence, the solution of the inverse problem can be
obtained thanks to a set inversion process [17]. The uncertainty in the measure-
ments is described through the set Sy.

Sy =
N∏

k=1

[ỹk, ỹk] ⊂ R
N (1)

Each measurement is described with its lower bound ỹk and an upper bound ỹk.
Prior information about parameter is described through S0θ ⊂ R

M , i.e., with the
box. Given a set Sy ⊂ R

N describing the uncertainty on ỹ and prior parameter
set S0θ ⊂ R

M , the set Sθ ⊂ R
M describing the solution of the inverse problem

is defined as follows:

Sθ = {θ ∈ S0θ | f(θ) ∈ Sy} (2)

In the current work, it is possible to obtain a solution set for each measurement
as follows:

S
k
θ = {θ ∈ S0θ | yk(θ) ∈ [ỹk, ỹk]} (3)

where yk(θ) represents kth response of the model y = f(θ) and then Sθ can be
obtained as the intersection of the S

k
θ :

Sθ =
N⋂

k=1

S
k
θ (4)

In case of inconsistent measurements, the set-valued inverse method gives an
empty solution set Sθ = ∅ corresponding to

⋂N
k=1 S

k
θ = ∅. There may be several

reasons for the inconsistency of the measurements with respect to the model
such as presence of measurement outliers or model error.
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Example 1. We illustrate the set-valued inverse problem on a toy example. We
consider a spring-mass system shown in Fig. 1 which can be described mathe-
matically as

F/p = f(θ) = y (5)

m

y

Fp

Fig. 1. Spring-mass system

where F represents the force applied on the spring in Newton (N), p is the
spring stiffness constant (N/m) and the parameter to estimate, and y is the
measured displacement of the spring in meter (m). We consider a case where
a force F = 100 N is applied on the spring and a displacement, ỹ = 0.01 m
is measured. Here, inverse problem consists of determining the parameter from
the measurement ỹ. To do this, we describe uncertainty on the prior knowledge
about the parameter and the measurement in the interval form such that S0θ

i.e., p ∈ [P ] = [8000, 12000] and Sy i.e., ỹ ∈ [Ỹ ] = [0.009, 0.0110]. We solve the
inverse problem numerically using Eq. (2), which gives a set of parameter which
is included in set [P]. We obtain the lower bound P = 9152.5 and upper bound
P = 11050.1 of the interval [P] by taking y = Ỹ and y = Ỹ respectively. Hence,
new interval of parameter is described by [P] = [P,P] = [9152.5, 11050.1] ⊂ [P ].
In the case of 1D, the length of the interval i.e., P −P measures the area of [P],
A([P]).

2.3 Outlier Detection Method

In case of inconsistency, a way to restore consistency is to remove incompatible
measurements, i.e., possible outliers. To do this, our method relies on measures
of consistency that we introduce now.

For any two solution sets Sk
θ and S

k′
θ corresponding to ỹk and ỹk′ measurement

respectively, (k, k′) ∈ {1, ..., N}2, we define the degree of inclusion (DOI) of one
solution set S

k
θ with respect to another S

k′
θ as

DOIkk′ =
A(Sk

θ ∩ S
k′
θ )

A(Sk′
θ )

(6)

where A(Sk
θ) corresponds to the area of the set S

k
θ .
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The DOI between two solution sets is non-symmetric, i.e., DOIkk′ �= DOIk′k.
DOI reaches to its boundary values in the following situations as illustrated in
Fig. 2.

DOIkk′ =
{

1 iff S
k′
θ ⊆ S

k
θ

0 iff S
k
θ ∩ S

k′
θ = ∅ (7)

S
k
θ S

k′
θ

S0θS
k
θ ∩S

k′
θ = /0

S
k
θ S

k′
θ

S
k
θ ∩S

k′
θ S0θ S0θ

S
k′
θ

S
k
θ

S
k
θ ∩S

k′
θ

DOIkk′ = 0 0 < DOIkk′ < 1 DOIkk′ = 1

Fig. 2. DOI between two sets

Furthermore, the value of DOIkk′ will always be between 0 and 1 when A(Sk
θ)

is non-zero. The larger the value of DOI between one solution set and another,
the higher the possibility of Sk′

θ included in S
k
θ .

We now introduce a measurement-wise consistency degree from a set of mea-
surements. By using the pairwise degree of inclusion (DOI) of the solution sets
corresponding to the measurements, we define the global degree of consistency
(GDOC) of any kth measurement with respect to all other measurements as

GDOC(k) =

∑N
k′=1

A(Sk
θ∩S

k′
θ )

A(Sk
θ )

+
∑N

k′=1
A(Sk

θ∩S
k′
θ )

A(Sk′
θ )

2N
(8)

which reaches its boundary values in the following situations:

GDOC(k) =
{

1 iff S
1
θ = S

2
θ, ...,= S

N
θ

0 iff S
k
θ ∩ S

k′
θ = ∅, ∀ k′ ∈ {1, ..., N} (9)

The value of GDOC(k) will always be between 0 and 1. Note that the con-
dition for GDOC = 1 is very strong, as it requires all sets to be identical. If
GDOC(k) = 0 then the kth measurement is fully inconsistent with all other
measurements. A high value of GDOC for the kth measurement then indicates
a high consistency with most of the other measurements.

Finally, we define a global consistency measure for a group of measurements.
Let S = {S1θ, . . . ,Sk

θ , . . . ,SN
θ } with S

k
θ ⊆ R

M be the set of solutions to the inverse
problems for the measurements {y1,.....,yN}. We define the general consistency
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(GCONS) for any subset E ⊂ S of measurements as

GCONS(E) =

A(
⋂
S

k
θ)

S
k
θ∈E

min
S

k
θ∈E

A(Sk
θ)

(10)

It has the following properties:

1. It is insensitive to permutation of the sets of measurement (commutativity).
2. The value of GCONS is monotonically decreasing with the size of the set E,

in the sense that for any subsets of measurements E, F, with E ⊆ F , then we
have GCONS(F ) ≤ GCONS(E). It is also mean that the more measurement
we have, the less consistent they are with one another.

3.

GCONS(E) =

⎧
⎪⎨

⎪⎩

0 iff A(
⋂
S

k
θ)

S
k
θ∈E

= ∅

1 iff A(
⋂
S

k
θ)

S
k
θ∈E

= min
S

k
θ∈E

A(Sk
θ)

A good principle to choose a subset of consistent measurements would be to
search for the biggest subset E (the maximal number of measurements) that has
a reasonable consistency, that is for which GCONS(E) is above some threshold.
Yet, such a search could be exponential in N , which can be quite large, and
therefore untractable. This is why we propose a greedy algorithm (Algorithm 1)
that makes use of GDOC measures to find a suitable subset E. The idea is quite
simple: starting from the most consistent measurement according to GDOC and
ordering them according to their individual consistency, we iteratively add new
measurements to E unless they bring the global consistency GCONS under a
pre-defined threshold, that is unless they introduce too much inconsistency.

Algorithm 1. GCONS outlier detection method
Require: S = {S1

θ,.....,S
N
θ }, GCONSthreshold � Set S

1
θ, S

2
θ, ...SN

θ are arranged such
that GDOC(1) ≥ GDOC(2).... ≥ GDOC(N).

Ensure: Consistent set of solution sets corresponding to consistent measurements,
Snew from S

1: Snew = {S1
θ, S2

θ}; � Initial set
2: for k ← 3 to N do
3: Ek = {Snew} ∪ {Sk

θ} � S
k
θ from S

4: if GCONS(Ek) > GCONSthreshold then
5: Accept S

k
θ

6: Snew = {Snew} ∪ {Sk
θ}; � S

k
θ from S

7: else
8: Snew = Snew; � Basically we are removing the kth measurement which

gives solution set S
k
θ .
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2.4 Implementation with Discrete Description of Sets

To solve the set-valued inverse problem, we need a discrete description of the
sets. There are multiple ways to represent the sets in a discrete way, such as
using boxes (SIVIA algorithm [15]) or a grid of points. Here, we use the same
description as in [11], that is a grid of points, θi, i ∈ {1, ..., Ng} as shown in Fig. 3a
where Ng is the number of grid points. Such a description is convenient when
comparing or intersecting the sets since the grid of points is the same for any
set. Any set Sθ ⊂ S0θ is then characterized through its discrete characteristic
function, defined at any point θi ∈ S0θ of the grid as shown in Eq. (11) and
Fig. 3b.

χSθ
(θi) =

{
1 if θi ∈ Sθ

0 otherwise (11)

S0θ

θi

(a) Prior set(S0θ)

S0θ

θi

Sθ

(b) Characterized set(Sθ)

Fig. 3. Discrete description of sets

In the current application, a uniform grid is chosen to describe the prior
parameter set S0θ, but it is not mandatory. In our method, each S

k
θ is therefore

described by its discrete characteristic function, defined at any point of the grid
as

χ
S

k
θ
(θi) =

{
1 if ỹk ≤ f(θi) ≤ ỹk

0 otherwise
(12)

These discrete characteristic functions can be collected in a Ng ×N matrix X
as columns of boolean values as shown in Eq. (13). Ng ×N matrix X is described
as

X =

⎡

⎢⎢⎣

1 1 .. 1
0 1 .. 1
.. .. .. ..
1 1 .. 0

⎤

⎥⎥⎦ (13)

where χ
S

k
θ
(θi) is the element of column k and line i. Using matrix X, a N ×N

symmetric matrix T = XT X can be obtained, whose components are directly
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proportional to the inverse sets areas, and can therefore be used as an estimation
of such areas:

T ∝

⎡

⎢⎢⎣

A(S1θ) A(S1θ ∩ S
2
θ) .. A(S1θ ∩ S

k′
θ )

A(S1θ ∩ S
2
θ) A(S2θ) .. A(S2θ ∩ S

k′
θ )

.. .. .. ..

A(S1θ ∩ S
k′
θ ) A(S2θ ∩ S

k′
θ ) .. A(Sk

θ)

⎤

⎥⎥⎦ (14)

Indeed, the diagonal element Tkk of T represents the number of grid points
for which the kth measurement is consistent and it is proportional to A(Sk

θ).
The non-diagonal element Tkk′ of T represents the number of grid points for
which both kth and k′th measurements are consistent and it is proportional
to A(Sk

θ ∩ S
k′
θ ). Hence, GDOC can be computed from matrix T for any kth

measurement as follows

GDOC(k) =

∑N
k′=1

Tk′k

Tkk
+

∑N
k′=1

Tkk′
Tk′k′

2N
(15)

We have presented an identification strategy and outlier detection method that
makes use of intervals to represent information about parameters and measure-
ments. The next section will be devoted to an application of this strategy to
a mechanical problem, as well as to a comparison with the Bayesian inference
method, exploring in particular their behaviour in presence of outliers.

3 Experiments

In this Section, we apply the set-valued inverse method to identify elastic prop-
erties (Lamé parameters: λ and μ) of a homogeneous 2D plate under plane strain
as shown in Fig. 4a. The plate is clamped on the left side and loaded on the right
side by a uniform traction f = 1000 N/m. To generate displacement measure-
ment data ỹ (386 measurements), exact displacement data yRef is simulated by
a Finite Element (FE) model (193 nodes, 336 elements) as shown in Fig. 4b con-
sidering the reference values λ0 = 1.15 · 105 MPa and μ0 = 7.69 · 104 MPa. We
also consider a possible Gaussian noise with 0 mean (no systematic bias) and
with standard deviation σ. In the current work, σ was taken as 5% of the average
of all the exact displacement values and in practical cases it can be assumed that
σ can be deduced from the measurement technique.

For the set-valued inverse method, the uncertainty on the measurements
has to be given in interval form. Therefore, each measurement is modelled as
[ỹk − 2σ, ỹk + 2σ]. The width of 2σ ensures that sufficient measurements will
be consistent with one another. Prior information about the parameters (S0θ) is
considered as a uniform 2D box λp ×μp with λp = [0.72 105, 1.90 105] MPa and
μp = [ 7.2 104, 8.15 104] MPa .
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(a) 2D homogeneous plate (b) FEM mesh

Fig. 4. A homogeneous plate and its model

3.1 Application with the Set-Valued Inverse Method

We first apply the set-valued inverse method to identify the set of elastic param-
eters when there is no noise in the data. The measurement data was chosen such
that ỹ = yRef , and the information on the measurement ỹ was described in an
interval form: [ỹ − 2σ, ỹ + 2σ].

Fig. 5. Feasible set of identified parameters (Color figure online)

Figure 5 shows the feasible set (yellow color) of the identified parameter which
is consistent with all 386 measurements using the set-valued inverse method. We
can note that the exact value of the parameter included in the solution set.

We then apply the set-valued inversemethod alongwithGCONS outlier detec-
tion method (Algorithm 1) to identify the set of elastic parameters when there is
random noise in the data. The measurement ỹ is created from yRef by adding to
it a Gaussian white noise with standard deviation σ and the information on the
measurement ỹ was described in an interval form: [ỹ − 2σ, ỹ + 2σ].



458 K. Shinde et al.

(a) Empty solution set (b) Solution set after detecting outlier

Fig. 6. Outlier detection (Color figure online)

Figure 6a shows that the identified set (green color) when taking all the mea-
surements is empty due to inconsistency within the measurements. To obtain a
non-empty solution set, we use our proposed solution and Algorithm 1 with the
value of the GCONSthreshold settled to 0.1. We use a low value of GCONS to
ensure that a high enough number of measurements will be included. Figure 6b
shows the feasible set (yellow color) of the identified parameter using GCONS
method, with 55 measurements removed. We can note here again that the exact
value of the parameter included in the solution set.

3.2 Comparison of Set-Valued and Bayesian Inverse Method

We now compare the set-valued inverse method with the standard Bayesian infer-
ence method. We apply the set-valued inverse method and Bayesian inference
method to identify elastic properties (Lamé parameters: λ and μ) of a homo-
geneous 2D plate for the same 386 measurements. For the set-valued inverse
method, information on the measurement ỹ is described in an interval form:
[ỹ − 2σ, ỹ + 2σ] with σ = 0.0020 and prior information about the parame-
ters is described with a discretization of the set λp × μp with λp = [0.72 105,
1.90 105] MPa and μp = [7.2 104, 8.15 104] MPa. With Bayesian inference
method, error on the measurement ỹ is modelled by a Gaussian noise:∼ N (0, σ2)
with σ = 0.0020 and prior information about the parameter is modeled with a
uniform distribution: Uλ(0.72 105, 1.90 105) MPa, Uμ(7.2 104, 8.15 104) MPa.
Rouhgly speaking, this means that the Bayesian model is not misspecified.

Figure 7 shows the feasible set (yellow color) of the identified parameter using
the set-valued inverse method and the feasible set (red color) of the identified
parameter using Bayesian inference method. In the case of Bayesian inference
method, the feasible set (red color) corresponds to a credibility set having a prob-
ability of 90%. The results on this specific example indicate that both methods
are consistent with each other, with the Bayesian approach delivering more pre-
cise inferences. This observation has been made on other simulations using a
well-specified Bayesian model.
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Fig. 7. Feasible set of parameters (Color figure online)

Now, we compare the set-valued inverse method and the Bayesian inference
method in terms of their sensitivity to outliers i.e., how they perform when some
data becomes aberrant, hence departing from the Bayesian assumptions. To do
this, we use 8 sets of 100 experiments (each experiment with 386 measurements)
in a way such that for each set the percentage of outlier measurements will
increase. In practice, we use the following scheme

ỹ0 = yRef + ε (16)

ỹ = ỹ0 + αIε (17)

where ỹ0 are noisy measurements, ε ∼ N (0, σ2) is the initial noise, α = 5 is
a multiplicative constant applied to ε when a measurement is an outlier, and
I ∼ B(pi) is a Bernoulli variable with parameter pi depending on the experiment
set, and indicating the average percentage of outlier measurements. In particular,
we used the values 0%, 3%, 5%, 7%, 9%, 11%, 13%, 15% for pi in our sets of
experiment, starting from no outliers to an average of 15%.

For each experiment from the 8 sets (thus for 800 experiments), we have per-
formed the identification using our set-valued inverse method and the Bayesian
inference method to check their sensitivity towards outliers. For all experiments,
we have chosen the value of GCONSthreshold = 0.1.

For each set of experiment, we have computed the average number of times
that each method includes the true parameter values, denoted Ac in Fig. 8.

From this figure, it can be observed that when there is an increase in the
percentage of over noisy data points per set, the AC value starts to decrease in the
case of Bayesian inference method but not with GCONS method. So, while the
Bayesian approach strongly suffers from a model misspecification, our method is
robust to the presence of outliers, even in significant proportion. Hence, we can
conclude that the two methods clearly follows different strategies and provide
results that are qualitatively different in presence of outliers.
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Fig. 8. Consistency with exact parameter values

4 Conclusions

In this paper we have presented a new parameter identification strategy relying
on set theory and on interval measurements. In this approach, we have used
intervals to describe uncertainty on measurements and parameters. In order to
solve the inverse problem, we have proposed a discrete description of sets related
to the information about the parameters. We have introduced indicators of con-
sistency of measurements, using them to propose an outlier detection method,
i.e., the GCONS method.

We applied this strategy to identify the elastic properties of homogenous
isotropic material. The results showed that the identification strategy is not
only helpful to obtain a feasible set of the parameters but is also able to detect
the outliers in the noisy measurements. We also compared our identification
strategy with the Bayesian inference method in terms of sensitivity to outliers
and results showed that the Bayesian inference method can give a false prediction
of the parameter when data is too noisy.

The application of the identification strategy considered in the current work
concerns a relatively small number of measurements (at least for mechanical
applications) and a 2D parameter identification. However, computational com-
plexity in case of very high dimensions is an important issue that remains to
be investigated. The next step in this work is to apply this strategy with high
dimensional data as well as parameter identification.
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Abstract. Interval-Valued fuzzy rule-based classifier with TUning and
Rule Selection, IVTURS, is a state-of-the-art fuzzy classifier. One of the
key point of this method is the usage of interval-valued restricted equiva-
lence functions because their parametrization allows one to tune them to
each problem, which leads to obtaining accurate results. However, they
require the application of the exponentiation several times to obtain a
result, which is a time demanding operation implying an extra charge to
the computational burden of the method.

In this contribution, we propose to reduce the number of exponen-
tiation operations executed by the system, so that the efficiency of the
method is enhanced with no alteration of the obtained results. Moreover,
the new approach also allows for a reduction on the search space of the
evolutionary method carried out in IVTURS. Consequently, we also pro-
pose four different approaches to take advantage of this reduction on the
search space to study if it can imply an enhancement of the accuracy
of the classifier. The experimental results prove: 1) the enhancement of
the efficiency of IVTURS and 2) the accuracy of IVTURS is competitive
versus that of the approaches using the reduced search space.

Keywords: Interval-valued fuzzy rule-based classification systems ·
Interval-valued fuzzy sets · Interval type-2 fuzzy sets · Evolutionary
fuzzy systems

1 Introduction

Classification problems [10], which consist of assigning objects into predefined
groups or classes based on the observed variables related to the objects, have
been widely studied in machine learning. To tackle them, a mapping function
from the input to the output space, called classifier, needs to be induced applying
a learning algorithm. That is, a classifier is a model encoding a set of criteria
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that allows a data instance to be assigned to a particular class depending on the
value of certain variables.

Fuzzy Rule-Based Classification Systems (FRBCSs) [16] are applied to deal
with classification problems, since they obtain accurate results while providing
the user with a model composed of a set of rules formed of linguistic labels
easily understood by humans. Interval-Valued FRBCSs (IVFRBCSs) [21], are
an extension of FRBCSs where some (or all) linguistic labels are modelled by
means of Interval-Valued Fuzzy Sets (IVFSs) [19].

IVTURS [22] is a state-of-the-art IVFRBCS built upon the basis of FARC-
HD [1]. First, the two first steps of FARC-HD are applied to learn an initial fuzzy
rule base, which is augmented with IVFSs to represent the inherent ignorance in
the definition of the membership functions [20]. One of the key components of
IVTURS is its Fuzzy Reasoning Method (FRM) [6], where all the steps consider
intervals instead of numbers. When the matching degree between an example and
the antecedent of a rule has to be computed, IVTURS makes usage of Interval-
Valued Restricted Equivalence Functions (IV-REFs) [18]. These functions are
introduced to measure the closeness between the interval membership degrees
and the ideal ones, [1, 1]. Their interest resides in their parametric construction
method, which allows them to be optimized for each specific problem. In fact,
the last step of IVTURS applies an evolutionary algorithm to find the most
appropriate values for the parameters used in their construction.

However, the accurate results obtained when using IV-REFs comes at the
price of the computational cost. To use an IV-REF it is necessary to apply several
exponentiation operations, which are very time demanding. Consequently, the
aim of this contribution is to reduce the run-time of IVTURS by decreasing the
number of exponentiation operations required to obtain the same results. To do
so, we propose two modifications:

– A mathematical simplification of the construction method of IV-REFs, which
allows one to reduce to half the number of exponentiation operations.

– Add a verification step to avoid making computations both with incompatible
interval-valued fuzzy rules as well as with do not care labels.

Moreover, the mathematical simplification also offers the possibility of reduc-
ing the search space of the evolutionary process carried out in IVTURS. This
reduction may imply a different behaviour of the classifier, which may derive to
an enhancement of the results. In this contribution, we propose four different
approaches to explore the reduced search space for the sake of studying whether
they allow one to improve the system’s performance or not.

We use the same experimental framework that was used in the paper where
IVTURS was defined [22], which consist of twenty seven datasets selected from
the KEEL data-set repository [2]. We will test whether our two modifications
reduce the run-time of IVTURS and the reduction rate achieved as well as the
performance of the four different approaches considered to explore the reduced
search space. To support our conclusions, we conduct an appropriate statistical
study as suggested in the literature [7,13].



Enhancing the Efficiency of IVTURS 465

The rest of the contribution is arranged as follows: in Sect. 2 we recall some
preliminary concepts on IVFSs, IV-REFs and IVTURS. The proposals for speed-
ing IVTURS up and those to explore the reduced search space are described in
Sect. 3. Next, the experimental framework and the analysis of the results are
presented in Sects. 4 and 5, respectively. Finally, the conclusions are drawn in
Sect. 6.

2 Preliminaries

In this section, we review several preliminary concepts on IVFSs (Sect. 2.1),
IV-REFs (Sect. 2.2) and IVFRBCSs (Sect. 2.3).

2.1 Interval-Valued Fuzzy Sets

This section is aimed at recalling the theoretical concepts related to IVFSs. We
start showing the definition of IVFSs, whose history and relationship with other
type of FSs as interval type-2 FSs can be found in [4].

Let L([0, 1]) be the set of all closed subintervals in [0, 1]:

L([0, 1]) = {x = [x, x]|(x, x) ∈ [0, 1]2 and x ≤ x}.

Definition 1. [19] An interval-valued fuzzy set A on the universe U �= ∅ is a
mapping AIV : U → L([0, 1]), so that

AIV (ui) = [A(ui), A(ui)] ∈ L([0, 1]), for all ui ∈ U.

It is immediate that [A(ui), A(ui)] is the interval membership degree of the
element ui to the IVFS A.

In order to model the conjunction among IVFSs we apply t-representable
interval-valued t-norms [9] without zero divisors, that is, they verify that
T(x,y) = 0L if and only if x = 0L or y = 0L. We denote them TTa,Tb

, since
they are represented by Ta and Tb, which are the t-norms applied over the lower
and the upper bounds, respectively. That is, TTa,Tb

(x,y) = [Ta(x,y),Tb(x,y].
Furthermore, we need to use interval arithmetical operations [8] to make some
computations. Specifically, the interval arithmetic operations we need in the
work are:
– Addition: [x, x] + [y, y] = [x + y, x + y].
– Multiplication: [x, x] ∗ [y, y] = [x ∗ y, x ∗ y].
– Division: [x,x]

[y,y] = [min(min(x
y , x

y ), 1),min(max(x
y , x

y ), 1)] with y �= 0.

where [x, x], [y, y] are two intervals in R
+ so that x is larger than y.

Finally, when a comparison between interval membership degrees is neces-
sary, we use the total order relationship for intervals defined by Xu and Yager [23]
(see Eq. (1)), which is also an admissible order [5].

[x, x] ≤ [y, y] if and only if x+x < y+y or x+x = y+y and x−x ≥ y−y (1)

Using Eq. (1) it is easy to observe that 0L = [0, 0] and 1L = [1, 1] are the
smallest and largest elements in L([0, 1]), respectively.
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2.2 Interval-Valued Restricted Equivalence Functions

In IVTURS [22], one of the key components are the IV-REFs [11,18], whose
aim is to quantify the equivalence degree between two intervals. They are the
extension on IVFSs of REFs [3] and their definition is as follows:

Definition 2. [11,18] An Interval-Valued Restricted Equivalence Function (IV-
REF) associated with a interval-valued negation N is a function

IV -REF : L([0, 1])2 → L([0, 1])

so that:

(IR1) IV -REF (x,y) = IV -REF (y,x) for all x,y ∈ L([0, 1]);
(IR2) IV -REF (x,y) = 1L if and only if x = y;
(IR3) IV -REF (x,y) = 0L if and only if x = 1L and y = 0L or x = 0L and

y = 1L;
(IR4) IV -REF (x,y) = IV -REF (N(x), N(y)) with N an involutive interval-

valued negation;
(IR5) For all x,y, z ∈ L([0, 1]), if x ≤L y ≤L z, then IV -REF (x,y) ≥L

IV -REF (x, z) and IV -REF (y, z) ≥L IV -REF (x, z).

In this work we use the standard negation, that is, N(x) = 1 − x.
An interesting feature of IV-REFs is the possibility of parametrize them by

means of automorphisms as follows.

Definition 3. An automorphism of the unit interval is any continuous and
strictly increasing function φ : [0, 1] → [0, 1] so that φ(0) = 0 and φ(1) = 1.

An easy way of constructing automorphisms is by means of a parameter λ ∈
(0,∞): ϕ(x) = xλ, and hence, ϕ−1(x) = x1/λ. Some automorphims constructed
using different values of the parameter λ are shown in Fig. 1.
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Fig. 1. Example of different automorphisms generated by different values of λ.
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Then, the construction method of IV-REFs used in IVTURS can be seen in
Eq. (2):

IV -REF (x,y) = [T (φ−1
1 (1 − |φ2(x) − φ2(y)|), φ−1

1 (1 − |φ2(x) − φ2(y)|)),
S(φ−1

1 (1 − |φ2(x) − φ2(y)|), φ−1
1 (1 − |φ2(x) − φ2(y)|))] (2)

where T is the minimum t-norm, S is the maximum t-conorm and ϕ1, ϕ2 are
two automorphisms of the interval [0, 1] parametrized by λ1 and λ2, respectively.
Therefore, the IV-REFs used in IVTURS are as follows:

IV -REF (x,y) = [min((1 − |xλ2 − yλ2 |)1/λ1 , (1 − |xλ2 − yλ2 |)1/λ1),
max((1 − |xλ2 − yλ2 |)1/λ1 , (1 − |xλ2 − yλ2 |)1/λ1)]

(3)

2.3 Interval-Valued Fuzzy Rule-Based Classification Systems

Solving a classification problem consists in learning a mapping function called
classifier from a set of training examples, named training set, that allows
new examples to be classified. The training set is composed of P exam-
ples, xp = (xp1, . . . , xpn, yp), where xpi is the value of the i-th attribute
(i = 1, 2, . . . , n) of the p-th training example. Each example belongs to a class
yp ∈ C = {C1, C2, ..., Cm}, where m is the number of classes of the problem.

IVFRBCSs are a technique to deal with classification problems [20], where
each of the n attributes is described by a set of linguistic terms modeled by their
corresponding IVFSs. Consequently, they provide an interpretable model as the
antecedent part of the fuzzy rules is composed of a subset of these linguistic
terms as shown in Eq. (4).

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn then Class = Cj with RWj (4)

where Rj is the label of the jth rule, x = (x1, . . . , xn) is an n-dimensional pattern
vector, Aji is an antecedent IVFS representing a linguistic term, Cj is the class
label, and RWj is the rule weight [17].

IVTURS [22] is an state-of-the-art IVFRBCSs, whose learning process is
composed of two steps:

1. To build an IV-FRBCS. This step involves the following tasks:
– The generation of an initial FRBCS by applying FARC-HD [1].
– Modelling the linguistic labels of the learned FRBCS by means of IVFSs.
– The generation of an initial IV-REF for each variable of the problem.

2. To apply an optimization approach with a double purpose:
– To learn the best values of the IV-REFs’ parameters, that is, the values

of the exponents of the automorphisms (λ1 and λ2).
– To apply a rule selection process in order to decrease the system’s com-

plexity.

In order to be able to classify new examples, xp = (xp1, . . . , xpn), IVTURS
considers an Interval-Valued Fuzzy Reasoning Method [22] (IV-FRM), which
uses the L interval-valued fuzzy rules composing the model as follows:
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1. Interval matching degree: It quantifies the strength of activation of the if-part
for all rules (L) in the system with the example xp:

[Aj(xp), Aj(xp)] = TTa,Tb
(IV -REF ([Aj1(xp1), Aj1(xp1)], [1, 1]), . . . ,

IV -REF ([Ajn(xpn), Ajn(xpn)], [1, 1])), j = 1, . . . , L.
(5)

2. Interval association degree: for each rule, Rj , the interval matching degree is
weighted by its rule weight RWj = [RWj , RWj ]::

[bj(xp), bj(xp)] = [μAj
(xp), μAj

(xp)] ∗ [RWj , RWj ] j = 1, . . . , L. (6)

3. Interval pattern classification soundness degree for all classes. The positive
interval association degrees are aggregated by class applying an aggregation
function f.

[Yk, Yk] = fRj∈RB; Cj=k([bj(xp), bj(xp)]|[bj(xp), bj(xp)] > 0L), k = 1, . . . , m.

(7)
4. Classification. A decision function F is applied over the interval soundness

degrees:
F ([Y1, Y1], ..., [Ym, Ym]) = arg max([Yk, Yk])

k=1,...,m

(8)

3 Enhancing the Efficiency of IVTURS

IVTURS provides accurate results when tackling classification problems. How-
ever, we are concerned about its computational burden as it may be an obstacle
to use it in real-world problems. The most computationally expensive opera-
tion in IVTURS is the exponentiation operation required when computing the
IV-REFs, which are constantly used in the IV-FRM (Eq. (5)). Though there
are twelve exponentiation operations in Eq. (3), only four of them need to be
computed because: 1) y = y = 1, implying that the computation of yλ2 and yλ2

can be avoided as one raised to any number is one; 2) the lower and the upper
bound of the resulting IV-REF are based on the minimum and maximum of the
same operations, which reduces the number of operations to the half.

The aim of this contribution is to reduce the number of exponentiation oper-
ations needed to execute IVTURS, which will imply an enhancement of the sys-
tem’s efficiency. To do so, we propose two modifications to the original IVTURS:
1) to apply a mathematical simplification of the IV-REFs that reduces to half
the number of exponentiation operations (Sect. 3.1) and 2) to avoid applying
IV-REFs with both do not care labels and incompatible interval-valued fuzzy
rules (Sect. 3.2).

Furthermore, the mathematical simplification of IV-REFs, besides reducing
the number of exponentiation operations while obtaining the same results, would
also allow us to also reduce the search space of the evolutionary algorithm,
possibly implying in a different behavior in the system. We will study whether
this reduction of the search space could result in a better performance of the
system by using four different approaches to explore it (Sect. 3.3).
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3.1 IV-REFs Simplification

IV-REFs are used to measure the degree of closeness (equivalence) between
two intervals. In IVTURS, they are used to compute the equivalence between
the interval membership degrees and the ideal membership degree, that is, IV-
REF([x, x], [1, 1]). Precisely, because one of the input intervals is [1, 1], we can
apply the following mathematical simplification.

IV −REF ([x, x], [1, 1]) = [(1−|xλ2 −1λ2 |)1/λ1 , (1−|xλ2 −1λ2 |)1/λ1 ] = [xλ2/λ1 , xλ2/λ1 ] (9)

Therefore, we can obtain the same result by just raising the value of the
interval membership degree to the division of both exponents (λ2/λ1), which
imply reducing to half the number of operations.

3.2 Avoiding Incompatible Rules and Do Not Care Labels

When the inference process is applied to classify a new example, the interval
matching degree has to be obtained for each rule of the system. The maximum
number of antecedents of the interval-valued fuzzy rules used in IVTURS is
limited to a certain hyper-parameter of the algorithm, kt, whose default value
is 3. This fact implies that in almost all the classification problems the usage of
do not care labels is necessary, since the number of input attributes is greater
than that of kt. In order to program this feature of IVTURS, a do not care
label is considered as an extra membership function that returns the neutral
element for the t-representable interval-valued t-norm used ([1, 1] in this case as
the product is applied). In this manner, when performing the conjunction of the
antecedents the usage of do not care labels do not change the obtained result.
However, this fact implies that when having a do not care label, it returns [1, 1]
as interval membership degree and IV-REF ([1, 1], [1, 1]) needs to be computed
([x, x] = [1, 1]). Consequently, a large number of exponentiation operations can
be saved if we avoid computing IV-REF in this situations as the result is always
[1, 1].

On the other hand, we also propose to avoid obtaining the interval matching
degree and thus computing the associated IV-REFs when the example is not
compatible with the antecedent of the interval-valued fuzzy rule. To do so, we
need to perform an initial iteration where we check whether the example is
compatible with the rule. Then, the interval matching degree is only computed
when they are compatible. This may see to be an extra charge for the run-time
but we take advantage of this first iteration to obtain the interval matching
degrees, avoiding the do not care labels, and we send them to the function that
computes the interval matching degree.

These two modifications could have a huge impact on the run-time of
IVTURS because do not care labels are very common in the interval-valued
fuzzy rules of the system and the proportion of compatible rules with an exam-
ple is usually small.



470 J. Sanz et al.

3.3 Reducing the Search Space in the Evolutionary Process
of IVTURS

In Sect. 3.1 we have presented a mathematical simplification of the IV-REFs that
allows one to reduce the number of exponentiation operations obtaining exactly
the same results than that obtained in the original formulation of IVTURS. How-
ever, according to Eq. (9) we can observe that both parameters of the simplified
IV-REF (λ1, λ2) can be collapsed into a unique one (λ) as shown in Eq. (10).

IV − REF ([x, x], [1, 1]) = [xλ2/λ1 , xλ2/λ1 ] = [xλ, xλ] (10)

In this manner, the search space of the evolutionary process carried out in
IVTURS, where the values of λ1 and λ2 are tuned to each problem, can be also
reduced to half because only the value of λ needs to be tuned. Consequently,
the behaviour of the algorithm can change and we aim at studying whether this
reduction is beneficial or not. Specifically, the structure of the chromosome is:
Ci = (gλ1 , gλ2 , . . . , gλn

), where gλi
, i = 1, . . . , n, are the genes representing the

value of λi and n is the number of input variables of the classification problem.
The parameter λ can vary theoretically between zero and infinity. However,

in IVTURS, λ1 and λ2 are limited to the interval [0.01, 100]. On the other hand,
in the evolutionary process, those genes used to encode them are codified in
[0.01, 1.99], gλi

∈ [0.01, 1.99], in such a way that the chances of learning values
in [0.01, 1] and in (1, 100] are the same. Consequently, these genes have to be
decoded so that they are in the range [0.01, 100] when used in the corresponding
IV-REF. The decoding process is driven by the following equation:

gλi
=

{
gλi

, if 0 < gλi
≤ 1

1
2−gλi

, if 1 < gλi
< 2

(11)

In [12], Galar et al. use REFs (the numerical counterpart of IV-REFs) to deal
with the problem of difficult classes applying the OVO decomposition strategy.
In this method, on the one hand, those genes used for representing the parameter
λ are coded in the range (0, 1). On the other hand, the decoding process of the
genes is driven by Eq. 12.

λi =

⎧⎨
⎩

(2 · gλi
)2 if gλi

≤ 0.5
1

(1 − 2 · (gλi
− 0.5))2

otherwise.
(12)

There are two main differences between these two methods: 1) the decoded
value by Eq. (11) is in the range [0.01, 100], whereas when using Eq. (12) the
values are in (0,∞) and 2) the search space is explored in a different way as can
be seen in the two first rows of Fig. 2, where the left and the right columns show
how the final values when λi ≤ 1.0 and λi > 1.0 are obtained, respectively.

Looking at these two methods, we propose another two new ones:

– Linear exploration of the search space: we encode all the genes in the range
[0.01, 1.99] and we decode them using a linear normalization in the ranges
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[0.0001, 1.0] and (1.0, 10000] for the genes in [0.01, 1.0] and (1.0, 1.99], respec-
tively.

– Mixture of Eq. (11) and Eq. (12). Genes are encoded in (0, 1) and they are
decoded using Eq. (11) for genes in (0, 0.5] (linear decoding: 2·gλi

)and Eq. (12)
for genes in (0.5, 1.0].

Fig. 2. Effect of the decoding method of the parameter gλ on the way how the search
space is explored.

4 Experimental Framework

We have considered the same datasets which were used in the paper where
IVTURS was proposed. That is, we select twenty-seven real world data-sets from
the KEEL data-set repository [2]. Table 1 summarizes their properties: number
of examples (#Ex.), attributes (#Atts.) and classes (#Class.)1. We apply a
5-fold cross-validation model using the standard accuracy rate to measure the
performance of the classifiers.

In this contribution we use the configuration of IVTURS that was used in
the paper were it was defined:

1 We must recall that, as in the IVTURS’ paper, the magic, page-blocks, penbased,
ring, satimage and shuttle data-sets have been stratified sampled at 10% in order
to reduce their size for training. In the case of missing values (crx, dermatology and
wisconsin), those instances have been removed from the data-set.
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– Fuzzy rule learning:
• Minsup: 0.05.
• Maxconf : 0.8.
• Depthmax: 3.
• kt: 2.

– Evolutionary process
• Population Size: 50 individuals.
• Number of evaluations: 20,000.
• Bits per gene for the Gray codification (for incest prevention): 30 bits.

– IVFSs construction:
• Number of linguistic labels per variable: 5 labels.
• Shape: Triangular membership functions.
• Upper bound: 50% greater than the lower bound (W = 0.25).

– Configuration of the initial IV-REFs:
• T-norm: minimum.
• T-conorm: maximum.
• First automorphism: φ1(x) = x1 (a = 1).
• Second automorphism: φ2(x) = x1 (b = 1).

– Rule weight: fuzzy confidence (certainty factor) [17].
– Fuzzy reasoning method: additive combination [6].
– Conjunction operator: product interval-valued t-norm.
– Combination operator: product interval-valued t-norm.

5 Analysis of the Obtained Results

This section is aimed at showing the obtained results having a double aim:

1. To check whether the two modifications proposed for enhancing the run-time
of IVTURS allow one to speed it up or not.

2. To study if the reduction of the search space made possible by the mathe-
matical simplification of the IV-REFs allows one to improve the results of
IVTURS.

In first place we show in Table 2 the run-time in seconds of the three versions
of IVTURS2, namely, the original IVTURS, IVTURS using the mathematical
simplification of the IV-REFs (IV TURSv1) and IVTURS avoiding the usage
of incompatible interval-valued fuzzy rules and do not care labels (IV TURSv2).
For IV TURSv1, the number in parentheses is the reduction rate achieved versus
the original IVTURS, whereas in the case of IV TURSv2 it is the reduction rate
achieved with respect to IV TURSv1.

2 We do not show the accuracy of the methods because they obtain the same results.
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Table 2. Run-time in seconds of IVTURS besides the two versions developed for
speeding it up. The number in parentheses shows the reduction rate of the method in
the column versus the method in its respective left column.

Dataset IVTURS IV TURSv1 IV TURSv2

aus 2032.22 1019.17 (x1.99) 288.22 (x3.54)

bal 909.98 463.19 (x1.96) 193.64 (x2.39)

cle 1460.90 720.98 (x2.03) 133.24 (x5.41)

con 5572.14 2896.43 (x1.92) 971.67 (x2.98)

crx 1781.01 885.32 (x2.01) 227.00 (x3.90)

der 2167.93 1087.80 (x1.99) 107.32 (x10.14)

eco 466.07 244.90 (x1.90) 87.32 (x2.80)

ger 9462.10 4894.81 (x1.93) 838.09 (x5.84)

hab 97.28 53.69 (x1.81) 31.78 (x1.69)

hay 99.16 52.54 (x1.89) 32.75 (x1.60)

hea 764.16 388.49 (x1.97) 102.06 (x3.81)

ion 1314.86 663.30 (x1.98) 81.15 (x8.17)

iri 35.10 19.61 (x1.79) 7.40 (x2.65)

mag 3840.45 1976.30 (x1.94) 581.34 (x3.40)

new 96.94 51.98 (x1.87) 22.77 (x2.28)

pag 571.19 293.44 (x1.95) 66.80 (x4.39)

pen 6417.29 3273.78 (x1.96) 511.53 (x6.40)

pim 1433.95 700.68 (x2.05) 306.43 (x2.29)

sah 963.71 485.20 (x1.99) 181.29 (x2.68)

spe 1319.11 647.94 (x2.04) 117.44 (x5.52)

tae 141.29 76.32 (x1.85) 40.33 (x1.89)

tit 490.51 261.57 (x1.88) 141.57 (x1.85)

two 2426.83 1203.81 (x2.02) 225.71 (x5.33)

veh 4264.57 2162.36 (x1.97) 416.60 (x5.19)

win 231.12 117.65 (x1.96) 23.41 (x5.02)

wiR 5491.86 2807.14 (x1.96) 842.27 (x3.33)

wis 726.39 360.51 (x2.01) 91.74 (x3.93)

Mean 2021.41 1029.96 (x1.95) 247.07 (x4.02)

Looking at the obtained results we can conclude that the two versions allow
IVTURS to be more efficient. In fact, IV TURSv1 allows one to reduce to half the
run-time of IVTURS as expected, since the number of exponentiation operations
is also reduced to half. On the other hand, IV TURSv2 exhibits a huge reduction
on the run-time with respect to that of the original IVTURS as it is 7.839 times
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faster (1.95*4.02). These modifications allow IVTURS to be applied in a wider
range of classification problems as its efficiency has been notably enhanced. The
code of the IVTURS method using the two modification for speeding it up can
be found at: https://github.com/JoseanSanz/IVTURS.

The second part of the study is to analyze whether the reduction of the search
space enabled by the mathematical simplification if the IV-REFs allows one to
improve the accuracy of the system or not. As we have explained in Sect. 3.3,
we propose four approaches to codify and explore the reduced search space:
1) the same approach than that used in the original IVTURS but using the
reduced search space (IVTURSRed.); 2) the approach defined by Galar et al. [12]
but extended on IVFSs (IVTURSGalar); 3) the mixture of the two previous
approaches (IVTURSMix.) and 4) the linear exploration of the search space
(IVTURSLinear).

In Table 3 we show the results obtained in testing by these four approach
besides those obtained by the original IVTURS. We stress in bold-face the best
result for each dataset. Furthermore, we also show the averaged performance in
the 27 datasets (Mean).

According to the results shown in Table 3, we can observe that both methods
using the approach defined by Galar et al. (IVTURSGalar and IVTURSMix.)
allows one to improve the averaged accuracy of IVTURS. The reduction of the
search space using the original approach defined in IVTURS, IVTURSRed., does
not provide competitive results whereas the approach using a linear exploration
of the search space also obtains worse results than those of the original IVTURS.

In order to give statistical support to our analysis we have carried out
the Aligned Friedman’s ranks test [14] to compare these five methods, whose
obtained p-value is 1.21E-4 that implies the existence of statistical differences
among them. For this reason, we have applied the Holm’s post hoc test [15] to
compare the control method (the one associated with the less rank) versus the
remainder ones. In Table 4, we show both the ranks of the methods computed
by the Aligned Friedman’s test as well as the Adjusted P-Value (APV) obtained
when applying the Holm’s test.

Looking at the results of the statistical study we can conclude that IVTURS,
IVTURSMix. and IVTURSGalar. are statistically similar. However, there are
statistical differences with respect to IVTURSRed. and a trend in favour to the
three former methods when compared versus IVTURSLinear. All in all, we can
conclude that the approach defined in the original IVTURS provides competitive
results even when compared against methods whose search space is reduced to
half.

https://github.com/JoseanSanz/IVTURS
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Table 3. Testing results provided by IVTURS and the four approaches using the
reduced search space.

Dataset IVTURS IVTURSRed. IVTURSGalar IVTURSLinear IVTURSMix.

aus 85.80 85.07 84.20 84.64 85.36

bal 85.76 85.28 85.28 85.60 85.12

cle 59.60 58.24 58.58 56.22 58.93

con 53.36 53.02 53.16 53.97 53.57

crx 87.14 85.91 86.68 85.92 85.15

der 94.42 93.58 94.13 93.02 94.14

eco 78.58 78.28 80.96 82.13 80.07

ger 73.10 72.00 72.90 73.10 73.30

hab 72.85 73.17 72.19 71.55 73.50

hay 80.23 75.70 81.00 78.66 81.77

hea 88.15 85.93 87.41 86.67 88.15

ion 89.75 90.60 92.60 91.46 92.04

iri 96.00 97.33 96.00 96.00 96.00

mag 79.76 79.07 80.28 80.91 80.49

new 95.35 95.81 95.35 96.74 97.21

pag 95.07 94.16 94.70 95.43 94.89

pen 92.18 89.91 92.64 91.73 91.64

pim 75.90 74.48 74.87 76.04 74.61

sah 70.99 70.13 69.05 71.20 70.56

spe 80.52 79.39 81.26 80.15 80.16

tae 50.34 58.30 57.66 53.68 57.01

tit 78.87 78.87 78.87 78.87 78.87

two 92.30 90.95 92.43 91.22 92.70

veh 67.38 64.54 66.43 64.43 67.26

win 97.19 94.37 95.48 94.94 96.06

wiR 58.28 59.47 59.04 59.66 59.16

wis 96.49 96.63 96.63 96.34 96.34

Mean 80.57 80.01 80.73 80.38 80.89

Table 4. Results obtained by the Aligned Friedman’s rank test and the Holm’s test.

Method Rank APV

IVTURSMix. 52.48

IVTURS 58.00 0.76

IVTURSGalar 61.85 0.76

IVTURSLinear 74.91 0.11

IVTURSRed. 92.76 6.19E-4
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6 Conclusion

In this contribution we have proposed two modifications over IVTURS aimed
at enhancing its efficiency. On the one hand, we have used a mathematical sim-
plification of the IV-REFs used in the inference process. On the other hand, we
avoid making computations with both incompatible interval-valued fuzzy rules
and do not care labels, since they do not affect the obtained results and they
entail a charge to the computational burden of the method. Moreover, we have
proposed a reduction of the search space of the evolutionary process carried out
in IVTURS using four different approaches.

The experimental results have proven the improvement of the run-time of
the method, since it is almost eight times faster that the original IVTURS when
applying the two modifications. Regarding the reduction of the search space we
have learned the following lessons: 1) the new methods based on the approach
defined by Galar et al. allow one to improve the results without statistical differ-
ences versus IVTURS; 2) the simplification of the search space using the same
setting defined in IVTURS does not provide competitive results, possibly due to
the limited range where the genes are decoded when compared with respect the
remainder approaches and 3) the linear exploration of the search space does not
provide good results neither, which led us think that the most proper values are
closer to one than to ∞.
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13. Garćıa, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests
for multiple comparisons in the design of experiments in computational intelligence
and data mining: experimental analysis of power. Inf. Sci. 180(10), 2044–2064
(2010)

14. Hodges, J.L., Lehmann, E.L.: Ranks methods for combination of independent
experiments in analysis of variance. Ann. Math. Stat. 33, 482–497 (1962)

15. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat.
6, 65–70 (1979)

16. Ishibuchi, H., Nakashima, T., Nii, M.: Classification and Modeling with Linguistic
Information Granules: Advanced Approaches to Linguistic Data Mining. Springer,
Berlin (2004)

17. Ishibuchi, H., Nakashima, T.: Effect of rule weights in fuzzy rule-based classification
systems. IEEE Trans. Fuzzy Syst. 9(4), 506–515 (2001)

18. Jurio, A., Pagola, M., Paternain, D., Lopez-Molina, C., Melo-Pinto, P.: Interval-
valued restricted equivalence functions applied on clustering techniques. In: Car-
valho, J., Kaymak, D., Sousa, J. (eds.) Proceedings of the Joint 2009 International
Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy
Logic and Technology Conference, Lisbon, Portugal, 20–24 July 2009, pp. 831–836
(2009)

19. Sambuc, R.: Function Φ-Flous, Application a l’aide au Diagnostic en Pathologie
Thyroidienne. Ph.D. thesis, University of Marseille (1975)

20. Sanz, J., Fernández, A., Bustince, H., Herrera, F.: A genetic tuning to improve the
performance of fuzzy rule-based classification systems with interval-valued fuzzy
sets: degree of ignorance and lateral position. Int. J. Approximate Reason. 52(6),
751–766 (2011)

21. Sanz, J., Fernández, A., Bustince, H., Herrera, F.: Improving the performance of
fuzzy rule-based classification systems with interval-valued fuzzy sets and genetic
amplitude tuning. Inf. Sci. 180(19), 3674–3685 (2010)

22. Sanz, J., Fernández, A., Bustince, H., Herrera, F.: IVTURS: a linguistic fuzzy rule-
based classification system based on a new interval-valued fuzzy reasoning method
with tuning and rule selection. IEEE Trans. Fuzzy Syst. 21(3), 399–411 (2013)

23. Xu, Z.S., Yager, R.R.: Some geometric aggregation operators based on intuitionistic
fuzzy sets. Int. J. General Syst. 35(4), 417–433 (2006)



Robust Predictive-Reactive Scheduling:
An Information-Based Decision

Tree Model

Tom Portoleau1,2(B), Christian Artigues1(B), and Romain Guillaume2(B)
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Abstract. In this paper we introduce a proactive-reactive approach to
deal with uncertain scheduling problems. The method constructs a robust
decision tree for a decision maker that is reusable as long as the prob-
lem parameters remain in the uncertainty set. At each node of the tree
we assume that the scheduler has access to some knowledge about the
ongoing scenario, reducing the level of uncertainty and allowing the com-
putation of less conservative solutions with robustness guarantees. How-
ever, obtaining information on the uncertain parameters can be costly
and frequent rescheduling can be disturbing. We first formally define the
robust decision tree and the information refining concepts in the context
of uncertainty scenarios. Then we propose algorithms to build such a
tree. Finally, focusing on a simple single machine scheduling problem,
we provide experimental comparisons highlighting the potential of the
decision tree approach compared with reactive algorithms for obtain-
ing more robust solutions with fewer information updates and schedule
changes.

1 Introduction

Dealing with uncertainty in scheduling problems is an issue that has been widely
studied over the last decade. Many approaches emerged in order to cope with
uncertainties. Proactive methods elaborate an initial baseline schedule while tak-
ing into account possible incoming breaks to make it as robust as possible. There
exist several robustness criteria [7] that are widely used in these methods. How-
ever, one major flaw of proactive scheduling methods is their conservatism [9],
the more robust solutions tend to be low-quality objective-wise. It is particu-
larly the case when uncertainties are large and frequent. In these cases, reactive
methods are more appropriate as they do not specially focus on the initial sched-
ule but rather on how to modify it online, that is to say during the execution.
They are usually based on priority rules [10] that allow decision maker to com-
pute quickly new solutions according to the running scenario. However, on the
contrary of proactive approaches, these is no guarantee regarding the objec-
tive value of solutions computed with a reactive method. In order to provide
c© Springer Nature Switzerland AG 2020
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solutions that are well balanced between robustness and quality, many hybrid
methods have been suggested. The recoverable robustness framework [1] consid-
ers two stage decisions where robust decisions are taken at the first stage and
where recovery algorithms are used to restore feasibility for a realised scenario
on the second stage. This framework is linked to adjustable robust optimisation
[12] that roughly transposes the concept of two-stage stochastic programming
to robust optimisation: some recourse variables can be adjusted to the realised
scenario.

In the scheduling literature, approaches that mix a proactive phase aiming
at issuing a robust baseline schedule and a reactive phase that adapts the base-
line scheduling in case of major disturbances have been widely studied under
the proactive-reactive scheduling terminology [11]. Recently [3] remarked that
in this series of approaches, the proactive and the reactive phases were rather
treated separately while they should mutually influence each other. So in [3,4]
the authors propose an integrated proactive reactive approach where they aim
to find the best policy, which is in their case a robust initial schedule and a set of
reactions giving transitions from a schedule to another schedule in response to a
disruption, given a certain reaction cost. In a pioneering work, [6] proposed the
so-called Just In Case approach, in which they compute a multiple contingent
schedule, where transitions from a baseline schedule to alternative schedules were
anticipated at some events having a high probability of break. This approach has
been since then largely developed for AI planning problems, addressing among
others incrementality and memory limits issues [5,8].

In this paper, we are interested in transposing contingency planning con-
cepts to robust scheduling problems. We consider repeated scheduling problems
where some parameters are known and constant at each scheduling iteration
and some of them are known with imprecision, according to scenarios. In order
to take advantage of known and constant parameters, we introduce a proactive
reactive method in which we suppose that the decision maker may have access
to some information about the imprecise parameters to reduce the uncertainty
at predefined time points of the schedule execution, where the schedule can be
changed. However, obtaining information on the uncertain parameters can be
costly and frequent rescheduling can be disturbing. Hence at each decision time
point the scheduler has the choice to use the information or not and to react or
not depending on the impact of the reaction on the schedule robustness. Using
intelligently these information, we build off-line a decision tree that will be used
to schedule the problem at each repetition.

The problem we chose to validate our approach is the simple scheduling
problem 1||Lmax, in which we suppose that the processing time are known and
fixed, and the due dates are uncertain. We detail why we chose this problem in
Sect. 4.

The outline of the paper is the following. Section 2 formally define the uncer-
tainty and information models as well as the robust decision tree concept and its
related problem. Then, we detail the algorithm we designed to solve these prob-
lems, namely the general algorithm for building the robust decision tree (Sect. 3)
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and the algorithm for solving the robust partitioning subproblem (Sect. 4). We
then present some numerical results in Sect. 5 comparing our approach to a more
standard proactive-reactive scheduling algorithm.

2 Notations and Definitions

2.1 Uncertainty Model

In practice, it is often easier for a decision-maker to establish bounds over uncer-
tain parameters, like processing times or due dates, than to build an accurate
probabilistic model which often requires a large amount of data. In this paper,
we consider interval uncertainty. Given an uncertain parameter x we denote by
X = [xmin, xmax] the interval in which it takes its value. We make no assump-
tion about which probabilistic law is followed by x in this interval. Given a set of
uncertain parameters (xi)i∈I we define the set of possible assignments of param-
eters by Ω =

∏
i∈I Xi (i.e. it is assumed that there is no correlation between

them, all realisation xi are independent). We call a scenario an assignment of
each parameter xi,∀i ∈ I such that (xi)i∈I ∈ Ω.

From now on, when ω is a scenario, s a schedule and f the objective, we
denote by f(ω, s) the objective value of s in scenario ω (note that for our appli-
cation case, f = Lmax).

In this paper we consider the 1||Lmax problem, that is to say we want to
schedule a set of I jobs with deterministic processing times pi, i ≤ I and uncer-
tain due dates di ∈ Di, i ≤ I on a single machine so that the maximum lateness
is minimum.

Example 1. We consider a small instance of the problem 1||Lmax with three
tasks:

– task 1: p1 = 10, d1 ∈ D1 = [10, 11]
– task 2: p2 = 6, d2 ∈ D2 = [11, 17]
– task 3: p3 = 4, d3 ∈ D3 = [13, 20]

The set of scenarios for this instance is Ω = D1 × D2 × D3 and ω = (10, 12, 19)
is a scenario. We will keep this instance all along this paper to exemplify the
notions and algorithms we introduce.

2.2 Information Model

As explained in Sect. 1 we suppose that at some time during the execution of
the schedule, some information become accessible. In our model, an information
allows the scheduler to tighten the interval of uncertainty of a future realisation.

Definition 1. For a given uncertain parameter x ∈ X and a moment of decision
t during the execution of the schedule, we call an information about x a value
kt

x and an operator in {≤,≥}.
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For instance, an information is x ≤ kt
x. So the decision maker, from time t on,

is able to reduce the set of possible assignments by updating the interval X,
x ∈ Xinf

kt
x

= [xmin, kt
x] or x ∈ Xsup

kt
x

=]kt
x, xmax]. Note that the information

depends on t, so the scheduler may have to ask for an information about the
same data several times during the execution of the planning. Our model aims
to make the best use of available information, and select the more relevant ones.
For the problem considered in this paper we suppose that for a given moment of
decision t and a task i, we have an information kt

d if min(t + pi, 2t) ∈ Di. If so,
kt

d = min(t + pi, 2t). Otherwise we consider that we have no information about
the task i. This hypothesis on the availability of information is arbitrary, but in
fact it expresses two natural questions a scheduler may ask about uncertain due
dates: “If task i started now, can it be completed without being late ? If so, is
the due date di far from now ?” In any case, an answer to these questions allows
the scheduler to bound the uncertainty of a due date di.

Example 2. Let us look again at the instance from Example 1. We suppose that
we are at a moment of decision t = 10 and that task 1 has been scheduled first.
Given the hypothesis we made about information availability, we have:

– task 1 is completed, so there is no relevant information about it.
– min(t + p2, 2t) = 16 ∈ D2, so kt

d2
= 16.

– min(t + p3, 2t) = 14 ∈ D3, so kt
d3

= 14.

Therefore, for any ω ∈ Ω, the scheduler is able to determine, from time t = 10,
if ω2 ≤ 16 or if ω2 > 16, and if ω3 ≤ 14 or if ω3 > 14.

2.3 Robust Decision Tree

Definition 2. A robust decision tree T is a tree where the nodes are labeled with
a subset of Ω, and the arcs are labeled with a partial schedule. If n is a node of
T , Ωn denotes a subset of Ω associated to n. A robust decision tree satisfies the
following properties:

(i) Let us denote by (nj)j≤J the children of node n. Then
⋃

j≤J Ωnj = Ωn.
(ii) For any path (n0, ..., nm) where n0 is the root of T and nm is a leaf,

the schedule obtained by concatenating all the partial schedules on the arcs
along the path is feasible.

(iii) Let n and n′ be two nodes of T . The partial schedule s′ on the arc (n, n′)
is robust:

s′ = argmin
s∈S

max
ω∈Ωn′

f(ω, s)

where S is the set of admissible partial solutions.

A robust decision tree can be seen as a compact representation of a set of solu-
tions. Given that the decision maker has access to information that allow to
split the set of scenarios, the tree makes it possible to retrieve a solution, with
a robustness guarantee, for certain subsets of scenario. A generic illustration of
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Fig. 1. Generic example of a Robust
Decision Tree.

Fig. 2. Example of a robust decision
for Example 3.

a robust decision tree is displayed in Fig. 1. In this case, if the decision maker is
able to know if an ongoing scenario ω is in Ω1 or in Ω2, he can pick the more
robust solution for each case.

In this paper our goal is, for a given set of scenario, to compute a robust
decision tree that is actually usable by a decision maker during the execution of
the schedule, allowing to adapt the schedule online and to make it as robust as
possible, depending on some knowledge or information the decision maker has
access to. For this purpose, we consider in our model that each level j in the
tree coincide with a fixed moment of time tj during the progress of the schedule.
These moments are the points in time when the decision maker has access to
some knowledge about uncertain parameters. An illustration of this is given in
Example 3.

Example 3. Still using data from Example 1, if we consider one moment of
decision t = 10 we can use the information computed in Example 2. For this
example, we set Ω1 = D1 × [11, 16] × D3 and Ω2 = Ω \ Ω1. Then the robust
decision tree shown in Fig. 2 is valid. The first task to be scheduled is task 1,
regardless of the ongoing scenario, then thanks to the information accessible at
time t = 10, the decision maker knows if the ongoing scenario ω is in Ω1 or in
Ω2, and then can switch to the more robust solution (respectively scheduling task
2 before task 3 if ω ∈ Ω1 and task 3 before task 2 otherwise).

2.4 Partitioning the Scenarios

The core problem of our method is, for any node n, computing a robust partition
of the scenario set, but how do one compare the robustness of two different
partitions? We propose the following criterion. We define the Robustness Score
(RS) of a partition P as the sorted vector of the worst case objective values
of the optimal robust solution (considering absolute robustness criterion [7]) on
each element of P :

RS(P ) = (min
s∈S

max
ω∈p

f(ω, s))p∈P
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where S is the set of feasible solutions. Now, given two partitions P and P ′,
we say that P is a better partition than P ′ if RS(P ) <lexi RS(P ′) where <lexi

is the lexicographical order. The intuition behind this criterion is the following:
each value of this vector is the objective value of the solution that minimises
its objective value on the worst case scenario of every subset making up the
partition. Since these vectors are sorted in the increasing order, the first value
is the minimum minmax objective value. In other words, the subset of scenarios
corresponding to this value has the best worst-case objective value. By comparing
this value first we know which partition allows the scheduler to improve the
robustness of the solution the most.

Example 4. Let us consider the partition P of Ω = Ω1 ∪ Ω2 from Example 3.
Let us denote by RV (Ω) the minmax objective value on Ω, or more formally
RV (Ω) = mins∈S maxω∈Ω f(ω, s). We have:

RS(P ) = (min(RV (Ω1), RV (Ω2)),max(RV (Ω1), RV (Ω2)))
RS(P ) = (6, 7)

Let now be P ′ another partition of Ω = Ω′
1 ∪ Ω′

2, with Ω′
1 = D1 × D2 × [13, 14]

and Ω2 = Ω \ Ω1. We compute RS(P ′) = (4, 7). Since RS(P ′) <lexi RS(P ), P ′

is a better partition considering our criterion.

As we have seen, an information kt
x allows us to split in two the set of

scenarios, since it enables us to distinguish scenarios where the data x ∈ Xinf
kt
x

from those where x ∈ Xsup
kt
x

. More generally, if m information are available, we
can split the set of scenarios in 2m subsets. We denote by Kt the set of all
information available at time t. Our goal is to use these subsets to create a size-
limited partition of the set of scenarios and compute for each subset of scenarios
within the partition a new robust solution. The idea is that diminishing the
size of the set of scenarios necessarily improves the worst-case scenario and thus
leads to better robust solutions. The maximum size of this new partition is a
parameter L, decided by the decision maker. Moreover, the maximum number
of information the partition is allowed to use is another parameter Q.

We express the core problem (our method involves solving it multiple times)
of our approach, the Robust Partitioning Problem (RPP):

ROBUST PARTITIONING PROBLEM
INSTANCE: A set of scenarios Ω of dimension I, a set of information Kt and
two integers Q and L ≤ 2Q.
SOLUTION: A partition P of Ω that verifies:

1- |P | ≤ L

2- ∀p ∈ P,∃Jp ∈ N, p =
⋃

j≤Jp

∏
i≤I pi,j with pi,j ∈ {Xinf

kt
xi

,Xsup
kt
xi

,Xi} if

kt
xi

∈ Kt and pi,j = Xi otherwise
3- |{kt

xi
∈ Kt|∃p ∈ P,∃j ≤ Jp,∃i ≤ I, pi ∈ {Xinf

kt
xi

,Xsup
kt
xi

}| ≤ Q

MEASURE: RS(P ) minimal for the lexicographical order.
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Constraint 1 limits the size of the solution partition so it must be lower than
L. Constraint 2 forces the partition to be composed of subsets formed by the
information from Kt. In other words, a partition such that any of its subset
cuts through the hyperplane defined by ωi = kt

xi
is not a feasible solution. And,

finally, constraint 3 forces the maximum number of information to be lower than
Q. Note that in the solution if we have pi,j = Xi for all pj,i and kt

xi
∈ Kt,

for a parameter i, this means that despite the availability of a new information
on parameter i at time t, this information has been ignored as the uncertainty
set Xi is not partitioned according to kt

xi
. This can be due to the limit on the

number Q of information that can be used (Constraint 3) or to the absence of
positive impact on this partition on the lexmin objective (i.e. the information is
not locally relevant to improve the robustness).

Now that our model is set, the next sections introduce the algorithms we
implemented to produce a robust decision tree and solve the RPP.

3 Robust Decision Tree Algorithm

In this section, we detail the general algorithm to build a robust decision tree.
Using the previous definitions we now propose a method to build a robust

decision tree (see Definition 2). In this paper, we consider that the moments
of decision (i.e. moments when the scheduler is able to access new information
and change the schedule), denoted by (tj)j∈J are fixed in advance. This may
correspond in practice to special times, such as the end of a working day, or a shift
change where the planning can be updated. Every decision moment corresponds
to a level in the decision tree, such that t1 corresponds to the first level, t2 to
the second one, etc. In that respect, the depth of the tree is controlled by the
number of decision moments. At each fork at a level j in the tree, a new partial
solution, consistent with the partial schedule that has been accomplished until
tj , is proposed according to the current set of scenarios. The root of the tree, that
we consider being the level 0 corresponds to the time t0 = 0, the beginning of
the schedule. At this point no information is known, so only one robust solution
is proposed. Thus, a single node is created at level 1. At this node, we retrieve
all the information available at time t1. Using up to Q information, we split the
set of scenarios into -at most 2Q- subsets forming a partition P . We then solve
the Robust Partition Problem (we detail more about this solution procedure in
Sect. 4), and obtain a robust partition P ′. For each subsets in P ′ a new solution
is proposed and a new branch is set up, leading to a new node at the next level.
The set of scenarios considered in this node is the one from which it originated
in P ′. These steps are repeated until the last decision moment is reached.

4 Robust Partition Algorithm

In the general case, one can clearly see that this problem is highly combinato-
rial. Indeed we have to, for each combination of information, compute the best
partition using these information. The complexity of the RPP depends on three
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factors. The first two are the number of tasks to schedule (let say n), since it
gives an upper bound of the number of information available at each moment
of decision, and Q the number of information we are allowed to use at each
moment of decision. The number of possible combinations at a moment of deci-
sion is bounded by

∑Q
q=1

(
n
q

)
. The third factor is the complexity of computing

the min-max robust objective value mins∈S maxω∈Ω fω(s) for any Ω. Clearly, if
the deterministic problem is already difficult, so is its robust variant. However,
there are cases where a deterministic scheduling problem is polynomial, while its
uncertain alternative is NP-Hard. We chose the problem 1||Lmax to test our app-
roach specifically because its robust min-max alternative is still polynomial [2].

Proposition 1. If f admits a global worst case scenario, that is to say that
there exists a scenario ωwc such that:

∀ω′ ∈ Ω,∀s ∈ S, f(ωwc, s) ≥ f(ω′, s)

then given a partition P of Ω and an integer L, it is possible to compute in
polynomial time a partition P ′ so that RS(P ′) is minimal and that satisfies:

(i) |P ′| = min(L, |P |)
(ii) for all p ∈ P there exists p′ ∈ P ′ such that p ⊂ p′

Remark: For the 1||Lmax problem, the global worst case scenario is ω =
(dimin

)i∈I .

Proof. We prove the proposition by showing that any partition returned by
Algorithm 1 verifies the properties from Proposition 1.
By construction, a partition P ′ returned by Algorithm1 satisfies (i) and (ii).
Now we must prove that RS(P ′) is minimal. First we can observe that:

min
s∈S

max
ω∈⋃

j∈J Pj

f(ω, s) = min
s∈S

max
j∈J

max
ω∈Pj

f(ω, s)

for any family of disjoint sets (Pj)j∈J . From that observation we can derive
that for any partition P ′′ that satisfies (ii), the values contained in RS(P ′′) are
necessarily in RS(P ). Thus for any other partition P ′′ that verifies (ii) we have,
for i ≤ L − 1,

RS(P ′)i ≤ RS(P ′′)i (1)

because, by construction, RS(P ′)i is the i-th smallest possible value and RS
vectors are sorted in the increasing order. In addition, since f admits a global
worst case scenario ωwc, there exists p′ ∈ P such that ωwc ∈ p′. Thus, for any
union of subset of the form

⋃
p∈P p we have:

min
s∈S

max
ω∈⋃

p∈P p
f(ω, s) = min

s∈S
max
ω∈p′

f(ω, s) = min
s∈S

f(ωwc, s)

Thereby, for any partition P ′′ the last value in RS(P ′′) is necessarily
mins∈S f(ωwc, s). Finally, from this result and (1) we conclude that RS(P ′)
is minimal. 	
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Algorithm 1
Require: P = [P1, P2, ..., Pj ] a partition of Ω and an integer L.

for i ≤ j do
RS[i] ← mins∈S maxω∈pi f(ω, s)

end for
for i ≤ j do

RSS [i] ← RS[φ(i)]
PS [i] ← P [φ(i)]
where φ is the permutation that sorts RS in the increasing order.

end for
j′ ← the index such that the global worst case scenario ωwc is in P [j′]
PS [j], PS [j

′] ← Ps[j
′], Ps[j]

if |PS | > L then
PS ← [PS [1], PS [2], ..., PS [L − 1],

⋃j
i=M PS [i]]

end if
return PS

An example of the execution of Algorithm 1 is given in Example 5.

Example 5. Once again, let us consider instance from Example 1. Let us suppose
that t = 10 is a moment of decision and we have to develop a node from the tree. In
Example 2, we saw that Kt=10 = {kt=10

d2
, kt=10

d3
} with kt=10

d2
= 16 and kt=10

d3
= 14.

We can split the set of scenarios into four subsets (as shown in Fig. 3).
Let us apply Algorithm 1 with P = [A,B,C,D] and L = 3. Keeping the same
notation,we haveRSV = [7, 6, 4, 4], thenRSVs = [4, 4, 6, 7]andPs = [C,D,B,A].
As |Ps| > L, we modify Ps to Ps = [C,D,A∪B] and its robustness score is [4, 4, 7].

Remark: Note that by definition of the shape of P any union of rectangles is
feasible. In other words, even a non rectangle shape is acceptable. For instance,
considering notations from Example 5, the partition [A,B ∪ C ∪ D] is a feasible
solution.

Fig. 3. Set of scenarios for Example 5
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We now propose Algorithm 2 to solve the RPP problem. It is an exhaus-
tive algorithm, that calls Algorithm 1 for each combination (smaller than Q) of
information, so it has an exponential complexity.

We are now able to build a robust decision tree with the procedure introduced
in Sect. 3.

5 Experimentations

The objective of the carried out experiments is to evaluate the robustness of our
robust decision tree model, the quality of the selected information used for its
construction and its stability in terms of number of reactions. For the numerical
tests, we generated different types of instances for the 1||Lmax problem with
uncertainty on the due dates according to two parameters. The first parameter
is the class of the instance. We distinguish two classes: the A class with small
uncertainty intervals, and the B class with large uncertainty intervals. The sec-
ond parameter is the number of tasks to schedule. For example, the instance A10

is an instance with 10 tasks, with small uncertainty intervals on the tasks’ due
dates.

Algorithm 2
Require: A set of scenarios Ω, a set of information Kt and two integers Q and L

P ∗ = [Ω]
for K ⊆ Kt do

if |K| ≤ Q then
P = {p|p =

⋃
j∈Jp

∏
i∈I pi,j with pi,j ∈ {Xinf

kt
xi

, Xsup
kt
xi

, Xi} if kt
xi

∈ Kt and

pi,j = Xi otherwise }
P ′ = Algo1(P, L)
if RS(P ′) ≤lexi RS(P ∗) then

P ∗ = P ′

end if
end if

end for
return P ∗

As our approach uses the notion of information to reduce uncertainties to pro-
vide more robust solution, we compare it to a more standard proactive-reactive
algorithms. This algorithm takes two parameters as input (in addition to the
instance), a reaction rate ρr ∈ [0, 1] and an information rate ρi ∈ [0, 1]. The
principle of the algorithm is the following. We start the execution of the plan-
ning with a robust schedule in the sense of the min max criterion. At the end of
each task, the algorithm reacts with a ρr probability. When it reacts, it computes
a new robust solution using at most 100ρi% of the available information. The
definition of an information and the way it is accessible are strictly the same
as the ones used to build a robust decision tree. To build a robust decision tree
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with our method, we need a couple of parameters: a list of moments of deci-
sion (tj)j∈J , the maximum number of information we are allowed to use at each
moment of decision Q, and the maximum size of the partition we compute at
each moment of decision L. In order to test different lists of moment of decision,
we split the total schedule duration in T equal intervals. In our experiment we
computed robust decision trees using the following values:

– Number of moment of decision T ∈ [2, .., 10].
– Maximum number of information at each moment Q ∈ [1, .., 10].
– Maximum size of partitions at each moment L ∈ [2, .., 4].

As such, a tree computed with these parameter is denoted by TreeQ,L,T . These
values may seem small, but as we discuss it earlier, these parameters not only
impact the computation time to solve the RPP, but also the size of the tree. In
order to keep the total computation time of a tree reasonable, we had to keep
these values not too high.

As we have seen before, the proactive-reactive algorithm takes two param-
eters, ρi and ρr. Since an execution of this algorithm is fast to simulate, we
enumerate for ρi and ρr every values in [0, 1] with 0.1 steps.

Fig. 4. Pareto frontier for both criterion
on instance A50

Fig. 5. Pareto frontier for both criterion
on instance B50



490 T. Portoleau et al.

For each instance, we randomly pick 500 scenarios (with an uniform distribu-
tion). Then, for each set of parameters and each instance, we compute a robust
decision tree, and go through the tree following the path corresponding to each
random scenario. The same protocol is used with the robust reactive algorithms,
we simulate them on each random scenarios.

5.1 Information/Reaction Efficiency

We assess the relevance of the information used to build the tree, and the stability
of the planning proposed by the tree. To do so we collected, for each instance,
the mean number (over the 500 random scenarios) of information used, the mean
number of reactions (when a global solution changes between two moments of
decisions) and the distance from optimum, which is, for a given scenario ω and
a solution s:

100 · Lmax(ω, s) − Lmax(ω, s∗)
Lmax(ω, s∗)

where s∗ is the optimal solution minimising its Lmax value on scenario ω.
We consider two couples of criterion: (distance from optimum, number of reac-
tions) and (distance from optimum, number of information), and for both of
them, we draw two Pareto frontiers, one for the robust reactive algorithm and
one for the robust decision tree. Some of the results are shown in Figs. 4 and 5.
Due to the fact that most trees could not be computed before the time limit,
there are less point for the decision trees for instance A50.

For the instance A10, the best robust decision trees produce worse solutions
than the best reactive robust algorithms when little numbers of reactions and
information are used, but it performs better with more reactions and informa-
tion. On instances B10 A50, the best decision trees perform better than the
best reactive algorithms on both criterion. More generally, we observe that the
robust decision trees provide better solutions (for a given number of tasks) when
uncertainty intervals are larger. Intuitively, this can be explained by the fact
that decision trees are very constrained by the moments of decision while the
reactive algorithms is not. So, larger uncertainties allow robust decision trees to
acquire more new information than it does with robust reactive algorithms.

Table 1. Robust decision trees corresponding to extreme point in the Pareto frontiers
shown in Figs. 4 and 5.

Reaction Information

extreme 1 extreme 2 extreme 1 extreme 2

A10 Tree10,4,2 Tree3,2,14 Tree10,4,2 Tree3,2,14

B10 Tree10,4,2 Tree10,4,6 Tree10,4,2 Tree2,4,6

A50 Tree10,4,3 Tree3,4,6 Tree2,4,3 Tree2,4,6
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However, this way of presenting the results does not show which robust deci-
sion trees appear in the Pareto frontier. Table 1 shows which trees (and the set
of parameters they were computed with) are the extreme points of the different
Pareto frontiers. Quite intuitively, the decision trees propose the best solutions
with few information and reactions, when the number of moments of decision
is low and the maximum number of usable information is high. With the same
idea, the decision trees built with a high number of moments of decision (i.e
the deepest ones) but with few information available at each moment yield good
solutions as well. Interestingly, this shows that the depth of the tree is more
important to produce quality solutions than the maximum number of informa-
tion. The table also shows that the maximum partition size was used for the
best trees, which implies the results could be improved by increasing this value.

6 Conclusion

In this paper we introduce a proactive-reactive approach to deal with uncertain
scheduling problems. The method constructs a robust decision tree for a decision
maker that is reusable as long as the problem parameters belong to the uncer-
tainty set. At each node of the tree we assume that the scheduler has access to
some knowledge about the ongoing scenario, reducing the level of uncertainty and
allowing the computation of less conservative solutions with robustness guaran-
tees. However, obtaining information on the uncertain parameters can be costly
and frequent rescheduling can be disturbing. We first formally define the robust
decision tree and the information refining concepts in the context of uncertainty
scenarios. We then introduce the Robust Partition Problem, the core problem
of our approach. Then we propose algorithms to solve this problem and build
such a tree. Finally, focusing on a simple single machine scheduling problem, we
provide experimental comparisons highlighting the potential of the decision tree
approach compared with reactive algorithms for obtaining more robust solutions
with fewer information updates and schedule changes.

In the view of the encouraging results we believe that this method could be
used in industrial cases. For our future works, we plan to apply and extend our
method to hard problems, such as the Resource-Constrained Project Scheduling
Problem.
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Abstract. Convexity is a very important property in many areas and
the studies of this property are frequent. In this paper, we have extended
the notion of convexity for interval-valued fuzzy sets based on differ-
ent order between intervals. The considered orders are related and their
behavior analyzed. In particular, we study the preservation of the convex-
ity under intersections, where again the chosen order is essential. After
this study, we can conclude the appropriate behavior of the admissible
orders for this purpose.

Keywords: Interval-valued fuzzy sets · Order between intervals ·
Intersection · Convexity

1 Introduction

Convexity is a basic mathematical concept that has been used as a tool in many
different problems. It has important applications in many areas, like optimization
[15], image processing [22], robotics [14] or geometry [13].

In real problems, the information we have to deal with is, in most of the
cases, approximate. By this reason, the study of the convexity of a fuzzy set has
been a very studied topic (see, for instance, Ammar and Metz [1], Diaz et al. [7],
Ramik and Vlach [16], Sarkar [18], Syau and Lee [21] and Yang [25]).

Taking into account several real world problems, several extensions of the
fuzzy sets have been introduced and studied in the last years. In particular, we

Authors would like to thank for the support of Spanish Ministry of Science and Tech-
nology project TIN-2017-87600-P (P. Alonso), Spanish Ministry of Science and Tech-
nology project PGC2018-098623-B-I00 (P. Huidobro and S. Montes), FICYT Project
IDI/2018/000176 (P. Alonso, P. Huidobro and S. Montes) and Slovak grant agency
VEGA project 1/0093/17 (V. Janǐs).
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are interested in interval-valued fuzzy sets. They were introduced independently
by Zadeh [26], Grattan-Guiness [10], Jahn [12], Sambuc [17] in the seventies.
From then, several concepts related to this extension have to be studied. Taking
into account the previous comments, we are especially interested in the concept
of a convex interval-valued fuzzy set. Since convexity is based on an order over
the membership degrees and how the membership values are not numbers but
intervals, we will obtain a different definition of convexity for each interval order
on the set of intervals. The main aim of this paper is to introduce this general def-
inition and study its dependence on the interval order considered. In particular,
we are going to study in deep the preservation of the convexity under intersec-
tions, since it is a necessary property in many applications, as optimization (see
[15]).

This paper is organized as follows. In Sect. 2, some basic concepts are intro-
duced and the notation is fixed. Section 3 is devoted to the study of the different
definitions we can consider for the intersection of two interval-valued fuzzy sets
depending on the chosen order. In Sect. 4 we propose a definition of convexity
for interval-valued fuzzy sets and we study the cases when the intersection of
two convex sets remains convex. Finally, some conclusions and open problems
are drawn in Sect. 5.

2 Basic Concepts

Let X denote the universe of discourse. An interval-valued fuzzy subset of X
is a mapping A : X → L([0, 1]) such that A(x) = [A(x), A(x)], where L([0, 1])
denotes the family of closed intervals included in the unit interval [0, 1]. Thus,
an interval-valued fuzzy set A is totally characterized by two mapping, A and
A, from X into [0, 1] such that A(x) ≤ A(x),∀x ∈ X. These maps represent
the lower and upper bound of the corresponding intervals. Let us notice that if
A(x) = A(x),∀x ∈ X, then A is a classical fuzzy sets. The collection of all the
interval-valued fuzzy sets in X is denoted by IV FS(X) and the subset formed
by all the fuzzy sets in X is denoted by FS(X).

For any pair of IVFS, it is usually considered that A is a subset of B if,
and only if, A(x) is lower than or equal to B(x) for any x ∈ X. This definition
is clear when we are dealing with fuzzy sets, since the usual order ≤ for the
real number is used to define the inclusion. However, there is not a usual total
order in L([0, 1]) and so, several definitions of inclusion could be considered in
accordance with the order considered in L([0, 1]). The different usual orders for
intervals are based on the specific points within the intervals which are considered
as representatives.

Thus, if a = [a, a] and b = [b, b] are any two intervals in L([0, 1]), we say that
a is lower than or equal to b for the most usual orders between intervals if:

– Interval dominance [8]: a �ID b if a ≤ b.
– Lattice order [9]: a �Lo b if a ≤ b and a ≤ b, which is induced by the usual

partial order in R
2.

– Lexicographical order type 1 [5]: a �Lex1 b if a < b or a = b and a ≤ b.
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– Lexicographical order type 2 [5]: a �Lex2 b if a < b or a = b and a ≤ b.
– The Xu and Yager order [24]: a �Y X b if a + a < b + b or a + a = b + b and

a − a < b − b.
– Maximax order [19]: a �MM b if a ≤ b.
– Maximin order [20,23]: a �Mm b if a ≤ b.
– Hurwicz order [11]: a �H(α) b if α · a + (1 − α) · a ≤ α · b + (1 − α) · b with

α ∈ [0, 1].
– Weak order [3]: a �wo b if a ≤ b.

Some of these orders are clearly related. Thus, it is well-known that if one
interval a is lower than or equal to another interval b w.r.t. the order ID, a is
also lower than or equal to b w.r.t. the lattice order. This also implies the same
relation w.r.t. the lexicographical order type 1, which implies the same w.r.t.
the maximax order and this implies that a is lower than or equal to b w.r.t. the
weak order. All these implications and some other similar ones are summarized
at the following figure.

a �ID b

⇓
a �Lo b

⇓
︷ ︸︸ ︷

a �Lex1 b a �Lex2 b a �Y X b a �H(α) b for any α ∈ [0, 1]

⇓ ⇓ ⇓
a �MM b a �Mm b a �H(1/2) b

︸ ︷︷ ︸

⇓
a �wo b

The implications represented here are fulfilled, but it is also known that the
converse implications are not fulfilled in general.

In order to provide a total order that extends the usual orders between inter-
vals, Bustince et al. introduced in [5] the concept of admissible order.

Definition 1. [5] Let (L([0, 1]),�) be a poset. The order � is called an admis-
sible order if

i) � is a linear order on L([0, 1]),
ii) for all [a, b], [c, d] ∈ L([0, 1]), [a, b] � [c, d] whenever [a, b] ≤Lo [c, d].

Once they introduced this definition, they also proposed a method to build
these admissible orders in terms of two aggregation functions.

Definition 2. [2] Let A :
⋃n

i=1[0, 1]i → [0, 1] such that

– A(0, 0, . . . , 0) = 0,A(1, 1, . . . , 1) = 1,
– A(x) = x for all x ∈ [0, 1],
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– A is monotone in each variable,

then A is an aggregation function.

Notice that, there is a natural bijection between L([0, 1]) and K([0, 1]) =
{(u, v) ∈ [0, 1]2 |u ≤ v} such that it identifies any interval [a, a] to the point in
R

2 formed by its extremes, that is, (a, a) (see [5]). Thus, we can use aggregation
functions to summarize the information given by an interval. Taking into account
this idea, they obtained the following method to build admissible orders.

Proposition 1. [5] Let A,B : [0, 1]2 → [0, 1] be two continuous aggregation
functions, such that for all (u, v), (u′, v′) ∈ K([0, 1]), the equalities A(u, v) =
A(u′, v′) and B(u, v) = B(u′, v′) can only hold if (u, v) = (u′, v′). Define the
relation �A,B on L([0, 1]) by a �A,B b if and only if

A(a, a) < A(b, b)

or
A(a, a) = A(b, b) and B(a, a) ≤ B(b, b)).

Then �A,B is an admissible order on L([0, 1]).

A particular way of obtaining admissible orders on L([0, 1]) is defining them
by means of the weighted mean (see [4]):

Kα(u, v) = (1 − α) · u + α · v with α ∈ [0, 1].

This function can be seen as the α-quantile of a probability distribution uni-
formly distributed over the interval [u, v]. By applying Proposition 1 to the
aggregation functions Kα and Kβ with α �= β, we obtain the admissible order
�Kα,Kβ

, which is denoted, by simplicity, as �α,β .
The lexicographical orders with respect to the first and the second coordinate

and the Xu and Yager order are particular cases of these admissible orders. Thus,
�Lex1≡�0,1, �Lex2≡�1,0 and �Y X≡�1/2,β for any β ∈ (1/2, 1] (see [5]).

3 Intersection of Interval-Valued Fuzzy Sets

From any order �x in L([0, 1]), we can deduce an order in IV FS(X) given by
the content relation obtained from this order. This relation in IV FS(X) will be
denoted by ⊆x. Thus, for instance,

A ⊆Y X B iff A(x) �Y X B(x),∀x ∈ X.

Let us notice that the inclusion between two interval-orders fuzzy sets does
not imply the inclusion of the intervals which represent the membership degrees
at any point in the referential, but that the interval associated to A is lower than
or equal to w.r.t. the corresponding order to the interval associated to B.
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Example 1. Let X = {x} be the universe and let be A,B,C ∈ IV FS(X) such
that A(x) = [0.4, 0.8], B(x) = [0.2, 0.6] and C(x) = [0.3, 0.9]. We have that
B ⊆Lo A and B ⊆Lo C, since [0.2, 0.6] �Lo [0.4, 0.8] and [0.2, 0.6] �Lo [0.3, 0.9].
However, [0.2, 0.6] �⊆ [0.4, 0.8] and [0.2, 0.6] �⊆ [0.3, 0.9]. In fact, this is totally
logical, since the membership degree of x to B is “lower” than the membership
degree to A or C. In fact, we are using the same criteria as the usual one
considered for fuzzy sets.

If the intersection of two sets is defined as the greatest set that is contained
in both sets, then we have a different definition of intersection for each order we
are considering in IV FS(X).

Definition 3. Let A, B be two sets in IV FS(X) and let �x an order in
L([0, 1]). We define the x-intersection of A and B, and we denote A∩x B as the
greatest interval-valued fuzzy set such that A ∩x B ⊆x A and A ∩x B ⊆x B.

So each order would have its own way to construct intersections between
IVFS. To better understand this definition, we will see some examples after the
general result of each order.

For any two interval orders �x and �y in IV FS(X) such that a �x b implies
that a �y b, ∀a, b ∈ L([0, 1]), we have that A ∩x B ⊆y A ∩y B for any A,B ∈
IV FS(X). Thus,

A ∩ID B ⊆Lo A ∩Lo B ⊆Lex1 A ∩Lex1 B ⊆MM A ∩MM B ⊆wo A ∩wo B,

A ∩Lo B ⊆Lex2 A ∩Lex2 B ⊆Mm A ∩Mm B ⊆wo A ∩wo B,

A ∩Lo B ⊆Y X A ∩Y X B ⊆H(1/2) A ∩H(1/2) B ⊆wo A ∩wo B,

and
A ∩Lo B ⊆H(α) A ∩H(α) B ⊆wo A ∩wo B.

Taking into account the relationship among the considered orders, we will
study the definition that we obtain for the intersection for any of them, by
considering some general behavior in those cases which is possible.

For the interval dominance we have that the intersection of two IVFS is a
fuzzy set:

Proposition 2. Let A, B be two sets in IV FS(X). The ID-intersection of A
and B is the interval-valued fuzzy set defined by

A ∩ID B(x) = min{A(x), B(x)}
for any x ∈ X.

Next, an example of the intersection of two IVFS is presented.

Example 2. In the same conditions of Example 1.

– The ID-intersection of A and B is the interval-valued fuzzy set A∩ID B(x) =
0.2.
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– The ID-intersection of A and C is the interval-valued fuzzy set A∩ID C(x) =
0.3.

0.2

0.4

0.6

0.8

1

A(x) B(x) A ∩ID B(x)

0.2

0.4

0.6

0.8

1

A(x) C(x) A ∩ID C(x)

It is clear that A ∩ID B ⊆ID A since 0.2 ≤ 0.4 and 0.2 ≤ 0.2. Similarly, we can
see that A∩ID B ⊆ID B. Both expressions are immediate, since the definition of
intersection was given exactly as the set such that it is included in both of them
and any other set included in them is a subset of the intersection. Of course,
when we deal with the intersection and the content, the same order between
intervals is considered.

However, for the less restrictive lattice ordering the intersection is not just
a fuzzy set in general. In fact, with this order, we will obtain the usual way to
define the intersection for two IVFS.

Proposition 3. Let A, B be two sets in IV FS(X). The Lo-intersection of A
and B is the interval-valued fuzzy set defined by

A ∩Lo B(x) = [min{A(x), B(x)},min{A(x), B(x)}]

for any x ∈ X.

This proposition coincides with the usual way to define the intersection
between two interval-valued fuzzy sets, as it can be seen in [6], where inter-
section is studied in general for convolution lattices.

Following example shows what happens when we intersect two IVFS.

Example 3. In the same conditions of Example 1.

– The Lo-intersection of A and B is the interval-valued fuzzy set A∩Lo B(x) =
[0.2, 0.6].

– The Lo-intersection of A and C is the interval-valued fuzzy set A∩Lo C(x) =
[0.3, 0.8].
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0.2

0.4

0.6

0.8

1

A(x) B(x) A ∩Lo B(x)

0.2

0.4

0.6

0.8

1

A(x) C(x) A ∩Lo C(x)

We can also use this example to remark that the intersection we are done is
between two interval-valued fuzzy set, but it is not an intersection between inter-
vals. Thus, since x has a membership degree in A given by the interval [0.4, 0.8]
and a membership degree in C given by the interval [0.3, 0.9], we can say that
the degree in which x is in their intersection is between 0.3 and 0.8. A value
greater than 0.8 is impossible, since we have not this degree for A, but a value
between 0.3 and 0.4 is possible, since x belongs to A at least in degree 0.4 and
to B at least in degree 0.3.

The case of the lexicographical order and the Xu and Yager order, can be
considered in a general way, since all of them are particular cases of admissible
orders, as we commented previously.

Proposition 4. Let A,B : [0, 1]2 → [0, 1] be two continuous aggregation func-
tions, such that for all (u, v), (u′, v′) ∈ K([0, 1]), the equalities A(u, v) = A(u′, v′)
and B(u, v) = B(u′, v′) can only hold if (u, v) = (u′, v′). Let �A,B be the admis-
sible order on L([0, 1]) induced by them. For any A,B ∈ IV FS(X), the A,B-
intersection of A and B is the interval-valued fuzzy set defined by:

A ∩A,B B(x) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

[A(x), A(x)] if A([A(x), A(x)]) < A([B(x), B(x)])

or
{

A([A(x), A(x)]) = A([B(x), B(x)])

and B([A(x), A(x)]) ≤ B([B(x), B(x)])
}

,
[

B(x), B(x)
]

if
{

A([A(x), A(x)]) = A([B(x), B(x)])

and B([B(x), B(x)]) < B([A(x), A(x)])
}

or A([B(x), B(x)]) < A([A(x), A(x)]).

By applying this result to the specific admissible orders, we obtain that

Proposition 5. Let A, B be two sets in IV FS(X).

– The Lex1-intersection of A and B is the interval-valued fuzzy set whose mem-
bership function for any x in X is:

A ∩Lex1 B(x) =

⎧

⎪
⎨

⎪
⎩

[A(x),min{A(x), B(x)}] if A(x) = B(x),
[A(x), A(x)] if A(x) < B(x),
[B(x), B(x)] if B(x) < A(x).
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– The Lex2-intersection of A and B is the interval-valued fuzzy set whose mem-
bership function for any x in X is:

A ∩Lex2 B(x) =

⎧

⎪
⎨

⎪
⎩

[ min{A(x), B(x)}, A(x)] if A(x) = B(x),
[A(x), A(x)] if A(x) < B(x),
[B(x), B(x)] if B(x) < A(x).

– The Y X-intersection of A and B is the interval-valued fuzzy set whose mem-
bership function for any x in X is:

A ∩Y X B(x) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

[A(x), A(x)] if A(x) + A(x) < B(x) + B(x)
or {A(x) + A(x) = B(x) + B(x)
and A(x) − A(x) ≤ B(x) − B(x)},

[B(x), B(x)] if {A(x) + A(x) = B(x) + B(x),
and B(x) − B(x) < A(x) − A(x)}
or B(x) + B(x) < A(x) + A(x).

In order to clarify this result, let us show some examples.

Example 4. In the same conditions of Example 1.

– The Lex1-intersection of A and B is the interval-valued fuzzy set A ∩Lex1

B(x) = [0.2, 0.6].
– The Lex1-intersection of A and C is the interval-valued fuzzy set A ∩Lex1

C(x) = [0.3, 0.9].

0.2

0.4

0.6

0.8

1

A(x) B(x)A ∩Lex1 B(x)

0.2

0.4

0.6

0.8

1

A(x) C(x)A ∩Lex1 C(x)

– The Lex2-intersection of A and B is the interval-valued fuzzy set A ∩Lex2

B(x) = [0.2, 0.6].
– The Lex2-intersection of A and C is the interval-valued fuzzy set A ∩Lex2

C(x) = [0.4, 0.8].
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0.2

0.4

0.6

0.8

1

A(x) B(x)A ∩Lex2 B(x)

0.2

0.4

0.6

0.8

1

A(x) C(x)A ∩Lex2 C(x)

– The Y X-intersection of A and B is the interval-valued fuzzy set A∩Y XB(x) =
[0.2, 0.6].

– The Y X-intersection of A and C is the interval-valued fuzzy set A∩Y XC(x) =
[0.4, 0.8].

– On the other hand, if D(x) = [0.2, 0.9], the Y X-intersection of A and D is
the interval-valued fuzzy set A ∩Y X D(x) = [0.2, 0.9].

0.2

0.4

0.6

0.8

1

A(x) B(x) A ∩Y X B(x)

0.2

0.4

0.6

0.8

1

A(x) C(x) A ∩Y X C(x)

0.2

0.4

0.6

0.8

1

A(x) D(x) A ∩Y X D(x)

We are not going to consider the maximax, the maximin, the Hurwicz and
the weak orders to define the intersection since it is not unique. Using the order
�MM , we obtain that the intersection between two IVFS A and B is

A ∩MM B(x) = [u,min{A(x), B(x)}],∀x ∈ X,

where u could be any number in the interval [0,min{A(x), B(x)}].
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Analogously, using the order �Mm, we obtain that the intersection between
two IVFS A and B is

A ∩Mm B(x) = [min{A(x), B(x)}, v],∀x ∈ X,

where v could be any number in the interval [min{A(x), B(x)}, 1].
If we consider the order �H(α), we obtain that the intersection between two

IVFS A and B is

A ∩H(α) B(x) = [t − k, t + k],∀x ∈ X,

where t = min{α · A(x) + (1 − α) · A(x), α · B(x) + (1 − α) · B(x)} and k could
be any number in the interval [0,min{t, 1 − t}].

For the weak order, the intersection is

A ∩MM B(x) = [u, v],∀x ∈ X,

where u could be any number in the interval [0,min{A(x), B(x)}] and v could
be any number in the interval [min{A(x), B(x) 1].

4 Preservation on the Convexity Under Intersections

Taking into the previous comments, we are not going to consider the intersection
based on the maximax, the maximin, the Hurwicz or the weak order. For the
remaining intersections, we will study if the convexity of two convex IVFS is
still a convex set. First of all, let us introduce the definition of convexity we are
going to consider in this work.

Definition 4. Let X be an ordered space and let �x be an order in L([0, 1]). An
interval-valued fuzzy set A on X is said to be x-convex, if for each x < y < z in
X the following inequalities are fulfilled:

A(x) �x A(y) or A(z) �x A(y).

It is a natural definition, based on the usual idea of convexity. It is immediate
that a convex fuzzy set considered as an interval-valued fuzzy set with singleton
as membership values is convex. It is also immediate that this definition coincides
with the usual one of convexity for crisp sets.

If we deal with the particular orders considered in the previous section, we
obtain that ID-convexity implies Lo-convexity and this implies Lex1-convexity,
Lex2-convexity and Y X-convexity.

About the important property of the preservation of the convexity under
intersections, we have obtained the following results.
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Proposition 6. Let X be an ordered space, if A,B ∈ IV FS(X) are ID-convex,
then A ∩ID B is also ID-convex, whenever it is not empty.

Unfortunately, the Lo-intersection of two IVFS which are Lo-convex is not
always Lo-convex, as we can see at the following counterexample.

Example 5. Let X = {x, y, z} with x < y < z. If we consider the IVFS A and B
defined as follows

X x y z

A [0.1,0.7] [0.2,0.8] [0.3,0.5]

B [0.1,0.7] [0.4,0.6] [0.3,0.5]

A ∩Lo B [0.1,0.7] [0.2,0.6] [0.3,0.5]

Then A is Lo-convex, since [0.1, 0.7] �Lo [0.2, 0.8] and B is Lo-convex since
[0.3, 0.5] �Lo [0.4, 0.6]. However, A ∩Lo B is not Lo-convex since [0.2, 0.6] is not
related with [0.1, 0.7] or [0.3, 0.5] by means of the order relation �Lo. This is the
typical problem we can find any time we use partial orders. Thus, it is clear that
convexity only makes sense for total orders as, for instance, admissible orders.

In fact, for admissible orders, we have been able to obtain a general results
where we prove the good behaviour of them with respect to the convexity. Thus,

Proposition 7. Let X be an ordered space and let �A,B an admissible order
based on two aggregations functions A and B. If A,B ∈ IV FS(X) are A,B-
convex, then A ∩A,B B is also A,B-convex, whenever it is not empty.

Thus, the case of the lexicographical orders and the Xu and Yager order are
automatically solved.

Corollary 1. Lex1-convexity, Lex2-convexity and Y X-convexity are preserved
under intersections.

5 Concluding Remarks

In this paper we have proposed a definition of convexity for IVFS and we char-
acterized the cases where it is preserved under intersections. The intersection
of two IVFS is based on the chosen order between intervals and so several def-
initions of intersection are considered. It is not surprising that not all of the
orders between intervals are appropriate for defining the intersection and that
the lattice ordering defines the usual definition of intersection considered in the
literature. However, this order has not a good behavior about preservation of
convexity under intersections and admissible orders seem to be better for this
purpose. An immediate pending work is the study of the cutworthy approach
for this concept of convexity.
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Abstract. Fuzzy grey cognitive maps (FGCMs) are extensions of fuzzy
cognitive maps (FCMs), where the causal connections between the con-
cepts are represented by so-called grey numbers. Just like in classical
FCMs, the inference is determined by an iteration process, which may
converge to an equilibrium point, but limit cycles or chaotic behaviour
may also show up.

In this paper, based on network measures like in-degree, out-degree
and connectivity, we provide new sufficient conditions for the existence
and uniqueness of fixed points for FGCMs. Moreover, a tighter conver-
gence condition is presented using the spectral radius of the modified
weight matrix.

Keywords: Fuzzy cognitive map · Fuzzy grey cognitive map ·
Stability · Convergence · Equilibrium point

1 Introduction

Fuzzy cognitive maps are neural network-based decision support tools, where the
neurons represent specific factors or characteristics of the modelled system [11].
Graphically, a fuzzy cognitive map is a weighted, directed graph. The constant
weights assigned to the edges from the interval [−1, 1] express the strength and
direction of causal connections. The current states of the neurons (which are
called concepts in FCM literature) are also characterized by numbers in the
[0, 1] interval (in some applications the interval [−1, 1] is also applicable [12]).
These are the activation values of the concepts [6].
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Formally, the system can be described by the set of concepts (C1, C2, . . . , Cn);
the current activation values of the concepts (A1, A2, . . . , An); the weight matrix
W which assigns weight wij to each edge connecting the nodes Ci and Cj),
expressing how strongly influenced is concept Ci by concept Cj . The sign of wij

indicates whether the relationship between Cj and Ci is direct or inverse. So
matrix W represents the weighted causal connections between the concepts. A
transformation function f : R → [0, 1] calculates the activation value of concepts
at every time step of the iteration and the activation values in the allowed range
(sometimes a function f : R → [−1, 1] is applied).

The iteration rule which calculates the values of the concept at every step
may or may not include self-feedback. In general form it can be written as

Ai(k) = f

⎛
⎝

n∑
j=1,j �=i

wijAj(k − 1) + diAi(k − 1)

⎞
⎠ (1)

where Ai(k) is the value of concept Ci at discrete time k, wij is the weight of
the connection from concept Cj to concept Ci and 0 ≤ di ≤ 1 expresses the
possible self-feedback. If di = 0, then there is no self-feedback. If we include the
dis into the diagonal of weight matrix W , the iteration equation can be rewritten
in more compact style:

Ai(k + 1) = f

⎛
⎝

n∑
j=1

wijAj(k)

⎞
⎠ = f(wiA(k)), (2)

where wi = [wi1, . . . , win] is the ith row of W and A(k) = [A1(k), . . . , An(k)]T

is the concept vector after k iterations. We apply dot product between them, so
wiA

(k) is a real number.
Moreover, if we couple the coordinates of the concept vector together and

denote by G the mapping R
n → R

n that generates the concept vector A(k + 1)
from A(k), then we have that:

A(k + 1) =

⎡
⎢⎣

A1(k + 1)
...

An(k + 1)

⎤
⎥⎦ =

⎡
⎢⎣

f(w1A(k))
...

f(wnA(k))

⎤
⎥⎦ = G(A(k)). (3)

The iteration rule repeated until either the FCM converges to an equilibrium
state (fixed point) or the maximal number of iterations is reached. Mathemat-
ically, the FCM may converge to a fixed point, may arrive to a limit cycle or
shows chaotic pattern [2,5].

The weights of the connections are usually determined by human experts or
by learning methods. In both of the cases there are some uncertainties about
the exact values of the weights. This was the main motivation of Fuzzy Grey
Cognitive Maps, where the weights and concept values are modelled by the so-
called grey numbers [8–10,13].
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A grey number (denoted by ⊗g) is a number whose accurate value is
unknown, but we know the range within the value is included. A grey num-
ber with both a lower limit (g) and an upper limit (g) is called an interval grey
number [4], so ⊗g ∈ [g, g]. In applications, a grey number is usually an interval.
The basic arithmetic operations on grey numbers are the following [4]:

1. ⊗g1 + ⊗g2 ∈ [g1 + g2, g1 + g2]
2. − ⊗ g ∈ [−g,−g]
3. ⊗g1 − ⊗g2 ∈ [g1 − g2, g1 − g2]
4. ⊗g1 × ⊗g2 ∈ [min(S),max(S)],

where S =
{
g1 · g2, g1 · g2, g1 · g2, g1 · g2

}
5. If λ > 0, λ ∈ R, then λ · ⊗g ∈ [λg, λg]

Beside the above defined operations, we have to provide a consistent defi-
nition for the generalization of any f : R → R function to grey numbers. The
function of a grey number ⊗g ∈ [g, g] is the grey number f(⊗g) ∈ [f(⊗g), f(⊗g)],
where

f(⊗g) = inf{f(γ) : γ ∈ [g, g]} (4)

f(⊗g) = sup{f(γ) : γ ∈ [g, g]} (5)

For a continuous and monotone increasing function f we have

inf{f(γ) : γ ∈ [g, g]} = f(g) (6)

sup{f(γ) : γ ∈ [g, g]} = f(g) (7)

Consequently, f(⊗g) = f(g) and f(⊗g) = f(g) and f(⊗g) ∈ [f(g), f(g)].
The dynamics of an FGCM is similar to the original FCM’s. It begins with an

initial grey vector A(0), which represents initial uncertainty. The elements of this
vector are grey numbers, i.e. Ai(0) ∈ [Ai(0), Ai(0)] for every i. The activation
values are computed by the iterative process, resulting grey numbers as concept
values:

Ai(k) ∈
[
f(wiA(k − 1)), f(wiA(k − 1))

]
(8)

An FGCM with continuous threshold produces one of the following behaviours:

1. Fixed point: the FGCM converges to a grey fixed-point attractor. This fixed
point is vector, whose coordinates are grey numbers (intervals). The conver-
gence (stabilization) means that the endpoints of these intervals are stabilized
after a certain number of iterations.

2. Limit cycle: the state values keep oscillating between several states. These
states (elements of the limit cycle) are concept vectors with interval coordi-
nates.

3. Chaotic behaviour: the FGCM produces different grey vector states for each
iteration, without any pattern.
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Usually, the behaviour of fuzzy cognitive maps is examined by trial-error
methods. The main contribution of this paper is to present analytical conditions
for the existence and uniqueness of attracting fixed points of FGCMs. It also
ensures the global exponential stability of the system. Previously, Boutalis et al.
[14] proved a condition for the convergence of a class of FCMs. Their result has
been generalized in [2]. Knight et al. [15] studied the problem of fixed points of
FCMs using only the topology, without the weights.

In this paper, we give several conditions for convergence and stability of fuzzy
grey cognitive maps. In Sect. 2 different type of behaviours of FCMs and FGCMs
are demonstrated by illustrative examples. In Sect. 3 we briefly summarize the
mathematical background, in Sect. 4 some theorems are proved regarding to
existence and uniqueness of fixed points of FGCMs. We illustrate the results
with an example in Sect. 5, and shortly summarize them in Sect. 6.

2 Examples for Different Behaviour

Consider the following toy example to demonstrate the behaviour of FCMs and
FGCMs (Fig. 1). Although this network is extremely simple, it is able to produce
qualitatively different behaviours for different choice of weights. Let us apply the
hyperbolic tangent function with parameter λ (tanh(λx)) as threshold function
(for some properties of hyperbolic tangent FCMs see [3]).

C1 C2
w21

w12

w11 w22

Fig. 1. The topology of the demonstrative example. The self-loops indicate the possible
existence of self-feedback.

Different settings of weights and parameter λ yield completely different
behaviour, although the topology remains the same.

For a certain set of parameters we may have a non-trivial fixed point (the
trivial fixed point is the zero vector, since it is always a fixed point of hyper-
bolic tangent FCMs, but not always attractor [3]) (Fig. 2). Other setting yields
oscillation, namely a quasiperiodic behaviour (Fig. 3).

Convergence of FGCMs means that the upper and lower endpoints of the
intervals containing the activations values are stabilized. It can be observed in
Fig. 4, while with different weights and parameter λ we can observe oscillating
pattern (Fig. 5).
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Fig. 2. FCM with hyperbolic tangent threshold function: fixed point. The activation
value of concept C1 vs. number of iterations. The parameters are w11 = 1, w21 =
0.6, w21 = 0.4, w22 = 1, λ = 1.

Fig. 3. FCM with hyperbolic tangent threshold function: quasiperiodic pattern. The
activation value of concept C1 vs. number of iterations. The parameters are w11 =
1, w21 = 0.6, w21 = −0.4, w22 = 1, λ = 1.
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Fig. 4. FGCM with hyperbolic tangent threshold function: fixed point. The activation
value (interval) of concept C1 vs. number of iterations. The upper endpoint of the
interval is denoted by ∇, the lower endpoint is denoted by •. The parameters are
w11 = [0.9, 1], w21 = [0.5, 0.7], w21 = [0.3, 0.5], w22 = [0.9, 1], λ = 0.8.

Fig. 5. FGCM with hyperbolic tangent threshold function: oscillating behaviour. The
activation value (interval) of concept C1 vs. number of iterations. The upper endpoint
of the interval is denoted by ∇, the lower endpoint is denoted by •. The parameters
are w11 = 0, w21 = [0.5, 0.7], w21 = [−0.5, −0.3], w22 = 0, λ = 2.
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3 Mathematical Background

The results presented in the next section are based on the contraction property
of the mapping that generates the iteration. Here we recall the definition of
contraction mapping [7]:

Definition 1. Let (X, d) be a metric space. A mapping G : X → X is a con-
traction mapping or contraction if there exists a constant c (independent from
x and y), with 0 ≤ c < 1, such that

d (G(x), G(y)) ≤ cd(x, y). (9)

The notion of contraction is related to the distance metric d applied. It may
happen that a function is a contraction w.r.t. one distance metric, but not a
contraction w.r.t. another distance metric. The iterative process of an FCM may
end at an equilibrium point, which is a so-called fixed point.

Let G : X → X, then a point x∗ ∈ X such that G(x∗) = x∗ is a fixed point
of G. The following theorem provides sufficient condition for the existence and
uniqueness of a fixed point [7]. Moreover, if mapping that generates the iteration
is a contraction, it ensures the stability of the iteration.

Theorem 1 (Banach’s fixed point theorem). If G : X → X is a contraction
mapping on a nonempty complete metric space (X, d), then G has only one fixed
point x∗. Moreover, x∗ can be found as follows: start with an arbitrary x0 ∈ X
and define the sequence xn+1 = G(xn), then limn→∞ xn = x∗.

Definition 2. Let x∗ be a fixed point of the iteration xn+1 = G(xn). x∗ is
locally asymptotically stable if there exist a neighborhood U of x∗, such that for
each starting value x0 ∈ U we get that

lim
n→∞ xn = x∗. (10)

If this neighborhood U is the entire domain of G, then x∗ is a globally asymp-
totically stable fixed point.

Corollary 1. If G : X → X is a contraction mapping on a nonempty complete
metric space (X, d), then its unique fixed point x∗ is globally asymptotically sta-
ble.

In Sect. 4, the following property of the sigmoid function will be applied:
The derivative of the sigmoid function f : R → R, f(x) = 1/(1 + e−λx),

(λ > 0) is bounded by λ/4. Moreover, for every x, y ∈ R the following inequality
holds

|f(x) − f(y)| ≤ λ/4 · |x − y| .
In [1] the following statements have been introduced about the convergence

of fuzzy grey cognitive maps:



516 I. Á. Harmati and L. T. Kóczy

Theorem 2. Let ⊗W be the extended (including possible feedback) weight
matrix of a fuzzy grey cognitive map (FGCM), where the weights ⊗wij are non-
negative or nonpositive grey numbers and let λ > 0 be the parameter of the sig-
moid function f(x) = 1/(1+ e−λx) applied for the iteration. Let W ∗ be a matrix
defined by the absolute values of the weights, i.e. w∗

ij = max
{

|wij |, |wij |
}
. If

one of the inequalities

‖W ∗‖1 <
4
λ

(11)

‖W ∗‖∞ <
4
λ

(12)

‖W ∗‖F <
4
λ

(13)

hold, then the FGCM has one and only one grey fixed point, regardless of the
initial concept values.

Here ‖ ∗ ‖1, ‖ ∗ ‖∞ and ‖ ∗ ‖F denote the 1-norm, infinity norm and Frobenius
norm of the matrix, respectively. Here fixed point ⊗A∗ is

⊗A∗ = [⊗A∗
1, . . . ,⊗A∗

n]T ∈
[
[A∗

1, A∗
1], . . . , [A

∗
n, A∗

n]
]T

The grey fixed point is unique in the sense that the endpoints of the intervals
containing grey concept values are unique, i.e. the values A∗

i and A∗
i are unique

for every i.

4 Convergence Conditions

In this section, we provide several theorems regarding the existence and unique-
ness of attracting grey fixed point. The first three theorems are based on the
structure of the FGCM, namely they are based in the so-called in-degree, out-
degree and connectivity, which are widely used measures to describe the quality
of the network. The last one is based on the spectral radius of the modified
weight matrix W ∗ and it gives the better condition in the sense that it ensures
the convergence for the largest set of parameter λ.

Definition 3. The weighted in-degree of concept Cj equals the sum of the abso-
lute values of the weights of in-coming edges:

degin
j =

n∑
i=1

|wij | (14)

which is the sum of the absolute values of the entries of the jth column of W .
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Definition 4. The weighted out-degree of concept Ci equals the sum of the abso-
lute values of the weights of out-going edges:

degout
i =

n∑
j=1

|wij | (15)

which is the sum of the absolute values of the entries of the ith row of W .

We note that self-feedback means self-loop in the graph. So if self-feedbacks are
applied in the concepts, then the weights of the feedback are counted in the
in-degree and the out-degree, too. It is the reason that we did not exclude i = j
from the summations above.

Definition 5. The connectivity of an FCM is the ratio of the number of con-
nections between concepts to the maximum number of such possible connections.

Connectivity measures the ‘density’ of the network. If self-feedback is allowed,
then the maximum number of connections is n2, if not allowed, then the maxi-
mum number of connections is n(n − 1).

The weighted in-degree, weighted out-degree and weighted connectivity can
defined similarly for FGCMs, but instead of absolute values of real numbers
(exact weights), we use the absolute values of grey numbers (intervals):

degin
j =

n∑
i=1

|⊗wij | =
n∑

i=1

w∗
ij

degout
i =

n∑
j=1

|⊗wij | =
n∑

j=1

w∗
ij

Definition 6. The weighted connectivity of an FCM is the ratio of the sum
of absolute values of weights of connections between concepts to the maximum
number of such possible connections.

If self-feedback is allowed, then the weighted connectivity is

Conw =

∑n
i=1

∑n
j=1 |wij |

n2

If self-feedback is not allowed, then the weighted connectivity is

Conw =

∑n
i=1

∑n
j=1 |wij |

n(n − 1)

For fuzzy grey cognitive maps, we apply the absolute values of the grey weights
(w∗

ij− s), so the enumerator is the sum
∑n

i=1

∑n
j=1 w∗

ij .

Theorem 3. Let λ be the parameter of the sigmoid threshold function applied
for every concept. If the maximal in-degree of the FGCM (including possible
feedback) is less than 4/λ, then the FGCM has one and only one fixed point.
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Proof. In [1] it has been shown that if ‖W ∗‖1 < 4/λ, then the FGCM has one
and only one grey fixed point. Moreover, since

‖W ∗‖1 = max
1≤j≤n

n∑
i=1

w∗
ij = max

1≤j≤n
degin

j (16)

this condition is equivalent to the requirement stated in the theorem.

Theorem 4. Let λ be the parameter of the sigmoid threshold function applied
for every concept. If the maximal out-degree of the FGCM (including possible
feedback) is less than 4/λ, then the FGCM has one and only one fixed point.

Proof. The proof goes similarly to the previous one, but instead of 1-norm we
use the infinity norm. In [1] it has been shown that if ‖W ∗‖∞ < 4/λ, then the
FGCM has one and only one grey fixed point. Moreover, since

‖W ∗‖∞ = max
1≤i≤n

n∑
j=1

w∗
ij = max

1≤i≤n
degout

i (17)

this condition is equivalent to the requirement stated in the theorem.

The theorems above are mathematically equivalent with the statements of
Theorem 2, but they are easier to capture by the users of FCMs. While the users
are not necessarily familiar with matrix norms, they can easily handle notions
like in- and out-degree, which are graphically straightforward.

Theorem 5. Let λ be the parameter of the sigmoid threshold function applied for
every concept. If the weighted connectivity (Conw) of the FGCM small enough,
namely

1. if self-feedback is allowed:

Conw <
4

λn2
,

2. if self-feedback is not allowed:

Conw <
4

λn(n − 1)
,

then the FGCM has one and only one fixed point.

Proof. We show that if
∑n

i=1

∑n
j=1 w∗

ij < 4/λ, then mapping G is a contraction,
so it has exactly one fixed point. Let us define the distance of grey concept
vectors as

d(A,A′) =
1
2

(
‖A − A′‖1 + ‖A − A

′‖1
)

(18)

We are going to show that with the distance measure above:

d(G(A), G(A′)) ≤ λ

4

n∑
i=1

n∑
j=1

w∗
ijd(A,A′)
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By the definition of the distance of two grey-valued vectors, we have

d(G(A), G(A′)) =
1
2

(
‖G(A) − G(A′)‖1 + ‖G(A) − G(A′)‖1

)

It has been shown in [1] that the following upper estimation can be given for
the difference of the ith coordinates (similar inequality holds for the difference
of the upper endpoints):

∣∣∣G(A)
i
− G(A′)

i

∣∣∣ ≤
∣∣∣∣
λ

4
w∗

i |A − A′|
∣∣∣∣

where w∗
i is the ith row of matrix W ∗ and we apply dot product between w∗

i

and |A − A′| = (|A1 − A′
1|, . . . , |An − A′

n|). Moreover,

w∗
i |A − A′| ≤ ‖w∗

i ‖1 · ‖A − A′‖1
Here ‖w∗

i ‖1 =
∑n

j=1 |w∗
ij | =

∑n
j=1 w∗

ij . Use this inequality for the distance of
G(A) and G(A′):

d(G(A), G(A′)) =
1
2

(
‖G(A) − G(A′)‖1 + ‖G(A) − G(A′)‖1

)
(19)

=
1
2

(
n∑

i=1

∣∣∣G(A)
i
− G(A′)

i

∣∣∣ +
n∑

i=1

∣∣∣G(A)i − G(A′)i

∣∣∣
)

(20)

≤ λ

4
1
2

⎛
⎝

n∑
i=1

n∑
j=1

w∗
ij‖A − A′‖1 +

n∑
i=1

n∑
j=1

w∗
ij‖A − A

′‖1
⎞
⎠ (21)

=
λ

4

n∑
i=1

n∑
j=1

w∗
ij

1
2

(
‖A − A′‖1 + ‖A − A

′‖1
)

(22)

=
λ

4

n∑
i=1

n∑
j=1

w∗
ij · d(A,A′) (23)

If
λ

4

n∑
i=1

n∑
j=1

w∗
ij < 1, then the mapping is a contraction, so the iteration leads to

a unique fixed point, regardless to the initial value. Rearanging this inequality
and division both sides by n2 ( or n(n − 1)) completes the proof.

Although Theorem 5 provides weaker condition, it has an important message
expressed by connectivity: poorly connected FGCMs cannot produce complex
behaviour (the term ‘poorly’ depends on λ and n).

Theorem 6. Let ⊗W be the extended (including possible feedback) weight
matrix of a fuzzy grey cognitive map (FGCM), where the weights ⊗wij are non-
negative or nonpositive grey numbers and let λ > 0 be the parameter of the
sigmoid function f(x) = 1/(1 + e−λx) applied for the iteration. Let W ∗ be a
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matrix defined by the absolute values of the weights. If the spectral radius of W ∗

is less than 4/λ, i.e if the inequality

ρ (W ∗) <
4
λ

(24)

hold, then the FGCM has one and only one grey fixed point, regardless of the
initial concept values.

Proof. Let us define the distance of two grey-valued vectors as the norm of their
difference. At this stage we do not specify this norm:

d(A,A′) = ‖A − A′‖ =
1
2

(
‖A − A′‖ + ‖A − A

′‖
)

We are going to show that with the distance above and for a suitable matrix
norm:

d(G(A), G(A′)) ≤ λ

4
‖W ∗‖d(A,A′)

By the definition of the distance of two grey-valued vectors, we have

d(G(A), G(A′)) =
1
2

(
‖G(A) − G(A′)‖ + ‖G(A) − G(A′)‖

)

It has been shown in [1] that the following upper estimation can be given for
the difference of the ith coordinates (similar inequality holds for the difference
of the upper endpoints):

∣∣∣G(A)
i
− G(A′)

i

∣∣∣ ≤
∣∣∣∣
λ

4
w∗

i |A − A′|
∣∣∣∣

where w∗
i is the ith row of matrix W ∗. Since this inequality holds for every

coordinates, we conclude to following inequality for the difference of the lower
endpoint vectors:

‖G(A) − G(A′)‖ ≤
∥∥∥∥

λ

4
W ∗|A − A′|

∥∥∥∥
Using this inequality (and the corresponding inequality for the upper endpoints)
we provide upper estimation for the distance of G(A) and G(A′):

d(G(A), G(A′)) =
1
2

(
‖G(A) − G(A′)‖ + ‖G(A) − G(A′)‖

)
(25)

≤ 1
2

(∥∥∥∥
λ

4
W ∗|A − A′|

∥∥∥∥ +
∥∥∥∥

λ

4
W ∗|A − A

′|
∥∥∥∥
)

(26)

≤ λ

4
‖W ∗‖ 1

2

(∥∥A − A′∥∥ +
∥∥∥A − A

′∥∥∥
)

(27)

=
λ

4
‖W ∗‖ d(A,A′) (28)

In ‖W ∗‖, the matrix norm is induced by the vector norm. By the contraction
mapping theorem, if the coefficient of d(A,A′) is less than one, then mapping
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G is a contraction, consequently it has exactly one fixed point. Moreover, if the
spectral radius of a matrix is less than one, then there exists a matrix norm, such
that norm of the matrix is less then one, i.e. if ρ

(
λ
4W ∗) < 1, then there exist a

matrix norm, such that ‖λ
4W ∗‖ < 1. Applying this matrix norm, mapping G is

a contraction, which completes the proof.

Since ρ(W ∗) ≤ ‖W ∗‖ for any matrix norm, Theorem 6 gives the best condition
expressed by W ∗.

Remark 1. The results in Sect. 4: Theorem 3, Theorem 4, Theorem 5 and Theo-
rem 6 are valid for fuzzy grey cognitive maps with hyperbolic tangent threshold
function (tanh(λx)), too, but we have to replace 4/λ by 1/λ, since the derivative
of tanh(λx) is bounded by λ (and not λ/4).

5 Example

Let us consider the following weight matrix with imprecise (grey) entries:

⊗ W =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 [0.1, 0.2] [−0.6,−0.5] 0 0 0
0 0 [−0.7,−0.5] 0 0 [0.1, 0.3]

[0.6, 0.8] 0 0 [−0.6,−0.2] 0 0
[0.7, 0.9] 0 0 0 [0.6, 0.8] 0

0 0 [0.6, 0.7] 0 0 0
0 [0.1, 0.3] 0 [0.8, 1] [−1,−0.8] 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(29)

Then the matrix W ∗ with the w∗
ij entries:

W ∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0.2 0.6 0 0 0
0 0 0.7 0 0 0.3

0.8 0 0 0.6 0 0
0.9 0 0 0 0.8 0
0 0 0.7 0 0 0
0 0.3 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(30)

The corresponding measures:

– Maximal weighted in-degree: 2.3
– Maximal weighted out-degree: 2
– Connectivity

• without self-feedback: Conw = 0.2633
• with self-feedback: Conw = 0.2194

– spectral radius: ρ(W ∗) = 1.1485

According to Theorem 6, if λ < 3.4827, then this grey FCM has one and only
one grey fixed point. It also means that in this case the FGCM produces globally
asymptotically stable behaviour, since every initial grey vector leads to the same
equilibrium state.



522 I. Á. Harmati and L. T. Kóczy

6 Summary

Fuzzy Grey Cognitive Maps are generalizations of classical FCMs, that can model
the uncertainties of activation values and weights of causal connections.

In this paper, we provided some conditions for the convergence of FGCMs to
a unique fixed point. The unicity of this attracting fixed point also ensures that
the FGCM is globally exponentially stable, i.e. it converges to the same fixed
point attractor regardless of the initial concept vector. Future work is focused
on the effective detection of multiple fixed points scenarios and the prediction
of oscillating patterns without simulations. The future goal is to provide exact
analytical conditions for both of these behaviours.
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Abstract. Community detection problems are one of the hottest disci-
plines in social network analysis. Nevertheless, most of the related algo-
rithms are specific for non-directed networks, or are based on a density
concept of group. In this paper, we deal with a new concept of commu-
nity for directed networks that is based on the classical flow concept.
A community is strong and cohesive if their members can communicate
among them. With the aim of dealing with the identification of this new
class of groups, in this work, we propose the use of fuzzy measures to
represent the flow capacity of a group. We also provide a competitive
community detection algorithm that focus on the identification of these
new class of flow-based community.

Keywords: Directed networks · Flow · Fuzzy measures · Community
detection problem · Louvain Algorithm

1 Introduction

Community detection problems are one of the most important topic in social
network analysis [7,18]. The idea of finding communities is strongly related to
the idea of finding clusters in data analysis. In general, a cluster can be considered
as a set of items that are closer each other when they are compared to the rest
of items of the problem. A good clusterization of a set of items is associated
with the identification of a set of clusters that present internally high degree
of intra-homogeneity, and high degree of inter-heterogeneity. In networks, the
idea of intra-homogeneity of a cluster/community is usually associated with the
density of the group. Then, a good community will be a dense set of nodes with
many connections between the members of each group. The idea of high inter-
heterogeneity is associated with the existence of lower relations between the
clusters/groups. So, the more relationships among the groups, the greater the
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degree of inter-heterogeneity is. Taking this into account, an optimal community
may be a set of nodes that induces a completed subgraph (so they are strongly
connected), and are isolated from the rest of the nodes of the network (so they
have no relation with any other node in the network).

However, this idea of community is not unanimously accepted when the graph
is directed and valued. As noted in [15,18], the idea of community in directed
networks can have different interpretations, so several definitions could be made.
This is the reason why finding clusters in directed networks is a challenging task
with several important applications, since many of the real networks are modelled
in an undirected way.

Despite the importance of community detection problems in directed net-
works, this problem has been poorly studied in the literature. Nevertheless, we
can find in [18] four different (but non-formalized) concepts about what could
be understood as a community/group:

– The first notion is about a random walk. In this case, each group is formed
by these nodes that are more likely to remain inside than outside. This kind
of communities are usually obtained with random walk techniques. In the
literature, we can find some algorithms that deal with these problems (see for
example [7,19,24]).

– The second notion is about the density. In this context, the groups of nodes
follow the traditional clustering definition, based on edge density characteris-
tics. It is important to mention that, in this sense, the concept of modularity
[20] has been redefined for directed networks. Taking this into account, new
algorithms have been developed to deal with this problem. Many of them
are adaptions of some well-known community detection algorithms (as the
directed Louvain [2]) to the directed case.

– Co-citation groups. As mentioned in [18], edges density is not always the only
criterion to identify a set of nodes that share many characteristics. In directed
networks, the idea of co-citation group tries to identify groups of nodes (not
necessarily connected) that follow or are followed by the same groups. In
this sense, we could have a group of nodes that form a community because
its followers’ set is the same, even if they do not know each other. We also
could have a group of nodes that form a community because the set of nodes
from which they extract the information is the same. If we think of a citation
network, for example, a community could be formed by those researchers who
‘drink’ their research from the same sources, or a community could be formed
by those researchers who are cited by the same colleagues. Obviously, in this
situation, two or more nodes may belong to the same community/cluster even
if they are not directly connected by edges.

– The last one is related with the idea of flow. In this case, a group is as
good as much information can be moved within it. Although this concept of
community is clearly related with the idea of density (since the more relations
between the members of a group there are, probably the higher the flow
capacity will be), it is important to note that they differ in many respects. In
flow problems, the structure and location of the edges can be decisive when we
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have to distribute the information (by flow). Obviously, this is not reflected
by the density of a group that only counts how many edges there are over the
totals without specifying the way in which they are arranged.

In this work, we focus on this last idea of group, trying to identify groups
in which the information moved by the flow is important [4]. It is easy to find
many examples of this type of graphs in the field of social networks. For example,
Twitter is a directed network in which each arrow may indicate the number of
messages of i retweeted by j. Scientific reference pages such as Scopus, WOS or
Google Academic, are also directed networks in which each arrow may indicate
the number of times that author i has been cited by author j. In both cases, the
flow measures the influence of i over j. A metro or a road network are also two
examples of directed networks whose community structure depends on the flow.

The key is to find the way to incorporate this group definition into community
detection problems. The use of fuzzy sets in social network analysis problems,
and in particular, in community detection problems, is not new [10,11,13,23,
26,27]. Due to the way in which imprecision is modelled, fuzzy sets appear in
a natural way when modelling real problems. In this sense, this paper proposes
the use of fuzzy measures or capacity measures [7,25] to measure the relative
strength of a group, according to the ability of their members to communicate
among them. The more flow the members can send, the more cohesive the group
will be.

Once the graph and the fuzzy measure are modelled, in this paper we provide
a very efficient algorithm that combines the two class of information (the network
and the fuzzy measure), allowing us to identify groups in which the idea of flow
is considered. The proposed method may also be useful in the size reduction of
large scale fuzzy cognitive maps [14], since their structure is a weighted directed
digraph.

The rest of the paper is organized as follows. In Sect. 2 we introduce some
basic definitions about community detection problems and fuzzy measures back-
ground. In Sect. 3 we introduce a new fuzzy measure related to the flow of a
directed network. In Sect. 4 we propose an algorithm to deal with community
detection problems with fuzzy measures in directed networks. Finally, some con-
clusions and future research are shown in Sect. 5.

2 Preliminaries

In this Section we introduce several concepts, definitions and algorithms neces-
sary to have a proper understanding of this paper.

2.1 Community Detection Problems in Directed Networks Based
on Density

Definition 1. Directed Network [18]. A directed network is a set of individ-
uals connected together, in which all the edges are directed from one individual to
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another. A directed network is usually represented by a graph G = (V,E), where
V is the set of individuals, called nodes or vertices, and E = {(i, j)| i, j ∈ V } is
the set of ordered pairs of V × V , which are directed edges connecting pairs of
nodes (i, j). Another way to represent directed graphs or networks is by means
of its adjacency matrix, A, defined as follows:

Aij =
{

1 if (i, j) ∈ E, ∀i, j ∈ 1, . . . , |V |
0 otherwise

where 1 represents the directed edge which connects i with j.

Then, let us recall the definition of community detection problems. Given a
graph, this type of problem consists in finding a ‘good’ partition for the input set
of individuals. The notion of ‘good’ may be different depending on the interests of
each problem. Many measures have been proposed in the literature to quantify
the goodness of a partition [16]. One of the most popular is the modularity,
introduced by Girvan and Newman [22] for non-directed networks. This measure
has been adapted to directed networks.

Definition 2. Directed Modularity Qd [1]. The modularity is a quality
function to measure the goodness of a partition. Let G be a directed graph and
P a partition of the nodes. The directed modularity is defined as:

Qd(G,P ) =
1
m

∑
i,j

[
Aij − kin

i kout
j

m

]
δ(ci, cj) (1)

where δ(ci, cj) is 1 if i belongs to the same group than j, and 0 otherwise, m is
the amount of edges, and kin

i and kout
i are the in/out edges of node i.

There are many methods to deal with community detection problems
[3,8,21]. Particularly, we focus on one of the most popular methods: Louvain
Algorithm [2]. Because of its effectiveness and speed, it is one of the most used
algorithms. It is based on modularity optimization, and works very well in large
networks.

2.2 Fuzzy Measures, Directed Fuzzy Graphs, Extended Fuzzy
Directed Graphs

Definition 3. Fuzzy Measure [25]. Given a finite set V , a fuzzy measure is a
function μ : 2V −→ [0, 1] that is monotonous (∀A,B ⊆ V such that A ⊆ B) and
normalized (μ(V ) = 1), and that satisfies the boundary condition (μ(∅) = 0).

A characteristic of fuzzy measures is their k-additivity [12]. Particularly in
this paper, we work with 2-additive fuzzy measures, so let us characterize them.

Definition 4. 2 − additive fuzzy measure [12]. The fuzzy measure μ : 2V

−→ [0, 1] is said to be 2-additive if and only if, ∀S ⊆ V , it can be written as
a linear combination μ(S) =

∑n
i=1 aixi +

∑
{i,j}⊂A aijxixj, where xi = 1 if i ∈

S and xi = 0otherwise.
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Then, let us recall the notion of extended fuzzy graph, firstly introduced for
non-directed networks in [13].

Definition 5. Extended Fuzzy Graph [13]. Let G = (V,E) be a graph, and
let μ : 2V −→ [0, 1] be a fuzzy measure defined over the set of nodes. The
triplet G̃ = (V,E, μ) obtained from considering together the graph with the fuzzy
measure, is called extended fuzzy graph.

Note that this structure is much more complex than a fuzzy graph [23].
Fuzzy graphs could be somehow seen as weighted graphs, as the only available
information is provided by their edges and their membership degree.

3 Fuzzy Measures from a Directed Networks: The Flow
Capacity Measure

Classical community detection problems just consider the topological informa-
tion provided by the adjacency matrix of networks. Other evidences, such as
that given by the flow of the graph, have not been previously considered when
dealing with this type of problems. Then, in this Section we propose a way to
use the flow in community detection problems. To deal with it, we propose the
use of a fuzzy measure which models the relative flow, by means of the weight of
the edges. This weight represents the different degree of communication ability
of each link, something obvious in real-life problems, in which different relations
may have different importance. Then, we give a group idea related to the flow.

Definition 6. Let G = (V,E) be a directed graph, let (i, j) be an edge, and let
fij be the flow between nodes i and j in G [9]. Then, ∀S ⊆ V , we define the

function: μF (S) =
∑

i,j∈S fij
∑

i,j∈V fij
.

As a capacity measure, μF represents the communication capacity within a
set of nodes of a directed network.

Proposition 1. The function μF introduced in Definition 6 is a fuzzy measure.

Proof. We will verify that μF meets the points mentioned in Definition 3.

1. μF (∅) = 0 Trivial.
2. μF (V ) = 1 due to normalization.
3. Let A ⊆ B ⊆ V . Then,

μF (B) =
∑

i,j∈B fij
∑

i,j∈V fij
=

∑
i,j∈A fij+

∑
i,j∈B\A fij

∑
i,j∈V fij

=
∑

i,j∈A fij
∑

i,j∈V fij
+

∑
i,j∈B\A fij

∑
i,j∈V fij

=

μF (A) + μF (B\A) ≥ μF (A), since for all i, j ∈ V , fij ≥ 0.

Proposition 2. The fuzzy measure μF introduced in Definition 6 is a 2-additive
fuzzy measure [12].
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Proof. We will verify that μF (S) can be defined as a linear combination:

μF (S) =
n∑

i=1

aixi +
∑

{i,j}∈V

aijxixj

where xi = 1 if i ∈ S and xi = 0 otherwise.
Let us define: ai = fii∑

l,m⊆V flm
, and aij = fij+fji∑

l,m⊆V flm
. Then, we can write:

μF (S) =
n∑

i=1

fii∑
l,m⊆V flm

xi +
∑

{i,j}∈V

fij + fji∑
l,m⊆V flm

xixj

Once we have the fuzzy measure μF which models the ability of the flow in
a directed network, here we propose to build the graph associated with it, GµF .
To carry on with it, we work with the interaction index proposed by Grabisch
[12]. Let us denote μS := μ(S).

Definition 7. Interaction Index [12]: Let V be a finite set, and let μ be a
fuzzy measure defined over it. Let {i, j} ∈ V . The interaction index introduced
by Grabisch, Iij is defined as:

Iij =
n−2∑
k=0

ζk
∑

K⊂V \{i,j}
|K|=k

(μijK − μiK − μjK + μK) (2)

where ζk = (n−k−2)!k!
(n−1)! = 1

(n−2
k )(n−1)

Given two items i, j, the interaction index related to a fuzzy measure, repre-
sents a class of dependency/association in the global capacity. In this way, it is
possible to construct a valued graph from a fuzzy measure which defines these
dependencies. In [13], this was the way in which the fuzzy measure was taken
into account for the community detection problem. We would like to emphasize
that the capacity measure will be taken into account in the clustering problem
thanks to the interaction index that will force some nodes to be in the same
group while others separated.

Proposition 3. Let G = (V,E) be a directed graph whose related flow function
is f , and let μF be the fuzzy measure introduced in Definition 6. Then:

Iij =
fij + fji∑
l,m∈V flm

(3)

Proof. From equation (2), we can rewrite the components of μF as:
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μF
ijK =

∑
l∈K
l�=i,j

∑
s∈K
s �=i,j

fls∑
r,m⊆V frm

+
∑

l∈K
l�=i,j

fli + fil∑
r,m⊆V frm

+
∑

l∈K
l�=i,j

flj + fjl∑
r,m⊆V frm

+
fij + fji∑
r,m⊆V frm

μF
iK =

∑
l∈K
l�=i,j

∑
s∈K
s �=i,j

fls∑
r,m⊆V frm

+
∑

l∈K
l�=i,j

fli + fil∑
r,m⊆V frm

μF
jK =

∑
l∈K
l�=i,j

∑
s∈K
s �=i,j

fls∑
r,m⊆V frm

+
∑

l∈K
l�=i,j

flj + fjl∑
r,m⊆V frm

μF
K =

∑
l∈K
l�=i,j

∑
s∈K
s �=i,j

fls∑
r,m⊆V frm

Hence, transcribing and reducing:

Iij =
∑n−2

k=0
ζk

∑
K⊂V \{i,j}

|K|=k

[ ∑
l∈K
l�=i,j

∑
s∈K
s �=i,j

fls∑
r,m⊆V frm

+
∑

l∈K
l�=i,j

fli + fil∑
r,m⊆V frm

+
∑

l∈K
l�=i,j

flj + fjl∑
r,m⊆V frm

+
fij + fji∑
r,m⊆V frm

−
∑

l∈K
l�=i,j

∑
s∈K
s �=i,j

fls∑
r,m⊆V frm

−
∑

l∈K
l�=i,j

fli + fil∑
r,m⊆V frm

−
∑

l∈K
l�=i,j

∑
s∈K
s �=i,j

fls∑
r,m⊆V frm

−
∑

l∈K
l�=i,j

flj + fjl∑
r,m⊆V frm

+
∑

l∈K
l�=i,j

∑

s∈K
s �=i,j

fls∑
r,m⊆V frm

]
=

∑n−2

k=0
ζk

∑
K⊂V \{i,j}

|K|=k

fij + fji∑
r,m⊆V frm

=
∑n−2

k=0

1(
n−2
k

)
(n − 1)

(
n − 2

k

)
fij + fji∑
r,m⊆V frm

=
∑n−2

k=0

1

n − 1

fij + fji∑
r,m⊆V frm

=
fij + fji∑
r,m⊆V frm

= Iij

In the classical definition of the interaction index, the order of the elements
i and j in the pair {i, j} has no significance. Then, we propose an adaptation of
it, in order to consider those cases in which this order is important.

Definition 8. Directed Interaction Index. Let G = (V,E) be a directed
graph whose related flow function is f . Let μ be a fuzzy measure defined over
the set of nodes, V . Given a pair of ordered nodes (i, j), where i, j ∈ V , we
define the directed interaction index IDij as:

IDij =
fij∑

l,m∈V flm
(4)

From previous definition, we can trivially see that ∀i, j, i �= j, Iij = IDij + IDji .
Then, the adjacency matrix of the GµF is the matrix ID.

Let us illustrate the calculation of μF and ID with a toy example.
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Fig. 1. Directed chain with 12 nodes.

Example 3.1. We evaluate a simple example of a chain with 12 nodes, as it is
drawn in Fig. 1. Let us assume that the weight of all the edges is 1. Then, we
calculate μF and ID.

In this example we calculate the fuzzy measure μF which, as it is shown
previously, is 2-additive. Therefore, we only have to calculate it for those subsets
of V with cardinality one and two. We also calculate the directed interactions,
ID. See Fig. 2.

As it can be seen in matrix ID, the node 7 is the only that can communicate
with the rest of nodes. At the same time, it is appreciable how this chain is divided
by means of its flow values. The nodes 6, 5, 4, 3 and 2 only can communicate
with the node with which the related flow reaches the lowest value. In the same
way, 8, 9, 10, 11 can connect with the node with which the related flow reaches
the highest value. On the other hand, 1 and 12 are isolated. Also, let us observe
that in both matrices, the blanks mean 0, in Fig. 2.

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1 1

1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

µF ({i, j}) = 1
36

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1
1 1
1
1 1 1 1 1
1 1 1 1
1 1 1
1 1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

IDij = 1
36

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1 1
1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

1 1 1 1
1 1 1
1 1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 2. Adjacency matrix A, μF and interaction matrix ID of directed chain.

4 Community Detection Problems with Capacity
Measures in Directed Networks

In the previous Section, we have defined a fuzzy measure that represents the
flow capacity of a group in a directed network. In this Section, we will take it
into account to find communities in directed networks. The idea of using fuzzy
measures in community detection problems was firstly introduced in [13] for non-
directed graphs. There it is shown that the original concept of group/community
change when a fuzzy measure is also considered, apart from the connections
among nodes.
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As we have pointed out in the introduction, our aim is to identify groups in
which the idea of flow is considered. It is important to note that the modular-
ity measure introduced in [20] for directed networks does not consider the flow.
Then, as a natural consequence, any algorithm based on modularity optimiza-
tion, will not be suitable for searching communities based on the flow. In order
to show this fact with more emphasize, we propose another expression for the
modularity formula.

Let G = (V,E) be a directed graph, let S ⊆ V , and let P = {C1, . . . , CL} be
a partition of the set of nodes. Here we introduce some notation:

– Kin
S =

∑
i∈S

kin
i , the number of links that goes to any node of S.

– Kout
S =

∑
i∈S

kout
i , the number of links that goes out from any node of S.

– mS =
∑
i,j∈S

Aij , the number of links among the members of S.

Now, we can consider another expression of directed modularity [1] intro-
duced by Newman for a given partition P = {C1, . . . , CL}.

Qd(G,P ) =
1
m

L∑
l=1

∑
i,j∈Cl

[
Aij − kin

i kout
j

m

]
=

1
m

L∑
l=1

[
mCl

− Kin
Cl

Kout
Cl

m

]
.

From previous expression we can see that, fixed the edges in a group, the
distribution and localization have not any impact in the modularity measure.
The reason is that the important things of the measure are: the number of links
inside the group, the number of links that goes from one element of the group
to another (of the group or not), and the number of links that influences any
member of the group (the origin of each link has no significance). In following
example, we show it in detail.

Example 4.1. Let us consider three directed graphs, Gi = (Vi, Ei) for i =
1, . . . , 3, where |V1| = |V2| = |V3| = 6 and |E1| = |E2| = |E3| = 5.

Let us denote V1 = {1, 2, . . . , 6}, V2 = {7, 8, . . . , 12}, and V3 =
{13, 14, . . . , 18}. We assume that the graphs G1 and G3 are two directed stars
(with hubs 1 and 13) and let us suppose that G2 is a 6-directed chain.

Let E1 = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}; E2 = {(7, 8), (8, 9), (9, 10),
(10, 11), (11, 12)} and E3 = {(13, 14), (15, 13), (13, 16), (13, 17), (13, 18)} be the
sets of edges of these graphs, respectively.

Then, we present the following networks built from the aggregation of two of
the previous graphs. G12 = (V1 ∪ V2, E1 ∪ E2 ∪ {(6, 7)}); G32 = (V3 ∪ V2, E3 ∪
E2 ∪ {(18, 7)}); G13 = (V1 ∪ V3, E1 ∪ E3 ∪ {(6, 13)}) (Fig. 3).
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Fig. 3. Two directed stars and a 6-directed chain.

If we break these networks as P12 = {V1, V2}; P32 = {V3, V2}, P13 = {V1, V3}
the modularity of each graph is:

Qd(G12, P12) =
1
m

∑
i,j∈V1

[
Aij − kin

i kout
j

m

]
+

1
m

∑
i,j∈V2

[
Aij − kin

i kout
j

m

]

=
1
11

[
5 − 30

11

]
+

1
11

[
5 − 30

11

]
=

25
121

+
25
121

Qd(G32, P32) =
1
m

∑
i,j∈V3

[
Aij − kin

i kout
j

m

]
+

1
m

∑
i,j∈V2

[
Aij − kin

i kout
j

m

]

=
1
11

[
5 − 30

11

]
+

1
11

[
5 − 30

11

]
=

25
121

+
25
121

Qd(G13, P13) =
1
m

∑
i,j∈V1

[
Aij − kin

i kout
j

m

]
+

1
m

∑
i,j∈V3

[
Aij − kin

i kout
j

m

]

=
1
11

[
5 − 30

11

]
+

1
11

[
5 − 30

11

]
=

25
121

+
25
121

Therefore, taking into account the inconveniences we found to get a ‘good’
partition with the current method, we introduce a capacity measure algorithm
based on flow which will find clusters with maximum flow.

We propose a modification of Directed Louvain Algorithm [5,17] to work
with extended fuzzy directed graphs denoted as Flow Capacity Louvain.

Let us define some concepts related to the Algorithm 1:

– ΔQd
i (j) is the increase in modularity when node j is incorporated into the

community of i.
– A is the adjacency matrix, which has to guarantee the connections among the

nodes.
– ID is the directed interaction matrix.
– α ∈ [0, 1] parameter of importance [13] which assigns a weight to each part

of the extended fuzzy directed graph.
– M = αA + (1 − α) ID is the matrix in which we search the partition, by

maximizing its modularity.

Let us illustrate the performance of Flow Capacity Louvain Algorithm.
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Algorithm 1. Flow Capacity Louvain input=A output=P

1: Phase 1.
2: o = permutation(V )
3: Let each node of the graph be an isolated community
4: while There is some change in modularity optimization do
5: According to the order given by o, let i be the corresponding element.
6: Then, find all out-edges j and in-edges j of i in A
7: Calculate ΔQd

i (j) in matrix M = αA + (1 − α)ID

8: Let j∗ be the node for which ΔQd
i is maximum

9: if ΔQd
i (j

∗) > 0 then
10: Move node i to the community to which j∗ belongs
11: else
12: i remains in its community
13: end if
14: end while
15: Phase 1 Ends
16: Phase 2.
17: A∗ is the aggregated matrix obtained from A, whose nodes are the communities

found in Phase 1
18: M∗ is the aggregated matrix obtained from M, whose nodes are the communities

found in Phase 1
19: While there is some change, apply Flow Capacity Louvain Algorithm, considering

matrix A∗ to find nodes and M∗ to modularity optimization
20: Phase 2 Ends

Example 4.2. Let us recall the graph introduced in Example 3.1. The partition
P1 obtained with the directed Louvain’s algorithm divides this chain in three
parts. The central cut {5, 6, 7, 8} has a bad behavior on flow (the modularity of
ID is not good). However, the partition P2 obtained with Flow Capacity Louvain
Algorithm (with α = 0.5), defines 2 slices, both with good behavior on flow. All
results can be seen in the Table 1.

Table 1. Modularity of several partitions of the chain.

Clustering classification according to chosen cut

Directed Louvain P1 = {{1, 2, 3, 4}; {5, 6, 7, 8};
{9, 10, 11, 12}}

Qd(A,P1) = 0.496 Qd(I
D, P1) =

0.222

Flow capacity P2 = {{1, 2, 3, 4, 5, 6};
{7, 8, 9, 10, 11, 12}}

Qd(A,P2) = 0.413 Qd(I
D, P2) =

0.347

Example 4.3. Let us consider three directed circles (1, . . . , 6), (1′, . . . , 6′) and
(1′′, . . . , 6′′). The graph of Fig. 4 is obtained by connecting each vertex of the first
circle with its corresponding node of the second circle, and each vertex of the third
circle with its corresponding node of the second circle. The interaction matrix ID

and the adjacency matrix A are represented in the Fig. 5. Let us consider that
the weight of all the edges is 1. This structure can approach a wheel.
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Fig. 4. Directed wheel with 18 nodes.

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1 1
1 1
1 1
1 1

1 1
1
1
1
1
1

1
1 1
1 1
1 1
1 1
1 1
1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ID = 1
252

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 2 2 2 2 2 2
1 1 1 1 1 1 2 2 2 2 2 2
1 1 1 1 1 1 2 2 2 2 2 2
1 1 1 1 1 1 2 2 2 2 2 2
1 1 1 1 1 1 2 2 2 2 2 2
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Fig. 5. Adjacency matrix A and Directed Interaction matrix ID of directed wheel.

On this occasion, considering Louvain Algorithm [2], there are several par-
titions which maximize the modularity, cutting the wheel into three triangular
zones. One of these partitions with maximum modularity in A is the cut P1. In
contrast, the modularity related to the flow (ID) which is associated to P1, is 0.
Nevertheless, considering Flow Capacity Louvain Algorithm (with α = 0.5), the
obtained partition P2 guarantees a high but not maximum modularity in A, and
a maximum modularity in ID. All the results can be seen in Table 2.

In this example, it is clearly seen how maximizing directed modularity does
not achieve groups that maximize flow.

Let us remark that, in all these examples, we have assumed that the weight of
all the edges is 1. Nevertheless, if we incorporate different weights, our algorithm
will work correctly since Louvain Algorithm does.
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Table 2. Modularity of several partitions of the wheel.

Clustering classification according to chosen cut

Directed Louvain P1 = {{1, 1′, 1′′, 2, 2, 2′′};
{3, 3′, 3′′, 4, 4′, 4′′}
{5, 5′, 5′′, 6, 6′, 6′′}}

Qd(A,P1) = 0.367 Qd(I
D, P1) = 0

Flow Capacity P2 = {{1, 2, 3, 4, 5, 6};
{1′, 2′, 3′, 4′, 5′, 6′}
{1′′, 2′′, 3′′, 4′′, 5′′, 6′′}}

Qd(A,P2) = 0.320 Qd(I
D, P2) = 0.204

Moreover, we would like to mention that Flow Capacity Louvain Algorithm
complexity will be the highest between maximum flow among all pairs of nodes
and Louvain Algorithm complexity [2,6].

5 Conclusions

Contrary to the non-directed networks case, the idea of a group/community in
directed networks allows different interpretations depending on the objective of
the clustering problem. In general, most community detection algorithms for
directed networks focus on the idea of group by density, or in the idea of random
walker group. Few works have been developed to identify groups in which the idea
of the flow group is considered. In this paper, we deal with the flow community
detection problem that tries to find communities in which not only it is impor-
tant to potentiate communities with many connections among its members, but
also it is important to maintain together these connections that allow the flow
of information among its members. It is important to note that the measure of
modularity proposed by Newman for directed networks finds communities with
high density but not necessary well connected, regarding the flow. As we show
with some examples in this work, modularity (and, as a consequence any opti-
mization algorithm based on it), does not distinguish between different situations
in which it is necessary to add some information to identify communities.

In order to take into account the flow capacity of a group, we incorporate to
the community detection problem a 2-additive fuzzy measure that represents the
relative flow capacity of each set of nodes. Then, following a similar methodology
as that introduced in [13], we propose a modification of the Directed Louvain
Algorithm [5,17] in order to incorporate the information provided by a fuzzy
measure to the community detection algorithm in directed networks. Our pro-
posal, Flow Capacity Louvain Algorithm, can consider, analyze and apply the
information defined by a fuzzy measure when finding a partition in a directed
network. Particularly, we propose to consider the fuzzy measure μF introduced
in Sect. 3. Under the assumption of the new group definition based on the flow,
we show that this algorithm provides very good results. As further work, we
will develop an experimental study to test the efficiency of the algorithm here
proposed, as well as an analysis of the processing time and memory usage of it.
We will also work in some computational results, considering several benchmark
models apart from the examples that we have included in this paper.
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Abstract. Processing sequential data and time-dependent data is a problem of
constructing computational graph with a certain structure. A computational
graph formalizes the structure of a set of computations including mapping
temporal inputs and outputs. In this paper we apply graph theory and fuzzy
interval representation of uncertain variables to indicate states of the temporal
scheduling system. Descriptive model for temporal reasoning on graph,
sequence modelling and ordering of fuzzy inputs for scheduling problem is
introduced.
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Fuzzy temporal intervals � Temporal reasoning � State-transition system

1 Introduction

Temporal reasoning and temporal knowledge representation are the problems of
introducing relations between elements or events in time with respect to known
information and precedence relations between those events. Fuzzy temporal reasoning
can be divided in two main approaches, depending on how time is represented:
quantitative and qualitative. The quantitative approach is relevant when temporal data
and temporal stamps are available and extracting new knowledge is necessary, while
qualitative approach investigates relative fuzzy relations between elements or events -
such as event A happens before event B, event C happens during event B and one
needs to produce inferences on the known temporal facts.

Within both approaches there are two main problems to be solved: how to represent
basic fuzzy units of time and handle it (how to “quantify time and measure it”) and how
to represent fuzzy relationships between basic units of time (how to “sequence events
and locate them”). A number of different approaches exist to handle both of these
problems: topological ordering techniques and algorithms, Allen’s crisp interval
algebra [1, 2], fuzzy intervals [3] and probabilistic intervals, computational graphs,
state-variable representation [4] and sequence modelling techniques. These approaches
are at the basis of proposed extensions to knowledge representation on, for example,
the world wide web (see, e.g. [5]).
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Measurement of time means the measurement of the uncertain temporal duration of
events or “start-start” or “start-finish” fuzzy intervals, while specification means
locating these events within the timeline and sequencing them. Locating an event in the
time series means in the first instance locating it relative to other events.

2 Fuzzy Sequence Modelling and Temporal Interval
Knowledge Representation

Usually we refer to sequence modelling when we use recurrent neural networks, or
RNNs as a family of neural networks for processing sequential data. Sequence mod-
eling in scheduling is the problem of predicting what event comes next: the current
output is dependent on the previous input or state. In this paper we suggest temporal
knowledge representation and sequence modelling technique for scheduling on a fuzzy
graph.

The most traditional framework for handling the qualitative relations between time-
dependent intervals is Allen’s Interval Algebra, or Interval Algebra (IA), formalized for
the first time in [2]. The basic idea of IA is modelling temporal events as intervals, that
have a starting and a finishing points in time. Based on this idea, 13 different temporal
relations may be introduced between any given pair of events.

Table 1 shows the 13 relations between events performance, formalizing them with
logical constraints (x– denotes the left end of the time interval x and x+ denotes the right
end of x).

Temporal ordering of events may be expressed in terms of precedence relations and
can be represented in the form of a graph, forming a type of graph that is called a
temporal interval graph. However, in the real world, the actual start and finish times of

Table 1. Precedence relations between events according to Allen’s Interval Algebra.

Basic precedence relations Graphical illustration Formal notation

x before y
y after x

<
>

xxxx
yyyy

x+ < y–

x meets y
y is met by x

m
m*

xxxx
yyyy

x+ = y–

x overlaps y
y is overlapped by x

o
o*

xxxx
yyyy

x– < y– < x+

x+ < y+

x during y
y includes x

d
d*

xxx
yyyyyyy

x– > y–

x+ < y+

x starts y
y is started by x

s
s*

xxx
yyyyyyy

x– = y–

x+ < y+

x finish y
y is finished by x

f
f*

xxx
yyyyyyy

x+ = y+

x– > y–

x equals y � xxxx
yyyy

x– = y–

x+ = y+
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many events may be hard to define, and so, in the fuzzy temporal interval graph,
relations between events are defined in terms of degrees of truth, allowing multiple
relations between elements at the same time. Figure 1 illustrates this kind of fuzzy
graph relations between events.

The truth value of a relation is the degree of “existence” of that relation, varying
from 0 to 1. For example, In Fig. 1, Event-2 and Event-4 are related with propositions
precedes(Event-2, Event-4, 0.7), or relations like meets(Event-2, Event-3, 0.6). Fuzzy
edge between any two events is defined by a tuple that may be composed of multiple
truth values for different fuzzy precedence relations.

The quantitative analysis for fuzzy temporal data can be done with the help of fuzzy
interval representation of the areas near the edge of the interval that have less mem-
bership in the time-unit than the ones near the center, or simply fuzzy membership
function. Gradual numbers as elements of fuzzy intervals were introduced as tools for
computations on fuzzy sets, usually associated with combinatorial optimization and
monotonic function evaluation.

Definition 1. Let X denote a set, then a fuzzy set ~A on X is a set of ordered pairs ~A ¼ x;ðf
l~A xð Þ : x 2 XÞg, where the membership function l~A xð Þ : X ! 0; 1½ � is a map from set
X into the set of possible degrees of memberships with l~A xð Þ ¼ 1 indicating full
membership, l~A xð Þ ¼ 0 indicating non-membership.

The a-cut of a fuzzy set is the set fxjl~A xð Þ� ag and is denoted as ~Aa.

Definition 2. A fuzzy interval M, defined by its membership function lM �ð Þ, is a fuzzy
subset of the real line such that, if 8 x; y; zð Þ 2 R

3, z 2 x; y½ �, then lM zð Þ�
min lM xð Þ; lM yð Þð Þ [6].

Event 1

Event 3

Event 2

Event 4

Event 5

(during=0.8, starts=0.2)

(precedes=0.7, meets=0.3)(meets=0.6, overlaps=0.4)

Fig. 1. Qualitative fuzzy relations between events in graph.
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A fuzzy interval M is normal iff 9x 2 R such that lM xð Þ ¼ 1. A fuzzy interval is a
normalized fuzzy set whose membership function is upper-semicontinuous and whose
a-levels are convex.

Definition 3. The set fxjlM xð Þ ¼ 1g is the core of a fuzzy interval (Fig. 2). As fuzzy
intervals are assumed to be normal, fuzzy intervals with membership functions and the
a-cut of a fuzzy interval can be stated as follows: Ma ¼ fxjlM xð Þ� a� 0g.

Let M1 ¼ fxjlM xð Þ ¼ 1g and M1 ¼ m�
1 ;m

þ
1

� �
is the core of a fuzzy interval, then

its support is an open interval:
M0 ¼ closure x lM xð Þ[j 0f g ¼ closure m�

0 ;m
þ
0

� �� � ¼ m�
0 ;m

þ
0

� �
and lM is non-

decreasing on �1;m�
1

� �
and lM is nonincreasing on mþ

1 ; þ1� �
.

For practical purposes and ease of their use fuzzy intervals can be presented as left
and right parts, or L-R representation of fuzzy interval [7]. Fuzzy interval can be
defined by its membership function lM, core m�;mþ½ �, a support m� � aM ;mþ þ bM½ �
as well as L and R reference functions as follows:

lM xð Þ ¼
1 for x 2 m�;mþ½ �;
L m��x

aM

� 	
for x\m�;

R x�mþ
bM

� 	
for x[mþ :

8
>><

>>:
ð1Þ

In the literature of fuzzy optimization, the idea of fuzzy solution was introduced by
Verdegay [9], who pays special attention to duality among fuzzy constraints and fuzzy
objectives in fuzzy linear mathematical programming problems. Recently several

1

0
Time

Mμ

b~e~
Earliest start Latest start

)~[ +∞e
]~,( b−∞

optimistic
pessimisticcore

Fig. 2. Interval L-R representation for earliest and latest activity starting dates for a scheduling
problem.
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investigations were done by Dubois, Fargier and others [8, 10, 11] about the notion of
fuzzy elements and interval analysis for optimization methods. In this paper we suggest
using fuzzy interval representation and gradual numbers for scheduling problems to
deal with uncertainty in operational planning. Fuzzy interval here is the interval that
reflects incomplete knowledge about some parameter that lies between two bounds, so
that a value within the interval is possible and a value outside is impossible. Making
uncertainty gradual means making the boundaries of the interval softer, and so fuzzy
boundaries of fuzzy intervals should be gradual [6].

Definition 4. A gradual number ~r, is defined by a function, called the “assignment
function” A~r : 0; 1ð � 7!R. Then for each a, a real value ra is given by A~r að Þ. A gradual
real number can be understood as a real value parametrized by a.

Let l�M and lþ
M be the parts of the membership function of a fuzzy interval M. They

are functions from the real line to [0, 1], respectively, defined on m�
0 ;m

�
1

� �
and

½mþ
0 ;mþ

1 �. These functions are injective (l�M is increasing and lþ
M is decreasing) and

ðl�MÞ�1 að Þ and ðlþ
M Þ�1 að Þ are their inverse functions and the endpoints of the a-cut of

M. The domain of a gradual number is defined as (0, 1] so that it represents all the
possibility degrees for which the a-cuts are defined. Fortin, Dubois and Fargier treated
fuzzy interval as a set of gradual numbers that lie between two gradual number end-
points in the same way that a real interval can be treated as a set of real numbers that lie
between two real endpoints [6].

In this paper we suggest interpreting fuzzy interval M for earliest and latest starts of
events as an interval with the a-cut mapping a ! Ma as an assignment function from
(0, 1] to the set of intervals.

Usually most algebraic properties of real numbers are preserved for gradual
numbers, comparing with fuzzy intervals, but gradual real numbers are not totally
ordered [6]. Using gradual numbers, we can introduce a fuzzy interval M for event
performance by an ordered pair of gradual numbers ~m�; ~mþð Þ, where ~m� is called left
profile or earliest starting time of event, while ~mþ is the right profile or latest starting
time (so-called lower and upper bounds). Such profiles of fuzzy sets are piecewise
linear and can be easily implemented while estimating uncertain interval values, where
a fuzzy bound is a gradual number. Algebraic operations and algebraic status of gradual
numbers were discussed in several works [11–14] concerning graph-based scheduling
problems. Other applications of gradual numbers can be implemented in path of
maximal capacity problem, shortest path problem, allocation problems and other
optimization problems, which can be formalized as linear programming problems.

3 Interval Temporal Modelling and Project Scheduling
Problem

Usually a scheduling problem is characterized by precedence relations – an activity
cannot start before its preceding activities are not finished; temporal constraints – an
activity i cannot start before its earliest start ei and bi is the date after which activity
cannot be started without delaying the end of the project (latest start time); capacity
constraints – each activity i requires a certain level of resources for its execution at each
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moment t, those resources are limited and can be renewable and non-renewable. The
critical path method (CPM) is an algorithm for scheduling a set of project activities,
based on evaluation of temporal constraints. A critical path is determined by identifying
the longest path of dependent precedence-related activities and measuring the time
required to complete them from starting activity to finishing one.

Several main temporal variables need to be calculated based on temporal fuzzy
intervals for CPM, gradual formalization and precedence relations for scheduling
problem:

The earliest starting date ei of an event i or activity is the date before which it can’t
be started without violation of a precedence constraint.

The latest starting date bi is the date after which we cannot start the activity without
delaying the end of the project.

The float is the difference between the latest starting date and the earliest starting
date of the activity calculated as follows: fi ¼ bi � ei. An activity is considered to be
critical iff its float is null.

According to Critical Path Method approach to resource-constrained scheduling
problem we use a forward graph propagation to determine the earliest starting and
finishing dates (finally project duration and the free floats) and a backward graph
propagation to determine the latest starting and finishing dates.

Pij denotes the set of all paths from activity i to activity j, while T (pij) is the
temporal length of the path pij 2 Pij in graph, while the length of longest path is the
earliest starting date ei form starting activity 1 (sink) to activity i (target) so that the
following condition is true:

ei ¼ maxfT pij
� �jpij 2 Pijg: ð2Þ

The latest starting date is calculated as follows:

bi ¼ max T pij
� �jpij 2 P1;n

� ��max T pij
� �jpij 2 Pi;n

� �
: ð3Þ

CPM algorithm is based on the estimation of the longest possible continuous path
in the graph, taken from the initial event to the terminal event so that:

ei ¼ max ej þ djjj 2 Predi
� � ð4Þ

bi ¼ min bj � djjj 2 Succi
� �

; ð5Þ

where dj is the activity duration, Predi and Succi are the immediate predecessors and
successors of the activity i. For each activity i in the graph, the three functions
depending on the number of activities n are to be introduced: ei �ð Þ, bi �ð Þ and fi �ð Þ.
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For example, earliest starting time calculated by forward graph propagation is
increasing according to each argument:

~e�i ¼ max ~e�i þ ~d�i jj 2 Predi
� � ð6Þ

~eþi ¼ max ~eþi þ ~dþ
i jj 2 Predi

� �
: ð7Þ

Figure 3 illustrates fuzzy interval representation of temporal variable for earliest
and latest starting times of activity i.

However the recursive backward graph propagation approach to determine the
latest starting and finishing dates bi is not appropriate due to the nature of the uncer-
tainty that would be considered twice and the necessity to rank fuzzy numbers con-
stantly due to the technique itself. Finally fuzzy subtraction increases the imprecision in
the sense that the result of ~bi � ~di is more imprecise than ~bi or ~di separately. Therefore
variables ~bi and ~di are non-interactive. Dubois and Prade introduced the concept of
weakly non-interactive fuzzy numbers whose operations are based on the extension
principle corresponding to each t-norm in place of the minimum operator [15]. Based
on the idea of fuzzy interval calculations of floats and latest times, Zielinski introduced
polynomial algorithms for determining the intervals of the latest starting times in
scheduling networks and complexity results for floats [13].

Thus the fuzzy interval containing the float of activity i cannot be calculated by
subtracting the fuzzy earliest starting time from the fuzzy latest starting time.

In this paper we consider arithmetic on intervals of gradual numbers [17], which
uses the arithmetic on functions of the L-R profiles as a generalization of the real-
valued interval analysis.

1

λ

μ(t)

time

i-event

i

j-event

j

0

]+− m

Earliest start
Latest start

−
ie +

ie −
ib +

ib

Fig. 3. Interval L-R profiles for a fuzzy intervals as a gradual number representation for a
scheduling problem.
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4 State-Transition and Time-Oriented Modelling

A project scheduling problem (PSP) can be defined by a number of events or activities
representing different planning states of a project (or partial schedules) and a set of
precedence relations between events. The problem can be presented as an event-
network or a directed acyclic graph where vertices represent events while arcs illustrate
precedence constraints. The idea of a project manager is generally to minimize the
makespan of the project with respect to resources.

To perform an event, different kinds of resources may need to be assigned and
consumed. Time is a resource required by every action or event to be performed, but it
differs from other types of resources. We assume that every event performance pro-
duces an immediate transition from one state to another in the network, depending on
the previous states, so temporal models must specify every state at various points
during the project. General linear programming formulation of resource-constrained
fuzzy scheduling problems is given in [16].

Temporal modelling and scheduling usually presuppose constraints and deadlines,
events that may be expected to occur at future time periods and to be located in time
with respect to deadlines and resource usage. An actor usually needs predictive model
of its actions to decide what actions to do and how to do them. Thus, two types of
models can be introduced: descriptive and operational models, respectively.

Descriptive models of actions or events describe which state or set of possible states
may result from performing an action or event. Operational models describe how to
perform an action, to carry out an activity, what operation to execute in the current
context, and how to organize them to optimize the objective function using interval
graph representation. Fuzzy interval-valued graph or fuzzy intersection graph is a fuzzy
graph showing intersecting intervals on the real line so that each vertex is assigned an
interval and two vertices are joined by an edge if and only if their corresponding
intervals overlap.

Definition 6. By an interval-valued directed fuzzy graph of a graph ~G ¼ V ;Eð Þ we
mean a pair ~G ¼ A;Rð Þ, where A ¼ l�A ; l

þ
A

� �
is a left-right interval-valued fuzzy set on

the set of vertices V and R ¼ l�R ; l
þ
R

� �
is an interval-valued fuzzy relation on E.

Definition 7. A fuzzy interval M is defined by an ordered pair of gradual numbers
~m�; ~mþð Þ, where ~m� is called the fuzzy lower bound or left-profile and ~mþ is called
the fuzzy upper bound or right-profile, and A ~M is an assignment function.

Property 1. The domains of the assignment functions A~m� and A~mþ must be (0, 1].
Property 2. Assignment function A~m� must be non-decreasing and assignment

function A~mþ must be non-increasing.
Property 3. Lower and upper bounds ~m� and ~mþ must be such that A~m� �A~mþ for

all a-cuts.
The precise organization of a hierarchy of data structures and state representations

is a well-known area in computer science. Scheduling problems presuppose some
decisions about when and how to perform a given set of actions with respect to time
constraints, resource constraints and the objective function. They are typically NP-
complete.
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Definition 8. A State-transition system or planning domain is a 4-tuple R ¼
ðS;A; c; costÞ where:

S – is a finite set of states for the system,
A – is a finite set of actions to perform,
c – is a state-transition function, that gives the next state, or possible next states,
after an action or event, S� A ! S with c(s, a) being a predicted outcome.
Cost – is a partial function, S� A ! 0;1½ Þ having the same domain as c. The cost
function may represent monetary cost, time, or other resources to minimize

Each state of a system represents a time-oriented partial plan (schedule or interval-
valued graph) that is associated with a certain timeline. Figure 4 illustrates two-
dimensional state-time oriented model for a scheduling problem. State-oriented partial
schedule keeps the notion of the global states and transition between the states
(complete descriptions of the domain at some time point), while time-oriented profile
represents the dynamics as a collection of partial intervals or primitives in time.

Definition 9. The planning computational graph is a graph that consists of a number
of states corresponding to timeline and computations or number of actions made
according to the plan. Each state is associated with a number of inputs and outcome.
Planning graph is an approximation of a complete enumeration tree of all possible
states, actions and their results.

Figure 5 illustrates state-transition planning system, where each node represents the
state at some time t and actions that are to be made to map the state at t to the state at
t + 1. State-transition function c gives the next state, or possible next states, after an
action.

time

state

]~,~[ +− mm

1

2

3
4

5

6

Fig. 4. Interval two-dimensional state-time oriented model.
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Let’s consider the following notations:

St – the state of enumeration scheme for a certain partial schedule in moment t;
As – the set of activities for the certain s-state;
~sis �ð Þ;~cis �ð Þ – the start and finish interval times of activity i,

where ~ci �ð Þ ¼ ~si �ð Þþ ~di �ð Þ;
~di �ð Þ – fuzzy interval duration of activity i;
Planneds – set of already scheduled activities for the s-state;
Readys – set of suitable (active) to scheduling activities for the s-state with respect
to precedence relations;
ei �ð Þ – earliest precedence-feasible starting time of activity i;
Pred(i) and Succ(i) – the set of predecessor and successor activities for the i-activity

Having a discrete sequence of states, time constraints, sequence order and a number
of planning activities we can translate our scheduling problem into the computational
planning algorithm for the s-states as follows:

Step 1: Initialization.

Set s1 = 1; Dummy activity i1 ¼ 0; ~t :¼ 0; ~ss1 ¼ 0; Planneds1 = Ø;

Step 2: Updating sets of activities.

Increase state number s = s + 1.
Update set of scheduled activities: Planneds ¼ Planneds�1 [ is�1f g.
Compose the set of suitable activities:
Readys ¼ i 2 AnPlannedsjpred ið Þ	Plannedsf g.
If the last dummy activity is active, then nþ 1 2 Readys, then store the current

solution and go to Step 5. Else go to step 3.

Step 3: Selecting the next activity from the set Readys to be scheduled.

If there is no untested activity left in the set Readys then go to step 5,
Else select the next activity is 2 Readys.

Step 4: Computing the earliest precedence feasible starting time.

Compute the earliest precedence feasible starting time of the next activity:
ei �ð Þ ¼ max ~cis �ð Þji 2 pred isð Þf gþ 1. Go to Step 2.

(...)S )−tS )+tS (...)S)tS

A - actions

γ – state-transition 
function

Fig. 5. The classical state-oriented dynamic system illustrated as an unfolded computational
graph.
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Step 5: Backtracking.

Decrease the precedence state by 1: s = s − 1. If the precedence state s = 1, then
STOP.

Else go to Step 4.
For each state of enumeration scheme evaluates all possible partial schedules and

store the current solution until all the activities are scheduled. A detailed description of
multi-mode resource-constrained project scheduling problems with non-preemptive
activity splitting and the correspondent algorithms were given in [18].

5 Conclusion

In this work a new descriptive and operational model for temporal reasoning and
temporal knowledge representation of relations between activities in computational
graph have been introduced. In many situations involving computations with uncertain
fuzzy variables, fuzzy arithmetic and a number of computations should be made to
obtain feasible/optimal solution. In this paper we treat fuzzy intervals as crisp intervals
of gradual numbers. A state-transition model for a planning system was introduced and
the idea to apply unfolded computational graph to a planning system was proposed. On
a future research, this approach could be used in topology: the unfolding of the system
represents in a single branching structure all its possible computations, for example, in
fuzzy graph transformation systems. The topological distribution of a system thus can
be represented by a graph structure and the temporal dynamics of the system.

Acknowledgments. The reported study was funded by the Russian Foundation for Basic
Research according to the research project #20-01-00197.
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Abstract. We propose a systematic framework based on a dynamic func-
tional causal graph in order to capture complexity and uncertainty on
the financial markets, and then to predict the monthly direction of the
S&P500 index. Our results highlight the relevance of (i) using the hierar-
chical causal graph model instead of modelling directly the S&P500 with
its causal drivers (ii) taking into account different types of contexts (short
and medium term) through latent variables (iii) using unstructured for-
ward looking data from the Beige Book. The small size of our training data
is compensated by the a priori knowledge on financial market. We obtain
accuracy and F1-score of 70.9% and 67% compared to 64.1% and 50% for
the industry benchmark on a period of over 25 years. By introducing a hier-
archical interaction between drivers through a latent context variable, we
improve performance of two recent works on same inputs.

Keywords: Financial knowledge representation · Functional causal
graph · Prediction & informed machine learning

1 Introduction

Analyzing and predicting the dynamics of financial markets for investment
decision-making over a monthly/quarterly horizon is an old challenge both in
academy and in the asset management industry. The environment is complex,
uncertain and modeling must take into account many factors, including incom-
plete, noisy and heterogeneous information with almost 80% in unstructured
form [1,2].

The crucial parameter in this type of study is the prediction horizon. Indeed,
it is strongly linked to the investment objectives/horizon; the paradigm used for
modelling and the size of the training data. For the short-term (month/quarter)
prediction, the losses recorded during the financial crisis (2008), in addition to
all the previous ones have led many people to question the dominant paradigm.
The latter is based essentially on a rational assumption and a direct relationship
between S&P500 and a few causal drivers. In the literature, the solution for the
short-term prediction might be classified into three groups.
c© Springer Nature Switzerland AG 2020
M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1239, pp. 553–566, 2020.
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The first group of studies are those from [3–7]. The foundations of their app-
roach is based on pure rational argument and passive decision process without
prediction. They assume that markets are efficient and it is difficult to predict
the S&P500 index or to do better than a random walk. This solution serves as
a benchmark in dynamic or active management segments of the industry.

The second group [8–14] proposes a solution based on a direct relationship
(supervised algorithm) between S&P500 and a set of features from causal anal-
ysis or data mining. In [10,11], the authors found a direct relationship between
S&P500 and four causal variables. The features obtained serve as input for a
SVM model with innovation on the Kernel function in order to predict the
monthly direction of S&P500 over 2006 to 2014. The main weaknesses from this
group are: i) The weak predictions in an unstable environment; (ii) an adhoc
approach to select the causal variables, the omission of the context and hierar-
chical interaction between drivers; (iii) The mismatch between the drivers and
the prediction horizon.

The third group [13–17] is the most active at the moment and proposes: (i) to
use all potential numerical/textual drivers; (ii) a deep architecture for learning
representations directly on data. iii) and a prediction through deep supervised
algorithms. In [15,16], the authors use NLP and deep learning on daily financial
news to predict monthly direction of S&P500 without a priori knowledge. They
learn features and predict directly from the data. The findings of this group are
encouraging. However, a review we conducted on nearly 60 recent papers, the
prediction horizon was less or equal to one day and more than 80% were tested
on a very short period (less than 2 years). This prediction horizon (minutes,
hours,..) has the advantage of providing a large training sample1 but resolves
a specific type of problem (high frequency transactions on financial markets),
which are totally different from the problematic of monthly prediction.

The difference in terms of objectives, investment horizons, as well as the lack
of validated studies over longer periods which will reflect the multiple changes in
market regimes, make the notion of the state of art somewhat confused. Although
there are a few names in the industry known for their ability to do better than the
benchmark, recent studies and statistics [18,19] show it is difficult to conclude
that one approach dominates the others.

In this paper, we propose a solution for a dynamic decision-making process
based on the monthly prediction of the S&P500 index. The investor has an
investment horizon of less than one year and uses a dynamic framework which is
updated on a monthly basis. This frequency is also that of the publication and
update of economic and financial information.

In order to reach our objectives, our contributions are threefold.

– Firstly, we combine our expertise with those of many studies in order to create
the structure of a functional causal graph with four levels of the dynamics of
the S&P500. Thus, we avoid learning this structure on small size and unstable
data. Instead, we learn the distributional representation of latent variables

1 data collected every second or minute.
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(short/medium term context) from an unsupervised method (auto-encoder,
similarity, rules). Level 1 includes observable causal variables, then a priori
causal functional relationships allow the link with other 3 levels. The latent
variables at the last level serve as features for a classifier.

– Secondly, we use unstructured forward looking data (1970–2019) in order to
characterize the state of the business cycle. [15,16,20] confirmed the relevance
of using unstructured daily data or events on companies published in 8-k
form2. But the tests are conducted over short periods (24 months) and the
aim was not to propose an effective decision-making process.

– Lastly, we perform a systematic validation and comparison with industry’s
benchmark over 25 years, as well as four sub-periods known as unstable and
difficult to predict. We also make some comparison with other studies in the
literature, which we formulated as special cases of our solution.

The remainder can be seen into four points: the description of the functional
causal graph, the methodology for learning the representation of latent variables,
the experiments with empirical results, finally the conclusion and future work.

2 Stock Market Dynamic via a Causal Functional Graph

Predicting S&P500 direction on the monthly horizon is formulated as a binary
supervised classification task:

yS&P500
t+1 = f(Vt) (1)

where yS&P500
t+1 is the monthly price direction to be predicted (Up/Down), Vt the

vector of features characterising the period t, derived from a functional causal
graph (Fig. 1 and 2) of the dynamics of the S&P500 and f represents a classifier.

We describe the causal process of the dynamics of S&P500 through a causal
functional graphwith two essential goals: i) representing causal interactions (direct
or hierarchic, linear or non-linear, static or dynamic,..) between short, medium
and long term drivers, ii) learning dynamic embedding from temporal interactions
between drivers. The a priori graph structure lies on two main source of knowl-
edge. More than 50 years of literature on the financial markets (financial economic
theory, behavioral finance, fundamental analysis, market microstructure, techni-
cal analysis), and our 15 years of experience in the conception/implementation of
solutions for dynamic and tactical asset allocation.

Figure 1 describes different theories and the hierarchical top down interaction
between long, medium, short term drivers and the stock market index. Figure 2
is a specific case based on three important medium/short term context (Busi-
ness cycle, Market regime, Risk aversion). This choice is supported essentially
by various works of two nobel prices in economic (Eugene Fama on empirical

2 broad form used to notify investors in United States public companies of specified
events that may be important to shareholders or the United States Securities and
Exchange Commission.
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analysis of asset prices3, Daniel Kahneman on behavioral finance4 ) and one of
the best portfolio manager of the century, Ray Dalio5.

At time t, our biggest challenge is to characterize the current market envi-
ronment (between t−k ...t) with a set of feature derived from Fig. 2 and use it to
predict the S&P500 direction for time t+1. We use Xt to denote the realization
of variable X at t and X1:t to denote the history of X between the period 1
to t. At time t, we are able to identify where was the market regime between
1..t−k, but we can only estimate the current market regime and we use the k
most recent realisations to do. We will sometimes use X1:t−k and Xt−k:t.

The functional graph of Fig. 2, describe the dynamics of the S&P500. They
have four levels and three main component: i) A set of 130 observable causal
variables (ex: daily price index of 10 economics sectors); ii) A set of 6 latent
context variables (ex: Risk aversion regime of Investors); and iii) 8 functions or
algorithms that reflect a direct causal link between the variables (observable or
latent). We suggest [21,22] for more details on functional causal graph in finance.

2.1 Graph Level 1: Observable Variables

The level 1 of the graph represents basic inputs organised around 4 groups of
observable causal numerical variables and one group of textual information.

Observable Causal Numerical Variables: The variables in light blue (rect-
angular shape) designate observable numerical variables. All are available on the
St. Louis Federal Reserve and Kenneth R. French websites.

S&P5001:t−k: A numerical daily variable on the main U.S. equity market. At
time t, the history from 1 to t-k (k represents the recent observations for which
the regime is not known) serves as an input for ex-post identification algorithm
of market regime (f2, described in Sect. 3). The output of f2 is an intermediate
latent variable that characterizes the regime (bear/bull/range bound) in which
the market was in the past (Market Regime1:t−k).

32 Risk Factors1:t: A set of 32 daily numerical variables denoting financial
indexes. At time t, the history from 1 to t serves as an input for an unsupervised
learning algorithm (f3). The output is a set of intermediate latent variables
characterizing the risk aversion of investors (Risk Aversiont).

80 Risk Factors1:t: A set of 80 numerical variables designating indices covering
all asset classes and sectors of the economy. At time t, the history from 1 to t
combined with Num Repr Beige Book1:t (distributional representation of each
Beige Book from 1..t) serves as an input for an unsupervised learning algorithm
(f4). The output of this algorithm is a set of intermediate latent variables that
characterize the phase of the business cycle (Economic Cyclet).

3 https://www.nobelprize.org/prizes/economic-sciences/2013/fama/facts/.
4 https://www.nobelprize.org/prizes/economic\discretionary{-}{}{}sciences/2002/

kahneman/biographical/.
5 https://en.wikipedia.org/wiki/Ray Dalio.

https://www.nobelprize.org/prizes/economic-sciences/2013/fama/facts/
https://www.nobelprize.org/prizes/economic\discretionary {-}{}{}sciences/2002/kahneman/biographical/
https://www.nobelprize.org/prizes/economic\discretionary {-}{}{}sciences/2002/kahneman/biographical/
https://en.wikipedia.org/wiki/Ray_Dalio
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Fig. 1. Main component of the Causal hierachical top down dynamic of any stock index

S&P500 and Rate1:t: A set of the 3 numerical variables designating three of
the most relevant indexes on US financial market. At time t, the history covering
period 1 to t serves as an input with (Risk Aversion1:t, Economic Cycle1:t) for
obtaining features via functions/algorithms or links (f6, f7) in the graph.

Observable Textual Causal Variables: It is shown in grey (rectangular shape
with rounded side) on the graph (Textual Data1:t). It represent set of textual
documents called the Beige Book, published 8 times a year by the U.S. Federal
Reserve (≈2000 words for each edition of national summary) on highlights of
economic activity, employment and prices. At time t, we use a function/algorithm
(f1,Doc2vec) to transform the most recent document into a set of p embedding
denoting their distributional representation (Num Repr Beige Bookt).

2.2 Graph Level 2: Latent Medium Term Context

Level 2 consists of three groups of light orange (lozenge shape) intermediate
latent variables designating medium term context.

Market Regime1:t−k: it is a set of homogeneous cluster on historical price
index S&P5001:t−k. It summarizes ex-post the state or regime of the financial
market for period 1..t-k via the function/algorithm or link f2 in the graph.

Risk Aversion1:t: it summarizes other medium-term context. The risk aversion
of investors on the markets for each period from 1 to t. It is obtained via the
function/algorithm or link f3 on the inputs 32 Risk Factors1:t.
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Fig. 2. Specific case of functional causal graph of the S&P500 dynamic
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Economic Cycle1:t: it summarizes the last medium-term context, the phases
of the economic cycle for each period 1 to t. It is obtained via the func-
tion/algorithm or link f4 on the inputs (80 Risk Factors1:t Num. Repr.
Beige Book1:t).

2.3 Graph Level 3: Latent Short Term Drivers

Level 3 of the graph includes three other groups of latent variables, dark orange
(Oval shape) used as features for a classifier on the S&P500.

ST Comp Market Regimet−k:t: A set of 8 latent variables designating the
short-term component of the current market regime. For each of the recent peri-
ods between t-k to t, we obtain a statistical summary (median and asymmetry
coefficient) of k measures of similarity with a function or link (f6) in the graph.
We measure the similarity between the recent k observations (t-k to t) and the
historical observations (1 to t-k) of (Risk Aversion1:t, S&P500 and Rate1:t) of
each of the homogeneous group obtained with Market Regime1:t−k.

MT Comp Market Regimet−k:t: A set of 8 latent variables designating the
medium-term component of the current market regime. It is obtained in the
same way, replacing the variable (Risk Aversion1:t) with (Economic Cycle1:t).

Risk Concentration1:t: A set of 4 latent variables denoting the concentration
of sources of uncertainty in the markets. For each period from 1 to t, the per-
centage of the explained variance of the first 4 factors is obtained via a singular
value decomposition (f5) on the input 32 Risk Factors1:t.

3 Functions/Algorithms for the Latent Variables

We use a priori knowledge to going through the graph, learn separately the
representation of each node and extract 20 business features (level 3) as inputs
for a classifier. We validate this process on the reduced graph of Fig. 2 and the
task of monthly prediction on S&P500. The generalization with a global graph
in a unified embedding learning framework will be for the next step.

3.1 Algorithm f2 for Intermediate Latent Variables Market Regime

Market regime is identifiable ex-post. f2 is a set of rules to separate the history
of S&P500 into regimes (3 homogeneous groups). If SP500t0 ...SP500tn is the
sequence observed between t0, ...tn, we define 3 market regimes :
Bull Market: Ex-post, the market was in a bullish mode between period t0, ...th
if starting to t0, the S&P500 rises gradually to cross a certain threshold without
returning below the initial price at t0. Meaning the set of points
{t0.., ti, ..th; 0 ≤ i ≤ handSP500ti ≥ SP500t0 & SP500th ≥ (1 + λ)SP500t0}
λ : Hyper-parameter based on empirical studies on risk premium.
Bear Market: Opposite of Bull Market (decrease trend)
Range Bound Market: Neither Bull, neither Bear
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3.2 Algorithms f3, f4 for 2 Others Intermediate Latent Variables

f3 and f4 are two auto-encoders to learn the distributional representations of
2 others intermediate latent variables. At time t, a simple/variational auto-
encoder (Fig. 3.) takes (32 Risk Factors1:t) as inputs and produces a rep-
resentation of dimension q (Risk Aversiont), then takes (80 Risk Factors1:t;
Num. Repr. Beige Book1:t) as inputs for other representation of dimension q
(Economic Cycle1:t).

3.3 Algorithms f5, f6, f7 and Features

We consider 3 others categories of latent variables to describe the current state
of market and use distributional representations as features for a classifier.

8 Statistics Summarizing the Short-Term Component of the Current
Market Regime. The current market regime is characterized by the similarity
between the recent realisations of (Risk Aversion1:t; S&P500 and Rate1:t) and
the historical observations organised in homogeneous groups.

Ex: Consider Ft, the similarity measure (Mahalanobis distance) in date t
between recent (last month) observations (V R

t ) and Average/Variance of histor-
ical observations in the bullish regime (μH

t , SH
t ). We define Ft by :

Ft : Rn × Rn × Rn×n−→R+

(V R
t , μH

t , 1
SH
t

) =
√

(V R
t − μH

t )t × 1
SH
t

× (V R
t − μH

t )

Therefore, on a monthly horizon (20 days), we obtain a vector of 20 similarity
measures that we aggregate by calculating a statistic like the median.

8 Statistics Summarizing the Cyclical Component of the Current Mar-
ket Regime. They are also obtained by similarity measures as previously but
replacing Risk Aversion1:t by Economic Cycle1:t.

4 Factors Designating the Percentage of Explained Variance, obtained
by singular values decomposition (f5) and explaining more than 90% of the
variance of key market risk factors (32 Risk Factors1:t).

These 20 features characterize the current market regime and constitute the
main input for a classifier to predict the direction of the S&P500 index.

Fig. 3. Simple & Variational Auto-encodeur Fig. 4. Walk Forward Validation
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4 Experiments and Empirical Results

4.1 Training, Validation and Testing Protocol

Time series have a certain dependence and the chronological order is a crucial
element in the training and validation process. Walk Forward Validation (Fig. 4),
based on an out-of-time dynamic validation that respects the chronological order,
is widely used in finance and [27,28] provides additional details. The first 21 years
(19 for training and 2 for validation) are used for initial training and to fix all
hyper-parameters. Afterwards, at each date t, we obtain the features and predict
the direction ŷt+1 for the month t+1 on training sample (yS&P500

1...t , V1...t). At t+1,
we compare the prediction with realized yS&P500

t+1 and update two models. i) We
update the parameters of the auto-encoder every ten years, which is enough to
cover various market cycles and, ii) We update the parameters of the classifier
every month with all training data until t+1 (yS&P500

1...t+1 , V1...t+1). We then iterate
on the sample from 1992 to 2018 (Fig. 4).

We use three metrics detailed in [13] and adapted for Classification problems.
The first is the accuracy (ACC ) which is the total percentage of good predic-
tions up and down. The second is the F1-score6 and the last is the Matthews
Correlation Coefficient7 (MCC ). The last two metrics allow a relevant analysis
of the cost of errors. Indeed, the cost of bad decisions is high in the markets and
the challenge is to have models with good accuracy, but especially an ability to
limit false positives and false negatives. We make a comparison with the industry
benchmark over the entire period, then in sub-periods known to be very unstable
and difficult to predict. Our experiments are articulated into four points:

– We compare with the industry benchmark over the test period (1992 to 2018),
then four unstable sub-periods (2000-02, 2007-08, 2011-12, 2015-16). This last
comparison is typically not conducted in recent works.

– We Analyze the impact of features and latent variables by comparing 3 models
of increasing complexity:
i) Model 1: the link is direct between S&P500 and only the observable
numerical variables of level 1 (no features, no latent variables). ii) Model 2:
we consider the features, but they are obtained without two main medium-
term context (Risk Aversion and Cycle Economic). iii) Model 3: we use all
component of the graph (Fig. 2) and compare simple/variational auto-encoder
to get the latent intermediate variables.

– The model with the textual data is compared to the model obtained only
on numerical variables. The textual data from the Beige Book is replaced by
traditional numerical Business cycle (Inflation, Industrial production).

– A comparison over the same test period and the same inputs deriving the
work from [15] and [10,11] as specific cases of our solution. We identified
five recent studies on monthly prediction of the direction of S&P50, then we
selected the 2 best recent with available input. We transform the input to
introduce a hierarchical interaction via a short term latent context.

6 Harmonic average Precision and Recall.
7 correlation coefficient between the observed and predicted binary classification.
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4.2 API and Hyper-parameters Selection

We used the gensim implementation of Doc2vec to represent the Beige Book doc-
uments into vector of dimension k(hyper-parameter) and TensorFlow/Keras for
training auto-encoders. For training the classifier, we used scikit-learn on python
3.6 (SVM, RandomForestClassifier and Ensemble.GradientBoostingClassifier).

We have two categories of Hyper-parameter: i) the first category (number
of phases in the business cycle, number of market regimes, dimension of latent
variables) are choosing based on our experience and some relative consensus on
empirical studies on financial market [23–26]. ii) The second category for auto-
encoder and classifier (dimension vector for Beige Book, learning rate, number
of estimates, maximum depth of the trees, size of the sub-samples) are chosen to
maximize output over the training (1970-89) and validation (1990–1991) period.

4.3 Performance and Comparison with the Industry Benchmark

The Table 1 shows our model consistently outperforms the benchmark over the
test period (1992 to 2018) on all metrics. It highlights the limits of accuracy
in predicting stock market. Indeed, the ACC of the long-term benchmark is
around 64 and more when the markets are stable, but the cost of errors are
better represented in the F1-score and MCC. We observe the absolute gain on
all metrics with our model. The ACC, F1-Score and MCC are respectively 70.9%,
67%, 0.3 compare to 64.1%, 50% and 0 for the industry benchmark.

During the most unstable periods (2000-02, 2007-08), our model has an ACC
of 72.2% and 70% versus 38.8% and 41.6% for the benchmark. The spread is
more higher on f1-score (72% and 70% versus 22% and 25%) and MCC (0.52
and 0.54 vs 0 and 0). On the other relative unstable period, our model still
outperforms the benchmark in (2011-12) but performs similarly in (2015–2016).

Globally, the benchmark has a good ACC on the long term, but masks the
cost of error with poor f1-score and MCC and poor output during the unstable
sub-periods.

4.4 Analysis of the Impact of the Short/Medium-Term Latent
Context

We compared various auto-encoders, simple versus variational auto-encoder and
feed-forward versus recurrent. The recurrent VAE gave us the best output. It
was not possible to improve prediction with a convolutional auto-encoder. In
order of importance, the 3 main points that Table 2 brings are :

– Overall, using the graph (Model 3) with all observable variables and latent
context helps, and clearly outperforms model 1 in all test period and unstable
sub-periods.

– Reccurent variational auto-encoder seems overall preferable to AE
– For the unstable periods, we don’t have absolute conclusion and we need more

investigation.
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4.5 Impact of the Unstructured Data

The use of backward looking numerical data is considered as one limitation
when analysing the financial markets. We explore and confirm the potential of
the Beige Book to contain forward looking information for prediction.

The Table 3 shows the comparison with numerical data traditionally used to
analyse the business cycle. On the test period (1992–2018), the ACC, f1-score
and MCC of the final model are respectively 70.9%, 67%, 0.3 versus 68.5%,
64% and 0.25 for the model without unstructured data. This trend is the same
on two highly unstable sub-periods, (2000-02, 2007-08) and one of the relative
unstable sub-periods (2011-12). But it underperforms over the relative unsta-
ble sub-period of 2015-16 with statistic of (62.5%, 52%, 0.25) vs (54.1%, 46%,
−0.04).

Table 1. Monthly prediction of S&P500 on
different test periods

All test Period 1992-2018

ACC F1-S. MCC

Bench. Industry 64.1 50 0
This work 70.9 67 0.3

Sub Period 2000-2002

Bench. Industry 38.8 22 0
This work 72.2 72 0.52

Sub Period 2007-2008

Bench. Industry 41.6 25 0
This work 70.8 70 0.54

Sub Period 2011-2012

Bench. Industry 58.3 43 0
This work 70.8 70 0.39

Sub Period 2015-2016

Bench. Industry 58.3 43 0
This work 54.1 46 -0.04

Table 2. Impact of latent context

All test Period 1992-2018

ACC F1-S. MCC

Model 1 62 52 0
Model 2 65.7 60 0.16
Model 3 AE 68.8 65 0.26
Model 3 VAE 70.9 67 0.3

Sub Period 2000-2002

Model 1 47.2 43 0.1
Model 2 55.6 56 0.14
Model 3 with AE 69.4 69 0.35
Model 3 with
VAE

72.2 72 0.52

Sub Period 2007-2008

Model 1 41.7 25 0
Model 2 F 54.1 54 0.07
Model 3 with AE 54.1 54 0.13
Model 3 with
VAE

70.8 70 0.54

Sub Period 2011-2012

Model 1 54.2 41 -0.18
Model 2 58.3 43 0
Model 3 with AE 75 74 0.48
Model 3 with
VAE

70.8 70 0.39

Sub Period 2015-2016

Model 1 54.2 41 -0.18
Model 2 66.7 59 0.36
Model 3 with AE 58.3 49 0.05
Model 3 with
VAE

54.1 46 -0.04
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Table 3. Impact of Textual Data

All test Period 1992-2018

ACC F1-S. MCC

Without Textual
Data.

68.5 64 0.25

With Textual Data. 70.9 67 0.3

Sub Period 2000-2002

Without Textual
Data.

66.7 67 0.37

With Textual Data. 72.2 72 0.52

Sub Period 2007-2008

Without Textual
Data.

58.3 58 0.20

With Textual Data. 70.8 70 0.54

Sub Period 2011-2012

Without Textual
Data.

66.7 65 0.29

With Textual Data. 70.8 70 0.39

Sub Period 2015-2016

Without Textual
Data.

62.5 52 0.25

With Textual Data. 54.1 46 -0.04

Table 4. Comparison with related
work

Ding Model : 2013

ACC

Benchmark Industry 75

Ding Model 55.9

This work 80

Pena Model : 2006-2014

ACC

Benchmark Industry 63.1

Pena Model 69.4

This work 72

4.6 Comparison with Two Works on the Same Inputs and Test
Period

The metric available for comparison with two recent studies on monthly S&P500
prediction is the accuracy. We use the same inputs by formulating as specific
cases of our result. [15] use neural networks on textual data and get a 55.9%
accuracy over 12-month test period (Table 4). Although the test period is very
short, the industry benchmark is 75% and the special case obtained from our
solution is 80%. [10,11] use prior knowledge to select causal variables and inno-
vate in the kernel function of an SVM algorithm. The accuracy is 69.4% for the
period 2006–2014 (Table 4). We also obtain a specific case of our solution on
the same causal variables with an accuracy of 72%. We show the importance
of introducing a hierarchical interaction through a latent variable characterizing
the short-term context.

5 Conclusion and Future Work

In this work, we tested several intuitions which should serve as a basis for gen-
eralizing of an integrated process with a small training sample of predicting
financial markets on a monthly and quarterly basis. This is based on a frame-
work of informed machine learning with an a priori functional causal graph of
the S&P500 dynamics as the main input for predictive algorithms.
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By combining our market experience, domain literature, we propose an a
priori functional causal graph of the market dynamics. We learn separately the
representation of each node, and then treat two similar work as special cases of
our solution.

The proposed solution reconciles the theory, the selection of causal and con-
text variables with great predictive powers, the domain knowledge features for
monthly prediction on the small size of training data. The prediction are bet-
ter than those of 5 similar works (including 2 studied here) and dominate the
industry benchmark in all environments (stable and unstable).

The next step is to generalize using a global, dynamic functional causal graph
with multiple unstructured data sources as the main input, then to automatically
learn in a unified framework the embedding of all nodes and finally use it to
predict the direction of various financial index and horizons (month, quarter,...).
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Abstract. In this paper, we tackle the issue of assessing similarity
among time series under the assumption that a time series can be addi-
tively decomposed into a trend-cycle and an irregular fluctuation. It has
been proved before that the former can be well estimated using the
fuzzy transform. In the suggested method, first, we assign to each time
series an adjoint one that consists of a sequence of trend-cycle of a time
series estimated using fuzzy transform. Then we measure the distance
between local trend-cycles. An experiment is conducted to demonstrate
the advantages of the suggested method. This method is easy to cal-
culate, well interpretable, and unlike standard euclidean distance, it is
robust to outliers.

Keywords: Similarity measurements · Stock markets similarity ·
Time series analysis · Time series data mining

1 Introduction

Time series is a feasible way of representing data in many fields, including the
finance sector. Financial crises in the 19th and early 20th caused a challenging
situation for economies, and it led to a massive interest in economic and financial
analysis. In this situation, any information that provides a better understanding
to the behavior of markets is highly critical. Among many types of research con-
cerning data mining in time series (see-[4,7,9,10]); One of the key applications in
this field [11] is stock data mining. Assessing time series similarity, i.e., the degree
to which a given time series resembles another one is a core to many mining,
retrieval, clustering, and classification tasks [18]. In the construction of financial
portfolios (see [5]), diversification, which conveys investing in a variety of assets,
is a key to reduce the risk of a chosen portfolio. Thus, identifying stocks that
share similar behavior is vital. There is no straightforward approach, known as
the best measure for assessing the similarities in time series. Surprisingly, many
simple approaches like simple euclidean distance can outperform the most com-
plicated approaches [18]. Wang et al., in 2013, perform an extensive comparison
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between nine measurements across 38 data sets from various scientific domains
(see [21]). One of their findings is that the euclidean distance remains an entirely
accurate, robust, simple, and efficient way of measuring the similarity between
two time series. However, stock markets have some properties which make the
current similarity measures unfavorable. For instance, stocks react to a lot of
exogenous factors such as news (see, e.g., [2]); thus, the presence of outliers in
them is inevitable. Therefore, developing a measure that can react to the nature
of stock markets seems essential.

A very effective technique in the analysis of time series is the fuzzy trans-
form. Using it, we can extract trend-cycle (a low-frequency trend component)
of the time series with high fidelity. The fuzzy transform provides not only the
computed trend-cycle but also its analytic formula (cf. [16,17]). In this paper,
using fuzzy transform, we first assign to each time series an adjoint one that
consists of its local trend-cycle. Then we measure the distance between these
approximate time series by a suggested formula.

There are several reasons to employ our fuzzy estimation of the trend-cycle
for similarity measurement: Firstly, the trend-cycle in stocks tends to smoothen
the price value and describes the behavior of the market concerning the changes
in price values. Thus, it is more intuitive for experts than price values themself. It
has been proven that we can successfully reach this goal using the fuzzy trans-
form. Secondly, stock markets can be boisterous with outliers. Consequently,
assessing similarities based on actual price values without any preprocessing can
lead to unrealistic results. Using our method, we can easily “wipe out” the out-
liers without harming the basic characteristics of the time series. Finally, Our
method is flexible and can answer the question of how we can find stocks that
behave similarly in various time slots. For instance, experts can measure the
similarity between stocks that behave similarly in a short to long term (e.g., one
to several weeks).

The paper is structured as follows. After Introduction, we describe our
method in Sects. 2 and 3. Section 4 is dedicated to an illustration of the pur-
posed method and the evaluation of the results.

2 Preliminaries

2.1 Time Series Decomposition

Our techniques stem from the following characterization of a time series. It is
understood as a stochastic process (see, e.g., [1,6]) X : T × Ω → R where Ω
is a set of elementary random events and T = {0, . . . , p} ⊂ N is a finite set
of numbers interpreted as time moments. Since financial time series typically
posses no seasonality, we assume that they can be decomposed into components
as follows:

X(t, ω) = TC(t) + R(t, ω), t ∈ T, (1)
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where TC(t) = Tr(t) + C(t) called trend-cycle and R is a random noise, i.e.,
a sequence of (possibly independent) random variables R(t) such that for each
t ∈ T, the R(t) has zero mean and finite variance.

2.2 Fuzzy Transform

Fuzzy transform (F-transform) is the fundamental theoretical tool for the sug-
gested similarity measurement. Because of the lack of space, we will only briefly
outline the main principles of the F-transform and refer the reader to the exten-
sive literature, e.g., [15,16] and many others.

The F-transform is a procedure applied, in general, to a bounded real con-
tinuous function f : [a, b] → [c, d] where a, b, c, d ∈ R. It is based on the concept
of a fuzzy partition that is a set A = {A0, . . . , An}, n ≥ 2, of fuzzy sets fulfilling
special axioms. The fuzzy sets are defined over nodes a = c0, . . . , cn = b in such
a way that for each k = 0, . . . , n, A(ck) = 1 and Supp(Ak) = [ck−1, ck+1]1. The
nodes are usually (but not necessarily) uniformly distributed, i.e., ck+1 = ck +h
where h > 0 is a given value. To emphasize that the fuzzy partition is formed
using the distance h, we will write Ah.

The F-transform has two phases: direct and inverse. The direct F-transform
assigns to each Ak ∈ A a component Fk[f |A]. We distinguish zero degree F-
transform whose components F 0

k [f |A] are numbers and first degree2 F-transform
whose components have the form F 1

k [f |A](x) = β0
k[f ] + β1

k[f ](x − ck). The coef-
ficient β1

k[f ] provides estimation of an average value of the tangent (slope) of f
over the area characterized by the fuzzy set Ak ∈ A.

From the direct F-transform of f

F[f |A] = (F0[f |A], . . . , Fn[f |A])

we can form a function I[f |A] : [a, b] → [c, d] using the formula I[f |A](x) =∑n
k=0(Fk[f |A] · Ak(x)), x ∈ [a, b]. The function I[f |A] is called the inverse F-

transform of f and it approximates the original function f . It can be proved
that this approximation is universal.

2.3 Application of the F-Transform to the Analysis of Time Series

The application of the F-transform to the time series analysis is based on the
following result (cf. [14,16]). Let us now assume (without loss of generality) that
the time series (1) contains periodic subcomponents with frequencies λ1 < · · · <
λr. These frequencies correspond to periodicities

T1 > · · · > Tr, (2)

respectively (via the equality T = 2π/λ).

1 Of course, certain formal requirements must be fulfilled. They are omitted here and
can be found in the cited literature.

2 In general, higher degree F-transform.
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Theorem 1. Let {X(t) | t ∈ T} be a realization of the time series (1). Let us
assume that all subcomponents with frequencies λ lower than λq are contained in
the trend-cycle TC . If we construct a fuzzy partition Ah over the set of equidis-
tant nodes with the distance h = d Tq where d ∈ N and Tq is a periodicity
corresponding to λq then the corresponding inverse F-transform I[X|A] of X(t)
gives the following estimation of the trend-cycle:

| I[X|A](t) − TC (t)| ≤ 2ω(h,TC ) + D (3)

for t ∈ [c1, cn−1], where D is a certain small number and ω(h,TC ) is a modulus
of continuity of TC w.r.t. h.

The precise form of D and the detailed proof of this theorem can be found
in [13,16]. It follows from this theorem that the F-transform makes it possible
to filter out frequencies higher than a given threshold and also to reduce the
noise R. Consequently, we have a tool for separation of the trend-cycle or trend.
Theorem 1 tells us how the distance between nodes of the fuzzy partition should
be set. This choice enables us to detect trend cycles for different time frames of
interest. Of course, the estimation depends on the course of TC and it is the
better the smaller is the modulus of continuity ω(h,TC ) (which in case of the
trend-cycle or trend is a natural assumption). The periodicities (2) can be found
using the classical technique of periodogram—see [1,6].

Selection of Tq in Theorem 1 can be based on the following general OECD
specification: Trend (tendency) is the component of a time series that represents
variations of low frequency in a time series, the high and medium frequency
fluctuations having been filtered out. Trend-cycle is the component of the time
series that represents variations of low frequency, the high frequency fluctuations
having been filtered out.

3 The Suggested Similarity Measurement

In this section, we will describe how our suggested method evaluates the pairwise
similarity between time series.

Definition 1. Let X = {X(t)|t = 1, . . . , n} and Y = {Y (t)|t = 1, . . . , n} be two
time series of the length n and TCX and TCY be estimations of trend cycles of
X and Y respectively calculated based on Eq. (3). Then we define the similarity
between these two time series as follows:

S(X,Y ) = 1 − 1
n

n∑

t=1

|TCX(t) − E(TCX) − (TCY (t) − E(TCY ))|
|TCX(t) − E(TCX)| + |TCY (t) − E(TCY )| , (4)

where E(TCX) and E(TCY ) are mean values (averages) of TCX and TCY ,
respectively and |.| denotes absolute value. It is easy to show that S(X,Y ) ∈ [0, 1]
where it has certain features that is described on the following theorem and can
be proved. In Definition 1, it is necessary to emphasize, that TCX and TCY are
estimation, not the real trend-cycles, since we do not know them (cf. formulas
(1) and (3)).
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Theorem 2. S(X,Y ) is a fuzzy equality w.r.t. �Lukasiewicz conjunction, i.e., it
is: reflexive : S(X,X) = 1, symmetric : S(X,Y ) = S(Y,X) and transitive :
S(X,Y )⊗S(Y,Z) ≤ S(X,Z) where ⊗ is the �Lukasiewicz conjunction defined by
a ⊗ b = {max 0, a + b − 1}.

A stock can be seen as a time series {X(t)|t = 1, . . . , n} where X(t) is
closing price at time t within an interval [0, T ]. For instance, let us consider
closing price of a stock from Nasdaq INC3, from 05.10.2008 to 30.09.2018 (522
weeks). In order to estimate its local trend-cycle, we first build a uniform fuzzy
partition such that the length of each basic functions A2; ...;An1 is equal to a
proper time slot. In our case, by setting the length of basic function to four,
we obtain the approximation of the trend-cycles for one month. In other terms,
the monthly behavior of this stock is our concern here. Figure 1 depicts the
mentioned weekly stock and the fuzzy approximation of its local trend-cycle. The
first and the last components of F-transform are subject to big error (because
the corresponding basic functions (A1 and An are incomplete). Regardless it
is clear that F-transform has approximated the local-trend cycles of the stock
successfully. As we mentioned before, stock markets react to many exogenous
factors; thus, the presence of outliers is unavoidable. A red square in Fig. 1 shows
one of these outliers for the mentioned stock. It is clear to see that F-transform
has successfully wiped out the outlier while preserved the core behavior of the
stock.

Fig. 1. A stock and its TC approximation based on F-transform.

The similarity from Definition 1 can be used for measuring the similarity
between any number of stocks. We can measure using it also local behavior of
them. In the next section, we will demonstrate how our suggested method works
3 https://www.nasdaq.com/.

https://www.nasdaq.com/
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with a relatively large data set in conjunction with its comparison to standard
the euclidean distance.

4 Illustration

4.1 Data Set

Our data set consists of a closing price of 92 stocks over 522 weeks obtained
from Nasdaq INC. An example of twenty stocks from the mentioned data set is
depicted in Fig. 2, where the x-axis and y-axis represent price values in dollars
and number of weeks, respectively. From this figure, it is clear that any deci-
sion about the similarity between time series is impossible. Therefore it seems
necessary to consider similarity between time series.

Fig. 2. Depiction of 20 stocks from the dataset for 522 weeks

4.2 Evaluation of the Suggested Method

One possible way to evaluate the competency of any new similarity measurement
(distance measurement), is to apply it for data clustering. The quality of cluster-
ing based on the new and current similarities can validate the competency of the
suggested method [12,19]. Therefore, we will below apply clustering of time series
and compare the behavior of our similarity with the euclidean one. However, let
us emphasize that time series clustering is not the primary goal of this research
since our focus is on discovering the most similar pairs of stocks available in the
database. As we mentioned before, the euclidean distance is an accurate, robust,
simple, and efficient way to measure the similarity between two time series and,
surprisingly, can outperform most of the more complex approaches (see [18,20]).
Therefore we will compare our method with the euclidean distance by means
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of the quality of hierarchical clustering on a dataset. Hierarchical clustering is
a method of cluster analysis which attempts at building a hierarchy of similar
groups in data [8]. In this case, one problem to consider is the optimal number
of clusters in a dataset. Overall, none of the methods for determining the opti-
mal numbers of clusters is flawless, and none of the suggested similarities are
fully satisfactory. Hierarchical clustering does not reveal an adequate number
of clusters and estimation of the proper number of clusters is rather intuitive.
Hence, there is a fair amount of subjectivity in determination of separate clus-
ters. Figures 3 and 4, demonstrate the dendrogram of hierarchical clustering of
the 92 stocks based on the suggested and euclidean similarity, respectively. The
proper number of clusters for both similarities is equal to six. In these figures,
the 92 stocks are represented in the x-axis, and their distances are depicted on
the y-axis accordingly. Since the stocks are from various industries, they have
different scales, and in the case of the clustering with the euclidean distance, we
will eliminate the different scaling by normalizing the data. Nevertheless, this
step is not demanded by the suggested method since the scale does not influence
it.

Fig. 3. Hierarchical clustering based on the suggested method (Color figure online)

Red dashed squares in 4.2 and 4.2 represent the most similar stock pairs,
determined according to each method. Interestingly, both methods selected the
same stock pairs; (38 and 84) and (52 and 53) as the most similar stocks. How-
ever, the suggested method, primarily determines stock pair (38 and 84) as the
most similar stocks, following by stock pair (52 and 53) while the euclidean
method suggests otherwise. Figure 5 and 6 shows the behaviour of theses stock
pairs.
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Fig. 4. Hierarchical clustering based on the Eucliden method

Fig. 5. Stock pair (38 and 84)

To measure the quality of clustering, we apply the Davies-Bouldin index,
which is usually used in clustering. This measure evaluates intra-cluster simi-
larity and inter-cluster differences [3]. Therefore, it can be a proper metric for
clustering evaluation.

Table 1 demonstrates the Davies-Bouldin index for a different number of clus-
ters based on the both similarities. Since the lower score indicates better quality
of clustering, the, results reveal that not only is our method reasonably compa-
rable to the euclidean method, but also it has provided more efficient clustering
for these examples.
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Fig. 6. Stock pair (52 and 53)

Table 1. The Davies-Bouldin index for clustering based on the proposed method and
euclidean method

Method 6 clusters 8 clusters 10 clusters

The suggested method 0.61 0.64 0.72

The euclidean method 0.71 0.85 0.82

Furthermore, as we mentioned before, stock markets are prone to exogenous
factors such as bad or good news (see e.g.,[2]). If a method pairs two stocks as
similar, one can expect that after the occurrence of an outlier(s), the method
would still evaluate these stocks alike. Hence, we will compare the performance of
our method, and the euclidean distance metric for the stocks containing outliers.
Recall from the previous section that based on both methods, stocks 52 and 53
are very similar to each other since their distance is minimal. Therefore, first, we
will add some random artificial outliers to the stock 52, but we do not alter the
stock 53 as shown in Fig. 7. Subsequently, we apply both methods to re-evaluate
the similarity between these stocks.

Table 2 demonstrates the results. It is apparent, after including artificial out-
liers, that the euclidean distance has a dramatic jump (around 1800% increase).
At the same time, the purposed method shows a minimal increase in distance
(33%), which means that the suggested method is much less sensitive to the
presence of outliers. Considering that the suggested method is based on the
F-transform, it evaluates the similarity between the stocks concerning their
local trend-cycles; therefore, it does not have the drawbacks of raw-data based
approaches such as the euclidean distance. The latter methods are sensitive to
noisy data [22]. One advantage of the euclidean method is its simplicity; however,
the suggested method is also relatively simple since it has only one parameter
to set (the length of the basic functions). Moreover, experts are able to adjust
the suggested similarity measure, according to their time slot of interest.
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Fig. 7. Stock pair (52 and 53) containing artificial outliers

Table 2. The distance between stock 52 and 53, before and after outliers

Method Distance before outliers Distance after outliers

The suggested method 0.09 0.12

The euclidean method 0.17 3.33

5 Conclusion

In this paper, we developed a new method for pairwise similarity measurement.
The method is based on the application of the fuzzy transform and a customized
metric. The idea is based on the estimation of local trends using inverse fuzzy
transform. The time series can then be paired together according to the similarity
of the adjoint time series consisting of the local trends. We demonstrated the
application of the suggested method in real life in addition to its comparison
with the euclidean distance. Experimental results verify the capability of the
suggested method for measuring the similarity between time series.

Further work will be focused on the application of this method in portfolio
management and evaluation of its profitability in finance. Another addition to
this work can be extending the method for time series of various lengths and
compare the result with the so-called dynamic time warping (DTW) method.

Acknowledgment. The paper has been supported by the grant 18-13951S of GAČR,
Czech Republic.
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Abstract. Time series are temporal ordered data available in many
fields of science such as medicine, physics, astronomy, audio, etc. Vari-
ous methods have been proposed to analyze time series. Amongst them,
time series classification consists in predicting the class of a time series
according to a set of already classified data. However, the performance of
a time series classification algorithm depends on the quality of the known
labels. In real applications, time series are often labeled by an expert or
by an imprecise process, leading to noisy classes. Several algorithms have
been developed to handle uncertain labels in case of non-temporal data
sets. As an example, the fuzzy k-NN introduces for labeled objects a
degree of membership to belong to classes. In this paper, we combine
two popular time series classification algorithms, Bag of SFA Symbols
(BOSS) and the Dynamic Time Warping (DTW) with the fuzzy k-NN.
The new algorithms are called Fuzzy DTW and Fuzzy BOSS. Results
show that our fuzzy time series classification algorithms outperform the
non-soft algorithms especially when the level of noise is high.

Keywords: Time series classification · BOSS · Fuzzy k-NN · Soft
labels

1 Introduction

Time series (TS) are data constrained with time order. Such data frequently
appear in many fields such as economics, marketing, medicine, biology, physics...
There exists a long-standing interest for time series analysis methods. Amongst
the developed techniques, time series classification attract much attention since
the need to accurately forecast and classify time series data spanned across a
wide variety of application problems [2,9,20].

A majority of time series approaches consists in transforming time series
and/or creating an alternative distance measure in order to finally employ a basic
classifier. Thus, one of the most popular time series classifier is a k-Nearest Neigh-
bor (k-NN) using a similarity measure called Dynamic time warping (DTW) [12]
that allows nonlinear mapping. More recently, a bag-of-words model combined
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with the Symbolic Fourier Approximation (SFA) algorithm [19] has been devel-
oped in order to deal with extraneous and erroneous data [18]. The algorithm,
referred to as Bag of SFA Symbols (BOSS), converts time series into histograms.
A distance is then proposed and applied to a k-NN classifier. The combinations
of DTW and BOSS with a k-NN are simple and efficient approaches used as gold
standards in the literature [1,8].

The k-NN algorithm is a lazy classifier employing labeled data to predict the
class of a new data point. In time series, labels are specified for each timestamp
and are obtained by an expert or by a combination of sensors. However, changing
from one label to another can span multiple timestamps. For example, in ani-
mal health monitoring, an animal is more likely to become sick gradually than
suddenly. As a consequence, using soft labels instead of hard labels to consider
the animal state seems more intuitive.

The use of soft labels in classification for non-time series data sets has been
studied and has shown robust prediction against label noise [7,21]. Several exten-
sions of the k-NN algorithm have been proposed [6,10,14]. Amongst them, the
fuzzy k-NN [11], which is the most popular algorithm [5], handles labels with
probabilities membership for each class. The fuzzy k-NN has been applied in
many domains: bioinformatics [22], image processing [13], fault detection [24],
etc.

In this paper, we propose to replace the most popular time series classifiers,
i.e. the k-NN algorithm, by a fuzzy k-NN. As a result, two new fuzzy classifiers
are proposed: The Fuzzy DTW (F-DTW) and the Fuzzy BOSS (F-BOSS). The
purpose is to tackle the problem of gradual labels in time series.

The rest of the work is organized as follows. Section 2 first recalls the DTW
and BOSS algorithms. Then, the fuzzy k-NN classifier as well as the combina-
tions between BOSS/DTW and fuzzy k-NN are detailed. Section 3 presents a
comparison between hard and soft labels through several data sets.

2 Time Series Classifiers for Soft Labels

The most efficient way to deal with TS in classification is to use a specific metric
such as DTW or to transform like BOSS the TS into non ordered data. A simple
classifier can then be applied.

2.1 Dynamic Time Warping (DTW)

Dynamic Time Warping [3] is one of the most famous similarity measurement
between two times series. It considers the fact that two similar times series
may have different lengths due to various speed. The DTW measure allows
then a non-linear mapping, which implies a time distortion. It has been shown
that DTW is giving better comparisons than a Euclidean distance metric. In
addition, the combination of the elastic measure with the 1-NN algorithm is
a gold standard that produces competitive results [1], although DTW is not
a distance function. Indeed, DTW does not respect the property of triangle
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inequality but in practice, this property is often respected [17]. Despite DTW has
a quadratic complexity, the use of this measure with a simple classifier remains
faster than other algorithms like neural networks. Moreover, using lower bound
technique can decrease the complexity of the measure to a linear complexity [16].

2.2 The Bag of SFA Symbols (BOSS)

The bag of SFA Symbols algorithm (BOSS) [18] is a bag of words method using
Fourier transform in order to reduce noise and to handle variable lengths. First,
a sliding window of size w is applied on each time series of a data set. Then, win-
dows from the same time series are converted into a word sequences according to
the Symbolic Fourier Approximation (SFA) algorithm [19]. Words are composed
of l symbols with an alphabet size of c. The time series is then represented
by a histogram that corresponds to the number of word occurrences for each
word. Finally, the 1-NN classifier can be used with distance computed between
histograms. Given two histograms B1 and B2, the measure called dBOSS is:

dBOSS(B1, B2) =
∑

a∈B1;B1(a)>0

[B1(a) − B2(a)]2, (1)

where a is a word and Bi(a) the number of occurrences of a in the ith histogram.
Note that the set of words are identical for B1 and B2, but the number of
occurrences for some words can be equal to 0.

We propose to handle fuzzy labels in TS classification using the fuzzy k-NN
algorithm.

2.3 Fuzzy k-NN

Let D = (X , y) be a data set composed of n = |X | instances and yi ∈ C be a
label assigned to each instance xi ∈ X with C the set of all possible labels.

For conventional hard classification algorithms, it is possible to compute a
characteristic function fc : X → {0, 1} with c ∈ C:

fc(xi) =
{

1, c = yi,
0, c �= yi.

(2)

Rather than hard labels, soft labels allow to express a degree of confidence
on the class membership of an object. Most of the time, this uncertainty is rep-
resented given by probabilistic distribution. In that case, soft labels correspond
to fuzzy labels. Thereby, the concept of characteristic function is generalized to
membership function uc : X → [0, 1] with c ∈ C:

uc(xi) = P(yi = c), (3)

such that
∑

c∈C
uc(xi) = 1, (4)
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0 <
∑

x∈X
uc(x) < n, ∀c ∈ C. (5)

There exists a wide range of k-NN variants using fuzzy labels in the liter-
ature [5]. The most famous and basic method, referred to as fuzzy k-NN [11],
predicts the class membership of an object xi using two steps. First, similarly
to the hard k-NN algorithm, the k nearest neighbors xj ∈ K, |K| = k of xi are
retrieved. The second step differs from hard k-NN as it computes a membership
degree for each class:

uc(xi) =

∑
xj∈K uc(xj)d(xi, xj)−2/(m−1)

∑
xj∈K d(xi, xj)−2/(m−1)

, ∀c ∈ C, (6)

with m a fixed coefficient controlling the fuzziness of the prediction, d(xi, xj)
the distance between instances xi and xj . Usually, m = 2 and the Euclidean
distance is the most popular distance considered.

2.4 Fuzzy DTW and Fuzzy BOSS

In order to deal with time series and fuzzy labels, we propose two fuzzy classifiers
called F-DTW and F-BOSS.

The F-DTW algorithm consists in using the fuzzy k-NN algorithm with DTW
as distance function (see Fig. 1). It takes in entry a time series and computes
the DTW distance with the labeled times series. Once the k closest time series
found, the class membership is computed with Eq. (6).

Fig. 1. F-DTW algorithm

The F-BOSS algorithm consists in first applying the BOSS algorithm in order
to transform the time series into histograms. Then, the fuzzy k-NN is applied
with BOSS distances. It generates fuzzy class memberships (see Fig. 2).

Once F-DTW and F-BOSS defined, experiments are carried out to show
the interest of taking into account soft labels when there exists noise and/or
uncertainties on the labels.

3 Experiments

Experiments consist in studying the parameters setting (i.e. the number of neigh-
bors) and compare soft and hard methods when labels are noisy.
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Fig. 2. F-BOSS algorithm

3.1 Experimental Protocol

We have selected five data sets from the University of California Riverside (UCR)
archive [4]. Each data set have different characteristics detailed in Table 1.

Table 1. Characteristics of data sets.

Data set name Size train Size test Size series Nb classes Type

WormsTwoClass 181 77 900 2 MOTION

Lightning2 60 61 637 2 SENSOR

ProximalPhalanxTW 400 205 80 6 IMAGE

Yoga 300 3000 426 2 IMAGE

MedicalImages 381 760 99 10 IMAGE

The hard labels are known for each data set. Thus, we generate fuzzy labels
as described in [15]. First noise is introduced in the label set in order to represent
uncertain knowledge: for each instance xi, a probability pi to alter label yi is
randomly generated according to a beta distribution with a variance σ set to
σ = 0.04 and the expectation μ set to μ = [0.1, 0.2, ..., 0.7]. In order to decide
if the label of xi is modified, another random number p′

i is generated according
to an uniform distribution. If pi > p′

i, a new label y′
i ∈ C such that y′

i �= yi is
randomly assigned to xi. Second, fuzzy labels are deduced using pi. Let Πc :
X → [0, 1] be a possibilistic function computed for each instance xi and each
class c:

Πc(xi) =
{

1, c = y′
i,

pi, c �= y′
i.

(7)

The possibilistic distribution allows to go from total certainty when pi = 0
to total uncertainty when pi = 1. Since our algorithms employ fuzzy labels,
possibilities Πi are converted into probabilities uc by normalizing Eq. (7) with
the sum of all possibilities:

uc(xi) =
Πc(xi)∑
c∈C Πc(xi)

. (8)
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We propose to test and compare three strategies dealing with noisy labels.
The two first ones are dedicated to classifiers taking in entry hard labels.

The first strategy, called strategy 1, considers that noise in labels is unknown.
As a result soft labels are ignored and for each instance xi, label y∗

i is chosen
using the maximum probability membership rule, i.e. max(uc(xi)).

The second strategy, called strategy 2, consists in discarding the most uncer-
tain labels and transforming soft labels into hard labels. For each instance xi

the normalized entropy Hi is computed as follows:

Hi =
1

log2(|C|) (−
∑

k∈C
uk(xi) log2(uk(xi))). (9)

Note that Hi ∈ [0, 1] and Hi = 0 corresponds to a state of total certainty
whereas Hi = 1 corresponds to a uniform distribution. If Hi > θ we consider the
soft label of xi as too uncertain and xi is discarded from the fuzzy data set. In
the experiments, we set the threshold θ to 0.95.

Finally, the third strategy, called strategy 3, keeps the whole fuzzy labels and
apply a classifier able to handle such labels.

In order to compare strategies and since strategies 1 and 2 give hard labels
whereas strategy 3 generates fuzzy labels, we convert fuzzy labels using the
maximum membership rule, i.e. max(uc(xi)), ∀c ∈ C.

The best parameters of F-BOSS are found by a leave-one-out cross-validation
on the training set. The values of the parameters are fixed as in [1]:

– window length w = [10, ..., q], with q = |xi|, the size of the series and
|w| = min(200,

√
q),

– alphabet size α = 4,
– word length l = [8, 10, 12, 14, 16].

Classifiers tested are soft k-NN, F-BOSS and F-DTW. For strategies 1 and 2,
they correspond to k-NN, BOSS with k-NN and DTW with k-NN. For each
classifier, different numbers of neighbors k = [1, 2, ..., 10] and different values
of μ, μ = [0, 0.1, 0.2, ..., 0.7] are analyzed. Note that μ = 0 corresponds to the
original data set without fuzzy processing. To compare the different classifiers
and strategies, we choose to present the percentage of good classification, referred
to as accuracy.

3.2 Influence of the Number of Neighbors in k-NN

Usually with DTW or BOSS with hard labels, the number of neighbors is set
to 1. This experiment studies the influence of the parameter k when soft labels
are used. Thus, we set μ = 0.3 in order to represents a moderate level of noise
that can exist in real applications and apply strategy 3 on all data sets. Figure 3
illustrates the result on the WormsTwoClass data set, i.e. the variation of the
accuracy for the three classifiers according to k.

First, for all values of k the performance of the soft k-NN classifier is lower
than the others. Such result has also been identified in other data sets. We
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Fig. 3. Accuracy according to k for WormsTwoClass data set: µ = 0.3 and strategy 3

Table 2. Accuracy for all data sets with µ = 0.3 and k = 5.

Strategy Soft k-NN F-DTW F-BOSS

ProximalP. 1 0.32 0.33 0.36

2 0.38 0.41 0.4

3 0.38 0.39 0.41

Lightning2 1 0.43 0.67 0.56

2 0.59 0.67 0.66

3 0.56 0.69 0.56

WormsTwoC. 1 0.44 0.56 0.7

2 0.48 0.58 0.68

3 0.45 0.6 0.73

Yoga 1 0.64 0.68 0.67

2 0.68 0.72 0.71

3 0.68 0.73 0.7

MedicalI. 1 0.56 0.64 0.51

2 0.58 0.67 0.54

3 0.59 0.67 0.54

also observe on Fig. 3 that the F-BOSS algorithm is often better than F-DTW.
However, the pattern of the F-BOSS curve is serrated that makes difficult the
establishment of guidelines for the choice of k. In addition, the best k depends
on the algorithm and the data set. Therefore, for the rest of the experiments
section, we choose to set k to the median value k = 5.
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3.3 Strategies and Algorithms Comparisons

Table 2 presents the results of all classifiers and all strategies on the five data sets
for k = 5 and μ = 0.3. F-BOSS and F-DTW outperform the k-NN classifier for all
data sets. This result is expected since DTW and BOSS algorithms are specially
developed for time series problems. The best algorithm between F-DTW and
F-BOSS depends on the data set: F-DTW is the best one for Lightning2, Yoga
and MedicalImages, and F-BOSS is the best one for WormsTwoClass. Note that
for ProximalPhalanxTW, F-DTW is the best with strategy 2 and F-BOSS is
the best for the strategy 3. Strategy 1 (i.e. hard labels) is most of the time
worse than the two other strategies. This can be explained by the fact that the
strategy 1 does not take the noise into account. For all best classifiers of all data
sets, the strategy 3 is the best strategy even though for ProximalPhalanxTW
and MedicalImages strategy 2 competes with strategy 3. The strategy 3 (i.e.
soft) is therefore better than the strategy 2 (i.e. discard) one for five algorithms
and equal for two algorithms. However, the best algorithm between F-BOSS and
F-DTW depends on the data sets.

Fig. 4. Accuracy according to µ for WormsTwoClass data set: k = 5

3.4 Noise Impact on F-BOSS and F-DTW

To observe the impact of the μ parameter, Fig. 4, Fig. 5 and Fig. 6 illustrate
respectively the accuracy variations for the WormsTwoClass, Lightning2 and
MedicalImages data sets according to the value of μ. The k-NN classifier and
the strategy 1 are not represented because their poor performance (see Sect. 3.3).
The figures also include the value μ = 0 that corresponds to the original data



586 N. Wagner et al.

Fig. 5. Accuracy according to µ for Lightning2 data set: k = 5

Fig. 6. Accuracy according to µ for MedicalImages data set: k = 5

without fuzzy processing. Results are not presented for the Yoga and Proximal-
PhalanxTW data sets because the accuracy differences between the strategies
and the classifiers are not significant, especially when μ < 0.3.

For WormsTwoClass, F-BOSS is better than F-DTW and inversely for Light-
ning2 and MedicalImages data sets. For the WormsTwoClass and Lightning2
data sets, with a low or moderate level of noise (μ < 0.3), the third strategy
is better than the second one. For the MedicalImages data set, the strategies
2 and 3 are quite equivalent, excepted for μ = 0.5 where the third strategy is
better. When μ > 0.5, the strategy 2 is better. Higher levels of noise lead to
better results with strategy 2. This can be explained as follows: strategy 2 is less
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disturbed by the important number of miss-classified instances since it removes
them. On the opposite, with a moderate level of noise, the soft algorithms are
more accurate because they keep informative labels.

Predicting soft labels instead of hard labels brings to the expert an extra
information that can be analyzed. We propose to consider as uncertain all pre-
dicted fuzzy labels having a probability less than a threshold t. Figure 7 present
the accuracy and the number of elements discarded varying with this thresh-
old t for the WormsTwoClass data set. As it can be observed, the higher is t,
the better is the accuracy and the more the number of predicted instances are
discarded. Thus t is a tradeoff between good results and a sufficient number of
predicted instances.

Fig. 7. Accuracy and number of elements according to the threshold t for WormsT-
woClass data set: µ = 0.3 and strategy 3

The results above show that methods designed for time series outperform
the standard ones and the fuzzy strategies give a better performance for noisy
labeled data.

4 Conclusion

This paper considers the classification problem of time series having fuzzy labels,
i.e. labels with probabilities to belong to classes. We proposed two methods, F-
BOSS and F-DTW, that are a combination of a fuzzy classifier (k-NN) and
methods dedicated to times series (BOSS and DTW). The new algorithms are
tested on five data sets coming from the UCR archives. With F-BOSS and F-
DTW, integrating the information of uncertainty about the class memberships
of the labeled instances outperforms strategies that does not take in account
such information.
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As perspectives we propose to modify the classification part of F-BOSS and
F-DTW in order to attribute a weight on the neighbors depending on the dis-
tance to the object to predict. This strategy, inspired by some soft k-NN algo-
rithms for non time series data sets, should improve the performances by giving
less importance to far and uncertain labeled instances.

Another perspective consists in adapting the soft algorithms to possibilistic
labels. Indeed, the possibilistic labels are more suitable for real applications as
it allows an expert to assign a degree of uncertainty on an object to a class
independently from the other classes. For instance, in a dairy cows application
where the goal is to detect anomalies like diseases or estrus [23], the possibilistic
labels are simple to retrieve and well appropriated because a cow can have two
or more anomalies at the same time (e.g. a diseases and an estrus).
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Abstract. The purpose of this paper is to define a general frame to con-
vert the Conditional Possibility Tables (CPT) of an existing possibilistic
network into uncertain gates. In possibilistic networks, CPT parameters
must be elicited by an expert but when the number of parents of a vari-
able grows, the number of parameters to elicit grows exponentially. This
problem generates difficulties for experts to elicit all parameters because
it is time-consuming. One solution consists in using uncertain gates to
compute automatically CPTs. This is useful in knowledge engineering.
When possibilistic networks already exist, it can be interesting to trans-
form them by using uncertain gates because we can highlight the com-
bination behaviour of the variables. To illustrate our approach, we will
present at first a simple example of the estimation for 3 test CPTs with
behaviours MIN, MAX and weighted average. Then, we will perform a
more significant experimentation which will consist in converting a set of
Bayesian networks into possibilistic networks to perform the estimation
of CPTs by uncertain gates.

Keywords: Possibilistic networks · Possibility theory · Uncertain
logical gates · Estimation

1 Introduction

Knowledge engineering often needs to describe how information is combined.
Experts’ knowledge can be represented by a Directional Acyclic Graph (DAG).
Unfortunately, this kind of knowledge is often imprecise and uncertain. The
use of possibility theory [21] allows us to take into account these imperfections.
Possibilistic networks [1,2], as Bayesian networks [17,20] in probability theory,
can be used to propagate new information, called evidence, in a DAG. The
main disadvantage of possibilistic networks is the need to elicit all parameters
of Conditional Possibility Tables. When the number of parents of a variable
grows, the number of parameters to elicit in the CPT grows exponentially. For
example, if a variable of 2 states has 10 parents with 2 states, then we have
211 = 2048 parameters to elicit. Moreover, when experts define the parameters
c© Springer Nature Switzerland AG 2020
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of a CPT in possibilistic networks, they often define an implicit behaviour. The
most common behaviours are those of Boolean logic, such as AND, OR, XOR,
etc.

Noisy gates in probability theory [4] deal with this problem of parameters.
They use a function to compute automatically the CPT. As a result, the num-
ber of parameters is reduced. Another advantage is the modelling of noise and
incomplete knowledge. Indeed, it is often difficult to have all the knowledge dur-
ing the task of modelling because of the complexity of the problem. The use of
a variable which represents unknown knowledge leads to another kind of model.
In possibility theory, authors Dubois et al. [5] proposed to use uncertain logi-
cal gates which present the same advantages as noisy gates. The behaviour of
uncertain gates connectors depends on the choice of the function. The function
can have the following behaviours: indulgent, compromise or severe.

Nowadays, there are several applications of possibilistic networks that exist
where experts have elicited all CPT parameters. We propose in this paper a
solution to convert an existing possibilistic network into a possibilistic network
with uncertain gates. It is very interesting to see which connector corresponds to
each CPT. This can provide a better understanding of information processing,
which is not highlighted when an expert elicits CPT parameters. This is also
useful in knowledge engineering.

This paper is structured as follows. In the first part, we will present possibility
theory and uncertain gates. Then we will focus our interest on the estimation of
uncertain gates and we will propose the examples of the estimation of uncertain
gates for test CPTs and existing applications using Bayesian networks. So we
will have to convert Bayesian networks into possibilistic networks and then we
will perform the estimation of the CPTs. We will present the results of this
experiment in the last part of this paper.

2 Uncertain Gates

Uncertain gates are an analogy of noisy gates in possibility theory [21]. Possibility
theory proposes to model imprecise knowledge by using a possibility distribution.
If Ω is the referential, then the possibility distribution π is defined from Ω to
[0, 1] with maxv∈Ωπ(v) = 1. Dubois et al. [6] define the possibility measure Π
and the necessity measure N from P (Ω) to [0, 1]:

∀A ∈ P (Ω), Π(A) = sup
x∈A

π(x) and N(A) = 1 − Π(¬A) = inf
x/∈A

1 − π(x). (1)

The possibility theory is not additive but maxitive:

∀A, B ∈ P (Ω), Π(A ∪ B) = max(Π(A), Π(B)). (2)

We can compute the possibility of a variable A by using the conditioning
proposed by D. Dubois and H. Prade [6]:

∀A, B ∈ P (Ω), Π(A|B) =

{
Π(A, B) if Π(A, B) < Π(B),

1 if Π(A, B) = Π(B).
(3)
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Possibilistic networks [1,2] can be defined as follows for a DAG G = (V,E)
where V is the set of Variables and E the set of edges between the variables:

Π(V ) =
⊗
X∈V

Π(X/Pa(X)). (4)

Pa stands for the parents of the variable X. There are two kinds of possibilistic
networks: qualitative possibilistic networks (also called min-based possibilistic
networks) where

⊗
is the function min, and quantitative possibilistic networks

(also called product-based possibilistic networks) where
⊗

is the product. In
this research, we consider the comparison of possibilistic values instead of the
use of an intensity scale in [0,1] so we will use a min-based possibilistic network.

We can propose as in noisy gates to use the Independence of Causal Influence
[4,9,25] to define a possibilistic model with the ICI. In fact, as in probability
theory, there is a set of causal variables X1, ...,Xn which influence the result of
an effect variable Y . We insert between each Xis and Y a variable Zi to take
into account the noise, i.e. uncertainty. We can also introduce another variable
Zl which represents the unknown knowledge [5]. The following figure presents
the possibilistic model with ICI (Fig. 1):

Fig. 1. Possibilistic model with ICI.

We propose to compute π(Y |X1, ...,Xn) by marginalizing the variables Zis:

π(y|x1, ..., xn) =
⊕

z1,...,zn

π(y|z1, ..., zn) ⊗
n⊗

i=1

π(zi|xi) (5)

The ⊗ is the minimum and the ⊕ is the maximum in possibility theory. If
we have a deterministic model where the value of Y can be computed from the
values of Zis by using a function f then:

where π(y|z1, ..., zn) =

{
1 if y = f(z1, ..., zn)
0 else

(6)

As a result, we obtain the following equation:

π(y|x1, ..., xn) =
⊕

z1,...,zn:y=f(z1,...,zn)

n⊗
i=1

π(zi|xi) (7)
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If we add a leakage variable Zl in the previous equation, we obtain:

π(y|x1, ..., xn) =
⊕

z1,...,zn,zl:y=f(z1,...,zn,zl)

n⊗
i=1

π(zi|xi) ⊗ π(zl) (8)

The CPT is computed by using this formula. The function f can be AND,
OR or their generalizations uncertain MIN and uncertain MAX as proposed by
Dubois et al. [5]. These authors developed an optimization for the computation
of uncertain MIN and MAX connectors. We can also use a weighted average func-
tion or the operator OWA [22], as described in our previous study [13,14]. For
this experimentation, we will use the connectors uncertain MIN (UMIN), uncer-
tain MAX (UMAX) and uncertain weighted average (UWAVG). The function f
must have the same domain as the variable Y . We can see that the connectors
uncertain MIN and uncertain MAX satisfy this property. The weighted average
of the intensity level of the variables Xi can return a value outside the domain of
Y . So in this case we have to combine a function noted g with a scaling function
fs which returns a value in the domain of Y . We can write f = fs ◦ g where
function g is g(z1, ..., zn) = ω1z1+ ...+ωnzn. If the state of the variable Y defines
an ordered scale E = {ϑ0 < ϑ1 < ... < ϑm}, the function fs can be for example:

fs(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϑ0 if x ≤ θ0
ϑ1 if θ0 < x ≤ θ1
...

...
ϑm if θm−1 < x

(9)

The parameters θi allow us to adjust the behaviour of fs. The function g
has n parameters which are the weights wi of the linear combination and n
arguments. If all weights are equal to 1

n , then we calculate the average of the
intensities. If ∀i∈[1,n]ωi = 1, then we make the sum of the intensities. To compute
the Eq. 9, we have to define π(Zi|Xi), π(Zl), and the function f . If the states
of a variable are ordered, we can assign an intensity level to each state as done
by Dubois et al. [5]. In our experimentation with test CPTs we propose to use
3 states for the variables such as low, medium and high. The intensity levels are
0 for low, 1 for medium and 2 for high. The table of π(Zi|Xi) is the following
(Table 1):

Table 1. Possibility table for 3 ordered states.

π(Zi|Xi) xi = 2 xi = 1 xi = 0

zi = 2 1 s2,1i s2,0i

zi = 1 κ1,2
i 1 s1,0i

zi = 0 κ0,2
i κ0,1

i 1

In the previous table, κ represents the possibility that an inhibitor exists if
the cause is met and si the possibility that a substitute exists when the cause
is not met. If a cause of weak intensity cannot produce a strong effect, then all
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si = 0. So there are 6 parameters at the most per variable and 2 parameters
for π(Zl). If all variables have the same intensity level and are graded variables
with a normal state of intensity 0 (the first state is the normal state), there is no
problem. In this case, the higher the intensity is, the more abnormal the situation
becomes. But there are two other cases to discuss. The first case concerns the
variables which are not graded variables. For example, if we have a variable
where the domain is (decrease, normal, accelerate), we can see that the normal
speed is the neutral state i.e. with the intensity level 1. The second case concerns
the incompatibilities of the intensity levels of the causal variables Xis and their
parents. Indeed, if some causal variables do not share the same domain with the
effect variable, we can imagine that the computation of the function f can give
the results that are out of range. This remark leads to a constraint on Zis, which
is that Zis must have the same domain as Y .

3 Estimation

The estimation of uncertain gates leads to two problems discussed in [24]. The
first one is the simple case where we would like to perform an estimation of
uncertain gates from an existing CPT. The second case concerns the estimation
of the connector from the data without any CPT. Indeed, in possibilistic net-
works, the number of parameters to elicit grows exponentially with the number
of parents of a variable, leading to problems of knowledge engineering. So if data
is available, we propose to perform the estimation of the CPT instead of elic-
iting all parameters. Unfortunately, it is often difficult to have enough data to
estimate all parameters.

In this paper, we will focus our interest on the first case. If a CPT already
exists, it can be useful to know which uncertain gate corresponds to the CPT.
The question can be which connector matches the target CPT among all exist-
ing connectors. To discover this, we have to compare the CPT generated by
uncertain gates and the existing CPT. This leads to the problem of estimating
the parameters of uncertain gates. We look for the closest CPT to a reference
CPT. To do this, we must use a distance [8]. For our first experimentation we
will use the Euclidean distance. The problems discussed in [24] for this distance
are also present in our research. We propose to analyze them and to compare
several distances in future works. With respect to this study, we will compare 4
estimation methods by using the distance of the CPTs as a cost function in order
to improve the estimation: hill-climbing (HC), simulated annealing (SA), tabu
search (TS), and genetic algorithm (GA). We propose to choose the connector
with the smallest distance θ̂ to the target CPT.

We consider the example of hill-climbing and the estimation of the parameters
of the uncertain MIN. We must at first initialize all parameters of the uncertain
MIN to a random value in [0, 1]. Then we generate the CPT by using the con-
nector and we calculate the initial distance between the generated CPT and the
target CPT. Next, we evaluate all neighbours of the parameters by adding and
subtracting a step (Function GenNeighbour in the following algorithm). We con-
sider only the parameters with the smallest distance. These parameters become



598 G. Petiot

our temporary solution. We reiterate this process until the distance is lower than
a constant, or a maximum number of iterations is reached. The algorithm for
the estimation of the parameters of the uncertain MIN with hill-climbing is the
following:

Algorithm 1: Hill climbing.
Input : Y a variable; X1, ..., Xn the n parents of Y ; π(Y |X1, ..., Xn) the initial CPT;

max the maximum number of iterations; ε the accepted distance; step a
constant.

Output: The result is π(Zi|Xi).
1 begin
2 iteration ← 0; error ← +∞; current ← +∞; Initialize(π(Zi|Xi));
3 while iteration < max and error > ε do
4 π′(Zi|Xi) ← π(Zi|Xi);
5 current ← error;
6 forall π∗(Zi|Xi) ∈ GenNeighbour(π(Zi|Xi), step) do
7 π∗(Y |X1, ..., Xn) ← UMIN(Y, π∗(Zi|Xi));
8 if E(π∗(Y |X1, ..., Xn), π(Y |X1, ..., Xn)) < current then
9 current ← E(π∗(Y |X1, ..., Xn), π(Y |X1, ..., Xn));

10 π′(Zi|Xi) ← π∗(Zi|Xi);

11 if current < error then
12 error ← current;

13 π(Zi|Xi) ← π′(Zi|Xi);

14 iteration ← iteration + 1;

The simulated annealing algorithm was proposed [18] to describe a thermody-
namic system. This is a probabilistic approach which leads to an approximation
of a global optimum. We have proposed the following algorithm for the estima-
tion of the parameters of the uncertain MIN:

Algorithm 2: Simulated annealing.
Input : Y a variable; X1, ..., Xn the n parents of Y ; π(Y |X1, ..., Xn) the initial CPT;

max the maximum number of iterations;ε the accepted distance;step a constant;
Kmax is the maximum of steps; T is the temperature.

Output: The result is π(Zi|Xi).
1 begin
2 iteration ← 0; Initialize(π(Zi|Xi));SP ← +∞;
3 πp(Y |X1, ..., Xn) ← UMIN(Y, π(Zi|Xi));
4 while iteration < max and SP > ε do
5 k ← 0;
6 while k < kmax do
7 π∗(Zi|Xi) ← GenNeighbour(π(Zi|Xi), step)
8 π∗(Y |X1, ..., Xn) ← UMIN(Y, π∗(Zi|Xi));
9 SP ← E(πp(Y |X1, ..., Xn), π(Y |X1, ..., Xn));

10 SN ← E(π∗(Y |X1, ..., Xn), π(Y |X1, ..., Xn));
11 delta ← SN − SP ;
12 if delta < 0 then
13 π(Zi|Xi) ← π∗(Zi|Xi);
14 πp(Y |X1, ..., Xn) ← π∗(Y |X1, ..., Xn);

15 r ← RandomV alue();

16 if r < e− delta
T then

17 π(Zi|Xi) ← π∗(Zi|Xi);
18 πp(Y |X1, ..., Xn) ← π∗(Y |X1, ..., Xn);

19 k ← k + 1;

20 T ← α × T ;
21 iteration ← iteration + 1;

We also propose to use a genetic algorithm to perform the estimation. The
chromosomes gather all the parameters of the connector. The population of
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chromosomes will evolve by favouring the best individuals. A fitness function,
which measures the distance between a CPT generated by one chromosome and
the target CPT, is used to compare the individuals. The best chromosome is the
one with the smallest fitness. The genetic algorithm performs several processing
operations in a loop: the selection of the parents, the crossover, and the mutation.
We can resume this with the following algorithm:

Algorithm 3: Genetic algorithm.
Input : Y a variable; X1, ..., Xn the n parents of Y ; π(Y |X1, ..., Xn) the initial CPT;

max the maximum number of iterations; ε the accepted distance; step a
constant; N is the number of chromosomes;

Output: The result is π(Zi|Xi).
1 begin
2 generation ← 0; bestF itness ← +∞; InitializePopulation();
3 while generation < max and bestF itness > ε do
4 ComputeFitness();
5 TournamentSelection();
6 Crossover();
7 Mutation();
8 generation ← generation + 1;

The tabu search was proposed by F. W. Glover [10–12]. This algorithm
improves local search algorithms by using a list of previous moves to avoid pro-
cessing a situation already explored. The Tabu search algorithm is the following:

Algorithm 4: Tabu search.
Input : Y a variable; X1, ..., Xn the n parents of Y ; π(Y |X1, ..., Xn) the initial CPT;

max the maximum number of iterations; ε the accepted distance; step a
constant; NC is the number of candidates; T is the temperature.

Output: The result is π(Zi|Xi).
1 begin
2 iteration ← 0; Initialize(π(Zi|Xi));π

p(Y |X1, ..., Xn) ← UMIN(Y, π(Zi|Xi));
3 bestScore ← +∞;
4 while iteration < max and bestScore > ε do
5 k ← 0;
6 while k < NC do
7 π∗(Zi|Xi) ← GenNeighbour(π(Zi|Xi), step)
8 π∗(Y |X1, ..., Xn) ← UMIN(Y, π∗(Zi|Xi));
9 score ← E(π∗(Y |X1, ..., Xn), π(Y |X1, ..., Xn));

10 if π∗(Zi|Xi) /∈ Candidate then
11 Candidate ← Candidate ∪ π∗(Zi|Xi);
12 F (k) ← score;
13 k ← k + 1;

14 S ← IndiceOfAscendingSort(F )
15 if (Candidate[S[0]] /∈ ListTabu) or ((Candidate[S[0]] ∈ ListTabu) and

(F (S[0]) < bestScore)) then
16 ListTabu ← ListTabu ∪ Candidate[S[0]];
17 π(Zi|Xi) ← Candidate[S[0]];
18 currentScore ← F (S[0]);

19 else
20 b ← 0;
21 while ((b < NC) and (Candidate[S[0]] ∈ ListTabu)) do
22 b ← b + 1;

23 if b < NC then
24 ListTabu ← ListTabu ∪ Candidate[S[b]];
25 π(Zi|Xi) ← Candidate[S[b]];
26 currentScore ← F (S[b]);

27 if currentScore < bestScore then
28 bestScore ← currentScore;

29 iteration ← iteration + 1;
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4 Experimentation

We now propose to test this approach on simulated CPTs for connectors MIN,
MAX and weighted average. Next, we will compare the estimation of the CPTs.
For this experimentation, we will use only two causal variables X1 and X2 and
one effect variable Y . All the variables have states: low, medium and high with
intensity levels 0, 1 and 2. We provide below the parameters used to compute
the simulated CPTs (Table 2):

Table 2. Possibility table of π(Zi|Xi).

π(Zi|Xi) xi = 2 xi = 1 xi = 0

zi = 2 1 0.3 0

zi = 1 0.3 1 0

zi = 0 0.2 0.3 1

We used the same parameters for X1 and X2. We defined π(Zl) with the
values π(ZL = 0) = 1 and π(ZL = 1) = π(ZL = 2) = 0.1. For the weighted average,
we will simulate a mean behaviour by defining the weights equal to 0.5 for all
variables but we will not take into account the leakage variable. We present the
simulated CPTs obtained by using the above parameters in the following tables
(Table 3):

Table 3. Simulated CPTs.

X1 Low Medium High
X2 Low Medium High Low Medium High Low Medium High

Y
Low 1.0 1.0 1.0 1.0 0.3 0.3 1.0 0.3 0.2

Medium 0.1 0.1 0.1 0.1 1.0 1.0 0.1 1.0 0.3
High 0.1 0.1 0.1 0.1 0.3 0.3 0.1 0.3 1.0

(a) MIN CPT.

X1 Low Medium High
X2 Low Medium High Low Medium High Low Medium High

Y
Low 1.0 0.3 0.2 0.3 0.3 0.2 0.2 0.2 0.2

Medium 0.1 1.0 0.3 1.0 1.0 0.3 0.3 0.3 0.3
High 0.1 0.3 1.0 0.3 0.3 1.0 1.0 1.0 1.0

(b) MAX CPT.

X1 Low Medium High
X2 Low Medium High Low Medium High Low Medium High

Y
Low 1.0 1.0 0.3 1.0 0.3 0.3 0.3 0.3 0.2

Medium 0.0 0.3 1.0 0.3 1.0 0.3 1.0 0.3 0.3
High 0.0 0.0 0.0 0.0 0.3 1.0 0.0 1.0 1.0

(c) WAVG CPT.
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We have performed the estimation with several steps 0.1, 0.01 and 0.001
and a limited number of iteration of 40000. The result of the estimation is the
following (Table 4):

Table 4. Result of the estimation.

Connectors Uncertain MIN Uncertain MAX Uncertain WAVG
Estimation HC SA TS GA HC SA TS GA HC SA TS GA
MIN CPT 0.31 0.0 0.0 0.0 2.40 2.27 2.27 2.27 1.14 0.86 0.86 0.86
MAX CPT 2.22 2.05 2.11 2.17 0.62 0.0 0.0 0.22 1.09 0.94 0.86 0.86
WAVG CPT 1.84 1.72 1.72 1.73 2.08 1.96 1.96 1.98 0.10 0.0 0.22 0.0

(a) step = 0.1.

Connectors Uncertain MIN Uncertain MAX Uncertain WAVG
Estimation HC SA TS GA HC SA TS GA HC SA TS GA
MIN CPT 0.27 0.0 0.24 0.07 2.39 2.27 2.43 2.27 1.93 1.21 1.04 1.28
MAX CPT 2.18 2.05 2.08 2.08 0.26 0.0 0.0 0.0 1.63 2.21 1.29 0.86
WAVG CPT 1.89 1.72 1.72 1.92 2.22 2.01 1.96 1.96 0.56 1.24 0.08 0.22

(b) step = 0.01.

Connectors Uncertain MIN Uncertain MAX Uncertain WAVG
Estimation HC SA TS GA HC SA TS GA HC SA TS GA
MIN CPT 0.27 0.0 2.15 0.07 2.39 2.69 2.29 2.27 1.93 1.04 1.04 1.81
MAX CPT 2.11 2.08 2.25 2.10 0.20 0.58 0.0 0.22 1.86 1.80 1.63 0.95
WAVG CPT 1.89 1.73 2.57 1.73 2.22 1.97 1.96 1.97 0.58 0.22 0.002 0.08

(c) step = 0.001.

We can see in the above tables that all simulated CPTs are associated with
the expected connector. We can see in bold in each line the smallest distance
which corresponds to the best result for the estimation. By applying the decision
rule, we select for each line the connector and the estimation algorithm which
has produced the best result. For example, with step 0.001 we can see that
the simulated MIN CPT was associated with the connector uncertain MIN and
that the best result was provided by the simulated annealing algorithm with
the final distance of 0. This means that the parameters are exactly estimated.
The simulated MAX CPT was associated to the connector uncertain MAX and
the best result was provided by tabu search. And finally, the simulated WAVG
CPT was associated to uncertain WAVG connector as expected and the best
result was provided by tabu search with a distance of 2 × 10−3. If we compare
the results, we can see that the best results are obtained with step 0.1. So we
provide below the comparison of the estimation algorithms which lead to the
best results for this step (Fig. 2):
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(a) The simulated MIN CPT.

(b) The simulated MAX CPT.

(c) The simulated WAVG CPT.

Fig. 2. Estimation of the simulated CPT with step = 0.1 for the first 10,000 iterations.

We can see in the above results that all algorithms did not converge to 0. The
best result seems to be obtained by simulated annealing or tabu search but for
step=0.001 and for the simulated MIN CPT the tabu algorithm didn’t find the
expected parameters. Nevertheless, we have tried several parameters for tabu
search and we have obtained good results.
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We have performed another experimentation by using existing Bayesian net-
works: Asia [16], Earthquake and Cancer [15], Survey [19], Sachs [23], Andes
[3] because of the small number of data set available for possibilistic networks.
We have transformed the conditional probability tables into conditional possi-
bility tables to obtain possibilistic networks. The structure of the networks is
the same in Bayesian networks and possibilistic networks. Then we have applied
our approach to replace all CPTs by appropriate connectors. The problem of
converting the probability table has already been discussed by Dubois et al. [7].
The temptation can be to perform the normalization of the probability but it
is not sufficient to ensure that the possibility property Π ≥ P is satisfied. For
example, if we have p1 > p2 > ... > pn, we perform pi = pi

p1
for all i. The correct

solution proposed by Dubois et al. [7] consists in computing the possibilities as
follows:

πi =

⎧⎨
⎩

1 if i = 1,∑n
j=i pj if πi−1 > πi,

πi−1 otherwise.

(10)

We present below the result of this experimentation. At first, we have per-
formed the estimation for small networks. We can see in the first column the
name of the data set, then the name of the node and the number of the parents
of the node. In the fourth column, we present the size of the CPT, and in the
following columns, the minimal distance for all connectors (Table 5).

Table 5. Results for small size networks (step = 0.01).

Name Table Parents Size MIN MAX WAVG

Asia Dysp 2 8 1.238 0.0707 0.0709

Either 2 8 1.581 0.011 0.012

Earthquake Alarm 2 8 0.961 0.71 0.204

Cancer Cancer 2 8 0.97 1.6856 0.07

Survey E 2 12 1.56 0.71 0.71

T 2 12 0.70 1.06 0.74

This first experiment allows us to distinguish two cases. The first one con-
cerns the distance close to 0. In this case, the computation of the connector
matches the target CPT. The connector can replace the CPT. The second case
concerns the distance not close enough to 0, such as the tables alarm, E or T. We
cannot replace the CPT by a connector, nevertheless the information provided
is meaningful because we can deduce the behaviour of the CPT between severe
and indulgent. We have also performed another experiment with Andes, which is
a big network, and we obtain the following result for the first 30 nodes (Table 6):
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Table 6. The 30 first nodes of Andes (step = 0.01).

Name Table Parents Size MIN MAX WAVG

Andes RApp1 2 8 0.01 1.58 0.01

SNode 8 2 8 1.52 0.007 0.008

SNode 20 2 8 0.005 1.33 0.006

SNode 21 2 8 0.006 1.33 0.003

SNode 24 2 8 0.009 1.45 0.008

SNode 25 2 8 0.008 1.45 0.001

SNode 26 2 8 0.006 1.33 0.007

SNode 47 2 8 0.003 1.33 0.007

RApp3 3 16 0.027 2.598 0.013

RApp4 2 8 0.015 1.581 0.01

SNode 27 2 8 1.523 0.006 0.004

GOAL 48 2 8 0.006 1.33 0.003

GOAL 49 4 32 0.008 3.13 0.01

GOAL 50 2 8 0.006 1.33 0.009

SNode 51 3 16 0.009 2.36 0.009

SNode 52 2 8 0.004 1.33 0.008

GOAL 53 3 16 0.01 2.14 0.008

SNode 28 3 16 0.0104 2.14 0.0105

SNode 29 2 8 0.006 1.33 0.003

SNode 31 2 8 0.009 1.45 0.008

SNode 33 2 8 0.009 1.45 0.006

SNode 34 2 8 0.004 1.33 0.007

GOAL 56 3 16 0.013 2.14 0.009

GOAL 57 2 8 0.005 1.33 0.003

SNode 59 3 16 0.006 2.14 0.008

SNode 60 2 8 0.003 1.33 0.006

GOAL 61 3 16 0.009 2.14 0.007

GOAL 62 2 8 0.005 1.33 0.006

GOAL 63 3 16 0.01 2.14 0.008

SNode 64 2 8 0.007 1.33 0.006

Having computed all nodes, we obtain the following results: for the uncertain
MIN connector, 94% of the final distance is less than 0.1; for the uncertain MAX
connector, only 6 results are below 0.1; for the uncertain WAVG connector most
of the results have a distance less than 0.1 because it can replace the other
connectors. Nevertheless, its computation time is high. The best results for the
uncertain MIN connector were obtained by using the hill-climbing algorithm
and the genetic algorithm. Nevertheless, the use of simulated annealing and
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tabu search can sometimes provide good results too. As for the uncertain MAX
and uncertain WAVG connectors, all algorithms gave the same number of good
results. The use of concurrent algorithms for the estimation has improved the
final result.

5 Conclusion

In this paper, we have proposed a solution to convert the CPTs of an exist-
ing possibilistic network into uncertain gates. Uncertain gates provide a set of
connectors with behaviours from severe to indulgent through the family of com-
promise (median, average, weighted average,...). Uncertain gates provide mean-
ingful knowledge about how information is combined to compute the state of a
variable. To convert the CPTs, we have used and compared optimization algo-
rithms such as hill-climbing, simulated annealing, tabu search and the genetic
algorithm. The goal was to find the closest CPT generated by using the con-
nectors. The best result is provided by the connector which matches the best
the initial CPT. To validate this approach, we have generated test CPTs with
the behaviours MIN, MAX and weighted average and performed the estimation.
The results correspond to our expectations. We have also proposed to test our
solution on real datasets. To do this, we have converted Bayesian networks into
possibilistic networks and performed the estimation of the connectors to select
the most appropriate one for each table. For our future works we would like to
improve the computation of the connectors by proposing a parallel algorithm.
We would like to better analyze the problem of variables with different inten-
sity scales. Also, it can be interesting to evaluate the effects on the decision of
converting a CPT into uncertain gates.
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Abstract. We introduce measures of uncertainty that are based on
Depth-Bounded Logics [4] and resemble belief functions. We show that
our measures can be seen as approximation of classical probability mea-
sures over classical logic, and that a variant of the PSAT [10] problem
for them is solvable in polynomial time.

1 Introduction

In this work, we investigate the relation between belief functions (see the original
[13], and, for a more recent survey, [5]) and probability, from a new logical
perspective. Expanding on ideas first introduced in [1], we investigate measures of
uncertainty which resemble Dempster-Shafer Belief Functions, but that, instead
of being based on classical logic, are based on Depth-Bounded Logics (DB logics),
a family of propositional logics approximating classical logic [4].

Our starting point is the observation that Belief Functions and Depth-
Bounded Logics share a similar concern for the way virtual and actual infor-
mation possessed by an agent is evaluated and manipulated.

Let us recall that belief functions can be uniquely determined from so-called
mass functions (see e.g. [11]), i.e. probability distributions over the power sets
of classical propositional evaluations. If such mass functions are non-zero only
for singletons of evaluations, one obtains probability functions, as special cases.
We will look at the mass functions behind the probability measures, as arising
from the general mass functions (determining arbitrary belief functions) via a
limiting process: agents originally assign masses to arbitrary sets of evaluations,
reflecting their actual information, and they stepwise distribute such mass, only
when requested to do so, by way of weighting additional virtual information,
until they will have their say on the specific uncertainty associated with each
single evaluation.

A related issue has been investigated in logic, where the family of DB logics
[3,4] relies on the idea of separating two kinds of (classically valid) inferences:
the inferences which only serve the purpose to make explicit the information
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that agents already possess, i.e. those using only their actual information on
the one hand, and those which make use of virtual information on the other.
The latter type of inferences arises from the use of a single branching rule (see
Fig. 1), reflecting the principle of bivalence, which allow agents to reason by cases,
adding information not actually in their possession, and drawing further infer-
ences thereon (see Sect. 2). The family of depth-bounded logics is then defined
just by fixing maximal depths at which the application of such branching rule
is allowed. Unbounded use of the rule results in (an alternative presentation of)
classical logic, which can be thus seen as a limit of such family of weaker DB
logics.

As an important consequence of the bounded use of the bivalence principle,
it is shown in [4] that the consequence relation determined by each DB logic is
decidable in polynomial time, hence we can realistically expect that (boundedly)
rational agents would be able to recognize, in practice and not only in princi-
ple, whether a depth-bounded inference is actually correct. This contrasts with
classical logic, which can be seen as the, computationally unfeasible, limit of the
feasible DB logics.

The main contribution of this paper is twofold: first, we show that the mea-
sures of belief that we introduce, based on DB logics, provide approximations of
classical probability measures over classical logic. Second, we prove that under
certain reasonable conditions, the problem of finding whether there is any such
measure satisfying a given set of linear constraints is solvable in polynomial time,
in contrast with the analogous problem for classical logic and probability.

The rest of the paper is structured as follows. In Sect. 2 we recall some pre-
liminaries about DB logics. In Sect. 3 we introduce our depth-bounded measure
of uncertainty, based on DB logics, and in Sect. 4 we investigate computational
issues. Section 5 contains conclusions and hints at future work.

2 Preliminaries

Let us fix a language L, over a finite set VarL = {p1, . . . , pn} of propositional
variables. We let FmL be the formulas built from the propositional variables by
the usual classical connectives ∧,∨,¬, and a constant � denoting contradiction.
For each pi ∈ Var we denote by ±pi any of the literals pi and ¬pi. For each
set of formulas Γ we denote by Sf (Γ ) the subformulas of the formulas in Γ ,
and by Var(Γ ) the propositional variables occurring in Γ . Finally by AtL =
{±p1∧±p2∧· · ·∧±pn | pi ∈ V arL} we denote the atoms, i.e. all the conjunctions
of literals, formed from choosing (under the given order) exactly one literal for
each of the (finitely many) variables of the language.

Let us now move to consider the family of DB Logics. We start from the
0-depth logic, that is the logic manipulating only actual information. Here we
will limit ourselves to a proof-theoretic presentation, based on the Intelim (intro-
duction and elimination) rules in Table 1. For a semantic characterization, see
the nondeterministic truth tables, e.g. in [3,4].

The intelim rules determine a notion of 0-depth consequence relation �0, in
the usual way.
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Table 1. Introduction and elimination rules

ϕ ψ

ϕ ∧ ψ
(∧I) ¬ϕ

¬(ϕ ∧ ψ)
(¬ ∧ I1) ¬ψ

¬(ϕ ∧ ψ)
(¬ ∧ I2)

¬ϕ ¬ψ

¬(ϕ ∨ ψ)
(¬ ∨ I) ϕ

ϕ ∨ ψ
(∨I1) ψ

ϕ ∨ ψ
(∨I2)

ϕ ¬ϕ
� (�I) ϕ

¬¬ϕ (¬¬I)

ϕ ∨ ψ ¬ϕ

ψ
(∨E1) ϕ ∨ ψ ¬ψ

ϕ (∨E2) ¬(ϕ ∨ ψ)
¬ϕ (¬ ∨ E1)

¬(ϕ ∨ ψ)

¬ψ
(¬ ∨ E2) ϕ ∧ ψ

ϕ (∧E1)
ϕ ∧ ψ

ψ
(∧E2)

¬(ϕ ∧ ψ) ϕ

¬ψ
(¬ ∧ E1) ¬(ϕ ∧ ψ) ψ

¬ϕ (¬ ∧ E2)

¬¬ϕ
ϕ (¬¬E) �

ϕ (�E)

Definition 1. For any set of formulas Γ ∪ {α} ⊆ FmL, we let Γ �0 α iff there
is a sequence of formulas α1, . . . , αm such that αm = α and each formula αi is
either in Γ or obtained by an application of the rules in Table 1 on the formulas
αj with j < i.

The key feature of the consequence relation �0 is that only information actu-
ally possessed by an agent is allowed in a “0-depth deduction”.

As already recalled in the introduction, the DB Logics for k > 0, will be
defined via the amount k of virtual information which agents are allowed to use
in their deductions. This leads to the recursive definition of the consequence
relation �k, for k > 0, as follows.

Definition 2. For each k > 0 and set of formulas Γ ∪ {α} ⊆ FmL, we let
Γ �k α iff there is a β ∈ Sf (Γ ∪ {α}) such that Γ, β �k−1 α and Γ,¬β �k−1 α.

In other words, we suppose that β and ¬β are pieces of “virtual information”
which is not actually possessed by the agent, but which is used to derive α
through case-based reasoning. While, according to Definition 1, the consequence
�0 amounts to the existence of a suitable sequence of formulas, the derivability
relation �k amounts to the existence of a suitable proof-tree, where each node
is labeled by a formula, which is either an assumption or obtained by formulas
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Fig. 1. The branching rule PB (principle of bivalence)

above it by means of an intelim rule, or of the branching rule (PB) in Fig. 1. The
latter is then only allowed in a limited form: for �k we are allowed at most k
nested applications of (PB). Thus, Γ �k ϕ can be equivalently taken to say that
there is a proof-tree, as described above, so that ϕ is derivable from Γ in each
branch, via the intelim rules, plus the additional virtual information introduced
by the branching rules. One may run a proof-search procedure (see e.g. the
algorithm in [4]), to verify whether such a proof-tree, deriving ϕ from Γ in each
branch, exists. Even if this is not the case, i.e. if the proof-search procedure only
produces proof-trees which derive ϕ in some (possibly none) and not all of the
branches, we are still interested in the structure of such trees, in particular since
they keep track of the virtual information that has been explored. This is the
main inspiration behind our investigation of depth-bounded belief in the next
section.

Before that, let us finish this section recalling two important properties of
the DB logics, already mentioned in the introduction, and shown e.g. in [3,4].
First, DB logics provide a hierarchy of consequence relations approximating the
classical one, that is, �k⊆�k+1 and limk→∞ �k = �, where � stands for classical
derivability. Finally, each �k can be decided in polynomial time, and is thus
feasible. This will be of particular use in Sect. 4 of the paper.

3 Depth-Bounded Proofs and Uncertain Reasoning

So far, we have recalled the definition of DB logics and given an idea of how
proofs in such logics work, by distinguishing the use of actual and virtual infor-
mation. Let us now assume that agents, whenever they add a piece of virtual
information to their stock of assumptions, can also weight their belief on it, for
extra-logical reasons. We will then take the belief that an agent commits to a
formula ϕ to be the sum of all the weights assigned to the leaves of a depth-
bounded proof-tree, that allow to derive ϕ. In particular, we request that, if all
branches derive ϕ, which corresponds to ϕ being logically derivable, one would
then obtain a degree of belief 1. We use these ideas as a bridge, from the realm of
depth-bounded logic to that of depth-bounded uncertain reasoning. Let us recall
that classical belief functions can be determined from mass functions, and that,
when such mass functions are non-zero only for singletons, one obtain classical
probabilities. Identifying formulas and sets of evaluations, one can reformulate
this syntactically, by taking the mass functions behind belief functions to act over
FmL, and assume that those behind probabilities are non-zero only over AtL [11].
Our starting point towards depth-bounded uncertain reasoning, is to consider
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mass functions which are non-zero only over those formulas which keep track of
the information (virtual and actual), used in each branch of a proof-search tree
in DB logic. Before delving into our formal definition of depth-bounded belief
functions, we will need to fix first various parameters.

– First, we will have a set In ⊆ FmL ∪ {∗}, the initial information, which we
assume to be finite. In stands for the formulas, for which an agent, for some
extra-logical reasons, can assign a degree of belief, already at a shallow (0-
depth) level. We can think of the values of such formulas as obtained from
the available data, e.g. as information of statistical nature.
In order to simplify the notation, we assume that In is nonempty, and we
represent the case where no information at all is initially available by the
symbol1 ∗, which is not part of the language, and letting In = {∗}. We adopt
the convention that ∗ �k ϕ stands for �k ϕ.
In our setting, we can consider a belief conditioned on a formula γ, by just
assuming that, for each α ∈ In, we have α �0 γ. When this is the case, we say
that In is γ-based and denote it by Inγ . Similarly we denote the case where
In = {∗} by In∗.

– We have then a set Π, standing for the predictions that an agent wants to
obtain, and that thus guide the weighting of her degree of belief. The idea
is that an agent weights the uncertainty of virtual information and explores
various possible scenarios, only in order to settle, eventually, the truth or
falsity of all the formulas in Π.

– Finally, we have a set of virtual information V . This can be thought of as the
set of questions that the agent may evaluate, in the process of assessing the
formulas in Π. Typical example might be V = Var(Π) or V = Sf (Π).

Let us recapitulate our setting: starting from initial knowledge in In, agents
ask themselves a number of questions about the formulas in V , thus specifying
in more details the possible information states, which will be then used to settle
the belief and make predictions about the formulas in Π.

We assume that the amount of questions the agents can ask themselves is
bounded: the maximum number of questions an agent can ask corresponds, in a
sense to be made precise later, to the depth of derivations in DB logic.

We are now ready to give our first formal definition of 0-depth mass functions,
representing the initial evidence possessed by an agent. This is nothing else than
a convex distribution over the set In of the initial information.

Definition 3. A 0-depth mass function is a function m0 : In → [0, 1] such that∑
α∈In m0(α) = 1 and m0(α) = 0 if α �0 �.

Note that, in case In = {γ}, we have m0(γ) = 1 and m0(α) = 0 for any other
formula α.

1 We slightly depart from the notation in [4], where the state of no information is
denoted by ⊥, since the latter is often used as a constant for falsum in intuitionistic
and various nonclassical logics.
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Definition 4. Given a 0-depth mass-function m0, a 0-depth belief function is a
function B0 : FmL → [0, 1] such that

B0(ϕ) =
∑

α∈In
α�0ϕ

m0(α) B0(ϕ) = 0 if for no α ∈ In, α �0 ϕ.

If In is of the form Inγ for some γ ∈ FmL, we will then have B0(ϕ) = 1 if γ �0 ϕ
and B0(ϕ) = 0 otherwise.

Remark 1. As in the case of classical belief and mass functions, m0(ϕ) represents
a portion of belief committed exclusively to ϕ and to no other formula, while
B0(ϕ) stands for the belief in ϕ, which is obtained by putting together all the
basic pieces of belief leading to (i.e. 0-depth deriving) ϕ. Note that, while in
principle 0-depth equivalent formulas can be assigned different values via a 0-
depth mass, they will still be assigned the same 0-depth belief. Hence, in our
framework, masses cannot be uniquely determined by belief functions. This is
due to fact that we assign masses to formulas, rather than to equivalence classes
of the corresponding Lindenbaum-Tarski algebra (see e.g. [11]).

The notions of 0-depth mass and 0-depth belief function encode the shallow
information, which is provided to an agent. We will now introduce mass func-
tions based on higher DB logics, corresponding to the setting where agents have
both higher inferential and “imaginative” power, i.e. when they can weight the
uncertainty of pieces of information going beyond what is originally given.

Let us fix a triplet G = 〈In,Π, V 〉 where In ⊆ FmL ∪ {∗}, Π ⊆ FmL,
V ⊆ FmL, with the intended meaning discussed above. We will represent the
information evaluated by an agent, in the form of forests, with labels provided
via the triplet G. Let us recall that by a forest we just mean a disjoint union of
trees, in graph-theoretic terms.

Definition 5. Let F be a binary forest. A G-label for F is a labeling of nodes
of F into formulas in FmL such that:

– When restricted to the roots of the trees in F , the labeling is a bijection with
the formulas in In.

– For each node labeled by α, the children nodes are labeled by α∧β and α∧¬β
for some β ∈ V .

Before proceeding, we also need the following technical definition.

Definition 6. Let F be any G-labeled forest

– We say that a formula γ k-decides δ if γ �k δ or γ �k ¬δ.
– We let Lf(F ) be the set of formulas that label the leaves of F .
– We say that a leaf labeled by α is Π-closed if α �0 � or α k-decides δ, for

each δ ∈ Π. A leaf which is not Π-closed is said to be open.

We will build now a set of G- labeled forests of a given maximal depth. Each
open node is expanded by two new children nodes, representing the addition of
a certain piece of virtual information and its negation.
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Definition 7. Let G = 〈In,Π, V 〉. We define recursively the set of G-labeled
forests Fk of depth k, for any k ∈ N, as follows :

– For k = 0 we let F0 be a set of nodes with no edges, each labeled by a distinct
formula in In. Clearly Lf(F0) = In.

– The set Fk, for k ≥ 1 is the set of all G-labeled forests obtained as follows:
• Pick a β ∈ V and, for each G-labeled forest F ′ ∈ Fk−1, expand each

Π-open leaf labeled by α in F ′ with two nodes labeled by α∧β and α∧¬β.
• (MAX) Among the resulting forests, add to Fk only those forests F such

that the number of formulas in Lf(F ), which 0-depth derive ±ϕ, for each
ϕ ∈ Π, is maximal2.

In the following, for each F ∈ Fk we call the forest F ′ ∈ Fk−1 from which it was
obtained, via the construction above, the predecessor of F .

Definition 8. Let Fk be the set of G-labeled forests of depth k. For each forest
F ∈ Fk, we let mF

k : Lf(F ) → [0, 1] be any function such that:

(i) mF
k (γ ∧ α) + mF

k (γ ∧ ¬α) = mF ′
k−1(γ) where F ′ ∈ Fk−1 is the predecessor of

F , γ ∈ Lf(F ′) and γ labels the parent node in F of γ ∧ α and γ ∧ ¬α .
(ii) mF

k (γ) = mF ′
k−1(γ) if F ′ ∈ Fk−1 is the predecessor of F and γ ∈ Lf(F ′) ∩

Lf(F ).
(iii) mF

k (γ) = mG
k (δ) for each F,G ∈ Fk, γ ∈ Lf(F ), δ ∈ Lf(G) such that γ �0 δ

and δ �0 γ.

Recalling Definition 3 and condition (i) in Definition 8, it is easy to see that,
for each F ∈ Fk ∑

α∈Lf(F )

mF
k (α) = 1

Each mF
k is thus a mass functions, in the sense of Shafer’s belief function [13],

which is non-zero only over the leaves of the trees in F .

Definition 9. Let G = (In,Π, V ) and Fk be a G-labeled set of forests. For each
F ∈ Fk, we define the F -based k-depth belief function BF

k and the k-depth
plausibility function PlFk as follows:

BF
k (ϕ) =

∑

α∈Lf(F )
α�0ϕ

mF
k (α) PlFk (ϕ) =

∑

α∈Lf(F )
α	�0¬ϕ

mF
k (α)

2 This condition might not seem intuitive, but actually plays an important conceptual
role, given the motivations of our model. While we want to depart from unrealis-
tic assumptions behind both classical inferences and probability, we still want our
models to be prescriptive, rather than purely descriptive. In other words, we want
to model how agents should weight their uncertainty, given their limited inferential
ability. Therefore, even if it could be the case that agents use the wrong piece of
virtual information (i.e. failing the condition (MAX)) we limit ourselves to the case
where they only use the virtual information actually leading them to settle as many
of their questions as possible, within their inferential abilities.
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Finally, we define the G-based k-depth belief as a function Bk from the formulas
in FmL to the interval subsets of [0, 1], associating to any formula ϕ the following
interval:

Bk(ϕ) = [ min
F∈Fk

BF
k (ϕ), max

F∈Fk

BF
k (ϕ)]

Remark 2. It is immediate to see that PlFk (ϕ) = 1 − BF
k (¬ϕ), hence, for each

forest F we can think that an exact measure of uncertainty of the formula
ϕ lies within the interval [BF

k (ϕ), P lFk (ϕ)]. Any such interval is related with
a single forest F . This should not be confused with the interval given by
[minF∈Fk

BF
k (ϕ),maxF∈Fk

BF
k (ϕ)] which arises from considering various k-depth

belief functions over different forests, that is, various proof-search strategies,
involving different pieces of virtual information.

We now show some properties of our construction, which highlight its connection
with belief functions on the one hand, and with DB logics on the other.

Proposition 1. (a) Assume G = (Inγ , {ϕ},Sf (In ∪{ϕ})), for some γ ∈ FmL ∪
{∗}, ϕ ∈ FmL, and let Fk be the set of G-labeled k-depth forests. If γ �k ϕ,
then for all the F ∈ Fk, we have BF

k (ϕ) = 1.
(b) Assume G = (Inγ , {ϕ},Sf (In ∪ {ϕ}) for some γ ∈ FmL ∪ {∗},ϕ ∈ FmL,

and let Fk be the set of G-labeled k-depth forests. If γ �k ¬ϕ, then for all
F ∈ Fk, we have BF

k (ϕ) = 0.
(c) Assume G = (In, {ϕ,ψ},Sf (In ∪{ϕ,ψ})) for some ϕ,ψ ∈ FmL, and let Fk

be the set of G-labeled k-depth forests. If ϕ �k ψ , we have:
– There is an F ∈ Fk such that BF

k (ϕ) ≤ BF
k (ψ)

– There is an l ≥ k such that, for any forest F ∈ Fl, we get BF
l (ϕ) ≤

BF
l (ψ).

(d) Assume G = (In,Π, V ), and let Fk be the set of G-labeled k-depth forests.
For each F ∈ Fk,ϕ1, . . . , ϕn ∈ FmL, we have:

BF
k (

n∨

i=1

ϕi) ≥
∑

∅	=S⊆1,...,n

(−1)|S|−1BF
k (

∧

i∈S

ϕi).

Proof.(a). Consider the forest G, obtained by attaching to any α ∈ In, the tree
containing the virtual information in a k-depth proof of ϕ from γ. Now, since
α �0 γ, and each β ∈ Lf(G) contains all the virtual information in a k-depth
proof of ϕ from γ, we will have that β �0 ϕ, for all β ∈ Lf(G). By condition
(MAX) since there is a forest, G, such that all its leaves derive ϕ, then all
the forests F ∈ Fk need to have the same property. Hence, we obtain that for
each F ∈ Fk, BF

k (ϕ) =
∑

α∈Lf(F )
α�0ϕ

mF
k (α) = 1.

(b). By (a), for any forest F , we have BF
k (¬ϕ) = 1. This means that, for any

α ∈ Lf(F ) such that mF
k (α) > 0, α �0 ¬ϕ. If α � ϕ we would get α � �,

which by definition of mF
k implies mF

k (α) = 0 in contradiction with our
assumption. Hence, for any α ∈ Lf(F ), α ��0 ϕ, and BF

k (ϕ) = 0.
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(c). The first claim holds, by just taking the forest F to be constituted of the
virtual information used in a k-depth proof of ψ from ϕ. Then, any formula
labeling a leaf 0-depth deriving ϕ, will derive ψ as well. For the second
claim, take any forest F ∈ Fk, and consider all the leaves which are 0-
depth deriving ϕ, but not deriving ψ. Expand such leaves with the virtual
information contained in any k-depth proof of ψ from ϕ. This results in a
forest of depth l for some l ≥ k, where each leaf 0-depth deriving ϕ derives
ψ as well. By the maximality condition (MAX) in Definition 7, all forests
at depths l will have this property, since otherwise they cannot decide all
the formulas in Π = {ϕ,ψ} .

(d). We straightforwardly adapt Theorem 4.1 in [11]. Pick a forest F ∈
Fk. First, for each α ∈ Lf(F ) let Ind(α) = {i | α �k ϕi}. Note
that one can show by induction on |Ind(α)|, that if Ind(α) �= ∅, then∑

∅	=S, S⊆Ind(α) (−1)|S|−1 = 1. We thus get:

BF
k (

n∨

i=1

ϕi) =
∑

α∈Lf(F )
α�0(ϕ1∨···∨ϕn)

mF
k (α)

≥
∑

α∈Lf(F )
α�0ϕ1 or ... or α�0ϕn

mF
k (α)

=
∑

Ind(α) 	=∅
mF

k (α) =
∑

Ind(α) 	=∅
mF

k (α)
∑

∅	=S⊆Ind(α)

(−1)|S|−1

=
∑

∅	=S⊆Ind(α)

(−1)|S|−1
∑

α∈Lf(F )
α�0

∧
i∈S ϕi

mF
k (α)

=
∑

∅	=S⊆{1,...,n}
(−1)|S|−1Bk(

∧

i∈S

ϕi).

Let us now discuss some examples.

Example 1. Let G = ({∗}, {α ∨ β}, {α, β}).
At depth 0, we only have the tree with a single node labeled by ∗. We obtain

B0(α∨β) = 0 since ∗ ��0 α∨β. At depth 1, our possible forests are actually just
trees. Two trees satisfy the constraints in Definition 7, namely :

∗
α ¬α

∗
β ¬β

Let us call the left tree above S and the right one T , and let mS
1 (α) = 0.5 and

mS
1 (¬α) = 0.5 while mT

1 (β) = 0.4 and mT
1 (¬β) = 0.6. Applying Definition 9, we

thus obtain BS
1 (α ∨ β) = mS

1 (α) = 0.5 and BT
1 (α ∨ β) = mT

1 (β) = 0.4. Hence
B1(α ∨ β) ∈ [BT

1 (α ∨ β), BS
1 (α ∨ β)] = [mT

1 (β),mS
1 (α)] = [0.4, 0.5]. Note that,

on the other hand, B1(α) ∈ [BT
1 (α), BS

1 (α)] = [mT
1 (α),mS

1 (α)] = [0, 0.5] and
B1(β) ∈ [BS

1 (β), BT
1 (β)] = [mS

0 (β),mT
0 (β)] = [0, 0.4]. Let us move now to depth
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2. In S we only need to expand the node ¬α, since α is {α∨β}-closed (it is sufficient
to 0-depth derive α ∨ β). The same holds for ¬β in the tree T . We get:

∗
α ¬α

β ¬β

∗
β ¬β

α ¬α
where for simplicity, we display only the piece of virtual information added
by each node, rather than their actual labels (which can be read off by the
conjunction of the formula displayed in the node with all its ancestors). Let
us call the two trees above again S and T for simplicity. By condition (ii) in
Definition 8, we have mS

2 (α) = mS
1 (α) = 0.5, and mT

2 (β) = mT
1 (β) = 0.4. For

the remaining nodes of S, we let mS
2 (¬α ∧ β) = 0.2 and mS

2 (¬α ∧ ¬β) = 0.3,
and for T , we let mT

2 (¬β ∧ α) = 0.3 and mT
2 (¬β ∧ ¬α) = 0.3. We obtain finally

BT
2 (α ∨ β) = mT

2 (β) + mT
2 (¬β ∧ α) and BS

2 (α ∨ β) = (mS
2 (α) + mS

2 (¬α ∧ β)],
hence

B2(α ∨ β) ∈ [BT
2 (α ∨ β), BS

2 (α ∨ β)] = [0.7, 0.7]

Remark 3. The example above can be generalized considering, for any n ≥ 2,
the triplet G = ({∗}, {ϕ1 ∨ · · · ∨ ϕn}, {ϕ1, . . . , ϕn}). The corresponding G- based
belief function determines, for each F ∈ Fn a corresponding permutation σ such
that:

BF
n (ϕ1 ∨ · · · ∨ ϕn) = BF

1 (ϕσ(1)) + BF
2 (¬ϕσ(1) ∧ ϕσ(2)) + . . .

+ BF
n (¬ϕσ(1) ∧ · · · ∧ ¬ϕσ(n−1) ∧ ϕσ(n))

Example 2. Let us now consider the famous example of the Ellsberg urn [6]. We
assume to have a language with propositional variables {Y,R,B} which stand
for the proposition the next extracted ball is Yellow— Red— Blue, respectively.
The initial knowledge is that 2/3 of the balls are either yellow or red and 1/3
are blue. The background theory is given by the conjunction γ of the formulas
in the set

{Y → (¬B ∧ ¬R), R → (¬B ∧ ¬Y ), B → (¬R ∧ ¬Y )}
which encode the information that any extracted ball has exactly one of the col-
ors Y,B,R. We now consider the G- based k-depth belief, with G = 〈Inγ ,Π, V 〉,
where

Inγ = {(Y ∨ R) ∧ γ,B ∧ γ} Π = {Y,R,B} V = {Y,R}
We formalize the factual information about the proportion of the balls, together
with the background theory, by letting: m0((Y ∨R)∧γ) = 2/3,m0(B∧γ) = 1/3.

This implies B0(Y ∨R) = 2/3, B0(B) = 1/3, B0(γ) = 1, B0(Y ) = B0(R) = 0.
At depth 1, we are required to make use of virtual information. One can easily
check that, via the node labeled B ∧ γ, we can already prove B ∧ γ �0 ¬Y , that
B ∧ γ �0 ¬R and that B ∧ γ �0 B. The node is thus Π-closed, and it should not
be expanded. On the other hand, we will need to expand the node (Y ∨ R) ∧ γ
with either the virtual information on Y or on R. We obtain thus a forest F ∈ F1

of the form:
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(Y ∨ R) ∧ γ

Y ¬Y

B ∧ γ

and a forest G ∈ F1 of the form:

(Y ∨ R) ∧ γ

R ¬R

B ∧ γ

which have exactly the same structure. So at depth 1, the agent will assign
mF

1 (((Y ∨ R) ∧ γ) ∧ Y ) and mF
1 (((Y ∨ R) ∧ γ) ∧ ¬Y ) such that their sum equals

mF
0 ((Y ∨R)∧γ)). Note that we easily obtain ((Y ∨R)∧γ)∧¬Y �0 ((Y ∨R)∧γ)∧R

and ((Y ∨ R) ∧ γ) ∧ Y �0 ((Y ∨ R) ∧ γ) ∧ ¬R. The converse direction of the
consequence holds as well, hence by condition (iii) in Definition 8, we have:
mG

1 (((Y ∨R)∧γ)∧R) = mG
1 (((Y ∨R)∧γ)∧¬Y ) and mG

1 (((Y ∨R)∧γ)∧¬R) =
mG

1 (((Y ∨ R) ∧ γ) ∧ Y ).
At depth 1, considering that the information about the colors is completely

symmetric, a natural assumption is now to adopt a uniform distribution, i.e.
m1((Y ∨ R) ∧ Y )) = m1((Y ∨ R) ∧ ¬Y )) = 1/3. This means that B1(Y ) =
B1(R) = B1(B) = 1/3.

To conclude this section, we now show that we can see usual classical probability
functions as arising from sequences of depth-bounded belief functions. By clas-
sical probability in our setting, we just mean finitely additive measures, defined
as functions P : FmL → [0, 1].

Theorem 1. Let P : FmL → [0, 1] be a classical probability function. Then there
is a sequence of G-labeled depth bounded belief functions such that, for each
formula ϕ, we have P (ϕ) = limk→∞ Bk(ϕ).

Proof. Let G = ({∗},FmL,VarL). Recalling that VarL = {p1, . . . , pn}, we
obtain that, for each forest F ∈ Fn, the set Lf(F ) coincides with AtL, up to
permutations of the literals in each atom. Let us consider the mass function mn

over the set Lf(F ) such that mn(α) = P (α) for each α ∈ Lf(F ). Now, we obtain
that for any F ∈ Fn

P (ϕ) =
∑

α∈AtL
α�ϕ

P (α) =
∑

α∈AtL
α�0ϕ

P (α) =
∑

α∈Lf(F )
α�0ϕ

mn(α) = BF
n (ϕ)

All forests in Fn will have the same leaves, modulo a permutations of the literals
appearing in the conjunction. Hence, by condition (iii) in Definition 8, for any
F,G ∈ Fk, α ∈ Lf(F ) and σ(α) ∈ G, where σ is a permutation of the literals
in α, we need to have mG

n (σ(α)) = mF
n (α) = P (α). Hence, by Definition 9, we

have BF
n (ϕ) = BG

n (ϕ) = P (ϕ) for each ϕ ∈ FmL. This implies that the interval
for Bn(ϕ) in Definition 9 reduces to the single value P (ϕ). On the other hand,
all the leaves in the forests in Fn are FmL-closed, since atoms decide all the
formulas in FmL, hence Fk = Fn for any k ≥ n, and Bk(ϕ) = Bn(ϕ) = P (ϕ) for
any k ≥ n . From this the main claim immediately follows.
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4 Complexity of Depth-Bounded Belief

In this section we investigate the conditions under which our approach provides a
feasible model of reasoning under uncertainty. For concepts in complexity theory,
we refer the reader e.g. to [14]. Following previous works based on classical prob-
ability, e.g. [7,8,10,11], we assume that an agent is provided n linear constraints
over her belief on the formulas ϕ1, . . . , ϕm, of the form:

m∑

j=1

aijB(ϕj) = wi i = 1, . . . , n aij , wi ∈ Q. (1)

Our setup suggests then the following decision problem, which stands to our
k-depth logic and k-depth belief functions as the GENPSAT problem (see e.g.
[2]) stands to classical logic and classical probability functions:

GEN-B0-SAT Problem

INPUT: The set of m formulas and n linear constraints in (1).

PROBLEM: Is there a 0-depth belief function B0 over In = {ϕ1, . . . , ϕm}
satisfying the n constraints in (1)?

Recalling Definition 9, the problem boils down to finding a solution for the
following system of linear inequalities in the unknowns m0(ϕ1), . . . , m0(ϕm).

m∑

j=1

aij

∑

k=1,...,m
ϕk�0ϕj

m0(ϕk) = wi for each i = 1, . . . , n

m0(ϕj) ≥ 0 for each j = 1, . . . , m
m∑

j=1

m0(ϕj) = 1

m0(ϕj) = 0 if ϕj �0 �

Let us denote by size(In) the number of symbols occurring in the formulas in
In, and by inc(In) the number of inconsistent formulas among those in In. We
recall from [4] that both, finding out whether ϕj �0 ϕi, and whether ϕj �0 �
requires time polynomial in size(In). On the other hand, the system above has
size ((n + m + 1 + inc(In)) × m), and finding a solution is polynomial as well.
Hence the problem above turns out to be in PTIME(size(In) + n).

Let us now consider the problem of finding out whether there is a k-depth
belief function, for a given k > 0, satisfying the constraints in (1). Recalling
the Definition 9, this problem amounts to solving a linear system as the one
above, where the set In is replaced by the set Lf(F ), for all the various F ∈ Fk.
Recall that the latter are determined by the parameters Π and V , discussed
in the previous section. Let us still set In = {ϕ1, . . . , ϕm}, which is given as
input to the problem, as the information initially provided to an agent. For
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the remaining two parameters, we take V = Var(In) and Π = f(In), for some
computable function f . We fix a k > 0 and consider then the following:

GEN–Bk-SAT Problem

INPUT: A triplet G = ({ϕ1, . . . , ϕm}, f({ϕ1 . . . ϕm}),Var(In)) and the n con-
straints in (1).

PROBLEM: Is there a G-based k-depth belief function BF
k , with F in the

G-labeled set of forests Fk, which satisfies the n constraints in (1)?
Answering to this problem corresponds to finding an F in Fk, for which the
following system, in the unknowns mF

k (α), has a solution:

m∑

j=1

aij

∑

α∈Lf(F )
α�0ϕj

mF
k (α) = wi for each i = 1, . . . , n

mF
k (α) ≥ 0 for each α ∈ Lf(F )

∑

α∈Lf(F )

mF
k (α) = 1

mF
k (α) = 0 if α �0 �

This problem also turns out to be polynomial, if the size of Π is polynomially
bounded. We give a sketch of proof in the following.

Theorem 2. GEN-Bk-SAT can be decided in PTIME(size(In) + n + size(Π)).

Proof. By our construction, for any forest F ∈ Fk the number of leaves in Lf(F )
is bounded above by |In| · 2k, which is linear in |In| ( once k is fixed, 2k is con-
stant). The number of possible forests, on the other hand, is bounded by the
number of subsets of |Var(In)| of cardinality k, which is polynomial in |Var(In)|
and, consequently, polynomial in size(In). Indeed, we can safely disregard any
permutation or repetitions of the same virtual information, due to condition (iii)
of Definition 8 and condition (MAX) of Definition 7, respectively. We then need
to do some “pruning” among all possible forests, by discarding the branches
which are not Π-open and the forest that do not satisfy the maximality condi-
tion (MAX) in Definition 7. The latter is obtained then, by running, whenever
necessary, for each formula in Π and its negation, the polynomial time algo-
rithm, e.g. in [4]. Once we have determined the set Fk, we have then, for each
F ∈ Fk a set of formulas in Lf(F ). We have then to look for a solution to the
system above. Each such system has size (n+|Lf(F )|+1+inc(Lf(F ))×|Lf(F )|,
hence it is still polynomially bounded. Finally, since solving each system requires
polynomial time, we obtain the claim.

Finally, let us notice that, if we take Size(Π) = f(Size(In)), where f
is a polynomially bounded function, then the GEN-Bk-SAT Problem is in
PTIME(Size(In) + n). As an example, this would hold if we take, as a rea-
sonable choice Π = Sf (In).
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5 Conclusions and Future Work

In this work we have introduced feasible approximations of probability measures,
based on Depth-Bounded logics. The resulting measures shed light on the con-
nection between two approximation problems: the approximation of probability,
as a limiting case of belief functions and that of classical logic as a limiting
case of depth-bounded boolean logic. In future research, we plan to compare our
approach with the Transferable Belief Model of [15], and similar works, which
handle the relation between belief functions and probability. While the former
are considered in [15] to be adequate to model the credal, i.e. purely mental,
aspect of belief, the latter are taken as good models for its pignistic aspect, i.e.
its role as a guide towards decisions. Decision-theoretic models are also a nat-
ural setting to evaluate and deepen our results. In particular, in the context of
subjective expected utility, various weakenings of Savage axioms [12] have been
considered in the literature (see e.g. [9] for an overview). We plan to investigate
how these works relate to our approach, which weakens instead the logic.
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Abstract. We prove that the unification type of �Lukasiewicz logic with
a finite number of variables is either infinitary or nullary. To achieve
this result we use Ghilardi’s categorical characterisation of unification
types in terms of projective objects, the categorical duality between
finitely presented MV-algebras and rational polyhedra, and a homotopy-
theoretic argument.

Keywords: �Lukasiewicz logic · MV-algebras · Unification · Universal
cover

1 Introduction

The classical, syntactic unification problem is: given two terms s, t in a purely
functional language, find a uniform replacement of the variables occurring in s
and t by other terms that makes s and t identical. The substitution is then called
unifier. When the latter syntactical identity is replaced by equality modulo a
given equational theory E, one speaks of E-unification. The study of unification
modulo an equational theory has acquired increasing significance in recent years
(see e.g. [2,3]). The most basic piece of information one would like to have about
E in connection with unification issues is its unification type. In order to define
it precisely, let us recall some standard notions.

We consider a set F of function symbols along with a further set V =
{X1,X2, . . .} of variables. We then let TermV (F ) be the term algebra built from
F and V in the usual manner [5, Definition 10.1]. A substitution is a mapping
σ : V → TermV (F ) that acts identically but for a finite number of exceptions,
i.e. is such that {X ∈ V | σ(X) �= X} is a finite set. Any substitution extends
in a unique way to the whole TermV (F ) by requiring that it commutes with
operations; hence it makes sense to speak of composition between substitutions.

Let E be a set of equations in the language F . A unification problem modulo
E is a finite set of pairs

E = {(sj , tj) | sj , tj ∈ TermV (F ), j ∈ J} ,
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for some finite index set J . A unifier for E is a substitution σ such that

E |= σ(sj) ≈ σ(tj) ,

for each j ∈ J , i.e. such that the equality σ(sj) = σ(tj) holds in every algebra of
the variety VE in the usual universal-algebraic sense [5, p. 78]. The problem E
is unifiable if it admits at least one unifier. The set U(E ) of unifiers for E can be
partially ordered as follows. If σ and τ are substitutions we say that σ is more
general than τ (with respect to E), written τ �E σ, if there exists a substitution
ρ such that

E |= τ(X) ≈ (ρ ◦ σ)(X)

holds for every X ∈ V . This amounts to saying that τ is an instantiation of σ,
up to E-equivalence. We endow U(E ) with the relation �E . The relation �E is
a pre-order. Let ∼ be the equivalence relation: u ∼ w if and only if both u �E w

and w �E u hold. Then the quotient U(E )
∼ carries a canonical partial order given

by: [σ] �E [τ ] if, and only if, σ �E τ .
The unification type of the unification problem E is:

1. unitary, if �E admits a maximum [μ] ∈ U(E )
∼ ([μ] is called a most general

unifier);
2. finitary, if �E admits no maximum, but admits finitely many maximal ele-

ments [μ1], . . . , [μu] ∈ U(E )
∼ such that every [σ] ∈ U(E )

∼ lies below some [μi];
3. infinitary, if it is not finitary, and �E admits infinitely many maximal

elements
{

[μi] ∈ U(E )
∼ | i ∈ I

}
, for I an infinite index set, such that every

[σ] ∈ U(E )
∼ lies below some [μi];

4. nullary, if none of the preceding cases applies.

The unification types above are listed in order of desirability, with nullary being
the worst possible case. The unification type of the equational theory E is now
defined to be the worst unification type occurring among the unifiable problems
E modulo E.

Unification has also found applications in the study of non classical logics for
its connections with admissible rules [10,11,13,14]. For a propositional logic L, a
unification problem is simply a formula of L and a unifier is a substitution that
makes that formula into a theorem. When a logic has an equivalent algebraic
semantics, in the sense of [4], given by a class of algebras axiomatised by a set
E of equations, the unification type of the logic and the unification type of E
are the same.

This paper is devoted to an investigation of the unification type of fragments
of �Lukasiewicz (infinite-valued propositional) logic where only a finite number of
variables are available. The standard references for �Lukasiewicz logic are [7,18].

The unification type of �Lukasiewicz logic is known to be the worst possible:

Theorem 1 ([17]). The unification type of �Lukasiewicz logic is nullary. Specif-
ically, consider the unification problem

p1 ∨ ¬p1 ∨ p2 ∨ ¬p2, (�)
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where p1 and p2 are distinct propositional variables. Then the partially ordered
set of unifiers for E contains a co-final chain of order-type ω.

By a chain of order-type ω we mean, as usual, a totally ordered set that is order-
isomorphic to the natural numbers with their natural order. Recall also that a
subset C of a partially ordered set (P,�) is co-final if for every p ∈ P there
is c ∈ C with p � c. In particular, Theorem1 implies that no unifier for the
unifiable problem E is maximally general—a condition that is strictly stronger
than nullarity.

The proof of Theorem1 requires an infinite amount of distinct propositional
variables to be carried out—see Remark 4 for more details. Therefore the problem
of establishing the unification type of fragments of �Lukasiewicz logic with a finite
number of variables was left open. The only case for which the unifications type
was settled is the fragment of �Lukasiewicz logic with only one variable. In this
case the unification type is finitary (in a sense almost unitary):

Theorem 2 ([17, Theorem 4.1]). Let ϕi(X) be formulas of �Lukasiewicz logic
built from the single propositional variable X, for i ranging in some finite index
set I. Then, if the unification problem E = {ϕi(X) | i ∈ I} is unifiable, it admits
either one most general unifier, or two maximally general unifiers that are more
general than any other unifier for E . Further, each one of these cases is attained
for some choice of E .

We shall see that when at least two variables are allowed the unification type
becomes again non-finitary. The main result of this paper, Theorem 5, asserts
that for every n � 2 the unification type of the fragment of �Lukasiewicz logic
with n distinct variables has unification type either infinitary of nullary. To
establish such a result we first move to the equivalent algebraic semantics of
�Lukasiewicz logic, called MV-algebras; we then use Ghilardi’s characterisation
of the unification type in terms of projective and finitely presented objects [9];
as next step we use the duality between finitely presented MV-algebras and
rational polyhedra [16]. In this latter category we build an infinite family of
(dual) unifiers for the (dual of the) unification problem (�) with the property
that any infinite subfamily does not admit an upper bound in the order �E . The
proof of this last result rests upon the lifting property of the universal cover of
the polyhedron associated with (�).

We briefly discuss all these diverse tools used in the proof. More specifically,
in Sect. 2 we spell out some preliminaries: in Subsect. 2.1 we summarise Ghilardi’s
approach to E-unification through projectivity; Subsect. 2.2 contains some basic
information about MV-algebras and the background on polyhedral geometry
required to state the duality theorem for finitely presented MV-algebras; in Sub-
sect. 2.3 we give the needed background in algebraic topology. Finally, in Sect. 3
we prove the main theorem.
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2 Background and Preliminaries

2.1 Ghilardi’s Algebraic Unification Type

An object P in a category is called projective with respect to a class E of mor-
phisms if for any f : A → B in E and any arrow g : P → B, there exists an arrow
h : P → A such that the following diagram commutes.

A

BP

f

g

h

The class E may consist of all epimorphisms, regular epimorphisms, strong epi-
morphisms, etc. In this paper, the main objects are algebras in a variety, and
the arrow f : A → B is always taken to be a surjection. It is well known that
surjections in a variety are the same thing as regular epimorphisms, see e.g. [1,
(vi) on p. 135].

An object A in a category is said to be a retract of an object B if there are
arrows s : A → B and r : B → A such that r ◦ s is the identity on A. When this
is the case, r is called a retraction (of s) and s a section (of r). If the category
in question is a variety, it follows at once that r is surjective, and s is injective.
One checks that on these definitions projective objects in any variety of algebras
are stable under retractions, and they are precisely the retracts of free objects.
In particular, free objects are projective.

Let us fix a variety V of algebras, and let us write FI for the free object in
V generated by a set I. Recall that an algebra A of V is finitely presented if
it is a quotient of the form A = FI/θ, with I finite and θ a finitely generated
congruence. The elements of I are the generators of A, while any given set of
pairs (s, t) ∈ θ that generates the congruence θ is traditionally called a set of
relators for A.

Following [9], by an algebraic unification problem we mean a finitely presented
algebra A of V. An algebraic unifier for A is a homomorphism u : A → P with
P a finitely presented projective algebra in V; and A is algebraically unifiable if
such an algebraic unifier exists.

Given another algebraic unifier w : A → Q, we say that u is more general
than w, written w �V u, if there is a homomorphism g : P → Q making the
following diagram commute.

A

P

Q

u

w

g
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The relation �V is a pre-order on the set U(A) of algebraic unifiers for A and
can be canonically quotiented into a partial order

(
U(A)

∼ ,�V

)
.

The algebraic unification type of an algebraically unifiable finitely presented
algebra A in the variety V is now defined exactly as in the symbolic case (see the
Introduction), using the partially ordered set

(
U(A)

∼ ,�V

)
in place of

(
U(E )

∼ ,�E

)
.

One also defines the algebraic unification type of the variety V in the same
fashion.

Theorem 3 ([9, Theorem 4.1]). Given an equational theory E with finite sig-
nature F , let VE be the variety of algebras axiomatised by E. Let J be a finite
set, and consider the unification problem

E = { (sj , tj) | i ∈ J } ,

where sj , tj ∈ TermV (F ) are terms. Let A be the algebra of VE finitely presented
by the relators E .

Then E is unifiable if and only if A is algebraically unifiable. Further, the
partially ordered sets

(
U(A)

∼ ,�VE

)
of algebraic unifiers for A, and

(
U(E )

∼ ,�E

)

of unifiers for E , are isomorphic. In particular, the unification type of E and the
algebraic unification type of VE coincide.

Remark 1. Ghilardi’s approach to unification goes far beyond the universal-
algebraic contexts. Indeed, one readily sees that projectivity can be stated in any
category, while thanks to the work of Gabriel and Ulmer [8] we know that the
concept of ‘finitely-presented’ object makes sense in any locally small category.
In particular this shows that the unification type is preserved under categorical
equivalences.

2.2 MV-algebras and Rational Polyhedra

The equivalent algebraic semantics of �Lukasiewicz logic, in the precise sense of
Blok and Pigozzi [4], is given by MV-algebras. An MV-algebra is an algebraic
structure (M,⊕,¬, 0), where 0 ∈ M is a constant, ¬ is a unary operation satisfy-
ing ¬¬x = x, ⊕ is a binary operation making (M,⊕, 0) a commutative monoid,
the element 1 defined as ¬0 satisfies x ⊕ 1 = 1, and the law

¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x (1)

holds. Any MV-algebra has an underlying structure of distributive lattice
bounded below by 0 and above by 1. Joins are defined as x ∨ y = ¬(¬x ⊕ y) ⊕ y.
Thus, the characteristic law (1) states that x ∨ y = y ∨ x. Meets are defined
by the de Morgan condition x ∧ y = ¬(¬x ∨ ¬y). Boolean algebras are pre-
cisely those MV-algebras that are idempotent, meaning that x ⊕ x = x holds,
or equivalently, that satisfy the tertium non datur law x ∨ ¬x = 1. The interval
[0, 1] ⊆ R can be made into an MV-algebra with neutral element 0 by defining
x ⊕ y = min {x + y, 1} and ¬x = 1 − x. The underlying lattice order of this
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MV-algebra coincides with the natural order that [0, 1] inherits from the real
numbers. This MV-algebra is often referred as the standard MV-algebra.

Let us fix an integer d � 0 as the dimension of the real vector space R
d. A

convex combination of a finite set of vectors v1, . . . , vu ∈ R
d is any vector of the

form λ1v1+· · ·+λuvu, for non-negative real numbers λi � 0 satisfying
∑u

i=1 λi =
1. If S ⊆ R

d is any subset, we let conv S denote the convex hull of S, i.e. the
collection of all convex combinations of finite sets of vectors v1, . . . , vu ∈ S. A
polytope is any subset of Rd of the form conv S, for some finite S ⊆ R

d, and a
(compact) polyhedron is a union of finitely many polytopes in R

d. A polytope is
rational if it may be written in the form conv S for some finite set S ⊆ Q

d ⊆ R
d

of vectors with rational coordinates. Similarly, a polyhedron is rational if it may
be written as a union of finitely many rational polytopes.

Throughout, the adjective ‘linear’ is to be understood as ‘affine linear’. A
function f : Rd → R is piecewise linear if it is continuous (with respect to the
Euclidean topology on R

d and R), and there is a finite set of linear functions
l1, . . . , lu such that for each x ∈ R

d one has f(x) = li(x) for some choice of
i = 1, . . . , u. If, moreover, each li can be written as a linear polynomial with
integer coefficients, then f is called Z-map. For an integer d′ � 0, a function
λ = (λ1, . . . , λd′) : Rd → R

d′
is a piecewise linear map (respectively, a Z-map)

if each one of its scalar components λj : Rd → R is a piecewise linear function
(respectively, Z-map). We now define piecewise linear maps (Z-maps) A → B
for arbitrary subsets A ⊆ R

d, B ⊆ R
d′

as the restriction and co-restriction of
piecewise linear maps (Z-maps) R

d → R
d′

.
When the spaces at issue are rational polyhedra, a useful equivalent to the

preceding definition of Z-map is available.

Lemma 1. Let P ⊆ R
d be a rational polyhedron, and let f : P → R be a con-

tinuous function. Then the following are equivalent.

1. f is a Z-map.
2. There exist finitely many linear polynomials with integer coefficients

l1, . . . , lu : R
d → R such that, for each p ∈ P , f(p) = lip(p) for some

ip ∈ {1, . . . , u}.
Notice that in item 2 the result of gluing the linear polynomials l1, . . . , lu is
only required to be continuous on P and not on the whole R

n. For example,
consider a polyhedron P which is a disjoint union of two polytopes A and B,
and consider the map f : P → R defined by f(x) = 0 for x ∈ A and f(x) = 1 for
x ∈ B. By lemma 1, f is automatically a Z-map; we do not need to interpolate
the two maps constantly equal to 0 and 1. To see that the hypothesis that P be
a polyhedron is crucial, see [16, Remark 4.10].

It is not hard to show that the composition of Z-maps between rational
polyhedra is again a Z-map. A Z-map λ : A → B between rational polyhedra
A ⊆ R

d and B ⊆ R
d′

is a Z-homeomorphism if there exists a Z-map λ′ : B → A
such that λ ◦ λ′ = 1B and λ′ ◦ λ = 1A. In other words, a Z-map is a Z-
homeomorphism if it is a homeomorphism whose inverse is a Z-map, too. With
these definitions, rational polyhedra and Z-maps form a category.
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The following result is a particular case of a larger duality for semisimple
MV-algebras (see [6,16] for more details).

Theorem 4 ([16, Corollary 4.12]). There is a categorical equivalence between
the category of finitely presented MV-algebras with MV-homomorphisms and the
opposite of the category of rational polyhedra with Z-maps.

Remark 2. Theorem 4 provides a back-and-forth translation of algebraic con-
cepts into geometric ones. Free n-generated MV-algebras correspond to [0, 1]n,
an algebraic unification problem (=finitely presented MV-algebra) A becomes a
rational polyhedron Q and an algebraic unifier for A (=finitely presented pro-
jective MV-algebra B with a homomorphism f : A → B) becomes a polyhedron
P , which is a retract by Z-maps of [0, 1]n for some n ∈ N, together with a Z-map
g : P → Q (because the equivalence is contravariant). We shall call co-unifier
such a pair (P, g).

2.3 The Universal Cover of the Circle

Let us recall some standard notions from algebraic topology; we refer to [12] for
details.

A path in a space X is a continuous map f : [0, 1] → X; the endpoints of f
are f(0) and f(1). A space X is path-connected if for any x0, x1 ∈ X there is a
path in X with endpoints x0, x1. On the other hand, X is locally path-connected
if each point has arbitrarily small open neighbourhoods that are path-connected;
that is, for each y ∈ X and each neighbourhood U of y there is a path-connected
open neighbourhood of y contained in U . It is not hard to prove that polyhedra
are locally path-connected (in fact, locally contractible by [12, Proposition A.1]),
and therefore that a polyhedron is connected if and only if it is path-connected.

A loop in X is a path p in X such that p(0) = p(1). A space X is simply-
connected if it is path-connected and, for every loop p in X, letting x0 := p(0),
there is a continuous function F : [0, 1]× [0, 1] → X such that, for every x ∈ [0, 1]
we have F (x, 0) = p(x) and F (x, 1) = F (0, x) = F (1, x) = x0.

A covering space [12, Section 1.3] of a topological space X is a space X̃
together with a surjective continuous map p : X̃ → X, called a covering map,
such that there is a open covering {Oi} of X, with i ranging in some index set
I, satisfying the following condition: for each i ∈ I the inverse image p−1(Oi) is
a disjoint union of open sets in X̃, each of which is mapped homeomorphically
by p onto Oi.

If p : X̃ → X is a covering map of the space X, and if Y is any space, a
continuous map f : Y → X is said to lift to p (or, more informally, to X̃, when
p is understood), if there is a continuous map f̃ : Y → X̃ such that p ◦ f̃ = f .
Any such f̃ is then called a lift of f . In the next lemma we recall two important
properties of covering maps with respect to lifts that we will use in Sect. 3.

Lemma 2 ([12, Proposition 1.33 and 1.34]). Given topological spaces X and X̃,
suppose that p : X̃ → X is a covering map. Further, let Y be a topological space,
and let f : Y → X be a continuous map. Then the following hold.
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1. (Unique lifting property.) Assume Y is connected. If f̃ , f̃ ′ : Y → X̃ are two
lifts of f that agree at one point of Y , then f̃ = f̃ ′.

2. (Lifting property of simply-connected polyhedra.) If, additionally, Y is a
simply-connected locally path-connected space, then a lift of f does exist. In
fact, for any point y ∈ Y , and for any point x̃ ∈ X̃ lying in the fibre over
f(y), i.e. such that p(x̃) = f(y), there is a lift f̃ of f such that f̃(y) = x̃.

It is not hard to prove that polyhedra are locally path-connected (in fact, locally
contractible by [12, Proposition A.1]), so item 2 applies to any simply-connected
polyhedron Y .

Given a path-connected, locally path-connected space X, a covering map
p : X̃ → X is called a universal covering map if X̃ is simply-connected. In this
case X̃ is called the universal cover of X. This name is due to the fact that,
among the covering maps t : Y → X with Y connected, a universal covering map
p : X̃ → X is characterised by a certain universal property—namely, p factors
through every such a t. A universal covering map (of a path-connected, locally
path-connected space) is essentially unique. Under suitable conditions, a space
X admits a universal cover (see [12, Theorem 1.38]). The following is an example
of universal covering map.

Example 1. Let S
1 = {(x, y) ∈ R

2 | x2 + y2 = 1} be the unit circle in the
Euclidean plane R

2, and let χ : R → S
1 be the continuous function given by

t → (cos 2πt, sin 2πt).

Upon embedding R into R
3 as a helix H via t → (cos 2πt, sin 2πt, t), χ acts on

H as the orthogonal projection onto S
1 along the z-axis. The surjective map

χ : R → S
1

is the universal covering map of the circle, and R is the universal cover of S1.

3 Main Result

Having set up all necessary background we turn to the main question of the
paper: what is the unification type of the fragments of �Lukasiewicz logic with
at most n variables, with n � 2? So, we are interested in unification problems
and unifiers that involve at most n variables. More precisely, using the algebraic
notation introduced at the beginning of the paper, for any fixed n � 2, we let
Vn := {X1 . . . , Xn} and F be the set of basic operations in the language of MV-
algebras. We consider only unification problems whose terms range in TermV (F )
and unifiers going from V into TermV (F ). In terms of the framework presented
in Sect. 2.1 this corresponds to restricting to finitely presented and projective
algebras with up to n-generators, which we call n-generated.

Let us call a polyhedron n-generated if it is Z-homeomorphic to a polyhedron
inside [0, 1]n. An easy inspection of [16] shows that the duality of Theorem4
restricts as follows.
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Corollary 1. The category ofn-generatedMV-algebras andMV-homomorphisms
among them is dually equivalent to the category of n-generated polyhedra and Z-
maps among them.

We will concentrate on the co-unifiers of the rational polyhedron given by
the border of the unit square:

B := conv{(0, 0), (1, 0)} ∪ conv{(1, 0), (1, 1)}∪
conv{(1, 1), (0, 1)} ∪ conv{(0, 1), (0, 0)}. (2)

Consider the map ζ : R → B which wraps R around B, counter-clockwise,
at constant speed 1, sending 0 to (0, 0). More precisely,

ζ : R −→ B

x −→

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(x − �x�, 0) if �x� ≡ 0 mod 4,

(1, x − �x�) if �x� ≡ 1 mod 4,

(1 − (x − �x�), 1) if �x� ≡ 2 mod 4,

(0, 1 − (x − �x�)) if �x� ≡ 3 mod 4,

(3)

where �x� is the greatest integer below x.

Remark 3. Upon embedding R into R
3 as a squared helix H, as depicted in

Fig. 1, ζ acts on H as the orthogonal projection onto B along the z-axis.

H

ζ

Fig. 1. The Z-universal cover of B.

Lemma 3. The map ζ is a universal cover of B.

Proof. This is obvious as B is homeomorphic to S
1 and up to homeomorphism

ζ maps R on B as χ does on S
1 in Example 1.

Notice that ζ is continuous but is not a Z-map; however, the following holds.
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Lemma 4. The restriction ζa,b of ζ to any closed interval [a, b] with a, b ∈ Z is
a Z-map.

Proof. This can be seen using Lemma 1. Indeed, ζa,b is defined on every interval
[a + i, a + i + 1], with 0 � i < |b − a|, by one of the four cases of Eq. (3); each
of those functions is linear with integer coefficients on [a + i, a + i + 1] because
x − �x� can be written on such an interval as x − (a + i).

Remark 4. The co-final chain of Theorem 1 is obtained by taking increasingly
larger parts of the piece-wise linear spiral depicted in Fig. 1, together with their
projections onto B. An easy argument shows that Z-homeomorphisms preserve
the number of points with integer coordinates. As a consequence, it can be seen
that there can be no finite bound on the dimensions of the unital cubes that
embed the rational polyhedra in the above mentioned increasing sequence. Hence
the proof strategy of Theorem 1 cannot be adopted for fragments of �Lukasiewicz
logic with a finite amounts of variables.

Lemma 5. Let Y be a connected space and f, g : Y → R be a pair of continuous
functions. If ζ ◦ f = ζ ◦ g then there exists k ∈ Z such that, for every y ∈ Y ,

g(y) = f(y) + 4k.

Proof. Let y0 be any point of Y . By inspection of the definition (3) one easily
sees that ζ(f(y0)) = ζ(g(y0)) entails the existence of some k ∈ Z such that
g(y0)−f(y0) = 4k. Since by definition ζ has period 4, ζ ◦g = ζ ◦f = ζ ◦ (f +4k),
so the maps g : Y → R and f+4k : Y → R are both lifts to R of ζ◦g. By the choice
of y0, both g and f +4k attain the same value at y0, because g(y0) = f(y0)+4k.
Thus, by item 1 in Lemma 2, g = f + 4k.

Definition 1. Let Y be a connected space and f : Y → B be a continuous map
which admits a lift to ζ. Every lift f̃ : Y → R has a connected image, whose
length1, by Lemma 5, is independent of the choice of f̃ . We denote the length of
f̃ [Y ] with d(Y, f) and we call it the degree of (Y, f).

Lemma 6. If (P, f) is a co-unifier then f admits a lift and d(P, f) is finite.

Proof. It is straightforward to verify that, if A is a retract of B in the category of
topological spaces and continuous functions, and B is simply-connected, then A
is simply-connected. As a consequence, if (P, f) is a co-unifier, then P is simply-
connected. So by item 2 in Lemma 2, f admits a lift. Moreover, d(P, f) is finite
because P is compact.

Lemma 7. Let (P, f) and (Q, g) be co-unifiers for B. If (P, f) is less general
than (Q, g), then d(P, f) � d(Q, g).

Proof. If (P, f) is less general than (Q, g), then there exists h : P → Q such that
f = g ◦ h. Let g̃ be a lift of g. Then we have f = ζ ◦ g̃ ◦ h, so g̃ ◦ h is a lift of f .
The image of g̃ contains the image of g̃ ◦ h, so d(P, f) � d(Q, g).
1 By length of a connected subset of R we simply mean its Lebesgue measure.
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Definition 2. Consider the family {fn | n ∈ N} of functions fn : [0, 1] → B,
where each fn wraps the unit interval around B n-times, counter-clockwise, at
constant speed, starting at (0, 0). More precisely, for each n ∈ N, set

vn : [0, 1] −→ R

x −→ 4n · x.

and set
fn := ζ ◦ vn.

Lemma 8. For every n ∈ N, ([0, 1], fn) is a co-unifier of B.

Proof. The polyhedron [0, 1] is obviously a retract of itself. Furthermore, notice
that vn is a Z-map whose image is [0, 4n] and, by Lemma 4, the restriction of
ζ to [0, 4n] is a Z-map. Since composition of Z-maps is a Z-map, we have that
each fn is indeed a Z-map.

Lemma 9. For each n ∈ N, the degree of ([0, 1], fn) is 4n.

Proof. For every n ∈ N, vn is a lift of fn by definition. The image of vn is [0, 4n],
thus by Definition 1, d([0, 1], fn) = 4n.

The following lemma gives us a picture of the relations among ([0, 1], fn), however
the crucial property is contained in the subsequent lemma.
Lemma 10. For every distinct, non-zero m,n ∈ N the co-unifiers ([0, 1], fm)
and ([0, 1], fn) are incomparable.

Proof. Suppose, without loss of generality, that m < n. By Lemma 9, for any k ∈
N, d([0, 1], fk) = 4k, so Lemma 7 implies that ([0, 1], fn) cannot be less general
than ([0, 1], fm). To see that ([0, 1], fm) cannot be less general than ([0, 1], fn),
suppose, by way of contradiction, that there exists h : [0, 1] → [0, 1] such that
fn◦h = fm. The functions vn◦h and vm are two lifts of the function fn◦h = fm.
By Lemma 5, there exists k ∈ Z such that vn◦h = vm+4k, i.e., for every x ∈ [0, 1],
4n · h(x) = 4(mx + k), i.e., h(x) = m

n x + k
n . However, the hypothesis m < n

implies m
n ∈ (0, 1) /∈ Z, so h is not a Z-map: a contradiction.

Lemma 11. Every infinite subset of the family of co-unifiers of Definition 2
does not admit an upper bound.

Proof. Let F be such a subset. Since F is infinite, by Lemma 9, it must contain
co-unifiers of arbitrarily large degree. Thus, by Lemma7 an upper bound of such
a family of co-unifiers cannot have finite degree and this contradicts Lemma6.

Theorem 5. For every n � 2 the fragments of �Lukasiewicz logic with n distinct
variables have unification type either infinitary or nullary.

Proof. By way of contradiction, let us suppose that the fragment of �Lukasiewicz
logic with n distinct variables has finitary unification type. Then, by coupling
Theorem 3 with Corollary 1, we get the the co-unification type of B must be
finitary. Let (Q1, g1), . . . , (Qk, gk) be the maximal co-unifiers of B. So each co-
unifier ([0, 1], fm) must be less general than some (Qi, gi) for i � k. Since k is
finite there must be at least an infinite family {([0, 1], fmj

) | j ∈ N} of co-unifiers
that are all less general than some (Qi, gi). This contradicts Lemma 11.
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Abstract. Quasi-Nelson algebras are a non-involutive generalisation of
Nelson algebras that can be characterised in several ways, e.g. as (i)
the variety of bounded commutative integral (not necessarily involutive)
residuated lattices that satisfy the Nelson identity; (ii) the class of (0, 1)-
congruence orderable commutative integral residuated lattices; (iii) the
algebraic counterpart of quasi-Nelson logic, i.e. the (algebraisable) exten-
sion of the substructural logic FLew by the Nelson axiom. In the present
paper we focus on the subreducts of quasi-Nelson algebras obtained
by eliding the implication while keeping the two term-definable nega-
tions. These form a variety that (following A. Sendlewski, who studied
the corresponding fragment of Nelson algebras) we dub weakly pseudo-
complemented quasi-Kleene algebras. We develop a Priestley-style dual-
ity for these algebras (in two different guises) which is essentially an
application of the general approach proposed in the paper A duality for
two-sorted lattices by A. Jung and U. Rivieccio.
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1 Introduction

Nelson’s constructive logic with strong negation N (introduced in [10]; see also
[14,20,25]) is a well-known non-classical logic that combines the constructive
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involutive negation. The algebraic models of N form the variety of Nelson alge-
bras (alias Nelson residuated lattices), and have been studied since the late 1950’s
(first by Rasiowa; see [14] and references therein). One of the main algebraic
insights on this variety is that every Nelson algebra can be represented as a
special binary power (here called a twist-algebra) of a Heyting algebra. This cor-
respondence was formulated as a categorical equivalence (first by A. Sendlewski)
between Nelson algebras and a category of enriched Heyting algebras, and this
made it possible to transfer a number of fundamental results from the theory of
Heyting algebras to the Nelson realm.

More recent is the discovery (due to Spinks and Veroff [23,24]) that Nelson
logic can be viewed as one of the so-called substructural logics. This entails that
the class of Nelson algebras is term equivalent to a variety of bounded, com-
mutative, integral residuated lattices [4]; hence the alternative name of Nelson
residuated lattices. Given the recent flourish of studies on substructural log-
ics and residuated structures, this alternative perspective also proved fruitful.
Indeed, it made it possible, in the first place, to recover or recast a number of
results on Nelson algebras by specialising more general ones about residuated
structures. Furthermore, and maybe more interestingly, it allows us to formulate
new questions on Nelson algebras/logic that can be best appreciated within the
framework of residuated lattices. Among these is the problem that led to the
introduction of quasi-Nelson algebras, which can be phrased as follows.

By the results of [23,24], Nelson algebras are term equivalent to a the class
of (bounded, commutative, integral) residuated lattices that additionally satisfy
the involutive law (x ≈ (x ⇒ 0) ⇒ 0) and the Nelson identity :

(x ⇒ (x ⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼x)) ≈ x ⇒ y.

Thus, all results that are specific to Nelson algebras (as opposed to general
residuated lattices), including the connection with Heyting algebras given by
twist-algebras, essentially depend on involutivity and on the Nelson identity.

The papers [17,18] are aimed at establishing to which extent the structure
theory of Nelson algebras can be reconstructed (within the context of residu-
ated lattices) in the presence of the Nelson identity but without relying on the
involutive law. It turns out that some of the most characteristic results indeed
do not depend on the involutive law. In particular, it is shown in [17,18] that (a
suitable generalisation of) the twist-algebra construction can be performed in a
not-necessarily involutive context: thus making it possible to recover the connec-
tion between Heyting algebras and ‘non-involutive Nelson algebras’, a variety we
dubbed quasi-Nelson algebras (alias quasi-Nelson residuated lattices). This class
can also be characterised by a purely congruence-theoretical property introduced
in [22] under the name of (0, 1)-congruence orderability ; the main result being
that among (bounded, commutative, integral) residuated lattices, quasi-Nelson
algebras are precisely the (0, 1)-congruence orderable ones. This generalises the
result of [22] that, the (0, 1)-congruence orderable involutive residuated lattices
are precisely the Nelson residuated lattices.

The very recent paper [15] extends the investigation of quasi-Nelson algebras
initiated in [17,18] to the implication-free fragment; in turn, [15] relies on [16],



636 U. Rivieccio et al.

in which the {∧,∨,∼}- fragment of quasi-Nelson logic was characterised. More
precisely, [15] elides the implication operation → from the language while keeping
the two negation operators (the primitive ∼ and a second one ¬ that is defined,
in the full language of quasi-Nelson algebras, by ¬x := x → 0). It turns out that
a twist-algebra construction (see Definition 5 below) can be used to characterise
the class of algebras corresponding to the two-negation fragment of quasi-Nelson
algebras, dubbed in [15] weakly pseudo-complemented quasi-Kleene algebras.

In fact, [15] can be viewed as a non-involutive counterpart of Sendlewski’s
study on the two-negation subreducts of Nelson algebras [21]. Sendlewski shows
that those subreducts form a variety (called wp-Kleene algebras) which corre-
sponds via a twist-algebra construction to pseudo-complemented distributive
lattices (i.e., the subreducts of Heyting algebras with negation but no implica-
tion). This entails that the functor between Nelson and Heyting algebras can be
extended to one with similar properties relating the subreducts of both classes.
Indeed, most results contained in [21] can be retrieved from [15] by restricting
one’s attention to involutive algebras.

In the present paper, we take advantage of the twist representa-
tion introduced in [15] to develop a Priestley-style duality for weakly
pseudo-complemented quasi-Kleene algebras (thereby obtaining a duality for
Sendlewski’s wp-algebras as well). We present our duality in two guises based on
the two twist representations introduced in [15]; both can be viewed as applica-
tions of the two-sorted approach to dualities proposed in [7].

2 WPQK-algebras and Their Representation

In this section we sum up the results from [15,16] that shall be needed for our
present purposes. We begin by introducing quasi-Nelson algebras, the algebras
in the full language (we refer the reader to [17,18] for further details and proofs;
see also [4] for all unexplained algebraic and logical terminology). The most
convenient way to do so is by taking the substructural route, starting from the
notion of residuated lattice.

A commutative integral bounded residuated lattice (CIBRL) is an algebra
A = 〈A;∧,∨, ∗,⇒, 0, 1〉 of type 〈2, 2, 2, 2, 0, 0〉 such that:

(i) 〈A; ∗, 1〉 is a commutative monoid, (Mon)
(ii) 〈A;∧,∨, 0, 1〉 is a bounded lattice (with order ≤), (Lat)
(iii) a ∗ b ≤ c iff a ≤ b ⇒ c for all a, b, c ∈ A. (Res)

CIBRLs form a variety that is the algebraic counterpart of the logic FLew,
i.e. the extension of the Full Lambek Calculus FL obtained by adding the rules
of exchange (e) and weakening (w), as well as a propositional constant (usually
denoted ⊥ or by 0) to be interpreted as the least element on the algebras. The
negation connective/operation is defined by the term ∼ x := x ⇒ 0.

Definition 1. A quasi-Nelson residuated lattice or quasi-Nelson algebra is a
CIBRL that satisfies the Nelson identity:

(x ⇒ (x ⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼x)) ≈ x ⇒ y. (Nelson)
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A Nelson residuated lattice (or Nelson algebra) is a quasi-Nelson residuated
lattice that additionally satisfies the involutive identity ∼ ∼x ≈ x.

On every quasi-Nelson algebra, one can define a connective → (called weak
implication, while the residuated ⇒ is known as the strong implication) by
the term x → y := x ⇒ (x ⇒ y). The weak implication is indeed a gen-
uine implication; it is, in fact, the connective that gives (quasi-)Nelson logic a
classical deduction-detachment theorem [9, Thm. 2]. As such, the weak impli-
cation can be used to introduce an alternative negation ¬ (distinct from ∼)
given by the term ¬x := x → 0. This observation led Sendlewski [21] to the
study of weakly pseudo-complemented Kleene algebras, alias the {∧,∨,∼,¬, 0, 1}-
subreducts of Nelson algebras. The {∧,∨,∼,¬, 0, 1}-subreducts of quasi-Nelson
algebras are characterised in [15], and the corresponding variety dubbed weakly
pseudo-complemented quasi-Kleene algebras. We proceed to introduce formally
these classes of algebras, starting from the {∧,∨,∼}-fragment of quasi-Nelson
algebras, which was studied in [16].

Definition 2 ([19]). An algebra A = 〈A;∧,∨,∼, 0, 1〉 of type 〈2, 2, 1, 0, 0〉 is a
semi-De Morgan algebra if the following properties and identities are satisfied:

(SD1) 〈A;∧,∨, 0, 1〉 is a bounded distributive lattice,
(SD2) ∼ 0 ≈ 1 and ∼ 1 ≈ 0,
(SD3) ∼(x ∨ y) ≈ ∼x ∧ ∼ y,
(SD4) ∼∼(x ∧ y) ≈ ∼∼x ∧ ∼∼ y,
(SD5) ∼x ≈ ∼∼ ∼x.

A lower quasi-De Morgan algebra is a semi-De Morgan algebra that satisfies:

(QD) x � ∼ ∼x,

(in the present paper, we take α � β as an abbreviation for the formal identity
α ∧ β ≈ α). A De Morgan algebra can be defined as a semi-De Morgan algebra
that further satisfies the involutive identity ∼∼ x ≈ x.

Besides De Morgan algebras, another well-known subvariety of semi-De Mor-
gan algebras is the class of pseudo-complemented distributive lattices (also called
distributive p-algebras or simply – as we will here – p-lattices). This class
can be axiomatised, relative to semi-De Morgan algebras, by adding the lower
quasi-De Morgan identity (QD) together with the following one [19, Cor. 2.8]:
∼x ∧ ∼ ∼x ≈ 0. The variety of p-lattices is precisely the class of {∧,∨,∼, 0, 1}-
subreducts of Heyting algebras [1, Chapter VIII]. Alternatively, a p-lattice can
be defined as a bounded distributive lattice 〈A;∧,∨, 0, 1〉, with order ≤, bottom
0 and top 1, additionally satisfying the property that, for all a, b ∈ A,

(P) a ≤ ∼ b if and only if a ∧ b = 0. (pseudo-complement)

We shall refer to (P) as to the property of the pseudo-complement. It is useful
to keep in mind that, on every distributive lattice A, the pseudo-complement
∼ b of each b ∈ A (if it exists) is uniquely determined by the lattice structure in
the following way: ∼ b =

∨{a ∈ A : a ∧ b = 0} = max
∨{a ∈ A : a ∧ b = 0}.

Every p-lattice is a quasi-Kleene algebra (as defined below), but not necessarily
a Kleene algebra.
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Definition 3 ([16]). A quasi-Kleene algebra is a semi-De Morgan algebra A
that additionally satisfies the following identities:

(QK1) x ∧ ∼x � y ∨ ∼ y. (the Kleene identity)
(QK2) x � ∼∼x (thus A is a lower quasi-De Morgan algebra)
(QK3) ∼∼ x ∧ ∼(x ∧ y) � ∼ x ∨ ∼ y.
(QK4) ∼∼ x ∧ ∼ x � x.

A Kleene algebra can be defined as a quasi-Kleene algebra that satisfies the invo-
lutive identity: ∼ ∼x ≈ x.

Every Nelson algebra has a Kleene algebra reduct; indeed, Kalman’s results
[8] easily entail that Kleene algebras are precisely the {∧,∨,∼}-subreducts of
Nelson algebras. Similarly, it is shown in [16, Cor. 6.6] that quasi-Kleene algebras
are the {∧,∨,∼}-subreducts of quasi-Nelson algebras.

Given an algebra A having a quasi-Kleene algebra reduct and given a, b ∈ A,
we write a � b as a shorthand for a ≤ ∼ a ∨ b and a ≡ b as a shorthand
for (a � b and b � a). The binary relation associated with � is reflexive and
transitive on every quasi-Kleene algebra. It is also clear that a ≤ b implies a� b,
for all a, b ∈ A. Thus, in particular, we have 0� a� 1 for all a ∈ A.

Definition 4. A weakly pseudo-complemented quasi-Kleene algebra (WPQK-
algebra) is an algebra A = 〈A;∧,∨,∼,¬, 0, 1〉 of type 〈2, 2, 1, 1, 0, 0〉 such that:

(i) 〈A;∧,∨,∼, 0, 1〉 is a quasi-Kleene algebra,
(ii) for all a, b, c, d ∈ A,

1. a� ¬b iff a ∧ b� 0 (WP)
2. ∼¬a ≡ ∼ ∼ a.

Item ii.1 in Definition 4 (the property of the weak pseudo-complement) can
be equivalently replaced by the following conditions: for all a, b ∈ A,

(i) ¬1 = 0,
(ii) ¬(a ∧ ∼ a) = 1,
(iii) a ∧ ¬(a ∧ b) ≡ a ∧ ¬b.

Thus, the class of WPQK-algebras is a variety [15, Prop. 4.12]. The prime exam-
ples of WPQK-algebras are obviously the reducts of (quasi-)Nelson algebras [15,
Prop. 4.4]. It is also easy to check that every p-lattice 〈A;∧,∨¬, 0, 1〉 forms a
WPQK-algebra if we let ∼ x := ¬x (cf. [19, Cor. 2.8]). Sendlewski’s wp-Kleene
algebras are precisely the subvariety of WPQK-algebras satisfying the involutive
identity ∼ ∼x ≈ x [15, Prop. 4.15]. The reduct 〈A;∧,∨,¬, 0, 1〉 of a WPQK-
algebra need not be a quasi-Kleene algebra, for the analogue of (QK2) for ¬
need not be satisfied. In fact, (SD4) and (SD5) may also fail, suggesting that
〈A;∧,∨,¬, 0, 1〉 may not even be a semi-De Morgan algebra. For further exam-
ples and properties of WPQK-algebras, see [15].

Proposition 1 ([15], Cor. 5.5). The class of {∧,∨,∼,¬, 0, 1}-subreducts of
quasi-Nelson algebras is precisely the variety of WPQK-algebras, and the class
of {∧,∨,∼,¬, 0, 1}-subreducts of Nelson algebras is the variety of wp-Kleene
algebras.
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We note that Proposition 1 is informative also because, in general, the class of
subreducts of a variety of algebras (in some proper subsignature) forms a quasi-
variety but not necessarily a variety. The next and most fundamental result about
WPQK-algebras is the representation as twist-algebras over pairs of p-lattices.
Given a p-lattice L = 〈L;∧,∨,¬, 0, 1〉 and a lattice filter ∇ ⊆ L, we say that ∇
is dense if D(L) ⊆ ∇, where D(L) := {a ∨ ¬a : a ∈ L} = {a ∈ L : ¬a = 0}.
Notice that D(L) is itself a lattice filter.

Definition 5. A WPQK-twist-structure is a tuple L = 〈L+,L−, n, p,∇〉 where
L+ = 〈L+;∧+,∨+,¬+, 0+, 1+〉 is a p-lattice (with order ≤+), ∇ ⊆ L+ a dense
filter, L− = 〈L−;∧−,∨−, 0−, 1−〉 a bounded distributive lattice (with order ≤−),
and n : L+ → L− and p : L− → L+ are maps satisfying the following properties:

(i) n is a bounded lattice homomorphism,
(ii) p preserves finite meets and both lattice bounds,
(iii) n ◦ p = IdL− and IdL+ ≤+ p ◦ n.

The algebra L+ �� L− = 〈L+ × L−;∧,∨,∼,¬, 0, 1〉 is defined as follows. For all
〈a+, a−〉, 〈b+, b−〉 ∈ L+ × L−,

1 := 〈1+, 0−〉, 0 := 〈0+, 1−〉,
∼〈a+, a−〉 := 〈p(a−), n(a+)〉, ¬〈a+, a−〉 := 〈¬+a+, n(a+)〉,

〈a+, a−〉 ∧ 〈b+, b−〉 := 〈a+ ∧+ b+, a− ∨− b−〉,
〈a+, a−〉 ∨ 〈b+, b−〉 := 〈a+ ∨+ b+, a− ∧− b−〉.

The weakly pseudo-complemented quasi-Kleene twist-algebra (WPQK twist-
algebra) Tw(L) is the {∧,∨,∼,¬, 0, 1}-subreduct of L+ �� L− with universe:

{〈a+, a−〉 ∈ L+ × L− : a+ ∨+ p(a−) ∈ ∇, a+ ∧+ p(a−) = 0+}.

While the whole algebra L+ �� L− does not need to be a WPQK-algebra,
every WPQK twist-algebra is a WPQK-algebra [15, Prop. 4.3]. Moreover, every
WPQK-algebra arises in this way [15, Thm. 6.2]. Before demonstrating this, let
us comment on a few consequences of Definition 5 that will be useful in the next
sections.

The maps n and p form an adjoint pair between the posets 〈L+,≤+〉 and
〈L−,≤−〉. As is well known, this entails that n preserves arbitrary existing
joins and p arbitrary existing meets. Moreover, the lattice L− is also pseudo-
complemented, with the pseudo-complement given by ¬−a− = n(¬+p(a−)) for
all a− ∈ A−. Both maps n and p preserve the pseudo-complement operation [15,
Prop. 3.4].

Let A = 〈A;∧,∨,∼,¬, 0, 1〉, be a WPQK-algebra. Then the relation ≡ intro-
duced above is a congruence of the {∼}-free reduct of A [15, Cor. 4.7], and the
quotient algebra A+ = 〈A/≡;∧,∨,¬, 0, 1〉 is a p-lattice [15, Prop. 4.8]. This
gives us the first factor for the twist representation. The second can be obtained
as follows. Endow the set A− := {[∼ a] : a ∈ A} ⊆ A+ with operations given,
for all a, b ∈ A, by:
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[∼ a] ∧− [∼ b] := [∼(a ∨ b)] = [∼ a ∧ ∼ b] = [∼ a] ∧+ [∼ b],
[∼ a] ∨− [∼ b] := [∼(a ∧ b)],
0− := [∼ 1] = [0] = 0+, 1− := [∼ 0] = [1] = 1+.

The pseudo-complement operation on A− can be defined by ¬−[∼ a] :=
[¬∼ a] = ¬+[∼ a], obtaining a second p-lattice A− = 〈A−,∧−,∨−,¬−, 0−, 1−〉;
see [15, Prop. 4.9]. The maps pA : A− → A+ and nA : A+ → A− between A+ and
A− are given as follows: pA is the identity map on A−, and nA([a]) := [∼ ∼ a] for
all a ∈ A. Note that nA is well-defined because a ≡ b entails ∼∼ a ≡ ∼∼ b [16,
Prop. 3.15.viii]. To obtain the dense filter ∇A, we consider the set F (A) := {a ∈
A : ∼ a ≤ a} and we let [F (A)] := {[a] : a ≡ b for some b ∈ F (A)}.

Theorem 1 ([15], Thm. 6.2). Let A be a WPQK-algebra.

(i) ∇A := [F (A)] is a lattice filter of A+ and D(A+) ⊆ ∇A.
(ii) A ∼= Tw(〈A+,A−, nA, pA,∇A〉) via the map ιA : A → A+ × A− given by

ιA(a) := 〈[a], [∼ a]〉 for all a ∈ A.

By Theorem 1, every WPQK-algebra A is uniquely determined by a tuple
〈A+,A−, nA, pA,∇A〉. This correspondence at the object level can be extended
to suitably defined morphisms, obtaining a (co-variant) categorical equivalence
between the algebraic category WPQK of WPQK-algebras (with algebraic homo-
morphisms) and the category TW defined as follows.

Definition 6. Let TW be the category having the WPQK-twist-structure given
in Definition 5 as objects and as morphisms between objects L and L

′ the pairs
〈h+, h−〉, where h+ : L+ → L′

+ is a p-lattice homomorphism such that h+[∇] ⊆
∇′, h− : L− → L′

− is a bounded lattice homomorphism, h+ ◦ p = p′ ◦h− and n′ ◦
h+ = h− ◦n. The composition of morphisms is given componentwise, that is, the
composition of two composable morphisms 〈h+, h−〉 and 〈k+, k−〉 is 〈h+◦k+, h−◦
k−〉. The identity morphism for each L ∈ TW is the morphism 〈IdL+ , IdL−〉.

Checking that TW is indeed a category is straightforward. We define the
functors F : TW → WPQK and G : WPQK → TW as follows. For every
object L ∈ TW, we let F (L) := Tw(L). For a TW-morphism 〈h+, h−〉
from L to L

′, we let F (〈h+, h−〉) be given, for all 〈a+, a−〉 ∈ L+ × L−,
by F (〈h+, h−〉)(〈a+, a−〉) := 〈h+(a+), h−(a−)〉. Conversely, for every WPQK-
algebra A, we let G(A) := 〈A+,A−, nA, pA,∇A〉. For a WPQK-homomorphism
k : A → A′, we let k+ : A+ → A

′
+ and k− : A− → A′

− be the homomorphisms
defined, respectively, by setting k+([a]) := [k(a)] and k−([∼ a]) := [k(∼ a)] for
every a ∈ A. We then let G(k) := 〈k+, k−〉. It is easy to check that F and G
are well-defined functors (concerning the role of the filter ∇, see e.g. [6]). Given
L ∈ TW, we define the morphism ιL = 〈ιL+ , ιL−〉 from L to G(F (L)) by setting
ιL+(a+) := [〈a+, n(¬+a+)〉] for every a+ ∈ L+ and ιL−(a−) := [∼〈¬+p(a−), a−〉]
for every a− ∈ L−. The morphism ιL is an isomorphism between L and GF (L).
In this way we have a natural isomorphism from the identity functor on TW and
the functor G ◦ F .

Theorem 2. The functors F,G establish an equivalence between TW and
WPQK.
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3 Two-Sorted Duality

We are now going to introduce a Priestley-style duality for the category TW,
which (in the light of Theorem 2) we view as a two-sorted alter ego of WPQK.
We assume the reader is familiar with the basic duality results on distributive
lattices [11], which we now briefly recall.

Priestley duality concerns the category D of bounded distributive lattices and
bounded lattice homomorphisms. To every bounded distributive lattice L, one
associates the set X(L) of its prime filters. On X(L) one imposes the Priestley
topology τ , generated by the sets φ(a) := {P ∈ X(L) : a ∈ P} and φ′(a) :=
{P ∈ X(L) : a �∈ P}, and the inclusion relation between prime filters as an
order. The resulting ordered topological structures are called Priestley spaces1.
A homomorphism h between bounded distributive lattices L and L′ gives rise
to a function X(h) : X(L′) → X(L), defined by X(h)(P ) = h−1[P ], that is
continuous and order preserving. Taking functions with these properties (called
Priestley functions) as morphisms between Priestley spaces, one obtains the
category PrSp, and X is a contravariant functor from D to PrSp. For a functor
in the opposite direction, one associates to every Priestley space X = 〈X, τ,≤〉
the set L(X) of clopen up-sets. This is a bounded distributive lattice with respect
to the set-theoretic operations ∩,∪, ∅, and X. To a Priestley function f : X →
X ′ one associates the function L(f), given by L(f)(U ′) = f−1[U ′], which is
a bounded lattice homomorphism from L(X ′) to L(X). Then L constitutes a
contravariant functor from PrSp to D. The two functors are adjoint to each
other with the units given by:

ΦL : L → L(X(L)) ΦL(a) := {P ∈ X(L) : a ∈ P}
ΨX : X → X(L(X)) ΨX(x) := {U ∈ L(X) : x ∈ U}.

These are the components of a natural transformation from the identity functor
on D to L ◦ X, and from the identity functor on PrSp to X ◦ L, respectively. In
particular, they are morphisms in their respective categories. Furthermore, they
are isomorphisms and thus the central result of Priestley duality is obtained:
the categories D and PrSp are dually equivalent.

A description of spaces dual to p-lattices can be found in [12,13]; see also [1].
We recall here the basic results that shall be needed. For a subset Y ⊆ X of a
Priestley space X, we let ↓ Y := {x ∈ X : x ≤ y for some y ∈ Y }.

Proposition 2 ([12], Prop. 1). A distributive lattice L is a p-lattice (i.e. can
be endowed with a pseudo-complement operation) if and only if, for every clopen
up-set U ∈ L(X(L)), the set ↓ U is open in 〈X(L),⊆, τL〉.
Definition 7. A p-space is a Priestley space 〈X,≤, τ〉 such that ↓ U is τ -open
for all U ∈ L(X).

1 Abstractly, a Priestley space is defined as a compact ordered topological space
〈X, τ, ≤〉 such that, for all x, y ∈ X, if x �≤ y, then there is a clopen up-set U ⊆ X
with x ∈ U and y /∈ U . It follows that 〈X, τ〉 is a Stone space.
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Let 〈X,≤, τ〉 be a p-space and U ∈ L(X). Then, defining

¬U := X − ↓U = {x ∈ X : ↑ x ∩ U = ∅},

where ↑ x := {y ∈ X : x ≤ y}, we have that ¬U ∈ L(X) is the pseudo-complement
of U in L(X), turning the distributive lattice of clopen up-sets into a p-lattice.
Given a Priestley space 〈X,≤, τ〉, let max(X) := {y ∈ X : y is ≤-maximal}
and, for x ∈ X, max(x) := {y ∈ X : x ≤ y and y is ≤ -maximal}.

Definition 8. A morphism between p-spaces 〈X,≤, τ〉 and 〈X ′,≤′, τ ′〉 is a con-
tinuous order-preserving map f : X → X ′ such that f [max(x)] = max(f(x)) for
all x ∈ X.

Proposition 3 ([13], Prop. 3). Let 〈X,≤, τ〉 and 〈X ′,≤′, τ ′〉 be p-spaces, and
let f : X → X ′ be a continuous order-preserving map. Then f is a morphism
of p-spaces if and only if f−1 : L(X ′) → L(X) preserves the pseudo-complement
operation.

The above results entail that the Priestley functors L and X establish a dual
equivalence between the category of p-lattices (with algebraic homomorphisms)
and the category of p-spaces with the morphisms given as per Definition 8. Upon
this result we will build our two-sorted duality.

Let L = 〈L+,L−, n, p,∇〉 ∈ TW. Then 〈L+,L−, n, p〉 is a two-sorted lattice
in the sense of [7, Definition 4.1]. We thus follow [7] in defining its dual, the two-
sorted Priestley space X(L) = 〈X(L+),X(L−),X(n),X(p),X(∇)〉, as follows:

(i) 〈X(L+), τ+,≤+〉 is the Priestley space of L+;
(ii) 〈X(L−), τ−,≤−〉 is the Priestley space of L−;
(iii) X(p) ⊆ X(L+)×X(L−) and X(n) ⊆ X(L−)×X(L+) are relations defined

as follows:
X(n) := {〈P−, P+〉 ∈ X(L−) × X(L+) : n−1[P−] ⊆ P+}

X(p) := {〈P+, P−〉 ∈ X(L+) × X(L−) : p−1[P+] ⊆ P−};

(iv) X(∇) := {P+ ∈ X(L+) : ∇ ⊆ P+}.

For item (iii), besides [7, Definition 4.1], we refer the reader to [3]. For (iv)
and the subsequent treatment of ∇A (as well as its dual alter ego C+), see [6,
Sec. 3.3]. Given sets X,Y , a relation R ⊆ X × Y and a subset X ′ ⊆ X, define:
R[X ′] = {y ∈ Y : there is x ∈ X ′ s.t. 〈x, y〉 ∈ R}. In particular, for X ′ = {x},
we write R[x] instead of R[{x}]. For Y ′ ⊆ Y , let:

�RY ′ = {x ∈ X : R[x] ⊆ Y ′}. (BoxR)

The following proposition characterises the spaces that correspond to objects
in TW.

Proposition 4. Let L = 〈L+,L−, n, p,∇〉 ∈ TW, and let the corresponding two-
sorted Priestley space be X(L) = 〈X(L+),X(L−),X(n),X(p),X(∇)〉. Then:
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(i) X(n)[x−] ⊆ X(L+) and X(p)[x+] ⊆ X(L−) are non-empty closed up-sets;
(ii) �Rn

◦ ΦL+ = ΦL− ◦ n and �Rp
◦ ΦL− = ΦL+ ◦ p.

(iii) X(n) is functional, i.e., for all x− ∈ X(L−) there is x+ ∈ X(L+) such that
↑ x+ = X(n)[x−].

(iv) ≤−= X(p) ◦ X(n).
(v) (X(n) ◦ X(p)) ⊆ ≤+.
(vi) X(∇A) is a τ+-closed set such that X(∇) ⊆ max(X(L+)).

Proof. For items (i) and (ii), see [7, Prop. 4.2]. Item (iii) follows from [7,
Prop. 5.1]. Items (iv) and (v) follow from [7, Prop. 5.3]. For (vi), see [6, Sec. 3.3].

We turn Proposition 4 into our official definition of two-sorted p-spaces.

Definition 9 (cf. [7], Def. 4.3). A two-sorted p-space is a structure X =
〈X+,X−, Rn, Rp, C+〉 such that:

(i) X+ = 〈X, τ+,≤+〉 and X− = 〈X, τ−,≤−〉 are p-spaces.
(ii) Rn ⊆ X− × X+, Rp ⊆ X+ × X− satisfy:

1. Rn[x−] and Rp[x+] are non-empty closed up-sets, for all x− and x+;
2. for all U− ∈ L(X−), U+ ∈ L(X+), we have �Rp

U− ∈ L(X+) and
�Rn

U+ ∈ L(X−).
(iii) For all x− ∈ X− there is x+ ∈ X+ such that ↑ x+ = Rn[x−].
(iv) ≤−= Rp ◦ Rn.
(v) (Rn ◦ Rp) ⊆ ≤+.
(vi) C+ is a τ+-closed set such that C+ ⊆ max(X+).

Given a two-sorted p-space X = 〈X+,X−, Rn, Rp, C+〉, the dual L(X) =
〈L(X+), L(X−),�Rn

,�Rp
,∇C+〉 is constructed in the expected way: L(X+) and

L(X−) are as prescribed by Priestley duality (for p-lattices), �Rn
,�Rp

are given
as in (BoxR), and ∇C+ := {U+ ∈ L(X+) : C+ ⊆ U+}.

Definition 10. Let X = 〈X+,X−, Rn, Rp, C+〉 and X ′ = 〈X ′
+,X ′

−, R′
n, R′

p, C′
+〉

be two-sorted p-spaces and let f+ : X+ → X ′
+ and f− : X− → X ′

− be maps. The
pair f = 〈f+, f−〉 is a two-sorted p-space morphism if the following conditions
hold:

(i) f+ and f− are p-space morphisms.
(ii) f preserves Rp and Rn, that is, if 〈x+, x−〉 ∈ Rp, then 〈f+(x+), f−(x−)〉 ∈

R′
p, etc.

(iii) f+ and f− are bounded morphisms, that is,
1. if 〈f+(x+), x′

−〉 ∈ R′
p, then there is x− ∈ X− such that f−(x−) ≤′

− x′
−

and 〈x+, x−〉 ∈ Rp.
2. if 〈f−(x−), x′

+〉 ∈ R′
n, then there is x+ ∈ X+ such that f+(x+) ≤′

+ x′
+

and 〈x−, x+〉 ∈ Rn.
(iv) f+[C+] ⊆ C′

+.
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We denote by 2pSP the category whose objects are two-sorted p-spaces
and whose morphisms are given as in Definition 10. For every TW-morphism
h = 〈h+, h−〉, the dual pair of maps 〈X(h+),X(h−)〉 form a 2pSP-morphism
(see [7, Prop. 4.8], [6, Lemma 3.5]). Conversely, for every 2pSP-morphism
f = 〈f+, f−〉, the dual pair of maps 〈L(f+), L(f−)〉 forms a TW-morphism
according to Definition 6 (see [7, Prop. 4.8], [6, Lemma 3.6]). These observa-
tions, together with the above-mentioned results from Priestley duality (for D)
easily entail the following.

Theorem 3. The functors L and X establish a dual equivalence between TW
and 2pSP. In consequence, the composite functors F ◦ L and X ◦ G establish a
dual equivalence between WPQK and 2pSP.

4 Nuclear Duality

In this section we propose an alternative duality based on the alternative rep-
resentation for WPQK-algebras introduced in [15, Sec. 8], which in turn arises
from the following observations.

Let L = 〈L+,L−, n, p,∇〉 ∈ TW. Define the operation � : L+ → L+ by
�a+ := pn(a+) for all a+ ∈ L+. Then � is a (dense) nucleus on L+ in the
sense of e.g. [2]. One can further show that L− is isomorphic to the algebra
L�
+ := 〈L�

+;∧+,∨�
+, 0+, 1+〉 with universe L�

+ := {�a+ : a+ ∈ A+} and oper-
ations given by the restrictions of those of L+ except for the join, which is
defined as a+ ∨�

+ b+ := �(a+ ∨+ b+) for all a+, b+ ∈ L�
+. This suggests that a

tuple 〈L+,L−, n, p,∇A〉 can be represented by a pair 〈L,∇〉, with L a p-lattice
enriched with a nucleus (the maps n and p being replaced by, respectively, the
map � : L → L� = {�a : a ∈ L} and the identity map on L�). In this way one
obtains an alternative representation for WPQK-algebras [15, Sec. 8].

Definition 11. A nuclear p-lattice (np-lattice for short) is an algebra L =
〈L;∧,∨,¬,�, 0, 1〉 of type 〈2, 2, 1, 1, 0, 0〉 such that:

(i) 〈L;∧,∨,¬, 0, 1〉 is a p-lattice (with order ≤).
(ii) The operator � is a dense nucleus on L, that is, for all a, b ∈ L,

1. �0 = 0
2. �(a ∧ b) = �a ∧ �b
3. a ≤ �a = ��a.

Given an np-lattice L and a dense filter ∇ ⊆ L, we can define a bounded
distributive lattice L� and maps � : L → L� and IdL� : L� → L, so that
〈L,L�,�, IdL� ,∇〉 ∈ TW. This gives us the following representation for WPQK-
algebras.

Theorem 4 ([15], Thm. 8.5). Every WPQK-algebra A is isomorphic to the
WPQK twist-algebra Tw〈A+,A�

+,�, IdL�
+
,∇A〉, where A�

+ arises from the np-
lattice (A+,�) obtained from A+ with the nucleus given by �[a] := [∼ ∼ a] for
all a ∈ A, and ∇A ⊆ A+ is the dense filter of the twist representation of A.
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Relying on Theorem 4, we can proceed in parallel to Sect. 3.

Definition 12. Let NP be the category whose objects are tuples L = 〈L,∇〉, with
L an np-lattice and ∇ ⊆ L a dense filter. A morphism between objects L = 〈L,∇〉
and L

′ = 〈L′,∇′〉 is an np-lattice homomorphism h such that h[∇] ⊆ ∇′.

Given L = 〈L,∇〉 ∈ NP, the WPQK twist-algebra Tw〈L,L�,�, IdL� ,∇〉
will be denoted by Tw(L). The equivalence between NP and WPQK is given
by the functors H : NP → WPQK and K : WPQK → NP defined as follows. For
every L = 〈L,∇〉 ∈ NP, we let H(L) := Tw(L). For an NP-morphism h : L → L

′

between L = 〈L,∇〉 and L
′ = 〈L′,∇′〉, we let H(h) : H(L) → H(L′) be given,

for all 〈a, b〉 ∈ L × L�, by H(h)(〈a, b〉) := 〈h(a), h(b)〉. Conversely, for every
WPQK-algebra A, let K(A) := 〈〈A+,�〉,∇A〉. For a WPQK-homomorphism
k : A → A′, let K(k) : K(A) → K(A′) be defined by setting K(k)([a]) := [k(a)]
for every a ∈ A.

Theorem 5. The functors H and K establish a co-variant equivalence between
NP and WPQK.

As with Theorem 2, we can rely on Theorem 5 to introduce a duality for
the category NP viewed as another alter ego of WPQK. In doing so, since the
nucleus is a modal-like operator, we shall rely on duality for distributive lattices
with operators (see [5]).

As expected, the dual of L = 〈L,∇〉 is defined as a structure X(L) =
〈X(L),X(�),X(∇)〉, where:

(i) 〈X(L), τ+,≤+〉 is the p-space of L;
(ii) X(�) ⊆ X(L) × X(L) is a relation given by:

X(�) := {〈P,Q〉 ∈ X(L) × X(L) : �−1[P ] ⊆ Q};

(iii) X(∇) := {P ∈ X(L) : ∇ ⊆ P}.

It is well known that the relation R corresponding to an operation � that
preserves (at least) finite meets and the top element satisfies the following:

(i) ≤ ◦R ◦ ≤⊆ R, where ≤ is the Priestley order on X(L);
(ii) R[P ] := {Q ∈ X(L) : 〈P,Q〉 ∈ R} is a closed set in the Priestley topology;
(iii) R−1[U ] := {P ∈ X(L) : 〈P,Q〉 ∈ R for some Q ∈ U} is clopen, for all

U ∈ L(X(L)).

We shall say that a relation R on a Priestley space satisfying the above properties
is a �-relation, i.e., a relation corresponding to an operator � on the distributive
lattice dual to the space. We list below four further properties that the Priestley
dual of every np-lattice satisfies.

Proposition 5. Let 〈X(L),X(�)〉 be the dual space of an np-lattice L and
P,Q ∈ X(L).
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(i) There is Q′ ∈ X(L) such that 〈P,Q′〉 ∈ X(�).
(ii) If 〈P,Q〉 ∈ X(�), then there is Q′ ∈ X(L) s.t. 〈P,Q′〉 ∈ X(�) and

〈Q′, Q〉 ∈ X(�).
(iii) If 〈P,Q〉 ∈ X(�), then P ⊆ Q.
(iv) X(∇) is a closed set such that X(∇) ⊆ max(X(L)).

Items (i)–(iii) of Proposition 5 are saying that the relation X(�) is serial,
dense and included in the Priestley order (regarding item (iv) see [6, Lemma
3.1]). We include these properties in our official definition of np-spaces.

Definition 13. An np-space is a structure X = 〈X,R, C〉 where X is a p-space,
C is a closed set such that C ⊆ max(X), and R is a �-relation which is serial,
dense and included in the Priestley order.

We note that it is possible to show that Properties (i) to (iii) in Definition 13
can be equivalently replaced by the following one (considered e.g. in [2]): for all
x, y ∈ X, 〈x, y〉 ∈ R iff there is z ∈ X s.t. 〈z, z〉 ∈ R and x ≤ z ≤ y.

Given an np-space X = 〈X,R, C〉 and a clopen up-set U ∈ L(X), we define
�RU := {x ∈ X : R[x] ⊆ U}. Defining the filter ∇C ⊆ L(X) as in the preced-
ing section, it is easy to show that 〈L(X),�R,∇C〉 ∈ NP. It follows from the
duality for distributive lattices with a �-operator [5] that every np-lattice L is
isomorphic to its double dual 〈L(X(L)),�R�〉. Conversely, for every np-space
X = 〈X,R, C〉, we have (by the duality for p-lattices) that the p-space X is
homeomorphic to its double dual X(L(X)); furthermore, 〈X,≤, R〉 is isomor-
phic, as a relational structure, to 〈X(L(X)),⊆, R�R

〉. It is also easy to check
that the Priestley isomorphisms respect ∇ and C [6, Lemmas 3.7 and 3.8].

Definition 14. Let X = 〈X,R, C〉 and X ′ = 〈X ′, R′, C′〉 be np-spaces, and let
f : X → X ′ be a p-space morphism. We say that f is an np-space morphism if
the following conditions hold:

(i) If 〈x, y〉 ∈ R, then 〈f(x), f(y)〉 ∈ R′, for all x, y ∈ X.
(ii) If 〈f(x), x′〉 ∈ R′, then there is y ∈ X such that f(y) ≤′ x′ and 〈x, y〉 ∈ R,

for every x ∈ X and x′ ∈ X ′.
(iii) f [C] ⊆ C′.

Denote by npSP the category having as objects np-spaces and as morphisms
the maps given in Definition 14. The following propositions are immediate conse-
quences of Priestley duality for distributive lattices with a �-operator, together
with [6, Lemmas 3.5 and 3.6].

Proposition 6. Let L = 〈L,∇〉, L′ = 〈L′,∇′〉 ∈ NP, and let h : L → L′ be an
NP-morphism. Then h−1 : X(L′) → X(L) is an np-space morphism.

Proposition 7. Let X = 〈X,R, C〉 and X ′ = 〈X ′, R′, C′〉 be np-spaces, and let
f : X → X ′ be an np-morphism. Then f−1 : L(X ′) → L(X) is an NP-morphism.

As in the previous cases, it is straightforward to check that the above-defined
categories are dually equivalent via the Priestley functors.
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Theorem 6. The functors L,X establish a dual equivalence between NP and
npSP. In consequence, the composite functors F ◦ L and X ◦ G establish a dual
equivalence between WPQK and npSP.

Appendix: Proofs of Theorems 2 and 5

Theorem 2. The functors F,G establish a co-variant equivalence between TW
and WPQK.

Proof. First of all, we shall prove that F is a functor. Given
L = 〈L+,L−, n, p,∇〉 and L

′ = 〈L′
+,L

′
−, n′, p′,∇′〉 two objects in TW and

〈h+, h−〉 a TW-morphism from L to L
′, we will prove that F (〈h+, h−〉) is a

WPQK-morphism from F (L) to F (L′). Let 〈a+, a−〉, 〈b+, b−〉 be elements of the
universe of F (L). For ∧ we have:

F (〈h+, h−〉)(〈a+, a−〉 ∧ 〈b+, b−〉) = F (〈h+, h−〉)(〈a+ ∧ b+, a− ∨ b−〉)
= 〈h+(a+ ∧ b+), h−(a− ∨ b−)〉
= 〈h+(a+) ∧ h+(b+), h−(a−) ∨ h−(b−)〉
= 〈h+(a+), h−(a−)〉 ∧ 〈h+(b+), h−(b−)〉
= F (〈h+, h−〉)(〈a+, a−〉) ∧ F (〈h+, h−〉)(〈b+, b−〉).

The proof for ∨ is analogous and will be omitted. For ∼ we have:

F (〈h+, h−〉)(∼〈a+, a−〉) = F (〈h+, h−〉)〈p(a−), n(a+)〉 (1)
= 〈(h+ ◦ p)(a−), (h− ◦ n)(a+)〉 (2)
= 〈(p′ ◦ h−)(a−), (n′ ◦ h+)(a+)〉 (3)
= ∼〈h+(a+), h−(a−)〉 (4)
= ∼F (〈h+, h−〉)(〈a+, a−〉) (5)

From (3) to (4) we used the fact that h+ ◦ p = p′ ◦ h− and h− ◦ n = n′ ◦ h+. For
¬ we have:

F (〈h+, h−〉)(¬〈a+, a−〉) = F (〈h+, h−〉)(〈¬+a+, n(a+)〉) (6)
= 〈h+(¬+a+), h− ◦ n(a+)〉 (7)
= 〈¬+h+(a+), n′ ◦ h+(a+)〉 (8)
= ¬〈h+(a+), h−(a−)〉 (9)
= ¬F (〈h+, h−〉)(〈a+, a−〉) (10)

From (7) to (8) we used the identity (h− ◦ n) = (n′ ◦ h+). Now we move to
prove that given an object L = 〈L+,L−, n, p,∇〉 in TW and the identity mor-
phism IdL := 〈IdL+ , IdL−〉 for L, F (IdL) = IdF (L), i.e. the identity homomor-
phism for F (L). Notice that if 〈a+, a−〉 is an element of the universe of F (L)
and F (〈IdL+ , IdL−〉)(〈a+, a−〉) = 〈IdL+(a+), IdL−(a−)〉 = 〈a+, a−〉. Therefore,
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F (IdL) = IdF (L). Finally, given two TW-morphisms 〈h+, h−〉 : L → L
′ and

〈f+, f−〉 : L′ → L
′′, we shall prove that F (〈h+, h−〉 ◦ 〈f+, f−〉) = F (〈h+, h−〉) ◦

F (〈f+, f−〉). Let 〈a+, a−〉 be an element of the universe of F (L). Then

F (〈h+, h−〉 ◦ 〈f+, f−〉)(〈a+, a−〉) = F (〈h+ ◦ f+, h− ◦ f−〉)(〈a+, a−〉)
= 〈(h+ ◦ f+)(a+), (h− ◦ f−)(a−)〉
= F (〈h+, h−〉)(〈f+(a), f−(a)〉)
= (F (〈h+, h−〉) ◦ F (〈f+, f−〉))(〈a+, a−〉).

We now prove that G is a functor. Let A and A′ be two WPQK-algebras and
k : A → A′ a homomorphism between them. In order to prove that G(k) is a
TW-morphism from G(A) to G(A′), we prove first that k+ : A+ → A′

+ is a p-
lattice homomorphism and k− : A− → A′

− is a bounded lattice homomorphism.
Notice that for every a ∈ A, k+([a]) := [k(a)] and since k is a homomorphism of
WPQK-algebras, the morphism k+ : A/≡ → A′/≡ is a morphism of p-lattices.
In order to prove that k− is a bounded lattice homomorphism, let a, b ∈ A. We
have:

k−([∼ a] ∧ [∼ b]) = k−([∼(a ∨ b)]) = [k(∼(a ∨ b))] = [∼ k(a ∨ b)] =
[∼(k(a) ∨ k(b))] = [∼ k(a)] ∧ [∼ k(b)] =

[k(∼ a) ∧ k(∼ b)] = [k(∼ a)] ∧ [k(∼ b)] =
k−([∼ a]) ∧ k−([∼ b]).

For ∨ we have:

k−([∼ a] ∨ [∼ b]) = k−([∼(a ∧ b)]) = [k(∼(a ∧ b))] = [∼ k(a ∧ b)] =
[∼(k(a) ∧ k(b))] = [∼ k(a)] ∨ [∼ k(b)] =

[k(∼ a)] ∨ [k(∼ b)] =
k−([∼ a]) ∨ k−([∼ b]).

We now prove that k+ ◦ pA = pA′ ◦ k− and nA′ ◦ k+ = k− ◦ nA. Recall
that pA : A− → A+ is the identity map on A− and that nA : A+ → A−
is the function defined by nA([a]) = [∼∼ a] for all a ∈ A. Given a ∈ A, we
have (k+ ◦ pA)([∼ a]) = k+([∼ a]), while (pA′ ◦ k−)([∼ a]) = pA′(k−([∼ a])) =
pA′([k(∼ a)]) = k+([∼ a]). Therefore, (k+ ◦ pA)([∼ a]) = (pA′ ◦ k−)([∼ a]). We
have that (nA′ ◦k+)([a]) = nA′(k+([a])) = [∼ ∼ k(a)] = [k(∼ ∼ a)] = k−([∼ ∼ a]),
while (k− ◦ nA)([a]) = k−([∼ ∼ a]). Hence, (nA′ ◦ k+)([a]) = (k− ◦ nA)([a]). We
also need to prove that k+[∇A] ⊆ ∇A′ . If [a] ∈ ∇A, then ∼ a ≤ a. Since k is
a WPQK-morphism, we have ∼ k(a) ≤ k(a) and therefore k(a) ∈ F (A), which
implies k+([a]) ∈ ∇A′ .

Given A ∈ WPQK, thanks to Theorem 1 we know that the morphism ιA
defined in its statement is an isomorphism between A and F (G(A)). Thus the
morphisms ιA are the elements of a natural isomorphism from the identity func-
tor on WPQK to the functor F ◦ G.

We now prove that, for every L ∈ TW, one has that ιL = 〈ιL+ , ιL−〉 : L →
G(F (L)) is a natural isomorphism. Let L = 〈L+,L−, n, p,∇〉 ∈ TW. We have
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F (L) = Tw(〈L+,L−, n, p,∇〉). Let us denote by A the WPQK-algebra F (L) so
that then G(F (L)) = 〈A+,A−, nA, pA,∇A〉. Recall that, for every a+ ∈ L+, we
have ιL+(a+) = [〈a+, n(¬+a+)〉], and, for every a− ∈ L−, we have ιL−(a−) =
[∼ 〈¬+p(a−), a−〉]. First of all, we need to prove that the maps ιL+ and ιL−
are respectively maps from L+ to A+ and from L− to A−. To this end, it
is enough to prove that given 〈a+, n(¬+a+)〉 and 〈¬+p(b−), b−〉 in L+ × L−,
the pairs 〈a+, n(¬+a+)〉 and 〈¬+p(b−), b−〉 belong to A, that is, that we have
a+ ∨+ p(n(¬+a+)) ∈ ∇,¬+p(b−) ∨+ p(b−) ∈ ∇, a+ ∧+ p(n(¬+a+)) = 0+, and
¬+p(b−) ∧+ p(b−) = 0+. We have that a+ ∨+ ¬+a+ ≤+ a+ ∨+ p(n(¬+a+)).
Since ∇ is a filter and a+ ∨+ ¬+a+ ∈ ∇, then a+ ∨+ p(n(¬+a+)) ∈ ∇. We
have trivially that ¬+p(b−) ∨+ p(b−) ∈ ∇, given that ∇ is a dense filter. Now,
since IdA+ ≤+ p · n and p, n, preserve finite meets and the bounds, then a+ ∧+

p(n(¬+a+)) ≤+ p(n(a+))∧+p(n(¬+a+)) = p(n(a+∧+¬+a+)) = p(n(0+)) = 0+.
Moreover, since ¬+ is a pseudo-complement, then ¬+p(b−) ∧+ p(b−) = 0+.

In order to prove that ιL is a morphism, we have to prove that ιL+ is a p-lattice
homomorphism from L+ to A+ and ιL− is a bounded lattice homomorphism
from L− to A−. Before we proceed, notice that given a+, b+ ∈ L+ and a−, b− ∈
L−, by [15, Lemma 3.5.iii] we have [〈a+, a−〉] = [〈b+, b−〉] iff a+ = b+, and by
[15, Lemma 3.5.ii] we have [∼〈a+, a−〉] = [∼〈b+, b−〉] iff a− = b−. We will use
these facts.

We first show that ιL+ is a p-lattice homomorphism. Let a+, b+ ∈ L+. Then:

(∧+) On the one hand, ιL+(a+ ∧+ b+) = [〈a+ ∧+ b+, n(¬+(a+ ∧+ b+)〉]). On
the other hand, ιL+(a+) ∧ ιL+(b+) = [〈a+, n(¬+a+)〉] ∧ [〈b+, n(¬+b+)〉] =
[〈a+∧+ b+, n(¬+a+)∨− n(¬+b+)〉]. It follows from [15, Lemma 3.5.iii] that
ιL+(a+ ∧+ b+) = ιL+(a+) ∧ ιL+(b+).

(∨+) On the one hand, ιL+(a+ ∨+ b+) = [〈a+ ∨+ b+, n(¬+(a+ ∨+ b+)〉]). On
the othert hand, ιL+(a+)∨ ιL+(b+) = [〈a+, n(¬+a+)〉]∨ [〈b+, n(¬+b+)〉] =
[〈a+∨+ b+, n(¬+a+)∧− n(¬+b+)〉]. It follows from [15, Lemma 3.5.iii] that
ιL+(a+ ∨+ b+) = ιL+(a+) ∨ ιL+(b+).

(¬) We have ιL+(¬+a) = [〈¬+a, n(¬+¬+a)〉]. Also, ¬+ιL+(a) =
¬[〈a+, n(¬+a+)〉] = [〈¬+a+, n(n(¬+a+))〉]. It follows from [15, Lemma
3.5.iii] that ιL+(¬+a) = ¬+ιL+(a).

Now we prove that ιL− is a bounded lattice homomorphism. Let a−, b− ∈ L−.
Then:

(∧−) First notice that ιL−(a− ∧− b−) = [∼〈¬+p(a− ∧− b−), a− ∧− b−〉]. Sec-
ondly that ιL−(a−) ∧ ιL−(b−) = [∼〈¬+p(a−), a−〉] ∧ [∼〈¬+p(b−), b−〉] =
[∼(〈¬+p(a−), a−〉 ∨ 〈¬+p(b−), b−〉)] = [∼(¬+p(a−) ∨+ ¬+p(b−), a− ∧−
b−)]. It follows from [15, Lemma 3.5.ii] that ιL−(a− ∧− b−) = ιL−(a−) ∧
ιL−(b−).

(∨−) On the one hand, ιL−(a− ∨− b−) = [∼〈¬+p(a− ∨− b−), a− ∨− b−〉]. On the
other hand, ιL−(a−)∨ιL−(b−) = [∼〈−¬+p(a−), a−〉]∨[∼〈¬+p(b−), b−〉] =
[∼(〈¬+p(a−), a−〉 ∧ 〈¬+p(b−), b−〉)] = [∼(¬+p(a−) ∧+ ¬+p(b−), a− ∨−
b−)]. It follows from [15, Lemma 3.5.ii] that ιL−(a− ∨ b−) = ιL−(a−) ∨
ιL−(b−).
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We proceed to prove that ιL+ ◦ p = pA ◦ ιL− , nA ◦ ιL+ = ιL− ◦ n and that
ιL+ [∇] ⊆ ∇A. Notice that given a− ∈ L−, ιL+(p(a−)) = [〈p(a−), n(¬+p(a−))〉]
and (pA◦ιL−)(a−) = [∼〈¬+p(a−), a−〉] = [〈p(a−), n(¬+p(a−))〉]. Thus we obtain
that ιL+ ◦ p = pA ◦ ιL− . To prove that nA ◦ ιL+ = ιL− ◦ n, notice that given
a+ ∈ L+, nA ◦ ιL+(a+) = [∼ ∼〈a+, n(¬+a+)〉] = [∼〈p(n(¬+a+)), n(a+)〉] and
(ιL− ◦ n)(a+) = [∼〈¬+p(n(a+)), n(a+)〉]. Thus, the desired equality follows.
Finally, to prove that ιL+ [∇] ⊆ ∇A, notice that ∇A = [F (A)] and thanks
to [15, Prop. 6.1], F (A) = {〈a+, 0−〉 : 〈a+, 0−〉 ∈ A} and therefore [F (A)] =
{[〈a+, 0−〉] : 〈a+, 0−〉 ∈ F (A)}. Let now a+ ∈ ∇. We prove that 〈a+, 0−〉 ∈ A.
To this end we need to show that a+ ∨+ p(0−) ∈ ∇ and a+ ∧+ p(0−) = 0−.
Notice that a+ ∨+ p(0−) = a+ ∨+ 0+ = a+ and by hypothesis a+ ∈ ∇. Also,
a+ ∧+ p(0−) = a+ ∧+ 0+ = 0+. Since ιL+(a+) = [〈a+, n(¬+a+)〉] using that
[〈a+, 0−〉] = [〈a+, n(¬+a+)〉] ([15, Lemma 3.5.iii]), we obtain ιL+(a+) ∈ ∇A.

It remains to prove that ιL+ and ιL− are injective and surjective. We prove
first injectivity.

ιL+ If ιL+(a+) = ιL+(b+), then [〈a+, n(¬+a+)〉] = [〈b+, n(¬+b+)〉]; and from
[15, Lemma 3.5.iii] it follows that a+ = b+.

ιL− If ιL−(a−) = ιL−(b−), then [∼〈¬+p(a−), a−〉] = [∼〈¬+p(b−), b−〉], and from
[15, Lemma 3.5.ii] it follows that a− = b−.

Now we prove that ιL+ and ιL− are surjective:

ιL+ Let [〈a+, a−〉] ∈ A+ (so that 〈a+, a−〉 belongs to the universe of F (L)).
By [15, Lemma 3.5.iii] [〈a+, a−〉] = [〈a+, n(¬+a+)〉]. Therefore ιL+(a+) =
[〈a+, a−〉].

ιL− Let [∼〈a+, a−〉] ∈ A− (so that 〈a+, a−〉 belongs to the universe of F (L)).
From [15, Lemma 3.5.ii], it follows that [∼〈a+, a−〉] = [∼〈¬+p(a−), a−〉].
Therefore ιL−(a−) = [∼〈a+, a−〉].

Theorem 5. The functors H,K establish a co-variant equivalence between NP
and WPQK.

Proof. We prove first that H is a functor. Let L = 〈L,∇〉 and L
′ = 〈L′,∇′〉

be two objects in NP and h : L′ → L
′ a NP-morphism. The proof that H(h) :

H(L) → H(L′) is a WPQK-homomorphism is similar to the proof above for
morphsims in TW and the functor F , because H(L) = Tw〈L,L�,�, IdL� ,∇〉
and H(L′) = Tw〈L′,L′�′

,�, IdL′�′ ,∇′〉.
Given A,A′ objects in WPQK and k : A → A′ a WPQK-homomorphism,

we shall prove that K(k) : K(A) → K(A′) is a NP-morphism. Since k is a
morphism of WPQK algebras, it easily follows that K(k) is a homomorphism
from 〈A+,�〉 to 〈A′

+,�′〉. Let a, b ∈ A. Then:

K(k)([a] ∧ [b]) = K(k)([a ∧ b]) = ([k(a ∧ b)]) =
([k(a) ∧ k(b)]) = [k(a)] ∧ [k(b)] =

K(k)([a]) ∧ K(k)([b]),
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K(k)([a] ∨ [b]) = K(k)([a ∨ b]) = ([k(a ∨ b)]) =
([k(a) ∨ k(b)]) = [k(a)] ∨ [k(b)] =

K(k)([a]) ∨ K(k)([b]),

K(k)(¬[a]) = [k(¬a)] = [¬k(a)] = ¬K(k)([a]),

K(k)(�[a]) = [k(�a)] = [k(∼ ∼ a)] = [∼ ∼ k(a)] = [�k(a)] = �K(k)([a]).

It remains to prove that K(k)[∇A] ⊆ ∇A′ . Given [a] ∈ ∇A, we have a ∈ F (A)
and ∼ a ≤ a, since k is a morphism of WPQK-algebras, then k(∼ a) ≤ k(a) and
it follows that ∼ k(a) ≤ k(a). Therefore [∼ k(a)] ≤ [k(a)] and we conclude that
k[a] ∈ ∇A.

Given an object A in WPQK and the identity morphism IdA : A → A, we
shall prove that K(IdA) = IdK(A). Let [a] be an element of the universe of
K(A). Notice that K(IdA)[a] = [IdA(a)] = [a]. So we are done. Given WPQK-
homomorphisms f : A → A′ and g : A′ → A′′, we shall prove that K(g ◦ f) =
K(g) ◦ K(f). Let [a] be an element of the universe of K(A).

K(g ◦ f)([a]) = [(g ◦ f)(a)]
= [g(f(a))]
= K(g)([f(a)])
= K(g)(K(f)[a])
= K(f) ◦ K(g)([a]).

From [15, Theorem 7.11] it is easy to obtain the natural isomorphism between
the identity functor on WPQK and the functor H ◦ K.

We proceed to prove that, for every L ∈ NP, the map ιNP defined by ιNP(a) =
[〈a,�¬a〉] for all a ∈ L is an isomorphism between L and K(H(L)). This will
provide the natural isomorphism between the identity functor on NP and the
functor K ◦ H.

Let L = 〈L,∇〉 ∈ NP. We have H(L) = Tw〈L,L�,�, IdL� ,∇〉. Let us
denote by A the WPQK-algebra H(L), with A its universe, so that K(H(L)) =
〈〈A+,�〉,∇A〉. First of all, we need to prove that ιNP is a map from L to
K(H(L)). To this end, it is enough to notice that for every a ∈ L, the ele-
ment 〈a,�¬a〉 belongs to the twist-algebra, that is, that a ∨ IdL�(�¬a) ∈ ∇
and a ∧ IdL�(�¬a) = 0. Since IdL� is the identity map, we shall prove
that a ∨ �¬a ∈ ∇ and a ∧ �¬a = 0. We have that, a ∨ ¬a ≤ a ∨ �¬a.
Since ∇ is a filter and a ∨ ¬a ∈ ∇, we have a ∨ �¬a ∈ ∇. We have that
a ∧ �¬a ≤ �a ∧ �¬a = �(a ∧ ¬a) = �(0) = 0. Therefore, a ∧ �¬a = 0.

We now prove that ιNP is a NP-morphism. Before we proceed, notice that
given a, b ∈ L and c, d ∈ L�, by [15, Lemma 3.5.iii], we have [〈a, c〉] = [〈b, d〉]
iff a = b. Also note that given 〈a, b〉 ∈ A, according to the definition of � in
Theorem 4, we have �[〈a, b〉] = [∼∼〈a, b〉] = [∼〈b,�a〉] = [〈�a,�b〉].
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(∧) ιNP(a ∧ b) = [〈a ∧ b,�(¬(a ∧ b))〉]. While, ιNP(a) ∧ ιNP(b) = [〈a,�(¬a)〉] ∧
[〈b,�(¬b)〉] = [〈a ∧ b,�(¬a) ∨ �(¬b)〉]. It follows from [15, Lemma 3.5.iii]
that ιNP(a ∧ b) = ιNP(a) ∧ ιNP(b).

(∨) ιNP(a ∨ b) = [〈a ∨ b,�(¬(a ∨ b))〉]. While, ιNP(a) ∨ ιNP(b) = [〈a,�(¬a)〉] ∨
[〈b,�(¬b)〉] = [〈a ∨ b,�(¬a) ∧ �(¬b)〉]. It follows from [15, Lemma 3.5.iii]
that ιNP(a ∨ b) = ιNP(a) ∨ ιNP(b).

(¬) ιNP(¬a) = [〈¬a,�(¬(¬a)))〉]. While ¬ιNP(a) = ¬[〈a,�a〉] =
[〈¬a, n(�(¬a))〉]. It follows from [15, Lemma 3.5.ii] that ιNP(¬a) =
¬ιNP(a).

(�) ιNP(�a) = [〈�a,�¬�a〉]. While �ιNP(a) = �[〈a,�(¬a)〉] =
[〈�a,��¬a〉] It follows from [15, Lemma 3.5.iii] that ιNP(�a) = �ιNP(a).

We shall prove now that ιNP is injective and surjective. Notice that if ιNP(a) =
ιNP(b), then [〈a,�(¬a)〉] = [〈b,�(¬b)〉] and again from [15, Lemma 3.5.iii] it
follows that a = b. Therefore ιNP is injective. Let 〈a, b〉 ∈ A and notice that
ιNP(a) = [〈a,�(¬a)〉] = [〈a, b〉] by [15, Lemma 3.5.iii]; therefore ιNP is surjective.
It remains to prove that ιNP[∇] ⊆ ∇A. Notice that ∇A = [F (A)] and thanks
to [15, Prop. 6.1], F (A) = {〈a, 0〉 : 〈a, 0〉 ∈ A} and therefore [F (A)] = {[〈a, 0〉] :
〈a, 0〉 ∈ F (A)}. Let a ∈ ∇. In order to prove that ιNP(a) ∈ ∇A, we show first that
〈a, 0〉 ∈ A. We have that a∨IdL�(0) = a∨0 = a. Therefore, since by assumption
a ∈ ∇, a ∨ IdL�(0) ∈ ∇. Notice also that a ∧ IdL�(0) = a ∧ 0 = 0. We thus
obtain 〈a, 0〉 ∈ A. From [15, Lemma 3.5.iii] we have [〈a,�(¬a)〉] = [〈a, 0〉]. Since
ιNP(a) = [〈a,�(¬a)〉], it follows that ιNP(a) ∈ ∇A.
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Abstract. Double residuated lattices are expansions of residuated lat-
tices with an extra monoidal operator, playing the role of a strong dis-
junction operation, together with its dual residuum. They were intro-
duced by Or�lowska and Radzikowska. In this paper we consider the
subclass of double residuated structures that are expansions of MTL-
algebras, that is, prelinear, bounded, commutative and integral residu-
ated lattices. MTL-algebras constitute the algebraic semantics for the
MTL logic, the system of mathematical fuzzy logic that is complete
w.r.t. the class of residuated lattices on the real unit interval [0, 1]
induced by left-continuous t-norms. Our aim is to axiomatise the logic
whose intended semantics are commutative and integral double residu-
ated structures on [0, 1], that are induced by an arbitrary left-continuous
t-norm, an arbitrary right-continuous t-conorm, and their corresponding
residual operations.

Keywords: Mathematical fuzzy logic · Double residuated lattices ·
MTL · DMCTL · Semilinear logics · Standard completeness

1 Introduction

Residuated lattices [7] are a usual choice for general algebras of truth-values in
systems of mathematical fuzzy logic [1–3,9], as well as for valuation structures in
lattice-valued fuzzy sets (L-fuzzy sets) [8] and in multiple-valued generalisations
of information relations [11,13,14]. Actually, from this perspective, residuated
lattices can be seen as generalizations of the algebraic structures on the real unit
interval [0, 1] induced by a (left-continuous) t-norm and its residuum. Indeed,
in a residuated lattice, besides the lattice-meet ∧ and lattice-join ∨ operations,
that play the role of the min and max operations in [0, 1], there is a monoidal
operation � that plays the role of a left-continuous t-norm, and its residuum →
(or its left- and right- residua in case the monoidal operation is not commutative).
In a logical setting, while the lattice-meet and lattice-join are used to model a
weak conjunction and a weak disjunction respectively, the monoidal operation is
c© Springer Nature Switzerland AG 2020
M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1239, pp. 654–665, 2020.
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used to model a strong conjunction connective and its residuum to interpret an
implication connective.

However, there is no primitive operation in a residuated lattice that properly
accounts for a strong disjunction playing the role of a t-conorm in [0, 1]. Of
course, one can always define a disjunction operation by De Morgan duality from
the monoidal operation � and the definable residual negation (¬x = x → 0).
However, depending on the properties of ¬, the resulting disjunction operation
may not enjoy nice properties. But even if, for instance, ¬ is a well-behaved
involutive negation, one is bound to a unique choice for a strong disjunction. To
remedy this situation, Or�lowska and Radzikowska introduce in [12] more general
residuated structures by expanding residuated lattices with an extra monoidal
operator playing the role of a t-conorm, together with its (dual) residuum as
well. They call them double residuated lattices, DRLs for short.

In [12], the authors study basic properties of DRLs and their application
to fuzzy information systems. In this paper we are interested in the particular
subclass of double residuated structures that are counterpart of MTL-algebras
[6], that is, prelinear, bounded, commutative and integral residuated lattices.
MTL-algebras constitute the algebraic semantics for the MTL logic, the system
of mathematical fuzzy logic that is complete w.r.t. the class of residuated lat-
tices on the real unit interval [0, 1] induced by left-continuous t-norms [10]. Our
aim is to axiomatise the logic whose intended semantics are double residuated
structures on [0, 1], hence induced by an arbitrary pair of a left-continuous t-
norm and a right-continuous t-conorm, together with their respective residual
operations.

The paper is structured as follows. After this introduction, in Sect. 2 we
recall basic definitions and facts about the MTL logic and on double residuated
lattices. Then in Sect. 3, as a preliminary step, we axiomatise the logic dual to
MTL, called dMTL, while in Sect. 4 we axiomatise the logic complete w.r.t. to
the class of double residuated lattices on the real unit interval [0, 1]. We finish
in Sect. 5 with some conclusions and future work.1

2 Preliminaries

2.1 A Refresher on MTL

The language of MTL consists of three binary connectives {∧,&,→} and a
constant 0. Formulas are built from a countable set of propositional variables as
usual. Further connectives are definable:

– ¬ϕ := ϕ → 0
– ϕ ∨ ψ := ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ)
– ϕ ≡ ψ := (ϕ → ψ)&(ψ → ϕ)
– 1 := ¬0
We present the MTL axiomatic system proposed in [6]:
1 The results in this paper are based on the Master thesis [15].
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(A1) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ))
(A2) (ϕ&ψ) → ϕ
(A3) (ϕ&ψ) → (ψ&ϕ)
(A4) (ϕ ∧ ψ) → ϕ
(A5) (ϕ ∧ ψ) → (ψ ∧ ϕ)
(A6) (ϕ&(ϕ → ψ)) → (ϕ ∧ ψ)
(A7) (ϕ → (ψ → χ)) → ((ϕ&ψ) → χ)
(A8) ((ϕ&ψ) → χ) → (ϕ → (ψ → χ))
(A9) ((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ)

(A10) 0 → ϕ

The only inference rule for MTL is Modus Ponens:

(MP) :
ϕ ϕ → ψ

ψ

MTL is an algebraizable logic and its equivalent algebraic semantics is given by
the variety of MTL-algebras. We recall their definition.

Definition 1. A MTL-algebra is a bounded commutative integral residuated
lattice

A = 〈A,∧,∨,�,→, 0, 1〉,
where ∧,∨ are the lattice meet and join operations, and 〈�,→〉 is an adjoint
pair satisfying the prelinearity condition.

As a direct consequence of its algebraizability, we have the following general
completeness result for MTL.

Theorem 1 (General completeness). Γ 	MTL ϕ iff, for any MTL algebra
A and for every A-evaluation e, e(ψ) = 1 for all ψ ∈ Γ implies e(ϕ) = 1.

Thanks to the fact that MTL proves the prelinearity axiom (ϕ → ψ) ∨ (ψ →
ϕ) (a direct consequence of (A9)), the above completeness result can be improved
to get completeness with respect to linearly-ordered algebras, or chains.

Theorem 2 (Chain completeness). Γ 	MTL ϕ iff, for any linearly-ordered
MTL algebra A and for every A-evaluation e, e(ψ) = 1 for all ψ ∈ Γ implies
e(ϕ) = 1.

In other words, MTL is a semilinear logic [4]. As a matter of fact, semilin-
earity is inherited by many expansions of MTL with new axioms and (finitary)
inference rules: the authors of [4,5] prove that an expansion S of MTL is semi-
linear iff for each newly added finitary inference rule

(R):
Γ

ϕ
,

its corresponding ∨-form
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(R∨):
Γ ∨ p

ϕ ∨ p

is derivable in S as well, where p is an arbitrary propositional variable not
appearing in Γ ∪ {ϕ}.

Moreover, going back to MTL, to check the validity of a deduction in MTL
we can even restrict ourselves to check it on the class of MTL-chains defined on
the real unit interval [0, 1], also known as standard chains. This was proved by
Jenei and Montagna in [10].

Theorem 3 (Standard completeness). Γ 	MTL ϕ iff, for any standard
MTL-chain A and for every A-evaluation e, e(ψ) = 1 for all ψ ∈ Γ implies
e(ϕ) = 1.

In algebraic terms, this result indicates that the variety of MTL-algebras is
generated by its standard chains. Note that if A = 〈[0, 1],∧,∨,�,→, 1, 0〉 is a
MTL-chain, then necessarily � is a left-continuous t-norm and → is its residuum.
This is why MTL is known as the logic of left-continuous t-norms.

2.2 Double Residuated Lattices

As mentioned in the introduction, the class of double residuated lattices (DRL)
was introduced by Or�lowska and Radzikowska in [12], in order to come up with
algebraic structures general enough to accommodate on a lattice not only a
strong conjunction and its residuum as in the case of residuated lattices, but
also a strong disjunction and its residuum.

Although the definition of double residuated lattice in [12] is very general, for
the purpose of this paper we will restrict ourselves to the commutative, bounded
and integral case.

Definition 2. A (commutative, bounded, integral) double residuated lattice is a
structure of the form

A = 〈A,∧,∨,�,→,⊕,←, 1, 0〉
where:

– 〈A,∧,∨,�,→, 1, 0〉 is a (commutative, bounded, integral) residuated lattice,
– 〈A,⊕, 0〉 is a commutative monoid,
– ← is the dual residuum of ⊕, i.e. for all x, y, z ∈ A the following dual resid-

uation condition holds:

y ≤ x ⊕ z iff x ← y ≤ z.

Analogously to (commutative, bounded, integral) residuated lattices, DRL-
algebras form a variety. In a DRL-algebra, the lattice order relation can be
recovered from both residua, indeed we have:

x ≤ y iff x → y = 1 iff y ← x = 0,
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and, as a matter of fact, this common underlying order is the only link between
both adjoint pairs of operations (�,→) and (⊕,←).

DMCTL-algebras are also introduced in [12] as the subvariety of DRL-
algebras satisfying a pre-linearity condition and its dual version.

Definition 3. Let A = 〈A,∧,∨,�,→,⊕,←, 1, 0〉 be a bounded, commutative
and integral DRL. Then A is called:

A double monoidal t-norm logic (DMTL) algebra iff for all x, y, z ∈ A it
satisfies:

(x → y) ∨ (y → x) = 1 (Prelinearity)

A double monoidal t-conorm logic (DMCL) algebra iff for all x, y, z ∈ A it
satisfies:

(x ← y) ∧ (y ← x) = 0 (Dual Prelinearity)

If A is both a DMTL- and a DMCL-algebra, then it is called a double monoidal
t-conorm and t-norm logic (DMCTL) algebra.

Natural (and inspiring) examples of DMCTL-algebras are structures on the
unit real interval [0, 1] of the form

〈[0, 1],min,max,�,→,⊕,←, 1, 0〉,

where � is a left-continuous t-norm and ⊕ is a right-continuous t-conorm. Recall
that a t-norm ⊕ has residuum iff it is left-continuous, and similarly, a t-conorm
⊕ has a dual residuum iff it is right-continuous. In such a case, the residuum of
� is given by

x → y = max{z ∈ [0, 1] : x � z ≤ y},

and the dual residuum of ⊕ is given by

x ← y = min{z ∈ [0, 1] : x ⊕ z ≥ y}.

And actually, any DMCTL-algebra on [0, 1] is of that form.

3 dMTL: The Dual Logic of MTL

Before expanding the logic MTL with a strong disjunction and its residuum, it
is convenient to start with a dualised version of MTL, that we call dMTL, with
only a strong disjunction and its residuum. It is just a formal exercise, but it
will help later when defining the whole logic.

The language of dMTL will be built from a countable set of propositional
variables and the primitive set of connectives {∨,�,←} together with the con-
stant 1, as usual:
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– All propositional variables and 1 are formulas.
– If ϕ,ψ are formulas, then ϕ � ψ, ϕ ← ψ and ϕ ∨ ψ are formulas.

The following connectives are definable:

1. ¬ϕ := ϕ ← 1
2. ϕ ∧ ψ := ((ϕ ← ψ) ← ψ) ∨ ((ψ ← ϕ) ← ϕ)
3. 0 := ¬1

The axiom system for dMTL, completely dual to that for MTL, is as follows:

(dA1) (ϕ ← ψ) ← ((ψ ← χ) ← (ϕ ← χ))
(dA2) (ϕ � ψ) ← ϕ
(dA3) (ϕ � ψ) ← (ψ � ϕ)
(dA4) (ϕ ∨ ψ) ← ϕ
(dA5) (ϕ ∨ ψ) ← (ψ ∨ ϕ)
(dA6) (ϕ � (ϕ ← ψ)) ← (ϕ ∨ ψ)
(dA7) (ϕ ← (ψ ← χ)) ← ((ϕ � ψ) ← χ)
(dA8) ((ϕ � ψ) ← χ) ← (ϕ ← (ψ ← χ))
(dA9) ((ϕ ← ψ) ← χ) ← (((ψ ← ϕ) ← χ) ← χ)

(dA10) 1 ← ϕ

The only inference rule for dMTL is the following dual form of Modus Ponens:

(dMP):
ψ ψ ← ϕ

ϕ

Analogously to MTL, dMTL is also an algebraizable logic, whose equivalent
algebraic semantics is given by the class of what we call dMTL-algebras. A
dMTL-algebra is a structure A = 〈A,∧,∨,⊕,←, 0, 1〉 such that:

– 〈A,∧,∨, 0, 1〉 is a lattice
– (A,⊕, 0) is a commutative monoid,
– ← is the dual residuum of ⊕, i.e. for all x, y, z ∈ L the following dual residu-

ation condition holds:

y ≤ x ⊕ z iff x ← y ≤ z.

– The following dual prelinearity condition holds:

(x ← y) ∧ (y ← x) = 0

In fact, dMTL-algebras are the dual structures of MTL-algebras in the
following sense. Let 〈A,∧,∨, 0, 1〉 be a lattice, and consider its dual version
〈A,∧d,∨d, 0d, 1d〉, where ∧d = ∨,∨d = ∧, 0d = 1 and 1d = 0. Then, it is easy to
check that A = 〈A,∧,∨,⊕,←, 0, 1〉 is a dMTL-algebra iff Ad = 〈A,∧d,∨d,⊕,←
, 0d, 1d〉 is a MTL-algebra. In other words, a dMTL-algebra is just a MTL-algebra
over its dual lattice reduct.

As a consequence of this observation, it becomes clear that the logic dMTL
is not a 1-preserving logic but a 0-preserving logic. Indeed, all the above axioms
are evaluated to 0 by any evaluation on a dMTL-algebra and the inference rule
(dMP) does not preserve the truth but the falsity: indeed, for any evaluation e,
if e(ψ) = 0 and e(ψ ← ϕ) = 0, then e(ϕ) = 0 as well.
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Theorem 4. For any set of dMTL-formulas Γ ∪ {ϕ}, Γ 	dMTL ϕ iff, for any
dMTL algebra A and for every A-evaluation e, e(ψ) = 0 for all ψ ∈ Γ implies
e(ϕ) = 0.

Moreover, one can show that MTL and dMTL are equivalent deductive sys-
tems in the following strong sense. Let + be the map from dMTL-formulas to
MTL-formulas such that

1+ = 0, p+ = p, for each propositional variable p, and

(ϕ ∨ ψ)+ = ϕ+ ∧ ψ+, (ϕ ← ψ)+ = ϕ+ → ψ+, (ϕ � ψ)+ = ϕ+&ψ+,

and let ∗ be the converse map from MTL to dMT-formulas, i.e. the map such
that

0∗ = 1, p∗ = p, for each propositional variable p, and
(ϕ ∧ ψ)∗ = ϕ∗ ∨ ψ∗, (ϕ → ψ)∗ = ϕ∗ ← ψ∗, (ϕ&ψ)∗ = ϕ∗ � ψ∗.

Then one can easily prove that deductions can be translated from one logic to
the other.

Lemma 1. The following conditions hold:

1. For any set of MTL-formulas Γ ∪ {ϕ}: if Γ 	MTL ϕ, then Γ ∗ 	dMTL ϕ∗.
2. For any set of dMTL-formulas Γ ∪ {ϕ}: If Γ 	dMTL ϕ, then Γ+ 	MTL ϕ+.

4 The Logic DMCTL: Putting Together MTL and dMTL

In this section we introduce the double monoidal t-conorm and t-norm logic,
DMCTL for short, as the expansion of the logic MTL with a strong disjunction
and its dual residuum.

The language of the logic DMCTL expands the language of MTL (built
over primitive connectives ∧,&,→ and 0) with two new connectives {�,←},
standing respectively for a strong disjunction and its dual residuum.

We will continue using the following definable connectives:

1. ¬ϕ := ϕ → 0
2. ϕ ∨ ψ := ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ)
3. ϕ ≡ ψ := (ϕ → ψ)&(ψ → ϕ)
4. ¬ϕ := ϕ ← 1

From the syntactic point of view, we define the logic DMCTL by expanding
MTL with, roughly speaking, the ‘negation’ of the axioms and rules of dMTL.

Definition 4. DMCTL is the expansion of MTL with the following set of axioms

{¬Φ : Φ ∈ {(dA1), . . . , (dA10)}}
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and the rules

(R1) :
ϕ → ψ

¬(ψ ← ϕ)
(R2) :

¬(ψ ← ϕ)
ϕ → ψ

Note that rules (R1) and (R2) enforce the requirement that the order relations
induced by both implications coincide.

Remark 5. Observe that the corresponding ‘negation’ of the dual of modus
ponens (dMP), i.e. the rule

¬ϕ ¬(ϕ ← ψ)
¬ψ

does not appear in the above definition of the DMCTL logic since this rule is
derivable using (R2) and modus tollens (from ϕ → ψ and ¬ψ, derive ¬ϕ), that
is already derivable in MTL, and hence in DMCTL as well.

It is not hard to show that DMCTL enjoys the following congruence proper-
ties for the new connectives.

Lemma 2. DMCTL proves the following congruence properties for � and ←:

(i) ϕ ≡ ψ 	DMCTL ϕ � χ ≡ ψ � χ
(ii) ϕ ≡ ψ 	DMCTL (ψ ← χ) ≡ (ϕ ← χ)
(iii) ϕ ≡ ψ 	DMCTL (χ ← ϕ) ≡ (χ ← ψ)

These properties point out that DMCTL is in fact a weakly implicative logic
and hence algebraizable as well [5], and it has the variety of DMCTL-algebras
as its equivalent algebraic semantics. Therefore we already have for free the
following general completeness result.

Theorem 6 (General completeness). For any set of DMCTL-formulas Γ ∪
{ϕ}, Γ 	DMCTL ϕ iff, for any DMCTL-algebra A and for every A-evaluation
e, e(ψ) = 1 for all ψ ∈ Γ implies e(ϕ) = 1.

By definition, DMCTL is a expansion of MTL, but in fact we can show more.

Lemma 3. DMCTL is a conservative expansion of MTL.

The relation between dMTL and DMCTL is obviously a bit different. In the
following, we will use 	∗

MTL and 	∗
dMTL to denote derivations (in the language

of DMCTL) using only axioms and rules of MTL and of dMTL respectively.2

Lemma 4. For any set of dMTL formulas Γ ∪ {ϕ}, we have:
If Γ 	∗

dMTL ϕ then ¬Γ 	DMCTL ¬ϕ, where ¬Γ = {¬ψ | ψ ∈ Γ}.

2 This means that, e.g. in a derivation Γ �∗
dMTL ϕ, any maximal subformula in Γ ∪{ϕ}

not belonging to the language of dMTL is treated as a new propositional variable.
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4.1 DMCTL�: The Semilinear Version of DMCTL

According to the observation made in Sect. 2.1, DMCTL, as an expansion of
MTL, would be semilinear iff the following ∨-forms of the rules (R1) and (R2)
following rules

(R1∨) :
(ϕ → ψ) ∨ γ

¬(ψ ← ϕ) ∨ γ
(R2∨) :

¬(ψ ← ϕ) ∨ γ

(ϕ → ψ) ∨ γ

were derivable in DMCTL. However, we have not succeeded in proving this.
This leads us to consider the logic DMCTL� by replacing in DMCTL the

rules (R1) and (R2) by the above stronger two rules (R1∨) and (R2∨) respec-
tively. Then, it is clear that DMCTL� is indeed a semilinear logic whose algebraic
semantics is given by the quasi-variety of DMCTL�-algebras, where a DMCTL�-
algebra is just a DMCTL-algebra satisfying the two following additional condi-
tion (in fact it consists of two quasi-equations):

– (x → y) ∨ z = 1 iff ¬(x ← y) ∨ z = 1

Since in a linearly ordered lattice, we have x ∨ y = 1 iff either x = 1 or y = 1,
an easy observation is that the set of linearly-ordered DMCTL�-algebras and
linearly-ordered DMCTL-algebras coincide.

Lemma 5. A is a linearly ordered DMCTL�-algebra iff A is a linearly ordered
DMCTL-algebra.

Therefore, we have the following chain-completeness result for DMCTL�.

Theorem 7 (Chain completeness). The logic DMCTL� is complete with
respect to the class of linearly ordered DMCTL-algebras.

In algebraic terms, this result says that the quasivariety of DMCTL�-algebras
is generated by the class of its linearly-ordered members.

4.2 Standard Completeness of DMCTL�

Finally, in this section we show that, in fact, DMCTL� enjoys standard com-
pleteness, i.e. completeness with respect to the class of DMCTL-chains on the
real unit interval [0, 1], or in other words, completeness w.r.t. those algebras on
[0, 1] defined by a left-continuous t-norm and a right-continuous t-conorm and
their residua. To do so, one has to show that if a formula ϕ does not get the value
1 for some evaluation on a countable linearly ordered DMCTL-algebra, then we
can always find a linearly ordered DMCTL-algebra on the unit real interval [0,
1] and an evaluation e on this algebra such that e(ϕ) < 1.

Mimicking the constructions in the proof of the standard completeness for
MTL in [10], we start with a countable DMCTL-chain

S = 〈S,�,→,⊕,←,≤S , 0S , 1S〉,
and we go through the steps we sketch below:
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Step 1. We densify S in two different ways:
(a) Define the structure X = 〈X, ◦,�, 0X , 1X〉 as follows:

(i) X = {(s, 1) : s ∈ S} ∪ {(s, q) | s ∈ S and ∃s′, s = suc(s′) > s′, q ∈
Q ∩ (0, 1)},

(ii) (s, q) � (s′, q′) iff either s <S s′, or s = s′ and q ≤ q′,
(iii) 0X = (0S , 1) and 1X = (1S , 1),
(iv) ◦ is a binary operation defined as

(s, q) ◦ (s′, q′) =
{

minX{(s, q), (s′, q′)}, if s � s′ = minS(s, s′)
(s � s′, 1), otherwise

where minX and minS are the lattice meets with respect to � and
≤S respectively.

(b) Define the structure Y = 〈Y, •,�, 0Y , 1Y 〉 as follows:
(i) Y = {(s, 0) : s ∈ S} ∪ {(s, q) | s ∈ S and ∃suc(s) > s, q ∈ Q ∩ (0, 1)},
(ii) (s, q) � (s′, q′) iff either s <S s′, or s = s′ and q ≤ q′,
(iii) 0Y = (0S , 0) and 1Y = (1S , 0),
(iv) • is a binary operation defined as

(s, q) • (s′, q′) =
{

maxX{(s, q), (s′, q′)}, if s ⊕ s′ = maxS(s, s′)
(s ⊕ s′, 0), otherwise

where maxX and maxS are the lattice joins with respect to � and ≤S

respectively.
Note that while in X we have limq→1(s, q) = (s, 1) and limq→0(s, q) =
(s′, 1) whenever s′ = suc(s) < s, in Y we have limq→1(s′, q) = (s, 1) and
limq→0(s′, q) = (s′, 0).

Step 2. Although they are different, 〈X,�, 0X , 1X〉 and 〈Y,�, 0Y , 1Y 〉 are order
isomorphic through the mapping h : X → Y defined as

{
h((s, 1)) = (s, 0)
h((s, r)) = (s′, r) if r < 1 and s = suc(s′)

Moreover, h preserves suprema and infima.
Step 3. One can show that 〈X, ◦,�, 0X , 1X〉 is a commutative linearly ordered

integral monoid with null element 0X and that ◦ is in fact left-continuous
with respect to the order topology on 〈X,�〉.

Step 4. Analogously, one can show that 〈Y, •,�, 0Y , 1Y 〉 is a commutative lin-
early ordered integral monoid with null element 1Y and that • is right-
continuous with respect to the order topology on 〈Y,�〉.
As a consequence: the structure 〈X, •∗,�, 0X , 1X〉, where

(s, r) •∗ (s′, r′) = h−1(h((s, r)) • h((s′, r′))),

is a commutative linearly ordered integral monoid with null element 1X

and show that •∗ is right-continuous with respect to the order topology
on 〈X,�〉.
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Step 5. The map Φ : S → X defined as Φ(s) = (s, 1) is an embedding of the
structure 〈S,�,⊕,≤S , 0S , 1S〉 into the structure 〈X, ◦, •∗,�, 0X , 1X〉,
and moreover, restricted to Φ(S):

(1) The residuum of ◦ exists, call it ⇒, and Φ(s) ⇒ Φ(s′) = Φ(s → s′) for
all s, s′ ∈ S.

(2) The residuum of •∗ exists, call it ⇐, and Φ′(s) ⇐ Φ′(s′) = Φ′(s ← s′)
for all s, s′ ∈ S.

Step 6. Since X is countable and dense, the structure 〈X, ◦,⇒, •∗,⇐,�, 0X , 1X〉
is order-isomorphic (through a mapping Ψ : X → Q ∩ [0, 1]) to a struc-
ture on the rationals in [0, 1], 〈Q ∩ [0, 1], ◦′,⇒′, •′,⇐′,≤, 0, 1〉.

Step 7. The structure 〈Q ∩ [0, 1], ◦′, •′,≤, 0, 1〉 can be embedded into an analo-
gous structure 〈[0, 1], ◦̂, •̂,≤, 0, 1〉 on the real unit interval, where:

(1) ◦̂ is the extension of ◦′ defined by means of left-continuity, i.e. α◦̂β =
sup{x◦′y | x, y ∈ Q∩[0, 1], x ≤ α, y ≤ β}. Moreover ◦̂ is left-continuous.

(2) •̂ is the extension of •′ defined by means of right-continuity, i.e. α•̂β =
inf{x•′y | x, y ∈ Q∩[0, 1], x ≥ α, y ≥ β}. Moreover •̂ is right-continuous.

Step 8. Since ◦̂ is left-continuous and •̂ is right-continuous on [0, 1], their
residua and dual residua exist, call them ⇒◦̂ and ⇐•̂ respectively.
Then 〈[0, 1], ◦̂,⇒◦̂, •̂,⇐•̂,≤, 0, 1〉 is a linearly ordered DMCTL-algebra
where the initial DMCTL-chain S can be embedded. In particular, if
Γ : S → [0, 1] denotes the composition of the maps Φ and Ψ , it
can be shown that Γ (s � s′) = Γ (s)◦̂Γ (s′), Γ (s ⊕ s′) = Γ (s)•̂Γ (s′),
Γ (s → s′) = Γ (s) ⇒◦̂ Γ (s′), and Γ (s ← s′) = Γ (s) ⇐•̂ Γ (s′) for all
s, s′ ∈ S.

As a direct consequence of the above constructions, we can claim the standard
completeness of the logic DMCTL�.

Theorem 8 (Standard completeness). The logic DMCTL� is standard com-
plete. In other words, for any set of formulas Γ ∪ {ϕ}, Γ 	 ϕ iff, for any stan-
dard DMCTL-algebra A and any A-evaluation e, if e(ψ) = 1 for all ψ ∈ Γ , then
e(ϕ) = 1.

Proof. Suppose Γ �	DMCTL� ϕ, then by the chain-completeness result, there is
a countable DMCTL-chain S and an S-evaluation e that e(ψ) = 1 for all ψ ∈ Γ
while e(ϕ) < 1. Then, by the above construction, there is a DMCTL-chain on
[0, 1] where A can be embedded. Let h be such an embedding and let e′ the
evaluation of variables on [0, 1] defined as e′(p) = h(e(p) for every propositional
variable p. Then one still has that e′(ψ) = 1 for all ψ ∈ Γ while e′(ϕ) < 1.

5 Conclusions

In this paper we have been concerned with defining a logic complete with respect
to the class of double residuated lattices on [0, 1] induced by left-continuous t-
norms and right-continuous t-conorms. Future work will focus on different exten-
sions of the logic DMCTL�, counterparts of well-known axiomatic extensions of
MTL, like Involutive MTL (IMTL), Hájek’s BL logic, or any of their extensions.
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Abstract. Using a category dual to finite BL-algebras and their homo-
morphisms, in this paper we characterise the structure of the automor-
phism group of any given finite BL-algebra. Further, we specialise our
result to the case of the variety generated by the k-element MV-algebra,
for each k > 1.

Keywords: BL-algebras, Automorphism group, Substitutions

1 Introduction

The variety of BL-algebras constitutes the algebraic semantics of Hájek’s Basic
Fuzzy Logic BL, which in turn is the logic of all continuous t-norms and their
residua. The characterisation of the automorphism group of an algebraic struc-
ture is a typical problem in algebra. When the algebraic structure is associated
with a logical system, BL in our case, then automorphisms are related with
substitutions. Indeed, a substitution acting on the first n propositional letters
can be conceived as an endomorphism of the free n-generated BL-algebra, and
then automorphisms of the same algebra coincide with invertible substitutions.
As any BL-algebra is a quotient of some free BL-algebra, an automorphism of
a BL-algebra is a substitution which is invertible over the equivalence classes
determined by the quotient.

In this work we use a category dually equivalent to finite BL-algebras with
their homomorphisms, namely the category of finite weighted forests, to charac-
terise the structure of the automorphism group of any given finite BL-algebra.

We exploit the finite combinatorial description of finite weighted forests to
decompose any such automorphism group by means of direct and semidirect
products of symmetric groups. Our results constitute a generalisation of [6],
where the same approach has been used to characterise the automorphism groups
of finite Gödel algebras, and they are related with the forthcoming paper [1],
where these combinatorial techniques are applied to several subvarieties of MTL-
algebras. The paper is structured as follows. In the first section we introduce the
logic BL and BL-algebras; further we recall the notion of automorphism group
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of an algebra, and its relations with invertible substitutions in the associated
logic. Then, as an example we apply our approach based on dual categorical
equivalence to characterise the automorphism groups of finite Boolean algebras.
We recall also the notion of semidirect product of groups. In the third section
we introduce the category of finite weighted forests and the dual equivalence
with finite BL-algebras. In the fourth section we prove our main result about
automorphism groups of finite BL-algebras. Finally, we specialise our result to
the case of the variety generated by the k-element MV-algebra, for each k > 1.

Hájek’s Basic Fuzzy Logic BL [15] is proven in [9] to be the logic of all
continuous t-norms and their residua. We recall that a t-norm is an operator
∗ : [0, 1]2 → [0, 1] that is associative, commutative, monotonically non-decreasing
in both arguments, having 0 as absorbent element, and 1 as unit. The t-norm
∗ is continuous if ∗ it is so in the standard euclidean topology of [0, 1]2. BL is
axiomatised as follows.

(A1) (φ → χ) → ((χ → ψ) → (φ → ψ))
(A2) (φ � χ) → φ
(A3) (φ � χ) → (χ � φ)
(A4) (φ � (φ → χ)) → (χ � (χ → φ))

(A5a) (φ → (χ → ψ)) → ((φ � χ) → ψ)
(A5b) ((φ � χ) → ψ) → (φ → (χ → ψ))
(A6) ((φ → χ) → ψ) → (((χ → φ) → ψ) → ψ)
(A7) ⊥ → φ

with modus ponens
ϕ ϕ → ψ

ψ

as the only inference rule.
The equivalent algebraic semantics of BL is given by the variety of BL-

algebras, as follows: A BL-algebra is an algebra (A, �, →, ⊥) of type (2, 2, 0)
such that upon defining x ∧ y = x � (x → y) (divisibility), x ∨ y = ((x → y) →
y) ∧ ((y → x) → x), and � = a → a for some arbitrarily fixed a ∈ A, the
following holds:

(i) (A, �, �) is a commutative monoid;
(ii) (A, ∨, ∧, �, ⊥) is a bounded lattice;
(iii) residuation holds, that is, x � z ≤ y if and only if z ≤ x → y.

Gödel logic G is obtained by extending BL via the idempotency axiom ϕ →
(ϕ&ϕ). �Lukasiewicz logic �L is the extension of BL via the involutiveness of
negation axiom ¬¬ϕ → ϕ (where ¬ϕ stands for ϕ → ⊥).

The equivalent algebraic semantics of G is given by the variety of Gödel
algebras G, that is the subvariety of BL formed by those algebras satisfying the
identity x = x � x. MV-algebras are those BL-algebras satisfying x = (x →
⊥) → ⊥. The variety MV of MV-algebras constitutes the equivalent algebraic
semantics of �L.
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A variety V is locally finite if its n-generated free algebra Fn(V) is finite, for
each n ≥ 0.

We define x0 = � and for all n ≥ 0, xn+1 = xn � x, and say that a BL-algebra
is n-contractive if it satisfies the identity xn+1 = xn. While G is locally finite
(and 1-contractive), BL and MV are not (see [2,13,19] for a description of finitely
generated free algebras in these varieties), but their n-contractive subvarieties
are. As a matter of fact, only the n-contractive subvarieties of BL (or MV) are
locally finite.

Let L be a schematic extension of BL having the variety L as equivalent
algebraic semantics. Then its Lindenbaum algebra is the L-algebra of the classes
ϕ/ ≡ of logically equivalent formulas, that is ϕ ≡ ψ iff L proves ϕ → ψ and ψ →
ϕ. The operations are defined through the connectives: for all binary connectives
∗, (ϕ/ ≡) ∗ (ψ/ ≡) := (ϕ ∗ ψ)≡, the bottom element is ⊥/ ≡.

The Lindenbaum algebra of L is isomorphic with the free L-algebra over ω
generators Fω(L). Analogously, for each n ≥ 0, the Lindenbaum algebra of the
formulas of L built using only the first n propositional letters x1, x2, . . . , xn is
isomorphic with the free L-algebra over n many generators Fn(L).

A substitution σ over {x1, . . . , xn} is displayed as

x1 → ϕ1, . . . , xn → ϕn

for ϕ1, . . . , ϕn formulas built over {x1, . . . , xn}, with the obvious mean-
ing that σ(xi) = ϕi. The substitution σ extends naturally to each for-
mula over {x1, . . . , xn}, via the inductive definition σ(∗(ψ1, . . . , ψk)) =
∗(σ(ψ1), . . . , σ(ψk)), for each k-ary connective ∗ and k-tuple of formulas
(ψ1, . . . , ψk). As it is clear that if ϕ ≡ ψ then σ(ϕ) ≡ σ(ψ), then the substitution
σ can be identified with an endomorphism of the n-generated free algebra:

σ : Fn(L) → Fn(L).

The set of all substitutions over {x1, . . . , xn}, equipped with functional com-
position, forms the monoid of endomorphisms End(Fn(L)) of Fn(L), having
the identity id : xi → xi as neutral element. The bijective endomorphisms in
End(Fn(L)) are clearly the same as isomorphisms of Fn(L) onto itself, and
form the group of automorphisms Aut(Fn(L)) of Fn(L). In terms of substi-
tutions, Aut(Fn(L)) is the group of invertible substitutions over {x1, . . . , xn},
that is, those σ such that there exists a substitution σ−1 such that σ ◦ σ−1 =
σ−1 ◦ σ = id.

In an earlier work [6] we have characterised the automorphism group of finite
Gödel algebras—the algebraic semantics of propositional Gödel logic—by means
of a dual categorical equivalence. In this paper we shall apply and generalise
those techniques to finite BL-algebras (and hence, to locally finite subvarieties
of BL, when the technique is applied to their free algebras). We take here the
opportunity to correct a nasty mistake in the introduction of [6]: for a quirk of
carelessness, there we erroneously declared that automorphisms preserve logical
equivalence, which is clearly not the case (this mistake does not invalidate any
technical result in the paper). In that paper we had in mind the more algebraic
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notion of equivalence given in the following Proposition, stressing the fact that
automorphisms preserve all relevant algebraic information of logical equivalence
between the formulas.

Proposition 1. Let L be a locally finite variety constituting the algebraic
semantics of a schematic extension L of BL. Then σ is an automorphism of
Fn(L) if and only if for all pairs of formulas ϕ,ψ:

ϕ ≡ ψ if and only if σ(ϕ) ≡ σ(ψ).

Proof. Clearly the property holds for automorphisms. Pick then σ ∈
End(Fn(L))\Aut(Fn(L)). Since L is locally finite, we assume σ is not injective.
Then, there are ϕ �≡ ψ such that σ(ϕ) ≡ σ(ψ).

Clearly, every algebra in a variety comes with its automorphism group. Each
algebra A ∈ L is a quotient of some free algebra in L. If A = Fn(L)/Θ for some
congruence Θ of Fn(L), then we can interpret elements of Aut(A) as substitu-
tions. As a matter of fact, σ ∈ Aut(A) if there is a substitution σ′ defined over
{x1, . . . , xn} such that σ : ϕ/Θ → (σ′(ϕ))/Θ is bijective (and hence invertible).
Whence σ is conceived as an invertible substitution over {x1/Θ, . . . , xn/Θ}. In
logical terms we have an analogous of Proposition 1. Let ϕ ↔ ψ be a shortening
of (ϕ → ψ) ∧ (ψ → ϕ).

Proposition 2. Let L be a locally finite variety constituting the algebraic
semantics of a schematic extension L of BL. Let A = Fn(L)/Θ for some con-
gruence Θ. Let ΓΘ be the theory formed by all formulas ϕ such that ϕΘ�. Then
σ is an automorphism of A if and only if for all pair of formulas ϕ,ψ:

ΓΘ |= ϕ ↔ ψ if and only if ΓΘ |= σ(ϕ) ↔ σ(ψ).

Proof. The same proof of Proposition 1, mutatis mutandis.

In the paper [1], the same technique used in [6] is adapted to determine the
structure of the group of automorphisms of finitely generated free algebras in
several locally finite subvarieties of MTL-algebras. We recall that MTL forms
a supervariety of BL [12], which constitutes the equivalent algebraic semantics
of the logic MTL, which in turns is the logic of all left-continuous t-norms and
their residua. In [1] the algebra of automorphism invariant (equivalence classes
of) formulas is introduced and studied (just for the case of Gödel logic).

2 Automorphism Groups

With each algebraic structure A we can associate its monoid of endomorphisms
End(A) = ({f : A → A}, ◦, id), having as universe the set of all homomorphisms
of A into itself, where ◦ is functional composition, and id : a → a for each a ∈ A
is the identity. The invertible elements of End(A), that is, those f such that
there exists f−1 ∈ End(A) with the property f ◦ f−1 = id = f−1 ◦ f , constitute
the universe of the group of automorphisms Aut(A) of A.
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Let Sym(n) denote the symmetric group over n elements, that is, the group
of all permutations of an n-element set.

Let B denote the variety of Boolean algebras. We prove the well-known fact
stated in Proposition 4 by means of a dual categorical equivalence, since the
same approach is used in [6] and [1], and we shall use it for the case of finite
BL-algebras.

We recall that two categories C and D are dually equivalent iff there exists
a pair of contravariant functors F : C → D and G : D → C whose compositions
FG and GF are naturally isomorphic with the identities in D and C.

Proposition 3. The category Bfin of finite Boolean algebras and their homo-
morphisms is dually equivalent to the category Setfin of finite sets and functions
between them.

Proof. This is just the restriction to finite objects of the well known Stone’s
duality between Boolean algebras and Stone spaces.

Let us call Sub: Setfin → Bfin and Spec: Bfin → Setfin the functors imple-
menting the equivalence. It is folklore that SubS is the Boolean algebra of the
subsets of S, and SpecA is the set of maximal filters of A. On arrows, Sub and
Spec are defined by taking preimages.

Clearly, for each Boolean algebra A, Aut(A) ∼= Aut(SpecA).

Proposition 4. Aut(Fn(B)) ∼= Sym(2n).

Proof. Just recall that SpecFn(B) is the set of 2n elements, and an automor-
phism of a finite set is just a permutation of its elements.

To deal with the structure of the automophism groups of finite BL-algebras
we shall introduce some constructions from group theory. We refer to [20] for
background.

Definition 1. Given two groups H and K and a group homomorphism f : k ∈
K → fk ∈ Aut(H), the semidirect product H �f K is the group obtained
equipping H × K with the operation (h, k) ∗ (h′, k′) = (hfk(h′), kk′).

Theorem 1. Let G be a group with identity e and let H,K be two subgroups of
G. If the following hold:

– K � G (K is a normal subgroup of G);
– G = H × K;
– H ∩ K = {e},
then G is isomorphic to the semidirect product of H and K with respect to the
homomorphism f : k ∈ K → fk ∈ Aut(H) where for each h ∈ H, fk(h) =
khk−1. Hence |G| = |H| · |K|.
In the following, we shall simply write H�K instead of H�f K, as in any usage
we assume f is as in Theorem 1.
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3 Finite BL-Algebras and Finite Weighted Forests

In this Section we shall present the relevant facts for our purposes about the
dual categorical equivalence between finite BL-algebras (with homomorphisms)
and the category of finite weighted forests. The duality is introduced in [4].

A forest is a poset such that the collection of lower bounds ↓ x = {y | y ≤ x}
of any given element x is totally ordered. A morphism of forests f : F → G is
an order-preserving map that is open, that is whenever z ≤ f(x) for z ∈ G and
x ∈ F , then there is y ≤ x in F such that f(y) = z.

Finite forests and their morphisms form a category, denoted Ffin.
Let N

+ denote the set of positive natural numbers. A weighted forest is a
function w : F → N

+, where F is a forest, called the underlying forest of w. A
weighted forest is finite if its underlying forest is. Consider two finite weighted
forests w : F → N

+, w′ : F ′ → N
+. By a morphism g : w → w′ we mean an

order-preserving map g : F → F ′ that is:

(M1) open (or is a p-morphism), that is, whenever x′ ≤ g(x) for x′ ∈ F ′ and
x ∈ F , then there is y ≤ x in F such that g(y) = x′, and

(M2) respects weights, meaning that for each x ∈ F , there exists y ≤ x in F such
that g(y) = g(x) and w′(g(y)) divides w(y).

Contemplation of these definitions shows that finite weighted forests and their
morphisms form a category. Let us write WFfin for the latter category, and
BLfin for the category of finite BL-algebras and their homomorphisms.

In the following we shall often manipulate the underlying forest F of a finite
weighted forest w : F → N

+. Henceforth, in order to simplify exposition, we shall
write (F,w) for such a finite weighted forest.

Theorem 2. The category of finite BL-algebras and their homomorphisms is
dually equivalent to the category of weighted forests and their morphisms. That
is, there are functors

wSpec: BLfin → WFfin and Sub: WFfin → BLfin

such that the composite functors wSpec ◦ Sub and Sub ◦ wSpec are naturally
isomorphic to the identity functors on WFfin and BLfin, respectively.

Proof. See [4] for the definition of the functors wSpec and Sub.

In particular, by [18, Thm. IV.4.1] the functor wSpec is essentially surjective,
and this yields the following representation theorem for finite BL-algebras.

Corollary 1. Any finite BL-algebra is isomorphic to Sub (F,w) for a weighted
forest (F,w) that is unique to within an isomorphism of weighted forests.

While the previous corollary has been already proved in [11, Sect. 5] and, as a
special case of a more general construction, in [17, Sect. 6], the finite duality
theorem is first introduced in [4].
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4 The Automorphism Group of a Finite Weighted Forest

In this Section we shall study the automorphism group of a finite weighted
forest (F,w) since by Theorem 2 and Corollary 1 this group is the same as the
automorphism group of the dual finite BL-algebra Sub (F,w).

An order-preserving permutation of F is a bijective map π : F → F such that
if x ≤ y then π(x) ≤ π(y).

Theorem 3. The automorphism group Aut(F ) of a finite forest F is isomor-
phic with the group of order-preserving permutations of F .

Proof. It is clear that π : F → F is an isomorphism iff π is a bijective morphism
in Ffin. Since morphisms of finite forests do preserve order, then if x ≤ y it must
be π(x) ≤ π(y).

Let (F,w) be a weighted forest. For each x ∈ F we denote ↑ x = {y ∈ F |
x ≤ y} the upset of x and ↓ x = {y ∈ F | y ≤ x} the downset of x.

If x is not minimal in F we denote by p(x) its unique predecessor.
For any x ∈ F , let h(x) = | ↓ x| be the height of x. Let h(F ) = max{h(x) |

x ∈ F}.
Let f : F → F be an order-preserving permutation of F . Then we say that

f preserves the weights of the map w : F → N
+ when w(f(x)) = w(x) for every

x ∈ F .

Proposition 5. An automorphism of a weighted forest (F,w) is an order-
preserving bijection f from F to F preserving the weights of w.

Proof. An automorphism f : (F,W ) → (F,W ) is a bijective morphism in WFfin.
Perusal of the definitions of morphism in WFfin and in Ffin, shows that f is
a map f : F → F which is a bijective morphism in Ffin, that is f is an order-
preserving permutation of F , by Theorem 3. As f : F → F is invertible, condition
(M2) holds iff w(f(x)) = w(x) for any x ∈ F .

We denote by Aut(F,w) the group of all automorphisms of (F,w).
For every i = 1, . . . , h(F ) − 1, we consider the partition of F given by its

levels:
Ai = {x ∈ F | h(x) = i}

and the relation R on F such that xRy if and only if ↑ x ∼=↑ y as finite weighted
forests, w(x) = w(y) and either x and y are both minimal or p(x) = p(y).

The relation R is an equivalence relation and we denote by [x] its equivalence
classes. Note that for every x ∈ F , if x ∈ Ai then [x] ⊆ Ai and the set [Ai] =
{[x] | x ∈ Ai} is a partition of Ai. Further, if x �= y and xRy then for every
x1 ∈↑ x there is no y1 ∈↑ y such that x1Ry1.

If ϕ ∈ Aut(F,w) and A ⊆ F , by ϕ � A we mean the restriction of ϕ to A.

Lemma 1. The following hold:

(i) For every ϕ ∈ Aut(F,w) and x ∈ F , ϕ([x]) = [ϕ(x)];



Automorphism Groups of Finite BL-Algebras 673

(ii) if ϕ,ψ ∈ Aut(F,w) are such that ϕ(p(x)) = ψ(p(x)), then ϕ([x]) = ψ([x]).

In the following, we fix a strict order relation ≺ on F such that ≺ is total on
each equivalence class and for any x, y ∈ F , x, y are incomparable if [x] �= [y].
Hence ≺ is an order relation that compares just elements in the same class (hence
at the same level, with the same weight and with an isomorphic upset).

Definition 2. Let (F,w) be a weighted forest with h(F ) = h. Then for i =
1, . . . , h, an i-permutation respecting ≺ on (F,w) is an order-preserving bijec-
tion π : F → F also preserving the weight w and such that:

(i) For every j < i and x ∈ Aj, π(x) = x;
(ii) For every k > i and x, y ∈ Ak, if x ≺ y then π(x) ≺ π(y);

Note that this definition is well given since if x ≺ y then [x] = [y] and, being
π ∈ Aut(F,w), by Lemma 1 we have [π(x)] = [π(y)]. If π is an i-permutation
and x ∈ Ai (with i > 1) then π(p(x)) = p(x) hence π(x) ∈ [x] and π([x]) = [x].

By definition, i-permutations fix everything below the level i and permute
(in such a way to respect order and weights) elements in the levels above i by
keeping the same order ≺ in the classes. So, the order ≺ is needed to fix a
canonical i-permutation π once we have defined π on Ai, as explained in the
following lemma.

Lemma 2. Let ϕ ∈ Aut(F,w) and i ∈ {1, . . . , h(F )}. If ϕ([x]) = [x] for every
x ∈ Ai then there is a unique i-permutation (ϕ)i respecting ≺ such that

(ϕ)i � Ai = ϕ � Ai.

Proof. For every j < i and x ∈ Aj , set (ϕ)i(x) = x and for every x ∈ Ai set
(ϕ)i(x) = ϕ(x). Since ϕ([x]) = [x], then p(x) = p(ϕ(x)) and for every x ∈ Ai,

↓ (ϕ)i(x) = ϕ(x) ∪ {y | y ≤ x} = (ϕ)i(↓ x).

Then (ϕ)i is an order-preserving permutation of ↓ Ai. Further, for every x ∈ Ai

and y ∈ (ϕ)i([x]), ↑ x ∼=↑ y.
Let x ∈ Ai+1. Then ϕ bijectively maps [x] onto ϕ([x]). Display [x] as {x1 ≺

· · · ≺ xs} and ϕ([x]) as {y1 ≺ · · · ≺ ys}. Then we set (ϕ)i(xj) = yj for j =
1, . . . , s. Note that (ϕ)i is an order-preserving permutation of ↓ Ai+1 and ↑ x ∼=↑
y for every y ∈ (ϕ)i([x]).

In general, let k > i and suppose to have extended (ϕ)i to an order-preserving
permutation of ↓ Ak−1 such that ↑ x ∼=↑ y for every y ∈ (ϕ)i([x]). Let x ∈ Ak.
Since p(x) ∈ Ak−1 then ↑ p(x) ∼=↑ (ϕ)i(p(x)). Then there exists y ∈↑ (ϕ)i(p(x))∩
Ak such that ↑ [x] ∼=↑ [y]. We can hence display [x] as {x1 ≺ · · · ≺ xs} and [y]
as {y1 ≺ · · · ≺ ys}. Then we set (ϕ)i(xj) = yj for j = 1, . . . , s. Clearly, (ϕ)i is
an order-preserving permutation of Ak and ↑ x ∼=↑ y for every y ∈ (ϕ)i([x]).

We can hence define (ϕ)i on the whole F and it follows from the construction
that (ϕ)i is the unique i-permutation respecting ≺ and coinciding with ϕ on Ai.
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Fig. 1. Weighted forest (F,w) of Example 1

Example 1. Let (F,w) be as in Fig. 1, where each node is labeled with a letter
and with its weight.

We have h(F ) = 3 and levels are given by

A1 = {a, n}
A2 = {b, c, d, o, p, q, r}
A3 = {e, f, g, h, i, j, k, l,m}.

Non-singleton classes are given by

[b] = [c] = {b, c} ⊆ A2

[e] = [f ] = {e, f} ⊆ A3

[h] = [i] = {h, i} ⊆ A3

[k] = [l] = {k, l} ⊆ A3

[o] = [p] = [q] = {o, p, q} ⊆ A2

while [x] = {x} for every x ∈ {a, d, g, j,m, n, r}. Let us fix the order b ≺ c, e ≺ f ,
h ≺ i, k ≺ l and o ≺ p ≺ q. The map ϕ21 defined by

x a b c d e f g h i j k l m n o p q r
ϕ21(x) a c b d h i j e f g k l m n o p q r

maps b to c and viceversa and it is defined in accordance with ≺ on A3, so it is
a 2-permutation. Also ϕ22 defined by

x a b c d e f g h i j k l m n o p q r
ϕ22(x) a b c d e f g h i j k l m n p q o r

is a 2-permutation since it fixes all elements but {o, p, q}. The composition ϕ2 =
ϕ21ϕ22 = ϕ22ϕ21 is again a 2-permutation. Consider the automorphism ϕ defined
by

x a b c d e f g h i j k l m n o p q r
ϕ(x) a c b d i h j f e g k l m n p q o r.

Note that ϕ is not a 2-permutation since e ≺ f but ϕ(e) = i ⊀ ϕ(f) = h.
Nevertheless ϕ � A2 = ϕ2 � A2. Note also that ϕ � A3 �= ϕ2 � A3 and we cannot
apply Lemma 2 to level 3 since ϕ([e]) �= [e].
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In the following, we shall omit the reference to the order ≺, and it will be
tacitly assumed that all i-permutations are i-permutations respecting ≺.

The set Pi of all i-permutations is the domain of a subgroup Pi of Aut(F,w).
We are going to describe it in terms of the symmetric groups Sym(n).

Definition 3. Given x ∈ Ai, an [x]-permutation is an i-permutation π such
that π � [x] is a permutation of [x] and π(y) = y for every y ∈ Ai \ [x].

Lemma 3. Every i-permutation respecting ≺ is the composition of [x]-
permutations for [x] ∈ [Ai]. Further,

Pi
∼=

∏

[x]∈[Ai]

Sym(|[x]|).

Proof. Note that, since [Ai] = {[x] | x ∈ Ai} is a partition of Ai, if π and π′

are respectively an [x]-permutation and a [y]-permutation with [x] �= [y], then
ππ′ = π′π. The claim then follows by the definition of i-permutation and by
Lemma 2, noticing that for every i-permutation ϕ and x ∈ Ai, ϕ([x]) = [x].

Example 2. Consider the weighted forest (F,w) from Example 1. We have

[A1] = {{a}, {n}}
[A2] = {{b, c}, {d}, {o, p, q}, {r}}
[A3] = {{e, f}, {h, i}, {k, l}, {g}, {j}, {m}}.

If x1, . . . , xu ∈ Ai, we use the notation (x1x2 · · · xu) to denote the unique i-
permutation (in Aut(F,w)) that maps x1 → x2 → · · · → xu → x1 and fixes all
the other elements of ↓ Ai. Then we get

P3 = {idF , (ef), (hi), (kl), (ef)(hi), (ef)(kl), (hi)(kl), (ef)(hi)(kl)} ∼= Sym3(2)

while

P2 = {idF , (bc), (op), (oq), (pq), (opq), (oqp), (bc)(op), (bc)(oq),
(bc)(pq), (bc)(opq), (bc)(oqp)} ∼= Sym(2) × Sym(3)

and
P1 = {idF } ∼= Sym(1).

Let N0 = Aut(F,w) and for any i = 1, . . . , h(F ),

Ni = {ϕ ∈ Aut(F,w) | ϕ � (↓ Ai) = id↓Ai
}.

Theorem 4. Let h = h(F ). Then Nh = {idF }, Nh−1 = Ph and for any i =
0, . . . , h − 2

Ni
∼= Pi+1 � Ni+1,
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Proof. By definition, Nh = {idF } and Nh−1 is the set of order-preserving per-
mutations that are distinct from the identity only on the level Ah. Since such a
map π must satisfy π([x]) = [x] for every x ∈ Ah, we have Nh−1 = Ph.

It is easy to check that for every i = 0, . . . , h−2, Pi+1 and Ni+1 are subgroups
of Ni. We first prove that Ni = Pi+1 × Ni+1 (as sets), that is for every element
ϕ ∈ Ni there exist π ∈ Pi+1 and ψ ∈ Ni+1 such that ϕ = πψ. Since for every
x ∈ Ai+1, ϕ([x]) = [x], then we can apply Lemma 2 and find π = (ϕ)i+1 ∈ Pi+1

coinciding with ϕ over Ai+1. Let ψ = (ϕ)−1
i+1ϕ. For every x ∈ Ai+1, ϕ(x) ∈

Ai+1 hence ψ(x) = (ϕ)−1
i (ϕ(x)) = ϕ−1ϕ(x) = x. For x ∈ (↓ Ai), ψ(x) =

idAi
idAi

(x) = x, hence ψ ∈ Ni+1. Clearly, ϕ = πψ.
In order to prove that Ni+1 � Ni, let ϕ ∈ Ni and ψ ∈ Ni+1. Then ϕ and

ψ are both the identity function when restricted to ↓ Ai and further for every
x ∈ Ai+1, ϕ(ψ(ϕ−1))(x) = ϕϕ−1(x) = x. Then ϕψϕ−1 is the identity over
↓ Ai+1 hence ϕψϕ−1 ∈ Ni+1.

Finally, we have to prove that Pi+1 ∩ Ni+1 = {idF }, but this is trivial since
the only element in Pi+1 coinciding with the identity over Ai+1 is idF .

The claim follows by Theorem 1.
Note that, by Theorem1, the operation of the group Pi+1 � Ni+1 is given

by (π, ψ) ∗ (π′, ψ′) = (πψπ′ψ−1, ψψ′).

Example 3. Consider the weighted forest (F,w) from Example 1 and the maps
ϕ and ϕ2. By definition, N1 = Aut(F,w) = N0 since all the maps in Aut(F,w)
are equal to the identity over the roots a and n. Further N2 = P3 and N3 =
{idF }. By Theorem 4 we have N1

∼= P2 � N2. Consider for example the maps
ϕ ∈ Aut(F,w) and ϕ2 ∈ P2 from Example 1. Then ϕ2 = (bc)(opq) ∈ P2 and
ϕ = ϕ2 ◦ (ef)(hi)(kl) where (ef)(hi)(kl) ∈ P3 = N2.

We are ready to state the structure of the automorphism group of a weighted
forest (F,w).

Corollary 2. Let (F,w) be a finite weighted forest. Let h(F ) = h and let Pi be
the group of i-permutations of (F,w). Then

Aut(F,w) ∼= P1 � (P2 � (· · · � Ph))

and

|Aut(F,w)| =
h∏

i=1

∏

[x]∈[Ai]

|[x]|!.

Proof. The claim follows by Theorem 4 and Lemma 3.

Example 4. Let (F,w) be the weighted forest from Example 1. Then

Aut(F,w) ∼= Sym(1) � ((Sym(2) × Sym(3)) � (Sym3(2)))
∼= (Sym(2) × Sym(3)) � (Sym3(2))

and

|Aut(F,w)| =
3∏

i=1

∏

[x]∈[Ai]

|[x]|! = 2 · 3! · 2 · 2 · 2 = 96.
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We finally get,

Theorem 5. Let A be a finite BL-algebra. Let (F,w) = wSpecA, with h(F ) =
h. Let Pi be the group of i-permutations of (F,w). Then

Aut(A) ∼= P1 � (P2 � (· · · � Ph))

and

|Aut(A)| =
h∏

i=1

∏

[x]∈[Ai]

|[x]|!.

Proof. Immediate, from Corollary 2, and the dual equivalence between WFfin

and BLfin.

5 Finite MV-Algebras and Finite Multisets of Natural
Numbers

The following result is well-known [3,10,16].

Theorem 6. The category of finite forests and order-preserving open maps is
dually equivalent to the category of finite Gödel algebras and their homomor-
phisms.

Notice that a finite forest F can be readily considered as a weighted forest
w : F → N

+ such that w is a constant function. The most natural choice is
w(x) = 1 for each x ∈ F , as the actual dual in BLfin of a finite BL-algebra that
happens to be a Gödel algebra is a weighted forest where all nodes have weight
1. Whence, the automorphism group of a finite Gödel algebra is the same as the
automorphism group of a weighted forest w : F → N

+, such that w is constant.
The characterisation of these groups is precisely the subject of [6].

Another interesting case is when the weighted forest w : F → N
+ is such

that all elements of F are uncomparable, that is F can be conceived as a set.
Then (F,w) can be thought of as a multiset of positive natural numbers. This
is precisely the case when (F,w) is the dual of a finite MV-algebra.

The variety MV of MV-algebras constitutes the algebraic semantics of propo-
sitional �Lukasiewicz logic [8]. MV is not locally finite, but the k-contractive MV-
algebras form a locally finite subvariety of MV. Here we consider the subvariety
MVk generated by the MV-chain with k elements, which constitutes the alge-
braic semantics of k-valued �Lukasiewicz logic. MVk is axiomatised by imposing
(k − 1)-contractivity: xk = xk−1, and Grigolia’s axioms [14] k(xh) = (h(xh−1))k

for every integer 2 ≤ h ≤ k − 2 that does not divide k − 1.
For any integer d > 1 let Div(d) be the set of coatoms in the lattice of

divisors of d, and for any finite set of natural numbers X, let gcd(X) be the
greatest common divisor of the numbers in X. Then let α(0, 1) = 1, α(0, d) = 0
for all d > 1, and for all n ≥ 1,

α(n, d) = (d + 1)n +
∑

∅�=X⊆Div(d)

(−1)|X|(gcd(X) + 1)n.
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Then α(n, d) counts the number of points in [0, 1]n whose denominator is d. It
is known that

Fn(MVk) ∼=
∏

d|(k−1)

�Lα(n,d)
d+1 ,

where �Lm is the MV-chain of cardinality m. Let MNkfin be the category whose
objects are finite multisets of natural numbers dividing k − 1 and whose arrows
f : M → N are functions from M to N such that f(x) divides x for any x ∈ M .
Then MNkfin is dually equivalent to MVk. In particular, denoted Spec: MVk →
MNkfin one of the pair of functors implementing the duality,

SpecFn(MVk) ∼=
⋃

d|(k−1)

α(n,d)⊎

i=1

{d},

where
⊎m

i=1{t} denotes the multiset formed by m copies of t.
It is clear that an automorphism f : M → M in MNkfin must be a bijection

such that each copy of x ∈ M is mapped to a copy of x ∈ M . Then

Theorem 7.
Aut(Fn(MVk)) ∼=

∏

d|(k−1)

Sym(α(n, d)),

and
|Aut(Fn(MVk))| =

∏

d|(k−1)

(α(n, d))!.

6 Conclusion

One can apply Theorem 5 to determine the automorphism group of all finitely
generated free algebras in any given locally finite subvariety of BL. Indeed, let
V be such a subvariety. Then, by universal algebra, and by the dual equivalence
between BLfin and WFfin, it holds that wSpec (Fn(V)) ∼= (wSpec (F1(V)))n,
where the power is computed using the recurrences for computing the products
of finite forests (notice that in WFfin and in Ffin the underlying set of the
product is not the cartesian product of the underlying sets of the factors), see
[4] and [5] for details. Once wSpec (Fn(V)) is computed, Theorem 5 yields its
automorphism group, which coincides with the automorphism group of Fn(V).
Studying the structure of the automorphism group in subvarieties of BL that
are not locally finite is much harder, as the combinatorial approach alone is not
sufficient. The paper [7] provides a characterisation of the automorphism groups
for a class of MV-algebras containing members of infinite cardinality.
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Abstract. In this contribution we apply fuzzy neighborhood semantics
to multiple agents’ reasoning about each other’s subjective probabili-
ties, especially in game-theoretic situations. The semantic model enables
representing various game-theoretic notions such as payoff matrices or
Nash equilibria, as well as higher-order probabilistic beliefs of the play-
ers about each other’s choice of strategy. In the proposed framework,
belief-dependent concepts such as the strategy with the best expected
value are formally derivable in higher-order fuzzy logic for any finite
matrix game with rational payoffs.

Keywords: Probabilistic reasoning · Fuzzy logic · Modal logic ·
Neighborhood semantics · Matrix game

1 Introduction

In this paper, we propose a semantics for multi-agent reasoning about uncertain
beliefs. Using a suitable fuzzy logic for its representation makes it possible to
formalize doxastic reasoning under uncertainty in a rather parsimonious way,
which is of particular importance, e.g., in software modeling of rational agents.

As a prominent measure of uncertainty, we apply a fuzzy probability mea-
sure to fuzzy doxastic propositions. Fuzzy-logical modeling of probability started
with [13]. Common approaches include two-layered expansions of suitable fuzzy
logics by a fuzzy modality probably, states of MV-algebras, and probabilistic
fuzzy description logics [10,15,16]. Here we generalize the fuzzy modal approach
of [13], overcoming some of its limitations given by its two-layered syntax. Gen-
erally, though, we do not want to restrict the framework to perfectly rational
agents. Therefore, we introduce a more general semantics that admits also prob-
abilistically incoherent assignments of certainty degrees. This paves the way not
only for accommodating the reasoning of probabilistically irrational agents, but
also for modeling the agents’ reasoning about the other agent’s (ir)rationality
and its potential exploitability.
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As an illustration of the semantic framework, we apply it to probabilistic
reasoning in game-theoretic situations. This application belongs to the broader
research area of logic in games [4], which aims at a formal reconstruction of
game-theoretical concepts by means of formal logic. As an interface between
fuzzy logic and game theory, we employ the representation of (a broad class of)
strategic games in fuzzy logic laid out in [2]. In the game-theoretic setting, the
framework enables formalizing the player’s beliefs about each other’s choice of
strategy, including higher-order beliefs (i.e., beliefs about the beliefs of others). In
the game-theoretic setting, probabilistic beliefs are particularly important, due
to the players’ uncertainty about each others’ choice of strategy, the possibility
of using mixed (i.e., probabilistic) strategies, and is especially pronounced in
games with incomplete information (such as most card games).

The paper is organized as follows. In Sect. 2, we gather prerequisites for
developing fuzzy doxastic and probabilistic logic, including the logic �LΠ and the
notion of fuzzy probability measure. Fuzzy doxastic and probabilistic models for
multi-agent reasoning are presented in Sect. 3. Next, in Sect. 4, we define fuzzy
doxastic and probabilistic logic and discuss its relationships to various known
logics. Section 5 provides an overview of game-theoretical notions formalized in
fuzzy probabilistic or doxastic logic; subsequently, we apply these notions to
represent probabilistic reasoning in a simple two-player game. Finally, the fea-
tures of the introduced formalism and topics for future work are summarized in
Sect. 6.

2 Preliminaries

For the formalization of probabilistic and doxastic reasoning in games, we will
employ the expressively rich fuzzy logic �LΠ. This choice is made for the sake
of uniformity, even though many constructions described below can as well be
carried out in some of its less expressive fragments such as �L� or P�L′

�. For
details on the logic �LΠ see [7,9]; here we just briefly recount the definition.

A salient feature of the logic �LΠ is that it contains the connectives of many
well-known fuzzy logics, including the three prominent t-norm based fuzzy logics
(Gödel, �Lukasiewicz, and product).

We use the symbols ∧,∨,¬,⊗,⊕,∼,⇒,�,	, respectively, for the Gödel,
�Lukasiewicz, and product connectives &G,∨G,¬G,&�L,∨�L, ¬�L, ⇒�L, &Π, ⇒Π of
�LΠ. Of these, ⇒, 	, �, and the truth constant 0 can be taken as the only
primitives; the others are definable.

The standard semantics of �LΠ, or the standard �LΠ-algebra [0, 1]�LΠ, interprets
the connectives by the following truth functions on [0, 1]:

x ∧ y = min(x, y) x ⊗ y = max(0, x + y − 1)
x ∨ y = max(x, y) x ⇒ y = min(1, 1 − x + y)
x ⊕ y = min(1, x + y) x � y = x · y

x 
 y = max(0, x − y) x 	 y = y/x if x > y, otherwise 1
∼x = 1 − x ¬x = 1 − sign x

x ⇔ y = 1 − |x − y| �x = 1 − sign(1 − x)
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An axiomatic system for �LΠ consists of the axioms of �Lukasiewicz and
product logic respectively for �Lukasiewicz and product connectives, the axioms
�(ϕ ⇒ ψ) ⇒ (ϕ 	 ψ), �(ϕ 	 ψ) ⇒ (ϕ ⇒ ψ), ϕ � (ψ 
 χ) ⇔ (ϕ � ψ) 
 (ϕ � χ),
and the rules of modus ponens and �-necessitation (from ϕ infer �ϕ). The logic
�LΠ enjoys finite strong completeness of this axiomatic system w.r.t. its standard
semantics on [0, 1].

The general (linear) algebraic semantics of �LΠ is given by the class of (linear)
�LΠ-algebras L = (L, ⊕, ∼, 	, �, 0, 1), where:

– (L, ⊕, ∼, 0) is an MV-algebra,
– (L, ∨, ∧, 	, �, 0, 1) is a Π-algebra, and
– x � (y 
 z) = (x � y) 
 (x � z) holds.

Like other fuzzy logics, �LΠ also enjoys completeness w.r.t. the classes of linear
and all �LΠ-algebras. Except for the two-element �LΠ-algebra {0, 1}, all non-trivial
linear �LΠ-algebras are isomorphic to the unit interval algebras of linearly ordered
fields.

The first-order logic �LΠ, denoted by �LΠ∀, is defined as usual in fuzzy logic:
in a first-order model M = (M,L, I) over an �LΠ-algebra L, n-ary predicate
symbols P are interpreted by L-valued functions I(P ) : Mn → L and the quan-
tifiers ∀,∃ are evaluated as the infimum and supremum in L. Safe �LΠ∀-models
(i.e., such that all required suprema and infima exist in L) are axiomatized by
the propositional axioms and rules of �LΠ, generalization (from ϕ derive (∀x)ϕ),
and the axioms:

– (∀x)ϕ ⇒ ϕ(t), where t is free for x in ϕ, and
– (∀x)(χ ⇒ ϕ) ⇒ (χ ⇒ (∀x)ϕ), where x is not free in χ.

First-order �LΠ can be extended by the axioms for crisp identity, x = x and
x = y ⇒ �(ϕ(x) ⇔ ϕ(y)), function symbols, and sorts of variables in a standard
manner; see, e.g., [1].

The present paper will also make use of the logic �LΠ of a higher order.
Higher-order logic �LΠ has been introduced in [1] and its Church-style notational
variant in [20]. For the full description of higher-order �LΠ we refer the reader to
[1] or [3, Sect. A.3]; here we only highlight some of its features relevant to our
purposes.

Of the full language of higher-order �LΠ, in this paper we will only need
its monadic fragment. Its syntax contains variables and constants for individu-
als (x, y, . . . ), first-order monadic predicates (P,Q, . . . ), second-order monadic
predicates (P,Q, . . . ), etc. In a model over an �LΠ-algebra L, individual vari-
ables and constants are interpreted as elements of the model’s domain X; first-
order monadic predicates as fuzzy sets on X, i.e., elements of LX ; second-order
monadic predicates as fuzzy sets of fuzzy sets on X, i.e., elements of LLX

; etc.
Besides the connectives of �LΠ and the quantifiers of �LΠ∀ (applicable to vari-

ables of any order), the language of monadic higher-order �LΠ also contains com-
prehension terms {x(n) | ϕ}, for all variables x(n) of any order n and all well-
typed formulae ϕ. In L-valued models, {x | ϕ(x)} denotes the fuzzy set A ∈ LX
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which assigns to each value of x the truth value of ϕ(x). Analogously, {P | ϕ(P )}
denotes the second-order fuzzy set A ∈ LLX

which assigns to each value of P
the truth value of ϕ(P ), etc.

We will denote the higher-order logic �LΠ by �LΠω. Its Henkin-style axiom-
atization in multi-sorted �LΠ∀, consisting of the axioms of extensionality and
comprehension for each type and complete w.r.t. Henkin models, can be found
in [1,3].

In what follows we will need the following first-order fuzzy set operations
(definable in �LΠω):

Definition 1. Let X be a crisp set and L an �LΠ-algebra. The fuzzy set opera-
tions �, �, �, and 0 are defined by setting for all x ∈ X and A,B ∈ LX:

(A � B)(x) = A(x) ⊗ B(x)
(A � B)(x) = A(x) ⊕ B(x)

(�A)(x) = ∼A(x)
0(x) = 0

The following sections also refer to fuzzy probability measures, which have
been extensively studied in the literature; for an overview see [10]. Fuzzy proba-
bility measures are usually defined as valued in the real unit interval [0, 1]; here
we use the definition generalized to any �LΠ-algebra L.

Definition 2. Let L be an �LΠ-algebra. A finitely additive L-valued fuzzy proba-
bility measure on W is a function ρ : LW → L such that the following conditions
hold for all A,B ∈ LW :

– ρ(0) = 0
– ρ(�A) = ∼ρ(A)
– If ρ(A � B) = 0 then ρ(A � B) = ρ(A) ⊕ ρ(B).

Finally, let us briefly recall (multi-agent) standard doxastic logic, since fuzzy
probabilistic and doxastic logics introduced below adapt its models to make them
suitable for uncertain doxastic reasoning. For details on standard doxastic logic
see, e.g., [18]. Standard multi-agent doxastic logic expands classical propositional
logic by (freely nestable) unary modalities Ba for each agent a, where Baϕ is
interpreted as “agent a believes that ϕ”. Models for standard doxastic logic are
given by Kripke-style (relational) semantics:

Definition 3. A multi-agent standard doxastic frame is a tuple F =(
W,A, {Ra}a∈A

)
, where:

– W �= ∅ is a set of possible worlds.
– A �= ∅ is a set of agents.
– Ra ⊆ W 2 is the accessibility relation for each agent a. In standard doxastic

logic it is assumed that all Ra are serial, transitive, and Euclidean.
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A multi-agent standard doxastic model over the frame F is a pair M =(
F , e

)
, where e : Var × W → {0, 1} is an evaluation of (countably many) propo-

sitional variables pi ∈ Var in each world w ∈ W . The truth value, or the exten-
sion ‖ϕ‖w of a formula ϕ in a world w of the model M is defined by the recursive
Tarski conditions:

‖p‖w = 1 iff e(p,w) = 1
‖¬ϕ‖w = 1 iff ‖ϕ‖w = 0

‖ϕ ⇒ ψ‖w = 1 iff ‖ϕ‖w = 0 or ‖ψ‖w = 1
‖Baϕ‖w = 1 iff Raww′ implies ‖ϕ‖w′ = 1 for all w′ ∈ W

The set ‖ϕ‖ = {w ∈ W : ‖ϕ‖w = 1} is called the intension of ϕ in M . A formula
is valid in M if ‖ϕ‖ = W . A formula is a doxastic tautology if it is valid in all
doxastic models.

Standard doxastic logic is axiomatized by adding the following axioms and
rules to classical propositional logic, for all agents a:

(K) Baϕ ∧ Ba(ϕ ⇒ ψ) ⇒ Baψ (logical rationality)
(D) Baϕ ⇒ ¬Ba¬ϕ (consistency of beliefs)
(4) Baϕ ⇒ BaBaϕ (positive introspection)
(5) ¬Baϕ ⇒ Ba¬Baϕ (negative introspection)
(Nec) from ϕ derive Baϕ (necessitation)

In standard doxastic frames, the intended role of accessibility relations Ra is
such that the successor sets wRa = {w′ | Raww′} comprise those worlds which
the agent a in the world w does not rule out as being the actual world. The
proposition “a believes that ϕ” is then considered true in w if ϕ is true in all
worlds that a does not exclude in w, i.e., in all w′ ∈ wRa. The truth of Baϕ in w
can thus be regarded as given by a (maxitive) two-valued measure βa,w on W :

βa,w(A) =

{
1 if wRa ⊆ A

0 otherwise,
(1)

for all A ⊆ W . Then the Tarski condition for Ba can be written as ‖Baϕ‖w =
βa,w(‖ϕ‖). In the next section, the maxitive two-valued measure βa,w implicit
in standard doxastic frames will be generalized to a finitely additive fuzzy prob-
ability measure suitable for doxastic reasoning under uncertainty.

3 Fuzzy Doxastic Models

For the modeling of doxastic or probabilistic reasoning of agents, we will employ
a suitable fuzzy variant of possible-world (intensional) semantics (cf. [3,6,8,21]).
The multi-agent fuzzy doxastic frames introduced in the following definition are
a variant of similar structures that have already been employed for the semantics
of probabilistic reasoning in the literature [5,11,12,22]. They also generalize (an
equivalent reformulation of) the Kripke frames of standard doxastic logic [18].
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Definition 4. A multi-agent fuzzy doxastic frame is a tuple F =
(
W,L, A, ν

)
,

where:

– W �= ∅ is a crisp set of possible worlds (or world states, situations).
– L is an �LΠ-algebra of degrees.
– A �= ∅ is a set of agents.
– ν = {νa,w}a∈A,w∈W , where νa,w : LW → L for each a ∈ A and w ∈ W .

Fuzzy subsets of the set W of possible worlds are called (fuzzy) propositions
or, synonymously, (fuzzy) events. In a multi-agent fuzzy doxastic frame F , the
functions νa,w : LW → L thus assign degrees to events. The value νa,w(E) is
understood as the degree of the agent a’s certainty in the world w about the
event E. Each νa,w can also be regarded as a fuzzy set of events, νa,w ∈ LLW

.
The system ν = {νa,w}a∈A,w∈W can equivalently be viewed as assigning to

each agent a ∈ A a fuzzy neighborhood function νa : W × LW → L. These are
known from the fuzzy neighborhood semantics of fuzzy modal logics [8,21], which
is a fuzzy generalization of the well known Scott–Montague neighborhood seman-
tics of modal logics [19,23]. The applicability of fuzzy neighborhood semantics
to probabilistic and doxastic reasoning has been made explicit in [22].

A fuzzy neighborhood function νa assigns to each world w a fuzzy set of fuzzy
“neighborhoods”. The fuzzy neighborhoods of w will be understood as events
that the agent a in the world w considers probable (to the degree assigned by
νa,w). We will interpret νa,w as measuring the subjective probability of events,
as assessed by agent a in world w. In the general setting of multi-agent fuzzy
doxastic frames we impose no restriction on νa,w. In the following definition we
specify additional conditions suitable for the probabilistic interpretation of νa,w.

Definition 5. Let F =
(
W,L, A, ν

)
be a multi-agent fuzzy doxastic frame. We

say that F is a (multi-agent) fuzzy probabilistic frame if each νa,w is a finitely
additive fuzzy probability measure.

Thus, in fuzzy probabilistic frames, the subjective probability measures νa,w

of all agents a and in all world states w are supposed to satisfy the axioms
of fuzzy probability from Definition 2. This corresponds to the assumption of
probabilistic rationality of all agents. In fuzzy doxastic frames, this condition is
relaxed, which makes it possible to model agents with incomplete or incoherent
assignments of probabilities.

In the probabilistic setting, the most common choice of L will be that of the
standard �LΠ-algebra, L = [0, 1]�LΠ; nevertheless, the definition also admits other
�LΠ-algebras of certainty degrees that may be suitable for probabilistic or doxastic
reasoning, including the two-valued, rational-valued, or hyperreal-valued ones.

We will use fuzzy doxastic and probabilistic frames in the standard manner
to define models for probabilistic and doxastic fuzzy modal logic. First we need
to specify the modal language:

Definition 6. Let Var be a countably infinite set of propositional variables and
A a nonempty set of agents. By SA we denote the propositional signature of the
logic �LΠ expanded by the unary modalities Pa for all a ∈ A.
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Thus, e.g., (p & Pa�q) ⇒ �PaPb(p & q) is a well-formed formula of S{a,b}.

Definition 7. A (multi-agent) fuzzy doxastic model is a pair M = (F , e),
where F = (W,L, A, ν) is a multi-agent fuzzy probabilistic frame and e : Var ×
W → L is an L-evaluation of propositional variables in each world.

If F is a fuzzy probabilistic frame, we speak of a fuzzy probabilistic model.

As usual in intensional possible-world semantics, the semantic value of a
formula ϕ in a model M is identified with its intension ‖ϕ‖ : W → L. The value
of the intension ‖ϕ‖ in a given world w ∈ W , i.e., the degree ‖ϕ‖(w) ∈ L, is
called the extension of ϕ in w and denoted by ‖ϕ‖w. Note that in fuzzy doxastic
frames, intensions of formulae are events and extensions are the degrees of the
event’s occurrence in particular worlds. Their values in fuzzy doxastic models
are defined in a standard manner by recursive Tarski conditions (cf. [8,21]):

Definition 8. The intensions ‖ϕ‖ : W → L and extensions ‖ϕ‖w = ‖ϕ‖(w) of
SA-formulae ϕ in the fuzzy doxastic model M are defined inductively as follows:

‖p‖w = e(p,w)

‖c(ϕ1, . . . , ϕn)‖w = cL (‖ϕ1‖w , . . . , ‖ϕn‖w)
‖Paϕ‖w = νa,w(‖ϕ‖)

for all worlds w ∈ W , agents a ∈ A, propositional variables p ∈ Var, all SA-
formulae ϕ1, . . . , ϕn, ϕ, and each n-ary connective c of �LΠ, where cL is the truth
function of c in the �LΠ-algebra L.

It can be observed that standard doxastic frames (see Sect. 2) are special
cases of fuzzy doxastic frames over the two-element �LΠ-algebra {0, 1}, when
taking the maxitive two-valued measures βa,w of (1) for νa,w.

Although the language SA contains just a single graded probabilistic or
doxastic modality Pa for each agent a ∈ A, various ranges and comparisons
of probabilities (or certainty degrees) used in bivalent probabilistic logics are
expressible by means of the connectives of �LΠ. For instance, the qualitative
probabilistic conditional ϕ � ψ of [12], “ϕ is at least as probable as ψ”, is
expressed for any agent a as �(Paψ ⇒ Paϕ). Similarly, the bivalent statement
that “the probability assigned to ϕ by a is in the interval

[
1
3 , 1

2

]
” can be expressed

by the SA-formula �(Paϕ ⊕ Paϕ ⊕ Paϕ) ∧ ¬(Paϕ ⊗ Paϕ). In general, by
Proposition 1 below, any rational interval of a’s probabilities for ϕ is expressible
by an SA-formula. Note that this includes the threshold probabilistic modalities
P

≥r

a ϕ, “a believes that the probability of ϕ is at least r”, for r ∈ Q ∩ [0, 1], used,
e.g., in [11]. Since all infinite linear �LΠ-algebras embed Q∩[0, 1], we can formulate
the proposition more generally than just for standard models:

Proposition 1. Let L be a linear �LΠ-algebra, M = (W,L, A, ν, e) a fuzzy dox-
astic model, a ∈ A, w ∈ W , and r, s ∈ Q ∩ [0, 1].
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1. There exist �LΠ-formulae χr, χ≥r in one propositional variable such that:

χL
r (x) =

{
1 if x = r

0 otherwise
χL

≥r(x) =

{
1 if x ≥ r

0 otherwise,

where χL
r , χL

≥r are the truth functions of χr, χ≥r in L.

2. ‖�(Paψ ⇒ Paϕ)‖w =

{
1 if νa,w(‖ϕ‖) ≥ νa,w(‖ψ‖)
0 otherwise.

3.
∥
∥χ≥r(Paϕ) ∧ χ≥1−s(∼Paϕ)

∥
∥

w
=

{
1 if νa,w(‖ϕ‖) ∈ [r, s]
0 otherwise.

Proof. 1. If r = 0, take χr ≡df ¬p and χ≥r ≡df p ⇒ p. If r = 1, take χr, χ≥r ≡df

�p. If r = m
n ∈ (0, 1), m,n ∈ N, then let ϕ ≡df p∧∼p; ψ ≡df ϕ	 (ϕ⊕ϕ); ϑ ≡df

⊙�log2(max(m,n))�
i=1 ψ; η ≡df

(⊕m
i=1 ϑ

) 	 (
⊕n

i=1 ϑ
)
; χr ≡df �(η ⇔ p) ∧ ¬�p; and

χ≥r ≡df �(η ⇒ p) ∧ ¬¬p. If x ∈ {0, 1}, then it is easy to verify that ηL (x) = 1,
and thus χL

r (0) = χL
r (1) = χL

≥r(0) = 0 and χL
≥r(1) = 1 as desired. If x ∈ L �

{0, 1}, then ϕL (x) ≤ 1
2 , so ψL (x) = 1

2 , ϑL (x) = 2−�log2(max(m,n))� ≤ max
(

1
m , 1

n

)
,

thus ηL (x) = m
n , and then it is straightforward to verify that χL

r (x), χL
≥r(x) have

the desired values.
Claims 2 and 3 follow directly from Claim 1 by Definition 8 and the semantics

of propositional connectives in linear �LΠ-algebras. ��

4 Fuzzy Probabilistic and Doxastic Logic

The notions of truth, validity, tautologicity, and (local) entailment w.r.t. (classes
of) fuzzy doxastic models are defined as usual in (fuzzy) intensional semantics
(cf. [3,6,8]):

Definition 9. Let M = (W,L, A, ν, e) be a fuzzy doxastic model. We say that
an SA-formula ϕ is true in w ∈ W if ‖ϕ‖w = 1L . We say that ϕ is valid in M
if ‖ϕ‖w = 1L for all w ∈ W . We say that SA-formulae ϕ1, . . . , ϕn locally entail
an SA-formula ϕ in M if ϕ is true in all worlds where all ϕ1, . . . , ϕn are true.

Let K be a class of fuzzy doxastic models for SA. We say that an SA-formula
ϕ is a K-tautology, written |=K ϕ, if ϕ is valid in all models M ∈ K. We
say that SA-formulae ϕ1, . . . , ϕn locally entail an SA-formula ϕ in K, written
ϕ1, . . . , ϕn |=K ϕ, if ϕ1, . . . , ϕn locally entail ϕ in every model M ∈ K.

If K is the class of all fuzzy doxastic models for SA, we denote K-tautologies
and entailment by |=FDLA

and speak of (multi-agent) fuzzy doxastic logic FDLA.
Similarly if K is the class of all fuzzy probabilistic models for SA, we use |=FPLA

and speak of (multi-agent) fuzzy probabilistic logic FPLA. (For a generic set A
of agents, we may drop the subscript and write just FDL or FPL).

A sound and complete axiomatization, or at least an axiomatic approximation
sufficiently strong for formalizing typical probabilistic or doxastic arguments, of



688 M. Daňková and L. Běhounek

FDL and FPL in their own modal language SA is a future work. Nevertheless,
there is a standard translation (cf. [6, Prop. 4.18]) into higher-order �LΠ, which
provides a syntactic verification method for laws valid in FDL and FPL:

Definition 10. The second-order predicate language L2
A corresponding to the

modal language SA of Definition 6 consists of countably many monadic predicate
symbols P1, P2, . . . , one for each p1, p2, . . . ∈ Var; individual variables x, y, z, . . . ;
and a second-order monadic predicate symbol Na for each a ∈ A.

Let x be an individual variable of L2
A. The standard translation of an SA-

formula ϕ of FDL or FPL into an L2
A-formula trx(ϕ) of �LΠω is defined recur-

sively as follows:

trx(pi) = Pi(x)

trx

(
c(ϕ1, . . . , ϕn)

)
= c

(
trx(ϕ1), . . . , trx(ϕn)

)

trx(Paϕ) = Na({x | trx(ϕ)})

for each pi ∈ Var, each n-ary connective c of �LΠ, and each a ∈ A.

It can be observed that every fuzzy doxastic model M = (F , e) over a fuzzy
doxastic frame F = (W,L, A, ν) can be regarded as an L-valued �LΠω-model
M ′ = (W,L, I) with the domain W and the interpretation I of L2

A such that
I(Pi) = e(pi) for each pi ∈ Var and I(Na)(w) = νa,w for each a ∈ A and
w ∈ W . Vice versa, every L-valued �LΠω-model M ′ = (W,L, I) for L2

A can be
regarded as a fuzzy doxastic model M = ((W,L, A, ν), e), where e(pi) = I(Pi)
and νa,w = I(Na)(w). The correspondence between the models is clearly one to
one and the translation preserves the truth values of formulae:

Lemma 1. Let M ,M ′ be as above. Then ‖ϕ‖Mw = ‖trx(ϕ)‖M ′

x	→w, where x �→ w
denotes any M ′-evaluation η such that η(x) = w.

Proof. Straightforward by definitions, analogously to [3, Th. 5.9].

Proposition 2. Let ϕ1, . . . , ϕn, ψ be SA-formulae and x an individual variable
of �LΠω. Then:

1. ϕ1, . . . , ϕn |=FDL ψ iff trx(ϕ1), . . . , trx(ϕn) |=�LΠω trx(ψ) iff

|=�LΠω

( n∧

i=1

�trx(ϕi)
)

⇒ trx(ψ).

2. ϕ1, . . . , ϕn |=FPL ψ iff π, trx(ϕ1), . . . , trx(ϕn) |=�LΠω trx(ψ) iff

|=�LΠω

(
π ∧

n∧

i=1

�trx(ϕi)
)

⇒ trx(ψ),

where π is the �LΠω-formalization of the fuzzy probability axioms of Defini-
tion 2,

π ≡df (∀A)(∀B)
∧

a∈A

�[¬Na(0) ∧ (Na(�A) ⇔ ∼Na(A)
) ∧

(¬Na(A � B) ⇒ (Na(A � B) ⇔ (Na(A) ⊕ Na(B))
))]

.
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Proof. By inspection and easy modification of the proofs of [3, Th. 5.10, Cor.
5.12] and [3, Rem. 5.14]. ��

5 Probabilistic and Doxastic Logic in Strategic Games

In this section we illustrate the apparatus of fuzzy probabilistic logic by applying
it to formalization of uncertain doxastic reasoning in matrix games. In order to do
so, we first need to have the game, determined by its payoff matrix, represented
by formulae of fuzzy logic.

Logical representation of matrix games with only two strategies of each player
and only two payoffs (Boolean games) was done in [14]. In [17], the representation
was extended to finite strategic games with payoff values in finite MV-chains
(�Lukasiewicz games). A representation of a fairly broad class of matrix games in
suitable fuzzy logics (including �LΠ) was obtained in [2]. The latter representation
covers all finite matrix games with rational payoffs, and also all n-player matrix
games with strategies that can be mapped into rationals or reals from [0, 1] and
with each payoff function �LΠ-representable. In this representation, the players’
strategies and utilities (payoff values) are all encoded as elements of the standard
�LΠ-algebra [0, 1]�LΠ and the payoff function of a player a is expressed by an �LΠ-
formula υa. It has been shown in [2] that for finite matrix games with rational
payoffs, such game-theoretic concepts as the Nash equilibria in pure or mixed
(i.e., probabilistic) strategies are expressible by �LΠ-formulas.

Let us consider a finite matrix game G with a set A = {a1, . . . , an} of players,
where each player ai is assigned a finite set of strategies Sai

and a payoff function
uai

:
∏

a∈A Sa → Q. By [2], the �LΠ-representation of G encodes the strategies
by elements of the standard �LΠ-algebra L = [0, 1]�LΠ; without loss of generality
we can assume that |Sai

| = mi > 1 and Sai
= { j−1

mi−1 | 1 ≤ j ≤ mi} for each
player ai ∈ A. As shown in [2], the payoff functions ua are affinely representable
by �LΠ-formulas: i.e., for each a ∈ A there is an �LΠ-formula υa in n variables
such that υL

a (x1, . . . , xn) = f(ua(x1, . . . , xn)) whenever xi ∈ Sai
for all i ≤ n,

where υL
a is the truth function of υa in the standard �LΠ-algebra L and f is an

affine function.
To model probabilistic beliefs of the players of G, we will use a fuzzy proba-

bilistic model M = (W,L, A, ν, e) over the standard �LΠ-algebra L. The events
of interest are the players’ chosen strategies; these will be represented by propo-
sitional variables ca1 , . . . , can ∈ Var . To ensure that e(cai , w) ∈ Sai

, we will char-
acterize the strategies of G by a finite propositional theory ΓG = {Γ 1

G, . . . , Γn
G}

in �LΠ. The language of ΓG consists of the variables cai and additional variables
sai

j , representing the j-th strategy of player ai (for all i ≤ n and j ≤ mi). The
formulas Γ i

G of ΓG fix the values of sai
j as the elements of Sai

and ensure that
cai are evaluated in Sai

:

Γ i
G ≡df

mi∧

j=1

χ j−1
mi−1

(sai
j ) ∧

mi∨

j=1

(cai ⇔ sai
j ),
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where χ j−1
mi−1

is the formula from Proposition 1. Since the values of sa
j are fixed

by ΓG as elements of Sa (i.e., the L-codes of a’s strategies), by a slight abuse
of language we will use sa

j to refer directly to the elements of Sa and write, e.g.,
sa

j ∈ Sa.
For every a ∈ A and j ≤ mi, let ca

j denote the formula �(ca ⇔ sa
j ). The

evaluation e(ca
j , w) ∈ {0, 1} ⊆ L indicates for each world w whether the player

a chose the strategy sa
j in w or not. The event

∥
∥ca

j

∥
∥ ⊆ W is thus the (crisp) set

of worlds where the player a chose to deploy the strategy sa
j ∈ Sa. Player b’s

subjective probabilities (in w) of these events (i.e., player b’s probabilistic beliefs
about player a’s choice of strategy) are the values

∥
∥Pacb

j

∥
∥

w
∈ L.

By the �LΠ-representation of G, the (affinely scaled) payoff of a player a ∈ A
is the value of the �LΠ-formula υa(ca1 , . . . , can). Given the choices cai

ji
(of the

strategies sai
ji

) by all players ai ∈ A, the latter payoff formula is equivalent to
υa(sa1

j1
, . . . , san

jn
). Thus, in each world w ∈ ⋂n

i=1 ‖cai
ji

‖, the player a’s payoff value
is ‖υa(sa1

j1
, . . . , san

jn
)‖w ∈ L.

For simplicity, in the rest of the section we assume A = {a, b}.

Definition 11. The expected value of a’s i-th strategy sa
i ∈ Sa according to a’s

beliefs in w is the sum of a’s payoffs weighted by a’s probabilities for b’s strategy
choices, expressed by the SA-formula

ηa(sa
i ) ≡df

|Sb|⊕

j=1

(
υa(sa

i , sb
j) � Pacb

j

)
. (2)

Observe that a player a’s best-value strategy is indicated by the formula:

σa(sa
m) ≡df �

((|Sa|∨

i=1

ηa(sa
i )

) ⇒ ηa(sa
m)

)
(3)

Thus, for the optimal play according to the player’s probabilistic beliefs about
the other player’s choice of strategy, the player a should choose the strategy sa

m

only in those worlds w where ‖σa(sa
m)‖w = 1.

As an illustrative case study generalizable to any finite matrix game, the
following example provides an analysis of strategy choices in the well known
game of Stag Hunt.

Example 1 (Stag Hunt). The Stag Hunt game with 2 players (SH2) is specified
as follows. To catch a stag, the two hunters {a, b} need to cooperate (i.e., deploy
the strategies sa

C and sb
C); a hunter can also go for less valuable hares instead,

i.e., defect (sa
D or sb

D). The payoffs are given by the following payoff matrices:

ua sb
C sb

D

sa
C 3 0

sa
D 2 1

ub sb
C sb

D

sa
C 3 2

sa
D 0 1
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The game has two pure Nash equilibria: either both players cooperate or both
defect. Of the two, mutual defection is risk dominant (i.e., less risky), while the
other is payoff dominant (i.e., yields better payoffs). Consequently, the more
uncertainty about the other player’s cooperation, the better to defect; however,
if the player considers the other player’s cooperation sufficiently probable to
make it worth the risk, cooperation has a better expected value.

By [2], SH2 can be encoded in the logic �LΠ as described above (e.g., with
the payoff values 0, 1

3 , 2
3 , 1). In fuzzy probabilistic logic FPL of Sect. 4 over �LΠ,

the expected values of a’s strategies s ∈ {sa
C, sa

D} and a’s best-value strategy are
expressed by the formulas ηa(s) and σa(s) as in (2) and (3).

The following examples of SA-formulae are valid in FPL with ΓSH2 . In each
world, they suggest the best-value strategy in SH2 under particular first- and
higher-order beliefs of the player:

�(
Pacb

D ⇒ (Pacb
C ⊗ Pacb

C)
) ⇒ σa(sa

C) (4)
(�Pa(�Pbc

a
D ⇒ cb

D) ⊗ �Pa�Pbc
a
D

) ⇒ σa(sa
D) (5)

The first formula says that a should cooperate (i.e., sa
C is optimal) in worlds

w where a believes that b will defect (cb
D) with probability at most 1

3 . Formula
(5) says that if a believes that b plays rationally and that b believes that a is
going to defect, then a’s best-value strategy is to defect. It is straightforward
to verify that the standard translations of both formulae by Definition 10 are
indeed derivable in �LΠω from the standard translation of ΓSH2 .

6 Conclusions

In this contribution, we proposed a logic for modeling probabilistic and doxas-
tic multi-agent reasoning (Definition 9). The main feature of our approach is a
parsimony of the presented formalism. We rendered propositions in the fuzzy
logic �LΠ, which is expressively rich enough to provide the basic apparatus for
formalizing game-theoretical notions therein.

In Sect. 3, we formulated a technical result related to a syntactic verification
method for probabilistic and doxastic laws (Proposition 2). An open question
remains the axiomatization of FDL and FPL in the modal language SA itself, or
at least an axiomatic approximation sufficiently strong for formalizing common
probabilistic or doxastic reasoning.

Further, we showed in Sect. 5 that in the proposed logic, various important
game-theoretic concepts (such as expected values and best strategy choices under
uncertainty) can be expressed by formulas and derived by logical deduction. Sim-
ilarly as the Stag Hunt game (Example 1), the framework can formalize uncer-
tain reasoning in other simple matrix games such as the Prisoner’s Dilemma,
Chicken, Matching Pennies, Paper–Rock–Scissors, etc. The framework also nat-
urally accommodates higher-order beliefs and, being based on fuzzy logic, also
various graded concepts in games (such as the strength of a player’s hand in
Poker).
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In Sect. 5 we assumed that the agents’ beliefs are governed by the axioms of
fuzzy probability (i.e., that νa,w are fuzzy probability measures). In future work,
we want to model also agents with incoherent probability assignments, in order
to formalize how to exploit their irrationality in games by Dutch-book strategies.

Acknowledgments. Supported by program NPU II project LQ1602 “IT4I XS” of
MŠMT ČR. Based on joint work in progress with Tommaso Flaminio and Llúıs Godo.
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Abstract. This paper is a plea for revisiting various existing approaches
to the handling of data, for classification purposes, based on a set-
theoretic view, such as version space learning, formal concept analysis, or
analogical proportion-based inference, which rely on different paradigms
and motivations and have been developed separately. The paper also
exploits the notion of conditional object as a proper tool for modeling
if-then rules. It also advocates possibility theory for handling uncertainty
in such settings. It is a first, and preliminary, step towards a unified view
of what these approaches contribute to machine learning.

Keywords: Data · Classification · Version space · Conditional
object · If-then rule · Analogical proportion · Formal concept analysis ·
Possibility theory · Possibilistic logic · Bipolarity · Uncertainty

1 Introduction

It is an understatement to say that the current dominant paradigms in machine
learning rely on neural nets and statistics; see, e.g., [1,8]. Yet, there have been
quite a number of set theoretic- or logic-based views that have considered data
sets from different perspectives: we can thus (at least) mention concept learning
[24,25], formal concept analysis [19], rough sets [28], logical analysis of data [4],
test theory [7], and GUHA method [22]. Still some other works, mentioned later,
may be also relevant. These various paradigms can be related to logic, but have
been developed independently. Strangely enough, little has been done to move
towards a unified view of them.

This research note aims to be a first step in this direction. However, the
result will remain modest, since we shall only outline connections between some
settings, while other ones will be left aside for the moment. Moreover we shall
mainly focus on Boolean data, even if some of what is said could be extended to
nominal, or even numerical data. Still, we believe that it is of scientific interest to
better understand the relationships between these different theoretical settings
developed with various motivations and distinct paradigms, while all are starting
from the same object: a set of data. In the long range, such a better understand-
ing may contribute to some cooperation between these set theory-based views
c© Springer Nature Switzerland AG 2020
M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1239, pp. 697–711, 2020.
https://doi.org/10.1007/978-3-030-50153-2_51
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and currently popular ones, such as neural nets or statistical approaches, per-
haps providing tools for explanation capabilities; see, e.g., [6] for references and
a tentative survey.

The paper is organized as follows. Section 2 states and discusses the problem
of assigning an item to a class, given examples and counter-examples. Section 3
presents a simple propositional logic reading of the problem. Section 4 puts the
discussion in a more appropriate setting using the notion of conditional object
[12], which captures the idea of a rule, better than material implication. More-
over, a rule-based reading of analogical proportion-based classification [26] is
also discussed in Sect. 5. Section 6 briefly recalls the version space characteriza-
tion of the set of possible descriptions of a class on an example, emphasizing
its bipolar nature. Section 7 advocates the interest of possibilistic logic [16] for
handling uncertainty and coping with noisy data. Indeed, sensitivity to noise is
a known drawback of pure set-theoretic approaches to data handling. Section 8
briefly surveys formal concept analysis and suggests its connection and poten-
tial relevance to classification. Section 9 mentions some other related matters
and issues, pointing out lines for further research.

2 Classification Problem - A General View

Let us consider m pieces of data that describe items in terms of n attributes
Aj . Namely an item i is represented by a vector ai = (ai

1, a
i
2, · · · , ai

n), with
i = 1, . . . , m, together with its class cl(ai), where ai

j denotes the value of the
j-th attribute Aj for item ai , namely Aj(ai) = ai

j ∈ dom(Aj) (dom(Aj) denotes
the domain of attribute Aj). Each domain dom(Aj) can be described using a
set of propositional variables Vj specific to Aj , by means of logical formulas. If
|dom(Aj)| = 2, one propositional variable Vj is enough and dom(Aj) = {vj ,¬vj}.

Let C = {cl(ai)|i = 1, ...,m} be a set of classes, where each object is supposed
to belong to one and only one class. The classification problem amounts to
predicting the class cl(a∗) ∈ C of a new item a∗ described in terms of the same
attributes, on the basis of the m examples (ai , cl(ai)) consisting of classified
objects.

There are other problems that are akin to classification, with different termi-
nologies. Let us at least mention case-based decision, and diagnosis. In the first
situation, we face a multiple criteria decision problem where one wants to predict
the value of a new item on the basis of a collection of valued items (assuming that
possible values belong to a finite scale), while in the second situation attribute
values play the role of symptoms (present or not) and classes are replaced by
diseases [13]. In both situations, the m examples constitute a repertory of refer-
ence cases already experienced. This is also true in case-based reasoning, where a
solution is to be found for a new encountered problem on the basis of a collection
of previously solved ones, for which the solution is known; however, case-based
reasoning usually includes an adaptation step of the past solution selected, for a
better adequacy with the new problem. Thus, ideas and methods developed in
these different fields may be also of interest in a classification perspective.
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Two further comments are in order here. First, for each class C, one may
partition the whole set of m data in two parts: the set E of examples associated
with this class, and the set E ′ of examples of other classes, which can be viewed
as counter-examples for this class. The situation is pictured in Table 1 below. It
highlights the fact that the whole set of items in class C is bracketed between E
and E ′ (where the overbar means complementation). If the table is contradiction-
free, there is no item that is both in E and in E ′.

Second, the classification problem can be envisaged in two different manners:

1. as an induction problem, where one wants to build a plausible description of
each class; it can be done in terms of if-then rules associating sets of attribute
values with a class, these rules being used for prediction purposes;

2. as a transduction problem, where the prediction is made without the help of
such descriptions, but by means of direct comparisons of the new item with
the set of the m examples.

Table 1. Contradiction-free data table

A1 A2 · · · An cl

e1 a1
1 a1

2 · · · a1
n C

· · · · · · · · · · · · · · · C E
er ar

1 ar
2 · · · a1r

n C

e′1 a′1
1 a′1

2 · · · a′1
n C

· · · · · · · · · · · · · · · C E ′

e′s a′s
1 a′s

2 · · · a′s
n C

· · · · · · · · · · · · · · · ?

e� a�
1 a�

2 · · · a�
n ?

· · · · · · · · · · · · · · · ?

3 A Simple Logical Reading

An elementary idea for characterizing a class C is to look for an attribute such
that the subset of values taken for this attribute by the available examples of
class C is disjoint from the subset of values taken by the examples of the other
classes. If there exists at least one such attribute Aj∗ , then one may inductively
assume that belonging or not to class C, for any new item, can be predicted
on the basis of its value for Aj∗ . More generally, if a particular combination of
attribute values can be encountered only for items of a class C, then a new item
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with this particular combination should also be put plausibly in class C. Let us
now have a more systematic logical analysis of the data.

Let us consider a particular class C ∈ C. Then the m items ai can be par-
titioned into two subsets, the items ai such that cl(ai) = C, and those such
that cl(ai) �= C (we assume that |C| ≥ 2). Thus we have a set E of examples for
C, namely ei = (ai

1, a
i
2, · · · , ai

n, 1) = (ai , 1), where ‘1’ means that cl(ai) = C,
and a set E ′ of counter-examples e′j = (a′j

1 , a′j
2 , · · · , a′j

n , 0) where ‘0’ means that
cl(a′j ) �= C.

Let us assume that the domains dom(Aj) for j = 1, n are finite and denote
by vC the propositional variable associated to class C (vC has truth-value 1 for
elements of C and 0 otherwise). Using the attribute values as propositional logic
symbols, an example ei expresses the truth of the logical statement

ai
1 ∧ ai

2 ∧ · · · ∧ ai
n → vC

meaning that if it is an example, then it belongs to the class, while counter-
examples e′j are encoded by stating that the formula a′j

1 ∧ a′j
2 ∧ · · · ∧ a′j

n → ¬vC

is true, or equivalently

|= vC → ¬a′j
1 ∨ ¬a′j

2 ∨ · · · ∨ ¬a′j
n .

Then any class (or concept) C that agrees with the m pieces of data is such that
∨

i:ei ∈E
(ai

1 ∧ ai
2 ∧ · · · ∧ ai

n) |= vC |=
∧

j:e′j ∈E′

(¬a′j
1 ∨ ¬a′j

2 ∨ · · · ∨ ¬a′j
n ). (1)

Letting E be the set of models of
∨

i a
i (the examples) and E ′ be the set of

models of
∨

j a
′
j (the counter-examples), (1) simply reads E ⊆ C ⊆ E ′ where the

overbar denotes complementation. Note that the larger the number of counter-
examples, the more specific the upper bound of C; the larger the number of
examples, the more general the lower bound of C.

This logical expression states that if an item is identical to an example on
all attributes then it is in the class, and that if an item is in the class then it
should be different from all counter-examples on at least one attribute.

Let us assume Boolean attributes for simplicity, and let us suppose that
ai
1 = v1 is true for all the examples of class C and false for all the examples of

other classes. Then it can be seen that (1) can be put under the form v1 ∧ L |=
vC |= v1 ∨ L′ where L and L′ are logical expressions that do not involve any
propositional variable pertaining to attribute A1. This provides a reasonable
support for inducing that an item belongs to C as soon as v1 is true for it. Such
a remark can be generalized to a combination of attribute values and to nominal
attributes.

Let us consider a toy example, small yet sufficient for an illustration of (1)
and starting the discussion.

Example 1. It is an example with two Boolean attributes, two classes (C and
C), two examples and a counter-example. Namely, we have e1 = (a1

1, a
1
2, 1) =
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(1, 0, 1) = (v1,¬v2, vC); e2 = (a2
1, a

2
2, 1) = (0, 1, 1) = (¬v1, v2, vC); e′1 =

(a′1
1 , a′1

2 , 0) = (0, 0, 0) = (¬v1,¬v2,¬vC).
We can easily see that (v1 ∧ ¬v2) ∨ (¬v1 ∧ v2) |= vC |= v1 ∨ v2, i.e., we have

v1∨̇v2 |= vC |= v1 ∨ v2, where ∨̇ stands for exclusive or. Indeed depending on
whether (1, 1) is an example or a counter-example, the class C will be described
by v1 ∨ v2, or by v1 ∨̇ v2 respectively.

Note that in the absence of any further information or principle, the two
options for assigning (1, 1) to a class on the basis of e1,e2 and e′1, are equally
possible here. �

Observe that if the bracketing of C in (1) is consistent, the conjunction of the
lower bound expression and the upper bound expression yields the lower bound.
But in case of an item which would appear both as an example and as a counter-
example for C (noisy data), this conjunction would not be a contradiction, as
we might expect in general, as shown by the example below.

Example 2. Assume we have e1 = (1, 0, 1); e2 = (1, 1, 1); e′1 = (1, 1, 0). The
classes E and E ′ overlap since e2 and e′1 are the same item, classified differently.
As a consequence we do not have that E ⊆ E ′. So equation (1) is not valid:
we do not have that v1 = (v1 ∧ ¬v2) ∨ (v1 ∧ v2) |= vC |= ¬v1 ∨ ¬v2, i.e.,
v1 |= vC |= ¬v1 ∨ ¬v2 is wrong even if v1 ∧ (¬v1 ∨ ¬v2) = v1 ∧ ¬v2 �= ⊥. �

A more appropriate treatment of inconsistency will be proposed in the next
section.

The two expressions bracketing C in (1) have a graded counterpart, proposed
in [17], for assessing how satisfactory an item is, given a set of examples and a
set of counter-examples supposed to describe what we are looking for. Then
an item is all the better ranked as it is similar to at least one example on all
important attributes, and that it is dissimilar to all counter-examples on at
least one important attribute (where similarity, dissimilarity, and importance
are matters of degrees). However, this ranking problem is somewhat different
from the classification problem where each item should be assigned to a class.
Here if an item is both close to an example and to a counter-example, it has a
poor evaluation, just as it would be if it is close to a counter-example only.

Note that if one considers examples only, the graded counterpart amounts
to searching for items that are similar to examples. In terms of classification, it
means looking for the pieces of data that are sufficiently similar (on all attributes)
to the item, the class of which one wants to predict, and to assign this item
to the class shared by the majority of these such similar data. This is the k-
nearest neighbor method. This is also very close to fuzzy case-based reasoning
and instance-based learning [11,23].

4 Conditional Objects and Rules

A conditional object b|a, where a, b are propositions, is a three-valued entity,
which is true if a ∧ b is true; false if a ∧ ¬b is true; inapplicable if a is false; see,
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e.g., [12]. It can be thought as the rule ‘if a then b’. Indeed, the rule can be fired
only if a is true; the examples of this rule are such that a ∧ b is true, while its
counter-examples are such that a ∧ ¬b is true. This view of conditionals dates
back to Bruno De Finetti ’s works in the 1930’s.

An (associative) quasi-conjunction & can be defined for conditional objects:

b|a & d|c = (a → b) ∧ (c → d)|(a ∨ c)

where → denotes the material implication. It fits with the intuition that a set
of rules can be fired as soon as at least one rule can be fired, and when a rule is
fired, the rule behaves like material implication. Moreover, entailment between
conditional objects is defined by b|a � d|c iff a∧b � c∧d and c∧¬d � a∧¬b, which
expresses that the examples of rule ‘if a then b’ are examples of rule ‘if c then
d’, and the counter-examples of rule ‘if c then d’ are counter-examples of rule ‘if
a then b’. It can be checked that b|a = (a ∧ b)|a = (a → b)|a since these three
conditional objects have the same examples and the same counter-examples. It
can be also shown that a ∧ b|
 � b|a � a → b|
 (where 
 denotes tautology),
thus highlighting the fact that b|a is bracketed by the conjunction a ∧ b and the
material implication a → b.

Let us revisit expression (1) in this setting. For an example e = (a, 1), and
a counter-example e′ = (a′, 0) with respect to a class C, it leads to consider the
conditional objects vC |a and ¬vC |a′ respectively (if it is an example we are in
the class, otherwise not).

For a collection of examples we have

(vC |a1) & · · · & (vC |ar ) = ((a1 ∨ · · · ∨ ar ) → vC)|(a1 ∨ · · · ∨ ar )

= vC |(a1 ∨ · · · ∨ ar )

Similarly, we have

(¬vC |a′1) & · · · & (¬vC |a′s) = ((a′1 ∨ · · · ∨ a′s) → ¬vC)|(a′1 ∨ · · · ∨ a′s)

= ¬vC |(a′1 ∨ · · · ∨ a′s)

Letting φE =
∨r

i=1 a
i and φE′ =

∨s
j=1 a

′j , we can join the two conditional
expressions:

(vC |φE) & (¬vC |φE′) = (φE → vC) ∧ (φE′ → ¬vC)|(φE ∨ φE′)

where

(φE ∧vC)∨(φE′ ∧¬vC)|
 � (vC |φE) & (¬vC |φE′) � (φE → vC)∧(φE′ → ¬vC)|


A set of conditional objects K is said to be consistent if and only if for no sub-
set S ⊆ K does the quasi-conjunction Q(S) of the conditional objects in S entail
a conditional contradiction of the form ⊥|φ. [12]. Contrary to material implica-
tion, the use of three-valued conditionals reveals the presence of contradictions
in the data.
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Example 3. (Example 2 continued) The data are e1 = (1, 0, 1); e2 = (1, 1, 1);
e′1 = (1, 1, 0). In terms of conditional objects, considering the subset {e2,e′1},
we have

vC |(v1 ∧ v2) & ¬vC |(v1 ∧ v2) = (v1 ∧ v2) → (vC ∧ ¬vC)|(v1 ∧ v2)
= (vC ∧ ¬vC)|(v1 ∧ v2) = ⊥|v1 ∧ v2,

which is a conditional contradiction. �

5 Analogical Proportion-Based Transduction

Apart from the k-nearest neighbor method, there is another transduction app-
roach to the classification problem which applies to Boolean, nominal and numer-
ical attribute values [5]. For simplicity here, we only consider Boolean attributes.
It relies on the notion of analogical proportion [26]. Analogical proportions are
statements of the form “a is to b as c is to d”, often denoted by a : b :: c : d,
which express that “a differs from b as c differs from d and b differs from a as
d differs from c”. This statement can be encoded into a Boolean logical expres-
sion which is true only for the 6 following assignments (0, 0, 0, 0), (1, 1, 1, 1),
(1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 0, 0), and (0, 0, 1, 1) for (a, b, c, d). Boolean Analogi-
cal proportions straightforwardly extend to vectors of attributes values such as
a = (a1, ..., an), by stating a : b :: c : d iff ∀i ∈ [1, n], ai : bi :: ci : di. The basic
analogical inference pattern, is then

∀i ∈ {1, ..., p}, ai : bi :: ci : di holds
∀j ∈ {p + 1, ..., n}, aj : bj :: cj : dj holds

Thus analogical reasoning amounts to finding completely informed triples
(a, b, c) appropriate for inferring the missing value(s) in d. When there exist
several suitable triples, possibly leading to distinct conclusions, one may use a
majority vote for concluding. This inference method is an extrapolation, which
applies to classification (then the class cl(x) is the unique solution, when it
exists, such as cl(a) : cl(b) :: cl(c) : cl(x) holds).

Let us examine more carefully how it works. The inference in fact takes items
pair by pair, and then puts two pairs in parallel. Let us first consider the case
where three items belong to the same class ; the fourth item is the one, the
class of which one wants to predict (denoted by 1 in the following). Considering
a pair of items ai and aj. There are attributes for which the two items are
equal and attributes for which they differ. For simplicity, we assume that they
differ only on the first attribute (the method easily extend to more attributes).
So we have ai = (ai

1, a
i
2, · · · , ai

n, 1) and aj = (aj
1, a

j
2, · · · , aj

n, 1) with aj
1 = ¬ai

1

and aj
t = ai

t = vt for t = 2, . . . , n. This means that the change from ai
1 to aj

1

in context (v2, · · · , vn) does not change the class. Assume we have now another
pair ak = (v1, a

k
2 , · · · , ak

n, 1) and a� = (¬v1, a
�
2, · · · , a�

n, ?) involving the item, the
class of which we have to predict, and exhibiting the same change on attribute
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A1 and being equal elsewhere, i.e., we have ak
t = a�

t = v�
t for t = 2, . . . , n. Putting

the two pairs in parallel, we obtain the following pattern
(v1, v2, · · · , vn, 1)
(¬v1, v2, · · · , vn, 1)
(v1, v

�
2, · · · , v�

n, 1)
(¬v1, v

�
2, · · · , v�

n, ?).
It is not difficult to check that ai, aj, ak and a� are in analogical proportion

for each attribute. So ai : aj ::ak : a� holds. The solution of 1 : 1 :: 1 :? is
obviously ? = 1, so the prediction is cl(a�) = 1. This conclusion is thus based
on the idea that since the change from ai

1 to aj
1 in context (v2, · · · , vn) does not

change the class, it is the same in the other context (v�
2, · · · , v�

n).
The case where ai and ak belong to class C while aj is in ¬C leads to

another analogical pattern, where the change from ai
1 to aj

1 now changes the
class in context (v2, · · · , vn). The pattern is

(v1, v2, · · · , vn, 1)
(¬v1, v2, · · · , vn, 0)
(v1, v

�
2, · · · , v�

n, 1)
(¬v1, v

�
2, · · · , v�

n, ?)
The conclusion is now ? = 0, i.e., a� is not in C. This approach thus imple-

ments the idea that the switch from ai
1 to aj

1 that changes the class in context
(v2, · · · , vn), also leads to the same change in context (v�

2, · · · , v�
n).

It has been theoretically established that analogical classifiers always yield
exact prediction for Boolean affine functions describing the class (which includes
x-or functions), and only for them [9]. Still, a majority vote among the predicting
triples often yields the right prediction in other situations [5].

Let us see how it works on Example 1 and variants.

Example 4. In Example 1 we have: e1 = (1, 0, 1); e2 = (0, 1, 1); e′1 = (0, 0, 0).
We can check that there is no analogical prediction in this case for (1, 1, ?).
Indeed, whatever the way we order the three vectors, either we get the 4-tuple
(1, 0, 0, 1) on one component, which is not a pattern in agreement with an ana-
logical proportion, or the equation 0 : 1 :: 1 :? which has no solution. So analogy
remains neutral in this case.

However, in the situation where would have e1 = (1, 0, 1); e2 = (1, 1, 1); e′1 =
(0, 1, 0). Taking the triple (e2,e1,e′1), we can check that (1, 1) : (1, 0) :: (0, 1) :
(0, 0) holds on each of the two vector components. The solution of the equation
1 : 1 :: 0 :? is ? = 0, which is the analogical prediction for (0, 0, ?).

Similarly, in the case e1 = (1, 0, 1), e2 = (1, 1, 1) and e3 = (0, 1, 1), we would
obtain ? = 1 for (0, 0, ?) as expected, using triple (e2,e1,e3). �

It is clear that the role of analogical reasoning here is to complete the data
set with new examples or counter-examples obtained by transduction, assuming
analogical inference patterns are valid in the case under study. It may be a first
step prior to the induction of a classification model.
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6 Concept Learning, Version Space and Logic

The version space setting, as proposed by Mitchell [24,25], offers an elegant
elimination procedure, exploiting examples and counter-examples of a class, then
called “concept”, for restricting the hypotheses space and providing an approach
to rule learning.

Let us recall the approach using a simple example, with 3 attributes:

– A1 = Sky (with possible values Sunny, Cloudy, and Rainy),
– A2 = Air Temp (with values Warm and Cold),
– A3 = Humidity (with values Normal and High).

The problem is to learn the concept of C = Nice Day on the basis of examples and
counter-examples. This means finding all hypotheses h, such that the implication
h → vC is compatible with the examples and the counter-examples.

Each hypothesis is described by a conjunction of constraints on the attributes,
here Sky, Air Temp, and Humidity. Constraints may be ? (any value is accept-
able), ∅ (no value is acceptable), a specific value, or a disjunction thereof. The
target concept C, here Nice Day, is supposed to be represented by a disjunc-
tion of hypotheses (there may exist different h and h′ such that h → vC and
h′ → vC).

Descriptions of examples or counter-examples can be ordered according to
their generality/specificity. Thus for instance, the following descriptions are
ordered according to decreasing generality: <?, ?, ?>, <Sunny ∨ Cloudy, ?, ?>,
<Sunny, ?, ?>, <Sunny, ?, Normal>, <∅, ∅, ∅>.

The version space is represented by its most general and least general mem-
bers. The so-called general boundary G is the set of maximally general members
of the hypothesis space that are consistent with the data. The specific boundary
S is the set of maximally specific members of the hypothesis space that are con-
sistent with the data. G and S are initialized as G = <?, ?, ?> and S = <∅, ∅, ∅>
(for 3 attributes as in the example).

The procedure amounts to finding a maximally specific hypothesis which
covers the positive examples. Suppose we have two examples of Nice Day :

Ex1. <Sunny, Warm, Normal> , Ex2. <Sunny, Warm, High>.

Then, taking into account Ex1, S is updated to S1 =<Sunny,Warm,Normal>.
Adding Ex2, S is improved into S2 = <Sunny, Warm, ?>, which corresponds

to the disjunction of Ex1 and Ex2. The positive training examples force the S
boundary of the version space to become increasingly general (S2 is more general
than S1).

Although the version space approach was not cast in a logical setting, it is per-
fectly compatible with the logical encoding (1). Indeed here we have two exam-
ples of the form (v1, v2, v3) and (v1, v2,¬v3) (with v1 = Sunny; v2 = Warm; v3 =
Normal,¬v3 = High). A tuple of values such that <v, v′, v′′> is to be understood
as the conjunction v ∧ v′ ∧ v”. So we obtain (v1 ∧ v2 ∧ v3)∨ (v1 ∧ v2 ∧¬v3) → vC .
It corresponds to the left part of Eq. (1) for n = 3 and |E| = 2, which yields
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(v1 ∧ v2) ∧ (v3 ∨ ¬v3) → vC , i.e., (v1 ∧ v2) → vC . So the more positive examples
we have, the more general the lower bound of C in (1) (the set of models of
a disjunction is larger than the set of models of each of its components). This
lower bound, here v1 ∧ v2, is a maximally specific hypothesis h.

Negative examples play a complementary role. They force the G boundary
to become increasingly specific. Consider we have the following counter-example
for Nice Day : cEx3. <Rainy, Cold, High> .

The hypothesis in the G boundary must be specialized until it correctly
classifies the new negative example. There are several alternative minimally more
specific hypotheses. Indeed, the 3 attributes can be specialized for avoiding to
cover cEx3 by being ¬Rainy, or being ¬Cold, or being ¬High. This exactly
corresponds to Equ(1), which here gives vC → ¬Rainy ∨ ¬Cold ∨ ¬High, i.e.,
vC → Sunny ∨ Cloudy ∨ Warm ∨ Normal.

The elements of this disjunction correspond to maximally general potential
hypotheses. But in fact we have only two new hypotheses in G: <Sunny, ?, ?> and
<?, Warm, ?>, as explained now. Indeed, the hypothesis h = (?, ?, Normal) is not
included in G, although it is a minimal specialization of G that correctly labels
cEx3 as a negative example. This is because example Ex2 whose attribute value
for A3 is High, disagrees with the implication Normal → vC . So, hypothesis <?, ?,
Normal> is excluded. Similarly, examples Ex1 and Ex2 (for which the attribute
value for A1 is Sunny) disagree with implication Cloudy → vC . This kind of
elimination applies in Equation (1) as well. Indeed the expression v∧L � ¬v∨L′

can be simplified into v ∧ L � L′.
We thus obtain upper and lower bounds from Ex1, Ex2, and cEx3

S3: <Sunny, Warm, ? > G3: {<Sunny, ?, ? > , <?, Warm, ? >}.

where {<v1, v
′
1, v

′′
1>,<v2, v

′
2, v

′′
2>} logically reads (v1 ∧ v′

1 ∧ v′′
1 ) ∨ (v2 ∧ v′

2 ∧ v′′
2 )

(? stands for 
).
The S boundary of the version space thus summarizes the previously encoun-

tered positive examples. Any hypothesis more general than S will, by definition,
cover any example that S covers and thus will cover any past positive example.
In a dual fashion, the G boundary summarizes the information from previously
encountered negative examples. Any hypothesis more specific than G is assured
to be consistent with past negative examples. The set of all the hypotheses
between S and G has a lattice structure. This in full agreement with Equation
(1). The approach provides an iterative procedure that takes advantage of the
examples and counter-examples progressively.

Thus, the general procedure for obtaining the bounds of the version space
are as follows.

– If e is a positive example,
1. remove from G any hypothesis inconsistent with e;
2. substitute in S any minimal generalization h consistent with e.

– If e is a negative example,
1. remove from S any hypothesis inconsistent with e;
2. substitute in G any minimal specialization h consistent with e.
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7 Towards a Possibilistic Variant of the Version Space

The main drawback of the version space approach is its sensitivity to noise.
Indeed each example and each counter-example influence the result. In [18], the
authors use rough set approximations to cope with this problem.

Here we make another suggestion using possibility theory. The idea is to
associate each example and each counter-example with a certainty level, as in
possibilistic logic (see, e.g., [16]) in order to express to what extent we consider it
is certain that the corresponding piece of information is true (rather than false).
This certainty level expresses our confidence in the piece of data as being exact.
It can reflect the confidence we have in the source that provided it, or be the
result of an analysis or filtering of the data that disqualifies outliers. In that
respect we should remember that one semantics of possibility theory is in terms
of (dis)similarity [29].

In other words, we have a multi-tiered set of examples and a multi-tiered
set of counter-examples. So, considering all examples and all counter-examples
whose certainty is above or equal to some given certainty level α yields a regular
version space with classical bounds. Thus, for each α, it gives birth to a finite
set of hypotheses to which α can be associated. We have thus a natural basis for
rank-ordering hypotheses. The smaller α, the larger the numbers of examples
and counter-examples taken into account, and the tighter the bounds.

This can be illustrated on the example of the previous section.

Example 5. Examples and counter-examples now come with certainty weights.
Assume we have Ex1 : (<Sunny, Warm, Normal>, 1); cEx3 : (<Rainy, Cold, High>
,α); Ex2 : (<Sunny, Warm, High>, β), with 1 > α > β.

So, we obtain a layered version of the upper and lower bounds of the version
space:

– at level 1, we have G1 = <?, ?, ?> and S1 = <Sunny, Warm, Normal>.
– at level α, we have Gα = {<Sunny, ?, ?>,<Cloudy, ?, ?>,<?, Warm, ?>} and

Sα = <Sunny, Warm, Normal>.
– at level β, we have Gβ ={<Sunny, ?,?>, <?, Warm,?>}

and Sβ = <Sunny, Warm, ?>.

�

The above syntactic view is simpler than the semantic one presented in [27]
where the paper starts with a pair of possibility distributions over hypotheses,
respectively induced by the examples and by the counter-examples.

8 Formal Concept Analysis

Formal concept analysis [19] is another setting where association rules between
attributes can be extracted from a formal context R ⊆ X × Y , which is nothing
but a relation linking items in X with properties in Y . It provides a theoretical
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basis for data mining. Table 1 can be viewed as a context, restricting to rows
E ∪ E ′ and considering the class of examples as just another attribute.

Let Rx and R−1y respectively denote the set of properties possessed by item
x and the set of items having property y. Let E ⊆ X and A ⊆ Y . The set of
items having all properties in A is given by A↓ = {x | A ⊆ Rx} and the set of
properties possessed by all items in E is given by E↑ = {y | E ⊆ R−1y}. A formal
concept is then defined as a pair (E,A) such that A↓ = E and E↑ = A where
E and A provides the extent and the intent of the formal concept respectively.
Then, it can be shown that E × A ⊆ R, and is maximal with respect to set
inclusion, i.e., (E,A) defines a maximal rectangle in the formal context.

Let A and B be two subsets of Y . Then R satisfies the attribute implication
A ⇒ B if for every x ∈ X, such that x ∈ A↓, then x ∈ B↓. Formal concept
analysis is not primarily oriented towards concept learning, but towards mining
attribute implications (i.e., association rules). However, it might be interesting
to consider formal contexts where Y also contains the names of classes, i.e.,
C ⊆ Y . Then being able to find attribute implications of the form A ⇒ C where
A ∩ C = ∅ and C ⊆ C, would be of a particular interest, especially if C is a
singleton.

A construction dual to the theory of attribute implications has been proposed
in [2], to extract disjunctive attribute implications A −→ B which are satisfied by
R if for every object x, if x possesses at least one property in A then it possesses
at least one property in B. This approach interprets a zero in matrix R for object
x and property a as the statement that x does not possess property a.

Disjunctive attribute implications can be extracted either by considering the
complementary context R, viewed as a standard context with negated attributes,
and extracting attribute implications from it. Disjunctive attribute implications
are then obtained by contraposition. Or we can derive them directly, replacing
operator A↓ by a possibilistic operator A↓Π = {x | A ∪ Rx �= ∅} introduced
independently by several authors relating FCA and modal logic [21], rough sets
[30] and possibility theory [10]. Then R satisfies the attribute implication A −→
B if A↓Π ⊆ B↓Π.

It is interesting to notice that if Y also contains the names of classes, i.e.,
C ⊆ Y , disjunctive attribute implications of the form C −→ B where B ∩ C = ∅
and C ⊆ C corresponds to the logic rule vC → ∨b∈Bb, which is in agreement
with the handling of exceptions in the logical reading of a classification task
presented in Sect. 3. Indeed, the rule vC → ∨b∈Bb can be read by contraposition:
if an object violates all properties in B, then it is a counterexample. So there
is a natural way of relating logical approaches to the classification problem and
formal concept analysis, provided that a formal context is viewed as a set of
examples and count examples (e.g., objects that satisfy a set of properties, vs.
objects that do not).
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Note finally that the rectangular nature of formal concepts expresses a form
of convexity, which fits well with the ideas of Gärdenfors about conceptual spaces
[20]. Moreover, using also operators other than ↓ and ↑ (see [14]) help character-
izing independent sub-contexts and other noticeable structures. Formal concept
analysis can be also related to the idea of clustering [15], where clusters are unions
of overlapping concepts in independent sub-contexts. The idea of approximate
concepts, i.e., rectangles with “holes”, suggests a convexity-based completion
principle, which might be useful in a classification perspective.

9 Concluding Remarks

This paper is clearly a preliminary step toward a unified, logical, study of set
theory-based approaches in data management. It is preliminary in at least two
respects: several of these approaches have been only cited in the introduction,
while the others have been only briefly discussed. All these theoretical settings
start with a Boolean table in the simplest case, and many of them extend to nom-
inal, and possibly to numerical data. Still they have been motivated by different
concerns such as describing a concept, predicting a class, or mining rules. Due to
their set theory-based nature, they can be considered from a logical point of view,
and a number of issues are common, such that handling incomplete information,
missing values, inconsistent information, or non applicable attributes.

In a logical setting, the handling of uncertainty can be conveniently achieved
using possibility theory and possibilistic logic [16]. We have suggested above
how it can be applied to concept learning and how it may take into account
uncertain pieces of data. Possibilistic logic can also handle default rules that can
be obtained from Boolean data by looking for suitable probability distributions
[3]; such rules provide useful summaries of data. The possible uses of possibilistic
logic in data management is a general topic for further investigation.
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23. Hüllermeier, E., Dubois, D., Prade, H.: Model adaptation in possibilistic instance-
based reasoning. IEEE Trans. Fuzzy Syst. 10(3), 333–339 (2002)

24. Mitchell, T.M.: Version spaces: a candidate elimination approach to rule learning.
In: IJCAI, pp. 305–310 (1977)

25. Mitchell, T.M.: Version spaces: an approach to concept learning. Ph.D. thesis, Stan-
ford University (1979)

26. Prade, H., Richard, G.: Analogical proportions and analogical reasoning - an intro-
duction. In: Aha, D.W., Lieber, J. (eds.) ICCBR 2017. LNCS (LNAI), vol. 10339,
pp. 16–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61030-6 2

27. Prade, H., Serrurier, M.: Bipolar version space learning. Int. J. Intell. Syst. 23(10),
1135–1152 (2008)

28. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Springer,
Dordrecht (1991). https://doi.org/10.1007/978-94-011-3534-4

29. Sudkamp, T.: Similarity and the measurement of possibility. In: Actes Rencontres
Francophones sur la Logique Floue et ses Applications (Montpellier, France), pp.
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Abstract. In the recent years, the subject if fuzzy mathematical mor-
phology entered the field of interest of many researchers. In our recent
paper [23], we have developed the basis of the (unstructured) L-fuzzy
relation mathematical morphology where L is a quantale. In this paper
we extend it to the structured case. We introduce structured L-fuzzy rela-
tional erosion and dilation operators, study their basic properties, show
that under some conditions these operators are dual and form an adjunc-
tion pair. Basing on the topological interpretation of these operators, we
introduce the category of L-fuzzy relational morphological spaces and
their continuous transformations.

Keywords: L-fuzzy relational erosion · L-fuzzy relational dilation ·
L-fuzzy relational morphological spaces · Duality · Adjointness ·
Continuous transformations

1 Introduction

Mathematical morphology has its origins in geological problems centered in the
processes of erosion and dilation. The founders of mathematical morphology are
engineer G. Matheron [18] and his student, engineer J. Serra [22]. The idea of the
classical mathematical morphology can be explained as the process of modifying
a subset A of a cube in an n-dimensional Euclidean space R

n by cutting out
pieces of B from A (in case of erosion) or glueing them down to the set A (in
case of dilation). The set B, intuitively, small if compared with A, is called the
structuring set. In the first works on fuzzy morphology A and B were crisp sets,
however soon the interest of some researchers was directed also to the case when
A and B could be fuzzy. This allowed to describe gray scale processes of erosion
and dilation. The first fundamental works on fuzzy mathematical morphology
are the two papers by B. De Baets, E. Kerre and M. Gupta [7], [8].
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In the first period of the development of fuzzy mathematical morphology the
domain where the operators of erosion and dilation were defined was restricted
by Euclidean spaces Rn, both in crisp and fuzzy approaches. This framework was
usually adequate for studying practical problems in geology, it was appropriate
also for applications of mathematical morphology in different applied sciences, in
particular in pattern recognition, image processing, digital topology, etc. Addi-
tionally it was convenient since all basic constructions of fuzzy morphology,
in particular, “cutting” and “glueing” pieces B from or to A were defined by
means of the use of the linear structure in the Euclidean space. However, some
researchers were attracted by the idea to extend basic concepts and constructions
of fuzzy morphology from R

n to a more general context. This idea was interest-
ing not only theoretically, but also in view of possible applications in some tasks
beyond the classical ones. The principle how to find the “correct” extensions
for the definitions were found in the interrelations between erosion and dilation
operators that can be observed in almost all “classical” approaches. Namely, the
principal features are that erosion ε and dilation δ are dual operators and the
pair (ε, δ) is an adjunction.

This observation has lead to two mainstreams in the generalized approach
to fuzzy mathematical morphology: the algebraic and the relational one. The
algebraic approach, in its most general form, is based on two complete lattices
L1 and L2 and two mappings: a mapping ε : L1 → L2 that preserves arbi-
trary infima, and a mapping δ : L2 → L1 that preserves arbitrary joins. These
mappings ε and δ should be related by Galois connection. This approach was
initiated by Heijecman [12] and further developed by I. Bloch [3], [4] and some
other authors. The second, less formal relational approach, considers a set X
equipped with some relation R; this relation is used instead of linear transfor-
mations applied in the classical case, that is when X is the Euclidean space, see
e.g. [19], see also [23].

In this paper, we start to develop an approach to L-fuzzy relational morphol-
ogy in which, as different from e.g. [19] and [23], the erosion and dilation are
structured by some L-fuzzy set B.

The paper consists of five sections. In the first one we recall and specify
terminology related to quantales and L-fuzzy relations. In the second section
images and preimages of L-fuzzy sets under L-fuzzy relations are considered;
these images and preimages are closely related to the operators of erosion and
dilation introduced and studied in Sect. 3. In the fourth section we consider
interrelations between operators of erosion and dilation. Namely, we show that
under some conditions they are dual and make an adjoint pair. In the next,
fifth section, we introduce the category M(L) of L-fuzzy relational morphological
spaces and its subcategory M

p(L) of unstructured fuzzy relational morphological
spaces. We study some properties of this categories and compare these categories
with certain categories of Fuzzy Topology. In the last, Conclusion section, we
list some directions where our approach to the concept of fuzzy morphological
spaces could be further developed.
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2 Preliminaries

In this section, we recall some well-known concepts that will make the context of
our work. The restricted volume of the paper does not allow to reproduce here
all information used in the work. A reader is referred to the monographs [11,21]
and other standard references sources for the remaining details.

2.1 Lattices, Quantales, Girard Monoids and MV-algebras

In our paper, (L,≤,∧,∨) is a complete infinitely distributive lattice with bottom
and top elements 0L and 1L respectively. Given a binary associative monotone
operation ∗ : L × L → L on (L,≤,∧,∨), the tuple (L,≤,∧,∨, ∗) is called a
quantale if ∗ commutes over arbitrary joins:

α ∗
(∨

i∈I
βi

)
=

∨
i∈I

(α ∗ βi) ∀α ∈ L, ∀{βi|i ∈ I} ⊆ L.

The operation ∗ will be referred to as the product or the conjunction. A quantale
is called commutative if the product ∗ is commutative. A quantale is called
integral if the top element 1L acts as the unit, that is 1L ∗α = α for every α ∈ L.

In a quantale a further binary operation 
→: L × L → L, the residuum, can
be introduced as associated with operation ∗ of the quantale (L,≤,∧,∨, ∗) via
the Galois connection, that is α ∗ β ≤ γ ⇐⇒ α ≤ β 
→ γ for all α, β, γ ∈ L.
Explicitly residium can be defined by α 
→ β =

∨
{λ ∈ L|λ ∗ α ≤ β}.

Further, a unary operator c : L → L is called negation if it is an order
reversing involution, that is α ≤ β =⇒ βc ≤ αc and (αc)c = α for all α, β ∈ L.
For us it is important that negation c in a quantale is well-coordinated with
the original quantale structure (L,≤,∧,∨, ∗). Explicitly, this means that the
negation should be defined according to the laws of fuzzy logic, that is ac = a 
→
0. Therefore, to satisfy the properties of the negation, we have to request that

(α 
→ 0) 
→ 0 = α ∀α ∈ L.

Quantales (L,≤,∧,∨, ∗) satisfying this property are called Girard monoids [16]
or Girard quantales. Girards quantales are a generalization of the concept of an
MV-algebra, see e.g. [13], [14]: A quantale is called an MV-algebra if

(α 
→ β) ∨ β = α ∨ β for all α, β ∈ L.

In an MV -algebra (L,≤,∧,∨, ∗) operation ∗ distributes also over arbitrary meets
see e.g. [13], [14]:

α ∗
(∧

i∈I
βi

)
=

∧
i∈I

(α ∗ βi) ∀α ∈ L, ∀{βi|i ∈ I} ⊆ L.

In a Girard quantale (L,≤,∧,∨, ∗) a further binary operation ⊕, so called co-
product or disjunction, can be defined by setting

α ⊕ β = (αc ∗ βc)c ∀ α, β ∈ L.
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Co-product is a commutative associative monotone operation and, in case (L,≤,
∧,∨, ∗) iks integral, 0L acts as a zero, that is α ⊕ 0L = α for every α ∈ L.
Important properties of operations in Girard quantales are given in the next
Lemma:

Lemma 1. Operation ⊕ in a Girard quantale (L,≤L,∧L,∨L, ∗) is distributive
over arbitrary meets:

α ⊕
(∧

i∈I
βi

)
=

∧
i∈I

(α ⊕ βi) ∀α ∈ L,∀{βi|i ∈ I} ⊆ L.

The proof follows from the following series of equalities justified by definitions:
α ⊕

(∧
i∈Iβi

)
=

(
αc ∗

(∧
i∈Iβi

)c)c =
(
αc ∗

(∨
i∈Iβ

c
i

))c =
(∨

i∈I(α
c ∗ βc

i )
)c =∧

i∈I (((αc)c ⊕ (βc
i )

c)c)c =
∧

i∈I(α ⊕ βi). �
In a similar way one can prove the following Lemma.

Lemma 2. If in a Girard quantale (L,≤,∧,∨, ∗) operation ∗ distributes over
arbitrary meets, then the corresponding operation ⊕ distributes over arbitrary
joins:

α ⊕
(∨

i∈I
βi

)
=

∨
i∈I

(α ⊕ βi) ∀α ∈ L, ∀ {βi : i ∈ I} ⊆ L.

We will need also the following Lemma, the proof of which can be found in [13,
Lemme 1.4]; we reformulate it a way convenient for our use:

Lemma 3. In a Girard quantale (L,≤,∧,∨, ∗) the following equality holds:

α 
→ β = (α ∗ (β 
→ 0)) 
→ 0 ∀α, β ∈ L

A quantale (L,≤,∧,∨, ∗) is called divisible if

a ≤ b ⇐⇒ exists d ∈ L such that a ∗ d = b

see e.g. [15, p. 128]. It is known that every MV-algebra is divisible [15, p. 129].
We will need a stronger version of this property:

Definition 1. A quantale is called strongly divisible if

a ∗ λ = b ∗ c ⇐⇒ ∃μ ∈ L such that a ∗ c ∗ μ = b ∀a, b, c, λ ∈ L.

Lemma 4. In a strongly divisible quantale L the equality a 
→ b∗c = (a 
→ b)∗c
holds for all a, b, c ∈ L.

Proof. (a 
→ b) ∗ c = c ∗
∨

{λ | λ ∗ a ≤ b} =
∨

{λ ∗ c | λ ∗ a ≤ b} ≤
∨

{λ ∗ c |
λ ∗ a ∗ c ≤ b ∗ c} ≤

∨
{μ | μ ≤ b ∗ c} = a 
→ b ∗ c.

On the other hand, by strong divisibility a 
→ b ∗ c =
∨

{λ ∈ L|λ ∗ a ≤ b} ≤∨
{μ ∈ L|μ ∗ a ∗ c ≤ b} = c ∗

∨
{μ ∈ L|μ ∗ a ≤ b} = c ∗ (a 
→ b) �

In our work (L,≤,∧,∨, ∗) is always an integral commutative quantale, some-
times satisfying additional, explicitly stated, conditions.
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2.2 L-fuzzy Relations, L-fuzzy Relational Sets

Definition 2 (see e.g. [25]). An L-fuzzy relation from a set X to a set Y is an
L-fuzzy subset of the product X × Y , that is a mapping R : X × Y → L. In case
when X = Y it is called an L-fuzzy relation on the set X. The triple (X,Y,R)
where R is an L-fuzzy relation from X to Y is called an L-fuzzy relational triple
and if X = Y the pair (X,R) is called an L-fuzzy relational set.

We will need some special properties of L-fuzzy relations specified below:

Definition 3 (see e.g. [24]). An L-fuzzy relation R : X × Y → L is called left
connected if

∧
y∈Y

∨
x∈XR(x, y) = 1L. R is called strongly left connected if for

every y ∈ Y there exists x ∈ X such that R(x, y) = 1L. An L-fuzzy relation R
is called right connected if

∧
x∈X

∨
y∈Y R(x, y) = 1L. R is called strongly right

connected if for every x ∈ X there exists y ∈ Y such that R(x, y) = 1L. An
L- fuzzy relation R on a set X is called reflexive if R(x, x) = 1L for every
x ∈ X. An L-fuzzy relation R on a set X is called symmetric, if R(x, y) =
R(y, x) for all x, y ∈ X. An L-fuzzy relation R on a set X is called transitive if
R(x, y) ∗ R(y, z) ≤ R(x, z) for all x, y, z ∈ X.

3 Image and Preimage Operators on L-fuzzy Power-Sets
Induced by L-fuzzy Relations

The subject of this section is, what we call, upper and lower image and preimage
operators induced by an L-fuzzy relation R : X × Y → L. TAs we will see they
are closely related to the operators of fuzzy relational erosion and dilation. These
operators R→ : LX → LY , and their basic properties can be found in different
papers where L-fuzzy power-sets are involved. For reader’s convenience we briefly
discuss them here.

Definition 4. The upper image of an L-fuzzy set A ∈ LX under L-fuzzy rela-
tion R : X × Y → L is the L-fuzzy set R→(A) ∈ LY defined by R→(A)(y) =∨

x∈XR(x, y) ∗ A(x) for all A ∈ LX , y ∈ Y.

Definition 5. The upper preimage of an L-fuzzy set A ∈ LY under L-fuzzy
relation R : X × Y → L is the L-fuzzy set R←(A) ∈ LX defined by R←(A)(x) =∨

y∈Y R(x, y) ∗ A(y) for all A ∈ LY , x ∈ X.

Definition 6. The lower image of an L-fuzzy set A ∈ LX under L-fuzzy rela-
tion R : X × Y → L is the L-fuzzy set R⇒(A) ∈ LY defined by R⇒(A)(y) =∧

x∈X(R(x, y) 
→ A(x)) for all A ∈ LX , y ∈ Y.

Definition 7. The lower preimage of an L-fuzzy set A ∈ LY under L-fuzzy
relation R : X × Y → L is the L-fuzzy set R⇐(A) ∈ LX defined by R⇐(A)(x) =∧

y∈Y (R(x, y) 
→ A(y)) for all A ∈ LY , y ∈ Y.

Proposition 1. If relation R : X × Y → L is strongly left connected, then
R⇒(A) ≤ R→(A) for every A ∈ LX .
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Proof. Given y ∈ Y , we take xy ∈ X such that R(xy, y) = 1L. Then∧
x∈XR(x, y) 
→ A(x) ≤ R(xy, y) 
→ A(xy) = 1L 
→ A(xy) = A(xy).

On the other hand,
∨

x∈XR(x, y) ∗ A(x) ≥ R(xy, y) ∗ A(xy) = A(xy). �

Proposition 2. If relation R : X × Y → L is strongly right connected, then
R⇐(A) ≤ R←(A) for every A ∈ LY .

Proof. Let x ∈ X be fixed and let yx ∈ X satisfy R(x, yx) = 1L. Then
R←(A)(x) =

∨
y(R(x, y) ∗ A(y)) ≥ R(x, yx) ∗ A(yx) = A(yx). In its turn,

R⇐(A)(x) =
∧

y(R(x, y) 
→ A(y)) ≤ R(x, yx) → A(yx) = A(yx). �

4 Operators of Structured L-fuzzy Relational Erosion
and Dilation

4.1 Structured Relational L-fuzzy Erosion

Modifying the definition of L-fuzzy relational erosion given in [19], see also [23]
to the case when the fuzzy erosion of a fuzzy set A ∈ LX is structured by a fuzzy
set B ∈ LY , we come to the following definition

Definition 8. Given A ∈ LX and B ∈ LY , the erosion of A structured by B in
a fuzzy relational triple (X,Y,R) is the L-fuzzy set εR(A,B) ∈ LY defined by

εR(A,B)(y) =
(∧

x∈X
(R(x, y) 
→ A(x))

)
∗ Bc(y).

Considering erosion for all A ∈ LX when B ∈ LY is fixed, we get the operator
of erosion εR(·, B) : LX → LY .

Thus L-fuzzy erosion εR(·, 0X) : LX → LY is actually the lower image operator
R⇒ induced by L-fuzzy relation R : X × Y → L.

In the next proposition we collect some properties of erosion operators.

Proposition 3. (1) εR(1X , B) = Bc. If R is left connected, then εR(aX , B) =
a ∗ Bc for every a ∈ L where aX : X → L is the constant function with value
a ∈ L.
(2) Operator εR(·, B) : LX → LY is non-decreasing, that is if A1 ≤ A2 ∈ LX

then εR(A1, B) ≤ εR(A2, B).
(3) If B1 ≤ B2 ∈ LY then for every A ∈ LX εR(A,B1) ≥ εR(A,B2).
(4) If ∗ is distribute over arbitrary meets, then, given a family {Ai | i ∈ I} ⊆ LX

and B ∈ LY , we have εR
(∧

i∈IAi, B
)

=
∧

i∈IεR(Ai, B).

Proof. (1) From the definition it is clear that for every y ∈ Y we have
εR(aX , B)(y) =

(∧
x∈X(R(x, y) 
→ a

)
∗ Bc(y) =

((∨
x∈XR(x, y)

)

→ a

)
∗ Bc(y).

In case a = 1L, we have εR(1X , B)(y) = Bc(y) for every y ∈ Y . In its turn, if
R(x, y) is left connected, then

∨
x∈X R(x, y) = 1L for every y ∈ Y and hence

εR(aX , B)(y) = (1L 
→ a) ∗ Bc(y) = aY ∗ Bc(y).
The statements (2) and (3) are obvious.
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(4) Given a family of L-fuzzy sets {Ai | i ∈ I} and y ∈
Y , by meet-distributivity of ∗ we have εR

(∧
i∈IAi, B

)
(y) =

∧
x∈X(∧

i∈I (R(x, y) 
→ Ai(x))
)

∗ Bc(y) =
∧

i∈I

(∧
x∈X (R(x, y) 
→ Ai(x)) ∗ Bc(y)

)
=∧

i∈IεR(Ai, B)(y). �

In the rest of this subsection, we consider the case when X = Y , that is when
R : X × Y → L is an L-fuzzy relation on a set X. In this case erosion has some
important additional properties.

Proposition 4. If L-fuzzy relation is reflexive, then for every A ∈ LX and
every B ∈ LX it holds εR(A,B) ≤ A ∗ Bc. In particular, εR(A,A) ≤ A ∗ Ac.

Proof Notice that for every y ∈ Y
εR(A,B)(y) =

(∧
x∈X(R(x, y) 
→ A(x))

)
∗ Bc(y) ≤ (R(y, y) 
→ A(y)) ∗ Bc(y) =

(1L 
→ A(y)) ∗ Bc(y) = A(y) ∗ Bc(y) = (A ∗ Bc)(y). �

Corollary 1. If L-fuzzy relation R is reflexive, then εR(A,B) ≤ A.

To formulate the next proposition, we denote B = sup{B(y) : y ∈ Y }.

Proposition 5. If L-fuzzy relation R is reflexive and symmetric and ∗ dis-
tributes over arbitrary meets, then for any L-fuzzy sets A ∈ LX and B ∈ LY it
holds

εR(A,B) ∗ (B)c ≤ εR(εR(A,B), B) ≤ εR(A,B).

Proof. Inequality εR(εR(A,B), B) ≤ εR(A,B) follows from Corrolary 1. To
show the other inequality let X = Y = Z be sets, R : X × Y → L be an L-fuzzy
relation, define R : Y × Z → L in the same way as the given L-fuzzy relation
R : X × Y → L and let z ∈ Z. Then by meet-distributivity of ∗ and symmetry
of R and twice applying inequality a 
→ b ∗ c ≤ (a 
→ b) ∗ c we have
εR(εR(A,B), B)(z) =

[∧
y∈Y (R(y, z) 
→ εR(A,B)(y))

]
∗ Bc(z) =[∧

y∈Y

(
R(y, z) 
→

(∧
x∈X(R(x, y) 
→ A(x))

)
∗ Bc(y)

)]
∗ Bc(z) ≥[∧

y∈Y (R(y, z) 
→ (R(z, y) 
→ A(z)) ∗ Bc(y))
]

∗ Bc(z) ≥[∧
y∈Y (R(y, z) 
→ (R(z, y) 
→ A(z) ∗ Bc(y))

]
∗ Bc(z) ≥[∧

y∈Y ((R(y, z) 
→ A(z) ∗ Bc(y))
]

∗ Bc(z) ≥∧
y∈Y ((R(y, z) 
→ A(z)) ∗ Bc(z) ∗ Bc(y)) ≥∧
y∈Y (R(y, z) 
→ A(z)) ∗ Bc(z) ∗ (B)c = εR(A,B)(z) ∗ (B)c.

�

In case B = 0Y we do not need to use meet-distributivity of ∗ and so we have:

Corollary 2. If the L-fuzzy relation R is reflexive and symmetric and B = 0Y ,
then for any A ∈ LX it holds εR(εR(A, 0Y ), 0Y ) = εR(A, 0Y ). In particular this
means that operator εR(·, 0X) : LX → LX is idempotent.
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4.2 Structured L-fuzzy Dilation

As before, let X, Y be sets, R : X × Y → L an L-fuzzy relation and let A ∈ LX

and B ∈ LY be L-fuzzy sets. Generalizing definition of relational dilation of the
L-fuzzy set given in [19], see also [23], for the situation when dilation of A is
structured by B, we come to the following definition:

Definition 9. Given A ∈ LX , its L-fuzzy dilation structured by B ∈ LY is an
L-fuzzy set δR(A,B) ∈ LY defined by

δR(A,B)(y) =
(∨

x∈X
R(y, x) ∗ A(x)

)
⊕ B(y).

Considering dilation for all A ∈ LX when the structuring L-fuzzy set B is fixed,
we get the operator of dilation δR(·, B) : LX → LY .

In the next proposition we collect basic properties of dilation operator δR(·, B).

Proposition 6. Let R : X × Y → L be an L-fuzzy relation. Then

(1) δR(0X , B) = 0Y and if R is right connected, then δR(aX , B) = aY ⊕ B for
any a ∈ L, and in particular δR(1X , B) = 1Y .

(2) A1 ≤ A2 ∈ LX =⇒ δR(A1, B) ≤ δR(A2, B).
(3) If B1 ≤ B2 ∈ LY then for every A ∈ LX δR(A,B1) ≤ δR(A,B2).
(4) If operation ∗ is distributes over arbitrary joins, then given a family of L-fuzzy

sets {Ai | i ∈ I} ⊆ LX , it holds δR
(∨

i∈IA,B
)

=
∨

i∈IδR(Ai, B).

Proof. (1) For every y ∈ Y we have
δR(aX , B)(y) =

(∨
x∈XR(y, x) ∗ aX(x)

)
⊕ B(y) =

(∨
x∈XR(y, x) ∗ a

)
⊕ B(y).

Hence, δR(0X , B)(y) = 0Y for every y ∈ Y , that is δR(0X , B) = 0Y . If R is right
connected, then δR(aX , B)(y) = aY ⊕ B(y) for all y ∈ Y .

The proof of (2) and (3) is obvious.
(4) Let a family of L-fuzzy sets {Ai | i ∈ I} ⊆ LX and y ∈ Y be given.

Recalling that by Lemma 2 co-product distribures over arbitrary joins, we have
δR

(∨
i∈IAi, B)

)
(y) =

(∨
x∈X

(
R(y, x) ∗

∨
i∈IAi(x)

))
⊕ B(y) =(∨

x∈X

(∨
i∈I(R(y, x) ∗ Ai(x))

))
⊕ B(y) =(∨

i∈I

(∨
x∈X(R(y, x) ∗ Ai(x))

))
⊕ B(y) =∨

i∈I

(∨
x∈X(R(y, x) ∗ Ai(x)) ⊕ B(y)

)
=

∨
i∈IδR(Ai, B)(y). �

In the rest of this subsection, we consider the case when X = Y that is when
R is an L-fuzzy relation on the set X. In this case dilation has some additional
properties.

Proposition 7. If L-fuzzy relation R is reflexive, then for every A ∈ LX and
every B ∈ LX it holds δR(A,B) ≥ A ⊕ B. In particular, δR(A,A) ≥ A ⊕ A.

Proof. Given any point y ∈ Y (= X), by reflexivity of R we have: δR(A,B)(y) =(∨
x∈XR(y, x) ∗ A(x)

)
⊕ B(y) ≥ (R(y, y) ∗ A(y)) ⊕ B(y) = A(y) ⊕ B(y). �
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Corollary 3. If L-fuzzy relation R is reflexive, then δR(A,B) ≥ A for all
A,B ∈ LX .

To formulate the next proposition we recall that B = sup{B(y) : y ∈ Y }

Proposition 8. If the L-fuzzy relation is reflexive and symmetric and operation
∗ is distributes over arbitrary meets, then for all L-fuzzy sets A ∈ LX and
B ∈ LY the following inequality holds

δR(A,B) ⊕ B ≥ δR(δR(A,B), B) ≥ δR(A,B).

Proof. The inequality δR(δR(A,B), B) ≥ δR(A,B) follows from Corollary 3.
We establish the second inequality as follows. Let X = Y = Z be sets and take
some z ∈ Z. Then
δR(δR(A,B), B)(z) =

(∨
y∈Y R(z, y) ∗ δR(A,B)(y)

)
⊕ B(z) =[∨

y∈Y

(
R(z, y) ∗

(∨
x∈XR(y, x) ∗ A(x)

)
⊕ B(y))

)]
⊕ B(z) ≤[∨

y∈Y (R(z, y) ∗ (R(y, z) ∗ A(z)) ⊕ B(y))
]

⊕ B(z) ≤[∨
y∈Y (R(z, y) ∗ (R(y, z) ∗ A(z)) ⊕ B(y))

]
⊕ B(z) =[∨

y∈Y (R(z, y) ∗ (R(z, y) ∗ A(z)) ⊕ B(y))
]

⊕ B(z) ≤[∨
y∈Y (R(z, y) ∗ A(z)) ⊕ B(y))

]
⊕ B(z) = (by Lemma2)∨

y∈Y ((R(z, y) ∗ A(z)) ⊕ B(z)) ⊕ B(y)) ≤[∨
y∈Y (R(z, y) ∗ A(z)) ⊕ B(z)

]
⊕ B = δR(A,B)(y) ⊕ B. �

Since in case B = 0Y in the proof we do not need join-distributivity of the
co-product ⊕, we get the following corollary from the previous theorem.

Corollary 4. If the L-fuzzy relation R is reflexive and symmetric, then
δR(δR(A, 0Y ), 0Y ) = δR(A, 0Y ) and hence operator δR(·, 0Y ) is idempotent.

5 Interrelations Between Fuzzy Relational Erosion and
Dilation

One of the most important attributes of mathematical morphology is the interre-
lations between erosion and dilation which manifest in two ways: as the adjunc-
tion between erosion and dilation and as the duality between erosion and dilation.
One or both of them exist in all approaches to fuzzy morphology known to us.
It is the aim of this section to study the corresponding interrelation in our case.
Unfortunately, to get the analogues of these interconnections in case of struc-
tured relational erosion and dilation, we have to assume additional conditions
laid down on the quantale (L,≤,∧,∨, ∗).
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5.1 Duality Between Fuzzy Relational Erosion and Dilation

Theorem 1. Let (L,≤,∨,∧, ∗) be a Girard quantale. Then for every B ∈ LX

operators εR(·, B) and δR(·, B) make a dual pair:

εcR(A,B) = δR(Ac, B) ∀A ∈ LX .

Proof. We prove the theorem by a series of equivalent transitions which are
justified by the definition of Girard quantale:
εcR(A,B)(y) =((∧

x∈X(R(x, y) 
→ A(x))
)

∗ Bc(y)
)


→ 0 = (definition of a Girard quntale)(∧
x∈X((R(x, y) 
→ A(x)) 
→ 0)

)
⊕ (Bc(y) 
→ 0) = (by Lemma 3)(∨

x∈XR(x, y) ∗ (A(x) 
→ 0)
)

⊕ B(y) = δR(Ac, B)(y).
�

Corollary 5. Let (L,≤,∨,∧, ∗) be a Girard quantale. Then for every B ∈ LX

δcR(A,B) = εR(Ac, B) ∀A ∈ LX .

5.2 Adjunction (εR(·, B), δR(·, B))

When studying the problem of adjunction between operators εR(·, B) and
δR(·, B), we inevitably (?) have to assume that ∗ and ⊕ constitute an adjuc-
tion. In the next definition we specify what we mean by this.

Definition 10. A pair (∗,⊕) is called adjunctive if for any α, β, γ ∈ L

α ⊕ β ≤ γ ⇐⇒ α ≤ γ ∗ βc.

Unfortunately, at the moment we have only one example of an adjunctive
pair (∗,⊕)- namely the one that corresponds to �Lukasiewicz t-norm and its
generalizations.

Theorem 2. Let(L,≤,∧,∨, ∗) be a strongly divisible Girard monoid, ∗
distribute over arbitrary meets and (∗,⊕) be an adjunctive pair. Then
(εR(·, B), δR(·, B)) is an adjunctive pair.

Proof. Since both functors εR(·, B) and δR(·, B) are defined on the lattice LX

and take values in the same lattice LX , the adjunction just means that these
functors are related by Galois connection, that is for any A,C ∈ LX :

δR(A,B) ≤ C ⇐⇒ εR(C,B) ≤ A.

We prove this by the following series of transitions: δR(A,B)(y) ≤ C(y) ∀y ∈
X ⇐⇒(∨

x∈X(R(x, y) ∗ A(y)
)

⊕ B(y) ≤ C(y) ∀y ∈ Y ⇐⇒ (by Lemma 2)
(R(x, y) ∗ A(y)) ⊕ B(y) ≤ C(y) ∀x, y ∈ X ⇐⇒ (by adjunction (∗,⊕))
R(x, y) ∗ A(y) ≤ C(y) ∗ Bc(y) ∀x, y ∈ X ⇐⇒
A(y) ≤ R(x, y) 
→ (C(y) ∗ Bc(y)) ∀x, y ∈ X ⇐⇒ (by Lemma 4)
A(y) ≤ (R(x, y) 
→ C(y)) ∗ Bc(y)) ∀x, y ∈ X ⇐⇒
A(y) ≤

∧
x∈X(R(x, y) 
→ C(y)) ∗ Bc(y) ∀x,∈ X ⇐⇒

A(y) ≤ εR(C,B)(y) ∀y ∈ X. �
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6 Fuzzy Morphological Spaces

Basing on the concepts of stratified relational erosion and dilation and the results
obtained in the previous sections, in this section we introduce the concept of a
fuzzy relational morphological space and consider its basic properties. Special
attention is made to interpreting these properties from topological point of view.
To make exposition more homogeneous, in this section we assume that (L,≤
,∧,∨, ∗) is a fixed quantale and operation ∗ : L×L → L distributes over arbitrary
meets. Further, let X be a set and R : X × X → L be a reflexive symmetric L-
fuzzy relation on the set X. Now, properties of the erosian operator obtained in
in Proposition 3 and Corollaries 1, 2 and properties of dilation operator obtained
established in Proposition 6 and Corollaries 3, 4 allow to get the following list
of properties:

(1) εR(aX , B) = aX ∗ Bc for every a ∈ L.
(2) If A1 ≤ A2 ∈ LX then εR(A1, B) ≤ εR(A2, B).
(3) Given {Ai | i ∈ I} ⊆ LX , we have εR

(∧
i∈IAi, B

)
=

∧
i∈IεR(Ai, B).

(4) εR(A,B) ≤ A for every A ∈ LX .
(5) εR(εR(A,B), B) ≤ εR(A,B) for every A ∈ LX

(5’) εR(εR(A, 0Y ), 0Y ) = εR(A, 0Y ) for every A ∈ LX , and hence operator
εR(·, 0X) is idempotent.

(6) δR(aX , B) = aY ⊕ B for every a ∈ L.
(7) If A1 ≤ A2 ∈ LX then δR(A1, B) ≤ δR(A2, B).
(8) Given {Ai | i ∈ I} ⊆ LX , it holds δR

(∨
i∈IA,B

)
=

∨
i∈IδR(Ai, B).

(9) δR(A,B) ≥ A for every A ∈ LX .
(10) δR(δR(A,B), B) ≥ δR(A,B) for every A ∈ LX .
(10’) δR(δR(A, 0Y ), 0Y ) = δR(A, 0Y ) for every A ∈ LX and hence operator

δR(·, 0Y ) is idempotent.

Thus properties (1)–(5) remind basic properties of an L-fuzzy stratified pre-
interior Alexandroff operator int : LX → LX [2, Appendix A]. Moreover, in case
when (5) is replaced by (5′), they are just the axioms of an L-fuzzy stratified
interior Alexandroff operator. In its turn, properties (6)–(10) of the dilation
operator εR(·, B) remind basic properties of the L-fuzzy stratified Alexandroff
pre-closure operator cl : LX → LX [2, Appendix A]. Moreover, in case when
(10) is replaced by (10′), they are just the axioms of an L-fuzzy stratified closure
Alexandroff operator.

Remark 1. Stratified interior means that int(αX) = αX for all α ∈ L and strat-
ified closure in our context mean that cl(αX) = αX for all α ∈ L (and not only
for α = 0, see e.g. [17], [15]). The adjective Alexandroff means that the inter-
section axiom in the definition of interior and closure of an L-fuzzy topological
space hold for arbitrary families (and not only finite) of (fuzzy) sets, see e.g. [1],
[6]. Thus, the tuple (X,R, εR, δR) reminds the definition of a pre-di-topological
space [5].

Definition 11. A quadruple (X,R, εR(·, B), δR(·, B)) is called an L-fuzzy rela-
tional morphological space.
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Further, in case B = 0Y operator εR(·, B) is idempotent by property (5′) and
operator δR(·, B) is idempotent by property (10′). Therefore by setting in an
L-fuzzy relational morphological space (X,R, εR(·, B), δR(·, B)) families of L-
fuzzy sets TR = {U ∈ LX |εR(U,B) = U} and SR = {V ∈ LX |δR(V,B) = V },
we obtain a fuzzy di-topological [5] space (X,R, TR,SR). However, wishing to
view it as a special type of an L-fuzzy relational morphological space, we call
such spaces pure L-fuzzy relational morphological spaces - “pure” in the sense
that they were not influenced by structuring.

To view L-fuzzy morphological spaces as a category M(L) and the category
M

p(L) of pure L-fuzzy morphological spaces as its subcategory, we must specify
its morphisms. We do it patterned after the topological background of these
categories.

Definition 12. Let X1 = (X1, R1, εR1, δR1) and X2 = (X2, R2, εR2) be two L-
fuzzy relational morphological spaces. A mapping f : X1 → X2 is called a con-
tinuous transformation from X1 to X2 if and only if the following conditions are
satisfied:

1. R1(x, y) ≤ R2(f(x), f(y)) ∀ x, y ∈ X1;
2. f(δR1(A,B)) ≤ δR2(f(A), f(B)) ∀A,B ∈ LX1 .
3. f−1(εR2(A,B)) ≤ εR1(A,B) ∀A,B ∈ LX2 .

The proof of the following proposition is obvious

Proposition 9. Given three L-fuzzy morphological spaces X1, X2 and X3 and
continuous transformations f : X1 → X2 and g : X2 → X3, the composition
g ◦ f : X1 → X3 is a continuous transformation. Given an L-fuzzy morphological
space X , the identity mapping idX : X → X is continuous.

Corollary 6. L-fuzzy morphological spaces and their continuous transforma-
tions constitute a category M(L).

Remark 2. In this section we did not assume any additional conditions on the
quantale (L,≤,∧,∨, ∗) except of the conditions supposed throughout the paper
and meet-semicontinuity of the operation ∗. However, in case when (L,≤,∧,∨, ∗)
is a Girard quantale and/or satisfied conditions assumed in Theorem 3, some
additional results, in particular, of categorical nature, can be obtained for the
L-fuzzy relational morphological spaces. However, this will be the subject of the
subsequent work.

7 Conclusion

In this paper, we have introduced the structured versions of L-fuzzy relational
erosion and dilation operators defined on the L-power-set LX of the relational
set (X,R), generalizing (unstructured) L-fuzzy relational erosion and dilation
counterparts introduced in [19] and further studied in [23]. After considering
first separately and independently properties of L-fuzzy relational erosion and
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dilation we proceed with the study of interrelations between these operators.
When developing the research in this direction we assume that L is a Girard
quantale and in some cases impose additional conditions on the operation ∗ in
the quantale L. The main result here is that under assumption of some conditions
the operators εR and δR are dual and represent an adjunctive pair. In the last,
fifth section we introduce category of L-fuzzy morphological spaces. Introducing
these categories, we base on a certain analogy on behavior of erosion and dilation
operators with topological operators of interior and closure.

As the main directions for the further research of structured L-fuzzy rela-
tional erosion and dilation operators and the corresponding categories of L-fuzzy
morphological spaces we view the following.

– When studying the interrelations between structured L-fuzzy relational ero-
sion and structured L-fuzzy relational dilation we had to impose some addi-
tional conditions on the quantale L, see e.g. Definitions 1 and 2. These con-
ditions are sufficient but we do not know yet whether they are necessary.
Probably these results can be obtained for some weaker conditions.

– In this paper, we address to the basic concepts of structured L-fuzzy relational
mathematical morphology, namely erosion and dilation. Aiming to develop
more or less full-bodied version of structured L-fuzzy relational mathemat-
ical morphology, as the second step we see the study of structured L-fuzzy
relational opening and closing operators. At present we are working in this
direction.

– As a challenging direction for the further research we consider the study of
structured L-fuzzy relational morphological spaces, in particular to develop
the categorical approach to L-fuzzy relational spaces.

– Quite interesting, especially from the point of possible application, will be to
compare structured L-fuzzy relational morphological spaces with some kind
of fuzzy rough approximation systems (cf [9,10,20], etc,). In particular, it
could be useful in the study of big volumes of transformed data.

– One of the main directions of mathematical morphology is image processing.
Probably, also our approach will have useful application in this area.

Acknowledgement. The authors express appreciation to the anonymous referees for
reading the paper carefully and making useful criticisms.
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23. Šostak, A., Uļjane, I.: Some remarks on topological structure in the context of fuzzy

relational mathematical morphology. Atlantis Series in Uncertainty Modelling, vol.
1, pp. 776–783 (2019). https://doi.org/10.2991/eusflat-19.2019.106

24. Valverde, L.: On the structure of F -indistinguishability operators. Fuzzy Sets Syst.
17, 313–328 (1985)

25. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3, 177–200 (1971)

https://doi.org/10.2991/eusflat-19.2019.106


Isotone L-Fuzzy Formal Concept Analysis
and L-Valued Fuzzy Measures

and Integrals

Ondrej Kŕıdlo(B)
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Abstract. The main idea of the paper is to generalize the concept of
lattice valued fuzzy measures and integrals for data from complete resid-
uated lattice where double negation law holds and then to show their
relationship to isotone L-fuzzy concept forming operators.
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1 Introduction

Once I saw a very nice presentation about fuzzy sets and its applications and
basic technics where very simple but nice toy example of fuzzy measure and
fuzzy integral were presented. It was my almost first meeting with such an area
where I found some small intuitive connection with fuzzy Formal concept analysis
(FCA) [2,3,5,6,12,13] that is my main topic for years. After that experience my
scientific curiosity led me to papers that seemed to me as a newcomer as most
understandable [1,7,14–17] and also very useful was to read two papers that
deals with both fuzzy integrals and fuzzy FCA [4,8].

Main topic of the paper is to first connect two notions, lattice valued fuzzy
measures and integrals [17] and t-norm and t-conorm fuzzy measures and inte-
grals [16] into one “complete residuated lattice”-valued fuzzy measures and inte-
grals, where double negation law has to be preserved. Next step is to show their
connection with isotone derivation (concept forming) operators of fuzzy formal
context that are the most important part of FCA.

Second section is dedicated to basics of isotone FCA based on data from com-
plete residuated lattice. Third section is about proposition of so called one-sided
fuzzy concept-forming operators and the definition of new complete residuated
lattice valued fuzzy measures and integrals. All needed and some new properties
are proved.
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2 Isotone L-fuzzy Formal Concept Analysis

Definition 1. An algebra L =
〈
L,∧,∨, 0, 1,⊗,→ 〉

is said to be a complete
residuated lattice if

1.
〈
L,∧,∨, 0, 1

〉
is a complete lattice where 0 and 1 are the bottom and top

elements (resp.).
2.

〈
L,⊗, 1

〉
is a commutative monoid.

3. 〈⊗,→〉 is an adjoint pair, i.e. k ⊗ m ≤ n if and only if k ≤ m → n, for all
k,m, n ∈ L, where ≤ is the ordering generated by ∧ and ∨.

It will be important to have L with double neggation law, ie. ¬¬k = k for
any k ∈ L, where ¬k = k → 0.

Definition 2. A Girard monoid is a residuated lattice L satisfying the law of
double negation, namely, the equality x = (x → 0) → 0 holds for all x ∈ L.

This notion represents one of the several flavours in which one can find residuated
lattices, it was used by Girard in his development programme for linear logics,
and a study of its structure in the particular case of the unit interval can be
found in [9]. Other well-known enriched versions of residuated lattices include,
for instance, Heyting algebras (satisfying x⊗ y = x∧ y), BL-algebras (satisfying
divisibility, i.e. x ∧ y = x ⊗ (x → y), and the prelinearity, i.e. (x → y) ∨ (y →
x) = 1), or MV-algebras (BL-algebra satisfying the law of double negation).

Definition 3. The operator ⊕ : L × L → L is defined by

a ⊕ b = ¬a → b = (a → 0) → b.

Assuming that we are working on a Girard monoid, it is not difficult to
check that ⊕ is commutative and associative. Furthermore, the De Morgan laws
between ⊗ and ⊕, and also between ∨ and ∧, and contraposition law also hold.
Hereafter, we will assume that L is a Girard monoid.

Let X be any final set. The ordered set (complete lattice) of all L-sets over
X will be denoted by LX .

Definition 4. L-Fuzzy Formal Context is a triple 〈B,A,L, r〉 where B is the
set of objects, A is the set of attributes and r : B × A → L is a binary relation
between objects and attributes.

Definition 5. Let us define two pairs of so called isotone derivation opera-
tors between (L-fuzzy) powerset complete lattices over the sets of objects and
attributes as follows:

1. – ↗: LB ←− LA and ↙: LA ←− LB.
– ↗ (f)(a) =

∨
b∈B(f(b) ⊗ r(b, a)) for any f ∈ LB.

– ↙ (g)(b) =
∧

a∈A(r(b, a) → g(a)) for any g ∈ LA.
2. – ↖: LB ←− LA and ↘: LA ←− LB.

– ↖ (f)(a) =
∧

b∈B(r(b, a) → f(b)) for any f ∈ LB.
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– ↘ (g)(b) =
∨

a∈A(g(a) ⊗ r(b, a)) for any g ∈ LA.

For above defined operators holds (↙,↗) and (↘,↖) form an isotone Galois
connections between LB and LA, i.e. for any f ∈ LB and g ∈ LA holds

↗ (f) ≤ g ⇔ f ≤↙ (g) and g ≤↖ (f) ⇔ ↘ (g) ≤ f.

As a consequence of previous facts the compositions

– ↙↗ and ↖↘ forms closure operators on LB or LA respectively.
– ↗↙ and ↘↖ forms interior operator on LA or LB respectively.

That means that

– all compositions are monotone
– ↙↗ and ↖↘ are inflationary (i.e. ↖↘ (g) ≥ g for any g ∈ LA)
– ↗↙ and ↘↖ are deflationary (i.e. ↘↖ (f) ≤ f for any f ∈ LB).
– all compositions are idempotent (i.e. ↙↗↙↗ (f) =↙↗ (f) for any f ∈ LB)

Pairs (f, g) ∈ LB × LA such that ↗ (f) = g and ↙ (g) = f is called L-
fuzzy formal concept of L-context 〈B,A,L, r〉 with respect to operators (↗,↙).
f is then called extent and g is called intent. All extents will be denoted by
Ext(B,A,L, r,↗,↙) and all intents by Int(B,A,L, r,↗,↙). Similarly for the
other pair of operators (↖,↘). Sets of all extents and intents ordered by L-fuzzy
set inclusion form complete lattices.

3 L-fuzzy Isotone Derivation Operators and L-fuzzy
Measures and Integrals

Krajči in [10,11] defined a modification of antitone L-fuzzy derivation operators
(↑, ↓), mappings between LB and LA into the case of mappings between 2B and
LA, due to better understanding or interpretation of possible results.

So now the isotone derivation operators will be modified into one sided form:
Let X ⊆ B be an arbitrary classical subset. χX is a characteristic function

of X. Let us define a new mappings ↗ : 2B → LA and ↖ : 2B → LA

↗(X)(a) =↗ (χX)(a) =
∨

b∈B

χX(b) ⊗ r(b, a)

=
∨

b∈X

1 ⊗ r(b, a) ∨
∨

b∈Xc

0 ⊗ r(b, a)

=
∨

b∈X

1 ⊗ r(b, a) ∨ 0 =
∨

b∈X

r(b, a)
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↖(X)(a) =↖ (χX)(a) =
∧

b∈B

(r(b, a) → χX(b))

=
∧

b∈X

(r(b, a) → 1) ∧
∧

b∈Xc

(r(b, a) → 0)

= 1 ∧
∧

b∈Xc

(r(b, a) → 0) =
∧

b∈Xc

¬r(b, a)

Definition 6. Let B be an arbitrary set and L be the lattice with bottom 0 and
top element 1. The mapping μ : P(B) → L is called L-valued fuzzy measure iff
μ is monotone, μ(∅) = 0 and μ(B) = 1.

Before the theorem about a new measure, let us define a notion of normal
L-set and normal L-context.

Definition 7. Any L-set from LX is called normal when its maximal member-
ship value is equal to 1 (top of L). Let 〈B,A,L, r〉 be a L-fuzzy formal context,
such that its columns r(−, a) are normal L-fuzzy sets from LB. Such L-context
is also called normal.

Theorem 1. Let 〈B,A,L, r〉 be a normal L-fuzzy formal context. Let a ∈ A be
arbitrary attribute. The following upper and lower L-valued mappings

– μ
a

where for any X ⊆ B is μ
a
(X) = ↗(X)(a)

– μa where for any X ⊆ B is μa(X) = ↖(X)(a).

are L-valued fuzzy measures.

Proof. It is well known that operators ↗ and ↖ are monotone, hence also their
one-sided fuzzy form will also be monotone. Moreover

μa(B) =
∧

b∈Bc

¬r(b, a) = 1 and μ
a
(∅) =

∨

b∈∅
r(b, a) = 0

for any a ∈ A.
What can be little questionable are the following two facts. In general μa(∅)

need not to be equal to 0 and μ
a
(B) need not to be equal to 1. This is why

the precondition of normality is here, which says that there for any a ∈ A there
exists at least one b ∈ B such that r(b, a) = 1. Hence

μa(∅) =
∧

b∈∅c

¬r(b, a) =
∧

b∈B

¬r(b, a) = 0 and μ
a
(B) =

∨

b∈B

r(b, a) = 1

��
Before the definition of integral let us first define some auxiliary notation.

Let f ∈ LB be an arbitrary L-set over B. Then
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– fα = {b ∈ B|f(b) ≥ α} is well known α-cut of L-set for some α ∈ L
– fα = {b ∈ B|f(b) �≤ α}

The following definition is a generalisation of the definition of lower and
upper-lattice valued fuzzy integrals from [17].

Theorem 2. Let 〈B,A,L, r〉 be the normal L-fuzzy formal context and for each
a ∈ A there are corresponding μ

a
and μa lower and upper L-fuzzy measures.

The following lower and upper L-valued mappings defined for any f ∈ LB and
X ⊆ B as follows

∫

X

fdμ
a

=
∨

α∈L
α ⊗ μ

a
(fα ∩ X) and

∫

X

fdμa =
∧

α∈L
α ⊕ μa(fα ∩ X)

are lower and upper L-valued fuzzy integrals.

Proof. In [14] where the definition of fuzzy integral says that it has to be idempo-
tent homeomorphism. So we have to prove for above defined L-valued mappings
the following properties:

1. they are monotone
2. they map top L-set from LB to 1 and bottom to 0
3. for any γ ∈ L a constant L-set γ defined as γ(b) = γ for any b ∈ B holds:

–
∫

B
γdμ

a
= γ

–
∫

B
γdμa = γ

1. The monotonicity follows directly from the definition of integrals.
2. From interior and closure operator properties of ↗ and ↙ from the Sect. 2

and the normality precondition the following holds.
∫

B

χBdμ
a

=
∨

α∈L
α ⊗ μ

a
(B) =

∨

α∈L
α ⊗ 1 = 1 ⊗ 1 = 1

∫

B

χ∅dμ
a

=
∨

α∈L
α ⊗ μ

a
(∅) =

∨

α∈L
α ⊗ 0 = 0

∫

B

χBdμa(B) =
∧

α∈LL

α ⊕ μa(B) =
∧

α∈L
α ⊕ 1 = 1

∫

B

χBdμa(∅) =
∧

α∈LL

α ⊕ μa(∅) =
∧

α∈L
α ⊕ 0 = 0 ⊕ 0 = 0
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3.
∫

B

γdμ
a

=
∨

α∈L
α ⊗ μ

a
(B ∩ γα)

=
∨

α∈L;α≤γ

α ⊗ μ
a
(B ∩ γα) ∨

∨

α∈L;α�≤γ

α ⊗ μ
a
(B ∩ γα)

=
∨

α∈L;α≤γ

α ⊗ μ
a
(B) ∨

∨

α∈L;α�≤γ

α ⊗ μ
a
(∅)

= γ ⊗ μ
a
(B) ∨

∨

α∈L;α�≤γ

α ⊗ 0

= (γ ⊗ 1) ∨ 0 = γ

∫

B

γdμa =
∧

α∈L
α ⊕ μa(B ∩ γα)

=
∧

α∈L;α≤γ

α ⊕ μa(B ∩ γα) ∧
∧

α∈L;α�≤γ

α ⊕ μa(B ∩ γα)

=
∧

α∈L;α≤γ

α ⊕ μa(∅) ∧
∧

α∈L;α�≤γ

α ⊕ μa(B)

= γ ⊕ μa(∅) ∧
∧

α∈L;α�≤γ

α ⊕ 1

= γ ∧ 1 = γ

��
The following theorem will show a relationship between new integrals and

concept forming operators.

Theorem 3. Let 〈B,A,L, r〉 be a L-context and {μ
a
|a ∈ A} and {μa|a ∈ A} be

its collections of measures. Then for corresponding integrals holds:
∫

B

fdμ
a

=↗ (f)(a) and
∫

B

fdμa =↖ (f)(a).

Proof. Let f be an arbitrary from LB .
∫

B

fdμ
a

=
∨

α∈L
α ⊗ μ

a
(B ∩ fα)

=
∨

α∈L
α ⊗

∨

b∈fα

r(b, a)

=
∨

α∈L
α ⊗

∨

b∈B;f(b)≥α

r(b, a)
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=
∨

α∈L

∨

b∈B;f(b)≥α

α ⊗ r(b, a)

=
∨

b∈B

∨

α∈L;f(b)≥α

α ⊗ r(b, a)

=
∨

b∈B

f(b) ⊗ r(b, a) =↗ (f)(a)

∫

B

fdμa =
∧

α∈L
α ⊕ μa(B ∩ fα)

=
∧

α∈L
¬α →

∧

b∈(fα)c

¬r(b, a)

=
∧

α∈L

∧

b∈B;f(b)≤α

¬α → ¬r(b, a)

=
∧

α∈L

∧

b∈B;f(b)≤α

r(b, a) → α

=
∧

b∈B

∧

α∈L;f(b)≤α

r(b, a) → α

=
∧

b∈B

r(b, a) → f(b) =↖ (f)(a)

Theorem 4. Let 〈B,A,L, r〉 be a L-context and {μ
a
|a ∈ A} and {μa|a ∈ A} be

its collections of measures. Then for corresponding integrals holds:
∫

X

fdμ
a

=↗ (f ∩ χX)(a) and
∫

X

fdμa =↖ (f ∩ χX)(a)

Proof. Let f be an arbitrary from LB and X ⊆ B.
∫

X

fdμ
a

=
∨

α∈L
α ⊗ μ

a
(fα ∩ X)

=
∨

α∈L
α ⊗

∨

b∈fα∩X

r(b, a)

=
∨

α∈L

∨

b∈fα∩X

α ⊗ r(b, a)

=
∨

α∈L

∨

b∈X,f(b)≥α

α ⊗ r(b, a)

=
∨

b∈X

∨

α∈L,α≤f(b)

α ⊗ r(b, a)
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=
∨

b∈X

f(b) ⊗ r(b, a)

=
∨

b∈B

(f(b) ∧ χX(b)) ⊗ r(b, a)

=↗ (f ∩ χX)(a)

∫
X

fdμa =
∧

α∈L
α ⊕ μa(fα ∩ X)

=
∧

α∈L
α ⊕

∧
b∈(fα∩X)c

¬r(b, a)

=
∧

α∈L
α ⊕

∧
b∈(fα)c∪Xc

¬r(b, a)

=

⎛
⎝ ∧

α∈L
α ⊕

∧
b∈(fα)c

¬r(b, a)

⎞
⎠ ∧

⎛
⎝ ∧

α∈L
α ⊕

∧
b∈(X)c

¬r(b, a)

⎞
⎠

=

⎛
⎝ ∧

α∈L
¬α →

∧
f(b)≤α

¬r(b, a)

⎞
⎠ ∧

⎛
⎝ ∧

α∈L
¬α →

∧
b∈(X)c

¬r(b, a)

⎞
⎠

=

⎛
⎝ ∧

α∈L

∧
f(b)≤α

r(b, a) → α

⎞
⎠ ∧

⎛
⎝ ∧

α∈L

∧
b∈(X)c

r(b, a) → α

⎞
⎠

=

⎛
⎝ ∧

b∈B

∧
α∈L;α≥f(b)

r(b, a) → α

⎞
⎠ ∧

⎛
⎝ ∧

b∈(X)c

∧
α∈L

r(b, a) → α

⎞
⎠

=

( ∧
b∈B

r(b, a) → f(b)

)
∧

⎛
⎝

⎛
⎝ ∧

b∈(X)c

r(b, a) → 0

⎞
⎠ ∧

( ∧
b∈X

r(b, a) → 1

)⎞
⎠

=↖ (f)(a) ∧
( ∧

b∈B

(r(b, a) → χX(b))

)

=↖ (f)(a)∧ ↖ (χX)(a) =↖ (f ∩ χX)(a)

��
Theorem 5. Let X ⊆ B and f ∈ LB be arbitrary. Then

∫

X

fdμa = ¬
∫

Xc

¬fdμa
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Proof.
∫

X

fdμa =↘ (f ∩ χX)(a)

=
∧

b∈B

(r(b, a) → (f ∩ χX)(b)) =
∧

b∈B

(¬(f ∩ χX)(b) → ¬r(b, a))

=
∧

b∈B

(¬(f ∩ χX)(b) → (r(b, a) → 0))

=
∧

b∈B

((¬(f ∩ χX)(b) ⊗ r(b, a)) → 0)

= (
∨

b∈B

(¬(f ∩ χX)(b) ⊗ r(b, a)) → 0)

= ¬(
∨

b∈B

(¬(f ∩ χX)(b) ⊗ r(b, a)))

= ¬ ↗ (¬(f ∩ χX))(a) = ¬ ↗ (¬f ∩ χXc))(a)

= ¬
∫

Xc

¬fdμa

4 New Measures and Integrals Defined on Concept
Lattices

And at the end we can also define a “new” measures and integrals for L-context
〈B,A,L, r〉 as follows:

– μ : P(B) → Int(B,A,L, r,↗,↙) defined as μ(X)(a) = μ
a
(X)

– μ : P(B) → Int(B,A,L, r,↖↘) defined as μ(X)(a) = μa(X)
–

∫
X

fdμ : LB → Int(B,A,L, r,↗,↙) defined as
∫

X
fdμ(a) =

∫
X

fdμ
a

–
∫

X
fdμ : LB → Int(B,A,L, r,↗,↙) defined as

∫
X

fdμ(a) =
∫

X
fdμ

a

In such a case the measures and integrals are mappings to closure and interior
systems that are complete lattices

– Int(B,A,L, r,↗,↙) with top ↗ (χB) and bottom χ∅
– Int(B,A,L, r,↖,↘) with top χB and bottom ↖ (χ∅)

Where all “inconveniences” with normality are hence solved.

Proposition 1. Let μB
a

and μB be L-measures corresponded to L-context
〈B,A,L, r〉. Let μA and μA be L-measures corresponded to L-context 〈A,B,L, rt〉
where rt is the transposition of r. Then

∫

B

fdμB ≤ g ⇔ f ≤
∫

A

gdμA

and ∫

A

gdμA ≤ f ⇔ g ≤
∫

B

fdμB

Proof. From previous facts.
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5 Conclusion

New lattice valued fuzzy measures and integrals are proposed by using data
and operations from Girard monoid, i.e. complete residuated lattice with double
negation law that are built from fuzzy formal context. Main result is to show
the relationship between proposed measures and integrals and isotone concept-
forming operators.
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Abstract. The construction of Galois connections between unbalanced
structures has received considerable attention in the recent years. In a
nutshell, the problem is to find a right adjoint of a mapping defined
between sets with unbalanced structure; in this paper we survey recent
results obtained in this framework, focusing specially on the fuzzy struc-
tures that have been considered so far in this context: fuzzy preposets,
fuzzy preordered structures, and fuzzy T-digraphs.

Keywords: Galois connection · Computational intelligence

1 Introduction

The notion of Galois connection (or its sibling, adjunction) has received con-
siderable attention since its introduction [28], and it is common to find papers
dealing with them either from a practical or a theoretical point of view, see [11]
for a short survey. Galois connections (both in a crisp and in a fuzzy setting) have
found applications in areas such as rough set theory [12,15,33]; (fuzzy) Mathe-
matical Morphology in which the (fuzzy) operations of erosion and dilation are
known to form a Galois connection [5,22,29,30]; another important source of
applications of Galois connections is within the field of Formal Concept Anal-
ysis [7,13,16,31], where the concept-forming operators form either an antitone
or isotone Galois connection (depending on the specific definition). Moreover,
one can find applications in many other areas; for instance, Kycia [26] demon-
strates how to construct a Galois connection between two systems with entropy;
Brattka [6] considers a formal Galois connection in a certain lattice of repre-
sentation spaces; Faul [17] uses adjunctions to study two apparently different
approaches to broadcast domination of product graphs; Moraschini [27] intro-
duces a logical and algebraic description of right adjoint functors between gen-
eralized quasi-varieties; Gibbons et al. [21] use adjunctions to elegantly explain
relational algebra constructs.

Concerning the generalization to the fuzzy case of the notion of Galois connec-
tion, to the best of our knowledge, the first approach was due to Bělohlávek [3].
Later, a number of authors have considered different approaches to the so-called
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fuzzy (isotone or antitone) Galois connections; see [4,14,18,20,23,24,32]. In [32],
fuzzy Galois connections on fuzzy posets were introduced as a generalization of
Bělohlávek’s fuzzy Galois connection, and our approach is precisely based on
this generalization.

In this paper, we survey recent results in our research line on the construction
of Galois connections between sets with unbalanced structures initiated in [19],
in which we attempt to characterize the existence of the right part of a Galois
connection of a given mapping f : A → B between sets with a different structure
(it is precisely this condition of different structure that makes this problem to be
outside the scope of Freyd’s adjoint functor theorem). In [19], given a mapping
from a crisp (pre-)ordered set A = (A,≤A) into an unstructured set B, we solved
the problem of defining a suitable (pre-)ordering relation ≤B on B, for which
there exists a mapping such that the pair of mappings forms an isotone Galois
connection (or adjunction) between the (pre-)ordered sets (A,≤A) and (B,≤B).

Specifically, we consider the previous problem in different fuzzy frameworks:
in Sect. 3 we focus on the case of a fuzzy preposet A = (A, ρA) and an unstruc-
tured B, see [8]; later, in Sect. 4, the work is extended by replacing crisp equal-
ity by a fuzzy equivalence relation, therefore the problem considers a mapping
between a fuzzy preordered structure A = (A,≈A, ρA) and a fuzzy structure
(B,≈B), see [9]. Finally, in Sect. 5 we aim at obtaining a notion of Galois con-
nection whose components are, in fact, relations between fuzzy T-digraphs [10].

2 Preliminary Definitions

The standard notion of Galois connection is defined between two partially
ordered sets. However, not all the authors consider the same definition of Galois
connection and it is remarkable that the definitions are not equivalent. In fact,
there are four different notions of Galois connection, the most often used being
the “right Galois connection” (also known as antitone Galois connection) and
the “adjunction” (also known as isotone Galois connections).

Definition 1. Let A = (A,≤) and B = (B,≤) be posets, f : A → B and g : B →
A be two mappings. The pair (f,g) is called a

– Right Galois Connection between A and B, denoted by (f, g) : A ⇀↼ B if, for
all a ∈ A and b ∈ B it holds that a ≤ g(b) if only if b ≤ f(a).

– Left Galois Connection between A and B, denoted by (f, g) : A ⇁↽ B if, for all
a ∈ A and b ∈ B it holds that g(b) ≤ a if only if f(a) ≤ b.

– Adjunction between A and B, denoted by (f, g) : A � B if, for all a ∈ A and
b ∈ B it holds that a ≤ g(b) if only if f(a) ≤ b.

– Co-Adjunction between A and B, denoted by (f, g) : A � B if, for all a ∈ A
and b ∈ B it holds that g(b) ≤ a if only if b ≤ f(a).

It is noteworthy that this definition is also compatible with the case of A =
(A,≤) and B = (B,≤) being preordered sets.

Taking into account the dual order, A
∂ = (A,≥), it is not difficult to check

that the following conditions are equivalent:
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1. (f, g) : A ⇀↼ B.
2. (f, g) : A

∂ ⇁↽ B
∂ .

3. (f, g) : A � B
∂ .

4. (f, g) : A
∂ � B.

It is worth mentioning that all the results can be stated both in terms of
Galois connection or adjunctions, and either in terms of the existence and con-
struction of right adjoints (or residual mappings, namely, the component g of the
pair) or the existence and construction of left adjoints (or residuated mappings).

Galois Connections in the Fuzzy Case

As usual, we will consider a complete residuated lattice L = (L,≤,�,⊥,⊗,⇒) as
the underlying structure for considering the generalization to a fuzzy framework;
supremum and infimum will be denoted by ∨ and ∧, respectively.

An L-fuzzy set is a mapping from the universe set, say X, to the lattice L,
i.e. X : U → L, where X(u) means the degree in which u belongs to X. We will
denote LA to refer to the set of all mappings from A to L.

Given X and Y two L-fuzzy sets, X is said to be included in Y , denoted as
X ⊆ Y , if X(u) ≤ Y (u) for all u ∈ U . The subsethood degree S(X,Y ), by which
X is a subset of Y , is defined by S(X,Y ) =

∧
u∈U

(
X(u) ⇒ Y (u)

)
.

The first notion of fuzzy Galois connection was given by Bělohlávek, and it
can be rewritten as follows:

Definition 2 ([3]). An (L-)fuzzy Galois connection between A and B is a pair
of mappings f : LA → LB and g : LB → LA such that, for all X ∈ LA and
Y ∈ LB it holds that S(X, g(Y )) = S(Y, f(X)).

An L-fuzzy binary relation on U is an L-fuzzy subset of U × U , that is
ρU : U × U → L, and it is said to be:

– Reflexive if ρU (a, a) = � for all a ∈ U .
– ⊗-Transitive if ρU (a, b) ⊗ ρU (b, c) ≤ ρU (a, c) for all a, b, c ∈ U .
– Symmetric if ρU (a, b) = ρU (b, a) for all a, b ∈ U .
– Antisymmetric if ρU (a, b) = ρU (b, a) = � implies a = b, for all a, b ∈ U .

We can now introduce the notions of fuzzy poset and fuzzy preposet as follows:

– An L-fuzzy poset is a pair U = (U, ρU ) in which ρU is a reflexive, antisym-
metric and transitive L-fuzzy relation on U .

– An L-fuzzy preposet is a pair U = (U, ρU ) in which ρU is a reflexive and
transitive L-fuzzy relation on U .

We will need the following order-related notions in the fuzzy framework:
Let U = 〈U, ρU 〉 be a fuzzy poset.

(i) The crisp set of upper bounds of a fuzzy set X on U is defined as

Up(X) = {a ∈ U | X(u) ≤ ρA(u, a), for all u ∈ U} .
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(ii) The upset and downset of an element a ∈ U are defined as fuzzy sets
a↑, a↓ : U → L, where a↓(u) = ρU (u, a) and a↑(u) = ρU (a, u) for all u ∈ U.

(iii) An element a ∈ U is called a maximum of a fuzzy set X if X(a) = � and
X ⊆ a↓. The definition of a minimum is similar.

In absence of antisymmetry it is possible that several maximum (resp. mini-
mum) elements for X exist, which will be called p-maximum (resp. p-minimum).
We will write p-max X (resp. p-min X) to denote the set of p-maxima (resp. p-
minima) of X.

Remark 1. Although uniqueness is lost, given two p-maximum (resp. p-
minimum) elements x and y, we have that ρU (x, y) = �. This property will
be relevant later in subsequent sections.

We can now recall the extension to the fuzzy case provided by Yao and Lu,
also used in [8], which can be stated as follows:

Definition 3 ([32]). Let A = 〈A, ρA〉 and B = 〈B, ρB〉 be fuzzy preposets. A
pair of mappings f : A → B and g : B → A forms a Galois connection between
A and B, denoted (f, g) : A � B if, for all a ∈ A and b ∈ B, the equality
ρA(a, g(b)) = ρB(f(a), b) holds.

Note that we have maintained the original term used by Yao and Lu, although
it technically corresponds to an adjunction, not a Galois connection.

3 When the Domain Has the Structure of Fuzzy Preposet

In this section, we consider a mapping f : A → B from a fuzzy preposet A =
〈A, ρA〉 into an unstructured set B, and characterize those situations in which B
can be endowed with a fuzzy preorder relation and an isotone mapping g : B → A
can be built such that the pair (f, g) is an adjunction.

Let A = 〈A, ρA〉 be a fuzzy preposet, and consider a mapping f : A → B.
The fuzzy p-kernel relation ∼=A is the ⊗-transitive closure of the union of the
fuzzy equivalence relations ≈A and ≡f , where

(a1 ≈A a2) = ρA(a1, a2) ⊗ ρA(a2, a1) for all a1, a2 ∈ A .

and

(a1 ≡f a2) =

{
⊥ if f(a1) �= f(a2),
� if f(a1) = f(a2).

Note that ∼=A is also a fuzzy equivalence relation and the fuzzy equivalence
classes [a]∼=A

: A → L are the fuzzy sets defined by

[a]∼=A
(x) = (x ∼=A a). (1)

In the definition of the inherited structure, and also in the right adjoint, we
will make use of (some of) the following fuzzy powerings:

Given (A, ρ) and X,Y ⊆ A, we define the Hoare, Smyth and full fuzzy pow-
erings as follows:
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1. ρH(X,Y ) =
∧

x∈X

∨

y∈Y

ρ(x, y)

2. ρS(X,Y ) =
∧

y∈Y

∨

x∈X

ρ(x, y)

3. ρ∝(X,Y ) =
∧

x∈X

∧

y∈Y

ρ(x, y)

We can now state necessary and sufficient conditions for the existence of a
right adjoint from a fuzzy preposet to an unstructured set.

Theorem 1. Let A = 〈A, ρA〉 be a fuzzy preposet, and consider a mapping
f : A → B, then there exist a fuzzy preorder relation ρB on B and a mapping
g : B → A such that (f, g) : A � B if and only if there exists a subset S ⊆ A
such that, for all a, a1, a2 ∈ A:

1. S ⊆
⋃

a∈A

p-max[a]∼=A
.

2. p-min(Up([a]∼=A
) ∩ S) �= ∅

3. ρA(a1, a2) ≤ ρH

(
p-min(Up([a1]∼=A

) ∩ S),p-min(Up([a2]∼=A
) ∩ S)

)
.

The proof of the theorem is completely constructive, and the ordered struc-
ture on B is given as follows:

For any a0 ∈ A, there exist a number of suitable definitions of g : B → A,
and all of them can be specified as follows:

– If b ∈ f(A), then g(b) is any element in p-min(Up([xb]∼=A
)∩S) for xb ∈ f−1(b).

– If b /∈ f(A), then g(b) is any element in p-min(Up([a0]∼=A
) ∩ S).

Finally, the fuzzy relation ρa0
B : B × B → L is defined as follows

ρa0
B (b1, b2) = ρA(g(b1), g(b2)).

4 Changing Crisp Equality by a Fuzzy Equivalence
Relation

A further step towards generalization to the fuzzy realm is possible when consid-
ering fuzzy equivalence relations in each of the involved sets instead of the mere
equality relation. This leads to a notion of fuzzy Galois connection in which the
mappings f and g can be seen, in some sense, as fuzzy mappings instead of being
crisp ones.

In this section, we consider the case where there are two underlying fuzzy
equivalence relations in both the domain and the codomain of the mapping f ,
more specifically, f is a morphism between the fuzzy structures 〈A,≈A〉 and
〈B,≈B〉 where, in addition, 〈A,≈A〉 is a fuzzy preordered structure.

The additional consideration of an underlying fuzzy equivalence relation sug-
gests considering the following notions:
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(i) A fuzzy structure A = 〈A,≈A〉 is a set A endowed with a fuzzy equivalence
relation ≈A.

(ii) A morphism between two fuzzy structures A and B is a mapping f : A → B
such that for all a1, a2 ∈ A the following inequality holds: (a1 ≈A a2) ≤
(f(a1) ≈B f(a2)). In this case, we write f : A → B, and we say that f is
compatible with ≈A and ≈B .

(iii) A morphism between two fuzzy structures A and B is said to be
≈-injective if (f(a1) ≈B f(a2)) ≤ (a1 ≈A a2), for all a1, a2 ∈ A.
≈-surjective if for all b ∈ B there exists a ∈ A such that (f(a) ≈B b) = �.

(iv) Let B = 〈B,≈B〉 be a fuzzy structure, and consider a crisp subset X ⊆ B.
A mapping h : B → X is said to be a contraction if it is a morphism
h : B → 〈X,≈B〉 and h(x) = x for all x ∈ X.

Given a fuzzy structure A = 〈A,≈A〉, we can now introduce the notion of
fuzzy preordered structure as a pair A = 〈A, ρA〉 in which ρA is a fuzzy relation
that is ≈A-reflexive, ⊗-≈A-antisymmetric and ⊗-transitive, where

(i) ≈A-reflexive means (a1 ≈A a2) ≤ ρA(a1, a2) for all a1, a2 ∈ A.
(ii) ⊗-≈A-antisymmetric means ρA(a1, a2) ⊗ ρA(a2, a1) ≤ (a1 ≈A a2) for all

a1, a2 ∈ A.

If the underlying fuzzy structure is not clear from the context, we will sometimes
write a fuzzy preordered structure as a triplet A = 〈A,≈A, ρA〉.

The formal notion of p-maximum (resp. p-minimum) in the context of fuzzy
preordered structures is exactly the same as in the previous section; however,
the use of the underlying fuzzy equivalence relation leads to different properties.
Observe that, given two p-maxima x1, x2 of a fuzzy set X in a fuzzy preordered
structure, we obtain ρA(x1, x2) = � = ρA(x2, x1) and by ⊗-≈A-antisymmetry,
also (x1 ≈A x2) = �.

A reasonable approach to introduce the notion of Galois connection between
fuzzy preordered structures A and B would be the following:

Definition 4 ([9]). Let A and B be two fuzzy preordered structures. Given two
morphisms f : A → B and g : B → A, the pair (f, g) is said to be a Galois
connection between A and B (briefly, (f, g) : A � B) if the following conditions
hold for all a, a1, a2 ∈ A and b, b1, b2 ∈ B:

(G1) (a1 ≈A a2) ⊗ ρA(a2, g(b)) ≤ ρB(f(a1), b)
(G2) (b1 ≈B b2) ⊗ ρB(f(a), b1) ≤ ρA(a,g(b2))

The previous definition behaves as expected, namely, it is equivalent to the
standard equality for Galois connections. More specifically, the pair (f, g) is a
Galois connection between A and B if and only if both mappings are morphisms
and ρA(a, g(b)) = ρB(f(a), b) for all a ∈ A and b ∈ B.

Once again, we need the corresponding version of the kernel relation and its
equivalence classes. These definitions are given below:
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Let A and B be two fuzzy structures and let f : A → B be a morphism. The
fuzzy kernel relation ≡f : A × A → L associated with f is defined as follows, for
a1, a2 ∈ A,

(a1 ≡f a2) =
(
f(a1) ≈B f(a2)

)
.

The fuzzy kernel relation trivially is a fuzzy equivalence relation, and the equiv-
alence class of an element a ∈ A is the fuzzy set [a]f : A → L defined by
[a]f (u) = (f(a) ≈B f(u)) for all u ∈ A.

Given a fuzzy preordered structure A = 〈A,≈A, ρA〉, and crisp subsets X,Y
of A and . The fuzzy relations ≈A and ρA can be extended to the sets of p-
maxima as follows:

(
p−max(X) ≈A p−max(Y )

) def= (x ≈A y)

ρA

(
p−max(X),p−max(Y )

) def= ρA(x, y)

where x (resp. y) can be any element in p−max(X) (resp. p−max(Y )). It is not
difficult to prove that the definition does not depend on the choice of x and y.

The preceding notation allows us to state necessary conditions on f in order
to have a right adjoint in a more compact form which essentially follows the
scheme already obtained in [8] and [19].

Theorem 2 (Necessary conditions). Consider two fuzzy preordered struc-
tures A and B, together with two morphisms f : A → B and g : B → A. If (f, g)
is a Galois connection between A and B, then

1. p−max([a]f ) is not empty for all a ∈ A.
2. ρA(a1, a2) ≤ ρA

(
p−max([a1]f ),p−max([a2]f )

)
, for all a1, a2 ∈ A.

3. (a1 ≡f a2) ≤ (
p−max([a1]f ) ≈A p−max([a2]f )

)
, for all a1, a2 ∈ A.

We show now that the necessary conditions in Theorem2 are sufficient in the
case of a ≈-surjective mapping.

Theorem 3 (Sufficient conditions). Consider a fuzzy preordered structure
A, a fuzzy structure B = 〈B,≈B〉, and a ≈-surjective morphism f : A → B. If
the following conditions hold

1. p−max([a]f ) is not empty for all a ∈ A;
2. ρA(a1, a2) ≤ ρA

(
p−max([a1]f ),p−max([a2]f )

)
, for all a1, a2 ∈ A;

3. (a1 ≡f a2) ≤ (
p−max([a1]f ) ≈A p−max([a2]f )

)
, for all a1, a2 ∈ A;

then there exists a ≈B-reflexive, ⊗-≈B-antisymmetric and ⊗-transitive fuzzy
relation ρB on B and a morphism g : B → A such that (f, g) is a Galois con-
nection between the fuzzy preordered structures A and B = 〈B, ρB〉.

We also identify necessary and sufficient conditions in the case of a ≈-injective
mapping.

Theorem 4. Consider two fuzzy preordered structures A = 〈A, ρA〉 and B =
〈B, ρB〉. For a ≈-injective morphism f : A → B, the following statements are
equivalent:
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1. There exists a morphism g : B → A such that (f, g) : A � B.
2. There exist a contraction h : 〈B,≈B〉 → 〈f(A),≈B〉 and a fuzzy relation ρf(A)

defined as ρf(A)(f(a1), f(a2)) = ρA(a1, a2) such that the pair (i, h) is a Galois
connection between 〈f(A),≈B , ρf(A)〉 and 〈B,≈B , ρB〉, where i : f(A) → B
denotes the canonical embedding.

The previous results lead to the systematic construction of the induced struc-
ture and the right adjoint in Algorithm1.

Algorithm 1: Building Galois Connection
Data: A finite fuzzy preordered structure 〈A, ≈A, ρA〉, a finite fuzzy structure

〈B, ≈B〉 and a morphism f : 〈A, ≈A〉 → 〈B, ≈B〉.
Result: A morphism g : 〈B, ≈B〉 → 〈A, ≈A〉 and a ≈B-reflexive,

⊗-≈B-antisymmetric and ⊗-transitive fuzzy relation ρB such that
(f, g) : 〈A, ≈A, ρA〉 � 〈B, ≈B , ρB〉 if they exist, or the message “It is
not possible to build a Galois connection” otherwise.

1 Compute the relation ≡f on A defined by (a1 ≡f a2) := (f(a1) ≈B f(a2))
2 foreach a ∈ A do
3 Compute p−max([a]f ) where [a]f is the equivalence class of a w.r.t. ≡f

4 if p−max([a]f ) = ∅ then return “ It is not possible to build a Galois
connection”

5 else Let b = f(a) and consider an arbitrary element ψ(b) from p−max([a]f )

6 foreach a1, a2 ∈ A do
7 if ρA(a1, a2) 	≤ ρA(ψf(a1), ψf(a2)) or (a1 ≡f a2) 	≤ (ψf(a1) ≈A ψf(a2))

then
8 return “ It is not possible to build a Galois connection”

9 Define ρf(A) as ρf(A)(b1, b2) := ρA(ψ(b1), ψ(b2)) for each b1, b2 ∈ f(A)
10 foreach contraction h : B → f(A) do
11 Define μh in B as:
12 μh(b1, b2) := ρf(A)(b1, h(b2)) if b1 ∈ f(A) and μh(b1, b2) := (b1 ≈B b2)

otherwise
13 Compute ρB := μ2

h and g := ψ ◦ h
14 if ρB is ⊗-≈B-antisymmetric then return g and ρB

15 return “ It is not possible to build a Galois connection”

5 Relational Galois Connections Between Fuzzy
T-Digraphs

We attempt here a first generalization of the notion of relational Galois con-
nection to the fuzzy case. The focus is put on transitive fuzzy directed graphs,
fuzzy T-digraphs for short, because of their interest for applications. One can
find interesting theoretical applications of digraphs, for instance, Akram et al.
[1] introduce the notion of fuzzy rough digraph and consider its application
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in decision making. In [2], Baykasoglu applies a fuzzy digraph model to quan-
tify manufacturing flexibility. In [25], Koulouriotis and Ketipi develop a fuzzy
digraph method for robot evaluation and selection, according to a given indus-
trial application.

In this section, we focus specifically on providing an adequate notion of rela-
tional Galois connection between fuzzy T-digraphs which inherits most of the
interesting equivalent characterizations of the notion of crisp Galois connection.

Our framework in this work is relational at the level of Galois connections
(namely, the components of a Galois connection are crisp binary relations instead
of functions) and fuzzy at the level of their domain and codomain.

We will use the following standard notions about relations: Given a binary
relation R ⊆ A × B, the afterset aR of an element a ∈ A is defined as {b ∈ B |
aRb}.

Definition 5. A pair A = (A, ρ) is said to be a fuzzy T-digraph if ρ is a ⊗-
transitive fuzzy relation on A.

The usual requirement that in a Galois condition both components should
be antitone and their compositions inflationary leads to a preliminary approach
to the definition of a relational Galois connection for fuzzy preposets.

Let us, firstly, fix the notions of antitone and inflationary relation in a fuzzy
setting. Given (A, ρ) and (B, ρ):

1. A relation R ⊆ A × B is antitone if ρ(a1, a2) ≤ ρ(b2, b1) for all b1 ∈ aR
1 and

b2 ∈ aR
2 , or equivalently, ρ(a1, a2) ≤ ρ∝(aR

2 , aR
1 ).

2. A relation R ⊆ A × A is inflationary if ρ(a1, a2) = � for all a2 ∈ aR
1 or,

equivalently, ρ∝(a, aR) = �.

We can obtain the following proposition which links the properties of anti-
tone and inflationary to a pair of inequalities with a certain flavour to Galois
condition.

Proposition 1. Let (A, ρ) and (B, ρ) be fuzzy preposets and R ⊆ A × B and
S ⊆ B × A be relations. Then R and S are antitone and R ◦ S and S ◦ R are
inflationary if and only if the following inequalities hold:

ρH(a, bS) ≤ ρS(b, aR) and ρH(b, aR) ≤ ρS(a, bS) . (2)

This proposition suggests to consider inequalities (2) as a tentative definition
of relational Galois connection between fuzzy T-digraphs. To begin with, we have
the following result.

Proposition 2. Let (A, ρ) and (B, ρ) be fuzzy T-digraphs and R ⊆ A × B and
S ⊆ B × A be relations. If R and S are antitone and R ◦ S and S ◦ R are
inflationary, then (R,S) satisfy condition (2).

However, the following example shows that the converse does not hold.

Example 1. Consider the following fuzzy T-digraphs A = ({a1, a2, a3}, ρ) and
B = ({b1, b2, b3}, ρ), and the relations R ⊆ A×B and S ⊆ B ×A defined below:
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ρ a1 a2 a3

a1 1 1 1/2
a2 0 0 0
a3 0 1/2 1

ρ b1 b2 b3
b1 1 0 0
b2 1 0 0
b3 1/2 0 1

x xR

a1 {b1}
a2 {b2}
a3 {b3}

x xS

b1 {a1}
b2 {a1, a2}
b3 {a3}

It is routine to check that (R,S) satisfies condition (2). Nevertheless, R ◦ S is
not inflationary, because {a1} ∈ aR◦S

2 , while ρ(a2, a1) = 0 and ρS(a2, a
R◦S
2 ) =

ρS(a1, {a1, a2}) = 0.

The question now is to discover some “missing” requirement which should
be required in order to prove the converse of Proposition 2. Surprisingly, this
requirement already appeared in previous sections as a property of the sets of p-
minima or p-maxima; namely, all the elements in the aftersets should be related
with degree �. Formally, we have the following definition:

Definition 6. Let (A, ρ) be a fuzzy T-digraph and X ⊆ A. We say that a
nonempty set X is a clique if for all x, y ∈ X it holds ρ(x, y) = � or, equivalently,
ρ∝(X,X) = �.

Notice that given a fuzzy T-digraph (A, ρ), X ⊆ A and a ∈ A, then if
X is a clique, we have that ρS(a,X) = ρ∝(a,X) = ρH(a,X). As a result,
the inequalities in (2) collapse into the equality ρ∝(a, bS) = ρ∝(b, aR) and,
furthermore, the following characterisation can be proved:

Theorem 5. Let (A, ρ) and (B, ρ) be fuzzy T-digraphs. Given R ⊆ A × B and
S ⊆ B × A then, R and S are antitone and R ◦ S and S ◦ R are inflationary
between (A, ρ) and (B, ρ) if and only if the following conditions hold:

(i) ρ∝(a, bS) = ρ∝(b, aR) for all a ∈ A and b ∈ B,
(ii) aR and bS are cliques for all a ∈ A and b ∈ B.

As a consequence, we can give an adequate definition of relational Galois con-
nection between fuzzy T-digraphs which, on the one hand, generalizes the Galois
condition and, on the other hand, guarantees the properties of the components
of the connection:

Definition 7. Let (A, ρ) and (B, ρ) be fuzzy T-digraphs and R ⊆ A × B and
S ⊆ B × A be relations. We say that the pair (R,S) is a relational Galois
connection if the following conditions hold:

(i) ρ∝(a, bS) = ρ∝(b, aR) for all a ∈ A and b ∈ B,
(ii) aR and bS are cliques for all a ∈ A and b ∈ B.

6 Conclusions and Future Work

There are a number of possible options to extend the notion of a Galois connec-
tion to a fuzzy setting. We have surveyed some of the previous works in this area,
and provided a somewhat unified presentation. In some cases, we have given a
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characterization theorem of the existence of a right adjoint for a given function.
Moreover, we have provided the adequate notion of Galois connection between
fuzzy T-digraphs, whilst the explicit construction of a right adjoint for a given
relation is left for future work.

The relational generalization to fuzzy T-digraphs paves the way towards
obtaining an operative notion of fuzzy relational Galois connection between fuzzy
T-digraphs, and initiates the search for a characterization of the existence of a
residual to a given fuzzy relation. On the other hand, it might enable a new
approach to Formal Concept Analysis, provided that the definition of relational
Galois connection is suitably adapted to formal contexts.
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Abstract. Local congruences are equivalence relations whose equiva-
lence classes are convex sublattices of the original lattice. In this paper,
we present a study that relates local congruences to attribute reduction
in FCA. Specifically, we will analyze the impact in the context of the use
of local congruences, when they are used for complementing an attribute
reduction.
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1 Introduction

Formal Concept Analysis (FCA) is a mathematical framework to analyze
datasets introduced by Ganter and Wille in eighties [12]. The main goals of FCA
are the following: to obtain the knowledge from data, to represent the obtained
knowledge by means of the mathematical structure called concept lattice and
to discover dependencies in data. The applied potential of FCA has encouraged
the development of different generalizations.

One of the most intensively studied research lines by the research community
of FCA in the last years, consists on decreasing the number of attributes of a
dataset, preserving the information provided by the dataset [1,2,7,8,10,11,13–
18]. In [6], authors proved that every reduction of attributes of a formal con-
text induces an equivalent relation whose equivalent classes are join-semilattices.
In [3], local congruences were introduced and applied to this attribute reduction.
Local congruences are equivalence relations on lattices whose equivalence classes
are convex sublattices. The idea in [3] was to find the least local congruence
containing the equivalent relation induced by an attribute reduction of a for-
mal context, in order to group the concepts of the original concept lattice using
closed structures.
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Sometimes, the induced equivalent relation by a reduction of the context is
already a local congruence but sometime it is not. In the latter case, the fact
of using a local congruence that contains the induced equivalence relation has
an influence on the original reduction. In this paper, we present an initial study
about the relationship between local congruences and the induced equivalent
relation by an attribute reduction of a formal context. This study provides a
first step to know the influence that this special kind of equivalence relations
has on the reduction procedure. We will include several examples to illustrate
the obtained result.

2 Preliminaries

We need to recall some basic notions used in this work. In order to present the
preliminary notions as clearly as possible, we will divide this section into two
parts. The first one will be devoted to recall those necessary notions of FCA and
the second one to those related to local congruences.

2.1 Formal Concept Analysis

In FCA a context is a triple (A,B,R) where A is a set of attributes, B is a set of
objects and R : A × B → {0, 1} is a relationship, such that R(a, x) = aRx = 1,
if the object x ∈ B possesses the attribute a ∈ A, and R(a, x) = 0, otherwise. In
addition, we call concept-forming operators to the mappings ↑ : 2B → 2A and
↓ : 2A → 2B defined for each X ⊆ B and Y ⊆ A as:

X↑ = {a ∈ A | for all x ∈ X, aRx} (1)
Y ↓ = {x ∈ B | for all a ∈ Y, aRx} (2)

Taking into account the previous mappings, a concept is a pair (X,Y ), with
X ⊆ B and Y ⊆ A satisfying that X↑ = Y and Y ↓ = X. The subset X is called
the extent of the concept and the subset Y is called the intent. The set of extents
and intents are denoted by E(A,B,R) and I(A,B,R), respectively.

In addition, all the concepts together with the inclusion ordering on the left
argument has the structure of a complete lattice, which is called concept lattice
and it is denoted as C(A,B,R).

From now on, we will say that an attribute-concept is a concept generated
by an attribute a ∈ A, that is (a↓, a↓↑).

On the other hand, we need to recall the notion of meet-irreducible element
of a lattice.

Definition 1. Given a lattice (L,�), such that ∧ is the meet operator, and an
element x ∈ L verifying

1. If L has a top element �, then x �= �.
2. If x = y ∧ z, then x = y or x = z, for all y, z ∈ L.
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we call x meet-irreducible (∧-irreducible) element of L. Condition (2) is equiv-
alent to
2′. If x < y and x < z, then x < y ∧ z, for all y, z ∈ L.

On the other hand, with respect to the attribute reduction in FCA, it is
important to recall that when we reduce the set of attributes in a context,
an equivalence relation on the set of concepts of the original concept lattice is
induced. The following proposition was proved in [6] for the classical setting of
FCA and it is recalled below.
Proposition 1 ([6]). Given a context (A,B,R) and a subset D ⊆ A. The set
RE = {((X1, Y1), (X2, Y2)) | (X1, Y1), (X2, Y2) ∈ C(A,B,R),X↑D↓

1 = X↑D↓
2 } is

an equivalence relation. Where ↑D denotes the concept-forming operator
X↑D = {a ∈ D | for all x ∈ X, (a, x) ∈ R} restricted to the subset of attributes
D ⊆ A.

In [6], the authors also proved that each equivalence class of the induced
equivalence relation has a structure of join semilattice.
Proposition 2 ([6]). Given a context (A,B,R), a subset D ⊆ A and a class
[(X,Y )]D of the quotient set C(A,B,R)/RE. The class [(X,Y )]D is a join semi-
lattice with maximum element (X↑D↓,X↑D↓↑).

2.2 Local Congruences

The notion of local congruence arose with the goal of complementing attribute
reduction in FCA. The purpose of local congruences is to obtain equivalence
relations less-constraining than congruences [3] and with useful properties to be
applied in size reduction processes of concept lattices. We recall the notion of
local congruence in the next definition.
Definition 2. Given a lattice (L,�), we say that an equivalence relation δ on
L is a local congruence if each equivalence class of δ is a convex sublattice of L.

The notion of local congruence can be characterized in terms of the equiva-
lence relation, as the following result shows.

Proposition 3. Given a lattice (L,�) and an equivalence relation δ on L, the
relation δ is a local congruence on L if and only if, for each a, b, c ∈ L, the
following properties hold:
(i) If (a, b) ∈ δ and a � c � b, then (a, c) ∈ δ.
(ii) (a, b) ∈ δ if and only if (a ∧ b, a ∨ b) ∈ δ.

Usually, we will look for a local congruence that contains a partition induced
by an equivalence relation. When we say that a local congruence contain a par-
tition provided by an equivalence relation, we are making use of the following
definition of inclusion of equivalence relations.

Definition 3. Let ρ1 and ρ2 be two equivalence relations on a lattice (L,�). We
say that the equivalence relation ρ1 is included in ρ2, denoted as ρ1 
 ρ2, if for
every equivalence class [x]ρ1 ∈ L/ρ1 there exists an equivalence class [y]ρ2 ∈ L/ρ2
such that [x]ρ1 ⊆ [y]ρ2 .
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3 Analyzing Local Congruences

In this section, we will present an initial study about the role of local congruences
when they are used along or together with other mechanisms to attribute reduc-
tion. In particular, we will analyze the relationship between local congruences
and the induced equivalence relation by an attribute reduction from the perspec-
tive of the attribute of the context as well as from the meet-irreducible elements
of the concept lattices. We are interested in discovering under what conditions
the induced equivalence relation is a local congruence. We are also interested
in analyzing the influence of the use of local congruence in the reduction of
attributes, when the induced equivalence relation is not a local congruence.

Firstly, in the first example we will illustrate the main idea of this study.

Example 1. Let us consider a formal context (A,B,R) composed of the
attributes A = {a1, a2, a3} and the objects B = {b1, b2, b3}, related by a rela-
tionship R ⊆ A×B, which is shown in the left side of Table 1, together with the
list of concepts which appears in the right side of the same table. The associated
concept lattice is displayed in the left side of Fig. 1.

Table 1. Relation and list of concepts of the context of Example 1.

R b1 b2 b3

a1 1 0 1

a2 0 1 1

a3 0 0 1

Ci Extent Intent

b1 b2 b3 a1 a2 a3

0 0 0 1 1 1 1

1 1 0 1 1 0 0

2 0 1 1 0 1 0

3 1 1 1 0 0 0

In order to analyze the influence of local congruences in the reduction of the
set of attributes of the considered context, we include a list in which we show
the attribute that generates each concept of the concept lattice:

C0 = (a↓
3, a

↓↑
3 )

C1 = (a↓
1, a

↓↑
1 )

C2 = (a↓
2, a

↓↑
2 )

If we consider, for example, the subset D1 = {a2, a3} to carry out the reduc-
tion of the set of attributes, that is, we remove the attribute a1, we obtain a
partition of the concept lattice induced by the reduction that is highlighted by
means of a dashed Venn diagram in the middle of Fig. 1. We obtain that the con-
cepts C1 and C3 are grouped in the same class whereas the concepts C0 and C2

provide two different classes composed of a single concept each one. Therefore,
according to Proposition 2, we can see that the obtained equivalence classes are
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C1

C0

C3

C2 C1

C0

C3

C2 C1

C0

C3

C2

Fig. 1. Concept lattice of Example 1 (left), the partition induced by the subset D1

(center) and the least local congruence containing the partition (right).

join semilattices. Indeed, all classes are convex sublattices of the original concept
lattice.

As a consequence, the least local congruence containing such a reduction is
the induced partition itself as it is shown in the right side of Fig. 1, where the
local congruence is highlighted by means of a Venn diagram. In other words,
the induced equivalence relation by the reduction is already a local congruence
and, as a consequence, the consideration of local congruences does not alter the
attribute reduction originally carried out on the set of attributes.

However, if the user decides to remove the attributes a1 and a2, that is, only
the subset of attributes D2 = {a3} is considered, the induced partition by the
reduction is shown in the left side of Fig. 2.

C1

C0

C3

C2
C1

C0

C3

C2

Fig. 2. The partition induced by the elimination of the attributes a1 and a2 of Exam-
ple 1 (left) and the least local congruence containing the induced partition (right).

The equivalence classes induced by the the reduction are the following:

[C0]D2 = {C0}
[C1]D2 = [C2]D2 = [C3]D2 = {C1, C2, C3}

In this case, the obtained equivalence classes are non-trivial join-semilattices
since the concepts C1, C2 and C3 do not form a convex sublattice of the original
concept lattice. In this case, the infimum of the equivalence class [C1]D2 is de
concept C0, which has not been included in [C1]D2 . This concept is not in [C1]D2

because it is generated from the attribute a3, which means that this attribute
differences concept C0 from the rest. Therefore, if this attribute is not removed
in the reduction procedure, then it continues differentiating this concept from
the rest and it cannot be in the same class of the rest.
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If we compute the least local congruence containing the equivalence relation
above, it groups all concepts in a single class, that is, the local congruence
includes the infimum of the concepts C1, C2 and C3, that is, the concept C0, in
the equivalence class [C1]D2 . This local congruence is depicted in the right side
of Fig. 2. Clearly, this local congruence does not coincides with the equivalence
relation induced by the attribute reduction which entails certain consequences
with respect to the initial attribute reduction, since the inclusion of the concept
C0 in the equivalence class [C1]D2 , can be seen as a kind of elimination of the
attribute a3 (since the attribute a3 generates the concept C0). ��

The previous example has shown different possibilities of applying local con-
gruences for complementing an attribute reduction process. Hence, we have that
some times the obtained equivalence relations is already a local congruence and
other cases is not. In particular, we have seen a case that when the infimum of
an induced equivalence class is generated by an attribute, which has not been
removed during the reduction process, proper join semilattices arise and the
induced equivalence relation is not a local congruence. In the following example,
we will analyze another possible situations we can find when the set of attributes
is reduced.

Example 2. We will consider a context composed of the set of attributes A =
{a1, a2, a3, a4} and the set of objects B = {b1, b2, b3}, related by R : A × B →
{0, 1}, defined on the left side of Table 2 together with the list of the correspond-
ing concepts which appear in the right side of the same table. The associated
concept lattice is given on the left side of Fig. 3.

Table 2. Relation and list of concepts of the context of Example 2.

R b1 b2 b3

a1 1 1 0

a2 1 0 1

a3 0 1 1

a4 0 0 1

Ci Extent Intent

b1 b2 b3 a1 a2 a3 a4

0 0 0 0 1 1 1 1

1 1 0 0 1 1 0 0

2 0 1 0 1 0 1 0

3 0 0 1 0 1 1 1

4 1 1 0 1 0 0 0

5 1 0 1 0 1 0 0

6 0 1 1 0 0 1 0

7 1 1 1 0 0 0 0
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From this context we obtain the following attribute-concepts:

C3 = (a↓
4, a

↓↑
4 )

C4 = (a↓
1, a

↓↑
1 )

C5 = (a↓
2, a

↓↑
2 )

C6 = (a↓
3, a

↓↑
3 )

For instance, if we are interested in considering the subset of attributes D1 =
{a1, a3} and we carry out the corresponding reduction (removing the attributes
a2 and a4), we obtain the partition induced by D1, which is shown in the middle
of Fig. 3. Once again, as in Example 1, the equivalence classes obtained from the
reduction considering the subset D1 are convex sublattices of the original concept
lattice. Therefore, the least local congruence that contains such a reduction is
the induced equivalence relation itself, as it can be seen in the right side of
Fig. 3. Consequently, local congruences do not modify the considered attribute
reduction.

C0

C1 C2 C3

C4 C5 C6

C7

C0

C1 C2 C3

C4 C5 C6

C7

C0

C1 C2 C3

C4 C5 C6

C7

Fig. 3. Concept lattice of Example 2 (left), the partition induced by the subset D1

(center) and the least local congruence containing the induced partition (right).

Now, if the attributes a2 and a3 are removed, i.e., only the subset of attributes
D2 = {a1, a4} is considered, then the partition induced by the reduction is shown
in the left side of Fig. 4 and the induced equivalence classes are listed below.

[C0]D2 = {C0}
[C1]D2 = [C2]D2 = [C4]D2 = {C1, C2, C4}

[C3]D2 = {C3}
[C5]D2 = [C6]D2 = [C7]D2 = {C5, C6, C7}

Notice that two of the obtained equivalence classes are not convex sublattices
of the original concept lattice. The first one contains the concepts C1, C2, C4

and the other one contains the concepts C5, C6, C7. However, the reasons that
make these classes are not convex sublattices are well differentiated.
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On the one hand, with respect to the equivalence class of the concept [C5]D2

we find a similar situation than the one shown in Example 1, that is, the infi-
mum of the equivalence class [C5]D2 is the concept C3 which is generated from
attribute a4 that has not been removed in the reduction of the context.

On the other hand, the infimum of the equivalence class [C1]D2 is the concept
C0 which is not generated by any attribute of the context. Nevertheless, C0 /∈
[C1]D2 since in the decomposition of meet-irreducible concepts of the concept
C0, that is C0 = C4 ∧C5 ∧C6, we can find two meet-irreducible concepts C5 and
C6 satisfying that C5, C6 /∈ [C1]D2 .

In this case, the least local congruence whose equivalence classes contain the
induced partition can be seen in the right side of Fig. 4. In this figure we have
that the local congruence includes the infimum of the equivalence classes [C1]D2

and [C5]D2 in their respective classes. Thus, the least local congruence provides
two different equivalence classes.

C0

C1 C2 C3

C4 C5 C6

C7

C0

C1 C2 C3

C4 C5 C6

C7

Fig. 4. The partition induced by the elimination of attributes a2 and a3 in Example 2
(left) and the least local congruence containing the induced partition (right).

Now, we will analyze how this local congruence influences in the reduction of
the attributes. We can see that the inclusion of the concept C3 in the equivalence
[C5]D2 , is equivalent to the elimination of attribute a4. We can also observe that
the intension of the concept C0 includes attribute a4 which is ignored when C0

is introduced in the equivalence class [C5]D2 . Hence, in spite of the reduction of
the context was carried out originally from the elimination of attributes a2 and
a3, somehow the consideration of the local congruence implies the elimination
of attribute a4. ��

From the previous examples, we deduce that when the induced equivalence
relation does not provide convex sublattices as equivalence classes, the use of
local congruence relations alters the original attribute reduction, increasing the
number of attributes to be removed. Moreover, it would be interesting to high-
light these attributes, record its relationship with the removed attributes and
the impact in attribute implications [4,5,9,19].

Next result relates the equivalence relations induced by an attribute reduction
with the attributes-concepts and the meet-irreducible elements of the concept
lattice. Due to the closely relation between the ∧-irreducible concepts and the
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set of attributes of the context. This result summarizes the influence of local
congruences in the attribute reduction of relational datasets.

Proposition 4. Given a context (A,B,R), a subset of attributes D ⊆ A, an
equivalence class [C]D, with C ∈ C(A,B,R), of the induced equivalence relation
which is not a convex sublattice and the concept C ′ =

∧
Ci∈[C]D

Ci. Then, one
of the following statements is satisfied:

– There exists at least one attribute a ∈ A such that C ′ = (a↓, a↓↑).
– There exists a concept C∗ ∈ MF (A,B,R) in a meet-irreducible decomposition

{Cj ∈ MF (A,B,R) | j ∈ J} of C ′, such as Ci0 �≤ C∗ for a concept Ci0 ∈
[C]D.

Proof. Let us assume that we reduce the context (A,B,R), by considering a sub-
set of attributes D ⊆ A, and that given C ∈ C(A,B,R), the induced equivalence
class [C]D is not a convex sublattice of the original concept lattice.

Therefore, although by Proposition 2 the class [C]D is a join-semilattice, the
concept C ′ =

∧
Ci∈[C]D

Ci is not in [C]D = {C1, . . . , Cn}. Now, we will distin-
guish two cases:

(i) If there exists a0 ∈ A such that C ′ = (a↓
0, a

↓↑
0 ), the first statement holds.

(ii) Otherwise, let {Cj ∈ MF (A,B,R) | j ∈ J} be a meet-irreducible decompo-
sition of C ′, that is, C ′ =

∧
j∈J Cj . If there exists j0 ∈ J and i0 ∈ {1, . . . , n},

such as Ci0 �≤ Cj0 for all Ci ∈ [C]D, we finish the proof. Otherwise, we have
that Ci ≤ Cj for all Ci ∈ [C]D and j ∈ J . As a consequence, the set
{Cj ∈ MF (A,B,R) | j ∈ J} is in the meet-irreducible decomposition of
every concept in [C]D, in particular in the maximum element of the class,
denoted as CM . Hence, we have that

C ′ < CM ≤
∧

j∈J

Cj = C ′

which leads us to a contradiction.

It is important to mention that the items exposed in the previous result are
not exclusive, that is, we can find a concept C ′ satisfying simultaneously both
conditions of the previous result. In this situation, this fact means that the intent
of the concept C ′ has at least two different attributes, a0 and a1 such that these
attributes do not belong to the intent of any concept Ci ∈ [C]D for all i ∈ I.

Notice also that the requirement “Ci0 �≤ C∗ for a concept Ci0 ∈ [C]D.” in the
second condition can be rewritten as Ci0 and C∗ are incomparable, or C∗ < Ci0 .
This last inequality detects a possible non-distributivity lattice and discover the
following consequences of Proposition 4.

Corollary 1. Let (A,B,R) be a context where its concept lattice C(A,B,R)
is distributive, D ⊆ A a subset of attributes and C ∈ MF (A,B,R). If C ′ =∧

Ci∈[C]D
Ci is not in [C]D, then there exists an attribute a ∈ A such that C ′ =

(a↓, a↓↑).
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These results show that the application of local congruences offers an advance
and complemented procedure to reduce concept lattices, selecting and removing
appropriate new attributes.

4 Conclusions and Future Work

In this paper, we have addressed an initial study about the relation between
the equivalence classes provided by both an attribute reduction and the least
local congruence containing such a reduction in FCA. In particular, we have
analyzed more in detail the cases when the induced equivalence relation does not
provide convex sublattices as equivalence classes and the behavior of the local
congruence when we use it in these cases. As a consequence, we have observed
that the use of local congruence relations modifies the subset of unconsidered
attributes. Moreover, we have stated conditions on the attribute-concepts and
the meet-irreducible elements of the concept lattice associated with a context in
order to detect when an equivalence class is not a convex sublattice. All ideas
presented in this paper have been illustrated by means of different examples.

As future work, we are interested in continuing the study of influence of
local congruences in the attribute reduction of a dataset. For example, we will
analyze the relationship of the use of local congruences with attribute implica-
tions and how the removed attributes can be recovered from the set of attribute
implications associated with the context. Furthermore, we will explore the ideas
presented in this paper in the fuzzy framework of the multi-adjoint concept
lattices.
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Abstract. Size reduction mechanisms are very important in several
mathematical fields. In rough set theory, bireducts arose to reduce simul-
taneously the set of attributes and the set of objects of the considered
dataset, providing subsystems with the minimal sets of attributes that
connect the maximum number of objects preserving the information of
the original dataset. This paper presents the main properties of bireducts
and how they can be used for removing inconsistencies.

Keywords: Rough set theory · Bireducts · Size reduction

1 Introduction

Rough Set Theory (RST) is one of the most useful mathematical tools to treat
and manage datasets. In particular, RST was proposed by Pawlak in [7], to
analyze datasets containing incomplete information. The main idea of this theory
is to determine a set from two approximations. These approximations are called
upper approximation and lower approximation.

In this theory, a relational database can be represented from two different
point of view, as an information system or as a decision system. In the case of
information system, the database is simulated by a set of objects and a set of
attributes characterizing the objects. On the other hand, a decision system is a
particular case of information system adding a new attribute that describes an
action over the objects, which is called decision attribute.

Due to the size of databases has increased in late decades, size reduction
mechanisms became into one of the main goals of different mathematical theo-
ries. In the particular case of RST, a reduct is a minimal subset of attributes
preserving the same knowledge as the original set. This notion is deeply studied
in many papers [4–6,11,12]. Therefore, reducts are focused on the reduction of
the set of attributes. In order to reduce also the set of objects, the notion of
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bireduct arose [1–3,9,10]. In a general point of view, the main idea underlying
bireducts is to choose the maximal consistent information subsystem. Moreover,
as all the bireducts are computed, the user can choose the bireduct consistent
subsystem that best suits their needs.

In this paper, we study some properties of bireducts. We will prove that the
set of reducts can be obtained from the set of bireducts. We will analyze the
relation between bireducts and the discernibility classes of the objects of the
dataset. We will also inspect how bireducts can be used for detecting inconsis-
tencies contained in the considered database. The presented study will be carried
out for information systems, as well as for decision systems. All the presented
results will be illustrated by means of examples.

The paper is organized as follows: the notions and results needed in this
study are recalled in Sect. 2. Afterwards, Sect. 3 presents the contribution of this
paper together with some examples. Finally, the conclusions and future works
are presented in Sect. 4.

2 Preliminaries

This section recalls the main notions associated with information and decision
systems and the characterizations of reducts and bireducts. More detailed infor-
mation related to these notions can be found in [3].

2.1 Information Systems

We will recall the notions and results needed to carry out the attribute reduction
in information systems. First of all, we present the definition of information
system and the considered indiscernibility relation.

Definition 1. An information system (U,A) is a tuple, where U = {x1, x2, . . . ,
xn} and A = {a1, a2, . . . , am} are finite, non-empty sets of objects and attributes,
respectively. Each a ∈ A corresponds to a mapping ā : U → Va, where Va

is the value set of the attribute a over U . For every subset D of A, the D-
indiscernibility relation, Ind(D), is defined by the following equivalence relation

Ind(D) = {(xi, xj) ∈ U × U | for all a ∈ D, ā(xi) = ā(xj)}
where each equivalence class is written as [x]D = {xi ∈ U | (x, xi) ∈ Ind(D)}.
These equivalence classes are called indiscernibility class. Ind(D) provides a par-
tition on U denoted as U/Ind(D) = {[x]D | x ∈ U}.

In order to be able to reduce an information system, the notions of consistent
set and reduct are fundamental.

Definition 2. Let (U,A) be an information system and a subset of attributes
D ⊆ A. The subset D is a consistent set of (U,A) if Ind(D) = Ind(A). Moreover,
if for each a ∈ D we have that Ind(D � {a}) �= Ind(A), then D is a reduct of
(U,A).
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The following definition presents the idea of discernibility matrix and dis-
cernibility function. In particular, the discernibility matrix is a useful tool which
is used to represent the attributes in which the objects differ.

Definition 3. Given an information system (U,A), its discernibility matrix is
a matrix with order |U | × |U |, denoted by MA, in which the element MA(x, y)
for each pair of objects (x, y) is defined by:

MA(x, y) = {a ∈ A | ā(xi) �= ā(xj)}

and the discernibility function of (U,A) is defined by:

τuni
A =

∧ {∨
(MA(xi, xj)) | xi, xj ∈ U and MA(xi, xj) �= ∅

}

The discernibility function of an information system is a powerful tool which
is used in the following result in order to describe a method to obtain all reducts
from an information system [3,8].

Theorem 1. Let (U,A) be a boolean information system. An arbitrary set D,
where D ⊆ A, is a reduct of the information system if and only if the cube∧

a∈D a is a cube in the restricted disjunctive normal form.

Next, we introduce an example, which will be developed throughout the
paper.

Example 1. Let us consider the information system (U,A), where the set of
objects represents six patients U = {1, 2, 3, 4, 5, 6}, the set of attributes A =
{fever(f), cough(c), tonsil inflam.(t),muscle ache(a)} and the relation between
them is shown in Table 1.

Table 1. Relation of Example 1.

R fever(f) cough(c) tonsil inflam.(t) muscle ache(a)

1 High No No No

2 High No Yes Yes

3 Low Yes Yes No

4 Low Yes Yes No

5 High Yes Yes Yes

6 No Yes Yes No

If we compare the objects, considering the indiscernibility relation presented
in Definition 1, we can build the following discernibility matrix:
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⎛

⎜⎜⎜⎜⎜⎜⎝

∅

{t, a} ∅

{f, c, t} {f, c, a} ∅

{f, c, t} {f, c, a} ∅ ∅

{c, t, a} {c} {f, a} {f, a} ∅

{f, c, t} {f, c, a} {f} {f} {f, a} ∅

⎞

⎟⎟⎟⎟⎟⎟⎠
(1)

Now, we will use the discernibility matrix to build the unidimensional dis-
cernibility function:

τuni = {t ∨ a} ∧ {f ∨ c ∨ t} ∧ {c ∨ t ∨ a} ∧ {f ∨ c ∨ a} ∧ {c} ∧ {f ∨ a} ∧ {f}
= {f ∧ c ∧ a} ∨ {f ∧ c ∧ t}

Therefore, by Theorem 1, we obtain two reducts:

D1 = {fever, cough,muscle ache}
D2 = {fever, cough, tonsil inflam.}

�	
The idea of bireducts arose as a path to prevent incompatibilities and elimi-

nate noise in the original data by means of a reduction in the set of objects and
the set of attributes, simultaneously.

Definition 4. Given an information system (U,A), we consider a pair (X,D),
where X ∈ U is a subset of objects and D ∈ A is a subset of attributes. We
say that (X,D) is an information bireduct if and only if every pair of objects
i, j ∈ X are discernible by D and the following properties hold:

– There is no subset C � D such that C discerns every pair of objects of X.
– There is no subset of objects X � Y such that D discern every pair of objects

of Y .

Since we will work simultaneously with reducts and bireducts of an infor-
mation system, we will use the notation (X,B) to denote bireducts in order to
distinguish the subset of attributes from reducts and bireducts.

In order to generalize the mechanism to obtain reducts presented in Theo-
rem 1, we need to improve the idea of discernibility function as follows:

τbi
A =

∧ {
xi ∨ xj ∨

∨
(M(xi, xj)) | for all xi, xj ∈ U,M(xi, xj) �= ∅

}

Now, we can introduce the following theorem, in which a mechanism to obtain
all the bireducts of an information system is presented.

Theorem 2 ([3]). Given a boolean information system (U,A). An arbitrary pair
of sets (X,D), where X ⊆ U , D ⊆ A, is a bireduct of the information system
if and only if the cube

∧
a∈D a ∧ ∧

xi /∈X xi is a cube in the restricted disjunctive
normal form (RDNF) of τbi

U,A.
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Example 2. We are going to compute all the bireducts from the information
system described in Example 1. In order to do that, we consider the discerni-
bility matrix described in Expression (1), obtaining the following bidimensional
discernibility function:

τbi = {1 ∨ 2 ∨ t ∨ a} ∧ {1 ∨ 3 ∨ f ∨ c ∨ t} ∧ {1 ∨ 4 ∨ f ∨ c ∨ t} ∧ {1 ∨ 5 ∨ c ∨ t ∨ a}
∧ {1 ∨ 6 ∨ f ∨ c ∨ t} ∧ {2 ∨ 3 ∨ f ∨ c ∨ a} ∧ {2 ∨ 4 ∨ f ∨ c ∨ a} ∧ {2 ∨ 5 ∨ c}
∧ {2 ∨ 6 ∨ f ∨ c ∨ a} ∧ {3 ∨ 5 ∨ f ∨ a} ∧ {3 ∨ 6 ∨ f} ∧ {4 ∨ 5 ∨ f ∨ a} ∧ {4 ∨ 6 ∨ f}
∧ {5 ∨ 6 ∨ f ∨ a}

Now, we compute the reduced disjunctive normal form of τbi obtaining

= {1 ∧ 2 ∧ f} ∨ {1 ∧ 5 ∧ f} ∨ {1 ∧ f ∧ c} ∨ {2 ∧ 5 ∧ f} ∨ {2 ∧ f ∧ c} ∨ {2 ∧ f ∧ t}
∨ {2 ∧ f ∧ a} ∨ {5 ∧ f ∧ t} ∨ {5 ∧ f ∧ a} ∨ {6 ∧ c ∧ a} ∨ {f ∧ c ∧ t} ∨ {f ∧ c ∧ a}
∨ {1 ∧ 2 ∧ 5 ∧ 6} ∨ {1 ∧ 2 ∧ 6 ∧ a} ∨ {1 ∧ 5 ∧ 6 ∧ c} ∨ {1 ∧ 5 ∧ 6 ∧ a}
∨ {2 ∧ 3 ∧ 5 ∧ c} ∨ {2 ∧ 3 ∧ c ∧ a} ∨ {2 ∧ 5 ∧ 6 ∧ c} ∨ {2 ∧ 5 ∧ 6 ∧ t}
∨ {2 ∧ 6 ∧ t ∧ a} ∨ {5 ∧ 6 ∧ c ∧ t} ∨ {4 ∧ c ∧ t ∧ a} ∨ {5 ∧ 6 ∧ t ∧ a}
∨ {3 ∧ 4 ∧ c ∧ a} ∨ {2 ∧ 3 ∧ f ∧ a} ∨ {1 ∧ 2 ∧ 3 ∧ 4 ∧ 5} ∨ {1 ∧ 2 ∧ 3 ∧ 4 ∧ 6}
∨ {1 ∧ 2 ∧ 3 ∧ 4 ∧ a} ∨ {1 ∧ 3 ∧ 4 ∧ 5 ∧ 6} ∨ {1 ∧ 3 ∧ 4 ∧ 5 ∧ c}
∨ {1 ∧ 3 ∧ 4 ∧ 5 ∧ a} ∨ {1 ∧ 3 ∧ 4 ∧ 6 ∧ c} ∨ {2 ∧ 3 ∧ 4 ∧ 5 ∧ 6}
∨ {2 ∧ 3 ∧ 4 ∧ 5 ∧ c} ∨ {2 ∧ 3 ∧ 4 ∧ 5 ∧ t} ∨ {2 ∧ 3 ∧ 4 ∧ 6 ∧ a}
∨ {2 ∧ 3 ∧ 4 ∧ 6 ∧ c} ∨ {2 ∧ 3 ∧ 4 ∧ 6 ∧ t} ∨ {2 ∧ 3 ∧ 4 ∧ t ∧ a}
∨ {3 ∧ 4 ∧ 5 ∧ 6 ∧ t} ∨ {3 ∧ 4 ∧ 5 ∧ c ∧ t} ∨ {3 ∧ 4 ∧ 5 ∧ t ∧ a}
∨ {3 ∧ 4 ∧ 6 ∧ c ∧ t} ∨ {3 ∧ 4 ∧ 5 ∧ 6 ∧ a} ∨ {3 ∧ 4 ∧ 6 ∧ a ∧ c}

Therefore, there are 47 bireducts in the information system (U,A). Some of them
are described in Table 2 �	

Table 2. Some bireducts of information system (U, A) of Example 1

Bireduct Subset of objects Subset of attributes

(X1, B1) {1, 2, 3, 4, 5, 6} {f, c, t}
(X2, B2) {1, 2, 3, 4, 5, 6} {f, c, a}
(X3, B3) {3, 4, 5, 6} {f}
(X4, B4) {2, 3, 4, 5, 6} {f, c}
(X5, B5) {3, 4} ∅

(X6, B6) {1} ∅

(X7, B7) {2} ∅

(X8, B8) {5} ∅

(X9, B9) {6} ∅
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2.2 Decision Systems

In this section, we recall the main notions and results we will need in the frame-
work of decision systems. First of all, we present the formal definition of a deci-
sion system.

Definition 5. A decision system (U,A ∪ {d}) is a special kind of information
system, in which d �∈ A is called the decision attribute, and its equivalence class
[x]d is called decision class.

In this framework the role of reduct is a little bit different, since only objects
with different decision attribute values are compared.

Definition 6. The subset B ⊆ A is called a decision reduct for the decision
system (U,A ∪ {d}) if it is an irreducible subset, such that B discerns all pairs
xi, xj ∈ U satisfying d(xi) �= d(xj).

As we did in an information system, we use the notions of discernibility
matrix an function in order to compute all reducts [8]. Therefore, the discerni-
bility matrix of a decision system (U,A∪{d}) is a square and symmetric matrix
defined as:

M(xi, xj) =
{

∅ if d(xi) = d(xj)
{a ∈ A | a(xi) �= a(xj)} otherwise (2)

Therefore, there are two possibilities of obtaining the empty set: objects have the
same decision value or are indiscernible by characteristic attributes. In addition,
the discernibility function of (U,A∪{d}) is the map τ : {0, 1}m → {0, 1}, defined
by

τuni =
∧{∨

M∗(xi, xj) | 1 ≤ i < j ≤ n and M(xi, xj) �= ∅

}
(3)

It can be shown that the prime implicants of f constitute exactly all the decision
reducts of (U,A ∪ {d}), as the generalization of Theorem1 to a decision system.

Now, we present the definition of decision bireduct of a decision system:

Definition 7. Given a decision system (U,A ∪ {d}), the pair (B,X), where
B ⊂ A and X ⊂ U , is called decision bireduct if and only if B discern every
pair xi, xj ∈ X where d(xi) �= d(xj) and the following properties are verified:

1. There is no subset C � B such that C discern every pair xi, xj ∈ X where
d(xi) �= d(xj).

2. There is no subset X � Y such that B discern every pair xi, xj ∈ Y with
d(xi) �= d(xj).

In order to generalize the process to compute all bireducts, we consider the
discernibility function:

τ bir =
∧

xi,xj∈U |d(xi) �=d(xj)

(
xi ∨ xj ∨

∨
{a ∈ A | a(xi) �= a(xj)}

)
(4)

The corresponding characterization theorem for bireducts from the discerni-
bility function is as follows.
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Theorem 3 ([3]). Given a boolean information system (U,A ∪ {d}). An arbi-
trary pair of sets (X,D), where X ⊆ U , D ⊆ A, is a decision bireduct of
a decision system if and only if the cube

∧
a∈D a ∧ ∧

xi /∈X xi is a cube in the
restricted disjunctive normal form (RDNF) of τbi.

Now that all the needed notions and results have been presented, we present
the different kinds of bireducts that we can find in an information and decision
systems.

3 Threshing Bireducts

This section highlights the main properties of bireducts. First of all, the following
result shows that the reducts of an information system are particular cases of
bireducts.

Proposition 1. Let (U,A) an information system and (X ,B) the family of
bireducts from the information system. If a bireduct (X,B) verifies that X = A,
then B is a reduct from the information system.

Proof. This proof is straightly obtained from Definitions 2 and 4.

Moreover, we can assert that the decision reducts of a decision system are
also decision bireducts due to the definitions of these notions.

The following example illustrates this result by means of the information
system given in Example 1.

Example 3. Let us focus in the bireduct (X1, B1) and (X2, B2) obtained in
Example 2, due to they have the whole set of objects. If we compare the set of
attributes from the bireducts and the set of attributes described by the reducts
of Example 1, we have that

D1 = B2 = {fever, cough,muscle ache}
D2 = B1 = {fever, cough, tonsil inflam.}

�	
A special type of bireduct appears when the subset of attributes is the empty

set, that is, there are no attribute to distinguish the elements in the subset of
objects. Therefore, the objects are indiscernible. The following result formalizes
this idea.

Proposition 2. Let (U,A) an information system and (X ,B) the family of
bireducts from the information system. If a bireduct (X,B) verifies that B = ∅,
then X is the indiscernibility class of the objects x ∈ X.

Proof. As (X,B) is a bireduct and B = ∅, we have that there is no attribute
distinguishing all objects in the set X. Therefore, for every object x ∈ X, we have
that ā(x) = ā(xj), for all attribute a ∈ A and any object xj ∈ X. Consequently,

x ∈{xj ∈ U | for all a ∈ B, ā(x) = ā(xj)}
which is the definition of [x]A presented in Definition 1. Therefore, X ⊆ [x]A.
By the maximality of X, we obtain that X must be [x]A. �	
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In this example, we present the connection between the indiscernibility classes
of the objects in an information system and the bireducts with no attributes.

Example 4. Let us continue the study of the information system in Example 1.
If we consider the bireducts (Xi, Bi), with i ∈ {5, . . . , 9}, we have that Bi = ∅,
for all i ∈ {5, . . . , 9}.

On the other hand, if we compute the indiscernibility classes of the objects
of the considered information system, we obtain that:

[1]A = {1}
[2]A = {2}

[3]A = [4]A = {3, 4}

[5]A = {5}
[6]A = {6}

Comparing these subsets of objects with the bireducts (Xi, Bi), with i ∈
{5, . . . , 9}, we obtain a correspondence between the sets Xi, with i ∈ {5, . . . , 9}
and the indiscernibility classes [x]A, for all x ∈ U . �	

In the particular case of a decision system, if the subset of attributes of a
birreduct is empty, the subset of objects of that bireduct is the decision class
provided by the decision attribute.

Proposition 3. Given a decision system (U,A∪{d}) and its family of decision
bireducts (X ,B), if a bireduct (X,B) verifies that B = ∅, then X = [x]d, for all
x ∈ X.

Proof. By definition of bireduct in a decision system, B = ∅ if and only if
the value of the decision attribute is the same for all the objects in X. In this
case, since two objects with the same decision attribute value are not compared
further, the assumption B = ∅ automatically implies that all objects are in the
same decision class, that is X = [x]d, for every object x ∈ X.

Moreover, bireducts remove inconsistencies in the data, that is the cases
when two objects have different decision value, but they are indiscernible by the
attributes in A.

Proposition 4. Given a decision system (U,A ∪ {d}), if x, y ∈ U satisfy that
d(x) �= d(y) and ā(x) = ā(y), for all a ∈ A, then x and y do not belong to the
same subset X, for any bireduct (X,B).

Proof. By the definition of discernibility function of decision systems, given in
Expression 4, if x, y ∈ U , such that d(x) �= d(y), the conjunctive normal form
τ bir will contain the clause

x ∨ y ∨
∨

{a ∈ A | ā(x) �= ā(y)}
Since ā(x) = ā(y), for all a ∈ A, the set {a ∈ A | ā(x) �= ā(y)} is empty and so,
the clause is x ∨ y.

Therefore, every cube of the obtained reduced disjunctive normal form will
contain x or y. As a consequence, by Theorem 3, we have that, for every bireduct
(X,B), the set X cannot contain x and y simultaneously, which proves the
result. �	
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As a consequence of this result, all bireducts are consistent and so, the
obtained information from these subsystems is also consistent. The following
example illustrates the previous notions and results in the particular case of a
decision system.

Example 5. From the information system (U,A) in Example 1, we will add a
decision attribute. This decision attribute will represent whether a patient has
flu or not. The relation is shown in Table 3.

Table 3. Relation of Example 5.

R fever(f) cough(c) tonsil inflam.(t) muscle ache(a) flu?

1 High No No No No

2 High No Yes Yes Yes

3 Low Yes Yes No No

4 Low Yes Yes No Yes

5 High Yes Yes Yes Yes

6 No Yes Yes No No

As we can see in Table 3, the objects 3 and 4 have different values in the
decision attribute but the values of these objects coincide for the rest of the
attributes. Therefore, objects 3 and 4 represent an inconsistency in the data.
Now, if we compare the objects considering the indiscernibility relation presented
in Definition 1, we can build the following discernibility matrix:

⎛

⎜⎜⎜⎜⎜⎜⎝

∅

{t, a} ∅

∅ {f, c, a} ∅

{f, c, t} ∅ ∅ ∅

{c, t, a} ∅ {f, a} ∅ ∅

∅ {f, c, a} ∅ {f} {f, a} ∅

⎞

⎟⎟⎟⎟⎟⎟⎠
(5)

There exist two cases to obtain the empty set as an element of the discerni-
bility matrix: the objects have the same value in the decision attribute or, having
different values in the decision attribute, the objects are indiscernible. Therefore,
considering the discernibility matrix, we obtain the unidimensional discernibility
function:

τuni = {t ∨ a} ∧ {f ∨ c ∨ t} ∧ {c ∨ t ∨ a} ∧ {f ∨ c ∨ a} ∧ {f ∨ a} ∧ {f}
= {f ∧ a} ∨ {f ∧ t}

Therefore, we obtain two decision reducts:

D1 = {fever,muscle ache}
D2 = {fever, tonsil inflam.} (6)
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Now, we will compute all bireducts of the decision system (U,A ∪ {d})
from Theorem 2, that is, throughout the following bidimensional discernibility
function.

τbi = {1 ∨ 2 ∨ t ∨ a} ∧ {1 ∨ 4 ∨ f ∨ c ∨ t} ∧ {1 ∨ 5 ∨ c ∨ t ∨ a} ∧ {2 ∨ 3 ∨ f ∨ c ∨ a}
∧ {2 ∨ 6 ∨ f ∨ c ∨ a} ∧ {3 ∨ 4} ∧ {3 ∨ 5 ∨ f ∨ a} ∧ {4 ∨ 6 ∨ f} ∧ {5 ∨ 6 ∨ f ∨ a}

From the formula above, the reduced disjunctive normal form is computed.

τbi = {4 ∧ a} ∨ {1 ∧ 3 ∧ f} ∨ {1 ∧ 4 ∧ f} ∨ {3 ∧ f ∧ t} ∨ {4 ∧ f ∧ t} ∨ {3 ∧ f ∧ a}
∨ {1 ∧ 3 ∧ 6} ∨ {2 ∧ 4 ∧ 5} ∨ {3 ∧ 6 ∧ c} ∨ {1 ∧ 4 ∧ 5 ∧ c} ∨ {2 ∧ 4 ∧ f ∧ c}
∨ {2 ∧ 3 ∧ 5 ∧ f} ∨ {2 ∧ 3 ∧ f ∧ c} ∨ {2 ∧ 3 ∧ 6 ∧ c} ∨ {4 ∧ 5 ∧ c ∧ t}
∨ {4 ∧ f ∧ c ∧ t} ∨ {3 ∧ 6 ∧ c ∧ a} ∨ {2 ∧ 3 ∧ 4 ∧ 6 ∧ c}

Hence, we obtain 18 decision bireducts, some of them listed in Table 4.

Table 4. Several bireducts of the information system (U, A ∪ {d}) in Example 5

Bireduct Subset of objects Subset of attributes

(X1, B1) {2, 4, 5, 6} {f}
(X2, B2) {1, 2, 3, 5, 6} {a}
(X3, B3) {1, 2, 4, 5, 6} {f, t}
(X4, B4) {1, 2, 3, 5, 6} {f, t}
(X5, B5) {1, 2, 4, 5, 6} {f, a}
(X6, B6) {2, 4, 5} ∅

(X7, B7) {1, 3, 6} ∅

(X8, B8) {1, 2, 3, 4, 5} {c, a}

If we observe the reducts in Table 2, we detect that bireducts (X3, B3),
(X4, B4) and (X5, B5) have the same subsets of attributes as the reducts D1

and D2, listed in Expression 6. Notice that the subsets of objects in these three
bireducts are not the whole set A. This is due to objects 3 and 4 present an
inconsistence in the data, as Proposition 4 asserts, they cannot belong to the
same subset of objects of any bireduct. Therefore, when the considered dataset
presents inconsistencies, a decision reduct is represented as a bireduct with the
set of objects as large as possible without inconsistencies.

On the other hand, bireducts (X6, B6) and (X7, B7) do not consider any
attribute. Comparing with the classes, we obtain that:

[2]d = [4]d = [5]d = {2, 4, 5} = X6

[1]d = [3]d = [6]d = {1, 3, 6} = X7

as Proposition 3 asserts. �	
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4 Conclusion and Future Work

In this paper, we have studied some properties of bireducts and highlighted
specific obtained bireducts. Mainly, we have identified the bireducts that provide
the indiscernibility classes of the objects of the considered dataset. Moreover, it
has been proved that the reducts of information systems and decision systems can
also be obtained from bireducts. Furthermore, in the particular case of decision
systems, we have proven that inconsistencies can be detected with bireducts and
that they consider the largest consistent subsets of objects.

As a future work, we will continue the study of the properties obtained from
the reduction of a formal context by means of bireducts. Also, we will use this
study in order to reduce the number of attribute implications in FCA. In addi-
tion, the notion of fuzzy bireduct will be investigated.
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decision reducts. Inf. Sci. 180, 209–224 (2010)
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Abstract. Recent work on spiking neural networks showed good progress
towards unsupervised feature learning. In particular, networks called Competi-
tive Spiking Neural Networks (CSNN) achieve reasonable accuracy in classifica-
tion tasks. However, two major disadvantages limit their practical applications:
high computational complexity and slow convergence. While the first problem
has partially been addressed with the development of neuromorphic hardware, no
work has addressed the latter problem. In this paper we show that the number of
samples the CSNN needs to converge can be reduced significantly by a proposed
new weight initialization. The proposed method uses input samples as initial val-
ues for the connection weights. Surprisingly, this simple initialization reduces the
number of training samples needed for convergence by an order of magnitude
without loss of accuracy. We use the MNIST dataset to show that the method is
robust even when not all classes are seen during initialization.

Keywords: Spiking Neural Networks · Competitive learning · Unsupervised
feature learning

1 Introduction

The competitive learning paradigm has been successful in dealing with unsupervised
data [7,24,33]. In competitive learning, units/neurons compete with each other for the
right to respond to the given input. The winner units are then updated and become
more specialized. At the end of training, all units are tuned to respond to specific input
patterns and their activation is used to classify new unseen samples [29,33].

Competitive learning inspired design of several clustering and unsupervised fea-
ture learning algorithms, such as Vector Quantization [22], Self Organizing Maps
(SOM) [17], and Deep Self Organizing Maps (DSOM) [39]. While these algorithms
are good for extracting spatial information from unlabeled data, their use for classifica-
tion tasks is limited by their performance. For example, classification accuracy achieved
by DSOM on the MNIST dataset was 87.12% [39], compared with 99.79% achieved
by current state of the art fully supervised algorithms [5,34,38].
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A considerable increase in classification performance has been achieved by compet-
itive learning networks using spiking neurons. Spiking neurons are dynamic units that
respond not only to the current state of their inputs, as traditional neural networks do
[11,19,33], but also take into account their previous states [2,23,32]. These networks,
named Competitive Spiking Neural Networks (CSNN), achieved 95% accuracy on the
MNIST dataset, almost 8% increase over DSOM [6,39].

The CSNNs, however, are limited by two factors: high computational complexity
and slow convergence. The first problem is due to the fact that the spiking neurons
are implemented as independent units, which requires using highly parallel processors.
The neuromorphic processors provide parallel architecture needed for these networks
and that, at the same time, considerably reduce energy consumption when compared
with traditional deep neural network implementations [8,27]. On the other hand, there is
little, if any, work on reducing the network convergence time. The state of the art CSNN
[6] needs around 20,000 samples to converge which in computational time represents
more than 2 h of training using a single thread implementation on an Intel Core i9-
9900K processor. Thus, developing a method that would require less number of samples
for training is urgently needed to expand their real world applications [14,25,26].

Here, we show that using the input samples as initial weights in the CSNN reduces
the number of training samples needed for convergence by an order of magnitude, and
with no loss in accuracy. We use different combinations of the initial weights to check
the method’s robustness to cases where the samples used for initialization do not repre-
sent all classes in the data. The method is evaluated on the MNIST dataset.

The rest of the paper is organized as follows. Section 2 presents a review of work on
the CSNNs. A general overview of the network topology and its main characteristics are
presented in Sect. 3. Section 4 introduces the proposed initialization method. Section 5
describes the dataset used, experimental settings, and evaluation metrics. Section 6 dis-
cusses the results. Section 7 ends with conclusions.

2 Related Work

The use of CSNN for unsupervised feature learning was originally proposed in [31].
The authors used an array of memrirstors to implement a CSNN for unsupervised fea-
ture learning. Their network used 300 spiking-like units to achieve 93% accuracy on
the MNIST dataset and showed robustness to parameter variations. An extension of this
work achieved accuracy of 95% but at the cost of using 6,400 complex spiking neu-
rons [6]. In terms of the convergence time, both implementations converged only after
20,000 sample presentations, which in combination with the high computational cost
undermines their practical applications.

Other authors used self-organizing and convolutional spiking network implementa-
tions. In [12] the authors reported accuracy of 94.07% using 1,600 neurons, however,
we believe that this increase of performance was due more to the use of a specific clas-
sification method. In fact, when using the same classification method as in [6], this
CSNN achieves only 92.96% accuracy. The convolutional spiking network had only
84.3% accuracy [35].
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3 Competitive Spiking Neural Networks

The CSNN uses a spiking neuron layer with Spike Time Dependence Plasticity (STDP),
lateral inhibition, and homeostasis to learn input data patterns in an unsupervised way.
At any given time, the output neuron that is most active (spikes the most) represents the
current data input.

3.1 Network’s Topology

The detailed network topology is shown in Fig. 1. The Sensory layer first transforms
an N -dimensional input vector, via N Poisson units (using Poisson distribution), into a
series of spikes, which are fed into a layer of M spiking neurons with lateral inhibition.

Fig. 1. Competitive spiking neural network topology

The N sensory units are fully connected to the M spiking neurons. The learning
process uses the STDP implementation of the Konorski/Hebb rule [13,18]. All spiking
neurons are connected with all others by fixed inhibitory weights; this is known as
lateral inhibition used to ensure that only one neuron fires for a given input. The specific
mechanisms used for both connections are described in detail in Sects. 3.3 and 3.4.

3.2 Spiking Neuron Model

In this paper we use a spiking neuron model known as Integrate and Fire [10,15,16].
This model uses a differential equation and a threshold mechanism to define the neuron
behavior:

τ
du

dt
= f(u) + i(u, t) (1)

tf : u(tf ) = θreset and
du(t)

dt

∣
∣
∣
t=tf

> 0 (2)
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Equation 1 describes the evolution of the membrane potential u in terms of a linear/
non-linear function f(u) and a synaptic input term i(u, t). Equation 2 defines the fire
time tf as the moment the membrane potential u crosses, from below, its threshold
value θreset. When this happens, a spike is generated and the neuron enters a refractory
period, during which it cannot respond to any input, after that the neuron’s membrane
potential is reset.

The choice of f(u) gives rise to different variations of the Integrate and Fire neuron
model [10]. A linear choice (Eq. 3) defines the Leaky Integrate and Fire Model. Non
linear choice gives rise to the Exponential Integrate and Fire Model (Eq. 4) and the
Quadratic Integrate and Fire Model (Eq. 5):

f1(u) = −(u − urest) (3)

f2(u) = −(u − urest) + ΔT exp
(u − ϑrh)

ΔT
(4)

f3(u) = a0(u − urest)(u − uc) (5)

where f1(u), f2(u) and f3(u) are the linear, exponential and quadratic function terms,
urest represents the resting potential, ΔT the sharpness factor, ϑrh the threshold, and
a0 and uc are constant factors with a0 > 0 and uc > urest.

There are two typical choices for the synaptic contribution term i(u, t). The simplest
one considers the synaptic inputs as direct membrane potential modifiers, Eq. 6:

i(u, t) = i(t) = R
∑

j

∑

tf

wjρ(t − tfj ) (6)

A more complex one uses additional differential equations (Eqs. 7 and 8) for con-
ductance level contributions [3,4]:

i(u, t) = g(t)(uinput − u) (7)
dg

dt
= − g

τg
+

∑

j

∑

tf

wjδ(t − tfj ) (8)

where g(t) represents the conductance contribution, τg the conductance time constant,
wj the synaptic weight of connection j, and tfj is the firing time of the input neuron j.

3.3 Learning Rule

The CSNN uses STDP to modify the connection weights between the Poisson units
and the spiking neurons [31]. In STDP, the adjustment of the strength of each weight
depends on the relative activity between the pre- and post-synaptic neurons, Eq. 9:

STDP (Δt) =

{

α+ exp(−Δt/τ+) if Δt > 0
−α− exp(Δt/τ−) if Δt ≤ 0

(9)

where δt is the time between pre- and post-synaptic neuron firings, α+ and α− are
learning rates, and τ+ and τ− are time constants [1,37]. Over time, and because STPD
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takes effect only after a spiking event, the synaptic weights become selective to specific
input patterns. In contrast to the gradient descent learning, STDP is a local rule that uses
information only from the pre- and post-synaptic neuron firings, while gradient descent
updates all weights based on the minimization of a global loss function.

STDP can be implemented using exponential decay variables to keep track of the
weight update values apre and apost, Eqs. 10 and 11 [28]. When a pre-synaptic spike is
registered, the synaptic weight is decreased by apost and apre is updated to a constant
value Apre. In contrast, when a post-synaptic spike is registered, the weight value is
increased by apre and at the same time apost is updated to Apost.

τpre
dapre

dt
= −apre (10)

τpost
dapost

dt
= −apost (11)

where apre and apost are the pre- and post-synaptic trace values used to update connec-
tion weights in the event of a pre- or post-synaptic neuron spikes. τpre and τpost are the
constant time factors for each exponential decay variable.

3.4 Lateral Inhibition

All spiking neurons at the spiking layer are connected to each other via direct inhibitory
synapses, with the purpose of feedback regulation [6,31]. When a neuron produces
a spike, all neurons connected to it receive a negative potentiation (their membrane
potentials are decreased) which reduces the neuron’s probability of reaching its firing
threshold to generate a spike, see Fig. 1.

3.5 Homeostasis

It is important that the membrane firing threshold θthreshold is adaptive to make sure
all neurons have a chance to fire during training. The threshold value is defined by an
exponential decay function with a constant increase every time the neuron fires. Thus,
a neuron that fired recently is less able to fire again because of its higher threshold
value. Equation 12 describes the membrane reset value θreset as a function of a dynamic
variable θ, Eq. 13:

θreset = θoffset + θ (12)
dθ

dt
=

−θ

τθ
+

∑

tf

αδ(t − tfj ) (13)

where θoffset is the offset value when θ = 0, τθ is the time constant and α is the
increase constant value [30,40].

3.6 Weight Normalization

The purpose of weight normalization is to limit the total input a neuron receives. To do
so, each input connection is normalized according to Eq. 14:

wnorm
ij = wij

λ
∑

i wij
(14)
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where wij is the weight value for connection i of neuron j, and λ is the total sum of
weights [9,21].

While a straightforward effect of normalization is to balance all input connections,
a not so obvious effect can be stated as helping to spread “information” to all active
inputs. This means that if one synapse is increased/decreased by STDP, the normaliza-
tion will average the change in all the incoming inputs. In that way, not only one input
is modified, but all of them.

4 Sample-Based Weight Initialization

What are the effects of using STDP, normalization, and lateral inhibition on the network
operation. If a neuron, using STDP learning, is excited with a single input image for a
long period of time, its synapse weights will increase/decrease proportionally to each
pixel input activation rate. The weights corresponding to high pixel values will increase
the most. Performing weight normalization bounds the weight changes so the system
will not become unstable. These two operations result in the weights trying to copy its
input. If more images are used, then the changes are averaged and the final weights are
“finding” single prototypes among all the input images. Finally, using lateral inhibition
makes sure that the neuron only updates in response to the inputs that are close to its
current prototype. For example, a neuron that is following the prototype for number “2”
will be only updated with inputs of this class (other inputs of “2”) thus increasing its
selectiveness.

We use the above analysis to reduce the network’s training convergence time as
follows. If each neuron strives to find prototypes among the input images, we can reduce
the training time by initializing its weights with the input pixel values, which are closer
to some of the final prototypes than a random initialization. We thus use the first M (out
of P ) training samples to serve as initial connection weights between the sensory layer
and the M neurons at the spiking neuron layer. Since we use weight normalization,
there is no need to re-scale the pixel values. We also tested the effects of using different
degrees of blurring filters to soften the contrast in the input images; for that purpose,
the OpenCV’s blurring filter was used.

The pseudo-code for Sample-Based Weight Initialization is shown in Algorithm 1.
The competitive spiking network is instantiated in line 2. Line 3 initializes the connec-
tion weights with the resulted images after passing the first M training samples through
a 5× 5 blurring filter. Line 4 creates a Spike Monitor instance used to keep track of
each neuron’s firing events. The FOR loop in lines 5 through 9 presents all the P − M
remaining training samples. First, the connection weights are normalized. Then, the
firing rates of the Poisson neurons are set based on the input image. Each sample is
presented for 350 ms.

After training, a new run over all training samples, with STDP turned off, is done
again to associate each spiking neuron with a unique class label. Algorithm 2 describes
the pseudo-code for the labeling process.

Line 2 loads the resulted network from the training process and line 3 turns STDP
off so the network connections are not any longer modified. Line 4 creates a spiking
counter to save each neuron’s firing pattern. As in the training process, a FOR loop is
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Algorithm 1. Training - Sample-Based Weight Initialization
1: trainingSet = load(MNIST-training)
2: spikingNetwork = CompetitiveSpikingNetwork()
3: spikingNetwork.STDPconnection[:, :] = CV2.blur(trainingSet[: M ], (5,5))
4: spikeMonitor = SpikeCounter(spikingNetwork[‘Spiking’])
5: for iterator = m,m+ 1, . . . , P do
6: normalizeSTDPConnection(78.0)
7: spikingNetwork[‘Poisson’].rate = trainingSet.data[iterator]
8: run(spikingNetwork, 350ms)
9: end for
10: saveSpikingNetwork(spikingNetwork)

Algorithm 2. Labeling
1: trainingSet = load(MNIST-training)
2: spikingNetwork = loadSpikingNetwork()
3: spikingNetwork.disableSTDP()
4: spikeMonitor = SpikeCounter(spikingNetwork[‘Spiking’])
5: for iterator = 1, 2, . . . , P do
6: spikingNetwork[‘Poisson’].rate = trainingSet.data[iterator]
7: run(spikingNetwork, 350ms)
8: end for
9: labels = getSpikingNeuronLabels(spikeMonitor, trainigSet.labels)
10: saveLabels(labels)

used to present all training samples (lines 5 to 8) but the difference is that normalization
is no longer needed since all connections are fixed. The spiking counter and the training
labels are used to decide each neuron’s label in line 9.

The already assigned labels are used to classify new unseen samples via a voting
process, such as maximum, confidence, or distant-based [6,12,35]. Additionally, the
firing pattern can be used directly for predictions through some decision function, which
can be predefined [12,36], or learned by using the firing pattern matrix as input to any
add-on machine learning classifier [31], such as a conventional neural network.

5 Experiments

5.1 Dataset

All experiments are performed on the MNIST dataset, which consists of 70,000 sam-
ples of hand written 28× 28 pixel images divided into 60,000 samples for training and
10,000 samples for testing [20]. The raw images are first flattened (turned into column
vectors) and scaled to the range from 0 to 63.75, and are used as input to the sensory
layer to determine the firing rates of the Poisson units.

5.2 Experimental Settings

To analyze the performance of the sample-based initialization, three different exper-
iments are performed. First, we compare the training convergence and testing accu-
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racy of random initialization with our initialization method. Second, we evaluate our
method’s robustness using samples from only one class (from 10 total) as the initial
weights. Third, we compare the prediction results of the CSNN with a fully supervised
traditional neural network, using the same topology and number of neurons.

Two CSNNs with 400 spiking neurons are used: the state of the art CSNN [6], and
another one simplified by us. The state of the art CSNN uses 784 sensory layer Poisson
units, 400 Leaky Integrate and Fire neurons with conductance-based stimulation input
to the spiking neuron layer, trace-based STDP, indirect inhibition, weight normaliza-
tion, and resting period of 150 ms between each sample presentation. The simplified
CSNN uses the same spiking neuron model, learning rule and weight normalization but
differs in the use of direct inhibition, with no resting period, and a different value of the
membrane constant time (3 · 106 ms instead of 1 · 107 ms). Importantly, the simplified
CSNN trains in half the time than the state of the art CSNN.

All simulations were carried out using the Python’s Brian Simulator package on
an Intel Core i9-9900K with 64GB RAM computer (the code is publicly available on
GitHub).1

5.3 Evaluation Metrics

The training convergence and testing accuracy are used to evaluate all experiments. The
training convergence is based on the number of samples needed to reach a stable state,
which is defined as the number of samples needed to reach 80% accuracy. The training
accuracy is calculated after every 1,000 sample presentations in a two step process.
First, the neuron labels are assigned based on the maximum firing rate of the previous
1,000 samples. Second, the assigned labels are used to predict the classes for the next
1,000 samples using maximum voting.

The testing accuracy for all 10,000 testing samples is calculated using three different
methods: the maximum- and confidence-based voting, and using an add-on two layer
neural network classifier. The latter uses 200 neurons with Relu activation in its first
layer, 10 neurons with soft max activation in the output layer, dropout of 0.2 between
the layers, and cross entropy loss function. All results are reported as average of 10
runs.

6 Results and Discussion

6.1 Convergence Time

The accuracies for 60K training samples using random initialization and the sample-
based initialization are shown in Fig. 2. Figure 2a shows the accuracy on the first 20K
sample presentations, and Fig. 2b shows the result on the next 40K samples. Five lines
are plotted: one for the current state of the art CSNN with random initialization (Base
case) [6], one for the simplified by us CSNN with random initialization (Random), and
three for sample-based initialization with different degrees of image blurring. The plot
starts after 1K iterations since we estimate the training accuracy using a 1K window.

1 https://github.com/PaoloGCD/fastCSNN.

https://github.com/PaoloGCD/fastCSNN
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(a) Training 0-20K samples (b) Training 20K-60K samples

Fig. 2. Training accuracy vs. number of samples, using samples from all classes for initialization

The convergence time for our initialization method is faster than for random ini-
tialization (both base case and random). Specifically, using sample-based initialization
with blurring of 3 achieves 80% accuracy using less than 3K samples. Bigger blurring
factors reduce the convergence time (blurring of 9 and 15), but are still faster than the
base case and the random initialization that need around 12.5K samples each to reach
80% accuracy. Blurring of 9 reaches 80% accuracy after around 5K samples and blur-
ring of 15 after 8K samples.

Table 1 shows results using maximum and confidence voting, and using an add-on
neural network classifier for classification prediction of the test set (trained on 60K
samples). We see that sample-based initialization with blurring of 9 achieves the best
accuracy in all three methods. Namely, it achieves 90.87%, 91.27% and 92.54% accura-
cies, which are higher than for the base case (88.89%, 90.37% and 91.73%), and higher
than for random initialization (90.74%, 91.17% and 92.43%).

Table 1. Testing accuracy using different decision methods.

Max voting Confidence voting Neural network

Base case 88.89 ± 0.44 90.37 ± 0.31 91.73 ± 0.16

Random 90.67 ± 0.19 91.14 ± 0.12 92.43 ± 0.06

Blur 3 90.53 ± 0.21 91.08 ± 0.16 92.37 ± 0.12

Blur 9 90.87 ± 0.10 91.27 ± 0.11 92.54 ± 0.11

Blur 15 90.80 ± 0.17 91.18 ± 0.12 92.54 ± 0.12

Table 2 shows accuracy results on the testing set after training with 5K, 10K, 20K,
40K and 60K sample presentations, using maximum voting.

Before convergence (5K and 10K) sample-based initialization produces better
results than random initialization. While at convergence (20K, 40K, and 60K) the
results are about the same. The results with blurring of 9 are consistently the best in
all cases.
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Table 2. Testing accuracy for different number of training samples.

5K 10K 20K 40K 60K

Base case 70.91 ± 0.71 83.37 ± 0.26 86.22 ± 0.62 87.54 ± 0.18 88.89 ± 0.44

Random 60.93 ± 0.54 82.11 ± 0.51 89.29 ± 0.25 90.66 ± 0.22 90.67 ± 0.19

Blur 3 86.65 ± 0.41 88.35 ± 0.53 89.17 ± 0.32 90.56 ± 0.23 90.53 ± 0.21

Blur 9 87.61 ± 0.27 88.81 ± 0.10 89.73 ± 0.39 90.90 ± 0.29 90.87 ± 0.10

Blur 15 81.96 ± 0.40 88.31 ± 0.28 89.53 ± 0.39 90.84 ± 0.27 90.80 ± 0.17

6.2 Sample-Based Initialization Robustness

When training, often not all classes are seen in the first M samples, which are used to
set the sample-based initial weights. Thus, we initialize the connection weights using
samples of just one class (out of 10). Although, all classes were tested, we discuss
here results only for training with classes 1, 5, and 7. Figure 3 shows training accura-
cies using initialization with these classes. The base and random cases are shown for
reference using results from Fig. 2.

(a) Training 0-20K samples (b) Training 20K-60K samples

Fig. 3. Training accuracy vs. number of samples, using samples from only one class for initial-
ization

We see that the convergence times for all sample-based initialization cases are still
faster than for random initializations even when only one class is used to initialize the
connection values. All these cases reach 80% accuracy after 4.5K sample presentations,
while random initialization reaches 80% accuracy after 12K samples.

Table 3 shows testing accuracy results for maximum and confidence voting and for
the add-on neural network classifier.

Overall, sample-based initialization of class 5 achieved the best result for all three
methods (91.06%, 91.41% and 92.66%), while class 1 initialization was the worst
(89.85%, 90.52% and 91.86%), but is still higher than the base case. The variance in all
cases is less than 0.5% which indicates consistency across all cases.
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Table 3. Testing accuracy using samples from only one class for initialization.

Max voting Confidence voting Neural network

Base case 88.89 ± 0.441 90.37 ± 0.308 91.73 ± 0.157

Random 90.67 ± 0.190 91.14 ± 0.115 92.43 ± 0.085

Class 1 89.85 ± 0.470 90.52 ± 0.335 91.86 ± 0.147

Class 5 91.06 ± 0.095 91.41 ± 0.152 92.66 ± 0.122

Class 7 90.74 ± 0.258 91.23 ± 0.190 92.52 ± 0.087

6.3 CSNN and Fully Supervised Neural Network Comparison

We compared the CSNN’s performance with a fully supervised classical neural net-
work. Table 4 shows testing accuracy for two best CSNNs, namely, sample-based ini-
tialization using blurring of 5 (fastest convergence) and blurring of 9 (best accuracy).
The used NN is a 3 layer feed-forward neural network with 400, 200, and 10 neurons.

Table 4. Testing accuracy, CSNN and Fully Supervised NN comparison.

1 epoch 3 epochs 5 epochs 10 epochs

CSNN-blurr5-NN 92.26 92.52 92.57 92.41

CSNN-blurr9-NN 92.55 92.89 92.97 92.85

Fully supervised NN 91.81 94.73 95.49 96.24

Importantly, we observe that both CSNNs achieve better accuracy after just 1 epoch
of training, which can be advantageous in many real world applications. The testing
accuracy for the CSNN improves slightly after 3 and 5 epochs but starts decaying at 10
epochs.

7 Conclusions

In this paper we introduced a new initialization method that uses the training samples as
initial values for the as connection weights, between the Poisson units and the spiking
neurons in Competitive Spiking Neural Networks. This method reduces the amount of
training samples needed to achieve convergence and increases accuracy. Specifically,
it significantly reduced the convergence time to around 3K samples as compared with
random initialization that needed around 12.5K samples on the MNIST dataset. It also
achieved a slight increase of accuracy using maximum voting, confidence voting, as
well as using an add-on neural network classifier. We also showed that the convergence
time and accuracy gains are about the same regardless of the class distribution in the
samples used to initialize the connection weights. Importantly, we compared the CSNN
with a fully supervised feed forward neural network and have shown that it performed
better for small number of sample presentations, which is a strongly desired character-
istic for real world applications.
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Abstract. In the processing of imprecise information, principally in big
data analysis, it is very advantageous to transform numerical values into
the standard form of linguistic statements. This paper deals with a novel
method of outlier detection using linguistic summaries. Particular atten-
tion is devoted to examining the usefulness of non-monotonic quantifiers,
which represent a fuzzy determination of the amount of analyzed data.
The answer is positive. The use of non-monotonic quantifiers in the detec-
tion of outliers can provide a more significant value of the degree of truth
of a linguistic summary. At the end, this paper provides a computational
example of practical importance.

Keywords: Intelligent data analysis · Linguistic summaries ·
Monotonic and non-monotonic quantifiers · Intelligent outlier detection

1 Introduction

Outliers represent objects whose attributes (or certain attributes) exhibit abnor-
mal behavior in a particular or examined context. Outliers may include unex-
pected values for all the parameters that describe the object. They may addition-
ally express unexpected values for a particular feature, attribute, or parameter.
The customarily used definitions and recent concepts are the following:

– The formal proposition of Hawkins [20] is as follows: “An outlier is an obser-
vation which deviates so much from the other observations as to arouse sus-
picions that it was generated by a different mechanism”.

– Barnett and Lewis [3]: “An observation (or subset of observations) which
appears to be inconsistent with the remainder of that set of data”.

– A collection of objects – the subjects of a linguistic summary, is be called
outliers if Q objects having the feature S is a true statement in the sense of
fuzzy logic, where Q is a selected relative quantifier (e.g.very few), and S is a
finite, non-empty set of attributes (features) of the set of examined objects,
cf. [12,13].
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– In the field of Knowledge Discovery in Databases (KDD), or more specific in
KDD in Data Mining, outliers are detected as a degree of a deviation from a
specified pattern.

The decision to identify outliers is considered when developing decision-making
systems, performing intelligent data analysis, and in other situations wherever
any impurity or noise affects the proper functioning of systems and may or may
not lead to application errors. Therefore, they must be detected and checked
to determine if they will be a significant factor or not. Predominantly, there
are two distinct approaches to detecting outliers. One way is the case when
an object detected as an outlier can be eliminated and deleted at the data
preparation stage [18,39]. The second approach assumes the “unique” objects
are identified as distinct, retaining an unclear meaning for the processed data
[23], and therefore they are not removed. When using artificial intelligence or
soft-computing, the methods of detecting outliers are considered to be a part of
Intelligent Data Analysis (IDA).

In this paper, the authors show in detail how the use of linguistic summaries
given in natural language becomes a method for detecting outliers. The basis is
Yager’s [40–42] idea of linguistic summaries and some of the numerous extensions
and modifications introduced by Kacprzyk and Zadrozny [25,26,29–32]. The
innovative aspect of this work lies in the use and examination of non-monotonic
quantifiers what reflects situations appearing in practice.

The paper is organized as follows. In Sect. 2, the scopes of related works are
briefly presented. Basic definitions of a linguistic variable and non-monotonic
quantifiers related to classic fuzzy sets are given in Sect. 3. In the next section,
the concept of a linguistic summary and the way of its generation is explained.
The practical rules for determining the degree of truth for monotonic and non-
monotonic quantifiers are given. In Sects. 5 and 6, the formal definition of an
outlier based on the concept of linguistic summary is formulated and the practice
of outliers’ detection is presented. The ending of the work is constituted by
conclusions.

2 Related Works

The scope of applicability of methods of outlier detection in applications is very
wide and varied. Numerous works are strictly focus on aimed towards specific
applications, e.g. detection of production defects [19], hacker attacks on the
computer network [21], fraudulent credit card transactions on credit cards or
their abuse [34], public monitoring systems [33], and climate change [2]. There
are works that deal with the detection of outliers in networks [16], chat activity,
text messages, and the identification of illegal activities [22] in this regard.

There are works on detecting outliers in medical research and applications,
e.g. personalized medicine, breast cancer, arrhythmia, monitoring of performance
and endurance of athletes, or where outliers are pathogens or anomalies, e.g
[1,8,35].
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Outliers are distinct, they operate in separate dimensions. Outlier detection
methods must, therefore, adapt to both the type of data they work on and
the context in which they are operated. Numerous studies indicate an excessive
interest in the issue of outlier detection, and the number of approaches increases.
This is because we need utilizing a variety of methods adapted to the specific
type of data we will analyze. Considering the aforementioned examples into
consideration, it should be stated that tasks related to outlier to detection focus
on the use of methods dedicated specific sets of data. For example, numerical and
textual data - outliers are detected by using linguistic summaries based on classic
and interval-valued fuzzy sets [12,13]. Another new approach is application of
multiobjective genetic algorithms [7,11].

At present, the complexity of decision problems is constantly increasing.
Therefore, authors of many works [6,24–30,32,38] describe not only the imple-
mentation and use of linguistic summaries but also emphasize the significance
of linguistic summaries in decision-making processes. Moreover, according to
Kacprzyk and Zadrozny [26,31] systems based on natural language will continue
to develop.

3 Non-monotonic Quantifiers

The idea of a linguistic variable introduced by Zadeh [43,44]. The ideas used in
natural language, such as less than, almost half, about, hardly, few, etc. can be
interpreted as mathematically fuzzy linguistic concepts determining the num-
ber of items that fulfill a given criterion. It is worth noting that the relative
quantifiers are defined on the interval of real numbers [0; 1]. They describe the
relationship of the objects that meet the summary feature for all items in the
analyzed dataset. Absolute quantifiers are defined on the set of non-negative real
numbers. They describe the exact number of objects that meet the summary fea-
ture. A linguistic quantifier represents a determination of the cardinality. This
means that it is a fuzzy set or a single value of the linguistic variable describing
the number of objects that meet specific characteristics.

In practical solutions, monotone quantifiers are defined as classic fuzzy sets.
For example, the linguistic variable Q = “few” can be defined as a membership
function in the form of a fuzzy set in the classical form as a trapezoidal or trian-
gular function, etc. However, monotonic quantifiers do not include all possible
situations.

The monotonic logic follows an intuitive indication that new knowledge does
not reduce the existing set of rules and conclusions. However, it is unable to cope
in cases or tasks where some rules must be removed as a consequence of further
reasoning and concluding. Problems of non-monotonic logic were introduced
in the 1980s. Non-monotonic logic is used to represent formalism, to describe
phenomena that cannot be calculated and clearly defined. It has been pointed
out that non-monotonicity remain a property of consequence. The logic system
is considered to be non-monotonic if its consequence relation possesses a non-
monotonic property.
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In other words, non-monotonic logic is designed to represent possible con-
clusions, while initial conclusions may be withdrawn based on other further
evidence. Non-monotonicity is closely related to the default conclusions. Non-
monotonic formalism is often used in systems based on natural language and
many papers present its usefulness, e.g. [4,5,17,36]. In works [12,13], the detec-
tion of outliers for monotonic quantifiers was considered. It was observed that the
determination of the number used to detect outliers may not always be based on
monotonic logic. The “few” and “very few” quantifiers are of particular impor-
tance in this context. However, not all quantifiers meet the condition of mono-
tonicity [37]. The quantifiers should be normal and convex. Normal, because the
height of the fuzzy set representing the quantifiers is equal to 1. Convex, because
for any λ ∈ [0, 1], μQ(λx1 + (λ − 1)x2) ≥ min(μQ(x1) + μQ(x2)) We will use
the L−R fuzzy number to model the quantifiers with the membership function,
where L,R : [0, 1] −→ [0, 1] nondecreasing shape functions and L(0) = R(0) = 0,
L(1) = R(1) = 1. The term “few”, particularly, is a non-monotonic quantifier,
so such linguistic variables can be defined as membership functions in the form
of (1).

μQ(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L( r−a
b−a ) r ∈ [a, b]

1 r ∈ [b, c]
0 otherwise

R(d−r
d−c ) r ∈ [c, d]

(1)

The function (1) can be written as a combination of functions L and R defined
by Eqs. (2) and (3).

μQ1(r) =

⎧
⎪⎨

⎪⎩

0 r < a

L( r−a
b−a ) r ∈ [a, b]

1 r > b

(2)

μQ2(r) =

⎧
⎪⎨

⎪⎩

0 r < c

R( r−c
d−c ) r ∈ [c, d]

1 r > d

(3)

In the following section, the non-monotonic quantifiers defined above will be used
in linguistic summaries. Both, the monotonic and non-monotonic quantifiers are
applied to the detection of exceptions, and the results are compared.

4 Determining the Degree of Truth T1 in a Linguistic
Summary

The definition of linguistic summary introduce by R. Yager [41,42] is as follows.

Definition 1 The ordered form of four elements [41,42], <Q;P ;S;T1> is called
a linguistic summary. Here
Q - a linguistic quantifier, or quantity in agreement, which is a fuzzy determina-
tion of the amount. Quantifier Q determines how many records in an analyzed
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database fulfill the following required condition - has the characteristic S.
P - the subject of the summary; it means the actual objects stored in the records
of database;
S - the summarizer, the feature by which the database is scanned;
R - the subject’s description of the summary;
T1- the degree of truth; it determines the extent to which the result of the sum-
mary, expressed in a natural language, is true.

According to the definition of linguistic summaries, we get the response in
the natural language of the form:
Q objects being P are (have a feature) S [the degree of truth of this statement
is [T1];
or the extended version:
Q P being R are/have S T1

where R is the subject’s description of the summary;
or in short:
Q P are/have the property S [T1].
Generating natural language responses as Yager’s summaries consist of creat-
ing all possible expressions for the predefined quantifiers and summarizers of
the analyzed set of objects. The value of the degree of truth for each summary
is determined according to T1 = μQ(r), where r = 1

n

∑n
i=1 μ(ai). The value r

is determined for each attribute ai ∈ A. We determine the membership func-
tion μQ(ai), thus defining how well attribute ai matches the feature given in
summarizer S.

Yager’s basic linguistic summary takes into consideration only a simple fea-
ture that operates on the values of one attribute. The subject is then always a
set of analyzed objects in the information system, and the summarizer S denotes
that the objects belong to one of the classes of the linguistic variable. Nowadays
we can observe numerous extensions of Yager’s method. For example, the exten-
sion of George and Srikanth [15] which proposed a family of fuzzy sets for features
S,R as (4). For multiple attributes (Kacprzyk and Zadrozny’s modification [27])
r is defined as (5).

r =
1
n

n∑

i=1

(μR(ai)·μS(bi)) (4)

r =
∑n

i=1(μR(ai)·μS(bi))
∑n

i=1 μR(ai)
(5)

Example 1. Let’s assume we’re analyzing a set of data with the attributes: age,
blood sugar. If we ask:
How many middle-aged patients have a blood sugar level above average?
The resulting summary could be:
Few middle-aged patients have a blood sugar level above average [0.60].
Many middle-aged patients have a blood sugar level above average [0.25].
Almost all middle-aged patients have a blood sugar level above average [0.15].
The numbers [0.60], [0.25], and [0.15] represent the obtained degrees of truth.
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The degree of truth of the linguistic summary with the use of non-monotonic
quantifiers is calculated as follows (6) or (7). (cf. Sect. 4 cf. Sect. 3):

T1(Q P is has S) = T1(Q1 P is (has) S) − T1(Q2 P is (has) S) (6)

T1 = μQ(r) = μQ1(r) − μQ2(r) (7)

5 Detection of Outliers

Let us define the concept of an outlier using a linguistic summary.

Definition 2 Let X = {x1, x2, ..., xN} for N ∈ N be a finite, non-empty set
of objects. Let S be a finite, non-empty set of attributes (features) of the set of
objects X. S = {s1, s2, ..., sn}.
Let Q be relative quantifiers.
A collection of objects, which are the subjects of a linguistic sum-
mary, will be called outliers if Q objects having the feature S is a true
statement in the sense of fuzzy logic.
If the linguistic summary of Q objects in P are/have S, [T1] and T1 > 0 (there-
fore, it is true in the sense of fuzzy logic), than outliers were found.

The procedure for detecting outliers using linguistic summaries according to
Definition 2 begins with defining a set of linguistic values X = {Q1, Q2, ..., Qn}.
The next step is to calculate the value of r according to the procedure of gener-
ating linguistic summary described in Sect. 4. We determine T1 for classic fuzzy
sets. If we used non-monotonic quantifiers in the form of classic fuzzy sets, the
degree of the truth T1 can be determined according to (7).

One obtains
Q1 P is (has) S [T1]
Q2 P is (has) S [T1]
...
QN P is (has) S [T1]

It is known that if T1 > 0, one obtains a true sentence in the Zadeh’s sense.
Outliers are found if T1 > 0 for qi, where qi is defined as: very few, few, almost
none, and the like. For example, if for the linguistic variable Q1 = {few}T1 > 0
then one can expect that outliers are present.

If the set of linguistic variables is composed of several values like “very few”,
“few”, “almost none”, then all summaries generated for those variables whose
values are T1 > 0 should be taken into consideration. In practical applications
[10,12,14], the authors take into account the maximum to variables character-
izing outliers. There exist four sets of possible responses, which are given in
Table 1. Consequently, the use of linguistic summaries enables to generate infor-
mation if outliers exist in the data bases under consideration. Note, that for the
companies’ management, the information provided in the linguistic form is of
preferable form. The non-trivial example is examined in the following section.
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Table 1. Types of responses of a linguistic summary indicating the existence of outliers.

Q1 P is (has) S [T1] T1 = 0 Outliers have not been found

Q2 P is (has) S [T1] T1 > 0 Outliers have been found

Q1 P is (has) S [T1] T1 > 0 Outliers have been found

Q2 P is (has) S [T1] T1 = 0 Outliers have not been found

Q1 P is (has) S [T1] T1 > 0 Outliers have been found

Q2 P is (has) S [T1] T1 > 0 Outliers have been found

Q1 P is (has) S [T1] T1 = 0 Outliers have not been found

Q2 P is (has) S [T1] T1 = 0 Outliers have not been found

6 The Practice of Outliers’ Detection

Let us consider a set describing the activities of enterprises. The dataset was
composed of publicly available data from Statistics Poland [9]. The examined
set consists of many attributes which allow to reason about the accounting liq-
uidity of enterprises. Attributes include, among others: company size, short-term
liabilities, long-term liabilities, company assets, number of employees, financial
liquidity ratio and bankruptcy risk.

Example of the data is presented in the Table 2. Current Ratio measures
whether resources owned by a company are enough to meet its short-term obli-
gations. All the calculations were performed in Java and R environment.

Table 2. Sample records of the dataset analyzed in the paper

ID Current ratio · · · Bankruptcy risk

0001 0.148 · · · 0.2

0002 3.65 · · · 1.45

· · · · · · · · · · · ·
0298 2.44 · · · 0.54

0299 4.39 · · · 0.12

· · · · · · · · · · · ·
1587 1.74 · · · 2.13

1588 0.43 · · · 0.73

· · · · · · · · · · · ·

Let us consider the two following questions.
Query 1: How many enterprises with a high current ratio are in the high risk of
bankruptcy group?
Query 2: How many enterprises with low profitability are in the high-risk group?
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Let for the linguistic variables describing the risk of bankruptcy, the consid-
ered values are: low, medium and high. For the current ratio of a company, the
assumed values are: very low, low, medium, and high.

For the each values (low,medium, high) the risk of bankruptcy is determined
using trapezoidal membership functions
Trap[x, a, b, c, d] = 0 ∨ (1 ∧ x−a

b−a ∧ d−x
d−c ), a < b ≤ c < d, x ∈ X:

Traplow[0, 0, 0, 2, 0.4], Trapmedium[0.3, 0.5, 0.7, 0.9] and Traphigh[0.6, 0.8, 1, 1].
Similarly, the membership functions of the current liquidity indicator can be
defined.

6.1 Monotonic Quantifiers

According to the procedure for detecting outliers using linguistic summaries, the
set of linguistic values must be defined, here Q={“very few”, “few”, “many”,
“almost all”} and the trapezoidal form is chosen:
Trapveryfew[0, 0.1, 0.2, 0.3], Trapfew[0.15, 0.3, 0.45, 0.6],
Trapmany[0.5, 0.65, 0.8, 0.95], Trapalmostall[0.75, 0.9, 1, 1].

On the basis of Eq. (5), the values of the coefficient of r for the two queries
of interest are calculated as (8), where cls is the current liquidity indicator and
risk indicates the risk of bankruptcy.

rQuery1 =
∑n

i=1(μrisk(ai)·μcli(bi))
∑n

i=1 μrisk(ai)
= 0.28 (8)

rQuery2 =
∑n

i=1(μrisk(ai)·μprof (bi))
∑n

i=1 μrisk(ai)
= 0.34 (9)

The obtained linguistic summaries are of the form: Query No. 1:
Very few enterprises with a high current ratio are in the high risk of bankruptcy
group; T1[0.2].
Few enterprises with a high current ratio are in the high risk of bankruptcy
group; T1[0, 86].
Many enterprises with a high current ratio are in the high risk of bankruptcy
group; T1[0].
Almost all enterprises with a high current ratio are in the high risk of bankruptcy
group; T1[0].
According to the Definition 2 outliers were detected – see the values of the degree
of truth T1 for few and very few.

Query No. 2:
Very few enterprises with low profitability are in the high risk group; T1[0].
Few enterprises with low profitability are in the high risk group; T1[1].
Many enterprises with low profitability are in the high risk group; T1[0].
Almost all enterprises with low profitability are in the high risk group; T1[0].
Outliers were not detected because T1 = 0 for all quantifiers.
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6.2 Non-monotonic Quantifiers

Let the linguistic variables Q1=“very few” and Q2=“few” now be non-monotonic
classic fuzzy sets. According to the Eq. (1), in this case the membership function
Q1 is transformed into two functions (2) and (3), and one obtains (10) and (13).
Similarly for Q2 we have (12) and (11).

μQvf1
(r) =

⎧
⎪⎨

⎪⎩

0 r < 0
L( r

0.1 ) r ∈ [0, 0.1]
1 r > 0.1

(10)

μQvf2
(r) =

⎧
⎪⎨

⎪⎩

0 r < 0.2
R( r−0.2

0.1 ) r ∈ [0.2, 0.3]
1 r > 0.3

(11)

μQf1
(r) =

⎧
⎪⎨

⎪⎩

0 r < 0.15
L( r−0.15

0.15 ) r ∈ [0.15, 0.3]
1 r > 0.3

(12)

μQf2
(r) =

⎧
⎪⎨

⎪⎩

0 r < 0.45
R( r−0.45

0.15 ) r ∈ [0.45, 0.6]
1 r > 0.6

(13)

The next step in the procedure of detecting outliers is to calculate the value
of the coefficient of r. We use the Eq. (5) for Query No. 1 (8), Eq. (9) for Query
No. 2. In the case of non-monotonic quantifiers T1, we designate with (7).

We received the following generated sentences:
Query No. 1:
Very few enterprises with a high current ratio are in the high risk of bankruptcy
group. T1 [0.7]
because:

T1(μQveryfew
) = T1(μQvf1) − T1(μQvf2) = 1 − 0.3 = 0.7

Few enterprises with a high current ratio are in the high risk of bankruptcy
group. T1[0.86]
because:

T1(μQfew
) = T1(μQf1) − T1(μQf2) = 0.86 − 0 = 0.86

Many enterprises with a high current ratio are in the high risk of bankruptcy
group. T1[0]
Almost all enterprises with a high current ratio are in the high risk of bankruptcy
group. T1[0]
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Query No. 2:
Very few enterprises with low profitability are in the high risk group T1 [0.1].
because:

T1(μQveryfew
) = T1(μQvf1) − T1(μQvf2) = 1 − 0.9 = 0.1

Few enterprises with low profitability are in the high risk group T1[1].
because:

T1(μQfew
) = T1(μQf1) − T1(μQf2) = 1 − 0 = 1

Many enterprises with low profitability are in the high risk group T1[0].
Almost all enterprises with low profitability are in the high risk group T1[0].

Table 3. The results of the degree of truth for the monotonic and non-monotonic
quantifiers very few and few

Query Quantificator Monotonic Non-monotonic

No. 1 Very few 0.2 0.7

No. 1 Few 0.86 0.86

No. 2 Very few 0.0 0.1

No. 2 Few 1 1

In Table 3, illustration of the degree of truth obtained for both monotonic
and non-monotonic quantifiers is given. Application of non-monotonic quantifiers
also indicates the existence of outliers but the value of the degree of truth is
bigger. This fact can be interpreted that non-monotonic quantifiers give higher
reliability of the result.

7 Conclusions

The aim of this study was to present a non-standard approach to the detection
of outliers using linguistic summaries. It is a practical solution to the mentioned
problem when a dataset is of numeric, or both numeric and linguistic character.
However, the text attributes should be partially standardized. The presented
idea is based on the summaries introduced by Yager. Other well-known standard
approaches cannot directly be used for the analysis of textual or mixed data, and
this is a significant advantage of the method which can operate in the case of
big data evaluation as well. The results obtained in the form of sentences in a
natural language are understandable and user friendly. This paper has introduced
an algorithm for detecting outliers using non-monotonic quantifiers in linguistic
summaries based on classic fuzzy sets. The non-monotonic quantifiers has not
been considered in any of the previous studies on outlier detection with the
use of linguistic summaries. In Sect. 6, the performance of the algorithm was
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illustrated. The conducted research and experiments confirm, that it is possible
to detect outliers using linguistic summaries. To be specific, the work verified
the correct functioning of the proposed method for non-monotonic quantifiers.
This method enhances database analysis and decision-making processes, and it
is useful for managers and data science experts.
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Abstract. This paper presents the problem and the solution of ovula-
tion date prediction based on simple data acquired by a woman in home
environment. It describes a method of processing collected data as a
multivariate time series. The novelty of this algorithm lies in its ability
to predict the ovulation date and not only to retrospectively detect it.
This is achieved by applying the fuzzy network of comparators (NoC)
to compare the menstrual cycle being analyzed with the reference set of
historical cycles.

Keywords: Ovulation prediction · Fertility · Network of
comparators · Compound objects · Time series data · comparators ·
Similarity · Fuzzy sets · Classifiers

1 Introduction

Infertility is one of the most challenging contemporary problems as the popu-
lation is aging. The procreation window of a woman is constantly being shifted
towards the age of about 35 years. It differs slightly across the world, but the ten-
dency is uniform. Statistics say that every fifth couple that is trying to conceive
(TTC) has a problem to achieve pregnancy in the first 12 months of efforts [1].
This effect can be reinforced by polluted environment, frequent travels, stress or
an unhealthy lifestyle, all of which may affect the length of the fertility window.

In this situation, the ability to precisely determine the date of ovulation
becomes crucial. Knowing the date of ovulation allows the couple to plan
their intercourses (in the immediate vicinity of ovulation) in order to maximize
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chances of successful conception. In case of an anovulatory cycle, the knowledge
that it is anovulatory reduces the stress associated with waiting for possible
pregnancy confirmation and allows women to concentrate on better preparation
for their next cycle. Accurate designation of the ovulation day may also reduce
some equally important problems on the male side.

From the medical point of view, assessing the Graafian follicle using ultra-
sound (its presence, size and proof of rupture) and measuring the serum pro-
gesterone concentration (it should be over 5 ng/ml in the luteal phase) are the
only reliable methods that are considered to prove that ovulation has occurred.
In natural family planning there are other methods that are less reliable, but
they nonetheless allow couples to obtain some information on ovulation at home.
One of them is measuring the basal body temperature (BBT). An increase in
BBT of at least 0.2 ◦C above the baseline taken at the same time every morn-
ing indicates that ovulation has occurred [8,9]. Additionally, the measurements
have to be taken in the same body area and before performing any activities
(ideally immediately after waking up). Moreover, it is required to measure BBT
using the same device everyday. These limitations can impose great difficulties
and sometimes cannot be accepted by women trying to conceive. It also requires
a lot of determination. Another method is analyzing the variability of cervical
mucus (the amount and consistency of cervical secretions) [3,9]. This method is
also associated with various inconveniences related to measurements. The obser-
vation of the uterine cervix position, texture and opening constitute the third
possibility in this field [9]. However this method requires a lot of experience and
knowledge of one’s own anatomical structure. It is very individual and not every
woman will be able to reliably make the appropriate measurements. All these
three methods belong to the retrospective group of indicators, which means that
they cannot predict the date of the ovulation before it occurs, they are only
able to confirm (to some extent) that ovulation has occurred in the recent past.
Although their effectiveness is quite high (especially when using two methods at
the same time), the aforementioned inconveniences amount to serious drawbacks
of these methods.

Another group of ovulation indicators is based on LH hormone concentra-
tion [8,15]. There are many different urine or saliva tests and fertility monitoring
devices that measure LH. These methods are able to predict ovulation 24 to 72 h
in the future, unfortunately without specifying exactly which of the upcoming
days is the most likely to be the ovulation day. Such tests operate by checking
whether the given average concentration threshold calculated for the popula-
tion is exceeded. Therefore it may happen, when someone’s usual concentration
varies from the norm, that the test will give incorrect results. Disadvantages of
these devices include difficulties with interpretation of the results and consequent
discrepancies, as well as difficulties with determining the appropriate period in
which they should be performed. In addition, the need to buy test strips can
often discourage women from using them. Nevertheless, they have the desirable
feature of prediction before the actual occurrence of ovulation.
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In order to be able to analyze women’s menstrual cycles and to draw conclu-
sions that facilitate detection of ovulation for more general purposes and in other
future situations, it is necessary to collect large amounts of data from women
with diverse fertility characteristics: e.g. age, occupation, lifestyle, weight, etc.
Such data is collected by specialized portals that allow women to record their
fertility parameters and provide other services to help couples plan their family.
One of them is ovufriend.pl1, the leading portal in Poland dealing with this topic.
The previous publication presents the architecture of information processing and
of its effective storage developed for this portal. The central point of the system
is a data warehouse that provides data storage services in the sense of Big Data.

The purpose of creating a new ovulation detection algorithm, is to address
the need for a universal, easily accessible solution that abolishes or reduces the
existing barriers for users. Additionally, it is to use the existing knowledge and
science, skillfully adjusting it to fit the real-life situations (e.g. combining frag-
mentary information obtained with various ovulation detection methods) and to
support new methods of automatic data acquisition, e.g. wearable devices like
fit bracelets [4,7,8]. The solution is also meant to be effective by economically
processing large amounts of data on different scales and from many diverse users
that represent different features present in the population. This solution utilizes
data of many women to learn possible solutions for currently processed cycles
(by computing complex multi-aspect similarities to other cycles). It creates the
possibility of forecasting (determining in the future) the date of ovulation, as
opposed to only confirming its occurrence in the recent past. This last point is
the most important, because it is a kind of breakthrough in the current approach
to fertility designation in the home environment. To achieve this goal, methods
of artificial intelligence known as similarity-based reasoning were applied.

This paper is an overview of the solution that was developed for a commercial
application. For this reason the details of the implementation are omitted and
the focus is on the ideas behind the solution. The paper is organized as follows.
Section two describes the data collected and its interpretation as compound
objects. Sections three and four respectively describe solutions and methods
applied during the process of research and development of the novel method
of forecasting the date of ovulation. Section five provides evaluation results for
different phases of the menstrual cycles. The last section provides elements of
discussion and concludes our article.

2 Menstrual Cycle as a Compound Object

The central object of interest is the menstrual cycle described by the ensembles
of time series inter-correlated with each other, constructed from observations
taken by women. The individual components are indexed with the same time
quanta representing particular days of the cycle. Depending on the cycle and
the woman’s behavior there are many possible combinations of data types that

1 https://www.ovufriend.pl.
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constitute this multivariate time series [2]. The set of features contains: BBT,
cervical mucus, cervix parameters, LH urinary tests, pregnancy tests, statistics
and occurrence of user-specific symptoms that may signify approaching ovula-
tion.

BBT data consists of temperature values. The measurements are compared
to the mean temperature of the previous 6 days. At the same time other factors
are computed (eg. mean, relative difference, etc.) and stored together with the
BBT time series for later processing.

Cervical mucus is defined by one of five possible values taken from the enu-
merative scale: dry, sticky, creamy, watery, stretchy. Each value describes dif-
ferent state of the mucus. Making use of this parameter requires detection of
patterns in its variability. Therefore it is not enough to get a single measure-
ment. The data should be collected day by day in a certain range.

Cervix has three parameters that can be tracked: opening, position and tex-
ture. Each of them has three values respectively: {open, medium, closed}, {high,
medium, low}, {soft, medium, hard}. The observations are collected indepen-
dently, but the interpretation of the whole state depends on all these values
combined (at least two of them). These data create an additional nested three
dimensional time series that describes one feature.

Ovulation test has a binary value: positive or negative. However there are
some difficulties with interpreting its result which sometimes leads to wrong
classification as one of these two states on part of the user. In this type of data a
series of measurements is also required, in particular one containing a transition
from negative to positive values. A single positive measurement is often not
enough to accurately determine ovulation day.

Pregnancy test also has binary positive and negative values. If a woman got
pregnant during the cycle, the pregnancy test will come out positive, but only
if it was taken an appropriate amount of time after the ovulation. Thus both
positive and negative values of pregnancy test in such a cycle may convey some
information on the date of the ovulation.

Statistics are useful, because the length of the luteal phase is expected to
be constant across a given woman’s menstrual cycles. Simple statistical data
particular to the user are used: average cycle and luteal phase lengths.

Symptoms are the most complex feature in terms of stored information. It
consists of more than 80 elements which describe symptoms (e.g. various pains,
mental states, infections, libido, etc.) on a single day of the cycle. Most of them
are binary, but together they create a complex structure. Elementary symptoms
are granulated and combined into groups of similar elements.

A representation of a single menstrual cycle can be any combination of these
data. Moreover, each of the time series independently may require handling of
missing values and of imprecision of processed values [5]. An important element
is a correlation of the particular sub-time-series. Thus there arises the need to
create a representation whose values are determined by the mutual influence of
the individual parts of the multivariate time series.
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Such combined time series for each cycle constitutes a compound object
described by various features and consisting of many sub-objects in the sense of
the definition in [12]. Having a compound object described in this way, allows
for the use of the methodology of a network of compound object comparators
(NoC ) as a tool to perform reasoning based on similarity [12].

3 Fuzzy Networks of Comparators (NoC)

Networks of Comparators (NoC) are described in detail in [11] and [12]. The
reader interested in theoretical or practical aspects of NoC like precise math-
ematical formulas or training methods should consult these sources. NoC is a
general approach to reasoning about compound objects based on their multi-
aspect similarity to other objects. In a sense NoC models analogies between
objects and their mutual relations. It is most useful in situations that involve
information granularity (see [13]). NoC’s operation can be interpreted as the
calculation of the following function:

µrefout
net : X → [0, 1]|refout|, (1)

where the argument is the input object x ∈ X and refout is the reference set
for the network’s output layer. The target set (co-domain) of µrefout

net is the space
of proximity vectors. These vectors encapsulate information about similarities
between the given input object x and objects from the reference set refout =
{y1, . . . , yn}. The value of the network’s function is given by formula

µrefout
net (x) = 〈SIM(x, y1), . . . ,SIM(x, yn)〉, (2)

where SIM(x, yi) is the value of global similarity established by the network for
the input object x and a reference object yi. Global similarity depends on partial
(local) similarities calculated by the elements of the network: layers, compara-
tors, local aggregators, translators, projection modules and global aggregators.

In the NoC there are three types of layers: input, intermediate and out-
put. The similarity functions for each type of layer are denoted respectively by
µref1
layer−in, µrefi

layer−int and µrefout
layer−out, where refi is the reference set correspond-

ing to layer i. Further algebraic details are provided in [12]. A given network
may have several intermediate layers. Each layer consists of comparators that
are grouped together by the common purpose of processing a particular piece
of information (attributes) about the object in question. Each layer contains
a set of comparators working in parallel and a specific translating/aggregating
mechanisms that facilitate the flow of information (proximity vectors) between
layers. As sets of comparators in a particular layer corresponds to a specific com-
bination of attributes and each returns own similarity vector, local aggregator
responsible for converting a similarity matrix into one vector for whole layer is
needed. If reference sets are different in consecutive layers, then t the output of
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the previous layer has to be translated first. Additionally a projection module
can be used in a layer if there is a need to select a subset of coordinates of a
proximity vector to be preserved (e.g. above a threshold, top N, etc.).

Fig. 1. General scheme of a comparator network in UML-like representation. Notation:
comij – comparators, Ti – translators. Symbols: oval – comparator, thick vertical line
– aggregator, rhombus – translator, encircled cross – projection module.

The global aggregator is a compulsory element of the output layer. Unlike
local aggregators, which process results within a single layer, the global aggrega-
tor may process values resulting from all layers at the same time. This element
implements methods of consensus reaching [6]. The comparator network function
can be expressed as a composition of functions from subsequent layers:

µrefout
net (x) = µrefout

layer−out(µ
refk−1
layer−int . . . (µ

ref1
layer−in(x)) . . .). (3)

The graphical interpretation is presented in Fig. 1.
The final result of the NoC is fuzzy set, that’s why there is required a defuzzi-

ficator to be used, to get crisp result at the end. This element for NoC was
described in details in [14].

4 Proposed Solution

The designed solution is based on multistage classifiers that accumulate infor-
mation throughout multiple menstrual cycles. A given cycle is thus important
not only for its duration, but it also provides ovulation prediction in the user’s
future cycles. Multistage classifier is a general concept that describes processing
information in parts and in a time sequence.

The algorithm consists of a set of sub-algorithms (called detectors) that inde-
pendently analyze the available information about the menstrual cycle. They
are divided into two classes - prognostic and retrospective. Each of them tries to
detect clues to the occurrence of ovulation contained in the type of information
that it processes. Every detector returns a fuzzy set whose universe is the set of
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Fig. 2. General scheme of ovulation window prediction algorithm. Upper part presents
general look at the data flow process in the algorithm which is arranged in the form
of a spiral, where data is processed repeatedly in subsequent iterations on subsequent
levels. The bottom part shows details of ovulation detection divided into progno and
retro phases.



NoC for Ovulation Window Prediction 807

Fig. 3. As time progresses, the cycle advances through four successive sub-phases.
Each of them has a different set of weights that determine the impact of the results of
different detectors on the aggregated result. In this example results of three detectors
are aggregated in the postfertile sub-phase. The red line marks the day to which the
algorithm assigned the highest credibility of ovulation. (Color figure online)

all days of the cycle. This fuzzy set describes the ovulation process where the
value of the membership function on a given day, represents the credibility that
in given day the ovulation exists. The outputs of all detectors are aggregated to
obtain a single fuzzy set. The aggregation process is dependent on the current
phase of the ongoing cycle. The two main phases of ovulation detection during
the cycle are the prognostic phase and the retrospective phase. They are sub-
divided into four sub-phases: prefertile, early fertile, late fertile and postfertile.
Each is characterized by different weights given during aggregation to the par-
ticular detectors of prognostic and retrospective classes (including a zero weight
which disables a detector), so that the ovulation detection is catered to the spe-
cific sub-phase. In the successive sub-phases the following approaches are realized
respectively: purely statistical prediction, prediction based on fuzzy NoC, mix
of predictive and retrospective methods and finally only retrospective detection.
The weight of a detector during aggregation can also be decreased if data of the
particular type is found to be of poor quality (inconsistent, unbelievable) in the
given cycle. The process of aggregation is presented in Fig. 3. The aggregated
fuzzy set is subjected to some additional processing to filter out improbable
days. The analysis and defuzzification of this fuzzy set results in the final crisp
decision of the algorithm. There can be used various defuzzifiers but here in this
paper the the last max was used. The decision is one of the possible outcomes:
the cycle is ovulatory and the algorithm designated the most probable day (or
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possibly several days in the prognostic phase) that the ovulation occurred on,
the cycle is anovulatory (this can be decided only in the retrospective phase) or
the analysis was inconclusive. The last outcome can happen due to insufficient
or inconsistent information provided by the user. Many parameters that steer
the decision-making in the algorithm are learned and others are set according to
expert knowledge.

The retrospective phase occurs after ovulation has already happened and the
algorithm, from the perspective of the end part of the cycle, aims to designate
the most probable day of ovulation or to detect that the cycle is anovulatory.
The requirement is that the user provided appropriate amount of information
throughout the cycle. The algorithm in this phase makes use of the classical ret-
rospective methods of ovulation detection based on analysis of time-series of dif-
ferent attributes like temperature, cervical mucus, state of the cervix, ovulation
test results or subjective symptoms. The algorithm implements these methods
in form of the fuzzy process and adds to them learning of various parameters.
The methods analyzing these different attributes are independent of each other,
so the user does not have to collect data on each of them, although the more
information the user provides, the more accurate results may be expected. Some
gaps in the available information can be reliably filled and the algorithm does
that during the preprocessing step. The strength of the retrospective approach
is its high efficacy under condition of access to reliable and fairly complete data
on the menstrual cycle. It allows to designate ovulation in past menstrual cycles
collected in the data base to obtain a vast reference set that makes it possible
for the prognostic detectors to perform ovulation prediction in ongoing cycles.

After completing first menstrual cycle the system has some information about
the user’s fertility. At this stage the real prognostic phase of ovulation detection
is enabled. In the prognostic phase the algorithm aims to indicate a future day or
a few days when the ovulation will most probably occur. The ovulation predic-
tion is achieved using the fuzzy NoC approach. The network structure is related
to the set of attributes that describe the menstrual cycle. It has three layers
and it compares time series of five types of data between the current cycle and
the historical reference cycles using dedicated similarity measures. Comparisons
are made for the time series of BBT, mucus type, cervix state, ovulation test
results and symptoms. The algorithm uses various time series distance measures,
such as DTW, LCSS and other ovulation case specific ones [10]. The two main
prognostic detectors use the same structure of the network, but they work on dif-
ferent reference sets. One of them uses as the reference elements all the previous
ovulatory cycles of the user. The other utilizes the clustering of menstrual cycles
in the database and creating profiles of similar users which are used to construct
the reference set. When the reference set is determined, the detector compares
the available part of the ongoing cycle to the reference cycles. If enough simi-
larity is found to a reference cycle, then the reference ovulation day influences
the fuzzy set which is an output of the detector. In this phase the algorithm
does not mark cycles as anovulatory, although the fact that no similar historical
cycle that was ovulatory was found can be interpreted as a possible anovulatory
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indication. This approach was used with success during the evaluation of the
algorithm performance in the prognostic phase, however the system is designed
to promote fertility and discouraging the user from attempting conception by a
possibly inaccurate prediction that the cycle is anovulatory would go against its
purpose.

There are three more prognostic detectors in addition to those using NoC.
The simplest one uses statistics of user cycles (or of population if those are
unavailable), i.e. the average cycle length and average luteal phase length. Its
limited usefulness is thanks to (relative) constancy of the luteal phase length.
Next one is the detector analyzing ovulation test results. It can predict ovulation
in the near future based on the pattern of these results. The detector analyzing
symptoms reported by the user is the most complex of the three. It relies on
the detection of symptom rules periodically performed on the entire collection
of menstrual cycles gathered in the data base. A rule is a combination of symp-
toms observed on a single day. It has a strength value assigned that measures
how strong was the correlation between the first occurrence of this particular
combination of symptoms in the cycle and the occurrence of ovulation in the
near future. Each rule has an associated fuzzy set pattern that, when the rule is
triggered on a given day of the cycle, is used to construct a fuzzy set in the neigh-
bourhood of this day – according to the pattern – that conveys to what degree
different future days are likely to be the ovulation day. This allows different rules
to predict ovulation different amounts of days into the future.

We may now look holistically at the flow of information through the system.
When a new cycle begins, the algorithm is in the prognostic phase and it uses
the information accumulated throughout the previous cycles to predict ovulation
date in the current cycle. At the very beginning of the cycle, the algorithm is
in the prefertile sub-phase when the menstruation probably still lasts. In this
time when there is virtually no information on the current cycle, the algorithm
offers only simple predictions based on statistics of the user (if available) or
the population - it gives the range of seven, five or three days (depending on
accuracy) where the ovulation will statistically most probably appear. Next,
when the cycle enters into the assumed fertile period, the algorithm proceeds to
the early fertile sub-phase. Now that there is some information available on the
current cycle, in addition to statistics it starts using the ovulation test detector,
the symptom rules and the fuzzy NoC to make much more accurate predictions.
From the practical point of view this is one of the most valuable functionalities
that the system offers, as it gives comfort of better planning for couples hoping for
pregnancy. After the gradual accumulation of individual signs of ovulation from
retrospective detectors, the algorithm enters the late fertile sub-phase and starts
combining prognostic and retrospective methods to indicate the ovulation day. In
this period ovulation is in the near past and a quick confirmation (3–4 days) that
the forecast from the previous sub-phase was good is possible. Subsequently the
algorithm transitions to the postfertile sub-phase which corresponds completely
to the retrospective phase. Having data on most of the cycle it can reliably
designate ovulation or determine that the cycle is anovulatory. When the cycle
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concludes, it is added to the reference set of closed cycles and it will help refine
ovulation prediction for the cycles that will follow it.

In general, this solution assumes that each new cycle feeds the knowledge base
extending the system’s capabilities. This way it can adapt to new cases and have
the ability to predict ovulation for new types of cycles. Also additional cycles
coming into the system help dilute the outliers and smooth the distribution of
different types of situations so that general trends become more prominent. In
this regard it has some analogy to the Kalman filter. The succession of the two
phases - retrospective which allows gathering of new information and prognostic
which uses that information to make more accurate predictions - in a way creates
a spiral through time. This process is presented in Fig. 2.

5 Evaluation and Results

The data set used in the experiment contains 1097 menstrual cycles. Every cycle
in the set was tagged by medical experts with a label signifying occurrence of
ovulation or that the cycle is anovulatory. In the former case the experts also
selected the day on which ovulation most probably occurred (or several days
if the situation was too vague to reliably select a single day). Additionally, the
experts recorded their certainty when making a decision (as a number from the
unit interval [0, 1]).

In the data set there are represented cycles with different levels of complete-
ness of data. Those that have a high level of coverage with data points and those
that have noticeably less information available. The cycles can also be classified
in terms of types of measurements (time series) provided by the user, e.g. cycles
with no data on temperature, cycles with no data on ovulation test, etc. This
assures that cycles in the data set are diversified and the data set is balanced in
terms of different features.

To designate ovulation or to mark the cycle as anovulatory, learning of a
set of coefficients is necessary. The ReSample method was used which randomly
selects 33% of cycles from the data set to the training set and the remaining
cycles constitute the testing set. This procedure was performed k times and the
counts of particular categories (TP, TN, FP, FN) were summed to compute the
average efficiency of the algorithm. It was measured for closed cycles, so the ones
that are in the post-fertile phase when the learned set of coefficients is used (only
in this sub-phase the cycles can be marked as anovulatory). The results of this
experiment (ran k = 10 times) are shown in Table 1.

Table 1. The averaged results achieved for 1097 cycles divided into 2 subsets (learning
(33%) and testing (67%)) with k = 10 repeats.

TP TN FP FN Pr Re F1 Acc

6097 402 138 707 0.90 0.98 0.94 0.89
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We also simulated the behaviour of the algorithm in the earlier sub-phases:
prefertile, early fertile and late fertile. Since these sub-phases do not use the learned
coefficients (because it is not needed todecide between ovulatory andanovulatory),
these experiments were ran only once on the appropriately modified cycles.

To analyze efficiency of the algorithm in the pre-fertile sub-phase, each cycle
was cut to its first 2 days, so to its very beginning. So prepared, the cycles
were processed by the algorithm. Its task was to find the interval in which the
ovulation will most probably occur if the cycle will turn out to have ovulation.

Table 2. Results for prefertile sub-phase with two types of sets: F - full set (1097), O
- only ovulation cycles (1033). Cycles where cut to length of 2 first days. W - window
in which the result was considered.

Set W TP TN FP FN Pr Re F1 Acc

F 1 488 0 66 543 0.88 0.47 0.62 0.44

F 2 687 0 66 344 0.91 0.67 0.77 0.63

F 3 823 0 66 208 0.93 0.80 0.86 0.75

O 1 488 0 2 543 0.99 0.47 0.64 0.47

O 2 687 0 2 344 0.99 0.67 0.80 0.67

O 3 823 0 2 208 0.99 0.80 0.89 0.80

Table 2 contains results for all cycles in the reference set of cycles tagged by
medical experts (both these with ovulation and these that are anovulatory). Of
course, since in this sub-phase the algorithm does not mark cycles as anovulatory,
all anovulatory cycles were classified as mistakes. Next, the experiment was
performed on the reference set with anovulatory cycles removed. In this case, the
efficiency results take into account only the actual efficiency for cycles that had
ovulation. The results are also contained in Table 2. They are listed depending
on the interval width: 7 (window 3), 5 (window 2), or 3 (window 1) days. The
narrower the interval, the lower the efficiency.

To simulate the early fertile sub-phase, with the assumption that the ovulation
is to be predicted before it happens, the cycles were cut to one day before ovulation
for cycles with ovulation and to half-length of the cycle for anovulatory cycles. Two
experiments were performed whose results are presented in Table 3. In the first one
if the algorithm did not return any prediction, we interpreted it as the decision
that the cycle is anovulatory. This interpretation is justified by the fact that these
detectors operate on cycle similarity, so not finding any cycle with ovulation that is
similar enough to the cycle we are analyzing, indicates that it may be anovulatory.
The second experiment was performed only on ovulatory cycles.

The third sub-phase is such that the ovulation has already occurred, but
only in the near past. The simulation of this sub-phase was done by cutting
the cycle to the fourth day after the ovulation or in the case of an anovulatory
cycle by cutting it to five days before the end. In this sub-phase the algorithm
uses both the prognostic and the retrospective detectors. Again, two experiments
were performed with the same rules as in the previous sub-phase. Their results
are presented in Table 3.
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Table 3. Results for early fertile and late fertile sub-phases using two types of sets: F -
full set, O - only ovulation cycles. Results for early fertile phase are placed in columns
with ∗. Early fertile cycles were cut to the length of one 1 day before and late fertile
cut to the 4 days after the ovulation day. In case of no ovulation half of original length
or 5 days before end of cycle was set respectively.

Set W TP* TN* FP* FN* Pr* Re* F1* Acc* TP TN FP FN Pr Re F1 Acc

F 1 730 68 1 297 0.99 0.71 0.83 0.73 850 65 0 182 1.00 0.82 0.90 0.83

F 2 836 68 1 191 0.99 0.81 0.90 0.82 928 65 0 104 1.00 0.90 0.95 0.91

F 3 910 68 1 117 0.99 0.89 0.94 0.89 973 65 0 59 1.00 0.94 0.97 0.95

O 1 730 5 0 297 1.00 0.71 0.83 0.71 850 1 0 182 1.00 0.82 0.90 0.82

O 2 836 5 0 191 1.00 0.81 0.90 0.81 928 1 0 104 1.00 0.90 0.95 0.90

O 3 910 5 0 117 1.00 0.89 0.94 0.89 973 1 0 59 1.00 0.94 0.97 0.94

6 Summary

In this paper we presented a novel approach to designating the ovulation day in
women’s menstrual cycles using standard declarative data, which can be observed
at home without specialized equipment. Particularly noteworthy is the fact that
the algorithm allows for prediction of the day of ovulation and not only for its
confirmation as is the case with most classic algorithms in this area.

The experiment confirmed the very good efficiency of the algorithm in the
different phases of the cycle. The average F1 score value for the retrospective
phase is 0.94, and for the earlier phases it is not much lower. The comparison of
efficiency results achieved in different phases of the cycle shows that throughout
all of the cycle, the algorithm is able to provide valuable information to a woman
that is trying to conceive. Even at the beginning of the cycle, the algorithm is
able to indicate an interval in which the ovulation is most likely to occur with
relatively high reliability. When the cycle advances and the future ovulation
gets closer in time, it is able to indicate the correct ovulation day with very
high credibility. These results confirm the effectiveness of the solution and in
particular of the networks of comparators used here to process such complex
multidimensional time series.

The immediate next step in our work will be focused on application of the solu-
tion in the Ovufriend platform products, where real-time users will use the imple-
mented algorithms. The presented algorithm will increase the chance of pregnancy
even for couples with a narrow fertility window, because it will more accurately
determine the ovulation day and, above all, it will predict it and not only confirm.
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5. Kacprzyk, J., Zadrożny, S.: Fuzzy logic-based linguistic summaries of time series:
a powerful tool for discovering knowledge on time varying processes and systems
under imprecision. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 6(1), 37–46
(2016)
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Abstract. A classification process can be seen as a set of actions by
which several objects are evaluated in order to predict the class(es) those
objects belong to. In situations where transparency is a necessary con-
dition, predictions resulting from a classification process are needed to
be interpretable. In this paper, we propose a novel variant of a naive
Bayes (NB) classification process that yields such interpretable predic-
tions. In the proposed variant, augmented appraisal degrees (AADs) are
used for the contextualization of the evaluations carried out to make the
predictions. Since an AAD has been conceived as a mathematical repre-
sentation of the connotative meaning in an experience-based evaluation,
the incorporation of AADs into a NB classification process helps to put
the resulting predictions in context. An illustrative example, in which
the proposed version of NB classification is used for the categorization of
newswire articles, shows how such contextualized predictions can favor
their interpretability.

Keywords: Explainable artificial intelligence · Augmented appraisal
degrees · Naive Bayes classification · Context handling

1 Introduction

Computer applications like scoring tools that make judgments about individuals,
or graphical applications that incorporate scene recognition to get stunning pho-
tos, can be driven by artificial intelligence (AI). Although such systems can be
very convenient, they might be restricted or avoided in situations where trans-
parency and accountability are highly important. For example, systems that
predict the degree to which individuals are suitable (or unsuitable) for a job
without explaining their predictions can be banned from using in the European
Union according to the General Data Protection Regulation (GDPR) [6]. An
ongoing challenge in this regard is to find appropriate mechanisms to explain
such predictions.

In a previous work [14], we proposed a method to address that challenge
in predictions made by a support vector machine (SVM) classification process
[20,21]. In that method, an evaluation performed to predict whether an object
c© Springer Nature Switzerland AG 2020
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belongs to a given class or not is augmented in such a way that the object’s
features supporting the evaluation are also recorded. It has been shown how
such an augmentation, which is represented by means of an augmented appraisal
degree (AAD) [12], can favor the interpretability of SVM predictions.

As a sequel to [14], in this paper we propose a novel version of a naive Bayes
(NB) classification process [9], in which AADs are incorporated to contextualize
the evaluations performed to predict the class(es) an object belongs to. Our
motivation here is that, while the context of evaluations performed by a person
can sometimes be inferred from factors like situational or environmental aspects,
the context of evaluations carried out by a machine might be difficult to infer.
Thus, an explicit representation of the context of evaluations through AADs can
help a NB classifier (NBC) to offer predictions that are better interpretable.

explainable AI  System
user

explainable
NBC

explainable
interface

AADs

contextualized
prediction(s)

explanation

decision

task

Fig. 1. A general view of the proposed version of NBC in the context of the explanation
framework included in the 2016 DARPA report [5].

Contextualized predictions can be useful in situations where informed deci-
sions are needed. In this regard, the proposed NBC, named explainable NBC
(XNBC), can be included within an explainable artificial intelligence (XAI) sys-
tem [5], by which a user can receive those contextualized predictions to make a
decision as shown in Fig. 1. In addition, contextualized predictions can provide
direct insights about what is deemed to be relevant to the (knowledge) model
used by a classification process. This means that such contextualized predictions
can also be used by, say, an AI practitioner to assess the quality of models that
result from different learning scenarios.

To illustrate how the novel XNBC works, we develop a text categorization
process (cf. [10]) by which newswire articles included in the Reuters-21578 col-
lection [8] are evaluated to predict the class(es) those articles belong to. Figure 2
shows a resulting visual representation where it is indicated why and why not
XNBC predicts that a newswire article belongs to a given class up to a spe-
cific level: while the size of a word denotes its influence on the classification,
its typographical style denotes whether the word is in favor of or against the
membership in that class. The evaluation behind such a visual representation
can also be used by, say, the explainable interface of an XAI system to provide
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Food Department officials said the U.S.
Department of Agriculture approved
the Continental Grain Co sale of 52,500

tonnes of soft wheat at 89 U.S.
Dlrs a tonne C and F from Pacific North-
west to Colombo. They said the shipment
was for April 8 to 20 delivery. REUTER

Fig. 2. A visual representation of the reasons that justify why and why not a newswire
article belongs to the category ‘wheat’ up to a specific level.

the following explanation: “While words like ‘Dlrs’ or ‘Pacific’ suggest that the
newswire article does not belong to the category ‘wheat’ with a computed overall
grade of 0.29, words like ‘wheat’ or ‘tonnes’ suggest that the article belongs to the
category with a computed overall grade of 0.71. These results indicate that the
article should be considered member of the category up to a 0.42-level.” Notice
how this explanation clarifies what has been relevant to the knowledge model
used for this prediction.

In the next section, we outline how an integration of the AAD concept into
the intuitionistic fuzzy set [2,3] concept can be used for the characterization of
the evaluation represented in Fig. 2. Then, we describe our novel variant of NBC
in Sect. 3 and illustrate how it works in Sect. 4. After that, we present some
related work in Sect. 5. The paper is concluded in Sect. 6.

2 Preliminaries

As previously stated, a classification can be seen as a process in which one or
more objects are evaluated in order to predict whether those objects can be sit-
uated in one or more classes. In situations where an object, say x, has features
suggesting that it partially belongs to a given class, say A, a classification algo-
rithm can use the framework of fuzzy set theory [23] to model in mathematical
terms the evaluation of the level to which x is a member of A. In this frame-
work, such an evaluation can be characterized by a membership grade, which is
a number μA(x) in the unit interval [0, 1], where 0 and 1 represent in that order
the lowest and the highest membership grades. For example, if the newswire
article shown in Fig. 2 is denoted by x, and (what has been learned about) the
category ‘wheat’ is represented by A, then μA(x) indicates the level to which x
belongs to A. In this regard, if another category, say ‘corn’, is denoted by B,
the expression μB(x) < μA(x) indicates that the level to which (the newswire
article) x belongs to B is less than the level to which x belongs to A.

An object can also have features suggesting that it does not belong to a class.
Notice in Fig. 2 that, while words such as ‘wheat’ or ‘grain’ are in favor of the
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membership in the category ‘wheat’, words like ‘Dlrs’ or ‘Pacific’ are against that
membership. In this case, a classification algorithm can make use of the intuition-
istic fuzzy set (IFS) [2,3] framework to model the evaluation of an object x by
means of an IFS element. An IFS element, say 〈x, μA(x), νA(x)〉, is constituted
by the evaluated object x, a membership grade μA(x) and a nonmembership
grade νA(x), where μA(x) and νA(x) are two numbers in the unit interval [0, 1]
that satisfy the consistency condition 0 ≤ μA(x) + νA(x) ≤ 1. The buoyancy
[15] of 〈x, μA(x), νA(x)〉, i.e., ρA(x) = μA(x)−νA(x), can be used for comparing
this element to another. For example, if 〈x, μA(x), νA(x)〉 and 〈x, μB(x), νB(x)〉
denote the evaluations of the membership and nonmembership of x in categories
A and B respectively, the expression ρA(x) > ρB(x) will suggest that x belongs
to a larger extent to A than to B.

As can be noticed, neither a membership grade, nor an IFS element can
be used to record the object’s characteristics that lead to the level to which
the object belongs or not to a given class. To record those characteristics, the
notion of augmented appraisal degrees (AADs) has been proposed in [12]. An
AAD, say μ̂A@K(x), is a pair 〈μA@K(x), FμA@K

(x)〉 that represents the level
μA@K(x) to which x belongs to A, as well as the particular collection of x’s
features FμA@K

(x) that have been taken into account to determine (the value
of) μA@K(x) based on the knowledge K. Here, A@K denotes what has been
learned about A after following a learning process that yields K as a result. For
example, consider that A and x denote the category ‘wheat’ and the newswire
article shown in Fig. 2 respectively. With this consideration, one can use an
AAD, say μ̂A@K(x) = 〈μA@K(x), FμA@K

(x)〉, to represent the evaluation of the
proposition ‘x is member of A’ according to what has been learned about the
category ‘wheat’ after following a learning process that produces K as a result. In
this case, while μA@K(x) represents the level to which x belongs to the category
‘wheat’, FμA@K

(x) represents the collection of x’s words such as ‘agriculture’,
‘grain’, or ‘wheat’ that have been considered for quantifying the value of μA@K(x)
according to (the knowledge) K.

As has been mentioned above, the newswire article x can also contain words
suggesting that it does not belong to the category ‘wheat’. To characterize the
context of this kind of evaluations, the idea of an augmented IFS element, say
〈x, μ̂A@K(x), ν̂A@K(x)〉, has been introduced in [12]. As noticed, an augmented
IFS element consists of a membership AAD, μ̂A@K(x), and a nonmembership
AAD, ν̂A@K(x). Hence, the evaluation of the previous example can be better
characterized by 〈x, μ̂A@K(x), ν̂A@K(x)〉, where the meaning of ν̂A@K(x) is anal-
ogous to the meaning of μ̂A@K(x), i.e., ν̂A@K(x) is a pair 〈νA@K(x), FνA@K

(x)〉
such that νA@K(x) represents the level to which x does not belong to the cate-
gory ‘wheat’ and FνA@K

(x) is the collection of features that have been considered
for quantifying the value of νA@K(x) according to K.

In the next section, we describe how to use AADs to contextualize predictions
made by our novel variant of a naive Bayes classification process.
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3 Explainable Naive Bayes Classification

Let F be the set of features under consideration. In naive Bayes classification
[9,24], the probability P (A|x) of an object, say x, being in a class (or category),
say A, is given by

P (A|x) ∝ P (A)
∏

f∈x

P (f |A), (1)

where P (A) is the prior probability of x being member of A, and P (f |A) is the
conditional probability of a feature f ∈ F occurring in an object x that belongs
to A. This expression takes into account the “naive” assumption made in naive
Bayes classification, which states that all features in x are mutually independent.

The actual value of P (A|x) might be unknown. However, one can compute an
approximation, say P̃ (A|x) = P̃ (A)

∏
f∈x P̃ (f |A), through a (knowledge) model

obtained from a training set, say X0. In this regard, P̃ (A) can be computed by
means of

P̃ (A) =
|XA|

|XA| + |XĀ| , (2)

where |XA| and |XĀ| represent, in that order, the number of objects in X0 that
belong to A and the number of objects in X0 that do not belong to A. Likewise,
P̃ (f |A) can be computed by means of

P̃ (f |A) =
|FA[f ]|

|FA[f ]| + |FĀ[f ]| , (3)

where f denotes any of the x’s features, |FA[f ]| represents the number of occur-
rences of f in training objects that belong to A, and |FĀ[f ]| represents the
number of occurrences of f in training objects that do not belong to A. In this
regard, P̃ (f |A) can be seen as a quantification of the level to which f favors the
membership of x in A.

Instead of multiplying many conditional probabilities in Eq. 1, performing
the computation by summing logarithms of probabilities is preferred. Hence, the
logarithm of P̃ (A|x) can be computed by

log P̃ (A|x) = log P̃ (A) +
∑

f∈x

log P̃ (f |A). (4)

Additionally, to avoid zeros, one can use Laplace smoothing [16], which adds one
to each count. Thus, Eq. 4 can be rewritten as

log P̃ (A|x) ∝ log
|XA| + 1

(|XA| + |XĀ|) + 1
+

∑

f∈x

log
|FA[f ]| + 1

(|FA[f ]| + |FĀ[f ]|) + |FX0 |
, (5)

where |FX0 | denotes the number of features detected in the training objects.
Given a collection of well-known classes, say C, one can use Eq. 5 to predict

the best class C for an object x by means of

C = argmax
A∈C

(log P̃ (A|x)). (6)
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As can be noticed, Eq. 6 computes the predicted category without giving any
explanation of what has been taken into account to make that prediction. For
this reason, we consider that an explicit representation of the context of the eval-
uations made by Eq. 5 is strongly recommended. Hence, we propose our novel
version of naive Bayes classification (NBC), named explainable NBC (XNBC),
which main components: a learning process, an evaluation process and a predic-
tion step, are described next.

3.1 Learning Process

The purpose of the learning process in XNBC is to obtain a model of what
is known about a given category. Hence, a feature-influence model [13], which
allows for the representation of the influence of features on the classification, is
built with Algorithm 1. This algorithm uses a training set, X0, and an identifier
of the category, A, as input, and returns a model KA = 〈ûA, tA〉 as output. The
model KA is characterized by both a directional vector ûA = ω1f̂1 + · · · + ωmf̂m
and a threshold point tA in a m-dimensional feature space M, where ωi denotes
the influence of a feature fi, which is represented by a unit vector f̂i in M. As
shown in Fig. 3, the model KA can be seen as a line defined by ûA and tA: while
the direction of ûA points towards a place where the membership in A is favored,
the location of tA identifies a point where the membership in A is neither favored
nor disfavored.

K
A

(−
)

(+
)

tA

�ûA

Fig. 3. Characterization of the knowledge model KA.

To build the model, Algorithm1 explores the objects included in the training
set X0 in order to determine the prior probability of a given object being a
member of A, as well as the conditional probabilities of the features occurring
in objects that belong to A. It is worth recalling that in NBC the best class
for an object is considered to be the most likely. For this reason, Algorithm1
first updates the following counters (see Lines 3–13): (i) |XA|, which counts how
many objects belong to the category A; (ii) |XĀ|, which counts how many objects
do not belong to A; (iii) |FA[f ]|, which counts the occurrence of the feature f
in objects that belong to A; (iv) |FĀ[f ]|, which counts the occurrence of f in
objects that do not belong to A. Then, the algorithm uses these counters to
compute the following probabilities: (i) the prior probability P (A) of an object
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Algorithm 1: XNBC - Learning Process.
Data: A, X0 /* category, training set */

Result: KA /* knowledge model KA = 〈ûA, tA〉 */

1 |XA| ← 0 /* number of objects that are member of A */

2 |XĀ| ← 0 /* number of objects that are nonmember of A */

3 foreach x ∈ X0 do
4 if x ∈ A then /* if x is member */

/* ...increase the number of members */

5 |XA| ← |XA| + 1
6 foreach f ∈ x do /* for each f in x’s features */

/* ..increase the occurrence of f in members */

7 |FA[f ]| ← |FA[f ]| + count(f, x)
8 FX0 ← FX0 ∪ {f}
9 else /* if x is nonmember */

/* ..increase the number of nonmembers */

10 |XĀ| ← |XĀ| + 1
11 foreach f ∈ x do /* for each f in x’s features */

/* ..increase the occurrence of f in nonmembers */

12 |FĀ[f ]| ← |FĀ[f ]| + count(f, x)
13 FX0 ← FX0 ∪ {f}

/* compute the prior probabilities */

14 |X| ← |XA| + |XĀ|
15 P (A) ← log((|XA| + 1)/(|X| + 1)
16 P (Ā) ← log((|XĀ| + 1)/(|X| + 1))

/* compute the conditional probabilities */

17 foreach f ∈ FX0 do
18 P (f |A) ← log((|FA[f ]| + 1)/(|FA[f ]| + |FĀ[f ]| + |FX0 |))
19 P (f |Ā) ← log((|FĀ[f ]| + 1)/(|FA[f ]| + |FĀ[f ]| + |FX0 |))

/* build the feature-influence model */

20 b ← P (A) − P (Ā)
21 w ← 0
22 foreach f ∈ FX0 do

23 w ← w + (P (f |A) − P (f |Ā))f̂f
24 ûA ← w/||w||
25 tA ← −b/||w||
26 KA ← 〈ûA, tA〉
27 return KA

x being in A (see Line 15); (ii) the prior probability P (Ā) of an object x not
being in A (see Line 16); (iii) the conditional probability P (f |A) of a feature f
occurring in an object that belongs to A (see Line 18); and (iv) the conditional
probability P (f |Ā) of a feature f occurring in an object that does not belong to
A (see Line 19). These probabilities are used for computing the components of
KA, i.e., ûA and tA (see Lines 20–25). As noticed, the conditional probability of
each feature is used as an indicator of its relative influence on the classification.
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Algorithm 2: XNBC - Evaluation Process.
Data: x, KA /* object, knowledge model KA = 〈ûA, tA〉 */

Result: 〈x, μ̂A(x), ν̂A(x)〉 /* augmented IFS element */

1 F̃μA(x) ← {} /* pro-membership x’s features */

2 F̃νA(x) ← {} /* pro-nonmembership x’s features */

3 μ̃A(x) ← 0 /* pro-membership x’s score */

4 ν̃A(x) ← 0 /* pro-nonmembership x’s score */

5 if tA < 0 then /* a negative threshold favors the score */

6 μ̃A(x) ← μ̃A(x) + abs(tA) /* increase the positive score of x */

7 else /* a positive threshold disfavors the score */

8 ν̃A(x) ← ν̃A(x) + tA /* increase the negative score of x */

/* recall that ûA =
∑

f∈FX0
ωf f̂f */

9 foreach f ∈ x do /* for each f in x’s features */

10 sf ← count(f, x) ∗ ωf /* compute f’s influence */

11 if sf > 0 then /* if f is in favor of x ∈ A */

12 μ̃A(x) ← μ̃A(x) + sf /* increase x’s positive score */

13 F̃μA(x) ← F̃μA(x) ∪ {〈f, sf 〉} /* and record f’s influence */

14 else /* f is against x ∈ A */

15 ν̃A(x) ← ν̃A(x) + abs(sf ) /* increase x’s negative score */

16 F̃νA(x) ← F̃νA(x) ∪ {〈f, abs(sf )〉} /* and record f’s influence */

/* handle the consistency condition 0 ≤ μA(x) + νA(x) ≤ 1 */

17 maxLevel ← max(1, μ̃A(x) + ν̃A(x))

18 foreach 〈f, sf 〉 ∈ F̃μA(x) do
19 FμA(x) ← FμA(x) ∪ {〈f, (sf/maxLevel)〉}
20 foreach 〈f, sf 〉 ∈ F̃νA(x) do
21 FνA(x) ← FνA(x) ∪ {〈f, (sf/maxLevel)}〉
22 μA(x) ← μ̃A(x)/maxLevel
23 νA(x) ← ν̃A(x)/maxLevel

/* finally, build the augmented IFS element */

24 μ̂A(x) ← 〈μA(x), FμA(x)〉
25 ν̂A(x) ← 〈νA(x), FνA(x)〉
26 return 〈x, μ̂A(x), ν̂A(x)〉

3.2 Evaluation Process

The purpose of the evaluation process is to obtain a contextualized evaluation of
the membership of a given object in a given category. The steps of this process are
described in Algorithm 2. This algorithm uses an object x and the knowledge
model KA = 〈ûA, tA〉 for a category A as input, and builds an augmented
IFS element1 〈x, μ̂A(x), ν̂A(x)〉 representing a contextualized evaluation that is
returned as output.

1 To be consistent with the notation introduced in Sect. 2, we should write
〈x, μ̂A@X0(x), ν̂A@X0(x)〉. However, for the sake of readability, we use this simpli-
fied notation hereafter.
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To build a contextualized evaluation, Algorithm 2 computes both a positive
score μ̃A(x) and a negative score ν̃A(x) of x being in category A based on the
threshold point tA and the influence of the features in the directional vector ûA.
The positive score is increased in two cases: if tA is negative (see Line 6); and if
the influence of a feature is positive (see Line 12). Likewise, the negative score
is increased in two cases: if tA is positive (see Line 8); and if the influence of a
feature is negative (see Line 15). While the conditions that arise when a positive
score is increased are recorded in F̃μA

(x) (see Line 13), the conditions that arise
when a negative score is increased are recorded in F̃νA

(x) (see Line 16).
The consistency condition of an IFS element, i.e., 0 ≤ μA(x) + νA(x) ≤ 1, is

guaranteed by Algorithm 2 in Lines 17–23. After this, the algorithm records the
components of the augmented IFS element in Lines 24–25.

3.3 Predicting the Best Class(es)

To predict the best class C ∈ C for an object x, an XAI system (see Sect. 1) can
first use Algorithm 1 for building a knowledge model for each class in C. Then,
that system can use Algorithm 2 to obtain the contextualized evaluation of the
membership of x in each class using these models. After that, the system can
use the buoyancy of those contextualized evaluations (see Sect. 2) to sort them
in descending order. Then, the system can, say, list the top-k of the contextu-
alized evaluations so that a user can be offered the k best classes with the best
context. For each class an augmented IFS element, expressing the context of the
evaluation of x belonging to the class or not, is provided. Together these explain
to users why x has been classified in this way. Hence, with XNBC users and
applications have extra information for giving preference to those classes with
the best credible justification.

4 Illustrative Example

In this section, we present an example where our novel version of naive Bayes
classification is used for predicting the classes of newswire articles. In this exam-
ple, the Reuters-21578 collection [8], which consists of 21578 newswire articles
provided by Reuters, Ltd, has been used. Specifically, we made use of the articles
established in the “modified Apte split” (ModApte) of this collection.

To use Algorithm 1, each article had to be modeled as a feature-influence
vector whose components are the words in the article. Hence, each article was
first split into words using separators such as commas or blank-spaces. Then,
stop words, i.e., words like prepositions or conjunctions that have a negligible
impact on the classification [11], were removed from the previous list of words.
Additionally, words having a common stem were tokenized using the Porter
Stemming Algorithm [18]. After that, Algorithm 1 was used with the feature-
influence vectors corresponding to the 9603 articles included in the training set
of the ModApte split for building a knowledge model for each of the following
categories: earn, acq, money-fx, grain, crude, trade, interest, ship, wheat, corn.
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For the sake of illustration in this paper we consider one article from the
test set of the ModApte split, namely the newswire article identified by 14841.
Algorithm 2 was used with the resulting knowledge models to evaluate the mem-
bership of this article to each of the aforementioned categories. This means that,
augmented IFS elements like 〈x, μ̂earn(x), ν̂earn(x)〉 or 〈x, μ̂grain(x), ν̂grain(x)〉
were obtained as output – here x represents the article identified by 14841.

The resulting augmented IFS elements were used for building visual repre-
sentations like the ones depicted in Fig. 4. For instance, μgrain(x) and νgrain(x),
which are parts of μ̂grain(x) and ν̂grain(x) respectively, were used for computing
the buoyancy ρgrain(x) = 0.60 of the article in category ‘grain’ (see Fig. 4(a)).
Analogously, the positive influence of the word ‘wheat’ on the membership of
this article in category ‘grain’, namely 〈‘wheat’, 0.15〉 ∈ Fμgrain

(x), was used
for setting both the size and the typographical style of this word. Herein, while
the size of the word denotes the influence of this word on the classification, the
typographical style denotes whether this influence is positive or negative.

Food Department officials said the

U.S. Department of Agriculture
approved the Continental Grain Co sale

of 52,500 tonnes of soft wheat
at 89 U.S. Dlrs a tonne C and F from

Pacific Northwest to Colombo. They said the
shipment was for April 8 to 20 delivery.
REUTER

(a) ρgrain(x) = 0.60

Food Department officials said the U.S.
Department of Agriculture approved
the Continental Grain Co sale of 52,500

tonnes of soft wheat at 89 U.S.
Dlrs a tonne C and F from Pacific North-
west to Colombo. They said the shipment
was for April 8 to 20 delivery. REUTER

(b) ρwheat(x) = 0.42

Food Department officials said the U.S.
Department of Agriculture approved
the Continental Grain Co sale of 52,500

tonnes of soft wheat at 89 U.S. Dlrs
a tonne C and F from Pacific Northwest
to Colombo. They said the shipment was for

April 8 to 20 delivery. REUTER

(c) ρcorn(x) = 0.23

Food Department officials said the U.S.

Department of Agriculture approved

the Continental Grain Co sale of 52,500

tonnes of soft wheat at 89 U.S.Dlrs a tonne C

and F from PacificNorthwest toColombo.
They said the shipment was for April 8 to 20

delivery. REUTER

(d) ρship(x) = −0.47

Fig. 4. The four best evaluated categories for a newswire article x.

Those augmented IFS elements were also used for building explanations like
the following: “While words like ‘Dlrs’, ‘April’ or ‘Pacific’ suggest that article
14841 does not belong to category ‘grain’ with a computed overall grade of 0.20,
words like ‘grain’, ‘wheat’ or ‘tonnes’ suggest that the article belongs to the cat-
egory with a computed overall grade of 0.80. These results indicate that article
14841 should be considered member of category ‘grain’ up to a 0.60-level.” Notice
that this explanation indicates not only the level to which this article belongs to
the category ‘grain’ but also provides practical information about what words
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(features) have been focused on during the evaluation. We foresee that this kind
of explanation can help, say, an AI practitioner to improve the knowledge model
used for the evaluation. For instance, if an AI practitioner considers that ‘Dlrs’
and ‘April’ are irrelevant to the evaluation, he/she might exclude these words
from the list that is used during the learning process. Notice also that only the
six most influential words (three with positive influence and three with negative
influence) have been included in the explanation in order to keep it simple and
interpretable. A future work will reveal how this simplification could be used for
improving knowledge models that result from training sets having imperfect or
scarce data.

Regarding the prediction of the best category (or categories) for article 14841,
the contextualized evaluations were first sorted in descending order according to
the computed buoyancy. After that, the four best evaluated categories (see Fig. 4)
were presented as the most optimistic predictions. As noticed, these predictions
reuse the context of the evaluations and, thus, they can be easily interpreted.
Hence, a user can choose the category which prediction has the most adequate
justification according to his/her perspective. In this regard, experimental stud-
ies about the interpretability and usability of such predictions are considered
and highly suggested.

5 Related Work

Methods aiming to produce a set of rules that explain predictions can be found
in the literature. For instance, a Bayesian method for learning rules that provide
explanations of the predictions according to prior parameters fixed by a user is
proposed in [22]. Another example is the method proposed in [7] for building
Bayesian rules that discretize a high-dimensional feature space into a series of
interpretable decision statements. In the framework of fuzzy set theory, an exam-
ple is the variant of the neuro-fuzzy classification method presented in [17]. This
variant tries to produce a small set of interpretable fuzzy rules for the diagnosis
of patients.

A comprehensive survey of methods proposed for explaining computer pre-
dictions can be found in [4]. This survey has identified two main approaches
of the works found in the literature: one trying to describe how ‘black box’
machine learning approaches work, and the other trying to explain the result
of such approaches without knowing the details on how these work. In the first
approach, the goal is to make “transparent classifiers” by training interpretable
models that can be used for yielding satisfactory explanations. In the second
approach, the purpose is to understand the reasons for the classification or how
a model behaves by, say, changing one or more inputs. In this regard, while our
novel XNBC can be considered to belong to the works following the first app-
roach, the explanation technique proposed in [19] is an example of the second
approach. It is worth mentioning that techniques based on the second approach
try to explain only the reasons for a specific prediction. In contrast, techniques
like XNBC try to explain what has been relevant to the knowledge model and
is applicable for all the possible predictions.
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Contributions proposed by the fuzzy logic community for explaining com-
puter predictions are analyzed in [1]. This analysis suggests that efforts made
by the non-fuzzy community and by the fuzzy logic community can be linked to
solve problems related to the interpretability of computer predictions.

6 Conclusions

In this paper, we have proposed a novel variant of a naive Bayes classifica-
tion (NBC) process that produces contextualized predictions. The novel NBC
process, named explainable NBC or XNBC, consists of a learning process, an
evaluation process and a prediction step: while the purpose of the first is to
obtain a model of what is known about a particular class, the purpose of the
second is to obtain contextualized evaluations of the level to which other objects
belong to that class, these evaluations can then be used in the third for offering
users the k best classes with the best context.

The learning process looks into the objects included into a training collection
to build a knowledge model in which the influence of the features on the con-
textualized evaluations is represented. In this process, the influence of a feature
is determined by the conditional probability of the feature occurring in objects
that belong to the analyzed class.

The evaluation process uses such a knowledge model as input to quantify
the influence of the features on the classification of other objects. Augmented
appraisal degrees (AADs), which are mathematical representations of the con-
text of experienced-based evaluations, are used for handling the evaluations per-
formed during this process. Hence, the evaluation process produces contextual-
ized evaluations that put the forthcoming predictions in context.

In the prediction step, the k best classes corresponding to the top-k of the
resulting contextualized evaluations are presented in such a way that users have
additional information for giving preference to the class(es) with the best credible
justification.

By means of an example in which the categories of newswire articles are
predicted, we have illustrated how the proposed XNBC process can produce
contextualized predictions. We have also explained how those contextualized
predictions can help a user to decide which prediction is the most appropriate
according to his/her perspective and, thus, make an informed (classification)
decision. In spite of that, further study is needed to demonstrate the inter-
pretability and usability of such contextualized predictions.
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