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Abstract. In this paper, a new approach to compare measures of
entropy in the setting of the intuitionistic fuzzy sets introduced by
Atanassov. A polar representation is introduced to represent such bipo-
lar information and it is used to study the three main intuitionistic fuzzy
sets entropies of the literature. A theoretical comparison and some exper-
imental results highlight the interest of such a representation to gain
knowledge on these entropies.
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1 Introduction

Measuring information is a very crucial task in Artificial intelligence. First of
all, one main challenge is to define what is information, as it is done by Lotfi
Zadeh [15] who considers different approaches to define information: the proba-
bilistic approach, the possibilistic one, and their combination. In the literature,
we can also cite the seminal work by J. Kampé de Fériet who introduced a new
way to consider information and its aggregation [10,11].

In previous work, we have focused on the monotonicity of entropy measures
and highlighted the fact that there exist several forms of monotonicity [4,5]. But
highlighting that two measures share the same monotonicity property is often
not sufficient in an application framework: to choose between two measures, their
differences in behaviour are usually more informative.

In this paper, we do not focus on defining information but we discuss on the
comparison of measures of information in the particular case of Intuitionistic
Fuzzy Sets introduced by Atanassov (AIFS) [2] and related measures of entropy
(simply called hereafter AIFS entropies) that have been introduced to measure
intuitionistic fuzzy set-based information.

In this case, we highlight the fact that trying to interpret such a measure
according to variations of the AIFS could not be clearly understandable. Instead,
we propose to introduce a polar representation of AIFS in order to help the
understanding of the behaviour of AIFS entropies. As a consequence, in a more
general context, we argue that introducing a polar representation for bipolar
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information could be a powerful way to improve the understandability of the
behaviour for related measures.

This paper is organized as follows: in Sect. 2, we recall the basis of intuitionis-
tic fuzzy sets and some known measures of entropy in this setting. In Sect. 3, we
propose an approach to compare measures of entropy of intuitionistic fuzzy sets
that is based on a polar representation of intuitionistic membership degrees. In
Sect. 4, some experiments are presented that highlight the analytical conclusions
drawn in the previous section. The last section concludes the paper and presents
some future works.

2 Intuitionistic Fuzzy Sets and Entropies

First of all, in this section, some basic concepts related to intuitionistic fuzzy
sets are presented. Afterwards, existing AIFS entropies are recalled.

2.1 Basic Notions

Let U = {u1, . . . , un} be a universe, an intuitionistic fuzzy set introduced by
Atanassov (AIFS) A of U is defined [2] as:

A = {(u, μA(u), νA(u))|u ∈ U}

with μA : U → [0, 1] and νA : U → [0, 1] such that 0 ≤ μA(u) + νA(u) ≤ 1,
∀u ∈ U . Here, μA(u) and νA(u) represent respectively the membership degree
and the non-membership degree of u in A.

Given an intuitionistic fuzzy set A of U , the intuitionistic index of u to A is
defined for all u ∈ U as: πA(u) = 1− (μA(u)+ νA(u)). This index represents the
margin of hesitancy lying on the membership of u in A or the lack of knowledge
on A. In [6], an AIFS A such that μA(u) = νA(u) = 0, ∀u ∈ U is called completely
intuitionistic.

2.2 Entropies of Intuitionistic Fuzzy Sets

Existing Entropies. In the literature, there exist several definitions of the
entropy of an intuitionistic fuzzy set and several works proposed different ways
to define such entropy, for instance from divergence measures [12]. In this paper,
in order to illustrate the polar representation, we focus on three classical AIFS
entropies.

In [13], the entropy of the AIFS A is defined as:

E1(A) = 1 − 1
2n

n∑

i=1

|μA(ui) − νA(ui)|,

where n is the cardinality of the considered universe.
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Other definitions are introduced in [6] based on extensions of the Hamming
distance and the Euclidean distance to intuitionistic fuzzy sets. For instance, the
following entropy is proposed:

E2(A) =
n∑

i=1

πA(ui) = n −
n∑

i=1

(μA(ui) + νA(ui)).

In [9], another entropy is introduced:

E3(A) =
1
2n

n∑

i=1

(
1 − |μA(ui) − νA(ui)|

)
(1 + πA(ui)).

Definitions of Monotonicity. All AIFS entropies share a property of mono-
tonicity, but authors don’t agree about a unique definition of monotonicity.

Usually, monotonicity is defined according to the definition of a partial
order ≤ on AIFS. Main definitions of monotonicity for entropies that have been
proposed are based on different definition of the partial order In the following,
we show the definitions of the partial order less fuzzy proposed by [6,9,13].

Let E(A) be the entropy of the AIFS A. The following partial orders (M1)
or (M2) can be used:

(M1) E(A) ≤ E(B), if A is less fuzzy than B.
i.e. μA(u) ≤ μB(u) and νA(u) ≥ νB(u) when μB(u) ≤ νB(u), ∀u ∈ U , or

μA(u) ≥ μB(u) and νA(u) ≤ νB(u) when μB(u) ≥ νB(u), ∀u ∈ U .

(M2) E(A) ≤ E(B) if A ≤ B
i.e. μA(u) ≤ μB(u) and νA(u) ≤ νB(u), ∀u ∈ U .

Each definition of the monotonicity produces the definition of a particular
form of E:

– it is easy to show that E1 satisfies (M1);
– E2 has been introduced by [6] to satisfy (M2);
– E3 has been defined by [9] from (M1).

Indeed, these three AIFS entropies are different by definition as they are
based on different definitions of monotonicity. However, if we want to choose the
best entropy to use for a given application, it may not be so clear. A comparative
study as those presented in Fig. 2 do not bring out much information about the
way they are different. In the following section, we introduce a new approach to
better highlight differences in the behaviour of these entropies.

3 Comparing AIFS Entropies

Usually, the study of measures, either entropies or other kinds of measures, is
done by means of a given set of properties. In the previous section, we focused
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on the property of monotonicity showing that several definitions exist and could
be used. Thus, if any measure could be built according to a given definition
of monotonicity, at the end, this could not be very informative to understand
clearly their differences in behaviour.

A first approach focuses on the study of the variations of an entropy according
to the variations of each of its AIFS components μ and ν. However, this can only
highlight the “horizontal” variations (when μ varies) or the “vertical” variations
(when ν varies) and fails to enable a good understandability when both quantities
vary.

In this paper, we introduce a polar representation of AIFS in order to be
able to understand more clearly the dual influence of this bipolar information.
Indeed, we show that the comparison of measures can be made easier with such
a representation. We focus on AIFS, but we believe that such a study can also
be useful for other bipolar information measures.

3.1 Polar Representation of an AIFS

In this part, we introduce a polar representation of an AIFS and we represent
an AIFS as a complex number. In [3], this kind of representation is a way to
show a geometric representation of an AIFS. In a more analytic way, such a
representation could also be used to represent basic operations (intersection,
union,...) on AIFS [1,14], or for instance on the Pythagorean fuzzy sets [7].

Indeed, as each u ∈ U is associated with two values μA(u) and νA(u), the
membership of u to A can thus be represented as a point in a 2-dimensional
space. In this sense, μA(u) and νA(u) represent the Cartesian coordinates of this
point. We can then think of a complex number representation as we did in [5] or,
equivalently, a representation of such a point by means of polar coordinates. In
the following, we show that such a representation makes easier specific studies
of these measures.

The AIFS A is defined for u ∈ U as μA(u) and νA(u), that can be represented
as the complex number zA(u) = μA(u) + i νA(u) (see Fig. 1). Thus, for this u,
an AIFS is a point under (or on) the straight line y = 1 − x. When it belongs to
the line y = 1 − x, it corresponds to the special case of a fuzzy set.

Another special case corresponds to the straight line y = x that corre-
sponds to AIFS such that μA(u) = νA(u): AIFS above this line are such that
μA(u) ≤ νA(u) and those under this line are such that μA(u) ≥ νA(u).

Hereafter, using classical notation from complex numbers, given zA(u), we
note θA(u) = arg(zA(u)) and rA(u) = |zA(u)| =

√
μA(u)2 + νA(u)2 (see Fig. 1).

The values rA(u) and θA(u) provide the polar representation of the AIFS
(u, μA(u), νA(u)) for all u ∈ U . Following classical complex number theory, we
have μA(u) = rA(u) cos θA(u) and νA(u) = rA(u) sin θA(u).

To alleviate the notations, in the following, when there is no ambiguity, rA(u)
and θA(u) will be noted r and θ respectively.
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Fig. 1. Geometrical representation of an intuitionistic fuzzy set.

Using trigonometric identities, we have:

μA(u) + νA(u) = r(cos θ + sin θ)

= r
√

2 (
√

2
2

cos θ +
√

2
2

sin θ)

= r
√

2 sin(θ +
π

4
)

The intuitionistic index can thus be rewritten as πA(u) = 1−r
√

2 sin(θ+ π
4 ).

Moreover, let d be the distance from (μA(u), νA(u)) to the straight line y = x
and δ be the projection according to the U axis of (μA(u), νA(u)) on y = x (ie.
δ = |μA(u) − νA(u)|).

It is easy to see that d = r| sin(π
4 − θ)| and δ = d

sin π
4
. Thus, we have

δ =
√

2 r| sin(π
4 − θ)|.

In the following, for the sake of simplicity, when there is no ambiguity, μA(ui),
νA(ui), rA(ui) and θA(ui) will be respectively noted μi, νi, ri and θi.

3.2 Rewriting AIFS Entropies

With the notations introduced in the previous paragraph, entropy E1 can be
rewritten as:

E1(A) = 1 −
√

2
2n

n∑

i=1

ri|sin(
π

4
− θi)|.

With this representation of the AIFS, it is easy to see that:

– if θi is given, E1 decreases when ri increases (ie. when the AIFS gets closer
to y = 1 − x, and thus, when it tends to be a classical fuzzy set): the nearer
an AIFS is from the straight line y = 1 − x, the lower its entropy.

– if ri is given, E1 increases when θi tends to π
4 (ie. when the knowledge on the

non-membership decreases): the closer to y = x it is, the higher its entropy.
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A similar study can be done with E2. In our setting, it can be rewritten as:

E2(A) = n −
√

2
n∑

i=1

ri sin(θi +
π

4
).

With this representation of the AIFS, we can see that:

– if θi is given, then E2 decreases when ri increases: the closer to (0, 0) (ie. the
more “completely intuitionistic”) the AIFS is, the lower its entropy.

– if ri is given, E2 decreases when θi increases: the farther an AIFS is from
y = x, the higher its entropy.

A similar study can be done with E3 that can be rewritten as:

E3(A) =
1
2n

n∑

i=1

(
1 − ri

√
2| sin(

π

4
− θi)|

)(
2 − ri

√
2 sin(

π

4
+ θi

)
).

It is interesting to highlight here two elements of comparison: on one hand
a behavioural difference between E1 (resp. E3) and E2: if they vary similarly
according to ri, they vary in an opposite way according to θi; on the other hand,
a similar behaviour between E1 and E3.

To illustrate these similarities and differences, a set of experiments have been
conducted and results are provided in Sect. 4.

4 Experimental Study

In this section, we present some results related to experiments conducted to
compare AIFS entropies.

4.1 Correlations Between AIFS Entropies

The first experiment has been conducted to see if some correlations could be
highlighted between each of the three presented AIFS entropies.

First of all, an AIFS A is randomly generated. It is composed of n points,
n also randomly generated and selected from 1 to nmax = 20. Afterwards, the
AIFS entropy of A is valued for each of the three AIFS entropies presented in
Sect. 2: E1, E2 and E3. Then, a set of nAIFS = 5000 such random AIFS is built.

A correlogram to highlight possible correlations between the values of E1(A),
E2(A) and E3(A) is thus plot and presented in Fig. 2.

In this figure, each of these 9 spots (i, j) should be read as follows. The spot
line i and column j corresponds to:

– if i = j: the distribution of the values of Ei(A) for all A;
– if i �= j: the distribution of (Ej(A), Ei(A)) for each random AIFS A.
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Fig. 2. Correlations between E1(A), E2(A) and E3(A) for 5000 random AIFS.

This process has been conducted several times, with different values for nmax

and for nAIFS , with similar results.
It is clear that there is no correlation between the entropies. It is noticeable

that E1 and E2 could yield to very different values for the same AIFS A. For
instance, if E1(A) equals 1, the value of E2(A) could be either close to 0 or
equals to 1 too.

As a consequence, it is clear that these entropies are highly different but no
conclusion can be drawn about the elements that bring out this difference.
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Fig. 3. Variations related to θ when r = 0.01 (left) or r = 0.5 (right) (E1 in solid line
(red), E2 in dashed line (blue), E3 in dash-dot line (green)). (Color figure online)

4.2 Variations of AIFS Entropies

To better highlight behaviour differences between the presented AIFS entropies,
we introduce the polar representation to study the variations of the values of the
entropy according to r or to θ.

Variations Related to θ. In Fig. 3, the variations of the entropies related to θ
for an AIFS A composed of a single element are shown. The polar representation
is used to study these variations. The value of r is set to either 0.01 (left) to
highlight the variations when r is low, or 0.5 (right) to highlight variations when
r is high (this value corresponds to the highest possible value to have a complete
range of variations for θ).

It is easy to show in this figure an illustration of the conclusions drawn in
Sect. 3:

– E1 and E3 varies in the same way;
– E1 (resp. E3) and E2 varies in an opposite way;
– all of these AIFS entropies reach an optimum for θ = π

4 . It is a maximum for
E1 and E3 and a minimum for E2.

– the optimum is always 1 for E1 for any r, but it depends on r for E2 and E3.
– for all entropies, the value when θ = 0 (resp. θ = π

2 ) depends on r.

Variations Related to r. In Fig. 4, the variations of the entropies related to
r for an AIFS A composed of a single element are shown. Here again, the polar
representation is used to study these variations.

According to the polar representations of the AIFS entropies, it is easy to
see that E1 and E2 vary linearly with r, and in a quadratic form for E3.

We provided here the variations when θ = 0 (ie. the AIFS is on the horizontal
axis), θ = π

8 (ie. the AIFS is under y = x), θ = π
4 (ie. the AIFS is on y = x)

and when θ = π
2 (ie. the AIFS is on the vertical axis). We don’t provide results

when the AIFS is below y = x as it is similar to the results when the AIFS is
under with a symmetry related to y = x (as it can be seen with the variations
when θ = π

2 which are similar to the ones when θ = 0).
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Fig. 4. Variations related to r when θ varies (E1 in solid line (red), E2 in dashed line
(blue), E3 in dash-dot line (green)). (Color figure online)

For each experiment, r varies from 0 to r = (
√

2 cos(π
4 − θ))−1 when θ �= π

2 .
It is easy to highlight from these results some interesting behaviour of the

AIFS entropies when r varies:

– they all varies in the same way but not with the same amplitude;
– all of these AIFS entropies reach an optimum when r = 0 (ie. the AIFS is

completely intuitionistic;
– E1 takes the optimum value for any r when θ = π

4 .

5 Conclusion

In this paper, we introduce a new approach to compare measures of entropy in the
setting of intuitionistic fuzzy sets. We introduce the use of a polar representation
to study the three main AIFS entropies of the literature.

This approach is very promising as it enables us to highlight the main dif-
ferences in behaviour that can exist between measures. Beyond this study on
the AIFS, such a polar representation could thus be an interesting way to study
bipolar information-based measures.

In future work, our aim is to develop this approach and apply it to other AIFS
entropies, for instance [8], and other bipolar representations of information.
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