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Preface

We are very pleased to present you with the proceedings of the 18th International
Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems (IPMU 2020), held during June 15–19, 2020. The con-
ference was scheduled to take place in Lisbon, Portugal, at the Instituto Superior
Técnico, University of Lisbon, located in a vibrant renovated area 10 minutes from
downtown. Unfortunately, due to the COVID-19 pandemic and international travel
restrictions around the globe, the Organizing Committee made the decision to make
IPMU 2020 a virtual conference taking place as scheduled.

The IPMU conference is organized every two years. Its aim is to bring together
scientists working on methods for the management of uncertainty and aggregation of
information in intelligent systems. Since 1986, the IPMU conference has been pro-
viding a forum for the exchange of ideas between theoreticians and practitioners
working in these areas and related fields. In addition to many contributed scientific
papers, the conference has attracted prominent plenary speakers, including the Nobel
Prize winners Kenneth Arrow, Daniel Kahneman, and Ilya Prigogine.

A very important feature of the conference is the presentation of the Kampé de
Fériet Award for outstanding contributions to the field of uncertainty and management
of uncertainty. Past winners of this prestigious award are Lotfi A. Zadeh (1992), Ilya
Prigogine (1994), Toshiro Terano (1996), Kenneth Arrow (1998), Richard Jeffrey
(2000), Arthur Dempster (2002), Janos Aczel (2004), Daniel Kahneman (2006), Enric
Trillas (2008), James Bezdek (2010), Michio Sugeno (2012), Vladimir N. Vapnik
(2014), Joseph Y. Halpern (2016), and Glenn Shafer (2018). This year, the recipient
of the Kampé de Fériet Award is Barbara Tversky. Congratulations!

The IPMU 2020 conference offers a versatile and comprehensive scientific program.
There were four invited talks given by distinguished researchers: Barbara Tversky
(Stanford University and Columbia University, USA), Luísa Coheur (Universidade de
Lisboa, Instituto Superior Técnico, Portugal), Jim Keller (University of Missouri,
USA), and Björn Schuller (Imperial College London, UK). A special tribute was
organized to celebrate the life and achievements of Enrique Ruspini who passed away
last year. He was one of the fuzzy-logic pioneers and researchers who contributed
enormously to the fuzzy sets and systems body of knowledge. Two invited papers are
dedicated to his memory. We would like to thank Rudolf Seising, Francesc Esteva,
Lluís Godo, Ricardo Oscar Rodriguez, and Thomas Vetterlein for their involvement
and contributions.

The IPMU 2020 program consisted of 22 special sessions and 173 papers authored
by researchers from 34 different countries. All 213 submitted papers underwent the
thorough review process and were judged by at least three reviewers. Many of them
were reviewed by more – even up to five – referees. Furthermore, all papers were
examined by the program chairs. The review process respected the usual



conflict-of-interest standards, so that all papers received multiple independent
evaluations.

Organizing a conference is not possible without the assistance, dedication, and
support of many people and institutions.

We are particularly thankful to the organizers of special sessions. Such sessions,
dedicated to variety of topics and organized by experts, have always been a charac-
teristic feature of IPMU conferences. We would like to pass our special thanks to Uzay
Kaymak, who helped evaluate many special session proposals.

We would like to acknowledge all members of the IPMU 2020 Program Committee,
as well as multiple reviewers who played an essential role in the reviewing process,
ensuring a high-quality conference. Thank you very much for all your work and efforts.

We gratefully acknowledge the technical co-sponsorship of the IEEE Computational
Intelligence Society and the European Society for Fuzzy Logic and Technology
(EUSFLAT).

A huge thanks and appreciation to the personnel of Lisbon’s Tourism Office
‘Turismo de Lisboa’ (www.visitlisboa.com) for their eagerness to help, as well as their
enthusiastic support.

Our very special and greatest gratitude goes to the authors who have submitted
results of their work and presented them at the conference. Without you this conference
would not take place. Thank you!

We miss in-person meetings and discussions, yet we are privileged that despite these
difficult and unusual times all of us had a chance to be involved in organizing the
virtual IPMU conference. We hope that these proceedings provide the readers with
multiple ideas leading to numerous research activities, significant publications, and
intriguing presentations at future IPMU conferences.

April 2020 Marie-Jeanne Lesot
Marek Z. Reformat

Susana Vieira
Bernadette Bouchon-Meunier

João Paulo Carvalho
Anna Wilbik

Ronald R. Yager
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Abstracts of Invited Talks



How Action Shapes Thought

Barbara Tversky

Columbia Teachers College and Stanford University
btversky@stanford.edu

When you ask someone a question they can’t answer, the response is often a shrug
of the shoulders, arms outstretched, elbows bent, palms up. Translated into words, that
shrug means “dunno” or “who knows?” An expression of uncertainty. It’s instantly
understood that way as well. No need for translation to words, the meaning of the
gesture is clear. Now consider another gesture, one made by a preschooler known to
shrug her shoulders on other occasions, asking about her day. The answer: not a shrug,
but a hand outspread horizontally, teeter-tottering between thumb and baby finger. Or,
on another occasion, one thumb up, one thumb down. The shrug seems to say, there’s
an answer, but I don’t know it. The information is in the air, but I haven’t caught it. The
teeter-tottering hand and up and down thumbs seem to express a different kind of
uncertainty, I have the information but it’s not decisive, it goes both ways, It goes up
and down, back and forth; it’s balanced. Now I step out of my usual role as a cognitive
psychologist and adopt the role of a linguist, where anecdotes are the stuff of thought
and analysis. This preschooler distinguishes two fundamental kinds of uncertainty, one
where the information might (or might not) be out there but I don’t have it and the other
where I have the relevant information but I can’t decide one way or another, the
information tilts both ways, Not only does this preschooler know the distinction
between the two types of uncertainty, she can express them.

To express either kind of uncertainty –and many other thoughts– she doesn’t use
words, she uses gestures. Gestures come faster than words, are more direct than words,
and more precise than words. Let’s start with the simplest of gestures, pointing. Babies
point long, in baby-time, before they speak. Points direct the eyes to pin-point spots in
the world; “there” can’t do that unless accompanied by a string of spatial descriptors
that are likely to be vague or wrong or both. From where to how, contrast showing how
to open a jar or insert a drawer to explaining how to open a jar or insert a drawer.
Gestures truncate and abstract actions in the world to convey actions on things. They
also use abstractions of actions to convey actions on thought, raising arguments for and
against and placing them on sides of the body, an imaginary whiteboard, then pointing
to indicate each side in turn. You have undoubtedly seen speakers do this, you have
likely done it yourself; those two sides in space, on your right and on your left, help
you keep track of the pros and cons whether you are speaker or listener. Gestures help
both speakers and listeners to think and to talk. When asked to sit on their hands,
speakers flounder finding words. When people are asked to study and remember
descriptions of spatial layouts or actions of mechanical systems, most spontaneously



gesture. Their gestures make models of the space or of the actions. When asked to sit
on their hands while studying, people remember less and realize fewer of the inferences
needed for deep understanding. Thus gestures, abstractions of actions on objects used
to represent actions on thought, enable thought and embody thought both for thinkers
and for their audiences.

Gestures can be regarded, justly, as diagrams in the air. Gestures are fleeting;
transforming them to a page keeps them, and allows scrutinizing them, drawing
inferences from them, revising them, by individuals or by groups. Like gestures,
graphics use marks in space and place in space to convey meanings more directly than
words. Points stand for places or ideas; lines connect them, showing relationships;
arrows show asymmetric relations; boxes contain a related set of ideas and separate
those from others. Ideas that are close in space are close on any dimension; ideas high
in space are high on any dimension, ideas that are central are just that, central. Concepts
and relations that are created and understood immediately, in contrast to words, whose
meanings are mediated.

Our unnamed preschooler spontaneously expressed two basic senses of uncertainty
in her gestures, uncertainty due to absence of information and uncertainty due to
indecisive information. Conveying these forms of uncertainty, and perhaps others, for
different content in diagrams is still finding its way. Error bars and fuzzy lines are some
of the ways diagrams express imprecise quantitative information. Expressing absent or
imprecise or undecisive information for qualitative information has been challenging.

Language, too, carries these spatial meanings. We’ve grown closer, or farther
apart. The central argument is… Someone’s on the top of the heap or fallen into a
depression. That space is wide open, To mix spatial metaphors: navigating the crisis
will be a delicate balance.

Spatial thinking is the foundation of all thought. Not the entire edifice but the
foundation. All creatures must move in space and interact with things in space to
survive. Even plants must move in response to wind, rain, and sun. The evidence
comes from many places, from gesture, from language, from diagrams and sketches. It
also comes from neuroscience: the same places in hippocampus that represent places
are used to represent people, events, and ideas. The same places in entorhinal cortex
that map spatial relations also map temporal, social, and conceptual relations, In
humans, for the most part, in real space, feet do the navigation and hands do the
interaction with things. In conceptual spaces, it’s fingers and hands that navigate in the
air or on the screen just as it’s fingers and hands that interact with points in conceptual
spaces in the air or on the screen.

Thus, actions in real space on objects in real space get truncated and abstracted to
form gestures that express actions on ideas in spaces in the air. The same truncated
abstracted actions create actions on ideas on the space of the page. This cycle of actions
in space that are transformed to gestures that create abstractions in the air or to marks
that create abstractions on the page can be unified in the concept, spraction, a con-
traction for the never-ending cycle of space, action, and abstraction.

xx B. Tversky
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With the increase in the population of older adults around the world, a significant
amount of work has been done on in-home sensor technology to aid the elderly age
independently. However, due to the large amounts of data generated by the sensors, it
takes a lot of effort and time for the clinicians to makes sense of this data. In this talk,
I will survey two connected approaches to provide explanations of these complex
sensor patterns as they relate to senior health. Abnormal sensor patterns produced by
certain resident behaviors could be linked to early signs of illness. In seven eldercare
facilities around Columbia, MO operated by Americare, we have deployed an intelli-
gent elderly monitoring system with summarization and symptom suggesting capa-
bilities for 3 years.

The first procedure starts by identifying important attributes in the sensor data that
are relevant to the health of the elderly. We then develop algorithms to extract these
important health related features from the sensor parameters and summarize them in
natural language, with methods grounded in fuzzy set theory. We focus on making the
natural language summaries to be informative, accurate and concise, and have con-
ducted numerous surveys of experts to validate our choices. While our initial focus is
on producing summaries that are informative to healthcare personnel, a recent grant
centers on providing feedback to the elders and their families. The Amazon Echo Show
is used as the communication device to provide simplified graphics and linguistic
health messages.

The second approach is a framework for detecting health patterns utilizing sensor
sequence similarity and natural language processing (NLP). A context preserving
representation of daily activities is used to measure the similarity between the sensor
sequences of different days. Medical concepts are extracted from nursing notes that
allows us to impute potential reasons for health alerts based on the activity similarity.
Joining these two approaches provide a powerful XAI description of early illness
recognition for elders.
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Since Eliza, the first chatbot ever, developed in the 60s, researchers try to make
machines understand (or mimic the understanding) of Natural Language input. Some
conversational agents target small talk, while others are more task-oriented. However,
from the earliest rule-based systems to the recent data-driven approaches, although
many paths were explored with more or less success, we are not there yet. Rule-based
systems require much manual work; data-driven systems require a lot of data. Domain
adaptation is (again) a current hot-topic. The possibility to add emotions to the con-
versational agents’ responses, or to make their answers capture their “persona”, are
some popular research topics. This paper explains why the task of Natural Language
Understanding is so complicated, detailing the linguistic phenomena that lead to the
main challenges. Then, the long walk in this field is surveyed, from the earlier systems
to the current trends.
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In machine learning tasks an actual ‘ground truth’ may not be available. Then,
machines often have to rely on human labelling of data. This becomes challenging the
more subjective the learning task is, as human agreement can be low. To cope with the
resulting high uncertainty, one could train individual models reflecting a single
human’s opinion. However, this is not viable, if one aims at mirroring the general
opinion of a hypothetical ‘completely average person’ – the ‘average Jane’. Here, I
summarise approaches to optimally learn efficiently in such a case. First, different
strategies of reaching a single learning target from several labellers will be discussed.
This includes varying labeller trustability and the case of time-continuous labels with
potential dynamics. As human labelling is a labour-intensive endeavour, active and
cooperative learning strategies can help reduce the number of labels needed. Next,
sample informativeness can be exploited in teacher-based algorithms to additionally
weigh data by certainty. In addition, multi-target learning of different labeller tracks in
parallel and/or of the uncertainty can help improve the model robustness and provide
an additional uncertainty measure. Cross-modal strategies to reduce uncertainty offer
another view. From these and further recent strategies, I distil a number of future
avenues to handle subjective uncertainty in machine learning. These comprise bigger,
yet weakly labelled data processing basing amongst other on reinforcement learning,
lifelong learning, and self-learning. Illustrative examples stem from the fields of
Affective Computing and Digital Health – both notoriously marked by subjectivity
uncertainty.
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Francesc Esteva1, Llúıs Godo1(B), Ricardo Oscar Rodriguez2,
and Thomas Vetterlein3

1 Artificial Intelligence Research Institute (IIIA-CSIC),
Campus de la UAB, 08193 Bellaterra, Barcelona, Spain

{esteva,godo}@iiia.csic.es
2 Universidad de Buenos Aires, FCEN, Dept. de Ciencias de la Computación,

UBA-CONICET, Instituto de Ciencias de la Computación, Buenos Aires, Argentina
ricardo@dc.uba.ar

3 Department of Knowledge-Based Mathematical Systems,
Johannes Kepler University, Linz, Austria

Thomas.Vetterlein@jku.at

Abstract. In his 1991 seminal paper, Enrique H. Ruspini proposed
a similarity-based semantics for fuzzy sets and approximate reasoning
which has been extensively used by many other authors in various con-
texts. This brief note, which is our humble contribution to honor Rus-
pini’s great legacy, describes some of the main developments in the field
of logic that essentially rely on his ideas.

Keywords: Fuzzy similarity · Approximate reasoning · Graded
entailments · Modal logic

1 Introduction

Similarity is a relevant notion in the context of at least three cognitive tasks:
classification, case-based reasoning, and interpolation [1]. For classification tasks,
objects are put together in the same class when they are indistinguishable with
respect to some suitable criteria. Furthermore, case-based reasoning exploits the
similarity between already solved problems and a new given problem to be solved
in order to build up a solution to it. Finally, interpolation mechanisms estimate
the value of a partially unknown function at a given point of a space by exploiting
the proximity or closeness of this point to other points for which the value of
the function is known.

It was Ruspini in [13] (cf. also [14]) who started the task of formalising
approximate reasoning underlying these and other cognitive tasks in a logi-
cal setting. He elaborated on the notion of fuzzy similarity, as suggested by
Zadeh’s theory of approximate reasoning [19]. According to the approach orig-
inally proposed by Ruspini to model fuzzy similarity-based reasoning, the set
W of interpretations or possible worlds is, in a first step, equipped with a map
c© Springer Nature Switzerland AG 2020
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S : W × W �→ [0, 1] supposed to fulfil the basic properties of fuzzy or graded
similarity relation:

Reflexivity: S(u, u) = 1 for all u ∈ W
Separability: S(u, v) = 1 iff u = v, for all u, v ∈ W
Symmetry: S(u, v) = S(v, u) for all u, v ∈ W
⊗-Transivity: S(u, v) ⊗ S(v, w) ≤ S(u,w) for all u, v, w ∈ W

where ⊗ is a t-norm.
Reflexive and symmetric fuzzy relations are often called closeness relations,

while those further satisfying ⊗-transitivity are usually called ⊗-similarity rela-
tions, first introduced by Trillas in [15] under the name of T-indistinguishability
relations. Sometimes, the name similarity relation is actually also used to denote
⊗-similarity relations where ⊗ = min. These min-similarity relations have the
remarkable property that their level cuts Sα = {(u, v) ∈ W × W | S(u, v) ≥ α},
for any α ∈ [0, 1], are equivalence relations. See Recasens’ monograph [11] for
any question related to fuzzy similarity relations.

The notion of similarity can be regarded as a dual to the notion of a gener-
alised (bounded) metric, in the sense that if S measures resemblance between
possible worlds, δ = 1−S measures how distant they are. Then the ⊗-transitivity
property corresponds to a generalised triangular inequality property for δ. In the
particular case of ⊗ being �Lukasiewicz t-norm, δ is a bounded metric, while δ
becomes an ultrametric when ⊗ = min.

Given the set of possible worlds or interpretations together with a fuzzy
similarity relation, Ruspini built up, in a second step, a basic framework to
define possibilistic structures and concepts by quantifying proximity, closeness,
or resemblance between pairs of (classical) logical statements. Since in classical
logic we may identify propositions with sets of worlds, this problem reduces to
the question how to extend a similarity between worlds to a measure of similarity
between sets of worlds. As is well-known in the case of metric spaces, a metric
between points does not univocally extend to a meaningful metric between sets
of points. Ruspini defined in [13] two measures,

IS(p | q) = inf
w|=q

sup
w′|=p

S(w,w′) and CS(p | q) = sup
w|=q

sup
w′|=p

S(w,w′),

called implication and consistency, which are the lower and upper bounds, respec-
tively, of the resemblance or proximity degree between p and q, from the per-
spective of q. Actually, if one defines the fuzzy set approx(p) of worlds close to
those of p by the membership function

μapprox(p)(w) = sup{S(w,w′) | w′ |= p},

then we can write IS(p | q) = infw|=q μapprox(p)(w) and it becomes clear that
IS(p | q) is a measure of inclusion of the (crisp) set of q-worlds into the
(fuzzy) set approx(p) of worlds close to p. Similarly, we can write CS(p | q) =
supw|=q μapprox(p)(w) and thus CS(p | q) is a measure of intersection between
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the set of q-worlds with the set of worlds close to p. Observe that, when the
propositional language only contains finitely many propositional symbols and q
is equivalent to a maximal consistent set of propositions, both measures coin-
cide because there is a unique world w such that w |= q. In such a case,
IS(p | q) = CS(p|q) = μapprox(p)(w).1

With the implication measures IS , Ruspini’s aim was to capture approximate
inference patterns related to the so-called generalised modus ponens. The value
of IS(p | q) provides the measure to what extent p is close to be true given q for
granted. In particular, when the similarity relation S is separating and the set
of worlds is finite then, IS(p | q) = 1 iff q |= p. Moreover, if S is ⊗-transitive, for
a t-norm ⊗, then IS is ⊗-transitive as well [13], i.e. the inequality

IS(r | p) ⊗ IS(p | q) ≤ IS(r | q)

holds for any propositions p, q, and r. This property allows to formulate a kind
of generalized resolution rule:

from: IS(r | p) ≥ α and IS(p | q) ≥ β
infer: IS(r | q) ≥ α ⊗ β.

On the other hand, the value of CS(p | q) provides the measure to what extent
p can be considered compatible with the available knowledge represented by q.
In particular, in the finite case and with S satisfying the separation property,
CS(p | q) = 1 iff q �|= ¬p.

Implication and consistency measures have quite different properties, apart
from the fact that both IS and CS are reflexive, i.e., IS(p | p) = CS(p | p) = 1,
and non-decreasing in the first variable: i.e., if p |= r, then IS(p | q) ≤ IS(r | q)
and CS(p | q) ≤ CS(r | q). But w.r.t. to the second variable, IS is non-increasing
while CS keeps being non-decreasing. Moroever, unlike IS , CS is a symmetric
measure, i.e. CS(p | q) = CS(q | p), and it is not ⊗-transitive in general. On
the other hand, it is easy to show that, for a fixed proposition r, the measure
CS(· | r) is in fact a possibility measure [2] since the following identities hold
true:

(C1) CS(	 | r) = 1
(C2) CS(⊥ | r) = 0
(C3) CS(p ∨ q | r) = max(CS(p | r), CS(q | r)).

The counterpart of the last property for implication measures is the following
one:

(I3) IS(p | q ∨ r) = min(IS(p | q), IS(p | r)),

that is related to the so-called Left-Or property of consequence relations. We
will return to this consideration in Sect. 2.

Note that conditional versions of the IS and CS measures were already con-
sidered by Ruspini in [13], and then further elaborated in [6] and [3] in order
1 By an abuse of notation, in this case we will also write IS(p | w) or CS(p | w).
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to cast different forms of the generalized modus ponens inference pattern under
the frame of similarity-based reasoning.

All these seminal ideas of Ruspini have been very fruitful in the foundations
of approximate reasoning. In particular, one can find in the literature a number
of approaches addressing the formalisation of similarity-based reasoning from a
logical perspective. Due to space restrictions, in the rest of this short paper we
restrict ourselves to review two main lines of developments in this area, namely,

– Graded similarity-based entailments, and
– Formalisations as conditional logics and as modal logics.

2 Graded Similarity-Based Entailments

Let W be the set of classical interpretations (or worlds) of a propositional lan-
guage. The rules of classical logic allows us to unambiguously decide whether a
given proposition p is true or false in each of the worlds. We write w |= p to
denote that p is true at w ∈ W (or that w satisfies p, or that w is a model of p),
and w �|= p to denote that p is false at w. In other words, each world partitions
the set of proposition into two classes: those that are true and those that are
false.

Assume now we have a ⊗-similarity relation S on the set W . This allows us to
be more fine-grained when classifying propositions, since even two propositions
p and q can be both false at a given world w, it may be the case that w is closer
to the set of models of p than to those of q. In more precise terms, even if w �|= p
and w �|= q, it can be the case that

μapprox(p)(w) > μapprox(q)(w).

In such a case one can say that, in the world w, p is closer to be true than q, or
that p is more truthlike than q, in the sense of [10].

In the rest of this section, we will overview three different ways of how this
idea of having worlds more or less close to others can be used in a logical setting
to introduce different kinds of graded similarity-based entailments [1,7].

2.1 Approximate Entailment

Given a ⊗-similarity relation S on the set W of classical interpretations of a
propositional language, one starts by defining for each α ∈ [0, 1] a (graded)
approximate satisfaction relation |=α

S , by stipulating for each w ∈ W and propo-
sition p:

w |=α
S p iff there exists a model w′ of p which is α-similar to w,

i.e. such that w′ |= p and S(w,w′) ≥ α,
i.e. μapprox(p)(w) ≥ α.

If w |=α
S p we say that w is an approximate model (at level α) of p. The approx-

imate satisfaction relation can be extended over to an approximate entailment
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relation in the usual way: a proposition p entails a proposition q at degree α,
written p |=α

S q, if each model of p is an approximate model of q at level α, that
is,

p |=α
S q iff w |=α

S q for all model w of p, i.e.
iff IS(q | p) ≥ α

Then p |=α
S q stands for “q approximately follows from p” and α is a level of

strength. Under this perspective p, together with the similarity relation S :
W × W → [0, 1] on the set of interpretations, represents an epistemic state
accounting for the factual information about the world. Then, we can know, not
only what are the consequences we can infer from p using classical reasoning,
but also those propositions which are approximate consequences of p, in the
sense that they are close to some other proposition which is indeed a classical
consequence of p.

In the case the propositional language is finitely generated, the following
properties characterise these graded entailment relations |=α

S , see [1]:

(1) Nestedness: if p |=α q and β ≤ α then p |=β q;
(2) ⊗-Transitivity: if p |=α r and r |=β q then p |=α⊗β q;
(3) Reflexivity: p |=1 p;
(4) Rightweakening: if p |=α q and q |= r then p |=α r;
(5) Leftstrengthening: if p |= r and r |=α q then p |=α q;
(6) Left-Or: p ∨ r |=α q iff p |=α q and r |=α q;
(7) Right-Or: if r has a single model,

r |=α p ∨ q iff r |=α p or r |=α q.

The ⊗-transitivity property is weaker than usual and the graceful degradation
of the strength of entailment it expresses, when ⊗ �= min, is rather natural. The
fourth and fifth properties are consequences of the transitivity property (since
q |= r entails q |=1 r) and express a form of monotonicity. It must be noticed
that |=α does not satisfy the Right-And property, i.e. from p |=α q and p |=α r
it does not follow in general that p |=α q ∧ r. Hence the set of α-approximate
consequences of p in the sense of |=α, for α < 1, will not be deductively closed
in general. The Left-Or shows how disjunctive information is handled, while the
Right-Or reflects the decomposability of the approximate satisfaction relation
with respect to the ∨ connective only in the case the premise has a single model.

In the case where some (imprecise) background knowledge about the world is
known and described under the form of some proposition K (i.e. the actual world
is in the set of worlds satisfying K), then an approximate entailment relative to
K can be straightforwardly defined as

p |=α
S,K q iff p ∧ K |=α

S q iff IS(q | p ∧ K) ≥ α

See [1] for more details and properties of this derived notion of relative entail-
ment.
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2.2 Proximity Entailment

The above approximate satisfaction relation w |=α
S p can be also extended over

another entailment relation |≡S among propositions as follows: p |≡α
S q holds

whenever each approximate model of p at a given level β is also an approximate
model of q but at a possibly lower level α ⊗ β. Formally:

p |≡α
S q holds iff, for each w,w |=β

S p implies w |=α⊗β
S q

Now, p |≡α
S q means “approximately-p entails approximately-q” and α is a level

of strength, or in other words, when worlds in the vicinity of p-worlds are also in
the vicinity (but possibly a bit farther) of q-worlds. This notion of entailment,
called proximity entailment in [1], also admits a characterization in terms of
another similarity-based measure

JS(q | q) = inf
w

{IS(p | w) ⇒ IS(q | w)},

where ⇒ is the residuum of the (left-continuous) t-norm ⊗ and IS(p | w) =
supw′|=p S(w,w′). Indeed, one can easily check that p |≡α

S q holds iff JS(q | p) ≥
α. This notion of approximate entailment relation can be easily made relative
to a context or background knowldge, described by a (finite) set of propositions
K, by defining

p |≡α
S,K q iff, for each w model of K,w |=β

S p implies w |=α⊗β
S q.

One can analogously characterize this entailment by a generalized measure JS,K ,
namely it holds that

p |≡α
K,S q iff JK,S(q | p) = inf

w:w|=K
{IS(p | w) ⇒ IS(q | w)} ≥ α.

The entailment |≡α
S,K satisfies similar properties to those satisfied by |=α

S,K .
Characterizations of both similarity-based graded entailments in terms of these
properties are given in [1]. It is also shown there that |≡α

S and |=α
S actually

coincide, i.e. when there is no background knowledge K, or equivalently when K
is a tautology. However, when K is not a tautology, |=α

S,K is generally stronger
than |≡α

S,K .

2.3 Strong Entailment

Finally, the notion of graded satisfiability w |=α
S p, can be also used for sup-

porting a strong entailment relation with the following intended meaning: a
proposition p strongly entails a proposition q at degree α, written p |≈α

S q, if
each approximate model of p at level α is a model of q that is,

p |≈α
S q iff, for all w,w |=α

S p implies w |= q.
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This stronger form of entailment is a sort of dual of the approximate entail-
ment, as it denotes a notion of entailment that is robust to small (up to level α)
deformations of the antecedent, while still entailing the consequent. In a simi-
lar way the approximate entailment was linked to the implication measure IS ,
this strong graded entailment is related to the consistency measure CS , in the
following way:

p |≈α
S q iff CS(¬q|p) < α,

by assuming the language is finitely generated and α > 0. Moreover, a charac-
terization of this strong entailment in terms of some nice properties is given in
[7].

3 Logical Formalisations

3.1 Conditional-Like Logics of Graded Approximate and Strong
Entailments

In a series of papers [7,16–18], the authors have been concerned with logics to
reason about graded entailments. Graded approximate and strong entailments
are taken as primitive objects of a propositional language. Let us briefly describe
here the main features of the Logic of Approximate Entailment (LAE) from [7].

The basic building block of LAE are graded implications of the form

φ >α ψ,

where φ, ψ are classical propositional formulas and α belongs to a suitable scale
V of similarity values. The set of similarity values is endowed with a monoidal
operation ⊗, which in case of the real unit interval is a t-norm. Furthermore,
the language of LAE is built up from graded implications and constants ⊥, 	
by means of the classical binary operators ∧ and ∨ and the unary operator ¬.

The semantics is the expected one: models are pairs 〈M, e〉, where M =
(W,S) is a similarity space, e is an evaluation that maps propositional formulas
into subsets of W , interpreting ∧,∨,¬ by set intersection, union and complemen-
tation, respectively. Given a similarity space M , the satisfaction of a formula by
an evaluation e is inductively defined as follows. For graded implications, one
defines:

〈M, e〉 |= ϕ >α ψ if e(ϕ) ⊆ Uα(e(ψ)),

where, for each A ⊆ W , Uα(A) = {w ∈ W | S(w,w′) ≥ α, for some w′ ∈ A} is
the α-neighbourhood of A. Moreover, if Φ is a Boolean combination of graded
implications, 〈M, e〉 |= Φ is defined in accordance with the rules of classical
propositional logic (CPL).

This gives rise to the following notion of logical consequence: for each subset
of LAE-formulas T ∪ {Φ},

T |=LAE Φ iff for any similarity space M = (W,S) and any evaluation e,
if 〈M, e〉 satisfies all formulas of T , then it also satisfies φ.
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In the finitary case, i.e., when the propositional formulas are built up from
a finite set of propositional variables, the logic LAE defined in [7] is the system
consisting of the following axioms and rule:

(A1) φ >1 ψ, where φ, ψ are such that φ → ψ is a tautology of CPL
(A2) (φ >α ψ) → (φ >β ψ), where α ≥ β
(A3) ¬(ψ >1 ⊥) → (φ >0 ψ)
(A4) (φ >α ⊥) → (φ >1 ⊥)
(A5) (φ >α χ) ∧ (ψ >α χ) → (φ ∨ ψ >α χ)
(A6) (φ >1 ψ) → (φ ∧ ¬ψ >1 ⊥)
(A7) (φ >α ψ) ∧ (ψ >β χ) → (φ >α⊗β χ)
(A8) ¬(δ >1 ⊥) → ((δ >α ε) → (ε >α δ)), where δ, ε are m.e.c.’s
(A9) (ε >α φ ∨ ψ) → (ε >α φ) ∨ (ε >α ψ), where ε is a m.e.c.

(A10) LAE-formulas obtained by uniform replacements of variables in CPL-
tautologies by LAE graded conditionals

(MP) Modus Ponens

Here, m.e.c. means maximal elementary conjunction, i.e., a conjunction where
every propositional variable appears, either in positive or negative form. It turns
out that, as proved in [7], this axiomatic system provides a sound and complete
axiomatisation of the semantic |=LAE .

In [16,17], we have proposed a simplified proof system for a variant of LAE.
Namely, we have focused on the case of ⊗-similarity relations, where ⊗ is the
product t-norm. The concept of a m.e.c., which occurs in axioms (A8) and (A9)
and plays an essential role in the above approach, could be dropped. The notion
of an α-neighbourhood of a set A is in this context to be slightly adapted:
Uα(A) = {w ∈ W | S(w,A) ≥ α}, where S(w,A) = supa∈A S(w, a). Consider
the axioms and rule (A1), (A2), (A4), (A5), (A7), and (MP), as well as

(A11) (φ >1 ψ) → (φ ∧ χ >1 ψ ∧ χ)

A proposition Φ is valid in the logic of approximate entailment based on the
product t-norm if and only if Φ is provable by means of the indicated axioms
and rule.

The proof of this completeness theorem is involved and consists of two parts.
In [16], we have shown a similar statement but without the assumption that
the similarity relation is symmetric, and we have represented proofs by weighted
directed forests. In [17], we have established that spaces based on a possibly
non-symmetric similarity relation can, in a certain sense, be embedded into a
space based on a similarity relation in the usual sense. Both results combined
lead to the completeness theorem mentioned.

The logic LAE has been further developed in a different direction in [18] to
account for additional nice features that the approximate entailment has when
assuming the language talks about properties on (products of) linearly ordered
domains.

Finally, it is worth mentioning that similar syntactical characterisations for
strong and proximity entailments can be envisaged. Indeed, in [7] a logic of
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graded strong entailment, called LSE, is introduced by considering similar graded
conditionals ϕ �α ψ with the following semantics:

〈M, e〉 |= ϕ �α ψ if Uα(e(ϕ)) ⊆ e(ψ),

As for the proximity entailment, in [8] a corresponding logic with graded condi-
tionals ϕ �α ψ is also introduced with a somewhat more involved semantics:

〈M, e〉 |= ϕ �α ψ if ∀β : Uβ(e(ϕ)) ⊆ Uα⊗β(e(ψ)).

3.2 Modal Logic Connections

In his original work, Ruspini mentions the use of modal concepts to explain
his similarity-based possibilistic structures but he never studied in detail the
underlying modal logics. In fact, this was done in Rodriguez’s PhD thesis [12]
following his suggestion, and also reported in [4,5,8,9]. In this section we want to
summarise the main results which appear there. According to Ruspini’s intuition,
it makes sense to consider a modal approach to similarity-based reasoning based
on Kripke structures of the form

M = (W,S, e),

where W is a set of possible worlds, S : W × W → [0, 1] a similarity relation
between worlds, and e a classical two-valued truth assignment of propositional
variables in each world e : W × Var → {0, 1}. Then, for each α ∈ [0, 1] one can
consider the α-cut of S, Sα = {(w,w′) ∈ W × W | S(w,w′) ≥ α}, as a classical
accessibility relation on W ×W , which gives meaning to a pair of dual possibility
and necessity modal operators ♦α and �α:

(M,w) |= ♦αϕ if there is w′ ∈ W s.t. (w,w′) ∈ Sα and (M,w′) |= ϕ.

This defines, in fact, a multi-modal logical framework (with as many modali-
ties as level cuts of the similarity relations). Such a multimodal logic setting is
systematically developed in [5].

Note that, if W is the set of classical interpretations of a propositional lan-
guage L, then the above notion of modal satisfiability for the possibility opera-
tors ♦α captures precisely the notion of approximate satisfiability considered in
Sect. 2, in the sense that, for any non-modal proposition p, (M,w) |= ♦αp holds
iff w |=α

S p holds. Moreover, as already intuitively pointed out by Ruspini in [13],
the approximate entailment p |=α

S q can also be captured by the formula

p → ♦αq,

in the sense that p |=α
S q holds iff p → ♦αq is valid in M = (W,S, e). Analogously,

the strong entailment p |≈α
S q can be captured by the formula

♦αp → q.
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As for the proximity entailments |≡α
S , recall that p |≡α

S q holds iff for
all w ∈ W and for all β, w |=β

S p implies w |=α⊗β
S q. Therefore, it cannot

be represented in the multi-modal framework unless the similarity relations are
forced to have a fixed, predefined set G of finitely-many different levels, say
{0, 1} ⊆ G ⊂ [0, 1]. In that case, the validity of the formula

∧

β∈G

♦αp → ♦α⊗βq

in the model (W,S, e) is equivalent to the entailment p |≡α
S q. Obviously, when

G is not finite, for instance when G = [0, 1], this representation is not suitable
any longer. However, the underlying modal logic can still be formalised by intro-
ducing further modal operators accounting for the open cuts of the similarty
relation in the models, that is considering the operators ♦c

α and ♦o
α for each

rational α ∈ G ∩ Q with the following semantics:

(M,w) |= ♦c
αϕ if IS(ϕ | w) ≥ α,

(M,w) |= ♦o
αϕ if IS(ϕ | w) > α.

Obviously, when G is finite, ♦c
α and ♦o

α are interdefinable. In any case, different
multimodal systems can be axiomatized as it is shown in [5,8].

4 Conclusions and Dedication

This paper contains a brief summary of some developments in the research field of
similarity-based approximate reasoning models and their logical formalisations,
where Ruspini’s inspiring ideas have been very fruitful and decisive. It is our
humble homage to Enrique, an excellent researcher and even better person. The
authors are very grateful to him to have had the chance to enjoy his friendship
and shared with him many interesting scientific discussions.
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Abstract. This paper is a personal obituary of Enrique Hector Ruspini, an
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1 Introduction

Enrique Hector Ruspini was an extraordinary scientist, a tireless researcher, an
immensely interesting person, but above all, he was a good friend! I knew him for
about 20 years, where we met very often and often ate and drank well. He loved good
food and fine wine. When I was in California, I used to visit him in Palo Alto. The first
time we met for lunch and an interview on 30 July 2002 in Palo Alto. He was then
employed at the Stanford research Institute an I was with the University of Vienna in
Austria. 7 years later, when I was an adjoint researcher in the European Centre for Soft
Computing (ECSC) in Mieres, Asturias (Spain) he became a principal researcher at that
center and we saw us almost daily. After he left the ECSC in 2013, we met at
conferences and I visited him and his wife Susana in California when I was there in
Berkeley with Lotfi Zadeh to work on the history of fuzzy set theory. Enrique intro-
duced me to the Computational Intelligence Society (CIS) of IEEE and about 10 years
ago he, Jim Bezdek and Jim Keller accepted me as a member of the CIS History
Committee. Enrique suggested that I continue the series of video interviews with
pioneers and other researchers of CI, which he, the two Jims and others had started
earlier.

In 2017, I planned two trips to California and to Lotfi and Enrique. Enrique was
invited to attend the dedication ceremony of the robot Shakey to the Computer History
Museum in Mountain View at February 16. He offered to let me join him. It was a
memorable event and we had the opportunity to view the entire exhibition (see Figs. 1
and 8).
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The next day I asked Enrique to accompany me to meet Lotfi and he agreed. Lotfi
was already very weak then but we could talk for about an hour in threes over tea and
cookies. It was the last time the two of them saw each other and I photographed them
while they were talking (see Fig. 2).

During my second visit in this year in Berkeley Lotfi passed away at 6 September.
Some days later, at September 15, I drove to Palo Alto to interview Enrique at his
home. The weather was nice, and we sat outside in his garden (see Fig. 3). The video of
this interview is about an hour long but unfortunately, there was a lot of noise because
of some birds in the garden and some planes in the air. Because of the strong noise, we
have not yet included the video of the interview in the official collection of ieee.tv
(https://ieeetv.ieee.org/channels/cis-oral-history?tab=allvideos), but it is available on
the net: [1].

Fig. 1. left: Poster of the dedication ceremony of robot Shakey to the Computer History
Museum right: Enrique at the Computer History Museum at February 16, 2017. (Photo: Rudolf
Seising)
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In 2018, Enrique was more and more suffering from a creeping illness. In this year,
he should receive the Frank Rosenblatt Award “for fundamental contributions to the
understanding of fuzzy logic concepts and their applications”. However, he could not
travel to Rio to receive this award. Fortunately, in June 2019, he could attend the 2019
IEEE International Conference on Fuzzy Systems in New Orleans, LA., and he could
take the award (Fig. 4). Some weeks later, at October 15 in 2019 Enrique passed away.

Fig. 2. Enrique and the author during the interview, September 15, 2017. (Photo: Rudolf
Seising)

Fig. 3. Enrique’s and Lotfi’s meeting in February 2017 in Lotfi’s house. (Photo: Rudolf Seising)
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2 Facts and Data

Enrique Hector Ruspini was born at December 20, 1942 in Buenos Aires, Argentina.
He received the Licenciado en Ciencias Matemáticas (bachelor’s degree in Mathe-
matics) from the University of Buenos Aires, Argentina, in 1965 and his doctoral degree
in System Science from the University of California at Los Angeles in 1977 [2]. Dr.
Ruspini had held positions at the University of Buenos Aires, the University of Southern
California, UCLA’s Brain Research Institute, Hewlett-Packard Laboratories, the SRI
International Artificial Intelligence Center, and the European Center for Soft Com-
puting in Asturias (Spain). He was also a Distinguished Lecturer of the IEEE Com-
putational Intelligence Society.

Dr. Ruspini, who was the recipient of the 2009 Fuzzy Systems Pioneer Award of
the IEEE Computational Intelligence Society, received in 2004 the Meritorious Service
Award of the IEEE Neural Networks Society for leading the transition of the Neural
Networks Council into Society status. He was one of the founding members of the
North American Fuzzy Information Processing Society (NAFIPS) and the recipient of
that society’s King-Sun Fu Award. He was an IFSA First Fellow, an IEEE Life Fellow
and a former member of the IEEE Board of Directors and past President of the IEEE
Neural Networks Council (now IEEE Computational Intelligence Society). In 2018, he
was laureate of the IEEE Frank Rosenblatt Technical Field Award of the IEEE
Computational Intelligence Society. He was a First Fellow of the International Fuzzy
Systems Association, a Fulbright Scholar, a European Union Marie Curie Fellow, and a
SRI International Fellow. Dr. Ruspini was the Editor in Chief (together with
Piero P. Bonissone and Witold Pedrycz) of the Handbook of Fuzzy Computation. He
was a member of the Advisory and Editorial Boards of numerous professional journals,
e.g. IEEE Transactions on Fuzzy Systems, International Journal of Fuzzy Systems,
International Journal of Uncertainty, Fuzziness, and Knowledge-Based Systems, Fuzzy
Sets and Systems, Mathware and Soft Computing, and the Journal of Advanced
Computational Intelligence and Intelligent Informatics. He published more than 100
research papers.

3 The 1960s

Enrique studied physics in Argentina when he encountered one of the first computers in
his home country. He switched to mathematics and to the Instituto de Cálculo where he
was concerned with the numerical solution of differential equations. He was interested
in novel applications of computer science, e.g. in the field of biomedical engineering
and in modeling and simulation in mathematical economics and he had a position paid
by a group associated with the University of Buenos Aires that worked in a children’s
hospital. There was a group of neuroscientists doing research on neural signals and
another group of colleagues was concerned with numerical taxonomy and classification
of biological species. In 1964 he started planning to go abroad to get a Ph D. and then
coming back to Argentina to get a professorship as it was usual. He wrote to many
people and to Richard Ernest Bellman who as then professor of mathematics, electrical
engineering and medicine. In 1965 or 1966, Enrique got an offer from Bellman to work
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at the Space Biology Laboratory in the Brain Research Institute at the University of
South California (USC) that he accepted and in the academic year of 1966 he started a
new job at USC in Los Angeles. Already in the late year of 1965 he read the seminal
paper “Fuzzy Sets” by Lotfi Zadeh and at the same time, he was asked to use anyone of
the new computer classification techniques. So, clustering came into his life at the same
time as fuzzy sets and this was the beginning of fuzzy clustering. Very early, after he
came to the US, he could publish his article “A New Approach to Clustering” [3].

Richard Bellman and his associate Robert Kalaba were coauthors of Zadeh’s first
memo on fuzzy sets1. Enrique remembered Bellman as a most interesting person and
obviously one of the brightest applied mathematicians that ever lived. (8:25). There
appeared many papers on control theory, differential systems and other areas. By
Bellman, Kalaba and Ruspini in the 1960s. Enrique worked together mainly with Bob
Kalaba and once in the late 1960s, when they were having lunch in the faculty club of
USC Lotfi Zadeh came in to say Hello. Enrique had sent him a draft of his paper on
fuzzy clustering and that afternoon they had some discussion on fuzzy clustering. This
was the starting point of an association that lasted about half a century until Lotfi’s
death in 2017. In my interview, Enrique called Zadeh a great mentor ([1], 14:51).

4 The 1970s and 1980s

Many people received Enrique’s paper on Fuzzy Clustering [2] and by people that were
reluctant. In my interview, he said that this gave him an impulse to fight the unbe-
lievers. He kept working on applications of fuzzy sets and at the same time on problems
associated with medicine, and he also could combine both research areas e.g. in the
paper on “A test of sleep staging systems in the unrestrained chimpanzee” in 1972 [5].

Jim Bezdek, who finished his Ph D thesis “Fuzzy Mathematics in Pattern Classi-
fication” in 1973 at Cornell University, Ithaca, New York, had read Enrique’s paper on
fuzzy clustering and he arranged an invitation to Enrique to give a talk at the Seventh
Annual Meetings of The Classification Society, North American Branch. This meetings
were held at the University of Rochester, May 23–25, 1976 an they both gave talks in
the topical session “(4) Fuzzy clustering algorithms” [6]: Enrique lectured on “Fuzzy
clustering as an optimum mapping between metric spaces” and Jim on” Feature
selection for binary data with fuzzy ISODATA”. Because many of the researchers in
that society liked the simplicity and the power that the fuzzy approach brought to
classification problems. Enrique and Jim were close friends from that time on. Jim
interviewed Enrique during the IEEE Congress on Evolutionary Computing in Cancun,
Mexico at June 20, 2011. This video of this interview is available as a video of the CIS
Oral History project [7]. In 2015 I interviewed the two together via e-mail and the text
of this interview is available online [8, 9].

At the International Congress on Applied Systems Research and Cybernetics in
Acapulco, Mexico, in 1980, Ron R. Yager had organized a number of sessions on
fuzzy sets and fuzzy systems, possibility theory and special topics in systems research

1 For details on the history of fuzzy sets, see the author’s book [4].
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[10]. Here, Enrique and Ebrahim Mamdani met for the first time and he learned about
his combination of rule-based systems and fuzzy control. On the flight returning to the
USA from Acapulco Enrique Madan Gupta and Jim Bezdek were still fascinated by the
impression of having their own forum for the exchange of ideas in the field of fuzzy
sets. It was tempting to plan such a forum. Therefore, Jim and Enrique became
founding members of the North American Fuzzy Information Processing Society
(NAFIPS). Jim Bezdek organized the first NAFIP-meeting (in that time without the “s”
at the end) in Logan, Utah2.

From Los Angeles Enrique moved to theHewlett Packard Laboratories in Palo Alto
in 1982 where he was concerned with databased systems and data analysis. However, in
that time HP reorganized the company and Enrique cold not do as much research as he
wanted to and therefore, he left HP to years later to join the SRI International’s Artificial
Intelligence Center, in Menlo Park, California, as a principal scientist. Sometime after,
he had met John Lowrance, a principal scientist at SRI in Lotfi’s seminar at UC
Berkeley. Lowrance was very interested in evidential reasoning, especially in the theory
of Dempster and Shafer, but also in other related ideas. Because of Enrique’s skills in
these epistemological issues, he hired him for SRI. With Alessandro Saffioti, and others
Enrique developed a fuzzy controller, which they implemented in the autonomous
mobile robot named FLAKEY, the successor to SHAKEY (see Fig. 5) [12, 13].

Fig. 4. Jim Bezdek interviews Enrique during the IEEE Congress on Evolutionary Computing
in Cancun, Mexico June 20, 2011. (Photo from the video interview on the IEEE CIS history
website, https://history.ieee-cis.sightworks.net/)

2 See the whole story and a picture of some of the 41 participants to NAFIP-1- meeting, and the poster
of this conference with many of the participants’ signatures in [11].
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Enrique “confessed” in the interview that in the beginning he “didn’t pay much that
attention to the semantic questions” of fuzzy sets […] but later, it became necessary. He
was approached by people who wanted to better understand this theory and conse-
quently he started research on “conceptual relations that synthesizes utilitarian and
logical concepts” [14], on “the basic conceptual differences between probabilistic and
possibilistic approaches” [15] and “On the Semantics of Fuzzy Logic” at SRI in the
1990s [16] ([1], 24:28-25:10). Many years later, he summarized these investigations in
the contribution “On the Meaning of Fuzziness” for the two-volume collection “On
Fuzziness. A Homage to Lotfi A. Zadeh” [17] Enrique worked for SRI International’s
AI Center for 25 years until he retired in 2009, and then he started a new phase at the
ECSC in Spain.

Fig. 5. Flakey the robot, developed around 1985 at SRI International
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When and how did Enrique arrive at the artificial neural networks (ANN)? In my
interview, he said that in a sense he “kind of never had” (41:48). I insisted that he was
the president of the IEEE Neural Networks Council, which is now IEEE Computational
Intelligence Society and he answered: “Yeah, that’s right but only because they
incorporated fuzzy logic and evolutionary computation” ([1], 41:56). Enrique had
never worked on artificial neural networks but he was a member of IEEE. At the end of
the 1980s when there was the renaissance of ANN the IEEE formed the Neural
Networks Committee and they organized a number of very successful conferences.
Therefore, on November 17, 1989, IEEE decided to let the committee become the
Neural Networks Council (NNC).

5 From the 1990s Until Today

In 1991, Jim Bezdek had called Enrique because the IEEE had signaled their interest in
Fuzzy Logic to Lotfi Zadeh. They wanted to give researchers in Fuzzy Logic a major
platform because there were a large number of hybrid methods combining neural
networks and fuzzy logic. Lotfi had recommended contacting Jim, Piero and Enrique
and they had achieved the establishment of the new series of IEEE International
Conferences on Fuzzy Systems (FUZZ-IEEE) that continues until today. The first of
these conferences took place in San Diego and the IEEE NNC sponsored this event
with Lotfi as honorary chair, Jim as conference chair and Enrique as tutorial chair. The
Second IEEE International Conference on Fuzzy Systems should be in San Francisco,
in spring 1993; and because of organizational problems, it was held in conjunction with
the 1993 International Conference on Neural Networks. Piero was program chair and
Enrique was general chair of the conference. In my interview, he suspected that this
was probably why his name was associated to neural networks ([1], 48:46). In 2001 he
became president of the NNC and in this year he led the Council (NNC) into the
Society (NNC). Two years later, in November 2003, it changed its name to its current
one, the IEEE Computational Intelligence Society (CIS) and I asked in my interview
who chose this name. Enrique answered: “we needed a name that was descriptive for
the new society or the new council” – and here he emphasized that contrary to the
opinion of many, it was not an easy way from this Neural Networks Council (NNC) to
the Neural Networks Society (NNS) they formed on November 21, 2001 – “it took a
long time” ([1], 49:52). He continued, “we needed a name that would differentiate us
from just pure applied AI.” (50:14). They were looking for ideas and then it was Jim
Bezdek who suggested “computational intelligence” (CI).

In my interview Enrique said that “curacy enough until this day it is very difficult to
explain to people what computational intelligence is without listing each one of the
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components” (fuzzy sets, artificial neural networks, evolutionary algorithms) (51:41)
and he mentioned the political problems to be able to cooperate that into a description
of our scope. He also mentioned that researcher in classical AI “have the same problem
in describing what artificial intelligence is” ([1], 52:15).

Another term is soft computing (SC), introduced by Lotfi Zadeh in the 1990s. It
was part of the name of both the BISC (Berkeley Initiative in Soft Computing) at the
University of California and the ECSC (European Centre for Soft Computing) in Spain.
The latter was the last academic institution Enrique worked for, and it turned out that
way: In 2007 during the FUZZ-IEEE 2007 conference at the Imperial College in
London Enric Trillas and Enrique had lunch together. After his retirement from aca-
demia in Spain Enric was an Emeritus Researcher at the ECSC and now, they discussed
the eventualities of Enrique becoming a Principal Investigator at this place. Two years
later, they realized this plan. In his contribution to the commemorative publication for
Enric Trillas on his 75th birthday, Enrique tried to remember when the two might have
first met:

“I do not believe that I met Enric before 1985 although it might have been a bit earlier. It was
certainly after 1980 because I had not yet travel to Europe and I do not remember him visiting
California before then. I recall, however, delivering a lecture at the School of Architecture of the
Polytechnic University of Barcelona in the early 90’s where he was present and where I took a
picture of the audience with my brand new Cannon Photura: one of the first cameras featuring a
fuzzy logic autofocus system. Our acquaintance dates, perhaps, to the time when I visited Spain
to participate in the First IFSA Congress in Mallorca. I have tried to do a bit of detailed research
about our initial meeting to give a more precise account of its circumstances but could not find
any additional information to remove remaining ambiguities. The reader may certainly wonder
why this quest for accuracy about either the author and its subject—both notorious examples of
fuzzy scientists—matters at all. My obsession with this personal milestone, stems, however,
from the realization that I was well along in my career before I met this remarkable man with
whom I have had so many fruitful and continued interactions since our first encounter.
The photographic evidence shows that, by 1996, we had developed a friendship that allowed us
to engage on merry pranks during lighter moments of serious scientific meetings, as seen in
Fig. 6, when we posed as the never finished statues of a magnificent building originally con-
structed to house a technical labor university.” [18].

Supported by the Foundation for the Advancement of Soft Computing, which was a
private non-profit foundation, the ECSC was launched by the beginning of the year
2006. The most important goal of the center was the basic and applied research in soft
computing and the technology transfer in industrial applications of intelligent systems
design for the resolution of real-world problems. For almost ten years, the Center was a
meeting point for experts in CI and SC all over the world.
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Fig. 6. “Lost” statues at the Universidad Laboral de Gijon, Asturias, Spain, 1996: Enric Trillas,
Enrique Ruspini, and José Luis Verdegay, then Professor at the Department of Computer Science
and Artificial Intelligence (DECSAI), of the University of Granada, Spain.
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In the ECSC Enrique headed the research unit on Collaborative intelligent systems,
he established a connection with chemists who were interested in fuzzy logic, he was
working in distributed AI. At the Open Workshop “Fuzziness and Medicine” as part of
the I. International Symposium on Fuzziness, Philosophy and Medicine I organized at
the ECSC on 23–25 March 2011, Enrique gave the keynote address “First Steps on
Fuzzy Sets in Medicine.” In this talk he combined his early research in biomedicine and
brain research with his later work on the semantics of fuzzy logic. (see Fig. 7). Two and
a half years later, Enrique left the center in November 2013 and due to the economic
crisis, the ECSC had to be closed in 2016.

When I asked about the future of fuzzy logic and soft computing, also in light of the
recently deceased Lotfi Zadeh, Enrique answered very optimistically in the interview:
“We are going to continue!” Referring to the many technical applications with
embedded CI technology, he pointed to the video camera pointed at him, he pointed out
“anywhere we can see it, in those cameras that are filming us; in cars in appliances we
have fuzzy logic. So, it had become part of the family. People who were skeptic about
fuzzy logic, professors who were sceptic, now their students are applying fuzzy logic to
of fuzzy logic, professors who were sceptic they have students who are applying fuzzy
logic to problems. So, it has become imbedded and there is still a huge number of
problems; for example in language understanding that would benefit from that. The
important thing for people in academia by now is to keep on using fuzzy logic in their
tool kit. ([1], 59:55-1:00:46) As a kind of tribute to Lotfi Zadeh and Richard Bellman

Fig. 7. Enrique during his talk “First Steps on Fuzzy Sets in Medicine” for the Open Workshop
“Fuzziness and Medicine” at March 24 2013, ECSC, Asturias, Spain. (Photo: Rudolf Seising)

24 R. Seising



he finished our interview. Regarding Lotfi Zadeh he said: “He was never somebody
who said, well, here is fuzzy logic and that’s it what you should use […] No, he always
said, here you have all these tools, probabilities, calculus of evidence, fuzzy logic, all
sorts of methods. And that was incidentally, what I remember about Richard Bellman:
He said: It is always better to have lots of methods and to try different methods and to
see what kind of solutions you get. That gives you so much. So, fuzzy logic should
remain in the tool kit and I see that it is entrenching there” ([1], 1:01:26).

Enrique was passionately committed to the various institutions of his scientific
discipline, as treasurer, president, vice president and conference organizer. He was also
a member of the CIS History Committee from the very beginning, because it was
important to him that the historical development of computational intelligence not be
forgotten and that young researchers learn about the history of their topics.
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Abstract. Since Eliza, the first chatbot ever, developed in the 60s,
researchers try to make machines understand (or mimic the understand-
ing) of Natural Language input. Some conversational agents target small
talk, while others are more task-oriented. However, from the earliest
rule-based systems to the recent data-driven approaches, although many
paths were explored with more or less success, we are not there yet. Rule-
based systems require much manual work; data-driven systems require a
lot of data. Domain adaptation is (again) a current hot-topic. The possi-
bility to add emotions to the conversational agents’ responses, or to make
their answers capture their “persona”, are some popular research topics.
This paper explains why the task of Natural Language Understanding is
so complicated, detailing the linguistic phenomena that lead to the main
challenges. Then, the long walk in this field is surveyed, from the earlier
systems to the current trends.

Keywords: Natural language processing · Natural Language
Understanding · Chatbots

1 Introduction

Since the first chatbots from the 60s (such as Eliza [42]) to the current virtual
assistants (such as Siri1), many things have changed. However, and despite the
incredible achievements done in Natural Language Processing (NLP), we are
far from creating a machine capable of understanding natural language, a
long-standing goal of Artificial Intelligence (AI) and probably the ultimate
goal of NLP.

Understanding natural language is an extremely complex task. Researchers
in NLP have been struggling with it since the early days. Even the concept
of “understanding” is not consensual. Some authors consider that whatever the
implemented methods are, if a system is capable of providing a correct answer to
some natural language input, then we can say that it was able to correctly inter-
pret that input. Other authors assume that the mapping of the input sentence
into some semantic representation, which captures its meaning, is necessary.

1 https://www.apple.com/siri/.
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The process of mapping the natural language input into the semantic represen-
tation is called semantic parsing.

Deep Learning brought a new way of doing things and also an extra verve
to the field. However, independently of the approach followed, and even if some
interesting and accurate dialogues with machines can be achieved in some lim-
ited domains, we can quickly find out inconsistencies in conversational agents
responses. In fact, no current system genuinely understands language.

This paper is organized as follows: Sect. 2 surveys some of the main chal-
lenges when dealing with natural language understanding, and Sect. 3 give some
historical perspective of the main advances in the area. Then, Sect. 4 discuss
current trends and Sect. 5 concludes and points to some future work.

2 Challenges

Most researchers do not realize that language is this complex until embracing a
NLP task involving understanding natural language. Indeed, we manage to com-
municate with some success. Consequently, we are not aware that the sequences
of words that we produce and interpret within our dialogues are extremely vari-
able (despite obeying to certain syntax rules), often ambiguous (several interpre-
tations are often possible) and that, sometimes, sophisticated reasoning (some-
times considering features that go beyond natural language) needs to be applied
so that a fully understanding can be achieved.

In fact, a factor that makes the computational processing of our language
terribly complex is language variability, that is, our ability to say the same
thing in so many different ways (e.g., yes, right, Ok, Okay, Okie dokie, looks
good, absolutely, of course are just some ways of expressing agreement). If a bot
operates in a strictly closed domain it is possible to gather the semantics of the
most common questions that will be posed to it2. Still, the main problem is not
the semantics of the most common questions, but their form, which can vary a
lot. For instance, in some closed domains we can build a list of FAQs representing
what will be asked to a virtual agent. However, we will hardly have a list of all
the paraphrases (sentences with the same meaning) of those questions. As an
example, consider the following sentences (from [12]):

1. Symptoms of influenza include fever and nasal congestion;
2. Fever and nasal congestion are symptoms of influenza;
3. A stuffy nose and elevated temperature are signs you may have the flu.

Sentences (1) and (2) can be easily identified as paraphrases, by simply con-
sidering the lexical units in common of both sentences. However, sentence (3)
will only be identified as a paraphrase of (1) and (2) if we know that fever
and elevated temperature are similar or equal concepts and the same between
nasal congestion and stuffy nose. WordNet [20] and current word embeddings
do, indeed, solve some of these problems, but not all.
2 Nevertheless, we can hardly predict the flow of the dialogue, unless the machine

takes the initiative and do not leave much room for innovation to the human.
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Another factor that makes language so complicated is the fact that it is inher-
ently ambiguous. Sentences with different meanings emerge from ambiguity
at the lexical level. For instance, some meanings of the word light are3:

1. comparatively little physical weight or density
2. visual effect of illumination on objects or scenes as created in pictures.

This leads to ambiguous sentences like I will take the light suit.
There is a well known NLP task called Word Sense Disambiguation that

targets the specific problem of lexical ambiguity. Nonetheless, lexical entities are
not the only source of ambiguity. A good example of syntactic ambiguity
is the classical sentence I saw a man in the hill with a telescope. Who had the
telescope? Who was on the hill? Many interpretations are possible. Another good
example of ambiguity is the sentence João and Maria got married. We do not
even notice that this sentence is ambiguous. However, did they marry each other
or with other people?

In most cases we can find the correct interpretation of a sentence by con-
sidering the context in which it is uttered. Many works (including recent ones,
such as the work described in [37]) propose different ways of dealing with con-
text, which is still a popular research topic. Yet, to complicate things further,
although context can help to dismantle some productions, it can also lead to
more interpretations of a sentence. For instance, I found it hilarious can be
detected by a Sentiment Analyser as a positive comment, which is correct if we
are evaluating a comic film, but probably not if we refer to a horror movie or a
drama. Another example: I’ll be waiting for you at 4.p.m. outside school can be
a typical line of a dialogue between mother and son, but can also be a bullying
threat. Context is everything.

A further difficulty is that it is impossible to predict all the different sen-
tences that will be posed to a virtual agente, unless, as previously mentioned,
it operates in a really strictly closed domain. Therefore, a bottleneck of conver-
sational agents are Out-of-Domain (OOD) requests. For instance, as reported
in [2], Edgar Smith [11], a virtual butler capable of answering questions about
Monserrate Palace in Sintra, was reasonably effective when the user was asking
In-Domain questions. However, people kept asking it OOD questions, such
as Do you like Cristiano Ronaldo?, Are you married?, Who is your favourite
actress?. Although it might be argued that, in light of their assistive nature,
such systems should be focused in their domain-specific functions, the fact is
that people become more engaged with these applications if OOD requests are
addressed [5,24].

Several other linguistica phenomena make dialogues even more difficult to
follow by a machine. For instance, for interpreting the sentences Rebelo de Sousa
and Costa went to Spain. The president went to Madrid and the prime-minister
to Barcelona., we need to know that Marcelo is the president and that Costa is
the prime-minister. The NLP task that deals with this phenomenon is Coref-
erence Resolution. Also, elliptical constructions – omission of one or more

3 According with https://muse.dillfrog.com/meaning/word/light.

https://muse.dillfrog.com/meaning/word/light
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words in a sentence that can be inferred – make things extremely difficult to
machines (e.g. Is Gulbenkian’s museum open on Sundays? And on Saturdays? ).
In addition, we use idioms (e.g., it’s raining cats and dogs), colocations and
many multi-word expressions whose meaning is not necessary related with the
meaning of its parts. For instance, colocations are sequences up to three words
that we learn to use since ever, but that we do not really know why we say it
that way (e.g., in Portuguese we say perdi o avião (literally I lost the plane), to
say I missed my flight). Why the verb perdi? (by the same token, why miss?).
If for a foreign language learner the production (and understanding) of these
expressions is a real challenge, it certainly is too for a computer. Moreover, we
cannot ignore humor and sarcasm, which further complicate the machine tasks
of understanding language (e.g., Those who believe in telekinetics, raise my hand.
– Kurt Vonnegut).

Furthermore, the simple fact that we might be using speech when interacting
with the machine (not to mention sign language) adds an extra layer of problems.
For instance, a noisy environment or a strong accent can be enough to unable
our understanding of what is being said (the same for a virtual agent). Also, the
way we say something influences the interpretation of a sentence. For instance,
Good morning can be said, in an unpleasant tone, to those who arrive late at
class, meaning Finally!.

To conclude, the way we express ourselves has to do with our mastery of
language, which, in turn, is influenced by the time in which we live, by our age,
social condition, occupation, region where we were born and/or inhabit, emo-
tional state, among others. All those features make each one of us a special case
(and computers prefer archetypal patterns). A truly robust application should
be able to handle all of our productions. Therefore, it must be equipped with
some reasoning ability, which must also take into account all non-verbal elements
involved in a conversation (e.g., the interlocutor’s facial expression, the scenario,
etc.). And the truth is that we are still far from being able to integrate all these
variables in the (natural language) understanding process.

3 Historical Perspective

As previously said, Eliza is considered to be the first chatbot ever, developed in
the 1960s, with the aim of simulating a psychotherapist. Although it was able to
establish a conversation, simulating it was a human being, its virtual model was
based in rephrasing the user input, whenever it matched a set of hand-crafted
rules and also in providing content-free remarks (such as Please go on.) in the
absence of a matching. For instance, Eliza could have a rule like the following
one, in which * is the wildcard and matches every sequence of words; the (2)
means that the sequence of words captured by the second wildcard would be
returned in Eliza’s answer:

Rule: * you are */ What makes you think I am (2)?
If the user input was, for instance, I think you are bright, it would answer

What makes you think I am bright?. At that time, many people believed they
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were talking with another human (the “Eliza effect”). Having no intention of
modelling the human cognitive process and despite its simplicity, Eliza showed
how a software program can cause a huge impact by the mere illusion of under-
standing. Nowadays, Eliza is still one of the most widely known applications in
AI. Eliza and subsequent bots (such as the paranoid mental patient Parry [9]
or Jabberwacky [8]), definitely provided the seeds to many different directions
to explore. For instance, the idea of having a virtual agent with a “persona” that
explains the flow (and the flaws) of the conversation continues to be widely used.
Another idea that is due to the first chatbots and that is still being explored
today is that of “learning by talking”. For example, if a user asks What do you
think of Imagine Dragons? and the bot does not know how to answer, it will
record the question. The next time it interacts with a human, that same question
will be asked by the bot and (hopefully) a possible answer will be gathered. Of
course, this approach can go wrong and a very (recent) popular case was that of
a chatbot that was willing to learn by interacting with humans. Within hours of
being in use, the chatbot was racist, nazi and vulgar, and had to be turned off.
A survey on the early chatbots and their contributions can be found in [25].

Another important line of research emerged in the beginning of the 70s, due
to three seminal papers of Richard Montague: English as a Formal Language [21],
The Proper Treatment of Quantification in Ordinary English [22], and Universal
Grammar [23]. Montague proposed a formal framework to map syntactic struc-
tures into semantic representations, providing a systematic and compositional
way of doing it. Although Montague’s work was limited to a very small subset
of the English language and difficult to extend, the idea of taking advantage of
syntax to build semantic forms in a compositional way was used in the many
Natural Language Interfaces to Databases (NLIDB) that popped-up by
that time (mostly during the 80s), and that are still being developed nowadays,
although with different techniques ([3] surveys classical NLIDBs and [1] more
recent ones).

Then, Question/Answering (QA) (and Dialogue) systems started to
come out. Contrary to NLIDB, QA systems knowledge sources are not (neces-
sarily) ground in databases; they are quite similar otherwise. On the subject of
Dialogue systems, they are designed to engage in a dialogue with the user to get
the information they need to complete a task (for instance), and, thus, there is
more than just a question and an answer involved. The strong development of the
former in the late 90s and beginning of the XXI century was partially due eval-
uation fora, such as TREC4 (since 99) and CLEF5 (since 2003), which provided
tasks entirely dedicated to QA, such as QA@CLEF6. This allowed researchers
to straightforwardly compare their systems, as everybody was evaluated with
the same test sets. A side effect of these competitions was the release of data
that become usually available to the whole community. This certainly also con-
solidated the rise of Machine Learning techniques against traditional rule-based

4 https://trec.nist.gov.
5 http://www.clef-initiative.eu/home.
6 http://www.clef-initiative.eu/track/qaclef.
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approaches. Nowadays, an important task in NLP is Machine Reading Com-
prehension that targets to understand unstructured text in order to answer
questions about it, but new related challenges are still emerging, such as the
Conversational Question Answering Challenge (CoQA) [30].

In what concerns Dialogue Systems, several domains were explored from the
early days. Particularly prolific were the conversational agents targeting the con-
cept of Edutainment, that is, education through entertainment. Following this
strategy, several bots have animated museums all over the world: the 3D ani-
mated Hans Christian Andersen [4] established multimodal conversations about
the writer’s life and tales, Max [27] was employed as guide in the Heinz Nix-
dorf Museums Forum, Sergeant Blackwell [31], installed in the Cooper-Hewitt
National Design Museum in New York, was used by the U.S. Army Recruiting
Command as a hi-tech attraction and information source, and the previously
mentioned Edgar Smith (Fig. 1).

Fig. 1. Edgar Smith in Monserrate.

In some of these systems the agent’s knowledge base was constituted of pairs
of sentences (S1, S2), where S2 (the answer) is a response to S1 (the trigger).
Their “understanding” process was based on a retrieval approach: if the user
says something that is “close” to some trigger that the agent has in its knowl-
edge base (that is, if the user input matches or rephrases a trigger), then it
will return the correspondent answer. Others based their approach in informa-
tion extraction techniques, capable of detecting the user intentions and extract
relevant entities from the dialogues in order to capture the “meaning” of the
sentence. A typical general architecture of the latter systems combined natural
language understanding and generation modules (sometimes template-based).
A dialogue manager was present in most approaches. Nowadays, end-to-end
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data-driven systems – that is systems trained directly from virtual data to
optimize an objective function [17] –, have replaced or at least try to replace
these architectures.

Then, things started to happen fast: Watson wins Jeopardy! in 2011 (a big
victory to NLP), Apple releases Siri, also in 2011, Google Now appears in 2012,
and the world faces a new level of conversational agents: the virtual assistants
built by these colossal companies7. In the meantime, Deep Learning starts to
win in all fronts, and Sequence to Sequence (seq2seq) models start to be suc-
cessfully applied to Machine Translation [36]. Considering that these models take
as input a sequence of words in one language and output a sequence of words in
another language, the first generative dialogue systems based on these models
did not take long to appear, and the already mentioned end-to-end (dialogue)
systems came to light (v.g. [18,35,37,39,44,45,47]). These systems differ from
retrieval-based systems as in the latter pre-defined responses are given to the
user; in the generative-based approaches responses are generated in run-time.
The majority of these systems are trained to engage in general conversations
(chit-chat agents) and, therefore, make use of movie subtitles (or Reddit8 data).

Besides seq2seq architectures, two concepts are responsible for many of the
latest achievements: Neural Word Embeddings and Pre-trained Language
Models. Machine learning algorithms cannot usually directly deal with plain
text. Therefore, the idea of converting words into vectors has been explored
for a long time. Word Embeddings are functions that map words (or characters,
paragraphs or even documents) into vectors (and neural networks can learn these
mappings). More recently deep learning led to the creation of several embedding
types, from context-free to contextual models, from character- to word-based,
etc. Considering context-free embeddings, each word form is associated with a
single embedding, and, thus, the word light will have a single embedding asso-
ciated. In contextual models, the embedding captures a specific meaning of the
word, and, therefore, light will have several vectors associated, according with
the context in which it occurs. Examples of context-free embeddings are the ones
created with Word2Vec models [19]; examples of the latter are ELMo [26] and
BERT [10]. A simple way to use these models in dialogue systems is, for instance,
in a retrieval-base approach, calculate the embedding of the agent’s knowledge
base sentences and the embedding associated with the user given sentence. Then,
find the cosine similarity between the embedding of the latter and the ones from
the knowledge base, and return the one with the highest value. In what concerns
language models, these can be seen as models that are trained to predict the next
word (or character) in a sequence. For instance, by counting n-grams (sequences
of n tokens) we can build a language model. These have many application scenar-
ios. For instance, in a translation setup, decide which, from possible translations
of a source sentence, is more probable, considering the target language (and the
n-grams observed in that target language). An example of a language model is

7 Microsoft’s Cortana and Alexa were born in 2014.
8 https://www.reddit.com.
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GPT-2 [29], trained in 40GB of text data, and developed by OPenAI9. It should
be said that behind some of the most successful models (as BERT and GPT-2),
there is a Transformer-base model. Transformers [38] were introduced in 2017
and are enjoying great success in NLP.

Several problems are still under research. The next section presents some of
the current trends.

4 Current Trends

Several challenges lie ahead of the current end-to-end conversational agents. Just
to name a few, some systems are unable to track the topic of the conversation,
or are prone to generate trivial (and universal) responses such as “ok” or “I
don’t know” (the “universal answer” drawback). Some authors propose neural
models that enable dialogue state tracking (v.g. [48]), or new methods that inject
diversity in the generated responses (v.g. [33]).

Current systems try to take into account important features of the user
request, as for instance, their sentiment [6,14,34]. This is particularly important
for support bots, as, for instance, a very unhappy customer (negative polarity)
should not receive an answer starting with Hello, we are so happy to hear from
you!!!. Researchers also explore how to add declarative knowledge to neural net-
work architectures. As an example, in [16], neural networks are augmented with
First-Order Logic. Domain adaptation is also, as previously said, a hot-topic
(v.g [28]). Some current research follows in the transfer-learning paradigm: pre-
trained Language Models are fine-tuned with specific data. For instance, in [7],
GPT-2 is used as a pre-trained model and fine-tuned in task-oriented dialogue
systems; in [43] a model is pre-trained on the BookCorpus dataset [49], and, then,
tuned on the PERSONA-CHAT corpus [46]. The latter corpus was created to
allow the building of chit-chat conversational agents, with a configurable, but
persistent persona [46]. This idea of creating a bot with a consistent persona is
also the topic of research of many current works [13,15].

Many more proposals, not necessarily following in the end-to-end paradigm,
are also worth to be mentioned. For instance, in [41] the authors propose the
building of a semantic parser overnight, in which crowdsourcing is used to para-
phrase canonical utterances (automatically built), into natural language ques-
tions; in [40] the computer learns, from scratch, the language used by people
playing a game in the blocks world. Users can use whatever language they want,
and they can even invent one.

5 Main Conclusions and Future Work

Since its early days, the NLP community has embraced the task of building con-
versational agents. However, and despite all the recent achievements (mainly due
to Deep Learning), a short conversation with these systems quickly exposes their

9 https://openai.com.
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weaknesses [32], including the lack of a consistent personality. The community
is pretty aware of these limitations, and recent work is focusing on boosting the
conversational agents’ capabilities. Pre-trained models will certainly continue to
be explored, as well as ways to enrich the model training with different types of
knowledge.

The adaptation of a bot to a specific user is also something to explore, as
the given answer will probably differ regardless of whether we interact with the
bot once (for instance, when buying tickets for visiting a specific monument) or
regularly (for instance, to reserve a hotel in a particular platform). In the latter
case we want our assistant to remember some information about the user.

Acknowledgements. I would like to express my gratitude to Vânia Mendonça, who
gave me very detailed comments about this document. However, the responsibility for
any imprecision lies with me.
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Abstract. In machine learning tasks an actual ‘ground truth’ may not
be available. Then, machines often have to rely on human labelling of
data. This becomes challenging the more subjective the learning task is,
as human agreement can be low. To cope with the resulting high uncer-
tainty, one could train individual models reflecting a single human’s opin-
ion. However, this is not viable, if one aims at mirroring the general opin-
ion of a hypothetical ‘completely average person’ – the ‘average Jane’.
Here, I summarise approaches to optimally learn efficiently in such a case.
First, different strategies of reaching a single learning target from several
labellers will be discussed. This includes varying labeller trustability and
the case of time-continuous labels with potential dynamics. As human
labelling is a labour-intensive endeavour, active and cooperative learn-
ing strategies can help reduce the number of labels needed. Next, sample
informativeness can be exploited in teacher-based algorithms to addition-
ally weigh data by certainty. In addition, multi-target learning of different
labeller tracks in parallel and/or of the uncertainty can help improve the
model robustness and provide an additional uncertainty measure. Cross-
modal strategies to reduce uncertainty offer another view. From these
and further recent strategies, I distil a number of future avenues to han-
dle subjective uncertainty in machine learning. These comprise bigger,
yet weakly labelled data processing basing amongst other on reinforce-
ment learning, lifelong learning, and self-learning. Illustrative examples
stem from the fields of Affective Computing and Digital Health – both
notoriously marked by subjectivity uncertainty.

Keywords: Machine learning · Uncertainty · Subjectivity · Active
learning · Cooperative learning

1 Subjectivity and AI

In many machine learning applications of interest, the ground truth reflects
some inherently human-centric capacity, like affect [1], or corresponds to an
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expert assessment, as in the case of health informatics [2]. In such cases, ground
truth cannot be collected automatically via crawling or sensors, and a human
annotation step must be injected in the machine learning pipeline.

Considering, for example, the differing reports made by experienced health-
care professionals when assessing a medical image [3], it is not hard to imagine
that certain annotation tasks can exhibit great subjectivity. Given a photo of a
man wearing a slight frown, is he sad, angry, or is this maybe his natural expres-
sion? What about a photo of a woman [4]? Is the gender of the person making
the assessment [5] relevant? What about their age or cultural background [6]?
In the online social media setting, is the mention of curse words (or even slurs)
in a tweet considered offensive if it is used between friends [7]? Or, in the age of
alternative facts, how can one be certain that an online post does not contain
fake news [8]? Perhaps the task under consideration is inherently ambiguous,
as in asking whether a scene depicted in a photo is warm or cold [9], or simply
difficult even for experts, as in the identification of volcanoes on a photo
of a 75 · 75 km2 surface patch of Venus [10]. Such ambiguities become exacer-
bated when the level of expertise and trustworthiness of the annotators enter
consideration [11].

In subjective perception studies like those in the above non-comprehensive
list, we observe that if we were to ask multiple humans to annotate a single sam-
ple, we would often receive disagreeing evaluations. In fact, we typically would
require multiple raters in an attempt to eliminate the possible bias of one single
annotator. We are now faced with a different problem however: our ground
truth, instead of providing clear answers, introduces uncertainty, and
disagreement as well; which opinion is correct, if any? Here we present an
overview of approaches utilised to address the issue of ground-truth uncertainty
due to subjectivity, a discussion of current state-of-the-art methods, persistent
challenges, and an outline of promising future directions.

2 The Dimensions of AI for Subjective Data

The presence of multiple human evaluations per sample forms a
constellation of challenges and opportunities, and certain approaches to
address some of the former may fail to exploit the latter. Each approach is delin-
eated by the decisions made to accommodate a series of problem dimensions. We
discuss the principal dimension that allows for a more high-level clustering in
the following subsection.

2.1 Adapting the Labels vs. Adapting the Algorithms

We fundamentally must make a decision on whether we desire to work on the
traditional setting, in which samples assume hard labels after a fusion of the
original, distinct opinions, or we want to introduce the additional modelling
complexity to accommodate the particularities of handling subjective data.
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We treat the two extreme philosophies as treating subjectivity as a prob-
lem (see Sect. 3), or embracing subjectivity and potentially leveraging
the opportunities it offers for better learning (see Sect. 4), respectively.

2.2 The Many Considerations of Working with Subjective Data

There are many permutations in the placement of relevant approaches with
respect to the below dimensions, and in certain cases a middle-way is proposed.
It is important to keep in mind what assumptions are implicitly being
made by the methods summarised in this overview study.

Subjectivity as a Source of Information: Whereas rater disagreement does
indeed inject noise in the ground-truth that requires extra steps to accommo-
date, it is also true that it can be quantified and also be used as an additional
source of information or algorithm feature if quantified [12–14].

Bad Data or Interesting Data? Taking an example from affective comput-
ing, certain speech utterances may be characterised as being prototypical,
i.e., they are clear examples of one emotion, or can be ambiguous, [15,16],
i.e., at the fuzzy border of more than one emotions. If we subscribe to the
first extreme, then we assume that a hard label is the true label of a sam-
ple, regardless of whether we use one, and that disagreeing labels constitute
observation noise due to rater bias, that needs to be removed by means of
denoising. Very often, data that exhibit high rater disagreement are
assumed to be less informative, due to the inability of raters to come to a
consensus. On the other hand, disagreeing labels may actually capture
a separate mode of a true soft label distribution.

Feasibility of Modelling Raters: Further to the above, in certain cases we
have knowledge of the set of labels produced by each (anonymised) rater, and
we can use this information to estimate the trustworthiness of each either by
proxy of inter-rater reliability, or by using an ensemble of models, where each
corresponds to a different rater. Inversely, usually in the case of crowdsourc-
ing, we either do not know which rater provided which label, or we simply
have very little overlap between raters to compare their performances. In such
cases, we can only attempt to model rater types [17,18].

Predicting With Uncertainty: Depending on the application, it may be desir-
able to provide a measure of subjectivity uncertainty (or, inversely, confi-
dence) alongside the prediction of each test sample. Tasks that require risk-
aware AI, may be related to healthcare, self-driving car technology, or sim-
ply cases where catastrophic performance translates to great financial costs.
Being able to predict subjectivity uncertainty may also be the primary task
of interest [3].

Interactive Learning: One approach to reducing the rater disagreement for a
label, is to repeatedly label it, leading to the need for a thorough study of
how the disagreement is treated and utilised in such a process. Furthermore,
even in regular active learning, rater disagreement may be a significant
information modality.
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2.3 Related Problems in AI

We treat the subjectivity issue as being distinct from other cases that imply
more than one label per sample, such as the presence of hierarchical labels, or
applications like acoustic event detection, in which many events are present in one
audio recording (possibly multiple times). The case of multi-label classification
is related to a degree, if we assume that a data sample can have a soft label, i.e.,
a distribution over categorical labels. However, even in the soft label approach,
we focus more on capturing the human subjectivity in labelling each sample.

3 Addressing Subjectivity

The issue we discuss here is truth inference, i.e., the extraction of a single hard
label per sample, by treating the opinions of various raters as noisy observations
of a true value.

3.1 Simple Fusion of Labels

Under the assumption that disagreeing, minority voices in annotation should be
considered as mistakes, or random observation noise, we are naturally interested
in getting a single, hard label per sample by performing a denoising fusion of
the original labels, where each is given the same weight. For categorical labels,
this amounts to majority voting, and for continuous ones to mean, or median
averaging. A major motivation for adopting such an outlook, would be that the
reduction to hard labels allows for the application of established AI literature
on the application of interest.

This approach was used to leverage the utility of crowdsourcing, in order
to cheaply annotate datasets, including many that became milestones in Deep
Learning (DL) research, such as ImageNet [19], MS COCO [20], the MIT Places
database [21], the SUN attribute dataset [9], and is still very popular [7,22].

3.2 Weighted Fusion of Labels

The output quality of annotators can vary widely due to differing levels of exper-
tise [23] or personality characteristics, with some of them ‘spamming’ random
answers [17]. As such, whereas the usage of crowdsourcing allows for fast and
cheap solution to the annotation of large datasets, the observation noise that
may be injected by the process introduces a requirement for increased quality
control. The aim here is to estimate and assign trustworthiness values to each
rater based on their performance with respect to the annotation task and/or
other raters, such that their opinions are weighed differently.

The Evaluator Weighted Estimator (EWE) approach [24] is based on the cal-
culation of rater-specific inter-reliability scores for weighing each rater’s scores.
EWE has successfully been used for improving the quality of affect recognition
[25]. This approach is only meaningful if there is significant overlap among raters
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with respect to samples, such that the aforementioned scores can be calculated
with confidence. This is very often the case in data annotation in the laboratory
setting, but not always; especially in the crowdsourcing case. In that case, the
rater-specific scores cannot be based on inter-rater reliability, and instead can
be calculated based on the performance consistency of each rater on the task,
according to the Weighted Trustability Evaluator (WTE) [26] method.

The Case of Time-Continuous Labels. It is of great use to model affect
in a continuous-valued, and continuous-time manner. When raters provide
sequences of continuous-valued emotion dimensions, there is one more
challenge to consider: rater reaction lag, which is often specific to the person.
In these cases, the weighted fusion must be performed in a manner that accounts
for lag-based discrepancies between raters as well.

In a study performed in [27], the authors proposed to weigh each rater based
on an inter-rater correlation based score, as well as manually experimented with
different lags per segment. In [28], a Canonical Correlation Analysis (CCA) app-
roach is proposed in conjunction with time-warping on the latent space to accom-
modate lag discrepancies. Time warping with additional rank based annotations
that reduce the subjectivity of continuous values was proposed in [29]. This issue
has also been approached via Expectation-Maximisation (EM) [30], by assuming
that the sequences provided by each rater are perturbed versions of a common
ground truth. By assuming knowledge of which sequences were provided by which
raters, reaction lag can be modelled specifically in a rater-specific manner [31].
Outside continuous affect recognition, a Bayesian dynamical model that models
noisy crowdsourced time-series labels of financial data was proposed in [32].

4 Embracing Subjectivity

The main question now becomes whether it is preferable to model for a hypo-
thetical “Average Jane”, or whether we can approach the problem by explicitly
taking into account the presence of very unique voices. This might mean that
we assume that samples are inherently non-prototypical and ambiguous, or that
we want to model individual raters to capture unique groups of thought, or
even that rater disagreement is one more attribute of the data; to be learnt and
predicted.

4.1 Incorporating Subjectivity in the Algorithm

As an intermediate step before fully embracing subjectivity as a source of oppor-
tunities instead of simply viewing it as a challenge to be solved before proceeding
to the modelling stage, we now discuss the case according to which we indeed
extract a single hard label per sample, as well as a measure of rater disagreement
that is to be used as an additional input, target, or algorithm feature to improve
learning.
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Learning with priviledged information, or master-class learning [33]
is a machine learning paradigm according to which each sample has additional
information that facilitates learning during the training phase, but is not required
for making predictions during testing. We consider the rater disagreement to
be such priviledged information. In the study performed in [34], the sample
annotation agreement (prototypicality in context), was used to weigh positively
the loss of the corresponding samples, and in fact, samples that exhibited high
disagreement were discarded. Similarly, less emphasis is placed in samples with
less annotation confidence in the Gaussian Process (GP) based method proposed
in [12].

The above methods assume that low rater agreement implies that the sample
is inherently useless, and will hinder the training process. However, whereas the
high disagreement implies a very subjective sample, deep learning is known to be
robust to massive random observation noise [35], and perhaps simply downweigh-
ing, or removing such samples naively is not the best approach. To this end, a
more appropriate solution might be to learn what high rater disagreement
means in the context of a particular dataset. A multi-task framework
was adopted by [13,36], in which the first task is the prediction of the fused
hard emotion label, and the second is the prediction of the inter-rater disagree-
ment of a sample. By adopting such a framework, the predictive performance
of the first task is improved. Further to the subject of deciding which samples
are more informative in the context of a dataset and task, the authors of [14]
utilised, among others, annotator disagreement as an input to a teacher model
that makes decisions on which samples are more informative towards training a
base predictor.

Assuming that subjectivity is inherent in the application of interest, we might
be interested in being able to predict the inter-rater disagreement of a
test sample. This has been shown as a possibility [37], and has been used in
the context of active learning [38] for emotion recognition. Such an approach
was adopted in [3] in the digital health domain, for the identification of samples
that would most benefit from a medical second opinion.

4.2 Assuming Soft Labels

Instead of fusing the differing labels into a single, hard label, one can calculate
the empirical distribution thereof, define a soft label distribution per sample,
and train a model on that. The soft label encodes the ambiguousness in ground
truth for each sample, and allows for the model to learn label correlations as
well, something that has been cited to be a significant contribution to the good
performance of model distillation techniques [39]. This is an approach that has
been adopted extensively, as in the studies performed in [16,40–42], and as part
of [43]. In certain cases, samples for which a hard label cannot be extracted
with majority voting due to a lack of a consensus are discarded, however the
authors of [16] utilise these ambiguous samples in a soft label framework and
observe a competitive performance using only the ambiguous data, and a clear
improvement if all data are used.
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It is also worth exploring the usefulness of inter-label correlations. The pres-
ence of multiple labels per sample allows for richer information available in the
estimation of their positions in a low-dimensional manifold [44–46].

4.3 Explicitly Modelling a Rater

When we know the correspondence between labels and raters, we are given the
opportunity to model the evaluation process of each particular rater, by utilising
an ensemble of models. One of the motivations behind this approach is that in
the case where one of the raters is an expert and the others are novices or
spammers, the voice of the latter will outweigh that of the former regardless of
whether we are using hard labels or soft.

In the methods proposed in [8,11,43,47–49] the authors estimate the model
parameters, and a measure of rater trustworthiness in a joint manner. In cases
where the number of raters is prohibitively high, there have been attempts to
model schools of thought [18]. Using a separate model for explicitly modelling a
rater has also been utilised for machine translation [50], and emotion recognition
[51]. In the latter study, the model has a common base but multiple heads, each
aimed at modelling a hard label as output by a different rater, and then a fusion
is applied such that a soft label is predicted. A similar approach was used more
recently, in a study about machine vision on biomedical images [52], in which the
authors additionally propose that learning a sample-specific weighted averaging
of raters’ inputs, motivated by the fact that certain raters may be better at
annotating certain types of data.

5 Active Learning Under Subjectivity

In the presence of rater disagreement, one possible avenue to improve the quality
of the data would be to apply repeated labelling, i.e., request additional raters to
label the data points, with the purpose of reducing the impact of each individual
voice. In [41] it was shown that the simple strategy of relabelling all samples
resulted to much better data quality, leading to better test performance; however,
it was shown that by focusing the relabelling process on a small set of samples was
a much better choice in the interest of budget constraints. The above technique
is important to consider in cases where acquiring entirely new examples is more
expensive than simply acquiring additional labels for existing ones.

Another related concept is that of self-healing [41,53]; in [53], repeated
labelling is used to request additional samples to improve the label signal of a
selected subset of the already labelled data. Self-healing is the adaptation of the
labels of the rest according to the newly updated predictions of the classifier.

Even in the case where we need to label new samples through active learning,
the rater agreement is important information to have; in [38], the authors have
trained rater uncertainty models, and utilised the output value on unlabelled
samples as a proxy of data informativeness for selecting samples to be annotated.
Alternatively, in [54], the authors utilised the predictive uncertainty output of
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Support Vector Machines (SVMs) to select both new examples and the number
of raters required to achieve a desired level of agreement.

Most importantly, exploiting subjectivity and rater disagreement is an oppor-
tunity for the improvement of active learning. By using a GP that models each
rater explicitly in [55], and by jointly modelling each rater’s trustworthiness [56]
better representation of uncertainty is achieved for improved active learning.

In certain cases, during the data annotation process, an unsure option was
also provided to the raters for assigning to the most ambiguous examples, some-
thing that lightens their workload, as well. In [57], an active learning framework
can learn on samples with unsure labels, albeit it does not make predictions that
a sample is unsure.

Explicitly utilising explicit rater models that also estimate rater trustwor-
thiness has been used successfully to improve active learning from crowds in
[58].

In order to model complex, high dimensionality data, such as text, audio,
images, and graphs, deep learning has been very successful; Bayesian deep learn-
ing [59] has allowed for the principled estimation of model parameters by defining
a weight prior, as well as incorporating knowledge from the evidence in these
domains. In [60], the authors use Bayesian deep active learning in the context
of multiple annotators on an Amazon Alexa dateset.

6 Learning with Subjectivity as the Norm?

Despite the widespread proof of more sophisticated methods being better than
unweighted label fusion, majority voting in order to extract a hard label is still
being widely applied: for example, in the subjective application of discriminating
between hate speech and simply offensive language on online social media [7]
and even more recent work on the subject [61]. The output of the crowdsourcing
workers in the context of [7] indicate that very often there is a confusion in the
human perception between hate-speech and offensive language, indicative of an
ambiguous task, or at the very least, multiple ambiguous samples.

We believe that there is great value in adopting subjectivity-aware
AI methods as the norm, and discuss several possible frontiers, as well as
related fields with which we believe a collusion would be profitable.

6.1 Subjectivity-Aware AI Pipeline

In order to fully embrace subjectivity in the AI pipeline, there is great value in
adapting each stage such that it can accommodate it. Given our knowledge that
rater performance can be variable [17] and task- and data- specific [62], expecting
them to provide hard labels for samples they are unsure about, inevitably leads
to lower data quality. The unsure option [57,63] for raters has been shown to be
one possible addition to the annotation process that may provide the downstream
stages with valuable ambiguity ground-truth.
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Furthermore, by considering financial budgeting behind crowdsourcing, it
might be possible to use a mixture of experts and novices. One more way to
generate ground-truth ambiguity information is by using improved interactive
learning techniques that allow for experts to evaluate a limited amount novice
labels [64–66].

Recently, computational ways of modelling a rater’s attention during the
annotation process, for counteracting the rater drift problem have been applied
to model annotation quality [62].

6.2 Uncertainty-Aware Deep Learning

There has been recent interest in quantifying predictive uncertainty using deep
learning [59,67], not necessarily in the multiple annotator case. The authors
of [59] propose a method that decomposes uncertainty of a test sample into
two different factors, i.e., epistemic uncertainty that is due to lack of observed
data at that area in data space, and aleatory uncertainty, that is representa-
tive of observation noise in labelling. They show how explicitly modelling for
such uncertainty factors improves learning in both classification and regression
computer vision tasks such as segmentation and depth prediction, and discuss
the explanatory capacities of such an approach. The importance of, and an
approach for deep uncertainty decomposition with explainability tangents have
also been discussed in the digital health domain [68].

We believe that such methods can naturally be applied in the
multiple annotator setting, and the decomposition of uncertainty can
provide valuable insight towards understanding the degree to which
a sample is mislabelled by certain raters, or whether it is inher-
ently ambiguous, something that should have profound impact in the repeated
labelling, and active learning from crowds domains. In fact, the authors of an
earlier study in repeated labelling have made initial explorations towards using
different definitions of uncertainty [41]. Keeping more recent developments in
mind [59,68], an interesting question is: what is the relation between annotation
subjectivity uncertainty and predictive aleatory uncertainty?

6.3 The Information Value of Data

It is important to keep in mind the assumptions made by adopting any of the
aforementioned approaches. In certain approaches that use rater disagreement
as priviledged information (see Subsect. 4.1), high disagreement is treated as an
indicator for low sample quality, motivating the discarding of such data.

The relation between uncertainty and data informativeness is a decision that
should be made in a dataset- and task-dependent manner [14,69,70], given
that in certain cases, training is focused on hard samples in order to improve
training [71], in others easy samples are utilised in the beginning of curriculum
learning [72], and finally, in other cases, the middle-way is adopted [38].

The quantification of the information value of data is very impactful
towards active learning [70], should be performed with labelling subjectivity in
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mind [14], and should be performed in a dataset-specific mannner. For example,
a framework for achieving such a joint quantification of sample value during
active learning in an online manner through reinforcement learning has been
proposed in [69].

6.4 Fairness in AI

It is important to develop AI frameworks that do not reinforce or reflect biases
present in data. By modelling individual raters, or schools of thought (see Sub-
sect. 4.3), greater capacity for capturing certain dimensions of bias is provided.
We believe that a more thorough exploration of bias-aware methods [73] on sub-
jective tasks is an avenue that will be explored to a great degree in the future.

7 Conclusions

Even though subjectivity is a well-known quality in certain applications and data
and many approaches have been developed to address it, we feel that a paradigm
shift towards treating it like an opportunity for improved modelling should be
undertaken. We have summarised various groups of work that accommodate for
the presence of multiple raters, based on their underlying philosophies, and have
built upon them to incite discussion towards possible future opportunities.

References

1. Schuller, B.W.: Speech emotion recognition: two decades in a nutshell, benchmarks,
and ongoing trends. Commun. ACM 61(5), 90–99 (2018)

2. Esteva, A., et al.: A guide to deep learning in healthcare. Nat. Med. 25(1), 24–29
(2019)

3. Raghu, M., et al.: Direct uncertainty prediction for medical second opinions. In:
Proceedings of the International Conference on Machine Learning, pp. 5281–5290
(2019)

4. Deutsch, F.M., LeBaron, D., Fryer, M.M.: What is in a smile? Psychol. Women Q.
11(3), 341–352 (1987)

5. Fischer, A.H., Kret, M.E., Broekens, J.: Gender differences in emotion perception
and self-reported emotional intelligence: a test of the emotion sensitivity hypoth-
esis. PloS One 13(1) (2018)

6. McCluskey, K.W., Albas, D.C.: Perception of the emotional content of speech by
Canadian and Mexican children, adolescents, and adults. Int. J. Psychol. 16(1–4),
119–132 (1981)

7. Davidson, T., Warmsley, D., Macy, M., Weber, I.: Automated hate speech detection
and the problem of offensive language. In: Proceedings of the International AAAI
Conference on Web and Social Media (2017)

8. Tschiatschek, S., Singla, A., Gomez Rodriguez, M., Merchant, A., Krause, A.: Fake
news detection in social networks via crowd signals. In: Companion Proceedings of
the the Web Conference, pp. 517–524 (2018)

9. Patterson, G., Xu, C., Su, H., Hays, J.: The sun attribute database: beyond cate-
gories for deeper scene understanding. Int. J. Comput. Vis. 108(1–2), 59–81 (2014)



52 G. Rizos and B. W. Schuller

10. Smyth, P., Fayyad, U.M., Burl, M.C., Perona, P., Baldi, P.: Inferring ground truth
from subjective labelling of venus images. In: Proceedings of Advances in Neural
Information Processing Systems, pp. 1085–1092 (1995)

11. Raykar, V.C., et al.: Learning from crowds. J. Mach. Learn. Res. 11(Apr), 1297–
1322 (2010)

12. Sharmanska, V., Hernández-Lobato, D., Miguel Hernandez-Lobato, J., Quadrianto,
N.: Ambiguity helps: classification with disagreements in crowdsourced annota-
tions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2194–2202 (2016)

13. Han, J., Zhang, Z., Schmitt, M., Pantic, M., Schuller, B.: From hard to soft: towards
more human-like emotion recognition by modelling the perception uncertainty. In:
Proceedings of the ACM International Conference on Multimedia, pp. 890–897.
ACM (2017)

14. Rizos, G., Schuller, B.: Modelling sample informativeness for deep affective com-
puting. In: Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. 3482–3486. IEEE (2019)

15. Cowen, A.S., Keltner, D.: Self-report captures 27 distinct categories of emotion
bridged by continuous gradients. Proc. Natl. Acad. Sci. 114(38), E7900–E7909
(2017)

16. Ando, A., Kobashikawa, S., Kamiyama, H., Masumura, R., Ijima, Y., Aono, Y.:
Soft-target training with ambiguous emotional utterances for DNN-based speech
emotion classification. In: Proceedings of the International Conference on Acous-
tics, Speech and Signal Processing, pp. 4964–4968. IEEE (2018)

17. Kazai, G., Kamps, J., Milic-Frayling, N.: Worker types and personality traits in
crowdsourcing relevance labels. In: Proceedings of the ACM International Confer-
ence on Information and Knowledge Management, pp. 1941–1944 (2011)

18. Tian, Y., Zhu, J.: Learning from crowds in the presence of schools of thought. In:
Proceedings of the ACM International Conference on Knowledge Discovery and
Data Mining, pp. 226–234 (2012)

19. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

20. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

21. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features
for scene recognition using places database. In: Proceedings of Advances in Neural
Information Processing Systems, pp. 487–495 (2014)

22. Li, Y., Tao, J., Schuller, B., Shan, S., Jiang, D., Jia, J.: MEC 2016: the multimodal
emotion recognition challenge of CCPR 2016. In: Tan, T., Li, X., Chen, X., Zhou,
J., Yang, J., Cheng, H. (eds.) CCPR 2016. CCIS, vol. 663, pp. 667–678. Springer,
Singapore (2016). https://doi.org/10.1007/978-981-10-3005-5 55

23. Zhang, C., Chaudhuri, K.: Active learning from weak and strong labelers. In:
Proceedings of Advances in Neural Information Processing Systems, pp. 703–711
(2015)

24. Grimm, M., Kroschel, K.: Evaluation of natural emotions using self assessment
manikins. In: Proceedings of the IEEE Workshop on Automatic Speech Recognition
and Understanding, pp. 381–385. IEEE (2005)

25. Schuller, B., Hantke, S., Weninger, F., Han, W., Zhang, Z., Narayanan, S.: Auto-
matic recognition of emotion evoked by general sound events. In: Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 341–344. IEEE (2012)

https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-981-10-3005-5_55


Efficient Machine Learning Under Subjectivity Uncertainty 53

26. Hantke, S., Marchi, E., Schuller, B.: Introducing the weighted trustability evaluator
for crowdsourcing exemplified by speaker likability classification. In: Proceedings
of the International Conference on Language Resources and Evaluation, pp. 2156–
2161 (2016)

27. Nicolaou, M.A., Gunes, H., Pantic, M.: Continuous prediction of spontaneous affect
from multiple cues and modalities in valence-arousal space. IEEE Trans. Affect.
Comput. 2(2), 92–105 (2011)

28. Nicolaou, M.A., Pavlovic, V., Pantic, M.: Dynamic probabilistic CCA for analysis
of affective behavior and fusion of continuous annotations. IEEE Trans. Pattern
Anal. Mach. Intell. 36(7), 1299–1311 (2014)

29. Booth, B.M., Mundnich, K., Narayanan, S.S.: A novel method for human bias
correction of continuous-time annotations. In: Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, pp. 3091–3095.
IEEE (2018)

30. Gupta, R., Audhkhasi, K., Jacokes, Z., Rozga, A., Narayanan, S.S.: Modeling
multiple time series annotations as noisy distortions of the ground truth: an
expectation-maximization approach. IEEE Trans. Affect. Comput. 9(1), 76–89
(2016)

31. Mariooryad, S., Busso, C.: Correcting time-continuous emotional labels by mod-
eling the reaction lag of evaluators. IEEE Trans. Affect. Comput. 6(2), 97–108
(2014)

32. Bakhtiari, B., Yazdi, H.S.: Bayesian filter based on the wisdom of crowds. Neuro-
computing 283, 181–195 (2018)

33. Vapnik, V., Izmailov, R.: Learning using privileged information: similarity control
and knowledge transfer. J. Mach. Learn. Res. 16(2023–2049), 2 (2015)

34. Kim, Y., Provost, E.M.: Leveraging inter-rater agreement for audio-visual emotion
recognition. In: Proceedings of the International Conference on Affective Comput-
ing and Intelligent Interaction, pp. 553–559. IEEE (2015)

35. Veit, A., Alldrin, N., Chechik, G., Krasin, I., Gupta, A., Belongie, S.: Learning from
noisy large-scale datasets with minimal supervision. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 839–847 (2017)

36. Eyben, F., Wöllmer, M., Schuller, B.: A multitask approach to continuous five-
dimensional affect sensing in natural speech. ACM Trans. Interact. Intell. Syst.
2(1), 1–29 (2012)

37. Steidl, S., Batliner, A., Schuller, B., Seppi, D.: The hinterland of emotions: facing
the open-microphone challenge. In: Proceedings of the International Conference
on Affective Computing and Intelligent Interaction and Workshops, pp. 1–8. IEEE
(2009)

38. Zhang, Z., Deng, J., Marchi, E., Schuller, B.: Active learning by label uncertainty
for acoustic emotion recognition. In: Proceedings of the Annual Conference of the
International Speech Communication Association (2013)

39. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531 (2015)

40. Jin, R., Ghahramani, Z.: Learning with multiple labels. In: Proceedings of
Advances in Neural Information Processing Systems, pp. 921–928 (2003)

41. Ipeirotis, P.G., Provost, F., Sheng, V.S., Wang, J.: Repeated labeling using multiple
noisy labelers. Data Min. Knowl. Disc. 28(2), 402–441 (2014)

42. Kim, Y., Kim, J.: Human-like emotion recognition: multi-label learning from noisy
labeled audio-visual expressive speech. In: Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 5104–5108. IEEE
(2018)

http://arxiv.org/abs/1503.02531


54 G. Rizos and B. W. Schuller

43. Chou, H.-C., Lee, C.-C.: Every rating matters: joint learning of subjective labels
and individual annotators for speech emotion classification. In: Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing, pp.
5886–5890. IEEE (2019)

44. Zhang, H., Jiang, L., Xu, W.: Multiple noisy label distribution propagation for
crowdsourcing. In: Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 1473–1479. AAAI Press (2019)

45. Zhang, J., Sheng, V.S., Wu, J.: Crowdsourced label aggregation using bilayer col-
laborative clustering. IEEE Trans. Neural Netw. Learn. Syst. 30(10), 3172–3185
(2019)

46. Liu, Y., Zhang, W., Yu, Y., et al.: Truth inference with a deep clustering-based
aggregation model. IEEE Access 8, 16 662–16 675 (2020)

47. Yan, Y., et al.: Modeling annotator expertise: learning when everybody knows
a bit of something. In: Proceedings of the International Conference on Artificial
Intelligence and Statistics, pp. 932–939 (2010)

48. Rodrigues, F., Pereira, F.C.: Deep learning from crowds. In: Proceedings of the
AAAI Conference on Artificial Intelligence (2018)
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Abstract. Current artificial neural networks are very successful in many
machine learning applications, but in some cases they still lag behind
human abilities. To improve their performance, a natural idea is to sim-
ulate features of biological neurons which are not yet implemented in
machine learning. One of such features is the fact that in biological neu-
ral networks, signals are represented by a train of spikes. Researchers
have tried adding this spikiness to machine learning and indeed got very
good results, especially when processing time series (and, more generally,
spatio-temporal data). In this paper, we provide a possible theoretical
explanation for this empirical success.

Keywords: Spiking neural networks · Shift-invariance ·
Scale-invariance

1 Formulation of the Problem

Why Spiking Neural Networks: A Historical Reason. At this moment,
artificial neural networks are the most successful – and the most promising –
direction in Artificial Intelligence; see, e.g., [3].

Artificial neural networks are largely patterned after the way the actual bio-
logical neural networks work; see, e.g., [2,3,6]. This patterning makes perfect
sense: after all, our brains are the result of billions of years of improving evo-
lution, so it is reasonable to conclude that many features of biological neural
networks are close to optimal – not very efficient features would have been fil-
tered out in this long evolutionary process.

However, there is an important difference between the current artificial neural
networks and the biological neural networks:

– when some processing of the artificial neural networks is implemented in
hardware – by using electronic or optical transformation – each numerical
value is represented by the intensity (amplitude) of the corresponding signal;
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– in contrast, in the biological neural networks, each value – e.g., the intensity
of the sound or of the light – is represented by a series of instantaneous spikes,
so that the original value is proportional to the frequency of these spikes.

Since simulating many other features of biological neural networks has led to
many successes, a natural idea is to also try to emulate the spiking character of
the biological neural networks.

Spiking Neural Networks Are Indeed Efficient. Interestingly, adding spik-
ing to artificial neural networks has indeed led to many successful applications,
especially in processing temporal (and even spatio-temporal) signals; see, e.g.,
[4] and references therein.

But Why? A biological explanation of the success of spiking neural networks –
based on the above evolution arguments – makes perfect sense, but it would be
nice to supplement it with a clear mathematical explanation – especially since, in
spite of all the billions years of evolution, we humans are not perfect as biological
beings, we need medicines, surgeries, and other artificial techniques to survive,
and our brains often make mistakes.

What We Do in This Paper. In this paper, we consider the question of signal
representation from the mathematical viewpoint, and we show that the spiking
representation is indeed optimal in some reasonable sense.

Comment. Some of the arguments that we present in this paper are reasonably
well-known in the signal processing community. However, since neural networks
– in particular, spiking neural networks – are used in other applications as well,
we included these arguments in this paper anyway, so that our paper will be more
easily accessible (and more convincing) to anyone interested in neural networks
and their applications.

2 Analysis of the Problem and the First Result

Looking for Basic Functions. In general, to represent a signal x(t) means to
approximate it as a linear combination of some basic functions. For example, it
is reasonable to represent a periodic signal as a linear combination of sines and
cosines. In more general cases – e.g., when analyzing weather – it makes sense
to represent the observed values as a linear combination of functions t, t2, etc.,
representing the trend and sines and cosines that describe the periodic part of
the signal. To get a more accurate presentation, we need to take into account
that the amplitudes of the periodic components can also change with time, so
we end up with terms of the type t · sin(ω · t).

If we analyze how radioactivity of a sample changes with time, a reason-
able idea is to describe the measured values x(t) as a linear combination of
exponentially decaying functions exp(−k · t) representing the decay of different
isotopes, etc.

So, in precise terms, selecting a representation means selecting an appropriate
family of basic functions. In general, we may have several parameters c1, . . . , cn
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characterizing functions from each family. Sometimes, there is only one parame-
ter, as in sines and cosines. In other cases, we can have several parameters – e.g.,
in control applications, it makes sense to consider decaying periodic signals of
the type exp(−k · t) ·sin(ω · t), with two parameters k and ω. In general, elements
b(t) of each such family can be described by a formula b(t) = B(c1, . . . , cn, t)
corresponding to different tuples c = (c1, . . . , cn).

Dependence on Parameters Must Be Continuous in Some Reasonable
Sense. We want the dependence B(c1, . . . , cn, t) to be computable, and it is
known that all computable functions are, in some reasonable sense, continuous;
see, e.g., [7].

Indeed, in real life, we can only determine the values of all physical quantities
ci with some accuracy: measurements are always not 100% accurate, and com-
putations always involve some rounding. For any given accuracy, we can provide
the value with this accuracy – but it will practically never be the exact value.
Thus, the approximate values of ci are the only thing that our computing algo-
rithm can use when computing the value B(c1, . . . , cn, t). This algorithm can ask
for more and more accurate values of ci, but at some point it must produce the
result. At this point, we only known approximate values of ci, i.e., we only know
the interval of possible values of ci. And for all the values of ci from this interval,
the result of the algorithm provides, with the given accuracy, the approximation
to the desired value B(c1, . . . , cn, t). This is exactly what continuity is about!

One has to be careful here, since the real-life processes may actually be, for
all practical purposes, discontinuous. Sudden collapses, explosions, fractures do
happen.

For example, we want to make sure that a step-function which is equal to 0
for t < 0 and to 1 for t ≥ 0 is close to an “almost” step function which is equal
to 0 for t < 0, to 1 for t ≥ ε (for some small ε) and to t/ε for t ∈ (0, ε).

In such situations, we cannot exactly describe the value at moment t – since
the moment t is also measured approximately, but what we can describe is its
values at a moment close to t. In other words, we can say that the two functions
a1(t) and a2(t) are ε-close if:

– for every moment t1, there exists moments t21 and t22 which are ε-close to
t1 (i.e., for which |t2i − t1| ≤ ε) and for which a1(t1) is ε-close to a convex
combination of values a2(t2i), and

– for every moment t2, there exists moments t11 and t12 which are ε-close to t2
and for which a2(t2) is ε-close to a convex combination of values a1(t1i).

Additional Requirement. Since we consider linear combinations of basic func-
tions, it does not make sense to have two basic functions that differ only by a
constant: if b2(t) = C · b1(t), then there is no need to consider the function b2(t)
at all; in each linear combination we can replace b2(t) with C · b1(t).

We Would Like to Have the Simplest Possible Family of Basic Func-
tions. How many parameters ci do we need? The fewer parameters, the easier
it is to adjust the values of these parameters, and the smaller the probability
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of overfitting – a known problem of machine learning in particular and of data
analysis in general, when we fit the formula to the observed data and its ran-
dom fluctuations too well and this make it much less useful in other cases where
random fluctuations will be different.

We cannot have a family with no parameters at all – that would mean,
in effect, that we have only one basic function b(t) and we approximate every
signal by an expression C · b(t) obtained by its scaling. This will be a very lousy
approximation to real-life processes – since these processes are all different, they
do not resemble each other at all.

So, we need at least one parameter. Since we are looking for the simplest pos-
sible family, we should therefore consider families depending on a single param-
eter c1, i.e., families consisting of functions b(t) = B(c1, t) corresponding to
different values of the parameter c1.

Most Observed Processes Are Limited in Time. From our viewpoint, we
may view astronomical processes as going on forever – although, in reality, even
they are limited by billions of years. However, in general, the vast majority of
processes that we observe and that we want to predict are limited in time: a
thunderstorm stops, a hurricane ends, after-shocks of an earthquake stop, etc.

From this viewpoint, to get a reasonable description of such processes, it
is desirable to have basic functions which are also limited in time, i.e., which
are equal to 0 outside some finite time interval. This need for finite duration
is one of the main reasons in many practical problems, a decomposition into
wavelets performs much better that a more traditional Fourier expansion into
linear combinations of sines and cosines; see, e.g., [1] and references therein.

Shift- and Scale-Invariance. Processes can start at any moment of time.
Suppose that we have a process starting at moment 0 which is described by a
function x(t). What if we start the same process t0 moments earlier? At each
moment t, the new process has been happening for the time period t+ t0. Thus,
at the moment t, the new process is at the same stage as the original process will
be at the future moment t + t0. So, the value x′(t) of a quantity characterizing
the new process is equal to the value x(t+t0) of the original process at the future
moment of time t + t0.

There is no special starting point, so it is reasonable to require that the class
of basic function not change if we simply change the starting point. In other
words, we require that for every t0, the shifted family {B(c1, t + t0)}c1 coincides
with the original family {B(c1, t)}c1 .

Similarly, processes can have different speed. Some processes are slow, some
are faster. If a process starting at 0 is described by a function x(t), then a λ
times faster process is characterized by the function x′(t) = x(λ · t). There is no
special speed, so it is reasonable to require that the class of basic function not
change if we simply change the process’s speed. In other words, we require that
for every λ > 0, the “scaled” family {B(c1, λ · t)}c1 coincides with the original
family {B(c1, t)}c1 .

Now, we are ready for the formal definitions.
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Definition 1. We say that a function b(t) is limited in time if it equal to 0
outside some interval.

Definition 2. We say that a function b(t) is a spike if it is different from 0
only for a single value t. This non-zero value is called the height of the spike.

Definition 3. Let ε > 0 be a real number. We say that the numbers a1 and a2

are ε-close if |a1 − a2| ≤ ε.

Definition 4. We say that the functions a1(t) and a2(t) are ε-close if:

– for every moment t1, there exists moments t21 and t22 which are ε-close to
t1 (i.e., for which |t2i − t1| ≤ ε) and for which a1(t1) is ε-close to a convex
combination of values a2(t2i), and

– for every moment t2, there exists moments t11 and t12 which are ε-close to
t2 and for which a2(t2) is ε-close to a convex combination of values a1(t1i).

Comment. One can check that this definition is equivalent to the inequality
dH(A1, A2) ≤ ε bounding the Hausdorff distance dH(A1, A2) between the two
sets Ai each of which is obtained from the closure Ci of the graphs of the corre-
sponding function ai(t) by adding the whole vertical interval t × [a, b] for every
two points (t, a) and (t, b) with the same first coordinate from the closure Ci.

Definition 5. We say that a mapping B(c1, t) that assigns, to each real number
c1, a function b(t) = B(c1, t) is continuous if, for every value c1 and for every
ε > 0, there exists a real number δ > 0 such that, if c′

1 is δ-close to c1, then the
function b(t) = B(c1, t) is ε-close to the function b′(t) = B(c′

1, t).

Definition 6. By a family of basic functions, we mean a continuous mapping
for which:

– for each c1, the function b(t) = B(c1, t) is limited in time, and
– if c1 and c′

1 are two different numbers, then the functions b(t) = B(c1, t) and
b′(t) = B(c′

1, t) cannot be obtained from each other by multiplication by a
constant.

Definition 7. We say that a family of basic functions B(c1, t) is shift-invariant
if for each t0, the following two classes of functions of one variable coincide:

{B(c1, t)}c1 = {B(c1, t + t0)}c1 .

Definition 8. We say that a family of basic functions B(c1, t) is scale-invariant
if for each λ > 0, the following two classes of functions of one variable coincide:

{B(c1, t)}c1 = {B(c1, λ · t)}c1 .

Proposition 1. If a family of basic functions B(c1, t) is shift- and scale-
invariant, then for every c1, the corresponding function b(t) = B(c1, t) is a
spike, and all these spikes have the same height.
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Discussion. This result provides a possible explanation for the efficiency of
spikes: namely, a family of spikes is the only one which satisfies the reasonable
conditions of shift- and scale-invariance, i.e., the only family that does not change
if we change the starting point of the process and/or change the process’s speed.

It should be emphasized that the only thing we explain by this result is the
use of spikes. Of course, just like for all other computational techniques, there
are many other factors contributing to the empirical success of spiking neural
networks – e.g., in this case, efficient algorithms for processing the spikes.

Proof. Let us assume that the family of basic functions B(c1, t) is shift- and
scale-invariant. Let us prove that all the functions b(t) = B(c1, t) are spikes.

1◦. First, we prove that none of the functions B(c1, t) is identically 0.
Indeed, the zero function can be contained from any other function by mul-

tiplying that other function by 0 – and this would violate the second part of
Definition 6 (of a family of basic functions).

2◦. Let us prove that each function from the given family is a spike.
Indeed, each of the functions b(t) = B(c1, t) is not identically zero, i.e.,

it attains non-zero values for some t. By the Definition 6 of a family of basic
functions, each of these functions is limited in time, i.e., the values t for which
the function b(t) is non-zero are bounded by some interval. Thus, the values
t−

def= inf{t : b(t) �= 0} and t+
def= sup{t : b(t) �= 0} are finite, with t− ≤ t+.

Let us prove that we cannot have t− < t+. Indeed, in this case, the interval
[t−, t+] is non-degenerate. Thus, by an appropriate combination of shift and
scaling, we will be able to get this interval from any other non-degenerate interval
[a, b], with a < b: indeed, it is sufficient to take the transformation t → λ · t + t0,

where λ =
t+ − t−
b − a

and t0 = λ ·a− t−. For each of these transformations, due to

shift- and scale-invariance of the family, the correspondingly re-scaled function
b′(t) = b(λ · t + t0) also belongs to the family B(c1, t), and for this function, the
corresponding values t′− and t′+ will coincide with a and b. All these functions
are different – so, we will have a 2-dimensional family of functions (i.e., a family
depending on 2 parameters), which contradicts to our assumption that the family
B(c1, t) is one-dimensional.

The fact that we cannot have t− < t+ means that we should have t− = t+,
i.e., that every function b(t) from our family is indeed a spike.

3◦. To complete the proof, we need to prove that all the spikes that form the
family B(c1, t) have the same height.

Let us describe this property in precise terms. Let b1(t) and b2(t) be any two
functions from the family. According to Part 2 of this proof, both functions are
spikes, so:

– the value b1(t) is only different from 0 for some value t1; let us denote the
corresponding height b1(t1) by h1;

– similarly, the value b2(t) is only different from 0 for some value t2; let us
denote the corresponding height b2(t2) by h2.
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We want to prove that h1 = h2.
Indeed, since the function b1(t) belongs to the family, and the family is shift-

invariant, then for t0
def= t1 − t2, the shifted function b′

1(t)
def= b1(t + t0) also

belongs to this family. The shifted function is non-zero when t + t0 = t1, i.e.,
when t = t1 − t0 = t2, and it has the same height h1.

If h1 �= h2, this would contradict to the second part of Definition 6 (of the
family of basic functions) – because then we would have two functions b′

1(t) and
b2(t) in this family, which can be obtained from each other by multiplying by a
constant. Thus, the heights must be the same.

The proposition is proven.

3 Main Result: Spikes Are, in Some Reasonable Sense,
Optimal

It Is Desirable to Check Whether Spiked Neurons Are Optimal. In the
previous section, we showed that spikes naturally appear if we require reasonable
properties like shift- and scale-invariance. This provides some justification for the
spiked neural networks.

However, the ultimate goal of neural networks is to solve practical problems.
From this viewpoint, we need to take into account that a practitioner is not
interested in invariance or other mathematical properties, a practitioner wants
to optimize some objective function. So, from the practitioner’s viewpoint, the
main question is: are spiked neurons optimal?

Different Practitioners Have Different Optimality Criteria. The problem
is that, in general, different practitioners may have different optimality criteria.
In principle, we can pick one such criterion (or two or three) and analyze which
families of basic functions are optimal with respect to these particular criterion
– but this will not be very convincing to a practitioner who has a different
optimality criterion.

An ideal explanation should work for all reasonable optimality criteria. This
is what we aim at in this section. To achieve this goal, let us analyze what we
mean by an optimality criterion, and which optimality criteria can be considered
reasonable. In this analysis, we will follow a general analysis of computing-related
optimization problems performed in [5].

What Is an Optimality Criterion: Analysis. At first glance, the answer
to this question may sound straightforward: we have an objective function J(a)
that assigns, to each alternative a, a numerical value J(a), and we want to select
an alternative for which the value of this function is the largest possible (or, if
we are interested in minimizing losses, the smallest possible).

This formulation indeed describes many optimality criteria, but not all of
them. Indeed, assume, for example, that we are looking for the best method
a for approximating functions from a given class. A natural criterion may be
to minimize the mean squared approximation error J(a) of the method a. If
there is only one method with the smallest possible mean squared error, then
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this method is selected. But what if there are several different methods with
the same mean squared error – and this is often the case. In this case, we can
use this non-uniqueness to optimize something else: e.g., select, out of several
methods with the same mean squared error, the method for which the average
computation time T (a) is the smallest.

In this situation, the optimality criterion cannot be described by single objec-
tive function, it takes a more complex form. Namely, we say that a method a′ is
better than a method a if:

– either J(a) < J(a′),
– or J(a) = J(a′) and T (a) < T (a′).

This additional criterion may still leave us with several equally good methods.
We can use this non-uniqueness to optimize yet another criterion: e.g., worst-case
computation time, etc.

The only thing which is needed to describe an optimality criterion is that
this criterion must enable us to compare the quality of different alternatives. In
mathematical terms, this criterion must enable us to decide which alternatives
are better (or of the same quality); let us denote this by a ≤ a′. Clearly, if a′ is
better than a (i.e., a ≤ a′) and a′′ is better than a′ (a′ ≤ a′′), then a′′ is better
than a (a ≤ a′′), so the relation ≤ must be transitive. Such relations are known
as pre-orders.

Comment. Not all such relations are orders: that would require an additional
property that if a ≤ b and b ≤ a, then a = b, and, as we have mentioned earlier,
this is not necessarily true.

An Optimality Criterion Must Be Final. In terms of the relation ≤, optimal
means better than (or of the same quality as) all other alternatives: a ≤ aopt for
all a.

As we have mentioned earlier, if we have several different optimal alterna-
tives, then we can use this non-uniqueness to optimize something else – i.e., in
effect, to modify the corresponding optimality criterion. Thus, when the opti-
mality criterion allows several different optimal alternatives, this means that this
criterion is not final, it has to be modified. For a final criterion, we should have
only one optimal alternative.

An Optimality Criterion Must Be Invariant. In real life, we deal with
real-life processes x(t), in which values of different quantities change with time
t. The corresponding numerical values of time t depend on the starting point
that we use for measuring time and on the measuring unit: e.g., 1 h is equivalent
to 60 min; numerical values are different, but from the physical viewpoint, this
is the same time interval.

We are interested in a universal technique for processing data. It is therefore
reasonable to require that the relative quality of different techniques should not
change if we simply change the starting point for measuring time or a measuring
unit.

Let us describe all this in precise terms.
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Definition 9. Let a set A be given; its elements will be called alternatives.

– By an optimality criterion ≤ on the set A, we mean a transitive relation (i.e.,
a pre-order) on this set.

– An element aopt is called optimal with respect to the criterion ≤ is for all
a ∈ A, we have a ≤ aopt.

– An optimality criterion is called final if, with respect to this criterion, there
exists exactly one optimal alternative.

Definition 10. For each family of basic functions B(c1, t) and for each value
t0, by its shift Tt0(B), we mean a family that assigns, to each number c1, a
function B(c1, t + t0).

Definition 11. We say that an optimality criterion on the class of all families
of basic functions is shift-invariant if for every two families B and B′ and for
each t0, B ≤ B′ implies that Tt0(B) ≤ Tt0(B

′).

Definition 12. For each family of basic functions B(c1, t) and for each value
λ > 0, by its scaling Sλ(B), we mean a family that assigns, to each number c1,
a function B(c1, λ · t).

Definition 13. We say that an optimality criterion on the class of all families
of basic functions is scale-invariant if for every two families B and B′ and for
each λ > 0, B ≤ B′ implies that Sλ(B) ≤ Sλ(B′).

Now, we are ready to formulate our main result.

Proposition 2. For every final shift- and scale-invariant optimality criterion
on the class of all families of basic functions, all elements of the optimal family
are spikes of the same height.

Discussion. We started this paper with mentioning that in many practical
problems, techniques based on representing signals as a linear combination of
spikes are known to be very efficient. In different applications, efficiency mean
different things:

– In signal processing, efficiency may mean that the corresponding computa-
tions finish earlier than when we use other techniques – e.g., Fourier transform
techniques, when we represent a signal as a linear combination of sinusoids,
or wavelet techniques, when we represent a signal as a linear combination of
wavelets.

– In machine learning, efficiency may mean the same – faster computations,
but it may also mean that the trained neural network leads to more accurate
predictions than networks based on different representations of signals.

In other words, in different situations, we may have different optimality criteria
that describe which methods we consider to be better and which methods we
consider to be worse. Our result – the above Proposition 2 – shows that no
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matter what optimality criterion we use, as long as this criterion satisfies natural
properties of scale- and shift-invariance (i.e., independence on the choice of the
relative speed and/or starting point), the only family which is optimal in the
sense of this criterion is the family of spikes.

Thus, this result provides a possible explanation of why spiking neural net-
works have been efficient in several different situations – situations in each of
which, in general, efficiency was understood somewhat differently.

Proof. Let us prove that the optimal family Bopt is itself shift- and scale-
invariant; then this result will follow from Proposition 1.

Indeed, let us consider any transformation T – be it shift or scaling. By
definition of optimality, Bopt is better than (or is of the same quality) as any other
family B: B ≤ Bopt. In particular, for every B, this is true for the family T−1(B),
i.e., T−1(B) ≤ Bopt, where, as usual, T−1 denotes the inverse transformation.

Due to invariance of the optimality criterion, T−1(B) ≤ Bopt implies that
T (T−1(B)) ≤ T (Bopt), i.e., that B ≤ T (Bopt). This is true for each family B,
thus the family T (Bopt) is optimal. However, we assumed that our optimality
criterion is final, which means that there is only one optimal family. Thus, we
have T (Bopt) = Bopt, i.e., the optimal family Bopt is indeed invariant with
respect to any of the shifts and scalings. Now, by applying Proposition 1, we
conclude the proof of this proposition.

4 Conclusions

A usual way to process signals is to approximate each signal by a linear combi-
nations of basic functions – e.g., sinusoids or wavelets. In the last decades, a new
approximation turned out to be very efficient in many practical applications –
an approximation of a signal by a linear combination of spikes. In this paper,
we provide a possible theoretical explanation for this empirical success – to be
more precise, we provide two related theoretical explanations.

Our first explanation is that spikes are the only family of basic functions
which does not change if we change the relative speed and/or change the starting
point of the analyzed processes – and is, thus, the only family which is equally
applicable to all possible speeds and all possible starting points. In mathematical
terms, spikes are the only family which is scale- and shift-invariant.

Our second explanation is that for every reasonable optimality criterion on
the class of all possible families of basic functions, the optimal family is the
family of spikes – provided that the optimality criterion itself satisfies the natural
properties of scale- and shift-invariance.
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Abstract. In many practical situations, we only know the interval con-
taining the quantity of interest, we have no information about the prob-
abilities of different values within this interval. In contrast to the cases
when we know the distributions and can thus use Monte-Carlo simula-
tions, processing such interval uncertainty is difficult – crudely speaking,
because we need to try all possible distributions on this interval. Some-
times, the problem can be simplified: namely, for estimating the range of
values of some characteristics of the distribution, it is possible to select
a single distribution (or a small family of distributions) whose analysis
provides a good understanding of the situation. The most known case is
when we are estimating the largest possible value of Shannon’s entropy:
in this case, it is sufficient to consider the uniform distribution on the
interval. Interesting, estimating other characteristics leads to the selec-
tion of the same uniform distribution: e.g., estimating the largest possible
values of generalized entropy or of some sensitivity-related characteris-
tics. In this paper, we provide a general explanation of why uniform
distribution appears in different situations – namely, it appears every
time we have a permutation-invariant optimization problem with the
unique optimum. We also discuss what happens if we have an optimiza-
tion problem that attains its optimum at several different distributions
– this happens, e.g., when we are estimating the smallest possible value
of Shannon’s entropy (or of its generalizations).
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1 Formulation of the Problem

Interval Uncertainty is Ubiquitous. When an engineer designs an object,
the original design comes with exact numerical values of the corresponding quan-
tities, be it the height of ceiling in civil engineering or the resistance of a certain
resistor in electrical engineering. Of course, in practice, it is not realistic to main-
tain the exact values of all these quantities, we can only maintain them with some
tolerance. As a result, the engineers not only produce the desired (“nominal”)
value x of the corresponding quantity, they also provide positive and negative
tolerances ε+ > 0 and ε− > 0 with which we need to maintain the value of this
quantity. The actual value must be in the interval x = [x, x], where x

def= x − ε−
and x

def= x + ε+.
All the manufacturers need to do is to follow these interval recommendations.

There is no special restriction on probabilities of different values within these
intervals – these probabilities depends on the manufacturer, and even for the
same manufacturer, they may change every time the manufacturer makes some
adjustments to the manufacturing process.

Data Processing Under Interval Uncertainty is Often Difficult. Because
of the ubiquity of interval uncertainty, many researchers have considered different
data processing problems under this uncertainty; this research area is known as
interval computations; see, e.g., [5,10,11,14].

The problem is that the corresponding computational problems are often very
complex, much more complex than solving similar problems under probabilistic
uncertainty – when we know the probabilities of different values within the corre-
sponding intervals. For example, while for the probabilistic uncertainty, we can,
in principle, always use Monte-Carlo simulations to understand how the input
uncertainty affects the result of data processing, a similar problem for interval
uncertainty is NP-hard already for the simplest nonlinear case when the whole
data processing means computing the value of a quadratic function – actually,
it is even NP-hard if we want to find the range of possible values of variance in
a situation when inputs are only known with interval uncertainty [8,13].

This complexity is easy to understand: interval uncertainty means that we
may have different probability distributions on the given interval. So, to get
guaranteed estimates, we need, in effect, to consider all possible distributions –
which leads to very time-consuming computations. For some problems, this time
can be sped up, but in general, the problems remain difficult.

It is Desirable to Have a Reasonably Small Family of Distributions
Representing Interval Uncertainty. In the ideal world, we should always
take into account interval uncertainty – i.e., take into account that, in principle,
all mathematically possible probability distributions on the given interval are
actually possible.

However, as we have just mentioned, many of the corresponding interval
computation problems are NP-hard. In practical terms, this means that the
corresponding computations will take forever.
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Since in such situations, it is not possible to exactly take interval uncertainty
into account – i.e., we cannot consider all possible distributions on the interval
– a natural idea is to consider some typical distributions. This can be a finite-
dimensional family of distributions, this can be even a finite set of distributions
– or even a single distribution. For example, in measurements, practitioners
often use uniform distributions on the corresponding interval; this selection is
even incorporated in some international standards for processing measurement
results; see, e.g., [14].

Of course, we need to be very careful which family we choose: by limiting the
class of possible distributions, we introduce an artificial “knowledge”, and thus,
modify the data processing results. So, we should select the family depending on
what characteristic we want to estimate – and beware that a family that works
perfectly well for one characteristic may produce a completely misleading result
when applied to some other desired characteristic. Examples of such misleading
results are well known – and we will present some such results later.

Continuous vs. Discrete Distributions: Idealized Mathematical
Description vs. Practical Description. Usually, in statistics and in mea-
surement theory, when we say that the actual value x belongs to the interval
[a, b], we assume that x can take any real value between a and b. However, in
practice, even with the best possible measuring instruments, we can only mea-
sure the value of the physical quantity x with some uncertainty h. Thus, from
the practical viewpoint, it does not make any sense to distinguish between, e.g.,
the values a and a + h – even with the best measuring instruments, we will not
be able to detect this difference.

From the practical viewpoint, it makes sense to divide the interval [a, b] into
small subintervals [a, a + h], [a + h, a + 2h], . . . within each of which the values
of x are practically indistinguishable.

Correspondingly, to describe the probabilities of different values x, it is suf-
ficient to find the probabilities p1, p2, . . . , pn that the actual value x is in one of
these small subintervals:

– the probability p1 that x is in the first small subinterval [a, a + h];
– the probability p2 that x is in the first small subinterval [a + h, a + 2h]; etc.

These probabilities should, of course, add up to 1:
n∑

i=1

pi = 1.

In the ideal case, when we get more and more accurate measuring instruments
– i.e., when h → 0 – the corresponding discrete probability distributions will tend
to the corresponding continuous distribution. So, from this viewpoint:

– selecting a probability distribution means selecting a tuple of values p =
(p1, . . . , pn), and

– selecting a family of probability distributions means selecting a family of such
tuples.

First Example of Selecting a Family of Distributions: Estimating Max-
imum Entropy. Whenever we have uncertainty, a natural idea is to provide a
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numerical estimate for this uncertainty. It is known that one of the natural mea-

sures of uncertainty is Shannon’s entropy −
n∑

i=1

pi ·log2(pi); see, e.g., [6,13]. When

we know the probability distribution, i.e., when we know all the values pi, then
the above formula enables us to uniquely determine the corresponding entropy.

However, in the case of interval uncertainty, we can have several different
tuples, and, in general, for different tuples, entropy is different. As a measure of
uncertainty of the situation, it is reasonable to take the largest possible value.
Indeed, Shannon’s entropy can be defined as the average number of binary
(“yes”-“no”) questions that are needed to uniquely determine the situation: the
larger this number, the larger the initial uncertainty. Thus, it is natural to take
the largest number of such questions as a characteristic of interval uncertainty.

For this characteristic, we want to select a distribution – or, if needed, a fam-
ily of distributions – whose entropy is equal to the largest possible entropy of all
possible probability distributions on the interval. Selecting such a “most uncer-
tain” distribution is known as the Maximum Entropy approach; this approach
has been successfully used in many practical applications; see, e.g., [6].

It is well known that out of all possible tuples with
n∑

i=1

pi = 1, the entropy is

the largest possible when all the probabilities are equal to each other, i.e., when

p1 = . . . = pn = 1/n.

In the limit h → 0, such distributions tend to the uniform distribution on
the interval [a, b]. This is one of the reasons why, as we have mentioned, uniform
distributions are recommended in some measurement standards.

Modification of This Example. In addition to Shannon’s entropy, there are
other measures of uncertainty – which are usually called generalized entropy.

For example, in many applications, practitioners use the quantity −
n∑

i=1

pα
i for

some α ∈ (0, 1). It is known that when α → 0, this quantity, in some reasonable
sense, tends to Shannon’s entropy – to be more precise, the tuple at which the
generalized entropy attains its maximum under different condition tends to the
tuple at which Shannon’s entropy attains its maximum.

The maximum of this characteristic is also attained when all the probabilities
pi are equal to each other.

Other Examples. The authors of [4] analyzed how to estimate sensitivity of
Bayesian networks under interval uncertainty. It also turned out that if, for the
purpose of this estimation, we limit ourselves to a single distribution, then the
most adequate result also appears if we select a uniform distribution, i.e., in
effect, the values p1 = . . . = pn; see [4] for technical details.

Idea. The fact that the same uniform distribution appears in many different
situations, under different optimality criteria, make us think that there must be
a general reason for this distribution. In this paper, we indeed show that there
is such a reason.
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Beyond the Uniform Distribution. For other characteristics, other possible
distributions provide a better estimate. For example, if instead of estimating
the largest possible value of the entropy, we want to estimate the smallest possi-
ble value of the entropy, then the corresponding optimal value 0 is attained for
several different distributions. Specifically, there are n such distributions corre-
sponding to different values i0 = 1, . . . , n. In each of these distributions, we have
pi0 = 1 and pi = 0 for all i �= i0.

In the continuous case h → 0, these probability distributions correspond to
point-wise probability distributions in which a certain value x0 appears with
probability 1.

Similar distributions appear for several other optimality criteria: e.g., when
we minimize generalized entropy instead of minimizing Shannon’s entropy. A nat-
ural question is: how can we explain that these distributions appear as solutions
to different optimization problems? Similar to the uniform case, there should
also be a general explanation – and a simple general explanation will indeed be
provided in this paper.

2 Analysis of the Problem

What Do Entropy, Generalized Entropy, etc. Have in Common? We
would like to come up with a general result that generalizes both the maximum
entropy, the maximum generalized entropy, and other cases. To come up with
such a generalization, it is reasonable to analyze what these results have in
common.

Let Us Use Symmetries. In general, our knowledge is based on symmetries,
i.e., on the fact that some situations are similar to each other. Indeed, if all the
world’s situations were completely different, we would not be able to make any
predictions. Luckily, real-life situations have many features in common, so we
can use the experience of previous situations to predict future ones.

The idea of using symmetries is well-known to many readers. However, since
not everyone is very familiar with this idea, we added a brief explanation in
this subsection. Readers who are well familiar with the idea of symmetry are
welcome to skip the rest of this subsection, and go straight to the subsection
about permutations.

So here is our brief explanation. For example, when a person drops a pen,
it starts falling down to Earth with the acceleration of 9.81 m/s2. If this person
moves to a different location and repeats the same experiment, he or she will get
the exact same result. This means that the corresponding physics is invariant
with respect to shifts in space.

Similarly, if the person repeats this experiment in a year, the result will be
the same. This means that the corresponding physics is invariant with respect
to shifts in time.

Alternatively, if the person turns around a little bit, the result will still be
the same. This means that the underlying physics is also invariant with respect
to rotations, etc.
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This is a very simple example, but such symmetries are invariances are
actively used in modern physics (see, e.g., [1,15]) – and moreover, many pre-
viously proposed fundamental physical theories such as:

– Maxwell’s equations that describe electrodynamics,
– Schroedinger’s equations that describe quantum phenomena,
– Einstein’s General Relativity equation that describe gravity,

can be derived from the corresponding invariance assumptions; see, e.g.,
[2,3,7,9].

Symmetries also help to explain many empirical phenomena in computing;
see, e.g., [12]. From this viewpoint, a natural way to look for what the two
examples have in common is to look for invariances that they have in common.

Permutations – Natural Symmetries in the Entropy Example. We have
n probabilities p1, . . . , pn. What can we do with them that would preserve the
entropy? In principle, we can transform the values into something else, but the
easiest possible transformations is when we do not change the values themselves,
just swap them.

Bingo! Under such swap, the value of the entropy does not change. In precise

terms, both the objective function S = −
n∑

i=1

pi ·ln(pi) and the constraint
n∑

i=1

pi =

1 do not change is we perform any permutation

π : {1, . . . , n} → {1, . . . , n},

i.e., replace the values p1, . . . , pn with the permuted values pπ(1), . . . , pπ(n).
Interestingly, the above-described generalized entropy is also permutation-

invariant. Thus, we are ready to present our general results.

3 Our Results

Definition 1

– We say that a function f(p1, . . . , pn) is permutation-invariant if for every
permutation π : {1, . . . , n} → {1, . . . , n}, we have

f(p1, . . . , pn) = f(pπ(1), . . . , pπ(n)).

– By a permutation-invariant optimization problem, we mean a problem of opti-
mizing a permutation-invariant function f(p1, . . . , pn) under constraints of
the type gi(p1, . . . , pn) = ai or hj(p1, . . . , pn) ≥ bj for permutation-invariant
functions gi and hj.

Comment. In other words, we consider the following problem:

– given permutation-invariant functions f(p1, . . . , pn), g1(p1, . . . , pn), g2(p1, . . . ,
p2), . . . , h1(p1, . . . , pn), h2(p1, . . . , p2), . . . , and values a1, a2, . . . , b1, b2, . . . ;
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– find: among all tuples p = (p1, . . . , pn) that satisfy the conditions
n∑

i=1

pi = 1,

g1(p1, . . . , pn) = a1, g2(p1, . . . , pn) = a2, . . . ,

and
h1(p1, . . . , pn) ≥ b1, h2(p1, . . . , pn) ≥ b2, . . .

find the tuple with the largest (or smallest) possible value of the objective
function f(p1, . . . , pn).

Proposition 1. If a permutation-invariant optimization problem has only one
solution, then for this solution, we have p1 = . . . = pn.

Discussion. This explains why we get the uniform distribution in several cases:
in the maximum entropy case, in the maximum generalized entropy case, etc.

Proof. We will prove this result by contradiction. Suppose that the values pi

are not all equal. This means that there exist i and j for which pi �= pj . Let us
swap pi and pj , and denote the corresponding values by p′

i, i.e.:

– we have p′
i = pj ,

– we have p′
j = pi, and

– we have p′
k = pk for all other k.

Since the values pi satisfy all the constraints, and all the constraints
are permutation-invariant, the new values p′

i also satisfy all the con-
straints. Since the objective function is permutation-invariant, we have
f(p1, . . . , pn) = f(p′

1, . . . , p
′
n). Since the values (p1, . . . , pn) were optimal, the

values (p′
1, . . . , p

′
n) �= (p1, . . . , pn) are thus also optimal – which contradicts to

the assumption that the original problem has only one solution.
This contradiction proves for the optimal tuple (p1, . . . , pn) that all the values

pi are indeed equal to each other. The proposition is proven.

Discussion. What is the optimal solution is not unique? We can have a case
when we have a small finite number of solutions.

We can also have a case when we have a 1-parametric family of solutions
– i.e., a family depending on one parameter. In our discretized formulation,
each parameter has n values, so this means that we have n possible solutions.
Similarly, a 2-parametric family means that we have n2 possible solutions, etc.

Here are precise definitions and related results.

Definition 2

– We say that a permutation-invariant optimization problem with n unknowns
p1, . . . , pn has a small finite number of solutions if it has fewer than n solu-
tions.

– We say that a permutation-invariant optimization problem with n unknowns
p1, . . . , pn has a d-parametric family of solutions if it has no more than nd

solutions.
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Proposition 2. If a permutation-invariant optimization problem has a small
finite number of solutions, then it has only one solution.

Discussion. Due to Proposition 1, in this case, the only solution is the uniform
distribution p1 = . . . = pn.
Proof. Since

∑
pi = 1, there is only one possible solution for which p1 = . . . =

pn: the solution for which all the values pi are equal to 1/n.
Thus, if the problem has more than one solution, some values pi are different

from others – in particular, some values are different from p1. Let S denote the
set of all the indices j for which pj = p1, and let m denote the number of elements
in this set. Since some values pi are different from p1, we have 1 ≤ m ≤ n − 1.

Due to permutation-invariance, each permutation of this solution is also a
solution. For each m-size subset of the set of n-element set of indices {1, . . . , n},
we can have a permutation that transforms S into this set and thus, produces

a new solution to the original problem. There are
(

n

m

)

such subsets. For all m

from 1 to n − 1, the smallest value of the binomial coefficient
(

n

m

)

is attained

when m = 1 or m = n − 1, and this smallest value is equal to n. Thus, if there
is more than one solution, we have at least n different solutions – and since we
assumed that we have fewer than n solutions, this means that we have only one.
The proposition is proven.

Proposition 3. If a permutation-invariant optimization problem has a 1-
parametric family of solutions, then this family of solutions is characterized by a
real number c ≤ 1/(n− 1), for which all these solutions have the following form:
pi = c for all i but one and pi0 = 1 − (n − 1) · c for the remaining value i0.

Discussion. In particular, for c = 0, we get the above-mentioned 1-parametric
family of distributions for which Shannon’s entropy (or generalized entropy)
attain the smallest possible value.

Proof. As we have shown in the proof of Proposition 2, if in one of the solutions,
for some value pi we have m different indices j with this value, then we will have

at least
(

n

m

)

different solutions. For all m from 2 to n − 2, this number is at

least as large as
(

n

2

)

=
n · (n − 1)

2
and is, thus, larger than n.

Since overall, we only have n solutions, this means that it is not possible to
have 2 ≤ m ≤ n − 2. So, the only possible values of m are 1 and n − 1.

If there was no group with n−1 values, this would means that all the groups
must have m = 1, i.e., consist of only one value. In other words, in this case,
all n values pi would be different. In this case, each of n! permutations would
lead to a different solution – so we would have n! > n solutions to the original
problem – but we assumed that overall, there are only n solutions. Thus, this
case is also impossible.
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So, we do have a group of n−1 values with the same pi. Then we get exactly
one of the solutions described in the formulation of the proposal, plus solutions
obtained from it by permutations – which is exactly the described family.

The proposition is proven.

4 Conclusions

Traditionally, in engineering, uncertainty is described by a probability distri-
bution. In practice, we rarely know the exact distribution. In many practical
situations, the only information we know about a quantity is the interval of
possible values of this quantity – and we have no information about the prob-
ability of different values within this interval. Under such interval uncertainty,
we cannot exclude any mathematically possible probability distribution. Thus,
to estimate the range of possible values of the desired uncertainty characteristic,
we must, in effect, consider all possible distributions. Not surprisingly, for many
characteristics, the corresponding computational problem becomes NP-hard.

For some characteristics, we can provide a reasonable estimate for their
desired range if instead of all possible distributions, we consider only distribu-
tions from some finite-dimensional family. For example, to estimate the largest
possible value of Shannon’s entropy (or of its generalizations), it is sufficient to
consider only the uniform distribution. Similarly, to estimate the smallest possi-
ble value of Shannon’s entropy or of its generalizations, it is sufficient to consider
point-wise distributions, in which a single value from the interval appears with
probability 1. The fact that different optimality criteria lead to the same dis-
tribution – or to the same family of distributions – made us think that there
should be a general reason for the appearance of these families. In this paper,
we show that indeed, the appearance of these distributions and these families
can be explained by the fact that all the corresponding optimization problems
are permutation-invariant.

Thus, in the future, if a reader encounters a permutation-invariant optimiza-
tion problem for which it is known that there is a unique solution – or that there
is only a 1-parametric family of solutions – then there is no need to actually
solve the corresponding problem (which may be complex to directly solve). In
such situations, it is possible to simply use our general symmetry-based results
for finding the corresponding solution – and thus, for finding a distribution (or a
family of distributions) that, for the corresponding characteristic, best represent
interval uncertainty.
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Abstract. We propose to use a, recently introduced, efficient L1 dis-
tance minimization through mixed-integer linear programming for min-
imizing the number of valuations to be modified inside an incoherent
probabilistic assessment. This is in line with one basic principle of opti-
mal corrective explanation for decision makers.

A shrewd use of constraints and of slack variables permit to steer
the correction of incoherent assessments towards aimed directions, like
e.g. the minimal number of changes. Such corrective explanations can be
searched alone, as minimal changes, or jointly with the property of being
also inside the L1 distance minimizers (in a bi-optimal point of view).

The detection of such bi-optimal solutions can be performed efficiently
by profiting from the geometric characterization of the whole set of L1
minimizers and from the properties of L1 topology.

Keywords: Incoherence corrections · L1 constrained minimization ·
Mixed Integer Programming · Optimal corrective explanation ·
Probabilistic databases

1 Introduction

Uncertain data are nowadays becoming increasingly important in probabilistic
databases [21] and they can emerge from traditional sources (e.g., by data inte-
gration like in [22]) or from the so called “next generation” sources (e.g., by
information extraction like in [18]). Such kind of data bring with themselves a
crucial characteristic: they must be consistent with sound uncertainty measures
to be used properly, and this is not always assured, especially whenever they
come from different sources of information.

As well outlined in [6], the way data fusion problem is tackled depends on
the way information is represented. Since one of the most familiar and adopted
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measure of uncertainty is probability, consequently we focus here on the even
more mandatory task of correcting inconsistent probabilistic databases (see, e.g.,
[20]).

The choice of correcting probability values reflects the willingness to main-
tain the probabilistic nature of the different sources of information. This because
the agent who performs the fusion would preserve the expressive power of prob-
ability framework. Of course, a change of the uncertainty management paradigm
could be possible by adopting more general degrees of belief to deal with ill-posed
sentences, like e.g. Belief functions, Fuzzy Logic or possibility measures (there is
a vast literature on this, see among the others [1,5,7,8,10,16]) but this would be
a strong intervention on the information representation, with a possible loss in
expressiveness (as defined in [16]), especially if the fusion process is performed
by a “third party” with respect the original sources. Hence in the present con-
tribution we describe a way to proceed when the fusion process is intended to
follow probability rules.

Recently (see e.g. [3,4]), we have proposed an efficient method for correcting
incoherent (i.e. inconsistent) probability assessments. This method is based on
L1 distance minimization and Mixed Integer Programming (MIP) procedures
can be designed to implement it, in line with what has been done in [13,14]
where such technique was introduced for the check of coherence problem.

The need of incoherence correction can be originated by different needs and
can have different goals, hence we have designed specific MIP procedures to:

– correct straight unconditional assessments [4, §3];
– merge inconsistent databases [4, §4];
– revise the belief in a dynamical setting [3, §5];
– solve the so called plain statistical matching problem [4, §6];
– solve its generalization of the statistical matching problem with missclassifi-

cation errors [9, §5];
– minimize the number of valuations to be modified, in line with one basic

principle of optimal corrective explanation for decision makers (this contri-
bution).

We are going to illustrate the last item of the previous list as it will appear in
Sect. 4. Before doing it, we are going to recall in Sect. 2 the basic notions of partial
probability assessments with the associated property of being coherent and in
Sect. 3 how MIP is used to solve incoherence through L1 distance minimization
and to find the whole set of optimal solutions.

In Subsect. 4.1 the problem of finding all corrective explanations that are
also at minimal L1 distance from the initial assessment is posed and solved.

Two prototypical examples will illustrate our procedure.

2 Probability Assessments

In this section we recall some notions about probability assessments and coher-
ence.
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Definition 1. A probability assessment is a tuple π = (V,U, p,C), where:

– V = {X1, . . . , Xk} is a finite set of propositional variables, representing any
potential event of interest;

– U is a subset of V of cardinality n that contains the effective events taken
into consideration;

– p : U → [0, 1]n is a vector which assigns a “potential” probability value p(Xi),
i = 1, . . . , n, to each variable in U ;

– C is a finite set of logical constraints which are present among all the variables
in V and that characterize the descriptions of the events of interest;

A probability assessment represents a state of knowledge about the proba-
bility for events in U to be true. Such probability values can be evaluated (or
“assessed”, as more properly said into specific literature) on the base of observed
data or of expert evaluations. Events are explicitly interconnected through the
logical constraints C, which can be written involving all the potential events V ,
and not only those of U , to permit to extend an initial assessment to a larger
domain without redefining the whole framework. The constraints C are crucial
to represent the domain of a database, especially whenever it is built by merg-
ing different sources of information, since they permit to represent any kind of
compound event, i.e. any macro situation, as, for example, that an event is the
conjunction of other two events, or the implications or incompatibilities among
some elements of V .

As usually done in Boolean logic, C can be expressed in conjunctive normal
form (CNF), namely, C = {c1, . . . , cm} where each element ci of C is a disjunctive
logical clause of the form:

ci =

( ∨
h∈Hi

Xh

)
∨

( ∨
l∈Li

¬Xl

)
(1)

with Xh and Xl in V , for some subsets of indexes Hi, Li ⊆ {1, . . . , k}.
This form results particularly helpful in the implementation part of the cor-

rection procedure, as we will described in the next section.
Since a probabilistic assessment π is partial, i.e. not defined on a fully struc-

tured domain like a Boolean algebra, it may or not be coherent, that means
consistent with a probability distribution. In literature there are different, but
all equivalent, ways of defining coherence. They are based on semantic, syntacti-
cal or operational point of views (see, e.g., [11,12,15,19]), anyway a formulation
in any approach can be easily translated into a formulation in a different one
(see in particular the characterization results in [11,12]). For our proposal it is
more fruitful to adopt the operational point of view already used in [2]. This will
permit to face the coherence problem directly with mathematical programming
tools.

Let us introduce now the notions of truth assignment and atom.

Definition 2. A truth assignment on V is a function α : V → {0, 1}. We
denote by 2V the set of all truth assignments. We denote with α |= φ the fact
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that the assignment α ∈ 2V satisfies a Boolean expression φ (which means that
replacing each variable x appearing in φ with the corresponding truth value α(x),
the expression φ evaluates to 1).

Definition 3. A truth assignment α ∈ 2V is called atom for a probability
assessment π = (V,U, p,C) if α satisfies all the logical constraints ci ∈ C.

The coherence of a probability assessment is then defined as follows

Definition 4. A probability assessment π = (V,U, p,C) is coherent if there
exists a probability distribution μ : 2V → [0, 1] which satisfies the following
properties

1. for each α ∈ 2V , if there exists a constraint ci ∈ C such that α �|= ci, then
μ(α) = 0;

2.
∑

α∈2V

μ(α) = 1;

3. for each Xj ∈ U ,
∑

α∈2V ,α|=Xj

μ(α) = p(Xj).

Checking the coherence of a probability assessment is a computational hard
problem for which there exist many algorithmic approaches. In this paper we are
mainly interested in the approach firstly described in [13], where the problem is
solved by means of a Mixed Integer Programming (MIP) approach.

3 Correcting Probability Assessments

Whenever a probability assessment π = (V,U, p,C) results to not be coherent, it
is possible to “modify” it in order to obtain a coherent probability assessment
π′ which is “as close as possible” to π.

Our approach consists in revising only the probability values p, because we
consider the logical constraints C as fixed. Hence the modified coherent assess-
ment is π′ = (V,U, p′,C), with p′ the corrected probability values.

Closeness between p and p′ is measured through a specific metric, and in our
approach we are using the L1 distance between p and p′, which is defined as

d1(p, p′) =
n∑

i=1

|p(Xi) − p′(Xi)|. (2)

The use of this distance has two important properties. First of all, minimiza-
tion of the displacements |p(Xi) − p′(Xi)| respects the basic principle of minimal
change in a numerical uncertainty setting. Secondly, there is a clear computa-
tional advantage with respect to other distances, like e.g. L2 or Kullback-Leibler
divergence, because minimization of L1 distance can be solved by MIP program-
ming that has nowadays consolidated efficient algorithms implemented in several
solvers while others distances would need less efficient and less robust algorithms
for nonlinear (quadratic, logarithmic, etc.) problems.
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Given a probability assessment π = (V,U, p,C), we denote by C(π) the sets
of all the L1-corrections of π.

The procedure to find the corrections of π = (V,U, p,C) is described in [4].
Here, for sake of completeness, we recall the most important points. The basic
idea is that in order to find the corrections of a probability assessment π it is
possible to solve a mixed integer program, which is denoted by P1. The method
of obtaining P1 from π exploits the same idea proposed in [13].

An important property is that if a probability assessment is coherent, there
exists a sparse probability distribution μ so that p′ can be written as a convex
combination of at most n+1 atoms α(1), . . . , α(n+1). Hence it is possible to build
a MIP problem P1, whose size is polynomial with respect to the size of π.

The non-negative variables for P1 are summarized in Table 1.

Table 1. List of variables in the MIP program P1 used to correct an incoherent
probabilistic assessments.

Name Indexes Size Type

i = 1, . . . , n

aij n(n + 1) Binary

j = 1, . . . , n + 1

i = 1, . . . , n

bij n(n + 1) Real

j = 1, . . . , n + 1

qj j = 1, . . . , n + 1 n + 1 Real

ri i = 1, . . . , n n Real

si i = 1, . . . , n n Real

The linear constraints of P1 are

– for i = 1, . . . , m and j = 1, . . . , n + 1∑
h∈Hi

ah,j +
∑
l∈Li

(1 − al,j) ≥ 1 (3)

– for each i = 1, . . . , n,

n+1∑
j=1

bij = p(Xi) + (ri − si) (4)

– for i = 1, . . . , n and j = 1, . . . , n + 1,

0 ≤ bij ≤ aij , aij − 1 + qj ≤ bij ≤ qj (5)
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–
n+1∑
i=1

qj = 1 (6)

– for i = 1, . . . , n,
ri ≤ 1, si ≤ 1 (7)

where, we recall, n is the cardinality of p, m the cardinality of C, while Hi and
Li are the indexes subsets in the disjunctive normal form (1) of each ci ∈ C.

The variables aij are binary, i.e. constrained in {0, 1}. Each value aij corre-
sponds to the atom component α(j)(Xi), for i = 1, . . . , n and j = 1, . . . , n + 1.
Indeed, the constraint (3)∑

h∈Hi

ahj +
∑
l∈Li

(1 − alj) ≥ 1 i = 1, . . . , m

j = 1, . . . , n + 1

forces each atom α(j)(a1j , . . . , anj) in the solution to satisfy all the clauses ci ∈ C.
The values q1, . . . , qn+1 represent the coefficient of the convex combina-

tion which generates p′, which also correspond to the probabilities μ(α(1)), . . . ,
μ(α(n+1)).

The constraint (3)

0 ≤ bij ≤ aij , aij − 1 + qj ≤ bij ≤ qj i = 1, . . . , n

j = 1, . . . , n + 1

is equivalent to the non linear constraint

bij = aij · qj for i = 1, . . . , n and j = 1, . . . , n + 1.

Since aij = 1 if and only if α(j) satisfies Xi, the sum

n+1∑
j=1

bij

is also equal to p′(Xi).
The variables ri, si are slack variables, which represent the positive and

the negative difference between p(Xi) and p′(Xi), that permit to translate the
inequalities p′(Xi) ≤ p(Xi) p′(Xi) ≥ p(Xi) into equations (4):

n+1∑
j=1

bij = p(Xi) + (ri − si) i = 1, . . . , n

Finally, the program P1 is composed by the constraints (1–5) and its objec-
tive function to be minimized is

n∑
i=1

(ri + si). (8)
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It is possible to prove that any solution of the linear program P1 corresponds
to a L1-correction p′ of p [4].

In many situations C(π) has more than one element and the MIP problem
is able to find just one solution, which could not be a good representative of all
the elements of C(π), as happens when it is an extreme value.

Hence program P1 must be associated to an other MIP program P2 to
generate the most “baricentric” point p̄ of C(π), i.e. a solution that spreads as
much uniformly as possible the numerical amount of the distance (2) amongst
the n values in p (for details and formal proofs refer again to [4]).

In P2 all the constraints and the variables of P1 are reported and it contains a
new real variable z, which is subject to the constraints ri+si ≤ z, for i = 1, . . . , n
(hence z ≥ max

i=1,...,n
(ri+si)), and the new additional constraint

∑n
i=1(ri+si) = δ,

where δ is the optimal value of the objective function in P1.
In this way, the P2 objective function to be minimized is simply z.
Using p̄, it is possible to find the face F1 of the polytope of coherent assess-

ments Q where C(π) lies.
The face F1 is itself a convex set with at most n+1 atoms as extremal points,

which can be found as a part of the solutions of P2 (i.e., the optimal values of
aij).

By looking at the signs of p̄(Xi) − p(Xi), for i = 1, . . . , n, it is also possible
to determine the face F2 of the L1 ball Bπ(δ) which contains C(π). Indeed, F2

is a convex set with at most n extremal points of the form

p + sign(p̄(Xj) − p(Xj)) · δ · ej . (9)

The whole set of corrections will result as:

C(π) = F1 ∩ F2. (10)

The computation of (10) can be done by using a procedure FaceEnum, which,
given a polyhedron, finds its H representation formed by the half-spaces that
contain its faces, and a procedure VertexEnum, which finds the V representa-
tion constituted by its extreme points or vertices. Examples of FaceEnum and
VertexEnum are described, e.g., in [17].

The overall procedure is described in the following pseudo-code.

procedure Correct
Input: assessment (V,U, p,C)
Output: extremal points W and minimum distance δ
begin

prepare MIP program P1
solve P1
extract the optimal value δ
if δ = 0 then

return ({p}, 0)
else
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prepare MIP program P2
solve P2
extract the values aij , ri, si

E1 :=columns of matrix aij

compute p̄ from ri, si

compute E2 with Formula (9)
H1 := FaceEnum(E1)
H2 := FaceEnum(E2)
Q := VertexEnum(H1 ∪ H2)
return (Q, δ)

endif
end

4 Optimal Corrective Explanation

The approach to correcting probability assessments described in the previous
section takes into account only the sum of the corrections made on the probability
values.

If we consider that enforcing the coherence of a probability assessment can
be seen as a process of constraint satisfaction, a different perspective can be
used. Indeed, as in an interactive tasks of constraint programming, it could be
helpful to detect a minimal number of events whose probability value should
be modified. In this way, the correction needed to obtain a coherent assessment
has a better explanation, because the modifications are concentrated to a small
number of events, instead being spread on more events. In any case, also the
sum of the corrections must be minimal.

Concretely, the objective function can take into account of both: the num-
ber of the affected probability values and the sum of all the modifications. A
procedure to compute this result is based on the previously described procedure
Correct, with some simple modifications.

First of all, the program P1 is extended by adding specific variables and
constraints that permit to “count” the modified probability values.

The new integer variables are Ii, for i = 1, . . . , n, while the additional con-
straints are

ri + si ≤ Ii ≤ 1, i = 1, . . . , n; (11)

If we just search for a solution with a minimal number of changes, the new
objective function is simply

n∑
i=1

Ii. (12)

Let us show its application with a simple numerical example:

Example 1. Let U = V = {X1,X2,X3}
C = (X2 ∨ X3) ∧ (X2 ∨ ¬X1) ∧ (X3 ∨ ¬X1)
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p = (.9, .8, .9)
hence with n = 3, m = 3 and H1 = {2, 3}, L1 = ∅, H2 = {2}, L2 = {1},
H3 = {3} L3 = {1}.

By plugging these values into constraints (3) - (7),(11) and by searching the
optimal minimal value of the objective function (12) we obtain an optimal cor-
rective explanation of I2 = 1 with r2 = .2. Hence only p2 must be modified into
p′
2 = 1.0.

Note that this correction actually minimize also the L1 distance objective func-
tion (8).

If, on the contrary, we start from the incoherent assessment p = (.99, .8, .9),
we obtain as optimal corrective explanation I2 = 1 and I3 = 1, with r2 = .2 and
r3 = .09, so that p′

2 = 1.0 and p′
3 = .99. Note that also this correction minimize

the L1 distance objective function.

4.1 Optimal Corrective Explanation at Minimal L1 Distance

From the previous example one could be tempted to induce that each optimal
corrective explanation is also a L1 distance minimizer, but obviously it is not
always the case since the polytope of coherent assessments Q could have inner
points in the same direction p ± δ · (I1, . . . , In).

To be sure to find on optimal corrective explanation that has also the minimal
L1 distance, it is enough to change only the objective function to

n∑
i=1

ri + si + Ii. (13)

Is is immediate to prove the following

Proposition 1. Any assessment p′ induced by the solution of the MIP program
with objective function (13) has a minimal number of corrections and a minimal
L1 distance w.r.t. the initial assessment p.

In fact, if there exists another correction p′′ with the same number of changed
components but with a smaller L1 distance, or with the same distance but with
a smaller number of changed components, the objective function (13) would
inevitably result smaller since the constraints that make the Ii equal to 1 when-
ever any one of the correction components ri or si is different from zero.

Let us see an other toy example that shows what we can obtain.

Example 2. U = V = {X1,X2,X3}
C = (X2∨X3∨¬X1)∧(X3∨¬X1∨¬X2)∧(¬X1∨¬X2∨¬X3)∧(X1∨X3∨¬X2)

p = (1.0, .3, .2)

that could lead to an optimal corrective explanation of I1 = 1 and I2 = 1 with
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s1 = 1.0 and s2 = .1 hence p1 must be modified into p′
1 = 0.0 and p2 must be

modified into p′
2 = 0.2. Also this correction minimizes the L1 distance objective

function (2) with
d1(p, p′) = 1.1 (14)

If we want to collect all such corrections that simultaneously minimize the
number of changes and the L1 distance, let us denote such optimal corrections
by O(π), we can resort to the reasoning illustrated in the previous section to
find the whole set of minimal distance corrections C(π).

Since C(π) has been obtained in (10) as the intersection of the two faces F1

and F2, if it contains some extremal points of the face F2, that we recall is a
face of the L1 ball Bπ(δ), then these are the searched solutions. In fact, since
any other correction p′′ is a convex combination of such extremal points can
have only a greater number of changes w.r.t. the extremes. In this case O(π) is
composed of isolated points and has a cardinality of at most n.

If, on the contrary, C(π) does not contain any extremal point of F2, the
extremal points of the convex set F1 ∩F2 surely belong to the searched solutions
O(π) as long as any other convex combination among those that change the
same values. No other point in C(π) can belong to O(π), since it will result as
convex combination of extremal points that changes different components and
hence it will change the union of those. In such a case O(π) will result as some
isolated vertex and some edges of F1 ∩ F2.

Let us show the two different situations by referring to the previous intro-
duced toy examples.

In Example 1 we have (see Fig. 1) that C(π) = F1 ∩ F2 it has four extremal
points p

′
= (.9, 1.0, .9), p

′′
= (.7, .8, .9), p

′′′
= (.8, .8, 1.0), piv = (.9, .9, 1.0), and

contains two extremal points of F2 so that O(π) is the isolated vertexes p
′

and
p

′′
.

Fig. 1. Whole sets of corrections for Ex.1: C(π) is the colored area of F1 ∩ F2 with

extremal points {p
′
, p

′′
, p

′′′
, piv}; while O(π) is the two separated points {p

′
, p

′′} (Color
figure online)
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In Example 2 we have (see Fig. 2) that C(π) = F1 ∩ F2 does not contain
any extremal point of F2 and it has five extremal points p

′
= (0.0, .2, .2), p

′′
=

(.2, 0.0, .2), p
′′′

= (1.0, 0.0, 1.0), piv = (.7, .3, 1.0), pv = (0.0, .3, .3); while O(π) is
the isolated vertex p

′′′
and the two edges p′p′′ , and pivpv.

Fig. 2. Whole sets of corrections for Ex.2: C(π) is the colored area of F1 ∩ F2 with

extremal points {p
′
, p

′′
, p

′′′
, piv, pv}; while O(π) is p

′′′
and the two solid edges p′p′′ ,

and pivpv (Color figure online)

5 Conclusion

With this contribution we have shown how Mixed Integer Programming can be
profitable used to solve probabilistic databases conflicts.

In particular, using additional variables and constraints, it is possible to ren-
der linear most practical problems. Specifically, we focused on the problem of
minimizing the number of corrections in an incoherent set of probability assess-
ments, obtaining a so called optimal corrective explanation. A smart use of the
involved slack variables and an immediate modification of the objective function
has easily permitted to obtain a double goal: minimal number of changes at a
minimal L1 distance, in a bi-objective prospective.

By profiting from geometric properties of the whole set of minimal L1 dis-
tance solutions, jointly with the topology of the L1 metric, it was possible to
characterize the whole set of such bi-optimal solutions so that we easily proposed
an efficient procedure to compute them. The knowledge of all the bi-optimal cor-
rective explanations permits the decision maker to select the most appropriate
adjustment of an inconsistent probabilistic database.

In next future we are going to implement the proposed method in a unique
procedure in order to deal and to solve real practical problems of reasonable size.
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narová, J. (eds.) Proceedings of the 11th Workshop on Uncertainty Processing
(WUPES 2018), Trebon, Czech Republic, pp. 25–36. MatfyzPress, Czech Republic
(2018)

10. Castro, J.L., Herrera, F., Verdegay, J.L.: Knowledge-based systems and fuzzy
boolean programming. Intell. Syst. 9(2), 211–225 (1994). https://doi.org/10.1002/
int.4550090203

11. Coletti, G.: Coherent numerical and Ordinal probabilistic assessments. IEEE
Trans. Syst. Man Cybern. 24, 1747–1754 (1994). https://doi.org/10.1109/21.
328932

12. Coletti, G., Scozzafava, R.: Probabilistic Logic in a Coherent Setting. Kluwer,
Series “Trends in Logic”, Dordrecht (2002). https://doi.org/10.1007/978-94-010-
0474-9

13. Cozman, F.G., di Ianni, L.F.: Probabilistic satisfiability and coherence checking
through integer programming. In: van der Gaag, L.C. (ed.) ECSQARU 2013. LNCS
(LNAI), vol. 7958, pp. 145–156. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39091-3 13

14. Cozman, F.G., di Ianni, L.F.: Probabilistic satisfiability and coherence checking
through integer programming. Int. J. Approximate Reason. 58, 57–70 (2015).
https://doi.org/10.1016/j.ijar.2014.09.002

https://doi.org/10.1016/S0004-3702(96)00003-3
https://doi.org/10.1016/S0004-3702(96)00003-3
https://doi.org/10.1007/s005000000040
https://doi.org/10.1007/s005000000040
https://doi.org/10.1007/s10489-018-1233-z
https://doi.org/10.1007/s10489-018-1233-z
https://doi.org/10.1007/978-3-7908-1889-5_9
https://doi.org/10.1016/j.inffus.2005.01.006
https://doi.org/10.1016/j.inffus.2005.01.006
https://doi.org/10.1007/978-3-642-34922-5_12
https://doi.org/10.1002/int.4550090203
https://doi.org/10.1002/int.4550090203
https://doi.org/10.1109/21.328932
https://doi.org/10.1109/21.328932
https://doi.org/10.1007/978-94-010-0474-9
https://doi.org/10.1007/978-94-010-0474-9
https://doi.org/10.1007/978-3-642-39091-3_13
https://doi.org/10.1007/978-3-642-39091-3_13
https://doi.org/10.1016/j.ijar.2014.09.002


92 M. Baioletti and A. Capotorti

15. de Finetti, B.: Teoria della Probabilità. Torino Einaudi, 1970. Wiley, London
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Abstract. This paper focuses on searching sufficient conditions for the
solvability of systems of partial fuzzy relational equations. In the case
of solvable systems, we provide solutions of the systems. Two standard
systems of fuzzy relational equations – namely the systems built on the
basic composition and on the Bandler-Kohout subproduct – are consid-
ered under the assumption of partiality. Such an extension requires to
employ partial algebras of operations for dealing with undefined values.
In this investigation, we consider seven most-known algebras of unde-
fined values in partial fuzzy set theory such as the Bochvar, Bochvar
external, Sobociński, McCarthy, Nelson, Kleene, and the �Lukasiewicz
algebra. Conditions that are sufficient for the solvability of the systems
are provided. The crucial role will be played by the so-called boundary
condition.

Keywords: Fuzzy relational equations · Partial fuzzy logics · Partial
fuzzy set theory · Undefined values · Boundary condition

1 Introduction

Systems of fuzzy relational equations were initially studied by Sanchez in the
1970s [17] and later on, many authors have focused on this topic and it becomes
an important topic in fuzzy mathematics especially in fuzzy control. The most
concerned problem attracting a large number of researchers regards the solvabil-
ity criterions or at least conditions sufficient for the solvability of the systems.
The applications of the topic are various including in the dynamic fuzzy system
[14], solving nonlinear optimization problems and covering problem [13,15], and
many others. It is worth mentioning that the topic is still a point of the interest
in the recent research [5,10,12].

Recently, investigations of the systems of fuzzy relational equations allowing
the appearance of undefined values in the involved fuzzy sets were initiated
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[4,7]. Partial fuzzy logic which is considered as a generalization of the three-
valued logic, and the related partial fuzzy set theory has been established [1–
3,11]. Several well-known algebras were already generalized in partial fuzzy set
theory such as the Bochvar algebra, the Sobociński algebra, the Kleene algebra,
or Nelson algebra [2]. Lets us note that it seems there is no absolutely accepted
general agreement on what types of undefined values are the particular algebras
mostly appropriate for but they turned out to be useful in various areas and
applications [9].

Recently, further algebras for partial fuzzy logics motivated by dealing with
missing values were designed [6,18]. In [4], the initial investigation on the solv-
ability of the systems of partial fuzzy relational equations was provided. The
study was restricted on the equations with fully defined (non-partial) conse-
quents. In [7], the problem was extended by considering the partially defined
consequents, however, only the Dragonfly algebra [18] was considered and only
one of the systems of equations was investigated. The article [7] provided readers
with the particular shape of the solution however, under the assumption of the
solvability. However, the solvability was not ensured, no criterion was provided.
This article aims at paying this debt and focuses on the determination of the
sufficient conditions for the solvability of both standard systems of partial fuzzy
relational equations. Various kinds of algebras dealing with undefined values are
considered, in particular the Bochvar, Sobociński, Kleene, McCarthy, Bochvar
external, Nelson, and �Lukasiewicz algebras.

2 Preliminaries

2.1 Various Kinds of Algebras of Undefined Values

In this subsection, we briefly recall the definitions of several algebras of undefined
values we apply in this work. Let us consider a complete residuated lattice L =
〈[0, 1],∧,∨,⊗,→ 0, 1〉 as the structure for the whole article and thus, all the
used operations will be stemming from it. Let � denotes the undefined values
regardless its particular semantic sub-type of the undefinedness [9]. Then the
operations dealing with undefined values are defined on the support L� = [0, 1]∪
{�}, for more details we refer to [2]. Note that the operations on L� applying to
a, b ∈ [0, 1] are identical with the operations from the lattice L. The following
brief explanation of the role of � in particular algebras is based on Tables 1, 2
and 3.

The value � in the Bochvar (abbr. B when denoting the operations) algebra
works as an annihilator and so, no matter which values a ∈ L� is combined
with it, the result is always �. In the Sobociński (abbr. S) algebra, � acts like
a neutral element for the conjunction and the disjunction as well. It means
that the conjunctive/disjunctive combination of any value a ∈ L� with � results
in a. In the Kleene algebra (abbr. K), the operations combining � and 0 or
1 comply the ordering 0 ≤ � ≤ 1, otherwise they coincide with the Bochvar
algebra operations when � is combined with a /∈ {0, 1}. The �Lukasiewicz algebra
(abbr. L) and the Nelson (abbr. N) algebra are identical with the Kleene algebra
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regarding their conjunctions and disjunctions however, the difference lies in the
implication operations. In particular, in the �Lukasiewicz case �→L � = 1 holds,
and in the Nelson case the equalities �→N 0 = 1 and �→N � = 1 hold, while
in both cases, the Kleene implication results into � again. The McCarthy (abbr.
Mc) algebra interestingly combines the Kleene and the Bochvar behavior with
the distinction between the cases whether � appears in the first argument or in
the second argument of the operation.

Let us recall two useful external ones [9]: ↓ is given by ↓α = 0 if α = � and
↓α = α otherwise; and ↑ is given by ↑α = 1 if α = � and ↑α = α otherwise.
The external operations play a significant role in the so-called Bochvar external
algebra (abbr. Be) as it applies operation ↓ to � and lowers it to 0 in any
combinations with a ∈ L�.

Table 1. Conjunctive operations of distinct algebras (α, β ∈ (0, 1]).

Bochvar Bochvar external Sobociński Kleene McCarthy Nelson �Lukasiewicz

α � � 0 α � � � �

� β � 0 β � � � �

� � � 0 � � � � �

� 0 � 0 0 0 � 0 0

0 � � 0 0 0 0 0 0

Table 2. Disjunctive operations of distinct algebras (α, β ∈ [0, 1)).

Bochvar Bochvar external Sobociński Kleene McCarthy Nelson �Lukasiewicz

α � � α α � � � �

� β � β β � � � �

� � � 0 � � � � �

� 1 � 1 1 1 � 1 1

1 � � 1 1 1 1 1 1

Table 3. Implicative operations of distinct algebras (α ∈ (0, 1], β ∈ (0, 1)).

Bochvar Bochvar external Sobociński Kleene McCarthy Nelson �Lukasiewicz

α � � ¬α ¬α � � � �

� β � 1 β � � � �

� � � 1 � � � 1 1

� 1 � 1 1 1 � 1 1

0 � � 1 1 1 1 1 1

� 0 � 1 0 � � 1 �
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2.2 Systems of Fuzzy Relational Equations

Let us denote the set of all fuzzy sets on a universe U by F(U). Then two
standard systems of fuzzy relational equations are provided in the forms:

Ai ◦ R = Bi, i = 1, 2, . . . ,m (1)
Ai � R = Bi, i = 1, 2, . . . ,m (2)

where Ai ∈ F(X), Bi ∈ F(Y ), i = 1, . . . ,m for some universes X,Y . The direct
product ◦ and the Bandler-Kohout subproduct (BK-subproduct) � in systems (1)
and (2) are expanded as follows:

(Ai ◦ R)(y) =
∨

x∈X

(Ai(x) ⊗ R(x, y)) , (Ai � R)(y) =
∧

x∈X

(Ai(x) → R(x, y)) .

In [8], the authors defined so-called boundary condition and shown, that it
is a sufficient condition for the solvability of the direct product systems (1).
In [16], using the so-called skeleton matrix, it was shown that it serves as the
sufficient condition also for the solvability of (2) and in [19], an alternative proof
not requiring the skeleton matrix was presented.

Definition 1. Let Ai ∈ F(X) for i ∈ {1, . . . , m} be normal. We say, that Ai

meet the boundary condition if for each i there exists an xi ∈ X such that
Ai(xi) = 1 and Aj(xi) = 0 for any j �= i.

Theorem 1 [8,16]. Let Ai fulfill the boundary condition. Then systems (1)–(2)
are solvable and the following models are solutions of the systems, respectively:

R̂(x, y) =
m∧

i=1

(Ai(x) → Bi(y)), Ř(x, y) =
m∨

i=1

(Ai(x) ⊗ Bi(y)).

3 Sufficient Conditions Under Partiality

As we have recalled above, the standard systems of fuzzy relational equations
are solvable if the antecedents fulfil the boundary condition [8]. Of course, the
question whether the solvability of partial fuzzy relational equations can be
ensured by the same or similar condition appears seems natural. As we will
demonstrate the answer is often positive. Moreover, we investigate some specific
cases of solvable systems even if the boundary condition is not preserved.

Let F�(U) stands for the set of all partially defined fuzzy sets (partial fuzzy
sets) on a universe U , i.e., let

F�(U) = {A | A : U → L�}.

The following denotations will be used in the article assuming that the right-
hand side expressions hold for all u ∈ U :

A = ∅ if A(u) = 0,
A = ∅� if A(u) = �,

A = 1 if A(u) = 1.
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Moreover, let us introduce the following denotations for particular parts of
the universe U with respect to a given partial fuzzy set A ∈ F�(U):

Def(A) = {u | A(u) �= �}, A0 = {u ∈ U | Ai(u) = 0},

A� = {u ∈ U | Ai(u) = �}, AP = {u ∈ U | Ai(u) /∈ {0, �}}.

3.1 Bochvar Algebra and McCarthy Algebra

Let us first consider the use of the Bochvar operations in the systems:

Ai ◦B R = Bi, i = 1, . . . ,m, (3)
Ai �B R = Bi i = 1, . . . , m. (4)

We recall that in the Bochvar algebra the � behaves like an annihilator i.e.,
when it combines with any other values the result is always �. Thus, when there
is an x ∈ X such that Ai(x) = � the inferred output Bi is a fuzzy set to which all
the elements have an undefined membership degree, i.e., Bi = ∅�. It immediately
leads to the following theorems with necessary conditions demonstrating that the
solvability of both systems falls into trivial cases as long as the partial fuzzy sets
appear on the inputs.

Theorem 2. The necessary condition for the solvability of system (3) is that
Bj = ∅� for all such indexes j ∈ {1, . . . , m} for which the corresponding
antecedents Aj ∈ F�(X) � F(X).

Sketch of the proof: As there exists x ∈ X such that Ai(x) = �, one can check
that the following holds for any R ∈ F�(X × Y ):

(Ai ◦B R)(y) = �∨B

∨
B

x�∈Ai�

(Ai(x)⊗B R(x, y)) = �

which leads to that Bi has to be equal to ∅�. �

Corollary 1. If Bi = ∅� for all i ∈ {1, . . . , m} then system (3) is solvable.

Sketch of the proof: Based on a simple demonstration that R�
B ∈ F�(X × Y )

given by R�
B(x, y) = � is a solution. �

Theorem 3. The necessary condition for the solvability of system (4) is that
Bj = ∅� for all such indexes j ∈ {1, . . . , m} for which the corresponding
antecedents Aj ∈ F�(X) � F(X).

Sketch of the proof: The proof is similar to the proof of Theorem2. �

Corollary 2. If Bi = ∅� for all i ∈ {1, . . . , m} then system (4) is solvable.
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Sketch of the proof: Based on a simple demonstration that R�
B ∈ F�(X × Y )

given by R�
B(x, y) = � is a solution. �

Theorems 2 and 3 are direct consequences of the “annihilating effect” of � in
the Bochvar algebra. Whenever the input is undefined, the consequents have to
be even fully undefined.

Now, we focus on the systems applying the McCarthy algebra:

Ai ◦Mc R = Bi, i = 1, . . . , m, (5)
Ai �Mc R = Bi, i = 1, . . . ,m. (6)

As the McCarthy operations provide the same result as the Bochvar opera-
tions whenever � appears in their first argument, we naturally come to results
about solvability of (5)–(6) that are the analogous to the results about solvability
of (3)–(4).

Theorem 4. The necessary condition for the solvability of system (5) is that
Bj = ∅� for all such indexes j ∈ {1, . . . , m} for which the corresponding
antecedents Aj ∈ F�(X) � F(X).

Sketch of the proof: Analogous to Theorem 2. �

Theorem 5. The necessary condition for the solvability of system (6) is that
Bj = ∅� for all such indexes j ∈ {1, . . . , m} for which the corresponding
antecedents Aj ∈ F�(X) � F(X).

Sketch of the proof: Analogous to Theorem 3. �

Although the necessary conditions formulated in Theorems 4 and 5 are identi-
cal for McCarthy and Bochvar algebra, the sufficient condition for the McCarthy
algebra has to also take into account the differences in the operations of these
two otherwise very similar algebras.

Corollary 3. If Bi = ∅� and Ai �= ∅ for all i ∈ {1, . . . , m} then system (5) is
solvable.

Sketch of the proof: As in the case of Corollary 1 the proof is based on a simple
demonstration that R�

Mc ∈ F�(X × Y ) given by R�
Mc(x, y) = � is a solution

however, the case of the empty input that would lead to the empty output has
to be eliminated from the consideration. �

Corollary 4. If Bi = ∅� and Ai �= ∅ for all i ∈ {1, . . . , m} then system (6) is
solvable.

Sketch of the proof: As in the case of Corollary 2 the proof is based on a simple
demonstration that R�

Mc ∈ F�(X × Y ) given by R�
Mc(x, y) = � is a solution

however, the case of the empty input that would lead to the output constantly
equal to 1, has to be eliminated from the consideration. �
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3.2 Bochvar External Algebra and Sobociński Algebra

In this section, we present the investigation of the solvability of systems of partial
fuzzy relational equations in the case of the Bochvar external algebra and in the
case of Sobociński algebra. Let us start with the Bochvar external operations
employed in the systems:

Ai ◦Be R = Bi, i = 1 . . . ,m, (7)
Ai �Be R = Bi, i = 1 . . . ,m. (8)

Theorem 6. Let Ai meet the boundary condition. Then

(Ai ◦Be R̂Be)(y) = Bi(y), for y ∈ Def(Bi),

where

R̂Be(x, y) =
m∧

Be
i=1

(Ai(x)→Be Bi(y)) .

Sketch of the proof: Based on the definition of the Bochvar external operations,
Ai(x)→Be Bi(y) �= �, no matter the choice of x, y, and hence:

(
Ai ◦Be R̂Be

)
(y) ≤

∨
Be

x∈X

(Ai(x)⊗Be ((Ai(x))→Be Bi(y))) .

We may split the right-hand side expression running over X into two expres-
sions, one running over Ai0 ∪ Ai�, the other one running over AiP and show,
that each of them is smaller or equal to Bi:

∨
Be

x∈Ai0∪Ai�

(Ai(x)⊗Be (Ai(x)→Be Bi(y))) = 0 ≤ Bi(y)

∨
Be

x∈AiP

(Ai(x)⊗Be (Ai(x)→Be Bi(y))) ≤ Bi(y)

which implies (Ai ◦Be R̂Be)(y) ≤ Bi(y).
Now, we prove the opposite inequality. Based on the assumption of the bound-

ary condition, let us pick xi such that A′
i(xi) = 1 and Aj(xi) = 0, j �= i. Then

we may check

(Ai ◦Be R̂Be)(y) ≥ Ai(xi)⊗Be R̂Be(xi, y) = Bi(y)

which completes the sketch of the proof. �

If we assume that the output fuzzy sets Bi are fully defined we obtain the
following corollary.

Corollary 5. Let Ai meet the boundary condition and let Bi ∈ F(Y ). Then
system (7) is solvable and R̂Be is its solution.
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The following theorem and corollary provides us with similar results for the
BK-subproduct system of partial fuzzy relational equations (8).

Theorem 7. Let Ai meet the boundary condition. Then

(Ai �Be ŘBe)(y) = Bi(y), for y ∈ Def(Bi)

where

ŘBe(x, y) =
m∨
Be

i=1

(Ai(x)⊗Be Bi(y)) .

Sketch of the proof: Due to the external operations, Ai(x)⊗Be Bi(y) �= � holds
independently on the choice of x and y. Jointly with the property c→Be a ≤
c→Be b that holds for a ≤ b it leads to the inequality

(
Ai �Be ŘBe

)
(y) ≥

∧
Be

x∈X

(Ai(x)→Be (Ai(x)⊗Be Bi(y))) .

For y ∈ Def(Bi) we get the following inequalities
∧

Be
x∈Ai0∪Ai�

(Ai(x)→Be (Ai(x)⊗Be Bi(y))) = 1 ≥ Bi(y),

∧
Be

x∈AiP

(Ai(x)→Be (Ai(x)⊗Be Bi(y))) ≥ Bi(y)

that jointly prove that (Ai �Be ŘBe)(y) ≥ Bi(y). In order to prove the opposite
inequality, we again pick up the point xi in order to use the boundary condition.

�

If the consequents Bi in system (8) are fully defined we obtain the following
corollary.

Corollary 6. Let Ai meet the boundary condition and let Bi ∈ F(Y ). Then
system (8) is solvable and ŘBe is its solution.

Now let us focus on the following systems applying the Sobociński operations:

Ai ◦S R = Bi, i = 1 . . . ,m, (9)
Ai �S R = Bi, i = 1 . . . ,m. (10)

Theorem 8. Let Ai meet the boundary condition and let Bi ∈ F(Y ). Then
system (9) is solvable and the following fuzzy relation

R̂S(x, y) =
m∧

S
i=1

(Ai(x)→S Bi(y))

is its solution.
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Sketch of the proof: The proof uses an analogous technique as the proof of The-
orem 6. �

Theorem 9. Let Ai meet the boundary condition and let Bi ∈ F(Y ). Then
system (10) is solvable and the following fuzzy relation

ŘS(x, y) =
m∨
S

i=1

(Ai(x)⊗S Bi(y))

is its solution.

Sketch of the proof: The proof uses an analogous technique as the proof of The-
orem 7. �

Remark 1. Let us mention that the fuzzy relations introduced in the theorems
above as the solutions to the systems of partial fuzzy relational equations are not
the only solutions. They are indeed the most expected solutions as their construc-
tion mimics the shape of the preferable solutions of fully defined fuzzy relational
systems, but, for instance, fuzzy relation

Ř′
S(x, y) =

m∨
S

i=1

(↑ Ai(x)⊗S Bi(y))

has been shown to be a solution of the system (10) under the assumption of its
solvability [4]. And the solvability can ensured by the boundary condition, see
Theorem9.

3.3 Kleene Algebra, �Lukasiewicz Algebra and Nelson Algebra

Let us start with the focus on the systems employing the Kleene operations:

Ai ◦K R = Bi, i = 1 . . . ,m, (11)
Ai �K R = Bi, i = 1 . . . ,m. (12)

Theorem 10. Let for all j ∈ {1, . . . ,m} one of the following conditions holds

(a) Aj is a normal fuzzy set and Bj = 1,
(b) Aj �= ∅ and Bj = ∅�.

Then system (11) is solvable and moreover, the following partial fuzzy relation

R̂K(x, y) =
m∧

K
i=1

(Ai(x)→K Bi(y))

is one of the solutions.
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Sketch of the proof: By proving that R̂K is a solution we prove also the solvabil-
ity of the system. Let us take arbitrary j and assume that condition (a) holds.
Then, for x′ ∈ X such that Aj(x′) = 1 we can prove that Aj(x′)⊗K R̂K(x′, y) = 1
and hence, the following holds

(Aj ◦K R̂K)(y) =
∨

K
x�=x′

(
Aj(x)⊗K R̂K(x, y)

)
∨K 1 = 1.

Now, let us assume that (b) holds for the given j. Then independently on the
choice of x and y, R̂K(x, y) ∈ {�, 1}, and based on the following facts

∨
K

x∈Aj0

(
Aj(x)⊗K R̂K(x, y)

)
= 0,

∨
K

x∈Aj�∪AiP

(
Aj(x)⊗K R̂K(x, y)

)
= �

we may derive (Aj ◦K R̂K)(y) = �.
In both cases (a) and (b), the result of (Aj ◦K R̂K) was equal to the consequent

Bj and the proof was made for arbitrarily chosen index j. �

Theorem 11. Let for all j ∈ {1, . . . , m} one of the following conditions holds

(a) Aj is a normal fuzzy set and Bj = ∅,
(b) Aj �= ∅ and Bj = ∅�.

Then system (12) is solvable and moreover, the following partial fuzzy relation

ŘK(x, y) =
m∨
K

i=1

(Ai(x)⊗K Bi(y))

is one of the solutions.

Sketch of the proof: Let us take an arbitrary j and assume that (a) holds. Then,
for x′ ∈ X such that Aj(x′) = 1 we can prove that Ai(x′)→K ŘK(x, y) = 0 and
hence, the following holds

(Ai �K ŘK)(y) =
∧

K
x∈X�{x′}

(
Ai(x)→K ŘK(x, y)

) ∧K 0 = 0.

Now, let us assume that (b) holds for the given j. Then ŘK(x, y) ∈ {�, 1}
independently on the choice of x and y, and based on the following facts

∧
K

x∈Ai0

(
Ai(x)→K ŘK(x, y)

)
= 1,

∧
K

x∈Ai�∪AiP

(
Ai(x)→K ŘK(x, y)

)
= �

we may derive (Aj �K ŘK)(y) = �.
In both cases (a) and (b), the result of (Aj ◦K R̂K) was equal to the consequent

Bj and the proof was made for arbitrarily chosen index j. �
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Theorem 12. Let for all j ∈ {1, . . . ,m} the following condition holds

(c) Bj = 1.

Then system (12) is solvable and moreover, the following fuzzy relation

Ř′
K(x, y) =

m∨
K

i=1

(↑ Ai(x)⊗K Bi(y))

is one of the solutions.

Sketch of the proof: The proof is based on the following three equalities
∧

K
x∈Ai0

(
Ai(x)→K Ř′

K(x, y)
)

= 1

∧
K

x∈Ai�

(
Ai(x)→K Ř′

K(x, y)
)

= 1

∧
K

x∈AiP

(
Ai(x)→K

m∨
K

i=1

(↑ Ai(x)⊗K Bi(y))

)
≥

∧
K

x∈AiP

(Ai(x)→K Ai(x)) = 1.

�

The use of the �Lukasiewicz operations and the Nelson operations give the
same results and very similar to the use of the Kleene operations. Therefore, we
will study the system jointly for both algebras of operations, in particular, we
will consider

Ai ◦γ R = Bi, i = 1 . . . ,m, (13)
Ai �γ R = Bi, i = 1 . . . ,m. (14)

where γ ∈ {L,N} will stand for the the �Lukasiewicz and Nelson algebra, respec-
tively. Therefore, the following results will hold for both algebras.

Theorem 13. Let for all j ∈ {1, . . . ,m} one of the following conditions holds

(a) Ai is a normal fuzzy set and Bi = 1,
(b) Ai �= ∅ and Bi = ∅�.

Then system (13) is solvable and moreover, the following partial fuzzy relation

R̂γ(x, y) =
m∧

γ
i=1

(Ai(x)→γ Bi(y))

is one of the solutions.

Sketch of the proof: The proof uses an analogous technique as the proof of The-
orem 10. �
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Theorem 14. Let for all j ∈ {1, . . . , m} one of the following conditions holds

(a) Aj is a normal fuzzy set and Bi = ∅,
(b) there exists x ∈ X such that Aj(x) /∈ {0, �} and Bi = ∅�,
(c) Bi = 1.

Then system (14) is solvable and the following partial fuzzy relation

Řγ(x, y) =
m∨

γ
i=1

(Ai(x) ⊗γ Bi(y))

is one of the solutions.

Sketch of the proof: Under the assumption that (a) holds, the proof uses the
same technique as the proof of Theorem 11.

When proving the theorem under the assumption of the preservation of (b),
we stem from the fact that Aj(x) →γ Řγ(x, y) = 1 when Aj(x) = �, and from
the fact that Aj(x) →γ Řγ(x, y) = � when Aj(x) /∈ {0, �}, and hence, we come
to the conclusion that (Aj �γ Řγ)(y) = � for any y ∈ Y .

Let us consider case (c). Using the fact that Aj(x) →γ Řγ(x, y) = 1 in case
of Aj(x) = � and also for Aj(x) �= � we come to the same conclusion, we prove
that (Ai �γ Řγ)(y) = 1 for arbitrary y ∈ Y . �

All the results presented above can be summarized in Table 4.

Table 4. Sufficient solvability conditions for systems of partial fuzzy relational equa-
tions: Ai ◦τ R = Bi, Ai �τ R = Bi where τ ∈ {B, Mc, Be, S, K, L, N}.

Distinct
algebras

Ai ◦τ R = Bi Ai �τ R = Bi

Sufficient conditions Solutions Sufficient conditions Solutions

Bochvar Bi = ∅� R�
τ Bi = ∅� R�

τ

MaCarthy Ai �= ∅, Bi = ∅� R�
τ Ai �= ∅, Bi = ∅� R�

τ

Bochvar
external and
Sobociński

Ai – boundary and
Bi ∈ F(Y )

R̂τ Ai – boundary and
Bi ∈ F(Y )

Řτ

Kleene Ai – normal, Bi = 1 R̂τ Ai – normal, Bi = ∅ Řτ

Ai �= ∅, Bi = ∅� Ai �= ∅, Bi = ∅�

Bi = 1 Ř′
τ

�Lukasiewicz
and Nelson

Ai – normal, Bi = 1 R̂τ Ai – normal, Bi = ∅ Řτ

Ai �= ∅, Bi = ∅� ∃x : Ai(x) /∈ {0, �}
and Bi = ∅�

Bi = 1
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4 Conclusion and Future Work

We have attempted to find, formulate and prove sufficient conditions for the
solvability of systems of partial fuzzy relational equations. Distinct well-known
algebras dealing with undefined values have been considered, namely Bochvar,
Bochvar external, Sobociński, Kleene, Nelson, �Lukasiewicz, and McCarthy alge-
bras. Let us recall that the choice of many algebras to apply to such a study
was not random but to cover various types of undefined values and consequently,
various areas of applications. We have obtained distinct sufficient conditions for
distinct algebras. Some of the conditions seem to be rather flexible, e.g., for the
case of Bochvar external and Sobociński, it was sufficient to consider the bound-
ary condition met by the antecedent fuzzy sets. On the other hand, most cases
showed that the solvability can be guaranteed under very restrictive conditions.
Although apart from the Bochvar case, the conditions are not necessary but only
sufficient, from the construction of the proofs and from the investigation of the
behavior of the particular operations it is clear, that in such algebras, very mild
conditions cannot be determined.

For the future work, we intend to complete the study by adding also necessary
conditions and by considering also the Dragonfly and Lower estimation algebras
that seem to be more promising for obtaining mild solvability conditions simi-
larly to the case of Sobociński or Bochvar external algebra. Furthermore, there
exist problems derived from the solvability modeling more practically oriented
research that are not expected to be so demanding on the conditions such as
the solvability itself. By this, we mean, for instance, modeling the partial inputs
incorporated into the fully defined systems of fuzzy relational equations. Indeed,
this models very natural situations when the knowledge (antecedents and con-
sequents) is fully defined but the input is partly damaged by, e.g., containing
missing values etc.

Finally, we plan to study the compatibility (or the sensitivity) of the used
computational machinery with undefined values with respect to ranging values
that can possibly replace the �. This investigation should show us which algebras
are the most robust ones when we know in advance that � belongs to a certain
range or � is described using natural language such as “low values”, or “big
values”, etc.
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5. Cao, N., Štěpnička, M.: Fuzzy relation equations with fuzzy quantifiers. In:
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Abstract. In this paper, a new approach to compare measures of
entropy in the setting of the intuitionistic fuzzy sets introduced by
Atanassov. A polar representation is introduced to represent such bipo-
lar information and it is used to study the three main intuitionistic fuzzy
sets entropies of the literature. A theoretical comparison and some exper-
imental results highlight the interest of such a representation to gain
knowledge on these entropies.

Keywords: Entropy · Intuitionistic fuzzy set · Bipolar information

1 Introduction

Measuring information is a very crucial task in Artificial intelligence. First of
all, one main challenge is to define what is information, as it is done by Lotfi
Zadeh [15] who considers different approaches to define information: the proba-
bilistic approach, the possibilistic one, and their combination. In the literature,
we can also cite the seminal work by J. Kampé de Fériet who introduced a new
way to consider information and its aggregation [10,11].

In previous work, we have focused on the monotonicity of entropy measures
and highlighted the fact that there exist several forms of monotonicity [4,5]. But
highlighting that two measures share the same monotonicity property is often
not sufficient in an application framework: to choose between two measures, their
differences in behaviour are usually more informative.

In this paper, we do not focus on defining information but we discuss on the
comparison of measures of information in the particular case of Intuitionistic
Fuzzy Sets introduced by Atanassov (AIFS) [2] and related measures of entropy
(simply called hereafter AIFS entropies) that have been introduced to measure
intuitionistic fuzzy set-based information.

In this case, we highlight the fact that trying to interpret such a measure
according to variations of the AIFS could not be clearly understandable. Instead,
we propose to introduce a polar representation of AIFS in order to help the
understanding of the behaviour of AIFS entropies. As a consequence, in a more
general context, we argue that introducing a polar representation for bipolar
c© Springer Nature Switzerland AG 2020
M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1237, pp. 107–116, 2020.
https://doi.org/10.1007/978-3-030-50146-4_9
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information could be a powerful way to improve the understandability of the
behaviour for related measures.

This paper is organized as follows: in Sect. 2, we recall the basis of intuitionis-
tic fuzzy sets and some known measures of entropy in this setting. In Sect. 3, we
propose an approach to compare measures of entropy of intuitionistic fuzzy sets
that is based on a polar representation of intuitionistic membership degrees. In
Sect. 4, some experiments are presented that highlight the analytical conclusions
drawn in the previous section. The last section concludes the paper and presents
some future works.

2 Intuitionistic Fuzzy Sets and Entropies

First of all, in this section, some basic concepts related to intuitionistic fuzzy
sets are presented. Afterwards, existing AIFS entropies are recalled.

2.1 Basic Notions

Let U = {u1, . . . , un} be a universe, an intuitionistic fuzzy set introduced by
Atanassov (AIFS) A of U is defined [2] as:

A = {(u, μA(u), νA(u))|u ∈ U}

with μA : U → [0, 1] and νA : U → [0, 1] such that 0 ≤ μA(u) + νA(u) ≤ 1,
∀u ∈ U . Here, μA(u) and νA(u) represent respectively the membership degree
and the non-membership degree of u in A.

Given an intuitionistic fuzzy set A of U , the intuitionistic index of u to A is
defined for all u ∈ U as: πA(u) = 1− (μA(u)+ νA(u)). This index represents the
margin of hesitancy lying on the membership of u in A or the lack of knowledge
on A. In [6], an AIFS A such that μA(u) = νA(u) = 0, ∀u ∈ U is called completely
intuitionistic.

2.2 Entropies of Intuitionistic Fuzzy Sets

Existing Entropies. In the literature, there exist several definitions of the
entropy of an intuitionistic fuzzy set and several works proposed different ways
to define such entropy, for instance from divergence measures [12]. In this paper,
in order to illustrate the polar representation, we focus on three classical AIFS
entropies.

In [13], the entropy of the AIFS A is defined as:

E1(A) = 1 − 1
2n

n∑

i=1

|μA(ui) − νA(ui)|,

where n is the cardinality of the considered universe.
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Other definitions are introduced in [6] based on extensions of the Hamming
distance and the Euclidean distance to intuitionistic fuzzy sets. For instance, the
following entropy is proposed:

E2(A) =
n∑

i=1

πA(ui) = n −
n∑

i=1

(μA(ui) + νA(ui)).

In [9], another entropy is introduced:

E3(A) =
1
2n

n∑

i=1

(
1 − |μA(ui) − νA(ui)|

)
(1 + πA(ui)).

Definitions of Monotonicity. All AIFS entropies share a property of mono-
tonicity, but authors don’t agree about a unique definition of monotonicity.

Usually, monotonicity is defined according to the definition of a partial
order ≤ on AIFS. Main definitions of monotonicity for entropies that have been
proposed are based on different definition of the partial order In the following,
we show the definitions of the partial order less fuzzy proposed by [6,9,13].

Let E(A) be the entropy of the AIFS A. The following partial orders (M1)
or (M2) can be used:

(M1) E(A) ≤ E(B), if A is less fuzzy than B.
i.e. μA(u) ≤ μB(u) and νA(u) ≥ νB(u) when μB(u) ≤ νB(u), ∀u ∈ U , or

μA(u) ≥ μB(u) and νA(u) ≤ νB(u) when μB(u) ≥ νB(u), ∀u ∈ U .

(M2) E(A) ≤ E(B) if A ≤ B
i.e. μA(u) ≤ μB(u) and νA(u) ≤ νB(u), ∀u ∈ U .

Each definition of the monotonicity produces the definition of a particular
form of E:

– it is easy to show that E1 satisfies (M1);
– E2 has been introduced by [6] to satisfy (M2);
– E3 has been defined by [9] from (M1).

Indeed, these three AIFS entropies are different by definition as they are
based on different definitions of monotonicity. However, if we want to choose the
best entropy to use for a given application, it may not be so clear. A comparative
study as those presented in Fig. 2 do not bring out much information about the
way they are different. In the following section, we introduce a new approach to
better highlight differences in the behaviour of these entropies.

3 Comparing AIFS Entropies

Usually, the study of measures, either entropies or other kinds of measures, is
done by means of a given set of properties. In the previous section, we focused
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on the property of monotonicity showing that several definitions exist and could
be used. Thus, if any measure could be built according to a given definition
of monotonicity, at the end, this could not be very informative to understand
clearly their differences in behaviour.

A first approach focuses on the study of the variations of an entropy according
to the variations of each of its AIFS components μ and ν. However, this can only
highlight the “horizontal” variations (when μ varies) or the “vertical” variations
(when ν varies) and fails to enable a good understandability when both quantities
vary.

In this paper, we introduce a polar representation of AIFS in order to be
able to understand more clearly the dual influence of this bipolar information.
Indeed, we show that the comparison of measures can be made easier with such
a representation. We focus on AIFS, but we believe that such a study can also
be useful for other bipolar information measures.

3.1 Polar Representation of an AIFS

In this part, we introduce a polar representation of an AIFS and we represent
an AIFS as a complex number. In [3], this kind of representation is a way to
show a geometric representation of an AIFS. In a more analytic way, such a
representation could also be used to represent basic operations (intersection,
union,...) on AIFS [1,14], or for instance on the Pythagorean fuzzy sets [7].

Indeed, as each u ∈ U is associated with two values μA(u) and νA(u), the
membership of u to A can thus be represented as a point in a 2-dimensional
space. In this sense, μA(u) and νA(u) represent the Cartesian coordinates of this
point. We can then think of a complex number representation as we did in [5] or,
equivalently, a representation of such a point by means of polar coordinates. In
the following, we show that such a representation makes easier specific studies
of these measures.

The AIFS A is defined for u ∈ U as μA(u) and νA(u), that can be represented
as the complex number zA(u) = μA(u) + i νA(u) (see Fig. 1). Thus, for this u,
an AIFS is a point under (or on) the straight line y = 1 − x. When it belongs to
the line y = 1 − x, it corresponds to the special case of a fuzzy set.

Another special case corresponds to the straight line y = x that corre-
sponds to AIFS such that μA(u) = νA(u): AIFS above this line are such that
μA(u) ≤ νA(u) and those under this line are such that μA(u) ≥ νA(u).

Hereafter, using classical notation from complex numbers, given zA(u), we
note θA(u) = arg(zA(u)) and rA(u) = |zA(u)| =

√
μA(u)2 + νA(u)2 (see Fig. 1).

The values rA(u) and θA(u) provide the polar representation of the AIFS
(u, μA(u), νA(u)) for all u ∈ U . Following classical complex number theory, we
have μA(u) = rA(u) cos θA(u) and νA(u) = rA(u) sin θA(u).

To alleviate the notations, in the following, when there is no ambiguity, rA(u)
and θA(u) will be noted r and θ respectively.
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Fig. 1. Geometrical representation of an intuitionistic fuzzy set.

Using trigonometric identities, we have:

μA(u) + νA(u) = r(cos θ + sin θ)

= r
√

2 (
√

2
2

cos θ +
√

2
2

sin θ)

= r
√

2 sin(θ +
π

4
)

The intuitionistic index can thus be rewritten as πA(u) = 1−r
√

2 sin(θ+ π
4 ).

Moreover, let d be the distance from (μA(u), νA(u)) to the straight line y = x
and δ be the projection according to the U axis of (μA(u), νA(u)) on y = x (ie.
δ = |μA(u) − νA(u)|).

It is easy to see that d = r| sin(π
4 − θ)| and δ = d

sin π
4
. Thus, we have

δ =
√

2 r| sin(π
4 − θ)|.

In the following, for the sake of simplicity, when there is no ambiguity, μA(ui),
νA(ui), rA(ui) and θA(ui) will be respectively noted μi, νi, ri and θi.

3.2 Rewriting AIFS Entropies

With the notations introduced in the previous paragraph, entropy E1 can be
rewritten as:

E1(A) = 1 −
√

2
2n

n∑

i=1

ri|sin(
π

4
− θi)|.

With this representation of the AIFS, it is easy to see that:

– if θi is given, E1 decreases when ri increases (ie. when the AIFS gets closer
to y = 1 − x, and thus, when it tends to be a classical fuzzy set): the nearer
an AIFS is from the straight line y = 1 − x, the lower its entropy.

– if ri is given, E1 increases when θi tends to π
4 (ie. when the knowledge on the

non-membership decreases): the closer to y = x it is, the higher its entropy.
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A similar study can be done with E2. In our setting, it can be rewritten as:

E2(A) = n −
√

2
n∑

i=1

ri sin(θi +
π

4
).

With this representation of the AIFS, we can see that:

– if θi is given, then E2 decreases when ri increases: the closer to (0, 0) (ie. the
more “completely intuitionistic”) the AIFS is, the lower its entropy.

– if ri is given, E2 decreases when θi increases: the farther an AIFS is from
y = x, the higher its entropy.

A similar study can be done with E3 that can be rewritten as:

E3(A) =
1
2n

n∑

i=1

(
1 − ri

√
2| sin(

π

4
− θi)|

)(
2 − ri

√
2 sin(

π

4
+ θi

)
).

It is interesting to highlight here two elements of comparison: on one hand
a behavioural difference between E1 (resp. E3) and E2: if they vary similarly
according to ri, they vary in an opposite way according to θi; on the other hand,
a similar behaviour between E1 and E3.

To illustrate these similarities and differences, a set of experiments have been
conducted and results are provided in Sect. 4.

4 Experimental Study

In this section, we present some results related to experiments conducted to
compare AIFS entropies.

4.1 Correlations Between AIFS Entropies

The first experiment has been conducted to see if some correlations could be
highlighted between each of the three presented AIFS entropies.

First of all, an AIFS A is randomly generated. It is composed of n points,
n also randomly generated and selected from 1 to nmax = 20. Afterwards, the
AIFS entropy of A is valued for each of the three AIFS entropies presented in
Sect. 2: E1, E2 and E3. Then, a set of nAIFS = 5000 such random AIFS is built.

A correlogram to highlight possible correlations between the values of E1(A),
E2(A) and E3(A) is thus plot and presented in Fig. 2.

In this figure, each of these 9 spots (i, j) should be read as follows. The spot
line i and column j corresponds to:

– if i = j: the distribution of the values of Ei(A) for all A;
– if i �= j: the distribution of (Ej(A), Ei(A)) for each random AIFS A.
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Fig. 2. Correlations between E1(A), E2(A) and E3(A) for 5000 random AIFS.

This process has been conducted several times, with different values for nmax

and for nAIFS , with similar results.
It is clear that there is no correlation between the entropies. It is noticeable

that E1 and E2 could yield to very different values for the same AIFS A. For
instance, if E1(A) equals 1, the value of E2(A) could be either close to 0 or
equals to 1 too.

As a consequence, it is clear that these entropies are highly different but no
conclusion can be drawn about the elements that bring out this difference.
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Fig. 3. Variations related to θ when r = 0.01 (left) or r = 0.5 (right) (E1 in solid line
(red), E2 in dashed line (blue), E3 in dash-dot line (green)). (Color figure online)

4.2 Variations of AIFS Entropies

To better highlight behaviour differences between the presented AIFS entropies,
we introduce the polar representation to study the variations of the values of the
entropy according to r or to θ.

Variations Related to θ. In Fig. 3, the variations of the entropies related to θ
for an AIFS A composed of a single element are shown. The polar representation
is used to study these variations. The value of r is set to either 0.01 (left) to
highlight the variations when r is low, or 0.5 (right) to highlight variations when
r is high (this value corresponds to the highest possible value to have a complete
range of variations for θ).

It is easy to show in this figure an illustration of the conclusions drawn in
Sect. 3:

– E1 and E3 varies in the same way;
– E1 (resp. E3) and E2 varies in an opposite way;
– all of these AIFS entropies reach an optimum for θ = π

4 . It is a maximum for
E1 and E3 and a minimum for E2.

– the optimum is always 1 for E1 for any r, but it depends on r for E2 and E3.
– for all entropies, the value when θ = 0 (resp. θ = π

2 ) depends on r.

Variations Related to r. In Fig. 4, the variations of the entropies related to
r for an AIFS A composed of a single element are shown. Here again, the polar
representation is used to study these variations.

According to the polar representations of the AIFS entropies, it is easy to
see that E1 and E2 vary linearly with r, and in a quadratic form for E3.

We provided here the variations when θ = 0 (ie. the AIFS is on the horizontal
axis), θ = π

8 (ie. the AIFS is under y = x), θ = π
4 (ie. the AIFS is on y = x)

and when θ = π
2 (ie. the AIFS is on the vertical axis). We don’t provide results

when the AIFS is below y = x as it is similar to the results when the AIFS is
under with a symmetry related to y = x (as it can be seen with the variations
when θ = π

2 which are similar to the ones when θ = 0).
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Fig. 4. Variations related to r when θ varies (E1 in solid line (red), E2 in dashed line
(blue), E3 in dash-dot line (green)). (Color figure online)

For each experiment, r varies from 0 to r = (
√

2 cos(π
4 − θ))−1 when θ �= π

2 .
It is easy to highlight from these results some interesting behaviour of the

AIFS entropies when r varies:

– they all varies in the same way but not with the same amplitude;
– all of these AIFS entropies reach an optimum when r = 0 (ie. the AIFS is

completely intuitionistic;
– E1 takes the optimum value for any r when θ = π

4 .

5 Conclusion

In this paper, we introduce a new approach to compare measures of entropy in the
setting of intuitionistic fuzzy sets. We introduce the use of a polar representation
to study the three main AIFS entropies of the literature.

This approach is very promising as it enables us to highlight the main dif-
ferences in behaviour that can exist between measures. Beyond this study on
the AIFS, such a polar representation could thus be an interesting way to study
bipolar information-based measures.

In future work, our aim is to develop this approach and apply it to other AIFS
entropies, for instance [8], and other bipolar representations of information.
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Abstract. Decision making processes are often based on (pairwise) pref-
erence relations. An important property of preference relations is tran-
sitivity. Many types of transitivity have been proposed in the litera-
ture, such as max–min and max–max transitivity, restricted max–min
and max–max transitivity, additive and multiplicative transitivity, or
�Lukasiewicz transitivity. This paper focuses on weak transitivity. Weak
transitivity has been defined for additive preference relations. We extend
this definition to multiplicative preference relations and further intro-
duce a generalized version called generalized weak transitivity. We show
that for reciprocal additive and multiplicative preference relations weak
transitivity is equivalent to generalized weak transitivity, and we also
illustrate generalized weak transitivity for preference relations that are
neither additive nor multiplicative. Finally, we show how a total order
(ranking of the options) can be constructed for any generalized weak
transitive preference relation.

Keywords: Preference relations · Weak transitivity · Decision making

1 Introduction

Decision making processes are often based on preference relations [2,6,7,9,14,
17,18]. Given a set of n options, a (pairwise) preference relation is specified by
an n × n preference matrix

P =

⎛
⎜⎝

p11 · · · p1n
...

. . .
...

pn1 · · · pnn

⎞
⎟⎠ (1)

where each matrix element pij ≥ 0 quantifies the degree of preference of option i
over option j, where i, j = 1, . . . , n. We distinguish additive (or fuzzy) preference
[21] and multiplicative preference [16]. An important property of preference rela-
tions is transitivity [8,11]. Given three options i, j, and k, transitivity specifies
the relation between the preference of i over j, j over k, and i over k. Many types
of transitivity have been defined for preference relations, such as max–min and
max–max transitivity [4,22], restricted max–min and max–max transitivity [18],
additive and multiplicative transitivity [18], or �Lukasiewicz transitivity [5,13].
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This paper focuses on weak transitivity [19]. We extend the definition of
weak transitivity for additive preference relations to multiplicative preference
relations (Definition 2). We derive an equivalent formulation of weak transitivity
for reciprocal additive and multiplicative preference relations and use this to
define a more general version of weak transitivity called generalized weak tran-
sitivity (Definition 3). We show that for reciprocal additive and multiplicative
preference relations weak transitivity is equivalent to generalized weak transitiv-
ity (Theorems 1 and 2), and we also illustrate generalized weak transitivity for
preference relations that are neither of additive nor multiplicative type. Finally,
we show how a total order (ranking of the options) can be constructed for any
generalized weak transitive preference relation (Theorem 3).

This paper is structured as follows: Sect. 2 briefly reviews additive prefer-
ence relations and weak transitivity. Section 3 moves on to multiplicative pref-
erence relations and introduces a definition of weak transitivity for multiplica-
tive preference relations. Section 4 develops a joint formula of weak transitiv-
ity for reciprocal additive and multiplicative preference relations and uses this
to define generalized weak transitivity. Section 5 shows how a total order of
elements can be constructed from any generalized weakly transitive preference
relation. Finally, Sect. 6 summarizes our conclusions and outlines some directions
for future research.

2 Weakly Transitive Additive Preference

Consider a preference matrix P . We call P an additive preference matrix if and
only if the following two conditions hold:

1. pij ∈ [0, 1] for all i, j = 1, . . . , n, and
2. pij = 0.5 if and only if the options i and j are equivalent.

This implies that all elements on the main diagonal of P are

pii = 0.5 (2)

for all i = 1, . . . , n. We call 0.5 the neutral additive preference. An additive
preference matrix P is called reciprocal if and only if

pij + pji = 1 (3)

for all i, j = 1, . . . , n. This always holds for i = j because of (2), so it is sufficient
to check this condition only for i �= j. Several different types of transitivity have
been defined for preference relations. In this paper we consider weak transitivity
as defined by Tanino [19]:

Definition 1 (weakly transitive additive preference). An n × n additive
preference matrix P is called weakly transitive if and only if

pij ≥ 0.5 ∧ pjk ≥ 0.5 ⇒ pik ≥ 0.5 (4)

for all i, j, k = 1, . . . , n,
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This can be interpreted as follows: if i is preferred over j and j is preferred
over k, then i is preferred over k, where in all cases preference is not less than
neutral. For reciprocal additive preference relations it is sufficient for weak tran-
sitivity to check (4) only for i �= j, j �= k, and i �= k, because all other cases are
trivial.

Consider for example the preference matrix

PA =

⎛
⎝

0.5 0.7 0.9
0.3 0.5 0.8
0.1 0.2 0.5

⎞
⎠ (5)

All elements of PA are in the unit interval and all elements on the main diagonal
are equal to the neutral additive preference 0.5, so PA is an additive preference
matrix. For the sums of preferences and reverse preferences we obtain

pA12 + pA21 = 0.7 + 0.3 = 1 (6)
pA13 + pA31 = 0.9 + 0.1 = 1 (7)
pA23 + pA32 = 0.8 + 0.2 = 1 (8)

so PA is reciprocal. For the preferences not smaller than neutral we obtain

pA12 ≥ 0.5, pA23 ≥ 0.5, pA13 ≥ 0.5 (9)

so (4) holds and PA is weakly transitive. To summarize, PA is a weakly transitive
reciprocal additive preference matrix.

Next consider the preference matrix

PB =

⎛
⎝

0.5 0.2 0.7
0.8 0.5 0.4
0.3 0.6 0.5

⎞
⎠ (10)

All elements of PB are in the unit interval and all elements on the main diagonal
are 0.5, so PB is an additive preference matrix. The sums of preferences and
reverse preferences are

pB12 + pB21 = 0.2 + 0.8 = 1 (11)
pB13 + pB31 = 0.7 + 0.3 = 1 (12)
pB23 + pB32 = 0.4 + 0.6 = 1 (13)

so PB is reciprocal. However, for the preferences not smaller than neutral we
obtain

pB13 ≥ 0.5, pB32 ≥ 0.5, pB12 �≥ 0.5 (14)

so (4) does not hold and PB is not weakly transitive. Hence, PB is a not weakly
transitive reciprocal additive preference matrix.
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3 Weakly Transitive Multiplicative Preference

Consider again a preference matrix P . We call P a multiplicative preference
matrix if pij = 1 if and only if the options i and j are equivalent. This implies
that all elements on the main diagonal of P are

pii = 1 (15)

for all i = 1, . . . , n. We call 1 the neutral multiplicative preference. A multiplica-
tive preference matrix P is called reciprocal if and only if

pij · pji = 1 (16)

for all i, j = 1, . . . , n. This always holds for i = j because of (15), so it is
sufficient to check this condition only for i �= j. We modify the condition (4)
for weak transitivity of additive preference relations by replacing the neutral
additive preference 0.5 by the neutral multiplicative preference 1, and obtain

Definition 2 (weakly transitive multiplicative preference). An n×n mul-
tiplicative preference matrix P is called weakly transitive if and only if

pij ≥ 1 ∧ pjk ≥ 1 ⇒ pik ≥ 1 (17)

for all i, j, k = 1, . . . , n.

For reciprocal multiplicative preference relations it is sufficient for weak tran-
sitivity to check (17) only for i �= j, j �= k, and i �= k, because (just as for additive
preference relations) all other cases are trivial.

Now consider the preference matrix

PC =

⎛
⎝

1 2 4
1/2 1 3
1/4 1/3 1

⎞
⎠ (18)

All elements on the main diagonal of PC are one, so PC is a multiplicative
preference matrix. For the products of preferences and reverse preferences we
obtain

pC12 · pC21 = 2 · 1/2 = 1 (19)
pC13 · pC31 = 4 · 1/4 = 1 (20)
pC23 · pC32 = 3 · 1/3 = 1 (21)

so PC is reciprocal. For the preferences not smaller than neutral (≥1 for multi-
plicative preferences) we obtain

pC12 ≥ 1, pC23 ≥ 1, pC13 ≥ 1 (22)

so (17) holds and PC is weakly transitive. To summarize, PC is a weakly tran-
sitive reciprocal multiplicative preference matrix.
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As another example consider

PD =

⎛
⎝

1 1/3 4
3 1 1/2

1/4 2 1

⎞
⎠ (23)

which has ones on the main diagonal, so PD is a multiplicative preference matrix.
The products of preferences and reverse preferences are

pD12 · pD21 = 1/3 · 3 = 1 (24)
pD13 · pD31 = 4 · 1/4 = 1 (25)
pD23 · pD32 = 1/2 · 2 = 1 (26)

so PD is reciprocal. However, the preferences not smaller than neutral are

pD13 ≥ 1, pD32 ≥ 1, pD12 �≥ 1 (27)

so (17) is violated and PD is not weakly transitive. To summarize, PD is a not
weakly transitive reciprocal multiplicative preference matrix.

4 Generalized Weak Transitivity

Let us revisit additive preference. An additive preference matrix P is reciprocal
if and only if (3)

pij + pji = 1

for all i, j = 1, . . . , n, which implies

pij ≥ 0.5 ⇒ pji = 1 − pij ≤ 0.5,⇒ pij ≥ pji (28)

and
pij ≥ pji ⇒ pij ≥ 1 − pij ⇒ 2pij ≥ 1 ⇒ pij ≥ 0.5 (29)

and so
pij ≥ 0.5 ⇔ pij ≥ pji (30)

For reciprocal additive preference relations we can therefore rewrite the condition
for weak transitivity (4)

pij ≥ 0.5 ∧ pjk ≥ 0.5 ⇒ pik ≥ 0.5

to the equivalent condition

pij ≥ pji ∧ pjk ≥ pkj ⇒ pik ≥ pki (31)

for all i, j, k = 1, . . . , n.
Now let us revisit multiplicative preference in the same way. A multiplicative

preference matrix P is reciprocal if and only if (16)

pij · pji = 1
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for all i, j = 1, . . . , n, which implies

pij ≥ 1 ⇒ pji = 1/pij ≤ 1 ⇒ pij ≥ pji (32)

and
pij ≥ pji ⇒ pij ≥ 1/pij ⇒ p2ij ≥ 1 ⇒ pij ≥ 1 (33)

and so
pij ≥ 1 ⇔ pij ≥ pji (34)

For reciprocal multiplicative preference relations we can therefore rewrite the
condition for weak transitivity (17)

pij ≥ 1 ∧ pjk ≥ 1 ⇒ pik ≥ 1

to the equivalent condition

pij ≥ pji ∧ pjk ≥ pkj ⇒ pik ≥ pki (35)

for all i, j, k = 1, . . . , n, which is equivalent to the condition (31) that we obtained
for additive preference. So, for reciprocal additive preference and for reciprocal
multiplicative preference we obtain the same condition (31) = (35) for weak
transitivity. This leads us to

Definition 3 (generalized weakly transitive preference). An n × n pref-
erence matrix P is called generalized weakly transitive if and only if

pij ≥ pji ∧ pjk ≥ pkj ⇒ pik ≥ pki (36)

for all i, j, k = 1, . . . , n, i �= j, j �= k, i �= k.

Notice that we exclude the cases i = j, j = k, and i = k here, because
these are trivial for reciprocal additive and multiplicative preference relations,
and so we also want to exclude them for arbitrary preference relations. This
means that elements on the main diagonal of P are irrelevant for generalized
weak transitivity.

It is easy to check that PA (5) and PC (18) satisfy generalized weak transi-
tivity, and PB (10) and PD (23) do not. In general, the following two theorems
relate weakly transitive additive and multiplicative preference to generalized
weakly transitive preference.

Theorem 1 (additive generalized weak transitivity). A reciprocal addi-
tive preference matrix is weakly transitive if and only if it is generalized weakly
transitive.

Theorem 2 (multiplicative generalized weak transitivity). A reciprocal
multiplicative preference matrix is weakly transitive if and only if it is generalized
weakly transitive.

Proof. The proof for both Theorems follows immediately from the equivalence
of Eqs. (31), (35), and (36). 	
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So, for reciprocal additive and multiplicative preference matrices weak tran-
sitivity and generalized weak transitivity are equivalent. Therefore, let us now
look at preference matrices which are neither additive nor multiplicative. Con-
sider for example the preference matrix

PE =

⎛
⎝

1 6 9
2 4 8
5 3 7

⎞
⎠ (37)

The elements on the main diagonal of PE are different from 0.5 and 1, so PE

is neither an additive preference matrix nor a multiplicative preference matrix.
However, it may seem reasonable to interpret PE as a preference matrix. Imagine
for example that the rows and columns of this matrix correspond to soccer teams,
and each element pEij corresponds to the number of times that team i has won
over team j. The elements on the main diagonal are chosen arbitrarily and may
be ignored for generalized weak transitivity, as pointed out above. For the off–
diagonal preference pairs we have

pE12 ≥ pE21, p
E
23 ≥ pE32, p

E
13 ≥ pE31 (38)

so (36) holds and therefore PE is generalized weakly transitive.
As another example consider

PF =

⎛
⎝

1 5 8
9 4 2
3 6 7

⎞
⎠ (39)

Again, the main diagonal is different from 0.5 and 1, so this is neither an additive
preference matrix nor a multiplicative preference matrix. For the off–diagonal
preference pairs of PF we obtain

pF13 ≥ pF31, p
F
32 ≥ pF23, p

F
12 �≥ pF21 (40)

so (36) is violated and therefore PF is not generalized weakly transitive.

5 Total Order Induced by Generalized Weak Transitivity

Generalized weak transitivity is an important property of preference relations
because it allows to construct a total order (ranking) of the elements.

Theorem 3 (total order for generalized weak transitivity). If an n × n
preference matrix is generalized weakly transitive, then we can construct a total
order o of the n elements so that o1 ≥ o2 ≥ . . . ≥ on.

Proof. If a preference matrix P is generalized weakly transitive, then from (36)
follows that for each i, j, k = 1, . . . , n with i �= j, j �= k, i �= k. we will have at
least one of the following six cases:
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pij ≥ pji, pjk ≥ pkj , pik ≥ pki ⇒ oi ≥ oj ≥ ok (41)
pik ≥ pki, pkj ≥ pjk pij ≥ pji ⇒ oi ≥ ok ≥ oj (42)
pji ≥ pij , pik ≥ pki, pjk ≥ pkj ⇒ oj ≥ oi ≥ ok (43)
pjk ≥ pkj , pki ≥ pii, pji ≥ pij ⇒ oj ≥ ok ≥ oi (44)
pki ≥ pik, pij ≥ pji, pkj ≥ pjk ⇒ ok ≥ oi ≥ oj (45)
pkj ≥ pjk, pji ≥ pij , pki ≥ pik ⇒ ok ≥ oj ≥ oi (46)

If more than one of these cases is satisfied, then we have ties pij = pji or pjk = pkj
or pik = pki, which implies oi = oj or oj = ok or oi = ok, respectively, so the
order may not be strict. For an arbitrary generalized weakly transitive preference
matrix we can therefore pick arbitrary three elements i, j, k and construct a total
order for these. If we have a total order for p ≥ 3 elements i1, i2, . . . , ip, then for
any additional element k from (36) follows that we will have one at least of the
following three cases

pki1 ≥ pi1k, pi1i2 ≥ pi2i1 , pki2 ≥ pi2k ⇒ ok ≥ oi1 ≥ oi2 (47)
pip−1ip ≥ pipip−1 , pipk ≥ pkip , pip−1k ≥ pkip−1 ⇒ oip−1 ≥ oip ≥ ok (48)

or we can find an index j ∈ {1, 2, . . . , p − 1} for which

pijk ≥ pkij , pkij+1 ≥ pij+1k, pijij+1 ≥ pij+1ij ⇒ oij ≥ ok ≥ oij+1 (49)

In the first case, we can insert element k before element i1 and obtain the new
total order k, i1, i2, . . . , ip. In the second case, we can insert element k after
element ip and obtain the new total order i1, i2, . . . , ip, k. And in the third case
we can insert element k between elements ij and ij+1 and obtain the new total
order i1 . . . , ij , k, ij+1 . . . , ip. Again, several of these three cases may be satisfied
if we have ties pki1 = pi1k or pkip−1 = pip−1k or pkij = pijk or pkij+1 = pij+1k,
which lead to equal ranks ok = oi1 or ok = oip−1 or ok = oij or ok = oij+1 ,
respectively, so the order may be not strict. Using this scheme we can construct
a total order for any generalized weakly transitive preference matrix. 	


For example, the preference matrix PE (37) is generalized weakly transitive,
so we have the relation (38) for the off–diagonal preference pairs which yields
the total order o1 ≥ o2 ≥ o3. In the semantic context of the application we can
interpret this as a ranking of soccer teams, where team 1 is ranked on top, then
team 2, and finally team 3. Notice again that the resulting total order may be
not strict, so the ranking can contain ties. As another example, the preference
matrix PF (39) is not generalized weakly transitive, so the relation (40) for the
off–diagonal preference pairs does not yield a total order, since o1 ≥ o3 ≥ o2
contradicts o1 �≥ o2. Here, it is not possible to construct a ranking of the soccer
teams.
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6 Conclusions

We have extended the concept of weak transitivity from additive preference rela-
tions to multiplicative preference relations and further in a generalized version to
arbitrary preference relations. We have shown that generalized weak transitivity
is an important property of preference relations because it allows to construct
a strict order of elements (ranking of options) which is very useful in decision
making processes.

Many questions have been left open for future research, such as:

– What are efficient algorithms to test a preference matrix for generalized weak
transitivity and to construct the corresponding total order?

– How does generalized weak transitivity relate to other mathematical proper-
ties of preference relations such as monotonicity or positivity?

– How can weakly transitive preference relations be constructed from utilities
[10] or from rank orders [12]?

– How do these types of transitivity extend to interval valued preferences [1,3,
15,20]?
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Abstract. Determining the relative importance among vast amounts of indi-
vidual pieces of information is a challenge in the military environment. By
aggregating various military intelligence experts’ knowledge, decision support
tools can be created. A next step in the continuing research in this area is to
investigate the use of three prominent ranking methods for aggregating opinions
of military intelligence analysts with respect to the Value of Information
(VoI) problem domain. This paper offers discussion about ongoing VoI research
and demonstrates outcomes from a military-related experiment using Borda
count, Condorcet voting, and Instant-runoff voting (IRV) methods as ranking
aggregation models. These ranking methods are compared to the “ground truth”
as generated by the current fuzzy-based VoI prototype system. The results by
incorporating the ranking models on the experiment’s data demonstrate the
efficacy of these methods in aggregating Subject Matter Expert (SME) opinions
and clearly demonstrate the “wisdom of the crowd” effect. Implications related
to ongoing VoI research are discussed along with future research plans.

Keywords: Value of Information � Decision support � Information
aggregation � Borda count � Condorcet voting � Instant-runoff voting � Rank
aggregation

1 Introduction

The enormous volume of data generated everyday by computer systems and internet
activities around the world cannot be easily processed and prioritized. It is an over-
whelming challenge to analyze all pieces of data. The concept of Big Data Analytics
introduces new challenges with its characteristics of enormous growth in data size,
volume, and velocity as well as variability in data scope, data structure, data format,
and data variety [1]. There are limitations in technological processing resources and
human analytical expertise that do not allow the examination of all data generated
every day. In a time-constraint environment such as the military, prioritizing the data
can help to converge attention on the most important data first.

A “ranking” challenge in everyday human life can be defined as when someone is
trying to rank a set of items based on some criterion with the goal in-mind to order
those items from “best” to “worst” within some context. Essentially, the human
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decision making process subconsciously reasons over multiple pieces of information
and orders them in some way to achieve the “best” possible decision. Accordingly, an
entirely new challenge can be identified when there are multiple individuals with
multiple opinions trying to reason over multiple pieces of information.

Knowledge elicitation and aggregation from multiple individuals can sometimes
provide a better outcome than the answer of any individual. This demonstrates the
“wisdom of the crowd” phenomenon in which the aggregated crowd’s outcome is
closer to correct answer than all or most of the individual answers [2]. This work
considers the matter of aggregating information by first starting with the task of ranking
multiple independent judgments from multiple independent individuals. The emphasis
of this paper is towards military decision making where vast amounts of data gathered
from collective intelligence undertakings need to be prioritized.

Information assessment to judge and analyze the high value information, termed as
Value of Information (VoI) [3], is very critical for military operations. In recent work to
automate the VoI determinations, a Fuzzy Associative Memory (FAM) architecture
was used to develop a decision support system for military intelligence analysts [3].
A fuzzy-based prototype system was constructed to provide VoI ratings for individual
pieces of information considering the characteristics of information content, source
reliability, timeliness, and mission context [3]. Later research was done that included
additional knowledge elicitation efforts with subject matter experts that resulted in a
complex, multi-FAM system [4].

The approach for this research is to explore the use of the ranking and voting
methods of Borda count, Condorcet voting, and Instant-runoff voting (IRV) with
respect to the VoI problem domain. Initially, all methods will be compared to the VoI
determinations produced by the original fuzzy-based VoI system. The results from the
comparisons will illustrate how well these ranking systems match the fuzzy-based
approach. Using these aggregation models can also provide a way to quantitatively
assess the efficacy of the recently developed VoI prototype since there are no other
VoI-producing systems to compare with the fuzzy method.

The remainder of this paper is organized as follows: first, background information
is presented pertaining to aggregation and some of the more popular approaches, the
military value of information challenge, and a brief description of the current VoI
prototype. Following that are sections that describe an experiment using Borda count,
Condorcet voting, and Instant-runoff voting models and then the methodology for
moving forward to accomplish the above aim of this work. Finally, conclusions and
future work are discussed.

2 Background

Information judged on source reliability and content importance can be prioritized in
different levels to be addressed and taken into actionable decisions on a given timeline.
Information about the enemy, the battlefield environment, and the situation allow the
commander and staff to develop a plan, seize and retain the initiative, build and
maintain momentum, and exploit success [5]. Information aggregation and prioritiza-
tion are key components in this process.
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2.1 Aggregation

Based on a phenomenon called the “wisdom of crowd” [2], the aggregated rank of the
crowd’s choices in a voting poll has been generally identified to provide an estimate
very close to the true answer; this is very helpful in many estimation tasks. This
aggregated rank of the crowd’s choices is usually represented in an order from the best
value to the worst value. The “wisdom of the crowd” effect was first demonstrated by
Francis Galton, who showed that averaging estimates from individuals regarding the
weight of an ox produced a close approximation of the actual weight [6]. Consequently,
many researchers believe “Crowdsourcing” [7] is driving the future of businesses by
obtaining opinions on different subjects from a large and rapidly growing group of
Internet users. The “wisdom of the crowd” approach is used in multiple real-world
applications ranging from prediction applications aimed at markets and consumer
preferences to web-based applications such as spam filtering, and others [8].

This research investigates aggregation within the military VoI problem domain by
first considering aggregation related to ranking problems. The topic of aggregation and
its need for, and approaches to, combining rankings from multiple sources is certainly
not a new challenge; in fact, it has been studied for hundreds of years. The earliest
examples of combining rankings relate to the area of “voting” and go back to the 18th
century. The French mathematician and astronomer Jean-Charles de Borda in the 1700s
proposed a voting method wherein voters would rank all candidates rather than
selecting only one [9].

Rank aggregation has long been used in the social choice domain as well as in such
fields as applied psychology, information retrieval, marketing, and others; a classifi-
cation of rank aggregation methods is offered in [10]. Consistent with the overall goal
of this research the focus is currently on Borda Count, Condorcet, and Instant-runoff
ranking approaches. These three ranking models were chosen as representations to
investigate the use of rank ordering techniques within the VoI problem domain.

2.2 Methods of Data Aggregation

Ranking is an example of obtaining assessments from a group of people to achieve one
single decision on a winner. Voting on the top movie, electing the president, passing a
bill, and many more examples are efforts to produce one single decision. In addition to
single winner determination in balloting, voting is used to produce a ranked list. The
three ranking methods compared in this paper are discussed below.

Borda Count
The Borda count model is a simple, statistical heuristic method that is widely used in
voting theory [8]. The basic idea is that each item in an individual ranking is assigned
points based on the position in which it is placed; then, the total points for each item is
computed. The resultant totals for each item are used to sort the items and provide the
aggregate ranking. One of the primary advantages of the Borda count method is that it
is simple to implement and understand. Additionally, Borda count performs well with
respect to rank performance measurements.
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In this approach, for i items to be ranked by p participants, the total for the ith item,
si, can be written as:

si ¼
Xp

j¼1
yij

where yij is the point value given to item i by participant j. The final, aggregated
ranking is then found by ordering the item totals with any ties broken at random.

This traditional model is used in many applications, especially in sports. It is often
used to choose the winners of sports awards such as the Heisman trophy in college
football, selecting the Most Valuable Player in professional baseball, and ranking
sports teams by the Associated Press and United Press International [11]. The Borda
count model is considered as a baseline aggregation method for winner selection in
voting. It is also used for aggregating rankings of data for decision making to produce
the “wisdom of the crowd” phenomena.

The Borda count procedure is explained in [12] with an example for ranking 4 states
in order from high to low by population with 5 participants. The model produces
combined rankings that typically perform well relative to individual rankings.

Condorcet Method
The Condorcet method as an election method selects the winning candidate as the one
who has gained the majority of the votes in an election process against all of the
candidates in a head-to-head election comparison [13]. The Condorcet method requires
making a pairwise comparison between every candidate. When there is single ranking
item that beats every item in an election, it is called Condorcet Winner. Technically, the
Condorcet winner candidate is the one candidate that wins every two-way contest
against every other alternative candidate. The winning candidate should beat every
other candidate in a head to head election which means the winning candidate should
win a runoff election regardless of who it is competing against [14]. The Condorcet
voting technique was first advocated by the 18th-century French mathematician and
philosopher Marie Jean Antoine Nicolas Caritat, the Marquis de Condorcet [15].

A number of Condorcet-Compliant algorithms exist such that if there is a Condorcet
winner, it would be elected; otherwise, they have different behavior. The proper
Condorcet method is chosen based on how appropriate it is for a given context.
A relatively new single-winner Condorcet election method called Schulze Voting or
Beatpath is used in this paper and is described next. The Schulze method is recognized
as a common means of solving a Condorcet’s Paradox, which is a situation wherein the
voters have cyclic preferences such that there is no Condorcet winner.

Condorcet/Schulze Voting (Beatpath)
As one of the Condorcet methods, Schulze Voting (or Schwartz Sequential dropping
(SSD) or Beatpath) is a relatively new single-winner election method proposed by
Markus Schulze in 1997 [16]. The Schulze method is an effective ranking method
which many organizations and some governments are starting to apply. Debian Linux
distribution has incorporated the Schulze algorithm into their constitution which can be
found under the Appendix on the Debian Linux constitution [17].
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While comparable to Borda count as a highly recognizable method for ranking, the
Condorcet methods are more problematic to implement as they require pairwise
comparisons between all candidates. Therefore, the Condorcet cycle of pairwise
comparisons grows as the number of candidates grows.

In this method, after each voter ranks the candidates based on the order of pref-
erences, a head-to-head comparison of all pairs of candidates is conducted to determine
the winner of each pair. If there is one candidate that wins in all its pair comparisons,
the candidate is Condorcet Winner. If there is no winner, the next step is to determine
the pairwise preferences for all pair candidates in a matrix. For each head-to-head
pairwise comparison, the number of voters who preferred candidate A over candidate B
and vice versa is counted and noted. Once this is done, all the strongest paths for each
pairwise comparison are identified; this is the most difficult and computationally
intensive step. Finally, the items are ranked by their strongest path computations,
producing the winner (and second place, third place, and so on). The full details of the
algorithm, along with examples, can be found in [16].

Instant-runoff Voting
Similar to the Condorcet voting method, Instant-runoff voting (IRV) is a preferential
ranking method which is used in single-seat elections; this method is useful when there
are more than two competing candidates. Basically, voters rank the candidates or items
in order of preference rather than showing support for only one candidate. There are
countries that use Instant-runoff voting in their election systems such as selecting
members of the Australian House of Representatives and the house of Australian state
parliaments [18]. The IRV method establishes more fairness in an election when there
are multiple candidates dividing votes from the more popular point of the political
spectrum such that an unopposed candidate from the unpopular base might win simply
by being unopposed.

In this method, once the ballots are counted for each voter’s top choice, the can-
didate with the fewest votes will be eliminated if there is no candidate winning a simple
majority (more than half) of the votes. The votes from the voters who have voted for
the defeated candidate will be allocated to the total of their next preferred choice. This
step will be repeated until the process produces a simple majority for one candidate;
this candidate becomes the winner. At some point throughout this process, the race gets
narrowed down to only two candidates; this is called an “instant runoff” competition
which leads to a comparison of the top two candidates head-to-head. IRV can establish
fairness and save the votes from like-minded voters supporting multiple candidates
when it comes to a vote-splitting situation in an election.

In 2002, Senator John McCain from Arizona in his campaign supported instant-
runoff voting and said that Instant-runoff voting “will lead to good government because
voters will elect leaders who have the support of a majority.” [19]. The Instant-runoff
can avoid the chaos of the US 2000 presidential election and guarantee the elected
candidates to have the broadest amount of support. Based on the “Record of Illinois
92nd General Assembly Bills”, in 2002, Illinois Senator Barack Obama introduced SB
1789 in the Senate that created Instant-runoff voting for Congress in state primaries and
local elections [20].
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2.3 Rank Evaluation Metric

While none of the models discussed above require a known ground truth to produce a
ranking, the existence of a ground truth will be assumed to allow the resultant rankings
to be evaluated. The particular ranking metric will be discussed next.

Kendall’s tau distance is an ordinal association measure between two random
variables. Kendall’s tau coefficient measures the rank correlation of similarities
between two sets of ranks and it was developed in 1938 by Maurice Kendall [21]. This
correlation coefficient based on Kendall’s tau is used to compare the similarity of the
derived rankings with the “ground truth” ranking. Kendall’s tau is a non-parametric
measure that is used to quantify the relationships between columns of ranked data. The
computed value ranges from 1 to −1, inclusive [22]. A value of 1 means the rankings
are identical while a value of −1 means the rankings are in the exact opposite order.
Kendall’s tau is calculated using the formula:

C � Dð Þ
C þ Dð Þ

where C represents the number of concordant pairs in the ranking and D represents the
number of discordant pairs. Concordant pairs are how many larger ranks are below a
specific rank in the list; discordant pairs are how many smaller ranks are below a
specific rank. This Kendall’s tau value is explained in detail in [12].

Basically, Kendall tau distance measures the number of pairwise swaps needed to
bring two orderings into alignment. The Kendall tau distance can be represented in a
chance agreement distribution curve as shown in Fig. 1. Higher Kendall tau values
indicate a greater disagreement between the ground truth and some resultant aggregated
ranking. The lowest possible Tau value is 0, which indicates that the two rankings are
identical. The highest possible Tau value can be calculated as:

Tau ¼ n n � 1ð Þ=2

where n equals the number of items being ranked. When comparing the aggregate
ranking with the ground truth, Kendall tau distance can help to measure how closely
rankings inferred by a ranking model match the latent ground truth. It is a way to
quantify the relationships between columns of ranked data as well as the rankings
provided by the participants.

Fig. 1. Kendall tau chance agreement distribution
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2.4 Value of Information Challenge

Decision making in military environments involves massive cognitive and temporal
resources to examine options and decide on the best alternative. Monitoring and
analyzing real-time data to identify the most important information in the context of the
mission at hand is challenging for intelligence groups. Information assessment to select
and prioritize the high value information is very critical for military operations.

The Value of Information (VoI) metric is used to grade the importance of individual
pieces of information. The process of making a VoI determination for a piece of
information is a multi-step, human-intensive process. Intelligence analysts and col-
lectors must make these decisions based on the characteristics of the information and
also within different operational situations.

U.S. military doctrinal guidance for determining VoI is imprecise at best [5, 23].
The guidance provides two tables for judging the “reliability” and “content” of a piece
of data, with each characteristic broken into six categories. Reliability relates to the
information source, and is ranked from A to F (reliable, usually reliable, fairly reliable,
not usually reliable, unreliable, and cannot judge). Information content is ranked from 1
to 6 (confirmed, probably true, possibly true, doubtfully true, improbable, and cannot
judge).

This U.S. military doctrinal guidance does not clearly provide a method to associate
these categories for information value determination. Moreover, there is no instruction
on how to combine other attributes that may contribute to information value. Two other
potential data characteristics include mission context (the operational tempo and
decision cycle for a specific mission) and timeliness (time since a piece of information
was obtained).

2.5 VoI Prototype Architecture

A prototype system using a Fuzzy Associative Memory (FAM) model has been
developed to offer an effective framework for determining the VoI based on the
information’s content, source reliability, latency, and mission context [24]. For the
prototype system, three inputs are used to make the VoI decision: source reliability,
information content, and timeliness. The overall architecture of the fuzzy system is
shown in Fig. 2. Instead of using one 3-dimensional FAM, two 2-dimensional FAMs
were used; the reasoning behind this decision was presented in detail in [24]. The VoI
metric is defined as the second FAM output and the overall system output. Note that
mission context is handled by using three separate VoI FAMs. The correct VoI FAM is
automatically selected based on the indicated mission context, which ranges from
‘tactical’ (high-tempo) to ‘operational’ (moderate-tempo), to ‘strategic’ (slow-tempo).

Fuzzy rules are used in the FAMs to capture the relationships between the input and
output domains. Knowledge elicitation from military intelligence Subject Matter
Experts (SMEs) was used to build the fuzzy rules [25]. More detailed descriptions of
the FAMs, the fuzzy rules bases, the domain decompositions, and other implementation
aspects of the prototype system can be found in [3] and [24]. The series of surveys and
interviews with SMEs that were used to integrate cognitive requirements, collect
functional requirements, and elicit the fuzzy rules is presented in [25].
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Note that there is no current system against which the results can be compared. As
such, the system has not been tested comprehensively due to the human-centric,
context-based nature of the problem and usage of the system. Approaches to validate
(or partially validate) the system that do not require an extensive, expensive experiment
are desired; this research seeks to assist in that effort (as explained further later).

3 Ranking Aggregation Experiment

This section describes an investigative experiment using the Borda count, Condorcet,
and Instant-runoff voting methods to aggregate rankings from multiple participants.
The experiment was devised not only to gather data for comparing the ranking methods
to the VoI prototype system, but also to aid in understanding what data might be
needed to relate the ranking models to future continued study in the VoI domain.

The VoI system details provided above in the Background section mention the use
of SMEs and a knowledge acquisition process to provide a basis for constructing fuzzy
rules. It should be clear that the involvement of multiple experts provides the potential
for disagreement in deciding how to combine information characteristics, and multiple
pieces of information, to arrive at a “value of information” determination. Another goal
of this experiment was to provide first-hand familiarity regarding the efficacy of the
Borda count, Condorcet, and IRV rank aggregation models with respect to their
potential contribution to the VoI research.

3.1 Experiment Details and Implementation

During the summer of 2019, a team of researchers from the U.S. Army Research
Laboratory (part of the U.S. Army Combat Capabilities Development Command)
conducted an experiment with 34 military participants as SMEs. Each participant
provided rankings for 10 different card decks, where each deck consisted of 5 or 7 cards
(5 decks had 5 cards; 5 decks had 7 cards). Each card represented a piece of military
information; each participant ranked each card (within each deck) based upon the
attributes of source reliability, information content, and latency. An example card is
depicted in Fig. 3.

Fig. 2. VoI prototype system architecture
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The experiment was conducted via a computerized online interface. The resultant
“Ranked Data Set” reflects the SME’s determination of how each piece of information
ranks with respect to information value (VoI). The highest ranking card represents the
information with the greatest perceived “value” (highest VoI determination), while the
lowest ranking card represents the piece of information with the lowest perceived value
(lowest VoI determination). As mentioned before, each SME was charged with ranking
10 card decks in this manner. At the completion of the experiment, the Borda count,
Condorcet voting, and IRV methods were used to aggregate the rankings of the 34
SMEs within each deck.

3.2 Borda Count, Condorcet, and IRV Implementation for Experiment

For the Borda count implementation, the calculations were performed in Microsoft
Excel to convert the alphabetic reviewer designations to numeric rankings lists. The
spreadsheet data were then imported into RStudio, an integrated development envi-
ronment for the R programming language, where the aggregate Borda ranking was
derived and compared to the ground truth, producing the Kendall tau distance.

For the Condorcet method, the algorithm presented in [16] was implemented in the
“R” programing language and executed in RStudio. This function performs the rank-
ing, starting with the full ballot and finding a pure Condorcet winner if one exists;
otherwise, the strongest path computations are done and a winner is computed based on
the Schulze algorithm as described earlier.

In the Instant-runoff voting method, a Python module was used which determines
the winner card of this experiment using Instant-runoff voting rules. The algorithm
executed separately for each of the 10 card deck sessions. The algorithm initially
counts all the first-place choices. If there is a card in deck that has a true majority,
meaning over half of the counts, the winner card with the first place is recorded. But
after the initial count, if none of the cards have over 50% of participants’ choices, then
the card that is in last place with least number of votes is eliminated. The participants
who had selected that defeated card now have their second-place cards counted. The
total counts are recorded again, and this process repeats until a true majority winner
card is found. Once the winner is determined, the first preferred or winner card is
recorded and removed from card deck to re-run this procedure for producing a ranking
of cards for second place and-so-forth.

3.3 Methodology and Results

The Borda count, Condorcet voting, and IRV methods descried above were applied to
the data sets of the 10 card decks independently; again, each deck had 34 rankings – one

Fig. 3. Value of Information card attributes
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from each SME. For each aggregated ranking, the tau distance was computed by
counting the number of bubble sort swaps required to make it match the ground truth.
The ground truth was derived by computing the VoI for each card using the prototype
Fuzzy system, and then ranking the cards based on this value (highest to lowest).

The result for one of the 10 card sets is visually represented in Fig. 4. The per-
formance of the rankings inferred by all three methods as compared to the individual
participant rankings is shown; note that all three ranking methods had identical per-
formance in this case. The value of the tau distance for each participant is approximated
by the person symbols. The x-axis represents the range of tau distance values that are
possible. Tau distance is the number of swaps needed to make some given ranking
equal to the ground truth ranking; thus, it measures the “performance” of an SME’s
ranking relative to the “correct” answer [21].

The light gray circle on the left side indicates the best possible ranking which is
equal to the ground truth (tau distance of 0). The dark circle to the right indicates the
worst possible case in which the rank order is the total reverse of the ground truth (for 5
cards that value is 10). The dotted curve depicts the chance tau distance distribution
which would correspond to rankings being generated at random. The tau distance for
the rankings produced by all three methods is indicated by the light-dotted circle with
tau distance of 1. In this representation, the small tau distance indicates that the models
produce a combined ranking that performs well relative to the individual performances,
and that the aggregated rankings are very close to the ground truth.

A summary of the experimental results is shown in Table 1. The ground truth
ranking for each of the 10 decks is given along with the aggregated ranking produced
by each of the ranking methods. The “B” rows represent the result from the Borda
count method, while “C” represents Condorcet and “I” represents IRV. The “Tau Dist”
column gives the Kendall Tau Distance for the associated aggregated ranking com-
pared to the worst case number of swaps that would be possible. The Tau distance is
used to measure the ranking accuracy relative to the ground truth.

Fig. 4. Example ranking and Borda count result
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The somewhat random card numbers in each deck have been mapped to an ordered
set of integers reflecting the amount of cards used in the specific deck. This was done
so that it is easier to understand how the aggregated rankings match the ground truth.
For example, for Deck 7, the actual order of the cards for the ground truth is <2, 13, 18,
29, 66>; 2 is mapped to 1, 13 is mapped to 2, etc. So that <1, 2, 3, 4, 5> represents the
ground truth order of the cards. The aggregated ranking produced by all 3 ranking
models gave the actual order of <2, 18, 13, 29, 66>, which maps to <1, 3, 2, 4, 5>. It is
easy to observe that the aggregated order produced by the ranking methods differs in
the 2nd and 3rd cards, such that 1 swap (tau distance of 1) out of a possible 10 (worst
case ranking) is required to achieve the ground truth order.

The Kendall tau distance values demonstrate that the aggregated rankings from the
SMEs are relatively close to the ground truth. Note that the three methods are almost
identical in their resultant aggregated rankings. The only differences are where the IRV
method is 1 swap worse for Deck 8 and 1 swap better for Deck 2. Given that the Borda
count model is much easier to implement, this model is deemed the “best”.

Table 1. Experimental data ranking results
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There are two cases where the Tau distance is 6 or 7 (out of a possible 21); the
remainder of the results show much greater accuracy. These results, from Decks 2 and
6, have caused the ARL researchers to go back and look at their data and the fuzzy
rules used to produce the ground truth ranking.

The experimental results demonstrate the efficacy of the ranking models in
aggregating SME opinions, and highlight the “wisdom of the crowd” effect. As a
corollary, it can also be said that the suggested rankings produced by the fuzzy VoI
system (used as the ground truth) are reasonable given the aggregated SME rankings.
As final highlight to this experiment, note that the ground truth and the aggregated
rankings always agree on the most important piece of information (the first position in
all rankings match) and they almost always agree on the least important piece of
information.

3.4 Significance of the Experiment

While the Borda count, Condorcet, and IRV methods did not match the ground truth
exactly in all instances, the methodology has shown promise to be a viable aggregation
method in this particular domain. As previously mentioned, there is no current system
with which to compare the VoI system results. Only a subjective validation of the
efficacy of the systems by the SMEs has been possible. By providing a different
approach for arriving at the basis for the rules and architectures of the systems, these
methods are useful in providing the missing quantitative support of the systems.

As mentioned earlier, the fuzzy rules used in the VoI prototype systems were
constructed based on knowledge elicitation processes with military intelligence SMEs.
Notably, the experts did not always agree in their opinions and answers. The differ-
ences occurred in providing an applicability rating for a given SR/IC combination as
well as in determining the VoI output for a given Timeliness/Applicability pattern.
Further, it was not unusual for the SMEs to have varying interpretations of the lin-
guistic terms (e.g. “fairly reliable”, etc.). Based on the experimental results, it is hoped
that one or more of the ranking methods can perhaps aid in better aggregating the
expert’s opinions in the knowledge elicitation process to create more accurate fuzzy
rules. The observed differences between the fuzzy rankings and the aggregated SME
rankings have already motivated a reexamination of the original fuzzy rule construction
to ensure the systems are accurately representing the “ground truth”.

The results herein display only the aggregated SME rankings and do not examine
the spread of the 34 individual rankings (as shown in the Fig. 4 example). It is possible
that extenuating circumstances could have influenced the aggregations in the instances
where they did not closely match the ground truth. Factors such as the experts not fully
understanding the nuances in a particular card deck (notably decks 2 and 6), or missing
an understanding of the mission context in which the information would be used, or
others could have come into play. Examination of variables that may have influenced
the rankings is underway at the U.S. Army Research Laboratory.

Finally, while the current VoI systems assign a specific value determination to a
piece or pieces of information, there may be times when military analysts simply need
to rank information according to its perceived importance without the need for a
numerical value. The three ranking models could certainly be useful in this regard.
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4 Conclusion

In a military environment, the process of analyzing the relative value of vast amounts
of varying information is currently carried out by human experts. These experts, known
as military intelligence analysts, have the significant challenge of evaluating and pri-
oritizing available information, in a time-constrained environment, to enable com-
manders and their staffs to make critical mission decisions. Within the domain of
military intelligence analyst decision support, this work considers the matter of
aggregating information. One goal of this research was to investigate the use of the
Borda count, Condorcet voting, and Instant-runoff voting (IRV) aggregation models
with respect to the Value of Information (VoI) problem. Another goal was to provide a
way to quantitatively assess the efficacy of the recently developed VoI prototypes.

This paper presented discussion about ongoing VoI research and a preliminary
experiment using the Borda count, Condorcet voting, and IRV models. The results
demonstrated the usefulness of these ranking models in aggregating SME opinions and
clearly highlighted the “wisdom of the crowd” effect. Additionally, this work offered
some quantitative validation of the current VoI prototypes by providing results for
comparison to those from the fuzzy-based systems. These efforts will help to optimize
the current fuzzy rules, motivate additional knowledge elicitation efforts, and influence
the development of other VoI decision support architectures altogether.

Future research will include the comparison of one or more of the models used here
to the well-known Bayesian Thurstonian ranking model. As the U.S. Army continues
to move toward improving its ability to create situational awareness, the ability to
successfully aggregate information will be a critical factor.
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Abstract. Nowadays, the rise of the interconnected computer networks
and the increase of processed data have led to producing distributed sys-
tems. These systems usually separate multiple tasks into other simpler
with the goal of maintaining efficiency. This paradigm has been observed
for a long time in different animal organisations as insect colonies and fish
shoals. For this reason, distributed systems that emulate the biological
rules that govern their collective behaviour have been developed. Multi-
Agent Systems (MAS) have shown their ability to address this issue.
This paper proposes Ant Colony based Architecture with Subjective Logic
(ACA-SL). It is a bio-inspired model based on ant colony structures.
It makes use of MAS to distribute tasks and Subjective Logic (SL) to
produce Decision Support Systems (DSS) according to the combination
of individual opinions. A system implementation based on the proposed
architecture has been generated to illustrate the viability of the pro-
posal. The proposed architecture is intended to be the starting point for
developing systems that solve a variety of problems.

Keywords: Multi-Agent system · Subjective Logic · Bio-inspired
system · Distributed organisation · Decision Support System

1 Introduction

In recent times, the heyday of the Internet and the advance of technology have
produced tons of data which are processed by several systems [1]. These systems
apply the strategy of separating data into simpler and smaller pieces in order to
process them efficiently. Thus, the information extraction task and the generation
of knowledge are simplified. This issue has led to the resurface of distributed
systems.

Multi-Agent Systems (MAS ) [2] are a specific case of distributed systems.
They use agents that are software abstractions able to perform tasks and to sat-
isfy the associated goals interacting with the environment around. These agents
c© Springer Nature Switzerland AG 2020
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present desirable features as: autonomy [3], flexible behaviour to react to changes
in the environment in a timely fashion [4], and dynamic interaction between them
[5].

Nevertheless, these systems have some shortcomings. The organisation to
solve specific situations is one of the most typical challenges [6]. In this regard,
bio-inspired mechanisms are one of the most used self-organisation solutions [7].
Thus, they can adapt some social animal behaviour to solve specific situations.
Typical instances of these mechanisms are insect colonies [8], fish shoals [9] and
mammals packs [10], where the solution of a complex problem is achieved by the
individuals solving simpler issues.

This paper proposes Ant Colony based Architecture with Subjective Logic
(ACA-SL), a novel architecture based on bio-inspired MAS and Subjective Logic
(SL) [11] to develop distributed Decision Support Systems(DSS ) [12]. These
latter are able to produce evaluation according to a specific topic or domain
according to a previously obtained knowledge. ACA-SL has been developed as
part of the SABERMED project, which is funded by the Spanish Ministry of
Economy and Competitiveness. ACA-SL emulates the behaviour of ant colonies
to execute distributed jobs. The way in which jobs are defined exhibits a high
degree of flexibility for multiple application scenarios. For this purpose, there
will be several agents assuming the same role as workers in ant colonies. Jobs
are defined as the combination of very diverse tasks which may hold some depen-
dencies among them. This fact provides agents with the capability to work on
the same job at the same time. The architecture combines the opinions generated
by following the rules, and methodologies defined in the SL.

A system based on ACA-SL has been implemented to show the viability
of the proposal. It has been used to analyse websites and generate an opinion
concerning the degree of trust applicable to them. The created opinions are
the result of processing related information extracted from the websites under
analysis (e.g. domain and Whois).

The remainder of the paper is structured as follows. Section 2 situates the pro-
posal in the domain and make comparisons with previous approaches. Section 3
details ACA-SL and its components. Section 4 presents the experiments. Finally,
Sect. 5 concludes and proposes future guidelines.

2 Background

This section introduces the foundations of ACA-SL. It overviews the concept
of MAS (see Sect. 2.1), both by defining it and also by providing some details
on the current state of art. Secondly, insect colonies and their internal organi-
sational procedures are introduced (see Sect. 2.2). Finally, SL foundations and
most common applications are presented (see Sect. 2.3).

2.1 Multi-Agent Systems

Agents can be defined as intelligent autonomous entities able to act, partially
perceive the environment they live in, interact with it and communicate with
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other agents [13]. They take part in an organised activity in order to satisfy
the particular goals they were designed to, both by executing a set of skills and
by interacting with other agents. These goals are evaluated by a mental state.
The mental state acts as the brain of the agents, containing steps and rules.
Therefore, agents show pro-activeness (they exhibit goal-directed behaviour by
taking initiative), reactivity (they perceive their environment and respond in a
timely way to changes that may occur in the environment) and social awareness
(they cooperate with other agents in order to accomplish their tasks) [14].

MAS [15] are a loosely coupled set of agents situated in a common environ-
ment that interact with each other to solve complex problems that are beyond
the individual capacities or knowledge of each agent [16]. These systems are
found in a wide spectrum of heterogeneous applications such as simulations [17],
optimisation problems [18] and computers games [19]. MAS have been also used
in the literature with the purpose of distributing very demanding tasks [20]. They
are able to use agents that perform simple tasks in order to generate a more com-
plex and demanding one. Fields of application where these kind of approaches
are considered are road traffic [21] and communication networks [22].

There are multiple frameworks available to implement software based on
MAS. Many of them respond to the restless evolution and unremitting devel-
opment occurring both in the industry and in the scientific community. JADE
(Java Agent Development framework) [23], FIPA-OS (Foundation for Intelli-
gent Physical Agents Operating System) [24] and SPADE (Smart Python Agent
Development Environment) [25] exemplify some of the existing options at dis-
posal of the user.

MAS can be designed by using Agent-Based Modelling (ABM) [26] and
Agent-Oriented Software Engineering (AOSE) techniques [27]. These ones are
considered by solid methodologies to simulate relationships and communica-
tion channels between agents. Instances of well-known agent methodologies are
INGENIAS [28] and Tropos [29].

ACA-SL models a MAS that identifies agents as workers belonging to an
ant colony. Notice that at this point, these workers are only modelled through a
finite state machine, instead of defining explicitly goals and mental states. The
implementation achieved to validate the proposal has been developed using the
SPADE framework.

2.2 Insect Colonies

Many species of social insects exhibit the division of labour among their mem-
bers. This behaviour can be observed in bumblebee colonies [30], termites
colonies [31] and wasp colonies [32]. The specific task allocation can be deter-
mined by multiple features. The age of the individual [33], the body size [34] or
the position held in the nest [35] are some instances of these features. Several
works concentrate on these behaviours in order to propose new task allocation
strategies in artificial systems [36].

Regarding the task allocation method used by individuals, it can be modelled
by using response thresholds [37]. These thresholds refer to individual tendency
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to react to task-associated stimuli. For the specific case of ants, it is considered
that every task can exert certain level of influence over them. Thus, if the stim-
ulus that a task exerts on an ant is higher than its response threshold, the ant
engages to this task. This leads to considering the existence of castes in which
individuals may have different response thresholds. In the case of artificial sys-
tems, the use of these response thresholds to solve labour division have been
used to enhance response times and load balancing issues [38].

ACA-SL uses a model based on two different types of ants according to a
specific response threshold. The architecture provides a specific definition to the
measure of the stimuli and the response threshold level.

2.3 Subjective Logic

SL [11] is a type of logic that allows playing with subjective beliefs. These ones
are modelled as opinions. The opinions represent the probabilities of a proposi-
tion or an event with a certain degree of uncertainty. SL defines a set of opera-
tions that can be applied to the opinions. Typical instances of these operations
are: addition, subtraction, cumulative fusion and transitivity.

SL extends the traditional belief function model [39]. This logic is also dif-
ferent from Fuzzy logic [40]. While Fuzzy logic uses vague propositions but pro-
vides accurate measurements, SL works with clear propositions and uncertain
measures.

Given a binomial variable (true or false) representing a proposition x, and
a source of opinions A, an opinion provided by A about x, wA

x , is represented
by a quadruple of values as follows:

wA
x = {bx, dx, ux, ax}, (1)

where bx is the mass belief (belief supporting that x is true), dx is the disbelief
mass (belief supporting that x is false), ux is the uncertainty mass and ax is
the atomicity rate.

Regarding the features of SL, they have made this logic suitable for apply-
ing it to multiple projects covering different knowledge areas. Thus, in general,
it can be used to build frameworks for DSS [41]. More specifically, SL can be
used in Trust Network Analysis to calculate the trust between different parts of
the network where trust measures can be expressed as beliefs [42]. Analogously,
in mobile networks, SL can be used to calculate the reputation of the commu-
nication nodes [43]. SL can be also used in applications independent from the
technology (for instance, legal reasoning [44]).

The proposed architecture makes use of SL to handle the beliefs that can be
generated as a result of the different tasks processed. These beliefs are modelled
as opinions using only a specific subset of operations.

3 Proposed Architecture

This section details ACA-SL. The aim of this architecture is to produce a
design to develop DSS able to make evaluations. It combines bio-inspired MAS
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Fig. 1. Components defined by ACA-SL.

Fig. 2. Life cycle of a worker as a finite state machine.

approaches with SL to achieve this issue. Overall jobs are decomposed into mul-
tiple tasks which are assigned to the different agents. Agents take full responsi-
bility on a successful accomplishment of the assigned tasks. Notice that ACA-SL
defines the baselines on how the jobs should be divided into atomic tasks. Indi-
vidual results arising from their internal processes are then combined to obtain
a solution for the global problems.

Figure 1 shows an overview of the proposed architecture. A system based on
this architecture takes responsibility on executing the jobs. These ones corre-
spond to needs that the external systems may require to satisfy.

Next sections address the internal procedures followed by agents, detailing
jobs and their inner structure. They also describe how SL is implemented in the
proposal.

3.1 Multi-Agent System Based on Ant Colonies

Analogous to nature, the proposed architecture presents an environment where
workers live in. The behaviour of workers is represented by a finite state machine
with three states (see Fig. 2).

Delving into the behaviour of workers, the registering of a new job represents
a change happening in the environment. These changes (i.e. new jobs) exert
stimuli that are perceived by workers, which can be influenced by it. To prevent
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Fig. 3. Instance of a job graph and its tasks.

that some task remains in inconsistent states, only idle workers (those not run-
ning any task) are influenced by jobs. Workers make a decision on whether to
take responsibility on the new jobs created based on this job influence.

Every worker presents an internal threshold which is compared to the job
influence value itself to determine whether the latter presents a higher value and
consequently, a switch to the new job is required. Based on this threshold, the
bio-inspired approach defines two castes of workers [37]: major and minor. Those
workers simulating major ants will show a higher threshold than the one assigned
to the workers representing minor ants. This feature allows reserving workers to
carry out specific jobs. For example, if the influence of a job is calculated based
on its priority, the major workers only perform high-priority jobs. This feature
plays a crucial role in systems where resources availability, response times and
load balancing are critical and very demanding [45].

3.2 The Job Workflow

A job gets represented by directed graphs (see, for instance, Fig. 3). Its com-
ponent tasks can be interpreted as the multiple possible road-maps linking the
start node (i.e. starting point) with the finish (i.e. finishing point). The workers
assigned to a job that are not running any task are placed at the start node.
These workers are continuously checking the status of all tasks connected to
the start node via directed edges. If all connected tasks present are being run
by other worker, then workers wait at the start node. Those tasks connected
to the start node that are not being executed, present themselves as potential
candidates to be selected by workers.

Workers are oriented towards the task selection issue. Thus, there are mea-
sures which provide cost values to the different edges between nodes.

A job is considered to be successfully completed when the worker handling
the last task represented by the finish node completes its duties. Notice that
jobs are independent from each other.

Regarding the intermediate nodes of this graph, they represent the different
tasks in which the job is divided, giving shape to multiple possible paths linking
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Fig. 4. a.- State of the path from (start) to (A) before task (1) is completed. b.- State
of the path from (start) to (A) after task (1) is completed.

the start node with the finish node. It may be the case when there is not any
path from the start node to the finish node (e.g. the intermediate nodes have
raised errors). This situation translates into a job finishing with failures during
execution.

Notice that the next tasks available in the path are the next related to the
last completed one (i.e. a completed task is no longer visible as available tasks
for workers). Figure 4 illustrates this point with an example. Let cs−1 be the
cost associated to the edge connecting nodes start and (1). Let c1−A be the cost
between (1) and (A). Figure 4(a) shows one path and one task connected to the
start node along with the cost involved in the different edges. When the task
(1) is completed, it is hidden and the start node gets virtually connected to the
node (A) by establishing a new edge with cost value cs−A equal to the c1−A.

Regarding the tasks, they are considered as atomic. Every worker assigned
to a job is responsible for carrying out just one of the component tasks at a
time. Hence, a one-to-one relationship between workers and tasks is established.
Tasks assigned to workers contain specific prerequisites to be fulfilled. These
preconditions are addressed to ensure correct alignment of workers.

According to these preconditions, tasks are organised into two main groups.
The first group considers the tasks that require the fulfillment of all the prereq-
uisites to be executed (labelled as strict), while the second group includes tasks
executed every time a requirement is satisfied (labelled as soft).

In Fig. 3, the strict tasks are represented by squares, while the soft tasks are
pictured by circles. In this example, task represented by node (JD) cannot be
performed until task (JA) and (JB) are completed. On the other hand, task (JH)
is executed when (JE) or (JF ) are completed. On this way, the requirements can
be only satisfied with the result of an individual previous task.

Tasks follow a specific workflow to manage their own internal state. Five
states are defined in this regard: waiting, running, completed, error and blocked.
Figure 5 shows the dynamic flow and possible relationships between states.

When a new job is created, all component tasks are in waiting state. Once
a worker is in a position to start with a task (i.e. fulfillment of its particular
requirements), the task changes its internal waiting state to running. A successful
completion of the task results in a completed state for it. However, if errors were
found during the process, the task changes to error state. Notice that any other
worker can take responsibility for a task in the error state to seek its completion
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Fig. 5. Flow diagram of the states of a job.

(a) Cumulative fusion (b) Transitivity

Fig. 6. Graphical representation of the SL operator.

(even the same original worker). However, tasks can also enter into a blocked
state when, after being in error and proceed with retrial, completed state is not
reached. All tasks in blocked state are removed from the pool of available tasks
for workers, which results in not considering neither their nodes nor the edges
connected to them in the graph.

3.3 Combining Opinions with Subjective Logic

The proposed architecture lies in its ability to deal with beliefs. In pursue of that
feature, SL is considered as a methodology to manage these beliefs. The belief
can be the results of the execution of a task.

Considering the fact that ACA-SL currently finds itself at a very early stage,
just binomial opinions are taken into account in the remaining of this section.
Likewise, a reduced subset formed by two operators is contemplated in the pro-
posed architecture (see Fig. 6) : cumulative fusion operator (wA�B

x = wA
x ⊕ wB

x )
and transitivity operator (wA;B

x = wA
x ⊗ wB

x ).
The use of SL enables to manage opinions given by multiples sources. These

opinions can be combined. Furthermore, the sources can have different robustness
levels based on the confidence in each of them. The confidence in a source can
be assigned by manual setup, using rules defined by human experts, or can be
dynamically defined by training the system (e.g. using a previously evaluated
dataset).
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Fig. 7. Job graph produced for the experiment.

Table 1. System configurations for the proposed experiments.

#major #minor major th. minor th.

Configuration 1 0 1 – 0

Configuration 2 5 20 5 0

Configuration 3 5 20 10 0

Configuration 4 20 50 5 0

4 Experiments

A DSS based on ACA-SL has been implemented to evaluate the validity of the
proposed architecture. The system purpose is to identify malicious web domains.
Thus, given a domain, the system is capable of generating an opinion about it.
This opinion is based on specific methods gathered from the literature of the
domain. These methods are to query well-known blacklists [46], to check both
the number of dots in the domain [47] and the registration date of the domain
[48].

A job that includes the specific methods has been created to evaluate a
domain. Figure 7 shows the graph of the implemented job. This job is divided
into multiple tasks. (JBLG) and (JBLY ) tasks query the blacklists of Google
and Yandex respectively. (JWHOIS) obtains the Whois, while (JRD) extracts
the registration date from the Whois data, and (JNDOT ) obtains the number
of dots in domain. The objective of these tasks is to retrieve information about
the domain. This information is then used by the following tasks to generate
opinions. (JBLG−w) and (JBLY −w) give an opinion based on blacklists responses,
(JBL−w) combines preceding opinions, (JRD−w) generates an opinion about the
registration date, (JNDOT−w) use the count of dots in the domain to give the
opinion and, finally, (JD−w) combine all of these opinions to provide a final
resulting opinion about the domain.
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Fig. 8. Time consumed by the jobs.

Fig. 9. Number of tasks carried out by each worker.

Four configurations of workers have been tested. Table 1 shows the param-
eters for each experiment. #major and #minor indicate the number of ants
belonging to each category, while major th. and minor th. reflect their respective
thresholds.

The system has also been customised according to specific settings. First,
when the influence of multiple jobs exceeds the threshold of a worker, the worker
selects the job with the greatest influence. Secondly, Eq. 2 is used to calculate the
influence exerted by a job (Ij). This influence is proportional to the age of the
job (Tj(s)) (i.e. the current time subtracting the initial time the job is registered
in the system) and inversely proportional to the square of the number of workers
(W 2

j ) assigned to it. To avoid a potential division by zero, one is added to the
denominator:

Ij =
Tj(s)

W 2
j + 1

(2)

In this configuration, the two blacklist methods are preferred over the rest
ones. To indicate this preference, the cost of the edges used to form the paths
passing through these tasks is set up with lower values. Finally, given a domain,
not appearing in a blacklist is not sufficient to consider it as trustworthy.
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Fig. 10. Number of times each worker change its assigned job.

To test the application, 1000 domains have been processed. For each domain,
a job is registered in the system. Figure 8 shows the number of jobs and their
time consumed until completion according to the selected configurations. Con-
figuration 1 is not depicted because the time consumed is one order of magnitude
higher. Times spent in Configurations 2 and 3 are similar (their jobs take between
1 and 22 seconds to finish). Configuration 4 obtains shorter times. This result
illustrates that the use of several agents had a positive effect in the performance
of the system.

Figures 9 and 10 depict the number of tasks and the number of job changes
each worker performs in both castes respectively. In all configurations, the major
workers perform less tasks than minor workers. Also, the Configuration 3 shows
a larger gap between castes than the rest of the configurations. This fact is a
consequence of the configured thresholds.

This experiment shows how a good selection of the configuration parameters
improves the performance. The time consumed by the jobs varies drastically
depending on the number of workers available. This fact indicates that the job
division and the use of multi-workers are suitable. Finally, the use of different
thresholds has provoked that the number of tasks performed by a major worker
decreased. If needed, the resources associated to these workers can be reserved
by adjusting these thresholds.

5 Conclusions

This paper introduces ACA-SL, a bio-inspired architecture based on ant colony
structures. It combines MAS and SL to correctly manage high distributed DSS.

The architecture makes use of agents taking the role of ant workers. They
deal with registered jobs which are external requests placed to the colony. To
facilitate the parallel processing, these jobs are defined as a set of tasks which
are individually assigned to the different workers. These tasks make up a graph
defining the job. Finally, SL is used to handle the opinions generated during the
process.
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A basic application has been implemented to validate the proposal. Experi-
ments have been carried out to illustrate that the proposed architecture is truly
feasible. They have shown the importance of defining appropriate settings (i.e.
the edge costs, the job influence equation or the job graph shape).

ACA-SL is in an early stage of development. However, foundations followed
during its design are addressed to establish a good basis for future implementa-
tions. Some instances exemplifying these aspects can be found in the capability
to setup internal parameters to improve offered performance and the division
of jobs in tasks to guarantee correct parallel processing and resources manage-
ment. Some future works will arise from this contribution. In order to facilitate
future implementations based on the proposed architecture, a complete frame-
work development is being considered. This framework will follow the ABM
methodology and the Model Driven Architecture (MDA) guidelines. There is a
plan to extend some of the features already defined, and to increase the number
of castes with the purpose of improving the flexibility of the system. New SL
operators will be also considered in future projects.
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Abstract. In this study, we compare the behavior of classic Hurwicz
criterion with three more recent criteria τ -anchor, R∗ and R∗. This eval-
uation is realized on linear optimization problems with uncertain costs
coefficients taking into account the risk aversion of the decision maker.
The uncertainty is represented by a scenario set.

1 Introduction

Decision or optimization problems often arise in an uncertain context. Depending
on available information, several approaches have been proposed to model this
uncertainty (e.g. possibility theory [17], evidence theory [18], etc.). In this paper,
we focus on the case of low knowledge on possible states, namely decision under
ignorance. In this case the decision-maker is able to give the set of possible
values of optimization problem parameters but she/he is not able to differentiate
them. In other words, all possible parameter values are all possible (this is a
particular case in possibility theory when all scenarios have possibility equal to
1). Hurwicz-Arrow proposed a decision under ignorance theory [3] that specifies
the properties that a criterion must satisfy. One of the most popular criteria in
this context is the Wald criterion (maxmin criterion). Recently, a considerable
amount of literature on robust optimization has studied this maxmin criterion
[1,4], and [10]. This criterion is very pessimistic since it focuses on the worst
case scenario. Moreover, it is necessary to meet the underlying condition that
all scenarios are almost possible (ignorance context). Otherwise, other criteria
are more relevant, see [10]. Other criteria have been proposed to take decision-
making under ignorance behavior into account. The oldest one is the Hurwciz
criterion which consists in modeling optimism by making a linear aggregation
with the best and the worst evaluation. This criterion has been used to model
the behavior of a decision-maker in different contexts (see [5,14,15,19] ...etc)
and has been spread to include imprecise probability theory [12]. This criterion
has been criticized in a sequential decision context since it does not satisfy the
desired properties in this decision context (for more details see [6,11]).

In order to satisfy the properties of the sequential decision pointed out in
[11] and that of the decision under ignorance, two criteria have been recently
c© Springer Nature Switzerland AG 2020
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proposed namely R∗ and R∗ [8]. On the other hand, Giang [9] proposes a new
criterion namely τ -anchor which satisfies the decision under ignorance property
[3] and with Anscombe-Aumann’s [2] ideas of reversibility and monotonicity that
had been used to characterize subjective probability.

The aim of this paper is to discuss those four criteria in the context of a linear
programming problem. We tackle the problem of optimization under ignorance
by taking the optimism of the decision-maker into account as a bi-objective
optimization problem where the first criterion is the pessimistic point of view
and second one is the optimistic point of view. So, we study some properties such
as the Pareto optimality of the optimal solution to those criteria. The paper is
organized as follows. Firstly, we set out the problem being studied, then we
recall the decision under ignorance and we present the four criteria that will be
studied. Then, we compare the properties of the optimal solutions to the linear
programming problem for all those criteria. Then, the computational aspects of
R∗ are discussed. Finally, we propose a new criterion which generalizes Hurwicz,
R∗ and R∗ which satisfy the decision under ignorance properties and under some
conditions the Pareto optimality.

2 Problem Under Study

In this paper we focus on a Linear Program1 (Eq. 1) where profit coefficients are
uncertain.

Notations

– N : the set of decisions,
– M : the set of constraints,
– xi: the value of decision i ∈ N ,
– ai,j : the coefficient of decision variable i ∈ N for constraints j ∈ M
– pi: the profit of decision variable i ∈ N ,
– bj : the coefficient of constraints j ∈ M ,
– X : the set of feasible solutions (defined by constraints 1.(a) and 1.(b))

max
∑

i∈N pixi (1)
s.t.

(a)
∑

i∈N ai,jxi ≤ bj ∀j ∈ M

(b) xi ≥ 0 ∀i ∈ N

To model the uncertainty we are given a scenario set S, which contains all
possible vectors of the profit coefficients, called scenarios. We thus only know
that one profit scenario s ∈ S will occur, but we do not know which one until a

1 Throughout this paper we assume that the feasible set of solutions is not empty and
is bounded.
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solution is computed. The profit of decision variable i ∈ N under scenario s ∈ S
is denoted psi and we assume that psi ≥ 0. No additional information for the
scenario set S, such as a probability distribution, is provided. Two methods of
defining scenario sets are popular in the existing literature (see, e.g., [4,13] and
[16]). The first one is discrete uncertainty representation, SD = {s1, · · · , sK}
contains K > 1 explicitly listed scenarios. The second one is interval uncertainty
set SI =

∏
i∈N [p

i
, pi].

The profit of solution X = (xi)i∈N depends now on scenario s ∈ S,S ∈
{SD,SI}, and will be denoted as f(X, s) =

∑
i∈N psixi. So the profit of solution

X = (xi)i∈N is a set F (X) = {f(X, s),∀s ∈ S}. In order to choose a solution
which takes into account the optimism of the decision maker, different criteria
aggregating minimal and maximal possible values of the profit could be used. In
this paper, we will study four different criteria, namely the Hurwicz, τ -anchor,
R∗ and R∗ criterion.

3 Background

In this section, we recall the main results of the decision under ignorance and
define the criteria we will consider.

3.1 Decision Under Ignorance

Firstly, we recall the main results of the decision under ignorance theory devel-
oped by Hurwicz and Arrow [3]. Two solutions X1 and X2 are isomorphic if there
is one-to-one mapping h from the set of scenarios such that ∀s ∈ S, f(X1, s) =
f(X2, h(s)). Solution X2 is said to be derived from solution X1 by deleting dupli-
cate if F (X2) ⊂ F (X1) and for each w ∈ F (X1)\F (X2), there exists w′ ∈ F (X2)
such that w = w′. The decision under ignorance is based on 4 axioms (called
HA axioms):

A) (Weak order): �I is a weak order.
B) (Invariance under relabeling axiom (symmetry)). If two solution are isomor-

phic then they are indifferent.
C) (Invariance under deletion of duplicate states). If X2 is derived from X1 by

deleting duplicates then X1 and X2 are indifferent.
D) (Weak dominance axiom). If X1 , X2 are solutions on the same scenario set

S and ∀s ∈ S, f(X1, s) ≥ f(X2, s) then X1 �I X2.

Theorem 1 (Hurwicz-Arrow). The necessary and sufficient condition for pref-
erence I on the set of solutions X to satisfy properties A through D is that

X1 �I X2 if min
s∈S

f(X1, s) ≥ min
s∈S

f(X2, s) and max
s∈S

f(X1, s) ≥ max
s∈S

f(X2, s).

The HA theorem says that the comparison between two sets of prizes cor-
responds to comparing their extremes. If both extremes of one set are greater
than or equal to their counterparts in another set then the former is preferred
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to the latter. The intermediate members of the set do not matter. The criteria
presented below satisfy the HA axioms.2

3.2 The Hurwicz Criterion [3]

The Hurwicz criterion seeks for a solution that minimizes the convex combination
of the best and worst performances (the total profit) across all scenarios. In this
case, we solve the following problem:

max
X∈X

((1 − α)mins∈S f(X, s) + α maxs∈S f(X, s)) (2)

where α ∈ [0, 1] is called optimism-pessimism index. Clearly, if α = 1 then we
solve the problem with criterion max-max ; if α = 0 then we solve the problem
with criterion max-min. Hence, α ∈ [0, 1] controls the relative importance of two
extremes min and max.

3.3 The τ -Anchor Criterion [9]

Recently Giang proposed a new criterion called τ -anchor where max-min and
max-max are special cases as the Hurwicz criterion does. Initially those criteria
were defined on [0, 1] but in a linear program context we define that criterion
on ] − ∞,+∞[. τ ∈ ] − ∞,+∞[ is called the tolerance for ignorance because it
characterizes the behavior under ignorance of an individual decision-maker.

max
X∈X

Cε(F (X)) =

⎧
⎪⎨

⎪⎩

maxs∈S f(X, s) if maxs∈S f(X, s) < τ

τ if mins∈S f(X, s) ≤ τ ≤ maxs∈S f(X, s)
mins∈S f(X, s) if mins∈S f(X, s) > τ

(3)
The behavior of a decision-maker is: if tolerance for ignorance value of the

decision-maker (τ) is not possible she/he evaluates solution (X) using the closest
possible profit to her/his characteristic value. Otherwise all solutions containing
her/his characteristic value as possible profit are considered equivalent and equal
to τ .

3.4 The R∗ and R∗ Criteria [8]

More recently criteria R∗ and R∗ have been proposed to take into account the
optimism of the decision-maker in the context of a sequential decision problem
under total ignorance [8] since they satisfy the properties desired for sequential
decision problems. Like τ -anchor those criteria have been defined on [0, 1] but in a
linear program context we define those criteria on ] − ∞,+∞[. e ∈ ] − ∞,+∞[

2 Note that the average or Ordered weighted average [20] (which Hurwicz generalizes)
does not satisfy the properties A through D.
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is called the neutral value. Both of these criteria are also known as uni-norm
aggregation functions [21].

max
X∈X

R∗(F (X)) =

{
mins∈S f(X, s) if mins∈S f(X, s) < e

maxs∈S f(X, s) otherwise
(4)

max
X∈X

R∗(F (X)) =

{
mins∈S f(X, s) if maxs∈S f(X, s) < e

maxs∈S f(X, s) otherwise
(5)

R∗ specifies that if one of the f(X, s)’s is lower than e then the min operator
is applied, otherwise max is applied. R∗ specifies that if one of the f(X, s)’s
is greater than e then the max operator is applied, otherwise min is applied.
One can see that these two uni-norms (R∗, R∗) generalize the min and max,
as Hurwicz does (max is recovered when e = −∞, min when e = +∞). The
identity element e can represent the optimism threshold (like α for Hurwicz).

4 Discussion on Hurwicz, τ -Anchor, R∗, and R∗

To compare those criteria we formulate the problem of taking into account the
optimism of the decision-maker as a bi-objective optimization problem:

max
X∈X

{gmax(X) = maxs∈S f(X, s), gmin(X) = mins∈Sf(X, s)} (6)

We will call the robust solution the solution optimal for objective function gmax

and opportunistic solution the solution optimal for objective gmin. To perform
the analysis we need to recall the notions of Pareto optimality3.

Definition 1. A solution X1 is called Pareto optimal if there is no X2 	= X1

for which gi(X2) ≥ gi(X1) ∀ i ∈ {max,min} and ∃i ∈ {max,min} gi(X2) >
gi(X1).

Definition 2. A solution X1 is called weakly Pareto optimal if there is no
X2 	= X1 for which gi(X2) > gi(X1) ∀ i ∈ {max,min}.

Hence, in this section we firstly study the general properties (namely: Pareto
optimality and weak Pareto optimality) of the optimal solution for all those
criteria without taking the property of the linear programming problem into
account. From the results of this study we will focus on two criteria, namely
Hurwicz and R∗. First, we need introduce some additional notations.

3 The Pareto preferences of problem 6 satisfies the HA axioms.
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Notations

– G = G(X ): the feasible set in objective space of problem 6.
– F = F (X ): the feasible set in scenario space.
– P: the set of Pareto optimal solutions of problem 6.
– Pw: the set of weak Pareto optimal solutions of problem 6.
– M: the set of optimal solutions of problem 6 with only criterion gmax,
– m: the set of optimal solutions of problem 6 with only criterion gmin,
– H: the set of optimal solutions of problem 6 when Hurwicz criterion is used

∀α ∈ [0, 1],
– Cε: the set of optimal solutions of problem 6 when τ -anchor criterion is used

∀τ ∈ ] − ∞,+∞[
– R∗: the set of optimal solutions for criterion R∗,∀e ∈ ] − ∞,+∞[,
– R∗: the set of optimal solutions for criterion R∗,∀e ∈ ] − ∞,+∞[,

4.1 General Comparison

From Theorem 3.3 and Theorem 3.4 [7] and the fact that Hurwicz criterion is a
convex combination of gmax(X) and gmin(X) we have the following proposition:

Proposition 1. For scenario set S ∈ {SD,SI}, we have H = {M∪m∪(cov(G)∩
P)}4.

From Proposition 1, we can see that using the Hurwicz criterion a decision-
maker with α ∈]0, 1[ can access to compromised solutions which are optimal in
the Pareto sense. Nevertheless, if the Pareto front is strictly concave, the optimal
solution ∀α ∈ [0, 1] are the optimal solution for maxmin or maxmax criteria. In
the next section, we will discuss this point in details.

Let us now study the set of possible optimal solutions for the τ -anchor cri-
terion. τ -anchor breaks down the evaluation space into three areas. We will call
those areas: the min area when min aggregator is applied, the equivalent area
when all solutions in this area have the same evaluation Cε(F (X)) = τ and
finally the max area when the max aggregator is applied.

To better understand the behavior of the decision-maker applying the τ -
anchor criterion, we look at four possible cases of localization of feasible profit
set F on these three areas. Figure 1 illustrates those cases for a problem with 2
discrete scenarios {s1, s2} where the min, equivalent and max areas are respec-
tively represented by a red, white and green area. The case (a) shows that all
feasible solutions can be considered as equivalent if the solution is good enough
for one scenario but too bad for another. In other words, in the case where there
is no feasible solution having as maximal evaluation a value greater than τ on
both scenarios. The case (b) is close to the case (a) with the exception that the
optimal solution has constraints on the maximal possible profit. In case (c), the
optimal solutions are the optimal solutions for the maxmax criteria. In the last
case, case (d), the optimal solution is the solution for the maxmin criterion. The
Proposition 2 sums up the discussion above.
4 cov(G) is the convex hull of G.
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(c) All feasible solutions are in the max area (d) they exist feasible solutions in min area

Fig. 1. τ -Anchor

Proposition 2. Whatever the scenario set S ∈ {SD,SI}, We have:

Cε =

⎧
⎪⎨

⎪⎩

M if ∀X ∈ X maxs∈S f(X, s) < τ

m if ∃X ∈ X such that mins∈S f(X, s) ≥ τ

{X |maxs∈S f(X, s) ≥ τ} else

(7)

In addition to the fact that all solutions may be considered as equivalent, the
τ -anchor does not look very interesting from the point of view of bi-objective
optimization compared to the Hurwicz criterion since it cannot prefer the Pareto
optimal solution which is a compromise between robust and opportunistic solu-
tions.

R∗, as τ -anchor, cuts the evaluation space into areas with the difference being
that there is no equivalent area. Figure 2 illustrates two interesting situations: (a)
all feasible solutions are in the min area and (b) there exists a feasible solution in
the max area. One can see that in case (a) the best solution is a robust solution
since we maximize the minimal value without constraints. In case (b), the best
solution is the opportunistic solution since we maximize the maximal solution
with constraints on the maximal value (greater than e) which is always true if
we are in this case. The Proposition 3 sums up the discussion above.

Proposition 3. For the scenario set S ∈ {SD,SI} we have R∗ = {M ∪ m}.
This proposition shows that the uni-norm R∗ does not look interesting com-

pared to the Hurwicz criterion since only the extreme (robust or opportunistic)
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f(X, s1)

f(X, s2)

0 e

e

f(X, s1)

f(X, s2)

0 e

e

(a) All feasible solutions are in the min area (b) they exist feasible solutions in the max area

Fig. 2. R∗

solutions can be preferred. Thus, R∗ and τ -anchor have almost opposite behav-
ior since one prefers the robust one and the other prefers the opportunistic
one. A decision-maker who is consistent with one of them only needs to know
the robust and opportunistic solutions in order to choose one compliant with
his/her behaviour without being given any other information, i.e. there is no
need to explicitly define the value of τ or e.

f(X, s1)

f(X, s2)

0 e

e

f(X, s1)

f(X, s2)

0 e

e

(a) All feasible solutions are in min area (b) they exist feasible solutions in max area

Fig. 3. R∗

Let us now focus on the optimization with R∗ criterion. From the definition,
we can distinguish 2 cases: the case without any feasible solution in the max
area (Fig. 3.(a)) and the case with (Fig. 3.(b)). In the former case, the optimal
solution is the robust one, in the latter case, the optimal solution is the solution
which is optimal for the following optimization problem:
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max maxs∈S F (X, s)
s.t.
(a) mins∈S F (X, s) ≥ e
(b)

∑
i∈N ai,jxi ≤ bi ∀j ∈ M,

(c) xi ≥ 0 ∀i ∈ N

(8)

Problem 8 is equivalent to the ε-constraints approach [7] applied to problem
6. According to proposition 4.3 [7], those approaches return weak Pareto optimal
solutions.

Proposition 4. For scenario set S ∈ {SD,SI} we have R∗ = Pw.

From Proposition 4 and 3, we can see that the two uni-norm R∗ and R∗

differ fundamentally. R∗ is a rule to choose between the robust or opportunistic
solution while R∗ can prefer a compromise solution.

The conclusion of this section is that on one hand we have τ -anchor and R∗

which are criteria encoding a rule to choose between the robust and opportunistic
solution. On the other hand the Hurwicz and R∗ criteria may give the possibility
to the decision-maker to prefer a solution which is a compromise between the
robust and the opportunistic solution. To study the difference between both
criteria in greater depth we need to take into account the characteristics of the
linear programming problem and the scenario set.

4.2 Comparison of R∗ and Hurwicz for a Linear Programming
Problem with an Uncertainty Set SD and SI

To continue the discussion between R∗ and Hurwicz, we need to study the shape
of the Pareto front of Problem 6. In this section, we start with the uncertainty
set SD. Firstly, the feasible set in the objective space G is investigated.

Proposition 5. The feasible set in objective space G is not necessarily a convex
polytope for scenario set SD.

Corollary 1. The set of Pareto optimal solution P is not necessarily convex.

From Propositions 1, 4, and 5, we have the following theorem:

Theorem 2. For scenario set SD we have H ⊆ R∗.

Proposition 5, Corollary 1 and Theorem 2 are illustrated by the example below:

Example 1. Let us consider two scenarios s1 = (p11 = 1, p12 = 0) and s2 = (p21 =
0, p22 = 1) and the following constraints:

s.t. x1 + 0.45 · x2 ≤ 8,
x2 ≤ 6,

x1, x2 ≥ 0
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Figure 4 represent the set of solutions where the x-axis is maxs∈S F (X, s)
and y-axis is mins∈S F (X, s). The set of solutions H and R∗ are represented in
red. Since H is a linear combination of the min and max criteria, it behaves as
a straight line. Thus, it will never reach the solutions that are in the concave
part of the Pareto front. Because of this phenomenon H is too restrictive. More
precisely, the solutions that offer a good guarantee but have a good opportunity
(for instance the coordinates point [2.2,7]) will never be considered. Conversely,
R∗ is too permissive and accepts solutions dominated in the Pareto sense.

gmax(X)

gmin(X)

H

gmax(X)

gmin(X)

R∗

Fig. 4. Comparison of H and R∗

Let us focus on the case of interval uncertainty set.

Proposition 6. (p
i
)i∈N = argmins∈SIF (X∗, s),∀X∗ ∈ X and

(pi)i∈N = argmaxs∈SIF (X∗, s),∀X∗ ∈ X .

Proposition 7. The feasible set in objective space G is a convex polytope for
the scenario set SI .

Corollary 2. The set of Pareto optimal solutions P is convex.

From Propositions 1, 4, and 7 we have the following theorem:

Theorem 3. For the scenario set SI , we have H = R∗.

However, it should be noted that R∗ criterion is less unstable for low variation
of e than Hurwicz for low variation of α. To our opinion, it handles better the
notion of optimism than Hurwicz.

5 Resolution of LP with R∗

We consider R∗ criterion since the resolution for Hurwicz, R∗ and τ -anchor
also requires the resolution of the maxmin and maxmax problems, therefore the
conclusion is similar to that for R∗. From a computational point of view, the
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problem of optimizing an LP under ignorance with a discrete scenario set or
interval set using R∗ is not harder than an LP problem. For the discrete set, we
can easily build an algorithm to solve |SD| + 1 LP in the worst case. We first
need to solve the robust problem and if the solution is better than e then to
solve Model 9 for all s′ ∈ SD scenarios and choose the best one.

∀s′ ∈ S max
∑

i∈N ps
′

i xi (9)
s.t.

(a)
∑

i∈N psixi ≥ e ∀s ∈ S,

(b)
∑

i∈N ai,jxi ≤ bj ∀j ∈ M,

(c) xi ≥ 0 ∀i ∈ N

For the interval set, according to Proposition 6, Problem 6 becomes:

max
∑

i∈N pixi (10)
s.t.

(a)
∑

i∈N p
i
xi ≥ e

(b)
∑

i∈N ai,jxi ≤ bi ∀j ∈ M,

(c) xi,≥ 0 ∀i ∈ N

6 Generalization of R∗, R∗ and Hurwicz Criteria

To propose a generalization of R∗, R∗ and Hurwicz, we introduce a new aggre-
gation function I that depends only on the possible maximal and minimal val-
ues. It is a parametric aggregation function with 4 parameters e ∈ ] − ∞,+∞[,
a ∈ [0, 1], b ∈ [0, 1] and c ∈ [0, 1]. To have nondecreasing function (on min(F (X))
and on max(F (X))), we need to add constraints to the parameters: a ≤ b ≤ c5.
This criterion replaces the min and max function in R∗ with the Hurwicz crite-
rion with a different value of α (Ha is the value of the Hurwicz criterion with
value α = a):

max
X∈X

Ie,a,b,c(F (X)) =

{
Ha(F (X)) if Hb < e

Hc(F (X)) else
(11)

One can see that if a = b = 0 and c = 1, we obtain R∗. With a = 0 and
b = c = 1, we obtain R∗. There exist more than one parameter which makes the
equivalence to Hurwicz, e.g. a = b = c = α, e ∈ ] − ∞,+∞[.

As we have shown in the previous section, R∗ have the advantage of making
more solutions accessible. From some point of view, it enables greater finesse in
taking the optimism of the DM into account. However, it can return a dominated
solution in the Pareto sense. Some values of parameters I will combine the
benefits of R∗ and Hurwicz in the sense that the returned optimal solution will

5 Note that the value returned with the use of Hurwicz increases when α increases.
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be always Pareto optimal and will possibly include a solution from the concave
part of the Pareto front (see Proposition 8, where I is the set of possible optimal
solutions for parameters I).

Proposition 8. {H|α ∈]0, 1[} ⊆ {I|a, c ∈]0, 1[and a < c} ⊆ P ⊆ R∗.

Proposition 9. Criterion I satisfies the HA axioms.

Example 2. Let us illustrate on Example 1 the use of parameters I. Figure 5.(a)
and Fig. 5.(b) illustrate the case where e is a non-compensatory border and the
decision-maker is not fully optimistic even if the minimal value of e is guaranteed.
Figure 5.(c) and Fig. 5.(d) illustrate the case where e is a compensatory border
and the maximal value greater or equal to 8.5 compensates a minimal value equal
to 0. The decision-maker is optimistic in the case Fig. 5.(b) or less optimistic
Fig. 5.(d). This generalized criterion can be used to specify finely the preferences
of the decision-maker.

gmax(X)

gmin(X)

e = 2

H0.9(F (X))

optimal value

gmax(X)

gmin(X)

e = 4.2

H0.9(F (X))

optimal value

(a) e = 2, a = 0, b = 0 and c = 0.9 (b) e = 4.2, a = 0, b = 0 and c = 0.9

gmax(X)

gmin(X) e = 8.5
H1(F (X))

optimal value

gmax(X)

gmin(X) e = 8.5 H0.6(F (X))

optimal value

(c) e = 8.5, a = 0, b = 0.5 and c = 1 (d) e = 8.5, a = 0, b = 0.5 and c = 0.6

Fig. 5. Illustration of different parameters of I

7 Conclusion

In this paper, we compare four criteria capable of taking the optimism of a
decision-maker into account in the context of decision under ignorance, namely
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Hurwicz criterion, τ -anchor, R∗ and R∗. We show that they can be categorized
into two different classes. The first class includes τ -anchor, R∗. They are the
criteria which always lead to the extreme solutions: the robust one if the deci-
sion maker is pessimistic and to the opportunistic solution if the decision maker
is optimistic. The second class includes R∗ and Hurwicz. The use of these cri-
teria may lead to a compromised solution which is not completely robust nor
completely opportunistic.

We show that R∗ and Hurwicz do not lead to the same solution of a linear
programming problem. More precisely, R∗ solution can be on the concave part
of Pareto front while Hurwicz solution can be only on the convex part of Pareto
front. Moreover, R∗ is more stable to small changes in optimistic/pessimistic
parameter value (namely e) than Hurwicz. Previously it was shown that R∗
has similar good mathematical properties for sequential decision problems in
comparison with Hurwicz. This leads us to conclude that R∗ is a good criterion
to take the decision-maker’s optimism into account in a context of ignorance.

We also develop a generalization of R∗ and Hurwicz which gives more flex-
ibility to the decision-maker and keep the good properties of R∗ for the linear
programming problem, but since it is a generalization of Hurwicz it loses its
good properties for the sequential decision problem.

We have also to conclude that taking the optimism of a decision-maker into
account in the case where the uncertainty is described by a convex polytope, is
a computationally more complex problem than choosing the robust solution. In
further research, we are planning to deepen the study on the complexity of the
problem for different types of uncertainty including that of a convex polytope.
Another research perspective is to generalize R∗ and I for other uncertainty
contexts as possibility theory, evidence theory, and imprecise probability theory.
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1 Systems Research Institute, Polish Academy of Sciences,
ul. Newelska 6, 01-447 Warsaw, Poland

kacprzyk@ibspan.waw.pl
2 Department of Management Control and Information Systems,

University of Chile, Av. Diagonal Paraguay 257, 8330015 Santiago, Chile
jmerigo@fen.uchile.cl

3 Department of Political Science, University of Turku, 20014 Turku, Finland
hnurmi@utu.fi

4 Warsaw School of Information Technology (WIT), 01-447 Warsaw, Poland

Abstract. We consider the problem of the evaluation of similarity of
voting procedures which are crucial in voting, social choice and related
fields. We extend our approach proposed in our former works and com-
pare the voting procedures against some well established and intuitively
appealing criteria, and using the number of criteria satisfied as a point
of departure for analysis. We also indicate potential of this approach for
extending the setting to a fuzzy setting in which the criteria can be sat-
isfied to a degree, and to include a distance based analysis. A possibility
to use elements of computational social choice is also indicated.

Keywords: Voting · Social choice · Voting procedure · Similarity ·
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1 Introduction

This paper is basically concerned with some aspects of a highly advocated trend
of considering voting theory to be an important part of the broadly perceived
area of multiagent systems (cf. Endriss [4], Pitt, Kamara, Sergot and Artikis [29],
Dodevska [3], to just cite a few). In many multiagent systems we need a mecha-
nism that can be used by the agents to make collective decisions, and an effective
and efficient way of doing this can be by voting, that is by employing a voting
procedure. There are very many voting procedures and there has been much
research in this area, both related to theoretical analyses and development of
voting protocols or procedures. Voting procedures are getting more complex,
notably in view of a rapidly increasing importance of all kind of voting in large
(maybe huge) sets of agents, for instance because of a proliferation of e-voting,
and a rapidly increasing use of computers for this purpose. There is therefore
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an urgent need to use in the context of voting – which has traditionally been
discussed within economics, decision theory or political science – new concepts,
and tools and techniques of computer science and numerical analyses. This is
basically offered by the new and rapidly developing area of computational social
choice (cf. the handbook Brandt, Conitzer, Endriss, Lang and Procaccia [2]).

Multiagent systems are composed of agents, real or virtual entities exempli-
fied by people (individuals, groups or organizations), software, etc. The agents
act, interact, cooperate, collaborate, exchange information, etc. In multiagent
systems decision processes, including voting, are usually highly uncertain and
changeable (dynamic), and proceed in a distributed way, electronic voting is
often advocated. In general, the winning option should be in line with opin-
ions or preferences of as many agents as possible. Preferences, which are also
an important topic in artificial intelligence (AI), are often used in multiagent
models though it is not easy to elicit and deal with multiagent preferences.

We propose here to consider one of interesting problems in voting, both in
the traditional social choice setting and a new multiagent setting, which can be
stated as follows: there is a multitude of possible voting procedures proposed
in the literature and it would be expedient to have a tool to determine if and
to what extent they are similar to each other. This could help us, for instance,
to use instead of a good but computationally demanding voting procedure a
computationally simpler one if it is sufficiently similar to the former one.

In this paper we will discuss the similarity meant as how many requirements
(conditions) which are usually assumed in voting are fulfilled jointly by a partic-
ular pair of voting procedures, and then to consider as similar those procedures
which have similar values. We will use here the idea of our former, more qualita-
tive approach to the comparison of voting procedures, cf. Kacprzyk, Nurmi and
Zadrożny [11], and a more qualitative one by Fedrizzi, Kacprzyk and Nurmi [6].
It should be noted that an intuitively justified comparison of voting procedure
might be with respect to the results obtained. This might however be too much
related to a particular voting problem considered, and not general enough. One
can argue, as we do, that the satisfaction (or not) of some important and widely
accepted requirements for the voting procedure is possibly related to which solu-
tions they can yield, that is, such a requirement related analysis can be implicitly
equivalent to a result related analysis.

Moreover, in this paper we extend the above proposal by a new, fuzzy logic
based one in which a “soft” measure of the number of requirements jointly sat-
isfied is used which can be exemplified by a degree to which “about n, many,
most, etc. requirements are fulfilled”. This can be extended to the case of to
which degree the requirements for the voting procedures are satisfied but this
will not be considered here as it is not obvious and needs a deeper analysis
of what social choice theorists and practitioners think about the intensity of
satisfaction.

In our setting there are n, n ≥ 2 individuals who present their testimonies
over the set of m,m ≥ 2, options. These testimonies can be, for instance, individ-
ual preference relations, orderings over the set of options, etc. In our approach we
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focus in principle on social choice functions, a class of social choice procedures
that select a single social outcome, i.e. an option that best reflects the opinions
of the individuals. Voting procedures are here perhaps the best known and most
intuitively appealing examples. A voting procedure is meant to determine the
winner of an election as a function of the votes cast by the voters.

Of a major concern in voting theory is the extent to which voting procedures
satisfy some plausible and reasonable axioms, and more foundational results are
of a rather negative type, that is, their essence is that plausible and intuitively
obvious assumptions are usually incompatible, cf. the Arrow impossibility theo-
rem. For more information, cf. Kelly [15], Nurmi [21], Riker [33], etc.

Much less attention has been paid to the problem of how similar/dissimilar
are the voting procedures the number of which is very high. Except for a
foundational reference book by Nurmi [21], and a new book by Teixeira de
Almeida, Costa Morais and Nurmi [40], one can cite here: Elkind, Faliszewski
and Slinko [5], McCabe-Dansted and Slinko [17], Richelson [32], etc.

In this paper we deal with this problem. We take into account a set of popular
and well established criteria against which the voting procedures are usually
evaluated. To reduce the size of this set, and the size of the set of the voting
procedures, we use first the idea of Fedrizzi, Kacprzyk and Nurmi [6] in which
these sets are reduced using a qualitative type analysis based on elements of
Pawlak’s [27], Pawlak and Skowron [28] rough sets theory to obtain the most
specific non-redundant characterization of the particular voting procedures with
respect to the criteria assumed.

Then, using this reduced representation, we consider the problem of how
similar/dissimilar the particular voting procedures are, that is, of how to mea-
sure the degree of their similarity/dissimilarity. Our measure is derived from the
number of criteria satisfied by a particular procedure, and in our view two vot-
ing procedures are similar if they jointly satisfy a similar number of criteria as
proposed by Kacprzyk et al. [11]. As mentioned, this could be a good indicator
of possibly similar results in terms of functioning, i.e. voting results yielded.

Next, we propose to extend this simple measure by using a fuzzy linguistic
quantifier based aggregation to obtain the degree of satisfaction of, e.g., a few,
many, most, much more than a half, etc. criteria. We also mention a possibility
of using for the above fuzzy linguistic quantifier based aggregation the OWA
operators, notably their recent extensions, cf. Kacprzyk, Yager and Merigó [12].

2 A Comparison of Voting Procedures

We are concerned with social choice functions which may be, for our purposes,
equated with voting procedures. The literature on social choice is very rich, and
a multitude of various social choice functions (voting procedures) has been pro-
posed which can be simple and sophisticated, intuitively appealing and not,
widely employed and not, etc. and there are little or no indications as to which
one to use in a particular problem. For information on the comparison and
evaluation of voting procedures, cf. the classic sources, e.g., Richelson [32],
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Straffin [37], Nurmi [21]; the recent book by Teixeira de Almeida et al., Costa
Morais and Nurmi [40] provides much information on new approaches too.

In our context a simple and intuitive approach for the comparison of vot-
ing procedures using rough sets as a point of departure, has been proposed by
Fedrizzi, Kacprzyk and Nurmi [6]. For a lack of space we will not present it here
and refer the reader to that paper. We will just use as the point of departure
the reduced problem representation obtained by using the rough sets.

We consider here the following 13 popular voting procedures:

1. Amendment: an option is proposed as a preliminary solution and then
motions may be submitted to change it with another option; if such a motion
gets required support then the proposed option is considered as a prelimi-
nary solution; if there are no more motions then the final vote for the current
preliminary option is carried out,

2. Copeland: selects the option for which the number of times it beats other
options minus the number of times it looses to other options in pairwise
comparisons is the highest,

3. Dodgson: each voter provides a rank ordered list of all options, from the best
to worst, and the option wins for which we need to perform the minimum
number of pairwise swaps (summed over all candidate options) before they
become a Condorcet winner,

4. Schwartz: selects the set of options over which the collective preferences
are cyclic and the entire cycle is preferred over the other options; when a
Condorcet winner exists this is the single element in such a set otherwise
there may be many options,

5. Max-min: selects the option for which the greatest pairwise score for another
option against it is the least one of score among all options,

6. Plurality: each voter selects one option (or none if abstains), and the options
with the most selection votes win,

7. Borda: each voter provides a linear ordering of the options to which the so-
called Borda score is assigned: in case of n candidates, n − 1 points is given
to the first ranked option, n − 2 to the second ranked, etc., these numbers
are added up for the options over all orderings which yields the Borda count,
and the option(s) with the highest Borda count wins.

8. Approval: each voter selects (approves) a subset of the candidate options
and the option(s) with the most votes is/are the winner(s).

9. Black: selects the Condorcet winner, i.e. an option that beats or ties all other
options in pairwise comparisons, when one exists or, otherwise, the Borda
count winner (as described above),

10. Runoff: plurality vote is used first to find the top two options (or more if
there are ties), and then there is a runoff between these options with the one
with the most votes to win.

11. Nanson: the Borda count is used, at each step dropping the candidate with
the smallest score (majority),

12. Hare: the ballots are linear orders over the set of options, and repeatedly
the options are deleted which receive the lowest number of first places in the
votes, and the option(s) that remain(s) are the winner(s),
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13. Coombs: each voter rank orders all of the options, and if one option is ranked
first (among non-eliminated options) by an absolute majority of the voters,
then this is the winner, otherwise, the option which is ranked last by a
plurality of the voters is eliminated, and this is repeated.

Notice that these voting procedures are well known and popular but, clearly,
are just examples of a multitude of possible procedures known in the literature
and even employed (cf. the book by Teixeira de Almeida et al. [40]). For exam-
ple, some recent promising procedures are not used in this paper as Schulze’s
method [35], Tideman’s ranked pairs method [38], and many other ones.

These voting procedures used are based on highly reasonable, desirable and
intuitively appealing properties but it is difficult to say if and how similar or
different they are. Such an analysis of similarity/dissimilarity can proceed by
comparing the voting procedures against some well founded and reasonable cri-
teria (requirements). A multitude of various criteria are possible, and no voting
procedure will satisfy all of them. The comparison of voting procedures is there-
fore a non-trivial task and is to a large extent subjective. We will try to use some
formal tools to make it more objective.

The satisfaction of the following criteria is often advocated (cf. Nurmi [21]):

1. Majority winner criterion: if there exists a majority (at least 50%) of voters
who rank a single option at the top of the ranking, higher than all other
options, then this option should win,

2. Mutual majority criterion: if there exists a majority of voters ranking a group
of options higher than all other options, one of the options from that group
should win.

3. Majority loser criterion: if a majority of voters prefers every other option
over a given one, the latter option should not win,

4. Monotonicity criterion: it is impossible to make a winning option lose by
ranking it higher, or to cause a losing option to win by ranking it lower,

5. Consistency criterion: if the electorate is divided in two groups and an option
wins in both groups, then it should win in general,

6. Weak Pareto criterion: whenever all voters rank an option higher than
another option, the latter option should never be chosen,

7. Participation criterion: it should always be better to vote honestly than not
to vote at all,

8. Condorcet winner criterion: if an option beats every other option in pairwise
comparisons, then it should always win,

9. Condorcet loser criterion: if an option loses to every other option in pairwise
comparisons, it should always loose,

10. Independence of irrelevant alternatives: if an option is added or removed,
the relative rankings of the remaining options should remain the same,

11. Independence of clones: the outcome of voting should be the same if we add
options identical to the existing ones (clones),

12. Reversal symmetry: if individual preferences of each voter are inverted, the
original winner should never win,
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13. Heritage criterion: if an option is chosen from the entire set of options using
a particular voting procedure, then it should also be chosen from all subsets
of the set of options (to which it belongs) using the same voting procedure
and under the same preferences.

14. Polynomial time: it should be possible to find the winner in polynomial time
with respect to the number of options and voters.

In general, a criterion can be said to be “stronger” (more widely adopted/ad-
hered to) than another one when it is satisfied by more voting procedures. This
will be of relevance for our consideration.

For clarity and simplicity of presentation and interpretation, we will only use
the following 7 “strong” criteria (the letters A, . . . , G correspond to the labels
of columns in the tables to be shown), which can be claimed to be especially
important (cf. Fedrizzi, Kacprzyk and Nurmi [6]), in the analysis and comparison
of voting procedures: A – Condorcet winner, B – Condorcet loser, C – majority
winner, D – monotonicity, E – weak Pareto winner, F – consistency, and G –
heritage, and a similar analysis can be extended to all 13 criteria listed before,
as well as many other ones which can be found in the literature.

In the tables showing results of the subsequent steps of our approach, the rows
will correspond to the 13 voting procedures analyzed in the paper: Amendment,
Copeland, Dodgson, Schwartz, Max-min, Plurality, Borda, Approval, Black,
Runoff, Nanson, Hare, and Coombs.

The columns correspond to 7 above mentioned criteria: Condorcet winner,
Condorcet loser, majority winner, monotonicity, weak Pareto winner, consis-
tency, and heritage.

The point of departure is presented in Table 1 which shows which voting
procedure satisfies which criterion: “0” stands for “does not satisfy”, and “1”
stands for “satisfies”.

It should be noticed that the data set given in Table 1 can be directly used
for the comparison of the 13 voting procedures considered with respect to the
7 criteria assumed. Basically, such a comparison can be accomplished by com-
paring the consecutive pairs of the binary rows corresponding to the voting pro-
cedures with each other using some methods for the determination of similarity
and dissimilarity (cf. Kacprzyk et al. [11]). However, this would not provide
any deeper insight into the differences between the voting procedures as the
comparison would concern just particular voting procedures and not their more
or less homogeneous classes. This problem is closely related to Kacprzyk and
Zadrożny’s [13,14] OWA operator based approach to the classification of voting
procedures into a number of more general classes that are related, first, to the
order in which the aggregation via an OWA operator proceeds and, second, to
specific sets of weights of the respective OWA operators. In this paper we use
another way of comparing the voting procedures based on an analysis of how
many criteria are jointly fulfilled, and on the related distance between the vot-
ing procedures, and then on some structural analyses using human consistent
natural language summaries.
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Table 1. Satisfaction of 7 criteria by
13 voting procedures

Voting procedure Criteria

A B C D E F G

Amendment 1 1 1 1 0 0 0

Copeland 1 1 1 1 1 0 0

Dodgson 1 0 1 0 1 0 0

Schwartz 1 1 1 1 0 0 0

Max-min 1 0 1 1 1 0 0

Plurality 0 0 1 1 1 1 0

Borda 0 1 0 1 1 1 0

Approval 0 0 0 1 0 1 1

Black 1 1 1 1 1 0 0

Runoff 0 1 1 0 1 0 0

Nanson 1 1 1 0 1 0 0

Hare 0 1 1 0 1 0 0

Coombs 0 1 1 0 1 0 0

Table 2. Satisfaction of 7 criteria by a
reduced number (9 families) of voting
procedures

Voting procedure Criteria

A B C D E F G

Amendment 1 1 1 1 0 0 0

Copeland 1 1 1 1 1 0 0

Dodgson 1 0 1 0 1 0 0

Max-min 1 0 1 1 1 0 0

Plurality 0 0 1 1 1 1 0

Borda 0 1 0 1 1 1 0

Approval 0 0 0 1 0 1 1

Runoff 0 1 1 0 1 0 0

Nanson 1 1 1 0 1 0 0

The first step of the approach proposed in Fedrizzi et al. [6] and Kacprzyk
et al. [11] is the simplification of the problem in the sense of the reduction of
the number of voting procedures using elements of Pawlak’s rough sets theory
(cf. Pawlak [27], Pawlak and Skowron [28]). Basically, first, we merge those vot-
ing procedures which satisfy the same properties, i.e. under the set of criteria
assumed they may be considered to be equivalent. We obtain therefore the follow-
ing 9 voting procedures (Table 2): Amendment (which stands now for Amend-
ment and Schwartz), Copeland (which stands now for Copeland and Black),
Dodgson, Max-min, Plurality, Borda, Approval, Runoff (which stands now for
Runoff, Hare and Coombs), and Nanson. These are equivalence classes of the
indiscernibility relation which may be defined as usual, in line with the rough
sets theory.

This step may be followed by another one aiming at reducing also the num-
ber of criteria. One may identify the so-called indispensable criteria (the core)
which are meant as those whose omission will make at least one pair of voting
procedures indistinguishable. That is, such criteria are necessary to differentiate
between the voting procedures. Then, we finally obtain the reduced represen-
tation of the voting procedures versus the criteria as shown in Table 3 which
expresses the most crucial properties or criteria of the voting procedures in the
sense that the information it conveys would be sufficient to restore all informa-
tion given in the source Table 1. For details we refer the reader to cf. Fedrizzi,
Kacprzyk and Nurmi [6] and Kacprzyk, Nurmi and Zadrożny [11]. However, in
this paper we will assume that only the first step is executed, i.e., the number
of voting procedures is reduced but all the criteria are preserved.



Multi-agent Systems and Voting: How Similar Are Voting Procedures 179

Table 3. Satisfaction of the criteria belonging to the core by the particular voting
procedures

Voting procedure Criteria

A B D E

Amendment 1 1 1 0

Copeland 1 1 1 1

Dodgson 1 0 0 1

Max-min 1 0 1 1

Plurality 0 0 1 1

Borda 0 1 1 1

Approval 0 0 1 0

Runoff 0 1 0 1

Nanson 1 1 0 1

3 Similarity and Distances Between Voting Procedures:
An Indiscernibility Based Analysis

We operate here on the characterization of the voting procedures shown in
the Table 2. This will better serve the purpose of presenting a new approach
to the comparison of voting procedures, and also provide a point of departure
for further works in which similarity analyses will be performed on reduced rep-
resentations.

For each pair of voting procedures, (x, y) ∈ V 2, where V is the set of voting
procedures (9 in our case, as in Table 2), and for each criterion z, z ∈ Z, where
Z is the set of criteria assumed (7 in our case, as in Table 1), we define the
following function vz : V × V −→ {0, 1}, such that

vz(x, y) =
{

1 if x and y take on the same values for criterion z
0 otherwise (1)

For example, for the data given in Table 1:

vA(Amendment, Copeland) = 1
vE(Amendment, Copeland) = 0

In the simplest way the agreement between two voting procedures, x, y ∈ V ,
denoted by A(x, y), A : V × V −→ {0, . . . , card Z}, can be defined in terms of
vz(x, y) given by (1) as follows:

A(x, y) =
∑
z∈Z

vz(x, y) (2)

that is as the number of simultaneous satisfaction/dissatisfaction of the criteria.
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Therefore, we get the following matrix of agreements (cf. Table 4). In Table 4,
the agreement between the same voting procedures does not matter, so that “-”
is put, and since the agreement function is symmetric, we only define the upper
half of the matrix.

Table 4. Values of agreements between the particular voting procedures due to (2)

Voting

procedure

Voting procedure

Amendment Copeland Dodgson Max-min Plurality Borda Approval Runoff Nanson

Amendment – 6 4 5 3 3 1 4 5

Copeland – 5 6 4 4 1 5 6

Dodgson – 6 4 2 2 5 6

Max-min – 5 3 2 4 5

Plurality – 5 4 4 3

Borda – 4 4 3

Approval – 1 0

Runoff – 6

Nanson –

It can be illustrative to present the results in the form of some summarizing
statements. One can notice that the Copeland, Max-Min, Dodgson and Nanson
form a group of voting procedures which are no more than two criteria away
of each other. Quite closely related to that group are Runoff and Amendment.
The so-called positional methods, that is, Plurality, Borda and Approval, seem
to be rather far away from the rest of the procedures in terms of the number of
criteria they differ by. This holds particularly for Approval.

It is easy to see that this indiscernibility analysis based on the sets of criteria
satisfied jointly by pairs of voting procedures yields here sets of cardinality 0,
1, 2, 3, 4, 5, 6. Of course, in practice it is usually not important if two voting
procedures differ by 2 or 3, 4 or 5, or 5 or 6 criteria so that one can use here
aggregated values, for instance, by merging these values, which would yield a
more compact representation.

However, such a merging of numbers of criteria may be difficult because it
needs a deep insight into how important the particular criteria are, and the
satisfaction of which combination of them is relevant.

Moreover, it may often be convenient to use a natural language description
of the similarity, for instance similar in terms of: a low, medium or high, a few
and many, about n, etc. number of criteria satisfied.

Technically, this can easily be done by using tools and techniques of fuzzy
logic, to be more specific the well known fuzzy logic based calculus of linguisti-
cally quantified propositions by Zadeh.

The method presented in this section, and the results obtained, which is
based on some indiscernibility analyses, may be viewed to be somewhat quali-
tative. To proceed to a more quantitative analysis, we can use the normalized
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distance between two voting procedures x, y ∈ V which can be defined in a
straightforward way as

D(x, y) = 1 − A(x, y)
cardZ

(3)

where A(x, y) is given by (2) and card Z is the number of criteria.
Therefore, using (3), we obtain the matrix of normalized distances between

the voting procedures given by Table 5.
Then, a distance based analysis can be performed along the lines of Kacprzyk,

Nurmi and Zadrożny [11] but this is outside of the scope of this paper that is
focused on an indiscernibility analysis.

4 Concluding Remarks

We have presented a new approach to the evaluation of similarity/dissimilarity of
voting procedures. We followed the approach proposed in our former works and
compared the voting procedures against some well established and intuitively
appealing criteria, and using the number of criteria satisfied as a point of depar-
ture. We have indicated some further research directions, notably using elements
of fuzzy logic to describe the delicacy of the comparison of voting procedures
and also a possibility to extend the analysis to a distance based reasoning.

We hope that this work will help solve one of problems that exists in the
use of voting procedures in multiagent systems (cf. Dodevska [3] or Endriss [4]).
Moreover, for large scale voting problems which are more and more important in
practice, computational social sciences can provide a rich set of tools and tech-
niques which will help solve our problem (cf. Elkind, Faliszewski and Slink [5]).
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Abstract. In this paper an optimization problem with uncertain param-
eters is discussed. In the traditional robust approach a pessimistic point
of view is assumed. Namely, a solution is computed under the worst pos-
sible parameter realizations, which can lead to large deterioration of the
objective function value. In this paper a new approach is proposed, which
assumes a less pessimistic point of view. The complexity of the resulting
problem is explored and some methods of solving its special cases are
presented.

Keywords: Robustness · Uncertainty · Optimization

1 Introduction

In this paper we wish to investigate the following optimization problem with
uncertain parameters:

max(min) cccTxxx,

s.t. ãaa
T
i xxx ≤ bi i ∈ [m],

xxx ∈ X ⊆ Rn
+.

(1)

In formulation (1), xxx is n-vector of nonnegative decision variables, ccc is n-vector
of deterministic objective function coefficients, ãaai = (ãi1, . . . , ãin) is n-vector
of uncertain constraint coefficients, i ∈ [m] ([m] denotes the set {1, . . . , m}),
and X is a bounded subset of Rn

+, where R+ is the set of nonnegative reals.
For example, if X is a bounded polyhedron, then (1) is an uncertain linear
programming problem. If X ⊆ {0, 1}n, then (1) is an uncertain combinatorial
optimization problem. We will first assume that the right-hand sides bi, i ∈ [m],
of the constraints are deterministic. Later, we will also discuss the case with
uncertain bi. We can assume w.l.o.g. that the objective function coefficients are
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precise. Otherwise, in a minimization problem, we can replace the objective
function with minimization of a new variable t and add one additional uncertain
constraint c̃cc

T
xxx−t ≤ 0. The transformation for maximization problems is similar.

A method of solving (1) depends on the information available. If ãaai is a vector
of random variables with known probability distribution, then the ith imprecise
constraint can be replaced with a chance constraint of the form Pr(ãaaT

i xxx ≤ bi) ≥
1 − ε, where ε ∈ [0, 1) is a given risk level [8]. Assume that we only know
that ãaai ∈ Ui ⊆ Rn, where Ui is a given uncertainty (scenario) set. In this
paper we use the following interval model of uncertainty [3]. For each uncertain
coefficient ãij an interval [âij − Δij , âij + Δij ] is provided, where âij is the
nominal value of ãij and Δij is the maximal deviation of the value of ãij from
its nominal one. The interval can be interpreted as a support of random variable
ãij , symmetrically distributed around its nominal (expected) value [3]. Set Ui is
the Cartesian product of the uncertainty intervals [âij − Δij , âij + Δij ], j ∈ [n].
Let âaai ∈ Rn be a vector of the nominal constraint coefficients. After replacing
the uncertain vectors ãaai with their nominal counterparts âaai for each i ∈ [m], we
get a deterministic nominal problem with the optimal objective value equal to ĉ.
Using the robust optimization framework [2,10,13], the ith imprecise constraint
can be replaced with

max
aaai∈Ui

aaaT
i xxx ≤ bi, (2)

which ensures that xxx is feasible for all scenarios aaai ∈ Ui.
The application of strict robustness concept (2) results in a very conservative

constraint, in which we assume by the non-negativity of xxx, that the true real-
ization of all the coefficients will be at âij + Δij , j ∈ [n]. Hence the objective
value of the strict robust solution can be much less than ĉ. This phenomenon is
called a price of robustness [3] and large price of robustness is often regarded as
the main drawback of the strict robust optimization. However, in many practical
situations, the true realization of ãaai will be rather closer to âaai, as the extreme
values of the coefficients are less probable to occur, especially when everything
goes smoothly without any perturbations [5].

Several approaches have been proposed in the literature to soften the strict
robustness. One of the most popular was introduced in [3]. The key idea is to
assume that at most Γi coefficients in the ith constraint will take the values
different than their nominal ones. To simplify presentation, we will assume that
Γi is an integer in {0, . . . , n}. Accordingly, the ith constraint becomes then

max
{aaai∈Ui:|{aij :aij �=âij ,j∈[n]}|≤Γi}

aaaT
i xxx ≤ bi. (3)

Notice that the case when Γi = 0 only ensures that xxx is feasible under the
nominal scenario (we get the nominal problem). On the other hand, Γi = n
ensures that xxx is feasible under all scenarios and, in this case, (3) is equivalent
to (2). The parameter Γi allows decision makers to control the robustness of
the constraint. By changing Γi, we get a family of solutions with different levels
of robustness. However, it is still assumed that Γi constraint coefficients may
take their worst values, which represents a pessimistic point of view. In [5,12]
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an approach to soften the robustness of (2) was proposed. The idea is to assume
that the solution cost should be of some predefined distance to ĉ, which can
be achieved by allowing additional constraint violations (see [12] for details).
Another method consists in replacing very conservative minmax criterion with
the minmax regret one (see [9,10] for more details and the references given there).
However, the minmax regret problems are typically hard to solve, even for linear
programming problems [1].

In this paper we propose a new approach to soften the strict robustness. The
idea will be to modify the approach proposed in [3], by replacing the pessimistic
point of view with a more optimistic one. We will still assume that Γi constraint
coefficients can take the worst values. However, contrary to (3), we will assume
that this will happen in the best possible case. Consequently, the objective func-
tion will be optimized over the larger set of feasible solutions and the optimal
objective value will be closer to ĉ.

2 New Concept of Choosing Robust Solutions

In this section we propose a new concept to soften the conservatism of the strict
robust approach. We will use the same model of uncertainty as the one described
in the previous section. Namely, for each uncertain coefficient ãij we define the
uncertainty interval [âij − Δij , âij + Δij ]. Also Γi ∈ {0, . . . , n} specifies the
number of coefficients in the ith constraint, whose values can be different from
their nominal ones. Let Φi = {δδδi ∈ {0, 1}n :

∑

j∈[n] δij = Γi}. A fixed vector
δδδi ∈ Φi induces the following convex uncertainty set:

Uδδδi
= {aaai ∈ Rn : aij ∈ [âij + δijΔij ], j ∈ [n]}.

Since xxx ∈ Rn
+, the constraint (3) can be rewritten equivalently as

max
δδδi∈Φi

max
aaai∈Uδδδi

aaaT
i xxx ≤ bi. (4)

We can now provide the following interpretation of (4). Given a solution xxx, we
first choose the worst uncertainty set Uδδδi

and then the worst scenario aaai in this
set. This represents a pessimistic point of view. From an optimistic point of view,
we can assume that the best uncertainty set is chosen in the first step, which
leads to the following constraint:

min
δδδi∈Φi

max
aaai∈Uδδδi

aaaT
i xxx ≤ bi. (5)

If X is a polyhedron, then the set of feasible solutions to (4) is convex,
because it can be represented by an intersection of polyhedral sets. Indeed,
maxaaai∈Uδδδi

aaaT
i xxx =

∑

j∈[n](âij +δijΔij)xj and (4) is equivalent to the family (con-
junction) of the linear constraints

∑

j∈[n](âij + δijΔij)xj ≤ bi for all δδδi ∈ Φδδδi
.

On the other hand, the set of feasible solutions to (5) need not to be con-
vex, because it is a union of polyhedral sets. Constraint (5) is equivalent to
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Fig. 1. A sample problem with one uncertain constraint and Γ1 = 1. In a) the set of
feasible solutions using (4) and in b) the set of feasible solutions using (5) are shown.

∑

j∈[n](âij + δijΔij)xj ≤ bi for at least one δδδi ∈ Φδδδi
, so it is a disjunction of a

family of linear constraints.
Let us illustrate this by the example shown in Fig. 1. The set of feasible

solutions to the nominal problem with ã1 = 2 and ã2 = 1 is [0, 1] × [0, 1], which
gives the optimal solution x1 = x2 = 1 with ĉ = 7. Using the concept (4) we
get the set of feasible solutions shown in Fig. 1a, which is conjunction of the
constraints 3x1 + x2 ≤ 3 and 2x1 + 4x2 ≤ 3. The optimal solution is x1 = 0.9,
x2 = 0.3 with the optimal objective value equal 3.9. Using the concept (5) we
get the set of feasible solutions depicted in Fig. 1b, which is disjunction of the
constraints 3x1 + x2 ≤ 3 and 2x1 + 4x2 ≤ 3. The optimal solution is then
x1 = 0.67, x2 = 1 with the objective value equal to 6. This solution has lower
price of robustness. Observe, however, that the resulting set of feasible solutions
is not convex.

3 Solving the Problem

Using the concept (5) we can rewrite the uncertain problem (1) as follows:

max cccTxxx

s.t.
∑

j∈[n]

(âij + δijΔij)xj ≤ bi i ∈ [m],

∑

j∈[n]

δij = Γi i ∈ [m],

δij ∈ {0, 1} i ∈ [m], j ∈ [n],
xxx ∈ X.

(6)

Binary variables δij select the uncertainty set Uδδδi
in the ith constraint. The

nonlinear terms δijxj can be linearized by applying standard techniques. In
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consequence, if X is described by a system of linear constraints, then the resulting
problem is a mixed integer linear one. In Sect. 5 we will investigate the complexity
of (6) and two its special cases.

4 Illustrative Example

In this section we will evaluate our concept by computational experiments. We
will perform experiments for the continuous 0-1 knapsack problem with uncertain
constraint coefficients (weights). The following model is the counterpart of (6)
for the uncertain continuous 0-1 knapsack problem:

max cccTxxx

s.t.
∑

j∈[n]

(âj + δjΔj)xj ≤ b,

∑

j∈[n]

δj = Γ,

δδδ ∈ {0, 1}n,
xxx ∈ [0, 1]n.

(7)

An instance of the problem is generated as follows. We fix n = 100, cj is a
random integer, uniformly distributed in [10, 100], âj is a random integer, uni-
formly distributed in [20,60] and Δj = σâj , where σ is a random real from the
interval [0, 1]. We also fix b = 0.4

∑

j∈[n] âi. By changing Γ from 0 to 100, we
obtained a family of solutions to the pessimistic problem with the constraint (4)
and to the optimistic problem with the constraint (5), i.e. to problem (7). Let xxx
be a feasible solution for some fixed Γ . We define dev(xxx) = (ĉ − cccTxxx)/ĉ, which
is the price of robustness of xxx, expressing a relative distance of cccTxxx to the opti-
mal objective function value of the nominal problem. The quantity viol(xxx) is an
empirical estimation of the probability of the constraint violation, which is com-
puted as follows. We generated 10 000 random scenarios (constraint coefficient
values) by choosing uniformly at random the value of ãj from [âj −Δj , âj +Δj ],
j ∈ [n]. Then viol(xxx) is the fraction of scenarios under which xxx is infeasible.

The obtained results are shown in Fig. 2. As one can expect, the optimistic
approach results in lower price of robustness, but also in larger risk of the con-
straint violation. Both approaches are equivalent for the boundary values of Γ
equal to 0 or 100. Furthermore, the pessimistic problem quickly decreases the
constraint violation viol(xxx) and increases the price of robustness dev(xxx) as Γ
increases and a compromise, between viol(xxx) and dev(xxx), is reached for Γ ≈ 10.
While for the optimistic problem a similar compromise is reached for Γ ≈ 75.
Accordingly, combining the two approaches, i.e. the pessimistic and optimistic
points of view, one can provide a larger family of solutions whose profile is shown
in Fig. 2. One of them can be ultimately chosen by the decision maker, who can
take a risk-aversion or some other factors into account.
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Fig. 2. The values of dev(xxx) and viol(xxx), where xxx is an optimal solution to the pes-
simistic (4) or optimistic (5) problem for Γ ∈ {0, . . . , 100}.

5 Uncertain Constraint Coefficients

In this section we proceed with the study of problem (6). We provide a negative
complexity result for it and some positive results for its two special cases. The
following theorem characterizes the complexity of problem (6):

Theorem 1. Problem (6) is strongly NP-hard and not at all approximable even
if X = [0, 1]n and Γi ∈ {0, 1} for each i ∈ [m].

Proof. Consider the strongly NP-complete 3-sat problem [6], in which we are
given a set of boolean variables {x1, . . . , xn} and a set of clauses C1, . . . , Cm. Each
clause Ci contains three literals {pi, qi, ri}, where pi, qi, ri ∈ {x1, x1, . . . , xn, xn}.
We ask if there is a 0 − 1 assignment to the variables which satisfies all the
clauses. Given an instance of 3-sat we build the following program:

max (1 − t)
s.t. (−1 + 2δ1j)xj + (−1 + 2δ2j)xj ≤ −1 j ∈ [n],

δ1j + δ2j = 1 j ∈ [n],
pi + qi + ri ≥ 1 − t ∀Ci = {pi, qi, ri},
δ1j , δ2j ∈ {0, 1} j ∈ [n],
xj , xj , t ∈ [0, 1] j ∈ [n].

(8)

Observe that (8) is a special case of (6), where Γi ∈ {0, 1} for each constraint and
X = [0, 1]n+1. Notice that the clause constrains can be equivalently rewritten
as −pi − qi − ri − t ≤ −1 with Γi = 0. In any feasible solution to (8), we must
have xj = 1, xj = 0 or xj = 1, xj = 0 for each j ∈ [n]. Indeed, the constraint
δ1j + δ2j = 1 forces xj − xj ≤ −1 or xj − xj ≤ −1. Since xj , xj ∈ [0, 1] the
property is true. Also, (8) is feasible, because by setting t = 1, we can satisfy
all the constraints associated with the clauses. We will show that the answer to
3-sat is yes if the optimal objective value to (8) is 1 and 0, if the answer is no.

Assume that the answer to 3-sat is yes. Then, there is a 0− 1 assignment to
the variables x1, . . . , xn, which satisfies all the clauses. We construct a feasible
solution to (8) as follows. The values of xj are the same as in the truth assignment
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and xj = 1−xj , j ∈ [n]. Also, δ1j = 1−xj and δ2j = 1−xj for each j ∈ [n]. Finally
t = 0. The clause constraints are satisfied by the assumption that x1, . . . , xn

satisfies all the clauses. The objective value for this feasible solution equals 1.
Assume that the answer to 3-sat is no, but the optimal objective value to (8)

is greater than 0, so t < 1. Since xj , xj ∈ {0, 1} in every feasible solution to (8),
there must be at least one variable with the value of 1 in each clause constraint.
But, as the answer to 3-sat is no, there must be j such that xj = xj , which
contradicts the feasibility of xj and xj for t < 1. Hence t = 1 and the optimal
objective value of (8) is 0. �	

5.1 0-1 Knapsack Problem

In this section we study the 0-1 knapsack problem with uncertain weights that is
a special case of problem (6) in which X = {0, 1}n and m = 1, i.e. we investigate
the following problem:

max
∑

j∈[n]

cjxi

s.t.
∑

j∈[n]

(âj + δjΔj)xj ≤ b,

∑

j∈[n]

δj = Γ,

δj ∈ {0, 1} j ∈ [n],
xj ∈ {0, 1} j ∈ [n].

(9)

Problem (9) is NP-hard, because the deterministic 0-1 knapsack problem,
obtained by fixing Γ = 0, is already NP-hard [6]. We will show that (9) can
be reduced the following constrained shortest path problem in which: we are
given a network G = (V,A) with a cost ca ≥ 0 and a weight wa ≥ 0 specified
for each arc a ∈ A. We seek a shortest s − t path in G whose total weight does
not exceed b. This problem is NP-hard [6]. However, it can be solved in pseu-
dopolynomial time O(|A|b) in acyclic networks, assuming that b ∈ Z+, by using
dynamic programming and it admits a fully polynomial approximation scheme
(FPTAS) [7]. Consequently the problem (9) can be solved in pseudopolynomial
time and has a FPTAS as well.

The method of constructing the corresponding network G = (V,A) for n = 6
and Γ = 4 is shown in Fig. 3 (the idea for arbitrary n and Γ ∈ {0, . . . , n} is
the same). Network G is composed of n layers. In the jth layer we consider
all possible four cases for the variable xj . Namely, xj = 1 and δj = 0 (solid
horizontal arc); xj = 0 and δj = 0 (dashed horizontal arc); xj = 1 and δj = 1
(solid diagonal arc); xj = 0 and δj = 1 (dashed diagonal arc). We seek a longest
s − t path in G whose weight is not greater than b. Observe that this problem
can be easily reduced to the constrained shortest path problem by replacing cj

with cmax − cj for each j ∈ [n], where cmax = maxj∈[n] cj . Since each s − t path
has the same number of arcs, the longest constrained shortest path in G is the
same as the shortest constrained path in the modified network.
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Fig. 3. Network for n = 6 and Γ = 4.

It is easy to see that each optimal solution to the constrained longest path
problem in G corresponds to an optimal solution to (9). Each feasible s − t
path in G contains exactly Γ diagonal arcs, which correspond to δj = 1, and
exactly n−Γ horizontal arcs which correspond to δj = 0. For each diagonal and
horizontal arcs the path indicates whether xj = 1 or xj = 0, which provides a
feasible solution to (9). Since the computed path is the longest one, it corresponds
to an optimal solution to (9).

5.2 Continuous 0-1 Knapsack Problem

In this section we examine the continuous version of the 0-1 knapsack problem
with uncertain weights, i.e. the model (7) discussed in Sect. 4 (a special case of
problem (6)). This model can be linearized in a standard way by introducing
additional n variables yj ≥ 0, j ∈ [n], which express yj = δjxj , and 2n constraints
of the form yj ≤ δj , yj ≥ xj − (1 − δj) for j ∈ [n]. In this section we will
transform (7) into a mixed integer linear program having only n + 1 variables
(including n binary variables) and at most 2n + 1 additional linear constraints.
We also propose an upper bound, which can be computed in O(n2) time.

Fix δj , j ∈ [n], and consider the following linear programming problem (with
dual variables β, αj , in brackets):

max
∑

j∈[n]

cjxj

s.t.
∑

j∈[n]

(âj + δjΔj)xj ≤ b [β],

xj ≤ 1 j ∈ [n] [αj ],
xj ≥ 0 j ∈ [n].

(10)
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The dual to (10) is

min βb +
∑

j∈[n]

αj

s.t. β(âj + δjΔj) + αj ≥ cj j ∈ [n],
αj ≥ 0 j ∈ [n],
β ≥ 0.

(11)

In an optimal solution to (11), we can fix αj = [cj − β(âj + δjΔj)]+, where
[y]+ = max{0, y}. Hence (11) can be rewritten as

min
β≥0

g(δδδ, β) = βb +
∑

j∈[n]

[cj − β(âj + δjΔj)]+. (12)

Proposition 1. For any δδδ, the function g(δδδ, β) attains minimum at β = 0 or
β = ck

âk
or βk = ck

âk+Δk
for some k ∈ [n].

Proof. Let us reorder the variables so that

c1
â1 + δ1Δ1

≥ c2
â2 + δ2Δ2

≥ · · · ≥ cn

ân + δnΔn
.

Let k ∈ [n] be the smallest index in [n] such that
∑

j∈[k](âj + δjΔj) > b. If there
is no such k, then we fix xj = 1 for each j ∈ [n], obtaining a feasible solution
to (10) with the objective value

∑

j∈[n] cj . The objective value of (11) for β∗ = 0
is also

∑

j∈[n] cj so, by strong duality β∗ = 0 is optimal.
Assume that k < n. Fix b′ =

∑

j∈[k−1](âj + δjΔj) ≤ b and b′ = 0 if k = 1.
Let us construct a feasible solution to (10) by setting xj = 1 for j ∈ [k − 1] and
xk = (b − b′)/(âk + δkΔk). The objective value of (10) is

∑

j∈[k−1] cj + ckxk.
Let us now construct a feasible solution to (11) by fixing β∗ = ck

âk+δkΔk
. Using

the fact that the optimal α∗
j = [cj − β(âj + δjΔj)]+, j ∈ [n], we conclude that

α∗
j = 0 for j ≥ k, and we get the objective value of (11)

ckb

âk + δkΔk
+

∑

j∈[k−1]

cj − ck

âk + δkΔk
b′ =

∑

j∈[k−1]

cj + ckxk.

Hence β∗ is optimal according to the strong duality. Since β∗ = ck

âk+δkΔk
and

δk ∈ {0, 1} the proposition follows. �	
Using the fact that δδδ ∈ {0, 1}n, let us rewrite g(δδδ, β) as follows:

g(δδδ, β) = βb +
∑

j∈[n]

([cj − βâj ]+ + δj([cj − β(âj + Δj)]+ − [cj − βâj ]+) .

Setting φ(β) = βb+
∑

j∈[n][cj−βâj ]+ and ψj(β) = [cj−β(âj+Δj)]+−[cj−βâj ]+
yields

g(δδδ, β) = φ(β) +
∑

j∈[n]

δjψj(β).
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Fix B = { ck

âk
: k ∈ [n]} ∪ { ck

âk+Δk
: k ∈ [n]} ∪ {0}. Proposition 1 now shows that

the optimal values of δδδ can be found by solving the following max-min problem:

max
δδδ∈Φ

min
β∈B

g(δδδ, β), (13)

which can be represented as the following program:

max t

s.t. t ≤ φ(β) +
∑

j∈[n]

ψj(β)δj β ∈ B,

∑

j∈[n]

δj = Γ,

δj ∈ {0, 1} j ∈ [n].

(14)

Model (14) has n binary variables and one continuous variable. Since |B| ≤ 2n+1,
the number of constraints is at most 2n + 2. Observe that the size of B can be
smaller, since some ratios in B can be repeated. Unfortunately, no polynomial
time algorithm for solving (14) is known, so the complexity of the problem
remains open. Observe that we can use (13) to compute an upper bound for (10).
Namely, by exchanging the min-max operators we get

max
δδδ∈Φ

min
β∈B

g(δδδ, β) ≤ min
β∈B

max
δδδ∈Φ

g(δδδ, β) := UB.

For a fixed β ∈ B, the optimal values of δδδ can be found in O(n) time by solving
a selection problem (see, e.g., [4]). Hence UB can be computed in O(n2) time.

6 Uncertain Right Hand Sides

In this section we will show how to cope with uncertain right hand sides of the
constraints. To simplify the presentation, we will assume that the constraint
coefficients are deterministic. We thus study the following problem

max z =cccTxxx

AAAxxx ≤ ˜bbb,

xxx ∈ X.

(15)

where AAA is m × n matrix of precise constraint coefficients and b̃bb is an m vector
of uncertain right hand sides. The meaning of X is the same is in the previous
sections. Assume that b̃i is only known to belong to the interval [̂bi −Δi,̂bi +Δi],
i ∈ [m]. Let Φ = {δδδi ∈ {0, 1}m :

∑

i∈[m] δi = Γ}. A fixed vector δδδ ∈ Φ induces the

uncertainty set Uδδδ = {bbb ∈ Rm : bi ∈ [̂bi −δiΔi,̂bi], i ∈ [m]}. Using the optimistic
approach (see Sect. 2), we can transform (15) into the following problem:

max z =cccTxxx

min
δδδ∈Φ

max
bbb∈Uδδδ

AAAxxx ≤ bbb,

xxx ∈ X.

(16)
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Problem (16) can be rewritten as follows:

max cccTxxx
∑

j∈[n]

âijxj ≤ ̂bi − δiΔi i ∈ [m],

∑

i∈[m]

δi = Γ i ∈ [m],

δi ∈ {0, 1} i ∈ [m].
xxx ∈ X.

(17)

Observe that (17) can be solved by trying all possible vectors of δδδ, which can be
done in reasonable time if the number of constraints is not large. In particular,
if X is a polyhedron and m is constant, then (17) can be solved in polynomial
time. The next theorem characterizes the problem complexity when m is a part
of input.

Theorem 2. Problem (17) is strongly NP-hard and not at all approximable even
if X is a bounded polyhedron.

Proof. Consider the strongly NP-complete 3-sat problem [6], in which we are
given a set of boolean variables {x1, . . . , xn} and a set of clauses C1, . . . , Cm. Each
clause Ci contains three literals {pi, qi, ri}, where pi, qi, ri ∈ {x1, x1, . . . , xn, xn}.
We ask if there is a 0 − 1 assignment to the variables which satisfies all the
clauses. Given an instance of 3-sat we build the following program:

max (1 − t)
−xj ≤ 0 − δj · 1 j ∈ [n],
−xj ≤ 0 − δ′

j · 1 j ∈ [n],
xj + xj ≤ 1 j ∈ [n],
∑

j∈[n](δj + δ′
j) = n,

pi + qi + ri ≥ 1 − t ∀Ci = {pi, qi, ri},
δj , δ

′
j ∈ {0, 1} j ∈ [n],

xj , xj ∈ [0, 1] j ∈ [n],
t ∈ [0, 1].

(18)

Notice that in any feasible solution to (18) we must have δj = 1 and δ′
j = 0;

or δj = 0 and δ′
j = 1. Indeed, if δj = δ′

j = 1, then xj ≥ 1, xj ≥ 1 which
contradicts xj + xj ≤ 1. If δj = δ′

j = 0, then there must be some k ∈ [n] such
that δk = δ′

k = 1 and we again get contradiction. Now δj = 1 and δ′
j = 0 implies

xj = 1 and xj = 0, and δj = 0 and δ′
j = 1 implies xj = 0 and xj = 1. The rest

of the proof is the same as in the proof of Theorem 1. �	

7 The Shortest Path Problem with Uncertain Costs

Let X be the set of characteristic vectors of all s − t paths in a given network
G = (V,A), X ⊆ {0, 1}|A|. Suppose that the arc costs are uncertain, and they
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are specified as intervals [ĉij − Δij , ĉij + Δij ], (i, j) ∈ A. Applying the approach
from Sect. 2, we get the following model:

min
∑

(i,j)∈A

(cij + δijΔij)xij

s.t
∑

(i,j)∈A

δij = Γ

δij ∈ {0, 1} (i, j) ∈ A,
xxx ∈ X.

(19)

We now show that (19) can be solved in polynomial time. Given network G =
(V,A), we form network G′ = (V,A′) having the same set of nodes with the
same s and t. For each arc (i, j) ∈ A we create two parallel arcs, namely the
solid arc (i, j) ∈ A′ with cost ĉij and weight 1 and the dashed arc (i, j) ∈ A′

with cost ĉij + Δij and weight 0. An example is shown in Fig. 4. We solve the
constrained shortest path problem in G′ with b = |A|−Γ , i.e. we seek a shortest
s − t path in G′ whose weight does not exceed |A| − Γ . This problem can be
solved in O(|A|b)-time [7] which is O(|A|2), by the definition of b.

Fig. 4. Network G′ for G = (V, A). We seek a shortest s − t path with weight at most
|A| − Γ , i.e. which uses at most |A| − Γ solid arcs.

To see that the transformation is correct, let P be a path in G′ with cost
c(P ). Path P is of the form PS ∪ PD, where PS is the set of solid arcs in P and
PD is the set of dashed arcs is P . Since |PS | ≤ |A| − Γ , we get |A\PS | ≥ Γ .
We form a feasible solution to (19) with the cost at most c(P ) as follows. If
(i, j) ∈ P and (i, j) is a solid arc, we fix xij = 1 and δij = 0; if (i, j) ∈ P
and (i, j) is a dashed arc, we fix xij = 1. We also fix δij = 1 for any subset of
Γ arcs in A\PS . It is easy to see that we get a feasible solution to (19) with
the objective value at most c(P ). Conversely, let (xij , δij) be a feasible solution
to (19) with the objective value c∗. We construct a corresponding path P in G′

as follows. If xij = 1 and δij = 0, then we add the solid arc (i, j) to P ; if xij = 1
and δij = 1, then we add the dashed arc (i, j) to P . Since xij describe an s − t
path in G, the set of arcs P is an s − t path in G′. Suppose that we chose more
than |A| − Γ solid arcs to construct P . Then |{(i, j) ∈ A : δij = 0}| > |A| − Γ ,
and |{(i, j) ∈ A : δij = 1}| < Γ , a contradiction with the feasibility of δij . Hence
P is a feasible path in G′ and c(P ) is equal to c∗. So, the cost of an optimal path
in G′ is at most c∗.
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The proposed technique, consisting in arc duplication, can be used to solve
other network problems. For example, when X is the set of characteristic vectors
of spanning trees in G, then we can use an algorithm for the constrained spanning
tree problem described in [11].

8 Conclusion

In this paper we have proposed a new approach to deal with uncertainty in
optimization problems. Our idea is to soften the assumption that the worst
scenario will occur for a given solution. We can thus use the pessimistic and the
optimistic approaches to provide a broader family of solutions, one of which can
be ultimately chosen by decision maker. Unfortunately, the proposed approach
may lead to computationally harder problems. In particular, even the case of
linear programming problems is NP-hard. However, we have shown in this paper
some examples of optimization problems with uncertain parameters for which,
after applying the approach, effective solution methods can be constructed.

The proposed approach can be too optimistic. Namely, the computed solu-
tion can be infeasible with large probability. Hence, and interesting research
direction is to combine the pessimistic and the optimistic approaches, by using
some aggregation methods.
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Abstract. The survival of a supermarket chain is heavily dependent on
its capacity to maintain the loyalty of its customers. Proposing adequate
products to customers is the issue of the store’s assortment. With tens
thousands of products on shelves, designing the ideal assortment is the-
oretically a thorny combinatorial optimization problem. The approach
we propose includes prior knowledge on the hierarchical organization
of products by family to formalize the ideal assortment problem into
a knapsack problem. The main difficulty of the optimization problem
remains the estimation of the expected benefits associated to changes
in the product range of products’ families. This estimate is based on
the accounting results of similar stores. The definition of the similarity
between two stores is then crucial. It is based on the prior knowledge on
the hierarchical organization of products that allows approximate reason-
ing to compare any two stores and constitutes the major contribution of
this paper.

Keywords: Optimal assortment in mass distribution · Semantic
similarity measures · Knapsack problem

1 Introduction

Competition in large retailers is becoming increasingly intense; therefore, in
order to satisfy fluctuating demand and customers’ increasing expectations, deal
with the competition and remain or become market leaders, retailers must focus
on searching for sustainable advantages. The survival of a supermarket chain
is heavily dependent on its capacity to maintain the loyalty of its customers
[11,12]. Proposing adequate products to its customers is the issue of the store’s
assortment, i.e., products offered for sale on shelves [10,13]. Moreover, retail-
ers are faced to manage high stores’ networks. This way, they use a common
assortment shared in the stores’ network to allow an easier management [14].
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Therefore, stores share a common and centralised assortment [18] with some
tolerated exceptions to take into account specific characteristics of stores in the
network [16]. To improve their global performance, retailers aim to increase their
knowledge on stores’ specific characteristics in the network to suggest the optimal
assortment for each store, e.g., they try to identify the products that perform
remarkably in some stores of the network to recommend them to other simi-
lar stores. However, the definition of similar stores is not so obvious: it can be
related to the localisation of stores, their assortments on shelves, their revenues,
their format, e.g., Hypermarket, Supermarket. . . [11]. This concept of similarity
plays a central role in this contribution.

In this article we address the question of the ideal assortment in supermar-
kets. To better understand the complexity of the task, it must be remembered
that some hypermarkets offer up to 100,000 products [16]. Defining the ideal
assortment in a department store consists in selecting this set of products. More
formally, this thorny problem corresponds to an insoluble combinatorial opti-
mization problem. In practice, decisions are made locally by a category man-
ager, while the problem of the ideal assortment should correspond to a global
decision at the store level. To tackle this question, retailers have prior knowledge
available [17]. Indeed, department store are organized into categories, e.g., food,
household products, textiles, etc. These categories are themselves divided
into families or units of need (e.g. textiles category is derived into woman, man
and child sections and so on). This hierarchical organization of products makes
it possible to reason about families of products, structure the decision and thus
avoid combinatorial explosion. Most of the time, a hypermarket cannot choose
a single product to increase its offer. Indeed, this additional item necessarily
belongs to a level of assortment or product line, generally in adequacy with the
size or the location of the store: choosing a product requires to take all products
associated to the same level of assortment [16,18]. For example, if a store offers
a soda section, it can be satisfied with a minimum offer, e.g., Coca-Cola 1.5L;
but it can also claim a product range more consistent: for example, it would like
to offer Lipton 2L, nevertheless, increase cannot be realized product by prod-
uct, but by subset of products and the final offer should be Coca-Cola 1.5L +
Lipton 2L + Orangina 1.5L + Schweppes 1.5L.

The proposed approach includes prior knowledge on the hierarchical orga-
nization of products by family and constraints on levels of assortment for each
family. It proposes to calculate the ideal assortment from the overall point of
view of store’ managers. The ideal assortment thus appears as a combinatorial
optimization problem that can be solved thanks to approximate reasoning based
on the products’ hierarchy of abstraction. The main difficulty of the optimiza-
tion problem remains the estimation of the expected benefits associated to any
increase of the product range in a given family. This estimate is based on the
accounting results of similar stores. The definition of the similarity between two
stores is then crucial. It is based on the prior knowledge on the hierarchical
organization of products that allows approximate reasoning and constitutes the
major contribution of this paper.
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2 Modelling the Ideal Assortment as a Combinatorial
Optimization Problem

Let Ω be the department store.
Fi is the ith family of products, i.e. a set of products that are related to a same

use category or consumption unit (e.g., soft-drinks, household electrical
products, etc.).

Recursively, any family Fi is a specialization of a super family: e.g.,
Coca-cola ∈ FSoda ⊂ FSoftDrinks ⊂ FDrinks.

Products can thus be organized within a taxonomic partial order defining
an abstraction hierarchy (Fig. 1). Products are the most specific classes of this
partial order, the leaves of the taxonomy.

Let us distinguish the particular case of families of products, i.e. the families
the lower in the hierarchy, the less abstracted ones because their descendants
are concrete products (direct parents of products). For each of these families of
products Fi, a product range or level of assortment s(Fi) is defined: for each
family of products, the department store may choose the wideness of s(Fi) in a
finite set of opportunities imposed by the direction of the stores’ network. For-
mally, for each family, a hierarchy of subsets of products ski(Fi) = 1..n in the
sense of the inclusion relationship (i.e. ski(Fi) ⊂ ski+1(Fi)) is defined and the
department store can only choose among the subsets ski(Fi) as product range
for Fi (e.g. imagine the minimal product range of the Soda family would be
Coca-Cola 1.5L, the second one Coca-Cola 1.5L + Lipton 2L + Orangina
1.5L + Schweppes 1.5L, and so on). Thus, s(Fi) can only be a subset of prod-
ucts that belongs to this finite set of product ranges ski(Fi) = 1..n defined a
priori by retailer. The size of s(Fi) is then the level ki of assortment such that
s(Fi) = ski(Fi). In practice, ki is a natural number that may vary from 1 to
9. ki = 1 when the product range for the family of products Fi is minimal and
ki = 9 when it is maximal.

Therefore, we can write: Ω �
n⋃

i=1

ski(Fi). An expected turnover p(ski(Fi))

and a storage cost c(ski(Fi)) can be associated to each ski(Fi). c(ski(Fi)) repre-
sents the storage cost the department store allocates for the family Fi.

For any super family in the hierarchical organization of products, its expected
turnover and its storage capacity are simply computed recursively as the sum of
the expected turnovers and storage capacities of the product it covers.

Designing the assortment of a department store then consists in choosing
the rank ki for each family of products (see Fig. 1). Obviously, the higher

p(Ω) �
n⋃

i=1

p(ski(Fi)), the better the assortment of Ω. Nevertheless, without

further constraints, p(Ω) should be necessarily maximal when ki = 9 ∀ i = 1..n.

In practice,
n∑

i=1

c(ski(Fi)) is generally far below
n∑

i=1

c(s9(Fi)) for obvious storage

or cost constraints C. Let us consider I a subset of families. It can be necessary
to model constraints related to this super family. For example:
c(sks.drinks(Fs.drinks)) + c(skbeers(Fbeers)) + c(skwaters(Fwaters)) ≤ CI=Beverages
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Fig. 1. Products organization and department store assortment as the union of families’
product ranges

means that the storage capacity (or the cash flow) related to Beverages (super-
family FI) is limited to CI . A lower cI bound can also be introduced: in our
example, cI represents the minimal level of investment for the superfamily fam-
ily Drinks. For any superfamily, such local constraints can be added to the
optimization problem.
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Arg max
ki,i=1..n

n∑

i=1

p(ski(Fi))

Under:
n∑

i=1

c(ski(Fi)) ≤ C − global constraint

For some I in 2{1..n}, cI ≤
|I|∑

i=1

c(ski(Fi)) ≤ CI − global constraint

This combinatorial optimization problem is known as the knapsack problem
with mono dimensional constraints and bounded natural number variables.

3 Estimate of the Expected Turnover in the Knapsack
Problem

Let consider that one of the assortments to be assessed in the optimization prob-
lem includes the increase of the product range of the product family Fi: ski(Fi)
is upgraded as ski+1(Fi). The storage cost (or purchase price) c(ski+1(Fi)) can
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be easily completed by the store because it is a basic notion in the retail seg-
ment. It is thus easy to inform this point in the optimization problem. On the
other hand, it is thornier to estimate p(ski+1(Fi)) that is however essential to
assess the expected performance of the new product range. When the level of
assortment of the store is ki, it is easy to fill in its turnover p(ski(Fi)) in the
knapsack problem but p(ski+1(Fi)) cannot directly assessed.

We have to design an estimator of p(ski+1(Fi)). It can only be estimated from
other reference measurements encountered in other similar stores. The basic idea
is that the more similar these “reference” stores are to the store of concern,
the more reliable the estimation. The most difficult problem is to define what
“reference” means. Intuitively, the “reference” stores are departments that are
“close” to the department store of concern and offer ski+1(Fi) to their customers.
p(skΩ

i+1(Fi)) can then be computed for example as the weighted mean or the max
of the p(skΩ’

i+1(Fi)) values, where Ω’ are the reference stores neighbours of Ω. For
sake of simplicity, the neighborhood is restricted to the nearest reference store
in our experiments. The next issue is now to define what “close to” means.

This concept of distance between any two department store is the crucial
issue. Roughly speaking, Ω should be similar to Ω’ when the turnovers of Ω
and Ω’ are distributed in the same way over the hierarchical organization of
products. It implies they have approximately the same types of customers.

Intuitively, the distance between any two stores should be based on a classical
metrics space where the n dimensions would correspond to all the products
that are proposed by the department store of a given chain; the value of each
coordinate would be the turnover of the product for example, and would be null if
the department store does not propose this product. Because some hypermarkets
offer up to 100,000 products, the clustering process on such a metrics space
would be based on a sparse matrix and then suffer from the space dimension.
Furthermore, such a distance would not capture the hierarchical organization of
products in the concept of similarity. Indeed, let’s go back to the hierarchical
organization of products in families. We can note that a fruits and vegetables
specialist department store is obviously closer to a large grocery store than to a
hardware store because the first two are food superstores whereas the last one is a
speciality store: the first two propose the same super family FFood. This intuitive
similarity cannot be assessed with classical distances. The hierarchical products
organization in families of products and super families is prior knowledge to be
considered when assessing how similar two departments stores are. It is necessary
to introduce more appropriate measures that take advantage of this organization
to assess the similarity of any two departments store. This notion of similarity
measures is detailed in Sect. 4.

In previous sections, we have introduced the levels of assortment ski(Fi), k =
1..n for any product family Fi. Note that the increase from ski(Fi) to ski+1(Fi)
must generate an improved turnover for the product family Fi to be worth-
while. By contrast, it requires a higher storage cost c(ski+1(Fi)) than c(ski(Fi)).
Therefore, the storage cost of at least one product family Fj,j �=i must be reduced
to keep the overall storage cost of the department store constant. Then, the
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reduced turnover p(skj−1(Fj)) of the family Fj has yet to be estimated to com-
plete the optimization problem. However, this estimation can easily be pro-
cessed. Indeed, because skj−1(Fj) ⊂ skj (Fj), p(skj−1(Fj)) can simply be deduced
from p(skj (Fj)): it is the sum of the turnovers of all products that belong to
skj (Fj) ∩ skj−1(Fj). There is clearly an assumption behind this estimation: the
disappearance of a product will not change drastically the turnover of other prod-
ucts of the same family. At this stage, for any store Ω, ∀ (k1, k2, . . . , kn) ∈ [1..9]n,
we can estimate any p(ski+1(Fi)) as the corresponding turnover of the closest
reference store to Ω.

Because designing the assortment of a department store consists in choosing
the rank ki for each family of products, we could now naively enumerate and
evaluate any potential assortment in [1..9]n to select the best one that will be
the solution of the optimization problem.

4 Taxonomy and Abstraction Reasoning

The similarity measure that meets our expectations relies on the taxonomical
structure that organises products and product families in the department store
since Ω should be similar to Ω’ when the turnovers of Ω and Ω’ are distributed
in the same way over the hierarchical organization of products. Generally, in
the literature, the elements of the taxonomical structure are named concepts (or
classes). A taxonomical structure defines a partial order of the key concepts of
a domain by generalizing and specializing relationships between concepts (e.g.
Soft drinks generalizes Soda that in turn generalizes Coca or Schweppes). Tax-
onomies give access to consensual abstraction of concepts with hierarchical rela-
tionships, e.g. Vegetables defines a class or concept that includes beans, leeks,
carrots and so on, that are more specific concepts. Taxonomies are central
components of a large variety of applications that rely on computer-processable
domain expert knowledge, e.g. medical information and clinical decision support
systems [1]. They are largely used in Artificial Intelligence systems, Information
Retrieval, Computational Linguistics. . . [2].

In our study, using products taxonomy allows synthetizing and comparing the
sales of department store through abstraction reasoning. In retail world, prod-
uct taxonomy can be achieved by different means. Retailers or other experts can
build this commodity structure. Most approaches usually introduce the Stock
Keeping Unit (SKU) per item [3] or product categories (e.g. Meat, Vegetables,
Drinks, etc.). Some researchers adopt the cross-category level indicated by
domain experts and/or marketers [4].

More formally, we consider a concept taxonomy T = (�,C) where (C) stands
for the set of concepts (i.e. class of products in our case) and (�) the partial
ordering. We denote A(c) = {x ∈ C/c � x} and D(c) = {x ∈ C/x � c}
respectively the ancestors and descendants of the concept c ∈ C. The root is
the unique concept without ancestors (except itself) (A(root) = {root}) and a
concept without descendant (except itself) is denoted a leaf (in our case a leaf
is a product) and D(leaf) = {leaf}. We also denote leaves-c the set of leaves



Semantic Hierarchical Clustering 207

(i.e. products in our study) that are included in the concept (or class) c, i.e.,
leaves-c= D(c) ∩ leaves.

4.1 Informativeness Based on Taxonomy

An important aspect of taxonomies is that they give the opportunity to anal-
yse intrinsic and contextual properties of concepts. Indeed, by analysing their
topologies and additional information about concept usage, several authors have
proposed models, which take advantage of taxonomies in order to estimate the
Information Content (IC) of concepts [5]. IC models are designed to mimic
human, generally consensual and intuitive, appreciation of concept informative-
ness. As an example, most people will agree that the concept Cucumber is more
informative than the concept Vegetables in the sense that knowing the fact
that a customer buys Cucumber is more informative than knowing that he buys
Vegetables. Indeed, various taxonomy-driven analyses, such as computing the
similarity of concepts, extensively depend on accurate IC computational mod-
els. Initially, Semantic Similarity Measure (SSM) were designed in an “ad-hoc”
manner for few specific domains [6]. Research have been done in order to get a
theoretical unifying framework of SSMs and to be able to compare them [1,7].

More formally, we denote I the set of instances, and I∗(c) ⊆ I the instances
that are explicitly associated to the concept c. We consider that no annotation
associated to an instance can be inferred, i.e., ∀ c, c’ ∈ C, with c � c’, I∗(c) ∩
I∗(c’) = ∅. We denote I(c) = I the instances that are associated to the concept
c considering the transitivity of the taxonomic relationship and concept partial
ordering �, e.g. I(Vegetables) ⊆ I(Food). We therefore obtain ∀ c ∈ C, |I(c)| =∑

x∈ D(c)

|I∗(x)|.
In our approach, we use sales receipt to count the instances of concept: obvi-

ously, only products appear on sales receipt, and then only instances of products
can occur in practice. The information is only carried by the leaves of the tax-
onomy (products in our case), ∀c /∈ leaves, |I∗(c)| = 0.

Due to the transitivity of the taxonomic relationship the instances of a con-
cept c ∈ C are also instances of any concept subsuming c, i.e., Vegetables
� Food ⇒ I(Vegetables) ⊆ (Food). This central notion is generally used to
discuss the specificity of a concept, i.e. how restrictive a concept is with regard
to I. The more restrictive a concept, the more specific it is considered to be.
In the literature, the specificity of a concept is also regarded as the Information
Content (IC). In this paper we will refer to the notion of IC defined through
a function IC : C −→ IR+. In accordance to knowledge modelling constraints,
any IC function must monotonically decrease from the leaves to the root of the
taxonomy such as c � c’ ⇒ IC(c) ≥ IC(c’).

In this paper, extrinsic evidence has been used to estimate concept infor-
mativeness (i.e. that can be found outside the taxonomy). This is an extrinsic
approach, based on Shannon’s Information Theory and proposes to assess the
informativeness of a concept by analysing a collection of items. Originally defined
by Resnik [5], the IC of a concept c is defined to be inversely proportional to
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pro(c), the probability that c occurs in a collection. Considering that evidence of
concept usage can be obtained by studying a collection of items (here, products)
associated to concepts, the probability that an instance of I belongs to I(c) can
be defined such as pro : 2c → [0, 1] with pro(c) = |I(c)|/|I|. The informativeness
of a concept is next assessed by defining: IC(c) = −log(pro(c)).

We will then use extrinsic IC in our proposal to capture concept usage in
our specific application context. Let us note T the taxonomy of products, F the
set of families (or classes). The leaves of T are the products (e.g., Coca-cola
1.5L). Classes that directly subsume leaves are product families (e.g. Soda) with
which assortment levels are associated ((k1, k2, . . . , kn) ∈ [1..9]n); other classes
are super family of products (e.g., Soft-drinks). Let us derive these notions in
our modeling. The above “collection of items” corresponds to the products that
a network of department store within a same chain sails. ∀x ∈ leaves(T ), pΩ(x)
(i.e. x is a product) is the turnover related to the product x in the store Ω. We
define the probability mass pro as:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∀x ∈ leaves(T ), |I∗(x)| � |I(x)| =
∑

Ω

pΩ(x) then

pro(x) =
∑

Ω pΩ(x)
∑

x

∑
Ω pΩ(x)

and IC(x) = −log(pro(x))

∀ f /∈ leaves, |I∗(f)| = 0, |I(f)| =
∑

x∈leaves-f

|I(x)|,

pro(f) =

∑
x∈leaves-f

∑
Ω pΩ(x)

∑
x

∑
Ω pΩ(x)

and IC(f) = −log(pro(f))

4.2 Similarity Measures Based on Taxonomy

After the informativeness of a concept is computed, we can now explain how
to compute the similarity of any two concepts using concepts’ informativeness.
We recall some famous Semantic Similarity Measure (SSM) based on the infor-
mativeness of concepts and usually used in Information Retrieval. One common
SSM is based on the Most Informative Common Ancestor (MICA) also named
the Nearest Common Ancestor (NCA). For example, in Fig. 1, the MICA of
Coca-cola 1.5L and Schweppes 1.5L is Soda while the MICA of Soda and
Water is Drinks (the root in Fig. 1). Resnik [5] is the first to implicitly define
the MICA: this is the concept that subsumes two concepts c1 and c2 that has
the higher IC (i.e., the most specific ancestor):

simResnik(c1, c2) = IC(MICA(c1, c2))

Such SSMs allow comparing any two concepts. However, as stores are associated
to subsets of concepts, we still have to introduce group similarities to compare
sub-sets of concepts. Indirect SSMs have been proposed [8,9]. The Best Match
Average (BMA) [8] is a composite average between two sets of concepts, here A
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and B:

simBMA(A,B) =
1

2|B|
∑

c∈B

simm(c,A) +
1

2|A|
∑

c∈A

simm(c,B)

where simm(c,X) = max
c’∈X

sim(c, c’) and sim(c, c’) is any IC-based pairwise SSM.

It is thus the average of all maximum similarities of concepts in A regarding B
and vice-versa. This is the most common group similarity. See [8,9] for a complete
review.

Pairwise and groupwise SSMs allow comparing any two subsets of concepts
(products in our case) when a taxonomical structure defines a partial order of
the key concepts of a domain. In our study, they allow to capture the idea that
two stores Ω and Ω’ are similar when their turnovers are distributed in the same
way over the hierarchical organization of products.

5 Illustration and Experiments

This section aims to illustrate the modelling and the data processing chain
described in the preceding sections. It is illustrated how designing the ideal
assortment in retail thanks to reasoning on an abstraction hierarchy of prod-
ucts, semantic similarity measures and knapsack formalization. The required
parameters and variables for this modelling are:

1. A taxonomy of products shared in the store network.
2. A product range (or level of assortment ski(Fi)) defined for all families Fi of

products.
3. A storage cost associated to each product range for each family: for each

family, a hierarchy of subsets of products ski(Fi), ki = 1..n is defined, and
the higher ki, the higher the corresponding cost c(ski(Fi)).

4. For each store, a turnover p(ski(Fi)) is associated to each product range of
each family ski(Fi).

5. Storage capacity thresholds are introduced to manage storage constraints (see
local constraints in Sect. 2).

Figure 2 illustrates the required data. The example in Fig. 2 takes into
account three stores (M1, M2 and M3):

1. We only consider two products’ families denoted F for Fruits and V for
Vegetables. There are two product ranges for the Fruits family (i.e., kF is
1 or 2) and three for the Vegetables family (i.e., kV is 1, 2 or 3). We have
S1(F ) ⊂ S2(F ) and S1(V ) ⊂ S2(V ) ⊂ S3(V ).

2. Each product range has its own storage cost: c(S1(F )) = 346; c(S2(F )) =
1191; c(S1(V )) = 204; c(S2(V )) = 866; c(S3(V )) = 2400.

3. From the given product range associated with each store, in this example
(kF , kV ), their turnover can be computed that is p(SkF (F )) + p(SkV (V )).

4. Each store has the following storage capacity: SCM1 = 1670;SCM2 =
2700;SCM3 = 5540 which implies that c(SkF (F )) + c(SkV (V )) ≤ SCM
for each store with given values of a couple of variables (kF , kV ).
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Fig. 2. Required parameters and variables for the knapsack model

Any change in SkF (F ) or SkV (V ) entails turnovers variations. The optimal
assortment problem consists in identifying the best couple of values for kF and
kV . This result is achieved by solving the knapsack problem formalized in this
paper. The main difficulty is the assessment of the turnovers when kF and kV

are changed into kF + j and kV + j’. An estimation of these turnovers has to be
computed in order to evaluate the performance of the candidate values kF + j
and kV +j’ in the knapsack problem. As explained above this estimation is based
on the turnovers of similar stores that propose kF + j and kV + j’ for families
Fruits and Vegetables. To this end, we apply semantic similarity measures on
the product taxonomy to compute a similarity matrix between stores (cf. Sect. 4).
The unknown turnovers are then assessed from those of the most similar stores.
The stores’ similarity matrix is based on semantic similarity measures (in this
experiment, the Resnik’s measure for the semantic similarity measure and the
BMA for the groupwise measure using the semantic library tools1). Note that,
this step allows defining similarities between stores and can be used to define
semantic clusters of stores [19]. Once the matrix is defined, it is used to estimate
the turnovers of increased candidate product ranges (kF + j and kV + j’) esti-
mated as the corresponding turnovers of the nearest stores that propose kF + j
and kV + j’ for F and V . An example of estimation of product range turnovers
is proposed in Fig. 3.

1 https://www.semantic-measures-library.org/sml/index.php?.

https://www.semantic-measures-library.org/sml/index.php?
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Fig. 3. Estimation of the turnovers of increased product ranges

The last step consists in exploiting the previous estimation in the knapsack
problem. As explained above, the knapsack problem aims identifying the ideal

product range for each family in order to find: Arg max
ki,i=1..n

n∑

i=1

p(ski(Fi)) while

respecting (at least) the overall storage cost constraint
n∑

i=1

c(ski(Fi)) ≤ C defined

in Sect. 2. This step involves assessing any combination of ski(Fi) for all cate-
gories of products Fi. Constraints regarding the storage costs c(ski(Fi)) can be
applied on any category of products which allow reducing complexity of the
knapsack problem thanks to local reduction of possible solutions (see local con-
straints in Sect. 2). An illustration on how local constraints reduce the set of
solutions is available in the Fig. 4.

For example in Fig. 4, the highest level of assortment for vegetables s3(V ) is
greater than the total storage capacity of stores M1 and M2. This information
allows eliminating the upgrade s3(V ) for the Vegetables family in stores M1
and M2. Finally, in this example three upgrades can be envisaged:

1. Store M1 can improve its Fruits assortment from S1(F ) to S2(F ):

c(S2(F )) + c(S1(V )) ≤ SCM1

2. Store M1 can improve its Vegetables assortment from S1(V ) to S2(V ):

c(S1(F )) + c(S2(V )) ≤ SCM1

3. Store M2 can improve its Fruits assortment from S1(F ) to S2(F ):

c(S2(F )) + c(S2(V )) ≤ SCM2

Then, store M3 owns already all products, so no upgrade is feasible. Due to
its storage capacity, store M2 can only improve its Fruits assortment. Store
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Fig. 4. Example of local constraints

M1 is available to improve either its Fruits or its Vegetables assortments.
The Fig. 3 provides the turnovers’ estimations for any feasible product range
upgrade. The optimal upgrades can now be deduced from it. Therefore, store
M1 should upgrade its Vegetables assortment from S1(V ) to S2(V ) to improve
its turnover. This trivial example allows highlighting how knapsack problem can
be simplified thanks to local restrictions and taxonomical reasoning.

This example was a mere illustration. The naive optimization of the assort-
ment would consist in trying all possible subsets of products without considering
constraints (from stores or from range products ). In other words, it requires to
try all possible combinations of products whatever their category. In our exam-
ple, without taxonomy, we should basically reason on the set of products: apple,
grapefruit, cherry, carrot, eggplant and onion. With only 6 products, we
have 63 possibilities [2n − 1] which have to be tried for each store. In our toy
example, reasoning on the taxonomy of products and managing storage cost con-
straints significantly reduce the research space. We have shown in other articles
referring to the biomedical field the interest of semantic similarities when the
dimensions of space are organized by a domain taxonomy [15].

To ensure that this process is scalable with a real dataset from retail, we have
built three benchmarks based on the Google Taxonomy2 that we report in this
paper. Experiments have been processed on 1 CPU from an Intel Core I7-2620M
2.7GHz 8Go RAM. We exploited the CPLEX library (IBM CPLEX 1.25) and
each benchmark requires less than one second. These benchmarks simply allow

2 https://www.google.com/basepages/producttype/taxonomy.fr-FR.txt.

https://www.google.com/basepages/producttype/taxonomy.fr-FR.txt


Semantic Hierarchical Clustering 213

us to claim that our complete data processing to compute the ideal assortment
of stores of a network can be achieved even for significantly large problems as
referred in Table 1. Semantic interpretations of our work are yet to be done and
require the intervention of domain experts and evaluations over large periods of
time. This assessment is outside the scope of this article and will be carried out
as part of the commercial activity of TRF Retail.

Table 1. Benchmarks’ details

Benchmark 1 Benchmark 2 Benchmark 3

Number of stores 15 30 50

Number of levels of range product 4 16 20

Number of families of products 12 80 200

Number of variables 180 2 400 10 000

6 Conclusion

The aim of the paper is to propose a methodology allowing improvement of
retailers’ assortments. Indeed, the ultimate goal consists in proposing adequate
products to stores depending on their specific constraints. To achieve this goal
semantic approaches are used not only to improve knowledge on stores but also
to make the estimations of the consequences of assortment changes more reli-
able. As a matter of fact, the proposed approach includes prior knowledge from
the taxonomy of products used to formalize the ideal assortment problem into a
knapsack problem. The estimation of the expected benefits associated to changes
in the product range of products’ families is based on results of similar stores.
Those similarities are identified by means of semantic similarity measures we pre-
viously studied in the field of biomedical information retrieval. The use of seman-
tic approaches brings more appropriate results to retailers because it includes
part of their knowledge on the organization of products sold.

The management of the products’ taxonomy notably reduces the search space
for the knapsack problem. It also allows defining an appropriate similarity matrix
between the stores of a network that takes into account the way the turnovers
of the stores are distributed. It implies they have approximately the same types
of customers. The definition of this similarity is crucial for the estimation of
turnovers required in the knapsack problem. This process should be computed
repetitively to allow continuous improvement which is a key factor in retail
sector. Actually, we are working on the integration of more sophisticated con-
straints in our optimization problem in order to capture more complex behaviors
of retailers.
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Abstract. Conformance checking techniques are widely adopted to val-
idate process executions against a set of constraints describing the
expected behavior. However, most approaches adopt a crisp evaluation
of deviations, with the result that small violations are considered at the
same level of significant ones. Furthermore, in the presence of multiple
data constraints the overall deviation severity is assessed by summing
up each single deviation. This approach easily leads to misleading diag-
nostics; furthermore, it does not take into account user’s needs, that are
likely to differ depending on the context of the analysis. We propose a
novel methodology based on the use of aggregation functions, to assess
the level of deviation severity for a set of constraints, and to customize
the tolerance to deviations of multiple constraints.

Keywords: Conformance checking · Fuzzy aggregation · Data
perspective

1 Introduction

Nowadays organizations often define procedures describing how their processes
should be performed to satisfy a set of constraints, e.g., to minimize the through-
put time or to comply with rules and regulations. A widely used formalism to
represent these procedures consists in so-called process models, that are graphic
or logic formalism representing constraints defined on organization processes,
e.g., by the order of execution of the activities. However, it is well documented
in literature that real process behavior often deviates from the expected process,
which often leads to performance issues or opens the way to costly frauds [12].
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In recent years, the increasing use by organizations of information systems (e.g.,
ERP, SAP, MRP and so on) to support and track the execution of their pro-
cesses enabled the development of automatic, data-driven techniques to assess
the compliance level of the real process behavior. Among them, Conformance
checking techniques have been gaining increasing attention both from practition-
ers and academics [1,2,5,6,23]. Given an event log, i.e., a log file tracking data
related to activities performed during process executions, conformance checking
techniques are able to pinpoint discrepancies (aka, deviations) between the log
and the corresponding model. While classic conformance checking techniques
only deal with the control-flow of the process, i.e., the activities execution order,
in recent years also some multi-perspective conformance checking, aimed to deal
also with data constraints, have become more and more relevant [23,25].

Nevertheless, there are still several open challenges to implement multi-
perspective conformance checking. Among them, here we focus on the lack of
appropriate modeling mechanisms for dealing with the uncertainty and gradu-
ality often characterizing human-decisions in real-world processes. State of the
art techniques implement a crisp approach: every execution of an activity is
considered as either completely wrong or completely correct. [13,23,25].

While this assumption is well grounded to deal with the control-flow (indeed,
each activity is either executed at the right moment, or it is not), when address-
ing data constraints it can easily lead to misleading results. A well-known exam-
ple of this issue can be found in the healthcare domain. Let us assume that a
surgery department implements a guideline stating that the systolic blood pres-
sure (SBP) of a patient has to be lower than 140 to proceed with a surgery.
It is reasonable to expect that sometimes clinicians will not refuse to operate
patients whose SBP is 141, since this is quite a small deviation and delaying the
surgery could be more dangerous for the patient. Clearly, surgeries performed
with this value of SBP are likely to be much less problematic than surgeries
performed with a SBP equal to, e.g., 160. However, conformance checking tech-
niques would simply mark both these cases as ‘not compliant ’, without allowing
for any distinction. This behavior is undesirable, since it is likely to return in
output a plethora of not-interesting deviations, at the same time hiding those
which could deserve further investigation. We investigated this issue in our pre-
vious work [29], where we proposed to use fuzzy sets, which are used to present
the flexibility in the constraints and the goals in fuzzy optimization [20], to
determine the severity of violations of a single soft constraint per activity.

However, the previous work used basic strategy of standard conformance
checking techniques for dealing with multiple constraints deviations; namely,
the total degree of data deviations of that activity is computed by summing
up the costs for all the violated constraints. This strategy poses some impor-
tant limitations when investigating the data compliance. First, it introduces an
asymmetry in the assessment of control-flow and data deviations. While control-
flow deviations for each activity express the level of compliance of the activity
to control-flow constraints (either fully compliant or wrong), in the presence of
multiple data constraints the obtained value does not give an indication of the
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overall level of compliance to the constraints set. Furthermore, no customization
to the user’s needs is provided. First, in this setting data violations tend to be
considered more severe than control-flow ones, even if this might not fit with
user’s intention. Furthermore, different contexts might require tailored functions
to assess multiple data deviations severity.

In this paper, we address this issue by proposing a novel fuzzy conformance
checking methodology based on the use of aggregation functions, which have been
proved feasible for modeling simultaneous satisfaction of aggregated criteria [20].
With respect to previous work, the approach brings two main contributions: a)
it applies fuzzy aggregation operators to assess the level of deviation severity
for a set of constraints, and b) it allows to customize the tolerance to devia-
tions of multiple constraints. As a proof-of-concept, we tested the approach over
synthetic data.

The remainder of this paper is organized as follows. Section 2 introduces a
running example to discuss the motivation of this work. Section 3 introduces
basic formal notions. Section 4 illustrates our approach, and Sect. 5 presents
results obtained by a set of synthetic experiments. Section 6 discusses related
work. Finally, Sect. 7 draws some conclusions and presents future work.

2 Motivation

Consider, as a running example, a loan management process derived from previ-
ous work on the event log of a financial institute made available for the BPI2012
challenge [3,15]. Figure 1 shows the process in BPMN notation. The process
starts with the submission of a loan application. Then, the application passes
through a first assessment of the applicant’s requirements and, if the requested
amount is greater than 10000 euros, also through a more thorough fraud detec-
tion analysis. If the application is not eligible, the process ends. Otherwise, the
application is accepted, an offer to be sent to the customer is selected and the
details of the application are finalized. After the offer has been created and
sent to the customer, the latter is contacted to discuss the offer with her. At
the end of the negotiation, the agreed application is registered on the system.
At this point, further checks can be performed on the application, if the over-
all duration is still below 30 days and the Amount is larger than 10000, before
approving it.

Let us assume that this process is supported by some system able to track
the execution of its activities in a so-called event log. In practice, this is a col-
lection of traces, i.e., sequences of activities performed within the same pro-
cess execution, each storing information like the execution timestamp of the
execution, or other data element [1]. As an example, let us consider the fol-
lowing traces1 showing two executions of the process in Fig. 1 (note that we
use acronyms rather than complete activity names) : σ1 = 〈(A S, {Amount =
1 We use the notation (act, {att1 = v1, . . . , attn = vn}) to denote the occurrence of

activity act in which variables att1 . . . attn are assigned to values v1, . . . vn. The sym-
bol ⊥ means that no variable values are changed when executing the activity.
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Fig. 1. The loan management process.

8400}), (W FIRST A,⊥), (W F C,⊥), (A A,⊥), (A F,⊥), (O S,⊥), (O C,⊥),
(O S,⊥), (W C,⊥), (A R, {Duration = 34}), (W F A,⊥), (A AP,⊥), 〉; σ2 =
〈(A S, {Amount = 1400}), (W FIRST A,⊥), (W F C,⊥), (A A,⊥), (A F,⊥),
(O S,⊥), (O C,⊥), (O S,⊥), (W C,⊥), (A R, {Duration = 24}), (W F A,⊥),
(A AP,⊥), 〉. Both executions violate the constraints defined on the duration and
the amount of the loan, according to which the activity W F A should have been
anyway skipped.

Conformance checking techniques also attempt to support the user in inves-
tigating the interpretations of a deviation. In our case, the occurrence of the
activity W F A could be considered either as a 1) control-flow deviation (i.e.,
data are corrected but the activity should not have been executed) or as a 2)
data-flow deviation (i.e., the execution of the activity is correct but data have not
been properly recorded on the system). In absence of domain knowledge in deter-
mining what is the real explanation, conformance checking techniques assess the
severity (aka, cost) of the possible interpretations and select the least severe one,
assuming that this is the one closest to the reality. In our example, conformance
checking would consider σ1 as a control-flow deviation, since the cost would be
equal to 1, while data-flow deviation would correspond to 2, having two violated
constraints; for σ2, instead, the two interpretations would be equivalent, since
only one data constraint is violated. In previous work [29] we investigated how
to use fuzzy membership function to assess severity of data deviations taking
into account the magnitude of the deviations. However, the approach still comes
with some limitations when considering multiple constraints. Indeed, with this
approach the overall severity of the data deviation for an activity is assessed by
a simple sum operation. For example, let us suppose that with the method in
[29] we obtained a cost of 0.3, 0.8 for the violations of Amount and Duration in
W F A in σ1, thus obtaining a total cost of 1.1, and 0.8 and 0 in σ2, thus obtain-
ing, a total cost of 0.8. In this setting, activities involving multiple constraints
will tend to have an interpretation biased towards control-flow deviations, since
the higher the number of constraints, the higher the the data-deviation cost.
Furthermore, it is worth noting that the comparison between the two traces can
be misleading; in one case, constraints are violated, even if one only slightly
deviated; while in the second case only one constraint is violated, even if with
quite a strong deviation. However, the final numerical results are quite similar,
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thus hiding the differences. This example shows how the use of the simple sum
function can impact the results significantly, without the user realizing it and,
above all, without providing the user with any customization mechanism. For
example, the user might want to assess the data-compliance level in terms of the
percentage of satisfied constraints, or by considering only the maximum cost, and
so on. However, current techniques do not allow for this kind of customization.

3 Preliminaries

This section introduces a set of concepts that will be used through the paper.

3.1 Conformance Checking: Aligning Event Logs and Models

Conformance checking techniques detect discrepancies between a process model
and the real process execution. Here we define the notion of process model using
the notation from [2], enriched with data-related notions explained in [13].

Definition 1 (Process model). A process model M = (P, PI , PF , AM , V,
W,U, T,G, V alues) is a transition system defined over a set of activities AM and
a set of variables V , with states P , initial states PI ⊆ P , final states PF ⊆ P
and transitions T ⊆ P × (AM × 2V ) × P . U(Vi) represents the domain of Vi

for each Vi ∈ V . The function G : AM → Formulas(V ∪ {V ′
i | Vi ∈ V })

is a guard function, i.e., a boolean formula expressing a condition on the val-
ues of the data variables. W : AM → 2V is a write function, that associates
an activity with the set of variables which are written by the activity. Finally,
V alues : P → {Vi = vi, i = 1..|V | | vi ∈ U(Vi) ∪ {⊥}} is a function that
associates each state with the corresponding pairs variable=value.

The firing of an activity s = (a,w) ∈ AM × (V 	→ U) in a state p′ is valid
if: 1) a is enabled in p′; 2) a writes all and only the variables in W (a); 3)
G(a) is true when evaluate over V alues(p′). To access the components of s we
introduce the following notation: vars(s) = w, act(s) = a. Function vars is also
overloaded such that vars(Vi) = w(Vi) if Vi ∈ dom(vars(s)) and vars(s, Vi) = ⊥
if Vi 	∈ dom(vars(s)). The set of valid process traces of a model M is denoted
with ρ(M) and consists of all the valid firing sequences σ ∈ (AM × (V 	→ U))∗

that, from an initial state PI lead to a final state PF . Figure 1 provides an
example of a process model in BPMN notation.

Process executions are often recorded by means of an information system in
event logs. Formally, let SN be the set of (valid and invalid) firing of activities
of a process model M ; an event log is a multiset of traces L ∈ B(S∗

N ). Given
an event log L, conformance checking builds an alignment between L and M ,
mapping “moves” occurring in the event log to possible “moves” in the model. A
“no move” symbol “
” is used to represent moves which cannot be mimicked.
For convenience, we introduce the set S�

N = SN ∪ {
}. Formally, we set sL to
be a transition of the events in the log, sM to be a transition of the activities in
the model. A move is represented by a pair (sL, sM ) ∈ S�

N × S�
N such that:
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– (sL, sM ) is a move in log if sL ∈ SN and sM = 

– (sL, sM ) is a move in model if sM ∈ SN and sL = 

– (sL, sM ) is a move in both without incorrect data if sL ∈ SN , sM ∈ SN and

act(sL) = act(sM ) and ∀Vi ∈ V (vars(sL, Vi) = vars(sM , Vi)))
– (sL, sM ) is a move in both with incorrect data if sL ∈ SN , sM ∈ SN and

act(sL) = act(sM ) and ∃Vi ∈ V | vars(sL, Vi) 	= vars(sM , Vi)).

Let ALM = {(sL, sM ) ∈ S�
N × S�

N | sL ∈ SN ∨ sM ∈ SN} be the set of
all legal moves. The alignment between two process executions σL, σM ∈ S∗

N is
γ ∈ A∗

LM such that the projection of the first element (ignoring 
) yields σL,
and the projection on the second element (ignoring 
) yields σM .

Example 1. Let us consider the model in Fig. 1 and the trace σ1 in Sect. 2.
Table 1 shows two possible alignments γ1 and γ2 for activity W F A. For

Alignment γ1, the pair (W F A,W F A) is a move in both with incorrect data,
while in γ2 the move (W F A,⊥) is matched with a 
, i.e., it is a move on log.
(In remaining part, Amount and Duration are abbreviated to A and D).

Table 1. Two possible alignments between σM and σL

Alignment γ1 Alignment γ2

Log Model Log Model

... ... ... ...

(W F A, {8000, 34}) (W F A) (W F A, {8000, 34}) (�)

... ... ... ...

As shown in Example 1, there can be multiple possible alignments for a given
log trace and process model. Our goal is to find the optimal alignment, i.e., the
alignment with minimum cost. To this end, the severity of deviations is assessed
by means of a cost function.

Definition 2 (Cost function, Optimal Alignment). Let σL, σM be a log
trace and a trace, respectively. Given the set of all legal moves AN , a cost function
k assigns a non-negative cost to each legal move: AN → R+

0 . The cost of an
alignment γ between σL and σM is computed as the sum of the cost of all the
related moves: K (γ) =

∑
(SL,SM )∈γ k(SL, SM ). An optimal alignment of a log

trace and a process trace is one of the alignments with the lowest cost according
to the provided cost function.

3.2 Fuzzy Set Aggregation Operators

Aggregation operations (AOs) are mathematical functions that satisfy minimal
boundary and monotonicity conditions, and are often used for modeling decision
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making processes, since they allow to specify how to combine the different criteria
that are relevant when making a decision [17,27].

In literature, many AOs have been defined (see [18,19,22] for an overview),
with different level of complexity and different interpretations. A commonly
used class of aggregation operators are the t-norms, which are used to model
conjunction of fuzzy sets. In compliance analysis, one often tries to satisfy all
constraints on the data, and so t-norms are suitable operators for modeling
soft constraints in compliance analysis. Widely used t-norms are the minimum,
product and the Yager operators [21].

In addition to the t-norms, other aggregation operators could also be used,
depending on the goals of the compliance analysis. We do not consider other
types of aggregation operators in this paper, but, in general, one could use the
full flexibility of different classes of fuzzy set aggregation operators that have
been used in decision making (see, e.g. [11]).

4 Proposed Compliance Analysis Method

We introduce a compliance checking approach tailored to dealing with decision
tasks under multiple guards, to enhance the flexibility of the compliance assessing
procedure. To this end, we investigate the use of AOs.

4.1 Aggregated Cost Function

Compliance checking in process analysis is based on the concept of alignment
between a process model and a process trace that minimizes a cost of misalign-
ment. The computation of an optimal alignment relies on the definition of a
proper cost function for the possible kind of moves (see Sect. 3). Most of state-
of-the art approaches adopt (variants of) the standard distance function defined
in [2], which sets a cost of 1 for every move on log/model (excluding invisible
transitions), and a cost of 0 for synchronous moves. Multi-perspective approaches
extend the standard cost function to include data costs. Elaborating upon these
approaches, in previous work [29] we defined our fuzzy cost function as follows.

Definition 3 (Data-aware fuzzy cost function). Let (SL, SM ) be a move
between a process trace and a model execution, W (SM ) be the set of variables
written by the activity related to SM , and let μi(var(SL, Vi)) be a fuzzy member-
ship function returning the compliance degree of single variable var(SL, Vi). For
the sake of simplicity, we write it as μi in the following. Then we define (1−μi)
as the data cost of this deviation. The cost k(SL, SM ) is defined as:

k(SL, SM ) =

⎧
⎪⎨

⎪⎩

1 if (SL, SM ) is a move in log
1 + |W (SM )| if (SL, SM ) is a move in model
∑

∀Vi∈V (1 − μi) if (SL, SM ) is a move in both
(1)
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This cost function assigns a cost equal to 1 for a move in log; 1 plus the
number of variables that should have been written by the activity for a move in
model; finally, the sum of the cost of the deviations (1-μi) for the data variables
if it’s a move in both. Note that the latter consider both the case of move
with incorrect and incorrect data. As discussed in Sect. 2, summing up all the
data cost presents important limitations to assess the conformance of multiple
constraints. Therefore, in the present work, we propose a new version of our
fuzzy cost function with the goal of standardize every move within the range
(0,1) and allow the user to customize the cost function to her needs.

Definition 4 (AOs based cost function). Let π(μ1, μ2, ..., μn) be an user-
defined aggregated membership function of multiple variables. Then (1 − π) is
the overall deviation cost of a set of variables. The cost k(SL, SM ) is defined as:

k(SL, SM ) =

⎧
⎪⎨

⎪⎩

1 if (SL, SM ) is a move in log
1 + |W (SM )| if (SL, SM ) is a move in model
1 − π(μ1, μ2, ..., μn) if (SL, SM ) is a move in both.

(2)

4.2 Using A* to Find the Optimal Alignment

The problem of finding an optimal alignment is usually formulated as a search
problem in a directed graph [14]. Let Z = (ZV , ZE) be a directed graph with
edges weighted according to some cost structure. The A* algorithm finds the
path with the lowest cost from a given source node v0 ∈ Zv to a node of a given
goals set ZG ⊆ ZV . The cost from each node is determined by an evaluation
function f(v) = g(v) + h(v), where:

– g : ZV → R+ gives the smallest path cost from v0 to v;
– h : ZV → R+

0 gives an estimate of the smallest path cost from v to any of the
target nodes.

If h is admissible,i.e. it underestimates the real distance of a path to any target
node vg, then A* finds a path that is guaranteed to have the overall lowest cost.

The algorithm works iteratively: at each step, the node v with lowest cost is
taken from a priority queue. If v belongs to the target set, the algorithm ends
returning node v. Otherwise, v is expanded: every successor v0 is added to the
priority queue with a cost f(v0).

Given a log trace and a process model, to employ A* to determine an optimal
alignment we associate every node of the search space with a prefix of some
complete alignments. The source node is an empty alignment γ0 = 〈〉, while the
set of target nodes includes every complete alignment of σL and M . For every
pair of nodes (γ1, γ2), γ2 is obtained by adding one move to γ1.

The cost associated with a path leading to a graph node γ is then defined as
g(γ) = K(γ) + ε|γ|, where K(γ) =

∑
sL,sM∈γ k(sL, sM ), with k(sL, sM ) defined

as in (1), |γ| is the number of moves in the alignment, and ε is a negligible
cost, added to guarantee termination. Note that the cost g has to be strictly
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increasing. While we do not give a formal proof for the sake of space, it is
straight to see that g is obtained in our approach by the sum of all non negative
elements. Therefore, while moving from an alignment prefix to a longer one, the
cost can never decrease. For the definition of the heuristic cost function h(v)
different strategies can be adopted. Informally, the idea is computing, from a
given alignment, the minimum number of moves (i.e., the minimum cost) that
would lead to a complete alignment. Different strategies have been defined in
literature, e.g., the one in [2], which exploits Petri-net marking equations, or the
one in [28], which generates possible states space of a BPMN model.

Example 2. Let us analyze possible moves to assign to the activity W F A in σ1.
Let us assume that the memberships of the variables are μA = 0.4 and μD = 0.2.
According to (2) and Product t-norm we get the fuzzy cost function k(SL, SM ).

k(SL, SM ) =

⎧
⎪⎨

⎪⎩

1 , move in log

1 , move in model

1 − μA · μD , move in both

(3)

Figure 2 shows the portion of the space states for the alignment building of σ1.
At node #11, f = 0, since no deviations occurred so far. From here, there are
two possible moves that could be selected, one representing a move on log (on
the left), one a move on model (on the right) and finally a move in both (in the
middle). Since using the Product aggregation the data cost is equal to 0.92, the
algorithm selects the move in both, being the one with the lowest cost.

Fig. 2. The alignment with the new aggregated function.

5 Experiment and Result

This section describes a set of experiments we performed to obtain a proof-of-
concept of the approach. We compared the diagnostics returned by an existing
approach [29] and our new cost functions with three t − norm aggregations.
More precisely, we aimed to get the answer to the question: what is the impact
of different aggregation operations on the obtained alignments? In particular,
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we assess the impact of the aggregation function in terms of a) differences in
the overall deviation cost, and b) difference in terms of the interpretation, i.e.,
the moves selected by the alignment algorithm as the best explanation for the
deviation.

5.1 Settings

In order to get meaningful insights on the behavior we can reasonably expect by
applying the approach in the real world, we employ a realistic synthetic event
log, consisting of 50000, introduced in a former paper [16], obtained starting from
one real-life logs, i.e., the event log of the BPI2012 challenge 2. We evaluated the
compliance of this log against a simplified version of the process model in [16],
to which we added few data constraints (see Fig. 1). The approach has been
implemented as an extension to the tool developed by [28], designed to deal
with BPMN models. Our process model involves two constraints for the activity
W F A, i.e., Amount ≥ 10000 and Duration ≤ 30.

Here we assume that Amount ∈ (3050, 10000) and Duration ∈ (30, 70) rep-
resent a tolerable violation range for the variables. Since we cannot refer to
experts’ knowledge, we derived these values from simple descriptive statistics.
In particular, we considered values falling within the third quartile as acceptable.
The underlying logic is that values which tend to occur repeatedly are likely to
indicate acceptable situations. Regarding the shape of the membership functions
for the variables, here we apply the linear function μ, as reported below.

µ1(A) =

⎧
⎪⎨

⎪⎩

1 , if A ≥ 10000

0 , if A ≤ 2650
A−2650
7350

, if 2650 < A < 10000;

µ2(D) =

⎧
⎪⎨

⎪⎩

1 , if D ≤ 30

0 , if D ≥ 69
69−D
39

, if 30 < D < 69

(4)

For the classic sum function, we use the cost function provided by (1); while
for the new approach with AOs, we apply the cost function in (2). We tested the
t − norms: Minimum, Product, and Y ager.

When data deviations and control-flow deviations show the same cost, we
picked the control-flow move. This assumption simulates what we would do in a
real-world context. Indeed, without a-priori knowledge on the right explanation,
it is reasonable to assume that it is more likely that the error was executing the
activity, rather than accepting out-of-range data deviations.

5.2 Results

Note that here we focus on the activity W F A, since, in our log, is the only one
involving multiple data constraints. Table 2 shows differences in terms of number
and type of moves, as well as in terms of costs. The columns #move in log,
#move in data show the number of traces in which the alignment has selected

2 https://www.win.tue.nl/bpi/doku.php?id=2012:challenge.

https://www.win.tue.nl/bpi/doku.php?id=2012:challenge
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for the activity W F A a move in log or a move in data, respectively. The column
“Average costs” shows the average alignment cost. The conformance checking
algorithms selects for each activity the move corresponding to the minimum cost.
Therefore, the differences among the chosen move depend on the different costs
obtained on W F A when applying different operators. To provide a practical
example of the impact of the aggregated cost on the obtained diagnostics, below
we discuss the results obtained for one trace.

Table 2. Number of different moves of the activity W F A.

#move in log #move in data Average cost

Sum 707 350 0.823

Min 660 397 0.804

Product 660 397 0.814

Yager 678 379 0.811

Table 3. The cost of possible moves

#move in log #move in data

Sum 1 1.003

Min 1 0.513

Product 1 0.751

Yager 1 0.709

Table 4. The optimal alignments

Log Model Move type Cost

S W F A � #move in log 1

M W F A W F A #move in data 0.513

P W F A W F A #move in data 0.751

Y W F A W F A #move in data 0.709

Example 3. Let us consider the trace σ#2859 = 〈(A S, {Amount = 6400}),
(W FIRST A,⊥), (A A,⊥), (A F,⊥), (O S,⊥), (O C,⊥), (O S,⊥), (W C,⊥),
(W F,⊥), (O C,⊥), (O S,⊥), (W C,⊥), (A R, {Duration = 50}), (W F A,⊥)
, (A AP,⊥), 〉. According to their membership functions (4), μ1(A = 6400) =
0.5102 and μ2(D = 50) = 0.4872. Therefore, the corresponding costs are 0.4898
and 0.5128. Table 3 shows the cost of possible moves for W F A according to
the aggregation functions. Table 4 shows the move picked by each function to
build the alignment. Using the Sum function, the data cost is 1.003, so that a
move-in-log is chosen as an optimal alignment. In the other cases, instead, the
move in data is the one with the lowest cost. Since both the deviations fall in the
acceptable range, this interpretation is likely to be more in line with the user’s
expectations.

The observations made for the example can be generalized to the overall
results of Table 2, which shows a set of traces whose interpretation is heavily
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affected by the chosen cost function. As expected, the Sum function is the most
biased towards the choice of move in log interpretation. It selects 40 moves in log
more that Product and Min, and 29 more than Yager. One can argue that this
choice is likely not one the human analyst would have expected. Indeed, we are
using Yager with ω = 2 [11], that means that when both the variables show severe
deviations, we expect the data cost to be 1 and move-in-log to be picked. This
means that at least 29 of the aligned traces were marked as move-in-log also if
both the constraints did not show severe deviations. We argue that this behavior
can be misleading for the analyst or, anyway, not being in line with her needs.
The Product function marks other 18 traces as move-in-data, in addition to the
ones marked by the Yager. This was expected, since the Product function relaxes
the requirements on the full satisfaction of the set of constraints. Nevertheless,
this implies that in all these 18 traces the deviations always fell in the tolerance
range. Therefore, also these situations might have been better represented as
data deviations, depending on the analysts’ needs. As regards the Min function,
it returns a full data deviation in the presence of at least one deviation outside
the deviation range, which explains why it returned the same alignments of the
Product function. The overall alignments costs are in line with the expectations.
The Sum function returns the highest average cost, as expected, the Min the
lowest, while the Yager and the Product behave similarly, and the difference can
likely be explained with the 18 traces of difference discussed above. While the
absolute difference among the costs is not very relevant, these results show that
both the alignments and the assessment of the deviations are impacted by the
choice of the cost function, thus highlighting once again the need for a more
flexible approach to compliance assessment allowing the user to tailor the cost
function to her context.

6 Related Work

During the last decades, several conformance checking techniques have been pro-
posed. Some approaches [9,10,26] propose to check whether event traces satisfy
a set of compliance rules, typically represented using declarative modeling. Rozi-
nat and van der Aalst [24] propose a token-based technique to replay event traces
over a process model to detect deviations, which, however, has been shown to
provide misleading diagnostics in some contexts [4]. Recently, alignments have
been proposed as a robust approach to conformance checking based on the use
of a cost function [2]. While most of alignment-based approaches use the stan-
dard distance cost function as defined by [2], some variants have been proposed
to enhance the provided diagnostics, e.g., the work of Alizadeh et al. [8], which
computes the cost function by analyzing historical logging data. Besides the con-
trol flow, there are also other perspectives like data, or resources, that are often
crucial for compliance checking analysis. Few approaches have investigated how
to include these perspectives in the analysis: [7] extends the approach in [8] by
taking into account data describing the contexts in which the activities occurred.
Some approaches proposed to compute the control-flow first then assessing the
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compliance with respect to the data perspective, e.g. [13]. These methods gives
priority to check the control flow, with the result that some important devia-
tions can be missed. [23] introduces a cost function balancing different perspec-
tives, thus obtaining more precise diagnostics. The approaches mentioned so far
assume a crisp evaluation of deviations. To the best of our knowledge, the only
work which explored the use of a fuzzy cost function is our previous work [29]
which, however, did not consider multiple constraints violation.

7 Conclusion

In this work, we investigated the use of fuzzy aggregation operations in con-
formance checking of process executions to deal with multiple data constraints
for an activity. The proposed approach enhances significantly the flexibility of
compliance checking, allowing the human analyst to customize the compliance
diagnostic according to her needs. We elaborated upon the relevance of this
aspect both theoretically and with some examples.

As a proof of concept, we implemented the approach and tested it over a
synthetic dataset, comparing results obtained by cost functions with classic sum
function and three different aggregations. The experiments confirmed that the
approach generates more “balanced” diagnostics, and introduces the capability
of personalizing the acceptance of deviations for multiple guards.

Nevertheless, there are several research directions still to be explored. In
future work, first we plan to test our approach with real-world data. Furthermore,
we intend to investigate the usage of different aggregation functions, as well as
the possibility of extending the notion of aggregation to take into account also
other kinds of deviations. Finally, we intend to investigate potential applications,
for example in terms of on-line process monitoring and support, with the aim of
enhancing the system resilience to exceptions and unforeseen events.
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the Brain Bridge Project sponsored by Philips Research.
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Abstract. The Variable Size and Cost Bin Packing Problem (VSCBPP)
consists of minimizing the cost of all bins used to pack a set of items with-
out exceeding the bins capacities. It is a well known NP-Hard problem
with many practical applications.

In this contribution we assume that the capacity of a bin can be under-
stood in a flexible way (so it may allow some overload) thus leading to
a fuzzy version of the VSCBPP with fuzzy constraints.

We solve the proposed fuzzy VSCBPP by using the parametric app-
roach based on α-cuts, thus defining a set of related crisp problems.

By using three different solving algorithms and several instances, we
explore the impact of different degrees of relaxation not only in terms of
cost, but also in the structure of the solutions.

Keywords: Combinatorial optimization · Variable Size and Cost Bin
Packing Problem · Fuzzy constraint · Parametric approach

1 Introduction

The Variable Sized Bin Packing Problem (VSBPP) is a generalization of the
Bin Packing Problem that was first formalized by Friesen and Langston [5]. It
consists in packing a set of items in a set of heterogeneous bins with different
sizes or capacities. The objective is to minimize the number of bins that are
used. For each size, it is assumed an inexhaustible supply of bins. Crainic et. al.
[2] states that by minimizing the cost of all used bins, the problem became the
Variable Size and Cost Bin Packing Problem (VSCBPP).
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Some variants of the problem were defined to allow the management of
imprecise and/or uncertain information in the problem data. One of the pio-
neers treating this subject is Crainic et. al. [3] studying a real-life application
in logistics with uncertainty on the characteristics of the items. Also Wang et.
al. [16] describes a chance-constrained model where the item sizes are uncertain,
while Peng and Zhang [10] introduce the uncertainty on item volumes and bin
capacities.

Here, we consider that the capacity of a bin is associated with the maximum
weight it can hold. So, for example bins with 25, 50 or 75 kg. capacity may
exist. In the standard formulation of the problem, such values are used as crisp
constraints. However, it has perfect sense to consider such capacity values as
approximate ones and thus using fuzzy constraints instead of crisp ones. In
other words, some overloading will be allowed in the bins. To the best of our
knowledge, there are not variants of the Variable Size and Cost Bin Packing
Problem (VSCBPP) with fuzzy constraints.

The aim of the paper is twofold. Firstly, we introduce a fuzzy version of the
VSCBPP that allows some overloading of the bins, which means to relax the
satisfaction of capacity constraints; and secondly, we explore the impact that
the fuzzy constraints (and the associated relaxations) have, not only in terms
of cost, but also in the structure of the solutions. In order to do this, some
randomly generated instances of the proposed fuzzy VSCBPP (FVSCBPP) are
solved following the parametric approach that transforms the fuzzy problem into
a set of crisp problem based on α-cuts [4,14]. Then, each of these instances is
solved by an exact solver (SCIP) [15] and two problem-specific heuristics.

The paper is organized as follows. Section 2 presents the VSCBPP fuzzy
model. Section 3 explains how the proposed FVSCBPP may be solved by using a
parametric approach. This is illustrated in several instances presented in Sect. 4.
Finally, Sect. 5, is devoted to conclusions.

2 Fuzzy Variable Size and Cost Bin Packing Problem
(FVSCBPP)

In this section we firstly present the basic Variable Size and Cost Bin Packing
Problem (VSCBPP) before introducing the proposed fuzzy extension. Problem
parameters and the standard VSCBPP formulation [1,7,8] are described next.
Being

I = {1 . . . , i, . . . , n} set of items

wi weight of the item i ∈ I

J = {1 . . . , j, . . . , m} set of bins

Wj capacity (or size) of the bin j ∈ J

Cj cost of the bin j ∈ J

xij binary variable: 1 if item i is packed in bin j; 0 otherwise

yj binary variable: 1 if bin j is used; 0 otherwise
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Then, the VSCBPP is then formulated as follows:

Min
∑

j∈J

Cjyj (1)

s.t.
∑

j∈J

xij = 1, i ∈ I (2)

∑

i∈I

wixij � Wjyj , j ∈ J (3)

xij ∈ {0, 1}, i ∈ I, j ∈ J (4)
yj ∈ {0, 1}, j ∈ J (5)

The objective function (1) minimizes the cost of the bins used for packing
all the items. Constraint (2) ensures that each item i is packed in one and only
one bin (items are not divisible). Inequality (3) is the capacity constraint: for
each used bin j, the sum of weights of packed items can not exceed its capacity;
(4) and (5) are domain constraints. This formulation involves every single bin
regardless its type, i.e., a list of bins is one of the problem inputs and it may
have more bins than items since there must be enough bins to pack all the items
that fulfill the constraint for every type (3). Here, the term type is referred to
the capacity of the bin, i.e., its size.

Here we consider that the capacity constraint (3) can be understood in “flex-
ible” (fuzzy) terms:

∑

i∈I

wixij �f Wjyj , j ∈ J (6)

where �f stands for “approximately smaller than or equal to”.
This implies that solutions may be either feasible or infeasible depending

on the interpretation of the fuzzy relation (6). Indeed, all solutions may be
considered feasible with different degrees of membership.

A decision maker may clearly states that the solutions that do not exceed the
bin capacity Wj are definitely feasible. In addition, some small overloads may be
also considered feasible. Let’s suppose there is a bin j with capacity Wj = 10.
A solution where the items in j weights 10.01 units will have a higher degree
of feasibility than another one with weight 12. In turn, a solution that try to
pack items with weight 20 in such bin with 10 units of capacity, may be consider
unfeasible. In terms of decision making, this relaxation that may imply a small
overload in the bins may be preferable if it allows to reduce the total cost in the
objective function (1).

To model this situation, we consider that a decision maker must define the
tolerance Tj that defines the maximum admissible relaxation for each bin j.
Figure 1 shows the function to measure the degree of accomplishment (for a given
solution) of constraint (6) in terms of the bin capacity Wj and tolerance Tj .

To understand such function, let’s call twj to the sum of the weights of the
items placed in each bin j. Then, if twj ≤ Wj , then such assignment of items
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Fig. 1. Membership function for the accomplishment of capacity constraint (y axis) in
terms of the sum of the items’ weights (x axis).

to the bin is feasible with degree 1. In turn, if twj > Wj + Tj feasibility is zero.
When twj ∈ [Wj ,Wj + Tj ] then such solution will feasible with different degrees
between [0, 1].

In order to solve the problem, the fuzzy constraint will be managed using
the parametric approach [14] and the concept of α−cuts. In very simple terms,
this allows to obtain several crisp instances based on different values of α. If S
is the whole set of solutions we may define Sα as the crisp set of solutions that
satisfy the constraints with, at least, a given degree α.

Sα = {s ∈ S | μ(sj) ≥ α} (7)

According to (7), a solution s ∈ S is considered α-feasible if it is feasible
with a degree above α. This implies that there are different sets Sα of feasible
solutions for different values of α. As different sets Sα may include different set
of solutions, the optimal solution for each Sα may be different. So to solve the
fuzzy version of VSCBPP we will use the constraint (8) instead of (3).

∑

i∈I

wixij � (Wj + (1 − α)Tj)yj , j ∈ J (8)

When α = 1 the most restricted definition of capacity is taken into account,
thus having the original crisp problem (no flexibility). When α = 0, the most flex-
ible situation is reached. The allowed bin overload is maximum. Consequently,
the value α define the degree of relaxation that is admitted.

3 Solving the Fuzzy VSCBPP

The parametric approach [14], illustrated in Fig. 2, is used to solve the problem.
The main idea is to transform the fuzzy problem into a family of crisp problems.
Initially, a set of different α values is defined and for each value, a crisp problem
is obtained and then solved. Finally, it should be remarked that the final result
consists of a set of solutions related to each value of α.
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Fig. 2. General scheme of the parametric approach

In our case, we consider 11 values of α ∈ {0.0, 0.1, . . . , 0.9, 1.0} 1. For solving
the different crisp problems we consider in this paper three solution methods.
An exact solver based on Integer Linear Programming (SCIP solver), and two
heuristics: First Fit Decreasing (FFD) and Best Fit Decreasing (BFD) [6,11].
FFD is a deterministic heuristic that place each item in the first bin where it is
possible to place it, where BFD chooses the bin where the item best fits. Both
heuristics repeat this process item by item, taking them in descending order. It
is worth noting that heuristics methods do not guarantee optimality.

In the case of the SCIP solver, the optimality is only guaranteed after a
considerable amount of time. In controlled conditions (for example, a maximum
execution time of one hour for each instance) we observed that optimality is
not guaranteed for all cases. It is import to remark that our focus here is on
analyzing each fuzzy solution (i.e., the set of solutions obtained for the base
instance with different values of α).

3.1 Test Instances

In this experiment we take three base instances following previous works in
VSCBPP [1,8]. These base instances are used as the crisp original instances,
associated with α = 1. These three base instances of the FVSCBPP result in
33 crisp ones that need to be solved (one for each value of the 11 α values
considered). Each base instance contains 25 items and 3 bin types with W ∈
{50, 100, 150}, and the tolerance was set to T ∈ {6, 5, 7}, respectively. The weight
of each item is randomly assigned using a uniform distribution in [20, 120].

It must be remarked that the three base instances differ in the relation
between the cost Cj of each bin and its capacity Wj , as it was previously con-
ceived in other works [1,7]. This functional relation is the origin of the name
used to identify each instance: Concave (Cc) where Cj = 15

√
W j , Linear (Ln)

where Cj = 10Wj + 32, and Proportional (Pr) where Cj = 0.1Wj).
The three cost functions (Cc, Ln , and Pr) produce different behaviors. For

example, according to the function Pr is the same to use three bins with Wj = 50
than using one bin with Wj = 150, and both are the same than using a bin with

1 Alternative schemes for exploring the values of α were recently presented in [13].
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Wj = 50 plus another with Wj = 100. In the other cost functions, it is better
to use a bin with Wj = 150 than using three bins with Wj = 50 (in the case of
the function Ln this implies 5% additional cost, while in Cc this value is 73%).
The same occurs in the comparison of using a bin of Wj = 150 with respect to
use a bin Wj = 50 and a bin with Wj = 100 (in the case of Ln this implies 4%
additional cost, while in Cc this value is 38%). These are just some examples of
the implications of the cost function.

The test instances are available in www.cimab.transnet.cu/files/iFSCBPP.
zip in order to allow replication of the presented results.

4 Results and Discussion

As stated before, for each test instance we define 11 α values: α ∈
[0.0, 0.1, 0.2, . . . , 1.0], leading to 33 crisp problems. Each one of these problems is
solved in two ways. Firstly using a Mixed Integer Programming solver SCIP [12],
with the problem model coded using the ZIMPL format [9]. SCIP is expected to
return the optimal solution. Secondly, two problem-specific heuristics for the Bin
Packing Problem are used: First Fit Decreasing (FFD) and Best Fit Decreasing
(BFD) [6,11].

Runs were performed in an Intel Core i5 processor with 2.4 GHz of clock
speed and 8 Gb of RAM. The running time of both heuristics is less than one
second (after the items are sorted). But for running the SCIP solver, a maximum
number of 4 parallel threads and 60 min (one hour) of maximal execution time
were set.

The analysis of the results is divided in two parts. In the first one we consider
the impact of α in the solutions’ costs. Then, we analyze such impact in terms
of the solutions’ structure.

Figure 3 shows the impact of the α values on the solutions costs for every
solver and test instances. A clear tendency is observed: as the problem is more
relaxed (α → 0), the cost of the solution diminished. When α is near to 0 (fully
relaxed case), the available space in the bins is higher and less cost is needed to
store all the items. As the relaxation decreases (α → 1) the cost increases.

Figure 3 shows an additional interesting feature. When a heuristic is used,
there is no guarantee to obtain a better solution if the problem is more relaxed.
This is not the case with the SCIP solver, where if α1 < α2 then the correspond-
ing solutions s1, s2 satisfies that f(s1) ≤ f(s2).

Fig. 3. Impact of the constraint violation in the cost (α in x-axis vs. cost in y-axis) for
the test instances: Pr(left), Cc(center), Ln(right).

www.cimab.transnet.cu/files/iFSCBPP.zip
www.cimab.transnet.cu/files/iFSCBPP.zip
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Finally, we can observe that the heuristic FFD obtains very similar results
to those of the SCIP solver but using a very simple approach and an extremely
reduced time. Although for most of the cases the SCIP solver required less than
a minute, for some cases (mainly in the Ln instance) it did not finish within an
hour. In such a case, the best solution found up to that point is reported.

Fig. 4. Structure of the solutions (SCIP Solver) for the Pr instance in terms of α
(y-axis). The number of bins of each type is shown.

In order to analyze the impact of α in terms of solutions’ structure, Fig. 4
shows the solutions obtained by the SCIP solver for the Pr instance for each α
value. Every row displays the number of bins of each type (150: white, 100: grey,
50: black) used together with the cost.

If the capacity constraint is very strict, 12 big bins and 1 middle sized are
needed. As the relaxation increases, a better cost can be achieved with 11 big
bins and 2 middle sized. The cases of α = 0.5 and α = 0.4 are also interesting.
In the former, the three types of bins are used in a solution with cost 180. But
an additional relaxation of the constraint allows to pack all the items using
12 big bins. A similar situation happens for the most relaxed cases α ≥ 0.2
where three different solutions with the same cost are displayed. So we have
here another benefit of using fuzzy constraints and the parametric approach,
where in a simple way we can obtain different design decisions (solutions) that
provide the decision maker with a richer information beyond the cost. A similar
analysis can be done for the other instances (Ln and Cc) based on Fig. 5 and
Fig. 6.

The last analysis aims to observe how the capacity constraint is violated. It
is important to note that having the opportunity to violate the capacity of the
bins, does not mean that all the bins are overloaded.

Figure 7 shows the solutions obtained by every algorithm in the two extreme
situations: α = 1 and α = 0. White bars correspond to big bins (capacity
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Fig. 5. Structure of the solutions (SCIP Solver) for the Ln instance in terms of α
(y-axis). The number of bins of each type is shown.

Fig. 6. Structure of the solutions (SCIP Solver) for the Cc instance in terms of α
(y-axis). The number of bins of each type is shown.

150), grey ones to mid-size bins (capacity 100) and black ones to small size bins
(capacity 50). If a bar is taller than its capacity, then such bin are overloaded
(makes use of the relaxation). The horizontal lines within the bars identify the
items packed.

Figure 7 (on top) displays the crisp case (no relaxation is allowed). Both SCIP
solver and FFD heuristic achieved a solution with the same cost and the same
structure. They used 12 big bins and 1 middle sized but, as it can be observed
the items are packed differently. Again, this kind of visualization allows a user
to take a more informed decision. One may argue that aspects like the level of
occupancy of the bins should be taken into account within the objective function.
However, in our opinion, that would complicate the solution of the problem.

If we consider the fully relaxed version (α = 0), we observe that the capacity
violation is small. Nevertheless, it allows for a relevant cost reduction. If the
comparison is made in a column wise manner, we can compare the none relaxed
vs. the fully relaxed solutions obtained by every algorithm. The SCIP solver
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= 1
DFFrevloS BFD

022091091

= 0
DFFrevloS BFD

091081571

Fig. 7. Structure of the solutions for Cc instance obtained by every algorithm with no
relaxation (α = 1) and with the fully relaxed condition (α = 0).

reduces the cost in 15 units by decreasing the usage of big bins while adding
more of the smaller ones. In turn FFD, produces a cheaper solution differently:
use big bins with a slightly larger capacity (taking profit of the relaxation).
Finally, BFD obtained the greatest decrease (30 units) but using 30 bins. It can
be noticed that such solution has the same cost of those obtained by SCIP and
FFD when α = 1. Despite the slight violation of the capacity, it is clear that the
BFD solution may be harder to “manage”: larger number of bins and use the
three available types.

5 Conclusions

This paper presents a fuzzy version of the Variable Size and Cost Bin Packing
Problem (VSCBPP), where the bins capacity is considered flexible. Allowing
such flexibility is relevant in many practical situations because it may allow to
obtain cheaper solutions.

The proposed fuzzy version of VCSBPP is expressed in terms of fuzzy con-
straints that allow to respect the limitations regarding the capacities with a
certain tolerance. Based on the parametric approach, the solution of the fuzzy
problem consists of a set of solutions that may show a trade-off between relax-
ation (violation of the original condition) and benefit (cost reduction).

Our experimental study shows first that all the algorithms tested can achieve
cheaper solutions as the relaxation increases. The analysis of the solution
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revealed that different algorithms manage the flexibility in different ways, thus
allowing to obtain a diverse set of solutions.

This is a crucial aspect for a decision maker, for whom, different solutions
with similar cost can be provided. Then, such solutions can be analyzed from
other points of view beyond costs like how easy/hard is to manage the selected
bins, or how easy/hard is to transport them. Although such features may be
included in the cost function (this is far from trivial), this will lead to a more
complex and harder to solve model.
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1 IDMEC - Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
{ines.azevedo.ferreira,bernardo.firme,miguelsemartins,
tiagoascoito,susana.vieira,jmcsousa}@tecnico.ulisboa.pt

2 Universidade de Évora, Évora, Portugal
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Abstract. This work introduces a scheduling technique using the Arti-
ficial Bee Colony (ABC) algorithm for static and dynamic environments.
The ABC algorithm combines different initial populations and generation
of new food source methods, including a moving operations technique
and a local search method increasing the variable neighbourhood search
that, as a result, improves the solution quality. The algorithm is validated
and its performance is tested in a static environment in 9 instances of
Flexible Job Shop Problem (FJSP) from Brandimarte dataset obtaining
in 5 instances the best known for the instance under study and a new
best known in instance mk05. The work also focus in developing tools
to process the information on the factory through the development of
solutions when facing disruptions and dynamic events. Three real-time
events are considered on the dynamic environment: jobs cancellation,
operations cancellation and new jobs arrival. Two scenarios are studied
for each real-time event: the first situation considers the minimization of
the disruption between the previous schedule and the new one and the
second situation generates a completely new schedule after the occur-
rence. Summarizing, six adaptations of ABC algorithm are created to
solve dynamic environment scenarios and their performances are com-
pared with the benchmarks of two case studies outperforming both.

Keywords: Dynamic environment · New jobs arrival · Operations
cancellation · Jobs cancellation · Flexible job shop rescheduling

1 Introduction

Factories and governments are launching the fourth industrial revolution called
Industry 4.0, due to the dynamic nature of the manufacturing environments and
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the growing of the virtual world. Industrial production will be highly flexible
in production volume and suppliers, and above all sustainable and efficient [10].
Smart factories using Industry 4.0 based on collaborative systems represent the
future of industrial networks.

According to a PWC survey from 2013 [4], 50% of German enterprises plan
their new industrial network and 20% are already involved in smart factories. A
survey by American Society for Quality (ASQ), from 2014 [1], states that 82%
of organizations that implemented smart manufacturing experienced increased
efficiency, 49% experienced fewer product defects and 45% experienced increased
customer satisfaction [8]. Hence, companies can highly benefit from the imple-
mentation of Industry 4.0 concepts.

Industry 4.0 represents a smart manufacturing network concept where
machines and products interact with each other without human intervention.
Supply chains in such networks have dynamic structures which evolve over
time. In these settings, short-term supply chain scheduling is challenged by
sources of uncertainty. Manufacturing environments are dynamic by nature and
there are several events which can occur and change the system status affecting
the performance, known as real-time events. Exchanging data and information
between different parties in real time is the key element of smart factories; such
data could represent production status, energy consumption behaviour, mate-
rial movements, customer orders and feedback, suppliers’ data, etc. The next
generation of smart factories, therefore, will have to be able to adapt, almost
in real time, to the continuously changing market demands, technology options
and regulations [2].

2 Flexible Job Shop Problem

The Flexible Job Shop Scheduling Problem (FJSSP) is a generalization of
the classical Job Shop Scheduling Problem (JSSP). The JSSP follows the
idea that a set of jobs (J = {1, 2, ...,m}) is processed by a set of machines
(Mk = {1, 2, ...,m}). Every job consists of a finite set of operations and the
processing of the operation has to be performed on a preassigned machine. The
i−th operation of job j, denoted by Oji, is processed on machine k ∈ M and the
JSSP solves the assignment of jobs to the machines. The order of operations of
each job is fixed, meaning the JSSP doesn’t need to solve the operation sequence.
The aim of the classical static n-by-m JSSP is to find a schedule for processing
n jobs on m machines fulfilling an objective function. The FJSSP has one more
condition than the JSSP, it is imposed job variability which creates the need for
an operation sequence solution, besides the assignment machine solution.

The FJSSP follows some ideas, rules and assumptions. No machine is able
to process more than one job at the same time and no job may be processed by
more than one machine. Each job and each operation must be processed exactly
one time. There is independence between machines and jobs. The sequence
of machines a job visits is specified, having a linear precedence structure. If
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the precedent operation is still being processed, the remaining operations com-
menced until the processing is completed. The processing time of the Oji oper-
ation using a specific machine takes PTjik > 0 time unities and is known.
Machines must always be available at the usage time zero.

The ideas, rules and assumptions can be formulated as follows. There are m
machines defined as Mk = {1, 2, ...,m}. There are a group of n jobs independent
of each other defined as J = {1, 2, ..., n}. Each job has a set of h operations
defined as Oji = {Oj1, Oj2, ..., Ojh}. For each operation Oji, there is a set of
machines capable of performing it. The set is denoted by Mji ⊂ Mk. If Mji = Mk

for all i and k, the problem becomes a complete flexible job shop problem. The
processing time of operations Oji on machine k is stated as PTjik. The start
time for every operation Oji on machine k is presented as STjik. The finishing
time of operation Oji on machine k is presented as FTjik.

This problem has also some constraints. The technique constraint describes
that the operation must be processed after all precedent operations have been
processed. The operations should not be overlapped and the machine will be
available to other operations, if the previous operations are completed. The
resource constraint demands that one machine can only handle exactly one oper-
ation at a time. There is also a precedence constraint for operations of the same
job. The objective of the FJSSP is to determine a feasible schedule minimizing
the makespan that is the maximum completion time of the jobs. In other words,
the total elapsed time between the beginning of the first task and the completion
of the last task.

3 Artificial Bee Colony (ABC) Algorithm

The implementation of the ABC algorithm developed to solve the FJSSP for
static environments is described and it was based on the work of [11]. The ABC
Algorithm is inspired by the intelligent foraging behaviour of a honeybee swarm.
The model that leads to the emergence of the collective intelligence of honey bee
swarms consists of three essential components: food sources, employed foragers
and unemployed foragers.

3.1 ABC Procedure to Static Scheduling

The objective value of the solution is f(FSi) that represents the selected food
source, FSi. The total number of food sources is characterized by tFS and pi is
the probability of selecting a food source. The algorithm for ABC is as follows:

1. Initialize parameters.
2. Initialize a population of food sources, FSi.
3. Calculate the objective value f(FSi) of each food source FSi and then deter-

mine the best food source gbest.
4. Employed bees phase

(a) For every employed bee generate the new food source FS1
i from FSi.
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(b) Onlooker bees phase
i. Calculate the probability of selecting the food source FS1

i according

to equation pi =
[f(FSi)]

∑tFS

j=1[f(FSi)]
.

ii. Calculate the number of onlooker bees to be sent to the food source
FS1

i according to NEi = pi × nob.
iii. For every onlooker bee generate Ni new food sources FS2

i from FS1
i

using local search according to its termination criteria.
iv. Choose the best from all the Ni food sources generated and set it as

FSbest
i

v. If f(FSbest
i ) ≤ f(FS1

i ), then FS1
i = FSbest

i

vi. For all the employed bees, if f(FSbest
i ) ≤ f(gbest), then gbest = FSi

5. Scout bees phase
(a) Initialize scout bees with random solutions and update gbest, if possible.
(b) Determine the worst employed bees and replace them with the best scout

bees, if they are better.
6. If the stopping criteria is met the output is gbest and its objective value;

otherwise, go back to point 4.

Following the steps of ABC algorithm, it is important to define some concepts
and techniques utilized:

– Solution Representation: The solutions are a combination of two vectors:
machine assignment and operation sequence. The first one codes the assign-
ment of operations to the machines and the second one codes the processing
sequence of operations for each job. This dual coding vector is a representa-
tion of a feasible solution.

– Population Initialization: To guarantee an initial population with quality,
diversity and capability of avoiding falling in a local optimal, a hybrid way to
generate the food sources was utilized. The machine assignment initialization
uses three rules: random rule, local minimum processing time rule and global
minimum processing time rule with a probability of occurence of {0.6, 0.2, 0.2}
respectively. The operation sequence initialization uses: random rule, most
work remaining rule (MWR) and most number of operations remaining rule
(MOR) with a probability of occurrence of {0.8, 0.1, 0.1}

– Crossover Operators: To evolve the machine assignment vector two
crossover operators, the two-point crossover and the uniform crossover, are
applied. Also, a method of a crossover called the Precedence Preserving Order-
Based Crossover (POX) is implemented to evolve the operation sequence
vector.

– Mutation for Machine Assignment: To enhance the exploration capabil-
ity in the employed bee search phase, a mutation operator for the machine
assignment is embedded in the ABC algorithm.

– Local Search Based on Critical Path: The local search strategy based
on the critical path is proposed and embedded in the searching framework to
enhance the local intensification capability for the onlooker bees.
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– Termination Criteria: There are two termination conditions set to termi-
nate the algorithm: a number of trials termax to improve the solution and the
pre-defined number of iterations genmax.

Critical Path Theory. The earliest starting time of the operation Oji is
denoted as STE

ji and the latest starting time is STL
ji. If the operation Oji is

processed on the machine k, then the operation processed previously is PMk
ji

and operation processed next is NMk
ji. PJji = Oj−1i is the operation of the job

i that precedes Oji. NJji = Oj+1i is the operation of the job j that is next to
Oji. The starting time of the dummy starting node STE(0) = 0 . If the node
has no job predecessor, the earliest completion time is cE(PJji) = 0. If it has no
machine predecessor, the earliest completion time is cE(PMk

ji) = 0. The latest
completion time of the ending node is equal to the makespan of the schedule,
cL(N + 1) = cM (G).

The earliest completion time of the operation is described by Eq. 1 and the
latest completion time by Eq. 2.

cEji = STE
ji + PTjik (1)

cLji = STL
ji + PTjik (2)

The earliest starting time is calculated by Eq. 3 and latest starting time of each
node by Eq. 4.

STE
ji = max{cE(PJji), cE(PMk

ji)} (3)

STL
ji = min{SL(NJji), SL(NMk

ji}) (4)

The total slack of operation is the amount of time that an activity can be
delayed or anticipated without increasing makespan. The total slack of each node
is calculated using Eq. 5.

TSji = STL
ji − STE

ji (5)

The makespan of a schedule is defined by the length of its critical path,
implying that any delay in the start of the critical operation will delay the
schedule. The idea behind the local search of the critical path is to analyze all
critical operations to verify the possibility of scheduling them earlier.

Moving Operations. In order to simplify the notation, the operation to be
moved Oji is called r and the candidate operation Olk to have Oji assigned
before is called v.

TSv ≥ PTr (6)

STL
v ≥ max{cEr−1, c

E
v−1} + PTr (7)

STL
r+1 ≥ max{cEr−1, c

E
v−1} + PTr (8)

The above moving operations process is repeated until all the critical opera-
tions of the present food source are moved or until the termination criteria for



246 I. C. Ferreira et al.

the local search is met. If the food source being searched has no more critical
operations the search is terminated, otherwise the procedure is applied a certain
number of times movemax to have better improvement of the final schedule. To
accept the new solution generated one of the following conditions is satisfied: the
new solution has a smaller makespan or the new solution has the same makespan
but has fewer critical paths.

4 Dynamic Scheduling

In the industrial world, scheduling systems often operate under dynamic and
stochastic circumstances and it is inevitable to encounter some disruptions which
are inherently stochastic and non-optimal. Therefore, algorithms which guaran-
tee quick and good solutions for the scheduling are strongly needed.

In this work, heuristics were made in order to be possible to solve dynamic
scheduling cases, through rescheduling. Not only the adaptations created in this
work are able to solve unpredictable scenarios, but also reoptimize the solution.

4.1 Earl Job Cancelation (ABC-R1)

The first scenario (R1) under study is the rescheduling when a job is cancelled
early enough making possible the acceptance and feasibility in the factory to
adjust to the significant changes. When the dynamic event arrives, a new sched-
ule will be constructed. The early job cancellation algorithm, ABC-R1, has sev-
eral mechanisms included to improve the solution as much as possible.

Early Job Cancellation Procedure

1. Load the static scheduling;
2. Initialize parameters: the deleted job (Jdelete);
3. Initialize a population of food sources (FSi) from the loaded static schedul-

ing. In the machine assignment vector and in the operation sequence vector
delete the operations belonging to the deleted job;

4. Calculate the objective value f(FSi) of the food source FSi and then estab-
lish the best food source gbest;

5. Onlooker bees phase
(a) For every onlooker bee Ni generate new food sources F 2

Si from F 1
Si using

local search according to its termination criteria;
(b) Choose the best from all the Ni food sources generated and set it as the

best;
(c) If the stopping criteria are met go to the next point; otherwise, go back

to point 5;
6. Initialize a population of food sources (FS3

i ) from the loaded static schedul-
ing. In the machine assignment vector and in the operation sequence vector
delete the operations belonging to the deleted job. The process will be done
in a cycle, first deleting the operations one at each time, and then trying
to anticipate the sequenced operations belonging to the same machine the
deleted operation belongs to;
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7. Onlooker bees phase
(a) For every onlooker bee generate Ni new food sources FS2

i from FS1
i using

local search according to its termination criteria;
(b) Choose the best from all the Ni food sources generated and set it as

FSbest
i ;

(c) If f(FSbest
i ) ≤ f(FS1

i ), then FS1
i = FSbest

i ;
(d) For all the employed bees, if f(FSbest

i ) ≤ f(gbest), then gbest = FSi;
(e) If the stopping criteria is met go to the employed bee phase; otherwise,

go back to point 7;
8. Employed bees phase

(a) For every employed bee generate the new food source FS1
i from FSi;

i. Applying crossover operators to the machine assignment vector;
ii. Applying crossover operators to the operation sequence vector;
iii. Applying mutation operator to the machine assignment vector;
iv. Local search for the critical path according to the termination criteria;
v. If f(FSbest

i ) ≤ f(FS1
i ), then FS1

i = FSbest
i ;

vi. For all the employed bees, if f(FSbest
i ) ≤ f(gbest), then gbest = FSi;

9. Scout bees phase
(a) Initialize scout bees with random solutions and update gbest, if possible;
(b) Determine the worst employed bees and replace them with the best scout

bees if those are better;
10. If the stopping criteria are met the output is gbest and its objective value;

otherwise, go back to point 4.

4.2 Late Job Cancellation (ABC-R2)

The second scenario (R2) appear when the job cancellation order arrives and
the static scheduling is already being used on the factory, so it is important to
erase it without altering the scheduling previously done, with the goal of having
the less disruption and disturbance as possible on the factory.

Late Cancellation Procedure

1. Load the static scheduling;
2. Initialize parameters: the arrival time of the cancellation order (time of job

cancellation) and the job which was cancelled (Jdelete);
3. Initialize the population of food source (FSi) from the loaded static

scheduling;
4. Using the machine assignment vector and the operation sequence vector, cal-

culate the search space containing all the possible positions to anticipate the
operations, according to the time delete job;

5. Each one of the operations which have the possibility to be anticipated will
be introduced in the best position possible of the search space, respecting to
the precedence constraints;

6. The output is the gbest.
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4.3 Early Operation Cancelation (ABC-R3)

The third scenario (R3) is similar to the procedure described for ABC-R1. The
main difference is that ABC-R1 implies the cancellation of all the operations
belonging to the job and ABC-R3 implies the cancellation of part of the job
operations.

Early Operation Cancellation Procedure The main differences are in the
first, second and fourth steps. In the first step, a parameter describing which
operation will be deleted is additionally initialized, namely (deleteoperation). In
the second step, the procedure to initialize the population is similar but opera-
tions processed before the operation cancelled are kept on the machine assign-
ment and on the operation sequence vectors. The last difference is in the fourth
step: the operations processed before the cancelled operation are kept on the
vectors.

4.4 Late Operation Cancelation (ABC-R4)

The fourth scenario (R4) is a solution created when it is important to generate a
solution similar to the previous one. This scenario has a late operation cancella-
tion order at a time defined as the time of operation cancellation. The precedence
constraints imply the cancellation of certain operations from the schedule, not
only the one which was cancelled. The main differences to ABC-R2 are in the
first and second steps. In the first step, the parameter setting which operation
will be deleted is additionally initialized, called (Odelete

ji ), and the variable of
time initialized is the time of operation cancellation. In the second step, the
procedure to initialize the population is similar but operations processed before
the operation cancelled are kept.

Late Operation Cancellation Procedure

1. Load the static scheduling;
2. Initialize parameters: the arrival time of the cancellation order (time of oper-

ation cancellation) and the operation which was cancelled (Odelete
ji );

3. Initialize the population of food source (FSi) from the loaded static schedul-
ing deleting the operations from the machine assignment vector and the oper-
ation sequence vector;

4. Using the new machine assignment vector and the operation sequence vec-
tor, the search space containing all the possible positions to anticipate the
operations will be calculated, according to the time of operation cancellation;

5. Each one of the operations which have the possibility to be anticipated will
be introduced in the best position possible of the search space, with respect
to the precedence constraint;

6. The output is gbest.
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4.5 Early New Job Arrival (ABC-R5)

The fifth scenario (R5) is characterized by the unexpected arrival of a new job .
The ABC-R5 was created as a more reactive model and has several mechanisms
included to improve the solution as much as possible.

Early New Job Arrival Procedure

1. Load the static scheduling;
2. Initialize parameters: global parameters + new Job (Jnew);
3. Initialize a population of food sources (FSi);

(a) The machine assignment vector from static scheduling is called uold. The
machine assignment for the new job is done independently of the remain-
ing jobs, meaning a vector containing the machine assignment information
of only the new job is initialized. This vector is called unew. Both vectors
are joined in one vector u′, creating the machine assignment vector for the
new situation of n + 1 jobs; The operation sequence vector is initialized
from scratch.

4. Calculate the objective value f(FSi) of the food source FSi and then establish
the best food source gbest;

5. Employed bees phase
(a) For every employed bee generate the new food source FS1

i from FSi;
i. Applying crossover operators to the machine assignment vector;
ii. Applying crossover operators to the operation sequence vector;
iii. Applying mutation operator to the machine assignment vector;
iv. Using the local search for the critical path according to the termina-

tion criteria;
v. If f(FSbest

i ) ≤ f(FS1
i ), then FS1

i = FSbest
i ;

vi. For all the employed bees, if f(FSbest
i ) ≤ f(gbest), then gbest = FSi;

6. Onlooker bees phase
(a) For every onlooker bee generate Ni new food sources FS2

i from FS1
i using

local search according to its termination criteria;
(b) Choose the best from all the Ni food sources generated and set it as

FSbest
i ;

(c) If f(FSbest
i ) ≤ f(FS1

i ), then FS1
i = FSbest

i ;
(d) For all the employed bees, if f(FSbest

i ) ≤ f(gbest), then gbest = FSi;
(e) If the local search stopping criteria is met go to the employed bee phase;

otherwise, go back to point 5;
7. Scout bees phase

(a) Initialize scout bees with random solutions and update gbest, if possible;
(b) Determine the worst employed bees and replace them with the best scout

bees if those are better;
8. If the stopping criteria are met the output is gbest and its objective value;

otherwise, go back to point 6;
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4.6 Late New Job Arrival (ABC-R6)

The sixth scenario (R6) simulates a new order arrival and the need to introduce
it on the system having the lowest disruption possible. It is considered that the
static scheduling was already in production until the arrival time of the order,
making it impossible to introduce the new operations before the time new job
appears.

Late New Job Arrival Procedure

1. Load the static scheduling;
2. Initialize parameters: global parameters + the arrival time of the new job

(time new job appears) and the new number of jobs (nnew);
3. Initialize the population of food source (FSi) from the loaded static

scheduling;
4. Using the machine assignment vector and the operation sequence vector, cal-

culate the search space containing all the possible positions to introduce the
operations of the new job, according to the time new job appears;

5. Each one of the new operations will be introduced in the best position possible
of the search space, respecting the precedence constraints;

6. The output is gbest.

5 Results

To verify and validate the implementation of the ABC algorithm for FJSSP
in static and dynamic environments, the algorithm was tested in benchmark
datasets and compared to other algorithms.

– Static scheduling
1. Brandimarte dataset [3] and compared to algorithms [5,6,9,11–13]

– Dynamic scheduling
1. Benchmark 1 - The problem is formulated in [7] where there are 6

machines, 13 different jobs and for each job the number of the operations
is {3, 2, 3, 4, 3, 3, 2, 3, 2, 3, 3, 3, 3}, respectively. There is a total of 37
operations. The job 11 is cancelled as a dynamic occurrence.

2. Benchmark 2 - In [14], the benchmark treats the arrival of three new jobs
(Jnew = {14, 15, 16}) and each job has {3, 2, 3} operations, respectively.

5.1 Parameters

To perform the initialization of the population, the determination of several
parameters is needed. The values for termination criteria (termax and genmax),
local search termination criteria (movemax), the number of the employed bees
(neb), the number of onlooker bees (nob)and the number of scout bees (nsb) are
presented in Table 1.
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Table 1. Global parameters for static and dynamic scheduling

Global parameters

genmax termax movemax neb nob nsb

Static 2 × n×m 1, 5 × n×m n×m 3 × n 11 × n 0, 2 × n

Dynamic n×m 0.4 × n×m n 3 × n 2 × n n

5.2 Static Scheduling

The results are compared in Table 2 and all the results were obtained after twenty
runs selecting the best individual. The proposed algorithm is within the best
performing algorithms and it produces good results when compared to PVNS
and ABC. PVNS achieves four optimal solutions, ABC achieves six and the
proposed ABC also achieves six optimal solutions and one is a new reached
lower bound. Comparing hGAJobs, it was better in six instances and equal in
other three. Comparing to LEGA, it was equal in one instances and better in
seven. From the comparation with KBACO, the proposed ABC is better in six
instances and equal in three. When comparing TSPCB, it performed better in
five datasest, and equally good in four of them. The good performance of the
proposed implementation is guaranteed by the combination of different initial
populations, including a moving operations technique and a local search method
increasing the neighbourhood search that, as a result, improves the solution qual-
ity. It is very likely that with more time and maybe better tuned parameters, the
proposed implementation would reach the optimum solutions in more instances.

Valuable to note, a new best known lower bound was reached for the mk05
benchmark of the Brandimarte dataset in static environment. The lower bound
for mk05 is 169 and the previously last known lower bound found was 172 in [9]
and [11]. The new reached lower bound is 169, three units of time smaller than
the previous one.

Table 2. The results of the Brandimarte instances when solved using different
algorithms.

Instances hGAJobs [5] LEGA[6] PVNS[13] KBACO [12] TSPCB [9] ABC [11] Proposed

Mk01 40 40 40 39 40 40 39

Mk02 27 29 26 29 26 26 26

Mk03 204 N/ 204 204 204 204 204

Mk04 60 67 60 65 62 60 60

Mk05 173 176 173 173 172 172 169*

Mk06 64 67 67 67 65 60 58

Mk07 141 147 144 144 140 139 140

Mk08 523 523 523 523 523 523 523

Mk09 312 320 307 311 310 307 308

Mk10 211 229 208 229 214 208 -
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5.3 Dynamic Scheduling

Early Job Cancellation (ABC-R1)

Comparing Benchmark 1 and ABC-R1 : In the case study using benchmark 1,
the makespan of the initial scheduling is 66 and the makespan after the can-
cellation of the job 11 is 62. The maximum makespan obtained is 52, which
is considerably smaller than the makespan obtained in study 1, and an impor-
tant fact is that the worst solution obtained using the implemented algorithm
is 11,29% better. The maximum improvement of the solution obtained using
ABC-R1 is 19,4%. It is possible to conclude that ABC-R1 is highly competitive
compared to the solution proposed in the case study using benchmark 1 and it
always obtains a substantial lower makespan.

Late Job Cancellation (ABC-R2)

Comparing Benchmark 1 and ABC-R2 : Only one result for ABC-R2 is presented
because the algorithm has no stochastic behaviour and, as a consequence, the
results obtained are the same for each run. The original makespan of the schedul-
ing in the case study using benchmark 1, before the cancellation of the job 11
at 8 units of time, was 66 and after the cancellation is 62. Using the ABC-R2 a
makespan of 55 is obtain in 1, 7 seconds. The makespan obtained with ABC-R2
is 7 units of time smaller and it has an improvement of 11, 29%.

Early Operation Cancellation (ABC-R3). To evaluate the performance of
ABC-R3, mk04 was used. All the operations, from 2 to 5, were set one at each
time as the cancellation of the operation. All the results were obtained after
three runs, selecting the best individual. The makespan of the static scheduling
of mk04 is 60. The makespan obtained using ABC-R3 is 38, 54, 42 and 38, respec-
tively, and is always smaller than the original of the static scheduling. Another
important note is that the maximum run time was 99,2 s and the minimum was
0,3 s. A good solution was achieved in a short period of time to solve the problem.

Late Operation Cancellation (ABC-R4). To test the performance of the
ABC-R4 solving a late cancellation of the operation, mk01 was used. For job 7
and job 10, one at each time were set as the dynamic event. All the results were
obtained after three runs, selecting the best individual. The makespan of the
static scheduling of mk04 is 60. The makespan of these dynamic events is always
smaller, being 37 for O72 and 33 for O10,2 and the run time was 1, 5 seconds.
A good solution was achieved to solve the problem of a late order to cancel one
operation.
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Early New Job Arrival (ABC-R5)

Comparing Benchmark 2 and ABC-R5 : In the case using benchmark 2, the
makespan of the initial scheduling is 66 and the one after the three orders arrival
is 78. It is possible to conclude that ABC-R5 is highly competitive, when com-
pared to the results obtained using benchmark 2, because even the maximum
makespan obtained of 71 using the ABC-R5 is smaller than the makespan of
78 obtained using benchmark 2. Other reason to be considered a highly com-
petitive solution is the significative improvement of the solution obtained using
the ABC-R5 and it is important to notice that the worst improvement was 9%,
which still a relevant improvement.

Late New Job Arrival (ABC-R6)

Comparing Benchmark 2 and ABC-R6 Only one result of the ABC-R6 algorithm
is presented because the algorithm has no stochastic behaviour. The original
makespan of the scheduling in the case study using benchmark 2, before the new
orders arrive, was 66. The time new job appears is 8 units of time and after
the arrival of the three orders the makespan became 78. Using the ABC-R6, for
three orders arrival at 8 units of time, a makespan of 66 is obtained in 1 second.
Comparing this result with the result obtained in benchmark 2, there was an
improvement of 15, 38% in the solution. The cases of just one new order and two
new orders arrival were also studied and, in both cases, a makespan of 66 was
obtained. In fact, the developed solution is substantially better than the case
study solution using benchmark 2.

6 Conclusions

The main objective of this work was to develop tools capable of creating a
schedule solution in a dynamic environment. To achieve this objective, firstly
a static scheduling algorithm was implemented using an Artificial Bee Colony
algorithm and then, as a response to unpredicted or disruptive events, such as
jobs cancellation, operations cancellation, and new job arrivals, six heuristics
were created and implemented to solve the dynamic problem. Therefore, the
Artifical Bee Colony algorithm was extended to innovative solutions for the
dynamic environment.

After testing the algorithm in benchmark problems and comparing it to other
published algorithms, the implemented solution was verified to be a good solution
and achieved the optimal solution in six of the ten instances. Valuable to note, a
new optimal solution for one of the instances was found, which it is three units of
time smaller than the last one known and only one more than the lower bound.

Notwithstanding, this work’s primary goal was to create the six adaptations
of the ABC algorithm to dynamic scenarios. The scenarios were tested against
the static scheduling obtained using the benchmark problems in the static envi-
ronment, to fulfil the objective of evaluating the performance of the adapted
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algorithms and create instances for dynamic testing. All the implementations
achieve good solutions in a very short time. Additionally, the solution obtained
using ABC-R1, ABC-R2, ABC-R5 and ABC-R6 were compared to the solu-
tion obtained using benchmarks belonging to case studies. The makespan was
always smaller, while compared to the benchmarks, and it was always several
units of time smaller. It is important to refer, that the worst improvement of a
solution obtained using one of the adaptations was 9, 0%, which is still a rele-
vant improvement comparatively to the benchmarks results and all the results
have an improvement. All in all, very promising solutions are shown for dynamic
scheduling.
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Abstract. We introduce a game for (extended) Gödel logic where the
players’ interaction stepwise reduces claims about the relative order of
truth degrees of complex formulas to atomic truth comparison claims.
Using the concept of disjunctive game states this semantic game is lifted
to a provability game, where winning strategies correspond to proofs in
a sequents-of-relations calculus.

1 Introduction

Fuzzy logics, by which we mean logics where the connectives are interpreted as
functions of the unit interval [0, 1], come in many variants. Even if we restrict
attention to t-norm based logics, where a left continuous t-norm ◦ serves as truth
function for conjunction and the (unique) residuum of ◦ models implication,
there are still infinitely many different fuzzy logics to choose from. Almost all of
these logics feature truth functions that yield values that are in general different
from 0 and 1, but also different from each argument value. E.g., the function
f(x) = 1 − x often serves as truth function for negation. However, if we take
the minimum, min(x, y), as t-norm modeling conjunction ∧, the corresponding
residuum as truth function for implication →, and define the negation by ¬A =
A → ⊥ 1, we arrive at Gödel logic, where every formula evaluates to either 0, 1,
or to the value of one of the propositional variables occurring in it. Moreover,
Gödel logic is the only t-norm based fuzzy logic, where whether a formula is
true (i.e., evaluates to 1) does not depend on the particular values in [0, 1] that
interpret the propositional variables, but only on the order2 of these values.

In this paper, we look at Gödel logic from a game semantic point of view.
After explaining, in Sect. 2, for the simple case of classical logic restricted to
negation, conjunction, and disjunction, how a semantic game may be turned
into a calculus for proving validity, we turn to Gödel logic G (and its extension

1 ⊥ denotes falsum and always evaluates to 0.
2 An order of n values in [0, 1] is given here by 0�0x1�1 . . . xn�n1, where �i ∈ {<, ≤, =}.
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G� with the �-operator) in Sect. 3. We introduce a truth degree comparison
game, where a player P seeks to uphold, against attacks by opponent O, a claim
of the form F < G or F ≤ G, expressing that the truth value of F is smaller (or
equal) to that of G under a given interpretation. The interaction of P and O
stepwise reduces the initial truth comparison claim to an atomic claim that can
be immediately checked. In Sect. 5, we lift the game from truth degree compari-
son claims for concrete interpretations to the level of validity, i.e., to comparison
claims that hold under every interpretation. Following the general clue given in
Sect. 2, the key ingredient is the notion of disjunctive states, triggering disjunc-
tive strategies. It turns out that disjunctive winning strategies for P correspond
to proofs in an analytic proof system, called sequents-of-relations calculus, intro-
duced in [6]. We conclude in Sect. 6 by a brief summary of our results, followed
by suggestions for future research in this area.

2 From Classical Semantic Games to Sequent Calculus

Before focusing on Gödel logic, let us illustrate how to turn a semantic game
into an analytic proof system in its simplest case: classical propositional logic CL
with ∧, ∨, and ¬ as the only connectives.

Following Hintikka [14], a semantic game for CL can be described as follows.
There are two players, say You and I , who, at any state of the game, can either
be in the role of a proponent P or in the role of an opponent O with respect to
the claim that a current formula F is true in a given interpretation J . The game
starts with You in role O and me (player I ) in role P. It proceeds in accordance
with the following rules, which refer to the players only via their current roles.

(R∧): If the current formula is of the form A ∧ B then O chooses whether to
continue with A or with B as the new current formula.

(R∨): If the current formula is of the form A ∨ B then P chooses whether to
continue with A or with B as the new current formula.

(R¬): If the current formula is of the form ¬A then the roles of the players are
switched and the game continues with A as the new current formula.

(Rat): If the current formula A is atomic, the game ends with P winning iff A
is true in the given interpretation.

It is straightforward to show that I , the initial P, have a winning strategy in
the game for formula F and interpretation J iff F is true under J . The game
thus characterizes the fundamental notion of truth in a model (interpretation).

The just described semantic game can be turned into a provability game
by lifting its states to disjunctive states. By this we mean that any state of
the provability game consists of a disjunction of states of the semantic game.
At any disjunctive state I pick one disjunct where the current formula is non-
atomic. If all formulas are atomic, we have reached a final disjunctive state of the
provability game. We call such a disjunctive state winning (for me, i.e., player
I ) if for every interpretation there is at least one disjunct (state) where I win.
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For states of the semantic game (and thus disjunctive components of the
provability game) and each formula F in these states, let us write I : F if I am
in the role of P, and You : F if You are in the role of P (and thus I am in the
role O). The rules of the provability game may then be denoted as follows, where
D denotes a, possible empty, disjunction of component states.

(I : A)
∨ D (I : B)

∨ D
(I : A ∧ B)

∨ D
(You : A)

∨
(You : B)

∨ D
(You : A ∧ B)

∨ D
(I : A)

∨
(I : B)

∨ D
(I : A ∨ B)

∨ D
(You : A)

∨ D (You : B)
∨ D

(You : A ∨ B)
∨ D

(You : A)
∨ D

(I : ¬A)
∨ D

(I : A)
∨ D

(You : ¬A)
∨ D

In these rules, the component state exhibited in the lower disjunctive state is the
one picked by me. Notice that a branching into two disjunctive successor states
(premises of the rule) only occurs if You has to move in the underlying semantic
game. In contrast, if I am to move, the component state picked by me splits into
two states, i.e., into two components (disjuncts) of the given disjunctive state.

Again, it is straightforward to check that I have a winning strategy for the
provability game starting in state I : F iff F is valid in CL. Actually, the above
rules can be seen as classical sequent (or, equivalently, as tableau) rules in dis-
guise. If one translates the labels ‘I’/‘You’ as ‘to the right/left of the sequent
arrow’, respectively, one indeed arrives at the rules introducing conjunction, dis-
junction, and negation in the classical sequent calculus LK (or more precisely,
its variant G3 without structural rules [18]). For example:

(You : A)
∨

(I : C) (You : B)
∨

(I : C)
(You : A ∨ B)

∨
(I : C) corresponds to

A ⇒ C B ⇒ C
A ∨ B ⇒ C

Winning disjunctive states turn into initial sequents Γ, p ⇒ p,Δ such that only
variables occur in Γ ∪ Δ ∪ {p}. Clearly the structural rules of LK, namely
permutation, weakening, and contraction, remain sound in the interpretation of
sequents as disjunctive game states. Winning strategies in the provability game
thus translate into LK proofs.

We suggest that the sketched transformation of a semantic game into a prov-
ability game via moving from single states (referring to particular interpreta-
tions) into disjunctive states (referring to all possible interpretations) can be
seen as a general principle, rather than a trick that works only for (a fragment
of) propositional CL. An arguably more interesting case of this transformation
has been worked out in [10] for (infinite-valued) �Lukasiewicz logic �L: Taking
Giles’ game for �L [11,12] as a starting point on the semantic level, we arrive at
disjunctive states that can be interpreted as hypersequents. Indeed, as shown
in [10], one can systemically derive the logical rules of the hypersequent calculus
H�L, originally introduced in [16], in this manner.

In the following, we will apply the transformation of a semantic game into a
provability game, and thus a corresponding analytic proof system, to (a some-
what extended version of) Gödel logic.
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3 Extended Gödel Logic

Gödel logic occured for the first time in an article by Kurt Gödel [13] where he
proved that intuitionistic logic is not a finite-valued logic. It was axiomatized and
further investigated by Michael Dummett [9]. As a fuzzy logic, it is characterized
by the following truth functions for conjunction, disjunction, and implication:

‖A ∧ B‖J = min(‖A‖J , ‖B‖J ), ‖A ∨ B‖J = max(‖A‖J , ‖B‖J ),

‖A → B‖J =

{
1 if ‖A‖J ≤ ‖B‖J
‖B‖J otherwise.

These truth functions extend any interpretation, i.e., any assignment of truth
values to propositional variables to compound formulas. In principle, any set V ,
where {0, 1} ⊆ V ⊆ [0, 1] can be taken here as set of truth values. We are mostly
interested in infinite-valued Gödel logic G, which is a t-norm based fuzzy logic,
where V = [0, 1], min is the t-norm modeling conjunction, and the corresponding
residuum modeling implication. We include the propositional constants ⊥ and
 in G, interpreted by ‖⊥‖J = 0 and ‖‖J = 1. The atomic formulas of G are
the propositional variables and the propositional constants.

Negation in G is a defined connective, given by ¬A = A → ⊥. We moreover
extend G to G� by including the following projection operator [2]:

‖�A‖J =

{
1 if ‖A‖J = 1
0 otherwise.

The set of all [0, 1]-valued interpretations is denoted Int[0,1]. An interpretation
J ∈ Int[0,1] satisfies a formula F and is called a model of F (written J |= F ) if
‖F‖J = 1. F is valid if all interpretations are models of F .

4 Truth Degree Comparison Games

Below, we will focus on truth degree comparison claims, or just claims, of the
form F ≤ G or F < G, where F and G are G�-formulas. An interpretation J
satisfies such a claim if ‖F‖J ≤ ‖G‖J or ‖F‖J < ‖G‖J , respectively.

Note that truth comparison claims can be reduced to single G�-formulas in
the following sense: J satisfies F ≤ G iff J satisfies F → G and J satisfies
F < G iff J satisfies ¬ � (G → F ).

We introduce a semantic game for the stepwise reduction of arbitrary truth
degree comparison claims to atomic ones. Game states consist of truth degree
comparison claims F � G, where � is either ≤ or <. Furthermore each non-
atomic claim carries a marking which points to a non-atomic formula in the
claim (either F or G). In the Hintikka-style game of Sect. 2 for CL we had to
distinguish between the players identities (I and You) and their current roles P
or O. The truth degree comparison game for G� does not feature role switches;
therefore we can identify the two players with P and O, respectively. Given an
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interpretation J , at any state F � G player P seeks to defend and O to refute
the claim that J satisfies F � G. If F and G are atomic formulas the game is in
an atomic state, where P wins (and O loses) if ‖F‖J � ‖G‖J .

At each state of the game, P and O make moves according to the rules below
resulting in a successor claim where the marked formula has been decomposed.
If the successor claim is not atomic, then in a final (implicit) move, a regulation
function ρ marks one of the non-atomic formulas in the successor claim. The
resulting claim is the successor state of the game.

For each connective there are four rules, according to whether the connective
appears in a marked formula on the left or on the right, and whether the truth
degree comparison is strict or non-strict, i.e., of the form F < G or F ≤ G. Some
of the rules can be represented in a uniform manner using � to stand for either
< or ≤ (consistently within the rule). In the following, the exhibited compound
formula is the marked formula of the state3.

A ∧ B � C: P chooses whether the game continues with A � C or with B � C.
C � A ∧ B: O chooses whether the game continues with C � A or with C � B.

A ∨ B � C: O chooses whether the game continues with A � C or with B � C.
C � A ∨ B: P chooses whether the game continues with C � A or with C � B.

A → B ≤ C: P chooses one of the following intermediary states, where it is O’s
turn to choose:
(1): the game continues with  ≤ C;
(2): O chooses whether the game continues with B < A or with B ≤ C.

C ≤ A → B: P chooses whether the game continues with A ≤ B or with C ≤ B.
A → B < C: O chooses whether the game continues with B < A or with B < C.
C < A → B: P chooses between

(1): the game continues with C < B;
(2): O chooses whether the game continues with A ≤ B or with C < .

�A ≤ C: P chooses whether to continue with A <  or with  ≤ C.
C ≤ �A: P chooses whether to continue with  ≤ A or with C ≤ ⊥.
�A < C: O chooses whether to continue with A <  or with ⊥ < C.
C < �A: O chooses whether to continue with  ≤ A or with C < .

We can picture these game rules as decision trees. E.g, the rule for the game
state A → B ≤ C corresponds to the tree in Fig. 1. The leaves of this tree, i.e.,
 ≤ C,B < A and B ≤ C, are the possible successor claims of A → B ≤ C.
Given the regulation ρ, we can then further expand the successor claims into
decision trees according to the game rules.

We therefore see that each game can be viewed as a finite tree τJ
ρ [F � G]

of (marked) truth comparison claims, rooted in the initial claim F � G and
branching according to the rules of the truth degree comparison game and the
regulation ρ until all leaves are atomic states, i.e., states where the compared for-
mulas are either variables or propositional constants ⊥ or . If the interpretation

3 This convention will be followed often throughout the article.
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A → B ≤ C

� ≤ C

B < A B ≤ C

P P

O O

Fig. 1. Decision tree of a game rule

J satisfies the truth comparison claim at an atomic state ν then ν is a winning
state of τJ

ρ [F � G] for P.

Example 1. Below is the tree τJ
ρ [p ∧ (p → q) ≤ p ∧ q]. The formulas marked by

the regulation ρ are underlined.

p ∧ (p → q) ≤ p ∧ q

p ≤ p ∧ q p → q ≤ p ∧ q

p ≤ p p ≤ q 1 ≤ p ∧ q

1 ≤ p 1 ≤ q
q < p q ≤ p ∧ q

q ≤ p q ≤ q

P P

O O P P

O O
O O

O O

In the case that ‖q‖J < ‖p‖J < 1, the winning states are p ≤ p, q < p, q ≤ p
and q ≤ q.

A strategy σ for P in τJ
ρ [F �G] is a subtree of τJ

ρ [F �G] which is obtained from
pruning all but one P-labelled outgoing branches from every node in the tree,
while keeping O-labelled branches intact. Clearly, the remaining tree specifies
how P is to move at the given state, while all possible choices of O are still
recorded. σ is a winning strategy, hereinafter referred to as ws, for P if all leaf
nodes of σ are winning states for P.

Example 2. To the right is a strategy for P in the game
τJ
ρ [p∧(p → q) ≤ p∧q], which is obtained from the tree

in Example 1 by pruning the right branch stemming
from the root. It is a winning strategy if and only if
‖p‖J ≤ ‖q‖J .

p ∧ (p → q) ≤ p ∧ q

p ≤ p ∧ q

p ≤ p p ≤ q

P

O O

Each non-atomic game state F � G corresponds to exactly one of the 12 game
rules described above, and we describe its set Pow(F �G) of P-powers4 as follows:

4 This notion is similar to the general definition of a power in game theory, cf. [19].
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A set X is a P-power of F � G if it is a subset-minimal set of claims such that
in the game state F � G, P can enforce that the successor claim is among the
claims in X.

For example, in the game state A → B ≤ C with A → B marked (cf. Fig. 1),
P can make a move so that the successor claim is  ≤ C. Alternatively, she can
make a move ensuring that the successor claim is one of B < A or B ≤ C, but
she does not know which one since this depends on a move by O. Hence we have

Pow(A → B ≤ C) = {{ ≤ C}, {B < A,B ≤ C}}.

As further examples,

Pow(A ∧ B � C) = {{A � C}, {B � C}},

and Pow(C � A ∧ B) = {{C � A,C � B}}.

For an atomic state F � G, we formally set Pow(F � G) = {{F � G}}.

Proposition 1 (Soundness of game rules). For any game state F � G and
any J ∈ Int[0,1], J |= F � G iff for some X ∈ Pow(F � G), J satisfies all
formulas in X.

Proof For an atomic state F �G, this holds by definition. For non-atomic F �G,
this is proved for all 12 types of game states seperately. Consider for example
the state A → B ≤ C and its P-power

{{ ≤ C}, {B < A,B ≤ C}}.

Let J ∈ Int[0,1]. Then either ‖A‖J ≤ ‖B‖J , in which case ‖A → B‖J = 1 and
so J satisfies the claim A → B ≤ C iff J satisfies  ≤ C. Or ‖A‖J > ‖B‖J :
Then ‖A → B‖J = ‖B‖J and so J satisfies the claim A → B ≤ C iff J satisfies
B ≤ C.

We prove the equivalence for the other two examples given above. For the
game state A ∧ B � C with

Pow(A ∧ B � C) = {{A � C}, {B � C}}
we observe that an interpretation J satisfies A ∧ B � C if and only if we either
have ‖A‖J ≤ ‖B‖J and ‖A‖J � ‖C‖J , or alternatively ‖A‖J > ‖B‖J and
‖B‖J � ‖C‖J .

Finally, for the game state C � A ∧ B with

Pow(C � A ∧ B) = {{C � A,C � B}}
we observe that an interpretation J satisfies C �A∧B if and only if J satisfies
both C � A and C � B.

The remaining 9 cases can be shown similarily. ��
Proposition 2. For any interpretation J and regulation ρ, if P has a winning
strategy in τJ

ρ [F � G] then J satisfies F � G, where � ∈ {<,≤}.
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Proof. By induction on the tree height of a ws σ ⊆ τJ
ρ [F � G]. If the height of

σ is 1, then F � G is atomic, and since σ is a ws, F � G must therefore be a
winning state of τJ

ρ [F � G]. Hence J |= F � G.
Now assume that the height of σ is at least 2, and let S1, . . . , Sn be the

successor claims of F � G in τJ
ρ [F � G] which are contained in σ. Since σ is a

strategy for P, the set {S1, . . . , Sn} is a P-power of τJ
ρ [F � G]. Now for each

i ≤ n, let σi be the subtree of σ with root Si. Then each σi is a ws for P in
τJ
ρ [Si], and so by induction hypothesis J |= Si for every i ≤ n. We have thus

shown that all claims in a P-power of τJ
ρ [F � G] are satisfied by J , and so by

Proposition 1 it follows that J satisfies F � G. ��
Proposition 3. If an interpretation J satisfies F � G, where � ∈ {<,≤},
then P has a winning strategy in τJ

ρ [F � G] for any regulation ρ.

Proof. If J satisfies F � G, then by Proposition 1 there is a power X ∈
Pow(F � G) (where the marking in F � G is set according to ρ) such that J
satisfies all claims in X. So P can enforce that the successor state of F � G in
the game τJ

ρ [F � G] is contained in X.
Repeating the same kind of reasoning, we see that P can always move ensur-

ing that the resulting game state is satisfied by J , and in particular, any atomic
state ν reached using this strategy will be a winning state in τJ

ρ [F � G] for P.��

5 Disjunctive Game States as Sequents-of-relations

As an immediate consequence of Propositions 2 and 3 we have:

Theorem 1. The following are equivalent:

1. F � G is valid in G�

2. For some regulation ρ, P has a ws in τJ
ρ [F � G] for every J ∈ Int[0,1]

3. For any regulation ρ, P has a ws in τJ
ρ [F � G] for every J ∈ Int[0,1].

In particular, although different regulations ρ lead to different games, the
choice of the regulation does not matter if one is only interested in the winnability
of a game.

A family (σJ )J ∈Int[0,1] of ws for the games τJ
ρ [F � G] witnesses that the

claim F � G is valid. We may think of (σJ )J ∈Int[0,1] as a proof of F � G,
but this notion of provability would not be efficient since (σJ )J ∈Int[0,1] is an
infinite object. However, we now show that an infinite family of strategies such
as (σJ )J ∈Int[0,1] can be encoded into a single disjunctive winning strategy. In
doing so, we follow the approach sketched in Sect. 2 for classical logic.

First, define a disjunctive state D to be a finite nonempty multiset of claims
written D = S1

∨
. . .

∨
Sn. A disjunctive state is called atomic if all of its dis-

juncts are atomic claims. We say that an interpretation J satisfies a disjunctive
state D, and write J |= D, if J satisfies at least one of the disjuncts of D. A
disjunctive state D is called winning if it is an atomic state satisfied by every
interpretation.
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For a set P = {X1, . . . , Xn} where each Xi is a set of claims, we define
∨ P

as the set of all disjunctive states

S1

∨
. . .

∨
Sn

where for each i ≤ n, Si ∈ Xi.

Definition 1 (disjunctive rule). Let S be a non-atomic claim and D a dis-
junctive state. A disjunctive rule is a rule of the form

D
∨

D1 . . . D
∨

Dk

D
∨

S

where for a game state S′ obtained from marking a formula in S, the sequence
D1, . . . , Dk is an enumeration of

∨
Pow(S′).

As an example, let S be the claim A → B ≤ C and S′ the corresponding
game state where A → B is marked. Recall that

Pow(A → B ≤ C) = {{ ≤ C}, {B < A,B ≤ C}}
and so

∨
Pow(A → B ≤ C) = {( ≤ C

∨
B < A), ( ≤ C

∨
B ≤ C)}.

The corresponding disjunctive rule is thus:

D
∨

( ≤ C)
∨

(B < A) D
∨

( ≤ C)
∨

(B ≤ C)
D

∨
(A → B ≤ C)

Figure 2 contains the disjunctive rules corresponding to all 12 types of game
states.

Definition 2 (Disjunctive strategy). Let D be a disjunctive state. A dis-
junctive strategy for P in D is a tree of disjunctive states built using disjunctive
rules, and with root D. A disjunctive strategy is called winning strategy if all its
leaves are disjunctive winning states.

For the time being, disjunctive strategies will just be syntactic objects rather
than strategies in some game. We will however discuss later on how to interpret
disjunctive strategies in a game theoretic sense.

Proposition 4 (Soundness of disjunctive rules). Let J ∈ Int[0,1]. Then
J satisfies the conclusion of a disjunctive rule iff J satisfies all of its premises.

Proof Let the disjunctive rule be presented as in Definition 1. Assume first that
J � D

∨
S. If J � D, then clearly J satisfies all premises of the disjunctive rule

as well. On the other hand, if J � S, then by Proposition 1 there exists a power
X ∈ Pow(S) such that all claims in X are satisfied by J . It follows that J � Di

for every i ≤ n because Di contains a disjunct from X.
For the other direction, assume that J � D

∨
S. Then J � D and J � S.

The latter implies, again by Proposition 1, that every power X ∈ Pow(S) contains
a state not satisfied by J . The disjunctive combination of all these failing states
is one of the Di’s, and so J does not satisfy the premise D

∨
Di. ��
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D
∨
(A � C)

∨
(B � C)

D
∨
(A ∧ B � C)

∧�
D

∨
(C � A) D

∨
(C � B)

D
∨
(C � A ∧ B)

�∧ D
∨
(A � C) D

∨
(B � C)

D
∨
(A ∨ B � C)

∨�

D
∨
(C � A)

∨
(C � B)

D
∨
(C � A ∨ B)

�∨ D
∨
(� ≤ C)

∨
(B < A) D

∨
(� ≤ C)

∨
(B ≤ C)

D
∨
(A → B ≤ C)

→≤

D
∨
(B < A) D

∨
(B < C)

D
∨
(A → B < C)

→<
D

∨
(C < B)

∨
(A ≤ B) D

∨
(C < B)

∨
(C < �)

D
∨
(C < A → B)

<→

D
∨
(A ≤ B)

∨
(C ≤ B)

D
∨
(C ≤ A → B)

≤→ D
∨
(A < �)

∨
(� ≤ C)

D
∨
(�A ≤ C)

� ≤ D
∨
(� ≤ A)

∨
(C ≤ ⊥)

D
∨
(C ≤ �A)

≤ �

D
∨
(A < �) D

∨
(⊥ < C)

D
∨
(�A < C)

� <
D

∨
(� ≤ A) D

∨
(C < �)

D
∨
(C < �A)

< �

Fig. 2. Disjunctive rules

Theorem 2. F � G is valid in G� iff there is a disjunctive ws for P in F � G.

Proof. Given the claim F �G (seen as a disjunctive state with one component),
we can exhaustively apply disjunctive rules to it in any order, and eventually
obtain a disjunctive strategy with atomic leaves. By Proposition 4 (and a simple
induction on the height of the tree), all leaves of this tree will be disjunctive
winning states because F � G is valid by assumption.

Conversely, if there is a disjunctive ws for P in F � G, then by definition all
of its leaves are winning states. Again by Proposition 4 and a simple induction
on the tree height, it follows that all disjunctive states in the ws are valid. Hence
in particular, the claim F � G is valid. ��

To use disjunctive ws as a proof system for G�, the only thing left to establish
is that we can efficiently check whether the leaves of a disjunctive strategy are
winning. Indeed, this holds true:

Lemma 1. It is decidable in PTIME whether an atomic disjunctive state is
winning.

Proof. See Theorem 4 in [7]. ��
From this and Theorem 2 it follows that the disjunctive ws form a proposi-

tional proof system for G� in the sense of Cook-Reckhow (cf. the survey [17]).
The disjunctive strategies can be seen as strategies in the usual game-

theoretic sense, with respect to a game that we are going to define now. The
G�-provability game on D starts with a (disjunctive) state D. At each turn,
P picks one disjunctive rule whose conclusion matches the current disjunctive
state. Then, O chooses one of the premises of this disjunctive rule as the suc-
cessor state. If an atomic disjunctive state is reached, P wins if the state is a
winning state (in the earlier sense). Clearly, disjunctive ws are the same as ws
in the provability game, and so we have:
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Theorem 3. F � G is valid in G� iff there is a ws for P in the G�-provability
game on F � G.

We can think of the provability game as a game where multiple instances of a
truth degree comparison game τJ

ρ [F �G] are played simultaneously, for varying
interpretations J . Or alternatively, we may imagine that P plays τJ

ρ [F � G]
without knowing the interpretation J . Now whenever P faces a choice in one of
the degree comparison games, she simply encodes all possible moves she could
make into the strategy in the provability game. The claim that P then defends
is that for every J , at least one of the subgames she plays necessarily leads to a
winning state.

More compact representations of disjunctive strategies are sometimes possi-
ble. For example, consider the following disjunctive rule:

D1

∨
. . .

∨
Dn

D1

∨
. . .

∨
Dn

∨
Dn+1

ew

It is easy to see that whenever there is a disjunctive ws for P in D1

∨
. . .

∨
Dn,

then there is also a disjunctive ws for P in D1

∨
. . .

∨
Dn

∨
Dn+1. So if we

allow the rule ew in the construction of disjunctive ws, we still characterize
validity in G�. However, disjunctive ws with ew might be smaller. The intu-
itive (bottom-up) reading of ew is the following: If during the construction of a
disjunctive ws for D1

∨
. . .

∨
Dn

∨
Dn+1 player P finds out that already the dis-

juncts D1

∨
. . .

∨
Dn lead to a winning state, then she can discard the redundant

disjunct Dn.

Example 3. Below is a disjunctive ws for the claim in Example 1, which uses the
rule ew:

p ≤ p

(p ≤ p)
∨

(p → q ≤ p ∧ q)
ew

(p ≤ q)
∨

(q < p)
(p ≤ q)

∨
( ≤ p ∧ q)

∨
(q < p)

ew

(p ≤ q)
∨

(q ≤ p) (p ≤ q)
∨

(q ≤ q)
(p ≤ q)

∨
(q ≤ p ∧ q)

≤ ∧
(p ≤ q)

∨
( ≤ p ∧ q)

∨
(q ≤ p ∧ q)

ew

(p ≤ q)
∨

(p → q ≤ p ∧ q)
→≤

(p ≤ p ∧ q)
∨

(p → q ≤ p ∧ q)
≤ ∧

p ∧ (p → q) ≤ p ∧ q
∧ ≤

The disjunctive ws are very close to proofs in the sequents-of-relations cal-
culus RG∞, and its extension RG�

∞ capturing the � projection operator, as
developed in [3,4,6]. The approach there is algebraic rather then game-theoretic.

On a purely notational level, the sequents-of-relations calculus differs from
the disjunctive ws by the use of the symbol | instead of

∨
, making it fit into

the framework of hypersequent calculi as developed independently by Mints,
Pottinger and Avron (cf. the survey [5]).

The other differences are: RG�
∞ includes the structural rules

D
D

∨
S

ew
and

D
∨

S
∨

S

D
∨

S
ec
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of external weakening (see the discussion above) and external contraction, and
it features the logical rules

D
∨

(� ≤ C)
∨

(B < A) D
∨

(B ≤ C)

D
∨

(A → B ≤ C)
→≤∗ D

∨
(C < B)

∨
(A ≤ B) D

∨
(C < �)

D
∨

(C < A → B)
<→∗

instead of our rules →≤ and <→ (cf. Fig. 2). All other rules are the same.
To show the equivalence of both calculi, we can proceed as follows. First, for

the rule variants →≤∗ and <→∗ the analogue of Proposition 4 can be shown:

Lemma 2. Let J ∈ Int[0,1]. Then J satisfies the conclusion of the rule →≤∗

(resp. <→∗) iff J satisfies all of the premises of →≤∗ (resp. <→∗).

Proof. Assume J � D (otherwise the statement is obvious).
If ‖A‖J ≤ ‖B‖J , then J satisfies the conclusion of →≤∗ iff ‖C‖J = 1,

and this is equivalent to the statement that J satisfies the premises of →≤∗,
since J � D and J � (B < A). If on the other hand ‖A‖J > ‖B‖J , then J
satisfies the conclusion of →≤∗ iff ‖B‖J ≤ ‖C‖J . This in turn is equivalent to
saying that J satisfies the premises of →≤∗ since it satisfies the left premise by
assumption, and the right premise reduces to B ≤ C since J � D.

The argument for the rule <→∗ is similar. ��
It follows that the proof of Theorem 2 goes through if we use →≤∗ and

→≤∗ as disjunctive rules instead of their non-starred versions. The additional
structural rules ew and ec are in fact redundant, since already the system with-
out them is complete for G�. Note however that the inclusion of redundant
rules might lead to shorter proofs. More such rules for the sequents-of-relations
calculus are discussed in [6].

6 Summary and Conclusion

We have investigated Gödel logic, one of the fundamental fuzzy logics, from a
game semantic perspective. In Sect. 4, we presented a game for reducing truth
degree comparison claims F < G or F ≤ G, i.e., claims about the relative
order of arbitrary G�-formulas, to atomic comparison claims. This amounts to
a generalization of Hintikka’s well known semantic game for classical logic. As
illustrated in Sect. 2 for the simple case of classical propositional logic, semantic
games can be systematically lifted to provability games. The latter operate on
the level of validity rather than the level of truth in a model and thus corre-
spond to analytic proof systems. Indeed, Gentzen’s sequent system for classical
logic can be interpreted from a game perspective in this manner. In Sect. 5, we
have applied this general scheme to the more involved case of the truth degree
comparison game and demonstrated that moving from single states to disjunc-
tions of states yields a characterization of validity in G� in terms of ‘disjunctive
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winning strategies’. Moreover, disjunctions of states can be viewed as sequents-
of-relations in the sense of [3,6]. Hence, disjunctive winning strategies provide
an interpretation of proofs in this calculus.

A number of topics for further research arise from our game based take on
Gödel logic. While it has already been shown in [10] that a similar approach
relates Giles’s game for �Lukasiewicz logic to a corresponding hypersequent cal-
culus, it remains open whether and how this method can be extended to yet
further fuzzy logics. Even for Gödel logic itself, one may ask whether not only
sequents-of-relations but also the arguably better known hypersequent calculus
HLC of Avron [1] can be systematically related to a truth degree comparison
game. This might also open the way to generalize to the first order level, since
in contrast to the sequents-of-relations calculus, HLC can straightforwardly be
extended to include quantifier rules. Due to its attractiveness for certain applica-
tions, an extension of Gödel logic featuring an involutative negation, in addition
to standard Gödel-negation, has received some attention [8]. In future work we
plan to extend our truth degree comparison games to include also this type of
negation. Finally, we like to point out that a game based approach to fuzzy logics
may open the route to more sophisticated models of reasoning under vagueness
than can be achieved by sticking with truth functional logics. It is natural to ask
what happens if the players of a game have only imperfect information about
their opponent’s moves. For classical logic this leads to Independence Friendly
(IF) logic of Hintikka and Sandu [15]. Given the fact that vagueness may be seen
as a phenomenon involving a lack of full share of (precise) information between
speaker and hearer of vague statements, it seems attractive to explore the impact
of imperfect information on truth degree comparison games.
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Kurt Gödel’s Legacy, Proceedings, Brno, Czech Republic, August 1996, pp. 23–33.
Association for Symbolic Logic (1996)

3. Baaz M., Ciabattoni A., Fermüller, C.: Sequent of relations calculi: a framework for
analytic deduction in many-valued logics. In: Fitting M., Orlowska E. (eds.) Beyond
Two: Theory and Applications of Multiple-Valued Logic. Studies in Fuzziness and
Soft Computing, vol. 114, pp. 157–180. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-7908-1769-0 6

4. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Cut-elimination in a sequents-of-
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Abstract. The graphical, hypergraphical and polymatrix games frameworks pro-
vide concise representations of non-cooperative normal-form games involving
many agents. In these graph-based games, agents interact in simultaneous local
subgames with the agents which are their neighbors in a graph. Recently, ordinal
normal form games have been proposed as a framework for game theory where
agents’ utilities are ordinal. This paper presents the first definition of Ordinal
Graphical Games (OGG), Ordinal Hypergraphical Games (OHG), and Ordinal
Polymatrix Games (OPG). We show that, as for classical graph-based games,
determining whether a pure NE exists is also NP-hard. We propose an original
CSP model to decide their existence and compute them. Then, a polynomial-time
algorithm to compute possibilistic mixed equilibria for graph-based games is pro-
posed. Finally, the experimental study is dedicated to test our proposed solution
concepts for ordinal graph-based games.

Keywords: Possibility theory · Ordinal game theory · Algorithms · Complexity

1 Introduction

Game theory is a natural framework to consider when modeling complex multi-agent
systems. The larger the number of agents in these systems, the more computational
issues arise. However, there exist situations where the utility of players only depends
on a small subset of other players’ strategies. Accordingly, researchers in AI proposed
compact representations for games, pursuing the seminal work on graphical games [11].
Polymatrix games [20], graphical games [11] and hypergraphical games [16] have been
proposed as a convenient way to represent games with multiple players and local inter-
actions. These models offer the possibility to exploit local interactions among players
and can require exponentially less space than usual normal-form games to represent.
In hypergraphical games, agents’ interactions are represented by a hypergraph where
each agent (vertex) can be involved in several normal-form subgames (hyperedges). If
the utility of each agent depends on exactly one subgame, then the game is a graphical
game. If all subgames involve only two players then the game is a polymatrix game. In
this work, we are interested in these three classes of games.

As for standard representations, the overall aim for players with compact repre-
sentations of games is to compute a Nash equilibrium (NE) [13]. Significant work has
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been devoted to finding pure or mixed NE for polymatrix, graphical and hypergraphi-
cal games. [11] proposed a message passing type algorithm (TreeNash) for computing
NE on tree structured graphical games. [10,15] extended the TreeNash algorithm to
arbitrary graphical games, by defining NashProp, a heuristic Loopy Belief Propagation-
type algorithm. Concerning polymatrix games, [12] have demonstrated that a mixed NE
could be found by a reduction to a Linear Complementarity Problem (LCP). In a dif-
ferent line of works, [17] have studied constrained pure NE in different subclasses of
polymatrix games. They have shown that the problem of finding pure NE is tractable in
these subclasses. [2] proposed Valued Nash Propagation (VNP), an algorithm for find-
ing a pure NE in hypergraphical games and showed that VNP works efficiently when the
hypertree-width is bounded. [19] proposed an algorithm for solving Asymmetric Dis-
tributed Constraint Satisfaction problems (ADisCSP), in order to find approximate NE
for hypergraphical games. When it comes to reflecting realistic games situations, local
interactions between players is only one aspect. Another important feature of games
is that preferences of players may not always be easily quantified. Sometimes, only
an ordinal ranking of joint strategies can be reasonably expressed by “players”. Pure
NE are hopefully invariant to the quantitative embedding of ordinal preference scales.
However, mixed-equilibria are sensitive to non-linear transformations of the preference
scales of players, which makes usual game theory unable to easily tackle ordinal prefer-
ences over joint strategies. Therefore, Ordinal games [3] have been studied as a frame-
work to tackle games with ordinal preferences. However, until recently there has been
little advancement in the analysis of equilibria in ordinal games. [3] studied only pure
strategies in ordinal games. Then, a definition of mixed strategies has been recently
proposed in the possibility theory framework [1]. In the same line, [8] have proposed
the definition of randomization over actions using possibilistic approaches to study and
compare both qualitative and quantitative equilibrium concepts based on the Sugeno
integral and Choquet integral [7]. However, to our knowledge, all works dedicated to
the study of ordinal games are limited to normal-form games, while the two aspects
of compactness and ordinal preferences occur naturally in human elicited games situ-
ations. Our goal is to overcome the lack of solution concepts and algorithms for com-
pactly represented ordinal games.

The contributions of the present paper are fourfold: (i) We give the first definition of
Ordinal Graphical Games (OGG), Ordinal Hypergraphical Games (OHG) and Ordi-
nal Polymatrix Games (OPG). These definitions allow, in some cases, an exponentially
more compact representation of ordinal games than in [1], for example. We also study
both pure and possibilistic mixed NE in these games. (ii) We show that, as for cardi-
nal graph-based games, deciding whether a pure NE exists is NP-complete. (iii) We
propose and implement solution approaches for finding pure and mixed NE for graph-
based ordinal games, the algorithm computing mixed-NE being polytime in the game
description. (iv) We end the paper with an experimental study.
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2 Background

2.1 Extensive and Compact Representations of Normal Form Games

A normal form game represents strategic interactions between players with conflict-
ing objectives. Extensive normal form games representations are exploited to compute
equilibrium strategies between players. A normal form game is defined as follows [18]:

Definition 1 (Normal form game). A normal form game is a triple G = 〈N, A, U〉:
– N= {1, ..., n} is a set of n players.
– A = A1 × . . .×An: Ai is a set of strategies available to player i. a = (a1, . . . , an)

denotes a joint strategy.
– U = {ui : A → R}i∈N is a set of real-valued utility functions.

The classical definition of pure NE in a normal-form game is the following:

Definition 2 (Pure Nash equilibrium). Let G=〈N, A, U〉 be a normal form game. A
pure NE is a strategy a∗ ∈ A such that ui(a∗) ≥ ui(ai, a

∗
−i), ∀i ∈ {1, ..., n},∀ai ∈ Ai,

where a∗
−i =def (a∗

1, . . . , a
∗
i−1, a

∗
i+1, . . . , a

∗
n).

Extensive normal form games expressions are unable to model games with more than
dozen of players (utility tables representations are exponential in the number of play-
ers). Fortunately, in realistic games situations with many players, interactions are often
only “local”. The utility of players only depends on the strategies chosen by few other
players. Compact representations of games have thus been largely studied.

In this paper, we are particularly interested in three models of compactly-
represented normal-form games, based on graph theory: graphical games [11], poly-
matrix games [20] and hypergraphical games [16].

These three frameworks represent normal form games 〈N, A, Ū〉, where the utility
functions of players Ū = {ūi : A → R}i∈N have some particular structure:

– In a graphical game the local utility functions of players are defined by: Ū =
{ūi : AMi

→ R}i∈N , where i ∈ Mi ⊆ N, ∀i ∈ N . These local utility functions
concisely represent (when |Mi| < n) the utility functions of players in the corre-
sponding normal form game. These are defined by U = {ui : A → R}, where

ui(a) = ūi(aMi
),∀i ∈ N, ∀a ∈ A. (1)

– In hypergraphical games the utility function of any player is a sum of local util-
ity functions over subgames involving only few players. There are K subgames
and Nk ⊆ N, ∀k = 1..K, is the set of players involved in subgame k. The
local utility functions of player i are defined as: Ūi =

{
ūk

i : ANk → R
}

i∈Nk .
In the corresponding normal form game, global utility functions are defined as
U = {ui : A → R}, where

ui(a) =
∑

k∈{1,...,K}
i∈Nk

ūk
i (aNk),∀i ∈ N, ∀a ∈ A. (2)
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– In a polymatrix game, the local utility functions of players are defined by: Ū ={
ūij : A{i,j} → R

}
(i,j)∈E⊆N2 where E is a set of pairs of players involved in 2-

player games. In the corresponding normal form game, global utility functions are
defined as U = {ui : A → R}, where

ui(a) =
∑

j,(i,j)∈E

ūij(a{i,j}),∀i ∈ N, ∀a ∈ A. (3)

2.2 Ordinal Games Within the Possibility Theory Framework

[1] have introduced the definition of possibilistic mixed strategies in ordinal games.
These definitions are based on the possibilistic decision theory framework. First, we
give an overview of the possibility theory framework. Possibility theory [4] can be seen
as a qualitative counterpart to probability theory. The basic concept in possibility theory
is the notion of possibility distribution π. It is a mapping from a set of states S to a
finite ordered scale L = {0L < . . . < 1L}, equipped with the order-reversing function
ν : L → L. π gives some knowledge about state s ∈ S: π(s) = 1L indicates that s
is totally plausible, π(s) = 0L means that s is impossible and π(s) > π(s′) implies
that s is more plausible than s′. π is assumed to be normalized: there is at least one
completely possible state (s∗ such that π(s∗) = 1L). Assuming π, the possibility Π(E)
and the necessity N(E) of any event E ⊆ S can be computed: Π(E) = sups∈E π(s)
determines to what extent E is consistent with the knowledge expressed by π whereas
N(E) = ν

(
Π(Ē)

)
= ν (sups/∈E π(s)) evaluates to what extent ¬E is inconsistent,

hence, it determines the certitude level of E implied by knowledge π.
In light of qualitative (possibilistic) decision problems under uncertainty, where

each result is assessed by an ordinal utility function μ : S 	→ Δ, [4,5] have intro-
duced qualitative pessimistic utility (Upes), which is a counterpart to von Neumann and
Morgenstern’s [18] expected utility:

Upes(π) = min
s∈S

max(ν(π(s)), μ(s)) (4)

Upes generalizes the Wald criterion and determines to what degree it is certain (i.e.,
according to measure N ) that μ achieves a good utility. While pure NEs are similar
in ordinal and cardinal games, ordinal games do not admit stochastic mixed strategies,
since one cannot compute the mathematical expectation of a probability distribution
over ordinal rewards. However, possibilistic mixed strategies can be considered as a
qualitative counterpart to probabilistic mixed strategies in cardinal games and have been
justified in terms of equilibria in ordinal games, in [1].

Definition 3 (Ordinal game). An ordinal game OG is a tuple 〈N, (Ai)i∈N , (μi)i∈N 〉:
– N= {1, ..., n} is a set of n players.
– A = A1 × ... × An: Ai is a set of actions available to player i.
– L is a finite ordinal scale.
– μ = {μi : A 	→ L}i∈N is a set of ordinal utility functions. μi(a) is the ordinal

utility of player i in the ordinal game when the joint strategy of players is a.
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Example 1 (Ordinal game). Assume two farmers own neighbour fields. Each farmer
decides what to sow in her field. The set of possible crops is: Wheat (W) or
Organic Wheat (OW). Each farmer has to be cautious in her choice of crop because
sowing organic crop near to non-organic crops reduces the profit of the organic
crop. Throughout the examples we consider the following unique ordinal satis-
faction and uncertainty scale: scale L = {0, ..., 4}. Emojis ( )
are used to distinguish satisfaction from uncertainty levels, but both sets are
in bijection. The ordinal utilities of farmers are given in the following table:

W OW

W , ,
OW , ,

Since the concept of pure NE is ordinal in nature, its definition is the same in the possi-
bilistic framework as in the classical framework:

Definition 4 (Pure NE in ordinal games). Let us consider an ordinal game OG =
〈N, (Ai)i∈N , (μi)i∈N 〉. a∗ ∈ A is a pure NE of OG, iff: μi(a∗

i , a
∗
−i) ≥ μi(ai, a

∗
−i),

∀i ∈ N, ∀ai ∈ Ai.

Note that, in the qualitative case, a pure NE verifies: ∃a∗ ∈ A s.t. π(a∗
i ) =

max(L),∀i ∈ N and π(ai) = min(L),∀ai �= a∗
i ,∀i ∈ N .

Example 2 (Cont. Example 1). One can check that the ordinal game has two pure
NEs: (W,W) and (OW,OW). In these NE, both farmers are somehow satisfied (levels
3 and 4 ∈ L) and have no incentive to deviate.

The concept of mixed strategy in the possibility theory framework [1] is described as
a possibility distribution over the alternatives of player i, i.e., πi : Ai 	→ L. Hence,
πi is a ranking over the options included in Ai, showing a player’s preferences. πi can
also be usefully interpreted by other players as a likelihood of play of player i, i.e., a
ranking of the options that player i is likely to play. As usual, πi is normalized, i.e.,
maxai∈Ai

πi(ai) = 1L. A joint possibilistic mixed strategy verifies:

π(a) = min
i∈N

πi(ai),∀a = (a1, ..., an) ∈ A. (5)

The pessimistic possibilistic decision criterion [4] is used to evaluate the utility of π to
player i:

μPES
i (π) = min

a∈A
max(ν(π(a)), μi(a)). (6)

where ν : L → L is the order-reversing function of L.
A (least specific) Possibilistic Mixed Equilibrium (ΠME) is defined as a set π∗ =

(π∗
1 , . . . , π

∗
n) of normalized possibility distributions expressing individual preferences,

where no player has incentive to deviate unilaterally from her strategy.

Definition 5 (Possibilistic Mixed Equilibrium (ΠME)). For a given ordinal game
OG = 〈N, (Ai)i∈N , (μi)i∈N 〉, π∗ = (π∗

1 , . . . , π
∗
n) is a ΠME iff it satisfies, for any

possibilistic mixed strategy π, μPES
i (π∗) ≥ μPES

i (πi, π
∗
−i), ∀i ∈ N, ∀πi : Ai → L,

where π∗
−i =def (π∗

1 , . . . , π
∗
i−1, π

∗
i+1, . . . , π

∗
n).
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Example 3 (Cont. Example 1). Let us consider possibilistic mixed strategy (π∗
1 , π

∗
2),

where π∗
1(W ) = π∗

2(W ) = 4 and π∗
1(OW ) = π∗

2(OW ) = 1.
One can check that μPES

1 (π∗) = μPES
2 (π∗) = 3 and that this is a possibilistic equi-

librium in the sense of [1]. No player can improve her pessimistic utility by changing
her mixed strategy.

Mixed strategies in cardinal games are evaluated by their expected utility, reflect-
ing the assumption that games are repeated and that utility compensate. In the ordi-
nal framework, mixed strategies can be seen as refining “worst-case” strategies (i.e.
minimax strategies). [1] have proposed a different interpretation of these: A player’s
own strategy is a form of “commitment to play” she announces to other players (I will
preferably play actions with highest possibility degree but I may play different actions
as well). Then an equilibrium results from different rounds of discussions during which
players successively lower the plausibility of playing actions, until no one feels better
of changing her current strategy.

A ΠME is generally not unique. A least specific ΠME is one where the utility of
any player can only decrease when it unilaterally transforms its possibility distribution
into a less specific one. The interest of a least specific ΠME is that it sets only the light-
est possible constraints on every players’ strategies. One can check that in the previous
example, π∗ is a least specific ΠME. By replacing π∗

1 with π1(W ) = 4, π1(OW ) = 2,
we get μPES

1 (π1, π
∗
2) = 2 < μPES

1 (π∗). [1] have proved that a least specific ΠME for
an ordinal game could be computed in polynomial time, and have provided a polyno-
mial time algorithm to compute a ΠME through successive improvement of strategies.

3 Ordinal Graphical, Hypergraphical and Polymatrix Games

In the previous section, we have recalled the framework of possibilistic ordinal game
theory, which has been proposed to model, in particular, human elicited game situ-
ations, where preferences between strategies are usually best modelled in “ordinal”
ways. Another important features of human-elicited games is a need for compactness
of expression. One cannot easily rank joint strategies where actions of many players are
involved. In particular, the notion of local interactions is worth exploring in the context
of ordinal games as well. This section introduces the ordinal counterparts to graphical,
hypergraphical and polymatrix games.

3.1 Motivating ‘Farmers’ Example

We briefly present a toy problem which illustrates both ordinal and graphical
aspects of the game. Let assume that we have n farmers each with a unique field
arranged in the form of a grid. Mi denotes the set of farmers (including farmer
i), which actions may influence the utility of i. Typically, Mi will include the
(at most four) nearest neighbours of i. Each year and according to her subjec-
tive preferences, each farmer decides what to sow in her field. The set of possible
crops is

{
Meadow(M),Wheat(W ), Canola(C), Organic Wheat(OW ), Organic

Canola(OC)
}

. The utility of any farmer i aggregates production, biodiversity and
pollination ordinal utility functions. If there are n players, this game requires O

(
n|A|5)

space to represent as an (ordinal) graphical game or O
(
n|A|2) space as an ordinal poly-

matrix game, instead of O (n|A|n) space as a normal form ordinal game.
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3.2 Ordinal Graph-Based Games: Definitions

In this section, we provide definitions of three new ordinal games classes: graphical
(OGG), hypergraphical (OHG) and polymatrix (OPG). These are defined in the frame-
work of possibilistic game theory, by considering local ordinal utility functions μ̄i.

Definition 6 (OGG utility functions). In an OGG the local utility functions of players
are defined as:

μ̄ = {μ̄i : AMi → L}i∈N ,

where Mi ⊆ N, ∀i ∈ N is a subset of players. In the corresponding ordinal normal
form game, global utility functions are defined as μ = {μi : A → L}i∈N , where

μi(a) = μ̄i(aMi), ∀i ∈ N, ∀a ∈ A.

In the case of ordinal graphical games, the analogy with cardinal games is direct, since
utility functions μi require no aggregations of local utilities.

In an OHG, local utilities are combined using an ordinal aggregator. In the follow-
ing, the local utilities are aggregated through a minimum operator, which is coherent
with preference aggregation in an adversarial framework.

Definition 7 (OHG utility functions). In an ordinal hypergraphical game the local
utility functions of players are defined as:

μ̄i =
{

μ̄k
i : ANk → L

}

i∈Nk
,

where Nk ⊆ N, ∀k = 1..K (K is the number of subgames).
In the corresponding ordinal normal form game, global utility functions are defined

as μ = {μi : A → L}, where

μi(a) = min
k∈{1,...,K}

i∈Nk

μ̄k
i (aNk),∀a ∈ A. (7)

Note that a given OHG can be easily cast as an OGG, by defining Mi =
∪k,i∈NkNk,∀i ∈ N and

μ̄i(aMi
) = min

k∈{1,...,K}
i∈Nk

μ̄k
i (aNk),∀i, aMi

∈ AMi
. (8)

Finally, OPG can be defined as specific cases of OHG where each agent is involved
in simultaneous 2-player games. Formally, once again we consider a specific ordinal
utility function:

Definition 8 (OPG utility functions). In an OHG, the local utility functions of players
are defined as:

μ̄ =
{
μ̄ij : A{i,j} → L

}
(i,j)∈E⊆N2 ,

where E is a set of edges defining the 2-player games.
In the corresponding ordinal normal form game, global utility functions are defined

as:
μi(a) = min

j,(i,j)∈E
μ̄ij(ai, aj), ∀a ∈ A.
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4 Computing Pure NE in Graph-Based Ordinal Games

4.1 Hardness

Informally, a pure NE in a graph-based ordinal game is a joint action a∗ ∈ A from
which no player has an incentive to deviate unilaterally.

In the case of OGG, the definition of pure NE may exploit the locality of possibilistic
utility functions:

Proposition 1 (Pure NE in OGG). Let G = 〈N, A, {Mi}i∈N , μ̄〉 be an ordinal
graphical game. a∗ ∈ A is a pure NE of G, iff: ∀i ∈ N, ∀ai ∈ Ai.

μ̄i(a∗
i , a

∗
Mi−{i}) ≥ μ̄i(a′

i, a
∗
Mi−{i}).

Proof sketch. The proposition results from Definition 4 and Definition 6. �
Recall that an OHG can be cast as an OGG. According to Proposition 1 and Eq. 8, we
can prove the following corollary:

Proposition 2. a∗ is a pure NE of an OHG iff ∀i ∈ N, ∀ai ∈ Ai,

min
k∈{1,...,K}

i∈Nk

μk
i (a

∗
i , a

∗
Nk\{i}) ≥ min

k∈{1,...,K}
i∈Nk

μk
i (ai, a

∗
Nk\{i}).

In the same way, an OPG is an OHG where all subgames contain exactly two players.

Proposition 3. a∗ is a pure NE of OPG iff ∀i ∈ N, ∀ai ∈ Ai,

min
j,(i,j)∈E

μ̄ij(a∗
i , a

∗
j ) ≥ min

j,(i,j)∈E
μ̄ij(ai, a

∗
j ).

We now show that deciding the existence of a pure NE in ordinal graphical games is a
difficult problem, even in a very restricted setting.

Proposition 4. Deciding whether an ordinal graphical game has a pure NE is NP-
complete. Hardness holds even if G has 3-bounded neighborhood, and the number of
actions is fixed.

Proof sketch. Membership. We can decide the membership by guessing a joint action
a and verifying that a is a NE. Clearly the latter task takes time polynomial in the size
of the game.

Hardness. [6] have shown that deciding the existence of a pure NE in (usual) graphical
games is NP-complete even for 3-bounded neighborhood games, i.e., where each player
has 3 neighbors at most. Now, just note that pure NE in ordinal and cardinal graphical
games are the same notion when no utility functions aggregations are performed (i.e.
when there is a single ordinal utility function for each player). Thus, if one is given
a graphical game as input, it can be transformed (in polynomial time) into an ordinal
graphical game, by plunging the utilities into an ordinal scale. The pure NE are then
equal in both cardinal and ordinal problems. �
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We then prove that deciding the existence of pure NE in OPG and OHG is also
NP-complete, which is less obvious at first glance:

Proposition 5. Deciding whether an OPG or an OHG admits a pure NE is NP-
complete.

Proof sketch. The membership part is easy for both OPG and OHG. The hardness part,
for OPG, relies on a reduction of the K-INDEPENDENT SET problem1. Hardness for
OHG results from the hardness result for OPG. �

4.2 CSP Modeling in Graph-Based Ordinal Games

A Constraint Satisfaction Problem (CSP) is a triple (X ;D; C) where X is a set of vari-
ables, D is the set of domains of these variables and C is a set of constraints over
variables values. Modeling a graph-based ordinal game as a CSP is useful in the sense
that we can take advantage of existing CSP solvers in order to find pure NE(s) within
reasonable time. In this section, we show how to model Ordinal Graphical Games (and
OHG and OPG) as a CSP and show that the solutions of the induced CSP are pure
NE for the original game. Note that [6] proposed a CSP modeling of (cardinal) graph-
ical games in order to find pure NE. The concepts of pure NE are identical in cardinal
and ordinal graphical games since utilities in each games are not combined, unlike in
polymatrix and hypergraphical games. Still, our CSP2 model is different from that of
[6]. Indeed, the fact that local utilities are aggregated by a minimum operator and not a
sum leads to a different reduction (a simpler one, in fact), to a different problem. This
different form allows it to be extended to OHG and OPG.

Definition 9 (CSP modeling). Let G = 〈N, A, {Mi}i∈N , μ̄〉 be an ordinal graphical
game. We define the CSP model (X ;D; C) of G as follows:

– X = {A1, ..., An}; each variable Ai represents the action of player i (N =
{1, . . . , n}).

– D = A1 × ... × An; Ai is the domain of variable Ai, that is the set of allowed
strategies of player i.

– C = {Ci,a′
i
, i ∈ {1, ..., n}, a′

i ∈ Ai}, can be seen as binary-valued functions Ci,a′
i
:

AMi
→ {0, 1},∀i, a′

i, satisfying:
Ci,a′

i
(aMi

) = 1 iff μ̄i(aMi
) ≥ μ̄i(a′

i, aMi−i),∀i, a′
i, aMi

.

Note that there are
∑n

i=1 |Ai| constraints Ci,a′
i

(of arity |Mi|). Remark also that
Ci,a′

i
(aMi

) is satisfied if and only if a′
i is a non-dominated action of player i. So, obvi-

ously, the following proposition holds:

1 The proofs are omitted for the reason of brevity; they can be found here (anonymous address):
Proofs.

2 Our CSP model uses integer-valued variables. In our actual implementation, we used binary
variables xi,ai , where xi,ai = 1 iff Ai = ai, for any pair (i, ai) and the constraints were
changed accordingly. Still, the two problems are equivalent and we describe here the “non-
binary” model, which is more “readable”.

https://drive.google.com/open?id=1aB4ufsEvT7zhEgb4_aLU5ldMAdTA1Sgk
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Proposition 6. a∗ = (a∗
1, ..., a

∗
n) ∈ A is a pure NE of ordinal graphical game G if and

only if it is a solution of CSP (X ;D; C).
Proof sketch. The proof directly results from the definition of the constraints in terms
of non-dominated strategies. �
Since ordinal hypergraphical and polymatrix games can be represented as ordinal
graphical games, they can also be modelled as CSP. However, note that in the conver-
sion to a graphical game, conciseness may be lost. In the extreme case of a polymatrix
game with relations between every pairs of players, the representation of the resulting
ordinal graphical game is exponentially larger than that of the original game. Fortu-
nately, in the case of ordinal hypergraphical/polymatrix games, each constraint Ci,a′

i
of

the corresponding ordinal graphical game can be equivalently replaced in the CSP with
an equivalent set of constraints (of reasonable sizes):

Ci,a′
i
=

{
Ck

i,a′
i
(aNk)

}

i∈Nk
, where Ck

i,a′
i
(aNk) = 1 iff μk

i (aNk) ≥ μk
i (a

′
i, aNk−i ).

(9)
Indeed, recall that μ̄i(aMi

) = mink∈{1,...,K}
i∈Nk

μk
i (aNk). Then it directly follows that:

Ci,a′
i
(aMi

) = 1 iff
(
Ck

i,a′
i
(aNk) = 1,∀k s.t. i ∈ Nk

)
.

Thus, for both hypergraphical and polymatrix games, the search for pure NE can be
performed through modelling as a CSP of similar size as that of the original problem.

5 Possibilistic Mixed Equilibria in Ordinal Graph-Based Games

In this section, we show that computing a possibilistic mixed equilibrium in OGG (and
OPG and OHG) takes polynomial time in the size of the game. To start with, let an
OGG G = 〈N, A, {Mi}i∈N , μ̄〉 be given. Let us assume that π = {πi}i=1..n is a mixed
possibilistic strategy over A = A1 × . . . × An. As for ordinal games [1], the utility of
π in an OGG is measured using the pessimistic criterion μpes. It can be shown that the
expression of μpes decomposes according to the structure of the graphical game.

Proposition 7. The pessimistic utility for player i of a joint mixed possibilistic strategy
in an OGG, OPG or OHG is:

μpes
i (π) = min

aMi

max
(
max
j∈Mi

ν(π(aj)), μ̄i(aMi
)
)
. (10)

Proof sketch: The proposition results from the expression of μi(a) = μ̄i(aMi
),∀i ∈

N, ∀a ∈ A as well as from the decomposability of π(aMi
) = minj∈Mi

πj(aj), through
elementary computations. �
The subset of dominated actions for player i, Di ⊆ Ai can be defined as follows:

Di = {ai ∈ Ai s.t. μpes
i (ai, π−i) ≤ μpes

i (π)} .

Now, we can prove that,
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Proposition 8. The computation of a mixed ΠME in OGG, OHG and OPG is polyno-
mial in the size of the game.

Proof. First, note that μpes
i (π) in Proposition 7 takes polynomial time to compute for

OGG, OHG and OPG, given that the expression of μ̄i(aMi
) decomposes in OHG and

OPG. The computation of a possibilistic mixed equilibrium in an ordinal game requires
iterative calls to an IMPROVE procedure (Algorithm 1), as shown in [1]. Basically, the
solution algorithm proposed in [1] in order to compute a mixed equilibrium consists in
starting with uniform possibilistic strategies for every players (πi(ai) = 1L,∀i, ai) and
then “improving” the current mixed strategy of a single player of the game, by applying
Algorithm 1. At every time steps, a new player is chosen, which strategy is improved.
The algorithm stops when no player can see her strategy improved. It is shown in [1]
that the algorithm converges to a possibilistic mixed strategy in time polynomial in the
expression of the ordinal game. Let us show that the same result holds in the case of
ordinal graph-based games, First, note that one call to the IMPROVE procedure takes
polynomial time, since μpes

i (π) takes polynomial time to compute3. Now, we need to

Algorithm 1. IMPROVE procedure
1: Input: (G, πloc, i)
2: Output: πloc

3: π ← πloc

4: if (Πi(Ai \ Di) = 1L) and
(
μpes
i (π) < 1L

)
then

5: for ai ∈ Di

6: πi(ai) ← min
(

πi(ai), ν(μpes
i (π))

)

7: end for
8: end if
9: πloc ← π

prove that a possibilistic mixed equilibrium is reached within a polynomial number of
calls to IMPROVE. This results directly from the observation made in [1], that each
improvement reduces strictly the possibility πi(ai) of one alternative of one player i.
Since at least one alternative for each player should keep possibility 1L, the number of
iterations of the algorithm is bounded by:

Niter =
∑

i=1..n

|L|(|Ai| − 1) ≤ n|L|namax;namax = max
i=1..n

|Ai|. (11)

�

6 Experimental Study

We empirically evaluated the time execution of pure and mixed NE computation in var-
ious ordinal games. To this end, we built and solved CSP models using the CHOCO

solver [9], providing a single pure NE or a proof of non-existence. The mixed NE

3 ν(μpes
i (π)) is, by definition, the degree immediately below ν(μpes

i (π)) in L.
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computation algorithm (PME) was implemented in MATLAB. All experiments were
performed on an Intel(R) Core(TM) i5-7200U CPU, 2.5 Ghz processor, with 8 Gb RAM
memory, 64 bits architecture and under Windows 10 OS. Both algorithms were tested on
a dataset of problems, including randomly generated problems and “Farmers games”:

– Randomly generated Games. The structure of OHGs were generated randomly,
by controlling the number of players n, the number of actions per player, m, the
size of hyperedges, s (s = 2 in the case of OPG). The number of local games, K,
was computed from a connectivity parameter, c = K

NPG , where NPG = n!
s!(n−s)!

is the maximal number of distinct subgames. The local games correspond to four
types of games included in the Gamut suite [14]: “Chicken Games (CG)”, “Com-
pound Games (COG)”, “Random Games (RG)” and “Dispersion Games (DG)”.
Local games where generated using Gamut, then their utilities were made ordinal.
Every local games of a game are of the same type. The following combinations of
parameters were considered: (i) m = 2 and (n, c) ∈ {3, 4, 5..., 15} × {0.4, 0.8}
and (ii) n = 8 and (m, c) ∈ {2, ..., 7} × {0.4, 0.8}. For every combinations of
parameters, we solved 100 randomly generated games and we computed the aver-
age solution times.

– Farmers games. (Defined in Sect. 3.1). In these games, we vary the dimension of
the grid by considering grids of dimensions 2 × 2, 2 × 3, 2 × 4, 3 × 3, 4 × 3 and
4 × 4. Results on our tested games are shown in Figs. 1, 2, 3 and 4, respectively.
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Fig. 1. Avg. runtime on ordinal hypergraphical games
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Fig. 2. Avg. runtime on ordinal polymatrix games
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From Figs. 1 and 2, we notice that, for all games, the CSP algorithm is able to
return a proof of existence or non existence of pure NE. Besides, the PME algorithm
always returns a possibilistic mixed equilibrium efficiently. As theoretically expected,
pure NE existence is experimentally harder to prove than mixed NE computation, espe-
cially for “difficult” games (more players, more actions per player). Another result of
the experimental study is that ordinal polymatrix games seem easier to solve than ordi-
nal hypergraphical games. In addition, the connectivity of games seems to have only
a second-order impact on experimental time-complexity. Figure 3 shows that the num-
ber of actions impacts the execution time for both algorithms. This conclusion holds
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for all tested games. For the most difficult games we considered (Farmers games), the
“exponential vs polynomial complexity” phenomenon really shows up (Fig. 4).

7 Conclusion

In this paper, we have introduced and defined Ordinal Graphical Games (OGG) Ordinal
Hypergraphical Games (OHG) and Ordinal Polymatrix Games (OPG). These frame-
works are embedded in possibilistic game theory and inspired by the classical graph-
ical, hypergraphical and polymatrix games models. First, we have studied pure NE in
OGG, OHG and OPG and shown that, as for graphical (normal-form) games, deciding
their existence is NP-complete. Second, we have shown that the problem of finding a
pure NE in ordinal graph-based games could be modelled as a Constraint Satisfaction
problem (CSP). Finally, we focused our attention on the problem of finding possibilistic
mixed equilibria. We have shown that, as for ordinal normal-form games, a ΠME can
be computed in polynomial time (in the size of the game). For this purpose, we have
proposed an adapted version of the current algorithm for ordinal games and we have
shown that it runs in polynomial time. This result is surprising at first glance, since
OGG, OHG and OPG admit exponentially more compact representations than normal
form ordinal games. However, this result is due to the nice properties of the “minimum”
aggregator used to combine local utilities.

The choice of a CSP modelling to compute pure NE was natural, in particular since
it provides a natural and easy way to model the search for pure NE in possibilistic
games. It is even more natural than in the cardinal case, due to the use of the minimum
operator to aggregate utilities in local games. Furthermore, the CSP approach allows
to make use of existing efficient solvers and do not require to develop specific solu-
tion algorithms. However, in the context of (cardinal) graphical games, the family of
TreeNash/Nashprop algorithms [10] has been advocated to compute exact/approximate
mixed NE, in particular for graphical games where the underlying graphical structure is
a tree. These algorithms require, from a conceptual point of view, to propagate messages
between players in the form of continuous multivariate functions T : [0, 1]k → {0, 1},
expressing “best responses” to mixed strategies. Since this is not possible in practice,
approximate (discretized) or exact (exponential size) representations of these functions
are propagated to compute equilibria. In ordinal graphical games, since the set of possi-
bility distributions is a finite set, we may define similar message propagation algorithms
where the messages are finite tables. This is an interesting avenue for further research.
However, it remains to compare the efficiency of these message-passing algorithms to
that of the ones we propose.
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Abstract. We present an application of linguistic summaries in the
agro-food domain. We focus on the relevance aspect. Using the interviews
we determine which linguistic summaries are useful and appropriate for
target users (farmers). The user evaluation with a TAM survey indicates
that linguistic summaries allow farmers to understand quickly the past
performance of their pig barns.
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1 Introduction

Recent developments in IoT technology allow more and more data to be col-
lected. For instance, in agro-food domain sensor data can improve the crop yield
and quality prediction [29,31] and optimization of food supply [34]. Those data
can be analyzed through statistical analysis [13,15], machine learning meth-
ods [12] or visual analytics [32,40]. Visual analytics technology is often used for
the descriptive analytics purposes and understanding the data. However, many
dashboards fail to communicate efficiently and effectively to the user [11]. Also,
novice professionals struggles to understand simple graphs, especially if the infor-
mation is not clear-cut and visually prominent [33]. Therefore, presenting the
information in another way than visual, such as verbal, may be beneficial for the
user.

One of the ways to obtain verbalization of data is to employ the linguistic
summarization approach. Linguistic summaries can automatically generate natu-
ral language like sentences with aim of capturing the essence of data [16,24]. Lin-
guistic summaries have proven to be useful in several applications, e.g. retail [17]
and eldercare [39].

Linguistic summaries are being developed and matured as the method by
many researchers, for instance by proposing new quality measures, e.g., [8,17],
or more efficient generation methods [10,18,28].
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Yet, one of the remaining challenges is that often too many linguistic sum-
maries are being generated [10]. Thus, it is important to determine which linguis-
tic summaries are useful and appropriate for target users achieving a balanced
trade-off between complexity and precision of information [28]. Naturally useful-
ness or relevance is very much context dependent. In this paper we tackle this
issue, by proposing a method to detect relevant linguistic summaries in a case
from the agro-food domain. We consider a case of a pig barn and a climate sensor
that captures the conditions in the barn. We want to present to the farmers only
the linguistic summaries that they consider useful and allowing them to take
actions that improve their operations.

This paper is structured as follows. Next section describes the background
on linguistic summarization, Sect. 3 describes the context of the case study and
Sect. 4 the proposed the method to detect relevant summaries. Section 5 presents
the results of the case study and is followed by the concluding remarks.

2 Background

In this paper we follow the approach of Yager [41], which was considerably
advanced and then implemented by Kacprzyk [16], Kacprzyk and Yager [21],
Kacprzyk et al. [22,23].

In this approach linguistic data summaries are quantified propositions with
two possible protoforms (or templates):

– simple protoform:
Qy’s are P ; (1)

e.g. Most cars are new
– extended protoform:

Q Ry’s are P ; (2)

e.g. Most new cars are fast

where Q is the quantifier, P is the summarizer, and R is an optional qualifier,
which are all modeled as fuzzy sets over appropriate domains.

The truth value, describing the validity of the summary, is the basic measure
of the quality of the summary. Many methods for calculating the truth value
have been proposed [8]. But the truth value is not the only quality measure of a
linguistic summary. Kacprzyk et al. [17,23] proposed four additional measures,
namely the degree of specificity, the degree of appropriateness, the degree of
covering, and the length of the summary. Bugarin et al. [5] were differentiating
between evaluating a single summary sentence and a set of summaries. They
proposed several measures that capture aspects, such as coverage, length, and
specificity. An overview of different quality criteria can be found in [8,28].

Those quality measures can be used to select a smaller set of the true sum-
maries to be shown to the user. Three different approaches of employing the other
quality measures can distinguished, namely using the thresholds [4,39], domi-
nance of linguistic summaries [6] and aggregating the quality measures [9,17].
Yet, despite those methods, still too many linguistic summaries are obtained [10].
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Linguistic summaries has been applied to different types of data: numeri-
cal [7,14,36], time series [19,20,30], sensor data [35,39], texts [37], videos [1–3]
and processes [10,38] in different application domains, such as retail [17], elder-
care [39] or finance [19].

3 Case Study in the Agro-Food Domain

In this section we describe the context of the case study as the context is very
important for the relevance. We consider a case of a climate sensor installed
in a pig barn. This sensor measures the temperature, air humidity and carbon
dioxide (CO2) inside the barn every 10 min. A dashboard was created to present
the data collected by the sensor and some additional readings coming from the
nearby weather station like outside air temperature and outside air humidity.

The dashboard initially showed the live gauges displaying the information
about current values of inside temperature, humidity and CO2. Also three time
series plots were introduced to display the data (temperature, humidity and
CO2) over a longer period of time, typically 28 days. However, many farmers
found this dashboard difficult to understand and deduce appropriate actions. To
overcome this difficulty, it was decided to extend the dashboard with linguistic
summaries.

Through discussions with the domain experts and a selected group of farmers
(users) a few decisions were made. Firstly, it was decided to use only simple
type protoforms, as they can provide the overview on the past. Moreover it
was decided to create linguistic summaries about inside humidity, CO2, and
daily range of inside temperatures (maximum-minimum), as the variations in
the temperature in the barn is more important that the actual values. Thirdly,
three linguistic labels for each variable and five quantifiers were defined and
validated. Their membership functions are depicted in Figs. 1 and 2, respectively.
The quantifiers has been designed in such a way, for a given argument only one
of them has a value of membership function higher than 0.7. This means that at
most only one summary will be generated for a summarizer. By this, we will not
present to the user both summaries as e.g. “Almost all CO2 levels are too high”
and “Most CO2 levels are too high”, as the second sentence is obsolete. Also each
of the variables has desired values and undesired values. Temperature range and
CO2 has undesired values only on one end, while humidity has undesired values
on both ends. At last it was decided also to display at most two summaries per
variable for comprehensibility purposes [27].

Also, the farmers indicated that they want to see information that triggers
them for an action. Therefore linguistic summaries like “almost all CO2 values
are OK” they don’t find relevant and useful.

4 Method for Selecting Relevant Linguistic Summaries

The input from the domain experts and the farmers was used to propose a
method that determined which of the true summaries can be considered as rel-
evant and presented to the users. The most important feature of this case is
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Fig. 1. Membership functions for the linguistic variables of temperature range, humid-
ity and CO2.

that there is a desired state and users are only interested when things are not
as expected. When considering those two requirements we can distinguish two
cases:

– desired case - when most (if not all) data are in the desired (ok) range
– undesired case - when majority of the data is not in the desired (ok) range

In order to develop the method that selects relevant summaries, some addi-
tional information from the users is needed. One of them is to rank of the lin-
guistic labels for each variables. For the one tailed variables, like CO2 levels,
this is rather trivial task, the more undesired the value, the higher priority has
the linguistic label. For the two tailed variables, like the humidity, where desired
values are in the middle of the domain, setting the priority can be more chal-
lenging, as both extreme values can have same priorities or one of them is more
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Fig. 2. Membership functions for quantifiers.

important than the other. We assume that priority of the qualifiers is positively
correlated with the amount they describe, i.e. the bigger amount the qualifier
describes, the higher the priority.

Second question is about what is more important to the user: summarizer or
qualifier. For instance, consider the CO2 level. The question is which sentence is
more useful to the user:

– certain number of the CO2 values is slightly high
– a few of the CO2 values is too high

In the considered case all farmers have indicated the second summary as more
useful, giving the higher weight to the summarizer than qualifier.

The proposed method consist of 5 steps:

– Step 1: Calculate all summaries with truth value T > θT . We assumed θT of
0.7. For each linguistic value at most three summaries will be created.

– Step 2: Classify case as desired or undesired. This is done by looking at the
summary with the biggest quantifier, in our case a lot, most or almost all.
If the summarizer’s label is a “desired” one, we consider a case as desired,
otherwise it is undesired.

– Step 3: Prune all summaries with “desired” linguistic label. In our case, we
used “OK” as “desired” linguistic label for all linguistic variables.

– Step 4: Order the summaries according to the priority. In our case this is
according to the importance of the summarizer label.

– Step 5: Display summaries: maximally one for desired case and maximally
two for undesired case.

5 Results

We will show now several examples of data with linguistic summaries obtained.
Most of those examples are real data obtained from farms in the Netherlands
from February 2018 to February 2019. A few dummy examples are shown to
demonstrate extreme cases. We divided those examples in two groups:



294 A. Wilbik et al.

– type 1: undesired case
– type 2: desired case

5.1 Type 1: Undesired Case

In this subsection we show three examples that we classified as undesired case.
We defined the case as undesired, when most of data is not in the desired range.

The first example is depicted in Fig. 3 and shows daily range of temperature.
Please note that desired values are on one extreme. Only a few data points can
be described as ok. In this case two summaries are presented to the user:

– certain number (30%-50%) of differences in temperature during the day were
too high (6 ◦C or more),

– certain number (30%-50%) of differences in temperature during the day were
slightly high (3–5 ◦C).

The first of them is about too high differences in temperature, since this linguistic
label has the highest priority than the others, as indicated by the farmers.

Fig. 3. Example: daily range of temperature – an undesired case

Another example (Fig. 4) depicts the levels of CO2 in a barn. Here again two
summaries were obtained:

– Few (5%–35%) of the CO2 values were too high (3200 ppm or more),
– A lot (55%–75%) of the CO2 values were slightly high (2600–3200 ppm).

Even more that there are many more observations with only slightly high CO2

values, farmers indicated that the ordering should be done based on the impor-
tance of the summarizer, rather than qualifier.

The last example (Fig. 5) for this type of undesired cases is when only one
summary is found relevant to be shown to the user.

– Most (80%–95%) of the humidity values were too low (below 40%).

Please note, that this data are dummy data, created for the completeness pur-
pose.
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Fig. 4. Example: CO2 values – an undesired case

Fig. 5. Example: humidity values – an undesired case (dummy data)

5.2 Type 2: Desired Case

In this subsection we show two examples that we classified as desired case, that
is when most of data is in the desired range.

The first example (Fig. 6) shows the shows daily range of temperature, with
majority of values being ok.

Hence, in this case only a summary shown below is presented to the user.

– few (5%–25%) of differences in temperature during the day were slightly high
(3–5 ◦C).

The other example (Fig. 7) depicts CO2 levels. All the values were in the OK
range, hence in this case no summary is presented to the user.

5.3 Evaluation with the Users

We have evaluated this method with farmers. First the farmers were using the
dashboard for two weeks, next they were asked to fill the questionnaire. Only 12
farmers has filled the questionnaire. The questionnaire was based on Technology
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Fig. 6. Example: daily range of temperature – an desired case

Fig. 7. Example: CO2 levels – an desired case

Acceptance Model (TAM) [25]. TAM assess four aspects: perceived ease of use,
perceived usefulness, satisfaction and intention to use [26]. We have used the
following 14 statements evaluated on the 7 point Likert scale:

Q1: Using LSs enable farmers to get information from the barn quickly.
Q2: Using LSs saves time of the farmers.
Q3: Using LSs improves my tracking efficiency of the barn.
Q4: Using LSs improves performance of the barn.
Q5: It is clear and understandable what are the LSs.
Q6: I find easy to read the LSs.
Q7: The words used in the LSs are easy and adequate.
Q8: I find good that the system calculates automatically the LSs.
Q9: I am completely satisfied with having sentences in the dashboard.
Q10: I am completely satisfied with the LSs that were presented.
Q11: I feel confident on using the LSs presented.
Q12: I can accomplish adjustments to barn quickly using LSs.
Q13: I will use LSs for tracking variables of the barn.
Q14: I would recommend to use LSs to other farmers.
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Fig. 8. Average scores for the results of TAM survey

The results of the survey are shown in Fig. 8.
The statements with the lowest score were “using LSs improves performance

of the barn” from perceived usefulness aspect and “I would recommend to use
LSs to other farmers” from intention to use. Analyzing the different scores of
each farmer and the comments they did, it can be explained that these scores
were low because according to some of them, it was expected that the linguistic
summaries showed an alert instead of showing a summary of the past. Moreover
farmers are reluctant to tell other farmers what to do.

On the other hand, the highest scores were for “using LSs enable farmers
to get information about the barn quickly” from perceived usefulness; “I feel
confident on using the LSs presented” from satisfaction; and “I will use LSs for
tracking the variables of the barn” from intention to use aspect. This shows that,
in general, farmers trust in the system and believe that linguistic messages are
a good tool for making decisions in the barns.

When analyzing the factors in general, ease of use was the best characteristic
of LSs, whereas perceived usefulness was the lowest score among the factors, but
not with a significant difference. These results showed that linguistic messages
are an appropriate solution for the farmers as they find it easy to use, but there
is still more room for improvement on usefulness for the information provided.

To sum up, linguistic summaries are a good tool for the farmers; however,
the linguistic texts that farmers expected were more about an alerting system,
rather than a summarization system, which means that for the future, there is
still some potential for extending the linguistic summaries with messages that
not only describe the past, but support also decision making.

6 Concluding Remarks

We have analyzed and described an application of linguistic summaries in the
agro-food domain. We have focused on the relevance aspect. We determine which
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linguistic summaries are useful and appropriate for target users through the
interviews. The designed method was implemented and tested with the users.
The results of a TAM survey indicated that linguistic summaries allow farmers
to understand quickly the past performance, yet the farmers would appreciate
also an alert functionality and more support in decision making. In future work
we will extend the linguistic summaries with the suggestions of the users, as well
as work on the additional case studies to generalize the approach. This should
lead to a new quality measure quantifying relevance of a linguistic summary.
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Abstract. There are increasing pressures to combat climate change and
improve sustainable land management. The agriculture industry is one of the
most challenging areas for these changes, especially in Northern Ireland, as
agriculture is one of the larger industries. Research has been carried out across
the island of Ireland into methods of improving farm efficiency in multiple areas
of farming, including livestock health, machinery improvements, and crop
growth. Research has been carried out in this study into grass growth in the dairy
farming sector, specifically within Northern Ireland. Grass growth prediction
aims to inform farmers and policy makers in their decision-making process
regarding sustainable land management in agriculture. The present work focuses
on analysing and evaluating how data-driven classifiers can be used for grass
growth prediction using the data related to soil content, weather, grass quality
components etc. Four classifiers, namely Decision Trees, Random Forest, Naïve
Bayes, and Neural Networks, are chosen for this purpose. Classification results
based on a real-world data set are analysed and compared to evaluate and
illustrate the performance and robustness of the classifiers. The results indicate
that it is difficult to declare a single classifier with the highest performance and
robustness. Nevertheless, it indicates that tree classification methods are better
suited to the data to be studied, as opposed to probabilistic methods and
weighted methods, e.g., the naïve Bayes classifier obtained a predictive per-
formance of 78% when classifying spring seasonal grass growth data.

Keywords: Climate change � Grass growth prediction � Data-driven classifier

1 Introduction

Climate change is a global issue that has become more pressing in recent years.
Countries around the world are adopting strategies to combat the effects of climate
change and reduce their greenhouse gas (GHG) output. This includes the United
Kingdom (UK) and Ireland, which currently have plans in place to reduce GHG
emissions from the 1990 baseline [1]. However, these strategies have not been enough
to significantly reduce the output, therefore, more needs to be done. Each region within
the UK has specific targets to achieve including Northern Ireland (NI), which must
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reduce its carbon emission by 35% by 2030, to meet UK targets [2]. In NI, one of the
main contributors to GHG emissions is the agricultural sector, which produces almost
30% of the total NI output [2]. Dairy farming is one of the largest agricultural industries
in NI. According to the Committee on Climate Change, agricultural emissions in NI
have continuously increased since 2009 despite efforts to improve the efficiency in
dairy farming [2]. Therefore, it is vital that tools and support are provided to farmers
and stakeholders within the industry to inform them on solutions and actions that can
improve farming efficiency and reduce emissions.

This study relates to the improvement of dairy farming efficiency by focusing on
sustainable land management and examining grass growth which is one of the cheapest
feed sources for livestock in NI [3]. Grass growth rates are variable across the year and
depend on various factors, with some of the most influential factors being meteoro-
logical e.g., rainfall, solar radiation, and temperature. NI has a temperate climate that
allows for a long growing season. Soil conditions such as temperature and moisture
also have an influence on grass growth, curtailing growth particularly when soils are
oversaturated or excessively dry. Other factors relating to management also impact
grass growth such as fertiliser application, grazing intensity, and grazing rotation
length.

Grass related data have been collected by the Agri-Food and Biosciences Institute
(AFBI) across NI in their GrassCheck project. AFBI is a research and development
organisation that supports the Department for Agriculture, Environment, and Rural
Affairs (DAERA) and other UK government bodies and public organisations. The
GrassCheck project consists of farmer research gathered across 50 locations in NI
including beef, sheep, dairy, and crop plot farming. The project will run for three years
from 2018 to 2020 collecting grass growth data, grass quality data, grazing event data,
and meteorological data.

The authors of this research have performed an exploratory statistical analysis of
the GrassCheck dataset detailed in [4]. In this study, the R programming language was
used to provide a statistical overview, correlation analysis, and linear regression
analysis of the GrassCheck data to identify the grass growth predictive features.
A boxplot visualising the variance in the grass growth features (including pre-grazing
cover, utilisation, and soil moisture) illustrated the variability of grass growth over an
8-month period in which data was recorded. A correlation analysis identified strong
positive relations between offtake, pre-grazing cover and grass growth and strong
negative relations between post-grazing cover and grass growth. Linear regression was
performed on the GrassCheck dataset to determine which features had the greatest
influence on grass growth. Using this method, pre-grazing cover and the available
amount of grass to livestock (known as available) features were shown to be the best fit
models when used as the explanatory variables. Other statistically significant features
include offtake, utilisation, and month [4]. However, this study is still limited in finding
the in-depth pattern for grass growth prediction. Advanced data analytics are expected
to further enhance predictions by using, for example, data-driven classification models
such as neural networks, naïve Bayes, and decision trees to expand on the exploratory
statistics used to analyse grass growth data.

Therefore, the aim of this research was to aid in understanding how various
grassland features contribute to the prediction of grass growth, and to analyse and
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evaluate various classification models to deduce which are the most suitable for grass
growth prediction.

This paper is organised as follows; Sect. 2 provides an overview of related research
in the area. Section 3 provides the methodology underpinning the research, with results
and discussion presented in Sect. 4. Conclusions and future work are discussed in
Sect. 5.

2 Related Work

In Ireland, research has developed a grass growth prediction model for dairy based
farming [3, 5]. The Moorepark St. Gilles Grass Growth Model, known as the MoSt GG
model, is a descriptive model providing insight into grass growth at paddock levels in
Ireland. There are various inputs into this model including forecasted meteorological
data, management strategy information, and fertiliser application, specifically nitrogen
(N). The outputs of this model include daily grass growth, N information such as the
soil content, grass content, grass uptake, and nitrate leaching. The output from the
model was compared to the output from an experimental farm in Cork, Ireland, for a
period of two years. It was observed that, while the model was successful in improving
some areas of prediction from a previous model, i.e., better prediction of production per
cutting date and per plot, it was not always accurate in others. For example, the
N prediction in grass content and nitrate leaching was underestimated, potentially since
the model does not consider previous years management techniques. Although this
model was not designed for NI, the same principles can be applied to aid constructing a
decision support system to support sustainability in NI. The decision support system
could be expanded to make predictions to support farmers and policy makers in their
decisions regarding sustainability.

Classification approaches, such as decision trees, artificial neural networks, and
support vector machines have been used in multiple research studies for different
classification problems. These include agricultural issues such as crop disease pre-
diction [6], crop yield prediction [7], and grassland biomass estimation [8]. This
research discusses the various classification methods used in agricultural prediction.
When predicting crop disease, multiple classification methods were used including,
neural networks, naïve Bayesian, random forest, decision trees, support vector
machines, k-nearest neighbor, and ensemble models [6]. In this study, it was found that
random forest and Gaussian naïve Bayes classifiers performed better than other clas-
sifiers when predicting binary data, while neural networks and random forest were
better when predicting the original dataset. Multiple linear regression and density-based
clustering classification methods have been used in this research area [7]. Multiple
linear regression, neural networks, and adaptive neuro-fuzzy inference systems were
also used in the area of grassland biomass estimation [8]. This research highlighted the
use of the neuro-fuzzy system as it performed better when estimating biomass than the
artificial neural networks and the multiple linear regression.
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3 Materials and Methods

3.1 Data

The data used in this research is grassland data provided by AFBI, from the Grass-
Check project. Different features have been collected including grass growth, grass
quality, grazing events, and meteorological data. The features within this dataset have
been outlined in Table 1 below.

Table 1. List of features in the datasets

Feature Description Type Unit Example

ID The farm identifier assigned to the
farms

Numeric 1–12, 41–48

Month The month that the grass growth took
place

Numeric 3 (March)

Week The week that the grass growth took
place

Numeric 12

County The county in NI in which the farm is
located

Categorical Down

Grass Growth The daily grass growth averaged
across all paddocks on the farm

Numeric Kg DM/Ha Range: 0–145.3

Field Farmer description of field where
grass quality measurements are
recorded

Qualitative “Yard Field”

Conditions Farmer description of weather
conditions on day of measurement

Qualitative “Bright and Sunny”

Dry Matter
(DM)

The proportion of total grass
components (fibers, proteins etc.)
remaining in the grass after water is
removed

Numeric % Range: 9.6–40.4

Crude Protein The protein content in the grass,
minus effluent losses

Numeric % Range: 9.7–26.8

Acid
Detergent
Fiber (ADF)

Measurement of digestibility, via the
cellulose, lignin, and lignified
nitrogen content of the grass

Numeric % Range: 2.6–37

WSC The soluble sugars released from the
grass in the animal

Numeric % Range: 0–23.5

Metabolisable
Energy (ME)

The energy content of the grass
measured in megajoules of energy
per kilogram of dry matter
(MJ/Kg/DM)

Numeric MJ/Kg/DM Range: 9.9–13.4

Paddock Farmer description of paddock where
grazing event took place

Qualitative “MC2B”

Event Type of grazing event i.e., grazed, or
part grazed by animals or cut by
machinery

Quantitative Grazed

Date The date of the grazing event Date 30/03/18
Notes Any notes made by farmer relevant to

the event
Qualitative “part grazed – value

changed”

(continued)
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There is a total of 4917 records that have been labelled using the classifications of
High, Medium, and Low. The data have been binned into these labels based on cal-
culating interquartile ranges on the grass growth value, where the lower quartile is
32.5 kg DM/Ha and the upper quartile is 75.9 kg DM/Ha. Approximately 25% of the
records are low, 50% are medium, and 25% are high. In numerical terms, this equates
to 1146 low records, 2336 medium records, and 1153 high records. The prediction of
grass growth can help farmers make management decisions about grazing, cutting, and
other areas of farming decisions in order to improve farm efficiency. For instance,
knowing that there will be a low grass growth rate in the next month can allow farmers
to ensure they have adequate stocks of feed concentrates to ensure the wellbeing of
their livestock. There are some grass growth entries that are missing, which results in
282 records with an unknown classification category. These unknown variables were
removed from analysis during this study. The missing variables have been introduced
through the method of data collection used to collect the data which relied on indi-
vidual farmer input. Missing data was also introduced via the grass growth dataset
being measured daily, while the grass quality and grazing events were not measured
daily, but measured more sporadically. This meant when the datasets were joined on
the Farm ID and the Date, there were empty variables where there was no recordings in
the grass quality and grazing event datasets.

Table 1. (continued)

Feature Description Type Unit Example

Pre-grazing
Cover

The amount of grass in the paddock
immediately before animal grazing

Numeric Kg DM/Ha Range: −2200–8100

Post-grazing
Cover

The amount of grass in the paddock
after animals have grazed

Numeric Kg DM/Ha Range: 50–4920

Available The amount of grass available to
livestock in the paddock, calculated
as pre-grazing cover – 1500

Numeric Kg DM/Ha Range: −3700–6600

Offtake The amount of grass removed by
animals at that grazing event,
calculated as the pre-grazing – post-
grazing cover

Numeric Kg DM/Ha Range: −4012.5–
6889

Utilisation The amount of grass consumed by
animals (i.e., the offtake) as a
proportion of that available

Numeric Kg DM/Ha Range: -174–6.33

Total Rainfall The total rainfall fallen on the day of
grazing

Numeric mm Range: 0–36.4

Air
Temperature

The average air temperature on the
day of grazing

Numeric °C Range: −2.03–25.33

Solar
Radiation

The average solar radiation on the
day of grazing

Numeric W/m2 Range: 0–610.375

Soil Moisture The average moisture levels in the
soil on the day of grazing

Numeric cb Range: −1.09–200

Note: Kg DM/Ha: Kilogram Dry Matter per Hectare; WSC: Water Soluble Carbohydrate
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3.2 Data-Driven Classifiers Overview

The following prediction models were chosen due to their ease of use, and popularity
within the predictive analytics domain and application in the agricultural industry.

Decision Tree (DT). DT classifies instances via a tree structure, where individual
attributes are represented by nodes, and there are links between nodes. The DT cal-
culates the information gained from the attribute and makes decisions based on which
attribute has the most information gain [6].

Random Forest (RF). The RF can be described as a collection of individual decision
trees that work together as an ensemble [6]. This classification model is useful as each
individual decision tree is unlikely to make the same mistakes as the others, and
therefore, the classification is safer from error.

Naïve Bayes (NB). NB is a probabilistic classifier that assumes attributes are inde-
pendent of each other and they carry the same weight when making predictions [9].

Neural Network (NN). A NN is a classifier that, like a decision tree, uses nodes and
links to make predictions. However, each node is assigned a weight, with priorities at
each node split being given to the feature that has a larger weight [9].

3.3 Case Studies for Grass Growth Prediction

Two case studies were carried out in the analysis of the GrassCheck dataset. Firstly,
analysis of the 2018 dataset was performed where missing data were included (4917
instances, 19 features). Secondly, the same dataset was analysed where instances
containing missing data were removed (107 instances, 19 features).

The datasets were divided into seasonal data (winter data were excluded as there is
no grass growth during these months and, therefore, no recordings take place). The
dataset was divided into Spring (March-May), Summer (June-August), and Autumn
(September-October). This resulted in imbalanced datasets as there is more likely to be
high growth rates in summer months and lower growth rates towards the cooler times
of year. To resolve this imbalance, the larger sets could have been reduced to the
approximate size of the smallest set, resulting in even divisions. This method was not
applied as it would result in a dataset that is too small to perform classification models.
Therefore, the Synthetic Minority Oversampling Technique (SMOTE) [10] was applied
to the smallest set in the dataset in order to make synthetic data that resembled actual
data in the dataset. In the Spring dataset, SMOTE was applied at 250%, which means
the smallest dataset is increased by 250%. SMOTE was applied again at 35%, resulting
in approximately balanced numbers of Low, Medium, and High labelled data (384,
376, 273, respectively). In the Summer dataset, SMOTE was applied at 150%, and
90%, to result in approximately balanced numbers of Low, Medium, and High data
(642, 675, 665, respectively). In the Autumn dataset, SMOTE was applied at 100%,
250%, and 60%, to result in approximately balanced numbers of Low, Medium, and
High data (299, 292, 291, respectively).

For each case study, ten-fold cross validation was carried out to evaluate each
classifier. The evaluation metrics in this research are Kappa statistics, Mean Absolute
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Error (MAE), Root Mean Square Error (RMSE), Precision, Recall, F-Measure, and
ROC Area. Several features in the dataset were determined to not have informational
values, including Farm ID, Field, Conditions, Paddock, and Notes. As discussed in the
statistical analysis performed on the data [4], some features have a stronger correlation
with grass growth. This was further analysed using feature selection methods including
the Pearson’s Correlation Coefficient, Information Gain Attribute Evaluation, and
Wrapper Subset Evaluation.

4 Results and Discussions

This section summarises the results and discusses the outcome of the experiments. The
analysis performed consists of four classifiers used on multiple variations of the dataset.
This includes yearly divisions and period divisions of spring, summer and autumn.
Classification analysis was performed on the data using techniques including DT, RF,
NN, and NB. The tables below displays the outcome of the analysis, by showing the
percentage of correct predictions, Kappa statistics, MAE, RMSE, precision (P), recall,
F-measure (FM), and ROC, respectively.

4.1 Yearly Analysis

The tables below (Table 2 and Table 3) display information from the classification of
data over the year of 2018. Table 2 shows the evaluation metrics on the whole dataset
without handling the missing data, which contains 4917 instances. Table 3 displays the
evaluation metrics on the same dataset, but with all instances including the missing
variable removed, resulting in classification being performed on 107 instances.

Table 2 shows that the tree classifiers, i.e., DT and RF, have the best metrics out of
the four classifiers. DT has the greatest Kappa statistic of 0.56, lowest MAE of 0.25,

Table 2. Evaluation metrics on the whole dataset.

Class Acc (%) Kappa MAE RMSE P Recall FM ROC

DT 73 0.5624 0.2511 0.3567 0.737 0.735 0.731 0.845
RF 73 0.546 0.2784 0.3523 0.753 0.734 0.725 0.871
NB 61 0.3497 0.2998 0.4306 0.628 0.610 0.599 0.738
NN 59 0.3303 0.2995 0.4386 0.613 0.599 0.596 0.731

Table 3. Evaluation metrics on the dataset excluding the variables with the missing data.

Class Acc (%) Kappa MAE RMSE P Recall FM ROC

DT 65 0.405 0.2914 0.4188 0.678 0.654 0.631 0.695
RF 80 0.6676 0.2376 0.3211 0.809 0.804 0.794 0.917
NB 62 0.3816 0.2504 0.4385 0.622 0.617 0.619 0.772
NN 76 0.5934 0.1732 0.3753 0.757 0.757 0.752 0.863
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and highest recall and F-measure of 0.74 and 0.73, respectively. RF shows the best
performance in RMSE with 0.35, precision with 0.75, and ROC area with 0.87. The
results show that, overall, the RF classification method performed the best over the two
datasets as the ROC curve is the highest in both sets at 0.871 and 0.917. It also has the
lowest RSME across the classifiers at 0.3523 and 0.3211. However, RF is susceptible
to influence by an imbalanced dataset, i.e., the Medium category is a larger set than the
other two growth rates, resulting in a skewed output.

The NN classifier showed the greatest improvement when missing data were
removed from the dataset in terms of all metrics, e.g., it increased from 0.33 to 0.59 in
Kappa statistics, while reducing the MAE from 0.30 to 0.17, from Table 2 to Table 3,
as a networks performance will increase when all features are available, i.e., when there
are no missing data. The NB classifier showed little difference in terms of performance
when comparing the analysis using the full dataset, to the dataset where missing values
are with no strong improvement observed. This is due to the assumption of indepen-
dence of the attributes, as not all the attributes in these data are independent, e.g.,
offtake, available, and utilisation depend on the pre-grazing and post-grazing cover.

4.2 Seasonal Analysis

The tables below (Table 4, Table 6, and Table 8) display information from the clas-
sification of data pertaining to spring, summer, and winter. Table 5, Table 7, and
Table 9 show the evaluation metrics on the spring, summer, and winter dataset,
respectively, where SMOTE has been applied to balance the classes in the datasets,
resulting in balanced categories of low, medium, and high.

All the classifiers were improved from Table 4 to Table 5, in terms of correctly
predicting instances when the dataset classes have been balanced, e.g., NB showed the
largest increase of 15%, from 63 to 78%. However, this does not mean that NB is a good

Table 4. Evaluation metrics for Spring dataset (normal).

Class Acc (%) Kappa MAE RMSE P Recall FM ROC

DT 79 0.6468 0.1944 0.3252 0.794 0.790 0.790 0.874
RF 79 0.637 0.2268 0.3268 0.787 0.786 0.786 0.888
NB 63 0.3743 0.2458 0.4393 0.635 0.627 0.616 0.801
NN 78 0.6304 0.1565 0.3547 0.782 0.782 0.782 0.865

Table 5. Evaluation metrics for Spring dataset (SMOTE).

Class Acc (%) Kappa MAE RMSE P Recall FM ROC

DT 84 0.7594 0.1523 0.2889 0.842 0.840 0.839 0.921
RF 85 0.7726 0.1519 0.2653 0.850 0.848 0.849 0.958
NB 78 0.666 0.1605 0.3399 0.784 0.777 0.777 0.915
NN 84 0.7567 0.1154 0.3058 0.838 0.838 0.838 0.934
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classification method for these data. Although it has shown the most improvement in all
features, including MAE and RMSE (reduction of 0.09 and 0.10 respectively), it is the
overall least successful when predicting the level of grass growth, again due to the
assumption made of independence. RF could be considered a good performer as second
to NB, as it improved the most across most of the metrics. For instance, the Kappa
statistic increased by 0.14, and the precision and recall have increased by 0.062 and
0.063, respectively. Overall, there are minor differences between DT, RF, and NN as
they have similar evaluation outputs across all of the metrics.

In Table 6, DT has the largest percentage of correctly predicted instances of 77%. It
also has the best performance in Kappa statistic, precision, recall, and F-measure (0.60,
0.77, 0.77, 0.76, respectively). However, when SMOTE is applied in Table 7 to balance
the classes in this dataset, RF becomes the better classification method as it has the best
metric value in Kappa, RMSE, precision, recall, F-measure, and ROC area, (0.76, 0.28,
0.85, 0.84, 0.84, and 0.95 respectively). RF shows the greatest improvement in six of the
eight metrics, including precision (0.75 to 0.85), recall (0.75 to 0.84), and F-measure
(0.74 to 0.84). This means the classifier is returned more accurate results. NN shows the
greatest improvement in RMSE, where it reduced from 0.39 to 0.32, and in the ROC
area, where it increased from 0.91 to 0.92. Overall, all of the classification methods have
improved in all of the evaluation metrics with the addition of synthetic data.

Table 6. Evaluation metrics for Summer dataset (normal).

Class Acc (%) Kappa MAE RMSE P Recall FM ROC

DT 77 0.6047 0.2112 0.345 0.769 0.768 0.764 0.847
RF 75 0.5655 0.236 0.3403 0.754 0.748 0.741 0.868
NB 64 0.4402 0.2686 0.4153 0.671 0.638 0.640 0.797
NN 74 0.5496 0.1967 0.3943 0.739 0.737 0.731 0.810

Table 7. Evaluation metrics for Summer dataset (SMOTE).

Class Acc (%) Kappa MAE RMSE P Recall FM ROC

DT 80 0.6926 0.1622 0.3252 0.798 0.795 0.796 0.907
RF 84 0.7607 0.1619 0.2768 0.848 0.841 0.841 0.952
NB 71 0.572 0.1949 0.3655 0.721 0.714 0.702 0.903
NN 82 0.7365 0.1242 0.321 0.829 0.824 0.825 0.923

Table 8. Evaluation metrics for Autumn dataset (normal).

Class Acc (%) Kappa MAE RMSE P Recall FM ROC

DT 80 0.627 0.1861 0.3296 0.799 0.804 0.794 0.834
RF 78 0.5827 0.2111 0.323 0.783 0.780 0.776 0.875
NB 48 0.2083 0.3471 0.5412 0.665 0.483 0.533 0.693
NN 75 0.5382 0.1685 0.369 0.749 0.752 0.750 0.846
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Table 8 shows the evaluation metrics of the classifiers before SMOTE has been
applied, and indicates that the DT classifier could be considered the most appropriate
method due to its performance across the metrics. For example, it has the greatest
Kappa statistic of 0.63, the highest precision and recall rates of 0.80 each, and F-
measure which is 0.79. However, when the synthetic data were added to the dataset, RF
became the most accurate classifier due to its performance in Kappa, RMSE, precision,
recall, F-measure, and ROC area (0.76, 0.28, 0.84, 0.84, 0.84, and 0.95 respectively).
Again, NB showed the greatest improvement out of the four classifiers, with
improvements across all of the features including Kappa statistic (increase of 0.30),
MAE (reduction of 0.13), and RMSE (reduction of 0.11). However, NB was the least
accurate classification method for this dataset as DT, RF, and NB, performed better
across all of the metrics, e.g., NB has an MAE of 0.22 when SMOTE was applied,
while the other classifiers have an MAE of 0.17 or below. NN showed the greatest
improvement in precision as it increased from 0.67 to 0.71, although the increases in
each of the classifiers in this metric were very minor.

4.3 Further Study and Discussions

Three methods of feature selection were carried out as well on the dataset with no
missing values including the Correlation Attribute Evaluation. This method is also
known as the Pearson’s Correlation Coefficient, in which attributes are ranked on how
much information they provide to the prediction of the target class. The results of this
method show there is more of a correlation between Dry Matter, Soil Moisture, Offtake,
Pre-Grazing Cover, Available and the target category class. Attributes such as Total
Rainfall, Week, Month, and Crude Protein, have less of a correlation as the values are
closer to 0 than 1.

Information Gain Attribute Evaluation with a ranker filter was also used for feature
selection. In this method, attributes such as Date, Offtake, Dry Matter, Available, and
Pre-Grazing Cover, provide more information to the prediction of the target class.
Attributes which provide less information for predicting included Acid Detergent Fiber,
Dry Matter, and Post Grazing Cover, while attributes such as Month, WSC, Utilisation,
Crude Protein, Air Temperature, Total Rainfall, and Post-Grazing Cover, had no
information gain with a value of 0.

Another method of feature selection used on the data was the Wrapper Subset
Evaluation, using a Decision Tree with the Best First Ranker method. This method uses
a decision tree to evaluate numerous subsets to determine the best subset. In this
method, the merit of the best subset was 0.748, and found that the optimal number of

Table 9. Evaluation metrics for on Autumn dataset (SMOTE).

Class Acc (%) Kappa MAE RMSE P Recall FM ROC

DT 84 0.7534 0.1513 0.3043 0.836 0.836 0.836 0.904
RF 84 0.7567 0.1726 0.2822 0.839 0.838 0.838 0.946
NB 67 0.5129 0.2185 0.4351 0.712 0.675 0.664 0.874
NN 81 0.7177 0.1307 0.3233 0.810 0.812 0.810 0.918
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folds for this dataset is 5 folds. Attributes identified as having the most significance
included Week, ADF, ME, Utilisation and Total Rainfall.

The feature selection methods described above have selected different attributes as
being the most informative. Each of the classification methods were run again using the
information provided by the feature selection methods. However, the results proved to
be poorer when features were removed. A Python script was developed to perform the
same feature selection methods, and difficulties were found due to the text fields
(County, Event, Date) and negative numbers (Utilisation, Offtake, Available) in the
dataset, which are problematic in the feature selection methods chosen. The negative
numbers were normalised and the text fields were categorised, and the classification
was run again. As it had been before, each of the methods chose different features as
important and there was no strong similarity between features. As well as this, features
which would be designated important in real life (e.g., rainfall) were not classed very
highly and vice versa. Therefore, some further investigation on the feature selection
methods to better suit the available dataset needs to be done, along with the more
elaborate data pre-processing method to be used to classify and clean the data in order
for the above feature selection methods become feasible.

5 Conclusions and Future Work

The present work focused on analysing and evaluating four data-driven classifiers for
grass growth prediction using some real grass data collected related to soil content,
weather, grass quality components etc. From the above study, it was found that tree
classifiers were better methods of classification, namely the DT and RF methods. DT
performed better in datasets which contained imbalance, such as in the seasonal
divisions of spring, summer, and autumn. It consistently performed the best in Kappa
statistics, precision, recall and F-measure across all seasonal data. RF performed
consistently in RMSE and ROC area in both imbalanced and balanced datasets, with its
best performance values as low as 0.27 (RMSE), and as high as 0.96 (ROC) on the
spring dataset with synthetic data. This was the highest ROC value across all the
classifiers, while the lowest value was 0.69, produced by NB on the autumn dataset.
Once synthetic data were applied, and the imbalance was eradicated, RF became the
overall best classifier in each of the experiments that was carried out. It consistently
performed the best in Kappa, RMSE, precision, recall, F-measure, and ROC area. NB
could be considered the least successful classification method, as its accuracy and
evaluation metrics were well below that of the other three methods. The best perfor-
mance from this classifier was on the spring dataset with SMOTE applied, in which its
accuracy was 78%, while the other classifiers were 84% and 85% accurate in the same
dataset. Other measures including MAE (0.16) were good in the NB classifier, how-
ever, this was the highest error rate in the dataset. Other interesting results were
produced by the DT classifier, as it reduced in performance, over all of the evaluation
metrics, from the whole year to the dataset when instances containing missing data
were removed. This is due to the size of the dataset, as a small dataset of 107 instances
does not contain enough information for the DT to make accurate decisions. The above
study has demonstrated the good potential of using data analytics for grass growth
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prediction, although the overall performance of those four classifiers are not excep-
tional considering, for example, the accuracy rate, which is partially due to the quality
of data (missing data, imbalance and uncertainty inside), and partially due to limiting to
only four classifiers. More elaborate data preprocessing and cleaning methods can be
used, and other types of classifiers can be also explored further in future work. One
limitation of this study is the inability to explain how the classifiers came to the
conclusion of their prediction. At present the classifiers are assigned greater weights
when there is higher information gain, and lower weights when there is little infor-
mation gain. Future work will consider the use of expert knowledge to assign weights
to attributes, which will allow the conclusion to be better explained to users, and to give
definitive reasoning for the prediction.

This study underpins research for aiding farmers and policy makers in their deci-
sions regarding sustainable land management. The agriculture and farming industry of
NI requires tools and strategies to encourage sustainable land management, especially
due to its greater contribution to gaseous emissions in NI. The study has highlighted the
need for a system that can handle missing data and uncertainty. The data-driven
approach is expected to be combined with expert knowledge from the industry and
models must be integrated to enhance the overall performance and create a multilayer
decision support system, to support farmers and policymakers when making land
sustainability decisions.
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Abstract. Prediction of the energy consumption is a key aspect of home energy
management systems, whose aim is to increase the occupant’s comfort while
reducing the energy consumption. This work, employing three years measured
data, uses radial basis function neural networks, designed using a multi-
objective genetic algorithm (MOGA) framework, for the prediction of total
electric power consumption, HVAC demand and other loads demand. The
prediction horizon desired is 12 h, using 15 min step ahead model, in a multi-
step ahead fashion. To reduce the uncertainty, making use of the preferred set
MOGA output, a model ensemble technique is proposed which achieves
excellent forecast results, comparing additionally very favorably with existing
approaches.

Keywords: Home consumption forecasting � HVAC consumption
forecasting � Prediction methods � Neural networks � Multi-objective
optimization � Home energy management systems � Ensemble modelling

1 Introduction

The consumption of energy has increased substantially in the building sector in the past
years, fueled primarily by the growth in population, households and commercial floor
space. For this reason, Home Energy Management Systems (HEMS) are becoming
increasingly important to invert this continuously increasing trend. HEMS offer
advantages to both building occupants and electricity suppliers. For the former, they are
a means to reduce energy consumption in a household, or, perhaps more important to
the occupants, by reducing their electricity bill. For suppliers, making use of smart grid
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technology, HEMS enable the implementation of several Demand Response
(DR) mechanisms [1].

If the HEMS is able to control the operation of devices in a home, it is necessary to
separate the consumption of non-deferrable (or non-schedulable) appliances, from
deferrable (or schedulable) devices. As the efficiency of DR techniques can be
improved making use of forecasts of electricity consumption (and electricity generation
if renewables are employed), then both the consumption of schedulable and non-
schedulable appliances must be predicted [2].

Methodologies based on computation intelligence are the ones that are most used
for short-term load forecasting. However, a certain degree of uncertainty is typically
found in those forecasts [3], which typically can be reduced using ensembles of models
[4].

1.1 Literature Review

Computational intelligence models are developed by measuring the inputs and outputs
of the system and fitting a linear or non-linear mathematical model to approximate the
operation of the building [5]. These models are based on the implementation of a
function deduced only from samples of training data describing the behavior of a
specific system, being this way well suited when physical relations are not known [6,
7]. For buildings, the advantage of computational intelligence models over physical
methods is that the former do not require knowledge of the building geometry and
physical phenomena to deduce an accurate prediction model. However, the lack of
proper data can become an issue for the use of computational learning methods [7],
because the accuracy is strongly depending on the quality and amount of available data.

Reviews of prediction of energy consumption in buildings with computational
intelligence methods can be found, for instance, in [8, 9]. According to the mentioned
works, in which more than 100 cases were analyzed, these techniques are proven to be
very effective. Among these methods, Artificial Neural Networks (ANN) are the pri-
mary models employed to evaluate and predict energy consumption [10–12]. The main
input data used to feed this technique may be segmented in two main categories:
weather-related parameters and building-related parameters. Concerning the weather-
related parameters, atmospheric temperature is the parameter most used as an exoge-
nous variable, but also solar radiation availability and relative humidity are employed.
Considering the building related parameters, the total building energy consumption
data is the most used variable (as endogenous variable), followed by parameters as
occupancy, usage of devices, indoor temperatures and fenestration characteristics.

According to the partition of electricity considered, the prediction of the electric
energy consumption may have different focus. Most studies deal with the whole-
building energy consumption [13–15]; other focus only on heating demand [12, 16],
only on cooling demand [17], on both heating and cooling [18], and also on the
detailed segmentation considering devices and other uses as water heating [19].

The prediction horizon of reviewed studies was segmented in hourly fractions,
hour, day, month and year, with varying prediction time steps (most hourly for one-day
as a prediction horizon, and daily for the one-month horizon).
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The validation methods of the prediction models also varied between the use of
analytical proofs, experimental analysis, model comparison, reference comparison and
simulation comparison, being the first two the most used. Additionally, an extensive
review concerning categorization of forecasting parameters may be found in [20, 21].

1.2 Objectives and Work Organization

This work proposes the use of an ensemble of models to be used for producing
forecasts of home electric consumption data, considering total consumption, of
schedulable equipment, and of non-schedulable devices, to be employed in HMES
schemes. The models employed are Radial Basis Function (RBFs) Neural Networks
models, designed using a Multi-Objective Genetic (MOGA) algorithm.

MOGA has been employed successfully in a variety of applications (please see
[22–26] to name just a few). In all these works, results obtained with MOGA have been
compared with other available methods, relevant to the application at hand. The
objective of this paper is not to compare MOGA with other methods for forecasting
energy, but to verify if MOGA results could be improved with ensemble averaging of
the models in the non-dominated set.

Experimental data obtained from the Honda Smart Home US, located in Davis,
United States, are employed as a case study.

The paper is divided in five sections. Section 1 introduces the scope of the work,
objectives and work organization, and a brief literature review. Section 2 presents the
description of the case study. Section 3 introduces the MOGA methodology, and its
use for ensemble averaging. Section 4 presents and discusses the results. Conclusions
are drawn in Sect. 5.

2 Honda Smart Home US – Case Study Description

This work uses data obtained in the Honda Smart Home (HSM) US [22]. This building
is located on the West Village campus of the University of California, Davis. The
building is a classified as a Net Zero Energy Building, used sustainable construction
materials, has a radiant floor and night ventilation. Electric appliances and lighting have
high efficiency, and the HVAC system employs a ground-source heat pump. The
household has a complex home energy management system to control the electric
systems. Details about the construction, electric appliances and data acquisition system
details can be found in its website [22].

The group responsible for the HSM makes available experimental data every six
months. Based on the public available data, some studies were developed, focused
mainly on the integration between electric vehicles and the smart home, and the home
management systems of the HVAC solutions, as well as construction practices. The
present work uses the HSM data to design the prediction models and test their accu-
racies (Fig. 2).

To develop the present study, four variables are used from the HSM data set. They
are the total average electric power demand, the HVAC power demand, all the “other”
electric loads except the HVAC (equipment, lighting, energy management system
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equipment, and other miscellaneous loads), as well as the outdoor temperature. Fig-
ure 2 presents the data from sensors, with a 15-min average of 1-min sampled data,
from January 1st 2016 to December 31st 2018. During the considered three-year period,
the power hits a maximum of 8,57 kW, a minimum of 0 kW and a mean value of
0,99 kW. During the same period, the outside temperature has a maximum of 42,82 °
C, a minimum of −2,00 °C and an average temperature value of 17 °C.

3 Methodology of Predictive Model Design

The data set is composed by 15 min averages of power consumption of the HSM (total,
HVAC, and others) and outdoor temperature, during the three years (2016, 2017 and
2018). Additionally, a codification of each day, within a week, considering holidays
and their position within the week [28], was employed to associate the patterns of
consumption to the calendar days. The model intends to predict the power consumption
for a prediction horizon of 12 h, using steps of 15 min, in a multi-step fashion.

RBF models are employed, in a Nonlinear AutoRegressive with eXogenous inputs
(NARX) configuration. Two exogenous variables (v2 – outdoor temperature, v3 – day
code) and their delays are used as inputs, together with delays of the modelled variable
(v1 - electric power).

Three problems are considered, aiming to model the total demand (P1), HVAC
demand (P2) and “other” demand (P3). As it will be explained later, two different
models will be designed for each problem. As those models will be subsequently used

Fig. 1. Architecture of the Honda Smart Home US. Source: [27]

Fig. 2. HSM average data of power and temperature.
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in a predictive control scheme, the main goal of the models is to obtain a small Root
Mean Square Error (RMSE) over the chosen prediction horizon. Notice that a 15 min
time-step is employed to meet the technical requirements for interchanging energy
information between prosumer and the energy suppliers [29] in the Portuguese market.

3.1 Construction of Data Sets

This work uses the ApproxHull algorithm, proposed in [30], to select data for training,
testing and validation sets used in model design. ApproxHull is an incremental ran-
domized approximate convex hull (CH) algorithm, applicable to high dimension data,
that treats memory and computation time efficiently The convex hull vertices obtained
are compulsory introduced in the training set, so that the model can be designed with
data covering the whole operational range.

Very briefly ApproxHull starts with an initial convex hull and subsequently the
current convex hull grows by adding the new vertices into it. A pre-processing phase is
performed on the original data set before applying the convex hull, scaling all data in
the range of [−1,1]. The maximum and minimum of each dimension form the initial
convex hull vertices. Then, it generates a population of k facets based on the current
convex hull, selects the furthest points in the current facets population as new vertices
of the convex hull, and integrates them in the current convex hull. A detailed expla-
nation of ApproxHull may be found in [30].

The data set for the P1 problem is composed of three full years of data, from
January 2016 to December 2018, while the data sets for P2 and P3 start in April 2016
due to the lack of HVAC data in the first three months of 2016. To each variable [v1,
v2, v3], the admissible lags are associated to three periods: period 1 (lags immediately
before the current sample), period 2 (lags around one day before), and period 3 (a week
before). The admissible lags employed are: P1 - [1, 20], P2 - [4, 4, 0], P3 - [4, 0, 0].

A training set (Str) and a testing set (Ste) are used in MOGA execution (please see
the next Section). When MOGA stops its execution, the non-dominated or preferable
(if restrictions are employed) set of models is evaluated on a third data set, the vali-
dation data set (Sva). The size of Str is 60% of the whole set, and Ste and Sva have a size
of 20% each. All convex hull points are incorporated in the training set. These sets are
supplied to MOGA.

3.2 Multi-objective Genetic Algorithm Design

The model design is considered as a multi-objective optimization problem, with pos-
sible restrictions and priorities associated to the objectives. Genetic algorithms can
evolve trained model structures that meet pre-specified design criteria in acceptable
computing time. Globally, the ANN structure optimization problem can be viewed as
sequence of actions undertaken by the model designer, which should be repeated until
pre-specified design goals are achieved. These actions can be grouped into three major
categories: problem definition, solutions generation and analysis of results (for a
detailed explanation of the design framework used, MOGA, please consult [6]).

In this problem, for the former category, the objectives to minimize are the RMSEs
of the training set, of the testing set, the model complexity (O(l)) and the forecasting
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error (ep). This last criterion is obtained as described in Eq. 1, where D is an additional
simulation set, with p data points, and E is an error matrix (Eq. 2):

ep D;PHð Þ ¼
XPH

i¼1

RMSE E D;PHð Þ; ið Þ ð1Þ

E D;PHð Þ ¼
e 1; 1½ � e 1; 2½ � � � � e 1;PH½ �
e 2; 1½ � e 2; 2½ � � � � e 2;PH½ �

..

. ..
. . .

. ..
.

e p� PH; 1½ � e p� PH; 2½ � � � � e p� PH;PH½ �

2
6664

3
7775 ð2Þ

MOGA is executed with 100 generations, population size of 100, proportion of
random emigrants of 0.10 and crossover rate of 0.70. The admissible range of neurons
vary from 2 to 10, while the possible inputs vary from 2 to 20, out of the possible 68.
As MOGA employs a multi-objective formulation, its results are a set of non-
dominated models or preferable models, if restrictions are employed. From this set, the
final selection of one model is then performed based on the objective values obtained,
eva and ep.

Taking into consideration the unconstrained results, a second design is performed,
with constraints on some of the objectives. These are called Problems b, in contrast
with the unconstrained ones, denoted as a. The restrictions considered for P1b, P2b and
P3b were, respectively: RMSE(etr). = [0,13; 0,25; 0,12]; RMSE(ete) = [0,13; 0,25;
0,12] and O(l) = [200; 110; 120].

3.3 Ensemble Averaging

The output of MOGA is not a single solution, but a set of non-dominated models (or
preferable models, if restrictions are used). This last set of models can be employed for
ensemble averaging. As the forecasting criterion (1) is not used as a MOGA objective,
in a few situations, models within the set can deliver a bad prediction performance.
This can be solved if the median of the results obtained in the dominant (or the
preferable) set, and not their mean value, is used as output of the ensemble.

4 Results and Discussion

4.1 ApproxHull

The results obtained by the ApproxHull algorithm, are presented in Table 1. As pre-
viously explained, the number of samples correspond to the available data for each
problem description. The number of features is equal for the three problems, and the
ratio used for sets distribution is constant as well.
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4.2 Non-dominated Sets

Considering scaled data within the range [−1,1], the minimum results of etr, ete and eva,
for the non-dominated models (P*-a), or preferable sets (P*-b) are presented in Table 2.
There, the mean value is used for O(l). It is possible to conclude that larger RMSE
errors are obtained for the P2 problem, reflecting the modelling difficulty of the HVAC
operation. The smallest values are obtained for P3; however, it should also be noted
that the values of P1 are only slightly higher than the P3.

4.3 Selected Models

Equation (3) to (8) present the selected models for P1-a, P1-b, P2-a, P2-b, P3-a and P3-b,
respectively. Further details and performance values obtained with the selected models
are presented in Table 3. In this table wk k2 denotes the 2-norm of the linear parameters,
which is related with the model condition.

Table 1. ApproxHull results.

Problem Samples Features CH Vertices Str Ste Sva
P1 104519 69 1711 62711 20903 20905
P2 95780 69 10288 57468 19156 19156
P3 95780 69 3145 57468 19156 19156

Table 2. Non-dominated/preferable sets statistics

Problem etr ete eva O lð Þ
P1-a 0,1218 0,1147 0,1149 70,8
P1-b 0,1284 0,1147 0,1148 28,0
P2-a 0,1974 0,1770 0,1770 57,0
P2-b 0,1979 0,1774 0,1771 33,0
P3-a 0,1134 0,1120 0,1139 68,6
P3-b 0,1140 0,1123 0,1137 50,2

Table 3. Selected models results.

Problem Features Neurons O lð Þ wk k2 ete etr eva ep
P1-a 18 8 152 56,89 0,1246 0,1170 0,1174 9,46
P1-b 19 9 180 29,53 0,1604 0,1524 0,1545 9,34
P2-a 3 2 8 4,61 0,2296 0,2044 0,2071 19,29
P2-b 5 2 12 5,17 0,2289 0,2038 0,2066 18,74
P3-a 18 9 171 21,82 0,1149 0,1131 0,1153 2,02
P3-b 6 5 35 2,33 0,1652 0,1629 0,1673 1,39
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v1ðkÞ ¼ f ðv1ðk � 1Þ; v1ðk � 2Þ; v1ðk � 3Þ; v1ðk � 4Þ; v1ðk � 18Þ; v1ðk � 96Þ;
v1ðk � 669Þ; v2ðk � 3Þ; v2ðk � 6Þ; v2ðk � 10ÞÞ ð3Þ

v1ðkÞ ¼ f ðv1ðk � 1Þ; v1ðk � 12Þ; v1ðk � 13Þ; v1ðk � 17Þ; v1ðk � 18Þ;
v1ðk � 92Þ; v1ðk � 96Þ; v1ðk � 97Þ; v1ðk � 672Þ; v1ðk � 673Þ;
v1ðk � 675Þ; v2ðk � 2Þ; v2ðk � 5Þ; v1ðk � 11Þ; v2ðk � 12Þ; v2ðk � 16Þ;
v2ðk � 20Þ; v2ðk � 99ÞÞ

ð4Þ

v1ðkÞ ¼ f ðv1ðk � 1Þ; v1ðk � 14Þ; v3ðk � 1ÞÞ ð5Þ

v1ðkÞ ¼ f ðv1ðk � 1Þ; v1ðk � 2Þ; v1ðk � 97Þ; v1ðk � 676Þ; v2ðk � 5Þ;
v2ðk � 6Þ; v2ðk � 11Þ; v2ðk � 13Þ; v2ðk � 14ÞÞ ð6Þ

v1ðkÞ ¼ f ðv1ðk � 1Þ; v1ðk � 3Þ; v1ðk � 4Þ; v1ðk � 5Þ; v1ðk � 95Þ;
v1ðk � 100Þ; v1ðk � 671Þ; v2ðk � 11Þ; v2ðk � 15Þ; v2ðk � 20Þ; v2ðk � 94ÞÞ ð7Þ

v1ðkÞ ¼ f ðv1ðk � 1Þ; v1ðk � 5Þ; v1ðk � 92Þ; v1ðk � 94Þ;
v1ðk � 95Þ; v1ðk � 98Þ; v1ðk � 668Þ; v1ðk � 676Þ; v2ðk � 3Þ;
v2ðk � 11Þ; v2ðk � 20Þ; v2ðk � 93ÞÞ

ð8Þ

It should be noted that, apart from model (5), all models use samples of the
modelled variable around 1 day and 1 week before. Most models use the outside
temperature, but only model (5) uses the day code.

4.4 Accuracy of Prediction

To analyze the prediction results a one-month period, the month of October 2017, was
employed. A prediction horizon of 12 h was considered, which means that 48 steps-
ahead forecasts were employed. Figure 3 present the plots of real measured data (de-
noted as Target), and one-step ahead predictions for P3-b (best model selected con-
sidering the prediction error), considering just one week of the prediction period.

Fig. 3. Target and predicted values result of the best model of P3-b.
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In order to better graphically represent the comparison between target values and
prediction values for all the problems, the 1-step prediction errors for all problems, for
that particular week, are shown in Figs. 4, 5 and 6.

The scaled prediction RMSE evolutions along the prediction horizon are presented
in Fig. 5, for the 6 problems. With the exception of P2, the models obtained with a
constrained formulation present smaller RMSE values.
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Fig. 4. 1-step prediction power errors for the best model of each Problem
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4.5 Model Ensemble

The results presented before are obtained for the single model that has been selected for
each of the six different cases. As explained in Sect. 4.3, the ensemble results are
obtained by taking the median of the results obtained with each model in the preferable
set. They are presented in Figs. 6, 7 and 8, for problems P1 to P3. If these figures are
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Fig. 5. RMSE evolution along the prediction horizon of the best model of each Problem.

Fig. 6. RMSE median evolution along the prediction horizon for P1
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compared with Figs. 3, 4 and 5, it is clear that better forecasting performance is
obtained with the model ensemble.

Table 4 presents the ensemble RMSEs (P-ensemble) for the training, testing and
validation sets, as well as the respective differences (D(P)) with the results obtained
with the selected models, shown in Table 3. The last column shows additionally the
prediction error obtained for the whole month of October 2017. It can be seen that for
the RMSEs, the majority of the ensemble performs better than the selected models. In
terms of the RMSE evolution over PH, which is the most important goal, all ensemble
values are significantly better that the selected models.

Besides the analysis made in this work, it is important to compare the obtained
results with the results of related studies for the prediction of energy demand in
buildings. It is however quite tricky to perform a quantitative assessment of the pro-
posed techniques, since their performances will depend on the training data used as
input [7]. Additionally, it is not so common to find results of forecasting load demand
within a prediction horizon, and this is much more difficult for individual households.
If we narrow this analysis to the forecasting of different load classes (total, schedulable
and non-schedulable), to the best of our knowledge, there are no available results.

Fig. 7. RMSE median evolution along the prediction horizon for P2

Fig. 8. RMSE median evolution along the prediction horizon for P3
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In [21], different prediction models (ANN-NAR, Hidden Markov Models, Support
Vector Machines (SVM), MultiLayer Perceptrons and Deep Belief Networks) were
designed for one-step daily and weekly forecasts. 8 weeks of 1-hour data were
extracted from Pecan Street database, in 4 different scenarios. For daily forecasts, the
RMSEs varied between 4.02 (ANN-NAR) to 1.48 (DBN) kW. Much better results
were obtained in the present work, using three years of data, although a forecast ceiling
of a half day is considered.

The authors of [31] compared the forecasting performance of ANNs, SVMs and
Least-Squares SVMs, with different data resolutions and forecasting horizons, with
several models, each applied to a different load profile, obtained by clustering the load
profiles. In the same way as in the previous work, these are one-step-ahead forecasts,
although with different forecasting horizons. The best results obtained for a house with
similar load profile, RMSEs within the range of 0.8 to 1.6 kW are obtained for a time
resolution of 30 min and a 12-hours forecast. Again, the results presented in this paper
compare very favorably with these values.

5 Conclusions

This work focused on improving the accuracy of predictive models for the energy
demand in buildings, using ensembles of RBF models designed with a MOGA
framework. Real data, obtained from the Honda Smart Home US for three years, were
used in this work. Three problems were analyzed, each one in two design versions
(unconstrained and constrained).

For a common prediction horizon of 12 h, it was shown that the best results were
for the problem in which the predicted variable is the power consumption of “other”
loads (not considering the HVAC), followed by the Problem where the total demand is
the predicted variable. The Problem where HVAC demand is the modelled variable
obtains the lowest accuracy, due to the higher volatility of the time series.

Comparing MOGA designs, the best forecasting results were obtained with a
constrained formulation, expect for the HVAC modelling. The model ensemble
approach obtained, for all cases considered, the best prediction results. This scheme is

Table 4. etr, ete eva and ep – Ensemble (P-ensemble) and best models.

Problem etr ete eva ep
P1-ensemble 0,1244 0,1163 0,1164 8,6203
D(P1-a) −0,0002 −0,0007 −0,0010 −0,9524
D(P1-b) −0,0360 −0,0361 −0,0381 −0,1473
P2-ensemble 0,2124 0,1890 0,1891 15,429
D(P2−a) −0.0172 −0,0154 −0,0180 −0,7391
D(P2-b) −0,0165 −0,0148 −0,0175 −7,3581
P3-ensemble 0,1143 0,1123 0,1148 6,8507
D(P3-a) 0,0011 −0,0001 −0,0003 −1,4184
D(P3-b) 0,0003 0 0.011 −0,3669
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obviously applicable to all classification, prediction and forecasting problems. For the
case at hand, although a quantitative comparation is impossible, the prediction accuracy
obtained in this work compares favorably with other existing approaches.

Future work will employ these forecasting models for model predictive scheduling
of a real household in the South of Portugal, with PV energy production and electricity
storage.
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Abstract. This article presents a model for courier services designed
to guide a fleet of vehicles over a dynamic set of requests. Motivation
for this problem comes from a real-world scenario in an ever-changing
environment, where the time to solve such optimization problem is con-
strained instead of endlessly searching for the optimal solution. First, a
hybrid method combining Ant Colony Optimization with Local Search is
proposed, which is used to solve a given static instance. Then, a frame-
work to handle and adapt to dynamic changes over time is defined. A new
method pairing nearest neighbourhood search with subtractive clustering
is proposed to improve initial solutions and accelerate the convergence
of the optimization algorithm. Overall, the proposed strategy presents
good results for the dynamic environment and is suitable to be applied
on real-world scenarios.

Keywords: Pickup delivery problem · Ant Colony Optimization ·
Local Search · Time windows · Dynamic requests

1 Introduction

According to data on The World’s Cities in 2018 United Nations (2018), it is
clear that big cities are bound to grow both in size and number. This brings
many concerns regarding the already problematic vehicle saturation on urban
settlements. Small efficiency increases can have a big impact all-around when
applied at a larger scale. This is especially relevant for transportation companies,
whose main activity often involves driving and thus requires careful planning not
to travel on heavy traffic situations.
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The results presented in this article culminate from the development of a
model for courier services based on the general demands of a real world sce-
nario. At its core, the problem at hand focuses on transporting goods between
two locations while efficiently handling the routing of a vehicle fleet, this is, a
Vehicle Routing Problem (VRP). Since it operates on a dynamic environment,
it is constructed to handle both changing traffic conditions and insertion of new
customer requests over time.

2 Vehicle Routing Problem

The VRP category is a combinatorial optimization and integer programming
set of problems. It deals on how to direct a fleet to serve interest points in the
most profitable way. The most common problem on combinatorial problems is
the large number of possible solutions. Many of these problems are in fact NP-
Hard, i.e., there is no guarantee the optimal result can be reached in polynomial
computation time Steiglitz (1982).

The origin of this problem can be traced to the Travelling Salesman Problem
(TSP), in Flood (1956). Here the goal is to make a single salesman find the round-
trip through each and all the cities only once. From here, a broader generalization
was made in 1959, the Vehicle Routing Problem (VRP), credited to Dantzig
(1959). The focus of the VRP shifts to finding the optimal set of routes for
a fleet of vehicles to service a given set of customers. An example comparison
between the two problems can be visualized in Fig. 1.

Fig. 1. TSP and VRP example for the same set of points

Many other constraints exist to model different real-life scenarios, many often
approached as specialized sub-problems of the VRP Montoya-Torres (2015):

– Capacitated VRP (CVRP): customers have specific demands for amount
of goods and vehicles have finite capacity, which can be volume or weight;

– Time Windows: if locations must be always be visited within a time interval,
these are called hard time windows. If the visit can be outside the time interval
but the solution incurs into a penalty, they are soft time windows.
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– VRP with Pickup and Delivery (PDVRP): when there is a need to
pickup an order from a specific location and deliver it to another. A request
is then characterized by the pair pickup-delivery.

If the conditions of a problem instance remain unchanged during the whole
problem, it is called static. Otherwise it is a dynamic problem, which can entail
changes in orders, number of vehicles, travel costs, etc. The simplest approach
to a dynamic problem is to solve it as static, and restart the optimization if
the conditions change. When considering real world applicability, there might
not be enough processing time to achieve good solutions between updates. An
interesting modification is presented by Ferruci (2014), where the working span
is separated into successive time intervals of fixed length, each is solved as a
static instance. During this interval, any new requests are buffered for insertion
at the end of the time span.

2.1 Metaheuristics

Metaheuristics are a common approach when exact methods are inapplicable to
large search spaces. At their core, they are a set of general directives that can
be adapted into a big variety of problems with little changes to the inner work-
ings of the algorithm. Metaheuristics also have the advantage of exploring large
search spaces without getting trapped in local minima by allowing temporary
deterioration of the solution. However, these strategies often require long com-
putational times and a careful parameter tuning to provide good solutions. An
example of a widely used metaheuristic, and the one used for this paper, is the
Ant Colony Optimization (ACO). As many other, this metaheuristic is based a
natural behaviour, the foraging process of a colony of ants.

The ACO formulation is convenient to the VRP formulation since ants are
assumed to travel on a weighted node graph, visiting every node once and stop-
ping only when returning to the starting point. Each vertex i ∈ V in the graph
represents an interest point (be it pickup, delivery or depot). Each edge ij ∈ C
has associated two things. The first is pheromone trail, τij , information left by
previous ants (the attractiveness of past visits). The second characteristic of each
edge is a cost ηij , translating the effort to transverse that arc (usually distance
between nodes), called the heuristic information.

Ants construct solutions by sequentially deciding which node to visit next,
weighting pheromone trail information left by previous ants (the attractiveness
of past visits) and the heuristic information (translating the effort to transverse
that arc, usually distance between nodes). The probability of travelling trough
an edge is then given by Eq. 1.

pk
ij =

τα
ij × ηβ

ij
∑

j∈feasible set τα
ij × ηβ

ij

(1)

with τij being the pheromone trail value and ηij being the heuristic informa-
tion, both associated with cij . Parameters α and β are ACO model parameters
intended to balance relative weight importance.
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Daemon actions is an optional step that includes other actions not based
on real ant behaviour, and is further explained in Sect. 2.2. The last step of the
algorithm is to update pheromones, computed using Eq. 2.

ηij = (1 − ρ) × ηij + ρ × f(sbest) (2)

where ρ is the evaporation coefficient (rate at which pheromone trail values
wear off) and f(sbest) is a value derived from the quality of the best solution
sbest, commonly called the fitness value.

The decision process is probabilistic since moves with low attractiveness can
still be selected, even if less often. To provide a better balance between choosing
good moves and exploring less common moves, the pseudorandom proportional
rule is used, which can be defined as:

– if q > qO, Eq. 1 is used (biased exploration)
– if q ≤ qO, next node is dictated by arg maxu∈Jk

r
{[τij ]α×[ηij ]β} (exploitation)

2.2 Local Search

Local search (LS) is intended to exploit the current solution s in search of
improvements in the immediate neighbourhood solutions. LS procedures for
VRP usually fall into the edge-exchange category. Starting from a feasible solu-
tion, new solutions are generated by deleting k edges and replacing them with
new edges. These connect the same nodes in a different ways, completing the
cycle, performing what is known as a k-exchange.

A noteworthy local search strategy for the VRP is the or-exchange or or-opt.
Instead of deleting arcs as in edge-exchange strategies, a certain chunk of size
s from the route, or slice, is separated from the rest. The neighbourhood search
space is composed by all feasible solutions after moving the slice to each position
around the original one, up to L steps in every direction. A schema for this can
be seen on Fig. 2. Note that when exchanging more than one node, the original
travel order of a slice is maintained.

Fig. 2. Or-opt local search strategy for VRP, for k = 1 and k = 2

3 Proposed Approach

The motivation for this paper is to solve a real world delivery problem. Thus,
considering the complex combinatorial challenge it represents, a metaheuristic
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algorithm is used to tackle the big solution search space. Ant Colony Optimiza-
tion is a graph based method, which is an intuitive way to formulate a VRP. To
make the algorithm more efficient, the ACO is to be paired with a Local Search
to further exploit good solutions by trying small changes and that can lead to
big improvements.

The central piece of the approach is the static solver, which optimizes an
existing solution using a hybrid Ant Colony System paired with Local Search.
The initial solution is given by an initial solution constructor module, as detailed
in Sect. 3.2.

The approach taken to solve dynamic instances is based on the presented
solution for static problems. Starting from an initial feasible solution, the static
solver is applied for a limited period of time. This intends to represent the pre-
computation of requests already known beforehand. At this point we are at the
beginning of the working span and will next repeat the same set of directives
until all requests have been serviced:

– Insert new requests buffered during previous interval into the best routes;
– Deploy the best obtained solution after the insertion to the physical vehicles;
– Predict changes to deployed route at current interval’s end-state, namely new

vehicle positions and serviced requests;
– While current interval’s end isn’t reached, optimize the end-state prediction;
– Output from the static solver the best and the latest found solutions;
– Group these two solutions with the state of the deployed route to form the

best selected routes;
– Update vehicle positions, serviced requests and distance matrix.

3.1 Mathematical Formulation

An adaptation from the well-known mathematical formulation of the VRPTW
Hasle (2007) is presented, where the goal is to service as efficiently as pos-
sible a set of customers requests R = {1, ..., n}. Every request is defined by
a pickup and a delivery location, each represented by a unique graph node
out of a total 2n nodes. The full set of customers to service is given by
C = {p1, d1, p2, d2, ..., pn, dn} where pr is the pickup node of request r from
the subset P = {1, 3..., 2n−1} ⊂ C and dr is the delivery node of request r from
subset D = {2, 4..., 2n} ⊂ C.

In order to service each customer request we have available k vehicles. The
depot location is split into k nodes forming the set of depot nodes W = {1, ..., k}.
The mathematical formulation is dimensioned for a graph G(N ,A), where A ⊆
N × N is the set of graph edges representing all travel possibilities between
nodes and N = W ∪ C represent the graph nodes. V = {1, ..., k} is the set of
homogeneous vehicles. Each vehicle has a fixed hire cost of ek and a maximum
capacity given by q ≥ li, i ∈ {1, ..., n} where li is the load capacity demand for
customer i, i.e. how much of a vehicle’s available capacity a request will occupy.

The variable xk
ij is a binary parameter that expresses if a vehicle travels

directly from node i to node j. For each arc ij, it takes the value 1 if vehicle
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k travels directly from i to j and 0 otherwise. xk
kj represents an arc between a

depot node and node j, serviced by vehicle k. Similarly, xk
ik expresses if an arc

between a customer node i and the depot is serviced by vehicle k Each arc is also
defined in terms of travel time, tij specific positive travel cost, cij , for each arc
in A. The variable sk

i is the exact time of service at each point i by vehicle k and
[ai, bi] is the time window specified for node i. Finally, M = [m1,m2,m3,m4] is
a vector composed by scaling factors, which define the priority of each term in
the objective function.

minimize

m1

∑

k∈V

∑

(i,j)∈A
cijx

k
ij + m2

∑

k∈V

∑

j∈C
ekxk

kj +

m3

∑

k∈V

∑

(i,j)∈A
max(sk

j − bj , 0)xk
ij + m4

∑

k∈V

∑

(i,j)∈A
max(aj − sk

j , 0)xk
ij

(3)

subject to
∑

k∈V

∑

j∈C
xk

ij = 1, ∀ i ∈ C (4)

∑

(i,j)∈A
lix

k
ij ≤ q, ∀ k ∈ V (5)

∑

p∈P
xk

hpn
−

∑

d∈D
xk

gdn
= 0, ∀ h ∈ N , ∀ g ∈ N , ∀ k ∈ V, ∀ n ∈ R (6)

∑

j∈C
xk

kj = 1, ∀ k ∈ V (7)

∑

i∈V
xk

ih −
∑

j∈N
xk

hj = 0, ∀ h ∈ C, ∀ k ∈ V (8)

∑

i∈V
xk

ik = 1, ∀ k ∈ V (9)

xk
ij(s

k
i + ti,j − sk

j ) ≤ 0, ∀ (i, j) ∈ A,∀ k ∈ V (10)

ai ≤ sk
i , ∀ i ∈ N , ∀ k ∈ V (11)

xk
ij ∈ {0, 1}, ∀ (i, j) ∈ A, ∀ k ∈ V (12)

Equation 3 defines the objective function. It is the sum of four different
terms, each multiplied a scaling factor from the vector M. The first term,
m1

∑
k∈V

∑
(i,j)∈A cijx

k
ij , represents the route specific travel costs. It takes into

account the sum of each cost, cij , for all arcs travelled by each vehicle of the fleet,
this is where xk

ij = 1. The second term, m2

∑
k∈V

∑
j∈C ekxk

kj , gives the cost of
hiring vehicles. This value is independent of vehicle travelled distance since such
costs are already covered in the first term. It sums the one-off cost of hiring
each vehicle in the solution by multiplying each vehicle cost ek by xk

kj , which
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represents leaving the depot. This means that for all unused vehicles there is no
travel out of the depot, making xk

kj = 0 and thus not considering the unused
vehicle cost in the objective function.

The third term, m3

∑
k∈V

∑
(i,j)∈A max(sk

j − bj , 0)xk
ij , considers how late

each node visit is. Deliveries have a specified time window. The start of this
time window is hard, but the ending of it is soft. This means that a location
cannot be visited before the time window starts, but can be visited after it ends.
The third term is used to penalize late arrivals, which is visiting a node after its
time window has ended. This does not make the solution unfeasible but has a
negative impact on the objective function. The third term sums how late all the
deliveries were, and due to the max operator each contribution to total lateness
is always equal or greater than zero. While this term handles the end time of a
time window, the last term handles the start.

Since deliveries can’t be made before the specified time window, if a vehi-
cle arrives earlier it must wait. This wait time is penalized in the forth term,
m4

∑
k∈V

∑
(i,j)∈A max(aj−sk

j , 0)xk
ij . This is done similarly to the previous term,

but now looking at the difference between the arrival time and the time window
start. Both of these terms use the max operator, making this objective function
non-linear.

The constraint represented in Eq. 4 assures that all customers are serviced
only once. Vehicle capacity constraint is represented by Eq. 5. Equation 6 assures
the same vehicle services both pickup and delivery nodes of the respective
request. The expression 7 defines that there is only one tour per vehicle, which
can be empty. Equation at 8 ensures that if a vehicle arrives at a costumer loca-
tion it also departs from the mentioned customer location. Equation 9 define all
tours’ ending location as the depot. For a vehicle to travel directly from i to
j Eq. 10 states the arrival time at customer j is such that it allows travelling
between i and j. Expression 11 specifies that the early limit of a time window
ai is hard and Eq. 12 denotes the xk

ij variable as binary. Thus, the model is non-
linear due to the non-linear max operations in Eq. 3, quadratic terms in Eq. 10
and integrality constraints at Eq. 12.

3.2 Initial Solution Constructor

To the presented method is given as input info on the orders to solve and on
the fleet to manage. Orders are given as a list of pickup-delivery pairs, their
respective locations and time-windows. Regarding the fleet, to the method is
given the total number of vehicles, their capacity, travel speed and cost.

The initial solution constructor is then used to generate a feasible solution
from scratch, to be used as a starting point for the static solver module. Since
good starting solutions lead to faster convergence, a proposed new strategy based
on Nearest Neighbourhood Search (NNS) and subtractive clustering is presented.
Customer locations nodes are clustered, and to each clusters a single vehicle is
assigned following the NNS heuristic. A comparison between using only NNS
or clustered NNS is showed later in Table 1, which supports the decision to use
pre-clustering.



334 M. S. E. Martins et al.

To mitigate the negative effects of clustering locations, and not time avail-
ability, the maximum number of allowed vehicles is always used. This helps
reducing lateness and excessive waiting times in the initial solutions, even if at
the cost of using more vehicles. To do so, an heuristic starts with a very low
cluster influence range parameter and subtractive clustering is applied on the
midpoint of each pickup-delivery pair. Having an extremely low cluster influence
range results in each midpoint being a cluster centre, i.e, it asks for as many
vehicles as there are pickup-delivery pairs. If this parameter creates a solution
with more vehicles than allowed by the problem, the parameter is increased and
the process repeated until the maximum number of vehicles is in use.

3.3 Static Solver

The static solver combines ACO and Local Search. The overall logic can be
seen on Fig. 3. Starting from a feasible solution, module specific variables are
initialized. The pheromone trail matrix is also here generated. It is a Q × Q
matrix, where Q is the length of N , and it is initialized uniformly at the value
τ0 = 0.5.

Start Initializations Construct 
Solutions Local Search

Apply 
Disturbance Local Search

Update Best 
Solution

Update
Pheromones

End

Was a new
solution
found?

Stopping 
Criteria meet?

Was a new
solution
found?

YES

YESYESNO

NO

NO

Create new ant 
with empty path

Use pseudorandom 
proportional rule

Solutions 
constructed

Have m ants 
been created?

YES

NO

Use greedy 
rule

Has one biased
ant been used?

NO YES

Have all nodes 
been visited?

Decrease q0

Reset q0 to 
initial value

Select unvisited node 
according to rule

YES

NO

Construct solutions step:

Start 

Fig. 3. Static solver, with the module Construct Solutions further detailed

Pheromone limits are dynamic and depend on the quality of the current best
solution, meaning they will be updated every time a new global best solution,
sbest, is found. Pheromone trail matrix limits are computed according to the
following equations Gambardella (2015):

τmax =
1

ρ × f(sbest)
(13)

τmin =
τmax

2Q
(14)

The ant behaviour is guided by a pseudorandom proportional rule, as
explained at Sect. 2.1. One biased ant is also used each cycle, where the value of
q0 is set to 1 making this ant greedily select the most attractive move.
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At each cycle, the static solver can work either with or without the local
search module. If no new solutions have been found for more than LSlimit cycles,
as defined in Eq. 15, LS is used. This is done to let the algorithm use ACO to
explore the search space without the overhead of the LS as long as solution
improvements are being regularly found.

LSlimit =
log( 1

2Q )

log(1 − ρ)
(15)

When the iterative cycle starts, m new ants are generated using the new ant
generator module. If an improving solution is found, both sbest and pheromone
matrix limits are updated. After all ants are computed, the local search method
is applied to the most promising ants on the top ant fitness list from current
iteration (size specified by top ants number) until no improvement is found, and
are compared with the global best ant, sbest.

If no best solution was found up to this point on the current cycle, a dis-
turbance is induced on sbest ant, and to the disturbed solution snew the local
search method is applied. The number of new solutions generated by the distur-
bance method is given by perturbed ants number times. Every snew is saved on
exchange memory to avoid applying a local search on equal solutions and save
valuable computational time. The disturbance introduced can either be a shift,
where a pickup delivery pair is moved from on vehicle to another, or a switch,
where one pair of each vehicle switch places.

When eventually the time limit is surpassed for the static solver module, it
stops running iteratively and outputs the best found solution as result.

3.4 Dynamic Solver

To handle the dynamic changes over time, the working horizon is divided into
successive intervals of length timess. During each interval, the working condi-
tions (time and distances matrix) will remain unchanged and any new requests
appearing during this interval will be buffered, i.e., saved for later insertion.
When the end of the interval is reached, time and distance matrix are updated
and new requests inserted in the already existing routes. This way, during the
length of the interval, the problem instance does not change and the static solver
method can be applied.

Fig. 4. Cycle of the dynamic solver
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After running the static solver to generate a solution from scratch, with the
currently known locations, an iterative cycle as represented on Fig. 4 is entered.
Denoting the start of the interval as T , the best solutions obtained in the previous
optimization interval serve as input to the least cost insertion module, which
adds any new requests buffered during the previous cycle and outputs the best
found solution. This is the solution to be deployed to the physical vehicles,
ṡdeployed, at time T ′, which would start to travel immediately accordingly to this
route, ignoring any previous orders. Simultaneously to this vehicle deployment,
another module called end-state simulator predicts where the vehicles will be at
the end of the current time interval. This predicted route, ṡ∗, is used as input
to the static solver, which will try to find improvements to this solution for
tss − (T ′ − T ) minutes.

When the end of the time interval T+ is reached, the static solver module
is stopped. The best solution from the static solver, now ṡbest, is grouped with
the previously deployed solution, ṡbest, and together they serve as input to next
cycle’s least cost insertion model, at T+. All requests made available between T
and T+ are now introduced into the routes. The cycle is repeated until no more
requests need to be serviced.

When solving dynamic instances, some changes are needed in the static solver
module to account for requests that have already been partially serviced, this is,
whose pickup has already been serviced in the real world and thus is irreversibly
tied to a vehicle. This means that the new ant module must also account for
vehicle history when constructing the feasible node list. When generating new
solutions with the local search strategy, any time a feasibility check is done it
needs to also take into account nodes outside the current planned route but
which are on the vehicle history.

To account for changes between the predicted end-state environment and the
real environment at T ′, another module is needed to check if at the interval’s end
the predicted state matches the real state and fix anything needed accordingly.
The module vehicle position update is responsible for predicting where the state
of the system will be at the end of the interval. It works by letting the vehicles
follow their current routes until the time of end of interval, using new generated
distance and times matrices. For the time being, to these new distance and times
matrices random noise is added using the module vehicle noise. The vehicle
position update is also used to re-calculate a predicted route at the end of the
time interval, this time with the correct distance and times matrices.

4 Results

On the following section the obtained results are detailed. Before reporting on
static and case study performance, parameter tuning and algorithm modifica-
tions from previous sections are justified.

The static benchmarks tested are part of the 100 customer group PDPTW
instances available at SINTEF (2016). How pickup/delivery locations are dis-
tributed geographically can be seen in the file name prefix: lc files are clustered
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geographically; lr are randomly distributed; lcr mix previous two. Also, file pre-
fixes ending in 1 have short and overlapped time windows and have many vehi-
cles available, while files ending in 2 have long and spaced time windows and
few available vehicles.

4.1 Initial Solution Construction

To compare implementing the construction method with and without pre-
clustering the customer nodes, Table 1 was generated. Average values of 20 min
runs are presented for both options, showing the following values with and with-
out clustering: fitness of initial solution; time until solution with no lateness;
best solution fitness after 20 min. The best values in each case are highlighted in
bold.

Table 1. Comparing initial solution construction using Nearest Neighbourhood Search
with and without pre-clustering with the best values for each comparison in bold

File name Strategy Initial Fitness Time (min) Final Fitness

lc101 Normal 188.58 0 182.89

Clustering 190.49 0 182.89

lc201 Normal 9.97E+09 8.04 437.11

Clustering 5.53E+09 2.41 310.02

lr101 Normal 7.08E+09 2.54 348.73

Clustering 9.67E+09 2.82 355.91

lr202 Normal 182.89 0 182.90

Clustering 190.49 0 182.90

lcr101 Normal 8.66E+09 6.42 421.25

Clustering 3.98E+09 2.19 309.89

lcr201 Normal 7.33E+09 3.57 367.03

Clustering 1.06E+10 2.60 359.92

Comparing the approach with and without clustering, no consistent improve-
ment can be found for initial fitness and time until a solution with no lateness.
However there is almost always a clear fitness improvement after running for
20 min. Pre-clustering the requests and then applying a NNS to each cluster will
be the strategy used in all other sections.

4.2 Static Solver Modifications

On Table 2 we can see different runs for various modifications of the parameter
q0. It was noted that a high q0 value is especially valuable at the start of the
algorithm, but might negatively impact the search for better solutions once we
are closer to the optimal solution. With this in mind, the idea of iteratively
decreasing q0 value with each iteration where a new solution isn’t found is tested
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in the problem at hand. For this formulation, the best combination found was
using q0 = 0.9 initially and decreasing it by 20% each iteration with no better
solution found.

Next, in Table 3, we see a comparison between having or not a biased ant
in each cycle, this is, single ant with q0 = 1 independently of previous q0 val-
ues of decreasing factor. Since this change has a positive impact on the used
formulation, it was used for all the following tests.

4.3 Static Instances

Table 4 presents the average values for the error tables per type of file. Clustered
data behaves differently from the others files as it manages to always reach the
optimal number of vehicles for type 2 files. While for type 1 it does not reach
the optimal value for all of them, it reaches a lower distance than the given by
the optimal. For the other two the conclusions are similar, with average vehicle
number error of 2 or less. Distance does fall below the optimal value as with the
clustered files, but instead has an average error around 20%.

Table 2. Different tests done on the pseu-
dorandom proportional rule parameter, q0

File ID q0 Multiplier Vehicles Total Distance

18 0 - 24 1960.55

0.9 - 24 1849.61

0.9 0.9 23 1995.27

0.9 0.8 23 1878.41

0.8 0.5 24 1895.69

23 0 - 15 1440.08

0.9 - 15 1450.43

0.9 0.9 16 1555.86

0.9 0.8 14 1338.17

0.8 0.5 14 1417.95

Table 3. Test runs with and without
biased ant

File Vehicles Distance

Normal Biased ant Normal Biased ant

lr101 23.33 20.70 1875.33 1775.71

lr109 13.33 13.20 1463.15 1376.57

lr205 4.00 3.60 1224.59 1190.37

lrc101 14.33 13.20 1728.43 1679.72

lrc102 6.00 5.20 1756.58 1763.81

Table 4. Average distance from optimal solutions for static solver

File Vehicle Distance

Mean % Best % Mean % Best %

lc1 0.31 3.46 0.22 1.39 −41.49 −4.06 −23.79 −2.00

lc2 0 0 0 0 5.38 0.91 0.96 0.16

lr 0.18 1.83 0.12 1.31 −19.44 −1.72 −12.14 −0.98

lr1 1.39 12.99 0.67 6.57 131.87 11.33 58.50 4.99

lr2 1.05 40.54 0.55 21.96 329.41 35.31 168.63 18.15

lr 1.23 26.17 0.61 13.93 226.34 22.80 111.17 11.29

lcr1 2 16.62 1.5 12.42 161.70 7.34 98.89 2.84

lcr2 1.35 38.51 1 29.16 371.76 28.86 226.77 15.66

lc 1.68 28.93 1.25 21.83 266.73 17.86 162.83 9.07
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4.4 Dynamic Case Study

The presented case study is based on food service distribution centres and its
most common design constraints. For this example, real customer requests from a
typical day of a distribution company are detailed regarding real order hour and
location. This specific example models the distribution services of one restaurant.

All pickups happen at the depot location, the restaurant, and it is assumed
that after a customer makes an order, the delivery time window starts in 45 min
and lasts for 15 min. For this implementation, the distance between real world
locations is computed using the Haversine formula. However, the created model
can work with any matrix giving the distances and travel times between nodes,
for example given by the Google Maps Distance Matrix API.

First, the data is processed by the static solver module for 30 min, similarly to
the approach on the static benchmarks. This will give a solution to be considered
as the optimal when performing any dynamic tests. The case study data is similar
to the benchmarks in size, with 47 requests to service. In terms of scheduling
horizon, the case study matches the type 2 files. Visualization of a solution found
can be seen on Fig. 5 a).

For the static run, 2 vehicles were able to service all requests without lateness
for a total of 51.4 km travelled. For the dynamic solution, with a tsim = 15 min
and a tlook = 45 min the solution obtained is represented in Fig. 5 b). It uses 4
vehicles instead of 2 and has a total travelled distance of 68.6 km.

Fig. 5. Comparison of static and dynamic solutions for the case study

5 Conclusions

The main objective was accomplished by defining an algorithm able to solve the
original problem. Further, the proposed approach is suitable for implementation
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in a real world environment, being able to deal with the tight time windows
available to solve such heavily constrained problems. Considering the bench-
mark problems where the data is not clustered, the proposed approach does not
match the competition when comparing with other multi-vehicle pickup delivery
problems, except on a few instances. However under the case study presented,
the proposed approach is able to give satisfactory solutions within the given
time constraints, generating solutions without any delays in the delivery time
windows.

In general, the proposed approach shows a good performance in the valida-
tion benchmarks. The introduction of the initial clustering step improved the
overall results of the proposed approach, only little improvements are needed
to consider them competitive with other approaches from the state of the art.
The developed strategy for initial solution construction seems very promising
and worth exploring further. The hybrid approach improves the solution qual-
ity, with the inevitable cost of extra computational time mainly due to the LS
module.

5.1 Future Work

The proposed model can be improved by adding the ability to handle differ-
ent types of vehicles and more advanced waiting strategies. A first attempt to
improve the algorithm would be to further improve the Local Search method,
namely adding more diversity to different types of solution disturbance. As for
the dynamic approach, it would be mandatory for a model applied to a real case
to refuse new requests if they will badly influence the already accepted routes.
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Abstract. Acoustic features about phone calls are promising markers
for prediction of bipolar disorder episodes. Smartphones enable collection
of voice signal on a daily basis, and thus, the amount of data available for
analysis is quickly growing. At the same time, even though the collected
data are crisp, there is a lot of imprecision related to the extraction of
acoustic features, as well as to the assessment of patients’ mental state. In
this paper, we address this problem and perform an advanced approach
to feature selection. We start from the recursive feature elimination, then
two alternative approaches to clustering (fuzzy clustering and self orga-
nizing maps) are performed. Finally, taking advantage of the partially
assumed labels about the state of a patient derived from psychiatric
assessments, we calculate the degree of agreement between clusters and
labels aiming at selection of most adequate subset of acoustic parame-
ters. The proposed method is preliminary validated on the real-life data
gathered from smartphones of bipolar disorder patients.

Keywords: Self organizing maps · Fuzzy C-Means · Recursive feature
selection · Cluster agreement · Bipolar disorder episode prediction

1 Introduction

Bipolar disorder (BD) is a chronic mental illness characterized with changing
episodes from euthymia (state of health) through depression to mania (euphoric
state) and the mixed states (depressive and manic symptoms present). BD affects
more than 2% of the world’s population [1]. The risk of a new episode can
be reduced significantly by an early detection and an appropriate treatment.
However, the frequency of visits with the psychiatrist is usually insufficient to
provide early intervention, and patients by themselves are usually not aware of
the need of treatment if a new episode starts. Therefore, in the recent years,
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smartphone becomes an increasingly important tool in the early prediction of a
starting episode and smartphone-based objective data become a valid markers
in predicting BD episode recurrence [2].

Although, the acoustic data collection can be performed during the everyday
life of a patient, labeled data are limited only to days around the psychiatric
assessments. The mental state of a patient between psychiatric assessments is
often unknown. In majority of the related work, see e., [2,3], the problem is stated
as a supervised learning task. Recently, to alleviate the problems of uncertainty
about patients state and limited data, Kamińska et al. [4] applied unsupervised
learning technique (self-organizing maps) to find groups (clusters) in acoustic
data for each patient without taking into account the psychiatric assessments. As
a consequence, the whole dataset was used for learning rather than constraining
it only to a few days before and after the visit to the psychiatrist. Then, the
relation between the learned clusters and the labels from psychiatric assessment
was investigated. Kamińska et al. [4] have noted that the degree of agreement
between the results of unsupervised learning (clusters learned on acoustic data)
and the results of the psychiatric assessments is related to the type of the BD
phases recognized during the psychiatric evaluation.

The extraction of acoustic features is accompanied by several uncertainties.
First of all, the device used by a patient and the quality of its microphone are
unknown. Secondly, voices in the background have some influence on the qual-
ity of the collected parameters. Also, due to unexpected technical issues, some
phone calls were simply not recorded without clear understanding of this situa-
tion. Other phone calls are not recorded because BDapp on patient’s smartphone
was off due to unknown reason (patients declared that they will use it). Finally,
due to memory shortages, not all frames of a phone call could are processed and
are simply omitted. Only some of them were selected. At the same time, the
process of assigning labels under the psychiatric evaluations is also accompanied
by several uncertainties. Its outcomes are subject to the condition during the
visit. The mental state and mood of a patient could change quickly after it.
Nonetheless, the BD phase of a patient assessed by a doctor during the inter-
view is usually assigned as labels to the surrounding days assuming a specific
ground-truth for the analyses. Often authors apply 7 days before the psychi-
atric assessment and 2 days after [3]. However, there might not be one common
ground-truth that describes adequately all patients. Therefore, it is essential to
explore the structure of the acoustic data and investigate what is the quality of
learned clusters.

Due to all these uncertainties, in this research we incorporate fuzzy cluster-
ing for alternative subsets of acoustic features. This paper is a continuation of
our previous works [4]. However, now we aggregate data to a single phone call,
whereas in citech26ref4 the aggregation has been done to one day. Aggrega-
tion process relay on collecting all acoustic parameters [5] for each phonecall for
each patient and then calculate the quartiles for received values. We perform
an extensive comparative analysis aiming at selection of: (1) smaller subset of
acoustic parameters that will require less computational efforts; (2) fuzzy clus-
tering algorithm for the considered smartphone-based acoustic data to reflect the



344 O. Kamińska et al.

related imprecision. This research is a step forward the superior goal that is an
adequate prediction of BD episode recurrence using smartphone-based acoustic
features.

The main novelty of this paper consists in application of Fuzzy C-means and
Self organizing map algorithms for truncated datasets from the RFE algorithm.
The unsupervised algorithm is selected over the supervised ones to alleviate
the problem of limited labeled data and aiming at exploration of the whole
data and investigating whether they can be grouped into clusters. The proposed
approach is validated on the real-life dataset coming from the voice calls of
patients suffering from bipolar disorder and the degree of agreement between
learned clusters and psychiatric labels is evaluated.

That paper is organized as follows. In Sect. 2, methodology applied in this
research is described, starting from the observational study on bipolar disor-
der to the brief description of the unsupervised approaches. Then, results of
experiments are presented in Sect. 3. In the last Section, main conclusions are
discussed.

2 Methodology

2.1 Observational Study and Acoustic Feature Extraction

Motivation for this research comes from analyzing real-world data collected in
a recent observation study1. The study included patients diagnosed with bipo-
lar disorder (F31 according to ICD-10 classification). In total, 33 patients were
enrolled and used a dedicated smartphone application in everyday life for up to
15 months (starting in September 2017 and ending in December 2018). The study
was conducted in the Department of Affective Disorders, Institute of Psychiatry
and Neurology in Warsaw, Poland. Each patient was associated to a psychia-
trist and control visits were scheduled. The evaluation of the mental state was
performed by psychiatrists using both - the standardized measures of depressive
and manic symptoms: Hamilton Depression Rating Scale (HAMD) and Young
Mania Rating Scale (YMRS), as well as clinician’s own assessment based on
his experience with BD patients. The interviews were performed with various
frequency depending on the need identified by the doctor or a patient.

Participants of the study received a dedicated mobile application, called
BDMon able to collected acoustic features about phone calls. Patient’s voice
signal was divided into short 10–20 ms frames (withing a frame it is approxi-
mately stationary). With the use of an adopted version of a common library:
openSMILE [5], the extended Geneva Minimalistic Acoustic Parameter Set
(eGeMAPS) for voice research was extracted from each frame. The considered set
contains 73 parameters connected with energy, spectral parameters and cepstral

1 Data considered in this paper come from CHAD project − entitled “Smartphone-
based diagnostics of phase changes in the course of bipolar disorder”
(RPMA.01.02.00-14-5706/16-00) that was financed from EU funds (Regional Oper-
ational Program for Mazovia) in 2017–2018.
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parameters (e.g., bandwidth energy, energy ration in different bands, relative
volume) and 13 parameters connected with sound source (e.g., intonation con-
tour). The meaning of that parameters is mostly connected with loudness in
particular bands, voice energy, pitch etc.

The current state of the art lacks a clear indication which of the acoustic
features are the best predictors of BD phase. In [4], the authors use the following
12 parameters: spectral slope in the ranges 0–500 Hz and 500–1500 Hz, energies
in bands 0–650 Hz and 1000–4000 Hz, alpha ratio, ratio of the energy in band 50–
100 Hz to the energy in band 1000–5000 Hz, spectral roll-off point the frequency
below which 25% of the spectrum energy is concentrated, harmonicity of the
spectrum, maximal position of the FFT spectrum, Hammarberg index, entropy
of the spectrum, modulated loudness (RASTA), and zero-crossing rate. Different
subset of parameters was selected with filter feature selection by [3], who use the
following parameters: kurtosis energy, mean second and mean third MFCC, mean
fourth delta MFCC, max ZCR and mean HNR, std and range F0. Within this
research, recursive feature elimination are used as first step to select a subset of
predictors.

2.2 Recursive Feature Elimination (RFE)

To obtain significant voice parameters we apply one of the automatic feature
selection methods called Recursive Feature Elimination (RFE) [6]. The idea of
the RFE technique is to build a model with all variables and after that the
algorithm removes one by one the weakest variables until there will be achieved
established number of variables. To find the optimal number of features cross-
validation is used with RFE algorithm to obtain the best scoring collection of
features.

2.3 Self Organizing Maps (SOM)

Results of the fuzzy c-mean clustering are compared to the clustering using self-
organizing map algorithm known also as Kohonen network [7]. For each patient,
we performed clustering of the call aggregates (quartiles) of theirs voice fea-
tures using the kohonen package from the CRAN repository for R language, [8].
Important feature of the self-organizing maps is the preservation of neighbor-
hood between the clusters in the two-dimensional space. Similarly, as in [4], we
apply rectangular map topology of dimensions 3 × 1, which is intended to iden-
tify the two most distant affective states mania and depression and euthymia
in between. The fourth affective state, mixed, is in its nature a combination of
both, manic and depressive symptoms, and as confirmed with our preliminary
experiments, it is more adequately represented as a mixture of depression and
mania within the 3 × 1 Kohonen network, than as an additional dimension of a
map, e.g., 4 × 1.
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2.4 Fuzzy C-Means Algorithm (FCM)

Fuzzy C-means [9] another cluster algorithm is applied for the acoustic data and
compared with the SOM algorithm. The specificity of this algorithm is that one
value could be clustered as a cluster A with some membership, and the same
value could be clustered as a cluster B with another membership. It might seem
as thougest examples to identify mixed phase. In mixed phase patients could
be for some time in depression and for some time mania. For the comparative
purposes, the number of clusters was predefined and assumed as 3. Package e1071
from CRAN repository has been used.

2.5 Evaluation Metric

To compare the degree of agreement between the learned clusters in acoustic data
and the labels from the psychiatric assessment, we apply the clustering agree-
ment metric as applied in [4] according to the following formulas, and similar to
the Rand Index.

ftv,i =

∑tv+2
t=tv−7 I{ct = i}

∑tv+2
t=tv−7 I{ct is not missing} (1)

ftv,i frequencies of each cluster
I indicator function taking value:

1 - if the predicates are true
0 - otherwise

ct denote a cluster which was assigned to on day
to a particular patient

where I is the indicator function taking value one if the predicate in curly
brackets is true and zero otherwise.

We extract the data around every pair of visits and assign them to clusters
trained on the remaining data. Therefore, we aim at comparing two groupings of
the same data, one done by the clustering algorithm and the other by psychiatric
assessments extrapolated to 7 days before and 2 after the visit.

Then, we compare the distributions ftA and ftB for two visits A and B with
the normalized absolute difference

atA,tB = 1 − 1
2

3∑

i=1

|ftA,i − ftB,i| (2)

atA,tB normalized absolute difference

2.6 Diagram Representation

In order to easily visualize the received results, they were presented using a
heatmaps diagrams for each pair of patient visits. On the X axis there are labels
(received by psychiatrifor the first visit and on the Y axis there are labels for
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the second visit. The value presented in the graph is the degree of agreement
(2) described above and calculated for each pair of visits to available patients
and then averaged for the same pair of visits in reverse order. Values close to
0 mean that the clusters received on two different visits are different from each
other, while values close to 1 mean that the clusters obtained on two different
visits are similar to each other. The expected values for this chart are as follows.
We strive for the highest possible values on the diagonal of the matrix - which
means that the received clusters for visits with the same label are similar to each
other. However, we strive to keep the remaining values as close to 0 as possible,
which means that during two visits with different labels, the received clusters
are different.

3 Experimental Results

Two set of experiments have been conducted. In the first one, the RFE method
has been applied with various parameters for each patient individually due to
the high variability between patients. In the second set of experiments, we apply
fuzzy clustering vs. self organizing maps and evaluate the degree of agreement
between learned clusters and psychiatric assessments.

3.1 RFE on Acoustic Data

RFE calculation has been prepared using caret package coming from CRAN
repository and 10-fold cross validation. We present and discuss detailed RFE
results for 2 exemplary patients. Both patients have 3 visits for which the patient
used BDmon application in the surrounding days. At each visit the mental state
of a patient was assessed by the doctor (e.g., euthymia, depression). The ground-
truth for the analysis is considered as in [4] and [3] and all phone calls conducted
in period starting from 7 days before visit, the day of visit and 2 days after visit
received the label (which was given during that visit). The number of total
labeled phone calls for considered patients is summarized in Table 1. For each
phone call, 86 acoustic parameters are extracted for all its frames (frame length:
10–20 ms), so usually there are thousands of frames used as training data for the
RFE algorithm for one phone call.

As observed in Table 1, data are incomplete and for 3 out of 6 visits records
from some days are missing (2 days for visit from 20.06, 6 days for 07.08 and
1 day for 19.06).

Results obtained by the RFE for both patients are presented in Table 2 and
Table 3. It turned out that for patient 1472 the best results are received when all
86 variables are taken into account and then accuracy of that model is slightly
above 80%. Similarly, for patient 2582 the best model is the one that uses 86
parameters and its accuracy equals to 65%. However, the difference in accuracy
for smaller number of parameters is relatively small and for example, the accu-
racy with 8 parameters (reduction by over 90%) amounts to 78.2% and 61.4%,
respectively. These results are very promising.



348 O. Kamińska et al.

Table 1. Summary of considered available data: psychiatric assessments and recorded
phones calls for 2 exemplary patients in the days surrounding the visit to the doctor
(labeled data).

Patient Visit date Psychiatric
assignments

Nb. of
phone calls

Nb of surrounding days
with active BDmon app

1472 28.03 Mixed 188 10

1472 20.06 Euthymia 142 8

1472 07.08 Mixed 73 4

2582 19.06 Euthymia 57 9

2582 17.07 Mixed 75 10

2582 09.10 Depression 69 10

Another coefficient called Kappa presented in Table 2 and Table 3 points to
classification accuracy because is useful during class imbalance. Classification is
normalized at the baseline of random chance on dataset. Received values oscillate
around 0.3 which is interpreted as fair agreement.

It is also important to mention that th RFE method is rather time-
consuming. Calculations for one patient lasted more than 17 h2 when it was
conducted for 5% of randomly selected frames from each voice call.

Table 2. Results received by RFE methods for patient 1472

Patient 1472 (binary classification)

Variables Accuracy Kappa AccuracySD KappaSD

4 0.761 0.192 0.003 0.011

8 0.782 0.250 0.006 0.027

16 0.793 0.291 0.006 0.010

86 0.802 0.323 0.002 0.007

Time calculation: 17.34 h

The applied RFE methods returned the subset of ordered variables, that
achieved the best results for classification (according to the random forest algo-
rithm).
The final subsets of first 10 parameters learned separately on data of both
patients are presented in Table 4. Selected first 10 most relevant parameters
in received order because of that received accuracy between 86 parameters and
8 parameters published in Table 2 and Table 3 are small.

Analysis of the received parameters shows that majority of the parameters
coming from Mel-Frequency Cepstral Coefficinet Fourier transformate (group of
2 3,1 GHz Intel Core i7 500GB SSD, 16 GB Ram.
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Table 3. Results received by RFE methods for patient 2582

Patient 2582 (3-class classification)

Variables Accuracy Kappa AccuracySD KappaSD

4 0.538 0.138 0.011 0.026

8 0.614 0.293 0.005 0.010

16 0.636 0.328 0.004 0.008

86 0.650 0.345 0.003 0.006

Time calculation: 17.17 h

Table 4. Parameters selected by RFE for patients 1472 (left) and 2582 (right)

No. Parameter
1 f0env sma
2 slope0500 sma3
3. pcm fftMag mfcc 1
4 pcm fftMag mfcc 3
5 pcm fftMag mfcc 4
6 loudness sma3
7 pcm fftMag mfcc 6
8 pcm fftMag mfcc 9
9 slope5001500 sma3
10 pcm fftMag mfcc 8

No. Parameter
1 pcm fftMag mfcc 4
2 slope0500 sma3
3. f0env sma
4 pcm fftMag mfcc 2
5 pcm fftMag mfcc 1
6 pcm fftMag fband0250 sma
7 pcm fftmag spectralentropy-

sma compare
8 pcm fftMag mfcc 0
9 pcm fftMag mfcc 6
10 pcm zcr sma

variables: pcm fftMag mfcc n ) which indicates range of pitch. We conclude that
5 (out of 10) parameters (marked in bold in Table 4) are present in both of the
subsets and these 5 parameters are considered as RFE subset of parameters for
the clustering algorithms in next Sections.

3.2 Fuzzy C-Means vs. Self Organizing Maps

The second set of experiments consists of application of fuzzy clustering and self
organizing maps to two alternative subsets variables:

– RFE subset (described in Sect. 3.1.);
– 12 features subjectively selected by medical experts and data analysts as

introduced in [4] denoted as Kam20.

For every phone call, the selected acoustic features were extracted from the
10–20 ms frames and aggregated by five-number summary consisting of quartiles
(0, 0.25, 0.5, 0.75, 1). The resulting two datasets were used as input for the
unsupervised learning algorithms. This experiment was performed for all patients
available for the BDmon study who have at least one pair of assessments with at
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least 2 data points available during the surrounding days of the assumed ground-
truth (−7 to +2 days). As a result, 17 patients and 62 pairs were considered
in this experiment. Degree of agreement (2) was calculated for each pair of
assessments. Next, we averaged results for the same (concordant) and different
(incompatible) types of BD episodes assessed during visits.

It also needs to be noted, that in [4], which was the inspiration for the Kam20
subset, different level of aggregation was applied and all of frames coming form
mobile calls from the last 3 days were aggregated into quartiles. In this research,
the aggregates are calculated for all individual frames from one phone calls and
this procedure is implemented for each voice parameter.

Self Organizing Maps. Results received from SOMs for both subsets of param-
eters are depicted in Fig. 1. As observed, there are notable differences between
the two heatmaps.

Fig. 1. Degree of agreement for SOM for (left) Kam20 parameters (right RFE subset
of acoustic parameters.

On the left diagram, there are results of the degree of agreement where
SOM algorithm is used on Kam20 parameters. On the diagonal where we
strive to achive values aiming to 1, we received following values: 0.73 for agree-
ment between depression-depression and 0.76 for agreement between euthymia-
euthymia which are quite satisfying, 0.2 for agreement between mania and mania
seems insufficient due to specificity of that phase, and 0.6 for agreement between
mixed and mixed - that value is rather high considering the overall difficulty to
identify the mixed state (depressive and manic symptoms are present).

The results obtained on the remaining positions strive for the lowest possible
values. As observed, the degree of agreement between states euthymia-mania is
high and equal to 0.865, and this result is contrary to the knowledge of medical
experts and their intuitions. Euthymia is the state of health and mania is the
state of BD disease. We’d rather expect that clusters learned for data around
these two types of labeled visits does not agree to a high degree. The remaining
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results are quite satisfactory like in case mixed-euthymia where receive 0.25 and
between mania-depression where receive 0.54.

On the right diagram of Fig. 1, there are results of the degree of agreement
where SOM algorithm used parameters selected by RFE methods.

On the diagonal we received the following values: 0.63 for agreement between
depression-depression which is worse than using Kam20 ; 0.74 for the agree-
ment between euthymia-euthymia which is quite satisfying; 0.8 for the agreement
between mania and mania is an increase (compared to the previous heatmap) in
a positive way, and 0.97 for agreement between mixed and mixed - that value is
very impressive.

Results obtained on remaining position strive for the lowest possible values.
All of the remaining values are above 0.5 (which could be a border) which is
satisfactory only to some extent.

Summarizing this result, overall the RFE subset delivered better degrees of
agreement than Kam20. It is surprising that when we aim to as low value as
possible, got the highest degree (comaprison of mania and euthymia on the first
heatmap).

Fuzzy C-Means. Similarly to SOM, results received from fuzzy clustering differ
between alternative subsets of acoustic features. Figure 2 summarizes the degree
of agreement for both subsets.

On the left diagram there are results of the degree of agreement where algo-
rithm used Kam20 parameters. On the diagonal where we strive to achieve
values aiming to 1, we received the following values: 0.53 for agreement between
depression-depression and 0.57 for agreement between euthymia-euthymia which
are sufficient only to some extent; 0.2 for the agreement between mania and
mania which is definitely insufficient due to the specificity of phase, and 0.6 for
the agreement between the mixed and mixed.

Results obtained on the remaining position strive for the lowest possible val-
ues. The worst results were received again between the states of euthymia-mania
where the degree of agreement is high and equal to 0.835 which is very high. In
case of euthymia-mixed that could be sufficient because degree of agreement is
only 0.25

On the right diagram there are results of the degree of agreement where
algorithm used parameters selected by RFE methods.

On the diagonal we received the following values: 0.5 for the agreement
between depression-depression which is moderately high compared to previous
heatmaps; 0.65 for the agreement between euthymia-euthymia which is quite
satisfying; 0.8 for the agreement between mania and mania where is increase in
a positive way; and 0.97 for agreement between mixed and mixed - that value is
very impressive.

Results obtained on remaining position strive for the lowest possible values.
Two of the remaining values are below 0.5 which is satisfactory in comparison
to the previous heatmaps. Overall others values are lowest then in previous
examples.
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Fig. 2. Degree of agreement for Fuzzy C-Means algorithm (left) Kam20 parameters
(right) RFE subset of acoustic parameters

Detailed results of the experiments for the Fuzzy C-mean algorithm using
parameters coming from RFE methods are presented in Table 5. Meaning of
columns is as follow:
Visit A & Visit B - means visit order number, Assessment A & Assessment B -
contain received labels from psychiatrists, Grouping agreement - is the coefficient
calculated for each case using (2), Valid days A & Valid days B - contain the
number of days that have any of voice parameters for that day.

Comparative Analysis. To compare all of the received results, the average
degree of agreement for particular pairs of visits were calculated and are pre-
sented in Table 6.

We distinguish pairs of visits with the concordant labels of psychiatric assess-
ment, namely: euthymia-euthymia, depression-depression, mania-mania, mixed-
mixed. The average degree of agreement for these concordant labels is the high-
est for the FCM applied in the RFE subset of with parameters and amounts to
0.71. For the incompatible labels (e.g. euthymia-depression), the average degree
of agreement is expected to be the lowest, and again, the FCM on RFE approach
outperforms other variants (0.51).

At the same time, it needs to be noted that the fact that for SOM we receive
in general clusters that are not that well corresponding to the psychiatric assess-
ments does not necessarily mean that the applied clustering approach is making
a mistake. It needs to be noted that there is a lot of uncertainty related to the
psychiatric assessments itself, including the fact that the episodes are determined
depending on the total number of points using to the Hamilton Scale of Depres-
sion (HAMD), and e.g., 8 points are classified as depressive episode whereas 7
points are regarded still as a healthy episode (euthymia).
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Table 5. The degree of agreement between clusters learned by the fuzzy clustering
with RFE features vs. labels from psychiatric assessment based on pairs of visits

Patient ID Visit A Visit B Assessment A Assessment B Grouping agreement Valid days A Valid days B
837 1 2 euthymia euthymia 0.80 2 10

1472 2 3 mania mixed 0.70 9 10
1472 2 4 mania mixed 0.61 9 6
1472 3 4 mixed mixed 0.96 10 6
2004 1 2 euthymia euthymia 0.83 3 10
2004 1 3 euthymia depression 0.96 3 10
2004 2 3 euthymia depression 0.70 10 10
2582 2 3 mixed mania 0.80 10 10
2582 2 4 mixed euthymia 0.50 10 6
2582 2 5 mixed depression 0.60 10 10
2582 3 4 mania euthymia 0.40 10 6
2582 3 5 mania depression 0.40 10 10
2582 4 5 euthymia depression 0.70 6 10
4248 1 2 depression depression 0.00 3 3
4248 1 3 depression depression 0.60 3 10
4248 1 4 depression depression 1.00 3 10
4248 1 5 depression mania 0.33 3 3
4248 2 3 depression depression 0.33 3 10
4248 2 4 depression depression 0.33 3 10
4248 2 5 depression mania 0.33 3 3
4248 3 4 depression depression 0.80 10 10
4248 3 5 depression mania 0.60 10 3
4248 4 5 depression mania 1.00 10 3
4953 2 3 mania mixed 0.70 10 3
4953 2 4 mania depression 0.70 10 10
4953 3 4 mixed depression 0.80 3 10
5656 1 2 euthymia euthymia 0.55 7 9
5656 1 3 euthymia depression 0.85 7 7
5656 1 4 euthymia depression 1.00 7 3
5656 2 3 euthymia depression 0.69 9 7
5656 2 4 euthymia depression 0.55 9 3
5656 3 4 depression depression 0.85 7 3
5659 1 2 euthymia euthymia 0.40 3 10
5736 2 3 depression mixed 0.40 10 10
5768 2 3 euthymia euthymia 0.60 10 10
5768 2 4 euthymia euthymia 0.80 10 10
5768 3 4 euthymia euthymia 0.70 10 10
6139 3 4 mania mixed 0.00 3 6
6139 3 5 mania depression 0.00 3 2
6139 4 5 mixed depression 0.00 6 2
6601 1 3 euthymia euthymia 0.50 2 6
6601 1 4 euthymia depression 1.00 2 6
6601 3 4 euthymia depression 0.50 6 6
8866 1 2 depression mixed 0.88 3 9
8866 1 3 depression depression 0.91 3 8
8866 2 3 mixed depression 0.36 9 8
9341 2 3 mania mania 0.80 1 5
9341 2 4 mania mixed 1.00 1 3
9341 2 5 mania euthymia 0.20 1 5
9341 3 4 mania mixed 0.00 5 3
9341 3 5 mania euthymia 0.60 5 5
9341 4 5 mixed euthymia 0.20 3 5
9829 1 2 depression depression 0.10 2 10
9829 1 3 depression depression 0.50 2 10
9829 1 4 depression depression 0.00 2 10
9829 1 5 depression depression 1.00 2 10
9829 2 3 depression depression 0.50 10 10
9829 2 4 depression depression 0.60 10 10
9829 2 5 depression depression 0.20 10 10
9829 3 4 depression depression 0.50 10 10
9829 3 5 depression depression 0.80 10 10
9829 4 5 depression depression 0.10 10 10
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Table 6. The average degree of agreement for concordant, semi-concordant and incom-
patible labels. Concordant labels are as follows: E-E, D-D, M-M, X-X; incompati-
ble labels: E-M, E-D, E-X; and semi-concordant labels: M-X, D-X, where E denoted
euthymia (healthy state), D stands for depression, M for the mania and X denotes the
mixed state

Avg degree of agreement FCM-RFE FCM-Kam20 SOM-RFE SOM-Kam20

Concordant 0.71 0.47 0.79 0.57

Incompatible 0.51 0.65 0.73 0.68

Semi-concordant 0.52 0.54 0.63 0.59

3.3 Conclusions

Recursive feature elimination enabled to significantly reduce the number of
important acoustic features (from 86 to 5 parameters). Futhermore, we conclude
that the degree of agreement between clustering results and psychiatric labels
vary between the applied fuzzy and SOM clustering methods and the subsets of
acoustic features. The highest degree of agreement for concordant BD episodes
has been achieved using RFE subset of 5 parameters and the fuzzy clustering
algorithm (Fuzzy C-means). The lowest degree of agreement for incompatible
BD episodes has been achieved also for the fuzzy clustering algorithm. Thus,
the most satisfactory results for the degree of agreement has been achieved by
this fuzzy clustering and the subset of acoustic features selected with the RFE
method.

In future work, we consider representation of the smartphone data as fuzzy
numbers instead of vectors with crips quartiles. Also, we plan to futher exam-
ine the characteristic of clusters obtained with Fuzzy C-means algorithm and
interpret them from the medical perspective. It seems that RFE methods is very
promising and should be tested for higher number of patients, to obtain more
accurate results. However, that is time consuming, so it needs to be tested in
more efficient environment.
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Abstract. Imprecise and subjective concepts, as e.g. promising stu-
dents, may be used within data mining tasks or database queries to

concepts is a demanding task for the end-user. We thus provide a strat-
egy, called CHOCOLATE, that only requires the user to give a tiny
subset of data points that are representative of the concept he/she has
in mind, and that infers a membership function from them. This func-
tion may then be used to retrieve, from the whole dataset, a ranked list
of points that satisfy the concept of interest. CHOCOLATE relies on a
Choquet integral to aggregate the relevance of individual attribute values
among all the representative points as well as the representativity of sets
of such attribute values. As a consequence, a valuable property of the
proposed approach is that it is able to both capture properties shared

Keywords: Fuzzy concept · Fuzzy measure · Choquet integral

1 Introduction

Datasets generally contain points described by precise numerical and categor-
ical values whereas users, when they express properties about data, often use
imprecise, complex, context-dependent and subjective concepts. As an illus-
trative example, consider a set of students described by their marks, prepared
diploma, number of repeated years, having a scholarship grant, etc. These values
are all precise ones. However, to describe some properties a student may possess,
vague concepts as promising, dynamic or weak to name a few, whose definitions
are subjective and context-dependent, are more naturally used. The definition of
such complex properties is not an easy task for an end-user as data points may
satisfy a given concept for very different reasons. A student may for instance
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be considered promising because of his/her marks in a selective major, or for
having restarted studies after a long break, among others.

This paper proposes the CHOCOLATE strategy, which stands for CHOquet-
based COncept LeArning from a Tiny set of Examples, for inferring the member-
ship function of a fuzzy concept from a small set of representative data points
provided by a user. From these examples, CHOCOLATE infers a fuzzy mea-
sure that quantifies the extent to which combinations of attribute values match
the underlying concept, as well as a measure quantifying the relevance of each
attribute value individually. These two quantities are then aggregated using a
Choquet integral, that gives the method its name, to determine the degree to
which a point satisfies the concept.

The paper is structured as follows. Section 2 discusses the polysemous notion
of concept, as well as some related works about concept learning. Section 3
presents the principles of the proposed approach, then detailed in Sect. 4, that
infers a membership function from a small set of representative data points.
Section 5 describes an illustrative example on a 2D toy dataset that serves to
emphasize the characteristics of the approach. Section 6 shows the usefulness of
CHOCOLATE to fuzzy query by example and recommendation systems.

2 Related Works on Concept Definition and Learning

This section discusses the notion of a concept, as well as some methods proposed
in the literature for learning concepts. Among other things, these methods vary
according to the types of concepts they can extract as well as their inputs.

Concept Extent and Intent. The notion of a concept has been widely used
in artificial intelligence and data management, mainly following the twofold def-
inition introduced by R. Wille [13]: a concept has an extensional definition, that
consists of the set of its members (i.e. data points), and an intentional one that
corresponds to the set of data properties (i.e. attribute values) shared by the
members of its extent. It is possible to build, through so-called derivation func-
tions, the extensional set of a concept from its intentional definition, and vice
versa. Formal Concept Analysis, FCA [4], then identifies concepts as fixed points
of the combination of these two functions: concepts are the sets of points that are
exactly those that possess all the properties in the set, that in turn are shared
by exactly the points in the set.

Another example is the fuzzy prototype approach [6,9] inspired from cogni-
tive definitions of class representatives [10]: classes instances, defining the class
extent, can be used to identify attribute values that are shared by the class mem-
bers and that differ from the values observed by the members of other classes,
so as to determine the class intent.

This concept definition, and its implementation in FCA and fuzzy prototypes,
rely on a conjunctive definition of concepts, that in particular imposes that all
members of the extent have common attribute values. It thus does not allow data
to satisfy a concept for different reasons, i.e. to have disjunctive concept intents.
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The proposed CHOCOLATE approach relaxes this constraint, e.g. making it
possible to handle the case of promising student mentioned in the introduction.

Crisp and Fuzzy Concepts. Existing approaches to define and learn concepts
can be structured depending on whether they consider crisp or fuzzy definitions,
i.e. whether the point assignment to the concepts is binary or weighted.

The initial concept definition [13] mentioned above as well as Formal Con-
cept Analysis are binary. They have been extended in several ways to Fuzzy
Formal Concept Analysis (e.g. see the comparative study [2]), allowing for more
flexibility: they rely on assessing the truth degree of the statement “the data in
the extent all have the properties of the intent”, where both the extent and the
intent can be fuzzy sets (or only one of them). They thus still consider a conjunc-
tive definition of concepts. The implementation of prototypes proposed in [6,9]
also relies on fuzzy subsets. The CHOCOLATE approach proposed in this paper
also relies on fuzzy concept definition, and outputs a membership function that
associates each data point with its membership degree to the concept.

Discriminative Concepts and Counterexamples. A third property con-
cerns the relations between concepts. In agreement with cognitive principles [10],
fuzzy prototypes define a concept in opposition to others. They take into account
distinctive and shared features between concepts. On the contrary, FCA deals
with each concept independently from the others.

This distinction has consequences on the approach requirements: in order to
take other concepts into account, it is necessary to dispose of examples of the
considered concept, but also counterexamples, i.e. instances of the other con-
cepts. This point of view opens the way to formalizing the concept learning task
as a classification task, distinguishing the data points that satisfy a considered
concept from those that do not satisfy it. Dealing with each concept individually
means that only representatives of the current concept are required. This paper
considers the case where a concept is learned independently from the others,
only requiring a few representative points. To alleviate the requirements on the
user, it also considers the case where only very few representative examples are
available. When the number of available observations is very small, most classi-
fication approaches based on the observation of regularities cannot be applied.

Other Related Approaches. It may be argued that the considered definition
and constraints on concept learning is related to the subspace clustering task [1,
5,12]: the latter is an unsupervised task that aims at decomposing a set of points
into homogeneous subsets and simultaneously determining the subspaces they
are situated in. As a consequence, it provides characterizations of the clusters,
that may be interpreted as concepts extracted from the data. However, it does
not take as input any example of a concept of interest and it would lead to
identify several concepts at once, defining them in opposition to one another.
As a consequence, it requires more data than the framework considered in this
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paper. The proposed CHOCOLATE approach can also be related to preference
inference from partial definition [3], but it differs by the fact that, instead of
ranking the items, it aims at inferring a measure from it to evaluate how much
other points are related to the ones provided by the user.

3 Overview of the Proposed CHOCOLATE Approach

After presenting the notations and the toy example used throughout the paper,
this section gives an overview of the proposed CHOCOLATE approach and
presents its underlying principle, making clear the benefits of using a Choquet
integral.

3.1 Notations

The paper relies on the following notations: we consider a dataset D containing
n data points {x1, x2, . . . , xn} from a universe X . Each data point is described
by the values it takes on m attributes A1, A2, . . . , Am. A data point x is thus
represented as x = 〈x.A1, x.A2, . . . , x.Am〉, where x.Ai denotes the value taken
by x on the definition domain Di of attribute Ai. The attributes can be numerical
or categorical ones.

Throughout the paper, a property is defined as a couple made of an attribute
and a value, denoted (Ai, p). A point x is said to possess a property (Ai, p) if
x.Ai = p and a set of properties s if ∀(Ai, p) ∈ s, x.Ai = p. Reciprocally, the
properties of x are all the couples (Ai, x.Ai) for i = 1 . . . m.

As an example throughout the paper, we consider a dataset describing stu-
dents on m = 5 attributes: level with domain Dlevel = {Bsc.1, Bsc.2, Bsc.3,
Mast., PhD}, major with domain Dmajor = {architecture, biology, literature,
computer science, maths, physics}, grant with domain {0, 1} indicating whether
the student receives a grant or not, rep. years with domain �1, 10� indicating the
number of repeated years and mark with domain {A+, A,A−, . . . D−, F}.

3.2 Considered Concept Definition

Based on the discussion from previous section, the concepts considered in this
paper are fuzzy ones, they possibly have a disjunctive definition and they are
derived from very few instances that the user considers as representative, with-
out disposing of counterexamples. The user-provided representative examples of
concept C, denoted by EC , constitutes a partial extent for C, seen as an initial
definition of the extent that has to be completed with appropriate points from
the rest of the data with soft assignments.

Definition 1. A concept C is a fuzzy subset of the universe X , described by its
membership function Sc : X → [0, 1]. It is induced from a user-defined partial
extent denoted by EC ⊆ D and associated with a linguistic label (generally an
adjective from the natural language).



Concept Membership Modeling Using a Choquet Integral 363

Table 1. Partial extension of the concept promising student

Level Major Grant Rep. years Mark

x1 Bsc.1 Physics 1 0 A+

x2 PhD Maths 1 0 B+

x3 Bsc.3 Architecture 0 0 A+

x4 Bsc.3 Computer sciences 1 0 A−

x5 Mast. Biology 1 0 A+

Example 1. Throughout the paper, we consider that a user wants to define the
concept promising student and initiates the concept definition by giving the
partial extension given in Table 1.

This example illustrates the significant difference between the definition of a
concept in [13] and the one used here. Following the discussion given in Sect. 2,
we consider that different data points may satisfy the same concept without
necessarily sharing all their attribute values. The proposed approach is thus
able to capture both the specificities of each member from the partial concept
extent as well as properties shared by most of them.

3.3 Underlying Principles of CHOCOLATE

CHOCOLATE initiates the definition of a concept with the few user-given rep-
resentative points. The central question addressed in this paper is to define a
measure to identify other points satisfying the concept of interest, in a fuzzy
framework, i.e., quantifying the extent to which they satisfy it.

For a given point, CHOCOLATE first determines if its properties individu-
ally match the user-given partial concept extent. We propose to consider that
the more frequent a property among the representative elements, the higher its
individual matching degree. This step makes it possible to identify properties
that appear important individually to define the considered concept.

The complementary step is to identify combinations of properties that are
both possessed by the point to be evaluated and by representative elements of the
concepts. It aims at preventing from combining properties that are individually
frequent but actually are never observed together, thus leading to a non-additive
way of evaluating the importance of a set of values.

Finally, the Choquet integral is used to aggregate the individual and com-
bined assessments of the point properties: a high membership degree is assigned
to points possessing a large set of properties that are individually representative.
In addition, the proposed aggregation strategy makes it possible to identify a
specific subset of properties possessed by only one (or a few) of the representa-
tive elements of the concept, and to give some importance to this subset even
if it is composed of properties that are individually not shared by most of the
other representative elements.
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4 Proposed Approach to Concept Learning

This section details the proposed functions used in CHOCOLATE to determine
the importance of each property individually and of subsets of these properties
possessed by a point to evaluate.

4.1 The δi Function: Property Wrt. Partial Concept Extent

The function that quantifies the importance of a property (Ai, p) wrt. a partial
concept extension EC is denoted by δi: it serves to determine whether a value p
taken by attribute Ai is representative of the given partial concept extent. The
more p is shared, for attribute Ai, by representative elements of the concept, the
more important it is.

As a consequence, the δi function checks how often p appears in EC for
attribute Ai: the degree δi(p) is the highest (δi(p) = 1) when p is observed for
attribute Ai among all data points in EC . A first binary matching approach
consists in defining:

δi(p) =
|{x ∈ EC/x.Ai = p}|

|EC | . (1)

Example 2. Using the concept extension given in Table 1, we obtain the fol-
lowing matching degrees for the properties (rep. years, 0) and (mark, A+):
δrep. years(0) = 1 and δmark(A+) = 3

5 .

Instead of performing a binary matching, based on strict equality, between
the candidate value p and the Ai values of the data points in EC , a less drastic
comparison can be performed allowing some approximation, as

δi(p) =
|{x ∈ EC/simi (p, x.Ai) ≥ ηi}|

|EC | . (2)

This relaxed definition for δi implies the use of an appropriate similarity mea-
sure simi on the domain of attribute Ai and the use of a similarity threshold ηi.
For numerical attributes, this similarity measure can for instance be the abso-
lute value of the difference, but many other possibilities exist, see e.g. [7]. It
can also be indirectly defined by specifying a fuzzy partition on the concerned
domain Di, which makes it possible to take into account the indistinguishability
of some values wrt. the satisfaction of the fuzzy terms that form the partition,
see e.g. [11].

4.2 The μ Measure: Set of Properties Wrt Partial Concept Extent

Once the properties have been individually evaluated, the importance of sets of
such properties is quantified. Whereas an individual value is considered impor-
tant if it frequently appears in the partial concept extent, the importance of
a subset of values depends on its size and whether it appears at least once in
the partial concept extent. The fuzzy measure μ thus serves to quantify the
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extent to which the subset of attribute values matches one of the representa-
tive data points in EC . The μ score is maximal if the assessed set of proper-
ties exactly corresponds to one of the representative data points in EC . Denot-
ing s = {(Ai, pi), i = 1 . . . |s|} such a set of properties, the binary approach
defines μ as:

μ(s) = max
x∈EC

1
m

|{(Ai, pi) ∈ s/x.Ai = pi}|, (3)

where m denotes the number of attributes. It is straightforward to check that μ
is a fuzzy measure: μ(∅) = 0, and if s ⊆ s′, then μ(s) ≤ μ(s′) as, for any x ∈ EC ,
{(Ai, pi) ∈ s/x.Ai = pi} ⊆ {(Ai, pi) ∈ s′/x.Ai = pi}.

Example 3. Let us consider the two following examples: s = {(level, PhD),
(rep. years, 0), (mark, B−)} and s′ = {(level, PhD), (major, maths), (grant, 1),
(rep. years, 2), (mark, B+)}, and again the concept extent from Table 1. Then,
μ(s) = 2

5 = 0.4 (data point x2) and μ(s′) = 4
5 = 0.8 (data point x2 again): s′ is

closer to a representative point than s that is only observed to the level 2/5 in
the best case.

As the δi’s, the μ measure can be turned into a more gradual version by
considering a similarity measure instead of a strict equality:

μ(s) = max
x∈EC

1
m

|{(Ai, pi) ∈ s/simi(pi, x.Ai) ≥ ηi}|. (4)

4.3 The SC Function: Data Point Wrt. Partial Concept Extent

The final step combines the evaluations of atomic properties and set of prop-
erties. We propose to use the Choquet integral to perform this aggregation of
the δi and μ evaluations. It especially takes into account, when comparing a set
of properties wrt. representative data points (using the μ function), if these eval-
uated properties are individually specific to one data point or shared by many.
This makes it possible to differentiate between a set of properties possessed by
only a single representative data point and another set of properties of the same
size but shared by several representative data points.

The candidate sets of properties are defined as the set of the most promis-
ing ones, according to their individual δ values: let Hj denote the subset of
the j properties that best match the representative data points from EC , i.e.
the j properties with maximal δ values. Formally, let σ be a ranking func-
tion such that σ(i) = j iff. j is the rank of δi in decreasing order. Hj is
then defined as Hj = {(Ai, x.Ai)/σi(i) ≤ j} for j = 1 . . . m and H0 = ∅. In
addition, κj(x) denotes the jth value among the δi, i.e. the matching degree of
the jth most representative property possessed by x wrt. concept C (formally
κj(x) = δσ−1(j)(x.Aσ−1(j))).

We thus propose to define the membership degree of a data point x to con-
cept C based on the set of representative examples EC as

SC(x) =
m∑

j=1

(μ(Hj) − μ(Hj−1))κj(x), (5)
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Table 2. Computation details of SC(x) for x = 〈PhD, literature, 1, 0, B−〉 and
C =promising student using EC from Table 1.

δlevel(PhD) =
1
4
= κ3(x) H1 = {(rep. years, 0)} μ(H1) =

1
5

δmajor(literature) = 0 = κ4(x) H2 = H1 ∪ {(grant, 0)} μ(H2) =
2
5

δgrant(1) =
3
4
= κ2(x) H3 = H2 ∪ {(level,PhD)} μ(H2) =

3
5

δrep. years(0) = 1 = κ1(x) H4 = H3 ∪ {(major, literature)} μ(H2) =
3
5

δmark(B−) = 0 = κ5(x) H5 = H4 ∪ {(mark, B)} μ(H2) =
3
5

Let us notice that the implication x ∈ EC → SC(x) = 1 holds only if EC = {x}
which means that C is defined by only one prototypical example. This is because
the Sc measure makes it possible to capture a similarity with atypical examples
in EC , here understood as an example with possibly low internal resemblance to
the other examples from C.

Example 4. Consider the data point x = 〈PhD, literature, 1, 0, B−〉 and the
partial extent of the concept promising student from Table 1. Its membership
degree can be computed as detailed in Table 2: it shows the individual δi values,
their respective rank κj , and the derived Hj together with their μ values. The
satisfaction of x wrt. concept C is:

SC(x) =
1
5

× 1 +
1
5

× 3
4

+
1
5

× 1
4

+ 0 × 0 + 0 × 0 =
2
5

This means that the considered student is rather not on the side of promising,
with a membership degree slightly lower than 0.5, based on his/her comparison
with the user-provided examples of promising students. Indeed, he/she does not
share enough set of properties with these examples, even if he/she received a
grant and did not repeat years.

5 Empirical Study of CHOCOLATE’s Behavior

This section illustrates the behavior of the approach on 2D toy examples. We
first consider the example represented on Fig. 1, for which the user provides EC of
size 4, represented by the five diamond points. CHOCOLATE is applied using the
relaxed version of the δi and μ functions, respectively defined in Eq. (2) and (4)
setting sim to the complement to 1 of the Euclidean distance normalized by its
maximal observed value and with ηi = 0.7. The inferred membership degrees
for all points on a regular grid in the considered universe are shown by the grey
levels, the points whose membership degree is lower than 0.2 are not shown.

Results. A non-uniform effect around the points in EC can be observed, as
well as a grouping effect: the membership degrees are higher around the three
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Fig. 1. Membership degrees inferred by CHOCOLATE for the concept with partial
extent EC defined by the diamond points.

grouped representative points in the region around (2, 8) than for the isolated
point with coordinates (2, 2) and even more so for (8, 6). The latter however
still has a non-symmetrical impact on the concept definition. The results also
show that CHOCOLATE identifies that A1 = 2 is a very important value: all
points with this value have a high membership degree. The second important
characteristic is A2 ≈ 8.5 although to a lesser extent. This explains the absence
of symmetry around the representative point with coordinates (8, 6).

This toy dataset clearly shows the main characteristics of our approach:
the δi functions quantify the importance of each property individually. This
allows for instance to capture the fact that the four representative points on
the left side of the domain share close A1 values. Then the fuzzy measure μ
gives more importance to the points located close to the three top-left points,
because they share close values on the two dimensions. However contrary to a
purely distance-based approach (see below), the proximity with at least one of
the representatives is also taken into account, this is for instance the case of the
points close to the right hand side representative.

This strategy thus enforces an interesting compromise between the impor-
tance of each property, the number of properties shared between a data point
and a representative, and the number of representative elements of the concepts
possessing these properties. This leads to a strategy that is both i) able to han-
dle a comparison with very different representative elements of a concept taking
into account their diversity and ii) able to identify properties shared by several
of these representative elements.

Comparison to Aggregated Distance Approaches. As baseline appro-
aches, we propose to compare CHOCOLATE with membership degrees derived
solely from the (Euclidean) distances to the representative points in EC . Two
aggregation operators are considered, defining the membership degrees as:

S1
C(x) = min

z∈EC

d(x, z) S2
C = avgz∈EC

d(x, z), (6)
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Fig. 2. (Left) Nearest neighbor-based and (Right) Mean-distance-based membership
computations.

where d(x, z) ∈ [0, 1] is the Euclidean distance normalized by the maximum
value. The obtained results are shown on Fig. 2: S1

C is a nearest-neighbour app-
roach that leads to membership degrees uniformly distributed around the given
representative points and does not make it possible to characterize the underly-
ing concept. On the other hand, the mean-distance approach is very sensitive to
a grouping effect, even other normalisation strategies would not allow for a fair
integration of the isolated representative points.

Case of Disjunctive Concepts. As a complement to illustrate CHOCO-
LATE’s ability to both capture and give importance to properties shared by sev-
eral user-selected representative data points, and to be able to take into account
an isolated representative data point, another situation is depicted in Fig. 3,
which makes the isolated points more isolated: the user-selected representative
data points are composed of a quite compact cluster of data points (in the top
left corner) and two isolated data points, one being close to that cluster on the
x-axis property.

CHOCOLATE’s behavior is interesting as the generated membership func-
tion is “attracted” by this cluster of representative data points but still takes
into account the isolated representative data points and does not discard them.
Again, the presence of two distant representative points, one on the bottom left
and one on the right, makes the assignment around the cluster asymmetrical but
with an emphasis on the x-values close to 2.

Applied on this same representative data points setting, the minimal and
mean distance-based strategies are illustrated in Fig. 3. It shows that for the
nearest neighbor strategy the presence of a compact group of representative data
points has no impact on the assignment around the atypical data points. As for
the mean distance-based approach, this larger compact group of representative
data points simply gives more weight to the area they are located in.
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Fig. 3. Membership degrees inferred by CHOCOLATE (Top), nearest-neighbor (Bot-
tom left) and mean-distance (Bottom right), for a partial extent containing a cluster
of representative data points and two isolated ones

6 Examples of Possible Applications

In many applicative contexts where user interaction is considered, a crucial issue
is to capture the user’s intent requiring a minimum of knowledge from him/her.
In such contexts, the proposed CHOCOLATE approach may be applied with the
aim of making the most of only a few examples representing the user’s intent.
Two examples of such applicative contexts are described here.

Fuzzy Query by Example. Query by example is a database and information
retrieval paradigm [15] that is used to acquire results based either on: one (or
several) input tuple(s) provided by the user, or the evaluation by the user of a
set of examples (positively, negatively, ...) reflecting the content of the database.
The expected output contains elements that are similar to the input tuple(s)
provided as example(s), or that reflect the choices of the user if prototypical
examples are evaluated.

In [8], we proposed an approach that infers a fuzzy query from user-assessed
prototypical examples, based on an algorithm determining the fuzzy modalities
(from a fuzzy vocabulary defined on the attribute domains) that best repre-
sent the positive examples (and at the same time discards the negative ones).
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Table 3. Houses dataset (R: rent, N: nbRooms, L: livingArea, D: distanceToCenter, G: garden)

Id R N L D G S(hi) Id R N L D G S(hi)

h1 450 4 83 0.6 0 0.5 h6 900 7 99 0.8 1 0.4

h2 700 5 82 0.5 1 0.3 h7 450 3 35 0.1 1 0.5

h3 500 3 45 0.1 1 0.2 h8 300 2 20 2.1 1 0.1

h4 600 3 50 1.7 1 0.5 h9 600 2 50 0.7 1 0.3

h5 400 5 95 3.5 0 0.3 h10 750 4 50 1.1 0 0.5

An alternative approach based on clustering is proposed in [14]. Both these
approaches, however aim to infer simple conjunctive fuzzy queries, whereas the
technique we propose in the present paper makes it possible to build a fuzzy
query involving complex fuzzy concepts that cannot be easily expressed by a
conjunctive/disjunctive combination of atomic fuzzy terms.

Example 5. To illustrate how the CHOCOLATE method can be used in a query
by example system, let us consider the database describing houses to rent
given in Table 3. A user provides the two following fictional examples describ-
ing what he/she considers as interesting houses: h = 〈400, 3, 40, 0.5, 0〉 and
h′ = 〈800, 6, 99, 0.5, 0〉.

Then, two possibilities are envisaged to retrieve the tuples of interest from
the database. If a strict version of the δi and μ functions is used (Eqs. 1 and 3),
then a query of the following form is executed to return the tuples whose values
on the different attributes are present in the partial concept extent:

Q =SELECT * FROM houses

WHERE rent IN (400,800) AND nbRooms IN (3,6) AND . . . ;

When relaxed versions of the δi and μ functions are used (Eqs. 2 and 4), the
submitted query returns all the tuples whose values are close enough to those
present in the partial concept extent:

Qr =SELECT * FROM houses

WHERE (sim(rent, 400) <= ETA1 OR sim(rent, 800) <= ETA1) AND . . . ;

CHOCOLATE is then applied to the tuples returned by the query to rank
them according to their satisfaction of the concept partially defined by the
user-provided representative tuples. Column S(hi) in Table 3 gives the results
obtained with the relaxed version of δi and μ (Eqs. 2 and 4) and similarity

simi(v, v′) = 1 − |v − v′|
maxh h.Ai − minh h.Ai

,

where A is the considered attribute and the threshold values are 0.7 and 0.9 for
ETA1 and ETA2 respectively.
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These results show that the membership function built using CHOCOLATE
takes into account the specificity of each of the two provided representative
elements: h6 receives a high score because of its similarity with h′, and h7 because
it is rather close to h. It also shows that the distance to the city center and the
absence of a garden are important properties that counterbalance other less
desired properties, as e.g. in the case of h10.

Data Point Recommendation. A second possible applicative context where
CHOCOLATE can be useful is that of recommendation systems. Most recom-
mendation strategies, especially those based on collaborative filtering, are not
able to suggest meaningful recommendations for new users, which is known as
the cold start problem. A particular interesting aspect of the proposed approach
is to be able to find data points that best match the user history, even for a very
small available history.

Consider for instance a user who has shown an interest for the manga Dream-
land by Reno Lemaire, the novel L’Étranger by Albert Camus, the science-
fiction novel Ravage by René Barjavel and the philosophical essay Discours de la
méthode by René Descartes. Thematically speaking, these books are very differ-
ent but they all have a French author and half of them are novels. The Choquet
integral-based approach would favor French novels by Camus or Barjavel and
then French philosophical essays or French comics, etc.

7 Conclusion and Perspectives

When knowledge has to be acquired from user-defined data, one cannot expect
to have large labelled training sets. In this work, we face the problem of trying
to build, from a small set of data points that illustrate the possible meanings of
a concept, a function that can then be used to quantify the extent to which a
new data point matches the underlying concept. With such a small set of rep-
resentative data points and without any negative examples, classical statistical
approaches cannot be applied. This is why we propose CHOCOLATE, an alter-
native strategy based on a generic aggregation framework, namely the Choquet
integral involving a fuzzy measure. This method can both identify subsets of
properties shared by representative data points of the concept and take into
account their specificities, properties possessed by only one or a few representa-
tive elements. This approach can be used to recommend data points that best
match a user’s interest expressed by a few selected examples only.

In this paper, the proposed approach has been applied on toy examples to
show its behavior. The interesting obtained results open several perspectives for
future works. The first one, despite the topical aspect of the approach, is to assess
the relevance of the generated results in a concrete applicative context of a rec-
ommendation system, so as to show that relevant recommendations are provided
for users having a scarce history. At a more theoretical level, another perspec-
tive concerns the extension of CHOCOLATE to handle imprecise descriptions
of typical points that form the partial concept extent. Another improvement of
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the approach would be to help users select the prototypical elements that define
the concept they have in mind. To do so, several strategies from the query by
examples field may be envisaged.
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Abstract. Considering the wide offer of mobile applications available
nowadays, effective search engines are imperative for an user to find appli-
cations that provide a specific desired functionality. Retrieval approaches
that leverage topic similarity between queries and applications have
shown promising results in previous studies. However, the search engines
used by most app stores are based on keyword-matching and boosting.
In this paper, we explore means to include topic information in such
approaches, in order to improve their ability to retrieve relevant applica-
tions for non-exact queries, without impairing their computational per-
formance. More specifically, we create topic models specialized on appli-
cation descriptions and explore how the most relevant terms for each
topic covered by an application can be used to complement the informa-
tion provided by its description. Our experiments show that, although
these topic keywords are not able to provide all the information of the
topic model, they provide a sufficiently informative summary of the top-
ics covered by the descriptions, leading to improved performance.

Keywords: Application search · Topic information · Non-exact queries

1 Introduction

Nowadays, the offer of mobile applications with different functionality in app
stores is constantly increasing. Thus, although users spend most of their time
inside the applications, they also spend a significant amount of time searching
for and installing new applications. This reveals the need for effective search and
recommendation systems. However, most queries in app store search engines
contain just the name of the application that the user is looking for. This means
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that users target specific applications, either because they were suggested to
them by acquaintances or they found them using other approaches, such as web
search. Word of mouth has always been an important form of marketing. Thus,
searching for applications suggested by acquaintances is normal. On the other
hand, searching for applications on the web is somewhat of a countersense, since
app stores have specialized search engines. However, those engines are typically
unable to semantically interpret the queries, considering their characteristics
and context. Thus, they lose to web search engines, which are able to process
more complex queries by crawling large amounts of data. Overall, data is the
defining factor, since queries in app store search engines are typically short and
the amount of data available to search on is reduced, especially in comparison to
the whole web. Thus, in order to deliver better search results, app store search
engines must overcome the data problem, either by semantically interpreting the
queries or by inferring additional information from the existing data to improve
the match ratio between the queries and relevant applications.

Topic information has been proved important in the context of information
retrieval [23], including in search for applications [14,24], since it enables match-
ing when similar contexts are referred to using different words. However, while
the existing approaches to topic-based retrieval are based on similarity between
topic distributions, the highly distributed search approaches used in most app
stores are based on keyword-matching and boosting according to popularity
factors. In this paper, we explore means to include topic information in such
approaches, in order to improve their ability to retrieve relevant applications for
non-exact queries, without impairing their computational performance. More
specifically, we start by creating topic models specialized on application descrip-
tions. Then, we identify the most relevant and distinctive terms to represent each
topic. Finally, we explore how the relevant terms for each topic covered by an
application can be used to complement the information provided by the words
of its description in the context of non-exact keyword-based search.

In the remainder of the paper, we start by providing an overview on related
work on search for mobile applications, in Sect. 2. Then, in Sect. 3, we present
our approach for including topic information in keyword-based search. Section 4
describes our experimental setup, including the dataset, evaluation approach,
and implementation details that allow future reproduction of our experiments.
The results of those experiments are presented and discussed in Sect. 5. Finally,
Sect. 6 summarizes the contributions of this paper and provides pointers for
future work.

2 Related Work

The algorithms behind the search engines of the two major mobile app stores,
Google Play [9] and Apple’s App Store [1], are constantly evolving and, since they
are proprietary, not all the details are disclosed. However, it is known that they
are mostly based on keyword-matching with multiple fields regarding the appli-
cations and boosting based on popularity factors or for business purposes. Most
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alternative app stores are also proprietary and use similar search approaches.
Among these, many are based on the Lucene search engine [5] or one of the
highly distributed search engines built on top of it, such as Solr [19] or Elastic-
search [2], which focus on speed and availability.

For instance, Aptoide’s search engine [21] is based on Elasticsearch and per-
forms keyword-matching between the terms present in the query and fields con-
taining application information regarding its name, its package, and its descrip-
tion. Furthermore, in order to improve the match ratio, it includes alternatives
of the name, such as abbreviations, lemmatized words, and split and merged
versions of multi-word names. Matches with each of these fields contribute to
the relevance score with different weights. Furthermore, information regarding
the number of downloads of the application, its rating, the number of users that
rated the application, and whether it should be promoted for business purposes
is used to boost the score.

Mobilewalla [6,7] uses an application search engine based on Lucene. The
keyword-matching fields include the application name, description, and its cat-
egories, while boosting fields include the rating and rank of the application, its
age and the frequency of releases, the number of users that commented and rated
the application, the number of applications in the same categories, and informa-
tion about the developer. The main difference from Aptoide’s approach is that
the computation of alternatives is not on the application side, but rather on the
query side. That is, the knowledge base does not include alternative application
names, but multiple versions of the query are generated by stemming and lem-
matizing its words. Furthermore, if using all the terms in the query does not lead
to the retrieval of enough results, alternative queries are generated by dropping
part of the terms. Alternatively, the query can be expanded by replacing terms
with corresponding synonyms or hyponyms.

To reduce the number of mismatches in keyword search caused by the use of
different terms by the users and developers, Tencent’s MyApp [24] extends the
queries performed in its search engine with topic and tag information. The set of
more than a thousand topics was obtained by applying Latent Dirichlet Alloca-
tion (LDA) [3] to the title and descriptions of a million applications. Using this
model, each application can then be represented as a topic distribution. Since
the queries are typically too short for performing an accurate inference of their
topic distribution, they are extended with information from the applications
which have been clicked on after similar queries. By computing the similarity
between the topic distribution of an extended query and those of the applica-
tions, the search engine is able to identify the most relevant applications for the
query in terms of topic. Tag information is used to add fine-grained semantics to
the query. The set of tags of an application is a filtered combination of human
labels and tags obtained by crawling web and usage data regarding that appli-
cation. A query is extended with tags using a template-based method which
uses information from clicked applications to select the templates. Finally, the
LambdaMART algorithm [4] is applied to aggregate the applications obtained
through term, topic, and tag matching and order them for presentation to the
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user. Although considering topic and tag information leads to a higher match
ratio, the query extensions and the computation of its topic distribution intro-
duce a high computational overhead during search.

Park et al. [14] explored the use of user reviews to improve the match ratio
by bridging the gap between the vocabulary used by users and developers. Fur-
thermore, in their study, they compared the performance of multiple retrieval
approaches – BM25(F) [18], Query Likelihood (QL) [16], and LDA-Based Doc-
ument Model (LBDM) [22]. The first is based on keyword-matching, the second
on language modeling, and the last on the combination of keyword- and topic-
matching. While relying solely on application descriptions, the highest perfor-
mance on a set of more than 50 non-exact queries was achieved using LBDM
with a topic model with 300 topics trained on the descriptions of 40,000 appli-
cations. This confirms that topic information is able to complement the infor-
mation explicitly present in descriptions by providing associations with words
that refer to similar topics. Furthermore, using the information provided by user
reviews significantly improved the performance of every retrieval approach. The
best results were achieved using an approach that combines language modeling
with topic-based retrieval. Separate topic models are trained on descriptions and
reviews, but the review-level model is conditioned by the description-level one.
This allows the identification of review topics that do not match any description
topic and, thus, are not relevant for application retrieval. In a later study, Park
et al. [13] also relied on language and topic modeling to induce queries from
users’ social media text and recommend relevant applications.

3 Topic Information for Keyword-Based Search

When topic information is used for retrieval, documents are typically ranked
according to the similarity between their topic distribution and that of the query.
The approach we describe below enables the representation of topic information
as keywords that can be used by keyword-based retrieval approaches. These key-
words correspond to a set of terms that are sufficiently relevant and distinctive
to identify a topic and, thus, can function as its summary. In addition to how the
the keywords are generated from the topic models and included in the retrieval
approaches, we also describe preprocessing and topic model training approaches
that allow the generated models and the corresponding keywords to focus on rel-
evant aspects for mobile application search. Since our intent is to show that topic
information can be represented as keywords, we focus on obtaining that infor-
mation from application descriptions. However, the approach can be generalized
to other textual information sources, such as user reviews.

3.1 Preprocessing

In the preprocessing phase, each description is split into sentences and depen-
dency parsed and its tokens are Part-of-Speech (POS) tagged and lemmatized.
By splitting into sentences, we are able to train both generic models based on
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whole descriptions and more specific ones based on the sentences. POS tagging
allows filtering by the word classes that are more relevant for application search,
such as nouns, adjectives, and verbs. While the first reveal the concepts focused
by the description, the second reveal their characteristics. Furthermore, in this
context, non-auxiliary verbs typically reveal functionality. By combining the POS
tags and the dependency parse of each sentence, we can identify adjectives and
verbs that are negated. This is important to avoid grouping descriptions or sen-
tences that have opposite meanings. Finally, lemmatization simplifies matching
and leads to the generation of more constrained models.

Additionally, while terms that occur in a small set of descriptions or sentences
are unrelated to the most relevant topics covered by the whole collection, terms
that occur in a large portion of the collection are typically not discriminative.
Thus, we discard tokens that are commonly classified as stopwords, as well as
those which have a document frequency below a threshold dfmin or above a
threshold dfmax. The most appropriate values for these thresholds vary according
to the model. Those used in our experiments are detailed in Sect. 4.3.

Since the descriptions are lemmatized, we also lemmatize queries, in order to
enable matching. No additional preprocessing is performed on the queries.

3.2 Topic Models

We obtain our topic models using a classical LDA approach [3]. In an LDA model,
topics are seen as term distributions while documents are seen as mixtures of
topics. Thus, the definitions of term and document have a wide impact on the
aspects that are actually modeled. In typical applications of LDA, documents
are relatively large pieces of text, such as news articles or reports, and the terms
are the words in the documents, excluding stopwords. However, as referred in
the previous section, we can split the descriptions in different ways and filter
the tokens by specific word classes, in order to identify topics that are more
informative for application retrieval.

Regarding terms, after the preprocessing described in the previous section,
when training the topic models, we discard tokens that are not nouns, adjec-
tives, or non-auxiliary verbs. Furthermore, negated verbs and adjectives are dis-
tinguished from their positive counterparts.

In terms of documents, the most straightforward approach is to consider
each description a document. However, since the LDA model uses a Bag of
Words (BoW) approach, it is not aware of the dependency relations between
nouns and adjectives nor between verbs and their arguments. Thus, it assumes
that all the terms that occur in the document are related in the same manner.
This leads to the identification of more generic topics that may group terms that
are not directly related in the descriptions. On the other hand, each individual
sentence in a description typically contains terms that are directly related. Thus,
training a sentence-level model leads to the identification of more constrained
topics. Since both kinds of topic may provide relevant information for application
retrieval, we train both a description-level model and a sentence-level model.
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Finally, similarly to any application of LDA, the number of topics, Nt, must
be defined a priori. The selection of an appropriate value for this parameter
reduces the probability of identifying topics that are either too generic to be
useful or so specific that capture irrelevant aspects. However, this categorization
depends on the intended use for the topics. Furthermore, the best value typically
depends on the dimensionality of the collection and the number of terms in the
vocabulary. Thus, the most appropriate number of topics is expected to differ
between the description- and sentence-level models.

3.3 Topic Keywords

Having trained the topic models, in order to use the information that they cap-
ture in the context of keyword-based retrieval approach, it must be transformed
into keywords. A straightforward approach is to represent each topic by the top
n terms in its distribution. However, using a fixed number of terms may lead
either to the inclusion of non-relevant terms or the discarding of terms that are
relevant for a topic. Thus, we use the approach described in Algorithm1 to iden-
tify the set of relevant terms for each topic. The idea behind it is to approximate
the term distribution of a topic by a negative exponential function and select
the terms that appear before the inflection point as relevant. Thus, given a term
distribution, T , the algorithm starts by sorting it in decreasing weight order.
Then, only the n terms with highest weight in the distribution are considered,
as long as their weight is above a residual threshold, r. To account for noisy dis-
tributions, the weights of the terms are then smoothed using a weighted running
average that further approximates the distribution to a negative exponential one.
The remainder of the algorithm identifies the inflection point by analyzing the
weight differences between consecutive terms.

Algorithm 1. Relevant Terms
Input: T // The term weight distribution

Input: r // The residual weight threshold

Input: n // The maximum number of terms

Output: R // The relevant terms

1: T ← Sort({(t, w) ∈ T}, (ti, wi) < (tj , wj) := wi > wj)

2: W ← {wi : (ti, wi) ∈ T,wi > r, 0 < i ≤ n}
3: W ← WeightedRunningAverage(W )

4: d ← false

5: for i = 1 : |W | do

6: m ← (Wi − Wi−1) × |W |
7: if d and m > −1 then

8: break

9: else if m < −1 and not d then

10: d ← true

11: end if

12: end for

13: R ← T1:i

14: return R
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3.4 Application Retrieval

The approach described in the previous section identifies the set of relevant
terms for a topic. To identify the set of description-level topic keywords for
an application, a, we use the corresponding topic model to compute the topic
mixture of its description. Then, we discard topics with weight below a residual
threshold, r. The keywords are then given by the aggregate of the relevant terms
for the remaining topics. The set of sentence-level topic keywords is computed
in a similar fashion. However, the topic mixture is computed for each sentence
in the application’s description and the keywords of the application are given by
the aggregate of the topic keywords of its sentences.

For retrieval purposes, each application is represented by a set of three textual
fields for keyword matching, {ad, ast, adt}, corresponding to its textual descrip-
tion, the set of sentence-level topic keywords, and the set of document-level
topic keywords, respectively. In our experiments, we explore two keyword-based
retrieval approaches – BM25F [18] and Elasticsearch [2]. While the first is a
widely used information retrieval approach for semi-structured textual data, the
latter is a highly distributed search engine focused on speed and availability.
Given a query, q, both return a list of applications ordered by relevance score.
However, the scoring function differs. The adaptation of the two scoring func-
tions to our problem is presented below.

BM25F. We use the same formulation of the base BM25F scoring function
found in several previous studies (e.g. [8,14,15]):

score(q, a) =
∑

t∈q∩a

(
idf(t) × (k3 + 1)c(t, q)

k3 + c(t, q)
× (k1 + 1)c′(t, a)

k1 + c′(t, a)

)
(1)

where idf(t) is the inverse document frequency of term t in the set of descriptions,
k1 and k3 are parameters that can be tuned according to the problem, c(t, q) is
t’s count in q and c′(t, a) is t’s normalized count in a, weighted by field:

c′(t, a) =
wd · c(t, ad)
1 − b + b |ad|

n̄

+ wst · c(t, ast) + wdt · c(t, adt) (2)

where wd, wst, and wdt are the weights given to textual descriptions, sentence-
level topic information, and description-level topic information, respectively, and
b is a parameter that controls the strength of the normalization according to the
mean description length, n̄. We do not include normalization factors for topic
information, since the number of topic keywords is not relevant for the problem.

Elasticsearch. Scoring in Elasticsearch is based on Lucene’s Practical Scoring
Function, which computes individual scores for each field, f , as

score(q, f) =
1√∑

t∈q idf(t)2
× |q ∩ f |

|q| ×
∑

t∈q

(
tf(t, f) · idf(t)2 · wf√|f |

)
(3)
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where the first factor is a cross-query normalization factor, the second factor
boosts according to the number of matching terms, tf(t, f) is the term frequency
of t in f , idf(t) is the inverse document frequency of t in the field f of all
applications, and wf is the weight of the field.

The relevance score of an application for a query is then given by

score(q, a) = (1 − tb) · max
f∈a

score(q, f) + tb ·
∑

f∈a

score(q, f) (4)

where tb is a parameter that controls the extent to which the non-top scoring
fields contribute for the overall relevance score of the application.

4 Experimental Setup

In this section, we describe our experimental setup, including the dataset, the
evaluation approach, and implementation details that enable the reproduction
of our experiments in future studies.

4.1 Dataset

In our experiments, we use the dataset crawled by Park et al. [14], which features
information regarding 43,041 mobile applications. Among other less relevant
information, for each application, it includes the name, category, description,
developer, date of publication, price, and number of downloads. Furthermore, it
includes review information in the form of the number of reviews, the average
rating, and textual data of up to 50 reviews per application, with a total of
1,385,607 reviews. Additionally, the dataset features 56 non-exact queries gener-
ated from forum posts that targeted an application with a specific functionality.
Each of these queries is paired with relevance information of the top 20 appli-
cations retrieved using multiple retrieval approaches. On average, there are 81
judged applications per query. Each query-application pair was annotated by
three users in a three-value scale: 0 for no satisfaction at all, 1 for partial satis-
faction, and 2 for perfect satisfaction. The relevance score is then given by the
average judgement of the annotators.

We decided to use this dataset since, to the best of our knowledge, it is the
only publicly available one featuring relevance scores of query-application pairs.
Furthermore, the results of previous studies on this dataset provide a baseline
for comparison of our results.

4.2 Evaluation Approach

In order to compare our results with those reported in previous studies on the
same dataset, we use the same evaluation metric as Park et al. [14], that is,
the Normalized Discounted Cumulative Gain (NDCG) [11] at 3, 5, 10, and 20
top retrieved applications. NDCG is a widely used metric in the context of
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information retrieval to measure the effectiveness of search engine algorithms,
by assessing whether the results are ordered by relevance. In the context of
search for mobile applications, looking beyond the fifth result typically involves
scrolling and, thus, the NDCG at 3 and 5 are the most important to consider.

Given a graded relevance scale of applications in a result set for a given query,
to compute the corresponding NDCG, we start by computing the Discounted
Cumulative Gain (DCG) of the result set:

DCGk =
k∑

i=1

reli
log2(i + 1)

(5)

where reli is the relevance of the i-th application in the result list for query
q. This metric measures the gain of an application based on its position in the
result list. The gain is then accumulated from the top of the list, with the gain of
each result being discounted as the distance from the top increases. The NDCG
is then obtained through normalization using the Ideal Discounted Cumulative
Gain (IDCG), that is, the DCG of a perfectly sorted result list:

NDCGk =
DCGk

IDCGk
(6)

As baselines, we use the results achieved using both BM25F [18] and Elastic-
search [2] when relying solely on matching with description texts, without topic
information. That is, wd = 1, wst = 0, wdt = 0 in Eqs. 2 and 3. This transforms
BM25F into its single-field version, BM25. Additionally, we compare our results
with the LBDM [22] and Google Play [9] results reported by Park et al. [14].
Since LBDM is able to take advantage of all the information captured by the
topic model, its results provide an upper bound for performance when pairing
topic information with keyword-matching with application descriptions. On the
other hand, Google Play results serve as an indicator of the performance of cur-
rent app store search engines, which rely on additional fields for matching and
on popularity information for boosting.

4.3 Implementation Details

The application descriptions provided in the dataset contain HTML tags and
escape characters. We used the html2text package [20] to convert them to plain
text. Then, we used the spaCy parser [10] for sentence splitting, dependency
parsing, POS tagging, and lemmatization. Since the set of English stopwords
used by spaCy is too aggressive, we relied on the set defined in NLTK [12]
while filtering the tokens. Additionally, for consistency with the experiments by
Park et al. [14], we defined dfmin = 5 and dfmax = 0.3 for keyword-matching
with the description. That is, we discarded tokens that appeared in less than 5
descriptions or in more than 30%.

To train the topic models, we used the parallelized LDA implementation
provided by the gensim library [17]. Additionally, we performed a more aggressive
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low-frequency token filtering. While training the sentence-level topic model, we
used dfmin = 10, since, in this case, we considered the sentence frequency and
lower values still included many terms that only occurred in a single description.
While training the description-level topic model, we used dfmin = 0.01, that is,
we discarded tokens that appeared in less than 1% of the descriptions, in order
to identify more generic topics. In terms of the number of topics, we defined
Nt = 300 for the description-level model, for consistency with the experiments
by Park et al. [14], and Nt = 100 for the sentence-level model, since for higher
values there were topics that were not attributed to any application. While
identifying the relevant terms for each topic, we defined a maximum number of
terms n = 20 and a residual weight threshold r = 0.01. The same residual weight
threshold was used to attribute topics to applications.

For keyword-matching with the description in BM25(F), we used the same
parameters as Park et al. [14]. That is, k1 = 4, k3 = 1000, and b = 0.4. The
remaining parameters – wd , wst, and wdt for both BM25F and Elasticsearch,
and tb for Elasticsearch – were tuned using grid search to maximize the mean
of the four NDCG results, that is,

¯NDCG =
∑

k∈K NDCGk

|K| ,K = {3, 5, 10, 20} (7)

For that reason, the concrete values and their meaning are discussed in Sect. 5.

5 Results

Table 1 shows the NDCG results of our experiments, as well as the reference
results achieved using LBDM and Google Play. In the context of search for
mobile applications, the NDCG results lose relevance as the number of considered
applications increases, since only a reduced set can be shown on screen at each
time. Thus, we will focus this discussion on NDCG@3 results. However, since the
parameters were tuned to maximize the mean results at the multiple values of
k, we will also make some remarks regarding the results achieved when a higher
number of applications is considered.

First of all, it is important to note that the baseline BM25 results are one
percentage point lower than those reported by Park et al. [14] for k ∈ {3, 5}, in
spite of using the same values for all the parameters. This is due to differences in
preprocessing, especially regarding the filtering of tokens, which also considered
frequency in reviews. This means that the results achieved using LBDM are also
expected to be lower if using our preprocessing approach.

Overall, due to its focus on temporal performance, Elasticsearch performs
worse than BM25(F). When considering textual descriptions, the decrease in
performance is between two and three percentage points. However, when consid-
ering topic information only, the decrease is around 20 percentage points. This
is due to the reduced vocabulary and the normalization factors applied by the
Elasticsearch score function. On the other hand, since we consider the whole
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Table 1. NDCG results of BM25(F) and Elasticsearch applied to textual descriptions
(D), topic information (T) and their combination (D + T). The last block provides
reference results reported by Park et al. [14].

Approach NDCG@3 NDCG@5 NDCG@10 NDCG@20

BM25 (D) 0.569 0.540 0.523 0.537

Elasticsearch (D) 0.540 0.523 0.502 0.512

BM25F (T) 0.554 0.553 0.535 0.530

Elasticsearch (T) 0.341 0.342 0.356 0.370

BM25F (D + T) 0.574 0.542 0.527 0.544

Elasticsearch (D + T) 0.552 0.532 0.504 0.519

LBDM 0.584 0.563 0.543 0.565

Google Play 0.589 0.575 0.568 0.566

vocabulary and do not include normalization factors for topic information while
computing the BM25F scores, its results are not penalized.

Comparing the results achieved using textual descriptions with those
achieved using topic information, we can see that the performance of BM25(F)
decreases 1.5 percentage points in terms of NDCG@3, but actually increases
in terms of NDCG@5 and NDCG@10. This means that the set of topic key-
words is an appropriate summary of the information provided by the description.
However, these results were achieved when relying solely on the sentence-level
topic keywords, that is, wst = 1 and wdt = 0. Including description-level topic
keywords does not lead to improvement. On the other hand, the results using
Elasticsearch were achieved using wst = 2wdt and tb = 0.1, which means that
the sentence-level topic keywords are still the most informative, but that the
document-level topic keywords can provide complementary information.

As expected, the best results are achieved when combining the information
provided by textual descriptions and topic information. However, in the case of
BM25F, there is only improvement when topic information is given a reduced
weight. More specifically, the results reported in Table 1 were achieved with
wd = 0.96, wst = 0, and wdt = 0.04. Several other configurations, including ones
that also give weight to sentence-level topic information, lead to similar results.
Still, the weights are always severely biased towards the textual descriptions.
For instance, the parameters that maximized NDCG@3 in our experiments were
wd = 0.98, wst = 0.01, and wdt = 0.01. This means that the topic keywords are
only used as complementary information that enable the retrieval of more rele-
vant applications in specific cases. On the other hand, in the case of Elasticsearch,
the mean NDCG was maximized with wst = 2wdt, wd = wdt, and tb = 0.5. This
means that the relation between the weights of sentence- and description-level
topic information is kept in relation to when the textual descriptions are not
considered. Furthermore, although higher weight is given to topic information,
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the value of the tie breaker parameter shows that all fields have an important
contribution to the score.

Overall, including topic information improves the performance of Elastic-
search by one percentage point in terms of both NDCG@3 and NDCG@5. How-
ever, by comparing the BM25F results with those of LBDM, even assuming
that the performance of LBDM is expected to decrease with our preprocessing
approach, we can see that the topic keywords are not able to capture all the infor-
mation provided by the topic models. This happens because the representation of
the topics in the form of their most relevant terms does not allow matching with
similar keywords that are not as common. Finally, the performance of Google
Play shows that additional fields, such as the application titles, and popularity
information are relevant for delivering the best results for non-exact queries.

6 Conclusions

In this paper, we have explored how topic information can be represented in the
form of keywords to be considered by mobile application retrieval approaches
based on keyword-matching. This is important, since app store search engines
have strict requirements in terms of temporal performance and availability,
which, currently, are only fulfilled by highly distributed retrieval approaches
based on multi-field keyword-matching and boosting.

We focused on application descriptions and trained two LDA models, one
on whole descriptions and another on their sentences. While the first generates
more generic topics, the second captures more fine-grained subjects. Then, we
computed the topic mixtures of the application descriptions and represented
the topic information of an application as the aggregate of the relevant terms
for each topic in its mixture. The set of relevant terms for a topic is identified
by approximating its term distribution by a negative exponential function and
selecting the terms which appear before the inflection point.

The results of our experiments have shown that both sentence- and
description-level topic information provides cues for application retrieval from
non-exact queries, leading to improved performance. Furthermore, the topic key-
words make a sufficiently informative summary of the information provided by
the descriptions. However, they do not allow matching with similar keywords
that are not as common. Thus, the performance is still lower than when per-
forming retrieval based on topic similarity, which relies on all the information
provided by the topic models. Thus, as future work, it would be interesting
to assess whether including synonyms of the relevant terms that occur in the
same context can enable matching with those less common keywords without
introducing ambiguity.

Furthermore, it is important to assess whether the performance improvement
observed by Park et al. [14] when leveraging review data can also be observed
when the information captured by the topic models that merge description and
review information is provided in the form of keywords.

Finally, it is important to assess how this approach behaves in combination
with boosting factors based on popularity.
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Abstract. Fuzzy inference systems (FIS) gained popularity and found
application in several fields of science over the last years, because they
are more transparent and interpretable than other common (black-box)
machine learning approaches. However, transparency is not automati-
cally achieved when FIS are estimated from data, thus researchers are
actively investigating methods to design interpretable FIS. Following this
line of research, we propose a new approach for FIS simplification which
leverages graph theory to identify and remove similar fuzzy sets from
rule bases. We test our methodology on two data sets to show how this
approach can be used to simplify the rule base without sacrificing accu-
racy.
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1 Introduction

Fuzzy Inference Systems (FIS) are based on the fuzzy set theory introduced
by Zadeh [37]. FIS are universal approximators that can implement non-linear
mappings between inputs and output, designed to model linguistic concepts.
Owing to these characteristics, FIS have been successfully applied in a variety of
fields, including systems biology, automatic control, data classification, decision
analysis, expert systems, and computer vision [7,14,21,25,27,30]. One of the
main advantages provided by FIS over black-box methods, such as (deep) neural
networks, is that fuzzy models are (to a certain degree) transparent, and hence
open to interpretation and analysis.

The first FIS relied on the ability of fuzzy logic to model natural language and
were developed using expert knowledge [23]. The knowledge of human experts
was extracted and transformed into rules and membership functions. These FIS
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are easy to interpret, but unfortunately, they cannot be easily used to model large
and complex systems, since human knowledge is often incomplete and episodic.

In 1985, Takagi and Sugeno [33] proposed a method to construct self-learning
FIS from data. The fuzzy rules underlying this kind of FIS are automatically
generated from data, but follow the same if–else structure as the rules based on
expert knowledge, thus making it possible to model large and complex systems.
However, there is generally a loss of semantics when the FIS is constructed in
this way, since the number of induced rules can be large, and the rules might
become complex because of the number of considered variables. Therefore, many
researchers are investigating the problem of designing interpretable fuzzy mod-
els [1,2,12].

When FIS are identified from data, it is common to obtain a system with a
large number of highly overlapping fuzzy sets, that hardly allow for any interpre-
tation. This hinders the user from labeling the fuzzy sets with linguistic terms
and thus giving semantic interpretation to the model. This problem arises espe-
cially when Takagi and Sugeno (TS) [33] fuzzy models are determined based on
input–output product space fuzzy clustering. Fuzzy rule base simplification has
been proposed to reduce the complexity of such models in order to make them
more amenable to interpretation [29].

In this paper we propose a new approach based on graph theory to sim-
plify the fuzzy rule base by reducing the number of fuzzy sets in the model
when a high overlap is detected between membership functions. Specifically, we
combine Jaccard similarity and graph theory to determine which fuzzy sets can
be simplified in the model. We name our approach Graph-Based Simplification
(GRABS).

GRABS was implemented using the Python programming language [26],
and it is part of pyFUME, a novel Python package developed to define FIS
from data [9]. pyFUME provides a set of classes and methods to estimate the
antecedent sets and the consequent parameters of TS fuzzy models. This infor-
mation is then used to create an executable fuzzy model using the Simpful
library [31], a Python library designed to handle fuzzy sets, fuzzy rules and per-
form fuzzy inference. pyFUME’s source code and documentation can be down-
loaded from GITHUB at the following address: https://github.com/CaroFuchs/
pyFUME.

In this study we investigate the pyFUME’s GRABS functionality, testing
the methodology on both synthetic and real data sets. Our results show that
pyFUME produces interpretable models, written in a human-readable form,
characterized by a tunable level of complexity in terms of separation of fuzzy
sets.

The paper is structured as follows. We provide a theoretical background
about FIS simplification in Sect. 2. The GRABS method is described in Sect. 3.
Section 4 describes how to use GRABS in pyFUME. Some results of GRABS
with pyFUME are shown in Sect. 5. We conclude the paper in Sect. 6.

https://github.com/CaroFuchs/pyFUME
https://github.com/CaroFuchs/pyFUME
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2 Rule Base Simplification

When dealing with the interpretability of a fuzzy model, two main aspects have
to be considered [1,2]: the readability and comprehensibility. The former depends
on the complexity of the FIS structure, while the latter is tied to the semantics
associated to it.

Rule base simplification is an approach to simplify the structure of a fuzzy
system. Following the classification proposed in [15], methods for fuzzy rule base
simplification can be divided into five categories:

1. Feature reduction. This category includes methods that rely on feature
reduction by means of feature transformation [20] (also referred to as feature
extraction) or feature selection [13]. Feature transformation consists of creat-
ing additional features from the given ones, or selecting a new set of features
to replace the old one. Since feature transformation changes the underlying
meaning of the features, this approach can make feature interpretation harder,
ultimately resulting in a loss of semantics. Feature selection is not affected
by this shortcoming, since it selects a subset of the most influential features,
and discards features affected by noise or that do not contribute significantly
to the accuracy of the FIS.

2. Similarity-based simplification. Methods belonging to this class perform
a merging of similar rules and/or eliminate redundancy in the FIS. Similarity
merging methods perform a merging of fuzzy sets representing comparable
and analogous concepts, by exploiting some similarity measure (see e.g., [6,
17,29]). When the model shows high redundancy, this merging might result
in some rules being equivalent and thus amenable to being merged, thereby
reducing the number of rules as well. Compatible cluster merging algorithms
try to combine similar clusters into a single one, in order to reduce the FIS rule
base (e.g., [18]). Finally, methods for consistency checking [34] and inactivity
checking [17] are employed to decrease the number of rules. In particular,
consistency checking reduces the rule base by eliminating conflicting rules,
while inactivity checking removes rules with a low firing strength, according
to a predetermined threshold.

3. Orthogonal transformation. These methods reduce fuzzy rule bases by
means of matrix computations. They achieve such reduction in two ways:
either by taking into account the firing strength matrix and employing some
metrics to estimate the impact of a rule on the FIS performance [36]; or by
considering matrix decompositions (e.g., singular value decomposition) and
removing the rules that correspond to the less important, smaller components
and updating the membership functions accordingly [35].

4. Interpolative reasoning. Traditional fuzzy reasoning methods require the
universe of discourse of input variables to be entirely covered by the fuzzy
rule base. These methods do not perform well when input data fall in a non-
covered region of the universe of discourse, as this does not trigger the firing
of any rule and no consequences are drawn from the rule base. The first fuzzy
interpolative reasoning method was proposed in [19] to overcome the above
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mentioned limitation. This method consists in generating the conclusions of
FIS with sparse rule bases by means of approximation. In the context of FIS
simplification, fuzzy interpolation can be employed to reduce fuzzy rule bases.
This is achieved by eliminating the rules that can be approximated through
interpolation of neighboring rules.

5. Hierarchical reasoning. Methods adopting a hierarchical reasoning app-
roach reorganize the fuzzy rule base structure in order to obtain a hierar-
chical fuzzy system [28]. Hierarchical fuzzy systems consist of several low-
dimensional FISs, connected together according to some defined hierarchy.
This approach was applied for example in [32], where the authors propose
a hierarchical fuzzy system for the automatic control of an unmanned heli-
copter.

The GRABS approach proposed in this paper aims at simplifying the fuzzy
rule base by eliminating redundant information from the overlapping fuzzy sets.
Thus, our approach falls in the category of similarity-based rule base simplifica-
tion. Methods belonging to this category need to assess the similarity between
the fuzzy sets in the antecedents with a given measure, in order to remove similar
sets. In [29], the authors suggest to adopt the Jaccard similarity index [16] to
quantify such similarity between two fuzzy sets. Given two fuzzy sets A and B,
the Jaccard index S is computed as follows:

S(A,B) =
|A ∩ B|
|A ∪ B| , (1)

where | · | denotes the cardinality of a fuzzy set, and the ∩ and ∪ operators
represent the intersection and the union of fuzzy sets, respectively. The Jaccard
similarity index takes values between 0 and 1, with 1 representing total similarity
(i.e, perfectly overlapping fuzzy sets) and 0 disjoint fuzzy sets.

3 Graph-Based Rule Base Simplification

A graph is an abstract mathematical structure used to model pairwise relations
between objects. A undirected graph is defined by a pair G = (V,E), where V
is a set of vertices (or nodes) connected by a set of edges E.

We represent the similarities between fuzzy sets of a same variable by using
a graph. Specifically, each vertex v ∈ V represents a fuzzy set. See for example
Fig. 1a, where four fuzzy sets are defined on the universe of discourse. If the
Jaccard similarity of two fuzzy sets exceeds a certain, user-specified, threshold
σ, their two nodes are connected by an edge. This process is schematized in
Fig. 1b, where the fuzzy sets 1 and 2 show high similarity and therefore are
connected by an edge. Please observe that the graph now contains multiple
connected components (three in this example).

Assume now that the fuzzy set 3 is also similar to the fuzzy sets 1 and 2. Then,
by adding the corresponding additional edges (3, 1) and (3, 2), the graph changes
as schematized in Fig. 1c. In particular, the largest component of the graph is
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FS 1 FS 2

FS 3 FS 4

(a) No fuzzy
sets show high
similarity.

FS 1 FS 2

FS 3 FS 4

(b) Fuzzy set 1
and 2 show high
similarity.

FS 1 FS 2

FS 3 FS 4

(c) Fuzzy set
1, 2 and 3 all
show high simi-
larity to one an-
other.

FS 1 FS 2

FS 3 FS 4

(d) Fuzzy set 1
and 2 and fuzzy
set 1 and 3 show
high similarity,
but fuzzy set 2
and 3 are dis-
similar.

FS 1 FS 2

FS 3 FS 4

(e) Fuzzy set 1
and 2, 2 and
3, and 3 and 4
show high sim-
ilarity, but the
other sets are
dissimilar.

Fig. 1. Graphs representing variables that each have four fuzzy sets.

complete, meaning that clusters 1, 2 and 3 are all similar to one another with
respect to the specified threshold σ. Please note that the transitive closure is in
general not valid in this context. For example, Fig. 1d shows a case where fuzzy
set 1 is similar to both fuzzy set 2 and 3, but fuzzy set 2 and 3 are not similar to
each other, according to Jaccard similarity. In this respect, the GRABS method
deviates from the compatible cluster merging in [18], where transitive closure
is imposed before merging, or from the similarity-based rule base simplification
method in [29], where merging takes place iteratively, by combining only the
most similar pair of fuzzy sets at each step.

According to our merging algorithm, the fuzzy sets of Fig. 1a should all be
retained, since they are all dissimilar. However, in Fig. 1b both fuzzy set 1 and
and 2 give the same information. Therefore, one of them can be dropped with-
out losing (much) information and accuracy of the model. The same applies to
Fig. 1c: only one of the three similar fuzzy sets can be retained to preserve all the
information and the accuracy of the model. In Fig. 1d, dropping fuzzy set 1, 2 or
3 would lead to a loss of information, since fuzzy set 2 and 3 are dissimilar. There-
fore, all three fuzzy sets should be retained. We also considered the possibility of
multiple partially overlapping fuzzy sets (see Fig. 1e): in this circumstance, we do
not allow the full removal of inner nodes characterized by a higher degree (i.e.,
FS1 and FS2), since that could lead to a fuzzy partitioning that does not span
the full universe of discourse. These concepts represents the foundations of our
graph-based rule base simplification algorithm. The aforementioned heuristic–
that represents a trade-off between simplicity, computational costs, and accuracy
in the simplification–seems to be effective for practical scenarios.

The pseudo-code of our GRABS methodology is shown in Listing 1.1. The
algorithm begins by creating two empty dictionaries that will store the informa-
tion about pairs of similar fuzzy sets (line 1) and the information about fuzzy sets
replacements (line 2). Then, for each variable, we calculate the pair-wise Jaccard
similarities of the associated fuzzy sets (lines 3–13). If the Jaccard similarity of
a pair of fuzzy sets is above the user-defined threshold σ then that pair is added
to the dictionary (lines 7–10). After the Jaccard similarities are assessed, the
algorithm proceeds to build and analyze the graphs. Specifically, the algorithm
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Listing 1.1. Pseudocode of pyFUME’s GRABS algorithm.

1 s i m i l a r p a i r s ← {}
2 replacement ← {}
3 foreach va r i ab l e in va r i a b l e s :
4 s i m i l a r p a i r s [ v a r i a b l e ] ← [ ]
5 for f s 1 ← 1 to num fuzzysets :
6 for f s 2 ← f s 1+1 to num fuzzysets :
7 s i m i l a r i t y ← J a c c a r d s im i l a r i t y ( f s1 , f s 2 )
8 i f s i m i l a r i t y > σ then :
9 s i m i l a r p a i r s [ v a r i a b l e ] ← ( f s1 , f s 2 )

10 end i f
11 end for
12 end for
13 end foreach
14 foreach var i ab l e , s i m i l a r c l u s t e r s in s i m i l a r p a i r s :
15 G ← c r ea t e g raph ( s i m i l a r p a i r s )
16 SC ← G. get components ( )
17 for component in SC:
18 i f component . i s c omp l e t e ( ) then :
19 r e t a in ed ← component . p i ck one node ( )
20 component . remove node ( r e t a in ed )
21 foreach node in component
22 replacement [ ( va r i ab l e , node ) ] ← r e t a in ed
23 end foreach
24 end i f
25 end for
26 end foreach

iterates on variables (lines 14–26). For each variable, a graph is created by using
the fuzzy sets stored in the similar pairs dictionary (line 15). Then, all the
components of the the graph are extracted (line 16) and, for each sub-component,
the algorithm performs a completeness check (line 18). If the sub-component is
complete, then all fuzzy sets are similar and can be simplified: one node is picked
to be retained (line 19) and removed from the component (line 20). The remain-
ing nodes (i.e., similar fuzzy sets) can be removed from the model. We store the
information about the removed fuzzy sets in the replacement dictionary. To
simplify the lookup in pyFUME, the keys of the dictionary are pairs (variable,
removed fuzzy set) and the values are the retained fuzzy sets (line 22).

4 GRABS in pyFUME

pyFUME was designed to have an easy to use interface both for practitioners
and researchers. Currently, pyFUME supports the following features.

1. Loading the input data.
2. Division of the input data into a training and test data set.



A Graph Theory Approach to Fuzzy Rule Base Simplification 393

3. Clustering of the data in the input-output space by means of Fuzzy C-Means
(FCM) clustering [4] or an approach based on Fuzzy Self-Tuning Particle
Swarm Optimization (FST-PSO [8,24]).

4. Estimating the antecedent sets of the fuzzy model, using the method described
in [10]. Currently, Gaussian (default option), double Gaussian and sigmoidal
membership functions are supported

5. Estimating the consequent parameters of the first-order TS fuzzy model,
implementing the functionalities described in [3].

6. The generation, using the estimated antecedents and consequents, of an exe-
cutable fuzzy model based on Simpful, possibly exporting the source code as
a separate, executable file.

7. Testing of the estimated fuzzy model, by measuring the Root Mean Squared
Error (RMSE), Mean Squared Error (MSE) or Mean Absolute Error (MAE).

To use pyFUME to estimate a fuzzy model from data, the user simply has
to call the pyfume() function and specify the path to the data and the number
of clusters as input. Optionally, the user can diverge from default settings (for
example to use a clustering approach based on FST-PSO [24] or normalizing the
data) by choosing additional key-value pairs. More information on pyFUME’s
functionalities can be found in [9].

If a user wants to use GRABS in pyFUME to simplify the produced rule
bases, an optional input argument similarity threshold must be specified.
Thanks to this parameter, the user can set any arbitrary threshold for fuzzy sets
similarity, implicitly controlling the error tolerance. This allows our method to
be applied, in principle, to any system. By default, this threshold is set to 1.0,
which means that one of the fuzzy sets is only dropped if the Jaccard similarity
(which is assessed by using (1)) is 1.0, i.e., the fuzzy sets are identical. Since
membership functions estimated from data will hardly ever be identical, this
means that by default the functionality is switched off. The user can activate the
functionality by setting similarity threshold to a lower number. For example,
when similarity threshold = 0.9, pairs of fuzzy sets that have a Jaccard
similarity higher than 0.9 will be dropped.

Internally, pyFUME represents the relation between the fuzzy sets as graphs
such as the ones shown in Fig. 1. After identifying all complete components, one
vertex for each of them is randomly selected to be retained, while the others are
dropped.

In practice, this means that from all overlapping fuzzy sets in the FIS, one
set is randomly selected and retained in the model. The other overlapping sets
are discarded and remapped to the fuzzy set that was retained. This means that
multiple rules in a FIS can have the same fuzzy set for a certain variable in their
antecedent.
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Fig. 2. Plots for the synthetic data set. On the diagonal, the distributions of the vari-
ables per cluster are visualized. Each off-diagonal plot is a scatter plot of a column of
the data against another column of data.

5 Results

We use two data sets to show the effects of different threshold levels on the
estimated fuzzy models. The first data set is synthetic and follows the same dis-
tributions as the data set described in [11], the second data set was downloaded
from the UCI repository [22].

5.1 Example Case: Synthetic Data Set

For the first tests, we created a data set which contains 500 points and two
variables (x1 and x2). In the data set there are two clusters, each containing 250
data points. For both clusters, variable x1 follows a normal distribution N(μ, σ2)
with μ = 5 and σ = 1.2. For cluster 1, variable x2 follows the distribution
N(3, 0.52) and for cluster 2 the values for variable x2 are drawn from N(7, 0.52).
The values for the output variable were calculated as 0.4 ∗ x1 + 1.2 ∗ x2 + ε for
the first cluster and −0.2 ∗x1 +0.9 ∗x2 + ε for the second one. ε is random noise
drawn from N(0, 0.12). In Fig. 2 a matrix of scatter plots of the input and output
variables, and (on the diagonal) frequency histograms of the data is shown.

Using pyFUME, we train first-order Takagi-Sugeno fuzzy models with two
rules (and therefore two clusters) for this data set. Therefore, each input variable
has two fuzzy sets. pyFUME’s similarity threshold is varied from 0.0 to 1.0 in
steps of 0.05, and for each level 100 models are built using 75% of the data as
training data. All models are then evaluated in terms of Root Mean Square Error
(RMSE) with the remaining 25% of the data.
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Fig. 3. The average and 95% confidence intervals of the RMSE for fuzzy models for
the synthetic data set, build in pyFUME using different similarity thresholds (100 runs
each).

In Fig. 3 the average RMSE and the 95% confidence interval for each thresh-
old level are plotted. It can be observed that using very low values for the
threshold results in worse performing models. When a similarity threshold of
<0.45 is chosen, the two fuzzy sets for each of the variables are deemed similar,
and therefore, one of them is dropped. Because of this, only one fuzzy set per
variable remains, making both rules identical. As a result, the model does not
separate the clusters anymore and behaves like a multiple regression model. This
leads to a loss in accuracy.

Using any threshold level � 0.45 but <1.0 results in the merging of the two
fuzzy sets for variable x1, since these fuzzy sets have a Jaccard similarity index
of 0.97. Dropping one of these fuzzy sets does not result in loss of information,
since variable x1 follows the same distribution in both cluster 1 and 2. Because
of this, the RMSE does not decrease when one of the two fuzzy sets is dropped.
This can be observed in Fig. 3.

In Fig. 4 the membership function of the fuzzy model that still contains all
fuzzy sets is depicted. For variable x1 indeed a large overlap can be observed
for the fuzzy sets. Figure 5 shows the new membership functions for the fuzzy
model when the similarity threshold is set to 0.75. Note that for variable x1 only
one set is left. In pyFUME the rules are now simplified to (bold highlights the
change):

– RULE1 = IF (x1 IS cluster1) AND (x2 IS cluster1) THEN (OUTPUT IS fun1)

– RULE2 = IF (x1 IS cluster1) AND (x2 IS cluster2) THEN (OUTPUT IS fun2)
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Fig. 4. The membership functions of a fuzzy model based on the synthetic data set.
The similarity threshold was set to 1.0 and therefore, no fuzzy sets were dropped.

Fig. 5. The membership functions of a fuzzy model based on the synthetic data set.
The similarity threshold was set to 0.75 and therefore, one of the fuzzy sets of the
variable x1 was dropped.

5.2 Example Case: NASA Data Set

The NASA data set [5] (downloaded from and described in the UCI reposi-
tory [22]) consists of 1503 cases of different size NACA 0012 airfoils, which are
airfoil shapes for aircraft wings developed by the National Advisory Commit-
tee for Aeronautics (NACA). Measurement were taken at various wind tunnel
speeds and angles of attack. The span of the airfoil and the position of the
observer were kept the same during data gathering in all of the experiments.
During the experiments the frequency, angle of attack, chord length, free-stream
velocity, and suction side displacement thickness of the NACA 0012 airfoils were
recorded. These input variables should be mapped to the output variable, which
is the scaled sound pressure level in decibels.

Again, the fuzzy models are build in pyFUME, and a 25% hold-out set is
used for testing. To determine the similarity threshold value, different thresholds
are tested. The results of this are plotted in Fig. 6 When exploring the effect of
these different similarity thresholds on the accuracy of the fuzzy model, it can
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be observed that dropping fuzzy sets that show a similarity of more than 0.55 to
another set does not result in significantly higher error rates. At this threshold,
ten fuzzy sets are dropped.

Fig. 6. The average and 95% confidence intervals of the RMSE for fuzzy models for
the NASA data set, build in pyFUME using different similarity thresholds (100 runs
each).

Figure 7 visualizes the membership functions of the NASA model before fuzzy
sets were dropped. In this figure it can be observed that, except for the first
variable, all variables have fuzzy sets that show high similarity. These fuzzy sets
are dropped when the similarity threshold is set to 0.55, as can be seen in Fig. 8.
This figure also shows that the variable ‘chord length’ and (to a lesser extent)
‘freestream velocity’ have membership functions that are similar to the universal
set. This might indicate that these variables can be removed from the model,
but that goes beyond the scope of this study. Then, the rule base is as follows
(bold highlights the changes):

– RULE1 = IF (frequency IS cluster1) AND (angle of attack IS cluster1) AND

(chord length IS cluster1) AND (freestream velocity IS cluster1) AND

(suction side displacement thickness IS cluster1) THEN (OUTPUT IS fun1)

– RULE2 = IF (frequency IS cluster2) AND (angle of attack IS cluster2) AND

(chord length IS cluster1) AND (freestream velocity IS cluster1) AND

(suction side displacement thickness IS cluster2) THEN (OUTPUT IS fun2)

– RULE3 = IF (frequency IS cluster3) AND (angle of attack IS cluster2) AND

(chord length IS cluster1) AND (freestream velocity IS cluster1) AND

(suction side displacement thickness IS cluster2) THEN (OUTPUT IS fun3)

– RULE4 = IF (frequency IS cluster4) AND (angle of attack IS cluster2) AND

(chord length IS cluster1) AND (freestream velocity IS cluster1) AND

(suction side displacement thickness IS cluster2) THEN (OUTPUT IS fun4)
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Fig. 7. The membership functions of a fuzzy model based on the NASA data set. The
similarity threshold was set to 1.0 and therefore, no fuzzy sets were dropped.

Fig. 8. The membership functions of a fuzzy model based on the NASA data set. The
similarity threshold was set to 0.55 and therefore, ten fuzzy sets were dropped.

6 Conclusions

In this paper we introduced a novel graph theory based approach to simplify
fuzzy rule bases called GRABS. By combining the Jaccard similarity and graph
theory, we determine which fuzzy sets can be simplified in the model. The exam-
ples in this paper show that simplifying the model using this approach does not
result in significant information and accuracy loss. Future studies will show how
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these result generalise to other data sets, and how this method compare to other
simplification methods. The GRABS approach is implemented in the pyFUME
package, whose source code and documentation is available at: https://github.
com/CaroFuchs/pyFUME.

In [11] it is shown that when only one fuzzy set remains for a variable, the
corresponding antecedent clause can be removed from all the rules in the fuzzy
rule base. This improves the readability of the rule base even further. In future
releases of pyFUME, we wish to implement the automatic detection and removal
of these antecedent clauses. Moreover, we plan to implement a semi-automatic
procedure to assign meaningful labels to fuzzy sets (e.g., low, medium, high),
after performing simplification, in order to further improve the interpretation of
the model. Finally, we will investigate the possibility of exploiting graph mea-
sures (e.g., degree centrality) as an alternative to detect fuzzy sets to be removed.
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Abstract. Due to its asynchronous message-sharing and real-time capa-
bilities, Twitter offers a valuable opportunity to detect events in a timely
manner. Existing approaches for event detection have mainly focused
on building a temporal profile of named entities and detecting unusu-
ally large bursts in their usage to signify an event. We extend this line
of research by incorporating external knowledge bases such as DBPe-
dia, WordNet; and exploiting specific features of Twitter for efficient
event detection. We show that our system utilizing temporal, social, and
Twitter-specific features yields improvement in the precision, recall, and
DERate on the benchmarked Events2012 corpus compared to the state-
of-the-art approaches.

Keywords: Twitter · Event detection · DBPedia · Microblogging ·
Social media

1 Introduction

Social media serve as important social sensor to capture the zeitgeist of the
society. With real-time, online, asynchronous message-sharing supporting text,
audio, video and images, these platforms offer valuable opportunities to detect
events such as natural disasters and terrorist activity in a timely manner. Twitter
is certainly a leader among microblogging platforms. With over 1.3 billion users
and about 500 million messages (called tweets) posted per day and over 15 billion
API calls per day, Twitter provides a massive source to detect event occurrences
as they happen. Tweets are restricted to be maximum 280 characters in length
and it is this design choice that enables information sharing extremely fast and
in real-time. Owing to this scale and speed of information updates, Twitter is at
the focus of attention to be monitored for new event detection. Also, Twitter’s
social network features allow user interactions which helps further in gaining an
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insight on an event’s reception by people (by analysing their sentiments/opinions
expressed in their tweets).

While Twitter analytics in general may entail a comprehensive multi-modal
approach, for example, to harness relevant information from media (images,
videos, audio), we argue that since the textual part of the message is authored
by the creator of the message, it is more reliable, authentic, and credible per-
sonal source to gain insights on the information shared. However, while analyzing
language is as such challenging because of the inherent lack of structure in its
expression, Twitter exacerbates this by supporting short message text, slang and
emojis, user-created meta-information tags (hashtags), and URLs. Traditional
methods in natural language processing (NLP) were designed to work with large
discourses and perform poorly on social media text. This is owing to the follow-
ing:

– Tweets are short mainly because of the restrictions imposed by the underlying
platform (i.e. Twitter), but sometimes also under the influence of the cultural
norms of the cyberspace1;

– Tweets are often ungrammatical data type. Indeed, under the restriction of
typing short messages from a mobile phone, grammar often takes a back seat.
Also, because of the growth of social media encompassing the global scale,
significant number of users are non-native speakers of English;

– Tweets are highly contextual, i.e., the message cannot be understood with-
out the context – geopolitical, cultural, topical (current affairs), and even
conversational context (e.g. replies to previous messages);

– Tweets use a lot of slang and emojis; exacerbating this, new slang words
and emojis are invented and popularized every day and their meanings are
volatile.

Indeed, tweets contain polluted content [18], and rumors [6], which negatively
affect the performance of the event detection algorithms. Besides, only very few
tweets actually carry a message about a newsworthy event [13]. These limitations
motivate the current work, which aims to develop an enhanced Twitter event
detection system that integrates external sources of information such as DBPedia
[4] and WordNet [7]; exploits social network features of Twitter; and integrates
knowledge obtained from the annotated resources (such as URLs cited in the
tweets pointing to external web pages).

Topic Detection and Tracking (TDT) project [2] defines an event as “some
unique thing that happens at some point in time”. [5] defines an event as “a
real-world occurrence e with an associated time period Te and a time-ordered
stream of Twitter messages Me of substantial volume, discussing the occurrence
and published during time Te”. We use these definitions as a guideline in devel-
oping our system of event detection from Twitter. We exploit specific features
of Twitter that allow users to share others’ tweets by re-tweeting them, quoting
them, liking them; allows users to embed hashtags, URLs.

1 https://blog.twitter.com/official/en us/topics/product/2017/tweetingmadeeasier.
html.

https://blog.twitter.com/official/en_us/topics/product/2017/tweetingmadeeasier.html
https://blog.twitter.com/official/en_us/topics/product/2017/tweetingmadeeasier.html
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Inspired by the existing event detection methods for detecting and tracking
event-related segments [10,19,31], our system is based on identifying important
phrases from individual tweets and creating a temporal profile of these phrases to
identify if they are bursty enough to signify an occurrence of an event. However,
our system differs from the state-of-the-art in the following:

– We utilize DBPedia to efficiently identify named entities of import.
– We use WordNet to assist in identifying event-specific words and phrases.
– We expand the URLs embedded in tweets to find important phrases from the

titles of the web pages that these URLs point to.
– We harness the meta-data from Twitter such as ‘quoted status’, ‘retweet’,

‘liked’, ‘in reply to’, and also, the social network of the Twitter user.

The rest of the paper is organized as follows. In Sect. 2, we discuss the work
closely related to ours. Section 3 describes our system for Twitter event detection.
Section 4 explains our experimental setup and results followed by discussion.
Finally, in Sect. 5, we present our conclusions.

2 Related Work

Event detection from Twitter has been extensively studied in the past as evi-
denced by the rich body of work. [3,14,25,30], among others. Especially, tech-
niques for event detection from Twitter can be classified according to the event
type (specified or unspecified events), detection method (supervised or unsuper-
vised learning), and detection task (new event detection or retrospective event
detection). However, most of the techniques described in the aforementioned
surveys suffer from rigorous evaluation. On the other hand, a major acknowl-
edged obstacle in measuring the accuracy and performance of an event detection
methods is the lack of large-scale, benchmarked corpora. Some authors have cre-
ated their own manually annotated datasets and made them available publicly
[23,26].

Our work focuses on unsupervised, unspecified event detection retrospec-
tively from a large body of tweets. Among many approaches to event detection
from Twitter such as keyword volume approach, topic modeling, and sentiment
analysis based methods, our work is based on keyphrase/segment detection and
tracking which aim to identify keyphrases/segments whose occurrences grow
unusually within the corpus [8,9,11,12,16,17,29]. Some of the most related works
to ours are by [1,19,27,31].

EDCoW [31] proposed a three-step approach. First, a wavelet transform and
auto-correlation are applied to measure the bursty energy of each word and words
associated with high energies are retained as event features. Then, they measure
the similarity between each pair of event features by using cross correlation. At
last, modularity-based graph partitioning is used to detect the events, each of
which contains a set of words with high cross correlation.

[19] presented a system called Twevent that analyzes the tweets by break-
ing them into non-overlapping segments and subsequently identifying bursty
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segments. These bursty segments are then clustered to obtain event-related seg-
ments.

[23] contributed a large manually labeled corpus of 120 million tweets con-
taining 506 events in 8 categories. They used Locality Sensitive Hashing (LSH)
technique followed by cluster summarization and employed Wikipedia as an
external knowledge source.

[1] employed a statistical analysis of historical usage of words for finding
bursty words – those with burstiness degree above two standard deviation from
the mean are selected clustered. However, their method was used to find localized
events only.

[10] proposed mention-anomaly based approach incorporating social aspect
of tweets by leveraging the creation frequency of mentions that users insert in
tweets to engage discussion. [22] advocated the importance of named entities
in Twitter event detection. They used a clustering technique which partitions
tweets based upon the entities they contain, burst detection and cluster selection
techniques to extract clusters related to ongoing real-world events.

Recently, [28] employed extracting a structured representation from the
tweets’ text using NLP, which is then integrated with DBpedia and WordNet
in an RDF knowledge graph. Their system enabled security analysts to describe
the events of interest precisely and declaratively using SPARQL queries over the
graph.

3 Our System

Our system, Metadata-assisted Twitter Event Detection (MaTED) is an exten-
sion of a previous work Twevent [19]; however, our system makes use of several
other features of Twitter ignored in previous research.

Figure 1 shows the architecture of MaTED which consists of four components:
i) detection of important phrases from tweets; ii) creating temporal profiles of
these phrases to identify bursty phrases; iii) clustering bursty phrases with an
aim to group related phrases about an event, and iv) characterizing an event
from the clusters obtained above. We parse the tweet JSON object after receiv-
ing it from a stream, and the first component of our system identifies important
segments/phrases not just from the tweet text but also from the titles of the
webpages that URL links in the tweet points to. Since event-related phrases are
mostly named entities, we harness the DBPedia to extract such phrases. The
resultant phrases along with tweet timestamps are then fed to the next com-
ponent of our system which estimates their burstiness behavior using statistical
modeling of their occurrence frequency. Subsequently, we group the event-related
phrases using a graph-based clustering algorithm. In the rest of this section, we
describe each component in detail following the order of their usage in our frame-
work.
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Fig. 1. MaTED system architecture
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3.1 Identifying Important Phrases from Tweets

In this component, we parse the tweet JSON object to obtain tweet text, hash-
tags, URLs, user mentions and other available metadata. We then create a set
of phrases/keywords to be monitored consisting of the following items:

– List of named entities obtained after inputting the tweet text (after pre-
processing and cleaning) to DBPedia Spotlight [24] web service.

– List of wordings related to action or activity present in the original tweet
message. These are identified as words that are either a direct or indirect
hyponym of ‘event.n.01’ synset of WordNet.

– List of hashtags included in the tweet.
– For each URL that is cited in the tweet, we obtain the title text of the web

page that URL is pointing to. We submit this title text to our locally running
DBPedia Spotlight web service to obtain named entities and include these
into the list of items to be monitored.

– For each user mention, we include the ‘name’ the user mention handle is
associated to.

Fig. 2. An example of phrase extraction from tweets.

Figure 2 illustrates the overall process. The tweet text “Overall fatalities
caused by the disease rose to 9053 from 8189 on Tuesday. The daily death toll
reached a record 864 in #Spain.” does not mention coronavirus which is impor-
tant entity for event detection, tracking and monitoring. Our system fetches and
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processes the title of the webpage linked to the URL cited in the tweet (http://
bit.ly/39xOhjZ). Concurrently, finding words from the tweet text that are direct
or indirect hyponyms of the event.n.01 synset of the WordNet finds important
words to track/monitor (‘cause’, ‘reach’, and ‘record’).

3.2 Extracting Bursty Phrases

After creating a set of phrases from the dataset as indicated above, using a model
proposed by Twevent [19], we find bursty phrases potentially indicative of an
event. However, our model includes several other factors in finding burstiness
score of a phrase than considered in [19]. Below we outline our method.

Let Nt denote the number of tweets published within the current time window
t and ni,t be the number of tweets containing phrase i in t. The probability of
observing i with a frequency ni,t can be modeled by a Binomial distribution
B(Nt, pi) where pi is the expected probability of observing phrase i in a random
time window. Since Nt is very large in case of Twitter stream, this probability
distribution can be approximated by a Normal distribution p with parameters
E[i|t] = Nt × pi and σ(i|t) =

√
Nt × pi × (1 − pi).

We consider a phrase i as bursty if ni,t ≥ E[i|t]. Using the formula for the
burstiness probability Pb(i, t) for phrase i in time window t defined by [19]:

Pb(i, t) = S(10 × ni,t − (E[i|t] + σ[i|t]
σ[i|t] ) (1)

where S()̇ is the sigmoid function, and since S(x) smooths reasonably well for x
in the range [−10,10], the constant 10 is introduced.

In addition to finding the importance of a phrase based on how many times
it was used in the given time window, we further assign various weight values
based on who authored the phrase, how many times it was retweeted, quoted,
liked, replied to. More formally, let ui,t denote the number of distinct users
authoring phrase i in time window t. Let retweet count of a phrase i in t be
rti,t which corresponds to the sum of the retweet counts of all tweets containing
i in t. Similarly, let li,t be the liked count, qi,t be the quoted count, and rpi,t
be the ‘replied to’ count. Also, in order to assign an importance degree to the
phrases used by those Twitter users who have a significant following, we assign
the weight fci,t as the follower count which is the sum of the follower count of
all users using phrase i in t. Incorporating all the above, the burstiness weight
wb(i, t) for a phrase i in t can be defined as:

wb(i, t) = Pb(i, t) · log(ui,t) · log(rti,t) · log(li,t) · log(qi,t) · log(rpi,t) · log(log(fci,t))
(2)

After finding the burstiness weight for all phrases, the top K are selected in
decreasing order of weights. Empirically, we find that decreasing K results in low
recall, while increasing K brings in a significant noise. [19] suggest an optimal
value of K is set to

√
Nt.

http://bit.ly/39xOhjZ
http://bit.ly/39xOhjZ
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3.3 Clustering Bursty Phrases

We adopt the approach by [19] without any modification to group bursty phrases
to derive event-related clusters. Each time window is evenly split into M sub-
windows t = <t1, t2, . . . , tM>. Let nt(i,m) be the tweet frequency of phrase i
in the subwindow tm and Tt(i,m) be the concatenation of all the tweets in the
subwindow tm that contain phrase i. The similarity simt(ia, ib) between phrases
ia and ib in time window t is calculated as follows:

simt(ia, ib) =
∑

wt(ia,m)wt(ib,m) × sim(Tt(ia,m), Tt(ib,m)) (3)

where sim(Tt(ia,m), Tt(ib,m)) is TF-IDF similarity between tweets Tt(ia,m)
and Tt(ib,m); and wt(ia,m) is the fraction of frequency of segment ia in the
time subwindow tm as calculated as follows:

wt(i,m) =
nt(i,m)
n(i,t)

(4)

Using the above similarity measures, all the bursty phrases are clustered using
a graph-based clustering algorithm [15]. In this method, all bursty phrases are
considered as nodes and initially, all nodes are disconnected. An edge is added
between phrases ia and ib if k-Nearest neighbors of ia contain ib and vice versa.
All connected components of the resultant graph are considered as candidate
event clusters. Each connected component is essentially a set of phrases which
are related to a single event. Disconnected nodes (phrases) are discarded as
non-significant.

3.4 Event Characterization

We characterize an event as a group of phrases associated to it. To visualize this,
we adopt the approach by MABED [10]. An interface is designed to allow us to
visualize the list of relevant tweets defining the event by ‘clicking’ on the event
name.

4 Experiments and Results

We use the corpus collected by [23] Events2012 which contains 120 million tweets
and 506 labeled events. These tweets were collected from Oct 10 till Nov 7,
2012 and were filtered to remove tweets containing more than 3 hashtags, 3
user mentions, or 2 URLs discarding them as spam [6]. However, not all tweets
were available due to some users’ data being not available because of account
inactivation, privacy mode setting changes, etc. Our final dataset contain ∼38
million tweets of which 127,356 are related to events. It should be noted that
these tweets are limited to maximum 140 characters in length since the increased
length (up to 280 characters) was introduced in late 2017. In Table 1 we show
some of the important events in the Events2012 [23] dataset which have more
than 1,500 tweets associated to them.
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Table 1. Top events in Events2012 dataset. Each with more than 1500 tweets associ-
ated to it.

Event ID Manually-annotated event description #tweets

8 During US presidential debate, President Barack
Obama tells candidate Mitt Romney he is the last
person to get tough on China

12805

1 12 Oct 2012 – Paul Ryan spoke for 40 of the 90min
during Thursday night’s vice presidential debate and
managed to tell at least 24 myths during that time

6894

11 Barack Obama and Mitt Romney went head-to-head
in the final Presidential Debate. Romney said no
government that makes businesses successful!

5243

22 The Redbull Stratos jump was a space diving event.
Felix Baumgartner flew many miles into the air
above the south- western U.S. and then jumped,
breaking several world records

2967

52 People react to incoming election results, threatening
to leave the country if their favored candidate does
not win

2289

14 In Major League Baseball, the San Francisco Giants
defeat the Detroit Tigers in game four

1796

4.1 Pre-processing

We perform the following steps sequentially as part of preprocessing the tweet
text and the titles of the webpages linked by the cited URLs in the tweet message:

1. We use the Stanford tokenizer2 to tokenize the tweets.
2. Use of words like cooooolll, awesommmme, are sometimes used in tweets to

emphasize emotion. We use a simple trick to normalize such occurrences.
Namely, let n denote the number of such letters that have three or more
consecutive occurrences in a given word. We first replace three or more con-
secutive occurrences of the same character with two occurrences. Then we
generate

(
n
2

)
prototypes that are at edit distance 1 (only delete operation,

deleting only repeated character) and look for this prototype in the dictio-
nary to find the word. For example, coooooolllll → cooll → cool.

3. We use an acronym dictionary from an online resource3 to find expansions of
the tokens such as gr8, lol, rotfl, etc.

After the pre-processing task, to obtain a list of named entities, we submit
the text to the DBPedia Spotlight [24] web service. We chose DBPedia over other
named-entity recognition software (such as Standford NER [21], OpenNLP [32],
NLTK [20], etc.) because employing such tools yields phrases that induce noise
in the resulting system.
2 https://nlp.stanford.edu/software/tokenizer.htm.
3 http://www.noslang.com.

https://nlp.stanford.edu/software/tokenizer.htm
http://www.noslang.com
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4.2 Evaluation Metrics

As evaluation metrics, we used precision, recall, and DERate (duplicate event
rate, proposed by [19]). Precision conveys the fraction of the detected events that
are related to a realistic event. Recall indicates the fraction of events detected
from the manually labeled ground truth set of events. However, if two detected
events are related to the same realistic event within the same time window, then
both are considered correct in terms of precision, but only one realistic event is
considered in counting recall. Therefore, [19] defined a metric DERate to denote
the fraction of events (in percentage values) that are duplicately detected among
all events detected.

4.3 Baseline Methods

In order to evaluate our proposal, we compare our approach with closely related
works: EDCoW [31], Twevent [19], NEED [22], and MABED [10]. Table 2 shows
the comparative performance of our system to selected state-of-art approaches.
For MABED, we modified their online available code to include hashtags, instead
of user mentions to measure anomaly (ref as MABED+ht). Also, for our system,
in order to observe the effect of WordNet words related to events, we conducted
two sets of experiments where MaTED-WN is the system without using WordNet
words. We share our source code and dataset used online.

4.4 Results and Discussion

Table 2 shows the results we obtained compared to the baseline method.

Table 2. Results on Events2012 dataset

Approach EDCoW Twevent NEED MABED MABED+ht MaTED-WN MaTED

Precision 0.42 0.81 0.61 0.68 0.74 0.83 0.79

Recall 0.38 0.73 0.41 0.43 0.55 0.79 0.82

DERate(%) – 15.6 19.4 17.4 16.7 14.7 14.3

Table 3 shows some of the events detected by MaTED that were not detected
by any of the above systems.

Several parameters impact the performance of the resulting system and the
results shown in Table 2 are obtained by an optimal combination of them. It
is evident from Table 2 that the performance of existing bursty segment detec-
tion based systems is enhanced by including social and Twitter-specific features
incorporated in our system. Especially, we notice a significant improvement in
recall by including title texts of the web pages pointed to by the URLs in the
tweets. A tweet is often a comment on the web page that is shared and there-
fore, by including the title text, the system incorporates a better context for the
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Table 3. A sample of events that only our system could extract.

Date Event Phrases

17.10.2012 Alpha Centauri BB planet
discovered

[solar system], [centauri], [earth],
[exoplanet]

16.10.2012 Ford recalls Fiesta because of
airbag issue

[Ford], [Fiesta], [airbag], [fault]

15.10.2012 Amanda Todd suicide because of
cyber-bullying

[Amanda Todd], [bullying],
[suicide], [RIP]

tweet. Further, because of misspellings, DBPedia Spotlight sometimes fail to find
the named entity and in such cases, tracking event specific words from WordNet
(total 7878 words) helps identify an event. For example, in Table 3, the event on
16.10.2012 about Ford would be missed if the word ‘fault’ was not included in
the list of important key-phrases to be considered. Better results are observed for
MABED+ht as opposed to the original MABED owing to the fact that hashtags
are better indicators of events than user mentions. We attribute our system’s less
precision value than [19]’s system to including several more event-specific phrases
from the web page titles, hashtags, and event-specific words from the WordNet
resulting in a higher recall but at a slight loss of precision (0.79 as opposed to
0.81 of [19]). Finally, we also noticed that many events were not reported in
the crowd-sourced ground-truth Events 2012 corpus. Event on 15.10.2012 about
Amanda Todd suicide is one example of many events we found which were not
included in the corpus.

5 Conclusion

A phenomenal growth in online social network services generate massive amounts
of data posing a lot of challenges especially owing to the volume, variety, veloc-
ity, and veracity of the data. Concurrently, methods to detect events from social
streams in an efficient, accurate, and timely manner are also evolving. In this
paper, we build on an existing system Twevent [19] by incorporating external
knowledge bases of DBPedia and WordNet together with exploiting user’s men-
tions and hashtags contained in Twitter messages for efficient event detection.
In addition, harnessing the fact that a tweet is often just a remark/comment on
the news/information shared in the URL cited in it, we improve event detection
performance by detecting and tracking important event-related phrases from the
titles of the web pages linked to the URLs. We examined the effect of adding
our novel features incrementally and concluded that our model outperforms the
state-of-the-art on the benchmarked Events2012 [23] corpus. Future research
includes investigating usage of distributed semantics (e.g., word embeddings)
incorporated in a larger framework of a deep learning inspired model towards
achieving higher accuracy on event detection from a massive-scale collection of
social media messages.
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Abstract. Knowledge graphs are a data format that enables the repre-
sentation of semantics. Most of the available graphs focus on the repre-
sentation of facts, their features, and relations between them. However,
from the point of view of possible applications of semantically rich data
formats in intelligent, real-world scenarios, there is a need for knowl-
edge graphs that describe contextual information regarding realistic and
casual relations between items in the real world.

In this paper, we present a methodology of generating knowledge
graphs addressing such a need. We call them World-perceiving Knowl-
edge Graphs – WpKG. The process of their construction is based on
analyzing images. We apply deep learning image processing methods to
extract scene graphs. We combine these graphs, and process the obtained
graph to determine importance of relations between items detected on
the images. The generated WpKG is used as a basis for constructing
possibility graphs. We illustrate the process and show some snippets of
the generated knowledge and possibility graphs.

Keywords: Knowledge graph · Deep learning · Common sense ·
Possibility theory

1 Introduction

Knowledge graphs are composed of a set of triple relations, i.e. <subject – pred-
icate – object>, where subjects and objects are items connected via predicates
representing relations between them. The graphs are useful in representing data
semantics and are employed in different applications, such as common-sense and
causal reasoning [1,2], question-answering [3], natural language processing [4],
and recommender systems [5]. Some examples of existing knowledge graphs are
DBpedia [6], Wikidata [7], Yago [8], the now-retired Freebase [9], and WordNet
[10]. The aforementioned knowledge graphs contain information about facts,
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their features, and basic relations between them. They focus on people, geo-
graphical locations, movies, music, and organizations and institutions. They are
missing a piece of information about everyday real-world items, their contexts,
and arrangements.

From the human perspective, we can state that the visual information plays
a significant role in human learning processes [11]. At the same time, the eye’s
information transfer rate is quite high [12] that makes a visual stimulus to be
of significant importance in processes of gaining understanding about different
items and how they are related to each other. Given the importance of visual
data, it is appealing to develop systems that could observe, learn and create
knowledge based on such data. Additionally, traditional knowledge graphs do
not provide any degree of confidence associated with relations. It is assumed
that all of them are equally important.

In this paper, we look at the task of creating knowledge graphs based on
visual data. The idea is to process images, generate scene graphs from them,
and aggregate these graphs. Graphs constructed in such a way contain knowledge
about everyday objects, their contexts and their situational information, as well
as information related to the importance of common-sense relations between
multiple objects in their natural scenarios.

We call such a graph World-perceiving Knowledge Graph, WpKG in short.
The quality and suitability of knowledge we retrieve from images depend on the
capability of tools and methods we use for image processing. Processing an image
means generating a scene graph representing relations between objects/entities
present on this image. Once numerous images are processed, all scene graphs
are aggregated. This alone allows us to treat the process of constructing graphs
via aggregation as the human-like process of learning via processing of observed
images.

We also look at a process of using knowledge graphs – WpKGs – to construct
possibility graphs reflecting conditional dependencies between sets of entities as
observed in their usual environments. The information about the importance
of relations allows us to build possibilistic conditional distributions. They are
used for processing and reasoning about entities and relations between them in
their own relevant contexts. The included case study shows an application of the
presented procedure to Visual Genome (VG) dataset [13].

2 Related Work

Extracting information from different media to create a knowledge graph has
been examined in the literature. Yet, the area of focus of these works has been
different: some of them focus on images, some on text, and some on a combination
of both. Also, the methods used for information retrieval can be different –
automatic or manual. A brief overview is presented in Subsect. 2.1.

Possibilistic knowledge bases and graphs are important forms representing
uncertainty of data and information [14], and [15]. A set of basic definitions is
included in the following subsections.
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2.1 Knowledge Graph Construction

There is a number of different knowledge graph generation methods that focus
on text as the source of information, such as NELL [16], ConceptNet [17], ReVerb
[18], and Quasimodo [19]. Some other published approaches, such as WebChild
KB [20,21] or LEVAN [22], extract knowledge from text and image captions or
only from image objects without in-image relations. Probably, the most relevant
work to our work is NEIL [23], which create a knowledge graph directly from
images.

Compared to NEIL, our proposed automatic approach is capable of extract-
ing much more types of object-to-object relations. Compared to ConceptNet,
which represents an example of a semi-automatic method of retrieving knowl-
edge from text, our proposed approach can extract common-sense relations based
on only observing visual data.

2.2 Possibilistic Knowledge Base

A possibilistic base is a set of pairs (p, α) where p is a proposition, and α is
a degree to which p is true and is in the interval (0, 1) [14]. Let Ω be a set of
interpretations of the real world, and possibilistic distribution π a mapping from
Ω to the interval (0, 1). An interpretation ω that satisfies p has π(ω) = 1, and
1 − α when ω fails to satisfy p. In summary:

∀ω ∈ Ω, π{p α}(w) = 1 if ω |= p

= 1 − α otherwise

From now on, we identify the base as
∑

= {(pi, αi), i = 1, . . . , n}. Then all
interpretations satisfying propositions in

∑
have the possibility degree of 1, while

other interpretations are ranked based on the highest values of α associated with
proposition they do not satisfy, i.e., ∀ω ∈ Ω:

π∑(w) = 1 if ω |=
∑

= 1 − max{αi : (pi, αi) ∈
∑

and ω |= ¬pi} otherwise

In other words, π∑ induces a necessity ‘grading’ of pi that evaluates to what
extent pi is a consequence of the available knowledge. The necessity measure
Nec is:

Necπ∑(pi) = 1 − max{π∑(ω) | ω |= ¬pi}
Based on that, we can say that (pi, αi) is a plausible conclusion of π∑ if

Necπ∑(pi) > Necπ∑(¬pi)

and Necπ∑(pi) ≥ αi [24].
A possibility distribution π∑ is normal if there is an interpretation ω that it

totally possible, i.e., π∑(ω) = 1.
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2.3 Possibilistic Graph

A possibility graph ΠG is an acyclic directed graph [14]. The nodes of such a
graph are associated with variables Ai, each with its domain Di; while its edges
represent dependencies between elements of nodes. For the case of binary vari-
ables, i.e., when Di = {ai,¬ai}, the assignment of value to the variable is called
an interpretation ω. Let us denote a set of nodes that have edges connecting
them to a node Ai as its parents: Par(Ai). Possibility degrees Π associated with
nodes are:

for each node Ai without a parent Par(Ai) = 0 prior possibility degrees
associated with a single node are Π(a) for every value a ∈ Di of the vari-
able Ai; possibilities must satisfy the normalization condition: maxa∈Di

:
Π(a) = 1.

for each node Aj with parent(s) Par(Aj) �= 0 possibility degrees are con-
ditional ones Π(a|ωPar(Aj)) where a ∈ Dj , and ωPar(Aj) is an element
of the Cartesian product of domains Dk of variables Ak ∈ Par(Aj); as
above, conditional possibilities must satisfy the normalization condition:
maxa∈Dj

: Π(a|ωPar(Aj)) = 1.

In our case, a conditional probability measure is defined using min:

Π(p|q) = 1 if Π(q ∧ p) = Π(q)
= Π(q ∧ p) otherwise

and obeys [14]:

Π(q ∧ p) = min{Π(p|q),Π(q)}

3 Generation of Image-Based WpKG

We introduce a systemic approach to generate knowledge graphs given visual
data. Such graphs provide us with contextual information about objects present
in the world with very limited input from humans. There are unique challenges
associated with the generation of this type of graph. First, we need methods
able to detect objects in images, and second, we require tools to extract relations
between the detected objects.

Once we have the object recognition and relation extraction processes, we
execute them on a set of images. The obtained triples – <entity – relation –
entity> are aggregated into a single knowledge graph. The strength of relations
is determined by the number of co-occurrences of objects with specific relations.
The overall process is shown in Fig. 1.

Having a trained model, the process is liberated from specific visual data and
its annotations. Additionally, more visual data can be processed using the pro-
posed methodology and comprehensive context-specific knowledge graphs could
be created.
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Fig. 1. Overall procedure for generation of a knowledge graph from images

3.1 Detection of Objects

To detect objects and their corresponding bounding boxes, we use the Faster R-
CNN model [25]. In this model, the full image is passed through a convolutional
neural network (CNN) to generate image features. To detect image features, usu-
ally a pre-trained CNN, such as VGG network [26], trained on ImageNet [27] is
used. Given the image features as input, another neural network, called Region
Proposal Network (RPN), predicts regions that may contain an object and their
corresponding bounding boxes. This learning network is the principal contribu-
tion of the Faster R-CNN model compared to the Fast R-CNN model [28]. This
results in an improvement of performance in both training and inference. The
regions of interest (RoIs) are then mapped into the image feature tensor, and
via application of a process called RoI Pooling the regions are downsampled to
be fed to the next neural network. This allows for the prediction of image classes
and their correct bounding boxes. Given the error losses from the classification
and bounding box predictions, the entire network is trained end-to-end using
backpropagation and stochastic gradient descent (SGD) [29]. An illustration of
the process can be found in Fig. 1.

3.2 Identification of Relations Between Objects

Determining relations between objects is required to generate scene graphs and
it can be done in several ways. There has been several publications that propose
such methods as Iterative Message Passing [30], Neural Motifs [31], Graphical
Contrastive Losses [32], and Factorizable Net [33]. In our work, we use the Iter-
ative Message Passing model.

The Iterative Message Passing model predicts relations between objects
detected by the Faster R-CNN model. Mathematically, a scene graph generation
process means finding the optimal x∗ = arg maxx Pr(x|I,BI) that maximizes
the following probability function:

Pr(x|I,BI) =
∏

i∈V

∏

j �=i

Pr(xcls
i , xbbox

i , xi→j |I,BI). (1)
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where I is an image, BI represents proposed object boxes, x is a set of all vari-
ables, including classes, bounding boxes and relations (x = {xcls

i , xbbox
i , xi→j |i =

1 . . . n, j = 1 . . . n, i �= j}), with n representing the number of proposed boxes,
xcls

i as a class label of the i-th proposed box, xbbox
i as the offset of bounding box

relative to the i-th proposed box, and xi→j as a predicate between the i-th and
j-th proposed boxes.

3.3 Aggregation of Scene Graphs

The process of amalgamating generated image scene graphs that results in a
single knowledge graph has a number of challenges: 1) establishing a unique
identifier for each entity; 2) identifying the importance of connections; 3) dealing
with missing values and incorrect data; and 4) keeping the knowledge graph
updated in presence of new data.

In the specific case of the Visual Genome dataset, we use synsets from Word-
Net to identify nodes and relations, as well as different meanings of a specific
word. There are various methods to identify the uniqueness of words, such as
using words occurring in natural language, grouping similar words with the same
meaning, or trying to assign words to their specific synsets. Yet, another way is
to keep words and phrases as they are and let their occurrence numbers show
the importance of connections and nodes. Such a simple approach provides a
good indication which relations are more likely to occur.

Another challenge is to mitigate missing or incorrect information. For exam-
ple, the used methods/models could incorrectly label objects/relations and the
processes could fail to find unique words or synsets. Even the hand-annotated
data in the Visual Genome (VG) dataset [13], which is used for training, has
missing and incorrect data [34]. The unknowns are reduced by relying on the
information already present, such as recovering a missing synset based on an
already-known name to synset relation or WordNet.

4 Image-Based WpKG: Experimental Studies

The Iterative Message Passing model [30] is trained on the VG dataset. It con-
tains 108,077 images that capture everyday scenarios. For evaluation, only the
most common 150 object categories and 50 predicates are used.

The Faster R-CNN model that is applied to detect objects and their bounding
boxes is pre-trained on MS-COCO dataset. This dataset has 80 object categories.
The training set is of size 80k images. Validation and test sets are 40k and 20k
images, respectively. Around thirty percent of the VG dataset (test set) is used
to detect objects and predict predicates. The subset has around 30,000 images.
Running the process described in Sect. 3, a WpKG with 138 nodes and 7,287
relations is generated.

Neo4j [35] software is used to store and analyze the generated graph. It allows
us to store object and relationship names and synsets, as well as occurrence
numbers. Also, it visualizes a structure composed of triples subject-predicate-
object.



Image-Based World-perceiving Knowledge Graph (WpKG) with Imprecision 421

One advantage of the generated WpKG is the existence of common sense
relations occurring in the actual world extracted during the processing of visual
data. The most important entities related to the entity of interest can be found
by inspecting the strength of connections between them. One way to accomplish
this is to measure how often these objects are associated with each other.

As an example, the entity plate together with the related entities is shown in
Fig. 2 (a). As we can see, removing non-frequent relations leads to identification
of tightly related objects relevant to the plate, Fig. 2 (b).
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Fig. 2. Relationships to/from plate entity: with at least one instance and interrelation-
ships between associated items (a); and at least 10 instances for each relationship and
without the interrelationships (b).

A sample of relation occurrence statistics is shown in Table 1. Based on the
analysis of visual data, we can find out about some common-sense knowledge,
such as places where a vase can be placed, and what can be put into it. Most
of the relations, such as flower-in-vase, make sense and agree with the crowd-
sourced VG dataset. However, some relations, such as vase-in-vase, may not make
sense. This could be a shortcoming of the method/model used for prediction of
relations. Besides a better model, processing more images and detecting more
types of relations and objects may improve the results.

The comparison of our method, which is based on image processing, with
other relevant automatic and semi-automatic methods is demonstrated in
Table 2.
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Table 1. Three most common relations in WpKG generated using Faster R-CNN and
iterative message passing models to recognize objects and predict relations, respec-
tively.

Subject Predicate Object Occurrence number

Woman

Woman Wearing Shirt 192

Woman Holding Umbrella 168

Woman Has Hair 141

Plate

Plate On Table 388

Plate On Plate 193

Plate On Pizza 19

Flower

Flower In Vase 173

Flower On Table 41

Flower On Tree 15

Vase

Vase On Table 116

Vase In Vase 44

Vase Has Flower 31

5 WpKG-Based Possibilistic Graph and Base

The generated WpKGs consist of an enormous amount of nodes and relations.
The relations – as built via aggregation of scene graph relations – contain infor-
mation about the frequency of occurrence. This means that each relation is
equipped with a weight indicating its strength and importance. For practical
use, WpKG can be further processed and a subset of nodes together with rela-
tions between them can be used to construct a possibilistic graph.

Table 2. Comparison of relevant generated knowledge graphs from literature. Our
method and NEIL are the ones that focus on in-image relations.

Method In-image Input source(s) Relation types Triples Automation

relations

NEIL [23] Yes Image <10 <10K Automated

ConceptNet [17] No Text <100 34M Semi-automated

LEVAN [22] No Text and <10 <100K Automated

Objects in

Images

WebChild KB 2.0 [21] No Text and >1000 >18M Automated

Image/Video

Captions

Quasimodo [19] No Text (logs and Dynamic 2.3M Automated

QA forums)

Our work Yes Image <50 (Dynamic) >7K Automated
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5.1 Extracting Possibilistic Graph from WpKG

A WpKG is constructed with no constrains. It contains cycles, very strong and
weak relations, as well as erroneous information due to the imperfection of used
image processing tools. In that context, a possibilistic graph is more organized
and ‘clean’. Therefore, extracting nodes and edges from WpKG and building a
graph that satisfies rules of the possibilistic graph (Sect. 2.3) seems important
steps in utilizing generated WpKGs.

First, a proto-possibilistic graph is constructed. It is free of cycles and con-
tains outwards relations linked to the entity of interest. The procedure used to
extract relevant entities and connections is presented as Algorithms 1 and 2. The
important aspects of this process are:

Algorithm 1, line 4 the value of Depth identifies the allowed length of a
‘relation chain’ at the process of building a graph;

Algorithm 2, line 6 the procedure randomize createGroups() is crucial in
the construction process: 1) randomization of a sequence of entities allows
to generate graphs with different paths; once this is combined with a process
presented in line 8 (explained below) it prevents the existence of cycles in the
generated graph; 2) grouping of relations/predicates connected to the same
object, i.e., prepositions/adjectives playing the role of relations; as illustra-
tion, see entities flower, window, table, plant, Fig. 3;

Algorithm 2, line 8 this allows to solve an issue of cycles, i.e., relations between
pairs of entities flower-vase, plant-vase and table-vase, Fig. 3, would lead to
cyclic directed graph; however, if a connection between both entities already
exist, a new one – in the opposite direction – is not created.

Algorithm 1: Construction of Proto-Possibilistic Graph
Data: Image-based WpKG; Seed Entity; Depth
Result: Proto-Possibilistic Graph

1 begin
2 root ← Seed Entity;
3 d ← 1;
4 call CreateConn(root, d,Depth);
5 return;

The application of the presented procedure leads to a graph that is acyclic
and direct. It also contains occurrences associated with each connection. The
last step of constructing a possibilistic graph is to determine possibility degrees.
To do so, all input connections to a given node are analyzed. The maximum
value is identified and is used for normalization of all other occurrence values
associated with inward connections to the node. This ensures satisfaction of the
requirement of maximum possibility equal to 1.0 (Sect. 2.3).
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Algorithm 2: Generation of Connections
1 CreateConn(r, d,Depth)
2 begin
3 if d <= Depth then
4 listChild ← create list children(r);
5 if listChild �= ∅ then
6 randomize createGroups(listChild);
7 for e ∈ listChild do
8 if e not connected to r then
9 setupConnection(r, e);

10 call CreateConn(e, d + 1, Depth);

11 else
12 return;

13 else
14 return;

15 return;

5.2 Construction of Possibilistic Base

The extracted possibilistic graph allows us to build a possibilistic knowledge
base. Here, we follow the process presented in [14]. For that purpose, we consider
the graph as a set of triples:

ΠG = {(a, Pa, α) : Π(a|Pa) = α}

where a is an instance of Ai and Pa is the Cartesian product of domains Dk of
variables Ak ∈ Par(Ai). Each such triple can be represented as a formula:

(¬a ∨ ¬Pa, 1 − α)

so, following [14], we have that the possibilistic knowledge base associated with
ΠG defined as:

∑
= {(¬ai ∨ ¬Pai

1 − αi) / (ai, Pai
, αi) ∈ ΠG}

6 Possibilistic Graph and Base: Experimental Studies

Let us illustrate the process of building a simple possibilistic graph and a possi-
bilistic knowledge base. We apply the procedure to build a graph of facts related
to the entity vase, and relations between this entity and other entities from the
vase’s environment.
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Application of Algorithm1 to the generated WpKG allows us to extract enti-
ties related to the entity of interest, vase. The Neo4j snapshot of WpKG with
vase and relations to ‘relevant’ entities is shown in Fig. 3(a). The version pro-
cessed by the algorithm is shown in Fig. 3(b). It contains – marked as dashed
lines – the pairs flower-vase, plant-vase, and table-vase that could result in differ-
ent graphs depending on the element of randomness embedded in the procedure
randomize createGroups(), Algorithm 2.

The WpKG with occurrences assigned to connections allows us to determine
conditional degrees. We have simplified our graph, i.e, combined all inward con-
nections to a node into a single one, as shown in Fig. 3(c). This graph is further
processed – the occurrence numbers are used to determine possibility values.
Based on the graph in Fig. 3(c), we build conditional possibility degrees. All of
them are presented in Tables 3, 4, and 5.

(a) WpKG (b) proto-possibilistic graph (c) possibilistic graph

Fig. 3. A fragment of WpKG and a possibilistic graph constructed based on it.

Table 3. Possibility degrees for Vase, Flower, Counter, and Plant.

(a) Π(Vase)

vase 1.

¬ vase 1.

(b) Π(Counter|Vase)

Counter|Vase vase ¬ vase

counter 1. 1.

¬ counter 1. 1.

(c) Π(Flower|Vase)

Flower|Vase vase ¬ vase

flower 1. 1.

¬ flower 1. 1.

(d) Π(Plant|Vase)

Plant|Vase vase ¬ vase

plant 1. 1.

¬ plant 1. 1.
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Table 4. Possibility degrees for Window – Π(Window|Vase, Flower)

Window|Vase, Flower vase, ¬flower ¬vase, flower Elsewhere

window 1 .545 1.

¬window 1. 1. 1.

Table 5. Possibility degrees for Table –Π(Table|Window, Vase, Flower, Counter)

Shelf|Window,
Vase, Flower,
Counter

window,
¬vase,
¬ flower,
¬counter

¬window,
vase,
¬flower,
¬counter

¬window,
¬vase,
flower,
¬counter

¬window,
¬vase,
¬ flower,
counter

Elsewhere

table .017 1. .347 .017 1.

¬table 1. 1. 1. 1. 1.

The last step of our case study is dedicated to the construction of a possi-
bilistic knowledge base, Sect. 5.2. As a result, we obtain:

∑
= { (¬window ∨ vase ∨ ¬flower, .455),

(¬table ∨ ¬window ∨ vase ∨ flower ∨ counter, .983),
(¬table ∨ window ∨ ¬vase ∨ flower ∨ counter, .653),
(¬table ∨ window ∨ vase ∨ flower ∨ ¬counter, .983) }.

7 Conclusion

The paper focuses on the automatic construction of a knowledge graph – called
World-perceiving Knowledge Graph (WpKG) – that contains results of the anal-
ysis of multiple images. Further, the generated WpKG is processed and multiple
possibilistic graphs can be constructed based on it.

It is shown that using deep learning models, we can extract common-sense
situational information about objects present in visual data. The trained neural
networks may already know these relations implicitly, but extracting this knowl-
edge in the form of a knowledge graph provides the ability to have this infor-
mation explainable and explicit. The strength of the overall procedure depends
on the capabilities of the applied learning model as well as the data it has been
trained on. By improving the models themselves, the overall procedure can be
improved.

Constructed WpKGs are contextualized by images used as an input to the
presented process. A different graph will be obtained when images representing
a specific geographical location are used, while a different graph will be built
based on images illustrated a specific historical event. Also, multiple different
possibilistic graphs can be created to reason about the correctness of contextual
utilization of specific items and relations between them.
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Given the adaptability of WpKG to new scenarios, context-aware and even
time-variant knowledge graphs can be constructed. For example, processing car
images from a specific country will lead to the construction of WpKG repre-
senting a very specific information related to cars’ details and their contextual
settings. Another important aspect that can be considered is time. It can affect
both occurrences of relations and meanings of words linked to the nodes.

As future work, better models can be used to improve the overall construction
process, biases can be reduced by implementing procedures to diversify the input
images, and prediction of unknown objects can be added.
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1 Université Côte d’Azur, CNRS, Inria, I3S, Sophia Antipolis, France
andrea.tettamanzi@univ-cotedazur.fr
2 Kinaxia SA, Sophia Antipolis, France

david.emsellem@kcitylabs.fr
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Abstract. Prompted by an application in the area of human geography
using machine learning to study housing market valuation based on the
urban form, we propose a method based on possibility theory to deal with
sparse data, which can be combined with any machine learning method
to approach weakly supervised learning problems. More specifically, the
solution we propose constructs a possibilistic loss function to account
for an uncertain supervisory signal. Although the proposal is illustrated
on a specific application, its basic principles are general. The proposed
method is then empirically validated on real-world data.

Keywords: Possibility theory · Machine learning · Weakly supervised
learning

1 Introduction

Supervised learning is the machine learning task of learning a function that
maps an input to an output based on example input-output pairs [18]. Each
example consists of an input record, which collects the values of a number of
input variables, and the associated value of the output variable (also called the
supervisory signal). The learnt function can then be used to “predict” the value
of the output variable for new unlabeled input records, whose output value is
not known.

In many real-world problems, obtaining a fully labeled dataset is expen-
sive, difficult, or outright impossible. An entire subfield of machine learning,
called weakly (or semi-) supervised learning has thus emerged, which studies
how datasets where the supervisory signal is not available or completely known
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for all the records can be used for learning. According to a useful taxonomy
of classification problems that can arise in that field [10], four broad classes of
problems can be identified:

– single-instance, single-label (SISL), which corresponds to the standard setting
where all the examples consist of a single instance, to which a single (i.e.,
certain) class label is assigned;

– single-instance, multiple-label (SIML), where some examples, consisting of
single instances, are assigned a (disjunctive) set of possible class labels, includ-
ing, to an extreme, the set of all the class labels, which corresponds to the
case of a missing supervisory signal;

– multiple instance, single-label (MISL), when examples may consist of sets of
instances, being assigned a single label as a whole;

– multiple instance, multiple-label (MIML), when, in addition, some examples
are assigned a (disjunctive) set of possible values.

This taxonomy of course assumes that the output variable of the underlying
objects, which one seeks to predict, can only have a single true value. It should be
mentioned that other problems exist, called multi-label classification [19], where,
for a given underlying object, described by an input record, multiple values can
be active at the same time, which would then be described by a conjunctive set
of output values. In that case, the learnt function is set-valued.

The above taxonomy can be extended to regression or “predictive modeling”
problems, where the “label” is a number, ranging on a discrete or continuous
interval.

In the framework of an interdisciplinary research project applying machine
learning and urban morphology theory to the investigation of the influence of the
urban environment on the value of residential real estate [21], we faced the prob-
lem of incorporating into a predictive model uncertain information associated
with prices, addressing issues of data sparsity, a problem that falls within the
SIML category of the above taxonomy. This prompted us to propose an original
method to deal with output variable uncertainty in predictive modeling, based
on possibility theory, which we present below.

As it has been argued for example by Bouveyron et al. [1], while the prob-
lem of noise in data has been widely studied in the literature on supervised
learning, the problem of label noise remains an important and unsolved problem
in supervised classification. Nigam et al. [15] proposed Robust Mixture Dis-
criminant Analysis (RMDA), a supervised classification whose aim is to detect
inconsistent labels by comparing the labels given for labeled data set with the
ones obtained through an unsupervised modeling based on the Gaussian mix-
ture model. To solve the problem of automatic building extraction from aerial or
satellite images with noise labels, Zhang et al. [23] propose to capture the rela-
tionship between the true label and the noisy label, a general label noise-adaptive
(NA) neural network framework consisting of a combination of a base network
with an additional probability transition module (PTM) introduced to capture
the relationship between the true label and the noisy label. Other researchers
prefer to focus on constructing a loss function that is robust to noise [9].
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However, the uncertainty brought about by data sparsity in our problem
is hard to characterize as a probability distribution, making the application of
one of the probabilistic approaches to weak supervised learning proposed in the
literature unattractive.

Vannoorenberghe et al., instead, proposed a different approach [20] in which
the induction of decision trees is based on the theory of belief functions. In their
framework, it is supposed that the training examples have uncertain or imprecise
labels. In the same spirit, Quost et al. [17] also proposed a belief-function-based
framework to be used for supervised learning, in which the training data are asso-
ciated with uncertain labels. They supposed that each example in the training
data set is associated to a belief assignment that represents the actual knowl-
edge of the actual class of the example and used a boosting method to solve
the classification problem. Denœux et al. [4] introduce a category of learning
problems in which the labels associated to the examples in the training data set
are assessed by an expert and encoded in the form of a possibility distribution.
Although this work is very relevant to what we are proposing here, the authors
obtain their possibility distributions from human experts, which can be expen-
sive and difficult, whereas the method we propose automatically computes those
distributions from data.

Traditionally, housing market valuations are modeled, in a linear fash-
ion, through a combination of intrinsic and extrinsic features evaluated for
each dwelling. Although such linear models provide easy-to-read results, they
are severely limited as they assume linearity and independence among vari-
ables. However, this might not be the case. For example, a specific variable
might change its behaviour for different subsets of observations. More recently,
researchers have applied Machine Learning (ML) techniques to study the same
phenomenon [3,8,16]. However, their aim was mainly predictive. Thus, although
linearity and independence among variables were tackled through the use of such
algorithms, their results lacked interpretability. Finally, the intrinsic/extrinsic
dichotomy does not hold when the goal of the analysis is the valuation of urban
subspaces (like neighborhoods or street segments) instead of individual dwellings.
To tackle these issues, we have devised an approach rooted in Urban Morphol-
ogy to explain housing values at a fine level of spatial granularity, that of street
segments and we designed a sequence of appropriate ML techniques that out-
put interpretable results. To be more specific, the proposed approach, firstly,
computes street-based measures of housing values, urban form, functions, and
landscape and then models the relationship between them through an ensemble
method comprising of Gradient Boosting (GB) [7], topological Moran’s test [14],
and SHAP [13], a recently developed technique to interpret outputs of ML algo-
rithms. The approach has been used to explain the median valuation of street
segments in the French Riviera, using housing transactions from the period 2008–
2017, through more than 100 metrics of urban form, functions, and landscape.

One difficulty this approach runs into is that transaction data, which are
the only source of observations of the output variables (the measures of housing
values), are rather sparse at the scale of the street segment. One possible way to
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overcome this difficulty would be to limit our study to those street segments for
which enough observations are available, e.g., at least ten transactions within
the observation period; however, this drastically reduces the number of street
segments that can be studied and introduces a bias toward neighborhoods having
a relatively high turnover. An alternative and more attractive solution, which is
the subject of this paper, is to use all available observations, while taking into
account the uncertainty brought about by data sparsity.

Essentially, the solution we propose is to model the uncertainty relevant
to the output variable within the framework of possibility theory and modify
the loss function of the ML technique, used to model the phenomenon, so that
it can weight the error based on the uncertainty of the output variable. This
approach is very much in the same spirit as the fuzzy loss function proposed
by Hüllermeier [11,12]. An important advantage of such solution is that it is
readily transferable to any supervised or semi-supervised ML technique using a
loss function (which is the case for the vast majority of such techniques).

The rest of the paper is organized as follows: Sect. 2 provides some back-
ground on possibility theory, which is required in order to understand the pro-
posed approach; Sect. 3 states the main question we address, as it emerges from
the real-estate price study that motivated our proposal. The proposed solu-
tion itself is presented in Sect. 4, while Sect. 5 discusses its empirical validation.
Section 6 draws some conclusions and proposes some ideas for further research.

2 Background on Possibility Theory

Fuzzy sets [22] are sets whose elements have degrees of membership in [0, 1].
Possibility theory [6] is a mathematical theory of uncertainty that relies upon
fuzzy set theory, in that the (fuzzy) set of possible values for a variable of interest
is used to describe the uncertainty as to its precise value. At the semantic level,
the membership function of such set, π, is called a possibility distribution and its
range is [0, 1]. A possibility distribution can represent the available knowledge of
an agent. π(I) represents the degree of compatibility of the interpretation I with
the available knowledge about the real world if we are representing uncertain
pieces of knowledge. By convention, π(I) = 1 means that it is totally possible
for I to be the real world, 1 > π(I) > 0 means that I is only somehow possible,
while π(I) = 0 means that I is certainly not the real world.

A possibility distribution π is said to be normalized if there exists at least one
interpretation I0 s.t. π(I0) = 1, i.e., there exists at least one possible situation
which is consistent with the available knowledge.

Definition 1 (Possibility and Necessity Measures). A possibility distribution π
induces a possibility measure and its dual necessity measure, denoted by Π and
N respectively. Both measures apply to a classical set S ⊆ Ω and are defined as
follows:

Π(S) = max
I∈S

π(I); (1)

N(S) = 1 − Π(S̄) = min
I∈S̄

{1 − π(I)}. (2)
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In words, Π(S) expresses to what extent S is consistent with the available
knowledge. Conversely, N(S) expresses to what extent S is entailed by the avail-
able knowledge. It is equivalent to the impossibility of its complement S̄—the
more S̄ is impossible, the more S is certain. A few properties of Π and N induced
by a normalized possibility distribution on a finite universe of discourse Ω are
the following. For all subsets A,B ⊆ Ω:

1. Π(A ∪ B) = max{Π(A),Π(B)};
2. Π(A ∩ B) ≤ min{Π(A),Π(B)};
3. Π(∅) = N(∅) = 0; Π(Ω) = N(Ω) = 1;
4. N(A ∩ B) = min{N(A), N(B)};
5. N(A ∪ B) ≥ max{N(A), N(B)};
6. Π(A) = 1 − N(Ā) (duality);
7. N(A) > 0 ⇒ Π(A) = 1; Π(A) < 1 ⇒ N(A) = 0;

A consequence of these properties is that max{Π(A),Π(Ā)} = 1. In case of
complete ignorance on A, Π(A) = Π(Ā) = 1.

3 Problem Statement

To make this paper self-contained, we briefly recall here some elements, relevant
to the solution we are going to describe in Sect. 4, of the problem that moti-
vated our proposal. The interested reader can refer to [21] for a more detailed
explanation.

3.1 Pre-processing

Housing transactions of different years and housing typologies cannot be directly
compared due to yearly inflation, housing market cycles (e.g., economic reces-
sion, upturn), and specific market behaviours affecting different housing types.
For example, bigger properties tend to be sold less frequently as they are more
expensive and subject to long term investments, while smaller properties, due
to their relative lower valuations, tend to be exchanged more easily and tend
to be subject of shorter-term investments. The average price per square meter
tends also to be structurally higher for small flats for technical reasons (even
the smallest flat needs sanitary and cooking equipment, which proportionally
weigh more on the average price per surface unit compared to a larger prop-
erty). The very notion of average price per square meter can thus be challenged
when applied to such diverse housing markets. To address these issues, instead
of the conventional price per square meter, our method requires to separate the
transactions by year and housing type and compute ventiles of prices for each
subset year of transaction - housing type. We consider such statistics as appro-
priate normalized values, which account for different market segments and years,
thus making transactions comparable among them.
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3.2 Computation of the Median of Values

Having classified each transaction in a ventile of value, the next step requires
to first assign to each data point the street segment to which they belong and,
second, aggregate the information on value at the street level through the com-
putation of a measure of central tendency (i.e., median). Such measure provides
information on the central point of the distribution of the value of the housing
market, for each street. We perform such computation for the ensemble of each
street segment and its immediate neighbouring streets. This for two reasons:
firstly, transactions located in streets directly connected to one another tend to
have similar valuations (due to the influence of the same location factors, pres-
ence of properties at the intersection of several streets segments, etc.); secondly,
data on house prices tend to be quite sparse, even for several years, and thus a
local interpolation allows us to increase the data coverage. Nevertheless, most
street segments end up having less than ten transactions per housing type, which
introduces uncertainty into the computation of the median statistics.

3.3 Street-Based Metrics of the Urban Environment and Landscape

To characterize the context of each street segment in the most comprehensive
way possible, we compute a set of descriptors that quantify aspects of the urban
fabric, street-network configuration, functions, housing stock, and landscape.
Their definition is out of the scope of this paper.

4 Proposed Solution

In abstract terms, we can describe the problem as follows. We are given a sam-
ple of observed variates x1, x2, . . . , xn and a number of probability distributions
(the hypothesis space). We want to assess the possibility degree of these proba-
bility distributions based on the given sample, i.e., the degree to which they are
compatible with the observations.

4.1 Possibility of a Price Distribution

We can limit ourselves to parametric families of distributions. In this case, this
problem can be described as a sort of possibilistic parameter estimation. In
the Incertimmo project, we consider distributions described by three deciles:
(d1, d5 = median, d9). We recall that the ith decile di is the smallest number
x satisfying Pr[X ≤ x] ≥ i

10 . By definition, d1 ≤ d5 ≤ d9. Furthermore, for a
probability distribution defined in the [a, b] interval, we know that 10% of the
probability mass is in the [a, d1] interval, 40% in the (d1, d5] interval, 40% in the
(d5, d9] interval, and 10% in the (d9, b] interval. We make the additional simpli-
fying assumption that the probability mass is uniformly distributed within each
of the above intervals. While this might look like a very restrictive assumption,
on the one hand it is motivated by the type of qualitative descriptions of price
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distribution that are of interest to the human geographers (i.e., by the appli-
cation at hand) and, on the other hand, could easily be relaxed by selecting
other parametric families of distributions without serious consequences on the
proposed approach.

This yields a parametric family of probability distributions on the [a, b] inter-
val whose density (in the continuous case) or probability (in the discrete case)
function is

f(x; d1, d5, d9) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
10(d1−a) , a ≤ x ≤ d1;

2
5(d5−d1)

, d1 < x ≤ d5;
2

5(d9−d5)
, d5 < x ≤ d9;

1
10(b−d9)

, d9 < x ≤ b.

(3)

The degenerate cases that arise when d1 = d5, d5 = d9, or d9 = b are treated
by adding to the result the contributions of the lines whose condition becomes
empty.

In the specific application described in Sect. 3, as we have seen, the observed
variates are ventiles of the general distribution of housing prices, taking up values
in the discrete set {1, 2, . . . , 20}.

Given the sample x1, x2, . . . , xn, it is easy to compute the probability that it
is produced by a given distribution of the parametric family, having parameters
(d1, d5, d9). This is

Pr[x1, x2, . . . , xn | (d1, d5, d9)] =
n∏

i=1

f(xi; d1, d5, d9). (4)

This probability is in fact a likelihood function over the distribution of price
ventiles, which we will denote by L(d1, d5, d9).

The link between likelihoods and possibility theory has been explored in [5].
The main result of that study was that possibility measures can be interpreted
as the supremum of a family of likelihood functions. It should be stressed that
this is an exact interpretation, not just an approximation. Based on this result,
we transform the likelihood function L into a possibility distribution over the
set of parametric probability distributions of the form (d1, d5, d9).

Notice that the parameters d1, d5, d9 of the probability distributions are the
elementary events of this possibility space. A possibility distribution over that
space is obtained by letting

π(d1, d5, d9) = L(d1, d5, d9)/Lmax, (5)

where
Lmax = max

1≤x≤y≤z≤20
L(x, y, z),

with x, y, z ∈ {0, 1, . . . , 20}, so that all the maximum-likelihood probability dis-
tributions have a possibility degree of 1, thus yielding a normalized possibility
distribution. Alternatively, the logarithm of the likelihood could be used instead.
We restrict the values of the three parameters to the set {0, 1, . . . , 20}, because
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prices are relative and expressed in ventiles in the application at hand. Of course,
for other applications, different ranges of values should be considered.

Now, specific values or intervals of one parameter will constitute complex
events, i.e., sets of elementary events, and their possibility and necessity mea-
sures can be computed as usual, as the maximum of the possibilities of the
distributions that fit the specification and 1−max of all the others, respectively.
For instance, the possibility measure over the median price ventile (d5) of a given
street segment will be given, for all d5 ∈ {1, . . . , 20}, by

Π(d5) = max
1≤x≤d5≤y≤20

π(x, d5, y), (6)

where π(·, ·, ·) is defined as in Eq. 5.

4.2 Loss Function Under Possibilistic Uncertainty

The error made by the model predicting that the median price for a street
segment is in ventile ŷ when all we know is the possibility distribution π over
the probability distributions of the prices for that segment, can be defined as

L(ŷ, π) =
∫ 1

0

min
Π(y)≥α

(ŷ − y)2dα, (7)

where Π(y) is the possibility measure of the distributions having y as their
median. Equation 7 is based on an underlying square error function e(y) = (ŷ −
y)2, but it could be easily generalized to use an arbitrary error function.

In practice, if Λ = (0 = λ1, λ2, . . . , 1) is the list of possibility levels of π, such
that ∀i > 1,∃(z, y, z) : π(z, y, z) = λi, Eq. 7 can be rewritten as

L(ŷ, π) =
‖Λ‖∑

i=2

(λi − λi−1) min
Π(y)≥λi

(ŷ − y)2. (8)

This loss function has been coded in Python in such a way that it could be
provided as a custom evaluation function to an arbitrary machine learning
method offering this possibility. Most of the loss computation requires iterating
through all price distributions of the parametric family (with the three parame-
ters 0 ≤ d1 ≤ d5 ≤ d9 ≤ 20, there are 1,540 of them). To optimize performance,
we pre-computed the loss function into a lookup table. Since we are using Gradi-
ent Boosting Gradient descent (Newton version in XGBoost), we have provided
also functions that return its gradient and Hessian.

5 Experiments and Results

In this section we report the experiments we carried out to validate our method.
We use real-world data consisting of all the housing transactions made on the
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French Riviera over the period 2008–2017.1 Each record contains detailed intrin-
sic features of the dwelling that was sold/bought, including its address and the
price paid. From these data, we compiled a dataset whose records correspond to
street segments, described by more than 100 metrics of urban form, functions,
and landscape, and a distribution of price ventiles for each type of dwelling.

Our goal is to compare the performance of a predictive model trained on this
dataset, where the labels are uncertain, due to sparseness of transaction data,
to the performance of a predictive model trained on a dataset where the labels
are certain (in our case, estimated based on a sufficient number of transactions).
If the model trained under uncertainty is able to obtain results similar to those
of the model trained without uncertainty, this can be taken as evidence that our
method is successful at compensating for the loss of transaction data.

5.1 Experimental Protocol

We proceeded as follows. From our dataset, we extracted the set of street seg-
ments having at least 10 recorded transactions. These are the street segments for
which we consider that the distribution of prices can be estimated in a reliable
way. Let us call this dataset D.

Fig. 1. A graphical illustration of the sampling mechanism used to create subsamples
of the original dataset.

We then constructed a second dataset D′ by randomly subsampling the trans-
actions from the street segments of D, in such a way as to obtain a similar dis-
tribution of the number of transactions per street segment as in the full dataset
(i.e., the dataset including also segments having fewer than 10 recorded trans-
actions). For example, if in the full dataset 15% of the street segments has more
than 10 recorded transactions (by the way, this subset of the full dataset is what
we have called D), then also 15% of the street segments of D′ has more than 10
transactions. In general, if the percentage of street segments in the full dataset
that have n transactions is x, then D is samples so that the percentage of street
1 Extracted from the PERVAL database, https://www.perval.fr/.

https://www.perval.fr/
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Table 1. Distribution of available transactions per street segment for different sub-
sampling rates. Column “≥10” gives the number of street segments with at least 10
transactions, “[3, 9]” the number of street segments with 3 to 9 transactions, and so
on.

Rate ≥10 [3, 9] [1, 2] = 0

100% 14,317 – – –

90% 13,404 913 – –

80% 12,366 1,951 – –

70% 11,125 3,190 2 –

60% 9,939 4,364 14 –

50% 8,527 5,695 95 –

40% 6,917 6,989 406 6

30% 5,055 8,050 1,149 63

20% 2,998 8,184 2,791 344

10% 814 6,013 5,610 1,880

segments in D′ that have n transactions be as close as possible to x. This way,
we can say that D′ is to D as D is to the set of all street segments in the study
area and, as a consequence, any observation about the predictive power on D of
models trained on D′ can provide, by proportional analogy, an indication of the
predictive power on the full dataset of models trained on D. Figure 1 graphically
illustrates this sampling mechanism and Table 1 provides some statistics about
the dataset D′ that we obtain depending on the chosen sampling rate.

Notice that the two datasets D and D′ have the same size (in our case, 14,317)
and consist of exactly the same street segments; what differs between them is the
number of transactions available to estimate the distribution of prices for each
street segment. In dataset D, the distribution is known precisely, and it has the
form (d1, d5, d9). In dataset D′, instead, all is known is a possibility distribution
π, as explained in Sect. 4.

5.2 Validation of the Possibility Distribution

To show that the possibility distribution π defined as per Eq. 5, as well as its
associated possibility and necessity measures, does indeed qualitatively describe
the actual price distribution, we studied the possibility (computed according to
Eq. 6) of the observed median price ventile m of street segments. Ideally, Π(m)
should be 1 for every street segment, if π perfectly described how the prices are
distributed.

Figure 2 shows the probability distribution of Π(m) for different sampling
rates of the set of transactions. We can observe that when the possibility dis-
tributions π of transaction prices for each street segment is constructed using
all the recorded transactions (which are at least 10 for any one of the 14,317
street segments considered for this study), the median is assigned a possibility
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of 1 for most street segments, with some exceptions, which, upon inspection,
turned out to be street segments whose price distribution is not unimodal. Since
the parametric family of distribution used to fit the actual price distributions
is unimodal, the most likely values for their parameters are those that make
d5 correspond to one of the modes. This is an intrinsic limitation introduced
by the particular choice of a unimodal family of distribution, which was made
to simplify the geographical interpretation of the result; however, despite this
limitation, the results of the study seem to confirm the validity of the method
used to construct the possibility distributions.

Fig. 2. Distribution of Π(m) for different subsampling rates.

Unsurprisingly, as the sampling rate decreases, the number of street segments
for which the median is assigned a high possibility decreases.

5.3 Empirical Test of the Method

To conduct our tests, we selected, among all possible predictive modeling meth-
ods, XGBoost [2], which is the one that gave the best results when applied to
dataset D based on a critical comparison and benchmarking of the most popular
methods available. The rationale of this choice is that we wanted our solution to
“prove its mettle” on a very challenging task, namely to prevent the degradation
of the accuracy of the strongest available method when the supervisory signal
becomes uncertain.

We trained a model to predict the median of ventile prices (i.e., d5) on dataset
D by using XGBoost regression with the standard loss function and we trained
another model on dataset D′ by using XGBoost regression instrumented with
the proposed possibilistic loss function. We compare the results given by these
two models when applied to a test set consisting of street segments not used to
train the models. We treat the model trained on dataset D as the ground truth
and we measure the deviation of the model trained on D′ from such a target.

As a measure of prediction error, we compute the RMSD of the median
(d5) predicted by the model trained on D′ for each segment, with respect to the
median of that segment in D. We used a sampling rate of 20% to generate D′ from
D, i.e., D′ contains only 20% of the transactions available in D. We split D′ into
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Fig. 3. Results obtained on the test set by applying XGBoost regression to D′ with
the possibilistic loss function.

a training set containing 80% of the street segments and a test set containing the
remaining 20% of the street segments. After training the model on the training
set, we obtain an RMSD of 2.778556 on the test set. Figure 3 shows a plot of
predicted vs. actual price ventiles for the test set. For comparison, XGBoost
using the standard loss function based on MSE trained on 80% of D (therefore,
with full information), gives an RMSD of 2.283798 when tested on the remaining
20%. In other words, the possibilistic loss function allows the prediction error to
increase by less than 22%, even though 80% of the transactions were removed
from the dataset!

6 Conclusion

We have proposed a method based on possibility theory to leverage sparse data,
which can be combined with any machine learning method to approach weakly
supervised learning problems. The solution we propose constructs a possibilistic
loss function, which can then be plugged into a machine learning method of
choice, to account for an uncertain supervisory signal.

Our solution is much in the same spirit as the fuzzification of learning algo-
rithms based on the generalization of loss function proposed in [11], in that it
pursues model identification at the same time as data disambiguation, except
that in our case ambiguity (i.e., uncertainty) affects the output variable only,
which is only partially observable in the available data, while all the input vari-
ables are perfectly known and, thus, non-ambiguous. Furthermore, as in [11], the
predictive model is evaluated by looking at how well its prediction fits the most
favorable instantiation of the uncertain labels of the training data (this is the
sense of the minimum operator in the possibilistic loss function definition).
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The development of the method we presented has been motivated and driven
by a very specific application, namely by the need to leverage sparse data in a
human geography setting. However, its working principle is quite general and
could be extended to suit other scenarios. Indeed, distilling a completely general
method is the main direction for future work.
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2 SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, Évry, France
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Abstract. Influence maximization is a fundamental problem in several
real life applications such as viral marketing, recommendation system,
collaboration and social networks. Maximizing influence spreading in a
given network aims to find the initially active vertex set of size k called
seed nodes (or initial spreaders (In this paper, we use seed set and ini-
tial spreaders interchangeably.)) which maximizes the expected num-
ber of the infected vertices. The state-of-the-art local-based techniques
developed to solve this problem are based on local structure informa-
tion such as degree centrality, nodes clustering coefficient, and others
utilize the whole network structure, such as k-core decomposition, and
node betweenness. In this paper, we aim at solving the problem of influ-
ence maximization using maximal clique problem. Our intuition is based
on the fact that the presence of a dense neighborhood around a node
is fundamental to the maximization of influence. Our approach follows
the following three steps: (1) discovering all the maximal cliques from
the complex network; (2) filtering the set of maximal cliques; we then
denote the vertices belonging to the rest of maximal cliques as super-
ordinate vertices, and (3) ranking the superordinate nodes according to
some indicators. We evaluate the proposed framework empirically against
several high-performing methods on a number of real-life datasets. The
experimental results show that our algorithms outperform existing state-
of-the-art methods in finding the best initial spreaders in networks.

Keywords: Influence maximization · Maximal clique · Independent
cascade model

1 Introduction

Influence maximization problem in social networks has become a hot topic in
recent years due to the great deal of real-life applications concerned, such as
viral marketing and disease spreading. One of its application in the field of viral
marketing is to select a set of highly influential users to adopt a particular prod-
uct and the goal here is to attract as much as possible of users for purchasing
this product [4,6,10]. In order to model the process of the spread of an idea or
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an information through a given network, Kempe et al. [15] proposed two mod-
els named Independent cascade model (ICM) and Linear threshold model
(LTM). The independent cascade model is the most common model for informa-
tion diffusion. In this model (Algorithm 1), the input are a graph in which every
edge (u, v) is associated with a propagation probability puv (represents the prob-
ability that node v can be influenced by node u) and a set of initially activate
nodes (seed set) and the diffusion probability called also activation threshold θ.
In this model, nodes can have two states, either active or inactive. Nodes are
allowed to switch from inactive to active but not in the other. As shown in Algo-
rithm 1, the diffusion model starts with an initial set of active nodes (t = 0).
In time t, an active node u will get chance to activate its inactive neighbor v.
v will become active if puv ≥ θ, otherwise u will not get any further chance to
activate v. The process of diffusion stops when no further activation is possible.
This method is called independent because the activation of a node does not
depend on the history of active nodes. In the linear threshold model, the idea
is that a node becomes active if a large part of its neighbours is active. More
formally, each node u has a threshold tu. The threshold represents the fraction of
neighbours of u that must become active in order to active the node u. Influence
maximization problem is the problem of assigning a subset of k users as seed
nodes in a graph that could maximize the spread of influence by maximizing the
expected number of influenced users.

2 Related Works

Choosing the best k initially active nodes in order to maximize the number
of activated nodes at the end of the diffusion process had made a prominent
place in several works. Numerous techniques have been developed for both
efficient and effective influence maximization. Related works can be classified
in to four categories: local-based approaches, global-based approaches, community-
based approaches, and approximation-based approaches. Algorithms of the local-
based category use the local information of the network in order to select the
best k influential nodes. The first solution proposed in this category is to select
nodes with higher number of neighbors. That is, select the nodes based on their
degree scores. Domingos and Richardson [10,17] were the first to study this
as an algorithmic problem. Algorithms in the global-based approaches exploit
the information of the whole network. In this category, a plethora of centrality
measures such as betweeness centrality [11,12], M-centrality [13] and coreness
centrality [16] are proposed in order to rank nodes according to their topological
importance in the network. M-Centrality measure combines the information on
the position of the node in the network with the local information on its nearest
neighborhood. The position is measured by the K-shell decomposition, and the
degree variation in the neighborhood of the node quantifies the influence of the
local context. Coreness is a well-established centrality index that focuses on the
structure of networks. Authors in [16] found that the most efficient spreaders
are those located within the core of the network as identified by the k-shell
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decomposition analysis. Betweenness centrality identifies key nodes in a network
called bridges. A bridge is a node that has short paths to other nodes in the net-
work. Despite the efficiency of the local-based and the global-based approaches in
terms of time which is very fast, these approaches may result in less influence over
the network. Studies in [3] showed that the degree-based and centrality-based
approaches may result in less influence over the network. The reason behind it
might be, these measures do not consider the effect of neighborhood. Indeed,
a given group of connected nodes may have a high degree or a high centrality
score, but if their adjacent nodes are overlapped then the information may not
propagate through the rest of the network. Several approaches are proposed to
deal with the problem of neighborhood overlapping. In [7], a faster method that
considers the neighbors of each node is required in order to avoid overlapping.
Algorithms of the category of community-based use the communities in the net-
work as an intermediate step to select the most influencial nodes [8]. Authors of
[8] improve the efficiency of influence maximization by incorporating informa-
tion on the community structure of the network into the optimization process.
They detect the community structure of the input network using the concept of
(maximal) cliques problem. Algorithms in the category of approximation-based
give the worst case bound for influence spread [15]. However, most of them suffer
from the scalability issues, which means, with the increase of the network size,
running time grows heavily.

Algorithm 1: Independent Cascade Model
Input: A network G = (V,E) and A0 = {v0, ..., vk} denote the set of

initially activated nodes; θ denote the activation threshold
Output: A set of final activated nodes

1 while Ai �= ∅ do
2 Ai ← Newly activated nodes;
3 for u ∈ Ai do
4 for v ∈ Nu do
5 if θ <= puv then Ai+1 ← Ai+1 ∪ {v} ;
6 return A0 ∪ A1 . . . ∪ Ai

In this paper, by utilizing maximal clique problem, we propose IMSN (Influ-
ence Maximization using Superordinate Nodes), which is a novel algorithm for
influence maximization in large networks. IMSN is based on superordinate nodes
to look for the initial vertex set which maximizes the expected number of the
infected vertices in the independent cascade model. IMSN starts by discover-
ing all the maximal cliques from the complex network represented as a graph.
We then denote the vertices belonging to the set of maximal cliques with size
greater than or equal to α as superordinate vertices. As a next step, we propose
two indicators to rank influential individuals in the networks. We then simulate
the information spread using the complete random simulation used in [15]. We
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also compare the simulation results of our IMSN algorithm against two popular
algorithms for influence maximization problem.

3 Background

Formally speaking, a complex network is generally abstracted as a graph with
entities as the vertex set and the relationships (co-authorship, friendship, etc.)
between them as the edge set. Graphs discussed in this paper are simple and
undirected. Formally, an undirected graph is defined as a pair G = (V,E) where
V is a set of nodes and E ⊆ V ×V is a set of edges. We denote by n (respectively
m) the number of nodes (respectively edges) in G. For a node u ∈ V , we denote
by Nu the set of neighbors of u, i.e., Nu = {v ∈ V : (u, v) ∈ E}. The degree of a
node u ∈ V , denoted by du, is equal to |Nu|. The concept of maximal cliques is
defined as follows:

Definition 1 (Clique, Maximal Clique). Let G = (V,E) be an undirected
graph. Then, a clique of G is a subset of nodes C ⊆ V such that whatever v1
and v2 belong to C, then the edge (v1, v2) belongs to E. A clique C of G is said
maximal if for any x ∈ V \C, C ∪ {x} is not a clique. The set of all maximal
cliques of G will be denoted by C.

A clique represents a densely connected structure in the graph, as such it
can be used to recover the locally most related elements, useful for several data
mining tasks such as clustering, frequent patterns and community mining [14].

Given a network G, an integer k and an activation threshold θ, in the problem
of influence maximization we are looking for the initial active vertex set of size
k which maximizes the expected number of the infected vertices. As shown by
Kempe et al. in [15], the optimization problem is NP-complete. A plethora of
work has emerged in order to solve the problem of influence maximization, for
which we refer the reader to existing surveys [3].

4 Influence Maximization Based on Maximal Cliques

Maximal cliques are widely used in several real life applications. For instance,
in anomaly detection, signals of rare events are defined as a set of large max-
imal cliques [5]. In data visualisation, maximal cliques are used to visualize a
large graph where the cliques are grouped together in the display. In commu-
nity detection problem, also known as graph clustering, a rigorous way to model
communities is to consider maximal cliques, that is, maximal (with respect to
set inclusion) subgraphs in which any pair of nodes is connected by an edge.
The objective of this paper is to develop a solution for influence maximization
in real networks based on maximal clique problem. To illustrate our method
for influence maximization problem, we build our intuition from the following
simple but very relevant principle: a node can be a good infector in a network if
multiple maximal cliques contain it. This intuition is based on the fact that the
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presence of a dense neighborhood around a node is fundamental to the maxi-
mization of influence, because in this way the node can spread the information
between dense regions of the network. The proposed SNIM (Superordinate Nodes
for Influence Maximization) follows three phases (Fig. 1). The first phase detects
the maximal cliques of the input network, where a maximal clique is a clique
that cannot be extended by including one more adjacent vertex. Such maximal
cliques are really the ideal communities structures, that one would like to find. In
complex networks, a community structure is a subset of individuals who interact
with each other more frequently than other individuals outside the community.
In the second phase, maximal cliques with size smaller than a fixed threshold α
are removed. This simple tactic may also find the most largest maximal cliques.
We then denote the vertices belonging to the rest of maximal cliques with size
greater than or equal to α as superordinate vertices. The main idea here is to
select from each set of intersecting maximal cliques the most k influential nodes.
To do this, we use some indicators that can find a group of nodes of size k that
by acting all together maximize the expected number of influenced nodes at the
end of the spreading process, formally called Influence Maximization.

Detect maximal cliques superordinate nodes Seed nodes

Indicators

FilteringG(V,E) k

Fig. 1. Overview of SNIM algorithm

Let us now introduce two simple but very relevant indicators which scores
the superordinate nodes based on their connectivity to other nodes. The first
indicator called superordinate vertex frequency is defined as follows:

F(u) =
∑

c∈C

σu,c (1)

where the sum is over maximal cliques C obtained after the procedure of filtering,
σu,c = 1 if u ∈ c and 0 otherwise. This first indicator quantifies the ability of
a node to connect different maximal cliques. Then, a high score of frequency of
a given node is obtained if the node belongs to many maximal cliques. Let us
now denote the set of intersecting maximal cliques on a given node u by Iu, the
second indicator quantify the set of vertices that could be influenced directly by
a given node, i.e, the number of nodes in the union of maximal cliques containing
the node u. More formally, this indicator is defined as follows:

W(u) =

∣∣∣∣∣
⋃

c∈Iu

c

∣∣∣∣∣ (2)
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where the union is over maximal cliques containing the node u. It is clear in
this second indicator that the more nodes in the union of the set of intersecting
maximal cliques on node u, the higher value of W(u) is obtained.

Next, we show how to select the seed nodes using the two indicators (1) and
(2). Let f be a function which assigns a number to each node in the graph. Such
number is computed using the indicators (1) and (2) as follows:

f :
{

v 	→ F(v) ∗ W(v)

The function f scores the superordinate nodes based on the principle that
a node can be a good infector if it is a member of many maximal cliques and
has a strong connection with the other nodes. The nodes with large value f can
work as an infection bridge between different maximal cliques, since in real life
a person or a company can be a good infector if it appears in many different
areas of life [1].

Example 1. Let us consider the undirected network depicted in Fig. 2. Using
the two indicators F and W, for each node we have: {F(1) = F(2) = F(7) =
F(8) = F(11) = 2;F(3) = F(4) = F(5) = F(6) = 3;F(10) = F(12) = 4}
and {W(1) = W(2) = W(7) = W(8) = 4;W(3) = W(4) = W(5) = W(6) =
W(10) = W(11) = W(12) = 5}.

As a result, the two nodes 10 and 12 have the best value of f .

1

2

10

3

4

5

6

11

7

8

12

Fig. 2. Example of undirected graph

4.1 Algorithm

Algorithm 2 describes the general feature of our superordinate nodes based pro-
cedure to determine the initial spreaders in the graph. It proceeds as follows:
first the set of maximal cliques are identified. Then, a procedure of filtering is
done using a parameter α. As a next step, we rank all the superordinates nodes
following the principle using the function f .

After that only k nodes are selected to be initial spreaders. The question
now is how to select the k initial spreaders among all the superordinates nodes?
The easiest solution would probably be a selection of the top k nodes with the
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Algorithm 2: Superordinate Nodes for Influence Maximization
Input: A network N = (V,E), α, k > 1
Output: A set of initial spreaders

1 C = maximalCliques(N );
2 NS = superordinatesNodes(C,α) ;
3 for u ∈ NS do
4 Compute(F(u));
5 Compute(W(u));
6 f(u) = F(u) ∗ W(u);
7 S ← ∅;
// Top k not connected nodes

8 while |S| <= k − 1 do
9 Let v the node with

10 the maximum score of f ;
11 if ∀u ∈ S (u, v) /∈ E then
12 S ← S ∪ {v};
13 NS ← NS \ {v};

// Link-discount
14 while |S| <= k − 1 do
15 Let v the node with
16 the maximum score of f ;
17 S ← S ∪ {v};
18 for u ∈ Nv do
19 if u ∈ NS then
20 W(u) ← W(u) − 1;
21 Recompute(f(u));
22 NS ← NS \ {v};
23 return S

highest value of f . However, if two nodes having several friends in common
are selected as initial spreaders then their influence will overlap and will cause
negative effect for influence maximization. For example, suppose that the nodes
2 and 3 are selected as initial spreader in the graph presented in Fig. 2, since most
of the neighbors of node 1 are also neighbors of node 2, then their influence will
overlap and will cause negative effect for influence maximization. To overcome
this drawback, we propose to select the initial spreader nodes following two
methods. (1) The first method called IMSNnc (line 8–13 in Algorithm 2) in
which we select the top k not connected nodes with the highest value of f . (2)
Our second method called IMSNld (line 14–22 in Algorithm 2) in which the
main idea is that if one superordinate node is considered as seed, then the links
connecting this node with the other superordinate nodes not yet chosen will be
discounted, i.e., when considering the next node, the links connecting this node
with the other superordinate nodes already in the seed set will be discounted.



452 N. Mhadhbi and B. Raddaoui

Example 2. Let us consider the undirected depicted in Fig. 2 and let k = 2. Using
the principle of ’top k not connected superordinate nodes’ procedure, nodes 10
and 12 are considered as initial spreaders.

5 Experimental Evaluation

The proposed algorithm, referred to as SNIMnc/ld was written in Python. Given
an input network as a set of edges, our algorithm starts by generating the set
of maximal cliques. To detect maximal cliques, we consider the state-of-the-art
algorithm proposed in [9]. We compare our algorithm with two popular algo-
rithms in influence maximization problem, namely degree-based algorithm and
degree-discount algorithm. The degree-based heuristic is commonly used in the
sociology literature as estimates of a node’s influence [18]. The degree-based
heuristic chooses nodes v in order of decreasing degrees dv in a given graph G.
Authors of [2] and [18] used high-degree nodes as influential nodes. The Gen-
eral idea of the degree discount algorithm proposed in [7] is that if one node
is considered as seed then the links connecting this node with the other node
will not be counted as a degree, i.e., when considering the next node, the links
connecting with the nodes already in the seed set will be discounted.

The comprehensive performance study conducts on two real world datasets,
Amazon network and Dblp network. In each experiment, we vary parameters,
of the diffusion model, to compare the influence spread (number of activated
nodes) of four algorithms. For our experimental study, all algorithms have been
run on a PC with an Intel Core i7 processor and 16 GB memory. We imposed
1 h time limit for all the methods.

Complete Simulation: To compute the expected number of infected vertices,
we use the random simulation used in [15]. More specifically, for a given activa-
tion threshold θ and for each seed set identified by an algorithm, we simulate the
independent cascade model 10000 times (number of iteration). At each time, we
choose randomly the propagation probability puv between each two connected
nodes u and v in the graph. The expected number of infected nodes is the total
of activated nodes throughout the simulation process divided by the number of
iteration.

Results on Amazon Instance: We discuss the influence maximization on
a large real-life dataset, Amazon network [19]. It is a product network, where
nodes denote the products. If a product i is frequently co-purchased with prod-
uct j, the graph contains an undirected edge from i to j. Amazon network
contains 334 863 nodes and 925 872 edges. We analyze the efficiency and influ-
ence spread of our algorithms (IMSNnc and IMSNld) with respect to different
numbers of seeds and values of parameters. For the filtering procedure, we set
the minimum size of the maximal cliques α to the value 3. Figure 3(c) shows
the influence spread of different algorithms with different number of seeds on
Amazon. The x-axis indicates the number of seeds and y-axis indicates influence
spread. In most cases, IMSNnc’s influence spread > IMSNld >=’s influence
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spread > Degree discount’s influence spread > degree’s influence spread. With
the increasing number of seeds, IMSNnc get better influence spread than the
baselines.

(a) Influence spread of 20 seeds (b) Influence spread of 50 seeds

(c) Influence spread of different algorithms with θ = 0.01

Fig. 3. Results on Amazon network

Figures 3(a) and 3(b) perform the influence spread of 20 seeds and 50 seeds
with different θ values (0.01, 0.1 and 0.5). The x-axis indicates activation thresh-
old and y-axis indicates influence spread. The results reflected in the figures
show that although total influence spread of the four algorithms will decrease as
θ increases. Notice that IMSNnc improves its influence spread with the increas-
ing of θ.

Results on Dblp Instance: Now, we discuss the influence maximization on
a second dataset, named Dblp [19]. It is a large real-life academic collaboration
dataset in Computer Science. Each node in the undirected network represents
an author. If an author i co-authored a paper with author j (they publish at
least one paper together), the graph contains an undirected edge between i and
j. Dblp network contains 317 080 nodes and 1 049 866 edges. For the filtering
procedure, we set the minimum size of the maximal cliques α to the value 3.
In Fig. 4(c), we report the influence spread of the four algorithms for different
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(a) Influence spread of 20 seeds (b) Influence spread of 50 seeds

(c) Influence spread of different algorithms with θ = 0.01

Fig. 4. Results on Dblp instance

values of k and for θ = 0.01. Specifically, we simulated the information spread
for 10 <= k <= 50. Figure 4(c) clearly shows that our SNIMnc algorithm
outperforms SNIMld, degree-based algorithm and degree-discount algorithm in
most cases of k. Figures 4(a) and 4(b) perform the influence spread of 20 seeds
and 50 seeds, respectively with different θ values (0.01, 0.1 and 0.5). The x-axis
indicates activation threshold and y-axis indicates influence spread. The results
reflected in the figures show that although total influence spread of the four
algorithms will decrease as θ increase. It is clear in theses figures that SNIMnc

algorithm outperforms the other algorithms in all cases of k and θ.
Overall, in terms of influence spread, SNIMnc > SNIMld >= degree −

discount > degree − based. In terms of scalability, our algorithm is able to
maintain the same efficiency when the number of nodes and edges increase.
Indeed, several efficient parallel algorithms to solve the problem of maximal
cliques are proposed in the last decade.

6 Conclusion

In this paper, we proposed an algorithm for influence maximization problem in
networks based on maximal clique problem. In particular, we make an origi-
nal use of a particular concept of nodes called superordinate nodes. Then, we
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introduced two indicators in order to select the most influential nodes in the
graph. There are many possible directions for future works. Possible improve-
ments can be obtained by designing better indicator functions for superordinate
nodes selection. Another direction is to extend our proposed framework in order
to use other cohesive structures such as k-plex, k-truss, etc. We also plan to
extend our method in order to deal with the problem of influence maximization
in dynamic networks.
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Abstract. Analyzing human mobility with geo-location data collected
from smartphones has been a hot research topic in recent years. In this
paper, we attempt to discover daily mobile patterns using the GPS data.
In particular, we view this problem from a probabilistic perspective. A
non-parametric Bayesian modeling method, the Infinite Gaussian Mix-
ture Model (IGMM) is used to estimate the probability density of the
daily mobility. We also utilize the Kullback-Leibler (KL) divergence as
the metrics to measure the similarity of different probability distribu-
tions. Combining the IGMM and the KL divergence, we propose an
automatic clustering algorithm to discover mobility patterns for each
individual user. Finally, the effectiveness of our method is validated on
the real user data collected from different real users.

Keywords: Probabilistic model · Infinite Gaussian Mixture Model ·
Kullback-Leibler divergence · Human mobility

1 Introduction

Smartphone devices are equipped with multiple sensors that can record user
behavior on the handsets. With the help of large-scale smartphone usage data,
researchers are able to study human behavior in the real world. Since location
information is one of the crucial aspects of human behaviors, investigating human
mobility from mining mobile data has drawn the attentions of many researchers.

Previous research in this filed mainly focused on discovering the significant
places or predicting the transition among the significant places [2,6,11]. How-
ever, these research neglected the data sampled at the places where one stays for
a relatively short time period, for instance, amid the transitions. As opposed to
this point of view, we suggest that these type of data is important for revealing
human mobility patterns as well. In our work, the human mobility is recorded by
the GPS modules embedded on the smartphone devices. It should be emphasized
that GPS data (longitudes and latitudes) are not evenly distributed spatially
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because one may stay longer at the significant places (i.e., a home or school)
than at the less significant places (i.e., a restaurants or road). Thus, an appro-
priate description for human mobility is to treat the location of an individual
as a set of data points randomly distributed in the space with respect to differ-
ent probabilities. Moreover, in practice, the data collecting procedure may not
be continuous all the time because the GPS module is turned off or does not
function well sometimes. As a consequence, it arises the issue of data sparsity.
These unique data characteristics prevent researchers adopting some conven-
tional methods. Therefore, in our work, we adopt a probabilistic approach to
describe the daily human mobility. As compared to conventional methods, we
believe our approach can explore more information from the original GPS data
and mitigate the impact of data sparsity.

The first step of the method is to estimate the probability density for each
day’s trajectories. For such a task, Gaussian Mixture Model [14] is a possible
solution. However, the standard Gaussian Mixture Model needs to set the num-
ber of components in advance, which is tricky to implement because the trajec-
tory data can be statistically heterogeneous and a fixed component number for
all the daily trajectories is not appropriate either. To handle this problem, we
adopt the Infinite Gaussian Mixture Model (IGMM) [13], in which the Dirich-
let process prior is used to modify the mixed weights of components. Further,
to measure the difference between different mobility probability densities, the
Kullback-Leibler (KL) divergence [9] is used. The KL divergence is an asym-
metric metric, which means the distance from distribution p to distribution q is
not the same as the distance from distribution q to distribution p unless they
are identical. We exploit the inequality property of the KL divergence to reveal
the subordinate relationship of one trajectory to another. Finally, we devise a
clustering algorithm using the IGMM with the KL divergence to discover the
mobility patterns existing in human mobility data. More importantly, as com-
pared to traditional methods, our clustering algorithm is automatic because it
does not require a preset of the pattern number.

The reminder of the paper is organized as follows. Section 2 surveys the
related work. Section 3 addresses the problem we are tackling in this paper.
In Sect. 4, the proposed method is depicted. In Sect. 5 presents the conducted
experiment and its results to evaluate our method with real user data. Finally,
we conclude our paper and discuss about the future work in Sect. 6.

2 Related Work

A widespread topic is to predict human mobility with the smartphone usage
contextual information, e.g., temporal information, application usage, call logs,
WiFi status, Cell ID, etc. In [2] for instance, the researchers applied various
machine learning techniques to accomplish prediction tasks such as the next-
time slot location prediction and the next-place prediction. In particular, they
exploited how different combinations of contextual features are related to smart-
phone usage can affect the prediction accuracy. Moreover, they also compared
the predicting performances of the individual models and the generic models.
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Another frequently-used method for such tasks is to use probabilistic mod-
els. By calculating the conditional probabilities between contextual features,
[5] developed the contextual conditional models for the next-place prediction
and visit duration prediction. In [4], the researchers presented the probabilis-
tic prediction frameworks based on Kernel Density Estimation (KDE). [4] uti-
lized conditional kernels density estimation to predict the mobility events while
[12] devised different kernels for different context information types. In [11], the
authors developed a location Hierarchical Dirichlet Process (HDP) based app-
roach to model heterogeneous location habits under data sparsity.

Among the other possible approaches, [18] proposed a Hypertext Induced
Topic Search based inference model for mining interesting locations and travel
sequences using a large GPS dataset in a certain region. In [6], the authors
employed the random forests classifiers to label different places without any geo-
location information. [15] made use of nonlinear time series analysis of the arrival
time and residence time for location prediction.

In particular, for clustering user trajectories, there exists several different
methods. However, these conventional algorithms are not applicable to our objec-
tives. For example, some researchers used K-means [1] in their work, whereas K-
means can not handle the trajectories with complex shapes or noisy data because
it is based on Euclidean distance. Besides, it also needs the pre-knowledge of the
cluster numbers, which is not acquirable in many real-world cases. DBSCAN
[17], a density-based clustering techniques, can deal with data with arbitrary
shapes and does not require the number of cluster in advance. However, it still
needs to set the minimum points number and neighbourhood radius to recog-
nize the core areas and it treats the non-core data points as noise. As for the
grid searching algorithm [5], it focus on detecting the stay points within a set of
square regions, whereas it fails to reveal the mobility at a larger scale.

3 Problem Formulation

In this paper, our purpose is to discover the mobility patterns for each indi-
vidual from the GPS location data. As shown in Fig. 1a, the mobility for one
individual consists of many different trajectories (the data is from the MDC
dataset, the detailed data description will be in following experiments). A tra-
jectory here means that a set of GPS data points collected from the user’s
smartphone, however, we do not treat it as a sequence. We believe that one’s
daily mobility is rather regular and there are common mobility patterns shared
among different daily trajectories. Generally, one may follow the regular daily
itineraries, for instance, home-work place/school-home. Yet, on different days
the daily itineraries may not be the same, for instance, on the way to home, one
may take a detour to do shopping in a supermarket sometimes. Hence, our objec-
tive is to discover all the potential daily mobility from the data with location
information.

We extract each day’s trajectory from the all GPS trajectories from a user.
Figure 1b reveals that daily trajectories recorded by GPS data are not distributed
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(a) All GPS trajectories from a randomly
selected user.

(b) A randomly selected daily trajectory
from the user.

Fig. 1. GPS data samples.

evenly in space. It may be caused by the data collecting procedure: some data
collecting time period is actually relatively short (less than 24 h, in fact, only
few hours sometimes), which leads to the data sparsity problem. In order to
overcome this problem and exploit as much information as possible from the
GPS data, we argue that a reasonable way to describe the daily trajectories is
to estimate the probability density of the location data. The relationship among
the trajectories can be represented by their probability densities. As a result, we
can discover all the mobility patterns for each user. The tasks in this paper will
be as follows:

– Task 1: to estimate the probability density for mobility for each day.
– Task 2: to measure the closeness between different trajectories.
– Task 3: to discover the similar mobility patterns.
– Task 4: to compare the proposed algorithm with other methods.

4 Proposed Method

4.1 Estimating Daily Trajectories Probability Density

We assume that the GPS location data points are distributed randomly spatially.
The distribution of each day also consists of unknown number of heterogeneous
sub-distributions. Therefore, one feasible method is to use mixed Gaussian mod-
els for estimating the probability density of daily mobility.

Gaussian Mixture Model. A Gaussian Mixture Model (GMM) is composed
of a fixed number K of sub-components. The probability distribution of a GMM
can be described as follows:

P (x) =
K∑

k=1

πkP (x|θk) (1)
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Fig. 2. The plate representation of Infinite Gaussian Mixture Model.

where, x is the observable variable, πk is the assignment probability for each
model, with

∑K
k=1 πk = 1, (0 < πk < 1), and θk is the internal parameters of the

base distribution.
Let zn be the latent variables for indicating categories.

zn ∼ Categorical(zn|π)
K∑

k=1

znk = 1 (2)

where, zn = [zn1, zn2, ..., znk, ..., znK ], in which only one element znk = 1. It
means xn is correspondent to θk.

If the base distribution is a Gaussian, then:

P (x|θk) = N(x|μk, Λ−1
k ) (3)

where, μk is the mean vector and Λk is the precision matrix.
Therefore, an observable sample xn is drawn from GMM according to:

xn ∼
K∏

k=1

N(xn|νk, Λk)znk (4)

As it is illustrated above, one crucial issue of GMM is to pre-define the
number of components K. It is tricky because the probability distribution for
each day’s mobility is not identical. Thus, to define a fixed K for all mobility
GMM models is not suitable in our case.

Infinite Gaussian Mixture Model. Alternatively, we resort to the Infinite
Gaussian Mixture Model (IGMM) [13]. As compared to the finite Gaussian Mix-
ture Model, by using a Dirichlet process (DP) prior, IGMM does not need to
specify the number of components in advance. Figure 2 presents the graphical
structure of the Infinite Gaussian Mixture Model.

In Fig. 2, the nodes represent the random variables and especially, the shaded
node is observable and the unshaded nodes are unobservable. The edges represent
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the conditional dependencies between variables. The variables within the plates
means that they are drawn repeatedly.

According to Fig. 2, the Dirichlet process can be depicted as:

G ∼ DP (α,G0) (5)

where, G is a random measure, which consists of infinite base measures G0

and λ is the hyper-parameter of G0. In our case, it is a series of Gaussian distri-
butions. And α ∼ Gamma(1, 1) is the concentration parameter. N is the total
samples number. θk is the parameters of base distribution. Xk is the observable
data for θk. Zk is the latent variables that indicates the category of Xk.

Alternatively, G can be explicitly depicted as follow:

G(θ) =
∞∑

k=1

πkδθk
(6)

where, θk ∼ G0(λ), and δ is Dirac function. πk determines the proportion
weights of the clusters and the δθk

is the prior of the θk to determine the location
of clusters in space.

We choose the Stick-breaking process (SBP) [16] to implement the Dirichlet
process as the prior of πk. The Stick-breaking process can be described as follow:

πk = νk

k−1∏

j=1

(1 − νj) k ≥ 2 (7)

where, νk ∼ Beta(1, α).
Since P (x|θ) is Gaussian, θ = {μ,Λ}. Further, let G0 be a Gaussian-Wishart

distribution, then, μk, Λk ∼ G0(μ,Λ). Therefore, similarly, drawing an observ-
able sample xn from IGMM can be described as follow:

xn ∼
∞∏

k=1

N(xn|νk, Λ−1
k )

znk (8)

Variational Inference (VI) is used to solve the IGMM models. In contrast
with Gibbs sampling, a Markov chain Monte Carlo (MCMC) method, VI is
relatively faster which makes it salable to large datasets [3]. The results will be
demonstrated in the later experiments.

4.2 Measure Daily Trajectories Similarities

The Kullback-Leibler (KL) divergence is a metric to evaluate the close-
ness between two distributions. For continuous variables, the KL divergence
DKL(p||q) is the expectation of the logarithmic difference between the p and q
with respect to probability p and vice versa. From (9) and (10), it can be seen
that the KL divergence is non-negative and asymmetric. In many occasions, the
inequality of the KL divergence is notorious. However, in our method, we take
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advantage of this characteristic of inequality to reveal the similarities among
different trajectories instead of other symmetric metrics.

DKL(p||q) =
∫ ∞

−∞
p(x) log(

p(x)
q(x)

)dx (9)

DKL(q||p) =
∫ ∞

−∞
q(y) log(

q(y)
p(y)

)dy (10)

There is no closed form to implement the KL divergence by the definition of
(9) and (10) for Gaussian Mixture Models. Therefore, we resort to the Monte
Carlo simulation method proposed in [7]. Then, the KL divergence can be cal-
culated via:

DKLMC
(p||q) =

1
n

n∑

i=1

log(
p(xi)
q(xi)

) (11)

DKLMC
(q||p) =

1
n

n∑

i=1

log(
q(yi)
p(yi)

) (12)

This method is to draw a large amount of i.i.d samples xi from distribution
p to calculate DKLMC

(p||q) according to (11) and DKLMC
(p||q) → DKL(p||q)

as n → ∞. It is the same for implementing (10) by using (12). The results will
be demonstrated in the later experiments. Furthermore, if we define a repre-
sentative trajectory for a mobility pattern then we can distinguish whether a
new trajectory belong to this cluster by comparing it to the most representative
trajectory. To this end, we need to set a threshold with a lower bound and an
upper bound for the KL divergences, afterwards it can be used as the metrics to
cluster the trajectories.

4.3 Discovering Mobility Patterns

The proposed algorithm is shown in Algorithm 1 and its variables are described
in Table 1. The first step of the clustering algorithm is to calculate the probability
densities by using the Infinite Gaussian Mixture Models. At this step, we create
a list, in which the members are the probability densities of each trajectories.
Then the first cluster is created with one trajectory as its first member and it
also will be the first baseline trajectories used to compare with other trajectories.
It may be replaced by other trajectories later. Afterwards, we select another
daily trajectory in the list and calculate the KL divergences, both DKL(p||q) and
DKL(q||p). The new trajectory is added to the current cluster if the minimum and
maximum of the KL-divergences are smaller than the lower threshold and the
upper threshold of the thresholds respectively at the same time. If the DKL(p||q)
is smaller than DKL(q||p), the new trajectory become the new baseline for the
current cluster. This step will be repeated until all the trajectories belonging
to the current cluster are discovered at the end of this iteration. Then all the
members of the current cluster are removed from the iteration because we assume
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that each trajectory can only be the member of one mobility pattern. At the start
of new iteration, a new cluster is created, the above steps will be repeated until
the list is empty.

Table 1. Variables description

Variable Domain Description

D Integer Total number of data
collecting day

d {1, 2, . . . , D} Index of data collecting day

X {X1, X2, . . . , Xd, . . . , XD} Total GPS data (longitudes,
latitudes

P {P1, P2, . . . , Pd, . . . , PD} Probability density for X

M {M1, M2, . . . , Mk, . . . MK} Total mobility patterns list

K Integer Total number of Discovered
mobility patterns

Mk {Xk1, Xk2, . . . , Xkn} Discovered mobility pattern
sub-members list

Th {Lower bound, Upper bound} Thresholds for distinguishing
patterns

DKL {DKL(p||q), DKL(q||p)} KL divergences

As it can be seen that our algorithm is designed to discover the latent mobility
patterns automatically without the pre-knowledge of the number of existing
patterns.

5 Experiments and Results

5.1 Data Description

We use the Mobile Data Challenge (MDC) dataset [8,10] to validate our method.
This dataset records a comprehensive smartphone usage with fine granularity of
time. The participants of the MDC dataset are up to nearly 200 and the data
collection campaign lasted more than 18 months. This abundant information can
be used to investigate individual mobility patterns in our research. We attempt
to find the trajectories that belong to the same mobility patterns, therefor we
focus on the spatial information of the GPS records, namely, the latitudes and
longitudes, while the time-stamps of the data are not considered. In addition,
the data we use is unlabeled and without any semantic information.

5.2 Experimental Setup

For the experiments, we randomly select 20 users with sufficient data. Each user’s
is segmented by the time range of one day. Generally, the data length of each
day varies from less than 4 h to 24 h and most of them is less than 8 h.
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Algorithm 1. Algorithm for Discovering Mobility Pattern
Input: X
Output: M

1: P ← IGMM(X) � probability density estimation

2: Initialize:M = {Mk} � create the mobility patterns set
3: while P �= ∅ do
4: Xs = X1 � set a baseline mobility for Mk

5: Mk = {Xs} � create current pattern Mk

6: for d = 2, . . . , D do
7: DKL ← (Ps, Pd) � measure similarity
8: if (min(DKL) < Th[0]) & (max(DKL) < Th[1]) then � two patterns are

similar
9: add Pd to Mk � add new member

10: if DKL[0] > DKL[1] then
11: Ps ← Pd � change the baseline mobility
12: end if
13: end if
14: end for
15: remove Pd ∈ Mk from P � current pattern is finished

16: create Mk+1 � find new mobility pattern
17: add Mk+1 to M
18: end while
19:

return M

(a) GMM estimation (b) IGMM estimation)

Fig. 3. Distribution estimation by GMM and IGMM (negative log-likelihood)

5.3 Experimental Results

Probability Density Estimation. Fig. 3a and Fig. 3b show the density esti-
mation results obtained by the GMM and the IGMM, respectively. It can be seen
that, compared to the GMM, the result of the IGMM is less overfitting than the
GMM. It suggests that the IGMM is not affected by the number of components
and it infers more information from the original data and it is less influenced by
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data sparsity. That is to say, on the same dataset, the computational results of
the IGMM have higher fidelity. Hence, in our approach, we chose the IGMM to
estimate probability density of daily mobility.

Measuring Daily Trajectories Similarities. As shown in Fig. 4, we select
5 daily trajectories from the data of one random user to demonstrate the KL
divergences between different trajectories. The baseline trajectory is Trajectory
1 and the rest of trajectories are chosen to make comparisons.

Table 2. KL-divergences for different trajectories.

p q DKL(p||q) DKL(q||p)

Trajectory 1 Trajectory 2 7.21 2.82

Trajectory 1 Trajectory 3 1.28 1.83

Trajectory 1 Trajectory 4 19.07 1269.47

Trajectory 1 Trajectory 5 3.08 996.17

The combinations are shown in Fig. 4 and the results are illustrated in
Table 2. Trajectory 2 is nearly a sub-part of Trajectory 1, the KL divergence
values are both small, thus Trajectory 2 and Trajectory 1 can be regarded to
belong to the same mobility pattern. Trajectory 3 is very similar to Trajectory 1
and DKL(p||q) almost equals to DKL(q||p). Hence, they also are the members

(a) Trajectory 1 and Trajectory 2 (b) Trajectory 1 and Trajectory 3

(c) Trajectory 1 and Trajectory 4 (d) Trajectory 1 and Trajectory 5

Fig. 4. Comparison between different trajectories.
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of the same mobility pattern. Trajectory 4 shares a small part with Trajectory
1 whereas generally they are very different. DKL(p||q) and DKL(q||p) are both
very large. Therefore, Trajectory 4 and Trajectory 1 are different patterns. For
Trajectory 5 and Trajectory 1. DKL(p||q) is small but DKL(p||q) are very large.
So they naturally are not in the same pattern. Finally, we can say that the Kl
divergence can be used as the distance metrics to distinguish different trajectory
patterns.

Discovering Daily Mobility Patterns. We run our algorithm on the data
of the 20 users to discover their daily mobility patterns. The partial clustering
results are demonstrated in Fig. 5. It proves our method is able to find different
mobility patterns even under the condition of noise and discontinuity. Figure 6
shows that our approach is able not only to identify the different patterns in
the daily trajectories data but also to find the most representative trajectories
for each mobility pattern. Figure 7a shows the number of discovered mobility
pattern for all the user in our experiments. Figure 7b depicts the number of
members for each discovered mobility patterns for all users.

Comparing with Other Methods. In comparison with the IGMM-based
model, we utilize Kernel Density Estimation (KDE) and a set of Gaussian Mix-
ture Models with different numbers of components (GMM-n), to estimate the
daily mobility probability densities in our proposed clustering algorithm. Since
the GPS data are not labeled, which means that the ground truth is not avail-
able. In this case, we run our algorithm on all the trajectories collected from the
20 users and choose the mean log-likelihood, which indicts the reliability of the
models, as a reasonable evaluation metrics. The results in Table 3 show that our
method outperforms other conventional methods.

Fig. 5. Discovered mobility patterns from 3 random selected users. Different colors
represents different days. (Color figure online)
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Fig. 6. Representative trajectories for each discovered mobility patterns.

(a) Number of discovered mobility
patterns for each user.

(b) Empirical cumulative distribution of
discovered pattern members.

Fig. 7. Statistical analysis of discovered patterns.

Table 3. Overall mean log-likelihood for different models

Model Mean log-likelihood

KDE −51991.03

GMM-1 −26078.15

GMM-2 −38514.32

GMM-3 −52431.62

GMM-4 −63794.70

GMM-5 −73508.10

Proposed −24871.78
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6 Conclusion

In this work, we present a probabilistic approach to discover human daily mobil-
ity patterns based on GPS data collected by smartphones. In our approach,
the human daily mobility is considered as sets of probability distributions. We
argue that Infinite Gaussian Mixture Model is more appropriate than the stan-
dard Gaussian Mixture Model on this issue. Further, in order to find the similar
trajectories, we use the Kullback-Leibler divergences as the distance metrics.
Finally, we devise a novel automatic clustering algorithm combining the advan-
tages of IGMM and the KL divergence so as to discover human daily mobility
patterns. Our algorithm do not need the knowledge of the cluster number in
advance. For validation, we conducted a set of experiments to prove the effec-
tiveness of our method. For further study, we plan to use WiFi fingerprint data
and other machine learning methods to study human mobility.
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Abstract. Supervised learning is an important branch of machine learn-
ing (ML), which requires a complete annotation (labeling) of the involved
training data. This assumption, which may constitute a severe bottle-
neck in the practical use of ML, is relaxed in weakly supervised learning.
In this ML paradigm, training instances are not necessarily precisely
labeled. Instead, annotations are allowed to be imprecise or partial. In
the setting of superset learning, instances are assumed to be labeled
with a set of possible annotations, which is assumed to contain the cor-
rect one. In this article, we study the application of rough set theory in
the setting of superset learning. In particular, we consider the problem of
feature reduction as a mean for data disambiguation, i.e., for the purpose
of figuring out the most plausible precise instantiation of the imprecise
training data. To this end, we define appropriate generalizations of deci-
sion tables and reducts, using information-theoretic techniques based on
evidence theory. Moreover, we analyze the complexity of the associated
computational problems.

Keywords: Feature selection · Superset learning · Rough sets ·
Evidence theory

1 Introduction

In recent years, the increased availability of data has fostered the interest in
machine learning (ML) and knowledge discovery, in particular in supervised
learning methodologies. These require each training instance to be annotated
with a target value (a discrete label in classification, or a real number in regres-
sion). The annotation task is a fundamental component of the ML pipeline, and
often a bottleneck in terms of cost. Indeed, the high costs caused by the stan-
dard annotation process, which may require the involvement of domain experts,
have triggered the development of alternative annotation protocols, such as those
based on crowdsourcing [4] or (semi-)automated annotation [12].

A different approach, which has attracted increasing attention in the recent
years, is the combination of supervised and unsupervised learning techniques,
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sometimes referred to as weakly supervised learning [30]. In this setting, training
instances are not necessarily labeled precisely. Instead, annotations are allowed
to be imprecise or partial.

A specific variant of weakly supervised learning is the setting of superset
learning [9,16,18], where an instance x is annotated with a set S of (precise)
candidate labels that are deemed possible. In other words, the label of x cannot
be determined precisely, but is known to be an element of S. For example, an
image could be tagged with {horse,pony, zebra}, suggesting that the animal
shown on the picture is one of these three, though it is not exactly known which
of them. Superset learning has been widely investigated under the classification
perspective [10,15], that is, with the goal of training a predictive model that is
able to correctly classify new instances, despite the weak training information.
Nevertheless, the task of feature selection [6], which is of critical importance for
machine learning in general, has not received much attention so far.

In this article, we study the application of rough set theory in the setting of
superset learning. In particular, we consider the problem of feature reduction as
a mean for data disambiguation, i.e., for the purpose of figuring out the most
plausible precise instantiation of the imprecise training data. Broadly speaking,
the idea is as follows: An instantiation that can be explained with a simple model,
i.e., a model that uses only a small subset of features, is more plausible than an
instantiation that requires a complex model. To this end, we will define appro-
priate generalizations of decision tables and reducts, using information-theoretic
techniques based on evidence theory. Moreover, we analyze the complexity of
the associated computational problems.

2 Background

In this section, we recall basic notions of rough set theory (RST) and evidence
theory, which will be used in the main part of the article.

2.1 Rough Set Theory

Rough set theory has been proposed by Pawlak [19] as a framework for rep-
resenting and managing uncertain data, and has since been widely applied for
various problems in the ML domain (see [2] for a recent overview and survey).
We briefly recall the main notions of RST, especially regarding its applications
to feature reduction.

A decision table (DT) is a triple DT = 〈U,Att, t〉 such that U is a universe
of objects and Att is a set of attributes employed to represent objects in U .
Formally, each attribute a ∈ Att is a function a : U → Va, where Va is the
domain of values of a. Moreover, t /∈ Att is a distinguished decision attribute,
which represents the target decision (also labeling or annotation) associated with
each object in the universe. We say that DT is inconsistent if the following holds:
∃x1, x2 ∈ U,∀a ∈ Att, a(x1) = a(x2) and t(x1) �= t(x2).



Superset Learning Using Rough Sets 473

Given B ⊆ Att we can define the indiscernibility partition with respect to B
as πB = {[x]B ⊂ U | ∀x′ ∈ [x]B ,∀a ∈ B, a(x′) = a(x)}. We say that B ⊆ Att is
a decision reduct for DT if πB ≤ πt (where the order ≤ is the refinement order
for partitions, that is, πt is a coarsening of πB) and there is no C � B such
that πC ≤ πt. Then, evidently, a reduct of a decision table DT represents a set
of non-redundant and necessary features to represent the information in DT .
We say that a reduct R is minimal if it is among the smallest (with respect to
cardinality) reducts.

Given B ⊆ Att and a set S ⊆ U , a rough approximation of S (with respect to
B) is defined as the pair B(S) = 〈lB(S), uB(S)〉, where lB(S) =

⋃{[x]B | [x]B ⊆
S} is the lower approximation of S, and uB(s) =

⋃{[x]B | [x]B ∩ S �= ∅} is the
corresponding upper approximation.

Finally, given B ⊆ Att, the generalized decision with respect to B for an
object x ∈ U is defined as δB(x) = {t(x′) |x′ ∈ [x]B}. Notably, if DT is not
inconsistent and B is a reduct, then δB(x) = t(x) for all x ∈ U .

We notice that in the RST literature, there exist several definitions of reduct.
We refer the reader to [25] for an overview of such a list and a study of their
dependencies. We further notice that, given a decision table, the problem of find-
ing the minimal reduct is in general ΣP

2 -complete (by reduction to the Shortest
Implicant problem [28]), while the problem of finding a reduct is in general NP -
complete [23]. We recall that ΣP

2 is the complexity class defined by problems that
can be verified in polynomial time given access to an oracle for an NP-complete
problem [1].

2.2 Evidence Theory

Evidence theory (ET), also known as Dempster-Shafer theory or belief function
theory, has originally been introduced by Dempster in [5] and subsequently for-
malized by Shafer in [21] as a generalization of probability theory (although this
interpretation has been disputed [20]). The starting point is a frame of discern-
ment X, which represents all possible states of a system under study, together
with a basic belief assignment (bba) m : 2X → [0, 1], such that m(∅) = 0 and∑

A∈2X m(A) = 1. From this bba, a pair of functions, called respectively belief
and plausibility, can be defined as follows:

Belm(A) =
∑

B:B⊆A

m(B) (1)

Plm(A) =
∑

B:B∩A �=∅
m(B) (2)

As can be seen from these definitions, there is a clear correspondence between
belief functions (resp., plausibility functions) and lower approximations (resp.,
upper approximations) in RST; we refer the reader to [29] for further connections
between the two theories.
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Starting from a bba, a probability distribution, called pignistic probability,
can be obtained [26]:

Pm
Bet(x) =

∑

A:x∈A

m(A)
|A| (3)

Finally, we recall that appropriate generalizations of information-theoretic
concepts [22], specifically the concept of entropy (which was also proposed to
generalize the definition of reducts in RST [24]), have been defined for evidence
theory. Most relevantly, we recall the definition of aggregate uncertainty [7]

AU(m) = max
p∈P(m)

H(p), (4)

where H(p) = −∑
x∈X p(x)log2p(x) is the Shannon entropy of p and P(m) the

set of probability distributions p such that Belm ≤ p ≤ Plm; and the definition
of normalized pignistic entropy (see [13] for the un-normalized definition)

HBet(m) =
H(Pm

Bet)
H(p̂m)

, (5)

where p̂m is the probability distribution that is uniform on the support of
Pm
Bet(x), i.e., on the set of elements {x |Pm

Bet(x) > 0}.

3 Superset Decision Tables and Reducts

In this section, we extend some key concepts of rough set theory to the setting
of superset learning.

3.1 Superset Decision Tables

In superset learning, each object x ∈ U is not associated with a single annotation
t(x) ∈ Vt, but with a set S of candidate annotations, one of which is assumed to
be the true annotation associated with x. In order to model this idea in terms
of RST, we generalize the definition of a decision table.

Definition 1. A superset decision table (SDT) is a tuple SDT = 〈U,Att, t, d〉,
where 〈U,Att, t〉 is a decision table, i.e.:

– U is a universe of objects of interest;
– Att is a set of attributes (or features);
– t is the decision attribute (whose value, in general, is not known);

and d, with {d} ∩ Att = ∅, is a set-valued decision attribute, that is, d : U →
P(Vt) such that the superset property holds: For all x ∈ U , the real decision
t(x) associated with x is in d(x).

The intuitive meaning of the set-valued information d is that, if |d(x)| > 1 for
some x ∈ U , then the real decision associated with x (i.e. t(x)) is not known
precisely, but is known to be in d(x). Notice that Definition 1 is a proper gener-
alization of decision tables: if |d(x)| = 1 for all x ∈ U , then we have a standard
decision table.
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Remark 1. In Definition 1, a set-valued decision attribute is modelled as a func-
tion d : U → P(Vt). While this mapping is formally well-defined for a concrete
decision table, let us mention that, strictly speaking, there is no functional depen-
dency between x and d(x). In fact, d(x) is not considered as a property of x,
but rather represents information about a property of x, namely the underlying
decision attribute t(x). As such, it reflects the epistemic state of the decision
maker.

Definition 2. An instantiation of an SDT 〈U,Att, t, d〉 is a standard DT
〈U,Att, t′〉 such that t′(x) ∈ d(x) for all x ∈ U . The set of instantiations of
SDT is denoted I(SDT ).

Based on the notion of SDT, we can generalize the notion of inconsistency.

Definition 3. Let B ⊂ Att, then SDT is B-inconsistent if

∃x1, x2 ∈ U,∀a ∈ B, a(x1) = a(x2) and d(x1) ∩ d(x2) = ∅. (6)

We call such a pair x1, x2 inconsistent, otherwise it is consistent.

Thus, inconsistency implies the existence of (at least) two indiscernible objects
with non-overlapping superset decisions. We say that an instantiation I is con-
sistent with a SDT S (short, is consistent) if the following holds for all x1, x2: if
x1, x2 are consistent in S, then they are also consistent in I.

3.2 Superset Reducts

Learning from superset data is closely connected to the idea of data disam-
biguation in the sense of figuring out the most plausible instantiation of the
set-valued training data [8,11]. But what makes one instantiation more plau-
sible than another one? One approach originally proposed in [9] refers to the
principle of simplicity in the spirit of Occam’s razor (which can be given a the-
oretical justification in terms of Kolmogorov complexity [14]): An instantiation
that can be explained by a simple model is more plausible than an instantiation
that requires a complex model. In the context of RST-based data analysis, a
natural measure of model complexity is the size of the reduct. This leads us to
the following definition.

Definition 4. A set of attributes R ⊆ Att is a superset reduct if there exists a
consistent instantiation I = 〈U,Att, t〉 such that R is a reduct for I. We denote
with REDsuper the set of superset reducts. The minimum description length
(MDL) instantiation is one of the consistent instantiations of SDT that admit
a reduct of minimum size compared to all the reducts of all possible consistent
instantiations. We will call the corresponding reduct MDL reduct.

First of all, we briefly comment on the fact that the definition of MDL reduct
generalizes the standard definition of (minimal) reduct. Indeed, in a classical
decision table, there is only one possible instantiation, hence the MDL reduct is
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Algorithm 1. The brute force algorithm for finding MDL reducts of a superset
decision table S.

procedure Brute-Force-MDL-Reduct(S: superset decision table)
reds ← ∅
l ← ∞
ists ← enumerate-instantiations(S)
for all i ∈ ists do

tmp-reds ← find-shortest-reducts(i)
len ← |red| where red ∈ tmp-reds
if len < l then

reds ← tmp-reds
l ← len

else if len = l then
reds ← reds ∪ tmp-reds

end if
end for
return reds � The MDL reducts for S

end procedure

exactly (one of) the minimal reducts of the decision table. Further, if we denote
by REDMDL the set of MDL reducts, then evidently REDMDL � REDsuper.

An algorithmic solution to the problem of finding the MDL reduct for an SDT
can be given as a brute force algorithm, which computes the reducts of all the
possible instantiations, see Algorithm 1. It is easy to see that the worst case run-
time complexity of this algorithm is exponential in the size of the input. Unfor-
tunately, it is unlikely that an asymptotically more efficient algorithm exists.
Indeed, if we consider the problem of finding any MDL reduct, then the number
of instantiations of S is, in the general case, exponential in the number of objects,
and for each such instantiation one should find the shortest reduct for the cor-
responding decision table, which is known to be in ΣP

2 . Interestingly, we can
prove that the decisional problem MDL-reduct related to finding MDL-Reducts
is also in ΣP

2 . That is, finding an MDL-Reduct is no more complex than finding
a minimal reduct in standard decision tables.

Theorem 1. MDL-Reduct is ΣP
2 -complete.

Proof. We need to show that there is an algorithm for verifying instances of
MDL-Reduct whose runtime is polynomial given access to an oracle for an
NP -complete problem. Indeed, a certificate can be given by an instantiation I
(whose size is clearly polynomial in the size of the input SDT) together with
a reduct R for I, which is an MDL-reduct. Verifying whether R is a minimal
reduct for I can then be done in polynomial time with an oracle for NP , hence
the result. Further, as finding the minimal reduct for classical decision tables is
ΣP

2 -complete (by reduction to the Shortest Implicant problem), MDL-Reduct
is also complete.

While heuristics could be applied to speed up the computation of reducts [27]
(specifically, to reduce the complexity of the find-shortest-reducts step in
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Algorithm 1) the approach described in Algorithm1 still requires enumerating
all the possible instantiations. Thus, in the following section we propose two
alternative definitions of reduct in order to reduce the computational costs.

4 Methods

In this section, we present the main results concerning the application of rough
set and evidence theory towards feature reduction in the superset learning
setting.

4.1 Entropy Reducts

We begin with an alternative definition of reduct, based on the notion of
entropy [24], which simplifies the complexity of finding a reduct in SDT. Given
a decision d, we can associate with it a pair of belief and plausibility functions.
Let v ∈ Vt and [x]B for B ⊆ Att an equivalence class, then:

BelS(v|[x]B) =
|{x′ ∈ [x]B : d(x′) = {v}}|

|[x]B |
PlS(v|[x]B) =

|{x′ ∈ [x]B : v ∈ d(x′)}|
|[x]B |

For each W ⊆ Vt, the corresponding basic belief assignment is defined as

m(W |[x]B) =
|{x′ ∈ [x]B : d(x′) = W}|

|[x]B | . (7)

Given this setting, we now consider two different entropies. The first one is the
pignistic entropy HBet(m) as defined in (5). As regards the second definition,
we will not directly employ the AU measure (see Eq. (4)). This measure, in fact,
corresponds to a quantification of the degree of conflict in the bba m, which is
not appropriate in our context, as it would imply finding an instantiation which
is maximally inconsistent. We thus define a modification of the AU measure
that we call Optimistic Aggregate Uncertainty (OAU). This measure, which has
already been studied in the context of superset decision tree learning [9] and soft
clustering [3], is defined as follows:

OAU(SDT ) = min
I∈I(SDT )

H(p(I)), (8)

where p(I) is the probability distribution over the decision attribute induced by
the instantiation I ∈ I.

Let B ⊆ Att be a set of attributes and denote by INDB = {[x]B} the
equivalence classes (granules) with respect to B. Let d[x]B be the restriction of d
on the equivalence class [x]B . The entropy of d, conditional on B, is defined as
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HBet(d|B) =
∑

[x]B∈INDB

|[x]B |
|U | HBet(d[x]B ) =

∑

[x]B∈INDB

|[x]B |
|U |

H(Pm
Bet(d[x]B ))

H(p̂m(d[x]B ))

(9)

OAU(d|B) =
∑

[x]B∈INDB

|[x]B |
|U | OAU(d[x]B ) (10)

Definition 5. We say that B ⊆ Att is

– an OAU super-reduct (resp., HBet super-reduct) if OAU(d |B) ≤
OAU(d |Att) (resp., HBet(d |B) ≤ HBet(d |Att));

– an OAU reduct (resp., HBet reduct) if no proper subset of B is also a super-
reduct.

Definition 6. We say that B ⊆ Att is

– an OAU ε-approximate super-reduct (resp., HBet ε-approximate super-
reduct), with ε ∈ [0, 1), if OAU(d |B) ≤ OAU(d |Att) − log2(1 − ε) (resp.,
HBet(d |B) ≤ HBet(d |Att) − log2(1 − ε));

– an OAU ε-approximate reduct (resp., HBet ε-approximate reduct) if no proper
subset of B is also an ε-approximate super-reduct.

Let [x]B be one of the granules with respect to an OAU-reduct. Then, the
OAU instantiation with respect to [x]B is given by

decOAU(B)([x]B) = arg max
v∈Vt

{
p(v) | p = arg min

p∈PBel

H(p)
}

, (11)

that is, the most probable among the classes under the probability distribu-
tion which corresponds to the minimum value of entropy. Similarly, the HBet

instantiation with respect to [x]B is given by

decHBet(B)([x]B) = arg max
v∈Vt

BetBel(v) (12)

The following example shows, for a simple SDT, the OAU reducts, MDL reducts,
and HBet reducts and their relationships.

Example 1. Consider the superset decision table SDT = 〈U = {x1, ..., x6}, A =
{w, x, v, z}, d〉 given in Table 1. We have OAU(d |A) = OAU(d |B) = 0 for
B = {x, v}. Thus, B is an OAU reduct of SDT, as OAU(d |x) = OAU(d | v) > 0.
Notice that {z} is also an OAU reduct. The OAU instantiation given by {x, v}
is decx,v({x1, x2}) = decx,v({x3, x4}) = 0, decx,v({x5, x6}) = 1, while the one
given by {z} is decz({x1, x3, x6}) = 0, decz({x2, x4, x5}) = 1.

On the other hand, HBet(d |A) = 1
2 , while HBet(d | {x, v}) = 0.81. Therefore,

{x, v} is not an HBet reduct. Notice that, in this case, there are no HBet reducts
(excluding A). However, it can easily be seen that {x, v} is an HBet approximate
reduct when ε ≥ 0.20.

The MDL instantiation is decMDL({x1, x3, x6}) = 0, decMDL({x2, x4, x5}) =
1, which corresponds to the MDL reduct {z}. Thus, in this case, the MDL reduct
is equivalent to one of the OAU reducts.
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Table 1. An example of superset decision table

w x v z d

x1 0 0 0 0 0

x2 0 0 0 1 {0, 1}
x3 0 1 1 0 0

x4 0 1 1 1 {0, 1}
x5 0 1 0 1 1

x6 0 1 0 0 {0, 1}

In Example 1, it is shown that the MDL reduct is one of the OAU reducts.
Indeed, we can prove that this holds in general.

Theorem 2. Let R be an MDL reduct whose MDL instantiation is consistent.
Then R is also an OAU reduct.

Proof. As the instantiation corresponding to R is consistent, OAU(d |R) = 0.
Thus R is an OAU reduct.

Concerning the computational complexity of finding the minimal OAU or
one OAU, we have the following results.

Proposition 1. Finding the minimal OAU reduct for a consistent SDT is
ΣP

2 -complete.

Proof. As any MDL reduct of a consistent SDT is also an OAU reduct and MDL
reducts are by definition minimal, the complexity of finding a minimal OAU
reduct is equivalent to that of finding MDL reducts, hence is ΣP

2 -complete.

On the other hand, as both OAU [3,9] and HBet can be computed in poly-
nomial time, the following result holds for finding OAU (resp. HBet) reducts.

Theorem 3. Finding an OAU (resp. HBet) reduct is NP -complete.

On the other hand, as shown in Example 1, the relationship between MDL
reducts (or OAU reducts) and HBet reducts is more complex as, in general,
an OAU reduct is not necessarily a HBet reduct. In particular, one could be
interested in whether an HBet exists and whether there exists an HBet reduct
which is able to disambiguate objects that are not disambiguated when taking
in consideration the full set of attributes Att. The following two results provide
a characterization in the binary (i.e., Vt = {0, 1}), consistent case.

Theorem 4. Let B ⊆ Att be a set of attributes, [x1]Att, [x2]Att be two distinct
equivalence classes (i.e., [x1]Att∩[x2]Att = ∅) that are merged by B (i.e., [x1]B =
[x1]Att ∪ [x2]Att), that are not inconsistent and such that |[x1]Att| = n1 + m1,
|[x2]Att| = n2 + m2, where the n1 (resp., n2) objects are such that |d(x)| = 1
and the m1 (resp., m2) objects are such that |d(x)| = 2. Then HBet(d |B) ≥
HBet(d |Att), with equality holding iff one of the following two holds:



480 A. Campagner et al.

1. m1 = m2 = 0 and n1, n2 > 0;
2. m1,m2 > 0 and n1 ≥ 0, n2 = m2n1

m1
(and, symmetrically when changing

n1, n2).

Proof. A sufficient and necessary condition for HBet(d |B) ≥ HBet(d |Att) is:

n1 + m1+m2
2 + n2

n1 + m1 + n2 + m2
≥ max

{
n1 + m1

2

n1 + m1
,
m2
2 + n2

n2 + m2

}

(13)

under the constraints n1, n2,m1,m2 ≥ 0, as the satisfaction of this inequality
implies that the probability is more peaked on a single alternative. The integer
solutions for this inequality provide the statement of the Theorem. Further, one
can see that the strict inequality is not achievable.

Corollary 1. A subset B ⊆ Att is an HBet reduct iff, whenever it merges a pair
of equivalence classes, the conditions expressed in Theorem 4 are satisfied.

Notably, these two results also provide an answer to the second question,
that is, whether an HBet reduct can disambiguate instances that are not dis-
ambiguated when considering the whole attribute set Att. Indeed, Theorem 4
provides sufficient conditions for this property and shows that, in the binary
case, disambiguation is possible only when at least one of the equivalence classes
(w.r.t. Att) that are merged w.r.t. the reduct is already disambiguated. On the
contrary, in the general n-ary case, disambiguation could happen also in more
general situations. This is shown by the following example.

Example 2. Let SDT = 〈U = {x1, ..., x10}, Att = {a, b}, d〉 such that ∀i ≤ 5,
d(xi) = {0, 1} and ∀i > 5, d(xi) = {1, 2}. Then, assuming the equivalence classes
are {x1, ..., x5}, {x6, ..., x10}, it holds that HBet(d |Att) = 1.

Suppose further that πa = {U}. Then HBet(d | a) < 0.95 < HBet(d |Att) and
hence a is a HBet reduct. Notice that Att is not able to disambiguate since

decHBet(Att)([x1]Att) = {0, 1}
decHBet(Att)([x6]Att) = {1, 2}.

On the other hand, decHBet(a)(xi) = 1 for all xi ∈ U . Notice that, in this case,
{a} would also be an OAU reduct (and hence a MDL reduct, as it is minimal).

A characterization of HBet reducts in the n-ary case is left as future work.
Finally, we notice that, while the complexity of finding OAU (resp. HBet)

reducts is still NP -complete, even in the approximate case, these definitions are
more amenable to optimization through heuristics, as they employ a quantitative
measure of quality for each attribute. Indeed, a simple greedy procedure can be
implemented, as shown in Algorithm 2, which obviously has polynomial time
complexity.
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Algorithm 2. An heuristic greedy algorithm for finding approximate entropy
reducts of a superset decision table S.

procedure Heuristic-Entropy-Reduct(S: superset decision table, ε: approxima-
tion level, E ∈ {OAU, HBet})

red ← Att
Ent ← E(d | red)
check ← True
while check do

Find a ∈ red s.t.

{
E(d | red \ {a}) ≤ E(d | Att) − log2(1 − ε)

E(d | red \ {a}) is minimal

if a exists then
red ← red \ {a}

else
check ← False

end if
end while
return red

end procedure

5 Conclusion

In this article we investigated strategies for the simultaneous solution of the
feature reduction and disambiguation problems in the superset learning setting
through the application of rough set theory and evidence theory. We first defined
a generalization of decision tables to this setting and then studied a purely com-
binatorial definition of reducts inspired by the Minimum Description Length
principle, which we called MDL reducts. After studying the computational com-
plexity of finding this type of reducts, which was shown to be NP -hard, harness-
ing the natural relationship between superset learning and evidence theory, we
proposed two alternative definitions of reducts, based on the notion of entropy.
We then provided a characterization for both these notions in terms of their
relationship with MDL reducts, their existence conditions and their disambigua-
tion power. Finally, after having illustrated the proposed notions by means of
examples, we suggested a simple heuristic algorithm for computing approximate
entropy reducts under the two proposed definitions.

While this paper provides a first investigation towards the application of RST
for feature reduction in the superset learning setting, it leaves several interesting
open problems to be investigated in future work:

– In Theorem 2, we proved that (in the consistent case) REDMDL ⊂ REDOAU ,
that is, every MDL reduct is also an OAU reduct. In particular, the MDL
reducts are the minimal OAU reducts. As REDMDL ⊆ REDsuper, the rela-
tionship between the OAU reducts and the superset reducts should be inves-
tigated in more depth. Specifically we conjecture the following:
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Conjecture 1. For each SDT, REDsuper = ROAU .

While the inclusion REDsuper ⊆ REDOAU is easy to prove in the consistent
case, the general case should also be considered.

– In Theorem 4, we provided a characterization of HBet reducts in the binary
consistent case, however, the behavior of this type of reducts should also
be investigated in the more general setting, specifically with respect to the
relationship between REDOAU and REDHBet

.
– Given the practical importance of the superset learning setting, an implemen-

tation of the presented ideas and algorithms should be developed, in order
to provide a computational framework for the application of the rough set
methodology also to these tasks, in particular with respect to the implemen-
tation of algorithms (both exact or heuristic) for finding MDL or entropy
reducts.

In closing, we would like to highlight an alternative motivation for the super-
set extension of decision tables in general and the search for reducts of such
tables in particular. In this paper, the superset extension was motivated by
the assumption of imprecise labeling: The value of the decision attribute is not
known precisely but only characterized in terms of a set of possible candidates.
Finding a reduct is then supposed to help disambiguate the data, i.e., figur-
ing out the most plausible among the candidates. Instead of this “don’t know”
interpretation, a superset S can also be given a “don’t care” interpretation: In
a certain context characterized by x, all decisions in S are sufficiently good, or
“satisficing” in the sense of March and Simon [17]. A reduct can then be consid-
ered as a maximally simple (least cognitively demanding) yet satisficing decision
rule. Thus, in spite of very different interpretations, the theoretical problems
that arise are essentially the same as those studied in this paper. Nevertheless,
elaborating on the idea of reduction as a means for specifically finding satisficing
decision rules from a more practical point of view is another interesting direction
for future work.
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Abstract. Real-world datasets often contain many missing values due
to several reasons. This is usually an issue since many learning algorithms
require complete datasets. In certain cases, there are constraints in the
real world problem that create difficulties in continuously observing all
data. In this paper, we investigate if graphical causal models can be
used to impute missing values and derive additional information on the
uncertainty of the imputed values. Our goal is to use the information
from a complete dataset in the form of graphical causal models to impute
missing values in an incomplete dataset. This assumes that the datasets
have the same data generating process. Furthermore, we calculate the
probability of each missing data value belonging to a specified percentile.
We present a preliminary study on the proposed method using synthetic
data, where we can control the causal relations and missing values.

Keywords: Missing data · Graphical causal models · Uncertainty in
missing values

1 Introduction

Datasets of real-world problems often contain missing values. A dataset has
partial missing data if some values of a variable are not observed. Incomplete
datasets pose problems in obtaining reliable results when analyzing the data.
Many algorithms require a complete dataset to estimate models. On the other
hand, in certain real-world problems obtaining reliable and complete data can
be a tedious and costly task and can hamper the desired goal of the problem.
An example is e-health. E-health tools often contain standardized forms (i.e.
questionnaires) to capture data. Yet the questionnaires at times are lengthy and
c© Springer Nature Switzerland AG 2020
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this imposes a burden on the patients’ time, which leads to reduced amount
of patients completing questionnaires [1] causing incomplete datasets regarding
e-health.

Since the introduction of the electronic health record (EHR) in Dutch clinical
health care, large amounts of digital data are created on a daily basis. Further-
more, due to the emerging implementation of e-health applications in Dutch
health care, large amounts of health-related data are created not only inside but
also outside clinical institutions (e.g. hospitals). For instance, MyIBDcoach, is
an e-health tool developed for home monitoring of disease activity for inflamma-
tory bowel disease, a chronic disease with a relapsing-remitting disease course [9].
Results analyzing data captured in this e-health tool have shown the potential to
predict disease activity. These results could potentially aid timely intervention
and better health care resource allocation as the frequency of outpatient clinic
visits could be scaled according to the risk of increased disease activity within a
patient [10,24]. Exploring the further potential of combined data, data captured
in the EHR and e-health tools, could lead to new insights by analyzing these
data in a meaningful way.

In clinical studies, that use observational data, the data are often obtained
by extracting information from the EHR. In addition, observational data docu-
mented in longitudinal prospective cohort studies often make use of standardized
forms to register admission data of the cohort participants and to register data of
certain variables during follow-up. Therefore datasets of prospective cohort stud-
ies can be considered complete. Since incomplete e-health datasets could lead to
unreliable prediction results, incomplete data could, therefore, be problematic
when e-health tools are used as an integral part in the care pathway [7].

In this paper we investigate if graphical causal models can be used to impute
missing values. Causal discovery aims to learn the causal relations between vari-
ables of a system of interest from data. Thus it is possible to make predictions
of the effects of interventions, which is important for decision making. Graphical
models can represent a multivariate distribution in the form of a graph. Causal
models can be represented as graphical models and represent not only the dis-
tribution of the observed data but also the distributions under interventions.

Causal inference has been applied to combine information from multiple
datasets [15,16], including observational and experimental data [13,18]. Causal
discovery algorithms have been adapted to deal with missing data [6]. For exam-
ple, [4] presents a modification of PC algorithm [20] to be able to handle missing
data, [19] and [5] present different approach to deal with mixed discrete and
continuous data. We take a different perspective.

Our goal is to use the information from a complete dataset (e.g. cohort
studies) in the form of graphical causal models to impute missing values in an
incomplete dataset (e.g. from e-health monitoring). This assumes that these
datasets represent the same population and have the same data generating pro-
cess, which is implicit in setting up cohort studies. The use of causal models
allows preserving causal relationships present in data, without strict assump-
tions of a pre-specified data generating process. Furthermore, we explore the
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stochastic uncertainty in imputing missing values with the proposed method.
We calculate the probability of each missing data value belonging to a specified
percentile. Low or high percentiles can indicate risk situations, e.g. existence of
an active disease in e-health monitoring. In this paper we present a preliminary
study using synthetic data, where we can control the causal relations and for
which there is ground truth for the missing values.

2 Preliminaries

2.1 Graphical Models and Causal Discovery

A causal structure is often represented by a graphical model. A graph G is an
ordered pair <V,E> where V is a set of vertices, and E is a set of edges [20].
The pairs of vertices in E are unordered in an undirected graph and ordered in
a directed graph. A directed graph G contains only directed edges as illus-
trated in Fig. 1(b). A directed acyclic graph (DAG) often represents under-
lying causal structures in causal discovery algorithms [17]. On the other hand,
a mixed graph can contain more than one type of an edge between to ver-
tices. A DAG contains only directed edges and has no directed cycles. We call
the skeleton of a DAG an undirected graph obtained by ignoring direction of
the edges in the DAG itself. See Figs. 2(a) and 2(b) for illustration. Further,
if there is a directed edge from X1 to X2 then X1 is called to be parent of
X2, and X2 is called to be child of X1. If two vertices are joined by an edge
they are called to be adjacent. A set of parents of a vertex X2 is denoted
by pa(X2), in Fig. 2(a) pa(X2) = {X1} while pa(X4) = {X2,X3}. The joint
distribution implied by Fig. 2(a) implies the following conditional probability
relation:

X1 X2

(a) Undirected

X1 X2

(b) Directed

Fig. 1. Undirected and directed relationship between two variables

P (V ) =
∏

X∈V

P (X|pa(X)). (1)

Causal discovery connects the graphical theoretic approach and statistical the-
ory. The DAG in Fig. 2(a) implies the following conditional distributions:

P (X|pa(X)) = P

(
X | ∪

Xj∈pa(X)
pa(Xj)

)
, (2)

e.g. P (X4|pa(X4)) = P (X4|X2,X3) = P (X4|X1).
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X1

X2

X3

X4 X5

(a) DAG

X1

X2

X3

X4 X5

(b) Skeleton

Fig. 2. Directed acyclic graph and its skeleton

A DAG encodes conditional independence relationships, which help us to
reason about causality. A criteria known as d-separation is central in this
type of inference, see for more details [20]. In particular, in any distribution P
factorizing according to G, if X and Y are d-separated given Z then X ⊥⊥ Y |Z in
P . There are multiple algorithms that use d-separation rules to learn the graph
structure; many of them are computationally intensive.

In this paper we use the PC algorithm1 for causal discovery [20]. The idea
of this algorithm is based on first forming the complete undirected graph, then
removing the edges with zero-order conditional independence, then removing
first-order conditional independence relations, etc. Thus, the PC algorithm heav-
ily relies on testing conditional independence. Pearson’s correlation is frequently
used to test for conditional independence in the Gaussian case; other popular
choices are, Spearman’s rank correlation, or Kendall’s tau. In addition, next to
the correlation matrix, the PC algorithm requires a sample size as input. The
estimate of the correlation matrix is more reliable with larger sample size, and
thus we easier can reject the null hypothesis of conditional independence [5].

PC algorithm is widely applied in causal discovery algorithms and thus has
been extended in various directions, including missing data cases. [3] consider
causal discovery in DAGs with arbitrarily many latent and selection variables
with the available R software package pcalg [11]. [8] use rank-based correlation
and extend PC algorithm to Gaussian copula models. [4] extend this approach
to mixed discrete and continuous data, while [5] further include missing data in
this approach.

2.2 Graphical Models with Missing Data

In this paper we are exploiting the idea that one can infer causal structure from
a cohort study and then use this information for imputing missing values in an
incomplete dataset. The problem of missing data in causal inference is being
studied in the literature quite extensively. [14] derive graphical conditions for
recovering joint and conditional distributions and sufficient conditions for recov-
ering causal queries. [22] consider different missingness mechanisms and present
graphical representations of those. Usually, three missing mechanisms are con-
sidered in the literature [12]: missing completely at random (MCAR), missing at

1 Named after its two inventors, Peter and Clark.
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random (MAR), and not missing at random (NMAR). MCAR missingness mech-
anism imposes the least problems for statistical inference, while NMAR imposes
most problems for statistical inference. It is important to note, that in our case
there is no problem of identifying the type of missingness mechanism, however,
it is useful to know and understand the distinction of missing mechanisms from
the literature.

Similarly to [22] let us denote by Dobs observed part of the data and Dmis

missing part of the data, and R the indicator matrix of missingness. The MCAR
mechanism states that

P (R|D) = P (R|Dobs,Dmis) = P (R). (3)

Equation (3) can be expressed in conditional independence statement as

R ⊥⊥ (Dobs,Dmis). (4)

Thus, the missingness in this case is independent of both Dobs and Dmis. Further,
MAR, a less restrictive mechanism, states that

P (R|D) = P (R|Dobs,Dmis) = P (R|Dobs), (5)

where Eq. (5) can also be expressed in terms of a conditional independence state-
ment

R ⊥⊥ Dmis|Dobs. (6)

Thus, while the dependence between the observed data and missingness is
allowed, the missingness R is independent of missing part of the data Dmis

given information about the observed part of the data Dobs. Finally, for NMAR
mechanism we have

P (R|Dobs,Dmis) �= P (R|Dobs). (7)

[22] propose a way to create m-graphs (graphs with missing data for all three
mechanisms) and discuss graphical criteria for identification of means and regres-
sion coefficients. For us it is useful in a sense that while deciding on which parts
of the data can be missing, we can impose requirement of identifiability.

3 Causal Models for Imputing Missing Data

In this paper, we propose using the causal information from a DAG, built from
a complete sample, to impute missing values in another sample. The proposed
method uses the causal discovery defined within a DAG and estimated rela-
tions between variables using the PC algorithm. The DAG and PC estimation
provide the causal relations between the missing and observed variables. Once
this relation is defined, the exact specification of causality between observed and
missing values, together with the predictions of the missing values are obtained
using nonparametric regressions. Nonparametric regressions are used to avoid
assumptions on the specific functional relationship between variables.
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As an illustration. Suppose that X1,X2,X3,X5 are observed in Fig. 2(a)
while X4 is missing. The DAG implies the following conditional probability rela-
tion:

P (X4|pa(X4)) = P (X4|X2,X3). (8)

In case both X4 and a parent, e.g. X2, are missing, we use the following
DAG-implied conditional probability relations to estimate the causal relationship
between X2 and X1 in the training data, and obtain an estimate for the missing
value of X2. Impute the missing values of X2 and X4:

P (X2|pa(X2)) = P (X2|X1) (9)
P (X4|pa(X4)) = P (X4|X2,X3) = P (X4|pa(X2),X3) = P (X4|X1,X3) (10)

The iteration over parents of DAG implied conditionals continues until all con-
ditioning variables are observed. When X2,X3,X4 are all unobserved, we use
the following DAG-implied conditional probability relation:

P (X2|pa(X2)) = P (X2|X1) (11)
P (X3|pa(X3)) = P (X3|X1) (12)
P (X4|pa(X4)) = P (X4|X2,X3) = P (X4|pa(X2),pa(X3)) = P (X4|X1). (13)

When the graph structure is more complicated than Fig. 3, the above pro-
cedure to obtain ‘observed parents’ of a missing value is more involved since
backward iterations of pa(·) are needed until none of the conditioned variables
have missing values. To avoid this computational cost, we define the iterated
parents of a missing observation. Let Xmis ⊂ pa(X) denote the set of parents of
X with missing values. The iterated parents of X, p̂a(X) are defined as:

p̂a(X) =
{

pa(X) if Xmis = ∅
(pa(X) \ Xmis) ∪ X1 otherwise, (14)

where the conditioning on variable X1 is due to the graph structure in Fig. 3.
Given the conditional probability definitions in Eqs. (8)–(13), and the parent

set definition in (14), we propose to obtain the predicted values of missing values
using nonparametric regressions. For N observed data samples Xi,j with i =
1, . . . , p and j = 1, . . . , N , local linear regressions are estimated for each variable
Xi in a training set. Each of these local linear regressions minimize the following:

min
α,β

N∑

n=1

(Xi,j − α − β (p̂a(Xi) − p̂a(X)i,j))
2
Kh (p̂a(Xi) − p̂a(X)i,j) (15)

where Xi = (Xi,1, . . . , Xi,N )′ is the vector of observations from variable Xi,
pa(Xi) = (pa(X)i,1, . . . ,pa(X)i,N ) and pa(X)i,j denotes the jth observation
from parents of Xi. In addition, Kh (pa(Xi) − pa(X)i,j) is defined as a Gaussian
kernel with h = 1, but the proposed methodology is applicable to other kernel
specifications or similar nonparametric regression methods.
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The imputation method we propose is based on estimating (15) for a DAG
based on complete data, and predicting the missing values in an incomplete
dataset. This imputation, denoted by X̂i,j for variable i in observation j is cal-
culated using the local linear regression results:

X̂i,j = α̂ + β̂ (p̂a(Xi) + p̂a(X)i,j) , (16)

where α̂ and β̂ are obtained according to the minimization in (15). In addition,
the Gaussian kernel defined for (15) implies local normality for all predicted
values. We use this property to quantify the uncertainty of the imputed value in
(16). Given a normal distribution Xi,j ∼ N(X̂i,j , σ̂

2
i,j), we calculate the proba-

bility of Xi,j belonging to a pre-specified percentile range [p1, p2] as:

pr(p1 < Xi,j ≤ p2) =
∫ p2

p1

φ
(
Xi,j ; X̂i,j , σ̂

2
i,j

)
dXi,j (17)

where φ
(
x;μ, σ2

)
denotes the probability density function with mean μ, variance

σ2 evaluated at point x and σ̂2
i,j is estimated as the variance of the regression

errors. Please note that in this preliminary study, we ignore uncertainty when
estimating the model parameters α and β.

4 Simulation Results for Imputing Missing Data

We illustrate the performance of the proposed method using a DAG with eight
variables. The random graph is defined for 8 variables with conditional Gaussian
distributions and the probability of connecting a node to another node with
higher topological ordering is set as 0.3, following [3]. The true DAG and the
estimated DAG are presented in Fig. 3. The structure of this DAG implies that
variables 2, 3, 5, 6, 7 and 8 can be explained by parent variables or variable 1.
Variable 4, on the other hand, is completely exogenous in this graph. Hence our
methodology cannot be used to impute missing values of variable 4.

We simulate 5000 training observations and estimate the DAG using these
training data. The estimated DAG is presented in the right panel of Fig. 3. Given
the test data with 2000 observations, we create 9 incomplete test datasets with
randomly missing values (MCAR) for 6 variables that have parents in the map,
i.e. variables 2, 3, 5, 6, 7 and 8. These 9 incomplete test datasets differ in the
probability of missing observations q = 10%, 20%, . . . , 90%. Each observation
can have none, one or more missing variables, hence the total number of missing
observations in each incomplete test dataset is 2000 or less, while the expected
number of missing variables is q × 2000 × 6.

For each incomplete training dataset, we use the methodology in Sect. 3 to
impute the missing values. We compare our method to other baseline models,
namely replacing missing values by the sample average of the variable in the test
data, excluding missing values; the MissForest method, a non-parametric miss-
ing value imputation based on random forests [21]; and MICE a multivariate
imputation method based on fully conditional specification [23], as implemented
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Fig. 3. True (left) and estimated (right) DAG for simulated data

in [2]. The mean squared errors of the proposed model and the baseline models
are reported in Table 1. For missing values above q = 40%, the proposed method
performs better than all other models. For values below q = 40%, the best per-
forming model is MissForest, although the results appear to be comparable. The
proposed model performance, measured by the MSE in Table 1, decreases with
increasing q. This result is expected as the number of missing values for each
observation increase with q. Since this increase implies that within an observa-
tion, it is more likely that the parents of a missing variable are also unobserved,
hence there is an additional loss of information in the causal relations.

Table 1. MSE results from the proposed method and baseline models

10% 20% 30% 40% 50% 60% 70% 80% 90%

Mean 1.47 1.49 1.56 1.51 1.48 1.52 1.50 1.51 1.52

DAG 0.92 0.99 1.03 1.06 1.10 1.15 1.19 1.26 1.32

MissForest 0.91 0.96 1.02 1.09 1.26 1.38 1.49 2.05 1.50

MICE 1.72 1.78 1.86 1.90 2.02 2.11 2.29 2.43 2.83

In addition to the overall results in Table 1, we present the errors for each
variable for q = 10% and q = 90% in Fig. 4. For a small percentage of missing
values, q = 10%, the ranges of errors are clearly smaller in the proposed method
compared to the mean baseline model. The MissForest model has some observa-
tions with a larger absolute error compared to the proposed method. Note that
the variable-specific errors present the cases where the causal relations, hence
the imputations are relatively less accurate. For variables 2 and 3, which have
a single parent and a short link to variable 1, the obtained errors are relatively
small in absolute values. Other variables, such as 6 and 8, have multiple parents,
thus a higher probability of missing values in parents. When the missing parent
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information is replaced with the value of variable 1, some information is lost and
the estimates will be less accurate. Figure 4 shows that this inaccuracy occurs
especially for q = 90% where the probability of missing observations, hence the
probability of missing parent information is high.
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Fig. 4. Errors per variable from imputed missing values using the proposed method
(DAG), the mean and MissForest baseline models.

Finally, we illustrate the uncertainty in the missing values, quantified using
the imputed values. For each variable, we set four pre-defined percentiles of 0–
10%, 10–50%, 50–90% and 90–100%, corresponding to the empirical percentiles
of the training data. We then calculate percentile probabilities for missing value
by applying Eq. 17 for the four pre-defined percentiles. Based on these per-
centile probabilities, the percentile with the highest probability is selected as
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the estimated percentile. In Fig. 5, we present the imputed data values and per-
centile estimates for variable 2 for two missing value probabilities, q = 10% and
q = 90%. For readability, we only present observations for which the estimated
and true percentiles are different. In addition, estimated percentiles are indi-
cated with the respective colors and thick vertical lines indicate the thresholds
for correct percentiles.
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Fig. 5. Estimated percentiles for observations with different estimated and true
percentiles

In this figure, overlapping colors indicate that similar imputed values can be
classified in different percentiles according to the highest probability of belong-
ing to a percentile. I.e. probabilities of belonging to a percentile can be used
as an additional measure, with additional information, compared to the point
estimates used as imputation. In Fig. 5, the number of overlaps are higher for a
higher percentage of missing values p = 90%, since there is more missing data.
However, it appears that irrespective of the amount of missing values, both cases
show the same pattern of overlap between estimated percentiles. This is an inter-
esting result, since more missing values mean do not indicate more uncertainty in
the estimated percentiles. This is likely due to the fact that our method derives
information for imputation of missing values from causal relationships.

5 Conclusions and Future Work

In this paper we investigate if graphical causal models derived from complete
datasets can be used to impute missing values in an incomplete dataset, assuming
the same data generating process. We calculate the probability of each missing
data value belonging to a specified percentile, to provide information on the
uncertainty of the imputed values. We apply this methodology using synthetic
data, where we can control the causal relations and missing values. We show that
the proposed method performs better than a baseline model of imputing missing
values by the mean in different simulation settings with different percentages of
missing data. Furthermore, our model can still provide adequate information
on missing values for very high percentages of missing values. Our results show
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that this methodology can be used in inputting missing values while providing
information about the probability distribution of percentiles the missing value
belongs to.

This is a preliminary study which opens many questions. In the future we
want to investigate how to incorporate information on bidirectional causal rela-
tionships, different non-parametric models for imputing missing values and the
relationship of this method with fully conditional specification.
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Abstract. Interval prediction often provides more useful information compared
to a simple point forecast. For example, in renewable energy forecasting, while
the initial focus has been on deterministic predictions, the uncertainty observed in
energy generation raises an interest in producing probabilistic forecasts. One aims
to provide prediction intervals so that outcomes lie in the interval with a given
probability. Therefore, the problem of estimating the quantiles of a variable arises.
The contribution of our paper is two-fold. First, we propose to apply the frame-
work of prediction with expert advice for the prediction of quantiles. Second,
we propose a new competitive online algorithm Weak Aggregating Algorithm
for Quantile Regression (WAAQR) and prove a theoretical bound on the cumu-
lative loss of the proposed strategy. The theoretical bound ensures that WAAQR
is asymptotically as good as any quantile regression. In addition, we provide an
empirical survey where we apply both methods to the problem of probability
forecasting of wind and solar powers and show that they provide good results
compared to other predictive models.

Keywords: Prediction with expert advice · Online learning · Sequential
prediction · Weak Aggregating Algorithm · Quantile regression · Probabilistic
forecasting

1 Introduction

Probabilistic forecasting attracts an increasing attention in sports, finance, weather and
energy fields. While an initial focus has been on deterministic forecasting, probabilistic
prediction provides a more useful information which is essential for optimal planning
and management in these fields. Probabilistic forecasts serve to quantify the uncertainty
in a prediction, and they are an essential ingredient of optimal decision making [4]. An
overview of the state of the art methods and scoring rules in probabilistic forecasting
can be found in [4]. Quantile regression is one of the methods which models a quantile
of the response variable conditional on the explanatory variables [6].

Due to its ability to provide interval predictions, quantile regression found its niche
in the renewable energy forecasting area. Wind power is one of the fastest growing
renewable energy sources [3]. As there is no efficient way to store wind power, produc-
ing accurate wind power forecasts are essential for reliable operation of wind turbines.
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https://doi.org/10.1007/978-3-030-50146-4_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50146-4_37&domain=pdf
https://doi.org/10.1007/978-3-030-50146-4_37


500 R. Dzhamtyrova and Y. Kalnishkan

Due to the uncertainty in wind power generation, there have been studies for improv-
ing the reliability of power forecasts to ensure the balance between supply and demand
at electricity market. Quantile regression has been extensively used to produce wind
power quantile forecasts, using a variety of explanatory variables such as wind speed,
temperature and atmospheric pressure [7].

The Global Energy Forecasting Competition 2014 showed that combining predic-
tions of several regressors can produce better results compared to a single model. It is
shown in [9] that a voted ensemble of several quantile predictors could produce good
results in probabilistic solar and wind power forecasting. In [1] the analogue ensem-
ble technique is applied for prediction of solar power which slightly outperforms the
quantile regression model.

In this paper we apply a different approach to combine predictions of several models
based on the method of online prediction with expert advice. Contrary to batch mode,
where the algorithm is trained on training set and gives predictions on test set, in online
setting we learn as soon as new observations become available. One may wonder why
not to use predictions of only one best expert from the beginning and ignore predictions
of others. First, sometimes we cannot have enough data to identify the best expert from
the start. Second, good performance in the past does not necessary lead to a good per-
formance in the future. In addition, previous research shows that combining predictions
of multiple regressors often produce better results compared to a single model [11].

We consider the adversarial setting, where no stochastic assumptions are made
about the data generating process. Our approach is based on Weak Aggregating Algo-
rithm (WAA) which was first introduced in [5]. The WAA works as follows: we assign
initial weights to experts and at each step the weights of experts are updated accord-
ing to their performance. The approach is similar to the Bayesian method, where the
prediction is the average over all models based on the likelihood of the available data.
The WAA gives a guarantee ensuring that the learner’s loss is as small as best expert’s
loss up to an additive term of the form C

√
T , where T is the number of steps and C is

some constant. It is possible to apply WAA to combine predictions of an infinite pool
of experts. In [8] WAA was applied to the multi-period, distribution-free perishable
inventory problem, and it was shown that the asymptotic average performance of the
proposed method was as good as any time-dependent stocking rule up to an additive
term of the form C

√
T lnT .

The WAA was proposed as an alternative to the Aggregating Algorithm (AA),
which was first introduced in [12]. The AA gives a guarantee ensuring that the learner’s
loss is as small as best expert’s loss up to a constant in case of finitely many experts.
The AA provides better theoretical guarantees, however it works with mixable loss
functions, and it is not applicable in our task. An interesting application of the method
of prediction with expert advice for the Brier loss function in forecasting of football
outcomes can be found in [14]; it was shown that the proposed strategy that follows
AA is as good as any bookmaker. Aggregating Algorithm for Regression (AAR) which
competes with any expert from an infinite pool of linear regressions under the square
loss was proposed in [13].

The contribution of our paper is two-fold. First, as a proof of concept, we apply
WAA to a finite pool of experts to show that this method is applicable for this problem.
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As our experts we pick several models that provide quantile forecasts and then com-
bine their predictions using WAA. To the best of our knowledge prediction with expert
advice was not applied before for the prediction of quantiles. Second, we propose a
new competitive online algorithm Weak Aggregating Algorithm for Quantile Regres-
sion (WAAQR), which is as good as any quantile regression up to an additive term
of the form C

√
T lnT . For this purpose, we apply WAA to an infinite pool of quan-

tile regressions. While the bound for the finite case can be straightforwardly applied to
finite or countable sets of experts, every case of a continuous pool needs to be dealt
with separately. We listed above a few results for different specific pools of experts,
however there is no generic procedure for deriving a theoretical bound for the cumula-
tive loss of the algorithm. WAAQR can be implemented by using Markov chain Monte
Carlo (MCMC) method in a way which is similar to the algorithm introduced in [15],
where AAR was applied to generalised linear regression class of function for making
a prediction in a fixed interval. We derive a theoretical bound on the cumulative loss
of our algorithm which is approximate (in the number of MCMC steps). MCMC is
only a method for evaluating the integral and it can be replaced by a different numer-
ical method. Theoretical convergence of the Metropolis-Hastings method in this case
follows from Theorems 1 and 3 in [10]. Estimating the convergence speed is more dif-
ficult. With the experiments provided we show that by tuning parameters online, our
algorithm moves fast to the area of high values of the probability function and gives a
good approximation of the prediction.

We apply both methods to the problem of probabilistic forecasting of wind and solar
power. Experimental results show a good performance of both methods. WAA applied
to a finite set of models performs close or better than the retrospectively best model,
whereas WAAQR outperforms the best quantile regression model that was trained on
the historical data.

2 Framework

In the framework of prediction with expert advice we need to specify a game which
contains three components: a space of outcomes Ω, a decision space Γ , and a loss
function λ : Ω × Γ → R. We consider a game with the space of outcomes Ω = [A,B]
and decision space Γ = R, and as a loss function we take the pinball loss for q ∈ (0, 1)

λ(y, γ) =

{
q(y − γ), if y ≥ γ

(1 − q)(γ − y), if y < γ
. (1)

This loss function is appropriate for quantile regression because on average it is
minimized by the q-th quantile. Namely, if Y is a real-valued random variable with a
cumulative distribution function FY (x) = Pr(Y ≤ x), then the expectation Eλ(Y, γ)
is minimized by γ = inf{x : FY (x) ≥ q} (see Sect. 1.3 in [6] for a discussion).

In many tasks predicted outcomes are bounded. For example, wind and solar power
cannot reach infinity. Therefore, it is possible to have a sensible estimate for the out-
come space Ω based on the historical information.

Learner works according to the following protocol:
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Protocol 1

for t = 1, 2, . . .
nature announces signal xt ⊆ Rn

learner outputs prediction γt ∈ Γ
nature announces outcome yt ∈ Ω
learner suffers loss λ(yt, γt)

end for

The cumulative loss of the learner at the step T is:

LT :=
∑

t=1,...,T :
yt<γt

(1 − q)|yt − γt| +
∑

t=1,...,T :
yt>γt

q|yt − γt|. (2)

We want to find a strategy which is capable of competing in terms of cumulative
loss with all prediction strategies Eθ, θ ∈ Rn (called experts) from a given pool, which
output ξt(θ) at step t. In a finite case we denote experts Ei, i = 1, . . . , N .

Let us denote Lθ
T the cumulative loss of expert Eθ at the step T :

Lθ
T :=

∑
t=1,...,T :
yt<ξt(θ)

(1 − q)|yt − ξt(θ)| +
∑

t=1,...,T :
yt>ξt(θ)

q|yt − ξt(θ)|. (3)

3 Weak Aggregating Algorithm

In the framework of prediction with expert advice we have access to experts’ predictions
at each time step and the learner has to make a prediction based on experts’ past per-
formance. We use an approach based on the WAA since a pinball loss function λ(y, γ)
is convex in γ. The WAA maintains experts’ weights Pt(dθ), t = 1, . . . , T . After each
step t the WAA updates the weights of the experts according to their losses:

Pt(dθ) = exp
(

−cLθ
t−1√
t

)
P0(dθ), (4)

where P0(dθ) is the initial weights of experts and c is a positive parameter.
Experts that suffer large losses will have smaller weights and less influence on futher

predictions.
The prediction of WAA is a weighted average of the experts’ predictions:

γt =
∫

Θ

ξt(θ)P ∗
t−1(dθ), (5)

where P ∗
t−1(dθ) are normalized weights:

P ∗
t−1(dθ) =

Pt−1(dθ)
Pt−1(Θ)

,

where Θ is a parameter space, i.e. θ ∈ Θ.
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In a finite case, an integral in (5) is replaced by a weighted sum of experts’ predic-
tions ξt(i), i = 1, . . . , N .

In particular, when there are finitely many experts Ei, i = 1, . . . , N for bounded
games the following lemma holds.

Lemma 1 (Lemma 11 in [5]). For every L > 0, every game 〈Ω,Γ, λ〉 such that
|Ω| < +∞ with λ(y, γ) ≤ L for all y ∈ Ω and γ ∈ Γ and every N = 1, 2, . . .
for every merging strategy for N experts that follows the WAA with initial weights
p1, p2, . . . , pN ∈ [0, 1] such that

∑N
i=1 pi = 1 and c > 0 the bound

LT ≤ Li
T +

√
T

(
1
c
ln

1
pi

+ cL2

)
,

is guaranteed for every T = 1, 2, . . . and every i = 1, 2, . . . , N.

After taking equal initial weights p1 = p2 = · · · = pN = 1/N in the WAA, the
additive term reduces to (cL2 + (lnN)/c)

√
T . When c =

√
lnN/L, this expression

reaches its minimum. The following corollary shows that the WAA allows us to obtain
additive terms of the form C

√
T .

Corollary 1 (Corollary 14 in [5]). Under the conditions of Lemma 1, there is a merg-
ing strategy such that the bound

LT ≤ Li
T + 2L

√
T lnN

is guaranteed.

Applying Lemma 1 for an infinite number of experts and taking a positive constant
c = 1, we get the following Lemma.

Lemma 2 (Lemma 2 in [8]). Let λ(y, γ) ≤ L for all y ∈ Ω and γ ∈ Γ . The WAA
guarantees that, for all T

LT ≤
√

T

(
− ln

∫
Θ

exp
(

− Lθ
T√
T

)
P0(dθ) + L2

)
.

4 Theoretical Bounds for WAAQR

In this section we formulate the theoretical bounds of our algorithm.
We want to find a strategy which is capable of competing in terms of cumulative

loss with all prediction strategies Eθ, θ ∈ Θ = Rn, which at step t output:

ξt(θ) = x′
tθ, (6)

where xt is a signal at time t. The cumulative loss of expert Eθ is defined in (3).
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Theorem 1. Let a > 0, y ∈ Ω = [A,B] and γ ∈ Γ . There exists a prediction strategy
for Learner such that for every positive integer T , every sequence of outcomes of length
T , and every θ ∈ Rn with initial distribution of parameters

P0(dθ) =
(a

2

)n

e−a‖θ‖1dθ, (7)

the cumulative loss LT of Learner satisfies

LT ≤ Lθ
T +

√
Ta‖θ‖1 +

√
T

(
n ln

(
1 +

√
T

a
max

t=1,...,T
‖xt‖∞

)
+ (B − A)2

)
.

The theorem states that the algorithm predicts as well as the best quantile regression,
defined in (6), up to an additive regret of the order

√
T lnT . The choice of the regu-

larisation parameter a is important as it affects the behaviour of the theoretical bound
of our algorithm. Large parameters of regularisation increase the bound by an additive
term

√
Ta‖θ‖1, however the regret term has a smaller growth rate as time increases.

As the maximum time T is usually not known in advance, the regularisation parameter
a cannot be optimised, and its choice depends on the particular task. We discuss the
choice of the parameter a in Sect. 6.2.

Proof. We consider that outcomes come from the interval [A,B], and it is known in
advance. Let us define the truncated expert Ẽθ which at step t outputs:

ξ̃t(θ) =

⎧⎪⎨
⎪⎩

A, if x′
tθ < A

x′
tθ, if A ≤ x′

tθ ≤ B

B, if x′
tθ > B

. (8)

Let us denote L̃θ
T the cumulative loss of expert Ẽθ at the step T :

L̃θ
T :=

T∑
t=1

λ(yt, ξ̃t(θ)). (9)

We apply WAA for truncated experts Ẽθ. As experts Ẽθ output predictions inside the
interval [A,B], and predictions of WAA is a weighted average of experts’ predictions
(5), then each γt lies in the interval [A,B].

We can bound the maximum loss at each time step:

L := max
y∈[A,B], γ∈[A,B]

λ(y, γ) ≤ (B − A)max(q, 1 − q) ≤ B − A. (10)

Applying Lemma 2 for initial distribution (7) and putting the bound on the loss in
(10) we obtain:

LT ≤
√

T

(
− ln

((a

2

)n
∫
Rn

e−J̃(θ)dθ

)
+ (B − A)2

)
, (11)

where

J̃(θ) :=
L̃θ

T√
T

+ a‖θ‖1. (12)
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For all θ, θ0 ∈ Rn we have:

∑
t=1,...,T :
yt<x′

tθ

|x′
tθ − yt| ≤

∑
t=1,...,T :
yt<x′

tθ

|x′
tθ0 − yt| +

∑
t=1,...,T :
yt<x′

tθ

|x′
tθ − x′

tθ0| (13)

≤
∑

t=1,...,T :
yt<x′

tθ

|x′
tθ0 − yt| +

∑
t=1,...,T :
yt<x′

tθ

max
t=1,...,T

‖xt‖∞‖θ − θ0‖1

≤
∑

t=1,...,T :
yt<x′

tθ

|x′
tθ0 − yt| + T max

t=1,...,T
‖xt‖∞‖θ − θ0‖1.

Analogously, we have:∑
t=1,...,T :
yt>x′

tθ

|x′
tθ − yt| ≤

∑
t=1,...,T :
yt>x′

tθ

|x′
tθ0 − yt| + T max

t=1,...,T
‖xt‖∞‖θ − θ0‖1. (14)

By multiplying inequality (13) by (1− q), inequality (14) by q and summing them,
we have:

Lθ
T ≤ Lθ0

T + T max
t=1,...,T

‖xt‖∞‖θ − θ0‖1. (15)

The cumulative loss of truncated expert Ẽθ cannot exceed the cumulative loss of
non-truncated expert Eθ for all θ ∈ Rn:

L̃θ
T ≤ Lθ

T .

By dividing (15) by
√

T and adding a‖θ‖1 to both parts, we have:

J̃(θ) ≤ J(θ) ≤ J(θ0) +
√

T max
t=1,...,T

‖xt‖∞‖θ − θ0‖1 + a(‖θ‖1 − ‖θ0‖1)

≤ J(θ0) + (
√

T max
t=1,...,T

‖xt‖∞ + a)‖θ − θ0‖1,

where

J(θ) :=
Lθ

T√
T

+ a‖θ‖1.

Let us denote bT =
√

T maxt=1,...,T ‖xt‖∞ + a. We evaluate the integral:

∫
Rn

e−J̃(θ)dθ ≥
∫
Rn

e−(J(θ0)+bT ‖θ−θ0‖1)dθ

= e−J(θ0)

∫
R

. . .

∫
R

e−bT
∑n

i=1 |θi−θi,0|dθi

= e−J(θ0)

∫
R

. . .

∫
R

n∏
i=1

e−bT |θi−θi,0|dθi

= e−J(θ0)
n∏

i=1

∫
R

e−bT |θi−θi,0|dθi = e−J(θ0)

(
2
bT

)n

.
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By putting this expression in (11) we obtain the theoretical bound.

Note that even though we apply WAA for truncated experts (8), we achieve the
theoretical bound for prediction strategy that competes with a class of experts (6).

5 Prediction Strategy

A prediction of WAA (5) can be re-written as follows:

γT =
∫

Θ

ξ̃T (θ)w∗
T−1(θ)dθ, (16)

where

w∗
T (θ) = ZwT (θ) = Z exp

(
− 1√

T

( ∑
t=1,...,T :

yt<ξ̃t(θ)

(1 − q)|yt − ξ̃t(θ)| (17)

+
∑

t=1,...,T :

yt>ξ̃t(θ)

q|yt − ξ̃t(θ)|
)

− a‖θ‖1
)
.

and Z is the normalising constant ensuring that
∫

Θ
w∗

T (θ)dθ = 1.
Integral (16) is a Bayesian mixture, where function ξT (θ) needs to be integrated

with respect to the normalized distribution w∗
T (θ). It is possible to avoid the calculation

of normalising constant Z as it is a computationally inefficient operation, and integrate
function ξT (θ) from the unnormalized distribution wT (θ). In order to calculate the inte-
gral (16), it is possible to use MCMC algorithms. A good introduction of MCMC for
Machine Learning is in [2].

We will use Metropolis-Hastings algorithm for sampling parameters θ from the
posterior distribution P . As a proposal distribution we choose Gaussian distribution
N (0, σ2) with some chosen parameter σ. We start with some initial parameter θ0 and
at each step m we update:

θm = θm−1 + N (0, σ2), m = 1, . . . , M,

where M is a maximum number of iterations in MCMC method.
The update parameter θm at stepm is accepted with probabilitymin

(
1, fP(θm)

fP(θm−1)

)
,

where fP(θ) is the density function for the distribution P at point θ. At each step by
accepting and rejecting the updates of parameters θ we move closer to the maximum of
the density function. At the beginning it is common to use a ‘burn-in’ stage when the
integral is not calculated till we will reach the area of high values of the density function
fP . Thus, we perform integration only from the area with high density of P . Some
values of θ are accepted even when the calculated probability is less than 1, it allows
the algorithm to move away from local minimum of the density function. Because we
are interested only in the ratio of density functions of generated parameters, we can
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generate new parameters θ from the unnormalized posterior distribution wT (θ) and
avoid the weights normalization at each step which is more computationally efficient.

At time t = 0 the algorithm starts with the initial estimate of the parameters θ0 = 0.
At each iteration t > 0 we start with parameter θM

t−1 calculated at the previous step
t − 1. It allows the algorithm to converge faster to the correct location of the main mass
of the distribution.

WAAQR

Parameters: number M > 0 of MCMC iterations,
standard deviation σ > 0,
regularization coefficient a > 0

initialize θM
0 := 0 ∈ Rn

define w0(θ) := exp(−a‖θ‖1)
for t = 1, 2, . . . do

γt := 0
define wt(θ) by (17)
read xt ∈ Rn

initialize θ0t = θM
t−1

for m = 1, 2, . . . ,M do
θ∗ := θm−1

t + N (0, σ2I)
flip a coin with success probability

min
(
1, wt−1(θ∗)/wt−1(θm−1

t )
)

if success then
θm

t := θ∗

else
θm

t := θm
t−1

end if
γt := γt + ξ̃t(θm

t )
end for
output predictions γt = γt/M

end for

6 Experiments

In this section we apply WAA and WAAQR for prediction of wind and solar power
and compare their performance with other predictive models. The data set is down-
loaded from Open Power System Data which provides free and open data platform for
power system modelling. The platform contains hourly measurements of geographi-
cally aggregated weather data across Europe and time-series of wind and solar power.
Our training data are measurements in Austria from January to December 2015, test set
contains data from January to July 2016.1

1 The code written in R is available at https://github.com/RaisaDZ/Quantile-Regression.

https://github.com/RaisaDZ/Quantile-Regression
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6.1 WAA

We apply WAA for three models: Quantile Regression (QR), Quantile Random Forests
(QRF), Gradient Boosting Decision Trees (GBDT). These models were used in GEF-
Com 2014 energy forecasting competition on the final leaderboard [9]. In this paper
the authors argue that using multiple regressors is often better than using only one,
and therefore combine multiple model outputs. They noted that voting was found to be
particularly useful for averaging the quantile forecasts of different models.

We propose an alternative approach to combine different models’ predictions by
using WAA. We work according to Protocol 1: at each step t before seeing outcome yt,
we output our prediction γt according to (5). After observing outcome yt, we update
experts’ weights according to (4).

To build models for wind power forecasting we use wind speed and temperature
as explanatory variables. These variables have been extensively used to produce wind
power quantile forecasts [7]. We train three models QR, QRF and GBDT on training
data set, and then apply WAA using forecasts of these models on test data set. We start
with equal initial weights of each model and then update their weights according to their
current performance. We estimate the constant of WAA c = 0.01 using information
about maximum losses on training set.

Figure 1 shows weights of each model for different quantiles depending on the cur-
rent time step. We can see from the graph that for most of quantiles GBDT obtains the
largest weights which indicates that it suffers smaller losses compared to other models.
However, it changes for q = 0.95, where the largest weights are acquired by QR. It
shows that sometimes we can not use the past information to evaluate the best model.
The retrospectively best model can perform worse in the future as an underlying nature
of data generating can change. In addition, different models can perform better on dif-
ferent quantiles.

Table 1 illustrates total losses of QR, QRF, GBDT, WAA and Average methods,
where Average is a simple average of QR, QRF and GBDT. For the prediction of wind
power, for q = 0.25 and q = 0.50 the total loss of WAA is slightly higher than the total
loss of GBDT, whereas for q = 0.75 and q = 0.95 WAA has the smallest loss. In most
cases, WAA outperforms Average method.

We perform similar experiments for prediction of solar power. We choose mea-
surements of direct and diffuse radiations to be our explanatory variables. In a similar
way, QR, QRF and GBDT are trained on training set, and WAA is applied on test
data. Figure 2 illustrates weights of models depending on the current step. Opposite
to the previous experiments, GBDT has smaller weights compared to other models for
q = 0.25 and q = 0.50. However, for q = 0.75 and q = 0.95weights of experts become
very close to each other. Therefore, predictions of WAA should become close to Aver-
age method. Table 1 shows total losses of the methods. For q = 0.25 and q = 0.5 both
QR and QRF have small losses compared to GBDT, andWAA follows their predictions.
However, for q = 0.75 and q = 0.95 it is not clear which model performs better, and
predictions of WAA almost coincide with Average method. It again illustrates that the
retrospectively best model could change with time, and one should be cautious about
choosing the single retrospectively best model for future forecasts.
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Table 1. Total losses (×103)

wind

q QRF GBDT QR Average WAA

0.25 538.5 491.2 516.6 500.3 493.0

0.5 757.0 707.5 730.7 714.0 709.0

0.75 668.3 610.7 633.9 616.6 610.1

0.95 270.5 222.1 217.5 216.0 211.0

solar

q QRF GBDT QR Average WAA

0.25 48.6 98.3 53.1 63.8 50.1

0.5 70.5 110.7 68.8 79.1 69.2

0.75 63.5 67.6 59.3 58.7 58.0

0.95 29.2 26.1 23.2 21.0 20.8

Fig. 1.Weights update for wind power

6.2 WAAQR

In this section we demonstrate the performance of our algorithm for prediction of wind
power and compare it with quantile regression model. We train QR on training data
set, and apply WAAQR on test set. First, we use training set to choose the parameters
of our algorithm. Table 2 illustrates the acceptance ratio of new sampling parameters
of our algorithm for q = 0.5. Increasing values of σ results in decreasing acceptance
ratios of new sampling parameters θ. With large values of σ we move faster to the area
of high values of density function while smaller values of σ can lead to more expen-
sive computations as our algorithm would require more iterations to find the optimal
parameters. Figure 3 illustrates logarithm of parameters likelihood w(θ) defined in (17)
for a = 0.1 and σ = 0.5 and 3.0. We can see from the graphs that for σ = 3.0 the
algorithm reaches maximum value of log-likelihood after around 800 iterations while
for σ = 0.5 it still tries to find maximum value after 1500 iterations. Table 2 shows the
total losses of WAAQR for different parameters a and σ. We can see that choosing the
right parameters is very important as it notably affects the performance of WAAQR. It
is important to keep track of acceptance ratio of the algorithm, as high acceptance ratio
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Fig. 2.Weights update for solar power

means that we move too slowly and need more iterations and larger ‘burn-in’ period to
find the optimal parameters.

Now we compare performances of our algorithm and QR.We choose the parameters
of WAAQR to be the number of iterations M = 1500, ‘burn-in’ stage M0 = 300,
regularization parameter a = 0.1, and standard deviation σ = 3. Note that even though
we use the prior knowledge to choose the parameters of WAAQR, we start with initial
θ0 = 0 and train our algorithm only on the test set. Figure 4 illustrates a difference
between cumulative losses of QR and WAAQR. If the difference is greater than zero,
our algorithm shows better results compared to QR. For q = 0.25 WAAQR shows
better performance at the beginning, but after around 1000 iterations its performance
becomes worse, and by the end of the period cumulative losses of QR and WAAQR are
almost the same. We observe a different picture for q = 0.5 and q = 0.75: most of the
time a difference between cumulative losses is positive, which indicates that WAAQR
performs better than QR.

Figure 5 shows predictions ofWAAQR and QRwith [25%, 75%] confidence interval
for the first and last 100 steps. We can see from the graph, that initially predictions of
WAAQR are very different from predictions of QR. However, by the end of period,
predictions of both methods become very close to each other.

One of the disadvantages of WAAQR is that it might perform much worse with
non-optimal input parameters of regularization a and standard deviation σ. If no prior
knowledge is available, one can start with some reasonable values of input parameters
and keep track of the acceptance ratio of new generated θ. If the acceptance ratio is too
high it might indicate that the algorithm moves too slowly to the area of high values
of the probability function of θ, and standard deviation σ should be increased. Another
option is to take very large number of steps and larger ‘burn-in’ period.
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Table 2. Acceptance ratio (AR) and total losses of WAAQR on training set

AR

a \ σ 0.5 1.0 2.0 3.0

0.1 0.533 0.550 0.482 0.375

0.3 0.554 0.545 0.516 0.371

0.5 0.549 0.542 0.510 0.352

1.0 0.548 0.538 0.502 0.343

Loss

a \ σ 0.5 1.0 2.0 3.0

0.1 1821.8 823.5 216.3 28.8

0.3 1806.2 844.9 265.3 62.7

0.5 1815.7 878.5 272.7 92.1

1.0 1810.4 877.5 379.3 116.9

Fig. 3. Log-likelihood of parameters for a = 0.1.

Fig. 4. Cumulative loss difference between QR and WAAQR

Fig. 5. Predictions with [25%, 75%] confidence interval for WAAQR and QR
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7 Conclusions

We proposed two ways of applying the framework of prediction with expert advice to
the problem of probabilistic forecasting of renewable energy. The first approach is to
apply WAA with a finite number of models and combine their predictions by updating
weights of each model online based on their performance. Experimental results show
that WAA performs close or better than the best model in terms of cumulative pinball
loss function. It also outperforms the simple average of predictions of models. With this
approach we show that it is reasonable to apply WAA for the prediction of quantiles.

Second, we propose a new competitive online algorithm WAAQR which combines
predictions of an infinite pool of quantile regressions. We derive the theoretical bound
which guarantees that WAAQR asymptotically performs as well as any quantile regres-
sion up to an additive term of the form C

√
T lnT . Experimental results show that

WAAQR can outperform the best quantile regression model that was trained on the
historical data.
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Jorge Ángel González Ordiano1(B) , Lisa Finn2, Anthony Winterlich2,
Gary Moloney2, and Steven Simske1

1 Colorado State University, Fort Collins, CO, USA
{jorge.gonzalez ordiano,steve.simske}@colostate.edu

2 Micro Focus International, Galway, Ireland
{finn,winterlich,gary.moloney}@microfocus.com

Abstract. The trade in illicit items, such as counterfeits, not only leads
to the loss of large sums of private and public revenue, but also poses
a danger to individuals, undermines governments, and—in the most
extreme cases—finances criminal organizations. It is estimated that in
2013 trade in illicit items accounted for 2.5% of the global commerce.
To combat illicit trade, it is necessary to understand its illicit supply
networks. Therefore, we present in this article an approach that is able
to find an optimal description of an illicit supply network using a series
of Variable State Resolution-Markov Chains. The new method is applied
to a real-world dataset stemming from the Global Product Authentica-
tion Service of Micro Focus International. The results show how an illicit
supply network might be analyzed with the help of this method.

Keywords: Data mining · Markov Chain · Illicit trade

1 Introduction

Illicit trade is defined as the trade in illegal goods and services that have a
negative impact on our economies, societies, and environments [12]. Two of the
most prevalent forms of illicit trade are counterfeiting and piracy, whose neg-
ative effects have been studied by both the OECD and the ICC. The former
estimates that in 2013 counterfeiting and piracy accounted for 2.5% of all world
imports [10], while the latter assesses that by 2022 counterfeiting and piracy will
drain 4.2 trillion dollars from the world economy and put 5.4 million jobs at risk.
1 The consequences of illicit trade go beyond the loss of public and private rev-
enue. Counterfeit medicines, for instance, have caused a large number of malaria
and tuberculosis related deaths [6], while counterfeit cigarettes, cd’s, etc. have
been linked to terrorist organizations [1]. These examples show the danger that

1 iccwbo.org/global-issues-trends/bascap-counterfeiting-piracy/,Accessed:07-17-2019.
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illicit trade poses to our communities. Therefore, finding ways to combat this
type of trade is of paramount importance.

A possibility for battling illicit trade is through the disruption of its illicit
supply networks (ISNs). Different methods on how to achieve this disruption
are found in literature. Many articles deal with technologies for distinguishing
between licit and illicit goods, such as the works of Dégardin et al. [3], Simske
et al. [15], and Meruga et al. [9]. More closely related to the present article
are those in which the ISNs are investigated directly. Some examples of this
type of articles are shown by Giommoni et al., [5], Magliocca et al. [7], and
Triepels et al. [16]. In the first, network analysis of the heroin trafficking networks
in Europe is conducted. In the second, a simulation of the response of drug
traffickers to interdiction is presented. In the third, international shipping records
are used to create Bayesian networks able to detect smuggling and miscoding.

The goal of this article is to identify the locations in which illicit activity is
more prevalent. To achieve this goal, we make use of Markov Chains, as they are
a type of model that is useful at determining the amount of time that a system
(i.e. a supply network) spends on a given state (i.e. a location) [13]. The first step
for creating a Markov Chain is to define what the states, or nodes, of the model
will be. These states can be defined at different resolution levels, as shown for
instance in [8]. In this article, the states represent possible geographic locations
within a supply network; which in turn can be defined in terms of countries,
regions, continents, etc. Unfortunately, the state description (i.e. the Markov
Chain design) that is best at modeling a given system is not immediately clear.
To address this issue, we present in this work a new method that optimizes—in
terms of a user-defined cost function—the design of a Markov Chain. Notice
that the models created via this new method are referred to as Variable State
Resolution-Markov Chains (VSR-MCs) to denote the fact that their states are
a combination of the various possible descriptions. Furthermore, a real world
dataset containing spatio-temporal information of serial code authentications is
used to show how the new approach can be used to analyze ISNs. This dataset
stems from the Global Product Authentication Service of Micro Focus Interna-
tional. The VSR-MC obtained with this data is then used to compare a licit
supply network to its illicit counterpart. The results of this comparison offer
insight on the locations in which illicit activity is more prevalent.

The remainder of this article is organized as follows: Sect. 2 offers prelimi-
nary information on Markov Chains. Section 3 shows the new method. Section 4
describes this article’s experiment. Section 5 shows and discusses the obtained
results and Sect. 6 contains the conclusion and outlook of this work.

2 Preliminaries

A Markov Chain can be defined as a discrete time random process {Xn : n ∈ N0}
whose random variables2 only take values within a given state space, i.e. xn ∈
2 Note that the common notation for random variables is used herein, i.e. random

variables are written in uppercase and their realizations in lowercase.
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S [2]. In this section, a state space—consisting of K ∈ N>1 different states—is
defined as S = {sk : k ∈ [1,K]}. In general, a Markov Chain can be viewed as a
Markov Process with discrete time and state space.

The most important property of a Markov Chain is its lack of “memory”,
i.e. the probability of an outcome at time n + 1 depends only on what happens
at time n [11]. This is better described by the following equation:

P(Xn+1|Xn = xn, . . . , X1 = x1) = P(Xn+1|Xn = xn). (1)

A Markov Chain is further characterized by its transition probability matrix
Pn; a matrix defined as:

Pn =

⎡
⎢⎣

p11 · · · p1K

...
. . .

...
pK1 · · · pKK

⎤
⎥⎦

n

, (2)

with the entries pij,n representing the probability of transitioning from state si

to state sj at time n, i.e. P(Xn+1 = sj |Xn = si). If the transition probabilities
are independent of n (i.e. Pn = P), the Markov chain is called time homoge-
neous [11].

Additionally, the probabilities of X0 being equal to each one of the states
can be written in vector form as follows:

π0 = [P(X0 = s1), · · · ,P(X0 = sK)]T = [π01, · · · , π0K ]T , (3)

where π0 is the start probability vector and π0k is the probability of X0 being
equal to sk.

Based on Eq. (1), (2), and (3), the probability of a sequence of events in a
time homogeneous Markov Chain can be calculated as a multiplication of a start
probability and the corresponding pij values [14]. For instance, the probability
of the sequence {X0 = s1,X1 = s3,X2 = s2} is given as:

P(X0 = s1,X1 = s3,X2 = s2) = π01 · p13 · p32. (4)

Interested readers are referred to [2] and [11] for more information on Markov
Chains.

3 Variable State Resolution-Markov Chain

The method presented herein offers a novel alternative on how to optimize the
design of a Variable State Resolution-Markov Chain (VSR-MC). The main dif-
ference between a traditional Markov Chain and a VSR-MC is the way in which
the state space is defined. This difference stems from the fact that a state can be
defined at different resolution scales, which are referred in this article as scales
of connectivity. For example, a geographic location within a supply network can
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be described at a country or at a continent scale. Based on this idea, we define
the state space of a VSR-MC as:

S = {ΦG(sk) : k ∈ [1,K]}
= {sG,k′ : k′ ∈ [1,KG]} , with

G = {glr : l ∈ [1, L], r ∈ [1, Rl]},

(5)

where sk represents the states, G is a set containing the groups (i.e. glr) in which
the states can be clustered, L ∈ N>0 is the number of scales of connectivity, and
Rl ∈ N>1 is the number of groups within the lth scale. Furthermore, ΦG(sk) is
a function that defines KG ∈ N>1 new states, which are referred to as sG,k′ . In
other words, ΦG(sk) is defined as follows:

ΦG(sk) =

{
sk , if sk /∈ G

glr : sk ∈ glr , else .
(6)

When defining G, it is important to consider that each sk can only be con-
tained in either one or none of the groups within the set. For the sake of
illustration, Fig. 1 shows an example of possible high resolution states and their
corresponding groups at different scales of connectivity.

Fig. 1. Example of various states and their corresponding groups

Based on all previous aspects, it is clear that we can create different Markov
Chains based on the combination of different states and groups. For instance,
consider a case in which four states (i.e. s1, s2, s3, and s4) can be aggregated in
two groups (i.e. g11 = {s1, s2} and g12 = {s3, s4}). As shown in Table 1, the pos-
sible combinations result in four VSR-MCs with different scales of connectivity.

In general, the number of combinations (i.e. group sets G) that can be
obtained with L scales of connectivity is given by the next equation:

Nc = 1 +
L∑

l=1

(l + 1)Rl − lRl , (7)
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Table 1. Possible state spaces of the Variable State Resolution-Markov Chains with
four states s1, s2, s3, and s4, one scale of connectivity, and two groups g11 = {s1, s2}
and g12 = {s3, s4}. As given by Eq. (7), the number of possible group sets equals four.

G {} {g11} {g12} {g11, g12}
S {s1, s2, s3, s4} {g11, s3, s4} {s1, s2, g12} {g11, g12}

where Nc is the number of all possible combinations and Rl is again the number
of groups within each scale.

After defining the group sets G, the probabilities of the group set-dependent
transition matrices (PG) and start probability vectors (πG,0) are calculated.
These probabilities are obtained using a dataset containing N sequences of events
of the system we want to model. In this article the sequences are described as:

xm = {xmn : n ∈ [0, Nm]}, (8)

in which xm is the mth sequence within the dataset, Nm ∈ N>0 is a value
that defines the sequence length, and xmn is one of the realizations forming the
sequence.

As mentioned at the beginning, the main goal is to find the scale of con-
nectivity that will optimize the Markov chain architecture. In other words, we
are interested in finding the VSR-MC that minimizes a problem-specific cost
function c(·). This optimization problem can be described in general as:

Gopt = argmin
G

c(G,S,PG,πG,0, · · · ), (9)

where Gopt represents the optimal group set.

4 Experimental Study

4.1 Data

The dataset used comes from the Global Product Authentication Service (GPAS)
of Micro Focus International. GPAS protects products in the marketplace by
embedding a URL and unique serial number into a QR code placed on each
product. The consumer is encouraged to scan the QR code which can authenti-
cate their purchase in real-time. This dataset contains therefore spatio-temporal
information of licit and illicit activity. To be more specific, it contains the authen-
tication results (i.e. “True” or “False”) of 1,725,075 unique serial codes.3 In
addition to the authentication, the dataset contains the geographic position (i.e.
latitude and longitude) and the time at which each serial code was authenticated.
Since many codes have been authenticated several times at different times and
places, we assume that a reconstruction of the supply network is possible.
3 The serial codes correspond to five different products. In this article, however, they

are not separated by their product type, but are rather investigated as a single group.
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In the present article, we are interested in analyzing licit and illicit serial
codes that are authenticated a similar number of times at different geographic
locations. Henceforth, the data is preprocessed as follows. First, all entries with
missing geographic information, as well as all serial codes that do not change
their position are removed from the dataset (i.e. 1,659,726). Afterwards, codes
whose authentication result is sometimes “True” and sometimes “False” are also
eliminated (i.e. 5,453). Note that the serial codes that have been removed are
still of interest, as they can be used in the future for other type of analysis. For
instance, serial codes that do not change position could be used to identify hot
spots of serial code harvesting, while serial codes that change their authentication
can be used to analyze locations in which the original licit codes might have been
copied. As mentioned earlier, the serial codes we are considering here are the ones
authenticated at different locations. We do this because we are interested in
discovering the network architecture, and by inference the distribution channels,
of the illicit actors. Finally, serial codes authenticated first and last at the exact
same position, as well as those authenticated in more geographic positions than
99% of all serial codes are deleted (i.e. 3,897). The goals of this final step are
the removal of serial codes that are suspect of being demos and the elimination
of copied serial codes authenticated a huge number of times (i.e. with a clearly
different behavior than licit serial codes).

The resulting dataset contains 55,999 unique serial codes, of which 31,989
are authenticated as “True”, while 24,010 are authenticated as “False”.

4.2 Description

The goal of this experiment is to find a VSR-MC able to accurately describe a
licit and an illicit supply network. To do so, we create a series of Markov Chains
with computed probabilities of state-state transitions for both licit and illicit
serial codes. Then, we select the one that is best at classifying illicit activity as
the one with the optimal scale of connectivity. To solve this classification problem
and to obtain representative results, we create three different training/test set
pairs, by randomly selecting—three separate times—50% of the unique serial
codes as training set and the rest as test set.

We begin the experiment by defining three different ways in which the loca-
tion of a serial code can be described, i.e. country, region, or continent. These
descriptions are the scales of connectivity of the VSR-MC we are looking to cre-
ate. Using the given geographic positions, we can easily determine the countries
and continents where the serial codes were authenticated. The regions, in con-
trast, are calculated using a clustering algorithm, i.e. the affinity propagation
algorithm [4]. This algorithm clusters the countries of a specific continent based
on a similarity measure. The similarity measure we use here is the geographic
proximity between the countries’ centroids. For the sake of illustration, Table 2
shows the three scales of connectivity used in this article.

As Eq. (7) shows, the regional and continental descriptions can be used to cre-
ate a staggering number of possible combinations; whose individual testing would
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Table 2. Scales of connectivity

Continents Regions Countries

Africa Africa 1 Djibouti, Egypt, Ethiopia, Kenya, Sudan

Africa 2 Angola, Botswana, Mozambique, Namibia, South Africa,

Zambia, Zimbabwe

Africa 3 Algeria, Libya, Morocco, Tunisia

Africa 4 Burundi, Congo - Kinshasa, Malawi, Rwanda, South Sudan,

Tanzania, Uganda

Africa 5 Benin, Burkina Faso, Côe d’Ivoire, Ghana, Mali, Niger,

Nigeria, Togo

Africa 6 Cape Verde, Gambia, Guinea, Guinea-Bissau, Liberia,

Mauritania, Senegal, Sierra Leone

Africa 7 Cameroon, Congo - Brazzaville, Gabon

Africa 8 Comoros, Madagascar, Mauritius, Réunion, Seychelles

Asia Asia 1 Bangladesh, Bhutan, India, Maldives, Myanmar (Burma),

Nepal, Sri Lanka

Asia 2 Japan, South Korea

Asia 3 Bahrain, Iran, Kuwait, Oman, Qatar, Saudi Arabia, United

Arab Emirates, Yemen

Asia 4 Cambodia, Hong Kong SAR China, Laos, Macau SAR China,

Taiwan, Thailand, Vietnam

Asia 5 Brunei, Indonesia, Malaysia, Philippines, Singapore

Asia 6 Armenia, Azerbaijan, Georgia, Iraq, Israel, Jordan, Lebanon,

Palestinian Territories, Syria, Turkey

Asia 7 China, Mongolia, Russia

Asia 8 Afghanistan, Kazakhstan, Kyrgyzstan, Pakistan, Tajikistan,

Turkmenistan, Uzbekistan

Europe Europe 1 Albania, Bulgaria, Cyprus, Greece, Macedonia, Malta,

Montenegro, Serbia

Europe 2 Iceland

Europe 3 Moldova, Romania, Ukraine

Europe 4 France, Portugal, Spain

Europe 5 Belgium, Denmark, Germany, Ireland, Luxembourg,

Netherlands, United Kingdom

Europe 6 Åland Islands, Finland, Norway, Sweden

Europe 7 Austria, Bosnia & Herzegovina, Croatia, Czechia, Hungary,

Italy, Monaco, Slovakia, Slovenia, Switzerland

Europe 8 Belarus, Estonia, Latvia, Lithuania, Poland

North America North America 1 United States

North America 2 Canada

North America 3 Mexico

North America 4 Bahamas, Curaçao, Dominican Republic, Haiti, Jamaica

North America 5 Barbados, British Virgin Islands, Guadeloupe, Martinique,

Puerto Rico, Sint Maarten, Trinidad & Tobago

North America 6 Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua,

Panama

Oceania Oceania 1 Australia, Fiji, New Zealand, Samoa

Oceania 2 Northern Mariana Islands, Palau, Papua New Guinea

South America South America 1 Bolivia, Brazil, Paraguay

South America 2 Colombia, Ecuador, Peru

South America 3 Argentina, Chile, Uruguay

South America 4 French Guiana, Guyana, Venezuela
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be computationally infeasible. For this reason, the next paragraphs describe a
two step alternative to deal with this issue.

Step 1: We begin by finding an optimal VSR-MC using only the regions
and continents. In other words, we define the regions as the Markov states sk

and the continents as the groups at the first—and only—scale of connectivity,
i.e. g1r ∈ {Africa, Asia, North America, South America, Oceania}. Using these
groups and Eq. (5), we define a total of 64 different state spaces S.

Afterwards, we calculate for each state space and each available training set
the probabilities that are necessary to construct a Markov Chain. To be more
specific, for each state space two start probability vectors and two transition
probability matrices are calculated, for licit and illicit serial codes, respectively.
These probabilities are based on the trajectories that are described herein as a
sequence of geographic positions in which a serial code has been authenticated.
Based on Eq. (8), the trajectories can be described as:

xα
m = {xα

mn : n ∈ [0, Nm]} : α = {licit, illicit}, (10)

where α indicates if the trajectory corresponds to a licit or an illicit serial code.
Notice that we assume the Markov Chains to be homogeneous. Therefore,

all sequences within the training sets that have an Nm > 1 are divided in Nm

sequences of two realizations each. With these new set of sequences as well as
Eq. (5), the start probabilities can be calculated:

πα
G,0i =

1
Mα

Mα∑
m=1

I(xα
m0 = sG,i) : α = {licit, illicit}, i ∈ [1,KG], (11)

where πα
G,0i is the probability of a sequence starting at state sG,i, Mα represents

the number of available sequences (licit or illicit), and I(·) is a function that
equals one if its condition is fulfilled and equals zero otherwise. Thereafter, the
elements of the transition matrices can be obtained using Bayes’s rule:

pα
G,ij =

1
Mαπα

G,0i

Mα∑
m=1

I(xα
m0 = sG,i ∩ xα

m1 = sG,j)

: α = {licit, illicit}, i, j ∈ [1,KG],

(12)

with pα
G,ij being the probability of transitioning from state sG,i to sG,j .

So, using the previous values we can determine—in every state space—the
probability of a serial code sequence if we assume it to be licit or illicit, i.e.
PG(xm|α) : α = {licit, illicit}. Thereafter, we can use the resulting probabilities
to classify a serial code as illicit if PG(xm|illicit) ≥ PG(xm|licit).

The method described previously is used to classify all codes within the test
sets. Afterwards, the classification results are evaluated using the weighted F-
Score, i.e.:

Fβ,G = (1 + β2)
Qp,G Qr,G

β2 Qp,G + Qr,G
, (13)
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where Qp,G represents the precision, Qr,G is the recall, and β is a parameter that
defines which of the former values is weighted more strongly. The value of β is
set equal to 0.5 to give precision two times more importance than recall. This
is done, since we are more interested in correctly identifying illicit serial codes
(precision) than we are in flagging every possible one (recall).

After finishing the evaluation on each test set, the mean value and variance
of the weighted F-Score are calculated, i.e. F β,G and σ2

β,G, respectively. With
these values, the optimization problem described in Eq. (9) can be redefined as:

Gopt = argmin
G

γ (1 − F β,G) + (1 − γ) σ2
β,G : γ ∈ [0, 1]. (14)

Notice that in this article the parameter γ is set equal to 0.5 to give both terms
of the cost function an equal weight and to make the cost function less sensitive
to noise. Solving Eq. (14) results in an optimal VSR-MC whose state space S
(defined by Gopt) might be a combination of regions and continents.

Step 2: If the number of regions within the state space S is greater than zero,
we can conduct an additional experiment to test if a country level description
of the regions improves our modeling of the supply network. Note that our
experiment uses a forward selection to reduce the number of combinations that
need to be tested. We first create new state spaces by individually separating the
regions within S into their corresponding countries. For instance, if S contains
6 regions we obtain 6 new state spaces. Afterwards, we test if some of these
new state spaces result in a Markov Chain with a cost (cf. Eq (14)) that is lower
than the one currently consider optimal. If so, we define the VSR-MC with the
lowest cost as the new optimal one and its state space as the new optimal state
space S. Afterwards, we repeat the previous steps again until none of the new
Markov Chains result in a better cost or until there are no more regions within
the state space. The result of this process is a VSR-MC with states that could
stem from all of our available scales of connectivity (i.e. countries, regions, and
continents). For the sake of simplicity, we will refer to the group set that maps
the individual countries to the state space of this new optimal VSR-MC also as
Gopt. It is worth noting, that since we are not testing all possible state spaces,
the solution of our method may not be the global optimum. Nevertheless, we
still consider our approach of dividing one region at a time to be acceptable.
There are two main reasons for this: (i) we are able to improve the overall cost
function testing only a small subset of all combinations; and (ii) we are able to
increase the resolution of our network description, something that may improve
our understanding of how the network operates.

After finding the best VSR-MC, we use all available data to recalculate the
probabilities of the transition matrices to analyze the differences between the
licit and the illicit supply networks with more detail. The analysis consists in
calculating the limiting distributions of the licit and illicit transition matrices.
These describe the probabilities of authenticating the serial codes at the different
locations if we observe our system (i.e. the supply network) over a long period of
time. In other words, these values can be interpreted as estimates of the amount
of time that licit or illicit serial codes will spend on the different locations.
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Therefore, a comparison of licit and illicit limiting distributions will allow us to
estimate the locations where we expect illicit serial codes to spend more time.
The comparison is based on a relative difference that is defined in this article as:

Δπ′
sGopt,i

=
πlicit

sGopt,i
− πillicit

sGopt,i

πlicit
sGopt,i

, (15)

where πlicit
sGopt,i

is the licit limiting distribution value of sGopt,i, πillicit
sGopt,i

repre-
sents the illicit limiting distribution value of sGopt,i, and Δπ′

sGopt,i
is the relative

difference for state sGopt,i.
After estimating the relative differences, we can test the difference between

our approach and a simple descriptive analysis. This test consists in comparing
the Δπ′

sGopt,i
values to benchmark relative differences (BRDs) calculated using

descriptive statistics. To be more specific, the BRDs are also obtained with
Eq. (15), but instead of using the limiting distribution values, we use the actual
percentage of true and false authentications on the given states.

5 Results and Discussion

The results obtained on the three separate test sets by the VSR-MCs with only
regions and continents as scales of connectivity (cf. Sect. 4.2; Step 1) are depicted
in Fig. 2.

The first thing we notice when looking at Fig. 2 is that the standard devia-
tions are relatively small. This not only means that the results on all test sets
are similar, but also that our mean estimates are quite accurate, as the standard
error of the mean is directly proportional to the standard deviation. In addition,
Fig. 2 also shows that the precision does not appear to change when modifying
the state space; as it is consistently around 90%. In contrast, the use of different
group sets divides the recall in two distinct groups with different recall values;
the first between 60 and 70% and the second between 80 and 90%. The decrease
in recall is caused by considering Asia as a continent instead of looking at its
individual regions. In other words, individual networks between Asian regions
seem to play an important role in the accurate modeling of licit and illicit sup-
ply networks. Due to the recall, the weighted F-Score is also dependent on Asia
being modeled as a single state or as individual regions. This result, i.e. that the
scale of connectivity affects the quality of the supply network models, supports
the use of this article’s method (cf. Sect. 3). Therefore, we use Eq. (14) and the
obtained weighted F-Scores to determine the scale of connectivity that will best
describe the licit and illicit supply networks.

According to Eq. (14), the optimal VSR-MC is the one with states repre-
senting the continents of Africa, Europe, North America, South America, and
Oceania, as well as the individual regions of Asia, i.e. Gopt = {Africa, Europe,
North America, South America, Oceania}. This result shows again the impor-
tance that Asia appears to play in the accurate modeling of the supply networks.
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Fig. 2. Group set-dependent mean values and standard deviations of the precision,
recall, and weighted F-score (cf. Eq. (13)) obtained on the three separate test sets

After finding the best VSR-MC, we can identify the regions that, when
divided, improve our model (cf. Sect. 4.2; Step 2). Our method concludes that
our description of the licit and illicit supply networks improve if we consider five
of the eight Asian regions (i.e. Asia 1, Asia 5, Asia 6, Asia 7, and Asia 8) as indi-
vidual countries. Therefore, we redefine the optimal group set as Gopt = {Asia 2,
Asia 3, Asia 4, Africa, Europe, North America, South America, Oceania}. This
group set defines a new VSR-MC with a state space that combines the three
scales of connectivity we considered in this article. Lastly, it is important to
mention, that the cost of this new optimal VSR-MC (i.e. 0.047) is not only lower
than the one obtained when Asia is divided purely into regions (i.e. 0.054), but
also than the one obtained when Asia is divided purely into countries (i.e. 0.048).

Once the optimal scale of connectivity, given any limitations of our process,
has been found, we recalculate the Markov Chain probabilities with all available
data and use Eq. (15) to identify the states in which illicit serial codes are more
prevalent. It is important to mention that having some of the countries as states
results in the transition matrices having absorbing states; a type of state that
complicates the calculation of the limiting distributions. Therefore to calculate
the limiting distributions, we first group those countries with the “less absorbing”
countries within their region. In this context, “less absorbing” refers to countries
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whose rows in their transition matrices have the least number of zeros when
compared to all other countries within their region.

The relative differences Δπ′
sGopt,i

(cf. Eq. (15)), the number of times a serial
code is authenticated, and the benchmark relative differences (BRDs) are all
contained in Table 3.

When looking at Table 3, we notice a state with a relative difference of minus
infinity (i.e. Mongolia) and another with a relative difference of one (i.e. Tajik-
istan). This means that in those locations only illicit or only licit serial codes
were authenticated. Even though these types of results might be interesting,
they will not be investigated further, as the number of authentications in those
locations is extremely low.

Table 3 also shows that the countries that would have formed absorbing states
are locations in which serial codes are authenticated a small number of times,
specially compared to the number of authentications within the “less absorbing”
countries they are grouped with (i.e. India, Malaysia, Pakistan, and Turkey).
Henceforth, we can safely assume that the “less absorbing” countries are the
ones responsible for the relative differences obtained. Furthermore, the results
in Table 3 show that there are several states in which illicit serial codes appear
to spend more time than licit ones. These states are the ones with a negative
relative difference (cf. Eq. (15)) and are further referred to as “critical” states.
The fact that most of these critical states are countries within the regions selected
by our forward selection algorithm (cf. Sect. 4.2; Step 2), speaks in favor of our
approach.

As Table 3 shows, Turkey is the most “critical” state, as its relative difference
estimates that illicit serial codes will spend close to 1200% more time there than
their licit counterparts. This is an extreme result that needs to be investigated
further, for instance by identifying the reasons behind this outcome and/or by
finding out if Turkey is again a critical state when looking at illicit activities, such
as serial code harvesting. The critical states with the next three lowest relative
differences are Georgia, Singapore, and Syria. There the limiting distribution
values of an illicit serial code are between 200 and 300% higher than those of a
licit one. However, we can also observe that the number of authentications occur-
ring on those locations is quite low in comparison to other places. Henceforth,
a further investigation of those locations may not be of extreme importance.
In addition to the results mentioned above, there are several “critical” states
with relative difference that can still be considered high, i.e. between 20 and
50%. Within these states, Europe and China are the ones with a considerably
larger amount of authentications. Therefore, a more in depth study of these two
locations could be interesting for future related works.

It is also important to mention that a state having a relative difference close
to zero does not mean that it is free of illicit activity. For instance, Sri Lanka,
North America, and South America have relative differences of just −0.07, −0.01,
and 0, respectively, meaning that their limiting distribution values for licit and
illicit serial codes are almost the same. In other words, states whose relative
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Table 3. Number of authentications, relative limiting distribution difference Δπ′
sGopt,i

,

and benchmark relative difference (BRDs) of the states forming the optimal Variable
State Resolution-Markov Chain; the absorbing states and their realization are shown in
parentheses next to the name and realizations of their corresponding “less absorbing”
countries

sGopt,i # of Authentications Δπ′
sGopt,i

BRD

Mongolia 1 −Inf −Inf

Turkey (Jordan, Armenia) 42064 (53, 5) −11.69 −12.07

Georgia 16 −2.91 −1.72

Singapore 189 −2.51 −0.69

Syria 22 −2.41 −0.59

Europe 20621 −0.49 −1.87

Kazakhstan 114 −0.32 0.47

Pakistan (Kyrgyzstan,
Turkmenistan, Uzbekistan)

1944 (1, 1, 5) −0.32 −0.02

China 19923 −0.20 0.80

Sri Lanka 298 −0.07 0.42

North America 10991 −0.01 0.48

South America 24590 0.00 0.50

Asia 3 3606 0.25 0.51

India (Nepal, Maldives) 13669 (38, 29) 0.37 0.64

Russia 4475 0.42 0.59

Philippines 283 0.52 0.78

Bangladesh 282 0.53 0.51

Bhutan 279 0.53 −0.53

Africa 11756 0.56 0.58

Afghanistan 445 0.58 0.50

Asia 4 1815 0.65 0.73

Malaysia (Brunei) 1898 (16) 0.69 0.75

Indonesia 318 0.70 0.77

Palestinian Territories 113 0.71 0.28

Oceania 644 0.76 0.76

Israel 363 0.87 0.23

Asia 2 654 0.89 0.49

Lebanon 56 0.92 0.80

Azerbaijan 457 0.92 0.95

Iraq 32 0.98 0.91

Myanmar 92 0.99 0.98

Tajikistan 3 1.00 1.00
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differences are close to zero may have a similar rate of licit and illicit activity
and thus should be investigated further.

Lastly, we observe that some relative difference values vary significantly or do
not agree to those calculated using simple descriptive statistics (i.e. the BRDs).
For example, though China has the relative difference of a so-called “critical”
state, its BRD is clearly above zero. Similarly, North and South America have
BRDs that indicate more licit than illicit authentications, while their relative dif-
ferences estimate instead similar rates. Note that though we are aware about the
interesting results obtained for Bhutan (its BRD and its relative difference are
complete opposites), no further investigation and analysis were conducted given
its relatively small number of authentications. In general, the results obtained
in this work demonstrate that modeling the spatio-temporal information of a
supply network (as we do with our approach) leads to conclusions that are dif-
ferent from those obtained through a simple descriptive analysis. Furthermore,
since our method models the behavior of the illicit supply network as a whole,
we can argue that it is better suited at combating illicit trade than a descriptive
analysis.

6 Conclusion and Outlook

This article presents a new approach for describing illicit supply networks based
on Variable State Resolution-Markov Chain (VSR-MC) models. These type of
models stem from the idea that a location within a supply network can be
described at different scales of connectivity (e.g., countries, regions, continents).

The new method described herein is divided in two main steps. The first
step creates a series of VSR-MCs that describe the same network using different
state spaces, while the second uses a user-defined cost function to select the
VSR-MC that best describes the network. The new method is applied to a
dataset containing spatio-temporal information of licit and illicit activity. This
dataset comes from the Global Product Authentication Service of Micro Focus
International and contains information of the time and place in which licit and
illicit serial codes have been authenticated. Applying our new method to this
dataset results in Markov Chain models of the licit and illicit supply networks.
The comparison of both networks enables us to ascertain the geographic locations
in which illicit serial codes are expected to spend more time than their licit
counterparts.

Even though this article shows a promising approach for analyzing illicit sup-
ply networks, there are still a number of aspects that have to be studied in future
related works. For instance, in this article all scales of connectivity stem from
grouping the countries based on their geographic proximity. Therefore, future
works should investigate if better descriptions of the illicit supply networks can
be obtained by clustering the countries based on other measures of similarity;
such as, their number of free trade agreements, their culture, or their language.
Such a study will allow us to better identify the aspects that drive illicit sup-
ply networks. Additionally, we should also use the method described herein to
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compare networks stemming from different forms of illicit trade, such as counter-
feiting, serial code harvesting, and human trafficking. A comparison like this will
enable us to identify both similarities and differences between different types of
illicit trade. Moreover, future works should also investigate the use of nth order
and non-homogeneous Markov Chains. Finally, we must compare our method to
other approaches to better understand its advantages and limitations.
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Abstract. Deep networks, like some other learning models, can asso-
ciate high trust to unreliable predictions. Making these models robust
and reliable is therefore essential, especially for critical decisions. This
experimental paper shows that the conformal prediction approach brings
a convincing solution to this challenge. Conformal prediction consists in
predicting a set of classes covering the real class with a user-defined fre-
quency. In the case of atypical examples, the conformal prediction will
predict the empty set. Experiments show the good behavior of the con-
formal approach, especially when the data is noisy.

Keywords: Deep learning · Conformal prediction · Robust and
reliable models

1 Introduction

Machine learning and deep models are everywhere today. It has been shown,
however, that these models can sometimes provide scores with a high confidence
in a clearly erroneous prediction. Thus, a dog image can almost certainly be
recognized as a panda, due to an adversarial noise invisible to the naked eye
[4]. In addition, since deep networks have little explanation and interpretability
by their very nature, it becomes all the more important to make their decisions
robust and reliable.

There are two popular approaches that estimate the confidence to be placed
in the predictions of machine learning algorithms: Bayesian learning and Prob-
ably Approximately Correct (PAC) learning. However, both these methods pro-
vide major limitations. Indeed, the first one needs correct prior distributions to
produce accurate confidence values, which is often not the case in real-world
applications. Experiments conducted by [10] show that when assumptions are
incorrect, Bayesian frameworks give misleading and invalid confidence values (i.e.
the probability of error is higher than what is expected by the confidence level).
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The second method, i.e. PAC learning, does not rely on a strong underlying prior
but generates error bounds that are not helpful in practice, as demonstrated in
[13]. Another approach that offers hedged predictions and does not have these
drawbacks is conformal prediction [14].

Conformal prediction is a framework that can be implemented on any
machine learning algorithm in order to add a useful confidence measure to its
predictions. It provides predictions that can come in the form of a set of classes
whose statistical reliability (the average percentage of the true class recovery by
the predicted set) is guaranteed under the traditional identically and indepen-
dently distributed (i.i.d.) assumption. This general assumption can be relaxed
into a slightly weaker one that is exchangeability, meaning that the joint proba-
bility distribution of a sequence of examples does not change if the order of the
examples in this sequence is altered. The principle of conformal prediction and
its extensions will be recalled in Sect. 2.

Our work uses an extension of this principle proposed by [6]. They propose
to use the density p(x|y) instead of p(y|x) to produce the prediction. This makes
it possible to differentiate two cases of different uncertainties: the first predicts
more than one label compatible with x in case of ambiguity and the second
predicts the empty set ∅ when the model does not know or did not see a similar
example during training. This approach is recalled in Sect. 2.3. However, the
tests in [6] only concern images and Convolutional Neural Networks.

Therefore, the validity and interest of this approach still largely remains to be
empirically confirmed. This is what we do in Sect. 3, where we show experimen-
tally that this approach is very generic, in the sense that it works for different
neural network architectures (Convolutional Neural Networks, Gated Recurrent
Unit and Multi Layer Perceptron) and various types of data (image, textual,
cross sectional).

2 Conformal Prediction Methods

Conformal prediction was initially introduced in [14] as a transductive online
learning method that directly uses the previous examples to provide an indi-
vidual prediction for each new example. An inductive variant of conformal pre-
diction is described in [11] that starts by deriving a general rule from which
the predictions are based. This section presents both approaches as well as the
density-based approach, which we used in this paper.

2.1 Transductive Conformal Prediction

Let z1 = (x1, y1), z2 = (x2, y2), . . . , zn = (xn, yn) be successive pairs constitut-
ing the examples, with xi ∈ X an object and yi ∈ Y its label. For any sequence
z1, z2, . . . , zn ∈ Z∗ and any new object xn+1 ∈ X, we can define a simple pre-
dictor D such as:

D : Z∗ × X −→ Y. (1)
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This simple predictor D produces a point prediction D(z1, . . . , zn, xn+1) ∈ Y ,
which is the prediction for yn+1, the true label of xn+1.

By adding another parameter ε ∈ (0, 1) which is the probability of error
called the significance level, this simple predictor becomes a confidence predictor
Γ that can predict a subset of Y with a confidence level 1−ε, which corresponds
to a statistical guarantee of coverage of the true label yn+1. Γ is defined as
follows:

Γ : Z∗ × X × (0, 1) −→ 2Y , (2)

where 2Y denotes the power set of Y . This confidence predictor Γ ε must be
decreasing for the inclusion with respect to ε, i.e. we must have:

∀n > 0, ∀ε1 ≥ ε2, Γ ε1(z1, . . . , zn, xn+1) ⊆ Γ ε2(z1, . . . , zn, xn+1). (3)

The two main properties desired in confidence predictors are (a) validity,
meaning the error rate does not exceed ε for each chosen confidence level ε, and
(b) efficiency, i.e. prediction sets are as small as possible. Therefore, a prediction
set with fewer labels will be much more informative and useful than a bigger
prediction set.

To build such a predictor, conformal prediction relies on a non-conformity
measure An. This measure calculates a score that estimates how strange an
example zi is from a bag of other examples �z1, . . . , zi−1, zi+1, . . . , zn�. We then
note αi the non-conformity score of zi compared to the other examples, such as:

αi := An(�z1, . . . , zi−1, zi+1, . . . , zn�, zi). (4)

Comparing αi with other non-conformity scores αj with j �= i, we calculate
a p-value of zi expressing the proportion of less conforming examples than zi,
with:

|{j = 1, . . . , n : αj ≥ αi}|
n

. (5)

If the p-value approaches the lower bound 1/n then zi is non-compliant to
most other examples (an outlier). If, on the contrary, it approaches the upper
bound 1 then zi is very consistent.

We can then compute the p-value for the new example xn+1 being classified
as each possible label y ∈ Y by using (5). More precisely, we can consider for
each y ∈ Y the sequence (�z1, . . . , zn, zn+1 = (xn+1, y)) and derive from that
scores αy

1 , . . . , α
y
n+1. We thus get a conformal predictor by predicting the set:

Γ ε(xn+1) =
{

y ∈ Y :
|{i = 1, . . . , n, n + 1 : αy

i ≥ αy
n+1}|

n + 1
> ε

}
. (6)

Constructing a conformal predictor therefore amounts to defining a non-
conformity measure that can be built based on any machine learning algorithm
called the underlying algorithm of the conformal prediction. Popular underlying
algorithms for conformal prediction include Support Vector Machines (SVMs)
and k-Nearest Neighbours (k-NN).
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2.2 Inductive Conformal Prediction

One important drawback of Transductive Conformal Prediction (TCP) is the
fact that it is not computationally efficient. When dealing with a large amount
of data, it is inadequate to use all previous examples to predict an outcome for
each new example. Hence, this approach is not suitable for any time consum-
ing training tasks such as deep learning models. Inductive Conformal prediction
(ICP) is a method that was outlined in [11] to solve the computational ineffi-
ciency problem by replacing the transductive inference with an inductive one.
The paper shows that ICP preserves the validity of conformal prediction. How-
ever, it has a slight loss in efficiency.

ICP requires the same assumption as TCP (the i.i.d. assumption or the
weaker assumption exchangeability), and can also be applied on any underlying
machine learning algorithm. The difference between ICP and TCP consists of
splitting the original training data set �z1, . . . , zn� into two parts in the inductive
approach. The first part Dtr = �z1, . . . , zl� is called the proper training set, and
the second smaller one Dcal = �zl+1, . . . , zn� is called the calibration set. In this
case, the non-conformity measure Al based on the chosen underlying algorithm
is trained only on the proper training set. For each example of the calibration
set i = l + 1, . . . , n, a non-conformity score αi is calculated by applying (4) to
get the sequence αl+1, . . . , αn. For a new example xn+1, a non-conformity score
αy

n+1 is computed for each possible y ∈ Y , so that the p-values are obtained and
compared to the significance level ε to get the predictions such as:

Γ ε(xn+1) = {y ∈ Y :
|{i = l + 1, . . . , n, n + 1 : αi ≥ αy

n+1}|
n − l + 1

> ε}. (7)

In other words, this inductive conformal predictor will output the set of all
possible labels for each new example of the classification problem without the
need of recomputing the non-conformity scores in each time by including the
previous examples, i.e., only αn+1 is recomputed for each y in Eq. (7).

2.3 Density-Based Conformal Prediction

The paper [6] uses a density-based conformal prediction approach inspired from
the inductive approach and considers a density estimate p̂(x|y) of p(x|y) for the
label y ∈ Y . Therefore, this method divides labeled data into two parts: the
first one is the proper training data Dtr = {Xtr, Y tr} used to build p̂(x|y), the
second is the calibration data Dcal = {Xcal, Y cal} to evaluate {p̂(xi|y)} and set
t̂y to be the empirical quantile of order ε of the values {p̂(xi|y)}:

t̂y = sup

{
t :

1
ny

∑
{zi∈Dcal

y }
I(p̂(xi|y) ≥ t) ≥ 1 − ε

}
, (8)

where ny is the number of elements belonging to the class y in Dcal, and Dcal
y =

{zi ∈ Dcal : yi = y} is the subset of calibration examples of class y. For a new
observation xn+1, we set the conformal predictor Γ ε

d such that:
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Γ ε
d(xn+1) = {y ∈ Y : p̂(xn+1|y) ≥ t̂y}. (9)

This ensures that the observations with low probability—that is, the poorly
populated regions of the input space—are classified as ∅. This divisional pro-
cedure avoids the high cost of deep learning calculations in the case where the
online approach is used. The paper [6] also shows that |P (y ∈ Γ ε

d(xn+1)) − (1 −
ε)| → 0 with miny ny → ∞, which ensures the validity of the model. The training
and prediction algorithms are defined in the Algorithms 1 and 2.

Algorithm 1. Training algorithm
Input: Training data Z = (xi, yi), i = 1 . . . n, Class list Y, Confidence level ε, Ratio
p.
Initialize: p̂list = list, t̂list = list
for y ∈ Y do

Xtr
y , Xcal

y ←− SubsetData(Z, Y, p)
p̂y ←− LearnDensityEstimator(Xtr

y )
t̂y ←− Quantile(p̂y(X

cal
y ), ε)

p̂list.append(p̂y); t̂list.append(t̂y)
end for
return p̂list, t̂list

Algorithm 2. Prediction algorithm
Input: Input to be predicted x, Trained p̂list, t̂list, Class list Y.
Initialize: C = list
for y ∈ Y do

if p̂y(x) ≥ t̂y then
C.append(y)

end if
end for
return C

We can rewrite (9) so that it approaches (7) with a few differences, mainly the
fact that Γ ε

d uses a conformity measure based on density estimation (calculating
how much an example is compliant with the others) instead of a non-conformity
measure as in Γ ε, with αy

i = −p̂(xi|y) [14], and that the number of examples
used to build the prediction set depends on y. Thus, Γ ε

d can also be written as:

Γ ε(xn+1) =

{
y ∈ Y :

|{zi ∈ Dcal
y : αy

i ≥ αy
n+1}|

ny
> ε

}
. (10)

The proof can be found in AppendixA.
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The final quality of the predictor (its efficiency, robustness) depends in part
on the density estimator. The paper [7] suggests that the use of kernel estimators
gives good results under weak conditions.

The results of the paper show that the training and prediction of each label
are independent of the other classes. This makes conformal prediction an adap-
tive method, which means that adding or removing a class does not require
retraining the model from scratch. However, it does not provide any informa-
tion on the relationship between the classes. In addition, the results depend on
ε: when ε is small, the model has high precision and a large number of classes
predicted for each observation. On the contrary, when ε is large, there are no
more cases classified as ∅ and fewer cases predicted by label.

3 Experiments

In order to examine the effectiveness of the conformal method on different types
of data, three data sets for binary classification were used. They are:

1. CelebA [8]: face attributes dataset with over 200,000 celebrity images used
to determine if a person is a man (1) or a woman (0).

2. IMDb [9]: contains more than 50,000 different texts describing film reviews
for sentiment analysis (with 1 representing a positive opinion and 0 indicating
a negative opinion).

3. EGSS [1]: contains 10000 examples for the study of the electrical networks’
stability (1 representing a stable network), with 12 numerical characteristics.

3.1 Approach

The overall approach followed the same steps as in density-based conformal pre-
diction [6] and meets the conditions listed above (the i.i.d. or exchangeability
assumptions). Each data set is divided into proper training, calibration and test
sets. A deep learning model dedicated to each type of data is trained on the
proper training and calibration sets. The before last dense layer serves as a
feature extractor which produces a fixed size vector for each dataset and repre-
senting the object (image, text or vector). These feature vectors are then used
for the conformal part to estimate the density. Here we used a gaussian kernel
density estimator of bandwidth 1 available in Python’s scikit-learn [12]. The
architecture of deep learning models is shown in Fig. 1. It is built following the
steps below:

1. Use a basic deep learning model depending on the type of data. In the case
of CelebA, it is a CNN with a ResNet50 [5] pre-trained on ImageNet [2]
and adjusted to CelebA. For IMDb, this model is a bidirectional GRU that
takes processed data with a tokenizer and padding. For EGSS, this model is
a multilayer perceptron (MLP).
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2. Apply an intermediate dense layer and use it as a feature extractor with a
vector of size 50 representing the object, and which will be used later for
conformal prediction.

3. Add a dense layer to obtain the class predicted by the model (0 or 1).

Fig. 1. Architecture of deep learning models.

Based on the recovered vectors, a Gaussian kernel density estimate is made
on the proper training set of each class to obtain the values P (x|y). Then, the
calibration set is used to compute the density scores and sort them to determine
the given ε threshold of all the values, thus delimiting the density region of each
class. Finally, the test set is used to calculate the performance of the model. The
code used for this article is available in Github1.

The visualization of the density regions (Fig. 2) is done via the first two
dimensions of a Principal Component Analysis. The results show the distinct
regions of the classes 0 (in red) and 1 (in blue) with a non-empty intersection
(in green) representing a region of random uncertainty. The points outside these
three regions belong to the region of epistemic uncertainty, meaning that the
classifier “does not know”.

(a) CelebA (b) IMDb (c) EGSS

Fig. 2. Conformal prediction density regions for all datasets. (Color figure online)

1 https://github.com/M-Soundouss/density based conformal prediction.

https://github.com/M-Soundouss/density_based_conformal_prediction
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3.2 Results on the Test Examples

To obtain more information on the results of this experiment, the accuracy of
the models was calculated with different values ε between 0.01 and 0.5 when
determining the threshold of conformal prediction density as follows:

– DL accuracy: the accuracy of the basic deep model (CNN for CelebA, GRU
for IMDb or MLP for EGSS) on all the test examples.

– Valid conformal accuracy: the accuracy of the conformal model when one
considers only the singleton predictions 0 or 1 (without taking into account
the {0, 1} and the empty sets).

– Valid DL accuracy: The accuracy of the basic deep model on the test examples
that have been predicted as 0 or 1 by the conformal model.

Fig. 3. The accuracy and the percentages according to ε for CelebA (top), IMDb
(middle) and EGSS (bottom).
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The percentage of empty sets ∅ and {0, 1} sets was also calculated from all
the predictions of the test examples made by the conformal prediction model.
The results are shown in the Fig. 3.

The results show that the accuracy of the valid conformal model and the
accuracy of the valid basic deep learning model are almost equal and are better
than the accuracy of the base model for all ε values. In our tests, the addition
of conformal prediction to a deep model does not degrade its performance, and
sometimes even improves it (EGSS). This is due to the fact that the conformal
prediction model allows to abstain from predicting (empty set ∅) or to predict
both classes for ambiguous examples, thus making it possible to have a more
reliable prediction of the label. It is also noticed that as ε grows, the percentage
of predicted {0, 1} sets decreases until it is no longer predicted (at ε = 0.15 for
CelebA for example). Conversely, the opposite is observed with the percentage
of empty sets ∅ which escalates as ε increases.

3.3 Results on Noisy and Foreign Examples

CelebA: Two types of noise were introduced: a noise masking parts of the face
and another Gaussian on all the pixels. These perturbations and their predictions
are illustrated in the Fig. 4 with “CNN” the prediction of the CNN and “CNN
+ CP” that of the conformal model. This example shows that the CNN and
the conformal prediction model correctly identify the woman in the image (a).
However, by masking the image (b), the CNN predicts it as a man with a score
of 0.6 whereas the model of conformal prediction is more cautious by indicating
that it does not know (∅). When applying a Gaussian noise over the whole image
(c), the CNN predicts that it is a man with a larger score of 0.91, whereas the

Fig. 4. Examples of outlier and noisy images compared to the actual image for CelebA.
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conformal model predicts both classes. For outliers, examples (d), (e), and (f)
illustrate the ability of the conformal model to identify different outliers as such
(∅) in contrast to the deep model that predicts them as men with a high score.

IMDb: The Fig. 5 displays a comparison of two texts before and after the ran-
dom change of a few words (in bold) by other words in the model’s vocabulary.
The actual text predicted as negative opinion by both models becomes positive
for the GRU after disturbance. Nevertheless, the conformal model is more cau-
tious by indicating that it can be both cases ({0, 1}). For the outlier example
formed completely of vocabulary words, the GRU model predicts positive with
a score of 0.99, while the conformal model says that it does not know (∅).

Fig. 5. Examples of outlier and noisy texts compared to the original one for IMDb.

EGSS: The Fig. 6 displays a comparison of the positions of the test examples on
the density regions before (a) and after (b) the addition of a Gaussian noise. This
shows that several examples are positioned outside the density regions after the
introduction of the disturbances. The outlier examples (c) created by modifying
some characteristics of these test examples with extreme values (to simulate a
sensor failure, for example) are even further away from the density regions, and
recognized as such by the conformal model (∅).

(a) Real (b) Noisy (c) Outlier

Fig. 6. Density visualization of real, noisy and outlier examples for EGSS.
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4 Conclusions and Perspectives

We used the conformal prediction and the technique presented in [6] to have a
more reliable and cautious deep learning model. The results show the interest
of this method on different data types (image, text, tabular) used with different
deep learning architectures (CNN, GRU and MLP). Indeed, in these three cases,
the conformal model not only adds reliability and robustness to the deep model
by detecting ambiguous examples but also keeps or even improves the perfor-
mance of the basic deep model when it predicts only one class. We also illustrated
the ability of conformal prediction to handle noisy and outlier examples for all
three types of data. These experiments show that the conformal method can
give more robustness and reliability to predictions on several types of data and
basic deep architectures.

To improve the experiments and results, the perspectives include the opti-
mization of density estimation based on neural networks. For instance, at a fixed
ε the problem of finding the most efficient model arises that could be done by
modifying the density estimation technique, but also by proposing an end-to-end,
integrated estimation method. Also, it would be useful to compare the conformal
prediction with calibration methods, for example, evidential ones that are also
adopted for cautious predictions [3].

A Appendix

This appendix is to prove that Eqs. (9) and (10) in Sect. 2.3 are equivalent. We
recall that Eq. (10) is

Γ ε(xn+1) =

{
y ∈ Y :

|{zi ∈ Dcal
y : αy

i ≥ αy
n+1}|

ny
> ε

}
. (11)

We recall that Eq. (9) uses the “greater or equal” sign. Here we need to use the
“greater” signs in Eqs. (12) and (13) to have an equivalence, which is

Γ ε
d(xn+1) = {y ∈ Y : p̂(xn+1|y) > t̂y}, (12)

such that

t̂y = sup

{
t :

1
ny

∑
{zi∈Dcal

y }
I(p̂(xi|y) > t) ≥ 1 − ε

}
. (13)

Let f(t) be the decreasing function f(t) = 1
ny

∑
{zi∈Dcal

y } I(p̂(xi|y) > t).
Let us prove that (12) =⇒ (11).
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Since t̂y is the upper bound such that f(t̂y) ≥ 1− ε, then p̂(xn+1|y) does not
satisfy this inequality, thus

f(p̂(xn+1|y)) =
1
ny

∑
{zi∈Dcal

y }
I(p̂(xi|y) > p̂(xn+1|y)) < 1 − ε

=
1
ny

∑
{zi∈Dcal

y }
1 − I(p̂(xi|y) ≤ p̂(xn+1|y)) < 1 − ε

= 1 − 1
ny

∑
{zi∈Dcal

y }
I(p̂(xi|y) ≤ p̂(xn+1|y)) < 1 − ε

=
1
ny

∑
{zi∈Dcal

y }
I(p̂(xi|y) ≤ p̂(xn+1|y)) > ε (14)

Since p̂(xn+1|y)) is a conformity score, whereas αy
i is a non-conformity score,

we can write p̂(xn+1|y)) = −αy
i [14]. So (14) becomes

1
ny

∑
{zi∈Dcal

y }
I(αy

i ≥ αy
n+1) > ε =⇒ |{zi ∈ Dcal

y : αy
i ≥ αy

n+1}|
ny

> ε

This shows that (12) =⇒ (11).
Let us now prove that (11) =⇒ (12). Using the indicator function of the

complement, and changing the non-conformity score into a conformity score as
shown before, we can simply find that

|{zi ∈ Dcal
y : αy

i ≥ αy
n+1}|

ny
> ε =⇒ 1

ny

∑
{zi∈Dcal

y }
I(p̂(xi|y) > p̂(xn+1|y)) < 1 − ε

Using the same function f , we then have

f(p̂(xn+1|y)) < 1 − ε. (15)

Let us show by contradiction that p̂(xn+1|y) > t̂y. Suppose that p̂(xn+1|y) ≤ t̂y.
Since f is a decreasing function, we have f(p̂(xn+1|y)) ≥ f(t̂y). By the definition
of t̂y, we have f(t̂y) ≥ 1 − ε. Thus f(p̂(xn+1|y)) ≥ f(t̂y) ≥ 1 − ε. However, this
contradicts (15). So we proved that (11) =⇒ (12), which concludes the proof.
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Abstract. Analogical proportions, often denoted A : B :: C : D, are
statements of the form “A is to B as C is to D” that involve comparisons
between items. They are at the basis of an inference mechanism that
has been recognized as a suitable tool for classification and has led to a
variety of analogical classifiers in the last decade. Given an object D to be
classified, the basic idea of such classifiers is to look for triples of examples
(A, B, C), in the learning set, that form an analogical proportion with D,
on a maximum set of attributes. In the context of classification, objects
A, B, C and D are assumed to be represented by vectors of feature values.
Analogical inference relies on the fact that if a proportion A : B :: C : D
is valid, one of the four components of the proportion can be computed
from the three others. Based on this principle, analogical classifiers have
a cubic complexity due to the search for all possible triples in a learning
set to make a single prediction. A special case of analogical proportions
involving only three items A, B and C are called continuous analogical
proportions and are of the form “A is to B as B is to C” (hence denoted
A : B :: B : C). In this paper, we develop a new classification algorithm
based on continuous analogical proportions and applied to numerical
features. Focusing on pairs rather than triples, the proposed classifier
enables us to compute an unknown midpoint item B given a pair of
items (A, C). Experimental results of such classifier show an efficiency
close to the previous analogy-based classifier while maintaining a reduced
quadratic complexity.

Keywords: Classification · Analogical proportions · Continuous
analogical proportions

1 Introduction

Reasoning by analogy establishes a parallel between two situations. More pre-
cisely, it enables us to relate two pairs of items (a, b) and (c, d) in such way
that “a is to b as c is to d” on a comparison basis. This relationship, often
noted a : b :: c : d, expresses a kind of equality between the two pairs, i.e., the
c© Springer Nature Switzerland AG 2020
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two items of the first pair are similar and differ in the same way as the two
items of the second pair. The case of numerical (geometric) proportions where
we have an equality between two ratios (i.e., a/b = c/d) is at the origin of
the name “analogical proportions”. Analogical proportions, when d is unknown,
provides an extrapolation mechanism, which with numbers yields d = (b × c)/a,
and d = b + c − a in case of arithmetic proportions (such that a − b = c − d).
The analogical proportions-based extrapolation has been successfully applied to
classification problems [4,8]. The main drawback of algorithms using analogical
proportions is their cubic complexity.

A particular case of analogical proportions, named continuous analogical
proportions, is obtained when the two central components are equal, namely they
are statements of the form “a is to b as b is to c”. In case of numerical proportions,
if we assume that b is unknown, it can be expressed in terms of a and c as
b =

√
a × c in the geometric case and b = (a + c)/2 in the arithmetic case. Note

that similar inequalities hold in both cases: min(a, c) ≤ √
a × c ≤ max(a, c) and

min(a, c) ≤ (a + c)/2 ≤ max(a, c). This means that the continuous analogical
proportion induces a form of interpolation between a and c in the numerical
case by involving an intermediary value that can be obtained from a and c. A
continuous analogical proportions-based interpolation was recently proposed as
a way of enlarging a training set (before applying some standard classification
methods), and led to good results [2]. In contrast to extrapolation, interpolation
with analogy-based classifiers has a quadratic complexity.

In this paper, we investigate the efficiency for classification of using such app-
roach. The paper is organized as follows. Section 2 provides a short background
on analogical proportions and more particularly on continuous ones. Then Sect. 3
surveys related work on analogical extrapolation. Section 4 presents the proposed
interpolation approach for classification. Finally, Sect. 5 reports the results of our
algorithm.

2 Background on Analogical Proportions

An analogical proportion is a relationship on X4 between 4 items A,B,C,D ∈ X.
This 4-tuple, when it forms an analogical proportion is denoted A : B :: C :
D and reads “A is to B as C is to D”. Both relationships “is to” and “as”
depend on the nature of X [9]. As it is the case for numerical proportions, the
relation of analogy still holds when the pairs (A,B) and (C,D) are exchanged,
or when central items B and C are permuted (see [11] for other properties).
In the following subsections, we recall analogical proportions in the Boolean
setting (i.e., X ∈ B = {0, 1})) and their extension for nominal and for real-
valued settings (i.e., X ∈ [0, 1]), before considering the special case of continuous
analogical proportions.

2.1 Analogical Proportions in the Boolean Setting

Let us consider four items A, B, C and D, respectively described by their binary
values a, b, c, d ∈ B = {0, 1}. Items A, B, C and D are in analogical proportion,
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Table 1. Truth table for analogical proportion

a b c d a : b :: c : d

0 0 0 0 1

0 0 1 1 1

0 1 0 1 1

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

which is denoted A : B :: C : D if and only if a : b :: c : d holds true (it can also be
written a : b :: c : d = 1 or simply a : b :: c : d). The truth table (Table 1) shows
the six possible assignments for a 4-tuple to be in analogical proportion, out of
sixteen possible configurations.

Boolean analogical proportions can be expressed by the logical formula:

a : b :: c : d = (a ∧ ¬b ≡ c ∧ ¬d) ∧ (¬a ∧ b ≡ ¬c ∧ d) (1)

See [10,12] for justification. This formula holds true for the 6 assignments shown
in the truth table. It reads “a differs from b as c differs from d and b differs
from a as d differs from c”, which fits with the expected meaning of analogy.
An equivalent formula is obtained by negating the two sides of the first and the
second equivalence in formula (1):

a : b :: c : d = (a → b ≡ c → d) ∧ (b → a ≡ d → c) (2)

Items are generally described by vectors of Boolean values rather than by a single
value. A natural extension for vectors in {0, 1}n of the form x = (x1, · · · , xn) is
obtained component-wise as follows:

a : b :: c : d iff ∀i ∈ [1, n], ai : bi :: ci : di (3)

2.2 Nominal Extension

When a, b, c, d take their values in a finite set D (with more than 2 elements),
we can derive three patterns of analogical proportions in the nominal case, from
the six possible assignments for analogical proportions in the Boolean case. This
generalization is thus defined by:

a : b :: c : d = 1 iff (a, b, c, d) ∈ {(s, s, s, s), (s, t, s, t), (s, s, t, t)|s, t ∈ D} (4)
a : b :: c : d = 0 otherwise

2.3 Multiple-Valued Extension

In case items are described by numerical attributes, it will be necessary to
extend the logic modeling underlying analogical proportions in order to sup-
port a numerical setting. a, b, c, d are now real values normalized in the interval
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[0, 1] and their analogical proportion a : b :: c : d is extended from B4 to [0, 1]4.
Analogical proportions are no longer valid or invalid but the extent to which
they hold is now a matter of degree. For example, if a, b, c, d have 1, 0, 1 and 0.1
as values respectively, we expect that a : b :: c : d has a high value (close to 1)
since 0.1 is close to 0.

Table 2. Multi-valued extension

Operator Extension

Negation: ¬a 1 − a

Implication: a → b min(1, 1 − a + b)

Conjunction: a ∧ b min(a, b)

Equivalence: a ≡ b min(a → b, b → a) = 1 − |a − b|

The extension of the logical expression of analogical proportions to the
multiple-valued case requires the choice of appropriate connectives for preserv-
ing desirable properties [5]. To extend expression (2), conjunction, implication
and equivalence operators are then replaced by the multiple valued connectives
given in Table 2. This leads to the following expression P :

P (a, b, c, d) = a : b :: c : d =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − |(a − b) − (c − d)|,
if a ≥ b and c ≥ d or a ≤ b and c ≤ d

1 − max(|a − b|, |c − d|),
if a ≤ b and c ≥ d or a ≥ b and c ≤ d

(5)

When a, b, c, d are restricted to {0, 1}, the last expression coincide with the defini-
tion for the Boolean case (given by (1)), which highlights the agreement between
the extension and the original idea of analogical proportion. For the interval [0, 1],
we have P (a, b, c, d) = 1 as soon as a − b = c − d and as we expected, we get a
high value for the 4-tuple (1, 0, 1, 0.1), indeed 1 : 0 :: 1 : 0.1 = 0.9.

Moreover, since we have |(1−a)−(1−b)| = |b−a| = |a−b|, |(1−a−(1−b))−
(1− c− (1−d))| = |(b−a)− (d− c)| = |(c−d)− (a− b)| = |(a− b)− (c−d)|, and
1−s ≥ 1−t ⇔ s ≤ t, it is easy to check a remarkable code independence property:
a : b :: c : d = (1−a) : (1− b) :: (1− c) : (1− d). Code independence means that 0
and 1 play symmetric roles, and it is the same to encode an attribute positively
or negatively.

As items are commonly described by vectors, we can extend the notion of
analogical proportion to vectors in [0, 1]n.

P (a, b, c,d) =
∑n

i=1 P (ai, bi, ci, di)
n

(6)

where P (ai, bi, ci, di) refers to expression (5)).
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Let us observe that P (a, b, c,d) = 1 (i.e. a : b :: c : d holds) if and only if the
analogical proportion holds perfectly on every component:

P (a, b, c,d) = 1 iff ∀i ∈ [1, n], P (ai, bi, ci, di) = 1 (7)

2.4 Inference with Analogical Proportions

Analogical proportion-based inference relies on a simple principle:if four Boolean
vectors a, b, c and d make a valid analogical proportion component-wise between
their attribute values, then it is expected that their class labels also make a valid
proportion [4].

a : b :: c : d
cl(a) : cl(b) :: cl(c) : cl(d)

(8)

where cl(x) denotes to the class value of x.
It means that the classification of a Boolean vector d is only possible when

the equation cl(a) : cl(b) :: cl(c) : x is solvable1 (the classes of a, b, c are known
as they belong to the sample set), and the analogical proportion a : b :: c : d
holds true. If these two criteria are met, we assign x to cl(d).

In the numerical case, where a, b, c,d are 4 real-valued vectors over [0, 1]n

(the numerical values are previously normalized), the inference principle strictly
clones the Boolean setting:

P (a, b, c,d) = 1
cl(a) : cl(b) :: cl(c) : cl(d)

(9)

In practice, the resulting degree P (a, b, c,d) is rarely equal to 1 but should be
close to 1. Therefore Eq. (9) has to be adapted for a proper implementation.

2.5 Continuous Analogical Proportions

Continuous analogical proportions, denoted a : b :: b : c, are ternary relations
which are a special case of analogical proportions. This enables us to calculate
b using a pair (a, c) only, rather than a triple as in the general case. In B the
unique solutions of equations 0 : x :: x : 0 and 1 : x :: x : 1 are respectively x = 0
and x = 1, while 0 : x :: x : 1 or 1 : x::x : 0 have no solution.

Drawing the parallel with the Boolean case, we deduce that the only solvable
equation for the nominal case is s : x ::x : s, having x = s as solution, while
s : x :: x : t (s �= t) has no solution.

Contrary to these trivial cases, the multi-valued framework (Eq. (5)) is richer.
We have

P (a, b, c) = a : b :: b : c =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − |a + c − 2b|,
if a ≥ b and b ≥ c or a ≤ b and b ≤ c

1 − max(|a − b|, |b − c|),
if a ≤ b and b ≥ c or a ≥ b and b ≤ c

(10)

1 Indeed the nominal equation s : t :: t : x = 1 has no solution if s �= t.
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We notice that for b = (a+c)/2, we have a : b :: b : c = 1 which fits the statement
“A is to B as B is to C”. As we expect, we get a higher value of analogy (closer
to 1) as b tends to (a + c)/2. Computing continuous analogy for items described
by vectors is exactly the same as for the general case (i.e., for real-valued setting
P (a, b, c) =

∑n
i=1 P (ai,bi,ci)

n ).
Applying analogy-based inference for numerical values with continuous ana-

logical proportions, we obtain:

P (a, b, c) = 1
cl(a) : cl(b) :: cl(b) : cl(c)

(11)

One may wonder if continuous analogical proportions could be efficient
enough compared to general analogical proportions. As already said, a : b :: c : d
holds at degree 1 if and only if a − b = c − d (from which one can extrapolate
d = c + b − a). Now consider two continuous proportions: a − b = b − c (which
corresponds to the interpolation b = (a + c)/2) and b − c = c − d (which gives
the interpolation c = (b + d)/2). Adding each side of the two proportions yields
a − c = b − d, which is equivalent to a − b = c − d. In this view, two intertwined
interpolations may play the role of an extrapolation. However the above remark
applies only to numerical values, but not to Boolean ones.

3 Related Works on Analogical Proportions and
Classification

Continuous analogical proportions have been recently applied to enlarge a train-
ing set for classification by creating artificial examples [2]. A somewhat related
idea can be found in Lieber et al. [6] which extended the paradigm of classical
Case-Based Reasoning by either performing a restricted form of interpolation
to link the current case to pairs of known cases, or by extrapolation exploiting
triples of known cases.

In the classification context, the authors in [3] introduce a measure of oddness
with respect to a class that is computed on the basis of pairs made of two nearest
neighbors in the same class; this amounts to replace the two neighbors by a
fictitious representative of the class. Moreover, some other works have exploited
analogical proportions to deal with classification problems. Most noteworthy
are those based on using analogical dissimilarity [1] and applied to binary and
nominal data and later the analogy-based classifier [4] applied to binary, nominal
and numerical data. In the following subsections, we especially review these two
latter works as they seem the closest to the approach that we are developing in
this paper.

3.1 Classification by Analogical Dissimilarity

Analogical dissimilarity between binary objects is a measure that quantifies how
far a 4-tuple (a, b, c, d) is from being in an analogical proportion. This is equiva-
lent to the minimum number of bits to change in a 4-tuple to achieve a perfect
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analogy, thus when a 4-tuple is in analogical proportion, its analogical dissimilar-
ity is zero. So for the next three examples of 4-tuples, we have AD(1, 1, 1, 1) = 0,
AD(0, 1, 1, 1) = 1 and finally AD(0, 1, 1, 0) = 2. In B the value of an analogical
dissimilarity is in [0, 2]. When dealing with vectors a, b, c and d in Bm, analogi-
cal dissimilarity is defined as

∑m
j=1 AD(aj , bj , cj , dj), in this case an analogical

dissimilarity value belongs to the interval [0, 2m].
A classifier based on analogical dissimilarity is proposed in [1]. Given a train-

ing set S, and a constant k specifying the number of the least dissimilar triples,
the basic algorithm for classifying an instance x �∈ S in a naive way, using
analogical dissimilarities is as follows:

1. For each triple (a, b, c) having a solution for the class equation cl(a) :
cl(b) :: cl(c) : x, compute the analogical dissimilarity AD(a, b, c,x).

2. Sort these triples by ascending order of their analogical dissimilarity
AD(a, b, c,x).

3. If the k-th triple of the list has the value p, then let the k′-th triple be the
last triple of this list with the value p.

4. For the first k′-th triples, solve the class equation and apply a voting strategy
on the obtained class labels.

5. Assign to x, the winner class.

This procedure may be said naive since it looks for every possible triple from the
training set S in order to compute the analogical dissimilarity AD(a, b, c,x),
therefore it has a complexity of O(n3), n being the number of instances in
the training set. To optimize this procedure, the authors propose the algorithm
FADANA which performs an off line pre-processing on the training set in order
to speed up on line computation.

3.2 Analogical Proportions-Based Classifier

In a classification problem, objects A,B,C,D are assumed to be represented by
vectors of attribute values, denoted a, b, c,d. Based on the previously defined AP
inference, analogical classification rely on the idea that, if vectors a, b, c and d
form a valid analogical proportion componentwise for all or for a large number of
attributes (i.e., a : b :: c : d), this still continue hold for their corresponding class
labels. Thus the analogical proportion between classes cl(a) : cl(b) :: cl(c) : x
may serve for predicting the unknown class x = cl(d) of the new instance d
to be classified. This is done on the basis of triples (a, b, c) of examples in the
sample set that form a valid analogical proportion with d.

In a brute force way, AP-classifier proposed in [4], looks for all triples (a, b, c)
in the training set whose class equation cl(a) : cl(b) :: cl(c) : x have a possible
solution l . Then, for each of these triples, compute a truth value P (a, b, c,d)
as the average of the truth values obtained in a componentwise manner using
Eq. (5) (P can also be computed using the conservative extension, introduced in
[5]). Finally, assign to d the class label having the highest value of P .
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An optimized algorithm of this brute force procedure has been developed in
[4] in which the authors rather search for suitable triples (a, b, c) by constraining
c to be one of the k nearest neighbours of d.

This algorithm processes as follows:

1. Look for each triple (a, b, c) in the training set s.t: c ∈ Nk(d).
2. Solve cl(a) : cl(b) :: cl(c) : x.
3. If the previous analogical equation on classes has a solution l, increment the

credit credit(l) with P (a, b, c,d) as credit(l)+ = P (a, b, c,d).
4. Assign to d the class label having the highest credit as cl(d) =

argmaxl(credit)).

4 Continuous Analogical Proportions-Based Classifier

Extrapolation and interpolation have been recognized as suitable tools for pre-
diction and classification [6]. Continuous analogical proportions rely on the idea
that if three items a, b and c form a valid analogical proportion a : b :: b : c,
this may establish the basic for interpolating b in case a and c are known. As
introduced in Sect. 2, in the numerical case b can be considered as the midpoint
of (a, c) and may simply be computed from a and c.

In this section, we will show how continuous analogical proportions may help
to develop an new classification algorithm dealing with numerical data and lead-
ing to a reduced complexity if compared to the previous Analogical Proportions-
based classifiers.

4.1 Basic Procedure

Given a training set S = {(oi , cl(oi)}, s.t. the class label cl(oi) is known for each
oi ∈ S, the proposed algorithm aims to classify a new object b �∈ S whose label
cl(b) is unknown. Objects are assumed to be described by numerical attribute
values. The main idea is to predict the label cl(b) by interpolating labels of other
objects in the training set S. Unlike algorithms previously mentioned in Sect. 3,
continuous analogical proportions-based interpolation enables us to perform pre-
diction using pairs of examples instead of triples. The basic idea is to find all
pairs (a, c) ∈ S2 with known labels s.t. the equation cl(a) : x ::x : cl(c) has a
solution l, l being a potential prediction for cl(b). If this equation is solvable, we
should also check that the continuous analogical proportion holds on each feature
j. Indeed we have a : b :: b : c if and only if ∀j, aj : bj :: bj : cj (i.e., for each
feature j, bj is being the exact midpoint of the pair (aj , cj), bj = (aj + cj)/2).

As it is frequent to find multiple pairs (a, c) which may build a valid con-
tinuous analogical proportion with b with different solutions for the equation
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cl(a) : x ::x : cl(c), it is necessary to set up a voting procedure to aggregate the
potential labels for b. This previous process can be described by the following
procedure:

1. Find pairs (a, c) such that the equation cl(a) : x :: x : cl(c) has a valid solution
l.

2. If the continuous analogical proportion a : b :: b : c is also valid, increment
the score ScoreP (l) for label l.

3. Assign to b the label l having the highest ScoreP .

4.2 Algorithm

As already said, the simplest way is to consider pairs (a, c) for which the ana-
logical equation cl(a) : x :: x : cl(c) is solvable and the analogical proportion
a : b :: b : c is valid.

However, unlike for Boolean features, where a : b :: b : c may hold for many
pairs (a, c), it is not really the case for numerical features. In fact, P (a, b, c) = 1
does not occur frequently. To deal with such situation in the numerical case, AP -
classifiers [4] cumulate individual analogical credits P (a, b, c,d) to the amount
CreditP (l) each time the label l is a solution for the equation cl(a) : cl(b) :: cl(c) :
x. Even though learning from the entire sample space is often beneficial (in
contrast to k-NN principle which is based on a local search during learning),
considering all pairs for prediction may seem unreasonable as this could blur the
results. Instead of blindly considering all pairs (a, c) for prediction, we suggest
to adapt the analogical inference, defined by Eq. (9), in such way to consider
only pairs (a, c) whose analogical score P (a, b, c) exceeds a certain threshold θ.

P (a, b, c) > θ

cl(a) : cl(b) :: cl(b) : cl(c)
(12)

This threshold is fixed on an empirical basis. Determining which threshold
fits better with each type of dataset is still has to be investigated. The case
of unclassified instances may be more likely to happen because of a conflict
between multiple classes (i.e., max(ScoreP ) is not unique) rather than because
of no pairs were found to made a proper classification. That’s why we propose to
record the best analogical score bestP (l), and even the number of pairs having
this best value vote(l) in order to avoid this conflicting situation.
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Algorithm 1. CAP-classifier for numerical data
Input:a training set S, object b �∈ S, a threshold θ
for each label l do ScoreP (l) = 0, bestP (l) = 0, vote(l) = 0 end for
for each pair (a, c) ∈ S2 do

if cl(a) : x :: x : cl(c) has solution l then
p = P (a, b, c)
if p ≥ θ then

ScoreP (l) = ScoreP (l) + 1
else if bestP (l) < p then

bestP (l) = p
vote(l) = 1

else if bestP (l) = p then
vote(l) = vote(l) + 1

end if
end if

end for
maxScore = max(ScoreP (l))
if unique(maxScore, ScoreP (l)) then

return argmaxl(ScoreP (l))
else

maxBest = max(bestP (l))
if unique(maxBest, bestP (l)) then

return argmaxl(bestP (l)), l ∈ argmaxl(ScoreP (l))
else

return argmaxl(vote(l)), l ∈ argmaxl(bestP (l)), l ∈ argmaxl(ScoreP (l))
end if

end if

5 Experimentations and Discussion

In this section, we aim to evaluate the efficiency of the proposed algorithm to
classify numerical data. For this aim, we test the CAP-classifier on a variety of
datasets from the U.C.I. machine learning repository [7], we provide its experi-
mental results and compare them to the AP-classifier [4] as well as to the state
of the art ML classifiers, especially, k-NN, C4.5, JRIP and SVM classifiers.

5.1 Datasets for Experiments

The experimentations are done on datasets from the U.C.I. machine learning
repository [7]. Table 3 presents a brief description of the numerical datasets
selected for this study. Datasets with numerical attributes must be normalized
before testing to fit the multi-valued setting of analogical proportion. A numeric
attribute value r is rescaled into the interval [0, 1] as follows:

rrescaled =
r − rmin

rmax − rmin

rmin and rmax being the maximum and the minimum value of the attribute in
the training set. We experiment over the following 9 datasets:
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– “Diabetes”, “W.B. Cancer”, “Heart”, “Ionosphere” are binary class datasets.
– “Iris”, “Wine”, “Sat.Image”, “Ecoli” and “Segment” datasets are multiple

class problems.

Table 3. Description of numeric datasets

Datasets Instances Numerical attrs. Classes

Diabetes 768 8 2

W. B. Cancer 699 9 2

Heart 270 13 2

Ionosphere 351 34 2

Iris 150 4 3

Wine 178 13 3

Satellite Image 1090 36 6

Ecoli 336 7 8

Segment 1500 19 7

5.2 Testing Protocol

In terms of protocol, we apply a standard 10 fold cross-validation technique. As
usual, the final accuracy is obtained by averaging the 10 different accuracies for
each fold.

However, we have to tune the parameter θ of the CAP-classifier as well as
parameter k for AP-classifier and the ones of the classical classifiers (with which
we compare our approach) before performing this cross-validation.

For this end, in each fold we keep only the corresponding training set (i.e.
which represents 90% of the full dataset). On this training set, we again perform
an inner 10-fold cross-validation with diverse values of the parameter. We then
select the parameter value providing the best accuracy. The tuned parameter
is then used to perform the initial cross-validation. As expected, these tuned
parameters change with the target dataset. To be sure that our results are stable
enough, we run each algorithm (with the previous procedure) 5 times so we have
5 different parameter optimizations. The displayed parameter β is the average
value over the 5 different values (one for each run). The results shown in Table 4
are the average values obtained from 5 rounds of this complete process.

5.3 Results for CAP-Classifiers

In order to evaluate the efficiency of our algorithm, we compare the average
accuracy over five 10-fold CV to the following existing classification approaches:
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Table 4. Results of CAP -classifier, AP -classifier and other ML classifiers obtained
with the best parameter β

Datasets CAP-classifier AP-classifier k-NN C4.5 JRIP SVM (RBF) SVM (Poly)

acc. β acc. β acc. β acc. β acc. β acc. β acc. β

Diabetes 72.81 0.906 73.28 11 73.42 11 74.73 0.2 74.63 5 77.37 (8192, 3.051E−5) 77.34 (0.5, 1)

Cancer 96.11 0.825 97.01 4 96.70 3 94.79 0.2 95.87 4 96.74 (2, 2) 96.92 (2, 1)

Heart 81.63 0.693 81.90 10 82.23 11 78.34 0.2 78.52 4 79.98 (32, 0.125) 83.77 (0.5, 1)

Ionosphere 86.44 0.887 90.55 1 88.80 1 89.56 0.1 89.01 5 94.70 (2, 2) 89.28 (0.03125, 2)

iris 95.73 0.913 94.89 5 94.88 3 94.25 0.2 93.65 6 94.13 (32768, 0.5) 96.13 (512, 1)

Wine 96.85 0.832 98.12 9 97.75 7 94.23 0,1 94.99 8 98.20 (32768, 2) 98.53 (2, 1)

Sat image 95.60 0.991 94.96 1 94.88 1 92.71 0.1 92.77 3 96.01 (8, 2) 95.11 (0.5, 4)

Ecoli 86.01 0.93 83.32 7 85.37 5 82.60 0.2 81.56 5 87.50 (2, 8) 87.50 (8, 1)

Segment 96.91 1 96.84 1 96.76 1 95.77 0.2 94.55 6 96.98 (2048, 0.125) 97.14 (8, 4)

Average 89.79 90.10 90.09 88.55 88.39 91.29 91.30

– IBk: implements k-NN, using manhattan distance and the tuned parameter
is the number of nearest neighbours during the inner cross-validation with
the values k = 1, 2, ..., 11.

– C4.5: implements a generator of pruned or unpruned C4.5 decision tree. the
tuned parameter is the confidence factor used for pruning with the values
C = 0.1, 0.2, ..., 0.5.

– JRip: implements the rule learner RIPPER (Repeated Incremental Pruning
to Produce Error Reduction) an optimized version of IREP. The number of
optimization runs with the values O = 2, 4, ..., 10 is tuned during the inner
cross-validation.

– SVM: an implementation of the Support Vector Machine classifier. We use
SVM with both RBF and polynomial kernels and the tuned parameters are,
successively gamma for the RBF Kernel, with γ = 215, 2−13, ..., 23 and the
degree for the polynomial kernel, d = 1, 2, ..., 10. The complexity parameter
C = 2−5, 2−3, ..., 215 is also tuned.

– AP-classifier: implements the analogical proportions-based classifier with
the tuned parameter k with k being the number of nearest neighbours k =
1, 2, ..., 11.

– CAP-classifier: We test the classifier and we tune the threshold θ with
values θ = 0.5, 0.6, ..., 1.

Results for AP-classifier as well as for classic ML classifiers are taken from [4],
ML classifiers results are initially obtained by applying the free implementation
of Weka software. Table 4 shows these experimental results.

Evaluation of CAP-Classifier and Comparison with Other ML Classi-
fiers: If we analyse the results of CAP-classifier, we can conclude that:

– As expected, the threshold θ of the CAP-classifier change with the target
dataset.

– The average θ is approximately equal to 0.89. This proves that CAP-classifier
obtains its highest accuracy only if the selected pairs, useful for predicting
the class label, are relatively in analogy with the item to be classified.
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– For “Iris”, “Ecoli”, “Sat.Image” and “Segment” datasets, CAP-classifier per-
forms better than AP-classifier, and even slightly better than SVM (polyno-
mial kernel) on the “Sat.Image” dataset, which proves the ability of this clas-
sifier to deal with multi-class datasets (up to 8 class labels for these datasets).

– Moreover, we note that for most tested datasets, the optimized θ is close to
1. This fits our first intuition that CAP-classifier performs better when the
selected pairs (a, c) form a valid continuous analogical proportion with b on
all (case when θ = 1) or maximum set of attributes (case when θ ≈ 1).

– CAP-classifier performs slightly less than AP-classifier for datasets “Dia-
betes”, “Cancer” and “Ionosphere” which are binary classification problems.
We may expect that extrapolation, involving triples of examples and thus
larger set of the search space is more appropriate for prediction than inter-
polation using only pairs for such datasets. Identifying the type of data that
fits better with each kind of approaches is subject to further instigation.

– For the rest of the datasets, CAP-classifier performs in the same way as
the AP-classifier or k-NN. CAP-classifier achieves good results with a vari-
ety of datasets regardless the number of attributes (e.g., “Iris” with only 4
attributes, “Sat. image” with 36 attributes).

– As it may be expected, using triples of items for classification is more informa-
tive than pairs since more examples are compared against each other in this
case. Even though, CAP-classifier performs approximately the same average
accuracy as AP-classifier exploiting triples (89, 79% ≈ 90, 10%) while keep-
ing a lower complexity if compared to classic AP-classifiers. These results
highlight the interest of continuous analogical proportions for classification.

Nearest Neighbors Pairs. In this sub-section, we would like to investigate
better the characteristics of the pairs used for classification. For this reason,
we check if voting pairs (a, c) are close or not to the item b to be classified.
To do that, we compute the proportion of pairs that are close to b among all
voting pairs. If this proportion is rather low, we can conclude that the proposed
algorithm is able to correctly classify examples b using pairs (a, c) for which b
is just the midpoint of a and c without being necessarily in their proximity.

From a practical point, we adopt this strategy:

– Given an item b to be classified.
– Search for the k nearest neighbors NN = {n1, n2, ...nk} of b. In practice, we

consider to test with k = 5, 10.
– Compute the percentage of voting pairs (a, c) that are among the k nearest

neighbors of b, i.e. min(D(a, b),D(b, c)) ≤ D(nk, b), D(x, y) being the dis-
tance between items x and y. If this percentage is low, it means that even if
voting pairs (a, c) remain far to the item b, the proposed interpolation-based
approach succeeds to guess the correct label for b.

The results are shown in Table 5. In this supplementary experiment, we only
consider testing examples whose voting pairs (a, c) have a continuous analogical
proportion P (a, b, c) exceeding the threshold θ (see last column in Table 5).

From these results we can note:
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– For k = 5 (first column), the proportion of pairs (a, c) (among those exceeding
the threshold) that are in the neighborhood of b (those (a, c) that are closest
to b than its neighbor n5) is less than 10% for all tested datasets except for
“Wine” which is little higher. This demonstrates that for these datasets, the
CAP-classifier exploits the entire space of pairs for prediction, indeed most
of examples are predicted thanks to pairs (a, c) that are located outside of
the neighborhood of b.

– Even when the number of nearest neighbors k is extended to 10, this pro-
portion remains low for most of the datasets. Especially for “Diabetes” and
“Ecoli”, the percentage of pairs in the neighborhood of b is close to 5%. For
other datasets, this percentage is less than 20%.

– Note that the behavior of our algorithm is quite different from the k-NN
classifier. While this latter computes the similarity between the example b to
be classified and those in the training set, then classifies this example in the
same way as its closest neighbors, our algorithm evaluates to what extent b
is in continuous analogy with the pairs in the training set (these pairs are not
necessarily in the proximity), then classifies it as the winning class having the
highest number of voting pairs.

– These last results show that voters (a, c) remain far from to the item b to be
classified.

Table 5. Proportion of pairs (a, c) that are nearest neighbors to b

Datasets % of pairs (a, c)
that are among the
5 neighbors of b

% of pairs (a, c)
that are among the
10 neighbors of b

% of examples b for
which P (a, b, c) > θ

Diabetes 4.03% 5.98% 80.42%

Cancer 5.35% 8.29% 94.32%

Heart 6.85% 9.01% 95.04%

Ionosphere 5.53% 11.60% 63.17%

Iris 8.19% 14.67% 94.13%

Wine 14.65% 18.78% 87.85%

Ecoli 4.55% 6.88% 90.03%

6 Conclusion

This paper studies the ability of continuous analogical proportions, namely state-
ments of the form a is to b as b is to c, to classify numerical data and presents
a classification algorithm for this end. The basic idea of the proposed approach
is to search for all pairs of items, in the training set, that build a continuous
analogical proportion on all or most of the features with the item to be classi-
fied. An analogical value is computed for each of these pairs and only those pairs
whose score exceeds a given threshold are kept and used for prediction. In case
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no such pairs could be found for each class label, the best pair having the high-
est analogical value is rather used. Finally, the class label with the best score is
assigned to the example to be classified. Experimental results show the interest
of the CAP -classifier for classifying numerical data. In particular the proposed
algorithm may slightly outperform some state-of-the-art ML algorithms (such
as: k-NN, C4.5 and JRIP), as well as the AP -classifier on some datasets. This
leads to conclude that for classification, building analogical proportions with
three objects (using continuous analogical proportions) instead of four enables
to get an overall average accuracy close to that of previous AP -classifier while
reducing the complexity to be quadratic instead of being cubic.
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Abstract. Artificial intelligence (AI) is nowadays included into an
increasing number of critical systems. Inclusion of AI in such systems
may, however, pose a risk, since it is, still, infeasible to build AI systems
that know how to function well in situations that differ greatly from what
the AI has seen before. Therefore, it is crucial that future AI systems
have the ability to not only function well in known domains, but also
understand and show when they are uncertain when facing something
unknown. In this paper, we evaluate four different methods that have
been proposed to correctly quantifying uncertainty when the AI model
is faced with new samples. We investigate the behaviour of these models
when they are applied to samples far from what these models have seen
before, and if they correctly attribute those samples with high uncer-
tainty. We also examine if incorrectly classified samples are attributed
with an higher uncertainty than correctly classified samples. The major
finding from this simple experiment is, surprisingly, that the evaluated
methods capture the uncertainty differently and the correlation between
the quantified uncertainty of the models is low. This inconsistency is
something that needs to be further understood and solved before AI can
be used in critical applications in a trustworthy and safe manner.

1 Introduction

Much of the great progress of AI in the last years is due to the development
of deep learning (DL) [14]. However, one big problem with DL methods is that
they are considered to be “black box” methods, which are difficult to interpret
and understand. This becomes problematic when DL algorithms are taking more
and more critical decisions, impacting the daily life of people and no explanation
is given for why a certain decision is taken. There are some researchers, for
example Samek et al. [21] and Montavon et al. [18], that currently address this
problem and try to make DL models interpretable. This problem is far from
solved and it is an important research direction since it is likely that many
critical decisions taken by AI based algorithms in the near future will be in
consensus with a human [8]. Examples of such decisions would, for example, be
those of an autonomous car with a human driver and those of a doctor using an
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image to determine if a patient has skin cancer or not [2,4,22]. In these cases,
the AI will support and enhance the human decision maker. Here, the human
can act in contradiction to what is suggested by the AI, and, thus, prevent
erroneous decisions taken by the AI. In both of the named cases, such erroneous
decisions could potentially cause a lot of human suffering and even fatalities.
However, there are problems where the AI cannot be supervised by a human
and, consequently, the AI itself needs to be able to determine when there is a
risk of an incorrect decision.

While wrongly taken decisions can be decreased by better models and more
and better training data, it is infeasible to cover all possible situations for all
but the most trivial problems. Consequently, a system built with an ML model
will always encounter situations that differ from all the previous samples used
for training. In order to be trustworthy, in this case, it is crucial that the model
shows that it encounters an unknown situation where it is forced to extrapo-
late its knowledge and emphasises that its outcome, therefore, is uncertain [12].
However, as pointed out by Gal and Ghahramani [3], Richter and Roy [20] and
Lakshminarayanan et al. [13], it is a challenging and still open problem to quan-
tify the uncertainty of deep learning models. Hendrycks and Gimpel [5] do, for
example, show that deep learning models that use the softmax activation func-
tion in the last layer are bad at estimating prediction uncertainty and often
produce overconfident predictions. It is not difficult to imagine that such over-
confident predictions can lead to catastrophic outcomes in some of the previously
mentioned cases, such as in the medical domain. Therefore, it is an important
research direction to find methods that allow for the quantification of uncertainty
in the provided predictions. In this paper, we do not propose such an approach,
but do instead evaluate existing models that have been proposed to solve this
problem. This is done in order to further understand their limitations and to
highlight the differences that arise when different models are selected.

When quantifying the uncertainty, it is essential that methods consider both
the epistemic uncertainty (the uncertainty that arises due to lack of observed
data) and the aleatory uncertainty (the uncertainty that arises due to underlying
random variations within the collected data) [7]. But, it is also important to
differentiate between these two causes of uncertainty. In the latter case, there is
an observed variation among the samples and, hence, the uncertainty can be well
quantified and all risks can be assessed. It is therefore possible to take a well-
informed decision, knowing the uncertainty. This is not the case for epistemic
uncertainty, where the uncertainty arises due to lack of data and, hence, the
model is forced to extrapolate its knowledge. When the model extrapolates it
takes an uniformed decision, which can be far from optimal.

To further highlight this problem, this paper examine how well current meth-
ods for the quantification of uncertainty manage to show the uncertainty that
arises from out of the distribution samples. Two experiments are therefore con-
ducted. In the first experiment, deep learning models that has been proposed to
support quantification of predictive uncertainty and that can be used for clas-
sification of data are evaluated. These models are: a deep neural network with
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a softmax output layer, an ensemble of deep neural networks [13] and a deep
Bayesian neural network [3], where two separate ways to quantify the uncer-
tainty are used for the softmax model. The first treats the output as a probabil-
ity while the second method considers the gradient information. The result from
these models are compared to another deep learning approach for the detection
of out of distribution samples, namely an autoencoder. Of these methods, there
are two, the Bayesian neural network and the ensemble of neural networks, that
are able to disentangle the epistemic and the aleatory uncertainties. A second
experiment is therefore conducted, with these two methods, in order to see if the
results can be further improved when the uncertainty is split into an aleatoric
and an epistemic part.

With these experiments, we show that there is a clear difference in how the
investigated methods quantify the uncertainty and what samples they consid-
ered to be uncertain. The correlations between the quantified uncertainty of the
different models are also very low, showing that there is an inconsistency in the
uncertainty quantification. Thus, there is a need for further study of uncertainty
in deep learning methods before these can be applied in real world applications
in an absolutely safe way.

2 Method

The different models and their setups are first described in this section. Since
the targets of the different models differ, there is a need to quantify the uncer-
tainty of these models differently. The second part of this section will therefore
describe different ways to quantify the uncertainty. In this section, the motiva-
tion behind the selection of how to quantify the uncertainty in the experiments
is also given. The last part of this section then describes the experimental setup
for all experiments.

2.1 Models

Different deep learning models for classification and uncertainty quantification
are used in the conducted experiments. They are all described below, together
with the corresponding architecture and parameter settings that are used in the
experiments. How the uncertainty is quantified is described in Sect. 2.2–2.3.

Softmax Deep Neural Network. The softmax function is often used in neural
networks to fuzzily assign a sample to a given class [1]. Thus, the softmax will
give the proportional belief of how much a sample belongs to a given class. This
is often used as an approximation of the probability for how likely it is that a
sample belongs to a given class. The softmax function is given by:

p(y = z|x, ω) =
fω

z (x)
∑

z′∈Z

fω
z′(x)

, (1)



Evaluation of Uncertainty Quantification in Deep Learning 559

where z is the given output class, which belongs to the set of all possible out-
comes, Z. X is the input sample and fω

z (x) is an arbitrary function, parame-
terised by ω, giving the support that x belongs to class z. Equation (1) allows
us to find the probability distribution of all possible outcome classes. This dis-
tribution can be used to quantify the uncertainty, as described in Sect. 2.2.

Recent studies, for example by Oberdiek et al. [19] and Vasudevan et al.
[26], suggest that the uncertainty of the model is reflected by the stability of the
model, where the stability can be measured by the gradients of the parameters.
Hence, the stability of the model is given by:

∇ωL = ∇ωl (ŷi, f
ω(xi)) , (2)

where L is the loss of the model given by an arbitrary loss function l, ŷi is the
predicted class for the i:th sample and fω(xi) is the prediction from the model
that is parameterised by ω. We follow the same experimental setup as Oberdiek
et al. [19] and use the negative log-likelihood for the predicted class as the loss
function. In this case, Eq. 2 can be written as

∇ωL = ∇ω − log (p(yi = ŷi|xi, ω)) . (3)

Furthermore, we use a deep neural network as the underlying model, that is,
p(yi = ŷi|xi, ω) in Eq. 3 is given by Eq. 1.

Bayesian Neural Network. We consider Bayesian neural networks to be neu-
ral networks that have a posterior distribution of weights instead of a single
point estimate. The same definition is, for example, used by Gal and Ghahra-
mani [3]. Hence, the training of a Bayesian neural network consists of finding a
good estimate to the probability distribution p(ω|X,Y ), where ω is the network
weights and X is the set of inputs and Y is the set of outputs. It is however,
unfeasible to find the exact solution to p(ω|X,Y ) and, hence, an estimate must
be used instead. In this paper we approximate p(ω|X,Y ) with a network that
uses dropout [25] during both the training and the testing phase. This is the
same approach as Gal and Ghahramani [3]. With an estimated posterior distri-
bution, p(ω|X,Y ), multiple network weights can be sampled. Hence, many likely
network weights can be used for predictions, which would allow for a smaller risk
of overfitting and a greater diversity in the output. The final classification of a
sample x of a Bayesian neural network is given by:

p(y|x,Ω) =
1
M

M∑

i=0

fωi(x), (4)

where M is the total number of samples, f is a neural network parameterized by
ωi that is the i:th sample from the posterior distribution, Ω, of network weights.

Ensemble of Neural Networks. Ensemble methods are learning algorithms
that consist of a set of models. Each model makes its own prediction indepen-
dently of the other models in the ensemble. The final prediction is then derived
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from the composition of all models in the ensemble. We use an ensemble of neural
networks, such as the one presented by Maqsood et al. [17]. Such ensembles have
been shown to be good at quantifying the predictive uncertainty, as shown by
Lakshminarayanan et al. [13]. The classification of a sample x by the ensemble
is the average prediction over all classifiers. Hence, the prediction, y, is given by:

p(y|x,w0, . . . , wM ) =
1
M

M∑

i=0

fwi(x), (5)

where M is the number of networks in the ensemble and wi is the parametrisa-
tion of the i:th classifier, f , in the ensemble. Note the similarity with the deep
Bayesian neural network as given in Eq. 4.

Autoencoder. An autoencoder is a neural network that has the same number of
input neurons as output neurons. This network consists of two parts: an encoder
that compresses the input to a compressed representation of the sample, with
an as low loss of information as possible, and a decoding part that decompresses
the compressed representation to the original representation [6]. These parts are
jointly trained and, hence, the encoder is forced to learn an encoding scheme
that the decoder can decompress. Therefore, these two models will learn how
to collaborate, but only on data that is similar to the data they see during
training. This means that the encoder would not be able to encode novel data
in such a way that it can be reconstructed by the decoder. This can be exploited
to detect how much a new sample diverges from an initial distribution. Thus,
the uncertainty of a prediction in a predictive model may be quantified by the
reconstruction error of a sample given to the autoencoder. This is, for example,
done by Leibig et al. [16], and the same approach will be used in our experiments.

2.2 Uncertainty Quantification

There are multiple ways that uncertainty can be quantified. Kendall and Gal [9],
for example, quantifies the uncertainty as the variance in the predictions. We
follow the same approach as Lakshminarayanan et al. [13] and use the Shannon
entropy [23]:

H(y,X) = −
∑

i

p(y = i|X) log p(y = i|X) (6)

as a measure of the uncertainty in the predictions of the models specified in
Sect. 2.1. This design choice is mainly selected to enable the comparison between
the uncertainties of the softmax network and the other models, since the softmax
network does not have any variation in its predictions.

It is, however, not possible to use this uncertainty metric for the experiments
that consider the gradient information. In this case, we use the approach sug-
gested by Oberdiek et al. [19], namely to use the Euclidean norm of the gradients.
The quantified uncertainty of a prediction is then given by ||∇wL||2, where ∇wL
is described in Eq. 3.
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It is also impossible to measure the entropy of predictions in the autoen-
coder (described in Sect. 2.1) since the autoencoder does not provide any predic-
tions. Instead, we quantify the uncertainty by measuring the Euclidean distance
between the original sample and the encoded and decoded sample:

||X, X̂|| =

√
√
√
√

n∑

i=1

(xi − x̂i)
2
, (7)

here xi is the original value of the i:th feature of x and x̂i is the reconstructed
value for the same feature. Hence, Eq. 7 measures how well the autoencoder
manages to encode the vector and then decode the sample vector X of length n.

2.3 Heteroscedastic Aleatoric Uncertainty

The aleatoric uncertainty can be divided into two sub-categories: heteroscedastic
and homoscedastic uncertainty. Heteroscedastic uncertainty assumes that the
aleatoric uncertainty is data dependent and, thus, that the uncertainty varies
over different inputs. Hence, models that can capture the heteroscedastic uncer-
tainty are useful when the uncertainty is greater in some areas of the input space.
Such is the case in the MNIST dataset [15], where some of the digits are badly
written and the output class is uncertain.

The heteroscedastic uncertainty in the models will be treated in the same
way by Kendall and Gal [9] and furthermore described as in Kendall et al. [10].
Here, the expected variance of the noise in the output is modelled by the noise
parameter σ. This parameter will be dependent on the input and the models will
learn how to predict it, given some particular input. In the presented multiclass
setting, the loss with included heteroscedastic uncertainty can be approximated
with:

L(ω, x, y) =
1
σ2

Lce(softmax(fω(x)), y, ω) + log(σ), (8)

where Lce is the categorical cross entropy loss and fω is the model, parameterized
by ω and predicting logits to the softmax function. The predicted logits are
assumed to be drawn from a Gaussian distribution with a variance of σ, where σ
is dependent on the input x. This loss function is used in the second part of the
experiments, where it is examined how well the Bayesian neural network and the
ensemble of neural networks can capture and separate epistemic and aleatoric
uncertainty.

2.4 Experiment Setup

All previously described models are trained on the MNIST dataset, which is a
dataset that contains 70,000 samples of hand-written digits [15]. The predefined
and commonly used training and test split, which uses 10,000 samples in the
test set, is used in our experiments as well. A randomly selected validation set,
consisting of 10% of the training set, is also used to prevent overfitting of the
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models when training. All models are then evaluated on the MNIST test set
and the uncertainty of their predictions is quantified and split a set of correctly
classified samples and a set of incorrectly classified samples. The main hypothesis
is that the uncertainty would be much greater in the set of incorrectly classified
samples. These models are then applied to the manually cleaned notMNIST1

set that consist of 19,000 characters, set in different fonts. The objective of
the models is to detect that these samples are very different from the original
training data and attribute them with a high uncertainty. Since the autoencoder
is not used to perform any classification, we decided to use a feed forward neural
network that uses the latent encoding to predict the class of the output.

Parameter Settings. Both the Bayesian neural network and the softmax deep
neural network have two layers with 800 neurons each. This is the same network
architecture used by Simard et al. [24]. The inference in the Bayesian neural
network is conducted in the same way as described by Gal and Ghahramani
[3], with 60% dropout rate. The networks in the ensemble are each trained on
bootstrap samples, which have 60% less samples than the original dataset. Since
the amount of data is reduced, we also reduce the number of neurons in each
layer to 40 % of the size of the Bayesian neural network. Hence, the ensemble
will consist of 50 networks where each network has two layers of 320 neurons.

The autoencoder used in the experiment has 7 layers with the following num-
ber of neurons: 1000, 250, 50, 10, 50, 250, 1000. This is the same setup as used by
Wang et al. [27]. All models are trained using the ADAM optimisation algorithm
[11] with the commonly used learning rate of 0.001, to minimise the binary cross
entropy error between the model predictions and the targeted classes.

3 Experimental Results

All presented deep learning methods are trained on the MNIST dataset and then
evaluated on a smaller test set from MNIST as well as the notMNIST dataset.
Some examples of samples from these datasets are shown in Fig. 1. The accuracy
of all models are approximately the same and in line with what is expected from
a two layered neural network model and the MNIST dataset [24]. The Bayesian
neural network is, for example, the best performing model with an error rate of
1.3%, while softmax is the worst with an error rate of 1.6%.

Unlike the accuracy, there is a great difference in how the uncertainty of
the models are quantified. This can be seen in Fig. 2, where the distributions of
the quantified uncertainties are shown. The distributions over the uncertainty is
split into three different distributions: the distribution over the uncertainty for
correctly classified samples, the distribution over the uncertainty for incorrectly
classified samples and the distribution over the uncertainty for samples from the
notMNIST dataset. If a model acts as desirable, it should separate these three
classes and thus, that the distributions in Fig. 2 are disjoint. This optimal case

1 Available at: http://yaroslavvb.blogspot.co.uk/2011/09/notmnist-dataset.html.

http://yaroslavvb.blogspot.co.uk/2011/09/notmnist-dataset.html
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corresponds to that the model correctly detects digits that are easy to classify
and attribute them with a low uncertainty. Furthermore, the model detects odd
looking digits and correctly attribute them with medium uncertainty, since the
classification may be erroneous. Also, when a sample that is clearly not a number,
the model should attribute it to an even higher uncertainty, since the prediction is
extrapolated far from what the model knows. However, this implies that correct
and possibly incorrect predictions can be identified by the quantified uncertainty
and real digits can, thus, be filtered from non digits. This is not the case, the
distributions do indeed overlap, as can be seen by studying the 95% quantiles
for the distributions in Fig. 2.

The consensus of the uncertainties of the models are measured by their
Pearson correlation (see Fig. 4). The measurements show a strong correlation
between gradient information and the softmax predictions, but no strong corre-
lation besides that. The quantified uncertainty of the softmax neural network is
even negatively correlated to the autoencoder.

The uncertainty is furthermore divided into an epistemic and an aleatoric
part, as shown in Fig. 3. The expected result would be that the notMNIST
samples would have much greater epistemic uncertainty than all other samples,
while the misclassified MNIST samples would have a greater aleatoric uncer-
tainty. However, this can only partially be observed, since both the notMNIST
and the misclassified MNIST samples show a high epistemic uncertainty.

Fig. 1. Examples of the behaviour of the evaluated methods tested on the MNIST
and the notMNIST datasets. The first row, for the given method, consists of the eleven
most uncertain predictions from the MNIST dataset. Incorrectly classified examples are
marked red. The second and the third row show the eleven most certain and uncertain
examples from the notMNIST dataset, respectively. (Color figure online)

4 Discussion

The results show that all the evaluated methods quantify the uncertainty differ-
ently. The results, furthermore, support the previous observation by Hendrycks
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Fig. 2. The distribution of the quantified uncertainty for the different methods. In
green is the distribution of correctly classified digits in the MNIST dataset. In blue
is the distribution of incorrectly classified digits and in red is the distribution of the
quantified uncertainty for samples from the notMNIST dataset. The 95% quantile of
the quantified uncertainty of all samples from the MNIST dataset is marked with the
dashed line to the left. The right dashed line is the 95% quantile of the quantified
uncertainty when only the misclassified samples are considered. (Color figure online)

Fig. 3. The distribution of the quantified uncertainty for the different methods, split
up into aleatoric and epistemic uncertainty for the Bayesian neural network and the
ensemble of neural networks. In green is the distribution of correctly classified digits in
the MNIST dataset. In blue, the incorrectly classified digits in MNIST and, in red is
the distribution of the quantified uncertainty for samples from the notMNIST dataset.
The 95% quantile of the quantified uncertainty of all samples from the MNIST dataset
is marked with the dashed line to the left. The right dashed line is the 95% quantile of
the quantified uncertainty when only the misclassified samples are considered. (Color
figure online)

and Gimpel [5] that deep learning models that only use the softmax activation
function to quantify the uncertainty are overconfident when faced with out of
the distribution samples. The same holds true when the gradient information of
the softmax neural network is used to quantify the uncertainty.
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Fig. 4. The Pearson correlation between the quantified uncertainty of all tested meth-
ods. Many of the methods are very weakly correlated and the softmax neural network
is even negatively correlated to the uncertainty of the autoencoder.

When the results in Fig. 1 were furthered studied, we identified several inter-
esting behaviours of the models. The models that are used for classification
extract knowledge about the shape of digits and apply it to the notMNIST
data. Both the Bayesian neural network and the ensemble of neural networks
do, for example, pick up the curvy shape of a “B” and interpret this as the digit
“3” and, hence, the models are certain of the output in these cases. The round
shape and the empty middle of the letter “D” being classified as the digit “0” is
another example of the extrapolation of features into the new domain. The two
methods that are based on a softmax neural network do an even cruder extrap-
olation and classify everything with a straight horizontal line at a certain height
as a “7” (all the first eight samples shown in Fig. 1 for the softmax network and
the gradient information is classified as the digit “7”).

No model achieved the optimal goal of quantifying the uncertainty in such
a way that it separates the three different cases of input: digits that could be
classified correctly, digits that could not be classified correctly and characters
from the notMNIST set. However, the autoencoder correctly uses the uncertainty
quantification to separate all notMNIST samples from the MNIST samples, while
the Bayesian neural network and the ensemble of neural networks can correctly
separate classified MNIST samples from the other two cases. It can, consequently,
be efficient to use an autoencoder as a first filtering step to remove all out of the
distribution samples. Another method, such as a Bayesian neural network, can
then be used to perform safer classifications, where the uncertainty quantification
can be used to identify possibly misclassified samples. There is no downside of
such a combination of models, besides the slightly higher computational cost.
It is, therefore, an interesting future research question how different models can
be combined in order to handle and distinguish between the different cases that
may cause these models to be uncertain.

A surprising observation is that the quantified uncertainties of most of the
models are weakly correlated. All three models that are used for prediction
are, for example, weakly correlated to the autoencoder, which is considered to



566 N. Stȧhl et al.

capture the initial distribution well. Since we only measure the linear correlation
it is difficult to draw any major conclusions from this, but it still gives us some
insights into the behaviour of the models. We, therefore, suggest that these
methods do not capture the uncertainty that arises due to the extrapolation, but
instead finds fuzzy decision boundaries between the different classes and, hence,
are able to spot odd looking samples between the different classes. However, this
implies that there is no guarantee that predictions on out of the distribution
samples will be considered uncertain. This poses a potential risk when using
these kind of models in critical real world applications.

The use of an autoencoder is a good way to approximate the distance between
a new sample and its closest neighbour in the training set. This is a promising
result since the autoencoder is more efficient, when considering the computa-
tional complexity, compared to finding the closest neighbour in the training set
and calculating the Euclidean distance. The computational complexity of finding
the closest neighbour in the training set grows linearly in terms of the cardinality
of the training dataset, while the computational complexity of the autoencoder
is constant. Hence, it appears that the autoencoder correctly discovers when a
model is faced with a sample that is far from what the model has seen before and,
hence, forces the model to extrapolate. Thus, an autoencoder could potentially
be used to detect when a sample would force a predictive model to extrapolate,
if trained with the same data.

Splitting up the uncertainty into an epistemic and an aleatoric part and then
use the epistemic uncertainty to detect outliers is not a successful approach in
the performed experiments. While we expect the epistemic uncertainty to be
much higher for such samples, it is not the case, since both the badly written
MNIST digits and the notMNIST samples are attributed with a high epistemic
uncertainty. However, the notMNIST samples distinguish themselves from the
rest by having a very low aleatoric uncertainty. Hence, the outlier samples dis-
tinguish themselves from the rest by having a low aleatoric uncertainty, rather
than having a high epistemic uncertainty. The combined epistemic and aleatoric
uncertainty can therefore be used to detect the notMNIST samples. The reason
why outlier samples are attributed with a low uncertainty can be seen in Eq. 8.
Since the models are good at predicting the outcome, the expected cross entropy
loss would be rather small. Hence, it is more beneficial for the model to minimise
the log(σ) term for new unknown samples than to expect a large cross entropy
error.

5 Conclusion and Summary

In this paper, several models for the quantification of uncertainty are evaluated.
Even though the experimental setup is rather basic, it is shown that there is
no consensus in the uncertainty of the models and that they capture different
dimensions of the uncertainty. This problem is likely to persist, and may even be
worse, when more advanced models are used or when more complicated prob-
lems are tackled. It is shown that the uncertainty quantification of some models
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(the Bayesian neural network and the ensemble of neural networks) can be used
to distinguish between samples that are easy to classify and those that are dif-
ficult. Hence, these models quantify the uncertainties around the hyperplanes
separating the different classes. The autoencoder, on the other hand, is good
at quantifying the uncertainty that arises due to the extrapolation of points far
from the training distribution. The performed experiments show that it can be
beneficial to split up the uncertainty into an epistemic and an aleatoric part.
However, the notMNIST samples did not differentiate themselves from the rest
by having much higher epistemic uncertainty than the other samples, as was
expected. Instead, the notMNIST samples stood out by having the combination
of a high epistemic uncertainty and a low aleatoric uncertainty. However, none
of the models managed to separate the three different cases of samples that
were studied, namely correctly classified samples, incorrectly classified samples
and samples that are far from the training distribution. On the others hand, as
described above, some methods succeeded partially, and managed to separate
one of the cases from the other. It can, therefore, be beneficial to use several
models in real world applications to capture all uncertainties that may arise, in
order to build safer AI systems.
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Abstract. Fuzzy Logic Systems can provide a good level of inter-
pretability and may provide a key building block as part of a growing
interest in explainable AI. In practice, the level of interpretability of a
given fuzzy logic system is dependent on how well its key components,
namely, its rule base and its antecedent and consequent fuzzy sets are
understood. The latter poses an interesting problem from an optimisa-
tion point of view – if we apply optimisation techniques to optimise the
parameters of the fuzzy logic system, we may achieve better performance
(e.g. prediction), however at the cost of poorer interpretability. In this
paper, we build on recent work in non-singleton fuzzification which is
designed to model noise and uncertainty ‘where it arises’, limiting any
optimisation impact to the fuzzification stage. We explore the potential
of such systems to deliver good performance in varying-noise environ-
ments by contrasting one example framework - ADONiS, with ANFIS, a
traditional optimisation approach designed to tune all fuzzy sets. Within
the context of time series prediction, we contrast the behaviour and per-
formance of both approaches with a view to inform future research aimed
at developing fuzzy logic systems designed to deliver both – high perfor-
mance and high interpretability.

Keywords: Non-singleton fuzzy system · Interpretability · ADONiS ·
ANFIS · Parameter tuning

1 Introduction

A key aspect of the vision of interpretable artificial intelligence (AI) is to have
decision-making models which can be understood by humans. Thus, while an
AI may deliver good performance, providing an insight of the decision process is
also an important asset for the given model. Even though the interpretability of
AI is widely acknowledged to be a critical issue, it still remains as a challenging
task [17].

Fuzzy set (FS) theory introduced by Zadeh [34], establishes the basis for
Fuzzy Logic Systems (FLSs). Zadeh introduced them to capture aspects of
human reasoning and in FLSs are frequently being referred to as ‘interpretable’.
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The main rationale for the latter is that FSs are generally designed in respect
to linguistic labels and are interconnected by linguistic rules, which can provide
insight into ‘why/how results are produced’ [28]. This capacity for interpretabil-
ity is one of the main assets of fuzzy logic and is often one of the key motivations
to use FLSs in decision-making [4].

While FLSs are considered to possess mechanisms which can provide a good
degree of interpretability, research establishing the latter has been comparatively
limited. Only in recent years an increasing number of studies have started to
focus on fundamental questions such as what interpretability is, in general, and
in particular in respect to FLSs? From a complexity point of view, how many
rules or how many variables per rule is interpretable? Or from a semantic point
of view, to which degree are properties of the partitioning of the variables (e.g.
completeness, distinguishability or complementarity) key for interpretable FLSs?
[1,12,15,19] These studies show that the interpretability of FLSs depends on
their various components i.e. the number of rules, the structure of the rule set
and the actual interpretability of each rule - which in turn depends on how
meaningful the actual FSs are, i.e. how well they reflect the model which the
interpreting stakeholder has in mind when considering the given linguistic label
[12,13,28].

Traditionally, AI models use statistical optimisation techniques to tune
parameters based on a data-driven approach. While these optimisation proce-
dures provide performance benefits, they commonly do not consider whether the
resulting model is interpretable or not. This poses an interesting question for the
optimisation or tuning of FLS: can we use statistical optimisation to tune FLS
parameters without negatively affecting the given FLSs interpretability? I.e., can
we have both: interpretability and good performance?

There are several established approaches to tune FLSs using statistical opti-
misation. Here, ANFIS (adaptive-network-based fuzzy inference system), intro-
duced by Jang [14], and later extended in [6] for interval type-2 fuzzy logic
system has been one of the most popular. ANFIS uses statistical optimisation to
update FLS parameters based on a given training dataset with the objective to
deliver good performance, i.e. minimum error. However, during the optimisation,
ANFIS does not consider aspects of interpretability [27], for example potentially
changing antecedent and consequent sets drastically in ways which do not align
with stakeholders’ expectations.

This paper explore whether and how we can design FLSs which can preserve
their interpretability while also providing the required degrees of freedom for
statistical tuning to deliver good performance.

To achieve the latter, we focus on Non singleton FLSs (NSFLSs) [5,22],
which are designed to model disturbance affecting a system through its inputs
within the (self-contained) fuzzification stage. Recently, NSFLS approaches have
received increasing attention [10,11,21,24–26,29,31,32], with a particular focus
on the development of FLSs which ‘model uncertainty where it arises’, i.e. FLSs
which model input uncertainty directly and only within the input fuzzification
stage. The latter provides an elegant modelling approach which avoids changing
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otherwise unrelated parameters (e.g. antecedent or consequent FSs) in respect to
disturbance affecting a systems’ inputs. Most recently, the ADONiS framework
[23] was proposed, where input noise is estimated and the fuzzification stage is
adapted at run-time, delivering good performance in the face of varying noise
conditions. As noted, ADONiS limits tuning to the fuzzification stage, leaving
rules (which can be generated based on experts insights or in a data-driven way)
‘untouched’, thus providing a fundamental requirement for good interpretability.

In this paper, we compare and contrast the effects of employing both the
ANFIS optimisation and the ADONiS adaptation frameworks in response to
varying noise levels in a time-series prediction context. We do not aim to explore
which approach delivers the best time series prediction (for that, many other
machine learning methods are available), but rather, how the resulting FLSs
compare after tuning, when both approaches deliver good or at least reason-
able results. Specifically, we focus on the degree to which the key parameters
– antecedents and consequents are preserved (we maintain an identical rule set
to enable systematic comparison), and thus to which degree the original inter-
pretability of a FLS can be preserved post-tuning using such approaches.

The structure of this paper is as follows. Section 2 gives a brief overview
of singleton, non-singleton FSs, as well as the ADONiS and ANFIS models.
Section 3 introduces methodology including details of the rule generation, train-
ing and testing. Section 4 provides detailed steps of the conducted experiments
and a discussion of the findings. In Sect. 6, the conclusions of experiments with
possible future work directions are given.

2 Background

2.1 Singleton Non-singleton Type-1 Fuzzy Sets

In the fuzzification step of fuzzy models, a given crisp input is characterised as
membership function membership function (MF). Generally in singleton fuzzifi-
cation, the given input x is represented by singleton MF.

When input data contain noise, it may not be appropriate to represent them
as singleton MFs, as there is a possibility of the actual value being distorted
by this noise. In this case, the given input x is mapped to non-singleton MFs
with a support where membership degree achieves maximum value at x. Two
samples of non-singleton MFs -under relatively low and high noise- can be seen
in Fig. 1a.

Conceptually, the given input is assumed to be likely to be correct, but
because of existing uncertainty, neighbouring values also have potential to be
correct. As we go away from the input value, the possibility of being correct
decreases. As shown in Fig. 1a the width of the non-singleton input is associated
with the uncertainty levels of the given input.

2.2 ADONiS

The recently proposed ADONiS [23] framework provides two major advantages
over non-singleton counterpart models: (i) in the fuzzification step, it captures
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Fig. 1. Different non-singleton FSs and ADONiS framework structure

input uncertainty through an online learning method–which utilises a sequence
of observations to continuously update the input Fuzzy Sets (ii) in the inference
engine step, it handles the captured uncertainty through the sub-NS [24] method
to produce more reasonable firing strengths.

Therefore, the ADONiS framework enables us to model noise and uncertainty
‘where it arises’ and also to limit any optimisation impact to the fuzzification and
inference steps. In doing so, ADONiS limits tuning to the fuzzification stage and
remain rules (which can be generated based on experts insights or in a data-
driven way) ‘untouched’, thus providing a fundamental requirement for good
interpretability. –if rules and sets were understood well initially.

The general framework structure of the ADONiS framework can be sum-
marised in the following four steps:

1. Defining a frame size to collect a sequence of observations. For example,
when using sensors, such as in a robotics context, the size of the frame may
be selected in respect to the sampling rate of the sensors or based on a fixed
time frame.

2. In the defined frame, the uncertainty estimation of the collected observation
is implemented. Different uncertainty estimation techniques can be imple-
mented in the defined frame.

3. Non-singleton FS is formed by utilising the estimated uncertainty around the
collected input. For example, in this paper, Bell shaped FSs are used and the
detected uncertainty is utilised to define the width of these FSs.

4. In the inference engine step of NSFLSs, interaction between the input and
antecedent FSs results in the rule firing strengths which in turn determines
the degree of truth of the consequents of individual rules. In this step, in this
paper, the sub-NS technique [24] is utilised to determine the interaction and
thus firing strength between input and antecedent FSs.
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The overall illustration of ADONiS can be seen in Fig. 1b and for details,
please refer the [23,24].

2.3 ANFIS

Neuro-fuzzy models are designed to combine the concept of artificial neural net-
works with fuzzy inference systems. As one common model, ANFIS is widely
used in many applications to improve the performance of fuzzy inference sys-
tems [2,3,9,16]. With ANFIS, model parameters are ‘fine-tuned’ during opti-
misation procedures to obtain more accurate approximation than a predefined
fuzzy system. An ANFIS illustration with seven antecedents can be seen in Fig. 2
[6].

Fig. 2. ANFIS structure

3 Methodology

A Mackey-Glass (MG) time series is generated and 1009 noise-free values are
obtained for t from 100 to 1108. One of the common models for noise is additive
white Gaussian noise [20]. Three different signal-to-noise ratios (20 dB, 5 dB and
0 dB) are used to generate noisy time series with additive Gaussian white noise.
These four (noise-free and noisy) datasets are split into 70% (training) and 30%
(testing) samples to be used in different variants of the experiments. In the MG
generation, τ value is set to be 17 to exhibit chaotic behaviour.

3.1 Rule Generation

In the literature there are many different rule generation techniques, either
expert-driven or data-driven [8,18]. In this paper, one of the most commonly
used techniques for FLS rule generation – the one-pass Wang-Mendel method is
utilised. Even though in the case of interpretability assessment, Wang-Mendel
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may not be the best approach to generate rules, in order to make a base rule set
for both ADONiS and ANFIS and make a fair comparison, we choose to use one-
pass Wang-Mendel method. In the future, different rule reduction algorithms or
other rule generation techniques can be investigated. By following similar FLS
architecture in [33], the rule generation is implemented as follows:

First, the domain of the training set [xmin, xmax] is defined. In order to
capture all inputs (including the ones which are outside of the input domain),
the defined domain is expanded by 10% and the cut-off procedure is implemented
for the inputs which are outside of this domain.

Then the input domain is evenly split into seven regions, and bell-shaped
antecedents are generated. As shown in Fig. 3, these are named as Further Left
(FL), Medium Left (ML), Close Left (CL), Medium (M), Close Right (CR),
Medium Right (MR), Further Right (FR).

As in [33], nine past values are used as inputs and the following (10th) value
is predicted, i.e. the output.

After forming the input-output pairs as ((x1 : y1), (x2 : y2), ..., (xN : yN ), )
each input value within the pair is assigned to the corresponding antecedent FS
(FL, ..,M, .., FR). As practised in the Wang-Mendel one-pass method, the same
seven FSs are used for the consequent FSs, and the outputs (yi) are assigned
to the corresponding FSs (FL, ..,M, .., FR) as well. A sample of the generated
rules can be seen in (1). For details, please refer [33].

R1 = IFx1 isMRAND... x9 isM THEN y1 isCR (1)

3.2 Training

ADONiS. When implementing ADONiS, no formal optimisation procedure is
used. Therefore, previously established antecedents (FL, .., M, .. FR) and model
rules remain untouched.

Fig. 3. An illustration of the seven antecedent MFs used.

ANFIS Optimisation. In ANFIS implementation, each of the seven
antecedent MFs are assigned an input neuron (See Fig. 2) [6]. Then, the gra-
dient descent optimisation technique is implemented to update the antecedent
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MF parameters and the consequent linear functions. In the meantime, the least-
squares estimation method [30] is used to update the parameters of consequent
linear functions in each training epoch. During each epoch, the antecedent FS
parameters are updated for each input. Therefore, while beginning with only
seven antecedents, after optimisation, many different antecedent FSs may be
generated–with associated increase in model complexity.

3.3 Performance Evaluation

In order to assess the noise handling capability of each model, we calculate the
difference between model predictions and noise-free data values at each time-
point. Both ADONiS and ANFIS performances are measured by using the com-
mon root-mean-squared-error (RMSE) and in addition, the recently proposed
Unscaled Mean Bounded Relative Absolute Error (UMBRAE) [7]. UMBRAE
combines the best features of various alternative measures without suffering
their common issues.

To use UMBRAE, a benchmark method needs to be selected. In this paper,
the benchmark method simply uses the average of input values as predictions.
With UMBRAE, the performance of a proposed method can be easily inter-
preted: when UMBRAE is equal to 1, the proposed method performs approxi-
mately the same as the benchmark method; when UMBRAE < 1, the proposed
method performs better than the benchmark method; when UMBRAE > 1, the
proposed method performs worse than the benchmark method.

4 Experiment and Results

In total, 4× 4 = 16 different experimental scenarios are implemented, using differ-
ent noise levels in both rule generation/optimisation and testing phases. Specif-
ically, four different training sets (noise-free, 20, 5 and 0 dB) and four different
testing sets (noise-free, 20, 5 and 0 dB) are used–to represent a variety of poten-
tial real-world noise levels. In each experiment of ADONiS, the first 700 values
are used to generate rules and the remaining 300 values are used for testing.
Note that as ADONiS uses 9 inputs to construct input FSs, the first 9 values of
the testing set are omitted, leaving only the final 291. In ANFIS, while using the
exact same rules as ADONiS, the first 400 data pairs are used as the training
set; the following 300 data pairs are used as a validation set; and the final 291
of the remaining 300 data pairs are used as testing set.

4.1 Experiment 1: Noise-Free Rule Generation

In the first experiment, the rule set is generated using the noise-free time series
dataset. Four different testing datasets (noise-free, 20, 5 and 0 dB) are used.

Results of the ADONiS prediction experiment, with noise free testing, can
be seen on the left hand side of Fig. 4a. Note that since there is no noise in the
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testing dataset, the generated input FSs tend to be a singleton FS. Thus, the
traditional singleton prediction is implemented in this particular experiment.

After completing noise-free testing, and using the same rule set (from the
noise-free training dataset), the 20 dB testing dataset is used in the prediction
experiment of ADONiS. The RMSE result of this experiment is shown in Fig. 4a.
Thereafter, the remaining 5 dB and 0 dB testing datasets are used with the same
rule set–RMSE results are shown in Fig. 4a.

Fig. 4. RMSE and UMBRAE results for both Experiment 1 and Experiment 2. (Color
figure online)

Following the ADONiS prediction (with noise-free rule set and four different
testing datasets), ANFIS optimisation is carried out on the previously generated
rule parameters and the antecedent parameters are updated in the ‘black-box’
manner. Then, these updated antecedents are used in the prediction of noise-free
testing dataset. The results of this experiment are shown in Fig. 4a as orange
bars. Overall, as can be seen, ANFIS outperform ADONiS significantly in this
particular experiment.

Thereafter, the same updated rules from the noise-free training dataset, are
used with the 20 dB testing dataset. The performance of ANFIS is reported in
Fig. 4a. As can be seen, ADONiS and ANFIS have similar performances under
the noise-free and 20 dB noisy testing variant.

Following this, 5 dB and 0 dB noisy datasets were used in testing–RMSE
results are illustrated in Fig. 4a. As shown, in both of these noisy conditions,
ADONiS outperform ANFIS substantially.

As the second error measure, UMBRAE is calculated between the prediction
and noise-free input datasets. These sets of experiment results can be seen right
hand side of Fig. 4a.

4.2 Experiment 2: 20 dB Noisy Rule Generation

In the four sets used in this experiment, rule generation is completed by using
the 20 dB noisy time series dataset. The resulting rules are then used in ADONiS
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predictions on the noise-free, 20 dB, 5 dB and 0 dB noisy datasets. The RMSE
experiment results are shown in Fig. 4b.

After ADONiS implementation, ANFIS optimisation is implemented on the
antecedents’ parameters, according to the 20 dB noisy training dataset. Then
the ANFIS predictions are performed on the same four (noise-free, 20 dB, 5 dB
and 0 dB) different datasets. These prediction results are illustrated in Fig. 4b.
These findings show a clear trend that under noise-free or low-noise conditions,
ADONiS and ANFIS provide similar performances. Under higher noise levels (5
and 0 dB), ADONiS has a clear performance advantage.

Equivalent results, as evaluated using the UMBRAE error measure, are illus-
trated on the right hand side of Fig. 4b.

Fig. 5. RMSE and UMBRAE results for both Experiment 3 and Experiment 4.

4.3 Experiment 3 and 4: 5 and 0 dB Noisy Rule Generation

The same procedures from the previous experiments are followed. First, rules
are generated, based upon the 5 dB noisy time series datasets. Next, ADONiS
performance is tested with the four (noise-free, 20 dB, 5 dB and 0 dB) datasets.
Afterwards, ANFIS optimisation is used to update the antecedent parameters
and ANFIS predictions are completed on the same four (noise-free, 20 dB, 5 dB
and 0 dB) testing datasets. 5 dB rule generation results are shown in Fig. 5a for
RMSE and UMBRAE.

Thereafter, 0 dB rule generation is completed and the four different testing
results are illustrated in Figs. 5b.

5 Discussion

Overall, the interpretability of a fuzzy model builds upon several components i.e.
rules, antecedents and/or consequent numbers, and the semantics at the fuzzy
partitioning level. Traditionally, while optimisation techniques may provide a
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better performance, it leads to changing the parameters (i.e. antecedents FSs)
based on a training dataset which results in a less interpretable model. However,
since FLSs have mechanisms to provide interpretability, the changing of these
parameters in a data-driven way can deteriorate the interpretability of models
by causing for example a loss of complementarity, coverage or distinguishability
of FSs across a universe of discourse and thus the meaningfulness of the used
FSs. Conversely, tuning parameters in the fuzzification step can maintain the
interpretability as well as provide a performance benefits.

Fig. 6. The used antecedent FSs in both model ADONiS and ANFIS.

Regarding the rule generation in the experiments, while different approaches
have been introduced [18], in this paper we follow the well established Wang-
Mendel [33] rule generation technique. We acknowledge that other approaches
may be equally or more viable for example in the given domain of time series
prediction, nevertheless, for this paper, our key objective was to generate one
basic rulebase which is maintained identical across all FLSs, thus providing a
basis for systematic comparison. Further, we note that the specific antecedent
and consequent FSs used here are selected arbitrarily (to evenly partition the
domain of the variables), and thus are not meaningful in a traditional linguis-
tic sense. However, in this paper, we consider the preservation of the original
shape of the FSs (post-tuning) as important (as it is that shape which will be
meaningful in applications of FLSs such as in medical decision making, common
control applications, etc.).

In the experiment, we first explore the ADONiS model which targets the
fuzzification step by limiting the optimisation effect but handling noise ‘where it
arises’. Second, traditional ANFIS optimisation is used. In this section, after a
brief performance comparison, the interpretability is discussed for both models.
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Overall, when all the results are scrutinised all together (Figs. 4a, 4b, 5a,
5b), it can be seen that ADONiS and ANFIS provide comparable performance.
While ANFIS shows better performance in the noise-free training and noise-free
cases, especially under high levels of noise, ADONiS’ performance is better than
that of the ANFIS-tuned FLS.

In the experiments, by following the structure in [33], the input domain is
divided into 7 antecedents, from Further Left to Further Right (FL, ..,M, .., FR)
(See Fig. 3) and each input is assigned with these antecedents as shown on the
left hand side of Fig. 6a. The same rule set is generated once. In the ADONiS
approach, no optimisation procedure is performed offline (all tuning is done
online through adaptation) and all the rules, antecedents, consequents remain
intact. As can be seen on the right hand side of Fig. 6a, the same antecedents
and consequents are used in the testing stage for ADONiS. Here, the input
uncertainty is captured and handled throughout the fuzzification and inference
engine process rather than optimising antecedent or consequent parameters. We
note that this is intuitive as changes affecting the inputs should not affect the
linguistic models of antecedents and consequents - preserving interpretability.
For example, when a rule is examined in (2), all the Medium (M) MFs are the
same as in Fig. 3 and it can be observed that the given sample inputs x1 and x9

are processed using the same MFs.

IF x1 isM... x5 isMR... x9 isM THEN y1 isCR (2)

On the other hand, in the ANFIS implementation, although the same rules
are used (see the left hand side of Fig. 6b) the optimisation procedure focuses
on the antecedent parameters. Thus, the parameters are changed in respect
to the training data, changing the antecedent and thus necessarily making it
different to the original (considered interpretable) model (see the right hand
side of Fig. 6b). This overall can affect both the semantics and the complexity at
the fuzzy partitioning level. For example, the Medium MF is changed through
the optimisation procedure. As can be seen in Fig. 6b and rule (3), the Medium’
(M ′) and Medium”’ (M ′′′) are not the same for inputs x1 and x9 which inhibits
the interpretability of the model.

IF x1 isM’ ... x5 isMR”... x9 isM”’ THEN y1 (3)

Therefore, overall, these initial results show that while both models can pro-
vide comparable prediction results under different levels of noise, tuning param-
eters in the fuzzification stage only can help to maintain the semantic mean-
ingfulness (completeness, distinguishability and complementarity) of the used
antecedent FSs which can overall provide a more ‘interpretable’ FLS model in
contrast to a ‘brute force’ optimisation approach such as offered by traditional
optimisation approaches for FLSs such as ANFIS.
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6 Conclusions

One of the main motivations to use FLSs is their capacity for interpretability
ability which is highly related to both complexity (number and structure of rules,
variables) and semantic (completeness, distinguishability or complementarity at
the level of the fuzzy set partitions) aspects. In regards to the performance of
FLSs, while optimisation techniques can be applied to deliver improved per-
formance, such optimisation has traditionally lead to changes of the same key
parameters which are vital for interpretability, thus delivering improved perfor-
mance at the cost of poorer interpretability. In this paper, we explore the pos-
sibility of automatically tuning an FLS to deliver good performance, while also
preserving its valuable interpretable structure, namely the rules (kept constant),
antecedents and consequents. Through a detailed set of time series prediction
experiments, the potential of the ADONiS framework, which handles input noise
where it arises, is explored in comparison to a traditional ANFIS optimisation
approach. The behaviour and performance of both approaches is analysed with
a view to inform future research aimed at developing FLSs with both high per-
formance and high interpretability.

We believe that these initial results highlight a very interesting research
direction for FLSs which can maintain interpretability by modelling complex-
ity only in specific parts of their structure. Future work will concentrate on
expanding the experimental evaluation with different rule generation techniques
and datasets while broadening the capacity for optimisation beyond the spe-
cific design of ADONiS. Also, the use of interpretability indices will be explored
to compare/contrast different model efficiently in regards to performance and
interpretability ability.

References
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Abstract. Neural networks are frequently applied to medical data. We describe
how complex and imbalanced data can be modelled with simple but accurate
neural networks that are transparent to the user. In the case of a data set on
cervical cancer with 753 observations excluding, missing values, and 32
covariates, with a prevalence of 73 cases (9.69%), we explain how model
selection can be applied to the Multi-Layer Perceptron (MLP) by deriving a
representation using a General Additive Neural Network.
The model achieves an AUROC of 0.621 CI [0.519,0.721] for predicting

positive diagnosis with Schiller’s test. This is comparable with the performance
obtained by a deep learning network with an AUROC of 0.667 [1]. Instead of
using all covariates, the Partial Response Network (PRN) involves just 2 vari-
ables, namely the number of years on Hormonal Contraceptives and the number
of years using IUD, in a fully explained model. This is consistent with an
additive non-linear statistical approach, the Sparse Additive Model [2] which
estimates non-linear components in a logistic regression classifier using the
backfitting algorithm applied to an ANOVA functional expansion.
This paper shows how the PRN, applied to a challenging classification task,

can provide insights into the influential variables, in this case correlated with
incidence of cervical cancer, so reducing the number of unnecessary variables to
be collected for screening. It does so by exploiting the efficiency of sparse
statistical models to select features from an ANOVA decomposition of the MLP,
in the process deriving a fully interpretable model.

Keywords: Explainable machine learning � FATE � KDD � Medical decision
support � Cervical cancer

1 Introduction

This paper is about explainable neural networks, illustrated by an application of a
challenging data set on cervical cancer screening that is available in the UCI repository
[3]. The purpose of the paper is to describe a case study of the interpretation of a neural
network by exploiting the same ANOVA decomposition that has been used in statistics
to infer sparse non-linear functions for probabilistic classifiers [2].

We will show how a shallow network, the Multi-Layer Perceptron (MLP) can be
fully explained by formulating it as a General Additive Neural Network (GANN). This
methodology has a long history [4]. However, to our knowledge there is no method to
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derive the GANN from data, rather a model structure needs to be assumed or
hypothesized from experimental data analysis. In this paper we use a mechanistic
model to construct the GANN and show that, for tabular data i.e. high-level features
that are typical of applications to medical decision support, a transparent and parsi-
monious model can be obtained, whose predictive performance comparable i.e. well
within the confidence interval for the AUROC, with that obtained an alternative,
opaque, deep learning neural network applied to the same data set [1].

Fairness, Accountability Transparency and Ethics (FATE) in AI [5] is emerging as
a priority research area that relates to the importance of human-centered as a key
enabler for practical application in risk-related domains such as clinical practice. Blind
spots and bias in models e.g. due to artifacts and spurious correlations hidden in
observational data, can undermine the generality of data driven models when they are
used to predict for real-world data and this may have legal implications [6].

There different approaches that may be taken to interpret neural networks, in
particular. These include derivation of rules to unravel the inner structure of deep
learning neural networks [7] and saliency methods [8] to determine the image elements
to which the network prediction is most sensitive.

An additional aspect of data modelling that is currently very much understudied is
the assessment of the quality of the data. Generative Adversarial Networks have been
used to quantify sample quality [9].

Arguably the most generic approach machine explanation is the attribution of
feature influence with additive models. A unified framework for this class of models
has been articulated [10]. This includes as a special case the approach of Local
Interpretable Model Agnostic Explanations (LIME) [11].

However, it is acknowledged in [10] that General Additive Models (GAMs) are the
most interpretable because the model is itself the interpretation, and this applies to data
at a global level, not just locally.

Recently there has been a resurgence of interest in GAMs [11, 12] in particular
through implementations as GANNs. These models sit firmly at the interface between
computational intelligence and traditional statistics, since they permit rigorous com-
putation of relevant statistical measures such as odds ratios for the influence of specific
effects [12].

A previously proposed framework for the construction of GANNs from MLPs will
be applied to carry out model selection and so derive the form of the GANN from a
trained MLP. This takes the form of a Partial Response Network (PRN) whose clas-
sification performance on multiple benchmarking data sets matches that of deep
learning but with much sparser and directly interpretable features [13].

This paper reports a specific case study of the application of PRN to demonstrate
how it can interpret the MLP as a GAM, providing complete transparency about the use
of the data by the model, without compromising model accuracy as represented by the
confidence interval of the AUROC. Our results are compared with those from a state-
of-the-art feature selection method for non-linear classification [2].

Moreover, the model selection process itself will generate insights about the
structure of the data, illustrating the value of this approach for knowledge discovery in
databases (KDD).
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2 Data Description

2.1 Data Collection

Cervical cancer is a significant cause of mortality among women both in developed and
developing countries world-wide [1]. It is unusual among cancers for being closely
associated with contracting the Human Papillomavirus (HPV) [14] which is strongly
influenced by sexual activity. This makes cervical cancer one of the most avoidable
cancers, through lifestyle factors and by vaccination.

Screening for possible incidence of the cancer is a public health priority, with
potential for low-cost screening to be effective. The data set used in this study was
acquired for this purpose.

The data were collected from women who attended the Hospital Universitario de
Caracas in Caracas [3]. Most of the patients belong to the lowest socioeconomic status,
which comprises the population at highest risk. They are all sexually active. Clinical
screening includes cytology, a colposcopic assessment with acetic acid and the Schiller
test (Lugol’s iodine solution). This is the most prevalent diagnostic index and is the
choice for the present study.

2.2 Data Pre-processing

The data comprise records from a random sample of patients presenting between 2012
and 2013 (n = 858) [1, 3]. There is a wide age range and a broad set of indicators of
sexual activity, several of which overlap in what they measure. Four target variables are
reported, including the binary outcome of Schiller’s test.

This data set is challenging, first because of severe class imbalance, which is typical
in many medical diagnostic applications. The number of positive outcomes in the initial
data sample is just 74 cases for Schiller’s test, 44 for a standard cytology test and 35 for
Hinselmann’s test.

Secondly, the data include a range of self-reported behavioural characteristics,
where noise levels may be significant. Third, some of the variables were problematic
for data analysis. The report of STD: cervical condylomatosis comprises all zero
values. STD: vaginal condylomatosis, pelvic inflammatory disease, genital herpes,
molluscum contagiosum, AIDS, HIV, Hepatitis B, syphilis and HPV are all populated
in <2.5% of all cases. For this reason, these variables were removed from the study as
they are unlikely to provide statistical significance in predictive modelling and their
low prevalence can cause numerical instabilities for model optimisation.

The number of pregnancies was deemed to be less informative about sexual
behaviour than the number of sexual partners, so this was also excluded.

In total 105 rows of data had 20 or more of the 32 covariate values missing. While
these values can be imputed, such a large proportion of covariates for individual
observations can bias the study, since missingness can be informative. For this reason,
these rows were removed from the data.

Among the selected variables, several pairs of covariates measure the same indi-
cator in binary form and as an ordinal count. This applies to variables Smokes,
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Hormonal Contraceptives, IUD and STDs. Consequently, the initial pool of covariates
in this study comprises 9 variables. They are:

• Number of sexual partners;
• Age of first sexual intercourse;
• Years since first sexual intercourse, derived by subtracting the previous covariate

from Age;
• Number of years smoking;
• Number of years taking Hormonal Contraceptives
• Number of years using IUDs;
• STD: condylomatosis;
• Number of STDs;
• Number of diagnosed STDs.

The dataset used in this study is a reduced cohort (n = 753) with marginal values
summarized in Table 1. The prevalence of missing data in the study sample is now
much reduced, especially as the number of pregnancies is not used. The maximum
proportion of missing is 4.1% for IUD (years).

Missing values were imputed with the sample median. The reason for this is that the
standardisation used in the following section maps the median value of every covariate
to zero, which has the effect of discarding that instance from the gradient descent
weight updates, so minimising the impact of unknown information in the training of the
MLP.

Table 1. Summary statistics of the sample population for Cervical Cancer screening. {}
indicates a binary variable. [] shows the range of the variable.

Variable Median [Min, Max] Missing values

Age 26 [13, 84] 0
Number of sexual partners 2 [1, 28] 14
First sexual intercourse 17 [10, 32] 6
Number of pregnancies 2 [0, 11] 47
Smokes 0 {0, 1} 10
Smokes (years) 0 [0, 37] 10
Smokes (packs/year) 0 [0, 37] 10
Hormonal Contraceptives 1 {0, 1} 13
Hormonal Contraceptives (years) 0.5 [0, 30] 13
IUD 0 {0, 1} 16
IUD (years) 0 [0, 19] 31
STDs 0 {0, 1} 0
STDs (number) 0 [0, 4] 0
STDs: condylomatosis 0 {0, 1} 0
STDs: Number of diagnosis 0 [0, 3] 0
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3 Partial Response Network Methodology

In binary classification, GAMs model the statistical link function appropriate for a
Bernoulli error distribution. This is the logit, hence the inverse of the familiar sigmoid
function. An appropriate objective function is the equally familiar log-likelihood cost.

In order to control for overfitting of the original MLP, we apply regularisation using
Automatic Relevance Determination [15]. This model evaluates the strength of weight
decay using a Bayesian estimator, which enables a different weight decay parameter to
be used for the fan-out weights linked to each input node. This results in soft model
selection, that is to say a modulation of the weight values that compresses towards zero
the weights linked to the less informative input variables.

Input variables are divided by the standard deviation and shifted by the median
value, so that the median is represented by zero. This is important because in a Taylor
expansion of the logit function about the median values, setting an individual variable to
the median causes all of the terms involving that variable in the Taylor expansion to
vanish. It is then possible to capture much of the most significant terms by systematically
setting all bar one covariate to zero, then all but each pair of covariates to zero, and so on.

The MLP response when all but a few variables are zero is called the Partial
Response and the GANN obtained by mapping the partial responses onto its weights,
forms the Partial Response Network (PRN) [13].

The functional form of the PRN is given by the well-known statistical decompo-
sition of multivariate effects into components with fewer variables, represented by the
ANOVA functional model [2] shown in Eq. (1):

logit P Cjxð Þð Þ � u 0ð Þþ
X

i
ui xið Þþ

X
i 6¼j

uij xi; xj
� �þO xi; xj; xi

� � ð1Þ

where the partial responses uk(•) are evaluated with all variables held fixed at zero
except for one or two indexed as follows:

u 0ð Þ ¼ logit P Cj0ð Þð Þ ð2Þ

ui xið Þ ¼ logit P Cj 0; ::; xi; ::; 0ð Þð Þð Þ � u 0ð Þ ð3Þ

uij xi; xj
� � ¼ logit P Cj 0; ::; xi; ::; xj; ::0

� �� �� �� ui xið Þ � uj xj
� �� u 0ð Þ ð4Þ

The derivation of the PRN proceeds as follows:

1. Train an MLP for binary classification;
2. Obtained the univariate and bivariate partial responses in Eqs. (2)–(4).
3. Apply the Lasso to the partial responses;
4. Construct a second MLP as a linear combination of the partial responses so as to

replicate the functionality of the Lasso. Each partial response, whether univariate or
bivariate, is represented by a modular structure comprising the same number of
hidden nodes as the original MLP. The modules are assembled into a single multi-
layer structure represented as a GANN, shown in Fig. 1.

5. Re-train the resulting multi-layer network.
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The mapping of the partial responses onto the GANN requires matching the
weights and bias terms as follows:

1. Univariate partial responses

vj ! vj � bk � bklð Þ ð5Þ

v0 ! v0 � logit P Cj0ð Þð Þð Þ � bk � bklð Þ ð6Þ

2. Bivariate partial response

v0 ! v0 � logit P Cj0ð Þð Þð Þ � bk � bklð Þ ð7Þ

v0 ! v0 � logit P Cj0ð Þð Þð Þ � bk � bklð Þ ð8Þ

The main limitation of the model as currently used is that it is restricted to uni-
variate effects and bivariate interactions. However, in many medical applications, this is
likely to suffice. The method can be extended to higher order interactions but it will
generate a combinatorially large number of partial responses.

Fig. 1. Representation of the Partial Response Network as General Additive Neural Network
(GANN). The weight values are derived from a trained MLP and re-calibrated by further training
of the network as a GANN.
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4 Experimental Results

This section explains how model selection took place and describes the models
obtained with the PRN applied to the Cervical Cancer screening data set described in
Sect. 2. The variables used in the model are the subset of Table 1 that is listed in 2.2
and the target variable is the outcome of Schiller’s diagnostic test for cervical cancer.

Given the low prevalence of positive outcome, 73 out of the 753 cases retained
(prevalence = 9.69%) the results presented are all for out-of-sample data using 2-fold
cross validation. This choice of number of folds is motivated by the need to retain a
meaningful number of events in each fold.

Model selection consisted of an iterative process of removing the least frequently
occurring variable or set of variables at each stage in the process. Table 2 shows the
frequency of occurrence of each covariate in the partial responses selected by the PRN.
It also shows the average AUROC for 10 random starts.

The results in Table 1 can be compared with those from a sparse non-linear sta-
tistical classifier, the Sparse Additive Model (SAM). This is an additive non-linear
model that estimates component functions in an ANOVA decomposition using the

Table 2. Model selection with the PRN applied to the Cervical Cancer screening dataset. ui;uij:
variable present in a univariate/bivariate partial response.

# var AUC #Sex
partners

Age first
sexual
Inter

Smokes
(Yrs)

Hormonal
Contraceptives
(Yrs)

IUD
(Yr)

#
STD

STD:
condylomatosis

p = 9 0.585
ui 1 1 1 3 1 1 3
uij 1 6 13 12 7 7

p = 5 0.621
ui – – – 4 4 3 2
uij – – 16 10 8 5 9

p = 4 0.593
ui – – – 4 5 – –

uij – – 5 6 5 4 –

p = 3 0.635
ui – – – 9 10 5 –

uij – – – 9 9 2 –

p = 2 0.621
ui – – – 9 10 – –

uij – – – 8 8 – –
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backfitting algorithm that is standard for GAMs. It combines that with l1 regularisation
similar to the Lasso [2]. This provides the attractive property of convex optimisation, so
that the model only needs to be estimated once.

In contrast, neural network models are not convex and so require multiple esti-
mation. By interpreting the MLP in the form of a GAM with sparse features, the PRN
model considerably reduces the variability in classification performance that is typical
of the MLP, providing more consistent results.

However, correlations between variables can result in multiple models with very
similar predictive power. This is the case for the present data set.

The SAM identified {#Years sexual intercourse; Smokes (years); STDs} for fold 1
and {Hormonal Contraceptives (years); IUD (years); STDs: condylomatosis; STDs}
for fold 2 as univariate models; {STDs} for fold 1 and {IUD (years); STDs: condy-
lomatosis; STDs; Number of sexual partners*IUD (years); #Years sexual inter-
course*Hormonal Contraceptives (years); STDs: condylomatosis*STDs} when
interaction terms were included.

The AUROCs for SAM in 2-fold cross validation are 0.599 and 0.565, respectively.

5 Discussion

The variable subsets extracted with model selection using the PRN model are all
consistent with the previously cited work on this data set, and indeed with cervical
screening literature.

The iterative process for feature selection applied in the previous section made use
of the variability of the MLP under random starts to explore the space of predictive
features in the presence of correlated variables. This enable the identification of stable
features that could be applied for both folds to build a model with a consistent
explanation. These two features are Hormonal Contraceptives (years) and IUD (years).

It cannot be claimed that these are the only predictive variables or indeed the best.
However, they are a representative subset that achieves a high predictive model with
parsimony, as can be seen from both the size of the derived feature set and high
AUROC compared with the SAM.

Equally of interest is the shape of the partial responses and their stability under 2-
fold cross validation, shown in Figs. 2, 3, 4 and 5.
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The partial responses are remarkably consistent given the challenges posed by the
low prevalence and high noise in the data. Differences are apparent in areas of low data
density, which is to be expected. Further work will involve quantifying the uncertainty
about these estimates.
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Fig. 2. Two univariate responses identified in the first fold. The abscissa measures the
contribution of the individual covariate to the logit response. The histogram represents the
empirical distribution of the covariate across the study population. The curves show the response
derived from the initial MLP and after re-training with the PRN.
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Fig. 3. Bivariate response found to be significant in the first fold of the data. The response is
shown as a heat map and as a 3-d surface.
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Fig. 4. Two univariate responses identified in the second fold, as in Fig. 2.
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Fig. 5. Bivariate response found to be significant in the second fold of the data, as in Fig. 3.

596 P. J. G. Lisboa et al.



6 Conclusion

The initial pool of 9 variables contains redundant information. This causes instability in
neural network models, as several different models will capture information with
similar predictive value. However, an iterative approach to feature selection can pro-
duce a stable sparse model.

It is perhaps remarkable how the same predictive information is contained in a
small number of covariates compared with the size of the original pool. Bearing in
mind that the typical standard deviation of the AUROC is 0.05, making the 95%
confidence interval 0.10, the AUROC values for all models listed in Table 2 are
comparable. Indeed, the average performance for ten random starts equals that of the
best cross-validated model, 0.621 CI [0.519,0.721]. The overall performance figure is
also consistent with the deep learning models in [1] and with a statistical approach to
non-linear classification with an ANOVA decomposition, the SAM [2].

The main conclusion of this paper is that it is possible to break the black box that is
the standard MLP, using it to derive a more interpretable structure as a GANN. Using
partial responses is a common way to interpret non-linear statistical models. Here, it is
shown that the responses can themselves be used directly in modelling, with little or no
compromise in predictive performance.

The result is a small model that explains a large and complex data set in terms of
variable dependencies that clinicians can understand and integrate into their reasoning
models. Iterative modeling is necessary because of the inherent redundancy in the data
set, but the sequence of models obtained is itself informative about the association with
outcome for individual and pairs of covariates.

Ultimately, the PRN model shows that it is possible to be sure that the model is
right for the right reasons. Moreover, the covariate dependencies provide the ability to
diagnose flaws in the data, whether because of sampling bias or artifacts in observa-
tional cohorts.

It is concluded that the PRN approach can add significant insight and modelling
value to the analysis of tabular data in general, and in particular medical data.
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Abstract. Bayesian and probabilistic models are widely used in image
processing to handle noise due to various alteration phenomena. To ben-
efit from the spatial information in a tractable way, Markov Random
Fields (MRF) are often assumed with isotropic neighborhoods, that is
however at the detriment of the preservation of thin structures. In this
study, we aim at relaxing this assumption on stationarity and isotropy
of the neighborhood shape in order to get a prior probability term that
is relevant not only within the homogeneous areas but also close to
object borders and within thin structures. To tackle the issue of neigh-
borhood shape estimation, we propose to use tensor voting, that allows
for the estimation of structure direction and saliency at various scales.
We propose three main ways to derive anisotropic neighborhoods, namely
shape-based, target-based and cardinal-based neighborhood. Then, hav-
ing defined the neighborhood field, we introduce an energy that will be
minimized using graph cuts, and illustrate the benefits of our approach
against the use of isotropic neighborhoods in the applicative context of
crack detection. First results on such a challenging problem are very
encouraging.

Keywords: Thin structures · Segmentation · Anisotropic
neighborhoods · Superpixels · Graph cuts

1 Introduction

Image segmentation is a challenging task in the computer vision field, which
deals with the problem of partitioning an image (or video) into multiple regions
with labels that may later be used in higher level tasks, like object classification,
detection or tracking. This is an ill-posed problem since at the pixel level, such
operation is prone to noise, corrupted data and all kind of optic phenomena
altering the original image, resulting in multiple valid solutions. A common way
to overcome these difficulties is to take into account spatial relationships between
close pixels in order to favor some solutions exhibiting slow variations in the label
field. Classically, one may model the 2-dimensional field of labels as a MRF [10]
and compute the segmentation using the Maximum A Posteriori (MAP).
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Variational approaches are widely used to provide solutions minimizing a
functional which uses energy terms representing data fidelity and regularization
terms. The numerous energy models for reducing the impact of image artifacts
over the output segmentation nevertheless tend to share a common drawback:
They behave poorly on thin structures1, because of the small size and complex
geometry of the latter with respect to neighborhood ones. The early removal of
such structures is a well known effect of Total Variation (TV) regularization (e.g.
in image reconstruction [20]) and Potts regularization (e.g. in image segmenta-
tion [14]). Thin structures are however ubiquitous in a number of applications
(such as medical imaging or quality control) and detecting them as accurately
as possible is therefore of great interest.

Alternatively, superpixel decomposition methods have been developed for
grouping pixels sharing similar radiometric intensities into regions of controlled
spatial extent. Superpixel partitions are generally seen as oversegmentations that
preserve small structures but also noise. The benefits of superpixel decomposition
is thus to drastically reduce the number of elements to process while keeping the
geometrical information that is often lost with multi-resolution approaches and
leaving noise removal for further processing steps.

Dealing with further processing, a major drawback of a superpixel segmenta-
tion is that the usual hypothesis of a regular lattice is lost (i.e. pixels are all of the
same size and shape). As a result, image segmentation approaches taking advan-
tage of superpixels must cope with these problems and introduce new spatial
relationships. This induces a neighborhood construction step even for isotropic
neighborhoods: For instance, a simple criterion is that superpixels are consid-
ered as neighbors when they share a common border [6,9,15,21]. The authors
of [21] propose to minimize an energy using graph cuts on the adjacency graph
obtained from the watershed of the input image. In this graph, edges connecting
two adjacent regions are weighted upon their common border length, similarly
to [6]. Those neighborhood fields based on adjacency do not favor specific ori-
entations of neighborhoods with respect to superpixel context and/or location.
The approach of [11] is to gather all superpixels whose centroid belongs to a disc
centered on it and is therefore isotropic as in most of the other superpixel-based
segmentation approaches.

At the pixel level however, anisotropic approaches have been introduced to
minimize the alteration of thin structures by regularization processes [7,13]. This
corresponds to the relaxation of the isotropic hypothesis often introduced when
formulating the problem as a MRF. As an alternative to the weighted Total Vari-
ation (TV) [19], the authors of [17] introduce a directional TV approach, based
on a “vesselness feature” which aims to detect thin structures. Finally, since we
believe that structure orientation estimation is a key aspect of anisotropic reg-
ularization approaches, let us mention different ways to estimate it: tensor vot-
ing approaches [5,16], vesselness operators like RORPO [18], the Frangi vessel-
ness [8], or structure aware regression filters [23] to perform structure-dependent

1 In n-dimensional images, thin structures or tubular structures are characterized by
a significantly smaller size in at least one of their n dimensions.
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image smoothing. By analogy with typical probabilistic modeling, the uniform
hypothesis widely used in the absence of prior knowledge corresponds to an
isotropic neighborhood, and the specific prior distribution corresponds to an
anisotropic neighborhood which can be derived from the observation of the local
orientation in our case.

We thus propose a methodology that both allows for the relaxation of the
isotropic neighborhood which is all the more relevant when we consider the
superpixel level, and provides regularized results robust to noise. We consider in
this context the construction of elliptic neighborhoods, that originate from [7]
and [11], and of two path-based neighborhoods. Similarly to [17], we expect these
anisotropic neighborhoods to take into account the orientations of image’s struc-
tures. Thus, we introduce a new field embedding these orientations computed
from tensor voting [16]. Finally, we formulate the segmentation problem in an
energy minimization framework, and solve it using graph cuts.

The rest of the paper is organized as follows. The problem formulation is
presented in Sect. 2 and the construction of isotropic and anisotropic neighbor-
hoods is detailed in Sect. 3. Section 4 introduces the energy terms implemented
and Sect. 5 compares our results against those obtained with isotropic neighbor-
hoods on real and simulated images. Finally, Sect. 6 outlines the contributions
of the paper and discusses future work.

2 Problem Definition

A superpixel is a group of pixels, defined by their coordinates in the n-
dimensional space, n ∈ N>0 the set of positive integers (n = 2 in the experiments
presented in Sect. 5). Since each pixel belongs to one and only one superpixel,
the set S of K ∈ N>0 superpixels is a partition of the original image. Denoting
by P the set of pixels, then each superpixel s is an element of S ⊂ 2P , i.e. s ∈ 2P

where 2X denotes the powerset of a set X. The partition constraint implies that
∀p ∈ P ,∃!s ∈ S such that p ∈ s. Notice that the shape of any superpixel is also
usually constrained to be composed of a single connected component. We denote
by F the feature space holding the spectral information associated to any pixel
or superpixel, for instance R (grayscale images), R3 (color images) or a higher
dimensional space (hyperspectral images).

To stress that our approach can apply equally to an image of pixels or of
superpixels, we define the position and the feature vector of a superpixel s ∈ S . In
our case (but other choices could have been done depending on the application),
they are the barycenter of the coordinates (in n-dimensional space) of the pixels
that compose s and the feature barycenter (in F) of these same pixels. Given a
finite set C = {1, . . . , C} of C ∈ N>0 classes, segmenting the image is equivalent
to finding a field of labels u ∈ CS .

We use the MAP criterion to assign, given the image of superpixels (with
superpixels possibly reduced to a single pixel), denoted I∈ FS , a label us ∈ C to
s, ∀s ∈ S . To this end, we set up a functional E, to be minimized over the field
of labels u ∈ CS , that encompasses different priors on the labeling u:
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E(u, V ) = E1(u) + αE2(u, V ), (1)

where α ∈ R>0 is a parameter controlling the balance between the data fidelity
term E1 and the smoothness term E2, and V : S → 2S is the neighborhood field
that is fixed. Note that E1 only depends on the image data and on u. Smoothness
prior on the labeling u yields the smoothness term E2 that is itself based on
neighborhood field definition. In this study, we only consider the second order
cliques, and we denote by N ⊂ S2 the set of second order cliques of superpixels.
Note that using such a definition, the superpixels of any pair (s, t) ∈ N are not
required to have a common boundary. For any superpixel s ∈ S , we define the
neighborhood V (s) of s as V (s) = {t ∈ S | (s, t) ∈ N}.

With the relaxation of isotropy and stationarity constraints on V comes
the need to introduce additional priors. First, we formulate the hypothesis that
the structure of the neighborhood of a superpixel depends on the structure of
the objects in the image. We model such information of structure through a
symmetric second order tensor field T ∈ (Rn×n)S and assume that it can be
built from the field of labels u. Other considered priors yield different ways to
construct the neighborhood field V , presented in the next section.

3 Proposed Neighborhoods Construction

In this section, we aim at defining the neighborhood field V : S → 2S , possibly
anisotropic and non stationary. To each site s ∈ S , we associate a set of sites
V (s) ∈ 2S , where s is either a superpixel or a pixel, such definition being con-
sistent with S = P . To underline the genericity of our formulation, we consider
both cases in our experiments.

The construction of our anisotropic neighborhoods aims at encouraging
strong relationships between sites aligned with respect to the directions of the
thin structures of the image. As explained in Sect. 1, the characteristics thereby
depicted for these structures, namely orientation and saliency, may be retrieved
from vesselness operators [8,18,23] or Tensor Voting [16]. In this study, we con-
sider this latter approach where a scale parameter σ ∈ R>0 sets the span of
the voting field. Whatever the way they have been estimated, let us represent
the thin structure features in a field of second order tensors T ∈ (Rn×n)S . For
any site s ∈ S , local orientation and saliency of structure are derived from the
eigenvectors and the eigenvalues of the tensor Ts. Eigenvectors are ranked by
decreasing order of their corresponding eigenvalue. More precisely, for any site
s ∈ S , the construction of V is achieved using a set of vectors, (−→vi (Ts))n−1

i=0 , where
−→vi (Ts) ∈ Rn is collinear with the ith eigenvector with its norm being equal to
the ith eigenvalue, ∀i ∈ {0, . . . , n − 1}.

We distinguish two families of anisotropic neighborhoods, namely shape-
based neighborhoods and path-based neighborhoods, both compared (see Sect. 5)
against the following neighbourhoods: Stawiaski’s boundary-based neighbor-
hood [21] and Giraud’s neighborhood [11]. Note that the latter can be seen as an
isotropic restriction of our shape-based neighborhood. Path-based neighborhoods
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stem from the idea of adapting the neighborhood structure to 1-dimensional thin
structures, represented by paths. Formally, for any k ∈ N>0, we define a path of
cardinality k as a set of sites (s1, . . . , sk) ∈ Sk such that, in our case, (si, si+1)
have a common boundary (see [21]), ∀i ∈ {1, . . . , k−1}. Moreover, we denote by
PK the set of paths of cardinality K ∈ N>0 and by P the set of paths of any
cardinality k ∈ N>0. In what follows, we detail three different ways to construct
the neighborhood field V using the tensor field T .

3.1 Shape-Based Neighborhoods

We are inspired by [11], using superpixel centroid relative locations and n-
dimensional shapes instead of discs to settle the shape-based neighborhoods
(shape). Whenever the centroid of a superpixel belongs to the computed neigh-
borhood shape of a second one, it is added to the neighborhood of the latter. For
computational reasons, we discretize the orientations of the parametric shapes
based on the one of −→v0(Ts) for any site s ∈ S , which boils down to the use of
a dictionary of neighborhood shapes. Notice that the neighborhood V (s) of any
site s ∈ S is not necessarily connected with such an approach.

3.2 Target-Based Neighborhoods

Target-based neighborhood (target) is a path-based neighborhood that aims
at constructing the neighborhood V (s) of a site s ∈ S by connecting it to two
distant sites t0, t1 ∈ S (named “target”) through paths of minimal energy. Hence,
the connectedness along these paths (and so V (s)) is thus ensured by definition.
We propose to find these paths in two stages. Firstly, for any j ∈ {0, 1}, targets
connecting s are found with

t∗j ∈ argmin
t∈˜V (s)

‖I(s) − I(t)‖22 − β‖−→st‖2 sign ((−1)j〈−→v0(Ts),
−→
st〉), (2)

where β ∈ R>0 is a free parameter, ˜V (s) denotes a shape-based neighborhood
(see Sect. 3.1), sign (.) denotes the sign of a real number, 〈., .〉 denotes the scalar
product, ‖.‖ denotes the Euclidean norm and

−→
st denotes the vector connecting

any pair of sites (s, t) ∈ S2. In Eq. (2), the first term favors the sites s and t
to have similar image intensities while the second term favors far targets from s
that are aligned with −→v0(Ts).

Secondly, paths of minimal energy connecting the site s ∈ S to either targets
t∗0 or t∗1 (see Eq. (2)) are obtained with

p∗
j ∈ argmin

p=(s1=s,...,s�p=t∗
j )∈P

�p−1
∑

i=1

‖I(si) − I(si+1)‖22, (3)

where � stands for the cardinality of a set. The term to be minimized in Eq. (3)
is large when image intensities of successive sites along a path are dissimilar
and small otherwise. Finally, the neighborhood V (s) of the site s can be now
constructed as follows: V (s) = (p∗

0 ∪ p∗
1) \ {s}.
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3.3 Cardinal-Based Neighborhoods

Cardinal-based neighborhood (cardinal) is a path-based neighborhood that
aims at constructing the neighborhood V (s) of a site s ∈ S by finding two
paths of minimal energy starting from s, in opposite directions (according to
−→v0(T (s))) and of fixed length K ∈ N>0. For any j ∈ {0, 1}, these paths are
obtained with

p∗
j ∈ argmin

p=(s1=s,...,sK)∈PK

ljC(p). (4)

In the above expression, ljC(p) provides a measure of the length of the path p

starting from s. For any path p = (s1 = s, . . . , sK) ∈ PK , ljC(p) is defined by

ljC(p) =
K

∑

i=2

‖I(s) − I(si)‖22 + β′φj(−→v0(Ts),−→ssi), (5)

where β′ ∈ R>0 is a free parameter and

φj(−→u ,−→v ) =

{

arccos
(∣

∣

∣

〈−→u ,−→v 〉
‖−→u ‖‖−→v ‖

∣

∣

∣

)

if (−1)j〈−→u ,−→v 〉 > 0,

+∞ otherwise,

measures the angle between the vectors −→u and −→v and discriminates whether
the scalar product between them is positive or not. The first term of Eq. (5)
encourages the image intensities of any site si to be similar to s while the second
term aims at aligning the path with −→v0(Ts). This allows for ensuring that two
paths in opposite directions are selected to establish the neighborhood V (s)
of s. Finally, the neighborhood V (s) of the site s can be now constructed as
follows: V (s) = (p∗

0 ∪ p∗
1) \ {s}. In the next section, the segmentation model

using anisotropic and isotropic neighborhoods is detailed.

4 Proposed Model

The data fidelity term E1(u) in the functional E(u, V ) (see Eq. (1)) is the energy
term derived from the likelihood P (I |u). At the pixel level, popular models rely
on statistical assumptions, especially by assuming site conditional independence.
Relying on the same assumption but at the superpixel level, the probability
P (I |u) is the product, over S , of probabilities P (I(s) |us), I(s) ∈ F being the
observation and us ∈ C the class of s.

In this study, we adopt a color model assuming that image intensities are
Gaussian-distributed for each class c ∈ C with mean value μc ∈ F and standard
deviation σc ∈ R>0 [4]. Then, the data term Es

1 for any superpixel s ∈ S and
any label us ∈ C is written

Es
1(us) =

‖I(s) − μus
‖22

2σ2
us

+ log(σus
),
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and, for any u ∈ CS , E1 in Eq. (1) is:

E1(u) =
∑

s∈S
Es

1(us). (6)

The energy term E2(u, V ) corresponds to the smoothness prior on the label
field u and requires the definition of a neighborhood field V , as introduced in
Sect. 2. Then, this neighborhood field being fixed, we assume u is an MRF so
that a prior probability on u can be computed from ‘elementary’ energy terms.

In this study, we adopt the Potts model [25], weighted according to the
strength of interaction between neighboring superpixels. The definition of
E2(u, V ) is thus the following:

E2(u, V ) =
∑

s∈S
∑

p∈V (s) W (s, p)1{us 
=up},

where 1{a
=b} =
{

1 when a �= b,
0 otherwise. and W : N → R>0 is a weighting function.

For instance, in our implementation of the neighborhood of [21], the weighting
function W is defined for any pair (s, p) ∈ N as W (s, p) = ∂(s,p)

∂(s) ∈]0, 1], where
∂(s, p) and ∂(s) denote the common boundary between s and p and the perimeter
of s, respectively. In the other neighborhood fields we compare, the cliques N
can connect non adjacent superpixels. Thus, we propose to define for any pair
(s, p) ∈ N the weighting function W as W (s, p) = (�V (s))−1 ∈]0, 1].

The Potts model preserves its properties, in particular submodularity, and
the data fidelity term E1 is convex. Numerous works have proven the efficiency
of graph cuts [3,12]. According to [12] and [3] respectively, the energy function
defined in Eq. (1) can be exactly minimized when �C = 2 (this is the case in our
experiments) and approximately minimized when �C > 2.

Finally, note that the estimation of the neighborhood field V itself requires
a segmentation u. In this study, we use the blind segmentation (i.e. α = 0).

5 Numerical Experiments

5.1 Application Framework and Parameter Setting

Let us introduce the data and experiments carried out within our application
context, namely crack detection. We aim at segmenting a crack, which is a thin
structure over a highly textured and noisy background, e.g. some asphalt road
or concrete wall as in the cracktree dataset [27]. In this study, in addition to
images from this dataset, we consider a simulated image with arbitrary shapes
and textured noise as shown in Fig. 1. Images intensities are normalized in [0, 1].

A variety of algorithms for generating superpixels exist and exhibit different
properties [1,22]. Besides, the requirement of providing a partition of the image
into connected sets of pixels, the main desirable properties are the preservation
of image boundaries, the control of the compactness of superpixels and their
number, in addition to computational efficiency of the algorithms. In order to



608 C. Ribal et al.

study the benefit of our approach also regardless the superpixel decomposition,
we propose a “perfectly shaped” set of superpixels generated from the dilated
ground truth. Then, for results derivation using actual superpixels, we require the
following properties for superpixels: good compactness to be efficiently modeled
by their centroid, regularity in size while at the same time allowing the grouping
of crack pixels into thin superpixels. Given those prerequisites, we have consid-
ered Extended Topology Preserving Segmentation superpixels (ETPS) [26] after
image smoothing with median filtering with a square window of size (7 × 7).

Concerning the construction of anisotropic neighborhoods, the parameters
are fixed so that there are 6 neighbors per superpixel in average. For shape, this
reduces to setting the ellipse’s area to 7 times the mean area of a superpixel, while
their flattening is set to 0.6. With cardinal, we set K = 4 and β′ = 5 × 10−3.
Finally for target, β = 5 × 10−3 × βR where βR ∈ R>0 is the radius of the
shape-based neighborhood ellipsis. Notice, these parameters are related to the
scale of the thin structures to detect with respect to the superpixel size, so that
some priors can help setting them.

Finally, we estimate the mean μc of each class c ∈ C (here, �C = 2) from
the ground truth, and we set σc = 1 for simplicity. To compensate the effect of
variation of texture size due to perspective, we set the mean value of classes as
an affine function of the vertical position of the superpixel. Future works can
handle the parameter estimation in an unsupervised context.

5.2 Quantitative and Qualitative Evaluation

Because our ground truth can be composed of 1 pixel width objects, in order
to distinguish between slight mislocation errors and non-detection of some parts
of the cracks, we compute the F-measure (FM) at scale ε = 2, based on the
number of true positives (TP), false positives (FP) and false negatives (FN),
like in [2,24]. In addition, the crack region and the non-crack area being highly
unbalanced (in favor to the non-crack area), we use a high value of γ = 5 in FM
to increase sensitivity to FN with respect to FP:

FM(γ) =
(

1 +
γ2FN

(1 + γ2)TP
+

FP

(1 + γ2)TP

)−1

∈ [0, 1]. (7)

The results are presented at pixel level in Fig. 1 and at superpixel level in
Fig. 2, respectively. For each image, that corresponds to a set of parameters
including the type of superpixels and the type of neighborhood, we select the
best result, according to the FM criterion, among the results obtained varying
the parameters σ (the scale parameter of tensor voting) and α (the regularization
parameter in Eq. (1)). The automatic estimation of these parameters along with
the analysis of their impact on performance (FM criterion for instance) will be
carried in future work in order to make the proposed method more effective.
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Fig. 1. Evaluation performance against ground truths at pixel level for a crack image
(top row) and a simulated one (bottom row). The three last columns are segmentations
without regularization (“blind”) and with regularization (isotropic with 4-connectivity
or shape-based anisotropic neighborhoods with ellipses). For each image, in both reg-
ularized cases, the results achieving the largest FM with respect to tensor voting scale
σ and regularization parameter α, are depicted. FM measurements are also provided
in percents for γ = 5.

At pixel level, Fig. 1 illustrates the clear improvement of the quality of the
results with the use of anisotropic neighborhoods. In the first image of crack,
anisotropic regularization allows for enhancing the continuity of the detected
cracks, even if some small gaps still fragment it. In the simulated image, the
improvement is significant with the correct segmentation of the six discontinuities
in the cracks, without loss of precision on more complex shapes.

However, at superpixel level (Fig. 2), while exhibiting better blind results
thanks to the averaging of information at pixel level, superpixel anisotropic
neighborhoods seem to suffer in general from the fact that it is difficult to estab-
lish the right neighborhood V even with a correct estimation of its orientation
(see last column). Our experiments reveal that even if we are far from “Opti-
mal” neighborhood performances, path-based neighborhoods tend to outperform
the shape-based ones. Unfortunately, the anisotropic approach benefits exhibited
in Fig. 2 do not seem to improve the segmentation of the crack image in a so
significant way: Path-based approach outperforms the other approaches when
superpixels are perfectly shaped, but are still sensitive to the degradation of the
quality of the superpixels.
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Fig. 2. Evaluation performance against ground truths at superpixel level for a crack
image and a simulated one. The segmentations achieving the largest FM with respect
to parameters σ and α for γ = 5, are depicted. The last two columns correspond to
the use of the “perfectly shaped” superpixel. The last column represents, for one site
highlighted in blue, the sites that are in its neighborhood (in red), depending on the
method used for constructing the latter one: Each row shows a different type of neigh-
borhood, specified in header lines. The last row is a ground truth-based neighborhood
for comparison purpose. (Color figure online)
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6 Conclusion

In this paper, we introduced three anisotropic neighborhoods, in order to make
them able to fit the thin structures of the image and thus to improve segmenta-
tion results. They rely on the estimation of the orientations of such structures,
based here on tensor voting that is efficient in estimating dense map of orien-
tations from a sparse field of labeled sites in the blind segmentation. We then
perform the minimization of our energy functional via graph cuts.

We tested our results with a simulated image and an actual difficult crack
image, to validate the improvements brought by anisotropic regularization.
While our results exhibit a high gain of performances at pixel level, super-
pixel segmentation suffers from the challenging task to estimate neighborhood at
superpixel level, that seems to weaken the benefits of anisotropic regularization.

Finally, we plan to investigate the possible refinement of the neighborhood
field estimation after computing the regularized segmentation to introduce an
alternative minimization procedure, and to explore extensions of our approach
with thin structures in shape from focus in 3D-space [20] for future works.
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Abstract. Theory of evidence has been successfully used in many areas
covering pattern recognition and image processing due to its effective-
ness in both information fusion and reasoning under uncertainty. Such
notoriety led to extension of many existing Bayesian tools such as hid-
den Markov models, extensively used for image segmentation. This paper
falls under this category of frameworks and aims to propose a new hidden
Markov field that better handles nonGaussian forms of noise, designed
for multichannel image segmentation. To this end, we use a recent kernel
smoothing- based noise density estimation combined with a genuine app-
roach of mass determination from data. The proposed model is validated
on sampled and real remote sensing images and the results obtained
outperform those produced by conventional hidden Markov fields.

Keywords: Data classification · Dempster-Shafer theory · Hidden
Markov Field · Multichannel image segmentation

1 Introduction

Multichannel image analysis and processing have gained more interest among the
image and signal processing community following the development of computing
technologies [3,10,12,15]. The purpose of multichannel image classification, con-
sidered in this paper, is to produce a thematic map indicating the membership of
each pixel in a specific class based on two sources: the spectral information and
the spatial information. The first is represented by the different image channels.
Each channel corresponds to an interval of the electromagnetic spectrum, where
a dedicated sensor is used to measure the intensity of the spectrum received
over this interval. The use of spectral information for image classification can be
very effective especially in the supervised context because one has a knowledge
base used at the learning stage. The interest of taking into consideration the
second source of information, namely the contextual dependence, was quickly
noticed. Image modeling through hidden Markov fields takes into account such
dependencies which improves the classification performance [6,9,13,14].
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A more elaborated classification model should perform at both levels to pro-
duce significantly best class maps. For this purpose, we propose a new hidden
Markov model that better handles general forms of noise, typically nonGaussian.
More explicitly, we propose to adopt an evidential approach for estimating the
noise parameters, which thus allows a better use of spectral information in a
Markovian context towards a more effective multichannel image classification.

The remainder of this paper is organized as follows. Section 2 briefly recalls
Dempster- Shafer theory, Parzen- Rosenblatt density estimation and hidden
Markov fields. Section 3 describes the proposed approaches and related estima-
tion tasks. Experimental results are presented and discussed in Sect. 4. Conclud-
ing remarks and future directions are given in Sect. 5.

2 Preliminaries

In this section, we briefly recall some basic notions of Dempster-Shafer theory
and Hidden Markov Fields.

2.1 Dempster-Shafer Theory

Data fusion particularly enhances the quality of decision when more than one
source of information are available. This is mainly due to the possibility of
increasing the amount of relevant information by exploiting redundancy and
complementariness among sources. One powerful and flexible mathematical tool
that has shown its usefulness in this area is Dempster-Shafer theory (DST) [16],
[17] that generalizes the Bayesian frame by allowing on one hand to reap a con-
sensus decision from all information sources; and on the other hand, to handle
information uncertainty within each information source. Hence, DST has been
applied in many fields [4,5,7,11]. In what follows, we give a quick overview about
the DST concepts that will be needed for the sake of this paper.

Let Ω = {ω1, ..., ωK}, and let P(Ω) = {A1, ..., AQ} be its power set, with
Q = 2K . A function M defined from P(Ω) to [0, 1] is called a “basic belief
assignment” (bba) if M(∅) = 0 and

∑
A∈P(Ω) M(A) = 1. A bba M defines then a

“plausibility” function Pl from P(Ω) to [0, 1] by Pl(A) =
∑

A∩B �=∅ M(B), and
a “credibility” function Cr from P(Ω) to [0, 1] by Cr(A) =

∑
B⊂A M(B). Also,

both aforementioned functions are linked by Pl(A) + Cr(Ac) = 1. Furthermore,
a probability function p can be considered as a particular case for which Pl =
Cr = p.

When two bbas M1 and M2 describe two pieces of evidence, we can fuse
them using the so called “Dempster-Shafer fusion” (DS fusion), which gives
M = M1 ⊕ M2 defined by:

M(A) = (M1 ⊕ M2)(A) ∝
∑

B1∩B2=A

M1(B1)M2(B2) (1)

Finally, an evidential bba M can be transformed into a probabilistic one
using Smets method, according to which each mass of belief M(A) is equally
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distributed among all elements of A, leading to the so called “pignistic proba-
bility”, Bet, given by:

Bet(ωi) =
∑

ωi∈A⊆Ω

M(A)
|A| (2)

where |A| is the number of elements of Ω in A.

2.2 Parzen-Rosenblatt Dempster-Shafer Classifier

In this subsection, we briefly recall the Parzen-Rosenblatt Dempster-Shafer
(PRDS) Classifier proposed in [8]. To this end, let us assume we have a sample of
N prelabeled multiattribute data (Z1, ..., ZN ) where each datum Zn = (Xn, Yn)
with Xn ∈ Ω = {ω1, ..., ωK} being the label, and Yn = (Y 1

n , ..., Y P
n ) ∈ RP being

the P -attribute observation. The problem is then to estimate the label of any
new observation Yn′ that is optimal with respect to some criterion.

In what follows, we recall the training and classification procedures. Accord-
ing to the PRDS scheme, training consists in estimating for each class ωk ∈ Ω
and for each attribute p (1 < p < P ), the associated Parzen-Rosenblatt density
f̂p

k . For further weighting sake, 5-fold cross-validation classification is achieved
based on each attribute (taken alone) using the above Parzen-Rosenblatt PDFs
according to maximum likelihood.

For a given new observation Yn′ , partial report about the identity of Xn′ can
be made at each individual attribute level through a mass function Mp, on P (Ω),
generated based on the Parzen-Rosenblatt PDF estimated at the training stage.
Such reports are then combined, typically using DS- fusion to reap a consensus
report M . Final decision is then be deduced through the Pignistic transform
applied to M . In the following, we describe our approach step by step. For more
details, the reader may refer to [8].

2.3 Hidden Markov Fields

Let S be a finite set, with Card(S) = N , and let (Ys)s∈S and (Xs)s∈S be two
collections of random variables, which will be called “random fields”. We assume
that Y is observable with each Ys taking its values in R (or Rm) whereas X is
hidden with each Xs taking its values from a finite set of “classes” or “labels”.
Such situation occurs in image segmentation problem, which will be used in this
paper as illustrative frame. Realizations of such random fields will be denoted
using lowercase letters. We deal with the problem of the estimation of X = x from
Y = y. Such estimation subsumes the distribution of (X,Y ) to be beforehand
defined.

In hidden Markov fields (HMFs) context, the field X is assumed Markovian
with respect to a neighborhood system N = (N)s∈S . X is then called a Markov
random field (MRF) defined by

p (Xs = xs|(Xt)t∈S,t�=s) = p (Xs = xs|(Xt)t∈Ns
) (3)
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Under some conditions usually assumed in digital imagery, the Hammersley-
Clifford theorem [2] establishes the equivalence between an MRF, defined with
respect to the neighbourhood system N, and a Gibbs field with potentials associ-
ated with N. Such potentials, describing the elementary relationships within the
neighbourhood, are computed with respect to the system of cliques C, where a
clique c ∈ C is a subset of S which is either a singleton or a set of pixels mutually
neighbors with respect to N. Setting xc = (Xs)s∈c, φc(xc) denotes the potential
associated to the clique c.

Finally, the distribution of X is given by

p(X = x) = γ exp

[

−
∑

c∈C

φc(xc)

]

(4)

where γ is a normalizing constant which is impossible to compute in prac-
tice given the very high number of possible configurations KN . The quantity
E(x) =

∑
c∈C φc(xc) is called “energy” and can also be expressed locally through

Es(xs) =
∑

c	xs
φc(xc). Hence, the local conditional probability of (3) becomes

p (Xs = xs|(Xt)t∈S,t�=s) = γs exp [−Es(xs)]

where γs is a computable normalizing constant.
To define the distribution of Y conditional on X, two assumptions are usually

set:

(i) the random variables (Ys)s∈S are independent conditional on X;
(ii) the distribution of each Ys conditional on X is equal to its ditribution con-

ditional on Xs.

When these two assumptions hold, the noise distribution is fully defined
through K distributions (fi)1≤i≤K on R where fi denotes the density, with
respect to the Lebesgue measure on R, of the distribution of Ys conditional on
Xs = ωi: p(Ys = ys|xs = ωi) = fi(ys). Then we have

p(Y = y|X = x) =
∏

s∈S

fxs
(ys) (5)

that can equivalently be written as

p(Y = y|X = x) = exp

[
∑

s∈S

log fxs
(ys)

]

(6)

Since p(x, y) = p(x)p(y|x), we obtain

p(X = x, Y = y) = γ exp −
[
∑

c∈C

φc(xc) −
∑

s∈S

log fxs
(ys)

]

(7)

Hence, according to (7), the couple (X,Y ) is a Markov field and also is the
distribution of X conditional on Y = y. This allows to sample a realization of
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X according to its posterior distribution p(x|y) and hence, to apply Bayesian
techniques like maximum posterior marginal (MPM) and maximum a posteriori
(MAP).

The feasibility of the different estimations of interest in HMFs stems from
the possibility of sampling realizations of the hidden process X from Y = y
according to the posterior distribution p(x|y), and which is possible when this
latter distribution is of Markov form. On the other hand, the Markovianity of
this latter distribution relies itself on the assumption that the random variables
(Ys)s∈S are independent conditionally on X.

3 Proposed Approach

The problem considered in this paper is to derive a thematic map from a multi-
channel (typically remote sensing) image. As described in the previous section,
the hidden Markov field (HMF) model allows to find a hidden field X represent-
ing in this case the thematic map, from an observed field Y representing the
observed multichannel image. The novelty in this paper is to adopt the Pignistic
probabilities provided by PRDS classifier [8] (after combination of different chan-
nel reports) instead of fxs

(ys) in Eq. (5). Thus, one need to achieve a training
process on the prelabeled set of pixels (typically a prelabeled image of subimage)
to derive noise densities associated to different channels which will later produce
parameters of spectral information. Such prelabeled data are not available how-
ever, given that we deal with unsupervised classification. Then, the estimation
of both spectral and spatial parameters is achieved in an unsupervised iterative
way. More explicitly, one starts by coarsely perform an initial clustering which
will service as a basis for initial parameters estimation. Indeed, when an initial
realization of X is available, one can perform training according to PRDS to
derive noise densities and, at the same time, estimation of spatial parameters as
in conventional HMF context.

In what follows, we describe PRDS training, parameter estimation and label-
ing procedures.

3.1 Training

As specified before, let us consider a set of prelabeled multichannel pixels. We
recall that such data may be available through an initial coarse clustering pro-
viding a realization of X and then iteratively through successive updates of X
during parameter estimation, as we are going to see later. Hence, training will be
concerned exclusively with spectral information. More explicitly, we use PR-DS
classifier to estimating for each class ωk ∈ Ω and for each channel p (1 < p < P ),
the Parzen-Rosenblatt density f̂p

k as described in the previous section. Let us
now show how the estimated Parzen-Rosenblatt densities will produce spectral
parameters. In other words, we demonstrate how one can replace the noise den-
sities fxs

(ys) in Eq. (5) for a given Yn ∈ RP .
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Step 1: Generation of Mass Functions. To define the mass associated to
channel p, let us consider the rank function δp defined from {1, ..,K} to Ω such as
δp(k) is the k–ranked element of Ω in terms of f̂p, i.e. f̂p

δp(1)
(Y p

n ) ≤ f̂p
δp(2)

(Y p
n ) ≤

... ≤ f̂p
δp(K)(Y

p
n ). Then, Mp is derived as follows:

⎧
⎪⎨

⎪⎩

Mp(Ω) ∝ Kf̂p
δp(1)

(Y p
n )

Mp({ωδp(k), ..., ωδp(K)}) ∝ (K − k + 1)
[
f̂p

δp(k)
(Y p

n ) − f̂p
δp(k−1)(Y

p
n )

]
, for k > 1

(8)

Step 2: Combination of Mass Functions. Mass functions associated to dif-
ferent attributes are then combined into one collaborative mass M =

⊕P
p=1 Mp:

M(B) ∝
∑

⋂P
p=1 Bp=B

[
P∏

p=1

Mp(Bp)

]

, for B,Bp ∈ P(Ω) (9)

Step 3: Deriving Noise Density. Based on M , the noise density is then
computed according to the Pignistic transform:

fk(yn) =
∑

A	ωk

M(A)
|A| (10)

3.2 Parameter Estimation

In this framework, we adopted ICE algorithm for parameter estimation. At each
iteration i, a realization of X is simulated using Gibbs sampler. Then, we use the
Derin and Elliott method for estimating spatial parameters φi; and the PRDS
method for spectral parameters ηi (which are noise densities as described in Step
3 above). The algorithm stops when an end criterion is reached. The parameter
estimation procedure is illustrated through Fig. 1.

3.3 Labeling

Once parameter set θ is estimated by the ICE method [1] while the MPM esti-
mator is used to infer X. Using the Gibbs sampler, T realization x1, x2, . . . , xT

of X are simulated according to p(X|Y = y). Then, one estimates p̂ (xs = ω | y)
of each Xs from the realizations x1, x2 . . . , xN . Finally, for each pixel xs, one
chooses the class whose number of appearances in the simulations is the highest.

4 Evaluation of the Proposed Approach

To validate our approach, we assess its performance in unsupervised segmenta-
tion of multichannel images against the conventional HMF model. To this end,
we consider two series of experiments. The first series deal with synthetic images
whereas the second series deals with a real multichannel remote sensing image.
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Fig. 1. Parameter estimation process.

4.1 Unsupervised Segmentation of Sampled Multichannel Images

To sample a synthetic multichannel image, we use Gibbs sampler with the fol-
lowing parameters: β = [1, 1, 1], αh = αvb = 2I and αd = 4I. Then, the obtained
image is noised considering multidimensional Gaussian mixture densities in two
different ways, considering two different sets of noise parameters η:

– Image 1: noisy version of the reference image, with a two-dimensional mixture

noise of four Gaussians and a variance-covariance matrix Σ =
[

28 3
3 28

]

.

* For the first class μ11 =
[
10 20

]
, μ12 =

[
25 20

]
, μ13 =

[
40 20

]
, μ14 =[

50 20
]
, Σ11 = Σ12 = Σ13 = Σ14 = Σ and a proportion of mixture p1 =[

0.25 0.25 0.25 0.25
]
;

* For the second class μ21 =
[
10 30

]
, μ22 =

[
25 30

]
, μ23 =

[
40 30

]
, μ24 =[

50 30
]
, Σ21 = Σ22 = Σ23 = Σ24 = Σ and a proportion of mixture p2 =[

0.25 0.25 0.25 0.25
]
;

* For the third class μ31 =
[
10 40

]
, μ32 =

[
25 40

]
, μ33 =

[
40 40

]
, μ34 =[

50 40
]
, Σ31 = Σ32 = Σ33 = Σ34 = Σ and a proportion of mixture p3 =[

0.25 0.25 0.25 0.25
]
;

– Image 2: noisy image with a three-dimensional mixture noise of five Gaussians
and a variance-covariance matrix for each element of the mixture for each class
c: Σc1 = Σc2 = Σc3 = Σc4 = Σc5 = Σ such as c ∈ {1, 2, 3} and
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(a) (b) (c) (d)

Fig. 2. Classification of synthetic data using HMF and PRDS-HMF. (a) Original class
image. (b) Noisy image. (c) Classification of the image using HMF, success rate τ =
58.3740%. (d) Classification of the image using PRDS-HMF, success rate τ = 84.2285%.

Σ =

⎡

⎣
28 3 1
3 28 3
1 3 28

⎤

⎦.

* For the first class μ11 =
[
10 20 20

]
, μ12 =

[
25 20 20

]
, μ13 =

[
40 20 20

]
,

μ14 =
[
50 20 20

]
, μ15 =

[
65 20 20

]
and a proportion of mixture p1 =[

0.2 0.2 0.2 0.2 0.2
]
;

* For the second class μ21 =
[
10 30 25

]
, μ22 =

[
25 30 25

]
, μ23 =[

40 30 25
]
, μ24 =

[
50 30 25

]
, μ25 =

[
65 30 25

]
and a proportion of mix-

ture p2 =
[
0.2 0.2 0.2 0.2 0.2

]
;

* For the third class μ31 =
[
10 40 30

]
, μ32 =

[
25 40 30

]
, μ33 =

[
40 40 30

]
,

μ34 =
[
50 40 30

]
, μ35 =

[
65 40 30

]
and a proportion of mixture p3 =[

0.2 0.2 0.2 0.2 0.2
]
;

Then, unsupervised segmentation is performed using conventional HMFs;
and the proposed PRDS- HMF. The results obtained are illustrated in Fig. 2
and Fig. 3 where the noisy multichannel images are depicted in monochannel
gray level by averaging the channels’ intensities for illustrative purpose. The
segmentation accuracy rates obtained confirm the interest of the proposed model
with respect to the classic HMF. The supremacy of the proposed model is mainly
due to the possibility of considering more general forms of noise by the PRDS-

(a) (b) (c) (d)

Fig. 3. Classification of synthetic data using HMF and PRDS-HM. (a) Original class
image. (b) Noisy image. (c) Classification of the image using HMF, success rate τ =
32.7332%. (d) Classification of the image using PRDS-HMF, success rate τ = 80.8350%.
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HMF thanks to the kernel smoothing technique that makes it possible to fit any
form of noise instead of assuming it Gaussian as in HMF context.

4.2 Unsupervised Segmentation of Multichannel Remote Sensing
Image

In this series of experiments, we consider a multichannel image of the Landsat-7
satellite ETM+ sensor acquired on June 03, 2001. The acquisition was made in
an area around the city of Algiers. The image used has a resolution of 30 m × 30
m and a size of 256 × 256. The area of study includes 4 classes: (i) Urban Dense
(UD); (ii) Urban Less Dense (ULD); (iii) Barren Land (BL); and (iv) Vegetation
(V).

Figure 4 represents the 6 bands at the gray scale image.

Fig. 4. Different channel observations of the studied image.

To quantitatively assess the performance of the proposed approach against
the conventional HMF model, we have a partial ground truth (see Fig. 4).

Qualitative assessment of the results obtained shows that the thematic map
provided by the proposed approach contains less salt and pepper effect. This is
confirmed by the quantitative assessment in terms of overall accuracy and kappa
metrics. Indeed, the PRDS- HMF yields an accuracy rate of 79% (resp. a kappa
of 0.70) against an accuracy of 68% (resp. a kappa of 0.5) by the conventional
HMF model (Figs. 5 and 6).
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Fig. 5. Partial ground truth of the studied area

(a) (b)

Fig. 6. Classification of a multichannel image using HMF and PRDS-HMF: Urban
Dense (red), Urban Less Dense (orange), Barren Land (Yellow) and Vegetation (Green).
(a) Thematic map obtained by PRDS-HMF: accuracy= 79.42%, Kappa= 0.70 (b) The-
matic map obtained by HMF: accuracy= 68.23%, Kappa= 0.55. (Color figure online)

Table 1. Confusion matrix obtained by PRDS-HMF.

(UD) (ULD) (BL) (V) Truth Recall

(UD) 41 0 0 1 42 97.62%

(ULD) 19 84 7 1 111 75.68%

(BL) 0 2 192 31 225 85.33%

(V) 4 22 27 123 176 69.89%

Classification 64 108 226 156 554

Precision 64.06% 77.78% 84.96% 78.85%
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Table 2. Confusion matrix obtained by HMF.

(UD) (ULD) (BL) (V) Truth Recall

(UD) 41 0 0 1 42 97.62%

(ULD) 43 60 7 1 111 54.05%

(BL) 1 1 164 59 225 72.89%

(V) 7 16 40 113 176 64.20%

Classification 92 77 211 174 554

Precision 44.57% 77.92% 77.73% 64.94%

Confusing matrices obtained by PRDS-HMF and HMF classifications are also
given in Tables 1 and 2. We can confirm that the proposed HMF outperforms
the plain one in terms of both precision and recall per each class. It is worth
mentioning that a better modeling of noise allows also to a better estimation
of spatial parameters. In fact, parameter estimation is an iterative process in
which a good perception of noise leads to a better parameter estimation of
spatial features.

5 Conclusion

In this paper, we proposed a new hidden Markov field model designed for unsu-
pervised segmentation of multichannel images. The main novelty of the proposed
model relies in the use of Dempster-Shafer theory and Parzen-Rosenblatt win-
dow for noise density estimation which makes it possible to model general forms
of multidimensional noise. To assess the performance of the proposed PRDS-
HMF, experiments were conducted on both synthetic and real multichannel
images. The results obtained confirmed its interest with respect to the con-
ventional HMF model. A possible future direction of this approach would be to
consider more general Markov models with the same extension.
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Abstract. In this paper we present computational methods to detect
the symmetry in dermoscopic images of skin lesions. Skin lesions are
assessed by dermatologists based on a number of factors. In the litera-
ture, the asymmetry of lesions appears recurrently since it may indicate
irregular growth. We aim at developing an automatic algorithm that can
detect symmetry in skin lesions, as well as indicating the axes of sym-
metry. We tackle this task based on skin lesions’ shape, based on their
color and texture, and based on their combination. To do so, we consider
symmetry axes through the center of mass, random forests classifiers to
aggregate across different orientations, and a purposely-built dataset to
compare textures that are specific of dermoscopic imagery. We obtain
84–88% accuracy in comparison with samples manually labeled as hav-
ing either 1-axis symmetry, 2-axes symmetry or as being asymmetric.
Besides its diagnostic value, the symmetry of a lesion also explains the
reasons that might support such diagnosis. Our algorithm does so by
indicating how many axes of symmetry were found, and by explicitly
computing them.

Keywords: Dermoscopic images · Skin lesion · Computational
methods · Symmetry detection · Shape · Texture · Color · Machine
learning · Random forest

1 Introduction

Skin cancer is a disease caused by the abnormal and uncontrolled proliferation
of melanocytes—cells that pigment the skin—that have undergone a genetic
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mutation. This disease is one of the most widespread around the world as it rep-
resents 40% of all cancers [6]. There are several types of malignant skin cancers
(basal cell carcinoma, squamous cell carcinoma, etc.) but the most aggressive
and deadliest one is known as melanoma. In Europe, cutaneous melanoma rep-
resents 1–2% of all malignant tumors [3] but its estimated mortality in 2018 was
3.8 per 100.000 men and women per year [2].

This type of disorder is characterized by the development of a skin lesion
which usually presents an irregular shape, asymmetry and a variety of colors,
along with a history of changes in size, shape, color and/or texture. Based on
this, experts designed protocols, the so-called diagnostic methods, to quantify
the malignancy of the lesions. Some examples are pattern analysis, the ABCD
rule, the 7-point checklist, and the Menzies method. In these, the asymmetry
of the lesion plays an essential role towards the assessment of the lesion. How-
ever, each of them defines symmetry in a slightly different way. While according
to the Menzies method, benign lesions are associated to symmetric patterns
in all axes through the center of the lesion, disregarding shape symmetry [4].
Another example: regarding the ABCD rule, there might be symmetry in 0, 1 or
2 perpendicular axes when evaluating not only the contour, but also its colors
and structures. Moreover, the assessment of symmetry might be altered by the
individual judgment of the observers, which depends on their experience and
subjectivity [4].

The increasing incidence of melanoma over the past decades along with the
desire to overcome the variability in interpretation have promoted the develop-
ment of computer-aided diagnosis systems. They provide reproducible diagnosis
of the skin lesions as an aid to dermatologists and general practitioners in the
early detection of melanoma.

There are several general-purpose techniques to calculate symmetry in the
computer vision field, as presented in [13]. A few techniques have been applied to
the detection of asymmetry in skin lesions in dermoscopic images. Seidenari et al.
[14] quantify the asymmetry as the appearance of an irregular color distribution
in patches within the lesion. Also, Clawson et al. [5], following the same line,
further integrates Fourier descriptors into a shape asymmetry quantifier. Other
authors, such as Kjoelen et al. [9] and Hoffman et al. [7], estimate the asymmetry
by computing the nonoverlapping areas of the lesion after folding the image along
the best axis of symmetry, taking into account grayscale texture and color.

However, as far as we know, the study of the presence of asymmetry in skin
lesions has been used to classify lesions as malignant or benign in diagnostic
aid systems. In most articles, the approaches that calculate the symmetry of
the lesions do so in an integrated way in an automated system that extracts
other features, simultaneously. This fact hinders both the symmetry evaluation
and the interpretability of the results, such as reporting what is the impact of
finding asymmetry towards the classification of a specific lesion as malignant.

Hence, our objective is two fold. First, to study the symmetry of lesions from
three different points of view. The first focuses on the shape of symmetry of
the lesion, while the second is based on the symmetry of the textures (including
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colors). Finally, these two approaches are combined into the third one. Second,
to compare and analyze their impact, as well as to quantitatively assess their
performance.

Dataset of Dermoscopic Images

In order to complete the clinical analysis and the diagnosis of skin lesions at its
earliest stage, physicians commonly employ a technique called dermoscopy. It
is an in-vivo, non-invasive imaging technique based on a specific optical system
with light that amplifies the lesion, which has previously been covered with
mineral oil, alcohol or water to avoid the reflection of light on it and increase
the transparency of the outermost layer of the epidermis. Dermoscopy has been
shown to improve the diagnostic accuracy up to 10–30% [10] compared to simple
clinical observation. In some cases, dermoscopy can capture digital images of
skin lesions, providing more detailed information of morphological structures
and patterns compared to normal images of skin lesions.

From the available databases of dermoscopic images we decided to use the
PH2 database [11], which contains 200 dermoscopic images annotated by expert
dermatologists. For each image, relevant information about the manual segmen-
tation and the clinical diagnosis of the skin lesion, as well as some dermoscopic
features, such as asymmetry, colors, and dermoscopic structures, are available.
It is worth mentioning that the symmetry of the lesion is evaluated by clinicians
according to the ABCD rule, and therefore, concerning its distribution of con-
tour, color and structures simultaneously. There are three possible labels for this
parameter: 0 for fully symmetric lesions, 1 for asymmetric lesions with respect
to one axis, 2 for asymmetric lesions with respect to two axes.

In Sects. 2, 3 and 4 we detailed the three different approaches used to study
the symmetry of the lesions, based respectively on shape descriptors, texture
descriptors and a combination of both. In Sect. 5 we discuss on the results
obtained, and conclude with the main strengths and limitations of our approach.

2 Shape-Based Method to Assess Symmetry of Skin
Lesions

In this section we present the first of three computational approaches towards
assessing the symmetry of skin lesions. In particular, we focus exclusively on the
shape of the lesion.

We parameterize the candidates to be axes of symmetry as the lines through
the center of mass. Such lines are the only ones that split any continuous two-
dimensional figure in two parts of the same area. The assumption that symmetry
axes contain the center of mass is convenient: they become characterized by their
angle with respect to the horizontal axis, α. Also, the center of mass is easy to
compute.

To assess whether an axis divides symmetrically the lesion we employ the
Jaccard index [8]. We consider that a line is a perfect axis of symmetry if the
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second half is equal to the reflection of the first one with respect to the axis.
Since we are dealing with the shape of the lesion, being equal refers to whether
a pair of pixels are both tagged as lesion or both tagged as skin. Let � be a line
of the plane, M+,M− the two halves in which � splits the lesion region. Let R�

denote the reflection with respect to � and let |A| denote the area of a region.
Then, we define the shape-based symmetry index of a line �, S1(�) to be:

S1(�) =
|M+ ∩ R�(M−)|
|M+ ∪ R�(M−)| .

The final assessment of the symmetry within the skin lesion based on shape
is based on a random forest classifier. We consider a pencil of N lines through
the center of mass, �180◦·k/N , for k = 0, . . . , N − 1. Then, we obtain their shape-
based symmetry index, S(�180◦·k/N ). A random forest classifier aggregates all
the indices into a final answer, being either “no symmetry”, “1-axis symmetry”
or “2-axes symmetry”. We remark that substituting the learning classifier with
experimentally-set fixed thresholds achieves worse quantitative results, but pro-
vides the insight of which lines represent the main and perpendicular axes of
symmetry, if there are any.

Qualitative results of this method are found in Fig. 1. In it, we show an
accurately classified sample (left) and a wrongly classified one (right). The latter
presents a symmetric shape, but it also shows some inner structures that are not
symmetric with respect to one of the perpendicular axes.

In our implementation, we used N = 20, and 10 trees in the classifier. This
is a fast algorithm, whose execution time is typically in the range 1–2 s.

3 Texture-Based Method to Assess Symmetry of Skin
Lesions

To assess how two halves fold symmetrically with respect to their texture, we
need to assess how similar two textures appear to be. Corresponding pixels are
not required to be equal, but to have been drawn from a similar statistical
distribution. Moreover, the distributions we found are specific: textures in der-
moscopic images are not necessarily similar to textures found in other computer
vision tasks. We consider a patch-based approach: we assess similarity of tex-
tures in two locations based on a local neighbourhood of them. This approach
led to the creation of a dataset containing pairs of similar and different textures,
introduced in the following.

Dataset to Discriminate Texture in Dermoscopic Skin Lesions

The texture of skin lesions play an important role in its symmetry. As previ-
ously mentioned, its symmetry is jointly based on the shape of the lesion, and
the appearance of similar structures and patterns. To discriminate such pat-
terns, we must be able to compare the local texture in different locations of the



Automatic Detection of Symmetry in Dermoscopic Images 629

Fig. 1. Dermoscopic image (top), lesion mask (middle) and symmetry axes based on
shape (bottom), of two samples.

image. However, textures found in dermoscopic images are specific, not having
the same statistical distributions that textures found in textile, piles of sim-
ilar objects or other settings. To discriminate such textures, we propose the
extraction of a dataset from dermoscopic images, providing pairs of similar and
different patches. Each patch, a n × n-pixel region cropped from the original
image, contains information about the local texture in a specific point.

We extract pairs of patches from a dermoscopic image in a fully automatic
way. We require not only the dermoscopic image, but also a segmentation of
the lesion. In order to obtain pairs of patches with similar textures, (pA, pB),
we randomly select two locations that are very close, under the restriction that
both patches are completely inside the lesion or completely outside. We remark
that both patches are largely overlapping. To obtain pairs of patches with dif-
ferent textures, (pA, pB), we randomly select one patch completely inside the
lesion, and the other one outside the lesion. In this case, there will be no overlap
between them, and we will assume that they represent regions with a differ-
ent underlying texture. All the samples of our dataset will be those patches,
x = (pA, pB), and the reference data will be whether they are of the first or the
second, y ∈ {‘Similar’, ‘Different’} type. In Fig. 2 we show similar and different
patches extracted using this strategy.
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Fig. 2. Pairs of patches with similar texture (left) and different texture (right).

Several limitations must be acknowledged. First, the samples of differently-
textured patches are biased towards our task: they do not follow the same sta-
tistical distribution that differently-textured patches inside the lesion do. This
negative effect does not seem to have a huge impact in its usage (see Sect. 3),
possibly due to the appearance of different skin tones in the original dermoscopic
images. Second, close patches are assumed to be similar, and patches inside the
lesion are assumed to be different to patches outside of it. While this is not
necessarily the case, it has proven to hold the vast majority of times. Third, a
learning classifier that compares them could cheat on solving the task, using the
more basic approach of detecting as positive only those patches that present a
large overlap.

To overcome the second and third limitation, we limit ourselves to manually
select texture-relevant features. We use the Gray Level Co-occurrence Matrix
(GLCM) with two-pixel distance and a horizontal orientation to extract five
texture features. They are dissimilarity, correlation, energy, contrast, and homo-
geneity. Correlation is understood as a measure of the linear dependence of gray
levels between pixels at the specified distance. The energy feature measures the
brightness of the images as well as the repetition of subunits. Contrast refers
to the local gray level variations, while the homogeneity is a measure of the
smoothness of the gray level distribution. Finally, we extract the 25th, 50th and
75th percentiles of the marginal distribution of the RGB channels of the pixels.

The patches were randomly extracted from the PH2 database of dermoscopic
images, selecting 10 pairs with similar texture and 10 pairs with different texture
for each of the 200 images in the database. It includes a manually segmented
lesion, which we used to check whether patches were completely inside or outside
the lesion. Given the original resolution of images, 764 × 576, we set the size of
patches to be 32 × 32, as a good trade-off to obtain a region representative
enough but whose texture is approximately uniform. Besides considering the
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features mentioned above, we decided to use shallow-learning algorithms only,
specifically selecting random forest due to the amount and diversity of features.

Aggregation of Patch Similarity

Using the newly created patch dataset, we trained a random forest classifier T
that, given two patches pA, pB , extract the features introduced in Sect. 3 and
then estimates whether they represented the same texture or not. Such classifier
is represented as:

T(pA, pB) ∈ {0, 1}.

Let us continue assuming that an axis of symmetry contains the center of
mass. We define a line to be an axis of symmetry with respect to its texture if
symmetric patches present the same texture. We thus define the texture-based
symmetry index of a line �, S2(�), as:

S2(�) =
1
N

N∑

i=1

T(pi)
+, p

i)
−),

where N is the amount of patches that can be extracted from the intersection
of the upper region and its reflected lower half, M+ ∪ R�(M−); p

i)
+ is the i-th

patch from the upper region M+, and p
i)
− is its corresponding patch from the

lower region M− with respect to the symmetry axis �.
Similarly to the shape-based symmetry detector, we consider N equidis-

tributed lines and aggregate their texture-based symmetry index with a different
random forest classifier. Also, substituting such classifier with experimentally-set
fixed thresholds provides the insight of which lines are the main and perpendic-
ular axes of symmetry, if there are any.

Results of the above-mentioned procedure are found in Fig. 3. In it, we show
a sample with symmetric textures (right) and a sample with differently tex-
tured matched regions (left). The result of the patch-based classifier is encoded
as a semi-transparent circle, ranging from green (similar) to red (non-similar)
patches. Also, we emphasize that we select partially overlapped patches, and we
restrict the patch selection procedure to those regions within the lesion.

At an implementation level, several details must be mentioned. The patch-
based classifier, T(pA, pB), is a random forest classifier with 200 trees and two
outputs—either similar or different. Its inputs are a list of 2 · n features: n fea-
tures extracted from the first patch pA, and n features from the second one pB.
We used n = 5 + 3 · 3, extracting 5 features from the grey-level co-occurrence
matrix, and 3 quantiles of each of the channels R, G and B (see Sect. 3). Also,
we used N = 10 lines, and 32 × 32-pixel patches. These parameters were exper-
imentally selected. The second classifier, used to aggregate information across
different orientations, is also a random forest with 100 trees and, as in the case
of the shape-based classifier, three outputs. This algorithm requires, with non-
optimized code, around 40–50 s.
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Fig. 3. Dermoscopic image (top), symmetry axes based on their texture (middle) and
patch-based comparison of a specific axis (cropped and rotated, bottom), of two sam-
ples.

4 Combined Method to Assess Symmetry of Skin Lesions

Finally, to answer the hypothesis of whether both shape and texture are actively
contributing towards the symmetry of the lesion—as identified by a human
expert—, we combine both symmetry indicators. Following the same reasoning,
given a pencil of lines (�α)α we compute for each line �α its shape-based symme-
try index, S1(�α) and its texture-based symmetry index, S2(�α). We aggregate
these two lists with a 10-tree random forest classifier to output a final decision
as either “no symmetry”, “1-axis symmetry” or “2-axes-symmetry”.

5 Analysis of Results and Conclusions

We presented a constructive approach towards symmetry detection, somehow
similar to an ablation study. First, the symmetry detection has been addressed
using only the shape of the lesion. However, as shown in Fig. 1 (right), taking
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into account only the shape can not provide satisfactory results. Experts take
into account the shapes, but also the textures and colors of the inner parts of
the lesion to define symmetry. Considering this, the information loss is too high,
which implies that more information must be used to be more accurate. This is
why the symmetry of textures and colors has to be included and studied.

In the second approach, only texture and color symmetry has been considered
to determine the presence of symmetry in skin lesions. We remark that texture
and color are hardly separable, since the former is defined in terms of changes of
the latter. In this case two random forest classifiers have been used: to assess the
symmetry of two 32 × 32 patches, and to aggregate information across different
orientations. Qualitatively, the similarity map tends to be reliable and the axes
of symmetry are never aberrant regarding textures.

In the following, we present the results obtained with the aforementioned
methods and conclude with some final remarks.

5.1 Results

In this section, we present the experimental settings and results obtained. This is
done quantitatively to add up to the qualitative results contained in Figs. 1 and
3. We do so by comparing with the manually labelled data of the PH2 dataset. It
contains, for each dermoscopic sample, a tag indicating either “no symmetry”,
“1 axis of symmetry” or “2 axes of symmetry”. Therefore, we have a 3-class
classification problem, where the three class are: no symmetry, 1-axis symmetry
and 2-axis symmetry. In the PH2 database we have the following distribution
labeled by experts: 26% for the first class, 15.5% for the second class, and 58.5%
for the last class.

To assess the success of our method we consider its accuracy. That is, the
ratio of correctly classified samples. We emphasize that we are considering a 3-
class classification problem, so binary metrics (such as recall or F-measure) can
not be computed. The results obtained by the different algorithms are presented
in Table 1.

Table 1. Accuracy of the three-class classifiers.

Classifier Accuracy

Based on shape 86%

Based on texture 84%

Based on both 88%

We train and validate the algorithms with disjoint datasets. We split the
200 images in the training set (first 50) and the validation set (last 150). No
randomization was applied to the samples since their symmetry is not ordered.
We remark that the validation set is larger since we aim at estimating the gener-
alization capacity of the model with low variance. Metrics in Table 1 have been
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computed over the validation set. Any other learning stage, including the clas-
sifier employed to compare patches, have been trained only with the training
set.

Table 1 summarizes the results obtained with each of the methods described
in Sects. 2, 3 and 4. As can be observed, these classifiers provide satisfactory
quantitative results. We emphasize the subjective nature of this task: in contrast
to, for instance, assessing the malignancy of the lesion, the symmetry of a lesion
is measured against the perceptive criteria of a human expert.

The superiority of the shape-based approach over the texture-based one is
not contradictory: the latter purposely neglects information regarding the shape.
That is, it exclusively uses pairs of patches such that both of them are located
within the lesion, disregarding the fact that there may or may not exist additional
pairs of patches such that first one represents healthy skin and the second one
the lesion. Such pairs have not been provided to the texture-based method in
order to avoid implicitly using information derived from the shape of the lesion.

The images leading to classification errors are different in the shape-based
and texture-based methods. This implies that the two sources of information do
not provide equivalent results.

As one would expect, classification based on both shape and on texture has
superior results. The final accuracy reaches up to 88% which defines a reliable
model that may be used in real applications. Other models may be used, but
considering the features size and the quality of the results given by the random
forest classifiers with a minimalist tuning, they seem to be appropriate to solve
the problem raised in this work.

5.2 Strengths and Limitations

We have addressed the computational problem of symmetry evaluation in terms
of (i) shape, and (ii) texture (including its color) as is considered by dermatolo-
gists [1,12]. This provides the clinician with a comprehensible and interpretable
tool, that indicates the presence of symmetry axis and its location. Asymmetry
of skin lesions is an important indicator of the presence of irregular growth in
skin lesion. Thus, it contributes substantially to its diagnosis. In the ABCD rule
of dermoscopy, for example, asymmetry is the parameter that contributes with
a larger coefficient to the ABCD-based diagnosis [12]. We emphasize that the
aim of this work is to detect the presence of symmetry (or not) in a dermo-
scopic image of a skin lesion, rather than the classification of the lesion as either
malignant or benign.

The algorithms designed deal with the symmetry of skin lesions, which is an
important indicator of uncontrolled growth of cells. They treat the symmetry
as it is evaluated by the experts considering at the same time its shape, texture
and colors. Therefore, the output provided by the algorithm is interpretable by
experts. The algorithms in this paper can be freely accessed online at the website
http://opendemo.uib.es/dermoscopy/, as well as using it as a the standalone
python package dermoscopic symmetry.

http://opendemo.uib.es/dermoscopy/
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The shape-based algorithm is faster than the texture-based one: 1–2 s and 40–
50 s to process a medium-sized dermoscopic image. Although the code could be
optimized, the complexity of the latter is much higher. The shape-based method
can be used for real-time applications, whereas both could be used off-line or for
knowledge distillation into a faster classifier.

Both shape and texture information seem to be necessary towards assessing
the skin lesion symmetry. The rationale lies on the fact that irregular growth—
the malignancy cue looked after—may cause both types of effects. However,
given the quantitative metrics in Table 1, both texture and shape provide a
large amount of information.

A limitation of this work lies on the biases in the patch dataset introduced in
Sect. 3. First, we assume that close regions present similar textures, which does
not always hold. Second, we have a very limited amount of interesting different
textures. Due to the automatic selection of patches, we can only assume that
two patches represent a different texture if one of them is within the lesion and
the other outside of it. This means that, in each pair of different patches, one of
them was extracted from the skin, whereas we are later comparing two patches
that are within the bounds of the lesion.

Finally, this study is biased towards light-skin patients: it has been quanti-
tatively contrasted against the labels of the PH2 dataset.
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Abstract. The authors propose a dynamic hierarchical linear model (DHLM) to
study the variations in the costs of trade finance over time and across countries
in dynamic environments such as the global financial crisis of 2008–2009.
The DHLM can cope with challenges that a dynamic environment entails:
nonstationarity, parameters changing over time and cross-sectional hetero-
geneity. The authors employ a DHLM to examine how the effects of four
macroeconomic indicators – GDP growth, inflation, trade intensity and stock
market capitalization - on trade finance costs varied over a period of five years
from 2006 to 2010 across 8 countries. We find that the effect of these
macroeconomic indicators varies over time, and most of this variation is present
in the year preceding and succeeding the financial crisis. In addition, the tra-
jectory of time-varying effects of GDP growth and inflation support the “flight to
quality” hypothesis: cost of trade finance reduces in countries with high GDP
growth and low inflation, during the crisis. The authors also note presence of
country-specific heterogeneity in some of these effects. The authors propose
extensions to the model and discuss its alternative uses in different contexts.

Keywords: Trade finance � Financial crisis � Bayesian methods � Time series
analysis

1 Introduction

Trade finance consists of borrowing using trade credit as collateral and/or the purchase
of insurance against the possibility of trade credit defaults [2, 4]. According to some
estimates more than 90% of trade transactions involve some form of credit, insurance,
or guarantee [7], making trade finance extremely critical for smooth trades. After the
global financial crisis of 2008–2009, the limited availability of international trade
finance has emerged as a potential cause for the sharp decline in global trade [4, 13,
21].1 As a result, understanding how trade finance costs varied over the period in and

1 See [27] for counter evidence.
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around the financial crisis has become critical for policymakers to ensure adequate
availability of trade finance during crisis periods in order to mitigate the severity of the
crisis.2 In addition, as the drivers of trade finance may vary across countries, it is
important to account for heterogeneity while studying the effect of these drivers on
trade finance [20].

A systematic study of the drivers of trade finance costs can be challenging: mod-
eling the effects of these drivers in dynamic environments (e.g., a financial crisis)
requires one to have a method that can account for non-stationarity, changes in
parameters over time as well as account for cross-sectional heterogeneity [42]. First,
nonstationarity is an important issue in time-series analysis of observational data [36,
42].3 The usual approach to address nonstationarity requires filtering the data in the
hope of making the time-series mean and covariance stationary.4 However, methods for
filtering time series, such as first differences can lead to distortion in the spectrum,
thereby impacting inferences about the dynamics of the system [22]. Further, filtering
the data to make the time-series stationary can (i) hinder model interpretability, and
(ii) emphasize noise at the expense of signal [43].

Second, the effect of the drivers of trade finance costs changes over time [10].
These shifts happen due to time-varying technological advances, regulatory changes,
and evolution of the banking sector competitive environment, among others. As we are
studying 2008–2009 global financial crisis, many drivers of the costs may have dif-
ferent effects during the crisis compared to the pre-crisis period. For example, during
the crisis many lenders may prefer borrowers with the top most quality, thus exhibiting
a “flight to quality” [12]. To capture changes in model parameters over time, studies
typically use either (1) moving windows to provide parameter paths, or (2) perform a
before-and-after analysis. However, both these methods suffer from certain deficien-
cies. Models that yield parameter paths [11, 32] by using moving windows to compute
changes in parameters over time leads to inefficient estimates since, each time, only a
subset of the data is analyzed. These methods also presents a dilemma in terms of
selection of the length of the window as short windows yield unreliable estimates while
long windows imply coarse estimates and may also induce artificial autocorrelation.

Using before-and-after analysis [9, 25, 38] to study parameter changes over time
implies estimating different models before and after the event. The ‘after’ model is
estimated using data from after the event under the assumption that this data represents
the new and stabilized situation. A disadvantage of this approach is the loss in

2 Such as the World Trade Organization (WTO), the World Bank (WB), and the International
Monetary Fund (IMF).

3 The studies that used surveys for understanding the impact of financial crisis on trade finance costs
[30] are also susceptible to biases present in survey methods. First, survey responses have subjective
components. If this subjectivity is common across the survey respondents, a strong bias will be
present in their responses. For example, managers from the same country tend to exhibit common
bias in their responses [8]. Second, survey responses are difficult to verify. Managers may over- or
under-estimate their trade finance costs systematically, depending on the countries where their firms
operate. Finally, survey research is often done in one cross-section of time, making it impossible to
capture the variation over time.

4 Methods like vector autoregression (VAR) often filter data to make it stationary [15, 17, 34].
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statistical efficiency as a result of ignoring effects present in part of the data. Further,
this approach assumes that the underlying adjustment (due to events, such as the
financial crisis) occurs instantaneously. However, in practice, it may take time for
financial markets to adjust before it reaches a new equilibrium. This also serves to
highlight the drawback of the approach in assuming time-invariant parameters for the
‘before’ model, as well as for the ‘after’ model.

Third, the effects of the drivers of trade finance cost may vary across countries [28],
and we need to account for this heterogeneity. A well accepted way to incorporate
heterogeneity is by using hierarchical models that estimate country-specific effects of
the drivers of trade finance cost [40]. However, as hierarchical models are difficult to
embed in time-series analysis [24], studies tend to aggregate data across cross-sections
which leads to aggregation biases in the parameter estimates [14].

Nonstationarity, time-varying parameters and cross-sectional heterogeneity render
measurement and modeling of factors that impact the dependent variable of interest—in
our case, cost of trade finance—challenging in dynamic environments (such as a
financial crisis). Therefore, we propose a dynamic hierarchical linear model (DHLM)
that addresses all these three concerns and permits us to explain the variations in trade
finance costs over several years, while also allowing us to detect any variation across
countries, if present.

Our DHLM consists of three levels of equations. At the higher level, Observation
Equation specifies, for each country in each year, the relationship between trade finance
costs and a set of macroeconomic variables (e.g., inflation in the country). The coef-
ficients of the predictors in the Observation Equation are allowed to vary across cross-
section (i.e., countries) and over time. Next, in the Pooling Equation we specify the
relationship between the country-specific time-varying coefficients (i.e., parameters)
from the Observation Equation to a new set of parameters that vary over time, but are
common across countries. Thus, the Pooling Equation enables us to capture the “av-
erage” time-varying effect of macroeconomic variables on trade finance cost. Finally,
this “average” effect can vary over time and is likely to depend on its level in the
previous period. The Evolution Equation, which is the lowest level of the DHLM,
captures these potential changes in the “average” effects of the macroeconomic vari-
ables in a flexible way through a random walk.

We employ our DHLM to study how the effects of four macroeconomic variables—
GDP growth, trade intensity, inflation, and stock market capitalization—on trade
finance costs varied across 8 nations over a period of five years from 2006 to 2010.5

Although the objective of our paper is to introduce a model that can address the
different challenges outlined earlier, our model estimates provide several interesting
insights. We find that the effect of macroeconomic indicators on the cost of trade
finance varies over time and that most of this variation is present in the years preceding
and succeeding the financial crisis. This is of interest to policymakers in deciding how
long to implement interventions designed to ease the cost of trade finance. In addition,
the trajectory of time-varying effects of GDP growth and inflation are consistent with

5 Stock market capitalization is scaled by GDP. Trade intensity is the ratio of a country’s annual total
trade and GDP. We use the terms “Trade Intensity” and “Trade/GDP” interchangeably.
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the “flight to quality” story [12]: during the crisis, cost of trade finance reduces in
countries that have high GDP growth and low inflation. The time-varying effects of
trade intensity is also consistent with our expectations, but the time-varying effect of
market capitalization is counter-intuitive. Finally, we also note heterogeneity in the
trajectory of the country-specific time-varying effects, primarily for the effects of stock
market capitalization and trade intensity.

This research makes two contributions. First, we introduce a new model to the
finance literature to study the evolution in the drivers of trade finance costs over time in
dynamic environments such as a financial crisis, while also allowing the impact due to
these drivers to be heterogeneous across countries. Our modeling approach addresses
concerns related to nonstationarity, time-varying model parameters and cross-sectional
heterogeneity that are endemic to time-series analysis of dynamic environments. Our
model can be adopted to study evolution of various other variables such as financial
services costs and global trade. Our model can also be extended to a more granular
level to incorporate firm-level heterogeneity by using a second pooling equation. Doing
this can pave the way to identify the characteristics of companies which may need
assistance during a financial crisis. Thus, our research can remove subjectivity in
extending benefits to the affected exporters and importers. Even large scale surveys
may not be able to provide such granular implications to policy makers. Second, our
research has substantive implications. Using a combination of data from Loan Pricing
Corporation’s Dealscan database and the World Bank, we complement the finance
literature by empirically studying the evolution of the drivers of trade finance cost. We
find that the impact of these drivers varies over time, with a large part of the variation
present in the years preceding and succeeding the financial crisis. To the best of our
knowledge, we are the first to study the time-varying impact of these macro-economic
drivers on trade finance and this is of use to policy makers in deciding how long to
extend benefits to parties affected by the crisis.

The paper proceeds as follows. In the first section we describe the DHLM. We
provide the theoretical underpinnings necessary to estimate the model. Next we
describe the data and variables used in the empirical analysis. In the fourth section we
provide detailed discussion of the results. We conclude the paper with the discussion of
the findings.

2 Model Development

We specify trade finance cost of a country as a function of country-specific macroe-
conomic variables and country-specific time-varying parameters using a DHLM.
The DHLM has been used by previous studies in marketing and statistics [19, 26, 33,
35, 39] to estimate time-varying parameters at the disaggregate level (e.g., at the level
of a brand or store). A DHLM is a combination of Dynamic linear models
(DLM) which estimates time-varying parameters at an aggregate level [5, 6], and a
Hierarchical Bayesian (HB) model which estimates time-invariant parameters at the
disaggregate level [31]. The DHLM and the HB model both have a hierarchical
structure which permits us to pool information across different countries to arrive at
overall aggregate-level inferences. Shrinking of the country-specific parameters to an
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“average” effect of the key variables across country has been used by other researchers
to estimate country-specific tourism marketing elasticity [39] and to estimate store-level
price elasticity [31].

We specify trade finance cost of a country as a function of country-level variables
GDP growth, inflation, stock market capitalization and trade:

Trade finance costit ¼ ait þ bitGDP growthit þ citInflationit þ
ditStock market capitalizationit þ fitTrade intensityit þ u1;

ð1Þ

where Trade finance costit is the cost of trade finance of country i at time t,
GDP growthit is the GDP growth of country i at time t, Inflationit is the Inflation of
country i at time t, Stock market capitalizationit is the stock market capitalization of
country i at time t, Trade intensityit is the intensity of trade of country i at time t, ait,
bit, cit, dit and fit are country-specific time-varying coefficients and u1 is the error term.

In order to specify the equations in a compact manner, we cast Eq. 1 as the
observation equation of the DHLM. A DHLM also consists of a pooling equation and
an evolution equation, and we specify these three equations below.6

We specify the observation equation as:

yt ¼ F1th1t þ v1it ; where v1it � N 0; r2v1;iI1
� �

ð2Þ

An observation yt is defined as a vector that consists of country-specific trade finance
cost at time t, whereas F1t is a matrix that contains the country-specific macro-
economic variables at time t. The vector of parameters h1t contains all the country-
specific time-varying parameters defined in Eq. 1: ait, bit, cit, dit and fit.

The error term v1it is multivariate normal and is allowed to have a heteroskedastic
variance r2

v1;i, and I1 an identity matrix of appropriate dimension. We specify yt, F1t,
and h1t similar to [17, 35].

We specify the pooling equation as:

h1t ¼ F2th2t þ v2t ; where v2t �N 0; r2v2I2
� �

ð3Þ

We specify the country-specific time-varying parameters h1t as a function of a new set
of parameters h2t that vary only in time. This hierarchical structure pools information
across countries at every point in time, and thus h2t represent the “average” time-
varying effect. Hence, F2t is the matrix of 0’s and 1’s which allows us to specify the
relationship between the average time-varying parameters h2t and the country-specific
time-varying parameters h1t. The error distribution v2t is multivariate normal, and I2 an
identity matrix of appropriate dimension.

We specify how the average time-varying parameters, h2t, evolves over time. We
follow the dynamic linear models (DLM) literature [43] and model the evolution of
these parameters over time as a random walk.

6 Note, in Eqs. (2) to (6) matrices are specified in bold.
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We specify the evolution equation as:

h2t ¼ Gh2;t�1 þwt ; where wt �N 0; r2wI3
� � ð4Þ

The random walk specification requires G to be an identity matrix and wt is a multi-
variate normal error, and I3 an identity matrix of appropriate dimension.

3 Estimation

We compute the full joint posterior of the set of parameters (h1t, h2t, and the variance
parameters r2v1;i, r

2
v2 , and r2w) conditional on observed data. To generate the posteriors

of the parameters we used the Gibbs sampler [16]. In the interest of space, we refer the
reader to [26] for more details. As a robustness check, we estimate our DHLM on
simulated data to check if our sampler is able to recover the parameters. The model we
use to simulate the data in similar to the one [26] used for their simulation study. We
find that our sampler performs well and recovers the parameters used to simulate the
data. Space constraints prevent us from including further details.

4 Data

For the empirical tests, the data are derived from two sources. The information on trade
finance costs is obtained from Loan Pricing Corporation’s Dealscan database. The
information on macroeconomic variables for the countries is obtained from the World
Bank. We briefly describe the data sources.

4.1 Dealscan

Dealscan provides detailed information on loan contract terms including the spread
above LIBOR, maturity, and covenants since 1986. The primary sources of data for
Dealscan are attachments on SEC filings, reports from loan originators, and the
financial press [41]. As it is one of the most comprehensive sources of syndicated loan
data, prior literature has relied on it to a large extent [1, 3, 16, 23, 41].

The Dealscan data records, for each year, the loan deals a borrowing firm makes. In
some instances, a borrower firm may make several loan deals in a year. To focus on
trade finance, we limit the sample to only those loans where the purpose was identified
by Dealscan as one of the following: Trade Finance, CP Backup, Pre-Export, and Ship
Finance. Our trade finance costs are measured as the loan price for each loan facility,
which equals the loan facility’s at-issue yield spread over LIBOR (in basis points). Due
to the limited number of observations, we don’t differentiate between different types of
loans. Instead, the trade finance costs are averaged across different types of loans such
as revolver loans, term loans, and fixed-rate bonds.
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4.2 The World Bank Data

We use the World Bank data to get information on the economic and regulatory
climate, and extent of development of the banking sector of the countries where the
borrowing firms are headquartered. The economic and regulatory climate of a country
is captured by GDP growth, inflation, stock market capitalization, and trade intensity.

Countries with high GDP growth are likely to face lower cost of trade finance,
particularly during the financial crisis. As a high GDP growth is an indicator of the
health of the economy, during the financial crisis lenders are likely to move their assets
to these economies. Countries with higher inflation will likely have higher cost of trade
finance as the rate of returns on the loans will incorporate the rate of inflation. We
include stock market capitalization scaled by GDP as a proxy for the capital market
development in the country. Countries with higher stock market capitalization are
likely to have more developed financial markets. Therefore, the cost of trade finance in
such markets is likely to be lower. Finally, we include total trade for the country scaled
by the country’s GDP as a measure of trade intensity. We expect that countries with a
higher trade intensity will face a higher trade finance cost since a greater reliance on
trade may make a country more risky during a crisis.

4.3 Merging the Two Datasets

As our objective is to study the phenomenon at the national level, we need to merge
these two data sets. As our data from Dealscan contains trade finance costs at the firm
level in a given year, we use the average of the trade finance costs at the level of a
borrowing firm’s home country to derive country-specific trade finance costs. This
permits us to merge the data from Dealscan with macro-economic data from World
Bank. Our interest is in modelling trade finance costs around the financial crisis of
2008–2009. Therefore, we use a 5-year time series starting in 2006 and ending in 2010.
This gives us a reasonable window that contains pre-crisis, during the crisis, and post-
crisis periods. While we would like to use a longer window, we are constrained by the
number of years for which the data are available to us from Dealscan. After merging
the two databases, our final sample consists of eight countries for which we have
information on trade finance costs as well as macroeconomic indicators for all the five
years. The eight countries are: Brazil, Ghana, Greece, Russia, Turkey, Ukraine, United
Kingdom (UK), and the United States (USA).

4.4 Descriptive Analysis

We report the descriptive statistics for the sample in Table 1. Average trade finance
costs are approximately 190 basis points above LIBOR. Mean GDP growth is just
2.57%, reflecting the lower growth during the financial crisis. Although average
inflation is at 10.53%, we calculated the median inflation to be a moderate 6.55%. On
average stock market capitalization/GDP ratio is around 63% while trade/GDP ratio is
around 54%. More detailed summary statistics for the trade finance costs are depicted
in Fig. 1.
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Figure 1 captures the variation in trade finance cost over time and across 8 coun-
tries. We find countries experience a large increase in trade finance costs from 2008 to
2009. Also, except for Greece, these costs came down in 2010 from their peak in 2009.
This suggests that the crisis impacted trade finance costs uniformly in our sample. We
also see heterogeneity across countries in the manner in which these costs evolve over
time.

Table 1. Descriptive statistics.

Variables N Mean St. Deviation

Trade finance cost above LIBOR (basis points) 40 189.43 155.50
GDP growth % 40 2.57 5.16
Inflation % 40 10.53 13.32
Stock market cap/GDP 40 62.96 43.65
Trade/GDP 40 54.11 22.28

Fig. 1. Trade finance costs
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We also tested for multicollinearity among the independent variables, GDP growth,
Inflation, Stock market capitalization and Trade intensity. We specified a panel data
regression model (i.e., without time-varying parameters) and calculated the Variance
Inflation Factors (VIFs). The VIFs we get for GDP growth, Inflation, Stock market
capitalization and Trade intensity are 1.13, 1.15, 1.42 and 1.36 respectively. As the
VIFs are less than 10, we can conclude that multicollinearity is not a concern [44].

5 Results

In this section, we present the main results based on our DHLM, and subsequently
compare our model to the benchmark HB model in which the parameters do not vary
over time.

5.1 Main Findings Based on the DHLM

We estimate our model using the Gibbs sampler [18]. We use 200,000 iterations and
use the last 20,000 iterations for computing the posterior, while keeping every tenth
draw. We verified the convergence of our Gibbs sampler by using standard diagnostics:
(1) We plotted the autocorrelation plot of the parameters and see that the autocorre-
lation goes to zero [40] and (2) we plot and inspect the posterior draws of our model
parameters and find that they resemble a “fat, hairy caterpillar” that does not bend [29].

We first present the estimates for the Pooling Equation (h2) which are summarized
in Fig. 2. These estimates represents the “average” effect across countries of the four
macroeconomic variables, GDP growth, Inflation, Stock market capitalization and the
Trade/GDP ratio. In Fig. 2, each of the four panels depict the “average” effect, over
time, of the macro-economic variables on the cost of trade finance. The dotted lines
depict the 95% confidence interval (CI). We discuss these “average” time-varying
effects in the subsequent paragraphs.

We see that for all four macro-economic variables, the effects vary over time. In
addition, a large part of the variations occur between 2007 to 2009, the 2 year span
during which the financial crisis happened. Our estimates will interest policy makers as
it implies that interventions to alleviate the impact of the crisis should start before its
onset and should continue for some time after it has blown over.

We find that GDP Growth has a negative effect on Trade finance costs and this
effect becomes more negative over time, especially during the years 2006 to 2009. Our
result implies that countries with high GDP Growth faced monotonically decreasing
cost of trade finance in the years before and during the financial crisis, and can be
explained by the “flight to quality” hypothesis advanced in the finance literature [12].

Inflation has a positive effect on the cost of trade finance and this effect become
more positive over time, especially during 2007 to 2009 which are the year preceding
the crisis and the year of the crisis. Our result implies that countries with high inflation
faced monotonically increasing costs of trade finance from 2007 to 2009 and is also
consistent with the “flight to quality” theory.

Stock Market Capitalization has a positive effect on the cost of trade finance. This
effect seems somewhat counterintuitive as we used Stock Market Capitalization as a
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proxy for development of financial markets and one would expect that during the
financial crisis trade finance costs would decrease as financial markets became more
developed.

We note that the Trade/GDP ratio has a positive effect on the cost of trade finance,
and this effect becomes more positive between the years 2007 to 2009, similar to the
pattern we noticed for the effects of inflation. Since this variable measures the intensity
of trade of a country, our results indicate that, during the financial crisis, a greater
reliance on trade leads to higher costs of trade finance. This is expected since higher
reliance on trade may make a country more risky in a financial crisis. Countries with
higher trade intensity are also exposed to higher counterparty risks.

Fig. 2. Estimates of Pooling Equation (h2). Notes: Solid line depicts the estimate. Dotted lines
indicate the 95% confidence interval.
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Our model can also estimate country-specific time-varying parameters presented in
the Observation Equation (h1). These estimates underscore the advantage of using a
model such as ours, since with only 40 observations of our dependent variable, we are
able to estimate 200 estimates which are country-specific and time-varying.7 We note
some heterogeneity in the country-specific trajectory of the effects of Stock Market
Capitalization and Trade Intensity. For example, we see that for some countries such as
Ghana, Russia and Greece, the effect of trade/GDP ratio on the cost of trade finance
witnesses a steeper increase compared to other countries such as USA and Ukraine in
2008 to 2009, the year of the crisis; we are unable to present these results due to space
constraints. However, these findings offer directions for future research.

5.2 Model Comparison

To assess model fit, we compare the forecasting accuracy of our proposed model to the
benchmark Hierarchical Bayesian (HB) model which has time-invariant parameters.
We specify the HB model as follows:

Y ¼ X1l1 þ e1 ; where e1 � N 0; Ve1ð Þ and ð5Þ

l1 ¼ X2l2 þ e2 ; where e2 � N 0;Ve2ð Þ ð6Þ

The above specification is similar to the DHLM with the major difference being that
the parameters now do not vary over time. The dependent variables (Y) and inde-
pendent variables (X1) are the same as those in the proposed model, while X2 is a
matrix that adjusts the size of l1 to that of l2.

We compare the model fit by computing the out-of-sample one-step-ahead forecast
of our proposed model and the benchmark model. We calculate the mean absolute
percentage error (MAPE), which is a standard fit statistic for model comparison [17,
35]. We find that the MAPE of our proposed model is 21.11, while that of the
benchmark HB model is 42.68. Thus our proposed model forecasts more accurately
than the benchmark HB model.

6 Discussion and Conclusion

In this research, we attempt to shed light on the following question: How can we
develop a model that would permit us to examine variations in trade finance costs over
time in dynamic environments (such as a financial crisis), while also accounting for
possible variations across countries? We addressed this question by proposing a
DHLM model that can cope with the three challenges present when modeling data
from dynamic environments: nonstationarity, changes in parameters over time and

7 We have 200 estimates since we have 8 countries and 5 time periods, and 5 independent variables
(including the intercept). This large number of parameters can be estimated due to our model
structure: (i) a first order Markov process relates the parameter at time t to the parameter at t − 1, and
the parameters across countries at a time t are tied together using a Hierarchical Bayesian structure.
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cross-sectional heterogeneity. Our model estimates detect variation over time of the
macroeconomic drivers o trade finance, which are of interest to policy makers in
deciding when and for how long to schedule interventions to alleviate the impact of a
financial crisis. Further, the trajectory of the time-varying effects of the macroeconomic
indicators are in line with our expectations. We also note some degree of country-
specific heterogeneity in the manner in which these drivers evolve over time, and a
detailed scrutiny of these findings may prove fertile ground for future research.

The DHLM can be easily scaled up thereby allowing us to extend our analysis.
First, we can add another level in the model hierarchy by specifying a second pooling
equation. This would permit us to study the problem at the firm level since evidence
suggests that – during the crisis - firms from developing countries and financially
vulnerable sectors faced higher trade finance costs [13, 30], and one can use recent
NLP approaches [37] to gather firm information across different data sources. Second,
more macroeconomic variables can be added in the observation equation. In addition,
our model can be used to study other contexts that face dynamic environments such as
financial services costs and global trade.

The suitability of our model for dynamic environments also implies that it can also
be used to study the impact of the recent coronavirus (COVID-19) on financial
activities, since reports from the European Central Bank have suggested that the virus
can lead to economic uncertainty. In many ways, the way the virus impacts the
economy is similar to that of the financial crisis: There is no fixed date on which the
interventions starts and ends – unlike, for example, the imposition of a new state tax –

and its impact may vary over time as the virus as well as people’s reaction to it gains in
strength and then wanes and it would be interesting to model these time-varying effects
to see how they evolve over time.
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Abstract. In this paper we study a repeated posted-price auction
between a single seller and a single buyer that interact for a finite number
of periods or rounds. In each round, the seller offers the same item for sale
to the buyer. The seller announces a price and the buyer can decide to
buy the item at the announced price or the buyer can decide not to buy
the item. In this paper we study the problem from the perspective of the
buyer who only gets to observe a stochastic measurement of the valuation
of the item after he buys the item. Furthermore, in our model the buyer
uses fuzzy sets to describe his satisfaction with the observed valuations
and he uses fuzzy sets to describe his dissatisfaction with the observed
price. In our problem, the buyer makes decisions based on the proba-
bility of a fuzzy event. His decision to buy or not depends on whether
the satisfaction from having a high enough valuation for the item out
weights the dissatisfaction of the quoted price. We propose an algorithm
based on Thompson Sampling and demonstrate that it performs well
using numerical experiments.

Keywords: Dynamic pricing · Bayesian modeling ·
Exploration-exploitation trade-off · Probability of fuzzy events

1 Introduction

In this paper we study a repeated posted-price auction [17] between a single
seller and a single buyer. In a repeated posted-price auction there is a single
seller and a single buyer that interact for a finite number of periods or rounds.
In each round, the seller offers the same item for sale to the buyer. The seller
announces a price and the buyer can decide to buy the item at the announced
price or the buyer can decide not to buy the item.

The main motivation for this work comes from the domain of online adver-
tising. A large fraction of online advertisements (ads) are sold on online ad
exchanges via auctions and this has led to a lot of research on revenue man-
agement in online advertising, see e.g. [1,2,5,6,19,21,23,25]. Most ads are sold
via second-price auctions, where the winner pays the second highest bid or a
c© Springer Nature Switzerland AG 2020
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reserve price (whichever is larger), and no sale occurs if all of the bids are lower
than the reserve price. However, a significant fraction of auctions only involve
a single bidder [5,6,19] and this reduces to a posted-price auction when reserve
prices announced: the seller sets a reserve price and the buyer decides whether
to accept or reject it.

There are three main differences between this paper and previous work. First,
unlike in previous work, we study repeated posted-price auctions from the per-
spective of the buyer that aims to maximize his expected utility, instead of from
the perspective of the seller that aims to maximize his revenue. Second, previous
papers assume that the buyer knows his valuation in each round. This valuation
can either be a fixed value or an independently and identically distributed (i.i.d.)
draw from a fixed distribution. In this paper, we do not make this assumption
and study a version of the problem where the buyer does not know the distribu-
tion of his valuation and the buyer only observes a stochastic measurement of
the valuation after he buys the item. Third, previous papers on dynamic pricing
and auctions do not model imprecision and vagueness associated with the valu-
ation of the item. In our setting, the buyer uses fuzzy sets to describe whether
the valuation of the item is large or small. Furthermore, we use fuzzy sets to
describe the dissatisfaction associated with the observed price. In our problem,
the buyer makes decisions based on the probability of a fuzzy event [28]. His
decision to buy or not depends on whether the satisfaction from having a high
enough valuation for the item out-weights the dissatisfaction of the quoted price.

The goal of the buyer is to design a policy that has low regret, defined as the
gap between the utility of a clairvoyant who has full information about all of the
stochastic distributions and the utility achieved by a buyer facing an unknown
distribution.

Our proposed algorithm uses Thompson Sampling [24] to balance the
exploration-exploitation trade-off. Thompson Sampling is an idea that dates
back to the work in [24] and has recently been analyzed theoretically in the con-
text of multi-armed bandit problems [3,4,15]. To the best of our knowledge this
technique has not been applied to exploration-exploitation trade-offs involving
fuzzy sets and fuzzy events.

We summarize the main contributions of this paper as follows:

– To the best of our knowledge, we are the first to study exploration-exploitation
trade-offs involving fuzzy sets and fuzzy events in the context of a dynamic
pricing problem.

– We show how Thompson Sampling can be used to design tractable algorithms
that can be used to dynamically learn the probability of fuzzy events over
time.

– Experimental results show that our proposed method performs very well as
the regret grows very slowly.

The remainder of this paper is organized as follows. In Sect. 2 we discuss
the related literature. Section 3 provides a formal formulation of the problem. In
Sect. 4 we present the our proposed algorithm. In Sect. 5 we perform experiments
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in order to assess the quality of our proposed algorithm. Section 6 concludes our
work and provides some interesting directions for further research.

2 Related Literature

The problem considered in this paper is often referred to as a dynamic pricing
problem in the operations research and management science community [9], and
as a posted-price auction problem in the computer science community [17]. In
the standard dynamic pricing problem there is a seller who wants to maximize
revenue over some selling horizon by choosing prices in an optimal way. However,
the precise relationship between price demand in unknown. This gives rise to the
so-called exploration-exploitation trade-off. We refer the reader to [9] and [17] for
a detailed overview of the dynamic pricing/posted-price auction problem. The
main differences between this paper and existing works is as follows. First, most
of the literature of dynamic pricing and learning focuses on perspective of the
seller (see e.g. [8,13,16,17,22]). Similarly, most of the literature on posted-price
auctions focuses on perspective of the seller (see e.g. [5,6,19]). However, in this
paper, we focus on the buyer perspective. Second, most of the literature models
the problem in a probabilistic way and does not consider combining fuzzy sets
and online learning. While there are some papers that consider dynamic pricing
and fuzzy logic such as [12,26] and fuzzy demand [14,20], these papers do not
study exploration-exploitation trade-offs like we do in this paper.

From a methodological point of view, this paper is related to the literature on
exploration-exploitation trade-offs, in particular, the literature related to multi-
armed bandit problems [7,10,18]. In the traditional multi-armed bandit problem
[10,18] there is a finite set of actions, called arms, and each arm yields a stochas-
tic reward. Play proceeds for a number of rounds, and in each round, precisely
one arm can be selected. The goal in a multi-armed bandit problem is to learn
which sequence of arms to select in order to maximize the expected cumulative
reward over a number of rounds. Two of the main design principles for solving
multi-armed bandit problems are (i) optimism in the face of uncertainty [7] and
(ii) Thompson Sampling [24] or probability matching. Thompson Sampling is an
idea that dates back to the work in [24]. Thompson Sampling has recently been
analyzed theoretically in the context of multi-armed bandit problems [3,4,15].
Furthermore, this idea has been fruitfully applied in other online decision mak-
ing problems, see e.g. [11]. However, to the best of our knowledge this technique
has not been applied to exploration-exploitation trade-offs involving fuzzy sets
and fuzzy events.

3 Problem Formulation

We consider a single buyer and a single seller that interact for T rounds. An
item is repeatedly offered for sale by the seller to the buyer over these T rounds.
In each round t = 1, . . . , T , a price pt is offered by the seller and a decision



656 J. Rhuggenaath et al.

at ∈ {0, 1} is made by the buyer: at takes value 1 when the buyer accepts to
buy at that price, and at takes value 0 otherwise. In every round t there is a
stochastic measurement vt ∈ [0, 1] for the item. The value of vt is an i.i.d. draw
from a distribution D and has expectation ν = E {vt}. The measurement vt is
only revealed to the buyer if he buys the item in round t, i.e., the buyer only
observes the value of the measurement after he buys the item. We assume that
the buyer does not know the distribution D.

From the buyer perspective we assume that there is imprecision and vague-
ness associated with the valuation of the item. We assume that the buyer uses
Mv ∈ N fuzzy sets [27,29] to describe his valuation for the item. Denote these
fuzzy sets by V 1, . . . , V Mv . The membership function is given by μm

v (x) for
m = 1, . . . ,Mv and maps a stochastic measurement to values in [0, 1]. For exam-
ple, the buyer could use three fuzzy sets that describe valuations that can be
low, medium or high.

We assume that the buyer also uses fuzzy sets to describe his dissatisfaction
with a particular price. More specifically, the buyer uses Mp ∈ N fuzzy sets
to describe his dissatisfaction for buying the item at a particular price. Denote
these fuzzy sets by D1, . . . , DMp . The membership function is given by μk

p(x)
for k = 1, . . . ,Mp and maps the price to values in [0, 1]. For example, the buyer
could use three fuzzy sets to describe that his dissatisfaction can be low, medium
or high.

We make the following assumption on the membership functions.

Assumption 1. The membership functions μm
v (x) for m = 1, . . . , Mv and μk

p(x)
for k = 1, . . . ,Mp are fixed for all rounds t = 1, . . . , T .

In our problem, the buyer makes decisions based on the probability of a fuzzy
event. The definition for the probability of a fuzzy event is given by Definition 1
and is due to [28].

Definition 1 ([28]). Let A be an arbitrary fuzzy set with membership function
μA(x). The probability of the fuzzy event associated with the fuzzy set A with
respect to a distribution D is defined as P {A} = ED {μA}. Here ED denotes the
expectation under distribution D.

If the buyer had complete information about the distribution D, then he
can calculate the probability of the fuzzy events P {V m} for m = 1, . . . ,Mv

associated with the fuzzy sets V 1, . . . , V Mv . We assume that the buyer uses
a function FV : [0, 1]Mv → [0, 1] that combines the probabilities P {V m} for
m = 1, . . . ,Mv into an aggregated score SV ∈ [0, 1].

Similarly, we assume that the buyer uses a function FP : [0, 1]Mp → [0, 1] that
combines membership values for the fuzzy sets D1, . . . , DMp into an aggregated
score SP ∈ [0, 1].

If the buyer had complete information about the distribution D, we assume
that the buyer makes decisions according to the rule described in Assumption 2.

Assumption 2. Under complete information about the distribution D, the
buyer uses the following rule to make decisions:
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– observe the price pt in round t.
– calculate SP (pt) = FP (μ1

p(pt), . . . , μ
Mp
p (pt)).

– compare the value of SP (pt) with the value of SV = FV (P
{
V 1

}
, . . . ,

P
{
V Mv

}
).

– if SV ≥ SP (pt), then buy the item.
– if SV < SP (pt), then do not buy the item.

The intuition behind this rule is that the value of SV represents the total
aggregated degree of satisfaction with the item and that SP (pt) represents the
total aggregated dissatisfaction with the price pt. The decision rule described
above indicates that the buyer would only buy the item if his total satisfaction
with the item outweighs the dissatisfaction at price pt.

Note that the value of SV depends on the function FV and the probabilities
P

{
V 1

}
, . . . ,P

{
V Mv

}
: if the same function FV is used in all the rounds, then

SV is fixed. Furthermore, note that the value of SV is unknown to the buyer
since the distribution D is unknown.

The expected utility of the buyer in round t is given by ut = at · (SV −
SP (pt)). In other words, if the buyer purchases the item (at = 1) the utility is
the difference between the total aggregated degree of satisfaction and the total
aggregated dissatisfaction with the price. Otherwise, the utility is zero. The
objective of the buyer is to maximize his expected utility over the T rounds.

For a fixed sequence p1, . . . , pT of observed prices and a fixed sequence of
decisions a1, . . . , aT by the buyer, the regret of the buyer over T rounds is defined
as

RT =
T∑

t=1

max{SV − SP (pt), 0} −
T∑

t=1

at · (SV − SP (pt)). (1)

The expected regret over T rounds is defined as

RT = E {RT } , (2)

where the expectation in Eq. (2) is taken with respect to possible randomization
in the selection of the actions a1, . . . , aT .

Note that (for a fixed sequence p1, . . . , pT of observed prices) the objective
of maximizing expected utility is equivalent to minimizing the expected regret.
The goal is to make decisions that are as close as possible to the decisions that
are prescribed by the decision rule in Assumption 2. Since the distribution D is
unknown to the buyer, he faces an exploration-exploitation trade-off. In order
to gain information and estimate the value of SV he needs to buy the item a
number of times (exploration). However, he also wants to use all information
collected so far and only buy the item if SV ≥ SP (pt) holds (exploitation). In
this paper, we seek to develop algorithms that ensure that the value of RT grows
slowly as the problem horizon T increases.
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4 Proposed Algorithm

In this section we discuss our proposed algorithm. We refer to our algorithm as
TS-PFE (Thompson Sampling for Probabilities of Fuzzy Events). Our algorithm
uses Thompson Sampling [24] to balance the exploration-exploitation trade-off.
The pseudo-code for TS-PFE is given by Algorithm 1.

Algorithm 1: TS-PFE
Require: Parameters of prior distribution (am

0 , bm0 ) for m = 1, . . . , Mv,
function FV , function FP , membership functions μm

v (x) for m = 1, . . . , Mv

and μk
p(x) for k = 1, . . . , Mp.

1: for m = 1 to Mv do
2: Set am = am

0 . Set bm = bm0 .
3: end for
4: Set t = 1.
5: Purchase item in first round.
6: Observe v1.
7: for m = 1 to Mv do
8: Set am = am + μm

v (v1). Set bm = bm + (1 − μm
v (v1)).

9: end for
10: for t ∈ {2, . . . , T} do
11: Observe price pt of item.
12: for m = 1 to Mv do
13: Sample θ̂m ∼ B(am, bm).
14: end for
15: Set ŜV = FV (θ̂1, . . . , θ̂Mv ).

16: Set SP (pt) = FP (μ1
p(pt), . . . , μ

Mp
p (pt)).

17: if ŜV ≥ SP (pt) then
18: Purchase item at price pt.
19: Observe vt.
20: for m = 1 to Mv do
21: Set am = am + μm

v (vt). Set bm = bm + (1 − μm
v (vt)).

22: end for
23: end if
24: end for

Our algorithm adopts a Bayesian framework for handling the unknown prob-
abilities of fuzzy events P

{
V 1

}
, . . . ,P

{
V Mv

}
. Let Z ∼ B(a, b) denote a random

variable Z that follows a Beta distribution with parameters a and b and with
expectation E {Z} = a

a+b .
We associate a Beta distributed random variable θm with the probability

P {V m} for m = 1, . . . ,Mv. At the start of our algorithm, θm ∼ B(am
0 , bm0 )

indicates the prior distribution. Every time that the buyer buys the item, he
observes an i.i.d. draw vt from the distribution D. This draw is subsequently
used to update the distribution of θm. We can use the draw vt in order to
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learn the membership values corresponding to the fuzzy sets at the value of
vt. We subsequently use this information to update our estimate of P {V m} for
m = 1, . . . ,Mv.

In order to decide to buy the item or not, we sample values θ̂m from the
posterior distributions B(am, bm) and use these sampled values in order to form
an estimate ŜV of SV . This is the Thompson Sampling step. Intuitively, the
buyer buys the item with probability Pt {SV ≥ SP (pt)} and where the proba-
bility measure Pt is induced by the posterior distribution B(am, bm) in round
t. It is precisely this Thompson Sampling step that balances exploration and
exploitation.

5 Experiments

In this section we conduct experiments in order to test the performance of
our proposed algorithm. In total we have three experimental settings, which
we describe in more detail below.

5.1 General Settings and Performance Metrics

In all our experiments the prior parameters are set to (am
0 = 1, bm0 = 1) for m =

1, . . . ,Mv which corresponds to a uniform distribution on [0, 1]. The problem
horizon is set to T = 5000.

In order to measure the performance of the methods, we consider two perfor-
mance metrics. Our main performance metric is the cumulative regret which is
defined as RT =

∑T
t=1 max{SV − SP (pt), 0} − ∑T

t=1 at · (SV − SP (pt)).
The second performance metric is the fraction of rounds in which the “best

action” was selected. Here “best action” means the action that the buyer would
have taken if he had complete information about the distribution D. That is, if
the buyer makes decisions according to the rule described in Assumption 2.

We run 500 independent simulations and all performance metrics are aver-
aged over these 500 simulations.

5.2 Experimental Setting I

In this setting vt is drawn from an uniform distribution on [a − 0.3, a + 0.3],
where a = 0.5. The price pt is an i.i.d. draw from the distribution specified in
Table 1 with a = 0.5.

We use three fuzzy sets V 1, V 2, V 3 for the valuation of the buyer and so
Mv = 3. The three fuzzy sets describe valuations that can be low (V 1), medium
(V 2) or high (V 3). We use a single fuzzy set to express the dissatisfaction with
the price and so Mp = 1. The membership functions are displayed in Fig. 1 and
Fig. 2. The interpretation is that for high prices the membership value will be 1
and the buyer is very dissatisfied. For intermediate values the membership value



660 J. Rhuggenaath et al.

is between 0 and 1, and indicates that the buyer is partially dissatisfied. For low
values of the price, the buyer is not dissatisfied.

For the function FV we use FV = 0.25 · P{
V 2

}
+ 0.75 · P{

V 3
}
. For the

function FP we use FP = μ1
p(pt).

Table 1. Distribution of prices.

Value Probability

a − 0.2 1
11

a − 0.1 1
11

a − 0.05 1
11

a − 0.02 1
11

a 2
11

a + 0.05 1
11

a − 0.2 3
11

a − 0.3 1
11

Fig. 1. Membership functions μm
v (x)

for m = 1, . . . , Mv.
Fig. 2. Membership functions μk

p(x) for
k = 1, . . . , Mp.

The results for the cumulative regret and the fraction of the rounds in which
the best action is selected are displayed in Fig. 3 and Fig. 4. The results indicate
that TS-PFE performs relatively well as the cumulative regret grows very slowly
as the number of rounds increases. In Fig. 4 we can see that TS-PFE learns
relatively quickly as it selects the “best action” in at least 90% of the first 500
rounds. Furthermore, this percentage only increases as the number of rounds
increases indicating that TS-PFE makes less and less mistakes.
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Fig. 3. Cumulative regret for exper-
imental setting I averaged over 500
runs. Solid lines indicate the mean and
shaded region indicates 5-th and 95-th
percentiles.

Fig. 4. Fraction of rounds in which the
optimal action is selected for exper-
imental setting I averaged over 500
runs. Solid lines indicate the mean and
shaded region indicates 5-th and 95-th
percentiles.

5.3 Experimental Setting II

In this setting vt is drawn from an uniform distribution on [a−0.3, a+0.3], where
a = 0.3. The price pt is an i.i.d. draw from the distribution specified in Table 1
with a = 0.3. The membership function used to express the dissatisfaction with
the price is different compared to experimental setting I and is displayed in Fig. 5.
The membership functions for V 1, V 2, V 3 are the same as in experimental setting
I and are displayed in Fig. 1. All other settings are the same as in experimental
setting I.

The results for the cumulative regret and the fraction of the rounds in which
the best action is selected are displayed in Fig. 6 and Fig. 7. The results are
qualitatively similar as those reported in Fig. 3 and Fig. 4. Again we see that
TS-PFE is able to learn relatively quickly to make the correct decisions.

Fig. 5. Membership functions μk
p(x) for k = 1, . . . , Mp.
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Fig. 6. Cumulative regret for experi-
mental setting II averaged over 500
runs. Solid lines indicate the mean and
shaded region indicates 5-th and 95-th
percentiles.

Fig. 7. Fraction of rounds in which the
optimal action is selected for exper-
imental setting II averaged over 500
runs. Solid lines indicate the mean and
shaded region indicates 5-th and 95-th
percentiles.

5.4 Experimental Setting III

In this setting we test how the algorithm performs when the function FV changes
during the problem horizon. In this setting vt is drawn from an uniform distri-
bution on [a− 0.3, a+0.3], where a = 0.3. The price pt is an i.i.d. draw from the
distribution specified in Table 2 with a = 0.3. The membership function used to
express the dissatisfaction with the price is different compared to experimental
setting I and is displayed in Fig. 5. The membership functions for V 1, V 2, V 3 are
the same as in experimental setting I and are displayed in Fig. 1.

For the function FV we use FV = 0.25 · P{
V 2

}
+ 0.75 · P{

V 3
}

in rounds
t < 2500 and we take FV to be the harmonic mean of P

{
V 2

}
and P

{
V 3

}
in

rounds t ≥ 2500. The problem horizon is set to T = 10000. All other settings are
the same as in experimental setting I. With these settings the optimal action is
not to buy in rounds t < 2500 and to buy at price 0.30 in rounds t ≥ 2500.

The results for the cumulative regret and the fraction of the rounds in which
the best action is selected are displayed in Fig. 8 and Fig. 9. The results are
qualitatively similar as those reported in Fig. 3 and Fig. 4. The level of regret is in
general higher in Fig. 8 compared to Fig. 3 and 6, which indicates the the problem
is harder. Also, the percentiles in Figs. 8 and 9 indicate that the problem is
harder. However, the overall pattern of regret is similar to the other experimental
settings. Again we see that TS-PFE is able to learn relatively quickly to make the
correct decisions, even if the function FV changes during the problem horizon.

Table 2. Distribution of prices.

Value Probability

0.3 1
2

0.5 1
2
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Fig. 8. Cumulative regret for experi-
mental setting III averaged over 500
runs. Solid lines indicate the mean and
shaded region indicates 5-th and 95-th
percentiles.

Fig. 9. Fraction of rounds in which the
optimal action is selected for experi-
mental setting III averaged over 500
runs. Solid lines indicate the mean and
shaded region indicates 5-th and 95-th
percentiles.

6 Conclusion

In this paper we study a repeated posted-price auction between a single seller
and a single buyer that interact for a finite number of periods or rounds. In this
paper we study the problem from the perspective of the buyer who only gets to
observe a stochastic measurement of the valuation of the item after he buys the
item. In our model, the buyer uses fuzzy sets to describe his satisfaction with
the observed valuations and he uses fuzzy sets to describe his dissatisfaction
with the observed price. In our problem, the buyer makes decisions based on the
probability of a fuzzy event. His decision to buy or not depends on whether the
satisfaction from having a high enough valuation for the item out-weights the
dissatisfaction of the quoted price. To the best of our knowledge, we are the first
to study exploration-exploitation trade-offs involving fuzzy sets and fuzzy events
in the context of a dynamic pricing problem. We show how Thompson Sampling
can be used to design tractable algorithms that can be used to dynamically learn
the probability of fuzzy events over time.

One direction for future work is to investigate whether the ideas used in this
paper can be used in other exploration-exploitation problems involving fuzzy sets
and probabilities based on fuzzy events. For example, it would be interesting to
investigate whether the ideas can be extended or adapted to a setting of group
decision making with stochastic feedback and preferences described by fuzzy
sets. One could for example try to learn to make decisions online such that the
preferences of the members of the group are/ remain close to each other.

Acknowledgements. We would like to thank Rick Augustinus Maria Gilsing, Jonnro
Erasmus, Anasztázia Junger, Peipei Chen, Bambang Suratno, and Onat Ege Adalı for
interesting discussions, which helped improve this paper considerably.
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Abstract. Power quality analysis involves the measurement of quanti-
ties that characterize a power supply waveform such as its frequency.
The measurement of those quantities are regulated by internationally
accepted standards from IEEE or IEC. Monitoring the delivered power
quality is even more important due to recent advances in power electron-
ics and also due to the increasing penetration of renewable energies in
the electrical power grid. The primary suggested method by IEC to mea-
sure the power grid frequency is to count the number of zero crossings in
the voltage waveform that occur during 0.2 s. The standard zero crossing
method is usually applied to a filtered signal that has a non determin-
istic and frequency dependent delay. For monitoring the power grid a
range between 42.5 and 57.5 Hz should be considered which means that
the filter must be designed in order to attenuate the delay compensation
error. Fuzzy Boolean Nets can be considered a neural fuzzy model where
the fuzziness is an inherent emerging property that can ignore some out-
liers acting as a filter. This property can be useful to apply zero crossing
without false crossing detection and estimate the real timestamp with-
out the non deterministic delay concern. This paper presents a compari-
son between the standard frequency estimation, a Goertzel interpolation
method, and the standard method applied after a FBN network instead
of a filtered signal.
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1 Introduction

The quality of the electrical power grid is of utmost importance for normal opera-
tion of electrical equipment [1–3]. Due to its importance, power quality has been
regulated in various internationally recognized standards. Recent advances in
power electronics and the ever increasing penetration of renewable energies that
require distributed power converters makes the monitoring of the delivered power
quality even more important [4,5]. Monitored parameters include the frequency
of the supplied power waveform, its RMS amplitude, the existence of harmonics,
the effect of noise and the existence of distortions and transients.

Power quality measurements are typically performed only at predefined loca-
tions and not on a regular basis, usually to settle disputes between utility com-
panies and consumers. The main reason for this is that commercial power quality
analyzers are very accurate, but expensive and bulky. The alternative are smaller
analyzers that are less expensive but have worse specifications. Therefore, there
is an increasing demand for portable analyzers that can be easily and more uni-
versally deployed, with better accuracy than those that are presently available.
The advances in the processing power of digital signal processors, available mem-
ory, and sensors’ availability, have boosted the interest on the development of
embedded power quality analyzers that are low-cost, yet very powerful [6].

Frequency estimation and tracking methods are an active research topic in
many scientific areas as in power quality assessment [7]. The most basic spec-
tral based methods performs a FFT but to have good spectral resolutions the
computational cost increases. There are methods that can improve frequency
estimation performing an interpolation with the calculated DFT bins [8],[9].
But for some applications, as in power quality, there is no need to compute a
full FFT. Approaches as in [10] that uses Goertzel filters [11] or in [12] use a
warped DFT in order to select only a defined spectral area to perform frequency
estimation.

For some specific applications power grid frequency must be obtained in a
10 cycle time span, that in a 50 Hz electrical power grid system corresponds
to 0.2 s period as specified in IEC standard 61000-4-30 [13]. The fundamen-
tal frequency is the number of integral cycles counted during the considered
time interval, divided by the cumulative duration of those cycles. When using
the zero crossing (ZC) method, harmonics, interharmonics and noise should be
attenuated to avoid false zero crossings in frequency estimation. A particularly
effective solution is to digitally low-pass filter the acquired waveform to atten-
uate the unwanted effects [14]. A disadvantage of this method is the delay that
the filter introduces between the filtered and unfiltered signals. This delay, that
is frequency dependent, must be compensated to estimate the real zero crossing
timestamp. Another method to perform frequency estimation is based on the
Goertzel algorithm with interpolation for frequency estimation. The Goertzel
algorithm [11] is an efficient method to estimate individual components of the
signal Discrete Fourier Transform (DFT). In order to estimate the power grid
frequency, an interpolation algorithm based on the Interpolated Discrete Fourier
Transform (IpDFT) of [8] is applied.
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In this paper we study an alternative approach to estimate power grid fre-
quency based on zero crossing detection that uses Fuzzy Boolean Nets (FBN)
[15]. Natural or Biological neural systems have a certain number of features that
leads to their learning capability when exposed to sets of experiments from the
real outside world. They also have the capability to use the learnt knowledge to
perform reasoning in an approximate way. FBN are a neural fuzzy model where
the fuzziness is an inherent emerging property that were developed with the
goal of exhibiting those systems’ properties. FBN previous studies have shown
promising results in learning and interpolating in applications such as pultrusion
wastes [16] or dataflow management systems [17]. In [16] FBN method allows
to find the best balance between the material parameters that maximizes the
strength of the final composite. In [17] is used to augment performance, rational-
ization of resources, and task prioritization of dataflows based in probabilistic
results of the networks output.

The contents of this paper is as follows: Sect. 2 describes the three different
methods in order to perform a frequency estimation; Sect. 3 presents results
for simulated data with some PQ events that can affect ZC detection; Sect. 4
compares the results between the three methods from the electrical power grid;
In Sect. 5 the conclusions about the comparison of the methods applied.

2 Frequency Estimation Methods

2.1 Filtered Signal with Zero Crossing

According to IEC 61000-4-30 standard [13], a signal power frequency measure is
the number of integral periods divided by the duration of those periods within
the considered time interval. This measure can be accomplished by estimating
the zero crossing timestamps trough interpolation between the acquired samples.
To avoid false zero crossings caused by PQ events, the acquired data should be
filtered. The digital filter introduces a delay which offsets the timestamps of the
filtered signal zero crossings that is dependent on the signal frequency but can
be corrected in order to have a real timestamp [14]. In Fig. 1 an example about
the effect of filtering a signal is shown.

2.2 Goertzel and Interpolation

The Goertzel algorithm [11] is an efficient method to compute a single DFT tone
without having to perform a full FFT. Since the power grid frequency bounds
have a limited range, only a few selected spectral components are needed. After
the Goertzel components computation, the Interpolated Discrete Fourier Trans-
form (IpDFT) [8] is applied. IpDFT is a spectral based method that estimates
the signal frequency based on the calculation of the signal FFT, selecting the
highest amplitude spectral component, then its largest neighbour and interpolat-
ing them. With Goertzel and IpDFT is possible to achieve an accurate frequency
estimation with a lower computational cost.
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Fig. 1. Example of frequency estimation using digital filtering and zero crossing detec-
tion. The input signal is filtered what causes a frequency dependant delay. With a
filtered signal is possible to estimate the real zero crossing compensating the delay.

In Fig. 2 5 DFT bins of a sine signal with spectral leakage are shown. Bold
lines represents 5 Goertzel outputs Gf that are used to perform a frequency
estimation. In this example the higher amplitudes are G50 and G55 which means
that these are the DFT bins to be used in IpDFT algorithm.

Fig. 2. Example of a signal with spectral leakage where the true frequency is not
centered in none of the DFT bins. Interpolation is performed using G50 and G55 in
order to obtain the signal frequency (53 Hz).
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2.3 Using FBN to Estimate Power Grid Frequency

FBN [15] exhibit the natural or biological neural systems features that lead to
a learning capability when exposed to sets of experiments from the real world.
They also have the capability to use newly gained knowledge to perform approx-
imate qualitative reasoning in the form of “if...then” rules. As in natural sys-
tems, FBN are robust and immune to individual neuron or connection errors
and present good generalization capabilities that automatically minimize the
importance of imbalances and sparseness in the training data. FBN use a Heb-
bian learning process and are capable of learning and implementing any possible
multi-input single-output function of the type: [0, 1]n × [0, 1].

FBN consist of neurons that are grouped into areas of concepts (variables).
Meshes of weightless connections between antecedent neuron outputs and conse-
quent neuron inputs are used to perform ‘if-then’ inference between areas. Neu-
rons are binary and the meshes are formed by individual random connections
(like in nature). Each neuron comprises m inputs for each antecedent area, and
up to (m+1)N internal unitary memories, where N is the number of antecedents.
(m + 1)N corresponds to maximum granularity. When stimulated, the value of
each concept is given by the activated/total neurons ratio. For rules with N
antecedents and a single consequent, each neuron has N ×m inputs.

Inference proceeds as follows: The single operation carried out by each neuron
is the combinatorial count of activated inputs from every antecedent. For all
counting combinations, neurons compare the sampled values with the ones in
their unitary memory (FF). If the FF that corresponds to the sampled value
of all antecedents contains the value “1”, then the neuron output is also “1”.
Otherwise, the neuron output is “0”. As a result of the inference process (which
is parallel), each neuron assumes a boolean value, and the inference result will
be given by the neural activation ratio in the consequent area.

Learning is performed by exposing the net to the data input and by modi-
fying the internal binary memories of each consequent neuron according to the
activation of the m inputs (per antecedent) and the state of that consequent
neuron. Each experiment will set or reset one binary memory of each individual
neuron. Due to its probabilistic nature, the FBN must be repeatedly exposed to
the same training data for a minimum number of times (r). The optimization
of r is not critical since FBN cannot be overtrained. Thus, it is only neces-
sary to guarantee a minimum value that depends on the net parameters (m, N ,
granularity) and sparsity of the training data set.

The idea is to use a 1-input/1-output FBN (N = 1) as a filter without causing
a delay. We start by feeding the network with a small set of training points
(timestamp/amplitude) sampled during one period; The second step consists in
letting the FBN interpolate/estimate the amplitude values for the whole period
(based on the few training points), and letting it infer the timestamps of the zero
crossing points; Finally we use a standard ZC procedure to estimate frequency.
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3 Simulated Results

Different events, such as transients, harmonics or noise can occur in electrical
power grids. In this section we present how FBNs behave reagarding ZC detection
when simulating such effects. All tests were performed training and testing the
FBN network with 100 repetitions.

3.1 Cosine

The first test consists in a fundamental cosine with 0.9 Vpp and 50 Hz. On the
left side of Fig. 3 a simulated one period signal is presented. 25 evenly spaced
points were automatically selected to train the FBN network (as shown on right
side of Fig. 3).

Fig. 3. On the left side a simulated cosine with 0.9 Vpp and 50Hz is presented. 25
points were used to train the FBN network.

The system was tested with several parameter configurations, and the best
results were obtained using areas with 250 neurons, a sample size m = 60, and
maximum granularity (m + 1)N = 61.

Since the main signal is a cosine, the zero crossings should be detected at
0.005 s and 0.015 s. The FBN indicated zero crossings at 0.0049 s and 0.015 s.

3.2 Sum of Cosines with Same Phase

The fundamental frequency in electrical power grids is 50 Hz, but harmonics
can be present. In this simulation two harmonics (3rd and 5th) were added.
The 3rd harmonic has an amplitude of 5% of the fundamental signal and the
5th 6% V that are the maximum amplitudes allowed by the IEEE standard.
Figure 4 presents the effects of harmonics in the fundamental signal. Since this
frequencies are in phase, zero crossing should not be affected.
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Fig. 4. Representation of a sum of cosines in multiples of fundamental frequency with
standard maximum amplitudes.

The zero crossings should still be detected at 0.005 s and 0.015 s. Using the
same configuration as in the previous section, the FBN obtained zero crossings
at 0.0045 s and 0.0151 s.

3.3 Sum of Cosines with Different Phases

Harmonics out of phase with the fundamental signal can affect the ZC detection.
A filter attenuates higher frequencies, so, the ZC detection is performed only on
the fundamental one. In this case the FBN network will be trained with points
that can not represent the fundamental zero cross. In Fig. 5 is presented a sum
of signals with different phases and in Fig. 6 the obtained result.

In this test the first crossing was detected at 0.0047 s and the second one at
0.0150 s.

3.4 Cosine with Transients

Transients are another PQ event that could affect the frequency estimation. If
a transient occurs without causing a false zero crossing transition, there should
not be any problem with frequency estimation. But, as presented in Fig. 7, if
a transient occurs near a zero cross transition this event can lead to a false
transition getting a wrong frequency estimation.

As is shown in Fig. 8 the training points, represented as red crosses, were
affected by the transients. But the FBN network output, represented as the
black line, followed the fundamental frequency behavior. This result shows the
capability of ignoring some outliers making possible the ZC detection. In this
test the zero crossings were detected at 0.0049 s and 0.0153 s.
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Fig. 5. Representation of a sum of signals with different phases in multiples of funda-
mental frequency.

Fig. 6. FBN network output for the situation presented in Fig. 5. FBN output trained
with 25 points. Areas of 250 neurons, each neuron performing m = 60 samples and
maximum granularity. Red crosses represents the training points and the black line
represents the FBN network output. (Color figure online)

3.5 Cosine with Noise

Another event that is common in electrical power grid is the presence of noise.
As in the previous test, noise can affect zero crossing detection if occurs near
a zero cross transition. This test was performed with a noise of 30 dB and the
signal to estimate its zero crossing is represented in Fig. 9.

In Fig. 10 the output of FBN netowork is shown. Network training points,
represented as red crosses, were not following the fundamental signal as it can
be seen in the signal minimum peak. But the output of FBN, represented as the
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Fig. 7. Representation of transients in a cosine signal on the zero crossings.

Fig. 8. FBN network output for the situation presented in Fig. 7. FBN output trained
with 25 points. Areas of 250 neurons, each neuron performing m = 60 samples and
maximum granularity. Red crosses represents the training points and the black line
represents the FBN network output. (Color figure online)

black line, did not follow those transitions. This results shows that the FBN net-
work can attenuate noisy effects. In this simulation zero crossings were detected
at 0.0049 s and 0.0153 s.

4 Frequency Estimation with Power Grid Dataset

Once the best FBN parameters for ZC detection were selected (using the exam-
ples presented in the previous section), the system was tested on a real dataset.
This dataset was acquired in Instituto Superior Técnico - Taguspark with the
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Fig. 9. Representation of a cosine with a measured noise of 30 dB.

Fig. 10. FBN network output for the situation presented in Fig. 9. FBN output trained
with 25 points. Areas of 250 neurons, each neuron performing m = 60 samples and
maximum granularity. Red crosses represents the training points and the black line
represents the FBN network output. (Color figure online)

analog input module NI 9215. Data was acquired with a sampling frequency of
12.5 kHz, which gives a dataset containing 250 points per period (considering a
50 Hz frequency). Figure 11 shows an example of a period of a real power grid
signal (that corresponds to around 0.02 s). In this example it is possible to see
some fluctuations in the signal peaks.

As stated in section I, ZC is performed every 200 ms which translates into
10 periods if a fundamental signal with 50 Hz is considered. In Fig. 12 the three
methods are compared since the beginning of the process until t = 2 s, the equiv-
alent of 10 frequency estimations. “Goertzel with interpolation” starts and ends
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Fig. 11. A period of a real power grid signal acquired with a 12.5 kHz sampling fre-
quency during 0.02 s. In this example some transients occurred near the peaks.

Fig. 12. Frequency estimation along 2 s in all methods. Digital Filter method starts
with a poor estimation due to the time that digital filter takes to establish but then
gets a closer estimation to the Goertzel method. FBN with a maximum error of around
0.05 Hz

without visible fluctuations in this scale. The delay in digital filtering method
was already compensated in order to have a real timestamp but other effects are
shown. Filters need some time before the output is stable, and that is the rea-
son why the filtering method starts with a bad frequency estimation. The FBN
method provides good results, but not as precise as any of the other methods.
In this segment, the maximum estimation error, when compared with standard
and Goertzel methods, was around 0.05 Hz.
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Fig. 13. Zoomed in view: comparison of the three methods during the stable part of
the signal.

Figure 13 shows a magnified view of the “stable” part of the signal, where the
difference between the three methods is more clear. The estimated frequency is
around 49.98 Hz and, as shown in Fig. 12, FBN method precision is lower than
the other methods. Note that the difference is of a very low magnitude, and that
this decrease in precision is liked to be compensated when in the presence of
events as those exemplified in the previous section.

5 Conclusions

In this paper a comparison between three different methods to estimate the
power grid frequency is performed in order to study the possibility of using
Fuzzy Boolean Networks (FBN) for such application. The two other methods
used to validate FBN are the standard power grid frequency estimation which
corresponds to counting the number of periods within a given time frame after
filtering the input signal, and Goertzel with interpolation.

The main goal of this comparison was to understand the advantages and
limitations of using FBN in electrical power grid frequency estimation.

A compromise between time and accuracy was done and better results were
obtained training and testing the network 100 times, using 25 training points, an
area size of 250 neurons, m = 60 samples per neuron, and maximum granularity.
Comparing with other methods FBN results were marginally worse, but FBN
can ignore outliers caused by noise or transients, as shown in Fig. 8 and Fig. 10.
In addition, since the network is trained with only 25 points this method could
be useful when a low number of measuring points is available. One unavoid-
able limitation of using FBN is the training and testing time. This makes them
unsuitable for real-time applications unless using dedicated hardware.
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Abstract. The discovery of knowledge by analyzing time series is an
important field of research. In this paper we investigate multiple multi-
variate time series, because we assume a higher information value than
regarding only one time series at a time. There are several approaches
which make use of the granger causality or the cross correlation in order
to analyze the influence of time series on each other. In this paper
we extend the idea of mutual influence and present FCSETS (Fuzzy
Clustering Stability Evaluation of Time Series), a new approach which
makes use of the membership degree produced by the fuzzy c-means
(FCM) algorithm. We first cluster time series per timestamp and then
compare the relative assignment agreement (introduced by Eyke Hüller-
meier and Maria Rifqi) of all subsequences. This leads us to a stability
score for every time series which itself can be used to evaluate single
time series in the data set. It is then used to rate the stability of the
entire clustering. The stability score of a time series is higher the more
the time series sticks to its peers over time. This not only reveals a new
idea of mutual time series impact but also enables the identification of
an optimal amount of clusters per timestamp. We applied our model on
different data, such as financial, country related economy and generated
data, and present the results.

Keywords: Time series analysis · Fuzzy clustering · Evaluation

1 Introduction

The analysis of sequential data – so called time series (TS) – is an important
field of data mining and already well researched. There are many different tasks,
but the identification of similarities and outliers are probably among the most
important ones. Clustering algorithms try to solve exactly these problems. There
are various approaches for extracting information from time series data with the
help of clustering. While some methods deal with parts of time series, so called
subsequences [2], others consider the whole sequence at once [9,28], or transform
them to feature sets first [17,34]. In some applications clusters may overlap, so
that membership grades are needed, which enable data points to belong to more
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Fig. 1. Example for an over-time clustering of univariate time series [32]. The blue
clusters are more stable over time than the red ones.

than one cluster to different degrees. These methods fall into the field of fuzzy
clustering and they are used in time series analysis as well [24].

However, in some cases the exact course of time series is not relevant but
rather the detection of groups of time series that follow the same trend. Addi-
tionally, time-dependent information can be meaningful for the identification of
patterns or anomalies. For this purpose it is necessary to cluster the time series
data per time point, as the comparison of whole (sub-)sequences at once leads
to a loss of information. For example, in case of the euclidean distance the mean
distance over all time points is considered. In case of Dynamic Time Warping
(DTW) the smallest distance is relevant. The information at one timestamp has
therefore barely an impact. The approach of clustering time series per time point
enables an advanced analysis of their temporal correlation, since the behavior of
sequences to their cluster peers can be examined. In the following this procedure
will be called over-time clustering. An example is shown in Fig. 1. Note, that for
simplicity reasons only univariate time series are illustrated. However, over-time
clustering is especially valuable for multivariate time series analysis.

Unfortunately new problems like the right choice of parameters arise. Often
the comparison of clusterings with different parameter settings is difficult since
there is no evaluation function which distinguishes the quality of clusterings
properly. In addition, some methods, such as outlier detection, require good
clustering as a basis, whereby the quality can contextually be equated with the
stability of the clusters.

In this paper, we focus on multiple multivariate time series with same length
and equivalent time steps. We introduce an evaluation measure named FCSETS
(Fuzzy Clustering Stability Evaluation of Time Series) for the over-time sta-
bility of a fuzzy clustering per time point. For this purpose our approach rates
the over-time stability of all sequences considering their cluster memberships.
To the best of our knowledge this is the first approach that enables the sta-
bility evaluation of clusterings and sequences regarding the temporal linkage of
clusters.

Over-time clustering can be helpful in many applications. For example, the
development of relationships between different terms can be examined when
tracking topics in online forums. Another application example is the analysis
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of financial data. The over-time clustering of different companies’ financial data
can be helpful regarding the detection of anomalies or even fraud. If the courses
of different companies’ financial data can be divided into groups, e.g. regarding
their success, the investigation of clusters and their members’ transitions might
be a fundamental step for further analysis. As probably not all fraud cases are
known (some may remain uncovered) this problem cannot be solved with fully
supervised learning.

The stability evaluation of temporal clusterings offers a great benefit as it
not only enables the identification of suitable hyper-parameters for different
algorithms but also ensures a reliable clustering as a basis for further analysis.

2 Related Work

In the field of time series analysis, different techniques for clustering time series
data were proposed. However, to the best of our knowledge, there does not
exist any approach similar to ours. The approaches described in [8,19,28] clus-
ter entire sequences of multiple time series. This procedure is not well suited
for our context because potential correlations between subsequences of different
time series are not revealed. Additionally, the exact course of the time series is
not relevant, but rather the trend they show. The problem of not recognizing
interrelated subsequences also persists in a popular method where the entire
sequences are first transformed to feature vectors and then clustered [17]. Meth-
ods for clustering streaming data like the ones proposed in [14] and [25] are not
comparable to our method because they consider only one time series at a time
and deal with other problems such as high memory requirements and time com-
plexity. Another area related to our work is community detection in dynamic
networks. While approaches presented in [12,13,26,36] aim to detect and track
local communities in graphs over time, the goal of our method is finding a stable
partitioning of time series over the entire period so that time series following the
same trend are assigned to the same cluster.

In this section, first we briefly describe the fuzzy c-means clustering algorithm
that we use for clustering time series objects at different time points. Then, we
refer on the one hand to related work with regard to time-independent evaluation
measures for clusterings. Finally, we describe a resampling approach for cluster
validation and a fuzzy variant of the Rand index that we use in our method.

2.1 Fuzzy C-Means (FCM)

Fuzzy c-means (FCM) [4,7] is a partitioning clustering algorithm that is con-
sidered as a fuzzy generalization of the hard k-means algorithm [22,23]. FCM
partitions an unlabeled data set X = {x1, ..., xn} into c clusters represented by
their prototypes V = {v1, ..., vc}. Unlike k-means that assigns each data point
to exactly one cluster, FCM assigns data points to clusters with membership
degrees uik ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ k ≤ n. FCM is a probabilistic clustering
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algorithm which means that its partition matrix U = [uik] must satisfy two
conditions given in (1).

c∑

i=1

uik = 1 ∀k ∈ {1, ..., n},

n∑

k=1

uik > 0 ∀i ∈ {1, ..., c}.

(1)

Since we focus on partition matrices produced by arbitrary fuzzy clustering
algorithms, we skip further details of FCM and refer to the literature [4].

2.2 Internal Evaluation Measures

Many different external and internal evaluation measures for evaluating clusters
and clusterings were proposed in the literature. In the case of the external eval-
uation, the clustering results are compared with a ground truth which is already
known. In the internal evaluation, no information about the actual partitioning
of the data set is known, so that the clusters are often evaluated primarily on
the basis of characteristics such as compactness and separation.

One metric that evaluates the compactness of clusters is the Sum of Squared
Errors. It calculates the overall distance between the data points and the clus-
ter prototype. In the case of fuzzy clustering, these distances are additionally
weighted by the membership degrees. The better the data objects are assigned to
clusters, the smaller the error, the greater the compactness. However, this mea-
sure does not explicitly take the separation of different clusters into account.

There are dozens of fuzzy cluster validity indices that evaluate the compact-
ness as well as the separation of different clusters in the partitioning. Some valid-
ity measures use only membership degrees [20,21], other include the distances
between the data points and cluster prototypes [3,5,11,35]. All these measures
cannot be directly compared to our method because they lack a temporal aspect.
However, they can be applied in FCSETS for producing an initial partitioning
of a data set for different time points.

2.3 Stability Evaluation

The idea of the resampling approach for cluster validation described in [30] is
that the choice of parameters for a clustering algorithm is optimal when dif-
ferent partitionings produced for these parameter settings are most similar to
each other. The unsupervised cluster stability value s(c), cmin ≤ c ≤ cmax, that
is used in this approach is calculated as average pairwise distance between m
partitionings:

s(c) =

m−1∑
i=1

m∑
j=i+1

d(Uci, Ucj)

m · (m − 1)/2
, (2)
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where Uci and Ucj , 1 ≤ i < j ≤ m, are two partitionings produced for c clusters
and d(Uci, Ucj) is an appropriate similarity index of partitionings. Our stability
measure is similar to the unsupervised cluster stability value but it includes the
temporal dependencies of clusterings.

Since we deal with fuzzy partitionings, in our approach we use a modified
version of the Hüllermeier-Rifqi Index [18]. There are other similarity indices
for comparing fuzzy partitions like Campello’s Fuzzy Rand Index [6] or Frigui
Fuzzy Rand Index [10] but they are not reflexive.

The Hüllermeier-Rifqi Index (HRI) is based on the Rand Index [29] that
measures the similarity between two hard partitions. The Rand index between
two hard partitions Uc×n and Ũc̃×n of a data set X is calculated as the ratio
of all concordant pairs of data points to all pairs of data points in X. A data
pair (xk, xj), 1 ≤ k, j ≤ n is concordant if either the data points xk and xj

are assigned to the same cluster in both partitions U and Ũ , or they are in
different clusters in U and Ũ . Since fuzzy partitions allow a partial assignment
of data points to clusters, in [18], the authors proposed an equivalence relation
EU (xk, xj) on X for the calculation of the assignment agreement of two data
points to clusters in a partition:

EU (xk, xj) = 1 − 1
2

c∑

i=1

|uik − uij |. (3)

Using the equivalence relation EU (xk, xj) given in Formula (3), the Hüllermeier-
Rifqi index is defined as a normalized degree of concordance between two parti-
tions U and Ũ :

HRI(U, Ũ) = 1 − 1
n(n − 1)

n∑

k=1

n∑

j=k+1

|EU (xk, xj) − EŨ (xk, xj)|. (4)

In [31], Runkler has proposed the Subset Similarity Index (SSI) which is
more efficient than the Hüllermeier-Rifqi Index. The efficiency gain of the Sub-
set Similarity Index is achieved by calculating the similarity between cluster
pairs instead of the assignment agreement of data point pairs. We do not use
it in our approach because we evaluate the stability of a clustering over time
regarding the team spirit of time series. Therefore, in our opinion, the degree of
the assignment agreement between time series pairs to clusters at different time
stamps contributes more to the stability score of a clustering than the similarity
between cluster pairs.

3 Fundamentals

In this chapter we clarify our understanding of some basic concepts regarding
our approach. For this purpose we supplement the definitions from [32]. Our
method considers multivariate time series, so instead of a definition with real
values we use the following definition.
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Fig. 2. Illustration of transitions of time series Ta, .., Te between clusters over time [32].

Definition 1 (Time Series). A time series T = ot1 , ..., otn is an ordered
set of n real valued data points of arbitrary dimension. The data points are
chronologically ordered by their time of recording, with t1 and tn indicating the
first and last timestamp, respectively.

Definition 2 (Data Set). A data set D = T1, ..., Tm is a set of m time series
of same length n and equal points in time.

The vectors of all time series are denoted as the set O = {ot1,1, ..., otn,m}. With
the second index indicating the time series the data point originates from. We
write Oti for all data points at a certain point in time.

Definition 3 (Cluster). A cluster Cti,j ⊆ Oti at time ti, with j ∈ {1, ..., kti}
with kti being the number of clusters at time ti, is a set of similar data points,
identified by a cluster algorithm.

Definition 4 (Fuzzy Cluster Membership). The membership degree
uCti,j

(oti,l) ∈ [0, 1] expresses the relative degree of belonging of the data object
oti,l of time series Tl to cluster Cti,j at time ti.

Definition 5 (Fuzzy Time Clustering). A fuzzy time clustering is the result
of a fuzzy clustering algorithm at one timestamp. In concrete it is the membership
matrix Uti = [uCti,j

(oti,l)].

Definition 6 (Fuzzy Clustering). A fuzzy clustering of time series is the
overall result of a fuzzy clustering algorithm for all timestamps. In concrete it is
the ordered set ζ = Ut1 , ..., Utn of all membership matrices.

4 Method

An obvious disadvantage of creating clusters for every timestamp is the missing
temporal link. In our approach we assume that clusterings with different param-
eter settings show differences in the connectedness of clusters and that this con-
nection can be measured. In order to do so, we make use of a stability function.
Given a fuzzy clustering ζ, we first analyze the behavior of every subsequence of
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a time series T = ot1 , ..., oti , with ti ≤ tn, starting at the first timestamp. In this
way we rate a temporal linkage of time series to each other. Time series that are
clustered together at all time stamps, have a high temporal linkage, while time
series which often separate from their clusters’ peers, indicate a low temporal
linkage. One could say we rate the team spirit of the individual time series and
therefore their cohesion with other sequences over time. In the example shown
in Fig. 2, the time series Ta and Tb show a good team spirit because they move
together over the entire period of time. In contrast, the time series Tc and Td

show a lower temporal linkage. While they are clustered together at time points
ti and tk, they are assigned to different clusters in between at time point tj .
After the evaluation of the individual sequences, we assign a score to the fuzzy
clustering ζ, depending on the over-time stability of every time series.

Let Uti be a fuzzy partitioning of the data objects Oti of all times series in
kti clusters at time ti. Similar to the equivalence relation in Hüllermeier-Rifqi
Index, we compute the relative assignment agreement of the data objects oti,l
and oti,s of two time series Tl and Ts, 1 ≤ l, s ≤ m to all clusters in partitioning
Uti at time ti as follows

EUti
(oti,l, oti,s) = 1 − 1

2

kti∑

j=1

|uCti,j
(oti,l) − uCti,j

(oti,s)|. (5)

Having the relative assignment agreement of time series at timestamps ti and
tr, t1 ≤ ti < tr ≤ tn, we calculate the difference between the relative assign-
ment agreements of time series Tl and Ts by subtracting the relative assignment
agreement values:

Dti,tr (Tl, Ts) = |EUti
(oti,l, oti,s) − EUtr

(otr,l, otr,s)|. (6)

We calculate the stability of a time series Tl, 1 ≤ l ≤ m, over all timestamps as
an averaged weighted difference between the relative assignment agreements to
all other time series as follows:

stability(Tl) = 1 − 2
n(n − 1)

n−1∑

i=1

n∑

r=i+1

m∑
s=1

EUti
(oti,l, oti,s)

mDti,tr (Tl, Ts)2

m∑
s=1

EUti
(oti,l, oti,s)m

. (7)

In Formula (7) we weight the difference between the assignment agreements
Dti,tr (Tl, Ts) by the assignment agreement between pairs of time series at the
earlier time point because we want to damp the large differences for stable time
series caused by supervention of new peers. On the other hand we aim to penalize
the time series that leave their cluster peers while changing cluster membership
at a later time point.

Finally, we rate the over-time stability of a clustering ζ as the averaged
stability of all time series in the data set:

FCSETS(ζ) =
1
m

m∑

l=1

stability(Tl). (8)
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As we already stated, the over-time stability of the entire clustering depends on
the stability of all time series regarding staying together in a cluster with times
series, that follow the same trend.

5 Experiments

In the following, we present the results on an artificially generated data set,
that demonstrates a meaningful usage of our measure and shows the impact of
the stability evaluation. Additionally, we discuss experiments on two real world
data sets. One consists of financial figures from balance sheets and the other one
contains country related economy data. In all cases fuzzy c-means was used with
different parameter combinations for the number of clusters per time point.

5.1 Artificially Generated Data Set

In order to show the effects of a rating based on our stability measure, we
generated an artificial data set with time series that move between two separated
groups. Therefore, at first, three random centroids with two features ∈ [0, 1]
were placed for time point 1. These centroids were randomly shifted for the next
timestamps whereby the maximal distance of a centroid at two consecutive time
points could not exceed 0.05 per dimension. Afterwards 3, 4 and 5 time series
were assigned to these centroids, respectively. This means that the data points of
a time series for each time point were placed next to the assigned centroid with
a maximal distance of 0.1 per feature. Subsequently, sequences with random
transitions between two of the three clusters were inserted. Therefore 3 time
series (namely 1, 2 and 3) were generated, that were randomly assigned to one
of the two clusters at every time point. All together, a total of 4 time points and
15 time series were examined.

Fig. 3. Result of the most stable clustering on the artificially generated data set. (Color
figure online)

To find the best stability score for the data set, FCM was used with vari-
ous settings for the number of clusters per time point. All combinations with
kti ∈ [2, 5] were investigated. Figure 3 shows the resulting fuzzy clustering with
the highest FCSETS score of 0.995. For illustration reasons the clustering was
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Table 1. Stability scores for the generated data set depending on kti .

kt1 kt2 kt3 kt4 FCSETS score

2 2 2 2 0.995

2 3 2 2 0.951

2 3 3 2 0.876

2 3 3 3 0.829

3 3 2 2 0.967

3 3 3 3 0.9

2 3 4 5 0.71

5 3 4 2 0.908

3 10 3 10 0.577

defuzzyfied. Although it might seem intuitive to use a partitioning with three
clusters at time points 1 and 2, regarding the over-time stability it is beneficial
to choose only two clusters. This can be explained by the fact that there are time
series that move between the two apparent groups of the upper (blue) cluster.
The stability is therefore higher when these two groups are clustered together.

In Table 1 a part of the corresponding scores for the different parameter
settings of kti are listed. As shown in Fig. 3, the best score is achieved with kti
being set to 2 for all time points. The worst score results with the setting kt1 = 2,
kt2 = 3, kt3 = 4 and kt4 = 5. The score is not only decreased because the upper
(blue) cluster is divided in this case, but also because the number of clusters
varies and therefore sequences get separated from their peers. It is obvious that
the stability score is negatively affected, if the number of clusters significantly
changes over time. This influence is also expressed by the score of 0.577 for the
extreme example in the last row.

5.2 EIKON Financial Data Set

The first data set was released by Refinitiv (formerly Thomson Reuters Financial
& Risk) and is called EIKON. The database contains structured financial data of
thousands of companies for more than the past 20 years. For the ease of demon-
stration two features and 23 companies were chosen randomly for the experiment.
The selected features are named as TR-NetSales and TR-TtlPlanExpectedReturn
by Thomson Reuters and correspond to the net sales and the total plan expected
return, which are figures taken from the balance sheet of the companies. Since it
is a common procedure in economics, we divided the features by the company’s
total assets and normalized them afterwards with a min-max-normalization.

We generated the clusterings for all combinations of kti from two to five clus-
ters per timestamp. Selected results can be seen in Table 2. The actual maximum
retrieved from the iterations (in the third row) is printed bold. The worst score
can be found in the last row and represents an unstable clustering. It can be seen
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Table 2. Stability scores for the EIKON financial data set depending on kti .

kt1 kt2 kt3 kt4 kt5 kt6 kt7 kt8 FCSETS score

2 2 2 2 2 2 2 2 0.929

3 3 3 3 3 3 3 3 0.9

3 2 2 2 2 2 2 2 0.945

5 4 3 2 2 2 2 2 0.924

2 2 4 3 2 4 5 5 0.72

that the underlying data is well separated into three clusters in the first point in
time and into two clusters at the following timestamps. This is actually a rare
case but can be explained with the selection of features and companies. Actually
TR-TtlPlanExpectedReturn is rarely provided by Thomson Reuters and the fact
that we only chose companies which got complete data for all regarded points
in time. This may have diminished the number of companies which might have
lower membership degrees.

5.3 GlobalEconomy Data Set

The next data set originates from www.theglobaleconomy.com [1], which is a
website that provides economic data of the past years for different countries.
Again, two features were selected randomly for this experiment and were nor-
malized with a min-max-normalization. Namely the features are the “Unem-
ployment Rate” and the “Public spending on education, percent of GDP”. For
illustration reasons, we considered only a part of the countries (28) for the years
from 2010 to 2017.

Table 3. Stability scores for the GlobalEconomy data set depending on kti .

kt1 kt2 kt3 kt4 kt5 kt6 kt7 kt8 FCSETS score

2 2 2 2 2 2 2 2 0.978

3 3 3 3 3 3 3 3 0.963

3 2 2 2 2 2 2 2 0.945

5 3 4 2 2 2 2 2 0.955

2 3 2 2 4 5 5 5 0.837

The results are shown in Table 3. It can be seen that the best score is achieved
with two clusters at every point in time. Evidently the chosen countries can be
well separated into two groups at every point in time. More clusters or different
numbers of clusters for different timestamps performed worse. In this experiment
we also iterated over all combinations of kti for the given points in time. The
bold printed maximum, and the minimum, which can be found in the last row

www.theglobaleconomy.com
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of the table, represent the actual maximum and minimum within the range of
the iterated combinations.

6 Conclusion and Future Work

In this paper we presented a new method for analyzing multiple multivariate time
series with the help of fuzzy clustering per timestamp. Our approach defines a
new target function for sequence-based clustering tasks, namely the stability of
sequences. In our experiments we have shown that this enables the identification
of optimal ktis per timestamp and that our measure can not only rate time
series and clusterings but also can be used to evaluate the stability of data sets.
The latter is possible by examining the maximum achieved FCSETS score. Our
approach can be applied whenever similar behavior for groups of time series can
be assumed. As it is based on membership degrees, clusterings with overlapping
clusters and soft transitions can be handled. With the help of our evaluation
measure a stable over-time clustering can be achieved, which can be used for
further analysis such as outlier detection.

Future work could include the development of a fuzzy clustering algorithm
which is based on our formulated target function. The temporal linkage could
therefore already be taken into account when determining groups of time series.
Another interesting field of research could be the examination of other fuzzy
clustering algorithms like the Possibilistic Fuzzy c-Means algorithm [27]. This
algorithm can also handle outliers which can be handy for certain data sets. In
the experiment with the GlobalEconomy data set we faced the problem, that one
outlier would form a cluster on its own in every point in time. This led to very
high FCSETS scores. The handling of outliers could overcome such misbehavior.
Future work should also include the application of our approach to incomplete
data, since appropriate fuzzy clustering approaches already exist [15,16,33]. We
have faced this problem when applying our algorithm to the EIKON financial
data set. Also, the identification of time series that show a good team spirit for
a specific time period could be useful in some applications and might therefore
be investigated. Finally, the examination and optimization of FCSETS’ compu-
tational complexity would be of great interest as it currently seems to be fairly
high.

Acknowledgement. We thank the Jürgen Manchot Foundation, which supported
this work by funding the AI research group Decision-making with the help of Artificial
Intelligence at Heinrich Heine University Düsseldorf.
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Abstract. This paper compares different models for multilabel text
classification, using information collected from Crunchbase, a large data-
base that holds information about more than 600000 companies. Each
company is labeled with one or more categories, from a subset of 46 pos-
sible categories, and the proposed models predict the categories based
solely on the company textual description. A number of natural language
processing strategies have been tested for feature extraction, includ-
ing stemming, lemmatization, and part-of-speech tags. This is a highly
unbalanced dataset, where the frequency of each category ranges from
0.7% to 28%. Our findings reveal that the description text of each com-
pany contain features that allow to predict its area of activity, expressed
by its corresponding categories, with about 70% precision, and 42%
recall. In a second set of experiments, a multiclass problem that attempts
to find the most probable category, we obtained about 67% accuracy
using SVM and Fuzzy Fingerprints. The resulting models may consti-
tute an important asset for automatic classification of texts, not only
consisting of company descriptions, but also other texts, such as web
pages, text blogs, news pages, etc.

Keywords: Text mining · Multilabel classification · Text
classification · Document classification · Machine learning · Crunchbase

1 Introduction

We live in a digital society where data grows day by day, most of it consisting
of unstructured textual data. This creates the need of processing all this data
in order to be able to collect useful information from it. Text classification may
be considered a relatively simple task, but it plays a fundamental role in a
variety of systems that process textual data. E-mail spam detection is one of
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the most well-known applications of text classification, where the main goal
consists of automatically assigning one of two possible labels (spam or ham)
to each message. Other well-known text classification tasks, nowadays receiving
increasingly importance, include sentiment analysis and emotion detection, that
consist of assign a positive/negative sentiment or an emotion to a text (e.g.
happiness, anger, sadness, ...).

Crunchbase is the largest companies’ database in the world, containing a
large variety of up-to-date information about each company. Founded in 2007
by Michael Arrington, originally, it was the data storage for its mother company
TechCrunch. Until 2015, TechCrunch was the owner of the Crunchbase data,
but by that time Crunchbase decoupled itself from TechCrunch to focus on
its own products. Crunchbase database contains up-to-date details about over
600000 companies, including a short description, a detailed description, number
of employees, headquarters regions, contacts, market share, and the current areas
of activity.

This paper compares different approaches for multilabel text classification,
using recent information collected from Crunchbase. Each company is labeled
with one or more categories, from a subset of 46 possible categories, and the
proposed models predict the set of associated categories based solely on the
company textual description. In order to address the multilabel problem, two
classification strategies have been tested using different classification methods:
a) we have created 46 binary models, one for each one of the categories, where
the set of categories for a given description is achieved by combining the result
of the 46 models; b) we have created a single model that gives the most prob-
able categories for a given description. The resulting models may constitute an
important asset for automatic classification of texts that can be applied, not only
company descriptions, but to other texts, such as web pages, text blogs, news
pages, etc. The work here described extends the work described in [2] to multil-
abel classification, and constitutes a more challenging task, since each record is
associated with one or more categories.

This document is structured as follows: Sect. 2 overviews the related litera-
ture, focusing on the most commonly used methods and features to solve sim-
ilar text classification problems. Section 3 describes the data extraction proce-
dure, the resulting dataset, and the corresponding data pre-processing. Section 5
describes our experiments and the corresponding achieved results. Finally, Sect. 6
presents our final conclusions and pinpoints future research directions.

2 Related Work

Text based classification has become a major researching area, specially because
it can be used for a large number of applications. The existing literature in text
classification is vast, but most of the studies consider only a small number of
possible categories.

Most text classification approaches are based on Supervised Learning. [14]
applied machine learning to classify movie reviews from Internet Movie Database
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(IMDb) by sentiment. Also in [9] an experiment to spam detection in customer
reviews took place to check if false opinions were given to a product. Text clas-
sification has also been extensively applied to social media. The work described
in [11] applies several algorithms to tweets trying to find “trending topics”,
and [22] used Twitter information to develop an automated detection model
to find rumors and misinformation in social media, achieving an accuracy of
about 91%. These are examples of binary classification problems, but a bigger
challenge arises when it comes to multiple categories, also known as multi-class.
The work described in [3] presents a strategy based on binary maximum entropy
classifiers for automatic sentiment analysis and topic classification over Spanish
Twitter data. Both tasks involve multiple classes, and each tweet may be associ-
ated with multiple topics. Different configurations have been explored for both
tasks, leading to the use of cascades of binary classifiers for sentiment analysis
and a one-vs-all strategy for topic classification, where the most probable topics
for each tweet were selected.

The performance and overall simplicity of Naive Bayes makes it a very
attractive alternative for several classification tasks [13]. [8] used a Naive Bayes
Classifier for author attribution applied to a dataset called AAAT dataset (i.e
Authorship attribution of Ancient Arabic Texts) obtaining results up to 96%
classification accuracy. Naive Bayes results are mainly obtained from an unreal
assumption of independence. For this, there has been a major focus on investi-
gating the algorithm itself. Recently, [23] used a Naive Bayes on 20 newsgroups,
and compared the Multinomial, Bernoulli and Gaussian variants of Naive Bayes
approaches.

The work described by [7] reports the use of Fuzzy Fingerprints to find an
author of a text document using a large Dataset of newspaper articles from more
than 80 distinct authors, achieving about 60% accuracy. Also [18] and [5] make
use of the same technique to solve a multi-class classification problem when
trying to find events and twitter topics using textual data.

The work reported by [19] demonstrates that the use of Support Vector
Machines (SVM) outperform many other methods when applied to text classifi-
cation problems. The work described in [17] compares Naive Bayes and SVMs,
using two well-known datasets with different sample sizes in multiple experi-
ments, and concludes that SVMs outperform Naive Bayes by a large margin,
giving a much lower error rate, at that time the lowest for the given sets of data.
Also in [1] a text classification problem with a large number of categories is used
to compare SVMs and Artificial Neural Networks (ANNs). The results are very
clear for both recall and precision, both indicating the differences in performance
of the SVM and ANN. The SVM once again outperforms ANN, suggesting that
SVMs as more suitable for this type of problems, not only because they achieve
better performance, but also because they are less computationally complex.
Additionally, [1] also compares two sets of features, a large and a reduced fea-
ture set, concluding that, using SVMs, the small feature set achieves much better
performance.
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In what concerns features, one of the most common ways to represent textual
data is the bag-of-words approach [6], a very simple and efficient way to quickly
feed an algorithm and check its potential behavior. This method consists in a
simple breakdown of a sentence into a set of words that are part of it. It usually
achieves a decent performance, and in some cases, if the dataset is already very
rich in terms of features it can be a good implementation. This type of approach
assumes that words are independent, and do not consider the context where
the word was used, losing the syntactic structure and semantic meaning of the
sentence. When the data is sparse this technique may not be adequate, but it
is possible to use a similar technique, based on n-grams, that preserves some of
the local context of a word. The work reported by [10] describes experiments
using n-grams (bag-of-n-grams), consisting in a n-size moving window (usually
1,2 or 3) along each sentence and collect the unique combination of words along
with its count. Bag-of-words are compared to n-grams approaches and show
a large improvement over the entire set of experiments. Another well-known
and successful weighting scheme commonly used for Text Classification is Term
Frequency - Inverse Document Frequency (TF-IDF). An alternative to bag of
words, n-grams and TF-IDF is the use of word embeddings. Word embeddings
are a much more complex technique that attempts to encode the semantics of the
words in the text. Common implementations, such as word2vec, allow the use
of embeddings in text classification often with good results. For example, [12]
combines TF-IDF and word2vec and achieves more than 90% accuracy while
processing a news dataset.

A set of Natural Language Processing (NLP) techniques are commonly used
for extracting relevant features from a sentence. One of them is lemmatization,
a way to prepare the text for further usage, and a widely used technique when
working with text classifiers [15,21,24]. Unlike stemming, it is not just the process
of removing the suffix of a word, it also considers the morphological structure of
the word. Stemming is a similar approach that is much lighter to run, it does
not look into the morphosyntactic form of a word [20]. Part-of-Speech tagging
is another NLP technique commonly applied to text classification tasks, that
consists of assigning a part-of-speech tag (e.g., noun, adjective, verb, adverb,
preposition, conjunction, pronoun, etc.) to each word. For example, [16] use part-
of-speech to approach a multi-class classification problem for Amazon product
reviews.

An attempt to extract to automatically extract information from an older
version Crunchbase has been done in [2]. At the time, Crunchbase contained
around 120K companies, each classified to one out of 42 possible categories. The
dataset also contained category “Other”, that grouped a vast number of other
categories. The paper performs experiments using SVMs, Naive Bayes, TF-IDF,
and Fuzzy fingerprints. To our knowledge, no other works have reported text
classification tasks over a Crunchbase dataset.
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Fig. 1. Filtering and data transformation diagram.

3 Corpus

In this work we use a subset of a dataset extracted from Crunchbase contain-
ing up-to-date information of about 685000 companies. Crunchbase exposes a
REST API that can be used to integrate all the information that is provided
at Crunchbase for external applications. This API is accessible for research-
ing purposes and Crunchbase Team, upon request. Crunchbase kindly provided
full access for their data for 6 months, while developing this work. The data
was extracted using the Crunchbase API and stored into SQLite3 databases.
Figure 1 presents the data retrieval and filtering procedures. During the data
retrieval stage we verified that some of the original responses were not retrieved
properly, so they were removed. The extracted JSON entries contain a lot of
information, but only a small portion of that information is relevant for our
task: URL of the company, company name, description, short description, cate-
gories, and fine categories. DB1 contains only parseable records, containing only
the relevant fields for our task. Finally, DB2 contains the data used in our exper-
iments, were entries that did not belong to any category or that did not contain
any description were filtered out. The final database contains a total of 405602
records, that have been randomly shuffled and stored into two different tables:
train, containing 380602 records, will be used from training our models; and test,
containing 25000 records, that will be used for evaluating our models.

Each record contains a textual description of the company, that explains
the company for whoever wants to have a brief notion of what it does and
the areas that it belongs, and a short description, which is a summary of the
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description itself. Typically the textual description consists of only a couple of
paragraphs, an average of 77 words (including stopwords) which makes the text
based classification task a difficult problem. Crunchbase considers a fixed set
of 46 distinct categories, that correspond to areas of activity, and labels each
company with one or more of those categories. Figure 2 shows an histogram of
the number of companies that were labeled with a given number of different
categories. Most of the companies were labeled with more than one label, and
the maximum number of categories is 15. The average number of categories for
each company is 2.41, which may be a relevant fact to be considered in the
evaluation stage.

Fig. 2. Histogram of the number of companies labeled with a given number of cate-
gories.

Each category can also be decomposed into a number of fixed fine cate-
gories. The category is wider (e.g Software) while the fine categories are more
specific (e.g., Augmented Reality, Internet, Software, Video Games, Virtual Real-
ity). Each fine category can be present in more than one category, for instance
“Alumni” appears as a fine category for “Internet Services”, “Community and
lifestyle”, “Software”, and many other categories. Also, “Consumer” appears in
“Administrative Services”, “Hardware” and “Real Estate”, among others. The
analysis performed in this paper considers only the 46 wider categories.

Figure 3 presents the number of companies that have been labeled with a
given group, revealing a highly unbalanced dataset, where the frequency of each
category ranges from 28% (Software) to 0.7% (Navigation and Mapping). The
“Software” category is assigned to over 100K records, while 17 categories occur
in less than 10K companies. It is also important to note that even the second
most represented category, Internet Services, corresponds to only 56% of the
most represented category.

4 Experimental Setup

This section presents the details about the experimental setup. It starts by
describing the corpora pre-processing steps, then it presents the adopted classi-
fication methods, and finally presents the used evaluation metrics.



Classification Models from Textual Descriptions of Companies 701

Fig. 3. Number of companies labeled with a given group.
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4.1 Corpora Pre-processing and Feature Extraction

Experiments described in this paper model the categories of a company based on
the text available in the company description. We have removed the punctuation
marks, lower-cased every token, and removed all the stopwords from the text,
by using the list of stopwords included with Natural Language Toolkit (NLTK)
for the English language.

Concerning the text representation features, our baseline experiments use a
bag-of-words representation, considering the word frequency for each description.
We have also tested the TF-IDF weighting scheme, word bigrams, lemmatization,
stemming, and part-of-speech tags.

4.2 Methods

We have tested three approaches: multinomial Naive Bayes [13], Support Vec-
tor Machines [19], and Fuzzy Fingerprints [2]. We implemented the first two
approaches using scikit-learn, and used our own implementation of Fuzzy Fin-
gerprints.

Naive Bayes is one of the most widely used methods for binary and multiclass
text classification. The method outputs a probabilistic distribution, which makes
it possible to analyse the probability of the outcome and to easily define thresh-
olds. The multinomial Naive Bayes classifier is suitable for classification with
discrete features, which is the case of word counts for text classification, given
that the multinomial distribution normally requires integer feature counts. In
practice, fractional counts such as TF-IDF may also work, but our experiments
using TF-IDF achieved much worse performances.

Support Vector Machines (SVM) were introduced as a solution for a binary
problem with two categories associated with pattern recognition. The SVM cal-
culates the best decision limit between different vectors, each belonging to a
category. Based on the limit minimization principle [4] for a given vector space
where the goal is to find the decision boundary that splits the different classes
or categories. SVM based models are often used in text classification problems
since they behave quite well when used in supervised learning problems. The
good results are due to the high generalization capacity of the method, which can
be particularly interesting when trying to solve problems in bigger dimensions.
Every experiment here described use the default parameters of the scikit-learn
implementations.

Fuzzy fingerprints experiments use the Pareto function with K=4000. For
more information about the method refer to [2].

4.3 Evaluation Metrics

Experiments in this paper are evaluated using the metrics: accuracy, precision,
recall and F1-score, defined as:

Accuracy =
true positives + true negatives

total predictions
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Precision =
true positives

true positives + false positives

Recall =
true positives

true positives + false negatives

F1 − score =
2 ∗ precision ∗ recall

precision + recall

In order to calculate the overall metrics, we must consider the micro-average
and macro-average versions of the above performance metrics. A macro-average
computes the metric independently for each category and then takes the average
(hence treating all categories equally), whereas a micro-average aggregates the
contributions of all categories to compute the average metric. Micro-average
metrics are usually preferable metric for unbalanced multi-class classification
tasks.

5 Experiments and Results

This section presents two sets of experiments. Section 5.1 describes experiments
with binary classification models, one for each category, where each model pre-
dicts a category. Section 5.2 presents a number of experiments, considering only
one model in a multi-class scenario.

5.1 Binary Classification Models

Our first set of experiments consists of creating a model for each one of the
categories. In order to train each model in a binary fashion, we have selected
every companies labeled with the corresponding label as positive samples, and
all the other companies as negative samples. In this scenario, the performance of
each model can be evaluated individually, but micro-average or macro-average
metrics must be used in order to assess the global performance.

Table 1 presents the most relevant micro-average results. Concerning the
multinomial Naive Bayes, the best results were achieved using the word fre-
quency, as expected (see Sect. 4.2). The performance of the SVM-based mod-
els improved when moving from the word frequency to the TF-IDF weight-
ing scheme. However, the performance did not improve after introducing other
NLP-based features, such as lemmatization, stemming, part-of-speech tags, or
bigrams. The Fuzzy fingerprints did not produce interesting results, but this was
an expected result due to the small size of the descriptions and the fact that they
were developed for multi-class problems, and usually only are advantageous when
dealing with large number of classes [7,18]. Overall, the best result, considering
the F1-score, was achieved by combining TF-IDF with SVMs.

Table 2 shows the performance of each individual classifier, revealing that
the performance does not necessarily degrades for the most highly unbalanced
categories.
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Table 1. Classification results for each method, using different features.

Experiments Accuracy Precision Recall F1-score

Multinomial Naive Bayes (word frequency) 0.951 0.547 0.439 0.487

SVM

Word frequency 0.950 0.537 0.412 0.467

TF-IDF weights 0.959 0.696 0.420 0.524

TF-IDF + Lemmas 0.960 0.702 0.416 0.522

TF-IDF + Stemming 0.959 0.704 0.410 0.518

TF-IDF + POS tags 0.959 0.701 0.405 0.513

TF-IDF + word bigrams 0.960 0.703 0.417 0.523

TF-IDF + word bigrams + POS tags 0.959 0.701 0.405 0.513

Fuzzy fingerprints (Word frequency) – 0.204 0.786 0.324

The achieved results can not be directly compared with the results described
in [2], not only because the evaluation sets differ, but also because different met-
rics and different modeling approaches are being used. However, it is interesting
to note that SVMs, which did not perform well in that work, are now the best
performing method (by far).

5.2 Multi-class Classification

Our second set of experiments consists of creating a single model that is able
to provide the most probable category. In order to train such a model, we have
duplicated each entry as many times as the number of corresponding category
labels. So, each company labeled with n categories was duplicated once for each
one of the categories, and used for training each individual category. Such a
model may be useful for automatically guessing the best category for a given
text and also provide the top best categories. The performance of the model
cannot be easily evaluated, once the number of possible categories varies for
each company. So, we have evaluated the performance of correctly predicting
one of the categories, which may correspond to the best category only. In this
scenario, Accuracy becomes the most adequate metric, and Precision and Recall
do not apply. For this experiment we used TF-ICF (Term Frequency - Inverse
Class Frequency) [18], a process similar to TF-IDF, in the Fuzzy Fingerprints
approach.

Table 3 shows the classification performance when predicting the top cate-
gory, for each one of the three methods. Our baseline corresponds to always
guessing the most frequent category. In this multi-class experiment SVM and
Fuzzy Fingerprints perform very similarly, but the SVM is around 16x slower.
The multinomial Naive Bayes runs very fast, but the performance is more than
3% (absolute) lower than the other two approaches.
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Table 2. Classification performance by group for SVM + TF-IDF

Samples Precision Recall F1-score

Software 6929 0.683 0.560 0.616

Internet Services 3956 0.584 0.297 0.393

Media and Entertainment 3338 0.710 0.485 0.576

Information Technology 3108 0.565 0.263 0.359

Financial Services 2767 0.826 0.670 0.740

Hardware 2630 0.658 0.349 0.456

Commerce and Shopping 2527 0.676 0.394 0.498

Health Care 2521 0.841 0.704 0.767

Sales and Marketing 2387 0.732 0.457 0.563

Mobile 2017 0.582 0.319 0.412

Science and Engineering 1949 0.731 0.428 0.540

Data and Analytics 1595 0.629 0.279 0.386

Manufacturing 1576 0.656 0.473 0.550

Design 1305 0.630 0.274 0.381

Education 1226 0.804 0.591 0.681

Content and Publishing 1233 0.643 0.354 0.456

Real Estate 1231 0.770 0.532 0.629

Advertising 1156 0.678 0.396 0.500

Apps 1190 0.449 0.100 0.164

Transportation 1155 0.749 0.435 0.551

Consumer Electronics 1084 0.534 0.122 0.198

Professional Services 1018 0.679 0.302 0.418

Lending and Investments 933 0.639 0.424 0.510

Community and Lifestyle 888 0.549 0.114 0.188

Food and Beverage 844 0.772 0.610 0.682

Biotechnology 766 0.747 0.560 0.640

Travel and Tourism 723 0.791 0.488 0.604

Energy 754 0.775 0.580 0.663

Privacy and Security 666 0.726 0.362 0.483

Sports 607 0.735 0.448 0.557

Video 563 0.648 0.393 0.489

Natural Resources 579 0.717 0.522 0.604

Consumer Goods 571 0.656 0.294 0.406

Sustainability 574 0.680 0.389 0.494

Artificial Intelligence 509 0.742 0.316 0.444

Clothing and Apparel 470 0.769 0.496 0.603

Payments 409 0.640 0.347 0.450

Platforms 375 0.429 0.048 0.086

Music and Audio 403 0.784 0.496 0.608

Gaming 358 0.651 0.453 0.534

Events 367 0.671 0.294 0.409

Messaging and Telecommunications 313 0.539 0.220 0.313

Administrative Services 272 0.574 0.129 0.210

Government and Military 220 0.511 0.109 0.180

Agriculture and Farming 222 0.725 0.392 0.509

Navigation and Mapping 173 0.476 0.116 0.186
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Table 3. Multi-class classification results.

Accuracy Execution time (s)

Most frequent category (Baseline) 0.280

Multinomial Naive Bayes 0.646 11.37

SVM 0.678 1010.35

Fuzzy Fingerprints 0.672 62.99

6 Conclusions and Future Work

This paper describes multi-label text classification experiments over a dataset
containing more than 400000 records about companies extracted from Crunch-
base. We have performed experiments using three classification approaches,
multinomial Naive Bayes, SVM, and Fuzzy fingerprints, and considering different
combinations of text representation features. Our dataset is highly unbalanced
since the frequency of each category ranges from 28% to 0.7%. Nevertheless, our
findings reveal that the description text of each company contains features that
allow to predict its area of activity, expressed by its corresponding categories,
with about an overall performance of 70% precision, and 42% recall. When using
a multi-class approach, the accuracy for predicting the most probable category
is above 65%.

We are planning to improve this work by considering additional evaluation
metrics for ranking problems, such as precision@k, recall@k and f1@k, that may
be suitable for measuring the multi-label performance. Additionally, we are also
planning to introduce features based on embeddings and to compare the reported
methods with other neural network classification approaches.
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Abstract. This paper describes an approach for automatic capitaliza-
tion of text without case information, such as spoken transcripts of video
subtitles, produced by automatic speech recognition systems. Our app-
roach is based on pre-trained contextualized word embeddings, requires
only a small portion of data for training when compared with tradi-
tional approaches, and is able to achieve state-of-the-art results. The
paper reports experiments both on general written data from the Euro-
pean Parliament, and on video subtitles, revealing that the proposed
approach is suitable for performing capitalization, not only in each one
of the domains, but also in a cross-domain scenario. We have also cre-
ated a versatile multilingual model, and the conducted experiments show
that good results can be achieved both for monolingual and multilingual
data. Finally, we applied domain adaptation by finetuning models, ini-
tially trained on general written data, on video subtitles, revealing gains
over other approaches not only in performance but also in terms of com-
putational cost.

Keywords: Automatic capitalization · Automatic truecasing ·
BERT · Contextualized embeddings · Domain adaptation

1 Introduction

Automatic Speech Recognition (ASR) systems are now being massively used
to produce video subtitles, not only suitable for human readability, but also
for automatic indexing, cataloging, and searching. Nonetheless, a standard ASR
system usually produces text without punctuation and case information, which
makes this representation format hard to read [12], and poses problems to further
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automatic processing. The capitalization task, also known as truecasing [13,18],
consists of rewriting each word of an input text with its proper case information
given its context. Many languages distinguish between uppercase and lowercase
letters, and proper capitalization can be found in many information sources, such
as newspaper articles, books, and most of the web pages. Besides improving the
readability of texts, capitalization provides important semantic clues for further
text processing tasks. Different practical applications benefit from automatic
capitalization as a preprocessing step, and in what concerns speech recognition
output, automatic capitalization may provide relevant information for automatic
content extraction, and Machine Translation (MT).

Unbabel combines the speed and scale of automatic machine translation with
the authenticity that comes from humans, and is now dealing with an increasing
demand for producing video subtitles in multiple languages. The video processing
pipeline consists of a) processing each video with an ASR system adapted to the
source language, b) manual post-edition of the ASR output by human editors,
and c) perform the translation for other languages, first by using a customized
MT system, and then by using humans to improve the resulting translations.
Recovering the correct capitalization of the words coming from the speech tran-
scripts constitutes an important step in our pipeline due to its impact on the
post-edition time, performed by human editors, and on the MT task output.
Automatic Video subtitles may contain speech recognition errors and other spe-
cific phenomena, including disfluencies originated by the spontaneous nature of
the speech and other metadata events, that represent interesting practical chal-
lenges to the capitalization task.

This paper describes our approach for automatically recovering capitalization
from video subtitles, produced by speech recognition systems, using the BERT
model [8]. Experiments are performed using both general written data and video
subtitles, allowing for assessment of the impact of the specific inner structural
style of video subtitles in the capitalization task.

The paper is organized as follows: Sect. 2 presents the literature review.
Section 3 describes the corpora and pre-processing steps used for our experi-
ments. Section 4 presents our approach and the corresponding architecture, as
well as the evaluation metrics. Section 5 presents the results achieved, both on
a generic domain (monolingual and multilingual) and in the specific domain of
video subtitles. Finally, Sect. 6 presents the most relevant conclusions and pin-
points a number of future directions.

2 Related Work

Capitalization can be viewed as a lexical ambiguity resolution problem, where
each word has different graphical forms [10,30], by considering different capi-
talization forms as spelling variations. Capitalization can also be viewed as a
sequence tagging problem, where each lowercase word is associated with a tag
that describes its capitalization form [6,14,15,18].
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A common approach for capitalization relies on n-gram language models
estimated from a corpus with case information [10,15,18]. Common classifi-
cation approaches include Conditional Random Fields (CRFs) [27] and Max-
imum Entropy Markov Models (MEMM) [6]. A study comparing generative and
discriminative approaches can be found in [2]. The impact of using increasing
amounts of training data as well as a small amount of adaptation is studied in
[6]. Experiments on huge corpora sets, from 58 million to 55 billion tokens, using
different n-gram orders are performed in [10], concluding that using larger train-
ing data sets leads to increasing improvements in performance, but the same
tendency is not achieved by using higher n-gram order language models. Other
related work, in the context of MT systems, exploit case information both from
source and target sentences of the MT system [1,23,27].

Recent work on capitalization has been reported by [21,25]. [25] proposes a
method for recovering capitalization for long-speech ASR transcriptions using
Transformer models and chunk merging, and [21] extends the previous model
to deal with both punctuation and capitalization. Other recent advances are
reported by [29] for Named Entity Recognition (NER), a problem that can be
tackled with similar approaches.

Pre-trained transformer models such as BERT [8] have outperformed previ-
ous state-of-the-art solutions in a wide variety of NLP tasks [7,8,19]. For most
of these models, the primary task is to reconstruct masked tokens by uncovering
the relation between those tokens and the tokens surrounding. This pre-train
objective proved to be highly effective for token-level tasks such as NER. Bear-
ing this in mind, in this paper, we will follow the approach proposed in [3–5] and
address the capitalization task as a sequence tagging problem similar to NER
and show that, as in that task, BERT can also achieve state-of-the-art results
for capitalization.

3 Corpora

Constructing an automatic translation solution focused on video content is a
complex project that can be subdivided into several tasks. In this work, we
are focusing on enriching the transcription that comes from the ASR system,
by training a model prepared to solve the truecasing problem. This process is
of paramount importance for satisfactory machine translation task output and
would ultimately alleviate the post-edition time performed by human editors.

3.1 Datasets

Experiments performed in the scope of this paper use internal data (hereinafter
referred as domain dataset) produced by the ASR system and subsequently
post-edited by humans in order to correct bad word transcripts, introduce capi-
talization and punctuation, and properly segment the transcripts to be used for
video subtitling.
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Table 1. Source sentence and target tags construction for a given sentence. Note that
apart from lowercasing all tokens from the target, punctuation was also stripped to
create the source sentence.

Target Automatic Truecasing of Video Subtitles using BERT: A
multilingual adaptable approach

Source Automatic truecasing of video subtitles using bert a
multilingual adaptable approach

Target tags T T L T T L U U L L L

In order to establish a comparison with a structured out-of-domain training
corpus, we use the Europarl V8 corpus. This corpus is composed of parallel
sentences which allows for coherent studies in terms of complexity across different
languages. As one of the main objectives is that of building a single model that
can be used for several languages, we also constructed a dataset composed by
sentences in four different languages (English, Spanish, French and Portuguese)
in such a way that there are no parallel sentences across different languages.

The dataset composed by English-only sentences will be hereinafter referred
as monolingual dataset whereas the one composed by sentences in different lan-
guages will be referred as multilingual dataset.

3.2 Pre-processing

Considering that we want to build a model prepared to receive the outputs from
the ASR system and automatically solve the truecasing problem, we removed
all punctuation but apostrophes and hyphens which are extensively used in the
languages considered for this study. This is an important step towards building a
reliable model, since the ASR outputs’ punctuation is not consistently trustwor-
thy. For fair comparisons with the generic dataset, punctuation was also removed
from its data. Moreover, metadata events such as sound representations (e.g:
“laughing”) are removed from the domain dataset.

The problem of truecasing is approached as a sequence tagging problem [6,
14,15,18]. Thus, the source sentences for both datasets are solely composed by
lowercased tokens, whereas the target sequences for both datasets are composed
by the ground truth tags. A tag “U” is attributed to an uppercase token, a tag
“T” is attributed to a title token (only the first letter is uppercase) and a tag “L”
to all the remaining tokens. An example of this procedure can be seen in Table 1.
We observed that for the monolingual and multilingual datasets, as the first
token tag corresponds to “T” in the vast majority of their sentences, the model
would capitalize the first token just for its position. As we do not want to rely on
positional information to solve the truecasing problem, if a sentence starts with
a title token, we do not consider that token during training/testing. Statistics
on the size of the train and test set for each dataset (domain, monolingual and
multilingual), absolute frequency of each tag and the ratio of not-lowercased tags
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Table 2. Size of the train and test set for each dataset.

Dataset Number of
sentences

“L” tags “U” tags “T” tags Not–“L”
ratio (%)

Domain Train 127658 904288 38917 94767 14.78

Test 10046 76200 3420 8179 15.22

Generic Train 1908970 42936838 861199 4953879 13.54

Test 99992 2246120 43236 267972 13.86

Multilingual Train 1917932 46420467 624757 4532864 11.11

Test 99985 2399968 29564 240390 11.25

for each dataset is displayed in Table 2. The not–“L” ratio is relevant since the
datasets are unbalanced as “L” tags are much more frequent.

4 Approach Description and Evaluation Metrics

As pre-trained text encoders have been consistently improving the state of the
art on many NLP tasks, and since we are approaching the problem as a sequence
tagging problem, we decided to use the BERT [8] model. The BERT base model
is a 12-layer encoder-only bidirectional model based on the Transformer [26]
architecture with 768 hidden units that was trained for masked word prediction
and on next sentence prediction on a large corpus of plain unlabelled text. We
refer to [8] for further details of the model.

4.1 Architecture

Given an input sequence x = [x0, x1, . . . , xn], the BERT encoder will produce
an embedding e

(�)
xj for each token xj and each layer �.

In [24], it is revealed that the BERT model captures, within the network, lin-
guistic information that is relevant for downstream tasks. Thus, it is beneficial to
combine information from several layers instead of solely using the output of the
last layer. To do so, we used the approach in [17,22] to encapsulate information
in the BERT layers into a single embedding for each token, exj

, whose size is
the same as the hidden size of the model. This embedding will be computed as
a weighted sum of all layer representations:

exj
= γ

12∑

�=0

e(�)
xj

· softmax (α)(�) (1)

where γ is a trainable scaling factor and α =
[
α(1), α(2), . . . , α(12)

]
are the

layer scalar trainable weights which are kept constant for every token. Note that
this computation can be interpreted as layer-wise attention mechanism.
So, intuitively, higher α(�) values are assigned to layers that hold more relevant
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Fig. 1. The architecture of our solution. The output of the BERT model is computed
using the Layer Attention block respective to (1). The scalar weights respective to each
layer are trained simultaneously with the rest of the model.

information to solve the task. In order to redistribute the importance through all
the model layers, we used layer dropout, devised in [17], in which each weight
α(�) is set to −∞ with probability 0.1. This will also prevent overfitting of the
model to the information captured in any single layer.

Finally, the embeddings are fed to a classification head composed by a feed-
forward neural network which will down-project the size-768 token embedding exj

to a size-3 logits vector. This vector will then be fed to a softmax layer to produce
a probability distribution over the possible tags and the position index of the max-
imum value of the vector will be considered as the predicted tag (Fig. 1).

4.2 Evaluation Metrics

All the evaluation presented in this paper uses the performance metrics: F1-
score and Slot Error Rate (SER) [20]. Only capitalized words (not lowercase)
are considered as slots and used by these metrics. Hence, the capitalization SER
is computed by dividing the number of capitalization errors (misses and false
alarms) by the number of capitalized words in the reference.
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Experiments reported here do not consider the first word of each sentence
whenever the corresponding case information may be due to its position in the
sentence. So, every titled word appearing at the beginning of a sentence will be
excluded both at the training and testing stages.

5 Results

In this section, we compare the results of experiments ran on the Europarl V8
corpus and on domain data for both monolingual and multilingual models. After
loading the pre-trained model and initializing both the layer-wise attention and
the feed-forward projection on top, we split the network parameters into two
groups; encoder parameters, composed by the layer-wise attention and the pre-
trained transformer architecture, and classification-head parameters, composed
by the final linear projection used to compute the logits for each tag. Follow-
ing the approach in [11,17] we apply discriminative learning rates for the two
different groups of parameters. For the classification-head parameters we used
a learning rate of 3 × 10−5 with a dropout probability of 0.1. We froze the
encoder parameters during the first epoch, and trained them on the subsequent
epochs using a 1 × 10−5 learning rate. The optimizer used in both groups was
Adam [16]. We use a batch size of 8 for the models trained on the generic and
domain datasets, and a batch size of 16 for the models trained on the multilingual
dataset. At test time, we select the model with the best validation SER.

In order to evaluate if the models trained on written text data are able to
transfer capabilities to in-domain data, we perform domain adaptation by fine-
tuning the monolingual models on in-domain data.

We implemented all the models using either the bert-base-uncased (for
the models trained on monolingual English data) or bert-base-multilingual
-uncased (for the models trained on multilingual data) text encoders from the
Huggingface library [28] as the pre-trained text models and we ran all experi-
ments making use of the Pytorch Lightning wrapper [9].

5.1 Experiments on Europarl Data

For both generic and multilingual datasets, we train models under four settings:
+1.9M (correspondent to the datasets in Table 2), 200K (200,000 training sen-
tences), 100K (100,000 training sentences) and 50K (50,000 training sentences).
We will be referring to the models trained on monolingual data as monoligual
models, and the models trained on multilingual data as multilingual models.
Moreover, we trained a Bidirectional Long Short-Term Memory (BiLSTM) with
a CRFs model on the entire monolingual dataset (+1.9M setting), which will
be referred to as baseline model since we used its evaluation results as the
baseline.

Monolingual Setting. Results are shown in Table 3. We observe that the
monolingual model performs better than the baseline model for all training set-
tings. This is evidence that our approach using pre-trained contextual embed-
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Table 3. Results for the monolingual models evaluated on the generic test set.

Model architecture Training setting SER F1-score

Baseline (BiLSTM + CRF) +1.9M 0.1480 0.9200

Monolingual +1.9M 0.0716 0.9753

200K 0.0775 0.9717

100K 0.0800 0.9701

50K 0.0850 0.9682

Table 4. Evaluation on the multilingual
test set.

Model Training

setting

SER F1-score

Multilingual +1.9M 0.1040 0.9579

200K 0.1206 0.9472

100K 0.1240 0.9447

50K 0.1312 0.9379

Table 5. Evaluation on the monolin-
gual test set.

Model Training

setting

SER F1-score

Monolingual +1.9M 0.0716 0.9753

Multilingual 0.0761 0.9690

Baseline 0.1480 0.9200

dings is not only able to achieve better results, but it also manages to do so
using only a small portion of the data when compared to the baseline model.

Multilingual Setting. Results are shown in Tables 4 and 5. As expected,
results for the monolingual model are better than the ones obtained by the
multilingual model. Nevertheless, the multilingual model trained on its +1.9M
setting outperforms all the models trained on monolingual data under all settings
but the +1.9M setting, although this could be happening because the multilin-
gual train dataset has more English individual sentences than the monolingual
200 K setting dataset. The results are evidence that a multilingual model which
holds information on several languages is able to achieve similar results to a
monolingual model and outperforms previous state-of-the-art solutions trained
and tested in an equivalent monolingual setting.

Comparison with the Baseline Model. Results show that both the mono-
lingual and multilingual models outperform the results obtained using the base-
line model even when training on a small portion of the available data. Thus,
further experiments will be solely evaluated on the models based on our archi-
tecture.

5.2 Experiments on Domain Data

All the experiments reported in this section make use of the domain datasets
described in Table 2. First, we trained a model using the pre-trained con-
textual embeddings from bert-base-uncased and another using those from
bert-base-multilingual-uncased on the domain training dataset. We will
be referring to these models as in-domain models. Then, we perform domain



716 R. Rei et al.

Table 6. Evaluation on the domain test set.

Model Training setting SER F1-score

Domain 0.2478 0.8489

Monolingual +1.9M 0.3128 0.7855

200K 0.3136 0.7827

100K 0.3071 0.7927

50K 0.3193 0.7853

Multilingual +1.9M 0.3285 0.7715

200K 0.3355 0.7825

100K 0.3372 0.7794

50K 0.3530 0.7716

adaptation by loading the obtained models from experiments on the Europarl
data and training them with in domain data.

In-domain Models. Results are shown in Table 6. Recalling the dataset statis-
tics from Table 2, the domain dataset is comparable, in terms of number of sen-
tences, with the monolingual dataset for the 50K training setting. Comparing the
in-domain model and generic model for this setting, when tested on data from
the same distribution that they trained on, we observe that there is a significant
offset between the evaluation metrics. This is evidence that there are structural
differences between the generic and the domain data. This notion is supported
by the evaluation results of the generic and multilingual models initially trained
on Europarl data on the domain test set and will be furtherly explored next.

Structural Differences Between Domain and Europarl Data. By
observing both datasets, we noticed some clear structural differences between
them. For one, since the original samples were segmented (the average number
of tokens per sample is 6.74 for the domain training data and 24.19 for the
generic training data), there is much less context preservation in the domain
data. Moreover, the segmentation for subtitles is, in some cases, made in such a
way that multiple sentences fit into a single subtitle, i.e, a single training sample
(see Table 7). Since, as we previously remarked, we did not want to use the ASR
outputs’ punctuation, the truecasing task is hardened as it is difficult for the
model to capture when a subtitle ends and a new one start for there can be a
non-singular number of ground-truth capitalized tags assigned to words that are
not typically capitalized. Note that recovering the initial sentences from the sub-
titles, i.e, the pre-segmentation transcripts, would be a difficult and cumbersome
task. Moreover, different chunks of the ASR outputs’ have been post-edited by
different annotators which creates some variance in the way the segmentation
and capitalization are done for some words (e.g: the word “Portuguese” is written
as “portuguese” and attributed the tag “L” two times out of the eleven times it
appears in the training data set). Last, when compared with the Europarl data,
the in-domain data is significantly more disfluent. This is mainly due to the
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spontaneous nature of the source speech, since the ASR outputs are respective
to content from video-sharing platforms that is considerably more unstructured
(e.g: “Oh my God. Two more. You did it man!”).

Table 7. In the example below, extracted from the domain data, we observe that the
segmentation caused the capitalized tag respective to “The” to appear in the middle
of the subtitle. Since we are not using any punctuation information, this significantly
hardens the task of capitalization for this word. It is also noticeable that the length of
each subtitle is small, hampering the use of context to solve the task.

ASR output “After that it’s all good, you get on the plane, and you’re
away. The airport is key to the start of a good beginning to
the holiday.”

Segmented subtitles After that it’s all good, you get on the plane, and you’re
away. The airport is key to the start of a good beginning to
the holiday

Target tags T L L L L L L L L L L L

L L L L L T L L L

L L L L L L L L L L

In-domain Adaptation. Given our interest in evaluating the ability to trans-
fer capabilities from the models trained on generic data, we fine-tuned the mono-
lingual models on in-domain data. These models will be referred to as adapted
models. All four models trained on Europarl data, one for each training setting,
are adapted to the domain data. Results shown in Table 8 reveal that all adapted
models but the one initially trained in the total setting on Europarl data outper-
form the domain model. Moreover, the results shown in Fig. 2 indicate that by
reducing the original training dataset size, we obtain models that are not only

Table 8. Evaluation results on the domain test set.

Model Training setting SER F1-Score

In-domain 0.2478 0.8489

Monolingual +1.9M 0.3128 0.7855

200K 0.3136 0.7827

100K 0.3071 0.7927

50K 0.3193 0.7853

Adapted +1.9M 0.2482 0.8467

200K 0.2445 0.8599

100K 0.2469 0.8503

50K 0.2404 0.8540
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Fig. 2. In dashed, we represent the average duration of an epoch for the initial training
of the monolingual model and, in full lines, we represent the SER for the monolingual
and adapted models as a function of the original training dataset size. Domain adap-
tation is the most successful for the model that initially trained faster.

faster to train but also more adaptable to in-domain data, since they are not
as prone to overfitting to the training data inner structural style as models that
are trained on bigger training datasets.

5.3 Layer-Wise Attention Mechanism

All our models contain a layer-wise dot-product attention mechanism to compute
the encoder output as a combination of the output of several encoder layers. This
attention mechanism is devised in such a way that layer scalar weights are trained
jointly with the encoder layers. By observing Fig. 3, it is clear that some layers
contain more significant information than others for solving the truecasing task.
Moreover, the effect of fine-tuning the monolingual model on domain data is
also felt on the trained weights, in such a way that, generally, its original weight
distribution approaches the in-domain model weight distribution.

Center of Gravity. To better interpret the weight distributions in Fig. 3,
we computed the center of gravity metric as in [24] for each of the models.
Intuitively, higher values indicate that the relevant information for the truecasing
task is captured in higher layers. Results are shown in Table 9, and, as expected,
they are similar across all the trained models. Moreover, comparing with the
results obtained for this metric in [24], we observe that the truecasing task
center of gravity is very similar to that of the NER task (6.86). This result
further supports the previously mentioned notion of similarity between the task
at hand and the NER task.
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Fig. 3. Normalized weights distribution for the in-domain model, the monolingual and
multilingual models trained with the +1.9M setting, and the adapted model initially
trained with that same setting. Weight distributions are similar across different models.
Moreover, by observing the adapted model weight distribution, we notice that, as
expected, the adaptation process brings the weight distribution of the monolingual
closer to that of the in-domain model.

Table 9. Center of gravity for the monolingual, adapted model and multilingual trained
with the 50K setting.

Model Training setting Center of gravity

Monolingual +1.9M 7.48

Multilingual 7.40

Adapted 6.93

In-domain 7.05

6 Conclusions and Future Work

We made use of pre-trained contextualized word embeddings to train monolin-
gual and multilingual models to solve the truecasing task on transcripts of video
subtitles produced by ASR systems. Our architecture, which makes use of a layer
attention mechanism to combine information in several encoder layers, yielded
consistent and very satisfactory results on the task at hand, outperforming pre-
vious state-of-the-art solutions while requiring less data. By performing domain
adaptation, we furtherly improved these results, underscoring the notion that
models initially trained on less data can adapt better and faster to in-domain
data. In the future, we expect improvements on the task by addressing capital-
ization and punctuation simultaneously in a multitask setting and by making
use of additional context by recovering the initial transcripts from the segmented
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subtitles. Further gains on this task would constitute a major step towards an
improved video processing pipeline for Unbabel.
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Abstract. TF-IDF is one of the most commonly used weighting met-
rics for measuring the relationship of words to documents. It is widely
used for word feature extraction. In many research and applications,
the thresholds of TF-IDF for selecting relevant words are only based
on trial or experiences. Some cut-off strategies have been proposed in
which the thresholds are selected based on Zipf’s law or feedbacks from
model performances. However, the existing approaches are restricted in
specific domains or tasks, and they ignore the imbalance of the number
of representative words in different categories of documents. To address
these issues, we apply game-theoretic shadowed set model to select the
word features given TF-IDF information. Game-theoretic shadowed sets
determine the thresholds of TF-IDF using game theory and repetition
learning mechanism. Experimental results on real world news category
dataset show that our model not only outperforms all baseline cut-off
approaches, but also speeds up the classification algorithms.

Keywords: Feature extraction · TF-IDF · Text classification ·
Game-theoretic shadowed sets

1 Introduction

Term Frequency-Inverse Document Frequency, or TF-IDF, is one of the most
commonly used weighting metrics for measuring the relationship of words and
documents. It has been applied to word feature extraction for text categorization
or other NLP tasks. The words with higher TF-IDF weights are regarded as
more representative and are kept while the ones with lower weights are less
representative and are discarded. An appropriate selection of word features is
able to speed up the information retrieval process while preserving the model
performance. However, for many works, the cutoff values or the thresholds of TF-
IDF for selecting relevant words is only based on guess or experience [6,11,12].
Zipf’s law is used to select words whose IDF exceeds a certain value [10]; Lopes
et al. [9] proposed a cut-off policy by balancing the precision and recall from the
model performance.
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M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1237, pp. 722–733, 2020.
https://doi.org/10.1007/978-3-030-50146-4_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50146-4_53&domain=pdf
https://doi.org/10.1007/978-3-030-50146-4_53


Feature Extraction with TF-IDF and GTSS 723

Despite their success, those cut-off policies have certain issues. The cut-off
policy that the number of words to keep is determined by looking at the precision
and recall score of the model can be restricted in specific domains or tasks. In
addition, the number of relevant words may vary in different categories of doc-
uments in certain domains. For instance, there exists an imbalance between the
number of representative positive words and negative words in many sentiment
classification tasks. Thus, a cut-off policy that is able to capture such imbalance
is needed.

To address these issues, we employ game-theoretic shadowed sets (GTSS)
to determine the thresholds for feature extraction. GTSS, proposed by Yao
and Zhang, is a recent promising model for decision making in the shadowed
set context [22]. We calculate the difference of TF-IDF for each word between
documents as the measurement of relevance, and then use GTSS to derive the
asymmetric thresholds for word extraction. GTSS model aims to determine and
explain the thresholds from a tradeoff perspective. The words with the difference
of TF-IDF less than β or greater than α are selected. We regard the words whose
difference of TF-IDF are between α and β as neutral. These words can be safely
removed since they can not contribute much in text classification.

The results of our experiments on a real world news category dataset show
that our model achieves significant improvement as compared with different TF-
IDF based cut-off policies. In addition, we show our model can achieve compara-
ble performance as compared to the model using all words’ TF-IDF as features,
while greatly speed up the classification algorithms.

2 Related Work

TF-IDF is the most commonly used weighting metrics for measuring the rela-
tionship of words and documents. By considering the word or term frequency
(TF) in the document as well as how unique or infrequent (IDF) a word in the
whole corpus, TF-IDF assigns higher values to topic representative words while
devalues the common words. There are many variations of TF-IDF [19,20]. In
our experiments, we use the basic form of TF-IDF and follow the notation given
in [7]. The TF-IDF weighted value wt,d for the word t in the document d is thus
defined as:

wt,d = tft,d×log10(
N

dft
) (1)

where tft,d is the frequency of word t in the document d, N is the total number
of documents in the collection, and dft is the number of documents where word
t occurs in.

TF-IDF measures how relevant a word to a certain category of documents,
and it is widely used to extract the most representative words as features for
text classification or other NLP tasks. The extraction is often done by select-
ing top n words with the largest TF-IDF scores or setting a threshold below
which the words are regarded as irrelevant and discarded. But an issue arises
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about how to choose such cut-off point or threshold so as to preserve the most
relevant words. Many works choose such threshold only based on trial or experi-
ence [6,11,12,23]. On the other hand, some approaches address the issue. Zipf’s
law is used to select the words whose IDF exceeds a certain value in order
to speed up information retrieval algorithms [4,10]. Lopes et al. [9] proposed
a cut-off policy which determines the number of words to keep by balancing
precision and recall in downstream tasks. However, such cut-off points should
not be backward induced by the performance of downstream task; rather, the
thresholds should be derived before feeding the extracted words to the classifier
to speed up the model without reducing the performance. In addition, for cer-
tain domains, the number of relevant words may vary in different categories of
documents. For instance, the number of words relevant to positive articles and
the number of words relevant to negative articles are often imbalanced in many
sentiment analysis tasks. Therefore, the cut-off points or thresholds may also
vary in different categories. By observing these drawbacks, we attempt to find
asymmetric thresholds of TF-IDF for feature extraction by using game-theoretic
shadowed sets.

3 Methodology

In this section, we will introduce our model in details. Our model aims to find an
approach of extracting relevant words and discarding less relevant words based
on TF-IDF information so as to speed up learning algorithms while preserving
the model performance. We first calculate the difference of TF-IDF for each word
between documents as one single score to measure the degree of relevance, and
then use game-theoretic shadowed sets to derive the asymmetric thresholds for
words extraction.

3.1 TF-IDF Difference as Relevance Measurement

Consider a binary text classification task with a set of two document classes
C = {c1, c2}. For each word t, we calculate the difference of TF-IDF weighted
value between document c1 and c2 as:

DWt = wt,c1 − wt,c2 = (tft,c1 − tft,c2)×log10(
N

dft
). (2)

We use DWt to measure how relevant or representative the word t is to the doc-
ument classes. The greater the magnitude of DWt, the more representative the
word t is to distinguish the document categories. A large positive value of DWt

indicates that a word t is not common word and more relevant to the document
c1, while a significant negative value shows the word t is representative to doc-
ument c2. If DWt is closed to zero, then we regard the word t as neutral. In the
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next section, we will choose the cut-off thresholds for selecting the most repre-
sentative word features by using the Game-theoretic Shadowed Sets method. For
convenience, we here normalize the DWt with min-max linear transformation.

3.2 Shadowed Sets

A shadowed set S in the universe U maps the membership grades of the objects in
U to a set {0, [0, 1], 1}, i.e., S : U → {0, [0, 1], 1} a pair of thresholds (α, β) while
0 ≤ β < α ≤ 1 [13]. Shadowed sets are viewed as three-valued constructs induced
by fuzzy sets, in which three values are interpreted as full membership, full
exclusion, and uncertain membership [15]. Shadowed sets can capture the essence
of fuzzy sets at the same time reducing the uncertainty from the unit interval
to a shadowed region [15]. The shadowed set based three-value approximations
are defined as a mapping from the universe U to a three-value set {0, σ, 1}, if
a single value σ (0 ≤ σ ≤ 1) is chosen to replace the unit interval [0, 1] in the
shadowed sets, that is [3],

T(α,β)(μA(x)) =

⎧
⎪⎨

⎪⎩

1, μA(x) ≥ α,

0, μA(x) ≤ β,

σ, β < μA(x) < α.

(3)

The membership grade μA(x) of an object x indicates the degree of the object x
belonging to the concept A or the degree of the concept A applicable to x [21].

Given a concept A and an element x in the universe U , if the membership
grade of this element μA(x) is greater than or equal to α, the element x would
be considered to belong to the concept A. An elevation operation elevates the
membership grade μA(x) to 1 which represents a full membership grade [14]. If
the membership grade μA(x) is less than or equal to β, the element x would not
be considered to belong to the concept A. An reduction operation reduces the
membership grade μA(x) to 0 which represents a null membership grade [14]. If
the membership grade μA(x) is between α and β, the element x would be put
in a shadowed area, which means it is hard to determine if x belongs to concept
A. μA(x) is mapped to σ which represents the highest uncertainty, that is we
are far more confident about including an element or excluding an element in
the concept A. The membership grades between α and σ are reduced to σ; The
membership grades between σ and β are elevated to σ. We get two elevated
areas, E1(μA) and Eσ(μA), and two reduced areas, R0(μA) and Rσ(μA) shown
as the dotted areas and lined areas in Fig. 1 (a). Figure 1 (b) shows the shadowed
set based three-value approximation after applying the elevation and reduction
operations on all membership grades.

The vagueness is localized in the shadowed area as opposed to fuzzy sets
where the vagueness is spread across the entire universe [5,16].
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Fig. 1. A shadowed set based three-value approximation

3.3 Error Analysis

Shadowed set based three-value approximations use two operations, the eleva-
tion and reduction operations, to approximate the membership grades μA(x)
to a three-value set {0, σ, 1}. Given an element x with the membership grade
μA(x), the elevation operation changes the membership grade μA(x) to 1 or σ.
The reduction operation changes the membership grade μA(x) to 0 or σ. These
two operations change the original membership grades and produce the elevated
and reduced areas which show the difference between the original membership
grades and the mapped values 1, σ, and 0, as shown in Fig. 1(a). These areas
can be viewed as the elevation and the reduction errors, respectively. The eleva-
tion operation produces two elevation errors E1(μA) and Eσ(μA); the reduction
operation produces two reduction errors R0(μA) and Rσ(μA), that is

– The elevation error E1 is produced when the membership grade μA(x) is
greater than or equal to α (i.e., μA(x) ≥ α), and the elevation operation
elevates μA(x) to 1. We have E1(μA(x)) = 1 − μA(x).

– The elevation error Eσ is produced when β < μA(x) < σ, and the elevation
operation elevates μA(x) to σ. We have Eσ(μA(x)) = σ − μA(x).

– The reduction error R0 is produced when μA(x) ≤ β, and the reduction
operation reduces μA(x) to 0. We have R0(μA(x)) = μA(x).

– The reduction error Rσ is produced when σ < μA(x) < α, and the reduction
operation reduces μA(x) to σ. We have Rσ(μA(x)) = μA(x) − σ.

The elevation errors E(α,β)(μA) is the sum of two elevation errors produced
by elevation operation. The total reduction errors R(α,β)(μA) is the sum of two
reduction errors produced by reduction operation. For discrete universe of dis-
course, we have a collection of membership values. The total elevation and reduc-
tion errors are calculated as [22],
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E(α,β)(μA) = E1(μA) + Eσ(μA)

=
∑

μA(x)≥α

E1(μA(x)) +
∑

β<μA(x)<σ

Eσ(μA(x))

=
∑

μA(x)≥α

(1 − μA(x)) +
∑

β<μA(x)<σ

(σ − μA(x)), (4)

R(α,β)(μA) = R0(μA) + Rσ(μA)

=
∑

μA(x)≤β

R0(μA(x)) +
∑

σ<μA(x)<α

Rσ(μA(x))

=
∑

μA(x)≤β

μA(x) +
∑

σ<μA(x)<α

(μA(x) − σ). (5)

Given a fixed σ, the elevation and reduction errors change when the thresh-
olds (α, β) change. No matter which threshold changes and how they change,
the elevation and reduction errors always change in opposite directions [22].
The decrease of one type of errors inevitably brings the increase of the other
type of errors. The balanced shadowed set based three-value approximations are
expected to represent a tradeoff between the elevation and reduction errors.

3.4 Game-Theoretic Shadowed Sets

Game-theoretic shadowed sets (GTSS) use game theory to determine the thresh-
olds in the shadowed set context. The obtained thresholds represent a tradeoff
between two different types of errors [22]. GTSS use a game mechanism to formu-
late games between the elevation and reduction errors. The strategies performed
by two players are the changes of thresholds. Two game players compete with
each other to maximize their own payoffs. A repetition learning mechanism is
adopted to approach a compromise between two players by modifying game
formulations repeatedly. The resulting thresholds are determined based on the
game equilibria analysis and selected stopping criteria.

Game Formulation. Three elements should be considered when formulating
a game G, i.e., game player set O, strategy profile set S, and utility functions
u, G = (O,S, u) [8,17]. The game players are the total elevation and reduction
errors which are denoted by E and R, i.e., O = {E,R}.

The strategy profile set is S = SE × SR, where SE = {s1, s2, ..., sk1} is
a set of possible strategies for player E, and SR = {t1, t2, ..., tk2} is a set of
possible strategies for player R. We select (σ, σ) as the initial threshold val-
ues, which represent that we do not have any uncertainty on all membership
grades and we have the smallest shadowed area. Starting from (σ, σ), we grad-
ually make α and β further to each other and increase the shadowed area. cE

and cR are two constant change steps, denoting the quantities that two play-
ers E and R use to change the thresholds, respectively. For example, we set
the initial threshold values (α, β) = (0.5, 0.5). The player E performs increas-
ing α and the player R performs decreasing β. When we set cE = 0.01 and
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cR = 0.02, we have SE = {α no change, α increases 0.01, α increases 0.02}, and
SR = {β no change, β decreases 0.02, β decreases 0.02}.

The payoffs of players are u = (uE , uR), and uE and uR denote the payoff
functions of players E and R, respectively. The payoff functions uE(α, β) and
uR(α, β) are defined by the elevation and reduction errors, respectively, that is,

uE(α, β) = E(α,β)(μA),
uR(α, β) = R(α,β)(μA), (6)

where E(α,β)(μA) and R(α,β)(μA) are defined in Eqs. (4) and (5). We try to
minimize the elevation and reduction errors, so both players try to minimize
their payoff values.

We use payoff tables to represent two-player games. Table 1 shows a payoff
table example in which both players have 3 strategies.

Table 1. An example of a payoff table

R

β β ↘ cR β ↘ 2cR

E α 〈uE(α, β), uR(α, β)〉 〈uE(α, β − cR),
uR(α, β − cR)〉

〈uE(α, β − 2cR),
uR(α, β − 2cR)〉

α ↗ cE 〈uE(α + cE , β),
uR(α + cE , β)〉

〈uE(α+ cE , β − cR),
uR(α + cE , β − cR)〉

〈uE(α + cE , β − 2cR),
uR(α + cE , β − 2cR)〉

α ↗ 2cE 〈uE(α + 2cE , β),
uR(α + 2cE , β)〉

〈uE(α+2cE , β−cR),
uR(α+2cE , β − cR)〉

〈uE(α + 2cE , β − 2cR),
uR(α + 2cE , β − 2cR)〉

Repetition Learning Mechanism. The involved players are trying to max-
imize their own payoffs in the formulated games. But one player’s payoff is
effected by the strategies performed by the other player. The balanced solution
or game equilibrium is a strategy profile from which both players benefit. This
game equilibrium represents both players reach a compromise or tradeoff on the
conflict. The strategy profile (si, tj) is a pure strategy Nash equilibrium, if for
players E and R, si and tj are the best responses to each other [17], this is,

∀sk ∈ SE , uE(si, tj) � uE(sk, tj), where si, sk ∈ SE and k �= i, tj ∈ SR,

∀tl ∈ SR, uR(si, tj) � uR(si, tl), where tj , tl ∈ SR and l �= j, si ∈ SE . (7)

The above equations can be interpreted as a strategy profile such that no player
would like to change his/her strategy or they would loss benefit if deriving from
this strategy profile, provided this player has the knowledge of other player’s
strategies.
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The equilibrium of the current formulated game means the threshold pair
corresponding this equilibrium are the best choices within the current strategy
sets. We have to check if there are some threshold pairs near the current equi-
librium that are better than the current ones. Thus we repeat the games with
the updated initial thresholds. We may be able to find more suitable thresholds
with repetition of thresholds modification.

We define the stopping criteria so that the iterations of games can stop
at a proper time. There are many possible stopping criteria. For example, the
payoff of each player is beyond a specific value; the thresholds (α, β) violate the
constraint 0 ≤ β ≤ σ ≤ α ≤ 1; the current game equilibrium does not improve
the payoffs gained by both players under the initial thresholds; no equilibrium
exists. In this research, we compare the payoffs of both players under the initial
thresholds and the thresholds corresponding to the current equilibrium. We set
the stopping criteria as one of the players increases its payoff values, or there
does not exist a pure strategy Nash equilibrium in the current game.

3.5 Feature Extraction

We now select the most representative words by applying the thresholds (α, β)
derived in previous sections. The words with normalized DWt being greater than
the upper threshold α and less than the lower threshold β will be kept as our
word features for text classification while the rest words are discarded.

4 Experiments

4.1 Dataset and Evaluation Metrics

We evaluate our approach on the HuffPost news category dataset [18]. This
dataset consists of 200,853 news headlines with short descriptions from HuffPost
website during the year 2012 to 2018. It contains 31 categories of news such as
politics, entertainment, business, healthy living, art, and so forth. We use the
largest two categories, the 32,739 politics news and 14,257 entertainment news, as
the binary text classification data in our experiments. The news text is obtained
by concatenating the news headline and the corresponding short description. We
extract 381449 words from these selected news. We use 80% data for training
and 20% for testing, and adopt accuracy and F1 scores as metrics for model
evaluation.

4.2 Deriving Thresholds with GTSS

We first normalize DWt using min-max normalization linear transformation. The
distribution of normalized DWt is shown in Fig. 2 Almost 80% of words have the
normalized DWt 0.548054 so we set σ = 0.5481 aiming to minimize the errors
produced by mapping all DWt values to three values {0, σ, 1} via game-theoretic
shadowed set model. If we set σ as other value instead of 0.548054, mapping the
large amount of DWt 0.548054 to σ definitely will produce more errors.
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Fig. 2. Normalized DWt information

We formulate a competitive game between the elevation and reduction errors
to obtain the thresholds. The game players are elevation and reduction errors,
i.e., O = {E,R}. The strategy profile set is S = {SE × SR}. The game is being
played with the initial thresholds (α, β) = (0.55, 0.54). Here, α = 0.55 is the
smallest value that greater than σ = 0.5481, and β = 0.54 is the largest value
that less than σ = 0.5481. The player E and R try to increase α and decrease β
with the change steps as 0.01 and 0.02, respectively. The strategy set of E is SE =
{α no change, α increases 0.01, α increases 0.02}. The corresponding α values
are 0.55, 0.56, and 0.57. The strategy set of R is SR = {β no change, β decreases
0.02, β decreases 0.4}. The corresponding α values are 0.54, 0.52, and 0.5. The
payoff functions are defined in Eqs. (4) and (5). Table 2 is the payoff table. The
cell at the right bottom corner is the game equilibrium whose strategy profile
is (α increases 0.02, β decreases 0.04). The payoffs of the players are (17689,
8742). We set the stopping criterion as one of players’ payoff increases. When
the thresholds change from (0.55, 0.54) to (0.57, 0.5), the elevation error is
decreased from 17933 to 17689, and the reduction error is decreased from 10472
to 8742. We repeat the game by setting (0.57, 0.5) as the initial thresholds.

Table 2. The payoff table

R

β β ↓ 0.02 β ↓ 0.04

E α <17933, 10472> <17965, 9624> <18034, 8733>

α ↑ 0.01 <17690, 10476> <17722, 9628> <17792, 8738>

α ↑ 0.02 <17588, 10480> <17620, 9632> <17689, 8742>

The competitive games are repeated four times. The result is shown in
Table 3. In the fourth iteration, we find out that the payoff value of player E
increases. The repetition of game is stopped and the final result is the initial
thresholds of the fourth game (α, β) = (0.61, 0.42).
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Table 3. The repetition of game

Initial(α, β) Result(α, β) Payoffs both decrease?

1 (0.55, 0.54) (0.57, 0.5) <17689, 8742>
√

2 (0.57, 0.5) (0.59, 0.46) <17686, 6516>
√

3 (0.59, 0.46) (0.61, 0.42) <7832, 3934>
√

4 (0.61, 0.42) (0.63, 0.38) <8221, 2693> ×

We got (α, β) = (0.61, 0.42), which means we keep the words with DWt

greater than 0.61 and less then 0.42, and discard the words with DWt between
0.61 and 0.42.

4.3 Baselines

We calculate the DWt value for each single word and bi-gram, and then use
Support Vector Machine (SVM) [1,2] as our unique classifier to compare our
approach with: (1) ALL, in which we keep all words with no feature extraction;
(2) Sym-Cutoff, in which the symmetrical cut-off values are drawn purely based
on a simple observation of the statistical distribution of DWt; (3) Sym-N-
Words, where we select 2n words given n smallest DWt and n largest DWt

such that 2n is approximately equal to the total number of words extracted with
our approach.

4.4 Results

We show the model performance of different extraction approaches on the new
category dataset in Table 4. Our model is named as “Asym-GTSS-TH”. From
the results, we can observe that: (1) Our approach achieves superior performance
compared with Sym-Cutoff which is purely based on a guess given TF-IDF dis-
tribution. It verifies our claim that the GTSS can better capture the pattern
of TF-IDF and provide a more robust range for selecting relevant words given
TF-IDF for text classification; (2) The Sym-N-Words approach achieves close
performance as ours, because it takes the advantage of the information of the
number of words to keep derived with our thresholds. However, our approach still
outperforms the Sym-N-words approach since it evenly selects relevant words for
document c1 and c2. It indicates that there exists imbalance of representative
words between different categories of documents which is better captured by our
model; (3) Compared with using all words’ TF-IDF score as input, our model
discards more than 52% words and speed up the process of classification while
preserving the performance.
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Table 4. Summary of the performance of different feature extraction approaches

Accuracy F1-score

ALL 94.7 92.3

Sym-Cutoff 91.9 88.2

Sym-N-Words 94.5 91.7

Asym-GTSS-TH 94.6 91.9

5 Conclusion

In this paper, we propose a feature extraction approach based on TF-IDF and
game-theoretic shadowed sets in which the asymmetric thresholds for selecting
relevant words are derived by repetitive learning on the difference of TF-IDF for
each word between documents. Our model can explore the pattern of TF-IDF
distribution as well as capture the imbalance of the number of representative
words in different categories. The experimental results on the news category
dataset show that our model can achieve improvement as compared to other cut-
off policies and speed up the information retrieval process. In the future, we will
explore the consistency of our model performance on more real world datasets
and test the generalization ability of our GTSS model on different metrics that
measures the relevance of words, such as BNS and Chi-square.
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Abstract. In this paper we focus on an Natural Language Inference
task. Being given two sentences, we classify their relation as NEUTRAL,
ENTAILMENT or CONTRADICTION. Considering the achievements
of BERT (Bidirectional Encoder Representations from Transformers) in
many Natural Language Processing tasks, we use BERT features to cre-
ate our base model for this task. However, several questions arise: can
other features improve the performance obtained with BERT? If we are
able to predict the situations in which BERT will fail, can we improve
the performance by providing alternative models for these situations?
We test several strategies and models, as alternatives to the standalone
BERT model in the possible failure situations, and we take advantage of
semantic features extracted from Discourse Representation Structures.

Keywords: Natural Language Inference · Feature engineering ·
Failure prediction model

1 Introduction

Natural Language Inference (NLI) is a known task in Natural Language Process-
ing (NLP)[1]. It can be implemented as a classification task in which the model
needs to decide about the relation between a pair of sentences. Usual categories
are ENTAILMENT, NEUTRAL and CONTRADICTION.

BERT (Bidirectional Encoder Representations from Transformers) [7] is a
state-of-the-art language model that has shown impressive performance on many
NLP tasks. Here, we take advantage of BERT to perform NLI. However, we also
implement other NLI classifiers, based on lexical and semantic features that
we extract from the Discourse Representation Structures obtained for each pair
of sentences we want to classify. Then, we implement two strategies to detect
possible failures. The first is based on the fact that BERT has lower results in
ENTAILMENT and CONTRADICTION situations. Therefore, we run BERT
and directly accept the NEUTRAL labels, while other classifiers are employed
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in the other cases. In addition, we also implement several models that try to
predict when BERT will fail. In the latter cases, other models are employed.
Results show that we can improve results with the models based on lexical and
semantic features.

This paper is organized as follows: Sect. 2 presents related work and Sect. 3
our models. Section 4 describes the experimental setup and Sect. 5 the results.
Finally, Sect. 6 presents the main conclusions and future work.

2 Related Work

A benchmark for systems aimed at Recognizing Textual Entailment (RTE) was
initially developed in the PASCAL challenge series [2]. The RTE task is to detect
entailment between a premise and an hypothesis, while a related task is to detect
NLI, where target labels are ENTAILMENT, CONTRADICTION and NEU-
TRAL (no semantic relation).

NLI is represented in the SICK corpus [13], composed by 10000 pairs of
sentences, seeded from corpora of image and video captions, and expanded by
rule based transformations to introduce particular linguistic phenomena, such as
negations. SICK is annotated by crowd-sourcing, and was the target of a shared
task on the Semeval evaluation series [12].

Following SICK, the much larger SNLI [5] corpus was released, containing
570000 examples also seeded from a corpus of captions and annotated by crowd-
sourcing, but instead expanded by crowd-sourcing. SNLI inspired the creation
of other corpora on NLI, for instance the e-SNLI corpus [6] that augments SNLI
with natural language explanations for the annotations, or the MultiNLI corpus
[21], that follows the same design procedure and size of SNLI, but instead of
captions includes sentence pairs from other text genres and sources, such as
fiction books or transcripts of conversations. MultiNLI is one of the targets of
the GLUE benchmark [20], that evaluates systems for their joint performance
on multiple Natural Language Understanding (NLU) tasks.

Various forms of assessing NLI are presented in the mentioned shared tasks
and benchmarks. However, as modern machine learning architectures partic-
ularly leverage large data collections, recent approaches suitable for NLI are
mostly applied to corpora such as SNLI or MultiNLI, both for their greater size
and complexity. One of such approaches is the BERT model [7].

BERT generates a dynamic embedding according to the context in which a
word is employed, and may even generate the embedding of a sentence pair, if the
aim is to verify entailment on the pair [7]. Training a BERT model is expensive
on time and resources, but models based on Wikipedia were made available in
its original release.

The BERT model achieves competitive results on various NLU tasks, as
shown from its performance on the GLUE benchmark [7], but also specifically
in NLI, such as when applied only to MultiNLI [7], to SNLI [22], or to the recent
CommitmentBank corpus [10] which is part of the SuperGLUE benchmark [19],
that supersedes GLUE.
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Fig. 1. Simple model – M-BERT directly used to detect NEUTRAL relations.

Recent studies on the generalization of various models, including BERT, sug-
gest that performance is only consistent when assessed within the same bench-
mark [18], from combining train and test sets of different corpora. Other works
focus specifically on BERT failures in NLI, such as in [14] to hypothesize that
the success of BERT relies on the occurrence of certain linguistic patterns in the
data, or in [10] to suggest that BERT does not implicitly learn linguistic priors
and is mostly driven by statistical regularities. To the best of our knowledge, the
performance of BERT in the SICK corpus was not yet evaluated.

3 Entailment and Failure Models

In this section we describe the models we use to perform the NLI task and the
strategies we have implemented to predict when BERT will fail.

The BERT model, trained to perform NLI, uses BERT embeddings as fea-
tures. From now on we will call M-BERT to this model. A set of lexical and
semantic features, alone or associated with BERT embeddings, are also used to
train several classifiers that perform NLI. We call M-OTHER to these models.
Our semantic features are based on Discourse Representation Structures (DRS),
that is, a formal representation of meaning that follows the Discourse Represen-
tation Theory [11].

Our first strategy (from now on Strategy 1) takes advantage of M-BERT
results to decide which are the possible failure conditions. We have observed that
BERT has lower results in both ENTAILMENT or CONTRADICTION situa-
tions. Thus, we run M-BERT and accept all the NEUTRAL labels, according
to it. For the remaining labels we run the M-OTHER models, trained in the
NLI task, but in a corpus that only has ENTAILMENT or CONTRADICTION
labels. Figure 1 depicts this strategy.

We also implement a second strategy (from now on Strategy 2) in which
we train several models that try to predict when BERT will fail. The previous
mentioned lexical and semantic features, along with BERT, are used by these
models. We call M-FAIL to these models. Here, the idea is the following: if a
model of type M-FAIL predicts that BERT will fail, then the previous models,
trained in the NLI task, are used instead of M-BERT. Figure 2 illustrates this
strategy.

Finally, instead of using a single M-FAIL model to predict M-BERT failure,
we consider the predictions of the different M-FAIL models. Three options are
considered:
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Fig. 2. Pipeline with M-FAIL models.

– at least one: if one model from the M-FAIL family returns an M-BERT failure,
we will consider that M-BERT will fail;

– majority voting : if the majority of the models from the M-FAIL family returns
an M-BERT failure, we will consider that M-BERT will fail;

– all : if all the models from the M-FAIL family returns a M-BERT failure, we
will consider that M-BERT will fail

Considering the previous scheme, the different M-OTHER models will be
used if M-BERT is expected to fail.

4 Experimental Setup

4.1 Corpora

Our experiments rely on the SICK corpus [13] for English. As previously said,
sentences in SICK are image captions obtained by crowd-sourcing. Each instance
in SICK, that is, each pair of sentences, is labelled as NEUTRAL, ENTAIL-
MENT or CONTRADICTION regarding the semantic relation between the two
sentences. For instance, the pair composed by the sentences “Three kids are
jumping in the leaves” and “Three boys are jumping in the leaves”, is labeled
as ENTAILMENT, while the former sentence paired with “Three kids are sit-
ting in the leaves” is labeled as NEUTRAL. An example of a pair labeled as
CONTRADICTION in SICK is the pair composed by the sentences “Nobody
is riding the bicycle on one wheel” and “A person is riding the bicycle on one
wheel”.

We follow the partitions suggested in [13], but 5 SICK instances were dis-
carded as the DRS parser, Boxer [4], was unable to process them. Therefore,
our train, development and test set have 4436, 495 and 4904 pairs of sentences,
respectively. Notice that the train set is unbalanced, as 2522 pairs are labelled
as NEUTRAL, 1274 as ENTAILMENT and 640 as CONTRADICTION.

Balancing the Training Data. In preliminary experiments, we have observed
that when a negation was involved in a sentence, the classifiers found more
difficult to return the appropriate label . In addition, we consider that a strong
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lexical overlap could be easy to identify (at least by the models using the lexical
features), and thus, that more complicated situations occur in scenarios of low
lexical overlap between sentences. Therefore, we tried to balance the train set,
in what respects these two characteristics (negation and low lexical overlap). We
decided, then, to split the original training into 2 partitions with 50% each, by
considering:

– the presence of a negation in at least one of the sentences of a pair, as identified
with DRS semantics, and

– low lexical overlap, as identified by a Jaccard score lower than 0.6 or a BLEU
score lower than 0.5.

In the 2522 NEUTRAL instances in the original train set, 416 have a nega-
tion and 2188 have low lexical overlap. In the 1274 ENTAILMENT instances,
10 have a negation and 634 have low lexical overlap. Finally, from the 640 CON-
TRADICTION instances, 575 have a negation and 318 have low lexical overlap.
Hence, training instances that contain a negation are almost equally distributed
among NEUTRAL and CONTRADICTION classes, and most of the examples
from these classes have low lexical overlap. Negations are almost not employed
in examples of the ENTAILMENT class, and there are as much examples with
low lexical overlap as those with high lexical overlap. We split the original train
set in two, each containing 50% of the examples from each class, and 50% of
the examples that comply with the above features. For instance, the first set
contains 319 examples of the CONTRADICTION class, of which 287 employ a
negation and 166 have low lexical overlap.

Building Corpora for Strategy 1 and 2. In order to implement Strategy
1, the one that takes advantage of M-BERT results, we removed from the train
corpus the NEUTRAL relation and train the M-OTHER models in order to
distinguish ENTAILMENT from CONTRADICTION situations.

Concerning Strategy 2, and in order to create a reference to train the
M-FAIL models (the FAIL-CORPUS), we split the training set in two (as pre-
viously described). In the first half we trained M-BERT. Then, we run it on the
second half, to build the corpus to train the M-FAIL model: every time M-BERT
successfully labelled an NLI relation, the associated sentence pair was labeled as
1; it was labeled as 0 otherwise. As usually, the development set was used for
tuning (and first tests) and the test set for the final evaluation. Figure 3 details
these partitions.

As we will see, since M-BERT model is successful in most examples, the
dataset to train M-FAIL models is unbalanced. Therefore, to train M-FAIL mod-
els we discard examples where BERT succeeded until reaching the same number
of examples where BERT failed to identify the entailment class, hence obtaining
a balanced FAIL-CORPUS.
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Fig. 3. Corpus partition.

4.2 Evaluation Metrics

The performance of our system on entailment detection is measured with Accu-
racy, Precision, Recall and F-measure (F1, as we consider precision and recall to
have the same weight/importance). All metrics produce values between 0 and 1,
where greater values are better, hence we report results in percentages.

As the entailment task on SICK configures a multi class classification setup,
and the Precision, Recall and F1 metrics are based on the assumption that a
positive label exists (as in binary classification), we calculate such metrics using
an average of scores from binary classifications, one for each class such that
the positive label represents belonging to the class. We chose to average by a
weighted mean that considers the number of instances of each class, since class
distribution is imbalanced in SICK.

Our definition of accuracy also considers class imbalance. In a multi class
setting, the accuracy is defined per class, and obtained by dividing each element
in the diagonal of the confusion matrix (true positives per class) by the sum of
elements in the corresponding row (the total number of examples of a class).
The balanced accuracy is the arithmetic mean of the per class accuracy values.

4.3 Features

Lexical Features. We employ the INESC-ID@ASSIN [9] system that generates
almost 100 features for a pair of sentences, based on the lexical aspects of their
words or by using some similarity measure. Examples of such features are the
length of the longest sentence, or the BLEU [16] metric.

Semantic Features. We obtain DRSs from the Boxer framework [4], containing
semantic aspects for each sentence, such as the implicit entities resulting from
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pronoun resolution, or the type of a quantity, for instance to distinguish parts
of a date from other numbers in a sentence.

Given two DRS, we compute 16 features that represent aspects shared by
both or occurring in any of the DRS. These include: a) boolean features, such as
to indicate the presence of a negation in any of the DRS; b) count based features,
such as for the number of equivalent entities between the negated subsets of each
DRS; c) percentage based features, such as the ratio of equivalent entities and
total entities in both DRS, according to various entity comparison techniques,
and; d) distance based features, such as from measuring the mean gap between
dates from each DRS.

Entities within DRS are considered:

– not equivalent, if a word pair, one from each DRS, is an antonym in the
WordNet [8] database;

– equivalent, if it is a synonym in WordNet;
– equivalent if the cosine of their FastText [3] embeddings is greater than 0.4.

This threshold was chosen by observation, and as a compromise between the
cosines for synonyms and antonyms sampled from WordNet.

Any technique for entity comparison results in 2 features, one for the count
of entities matched and the other for the percentage of entities matched in the
total count of entities of both DRS.

Other than entities, a DRS is also composed of conditions, defined as rela-
tions between a source and a target entity. We consider the target entities from
a pair of conditions of the same type, one from each DRS, as equivalent if the
source entities are also equivalent according to matched entities from the previ-
ously mentioned entity comparison techniques. Thus, relative to conditions, we
consider two entities as equivalent if employed in the same type of condition,
with the same role and paired with equivalent entities.

BERT Embeddings. We employ the base and uncased version of BERT pre-
trained models for English only, as provided with the original BERT release1,
which produces embeddings with 768 dimensions. For such model, we lowercased
text and removed accents from sentence pairs before input to BERT.

4.4 Tools and Model Configuration

Machine learning and data processing is mostly provided by scikit-learn [17]. All
models are trained using Support Vector Machines (SVM) with a linear kernel,
from the LIBLINEAR implementation. To obtain the final model for a certain
combination of features, 7 different models are trained, corresponding to different
values for the C parameter, sampled from a logarithmic scale between 0.001 and
1000. The model with optimal C parameter is further calibrated to maximize
the performance of the SVM [15]. All model tuning is evaluated on the SICK
development set.
1 https://github.com/google-research/bert.

https://github.com/google-research/bert
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Lexical and semantic features are linearly scaled with various approaches,
according to the type of feature or feature vector. For instance, for all feature
vectors, values greater than 1 are scaled to the 0 to 1 range, while for feature
vectors that include BERT we do not employ feature centering around zero,
since BERT features are sparse.

5 Results and Discussion

As previously said, M-BERT and M-OTHER models were trained in the first
partition of the training set and evaluated in the test set. M-FAIL models were
trained in the FAIL-CORPUS. In this section, we will identify each model accord-
ing to the features that they use; we will use “b” for BERT features, “l” for the
lexical features and “d” for the DRS ones.

5.1 M-BERT and M-OTHER Results

Results obtained by M-BERT and M-OTHER models can be seen in Table 1.

Table 1. Performance in the entailment task of the different models.

Features Accuracy Precision Recall F1

b (M-BERT) 78.62% 80.47% 80.53% 80.46%

b+d 79.57% 81.16% 81.18% 81.13%

b+l 79.98% 81.73% 81.77% 81.71%

b+l+d 78.56% 79.96% 79.87% 79.89%

l 67.78% 74.96% 75.18% 74.58%

d 74.16% 75.99% 76.06% 75.93%

l+d 76.72% 78.92% 78.92% 78.79%

The two best results differ from the others in at least 1% of accuracy, and
almost the same for F1, and correspond to M-OTHER models trained on com-
binations of BERT embeddings with lexical or semantic features (b+l and b+d,
respectively). M-BERT is the third best result.

Other than BERT features, the most informative features of the M-OTHER
model based on semantic features include the previously described features for
the count of matched entities according to DRS conditions and the percentage
of matched entities from lexical semantics heuristics.

The most informative lexical features in the b+l model include various count
based features, after scaled to the 0 to 1 range. The only non scaled feature
in such set is the cosine distance between vector representations of trigram
sequences for each sentence.



742 P. Fialho et al.

Table 2. Strategy 1.

Features Accuracy Precision Recall F1

b 78.80% 80.45% 80.55% 80.46%

b+l 78.83% 80.47% 80.57% 80.48%

b+d 78.85% 80.53% 80.61% 80.53%

b+l+d 78.88% 80.56% 80.63% 80.56%

l 70.10% 76.21% 76.20% 76.02%

d 78.91% 80.85% 80.79% 80.76%

l+d 78.91% 80.85% 80.79% 80.76%

5.2 Strategy 1 Results

Table 2 shows the results obtained by following Strategy 1.
Of the 4904 instances in the test set, 58% were predicted as neutral by M-

BERT, and the remaining were classified by models trained only on ENTAIL-
MENT and CONTRADICTION instances.

The best result was obtained from the model based on semantic features, or
lexical and semantic features combined, while the worst result, with less 4% of F1
performance, is from the model based only on lexical features. In the l+d model,
the only semantic feature of its most informative set is the count of matched
entities according to heuristics, while lexical features in this set are once again
mostly count based features.

5.3 M-FAIL Results

Table 3 shows the results obtained by the different M-FAIL models.

Table 3. M-FAIL results

Features Accuracy Precision Recall F1

b 58.20% 84.78% 60.86% 70.86%

b+l 59.12% 84.94% 65.61% 74.03%

b+d 59.21% 85.00% 65.48% 73.97%

b+l+d 59.28% 85.00% 65.91% 74.25%

l 59.48% 84.87% 69.11% 76.19%

d 58.47% 84.11% 73.41% 78.39%

l+d 59.88% 85.01% 70.03% 76.80%

M-BERT predicts the correct entailment class on 80% of the test set
instances, hence the accuracy of M-FAIL models mostly represent their abil-
ity to predict that M-BERT will correctly identify the entailment class of a
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given example, which is low. However, F1 is more robust to such imbalanced
situations, since it considers recall, and better represents the ability of M-FAIL
to identify either of the classes.

Considering F1, the best model to identify that a given example has the
properties to be correctly classified by M-BERT, is based on semantic features.

The second best model, by a distance of more than 1%, also involves semantic
features, but combined with lexical features. However, the only semantic feature
in the most informative features for the second best model is once again the
count of matched entities according to heuristics, while lexical features in such
set include less count based features than in previous experiments, although still
in greater number among the top 10.

5.4 Strategy 2 Results

Table 4 shows the top-10 results considering the best combination between M-
FAIL and M-OTHER models, considering Strategy 2, that is, a M-FAIL model
predicts that BERT will fail and an M-OTHER model is activated in those
situations. We will represent these combinations by m1/m2 in which m1 is an
M-FAIL model or ensemble and m2 is an M-OTHER.

Table 4. Strategy 2 results

M-FAIL / M-OTHER features Accuracy Precision Recall F1

d / b+l 79.43% 81.28% 81.32% 81.26%

b+l / b+l 79.77% 81.39% 81.44% 81.39%

b+l+d / b+l 79.79% 81.41% 81.46% 81.41%

l / b+l 79.69% 81.44% 81.48% 81.42%

l+d / b+l 79.77% 81.48% 81.53% 81.47%

b+d / b+l 79.80% 81.47% 81.53% 81.47%

b / b+l 79.80% 81.57% 81.63% 81.56%

All / b+d 79.56% 81.11% 81.14% 81.09%

Majority voting / b+l 79.77% 81.44% 81.48% 81.43%

All / b+l 79.85% 81.61% 81.67% 81.60%

Results of classifying an instance with M-BERT according to at least one
M-FAIL model are not shown in Table 4, since in such setting 88.87% of the test
examples are classified with M-BERT, which results in performance similar to
using the standalone M-BERT on the full test set (i.e., without M-FAIL models),
hence lower than shown.

For the remaining settings, both from using a single M-FAIL model or an
ensemble of M-FAIL models, M-BERT is employed to classify at least 32.99% of
the test examples, in any of the “all” ensemble setting, and at most 70.07%, in
any setting using only the M-FAIL model based on semantic features.
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5.5 Results According to the Labels

Just to give an idea of how the best results relate with the different labels,
Table 5 shows the results of the best model (d or l+d; see Table 2) according to
Strategy 1, and Table 6 shows the results of the best model (all / b+l; see
Table 4) according to Strategy 2.

Table 5. Performance per entailment label, of the best result with Strategy 1.

Label Accuracy Precision Recall F1

NEUTRAL 85.80% 82.77% 85.80% 84.26%

ENTAILMENT 71.56% 72.75% 71.56% 72.15%

CONTRADICTION 79.35% 89.26% 79.35% 84.01%

Table 6. Performance per entailment label, of the best result with Strategy 2.

Label Accuracy Precision Recall F1

NEUTRAL 86.66% 83.58% 86.66% 85.09%

ENTAILMENT 72.27% 75.06% 72.27% 73.64%

CONTRADICTION 80.62% 86.84% 80.62% 83.61%

In both cases, entailment relation is the most difficult to identify.

6 Conclusion and Future Work

We have presented several classifiers that perform NLI. Along with state-of-
the-art BERT, other features were considered. We also implemented a model
that tries to predict when BERT will fail. Various experiments here presented
suggest that our semantic features are able to improve results, for instance in
distinguishing ENTAILMENT from CONTRADICTIONS, as seen in results for
Strategy 1. Moreover, we presented data analysis and manipulation techniques
to better leverage a corpus for supervision of our models, and a novel approach
to assess NLI by training a classifier to predict when a typically successful model
might fail.

Machine learning in our experiments was based on linear SVM, to achieve
the best performance for the least computation time and resources. However, as
future work, we plan to experiment with non linear kernels, and other machine
learning algorithms, such as decision trees or an ensemble of different models.

Our setup is adaptable to other corpora or features, but human supervision
is required on balancing the training data and building the FAIL-CORPUS,



To BERT or Not to BERT 745

to prevent extreme cases on particular corpora, for instance an empty FAIL-
CORPUS due to sucess of M-BERT. As such, future work also includes assessing
the performance of our strategies in other corpora, and inspection of models with
low performance, such as the M-FAIL models, by example analysis.

Acknowledgements. This work was supported by national funds through FCT,
Fundação para a Ciência e Tecnologia, under project UIDB/50021/2020 and by FCT’s
INCoDe 2030 initiative, in the scope of the demonstration project AIA, “Apoio
Inteligente a empreendedores (chatbots)”, which also supports the scholarship of Pedro
Fialho.

References

1. Androutsopoulos, I., Malakasiotis, P.: A survey of paraphrasing and textual entail-
ment methods. J. Artif. Int. Res. 38(1), 135–187 (2010)

2. Bar-Haim, R., Dagan, I., Szpektor, I.: Benchmarking applied semantic inference:
the PASCAL recognising textual entailment challenges. In: Dershowitz, N., Nissan,
E. (eds.) Language, Culture, Computation. Computing - Theory and Technology.
LNCS, vol. 8001, pp. 409–424. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-45321-2 19

3. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017). https://
doi.org/10.1162/tacl a 00051. https://www.aclweb.org/anthology/Q17-1010

4. Bos, J.: Open-domain semantic parsing with boxer. In: Proceedings of the 20th
Nordic Conference of Computational Linguistics (NODALIDA 2015), pp. 301–304.
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