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Preface

We are very pleased to present you with the proceedings of the 18th International
Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems (IPMU 2020), held during June 15–19, 2020. The con-
ference was scheduled to take place in Lisbon, Portugal, at the Instituto Superior
Técnico, University of Lisbon, located in a vibrant renovated area 10 minutes from
downtown. Unfortunately, due to the COVID-19 pandemic and international travel
restrictions around the globe, the Organizing Committee made the decision to make
IPMU 2020 a virtual conference taking place as scheduled.

The IPMU conference is organized every two years. Its aim is to bring together
scientists working on methods for the management of uncertainty and aggregation of
information in intelligent systems. Since 1986, the IPMU conference has been pro-
viding a forum for the exchange of ideas between theoreticians and practitioners
working in these areas and related fields. In addition to many contributed scientific
papers, the conference has attracted prominent plenary speakers, including the Nobel
Prize winners Kenneth Arrow, Daniel Kahneman, and Ilya Prigogine.

A very important feature of the conference is the presentation of the Kampé de
Fériet Award for outstanding contributions to the field of uncertainty and management
of uncertainty. Past winners of this prestigious award are Lotfi A. Zadeh (1992), Ilya
Prigogine (1994), Toshiro Terano (1996), Kenneth Arrow (1998), Richard Jeffrey
(2000), Arthur Dempster (2002), Janos Aczel (2004), Daniel Kahneman (2006), Enric
Trillas (2008), James Bezdek (2010), Michio Sugeno (2012), Vladimir N. Vapnik
(2014), Joseph Y. Halpern (2016), and Glenn Shafer (2018). This year, the recipient
of the Kampé de Fériet Award is Barbara Tversky. Congratulations!

The IPMU 2020 conference offers a versatile and comprehensive scientific program.
There were four invited talks given by distinguished researchers: Barbara Tversky
(Stanford University and Columbia University, USA), Luísa Coheur (Universidade de
Lisboa, Instituto Superior Técnico, Portugal), Jim Keller (University of Missouri,
USA), and Björn Schuller (Imperial College London, UK). A special tribute was
organized to celebrate the life and achievements of Enrique Ruspini who passed away
last year. He was one of the fuzzy-logic pioneers and researchers who contributed
enormously to the fuzzy sets and systems body of knowledge. Two invited papers are
dedicated to his memory. We would like to thank Rudolf Seising, Francesc Esteva,
Lluís Godo, Ricardo Oscar Rodriguez, and Thomas Vetterlein for their involvement
and contributions.

The IPMU 2020 program consisted of 22 special sessions and 173 papers authored
by researchers from 34 different countries. All 213 submitted papers underwent the
thorough review process and were judged by at least three reviewers. Many of them
were reviewed by more – even up to five – referees. Furthermore, all papers were
examined by the program chairs. The review process respected the usual



conflict-of-interest standards, so that all papers received multiple independent
evaluations.

Organizing a conference is not possible without the assistance, dedication, and
support of many people and institutions.

We are particularly thankful to the organizers of special sessions. Such sessions,
dedicated to variety of topics and organized by experts, have always been a charac-
teristic feature of IPMU conferences. We would like to pass our special thanks to Uzay
Kaymak, who helped evaluate many special session proposals.

We would like to acknowledge all members of the IPMU 2020 Program Committee,
as well as multiple reviewers who played an essential role in the reviewing process,
ensuring a high-quality conference. Thank you very much for all your work and efforts.

We gratefully acknowledge the technical co-sponsorship of the IEEE Computational
Intelligence Society and the European Society for Fuzzy Logic and Technology
(EUSFLAT).

A huge thanks and appreciation to the personnel of Lisbon’s Tourism Office
‘Turismo de Lisboa’ (www.visitlisboa.com) for their eagerness to help, as well as their
enthusiastic support.

Our very special and greatest gratitude goes to the authors who have submitted
results of their work and presented them at the conference. Without you this conference
would not take place. Thank you!

We miss in-person meetings and discussions, yet we are privileged that despite these
difficult and unusual times all of us had a chance to be involved in organizing the
virtual IPMU conference. We hope that these proceedings provide the readers with
multiple ideas leading to numerous research activities, significant publications, and
intriguing presentations at future IPMU conferences.

April 2020 Marie-Jeanne Lesot
Marek Z. Reformat

Susana Vieira
Bernadette Bouchon-Meunier

João Paulo Carvalho
Anna Wilbik

Ronald R. Yager

vi Preface

http://www.visitlisboa.com


Organization

General Chair

João Paulo Carvalho INESC-ID, Instituto Superior Técnico,
Universidade de Lisboa, Portugal

Program Chairs

Marie-Jeanne Lesot LIP6, Sorbonne Université, France
Marek Z. Reformat University of Alberta, Canada
Susana Vieira IDMEC, Instituto Superior Técnico,

Universidade de Lisboa, Portugal

Executive Directors

Bernadette
Bouchon-Meunier

LIP6, CNRS, France

Ronald R. Yager Iona College, USA

Special Session Chair

Uzay Kaymak Technische Universiteit Eindhoven, The Netherlands

Publication Chair

Anna Wilbik Technische Universiteit Eindhoven, The Netherlands

Sponsor and Publicity Chair

João M. C. Sousa IDMEC, Instituto Superior Técnico,
Universidade de Lisboa, Portugal

Web Chair

Fernando Batista INESC-ID, Instituto Superior Técnico,
Universidade de Lisboa, Portugal



International Advisory Board

João Paulo Carvalho, Portugal
Giulianella Coletti, Italy
Miguel Delgado, Spain
Mario Fedrizzi, Italy
Laurent Foulloy, France
Salvatore Greco, Italy
Julio Gutierrez-Rios, Spain
Eyke Hüllermeier, Germany
Uzay Kaymak, The Netherlands
Anne Laurent, France
Marie-Jeanne Lesot, France
Luis Magdalena, Spain

Christophe Marsala, France
Benedetto Matarazzo, Italy
Jesús Medina Moreno, Spain
Manuel Ojeda-Aciego, Spain
Maria Rifqi, France
Lorenza Saitta, Italy
Olivier Strauss, France
Enric Trillas, Spain
Llorenç Valverde, Spain
José Luis Verdegay, Spain
Maria-Amparo Vila, Spain

Program Committee

Giovanni Acampora University of Naples Federico II, Italy
Rui Jorge Almeida Maastricht University, The Netherlands
Derek Anderson University of Missouri, USA
Troels Andreasen Roskilde University, Denmark
Michał Baczyński University of Silesia, Poland
Fernando Batista INESC-ID, ISCTE-IUL, Portugal
Radim Belohlavek Palacky University, Czech Republic
Nahla Ben Amor Institut Supérieur de Gestion de Tunis, Tunisia
Salem Benferhat Université d’Artois, France
James Bezdek University of Missouri, USA
Piero Bonissone Piero P Bonissone Analytics, USA
Isabelle Bloch ENST, CNRS, UMR 5141, LTCI, France
Ulrich Bodenhofer QUOMATIC.AI, Austria
Gloria Bordogna CNR, Italy
Bernadette

Bouchon-Meunier
LIP6, CNRS, Sorbonne Université, France

Humberto Bustince UPNA, Spain
Christer Carlsson Åbo Akademi University, Finland
João Paulo Carvalho Universidade de Lisboa, Portugal
Oscar Castillo Tijuana Institute of Technology, Mexico
Martine Ceberio University of Texas at El Paso, USA
Ricardo Coelho Federal University of Ceará, Brazil
Giulianella Coletti University of Perugia, Italy
Didier Coquin LISTIC, France
Oscar Cordon University of Granada, Spain
Inés Couso University of Oviedo, Spain

viii Organization



Keeley Crockett Manchester Metropolitan University, UK
Giuseppe D’Aniello University of Salerno, Italy
Bernard De Baets Ghent University, Belgium
Martine De Cock University of Washington, USA
Guy De Tré Ghent University, Belgium
Sébastien Destercke CNRS, UMR Heudiasyc, France
Antonio Di Nola University of Salerno, Italy
Scott Dick University of Alberta, Canada
Didier Dubois IRIT, RPDMP, France
Fabrizio Durante Free University of Bozen-Bolzano, Italy
Krzysztof Dyczkowski Adam Mickiewicz University, Poland
Zied Elouedi Institut Supérieur de Gestion de Tunis, Tunisia
Francesc Esteva IIIA-CSIC, Spain
Dimitar Filev Ford Motor Company, USA
Matteo Gaeta University of Salerno, Italy
Sylvie Galichet LISTIC, Université de Savoie, France
Jonathan M. Garibaldi University of Nottingham, UK
Lluis Godo IIIA-CSIC, Spain
Fernando Gomide University of Campinas, Brazil
Gil González-Rodríguez University of Oviedo, Spain
Przemysław Grzegorzewski Systems Research Institute, Polish Academy

of Sciences, Poland
Lawrence Hall University of South Florida, USA
Istvan Harmati Széchenyi István Egyetem, Hungary
Timothy Havens Michigan Technological University, USA
Francisco Herrera University of Granada, Spain
Enrique Herrera-Viedma University of Granada, Spain
Ludmila Himmelspach Heirich Heine Universität Düsseldorf, Germany
Eyke Hüllemeier Paderborn University, Germany
Michal Holčapek University of Ostrava, Czech Republic
Janusz Kacprzyk Systems Research Institute, Polish Academy

of Sciences, Poland
Uzay Kaymak Eindhoven University of Technology, The Netherlands
Jim Keller University of Missouri, USA
Frank Klawonn Ostfalia University of Applied Sciences, Germany
László T. Kóczy Budapest University of Technology and Economics,

Hungary
John Kornak University of California, San Francisco, USA
Vladik Kreinovich University of Texas at El Paso, USA
Ondrej Krídlo University of P. J. Safarik in Kosice, Slovakia
Rudolf Kruse University of Magdeburg, Germany
Christophe Labreuche Thales R&T, France
Jérôme Lang CNRS, LAMSADE, Université Paris-Dauphine, France
Anne Laurent LIRMM, UM, France
Chang-Shing Lee National University of Tainan, Taiwan

Organization ix



Henrik Legind Larsen Legind Technologies, Denmark
Marie-Jeanne Lesot LIP6, Sorbonne Université, France
Weldon Lodwick University of Colorado, USA
Edwin Lughofer Johannes Kepler University Linz, Austria
Luis Magdalena Universidad Politécnica de Madrid, Spain
Christophe Marsala LIP6, Sorbonne Université, France
Trevor Martin University of Bristol, UK
Sebastià Massanet University of the Balearic Islands, Spain
Marie-Hélène Masson Université de Picardie Jules Verne (Heudiasyc), France
Jesús Medina University of Cádiz, Spain
Patricia Melin Tijuana Institute of Technology, Mexico
Jerry Mendel University of Southern California, USA
Radko Mesiar STU, Slovakia
Enrique Miranda University of Oviedo, Spain
Javier Montero Universidad Complutense de Madrid, Spain
Susana Montes University of Oviedo, Spain
Jacky Montmain École des Mines d’Alès, France
Juan Moreno Garcia Universidad de Castilla-La Mancha, Spain
Petra Murinová University of Ostrava IT4Innovations, Czech Republic
Yusuke Nojima Osaka Prefecture University, Japan
Vilém Novák University of Ostrava, Czech Republic
Hannu Nurmi University of Turku, Finland
Manuel Ojeda-Aciego University of Malaga, Spain
Nikhil Pal ISI, India
Gabriella Pasi University of Milano-Bicocca, Italy
David Pelta University of Granada, Spain
Irina Perfilieva University of Ostrava, Czech Republic
Fred Petry Naval Research Lab, USA
Davide Petturiti University of Perugia, Italy
Vincenzo Piuri University of Milan, Italy
Olivier Pivert IRISA, ENSSAT, France
Henri Prade IRIT, CNRS, France
Raúl Pérez-Fernández Universidad de Oviedo, Spain
Anca Ralescu University of Cincinnati, USA
Dan Ralescu University of Cincinnati, USA
Marek Z. Reformat University of Alberta, Canada
Adrien Revault d’Allonnes LIASD, France
Agnès Rico LIRIS, Université Claude Bernard Lyon 1, France
M. Dolores Ruiz University of Cádiz, Spain
Thomas A. Runkler Siemens Corporate Technology, Germany
Mika Sato Illic University of Tsukuba, Japan
Daniel Sanchez University of Granada, Spain
Glen Shafer Rutgers University, USA
Grégory Smits IRISA, University of Rennes 1, France
João Sousa TU Lisbon, IST, Portugal

x Organization



Martin Štěpnička IRAFM, University of Ostrava, Czech Republic
Umberto Straccia ISTI-CNR, Italy
Olivier Strauss LIRMM, France
Michio Sugeno Tokyo Institute of Technology, Japan
Eulalia Szmidt Systems Research Institute, Polish Academy

of Sciences, Poland
Marco Tabacchi Università degli Studi di Palermo, Italy
Vicenc Torra Maynooth University, Ireland
Linda C. van der Gaag Utrecht University, The Netherlands
Barbara Vantaggi Sapienza University of Rome, Italy
José Luis Verdegay University of Granada, Spain
Thomas Vetterlein Johannes Kepler University Linz, Austria
Susana Vieira Universidade de Lisboa, Portugal
Christian Wagner University of Nottingham, UK
Anna Wilbik Eindhoven University of Technology, The Netherlands
Sławomir Zadrożny Systems Research Institute, Polish Academy

of Sciences, Poland

Additional Members of the Reviewing Committee

Raoua Abdelkhalek
Julien Alexandre Dit Sandretto
Zahra Alijani
Alessandro Antonucci
Jean Baratgin
Laécio C. Barros
Leliane N. Barros
Libor Behounek
María José Benítez Caballero
Kyle Bittner
Jan Boronski
Reda Boukezzoula
Ross Boylan
Andrey Bronevich
Petr Bujok
Michal Burda
Rafael Cabañas de Paz
Inma P. Cabrera
Tomasa Calvo
José Renato Campos
Andrea Capotorti
Diego Castaño
Anna Cena
Mihir Chakraborty

Yurilev Chalco-Cano
Manuel Chica
Panagiotis Chountas
Davide Ciucci
Frank Coolen
Maria Eugenia Cornejo Piñero
Cassio P. de Campos
Gert De Cooman
Laura De Miguel
Jean Dezert
J. Angel Diaz-Garcia
Graçaliz Dimuro
Paweł Drygaś
Hassane Essafi
Javier Fernandez
Carlos Fernandez-Basso
Juan Carlos Figueroa-García
Marcelo Finger
Tommaso Flaminio
Robert Fullér
Marek Gagolewski
Angel Garcia Contreras
Michel Grabisch
Karel Gutierrez

Organization xi



Allel Hadjali
Olgierd Hryniewicz
Miroslav Hudec
Ignacio Huitzil
Seong Jae Hwang
Atsushi Inoue
Vladimir Janis
Balasubramaniam Jayaram
Richard Jensen
Luis Jimenez Linares
Katarzyna Kaczmarek
Martin Kalina
Hiroharu Kawanaka
Alireza Khastan
Martins Kokainis
Ryszard Kowalczyk
Maciej Krawczak
Jiri Kupka
Serafina Lapenta
Ulcilea Leal
Antonio Ledda
Eric Lefevre
Nguyen Linh
Nicolas Madrid
Arnaud Martin
Denis Maua
Gilles Mauris
Belen Melian
María Paula Menchón
David Mercier
Arnau Mir
Soheyla Mirshahi
Marina Mizukoshi
Jiří Močkoř
Miguel Molina-Solana
Ignacio Montes
Serafin Moral
Tommaso Moraschini
Andreia Mordido
Juan Antonio Morente-Molinera
Fred Mubang
Vu-Linh Nguyen
Radoslaw Niewiadomski

Carles Noguera
Pavels Orlovs
Daniel Ortiz-Arroyo
Jan W. Owsinski
Antonio Palacio
Manuel J. Parra Royón
Jan Paseka
Viktor Pavliska
Renato Pelessoni
Barbara Pękala
Benjamin Quost
Emmanuel Ramasso
Eloisa Ramírez Poussa
Luca Reggio
Juan Vicente Riera
Maria Rifqi
Luis Rodriguez-Benitez
Guillaume Romain
Maciej Romaniuk
Francisco P. Romero
Clemente Rubio-Manzano
Aleksandra Rutkowska
Juan Jesus Salamanca Jurado
Teddy Seidenfeld
Mikel Sesma-Sara
Babak Shiri
Amit Shukla
Anand Pratap Singh
Damjan Skulj
Sotir Sotirov
Michal Stronkowski
Andrea Stupnánová
Matthias Troffaes
Dana Tudorascu
Leobardo Valera
Arthur Van Camp
Paolo Vicig
Amanda Vidal Wandelmer
Joaquim Viegas
Jin Hee Yoon
Karl Young
Hua-Peng Zhang

xii Organization



Special Session Organizers

Javier Andreu University of Essex, UK
Michał Baczyński University of Silesia in Katowice, Poland
Isabelle Bloch Télécom ParisTech, France
Bernadette

Bouchon-Meunier
LIP6, CNRS, France

Reda Boukezzoula Université de Savoie Mont-Blanc, France
Humberto Bustince Public University of Navarra, Spain
Tomasa Calvo University of Alcalá, Spain
Martine Ceberio University of Texas at El Paso, USA
Yurilev Chalco-Cano University of Tarapacá at Arica, Chile
Giulianella Coletti Università di Perugia, Italy
Didier Coquin Université de Savoie Mont-Blanc, France
M. Eugenia Cornejo University of Cádiz, Spain
Bernard De Baets Ghent University, Belgium
Guy De Tré Ghent University, Belgium
Graçaliz Dimuro Universidade Federal do Rio Grande, Brazil
Didier Dubois IRIT, Université Paul Sabatier, France
Hassane Essafi CEA, France
Carlos J. Fernández-Basso University of Granada, Spain
Javier Fernández Public University of Navarra, Spain
Tommaso Flaminio Spanish National Research Council, Spain
Lluis Godo Spanish National Research Council, Spain
Przemyslaw Grzegorzewski Warsaw University of Technology, Poland
Rajarshi Guhaniyogi University of California, Santa Cruz, USA
Karel Gutiérrez Batista University of Granada, Spain
István Á. Harmati Széchenyi István University, Hungary
Michal Holčapek University of Ostrava, Czech Republic
Atsushi Inoue Eastern Washington University, USA
Balasubramaniam Jayaram Indian Institute of Technology Hyderabad, India
Janusz Kacprzyk Systems Research Institute, Polish Academy

of Sciences, Poland
Hiroharu Kawanaka Mie University, Japan
László T. Kóczy Budapest University of Technology and Economics,

Hungary
John Kornak University of California, San Francisco, USA
Vladik Kreinovich University of Texas at El Paso, USA
Henrik Legind Larsen Legind Technologies, Denmark
Weldon Lodwick Federal University of São Paulo, Brazil
Maria Jose Martín-Bautista University of Granada, Spain
Sebastia Massanet University of the Balearic Islands, Spain
Jesús Medina University of Cádiz, Spain
Belén Melián-Batista University of La Laguna, Spain
Radko Mesiar Slovak University of Technology, Slovakia
Enrique Miranda University of Oviedo, Spain

Organization xiii



Ignacio Montes University of Oviedo, Spain
Juan Moreno-Garcia University of Castilla-La Mancha, Spain
Petra Murinová University of Ostrava, Czech Republic
Vílem Novák University of Ostrava, Czech Republic
David A. Pelta University of Granada, Spain
Raúl Pérez-Fernández University of Oviedo, Spain
Irina Perfilieva University of Ostrava, Czech Republic
Henri Prade IRIT, Université Paul Sabatier, France
Anca Ralescu University of Cincinnati, USA
Eloísa Ramírez-Poussa University of Cádiz, Spain
Luis Rodriguez-Benitez University of Castilla-La Mancha, Spain
Antonio Rufian-Lizana University of Sevilla, Spain
M. Dolores Ruiz University of Granada, Spain
Andrea Stupnanova Slovak University of Technology, Slovakia
Amanda Vidal Czech Academy of Sciences, Czech Republic
Aaron Wolfe Scheffler University of California, San Francisco, USA
Adnan Yazici Nazarbayev University, Kazakhstan
Sławomir Zadrożny Systems Research Institute Polish Academy

of Sciences, Poland

List of Special Sessions

Fuzzy Interval Analysis

Antonio Rufian-Lizana University of Sevilla, Spain
Weldon Lodwick Federal University of São Paulo, Brazil
Yurilev Chalco-Cano University of Tarapacá at Arica, Chile

Theoretical and Applied Aspects of Imprecise Probabilities

Enrique Miranda University of Oviedo, Spain
Ignacio Montes University of Oviedo, Spain

Similarities in Artificial Intelligence

Bernadette
Bouchon-Meunier

LIP6, CNRS, France

Giulianella Coletti Università di Perugia, Italy

Belief Function Theory and Its Applications

Didier Coquin Université de Savoie Mont-Blanc, France
Reda Boukezzoula Université de Savoie Mont-Blanc, France

Aggregation: Theory and Practice

Tomasa Calvo University of Alcalá, Spain
Radko Mesiar Slovak University of Technology, Slovakia
Andrea Stupnánová Slovak University of Technology, Slovakia

xiv Organization



Aggregation: Pre-aggregation Functions and Other Generalizations

Humberto Bustince Public University of Navarra, Spain
Graçaliz Dimuro Universidade Federal do Rio Grande, Brazil
Javier Fernández Public University of Navarra, Spain

Aggregation: Aggregation of Different Data Structures

Bernard De Baets Ghent University, Belgium
Raúl Pérez-Fernández University of Oviedo, Spain

Fuzzy Methods in Data Mining and Knowledge Discovery

M. Dolores Ruiz University of Granada, Spain
Karel Gutiérrez Batista University of Granada, Spain
Carlos J. Fernández-Basso University of Granada, Spain

Computational Intelligence for Logistics and Transportation Problems

David A. Pelta University of Granada, Spain
Belén Melián-Batista University of La Laguna, Spain

Fuzzy Implication Functions

Michał Baczyński University of Silesia in Katowice, Poland
Balasubramaniam Jayaram Indian Institute of Technology Hyderabad, India
Sebastià Massanet University of the Balearic Islands, Spain

Soft Methods in Statistics and Data Analysis

Przemysław Grzegorzewski Warsaw University of Technology, Poland

Image Understanding and Explainable AI

Isabelle Bloch Télécom ParisTech, France
Atsushi Inoue Eastern Washington University, USA
Hiroharu Kawanaka Mie University, Japan
Anca Ralescu University of Cincinnati, USA

Fuzzy and Generalized Quantifier Theory

Vilém Novák University of Ostrava, Czech Republic
Petra Murinová University of Ostrava, Czech Republic

Mathematical Methods Towards Dealing with Uncertainty in Applied Sciences

Irina Perfilieva University of Ostrava, Czech Republic
Michal Holčapek University of Ostrava, Czech Republic

Organization xv



Statistical Image Processing and Analysis, with Applications in Neuroimaging

John Kornak University of California, San Francisco, USA
Rajarshi Guhaniyogi University of California, Santa Cruz, USA
Aaron Wolfe Scheffler University of California, San Francisco, USA

Interval Uncertainty

Martine Ceberio University of Texas at El Paso, USA
Vladik Kreinovich University of Texas at El Paso, USA

Discrete Models and Computational Intelligence

László T. Kóczy Budapest University of Technology and Economics,
Hungary

István Á. Harmati Széchenyi István University, Hungary

Current Techniques to Model, Process and Describe Time Series

Juan Moreno-Garcia University of Castilla-La Mancha, Spain
Luis Rodriguez-Benitez University of Castilla-La Mancha, Spain

Mathematical Fuzzy Logic and Graded Reasoning Models

Tommaso Flaminio Spanish National Research Council, Spain
Lluís Godo Spanish National Research Council, Spain
Vílem Novák University of Ostrava, Czech Republic
Amanda Vidal Czech Academy of Sciences, Czech Republic

Formal Concept Analysis, Rough Sets, General Operators and Related Topics

M. Eugenia Cornejo University of Cádiz, Spain
Didier Dubois IRIT, Université Paul Sabatier, France
Jesús Medina University of Cádiz, Spain
Henri Prade IRIT, Université Paul Sabatier, France
Eloísa Ramírez-Poussa University of Cádiz, Spain

Computational Intelligence Methods in Information Modelling, Representation
and Processing

Guy De Tré Ghent University, Belgium
Janusz Kacprzyk Systems Research Institute, Polish Academy

of Sciences, Poland
Adnan Yazici Nazarbayev University, Kazakhstan
Sławomir Zadrożny Systems Research Institute Polish Academy

of Sciences, Poland

xvi Organization



Contents - Part II

Fuzzy Interval Analysis

An Introduction to Differential Algebraic Equations Under Interval
Uncertainty: A First Step Toward Generalized Uncertainty DAEs . . . . . . . . . 3

Weldon Alexander Lodwick and Marina Tuyako Mizukoshi

Classification of Hyperbolic Singularities in Interval 3-Dimensional Linear
Differential Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Marina Tuyako Mizukoshi, Alain Jacquemard,
and Weldon Alexander Lodwick

New Results in the Calculus of Fuzzy-Valued Functions
Using Mid-Point Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Luciano Stefanini, Laerte Sorini, and Mina Shahidi

On the Sum of Generalized Hukuhara Differentiable Fuzzy Functions . . . . . . 43
Yurilev Chalco-Cano, A. Khastan, and Antonio Rufián-Lizana

Theoretical and Applied Aspects of Imprecise Probabilities

Imprecise Classification with Non-parametric Predictive Inference. . . . . . . . . 53
Serafín Moral, Carlos J. Mantas, Javier G. Castellano,
and Joaquín Abellán

On the Elicitation of an Optimal Outer Approximation of a Coherent
Lower Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Enrique Miranda, Ignacio Montes, and Paolo Vicig

Binary Credal Classification Under Sparsity Constraints. . . . . . . . . . . . . . . . 82
Tathagata Basu, Matthias C. M. Troffaes, and Jochen Einbeck

Cautious Label-Wise Ranking with Constraint Satisfaction . . . . . . . . . . . . . . 96
Yonatan-Carlos Carranza-Alarcon, Soundouss Messoudi,
and Sébastien Destercke

Approximating General Kernels by Extended Fuzzy Measures:
Application to Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Sébastien Destercke, Agnès Rico, and Olivier Strauss

Metrical Approach to Measuring Uncertainty . . . . . . . . . . . . . . . . . . . . . . . 124
Andrey G. Bronevich and Igor N. Rozenberg



Conditioning and Dilation with Coherent Nearly-Linear Models . . . . . . . . . . 137
Renato Pelessoni and Paolo Vicig

Learning Sets of Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Andrés Cano, Manuel Gómez-Olmedo, and Serafín Moral

A Study of the Set of Probability Measures Compatible
with Comparative Judgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Alexander Erreygers and Enrique Miranda

Coherent and Archimedean Choice in General Banach Spaces . . . . . . . . . . . 180
Gert de Cooman

Archimedean Choice Functions: An Axiomatic Foundation
for Imprecise Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Jasper De Bock

Dynamic Portfolio Selection Under Ambiguity in the �-Contaminated
Binomial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Paride Antonini, Davide Petturiti, and Barbara Vantaggi

Limit Behaviour of Upper and Lower Expected Time Averages
in Discrete-Time Imprecise Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . 224

Natan T’Joens and Jasper De Bock

Similarities in Artificial Intelligence

An Interval-Valued Divergence for Interval-Valued Fuzzy Sets . . . . . . . . . . . 241
Susana Díaz, Irene Díaz, and Susana Montes

The Fuzzy Processing of Metaphors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Charles Tijus

A Measurement Theory Characterization of a Class of Dissimilarity
Measures for Fuzzy Description Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Giulianella Coletti, Davide Petturiti, and Bernadette Bouchon-Meunier

Learning Tversky Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Javad Rahnama and Eyke Hüllermeier

Belief Function Theory and Its Applications

Belief Functions for the Importance Assessment in Multiplex Networks. . . . . 283
Alexander Lepskiy and Natalia Meshcheryakova

Correction of Belief Function to Improve the Performances
of a Fusion System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Didier Coquin, Reda Boukezzoula, and Rihab Ben Ameur

xviii Contents - Part II



Evaluation of Probabilistic Transformations for Evidential
Data Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Mohammed Boumediene and Jean Dezert

A Belief Classification Approach Based on Artificial Immune
Recognition System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Rihab Abdelkhalek and Zied Elouedi

Evidential Group Spammers Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
Malika Ben Khalifa, Zied Elouedi, and Eric Lefèvre

Dempster-Shafer Theory: Ηow Constraint Programming Can Help . . . . . . . . 354
Alexandros Kaltsounidis and Isambo Karali

Bayesian Smoothing of Decision Tree Soft Predictions and Evidential
Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Nicolas Sutton-Charani

On Solutions of Marginal Problem in Evidence Theory . . . . . . . . . . . . . . . . 382
Jiřina Vejnarová

Handling Mixture Optimisation Problem Using Cautious Predictions
and Belief Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Lucie Jacquin, Abdelhak Imoussaten, and Sébastien Destercke

Aggregation: Theory and Practice

A Note on Aggregation of Intuitionistic Values. . . . . . . . . . . . . . . . . . . . . . 411
Anna Kolesárová and Radko Mesiar

BIOWA Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Andrea Stupňanová and LeSheng Jin

On Compatibility of Two Approaches to Generalization
of the Lovász Extension Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Ľubomíra Horanská

The Formalization of Asymmetry in Disjunctive Evaluation . . . . . . . . . . . . . 435
Miroslav Hudec and Radko Mesiar

Fuzzy Inference System as an Aggregation Operator - Application
to the Design of a Soil Chemical Quality Index . . . . . . . . . . . . . . . . . . . . . 447

Denys Yohana Mora-Herrera, Serge Guillaume, Didier Snoeck,
and Orlando Zúñiga Escobar

Necessary and Possible Interaction Between Criteria in a General Choquet
Integral Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

Paul Alain Kaldjob Kaldjob, Brice Mayag, and Denis Bouyssou

Contents - Part II xix



Construction of Nullnorms Based on Closure and Interior Operators
on Bounded Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

Gül Deniz Çaylı

General Grouping Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Helida Santos, Graçaliz P. Dimuro, Tiago C. Asmus, Giancarlo Lucca,
Eduardo N. Borges, Benjamin Bedregal, José A. Sanz,
Javier Fernández, and Humberto Bustince

The Necessary and Possible Importance Relation Among Criteria
in a 2-Additive Choquet Integral Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

Brice Mayag and Bertrand Tchantcho

Measuring Polarization: A Fuzzy Set Theoretical Approach . . . . . . . . . . . . . 510
Juan Antonio Guevara, Daniel Gómez, José Manuel Robles,
and Javier Montero

New Methods for Comparing Interval-Valued Fuzzy Cardinal Numbers . . . . . 523
Barbara Pȩkala, Jarosław Szkoła, Krzysztof Dyczkowski,
and Tomasz Piłka

Aggregation Functions Transformed by 0 - 1 Valued Monotone Systems
of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

Martin Kalina

Aggregation: Pre-aggregation Functions and Other
Generalizations of Monotonicity

Analyzing Non-deterministic Computable Aggregations . . . . . . . . . . . . . . . . 551
Luis Garmendia, Daniel Gómez, Luis Magdalena, and Javier Montero

Dissimilarity Based Choquet Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
Humberto Bustince, Radko Mesiar, Javier Fernandez, Mikel Galar,
Daniel Paternain, Abdulrahman Altalhi, Graçaliz P. Dimuro,
Benjamín Bedregal, and Zdenko Takáč

Aggregation: Aggregation of Different Data Structures

A S-QFD Approach with Bipolar Fuzzy Hamacher Aggregation Operators
and Its Application on E-Commerce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

Esra Çakır and Ziya Ulukan

An Undesirable Behaviour of a Recent Extension of OWA Operators
to the Setting of Multidimensional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 588

Raúl Pérez-Fernández

xx Contents - Part II



Combining Absolute and Relative Information with Frequency
Distributions for Ordinal Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 594

Mengzi Tang, Raúl Pérez-Fernández, and Bernard De Baets

A Bidirectional Subsethood Based Fuzzy Measure for Aggregation
of Interval-Valued Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

Shaily Kabir and Christian Wagner

Fuzzy Methods in Data Mining and Knowledge Discovery

Hybrid Model for Parkinson’s Disease Prediction . . . . . . . . . . . . . . . . . . . . 621
Augusto Junio Guimarães, Paulo Vitor de Campos Souza,
and Edwin Lughofer

A Word Embedding Model for Mapping Food Composition Databases
Using Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 635

Andrea Morales-Garzón, Juan Gómez-Romero,
and M. J. Martin-Bautista

Mining Text Patterns over Fake and Real Tweets . . . . . . . . . . . . . . . . . . . . 648
Jose A. Diaz-Garcia, Carlos Fernandez-Basso, M. Dolores Ruiz,
and Maria J. Martin-Bautista

Computational Intelligence for Logistics
and Transportation Problems

A Genetic Approach to the Job Shop Scheduling Problem
with Interval Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663

Hernán Díaz, Inés González-Rodríguez, Juan José Palacios, Irene Díaz,
and Camino R. Vela

A Fuzzy Goal Programming Approach to Fully Fuzzy Linear Regression. . . . 677
Boris Pérez-Cañedo, Alejandro Rosete, José Luis Verdegay,
and Eduardo René Concepción-Morales

Planning Wi-Fi Access Points Activation in Havana City:
A Proposal and Preliminary Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689

Cynthia Porras, Jenny Fajardo, Alejandro Rosete, and David A. Pelta

Fuzzy Set Based Models Comparative Study for the TD TSP with Rush
Hours and Traffic Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699

Ruba Almahasneh, Tuu-Szabo, Peter Foldesi, and Laszlo T. Koczy

Fuzzy Greedy Randomized Adaptive Search Procedure and Simulation
Model to Solve the Team Orienteering Problem with Time Windows . . . . . . 715

Airam Expósito-Márquez, Christopher Expósito-Izquierdo,
Belén Melián-Batista, and José Marcos Moreno-Vega

Contents - Part II xxi



General-Purpose Automated Machine Learning for Transportation:
A Case Study of Auto-sklearn for Traffic Forecasting . . . . . . . . . . . . . . . . . 728

Juan S. Angarita-Zapata, Antonio D. Masegosa, and Isaac Triguero

Fuzzy Implication Functions

An Initial Study on Typical Hesitant (T,N)-Implication Functions . . . . . . . . . 747
Monica Matzenauer, Renata Reiser, Helida Santos, Jocivania Pinheiro,
and Benjamin Bedregal

Is the Invariance with Respect to Powers of a t-norm a Restrictive Property
on Fuzzy Implication Functions? The Case of Strict t-norms . . . . . . . . . . . . 761

Raquel Fernandez-Peralta, Sebastia Massanet, and Arnau Mir

Some Remarks on Approximate Reasoning and Bandler-Kohout
Subproduct. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775

Katarzyna Miś and Michał Baczyński

Modus Ponens Tollens for RU-Implications . . . . . . . . . . . . . . . . . . . . . . . . 788
Isabel Aguiló, Sebastia Massanet, Juan Vicente Riera,
and Daniel Ruiz-Aguilera

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 803

xxii Contents - Part II



Fuzzy Interval Analysis



An Introduction to Differential Algebraic
Equations Under Interval Uncertainty:

A First Step Toward Generalized
Uncertainty DAEs

Weldon Alexander Lodwick1(B) and Marina Tuyako Mizukoshi2(B)

1 Department of Mathematical and Statistical Sciences, University of Colorado,
1201 Larimer Street, Denver, CO 80204, USA

Weldon.Lodwick@ucdenver.edu
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Abstract. This presentation introduces the theory leading to solution
methods for differential algebraic equations (DAEs) under interval uncer-
tainty in which the uncertainty is in the initial conditions of the differen-
tial equation and/or the entries of the coefficients of the differential equa-
tion and algebraic restrictions. While we restrict these uncertainties to
be intervals, other types of uncertains like generalized uncertainties such
as fuzzy intervals are done in a similar manner albeit leading to more
complex analyses. Linear constant coefficient DAEs and then interval
linear constant coefficient problems will illustrate both the theoretically
challenges and solution approaches. The way the interval uncertainty
is handled is novel and serves as a basis for more general uncertainty
analysis.

Keywords: Interval analysis · Differential algebraic equations ·
Constraint interval

1 Introduction

This presentation introduces interval differential-algebraic equations. To our
knowledge, the publication that is closest to our theoretical approach is [11],
in which an interval arithmetic, they call ValEncIA, is used to analyzed interval
DAEs. What is presented here and what is new is that we solve the interval
DAE problem using the constraint interval representation (see [6,7]) to encode
all interval initial condition and/or interval coefficients. It is shown that this
representation has theoretical advantages not afforded to the usual interval rep-
resentation. The coefficients and initial values are, for this presentation, constant
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to maintain the article relatively short. However, the approach in which there are
variable coefficients and/or initial values can easily be extend and this is pointed
out. Since we transform (variable) interval coefficients to (variable) interval ini-
tial values, it is, in theory, a straight forward process, albeit more complex.

The constraint interval representation leads to useful numerical methods as
will be demonstrated. The limitations of this publication prohibit the full devel-
opment of the methods. The initial steps are indicated. What is presented here
does not deal directly with what is called validated methods (see [9,10] for exam-
ple). However, when the processes developed here are carried out in a system
that accounts for numerical errors using outward directed rounding, for example,
in INTLAB or CXSC, then the results will be validated. We restrict ourselves to
what is called (see below) semi-explicit DAEs. That is, all problems are assumed
to have been transformed to the semi-explicit form. However, our approach is
much wider.

The general form of the semi-explicit DAE is

ý = F (y(t), t), y(t0) = y0 (1)

G(y(t), t) = 0. (2)

While the focus is incorporating (constant) interval uncertainties in (1), and (2),
generalized uncertainties as developed in [8], can be analyzed in similar fashion.
Note that the variable (and constant) interval coefficient/initial value is a type
of generalized uncertainty and fits perfectly in the theory that is presented.

2 Definition and Properties

One can also think of the implicit ODE with an algebraic constraint,

F (y(t), y′(t), t) = 0, y(t0) = y0 (3)
G(y(t), t) = 0, (4)

as a semi-explicit DAE as follows Let

y′(t) = z(t)
F (y(t), z(t), t) = 0,

G(y(t), t) = 0,

This will increase the number of variables. However, this will not be the approach
for this presentation. Our general form will assume that the DAE is in the semi-
explicit form (1), (2).

Given an implicit differential equation (3), when ∂F
∂y is not invertible, that

is, we do not have an explicit differential equation, at least theoretically, in the
form (1), (2)), we can differentiate (4) to obtain

∂G

∂y
(y(t), t)y′(t) +

∂G

∂t
(y(t), t) = 0. (5)
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If ∂G
∂y (y, t) is non-singular, then (5) can be solved explicitly for y

′
as follows.

y′ =
[
∂G

∂y
(y(t), t)

]−1
∂G

∂t
(y, t) (6)

F (y(t),
[
∂G

∂y
(y(t), t)

]−1
∂G

∂t
(y(t), t), t) = 0 (7)

G(y(t), t) = 0 (8)

and (6), (7), and (8) is in the form (1), (2) and the DAE is called an index 1
DAE.

This not being the case, that is, ∂G
∂y (y(t), t) is singular, then we have the form

F (y(t), y′(t), t) = 0,
∂G

∂y
(y(t), t)y′ +

∂G

∂t
(y(t), t) = 0,

which can be written as
H(y(t), y′(t), t) = 0

and we again differentiate with respect to y′ and test for singularity. If the partial
of H can be solved for y

′
, then we have an index-2 DAE. This process can be

continued, in principle, until (hopefully) y′ as an explicit function of y and t is
found.

DAEs arise in various contexts, in applications. We present two types of
problems where DAEs arise - the simple pendulum and unconstrained optimal
control, that illustrate the main issues associated with DAEs. Then we will show
interval uncertainty in the DAEs using some of these examples. Our solution
methods for the interval DAEs are based on what is developed for the examples.

3 Linear Constant Coefficient DAEs

Linear constant coefficient DAEs arise naturally in electrical engineering circuit
problems as well as in some control theory problems. A portion of this theory,
sufficient to understand our solution methods, is presented next. The linear
constant coefficient DAE is defined as

Ax′(t) + Bx(t) = f, y(t0) = y0, (9)

where A and B are m × m matrices, x(t) is a m × 1 vector “state function” and
f is a m × 1 function vector, and

A =
[

A1 A2

0 0

]
, B =

[
B1 B2

B3 B4

]
, f =

[
f1
f2

]
,
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so that
[

A1 A2

0 0

] [
x′
1(t)

x′
2(t)

]
+

[
B1 B2

B3 B4

] [
x1(t)
x2(t)

]
=

[
f1
f2

]
.

Note that this is indeed a semi-explicit DAE, where differential part is

x
′
(t) = F (x(t), t) = −A−1(B)x(t) + f(t)

A =
[
A1 A2

]
, B =

[
B1 B2

]
, f =

[
f1
f2

]
,

where the matrix A is assumed to be invertible, and the algebraic part is

G(x(t), t) = B3x1(t) + B4x2(t) = f2.

Example 1. Consider the linear constant coefficient DAE Ax′(t) + Bx(t) = f
where

A =
[

1 1
0 0

]
, B =

[
0 0
2 1

]
, f =

[
t
et

]
.

The ODE part is
x′
1(t) + x′

2(t) = t (10)

and the algebraic part is

G(x(t), t) = 2x1(t) + x2(t) = et. (11)

Integrating the ODE part (10), we get
∫

dx1 +
∫

dx2 =
∫

tdt,

x1(t) + x2(t) =
1
2
t2 + c1. (12)

Solving (11) and (12)

2x1(t) + x2(t) = et

x1(t) + x2(t) =
1
2
t2 + c1

simultaneously, we get

x1(t) = et − 1
2
t2 − c1, (13)

x2(t) = −et + t2 + 2c1. (14)

Example 2. Consider the linear constant coefficient DAE
[

1 0
0 0

]
x′(t) +

[
1 1
1 1

]
x(t) =

[
t
et

]
.
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The ODE part is
x′
1(t) + x1(t) + x2(t) = t (15)

and the algebraic constraint is

G(x(t), t) = x1(t) + x2(t) = et. (16)

Putting (16) into (15) and solving for x′
1, we have

x′
1(t) = t − et

x1(t) =
1
2
t2 − et + c1

x2(t) = 2et − 1
2
t2 − c1.

Remark 1. 1) When, for the m−variable problem, the algebraic constraint can be
substituted into the differential equation, and the differential equation, which is
linear, is integrated, there are m equations in m unknowns. Interval uncertainty
enters when the matrices A and/or B and/or the initial condition y0 are intervals
A ∈ [A], B ∈ [B], y0 ∈ [y0]. This is illustrated.

4 Illustrative Examples

Two DAE examples, beginning with the simple pendulum, are presented next.

4.1 The Simple Pendulum

Consider the following problem (see [4]) arising from a simple pendulum,

x′′(t) = −γx(t), x(t0) = x0, x
′(t0) = x′

0

y′′(t) = −γy(t) − g, y(t0) = y0, y
′(t0) = y′

0 (17)

0 = x2(t) + y2(t) − L2 (mechanical constraint) or

0 = (x′)2 (t) + (y′)2 (t) − y(t)g (energy constraint)

where g is the acceleration due to gravity, γ is the unknown tension in the string,
and L = 1 is the length of the pendulum string. In this example, we will consider
the unknown tension to be an interval [γ] =

[
γ, γ

]
to model the uncertainty of

the value of the tension. Moreover, we will also assume that the initial values are
also intervals. We can restate (17) as a first order system where we will focus on
the mechanical constraint omitting the energy constraint, as follows:

u1(t) = x(t) ⇒ u′
1(t) = u3(t), u1(t0) ∈ [(u1)0]

u2(t) = y(t) ⇒ u′
2(t) = u4(t), u2(t0) ∈ [(u2)0]

u3(t) = x
′
(t) ⇒ u′

3(t) = −u5(t) · u1, u3(t0) ∈ [(u3)0] (18)

u4(t) = y
′
(t) ⇒ u′

4(t) = −u5(t) · u2(t) − g, u4(t0) ∈ [(u4)0]

u5(t) = γ ⇒ u′
5(t) = 0, u5(t0) ∈ [γ] =

[
γ, γ

]
G(u1(t), u2(t), t) = u2

1(t) + u2
2(t) − 1 = 0.
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Note that the uncertainty parameter γ is considered as a part of the differential
equation and is constant (u5) whose initial condition is an interval. This is in
general the way constant interval (generalized) uncertainty in the parameters
is handled. If the coefficient were in fact variable, u′

5(t) �= 0 but a differential
equation itself, for example,

u′
5(t) = h(t)

where h(t) would define how the rate of change of the coefficient is varying with
respect to time. Equation (18) is a standard semi-explicit real DAE and in this
case, with interval initial conditions. How to solve such a system is presented in
Sect. 5.

4.2 Unconstrained Optimal Control

We next present the transformation of unconstrained optimal control problems
to a DAE. The form of the general unconstrained optimal control is the following.

max
u∈Ω

J [u] =

1∫
0

L(x(u, t), u, t)dt

subject to:x′(u, t) = f(x, u, t) (19)
x(u, 0) = x0.

x : Rm × R → R
n, u : R → R

m (20)

When Ω is the set of all square integrable functions, then the problem becomes
unconstrained. In this case we denote the constraint set Ω0. The Pontryagin
Maximization Principle utilizes the Hamiltonian function, which is defined for
(19) as

H(x(t), λ, u, t) = λ(t)f(x(t), u, t) + L(x(t), u, t). (21)

The function λ(t) is called the co-state function and is a row vector (1×n). The
co-state function can be thought of as the dynamic optimization equivalent to
the Lagrange multiplier and is defined by the following differential equation:

λ′(t) = −∂H(x(t), λ, u, t)
∂x

(22)

λ(1) = 0.

Under suitable conditions (see [5]), the Pontryagin Maximization Principle
(PMP) states that if there exists an (optimal) function v(t) such that J [v] ≥
J [u] ,∀u ∈ Ω, (the optimal control), then it maximizes the Hamiltonian with
respect to the control, which in the case of unconstrained optimal control means
that

∂H(x(t), λ, v, t)
∂u

= 0, v ∈ Ω0, (23)
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where (23) is the algebraic constraint. Thus, the unconstrained optimal control
problem, (19) together with the differential equation of the co-state, (22), and
the PMP (23) results in a boundary valued DAE as follows:

x′(u, t) = f(x(t), u, t)

λ′(x(t), u, t) = −∂H(x, λ, u, t)
∂x

x(u, 0) = x0

λ(x, u, 1) = 0

G(x(t), λ(t), t) =
∂H(x, λ, u, t)

∂u
= 0.

One example that is well studied is the linear quadratic optimal control problem
(LQP), which is defined for the unconstrained optimal control problem as

max
u∈Ω0

J [u] =
1
2

1∫
0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt

subject to:x′(t) = Ax(t) + Bu(t) (24)
x(u, 0) = x0,

where An×n is an n × n real matrix, Bn×m is an m × n real matrix, Qn×n is a
real symmetric positive definite matrix, and Rm×m is a real invertible positive
semi-definite matrix. For the LQP

H(x, u, λ, t) = λ(t) (Ax(t) + Bu(t)) +
1
2

(
xT (t)Qx(t) + uT (t)Ru(t)

)

λ′(t) = −∂H(x, λ, u, t)
∂x

= −λ(t)A + Qx(t), λ(1) = 0,

remembering that λ is a row vector. The optimal control is obtained by solving

G(x(t), λ(t), t) =
∂H(x, λ, u, t)

∂u
= λ(t)B + Ru(t) = 0

u(t) = −R−1λ(t)B,

which, when put into the differential equations, yields

x′(t) = Ax(t) − BR−1λ(t)B, x(0) = x0

λ′(t) = Qx(t) − λ(t)A, λ(1) = 0.

This results in the system

y′(t) =
[

x′(t)
λ′(t)

]
=

[
A −BR−1B
Q A

] [
x(t)
λ(t)

]

x(0) = x0, λ(1) = 0

The next section will consider DAEs with interval uncertainty in the coefficients
and in the initial conditions.
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5 Interval Uncertainty in DAEs

This section develops an interval solution method. The interval problem for
non-linear equation considers interval coefficients as variables whose differen-
tial is zero and initial condition is the respective interval. For linear problems,
it is sometimes advantageous to deal with the interval coefficients directly as
illustrated next.

5.1 An Interval Linear Constant Coefficient DAE

Given the linear constant coefficient DAE Ax′(t) + Bx(t) = f , suppose that the
coefficient matrices are interval matrices [A] and [B]. That is,

[A] x′(t) + [B]x(t) = f.

Example 3. Consider Example 1, except we have interval entries

[A] =
[

[A1] [A2]
[A3] [A4]

]
, B =

[
[B1] [B2]
[B3] [B4]

]
, f =

[
t
et

]
,

where [A1] = [A2] = [B4] = [0.9, 1.1] , [A3] = [A4] = [B1] = [B2] = [0, 0] , and
[B3] = [1.9, 2.1] . The ODE part is

[0.9, 1.1] x′
1(t) + [0.9, 1.1] x′

2(t) = t (25)

and the algebraic part is

G(x(t), t) = [1.9, 2.1] x1(t) + [0.9, 1.1] x2(t) = et. (26)

Integrating (25) we have

[0.9, 1.1] x1(t) + [0.9, 1.1] x2(t) =
1
2
t2 + c1

which together with (26) forms the interval linear system

[0.9, 1.1] x1(t) + [0.9, 1.1] x2(t) =
1
2
t2 + c1 (27)

[1.9, 2.1] x1(t) + [0.9, 1.1] x2(t) = et. (28)

Using constraint interval (see [8] where any interval [a, b] has the representation
[a, b] = a + λ(b − a)), then[

x1(
−→
λ )

x2(
−→
λ )

]
=

[
0.9 + 0.2λ11 0.9 + 0.2λ12

1.9 + 0.2λ21 0.9 + 0.2λ22

]−1 [
1
2 t2 + c1

et

]

=
1

(0.9 + 0.2λ11) (0.9 + 0.2λ22) − (0.9 + 0.2λ12) (1.9 + 0.2λ21)

×
[

0.9 + 0.2λ22 − (0.9 + 0.2λ12)
− (1.9 + 0.2λ21) 0.9 + 0.2λ11

] [
1
2 t2 + c1

et

]

=

[
− 90.0c1 − 90.0et − 20.0λ12et +20.0λ22c1 +10.0t2λ22 +45.0t2

38.0λ12 − 18.0λ11 +18.0λ21 − 18.0λ22 − 4.0λ11λ22 +4.0λ12λ21 +90.0
190.0c1 − 90.0et − 20.0λ11et +20.0λ21c1 +10.0t2λ21 +95.0t2

38.0λ12 − 18.0λ11 +18.0λ21 − 18.0λ22 − 4.0λ11λ22 +4.0λ12λ21 +90.0

]
,
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where
−→
λ = (λ11, λ12, λ21, λ22). Any instantiation of λij ∈ [0, 1] will yield a valid

solution given the associated uncertainty. However, if one wishes to extract the

interval containing

[
x1(

−→
λ )

x2(
−→
λ )

]
, a global min/max over 0 ≤ λij ≤ 1 would need

to be implemented.

Example 4. Consider the linear quadratic problem with interval initial condition
for x,

max J [u] =
1
2

1∫
0

[
x2(t) + u2(t)

]
dt

subject to:x′(t) = u(t), x(u, 0) =
[
1
2
,
3
2

]
=

1
2

+ γ, (29)

0 ≤ γ ≤ 1. (30)

For this problem,

H(x(t), λ(t), u(t), t) = λ(t)u(t) − 1
2
x2(t) − 1

2
u2(t),

λ′(t) = −∂H(x, λ, u, t)
∂x

= x(t), λ(1) = 0

G(x(t), λ(t), t) =
∂H(x(t), λ(t), v(t), t)

∂u
= λ(t) − v(t) = 0 or v(t) = λ(t).

Thus

x′(t) = λ(t), x(0) =
1
2

+ γ

λ′(t) = x(t), λ(1) = 0.

This implies that

x′′(t) − x(t) = 0

x(t) = c1e
t + c2e

−t

λ(t) = c1e
t − c2e

−t

and with the initial conditions

x(t) =
1
2 + γ

1 + e2
et +

e2( 12 + γ)
1 + e2

e−t,

λ(t) =
1
2 + γ

1 + e2
et − e2( 12 + γ)

1 + e2
e−t,

uopt(t) = v(t) =
1
2 + γ

1 + e2
et − e2( 12 + γ)

1 + e2
e−t.

0 ≤ γ ≤ 1.
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6 Conclusion

This study introduced the method to incorporate interval uncertainty in dif-
ferential algebraic problems. Two examples of where DAEs under uncertainty
arise were presented. Two solution methods with interval uncertainty for the lin-
ear problem and for the linear quadratic unconstrained optimal control problem
were shown. Unconstrained optimal control problems lead to interval boundary-
valued problems, which subsequent research will address. Moreover, more general
uncertainties such as generalized uncertainties (see [8]), probability distributions,
fuzzy intervals are the next steps in the development of a theory of DAEs under
generalized uncertainties.
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Abstract. We study the classification of the hyperbolic singularities
to 3-dimensional interval linear differential equations as an application
of interval eigenvalues using the Constraint Interval Arithmetic (CIA).
We also present the ideas to calculate the interval eigenvalues using the
standard interval arithmetic.
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1 Introduction

Many applied problems have uncertainties or inaccuracies due to data measure-
ment errors, lack of complete information, simplification assumption of physi-
cal models, variations of the system, and computational errors. An encoding of
uncertainty as intervals instead of numbers when applicable is an efficient way
to address the aforementioned challenges.

When studying an interval problem we need to first understand what is the
context. In this presentation, we are concerned if there exists dependence, inde-
pendence or both in the parameters involved. In accordance to this context we
need to choose the appropriated arithmetic. Where we have the total indepen-
dence or dependence, we can use interval arithmetic or single level arithmetic
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(SLA). If we are studying a problem where there is the independence as well
as the dependence in parameters then constraint interval arithmetic (CIA) is a
good choice.

We are interested in studying the interval eigenvalue problem associated
with differential equations. This problem has many applications in the fields of
mechanics and engineering. The first interval eigenvalues results were obtained
by Deif [5], Deif and Rohn [15], Rohn [16]. Subsequently, approximation methods
results were obtained by Qiu et al. [14], Leng et al. [10], Hladik [9] and Hladik
et al. [6–8].

This presentation establishes conditions on the parameters of interval linear
autonomous differential systems to classify the hyperbolic equilibrium point in
3-dimensions. Moreover a detailed study is given for an example using CIA along
with a computational method for complex conjugate eigenvalues where we obtain
the lower and upper bounds of the real eigenvalue.

2 Preliminaries

The following outlines the standard interval arithmetic WSMA (Warmus, Sunaga
and Moore Arithmetic) and CIA (constraint interval arithmetic).

Let x = [x x] y = [y y], be such that x ≤ x and y ≤ y, then for WSMA
arithmetic we have the following operations:

1. x + y = [x + y x + y];
2. x − y = [x − y x − y];
3. x × y = [min{xy, xy, xy, xy} max{xy, xy, xy, xy}];
4. x÷y = [min{x÷y, x÷y, x÷y, x÷y} max{x÷y, x÷y, x÷y, x÷y}], 0 /∈ [y y].

Remark: Note that in WSMA arithmetic x − x is never 0 unless x is a real
number (width zero) nor is x ÷ x = 1.

Definition 1. [11] An interval [x x] CI (constraint interval) representation is
the real single-valued function x (γ) = γx + (1 − γ) x, 0 ≤ γ ≤ 1. Constraint
interval arithmetic (CIA) is z = x ◦ y, where z = [z z] = {z(γ1, γ2); z(γ1, γ2) =
(γ1x + (1 − γ1)x) ◦ (

γ2y + (1 − γ2)y
)
, 0 ≤ γ1 ≤ 1, 0 ≤ γ2 ≤ 1}, and z =

min{z(γ1, γ2)}, z = max{z(γ1, γ2)}, ◦ ∈ {+,−,×,÷}.
The set of m × n interval matrices will be denoted by IR

m×n. An interval
matrix A = (Aik) is interpreted as a set of real m × n matrices

A = {A ∈ R
m×n;Aik ∈ (Aik) for i = 1, . . . ,m, k = 1, . . . , n}.

Denote by A = [A A], where A and A are matrix whose entries are given by
right and left sides of all intervals numbers (aik) ∈ A, respectively. In the CI
context each element in A is given by aij(γij) = aij + γijwaij

, 1 ≤ i ≤ n, 1 ≤
j ≤ m,waij = aij − aij , γi ∈ [0, 1].
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Definition 2. [5] Given [A] = [A A], an interval matrix in IR
n×n, the set of

eigenvalues is given by:

Λ([A]) = {λ;Ax = λx, x �= 0, A ∈ [A]}.

In addition, we denote by Ac =
1
2
(A + A),�A =

1
2
(A − A), the midpoint and

the radius of [A], respectively.

In what follows we use the notation −→γ to mean the dependence of the choice of
the values for γij , i, j = 1, . . . , n in the interval [0 1].

Definition 3. [12] Let be an interval matrix A = [A A], then the CI matrix
is defined by

A(−→γ ) =

⎛

⎝
a11 + γ11wa11 . . . a1n + γ1nwa1n

. . . . . . . . .
an1 + γn1wan1 . . . ann + γnnwann

⎞

⎠ = A + Γ � W,

where A = (aij),W = (waij
) = (aij −aij), Γ = (γij), 0 ≤ γij ≤ 1, for i = 1, . . . , n

and j = 1, . . . , n and the symbol � denotes componentwise multiplication. Then,
we say that λ(Γ ) is an eigenvalue of A(−→γ ) if ∃x �= 0 | A(−→γ )x = λ(−→γ ) i.e.,
det(A(−→γ )) − λ(−→γ )In) = 0, where In is the identity matrix of order n.

Remark: Here for each choice of matrix Γ we have a deterministic problem
to calculate eigenvalues. We can get the interval eigenvalues by minimizing and
maximizing λ(−→γ ) by varying all γij , i, j = 1, . . . , n between 0 and 1.

To classify the equilibrium point in a 3-dimensional linear differential system,
firstly we need to know how we can classify it in according the eigenvalues
obtained of the matrix of the coefficients from linear differential system.

Consider a linear three-dimensional autonomous systems X ′(t) =
AX(t),X(t),X ′(t) ∈ M3×1(R), A ∈ M3×3(R) of the form

⎧
⎨

⎩

x′(t) = a11x + a12y + a13z
y′(t) = a21x + a22y + a23z
z′(t) = a31x + a32y + a33z

(1)

where the aij are constants. Suppose that (1) satisfies the existence and unique-
ness theorem. Given a matrix of order 3 × 3, we have the following possibilities
for the real canonical forms:

⎛

⎝
λ1 0 0
0 λ2 0
0 0 λ3

⎞

⎠ ,

⎛

⎝
λ1 1 0
0 λ1 0
0 0 λ3

⎞

⎠ ,

⎛

⎝
λ1 1 0
0 λ1 1
0 0 λ1

⎞

⎠ ,

⎛

⎝
α −β 0
β α 0
0 0 λ3

⎞

⎠ ,

where the eigenvalue λ = α ± iβ with α = 0 for pure imaginary, β = 0 for real
case and both are different of zero for complex λ. If the singularities in matrix
A are hyperbolic α �= 0 then we have the following possibilities:
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Table 1. Classification of the hyperbolic flows in dimension 3.

Classification Eigenvalues λ1, λ2, λ3

Attractors (stable) λ = α ± iβ(α < 0) and λ3 < 0 or λ1, λ2, λ3 < 0

Saddle point λ = α ± iβ, α < 0(> 0) and λ3 > 0(< 0) or
λ1, λ2 < 0(> 0) and λ3 > 0(< 0)

Repellors (unstable) λ = α ± iβ(α > 0) and λ3 > 0 or λ1, λ2, λ3 > 0

Remark: We are not interested in the cases α = 0 and/or the real eigenvalue
equal to zero since we cannot classify the equilibrium point.

3 Interval 3-Dimensional Linear Differential System

Given system (1) with the initial conditions, we can to consider the Initial Value
Problem with uncertainty, where the initial conditions and/or coefficients are
uncertainty. The behavior of the solution trajectories are not changed if only
its initial condition has a small perturbation. For example, consider the system

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

0

1

2 × 108

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

0

1

2 × 108

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

0

1

2

3 × 108

Fig. 1. The graph for x(t), y(t), z(t) com initial conditions [0.8 0.8 0.8], [1 1 1] and
[1.2 1.2 1.2], respectively.
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X ′(t) = AX(t), where A =

⎛

⎝
2 0 −1
3 4 1
2 1 3

⎞

⎠ with the initial conditions x0 = y0 =

z0 = [0.8 1.2] then we have the following unstable trajectories (see Fig. 1).

Remark: When only the initial conditions are intervals then the eigenvalues do
not change and the stability or instability is kept. But, if in (1) the entries in
the matrix of coefficient vary, then we need to evaluate what will happen with
the equilibrium point in (1).

Then, we consider in (1), A as an interval matrix. According to Definition 3,
we have the following problem:

⎧
⎨

⎩

x′(t) = (a11 + γ11w11)x(t) + (a12 + γ12w12)y(t) + (a13 + γ13w13)z(t)
y′(t) = (a21 + γ21w21)x(t) + (a22 + γ22w22)y(t) + (a23 + γ23w23)z(t)
z′(t) = (a31 + γ31w31)x(t) + (a32 + γ32w32)y(t) + (a33 + γ33w33)z(t),

(2)

where γij ∈ [0, 1], wij = aij − aij , for i, j = 1, 2, 3.
Observe that system (2):

1. Has an unique equilibrium point at the origin (0, 0, 0) if given the matrix

A(−→γ ) =

⎛

⎝
a11 + γ11w11 a12 + γ12w12 a13 + γ13w13

a21 + γ21w21 a22 + γ22w22 a22 + γ23w23

a31 + γ31w31 a32 + γ32w32 a33 + γ33w33

⎞

⎠ ,

the det(A(−→γ )) �= 0,∀γij ∈ [0, 1] for i, j = 1, 2, 3.
2. For −→γ = (γ11, γ12, γ13, γ21, γ22, γ23, γ31, γ32, γ33), the eigenvalues are obtained

from the equation:

p(λ(−→γ )) = −λ3(−→γ ) + a2(−→γ )λ2(−→γ ) − a1(−→γ )λ(−→γ ) + a0(−→γ ), (3)

where
a2(−→γ ) = tr(A(Γ )) = a11 + γ11w11 + a22 + γ22w22 + a33 + γ33w33;
a1(−→γ ) = [−(a11 +γ11w11)− (a22 +γ22w22)−](a33 +γ33w33)+ [a31 +γ31w31 +
a13+γ13w13]](a32+γ32w32)+(a12+γ12w12)(a13+γ13w13)−(a11+γ11w11)(a22+
γ22w22);
a0(−→γ ) = [(a11 + γ11w11)(a22 + γ22w22) − (a12 + γ12w12)(a13 + γ13w13)(a21 +
γ21w21)](a33 +γ33w33)+ [[a12 +γ12w12 −a11 −γ11w11](a31 +γ31w31)+ [a21 +
γ21w21 − a22 − γ22w22](a13 + γ13w13)](a32 + γ32w32).

Theorem 1. If system (2) has a unique equilibrium point at (0, 0, 0), then there
is a matrix Γ = (γij), i, j = 1, 2, 3 such that the equilibrium point is classified
according to Table 1.

Proof. Given the matrix A(−→γ ) in system (2), the nature of the equilibrium is
defined according to the zeroes of the characteristic polynomial of A(−→γ )

− λ3(−→γ ) + a2(−→γ )λ2(−→γ ) + a1(−→γ )λ(−→γ ) + a3(−→γ ) = 0, (4)
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The roots of the polynomial of order 3 in (4) are defined according to the
following discriminant [4]:

�(−→γ ) = 4p3(−→γ ) + q2(−→γ ), (5)

where q(−→γ ) = a0(−→γ ) +
a2(−→γ )a1(−→γ )

3
+

2
27

a3
2(

−→γ ) and p(−→γ ) = −1
3
a1(−→γ ) −

1
9
a2
2(

−→γ ). Then, we have:

1. If �(−→γ ) < 0, (4) has 3 different real roots;
2. If �(−→γ ) > 0, (4) has 1 real root and 2 complex (conjugate) roots;
3. If �(−→γ ) = 0 and p(−→γ ) < 0 then (4) has 3 real roots, where two of them are

equal;
4. If p(−→γ ) = q(−→γ ) = 0, then (4) has 3 equal real roots.

The analysis depends of the entries in matrix A(−→γ ) for γij , i, j = 1, 2, 3.

1. First case: if all entries of matrix A(−→γ ) in system (2) are dependent, then
γij = γ,∀i, j = 1, 2, 3 and the eigenvalues are obtained from the equation:
p(λ(γ)) = −λ3(γ) + a2(γ)λ2(γ) − a1(γ)λ(γ) + a0(γ),
where
a2(γ) = tr(A(γ)) = a11 + a22 + a33 + γ(w11 + w22 + w33);
a1(γ) =

∣
∣
∣
∣

a11 + γw11 a12 + γw12
a21 + γw21 a22 + γw22

∣
∣
∣
∣
+

∣
∣
∣
∣

a11 + γ1w11 a13 + γ3w13
a31 + γ7w31 a33 + γ9w33

∣
∣
∣
∣
+

∣
∣
∣
∣

a22 + γ5w22 a22 + γ6w23
a32 + γ8w32 a33 + γ9w33

∣
∣
∣
∣
;

a0(γ) = det(A(γ)).

Then, the classification can be obtained using the particular expression (5).
2. Second case: if the matrix A(−→γ ) is symmetric, then aij + γijwij = aji +

γjiwji,∀i �= j, i, j = 1, 2, 3 and −→γ = (γ11, γ12, γ13, γ22, γ23, γ33). In this case,
the eigenvalues are obtained from the equation:
p(λ(−→γ ) = −λ3(−→γ ) + λ2(−→γ )a2(−→γ ) − λ(−→γ )a1(−→γ ) + a0(−→γ ),
where
a2(−→γ ) = tr(A(−→γ )) = a11 + a22 + a33 + γ11w11 + γ22w22 + γ33w33);
a1(−→γ ) =

∣
∣
∣a11 + γ11w11 a12 + γ12w12
a12 + γ12w12 a22 + γ22w22

∣
∣
∣ +

∣
∣
∣a11 + γ11w11 a13 + γ13w13
a13 + γ13w13 a33 + γ33w33

∣
∣
∣

+
∣
∣
∣a22 + γ22w22 a23 + γ23w23
a23 + γ23w23 a33 + γ33w33

∣
∣
∣ ;

a0(−→γ ) = det(A(−→γ )).
3. Third case: if all elements of the matrix are independent and the eigenvalues

are obtained from Eq. (3). For each γij ∈ [0 1], wij = aij − aij , i, j = 1, 2, 3,
we have the characteristic polynomial of degree 3.

Note that if in all cases we have γij = 0, i, j = 1, 2, 3 we have the deterministic
case and for each γ, γij ∈ [0 1], wij = aij − aij , i, j = 1, 2, 3, we need to get
the sign of the roots for the characteristic polynomial of degree 3 to study the
stability in (2). Here we want to choose γij ∈ [0 1] so that there is an unique
equilibrium [12].
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Remark 1. For the square matrix of order 3, it is difficult to find, explicitly, the
regions of the hypercube of dimension 9 that give a complete classification of
the singularities of the characteristic matrix equation of system (2), even in the
case of symmetry or the case of total dependence. Considering these, we will first
describe the method called Cylindrical Algebraic Decomposition (CAD) used to
find the lower and upper bound for real interval eigenvalue (see [1–3]).

To this end, we deal with a semi-algebraic set S ⊂ R
n which a finite union of

sets defined by polynomial equations and inequalities with real coefficients. The
CAD provides a partition of S into semi-algebraic pieces which are homeomor-
phic to ]0 1[i for i = 1, . . . , n. Moreover, classification problems involving such
a set S, reduces to the computing of a finite number of sample points in each
connected component, and then facing a polynomial optimization question. The
algorithm is implemented in RAGlib (Real Algebraic Geometry library) of the
software Maple. For example, if S = {P1 = . . . = Pn = 0, λ1 > 0, . . . , λm > 0},
the first step is a reduction to compute sample points in each component of
S defined with non-strict inequalities. There is a connected component Ce of
Se = {P1 = . . . = Pn = 0, λ1 ≥ e, . . . , λm ≥ 0, 0 < e < e0} and a suitable e0 that
can be found using notions of critical values and asymptotic critical values. The
next step of the algorithm addresses an algebraic problem.

In the next example, we analyze a particular 3-dimensional interval differen-
tial system when all entries in the matrix are dependent and independent via CI.
For the independent case, firstly we find conditions to get 3, 2 and 1 real eigen-
values and one real and a pair of complex as was described in the proof of the
Theorem 1. Besides, in Proposition 1 and 2 we find the real interval eigenvalue by
using techniques from real algebraic geometry. The same method cannot be used
to find the complex interval eigenvalue, since the ≤ real ordering is not longer
available. Finally, we compare the values obtained with the Deif’s method [5]
and Rohn’s method [16].

Example 1. Consider the system of the differential equations X ′(t) = A(−→γ )X(t),
where A(−→γ ) is an interval matrix written as

A(−→γ ) =

⎛

⎝
2γ11 0 −3 + 2γ12

−1 + 4γ21 −2 + 6γ22 −1 + 2γ23
−2 + 4γ31 1 1 + 2γ33

⎞

⎠ (6)

Here to simplify the notation, γ11 = γ1, γ12 = 0, γ13 = γ2, γ21 = γ3, γ22 =
γ4, γ23 = γ5, γ31 = γ6, γ32 = 0, γ33 = γ7 in such way −→γ = (γ1, γ2, γ3,=
γ4, γ5, γ6, γ7). det(A(−→γ ) − λI3 = 0 implies that the characteristic polynomial

P (−→γ ) = a3(−→γ )λ3−→γ (−→γ ) + a2(−→γ )λ2(−→γ ) + a1(−→γ )λ(−→γ ) + a0(−→γ ) = 0, (7)

where a3(−→γ ) = −1;
a2(−→γ ) = −1 + 2γ1 + 6γ4 + 2γ7;
a1(−→γ ) = 7+2γ1−4γ2−6γ4−12γ1γ4+2γ5−12γ6+8γ2γ6+4γ7−4γ1γ7−12γ4γ7;
a0(

−→γ ) = 15 − 2γ1 − 10γ2 − 12γ3 + 8γ2γ3 − 36γ4 + 12γ1γ4 + 24γ2γ4 − 4γ1γ5 − 24γ6 +
16γ2γ6 + 72γ4γ6 − 48γ2γ4γ6 − 8γ1γ7 + 24γ1γ4γ7.
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The solution of (7), P (−→γ ) = 0 for λ subject to −→γ = (γ1, . . . , γ7), 0 ≤ γi ≤ 1, i = 1, . . . , 7
is obtained using the cube root formula

λ(−→γ ) = (P (−→γ ))
1
3 , −→γ = (γ1, . . . , γ7). (8)

Thus, the real interval eigenvalue is

[λ] =

[
min

0≤γi≤1
(P (−→γ ))

1
3 , min

0≤γi≤1
(P (−→γ ))

1
3

]
. (9)

Firstly, consider in (7) that all interval entries in matrix are dependent, then γi =
γ, ∀i = 1, . . . , 7 and, we have the following equation for the eigenvalues:

−λ3(γ)+(1−10γ)λ2(γ)+(−20γ2 −14γ +7)λ(γ)+(−24γ3 +120γ2 −84γ +15) = 0.
Thus, the eigenvalues are:

λ1,2(γ) =

(
1

2
±

√
3

2
i

) ⎧⎪⎨
⎪⎩

2(γ − 1)
√

−128γ4 − 736γ3 + 2052γ2 − 1114γ + 69
√

27
−

224γ3 − 780γ2 + 726γ − 170

27

⎫⎬
⎭

1/3

+

( ∓√
3

18
i −

1

18

)
3

√√√√√√√√
(40γ2 − 62γ + 22)3

2(γ − 1)
√

−128γ4 − 736γ3 + 2052γ2 − 1114γ + 69
√

27
−

224γ3 − 780γ2 + 726γ − 170

27

−
1 − 10γ

3

and λ3(γ) is

{
2(γ − 1)

√
−128γ4 − 736γ3 + 2052γ2 − 1114γ + 69√

27
− 224γ3 − 780γ2 + 726γ − 170

27

}1/3

+ 3

√√√√√√
40γ2 − 62γ + 22

2(γ − 1)
√

−128γ4 − 736γ3 + 2052γ2 − 1114γ + 69√
27

− 224γ3 − 780γ2 + 726γ − 170

27

.

For γ = 0, λ3(0) = 3, λ1,2(0) = −2 ± i; γ = 1, λ1,2,3 = 3, γ = .07098016326
152795, λ3.07098016326152795)(= 2.89667, λ1,2 = −1.59343 ± 0.886988i; γ =
.6768941902714837, λ1,2(.07098016326152795) = 2.53294 ± 1.28951i, λ3 = 0.703058,
and so on.

Analysing the graph of

{
2(γ − 1)

√
−128γ4 − 736γ3 + 2052γ2 − 1114γ + 69√

27
− 224γ3 − 780γ2 + 726γ − 170

27

}1/3

,

we can conclude that for γ between 0.29 and 0.39 we have three real eigenvalues, for
γ = 1 there is a unique triple real root and in other cases we have one real and two
complex eigenvalues.

Secondly, consider 0 ≤ γi ≤ 1, i = 1, . . . , 7 are independent, then can be proved
that for the real case, the min/max of the eigenvalues are obtained at a corner point
on the boundary of the space of the parameters in a hypercube of the 7-dimension.
Note that to obtain conditions for the complex eigenvalues is not easy, because the
complex set is not an ordered set and we have an optimization problem to find the
conditions for the parameters γi, i = 1, . . . , 7. For all γi ∈ R

7, the 3 × 3 matrix A(−→γ )
has at least one real eigenvalue, therefore for all −→γ ∈ R

7, one can define λmin(A(−→γ ))
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(resp. λmax(A(−→γ )) as the minimal (resp. maximal) real eigenvalue of A(−→γ ) =
A(γ1, . . . , γ7). Let us now consider the compact set B7 = [0, 1]7 ⊂ R

7.
We denote by P = P (λ, −→γ ) the characteristic polynomial of A(−→γ ). Then by con-

sidering the discriminant (5), where q(−→γ ) = a0(
−→γ ) +

a2(
−→γ )a1(

−→γ )

3
+

2

27
a3
2(

−→γ ) and

p(−→γ ) = −1

3
a1(

−→γ ) − 1

3
a2
2(

−→γ ) we have the following analysis.

1. There are three different real eigenvalues for � = [−162.963, 0]. The left side is
defined by parameters γ4 = γ5 = γ7 = 1, γ1 = γ2 = γ3 = γ6 = 0 that define the
characteristic equation −λ3+7λ2−5λ−21 = −(λ−3)(λ−5.31)(λ−1.32) = 0 and the
right side by γ1 = 0.64, γ2 = 0.38, γ3 = 0, γ4 = .25, γ5 = .62; γ6 = 0.64, γ7 = 0.33
such that −λ3 + 2.44λ2 − 1.6992λ − 0.2432 = −(λ − .198725)(λ − 0.941681)(λ −
1.29959) = 0. We have that the equilibrium point in this case are saddle and
repulsor, respectively.

2. There is one real and a complex conjugate for � = [0 452] The left side is defined
by parameters γ4 = 0.75, γ5 = 0.12, γ7 = .52, γ1 = 0.89, γ2 = 0.92, γ3 = 0, γ6 = .18
that define the characteristic equation −λ3 + 6.32λ2 − 12.4564λ + 7.8788 = −(λ −
3.18777)(λ − 1.56612 + 0.137312i)(λ − 1.56612 − 0.137312i) = 0 and the right side
by γ1 = γ2 = γ3 = γ7 = 0, γ4 = γ5γ6 = 1, such that −λ3 + 5λ2 − 9λ + 27 =
−(λ − 0.321648 + 2.46858i)(λ − 0.321648 − 2.46858i)(λ − 4.3567) = 0. Note that
the equilibrium point in both cases are repulsing.

3. If �(−→γ ) = 0 and p(−→γ ) < 0, then (7) has 3 real roots, where two them are equal.
Then,

�(−→γ ) = (15 − 2γ1 − 10γ2 − 12γ3 + 8γ2γ3 − 36γ4 + 12γ1γ4 + 24γ2γ4 − 4γ1γ5 − 24γ6

+ 16γ2γ6 + 72γ4γ6 − 48γ2γ4γ6 − 8γ1γ7 + 24γ1γ4γ7 +
1

3

(
7 + 2γ1 − 4γ2 − 6γ4

− 12γ1γ4 + 2γ5 − 12γ6 + 8γ2γ6 + 4γ7 − 4γ1γ7 − 12γ4γ7

)(
− 1 + 2γ1 + 6γ4 + 2γ7

)

+
2

27

(
− 1 + 2γ1 + 6γ4 + 2γ7

)3)2

+ 4

(
− 1

3

(
7 + 2γ1 − 4γ2 − 6γ4 − 12γ1γ4 + 2γ5

− 12γ6 + 8γ2γ6 + 4γ7 − 4γ1γ7 − 12γ4γ7 +
1

3

(
− 1 + 2γ1 + 6γ4 + 2γ7

)2))3

and p(−→γ ) < 0. (7) has two equal roots if, and only if, (7) and its first derivative
have the same roots. Then we have the condition γi = 0, i = 1, 2, 7. Moreover,

if γi = 0, i = 2, 5, we have the condition γ6 <
11

16
. Then for example γ6 =

1

2
,

then γ3 =
43

16
or

1

6
, with characteristic equation given by − 5

27
+ λ − λ2 − λ3 =

−
(

λ − 1

3

)2 (
λ +

5

3

)
= 0 and 1+λ−λ2−λ3 = −(λ+1)2(λ−1) = 0, respectively.

If p(−→γ ) = q(−→γ ) = 0, that is, a0(
−→γ ) =

25

27
a3
2(

−→γ ), (7) has one triple real root. The

expression is

γ2 =

(
− 215 + 102γ1 − 150γ2

1 + 100γ3
1 + 162γ3 + 711γ4 − 1062γ1γ4 + 900γ2

1γ4

− 1350γ2
4 + 2700γ1γ

2
4 + 2700γ3

4 + 54γ1γ5 + 324γ6 − 972γ4γ6 + 75γ7 − 192γ1γ7

+ 300γ2
1γ7 − 900γ4γ7 + 1476γ1γ4γ7 + 2700γ2

4γ7 − 150γ2
7 + 300γ1γ

2
7 + 900γ4γ

2
7

+ 100γ3
7

)
/27(−5 + 4γ3 + 12γ4 + 8γ6 − 24γ4γ6),
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where 0 ≤ γi ≤ 1, i = 1, . . . , 7. For example, if γi = 1, ∀i = 1, . . . , 7, λ = 3 is the
unique eigenvalue.

Equation (5) is equivalent to 4q3(−→γ ) + 27p2(−→γ ) and to
q2

4
(−→γ ) +

p3(−→γ )

27
, but to

find the roots of (7) we need to use the last one [4], so that

[
1

4

(
2

27
a2(

−→γ )2 +
a2(

−→γ )a1(
−→γ )

3
+ a0(

−→γ )

)
2 +

1

27

(−a2(
−→γ )2

3
− a1

)
3

]
(10)

Our first goal is to estimate the extreme values of the multiple roots in B7. We
begin by dealing with the multiple roots of the derivative ∂P

∂λ
of the characteristic

polynomial. We observe that the parameter γ3 is not present in this derivative. Let us
denote −→γ = (γ1, γ2, γ4, γ5, γ6, γ7). Let

P1(
−→γ ) =

∂P

∂λ
(λ, −→γ ) = 3λ2 + 2a2(

−→γ )λ + a1(
−→γ ). (11)

In the Eq. (11,) let us now consider the compact set −→γ ∈ B6 = [0, 1]6 ⊂ R
6. Then,

P (λ, −→γ ) has a double root in an interior point of B6 if for

λ =
−a2(

−→γ ) ±
√

a2
2(

−→γ ) − 3a1(
−→γ )

3
, we have a2

2(
−→γ ) − 3a1(

−→γ ) = 0 and in this case

λ =
−a2(

−→γ )

3
.

The real eigenvalues can be shown to be in [−3.39 5.69] in accordance to the
Propositions 1 and 2, which follow.

Third, Deif [5] considers the interval matrix

⎛
⎝ [0 2] [0 0] [−3 − 1]

[−1 3] [−2 4] [−1 1]
[−2 2] [1 1] [1 3]

⎞
⎠ and found

that Re(λ) ∈ [0.2873 4.7346] and Im(λ) ∈ [0 2.1754].
Fourth, by using the Rohn’s Method outlined in [12], we found Re(λ) ∈

[−2.70 5.27] and Im(λ) ∈ [−5.34544 5.34544].

However, in the method using CI, the matrix

⎛
⎝ 0 0 0

3 −2 1
−2 1 1

⎞
⎠ and

⎛
⎝ 2 0 −3

3 −2 1
−2 1 1

⎞
⎠ give

us real eigenvalues in the interval [−3.39 5.69].
In the complex case, we find numerically, Re(λ) ∈ [−2.11 3.36429] for γi = 0, ∀i �= 5

and γ1 = 0.94, γi = 1, i �= 1, 5, γ5 = 0, respectively (Fig. 2).

The Propositions 1 and 2 proof that the real interval eigenvalue is
[−3.39 5.69]. Firstly, it is necessary to find a value Λ such that for all λ > Λ,Fλ =
{γ ∈ int(B7)|λM (γ) = λ} does not intersects the discriminant of P (λ,−→γ ).
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Fig. 2. Trajectories solutions for γi = 3/5, 1/5, i = 1, . . . , 7 and γi = 1/5, i �= 6, γ6 =
3/5, respectively.

Proposition 1. λmax is the upper bound for the real interval eigenvalue in (7)
and is the greatest root of λ3 − 9λ2 + 19λ − 1, obtained from the Eq. (7) for−→γ = (1 0 0 1 1 0 1).

Proof. Let V +
5 = {−→γ ∈ B7 |λ(−→γ ) > 5}. First, we show that V +

5 is non-empty.
Note that for −→γ 0 = (1, 1, 0, 1, 1, 0, 1) we have P (λ,−→γ 0) = (λ − 5)(λ − 1)(λ − 3)
such that λ(−→γ ) = 5. By taking −→γ ε = (1 − ε, 1 − 8ε, ε, 1 − ε, 1 − ε, 1 − ε), ε > 0
sufficiently small, one gets λ(−→γ ε) = 5 +

ε

4
+ o(ε) > 5 with −→γ ε ∈ int(B7). Then,

the maximum is not attained at an interior set.
We consider on V +

5 a function λ : −→γ → λ(−→γ ). Since λ(−→γ ) is smooth on V +
5 ,

∂P
∂λ(−→γ )

(λ(−→γ ),−→γ ) �= 0.

The gradient
−→∇−→γ (P ) of P with respect to −→γ is such that:

−→∇−→γ (P (λ(−→γ ),−→γ )) = − ∂P

∂λ(−→γ )
(λ(−→γ ),−→γ ) · −→∇−→γ λ(−→γ ) (12)

Moreover, λ = λ(−→γ ) is the greatest root of P (λ,−→γ ), which is a degree 3 polyno-
mial with positive leading coefficient. Hence ∂P

∂λ (λ(−→γ ),−→γ ) > 0. It follows that
the respective coordinates of

−→∇−→γ λ(−→γ ) and
−→∇−→γ P (λ(−→γ ),−→γ ) have opposite signs.
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The transposed gradient t−→∇−→γ P (x,−→γ ) is
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂P
∂γ1

(λ(−→γ ),−→γ )
∂P
∂γ2

(λ(−→γ ),−→γ )
4 (3 − 2 γ2)

∂P
∂γ4

(λ(−→γ ),−→γ )
2 (2 γ1 − λ)

4 (3 − 2 γ2) (λ − 6 γ4 + 2)
2 (λ − 6 γ4 + 2) (2 γ1 − λ)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(13)

Let us consider a point −→γ ∈ V +
5 , λ(−→γ ) > 5 and 0 ≤ γi ≤ 1, i = 1, . . . , 7,then

the signs of the coordinates for
−→∇−→γ (P (λ(−→γ ),−→γ )) are [−,−,+,−,−,+,−]. The

strategy to find the maximum eigenvalue is to choose one direction for the gra-
dient, considering one constant, to find the directions where it is increasing,
because we need to build the trajectory as a piecewise function in hypercube B7.
Then we consider the smooth vector field χ defined on V +

5 ,

χ(−→γ ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0

4 (3 − 2γ2)
0

2 (2γ1 − λ(−→γ )
4 (3 − 2γ2) (ξ(Γ ) − 6γ4 + 2)

2 (ξ(Γ ) − 6γ4 + 2) (2γ1 − λ(−→γ )) .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(14)

Let λ(−→γ )0 ∈ V +
5 ∩ int(B7) and ϕ : t → ϕ(t) be the trajectory of χ such

that ϕ(0) = λ(−→γ )0. Along this trajectory ξ(ϕ(t)) strictly increases, hence ϕ(t)
remains in V +

5 . Let ψ(λ(−→γ )) = γ3, γ6 (1−γ5) (1−γ7). For all λ(−→γ ∈ int(B7), we
have sign( ∂ψ

∂γ3
) = sign( ∂ψ

∂γ6
) > 0 and sign( ∂ψ

∂γ5
) = sign( ∂ψ

∂γ7
) < 0. In addition V +

5 ,
−→∇λ(−→γ )(P (λ(−→γ ), λ(−→γ ))) and

−→∇Γ ψ(Γ ) have exactly the same signs, excepting

where the sign does not change, as well as λ(λ(−→γ )) and
−→∇λ(−→γ )ψ(λ(−→γ )).

It follows that t → ψ(ϕ(t)) decreases, so that it cannot be the minimum on
int(B7) and there exists a minimal t1 > 0 such that ψ(ϕ(t1)) = 0. Furthermore,
if one puts Z(ψ) = {λ(−→γ ) ∈ B7 | ψ(λ(−→γ )) = 0}, this proves that λmax =

max
λ(−→γ )∈(Z(ψ)∩B7)

{λ(−→γ )}.

We decrease/increase iteratively each coordinate {γ3, γ6, γ5, γ7} to 0 or 1
accordingly to the (constant, non-zero) corresponding gradient coordinate sign.
We finally get a point γk ∈ ∂B7 (k ≥ 1) such that

{
γk
5 = γk

7 = 1, γk
3 = γk

6 = 0
}

and λ(−→γ k) > λ(−→γ 0). Observe that γk
1 = γ0

1 , γk
2 = γ0

2 , γk
4 = γ0

4 .
We now have to deal with the remaining free coordinates (γ1, γ2, γ4). So let

us consider the polynomial

P̃ (λ, (γ1, γ2, γ4)) = P (λ, (γ1, γ2, 0, γ4, 1, 0, 1))

with (γ1, γ2, γ4) ∈ B3 = [0, 1]3. The problem we are facing is exactly the
same as the original one for P . For all h = (γ1, γ2, γ4), denote by λ̃(h) =
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λ(γ1, γ2, 0, γ4, 1, 0, 1)) the greatest root of P̃ (λ, h). We introduce the non-empty
semi-algebraic subset:

Ṽ +
5 = {(γ1, γ2, γ4) ∈ B3 | (γ1, γ2, 0, γ4, 1, 0, 1) ∈ V +

5 }.

For all h = (γ1, γ2, γ4) ∈ B3, and all λ1 ∈ R, the gradient
−→∇hP̃ (λ1, h) equals(

∂P
∂γ1

(λ1, λ(−→γ )), ∂P
∂γ2

(λ1, Γ ), ∂P
∂γ4

(λ1, λ(−→γ ))
)

where λ(−→γ ) = (γ1, γ2, 0, γ4, 1, 0, 1)

∈ V +
5 , then λ̃((−→γ ) > 5, such that

– ∂P̃
∂γ2

(ξ̃(h), h) > 0.

– ∂P̃
∂γ1

(ξ̃(h), h) < 0.

– ∂P̃
∂γ4

(ξ̃(h), h) < 0.

We integrate
−→∇hP̃ from a point h0 ∈ B3 and get after at most two other iter-

ations, a point h∗ such that {γ1 = γ4 = 1, γ2 = 0}, with λ̃(h∗) > λ̃(h0). To
h∗ ∈ B3 corresponds the unique point −→γ ∗ ∈ B7 such that {γ2 = γ3 = γ6 =
0, γ1 = γ4 = γ5 = γ7 = 1}. Moreover λ(−→γ ∗) > λ((−→γ k) > λ(−→γ 0).

This results in P (λ,−→γ ∗) = λ3−9λ2+19λ−1 and one can compute explicitly
the value λ(−→γ ∗) which is realized at λmax = 5.69.

Proposition 2. λmin = −3.39 is the lower bound for the real interval eigenvalue
in (7) and is the smallest root of X3 + X2 − 9X − 3, obtained from the Eq. (7)
for −→γ = (0 0 1 0 1 0 0).

Proof. The proof is similar to the proof of Proposition 1.

Remark 2. Therefore, in this example we showed:

1. Given an equation

Pn(x) = xx + an−1x
n−1 + . . . + a1x + a0 = 0, (15)

The discriminant Δ(Pn) of Pn is a polynomial in the indeterminates
(an−1, . . . , a1, a0) with integer coefficients (explicitly computed as the deter-
minant of a Sylvester matrix, see [13]). The set {(an−1, . . . , a1, a0)|Pn(x) =
0 has root with multiplicity} is exactly the set {(an−1, . . . , a1, a0) Δ(Pn) =
0}. Then, varying the coefficients in (15) we can get what type of roots it has.
In particular the condition on the discriminant for n = 3 defines the type of
roots for the polynomial equation when 0 ≤ γi ≤ 1, i = 1, . . . , 7 in (7) are
varying. In the real case, we have methods to find them, but in the complex
case it is not easy to characterize them completely;

2. There are other methods to find the bounds for interval eigenvalue for (7),
but it is not easy(in general not possible) to define the matrix by choosing the
entries in interval matrix to get the corresponding eigenvalues. That is, once
has the max/min eigenvalues the matrix that generated these eigenvalues is
impossible to find. This is not true with the CI approach. We always know
the matrix that generated the eigenvalues;
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3. CIA gives us the option to choose the parameters for each eigenvalue in the
way we can find the matrix explicitly, but may be a NP-hard procedure;

4. Many authors consider the interval matrix [A] = [Ac − �A Ac + �A] =
[A A]. By CIA, we get Ac − �A for γi = 0 and Ac + �A for γi = 1.

5. Ac is obtained from CIA taking γi =
1
2
, but for the element [−3 −1],�a13 =

−1 − (−3)
2

= 1 and by CIA a13(γ2) = −3 + 2γ2, then −3 + 2γ2 = 1 if

γ2 = 2. This means that methods used by Deif [5], Rohn [16] and [9] are not
equivalent. Note the elements �a13 = 1 /∈ [−3 − 1] neither �a32 = 0 /∈ [1 1].

6. Mathematica and Maple were used as tools to analyze and get some results.

4 Conclusion

This research outlined a method, involving semi algebraic sets theory, for which
the stability of interval linear differential equations can be analyzed via con-
straint intervals. As a by product, a method for obtaining conditions about
parameters to get real or complex eigenvalues of interval matrices of order 3 × 3
were developed.
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Abstract. We present new results in the calculus for fuzzy-valued func-
tions of a single real variable. We adopt extensively the midpoint-radius
representation of intervals in the real half-plane and show its usefulness
in fuzzy calculus. Concepts related to convergence and limits, continuity,
level-wise gH-differentiability of first and second orders have nice and use-
ful midpoint expressions. Using mid-point representation of fuzzy-valued
functions, partial orders and properties of monotonicity and convexity
are discussed and analysed in detail. Periodicity is easy to represent and
identify. Graphical examples and pictures accompany the presentation.

Keywords: Fuzzy-valued function · Midpoint representation ·
Monotonic fuzzy function · Convexity of fuzzy function · Periodic fuzzy
function

1 Introduction to Intervals and Fuzzy Numbers

We denote by KC the family of all bounded closed intervals in R, i.e.,

KC =
{[

a−, a+
] | a−, a+ ∈ R and a− ≤ a+

}
.

To describe and represent basic concepts and operations for real intervals,
the well-known midpoint-radius representation is very useful (see e.g. [2] and the
references therein): for a given interval A = [a−, a+], define the midpoint â and
radius ã, respectively, by

â =
a+ + a−

2
and ã =

a+ − a−

2
,

so that a− = â − ã and a+ = â + ã. We denote an interval by A = [a−, a+] or,
in midpoint notation, by A = (â; ã); so

KC = {(â; ã) | â, ã ∈ R and ã ≥ 0} .
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When we refer to an interval C ∈ KC , its elements are denoted as c−, c+,
ĉ, c̃, with c̃ ≥ 0, c− ≤ c+ and the interval by C = [c−, c+] in extreme-point
representation and by C = (ĉ; c̃), in midpoint notation.

Given A = [a−, a+], B = [b−, b+] ∈ KC and τ ∈ R, we have the following
classical (Minkowski-type) addition, scalar multiplication and difference:

– A + B = [a− + b−, a+ + b+],

– τA = {τa : a ∈ A} =
{

[τa−, τa+] , if τ ≥ 0,
[τa+, τa−] , if τ ≤ 0 ,

– −A = (−1)A = [−a+,−a−],
– A − B = A + (−1)B = [a− − b+, a+ − b−].

Using midpoint notation, the previous operations, for A = (â; ã), B = (̂b; b̃)
and τ ∈ R are:

– A + B = (â + b̂; ã + b̃),
– τA = (τ â; |τ |ã),
– −A = (−â; ã),
– A − B = (â − b̂; ã + b̃).

We denote the generalized Hukuhara difference (gH-difference in short) of
two intervals A and B as A �gH B = C ⇐⇒ (A = B + C or B = A − C);
the gH-difference of two intervals always exists and, in midpoint notation, is
equal to

A �gH B = (â − b̂; |ã − b̃|) ⊆ A − B.

The gH-addition for intervals is defined by

A ⊕gH B = A �gH (−B) = (â + b̂; |ã − b̃|) ⊆ A + B.

If A ∈ KC , we will denote by len(A) = a+ − a− = 2â the length of interval
A. Remark that αA − βA = (α + β)A only if αβ ≥ 0 (except for trivial cases)
and that A �gH B = A − B or A ⊕gH B = A + B only if A or B are singletons.

For two intervals A,B ∈ KC the Pompeiu–Hausdorff distance dH : KC ×
KC → R+ ∪ {0} is defined by

dH(A,B) = max
{

max
a∈A

d(a,B),max
b∈B

d(b, A)
}

with d(a,B) = minb∈B |a − b|. The following properties are well known:

dH(τA, τB) = |τ |dH(A,B),∀τ ∈ R,

dH(A + C,B + C) = dH(A,B), for all C ∈ KC ,

dH(A + B,C + D) ≤ dH(A,C) + dH(B,D).

It is known (see [4,8]) that dH(A,B) = ‖A �gH B‖ where for C ∈ KC , the
quantity ‖C‖ = max{|c| ; c ∈ C} = dH(C, {0}) is called the magnitude of C; an
immediate property of the gH -difference for A,B ∈ KC is

dH(A,B) = 0 ⇐⇒ A �gH B = 0 ⇐⇒ A = B. (1)
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It is also well known that (KC , dH) is a complete metric space.
A fuzzy set on R is a mapping u : R → [0, 1]. we denote its α-level set as

[u]α = {x ∈ R : u(x) ≥ α} for any α ∈ [0, 1]. The supp(u) = {x ∈ R|u(x) > 0};
0-level set of u is defined by [u]0 = cl(supp(u)) where cl(M) means the closure
of the subset M ⊂ R.

A fuzzy set u on R is said to be a fuzzy number if:

(i) u is normal, i.e., there exists x0 ∈ R such that u(x0) = 1,
(ii) u is a convex fuzzy set (i.e. u(tx + (1 − t)y) ≥ min{u(x), u(y)}, ∀t ∈

[0, 1], x, y ∈ R),
(iii) u is upper semi-continuous on R,
(iv) cl{x ∈ R|u(x) > 0} is compact.

Let RF denote the family of fuzzy numbers. So, for any u ∈ RF we have
[u]α ∈ KC for all α ∈ [0, 1] and thus the α-levels of a fuzzy number are given by
[u]α = [u−

α , u+
α ], u−

α , u+
α ∈ R for all α ∈ [0, 1]. In midpoint notation, we will write

[u]α = (ûα, ũα) where ûα = u+
α +u−

α

2 and ũα = u+
α − u−

α

2 so that u−
α = ûα − ũα

and u+
α = ũα + ûα. If [u]1 is a singleton then we say that u is a fuzzy number.

Triangular fuzzy numbers are a special type of fuzzy numbers which are well
determined by three real numbers a ≤ b ≤ c, denoted by u =< a, b, c >, with
α-levels [u]α = [a + (b − a)α, c − (c − b)α] for all α ∈ [0, 1].

It is well known that in terms of α-levels and taking into account the midpoint
notation, for every α ∈ [0, 1] [u + v]α = [u]α + [v]α = [u−

α + ν−
α , u+

α + ν+
α ] =

(ûα+ν̂α; ũα+ν̃α) and [λu]α = [min{λu−
α , λu+

α },max{λu−
α , λu+

α }] = (λûα; |λ|ũα).
The following LgH-difference is somewhat more general than the gH-

difference:

Definition 1. For given two fuzzy numbers u, ν, the level-wise generalized
Hukuhara difference (LgH-difference, for short) of u, ν is defined as the set
of interval-valued gH-differences

u �LgH ν = {wα ∈ KC |wα = [u]α �gH [ν]α for α ∈ [0, 1]} ,

that is, for each α ∈ [0, 1], either [u]α = [ν]α + wα or [ν]α = [u]α − wα.

1.1 Orders for Fuzzy Numbers

The LU-fuzzy partial order is well known in the literature. Let us recall that
given u, ν ∈ RF and given α ∈ [0, 1], heir α-levels are uα = [u−

α , u+
α ] ∈ KC and

ν = [ν−
α , ν+

α ] ∈ KC, respectively.

Definition 2. [7] Given u,ν ∈ RF and given α ∈ [0, 1], we say that

(i) u �α−LU ν if and only if uα �LU να, that is, u−
α ≤ ν−

α and u+
α ≤ ν+

α ,
(ii) u �α−LU ν if and only if uα �LU να,
(iii) u ≺α−LU ν if and only if uα ≺LU να.
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Correspondingly, the analogous LU -fuzzy orders can be obtained by

(a) u �LU ν if and only if u �α−LU ν for all α ∈ [0, 1],
(b) u �LU ν if and only if u �α−LU ν for all α ∈ [0, 1],
(c) u ≺LU ν if and only if u ≺α−LU ν for all α ∈ [0, 1].

The corresponding reverse orders are, respectively, u �LU ν ⇐⇒ ν �LU u,
u �LU ν ⇐⇒ ν �LU u and u �LU ν ⇐⇒ ν ≺LU u.

Using α-levels midpoint notation uα = (ûα; ũα), να = (ν̂α; ν̃α) for all α ∈
[0, 1], the partial orders (a) and (c) above can be expressed for all α ∈ [0, 1] as

(LUa)

⎧
⎨

⎩

ûα ≤ ν̂α

ν̃α ≤ ũα + (ν̂α − ûα)
ν̃α ≥ ũα − (ν̂α − ûα)

and

(LUc)

⎧
⎨

⎩

ûα < ν̂α

ν̃α < ũα + (ν̂α − ûα)
ν̃α > ũα − (ν̂α − ûα)

;

the partial order (b) can be expressed in terms of (LUa) with the additional
requirement that at least one of the inequalities is strict.

In the sequel, the results are expressed without proof because they are similar
to the ones in [12] and [13]. For the family of intervals u �LgH ν we write
u �LgH ν �LU 0 (and similarly with other orders) to mean that wα �LU 0 for
all wα ∈ u �LgH ν.

Proposition 1. Let u, ν ∈ RF with uα = (ûα; ũα), να = (ν̂α; ν̃α) for all α ∈
[0, 1]. We have

(i.a) u �LU ν ⇔ u �LgH ν �LU 0,
(ii.a) u �LU ν ⇔ u �LgH ν �LU 0,
(iii.a) u ≺LU ν ⇔ u �LgH ν ≺LU 0,
(iv.a) u ≺LU ν =⇒ u �LU ν =⇒ u �LU ν,
(i.b) u �LU ν ⇔ u �LgH ν �LU 0,
(ii.b) u �LU ν ⇔ u �LgH ν �LU 0,
(iii.b) u �LU ν ⇔ u �LgH ν �LU 0,
(iv.b) u �LU ν =⇒ u �LU ν =⇒ u �LU ν.

We say that u and ν are LU-incomparable if neither u �LU ν nor u �LU ν
and u and ν are α -LU-incomparable if neither u �α−LU ν nor u �α−LU ν.

Proposition 2. Let u, ν ∈ RF with uα = (ûα; ũα), να = (ν̂α; ν̃α) for all α ∈
[0, 1]. The following are equivalent:

(i) u and ν are α-LU-incomparable;
(ii) uα �gH να is not a singleton and 0 ∈ int(uα �gH να);
(iii) |ûα − ν̂α| < |ν̃α − ũα| for α ∈ [0, 1];
(iv) uα ⊂ int(να) or να ⊂ int(uα).
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Proposition 3. If u, ν, w ∈ RF, then

(i) u �LU ν if and only if (u + w) �LU (v + w);
(ii-a) If u + ν �LU w then u �LU (w �LgH ν);
(ii-b) If u + ν �LU w then u �LU (w �LgH ν);
(iii) u �LU ν if and only if (−ν) �LU (−u).

2 Fuzzy-Valued Functions

A function F : [a, b] −→ RF is said to be a fuzzy-valued function. For any
α ∈ [0, 1], associated to F , we define the family of interval-valued functions
Fα : [a, b] −→ KC given by [F (x)]α = [f−

α (x), f+
α (x)] for all α ∈ [0, 1]. In mid-

point representation, we write [F (x)]α =
(
f̂α(x); f̃α(x)

)
where f̂α(x) ∈ R is

the midpoint value of interval [F (x)]α and f̃α(x) ∈ R
+ ∪ {0} is the nonnegative

half-length of Fα(x):

f̂α(x) =
f+

α (x) + f−
α (x)

2
and

f̃α(x) =
f+

α (x) − f−
α (x)

2
≥ 0

so that
f−

α (x) = f̂α(x) − f̃α(x) and f+
α (x) = f̂α(x) + f̃α(x).

Proposition 4. Let F : T −→ RF be a fuzzy-valued function and x0 ∈ T ⊆ R

be an accumulation point of T . If lim
x→x0

F (x) = L with Lα = [l−α , l+α ]. Then

lim
x→x0

[F (x)]α = [l−α , l+α ] for all α (uniformly in α ∈ [0, 1]).

In midpoint notation, let [F (x)]α = (f̂α(x); f̃α(x)) and Lα = (l̂α; l̃α) for all
α ∈ [0, 1]; then the limits and continuity can be expressed, respectively, as

lim
x→x0

[F (x)]α = Lα ⇐⇒
⎧
⎨

⎩

lim
x→x0

f̂α(x) = l̂α

lim
x→x0

f̃α(x) = l̃α
(2)

and

lim
x→x0

[F (x)]α = [F (x0)]α ⇐⇒
⎧
⎨

⎩

lim
x→x0

f̂α(x) = f̂α(x0)

lim
x→x0

f̃α(x) = f̃α(x0).

The following proposition connects limits to the order of fuzzy numbers.
Analogous results can be obtained for the reverse partial order �LU .

Proposition 5. Let F,G,H : T −→ RF be fuzzy-valued functions and x0 an
accumulation point for T .
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(i) If F (x) �LU G(x) for all x ∈ T in a neighborhood of x0 and limx→x0 F (x) =
L ∈ RF, limx→x0 G(x) = M ∈ RF, then L �LU M ;

(ii) If F (x) �LU G(x) �LU H(x) for all x ∈ T in a neighborhood of x0 and
limx→x0 F (x) = limx→x0 H(x) = L ∈ RF, then limx→x0 G(x) = L.

Similar results as in Propositions 4 and 5 are valid for the left limit with
x −→ x0, x < x0 (x ↗ x0 for short) and for the right limit x −→ x0 , x > x0

(x ↘ x0 for short); the condition that lim
x→x0

F (x) = L if and only if lim
x↗x0

F (x) =

L = lim
x↘x0

F (x) is obvious.

The graphical representation of a fuzzy-valued function is then possible in
terms either of the standard way, by picturing the level curves y = f−

α (x) and
y = f+

α (x) in the plane (x, y), or, in the half-plane (ẑ; z̃), by plotting the para-
metric curves ẑ = f̂α(x) and z̃ = f̃α(x); Figs. 1 and 2 give an illustration of
the two graphical alternatives for the (periodic, with period 2π) fuzzy function
F (x) having α-cuts defined by functions f̂α(x) = 5cos(x)− (

√
2− 1)cos(5x) and

f̃α(x) = (1−0.5α)2(1.5+sin(4x)) for x ∈ [0, 2π]; only n = 11 α-cuts are pictured

for uniform α ∈
{

i − 1
10

|i = 1, 2, ..., n

}
(see also Fig. 3).

Fig. 1. Level-wise endpoint graphical representation of the fuzzy-valued function with

α-cuts [F (x)]α =
[
f̂α(x) − f̃α(x), f̂α(x) + f̃α(x)

]
where f̂α(x) = 5cos(x) − (

√
2 −

1)cos(5x) and f̃α(x) = (1 − 0.6α)2(1.5 + sin(4x)) for x ∈ [0, 2π]. The core, inter-
cepted by the black-colored curves, is the interval-valued function x −→ [F (x)]1] =
[f−

1 (x), f+
1 (x)]. The other α-cuts are represented by red-colored curves for the left

extreme functions f−
α (x) and blue-colored curves for the right extreme functions f+

α (x).
The marked points correspond to x = 2.2 and x = 4.5. (Color figure online)

In relation with the LgH-difference, we consider the concept of LgH-
differentiability.
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Fig. 2. Level-wise midpoint graphical representation in the half plane (ẑ; z̃) with z̃ ≥ 0
as vertical axis, of the fuzzy-valued function F (x), x ∈ [0, 2π], described in Fig. 1. In
this representation, each curve corresponds to a single α-cut (only n = 11 curves are
pictured with uniform α = 0, 0.1, ..., 1); the core corresponds to the black-colored curve,
the support to the red-colored one. The arrows give the direction of x from initial 0 to
final 2π. The marked points correspond to x = 2.2 and x = 4.5. (Color figure online)

Fig. 3. Membership function and level-wise midpoint representations of two values
F (2.2) and F (4.5) of the fuzzy-valued function F (x) described in Fig. 1. In the mid-
point representation, a vertical curve corresponds to the displacement of the n = 11
computed α-cuts; the red lines on the right pictures reconstruct the α-cuts. Remark
that y and ẑ represent the same domain and that a linear vertical segment in the
midpoint representation corresponds to a symmetric membership function having the
same value of f̂α(x) for all α. (Color figure online)

Definition 3. [6] Let x0 ∈]a, b[ and h be such that x0+h ∈]a, b[, then the level-
wise gH-derivative (LgH-differentiable for short) of a function F :]a, b[→ RF at
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x0 is defined as the set of interval-valued gH-derivatives, if they exist,

F ′
LgH(x0)α = lim

h→0

1
h

([F (x0 + h)]α �gH [F (x0)]α) (3)

if F ′
LgH(x0)α is a compact interval for all α ∈ [0, 1], we say that F is level-

wise generalized Hukuhara differentiable (LgH-differentiable for short) at x0 and
the family of intervals

{
F ′

LgH(x0)α|α ∈ [0, 1]
}

is the LgH-derivative of F at x0,
denoted by F ′

LgH(x0).

Also, one-side derivatives can be considered. The right LgH-derivative of
F at x0 is F ′

(r)gH(x0)α = lim
h↘0

1
h ([F (x0 + h)]α �gH [F (x0)]α) while to the left

it is defined as F ′
(l)LgH(x0)α = lim

h↗0

1
h ([F (x0 + h)]α �gH [F (x0)]α). The LgH-

derivative exists at x0 if and only if the left and right derivatives at x0 exist and
are the same interval.

In terms of midpoint representation [F (x)]α =
(
f̂α(x); f̃α(x)

)
, for all α ∈

[0, 1], we can write

[F (x + h)]α �gH [F (x)]α
h

=
(
Δ̂gHFα(x, h); Δ̃gHFα(x, h)

)
, where

Δ̂gHFα(x, h) =
f̂α(x + h) − f̂α(x)

h
,

Δ̃gHFα(x, h) =

∣
∣
∣
∣
∣
f̃α(x + h) − f̃α(x)

h

∣
∣
∣
∣
∣

and taking the limit for h −→ 0, we obtain the LgH-derivative of Fα, if and only
if the two limits lim

h−→0

̂fα(x+h)−̂fα(x)
h and lim

h−→0

∣
∣
∣

˜fα(x+h)−˜fα(x)
h

∣
∣
∣ exist in R; remark

that the midpoint function f̂α is required to admit the ordinary derivative at x.
With respect to the existence of the second limit, the existence of the left and
right derivatives f̃ ′

(l)α(x) and f̃ ′
(r)α(x) is required with

∣
∣
∣f̃ ′

(l)α(x)
∣
∣
∣ =

∣
∣
∣f̃ ′

(r)α(x)
∣
∣
∣ =

w̃α(x) ≥ 0 (in particular w̃α(x) =
∣
∣
∣f̃α

′
(x)

∣
∣
∣ if f̃α

′
(x) exists) so that we have

F ′
LgH(x)α =

(
f̂α

′
(x); w̃α(x)

)
(4)

or, in the standard interval notation,

F ′
LgH(x)α =

[
f̂α

′
(x) − w̃α(x), f̂α

′
(x) + w̃α(x)

]
. (5)

3 Monotonicity of Functions with Values in (RF, LU)

Monotonicity of fuzzy-valued functions has not been much investigated and this
is partially due to the lack of unique meaningful definition of an order for fuzzy-
valued functions. We can analyze monotonicity and, using the gH-difference,
related characteristics of inequalities for fuzzy-valued functions.
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Definition 4. Let F : [a, b] → RF be fuzzy function, where [F (x)]α =(
f̂α(x); f̃α(x)

)
for all α ∈ [0, 1]. We say that F is

(a-i) (�LU )-nondecreasing on [a, b] if x1 < x2 implies F (x1) �LU F (x2) for all
x1, x2 ∈ [a, b];
(a-ii) (�LU )-nonincreasing on [a, b] if x1 < x2 implies F (x2) �LU F (x1) for all
x1, x2 ∈ [a, b];
(b-i) (strictly) (�LU )-increasing on [a, b] if x1 < x2 implies F (x1) �LU F (x2)
for all x1, x2 ∈ [a, b];
(b-ii) (strictly) (�LU )-decreasing on [a, b] if x1 < x2 implies F (x2) �LU F (x1)
for all x1, x2 ∈ [a, b];
(c-i) (strongly) (≺LU )-increasing on [a, b] if x1 < x2 implies F (x1) ≺LU F (x2)
for all x1, x2 ∈ [a, b];
(c-ii) (strongly) (≺LU )-decreasing on [a, b] if x1 < x2 implies F (x2) ≺LU F (x1)
for all x1, x2 ∈ [a, b].

If one of the six conditions is satisfied, we say that F is monotonic on [a, b];
the monotonicity is strict if (b-i,b-ii) or strong if (c-i,c-ii) are satisfied.

The monotonicity of F : [a, b] → RF can be analyzed also locally, in a neigh-
borhood of an internal point x0 ∈]a, b[, by considering condition F (x) �LU F (x0)
(or condition F (x) �LU F (x0)) for x ∈]a, b[ and |x − x0| < δ with a positive
small δ. We omit the corresponding definitions as they are analogous to the
previous ones.

Fig. 4. Level-wise endpoint graphical representation of the fuzzy-valued LgH-derivative

[F ′
LgH ](x)]α =

[
f̂ ′

α(x) − |f̃ ′
α(x)|, f̂ ′

α(x) + |f̃ ′
α(x)|

]
where f̂α(x) = 5cos(x) − (

√
2 −

1)cos(5x) and f̃α(x) = (1 − 0.6α)2(1.5 + sin(4x)) for x ∈ [0, 2π]. The core is inter-
cepted by the black-colored curves. The other α-cuts are represented by red-colored
curves for the left extreme functions and blue-colored curves for the right extreme
functions. The marked points correspond to x = 2.2 and x = 4.5. (Color figure online)
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Proposition 6. Let F : [a, b] → RF be fuzzy function, where Fα(x) =
(
f̂α(x);

f̃α(x)
)

for α ∈ [0, 1] and x0 ∈]a, b[. Then

(i) F (x) is (�LU )-nondecreasing at x0 if and only if f̂α(x) is nondecreasing,
f̃α(x) − f̂α(x) is nonincreasing and f̃α(x) + f̂α(x) is nondecreasing at x0

for all α ∈ [0, 1];
(ii) F (x) is (�LU )-nonincreasing at x0 if and only if f̂α(x) is nonincreasing,

f̃α(x) − f̂α(x) is nondecreasing and f̃α(x) + f̂α(x) is nonincreasing at x0

for all α ∈ [0, 1];
(iii) Analogous conditions are valid for strict and strong monotonicity.

Proposition 7. Let F :]a, b[→ RF be fuzzy function, where [F (x)]α =(
f̂α(x); f̃α(x)

)
for all α ∈ [0, 1] and let F be LgH-differentiable at the inter-

nal points x ∈]a, b[. Then

(1) If F is (�LU )-nondecreasing on ]a, b[, then for all x, F ′
LgH(x) �LU 0;

(2) If F is (�LU )-nonincreasing on ]a, b[, then for all x, F ′
LgH(x) �LU 0.

In Fig. 4 we picture the fuzzy-valued first order LgH-derivative of a function
F (x) and in Fig. 5 we show graphically the membership functions of F ′

LgH(x) at
two points x = 2.2 and x = 4.5. Observe from Fig. 5 that F ′

LgH(4.5) is positive
in the (�LU ) order and that F ′

LgH(2.2) is negative in the same order relation,
denoting that F (x) is locally strictly increasing around x = 4.5 and locally
strictly decreasing around x = 2.2 (see also Fig. 4).

Fig. 5. Membership function and level-wise midpoint representations of two values
F ′

LgH(2.2) and F ′
LgH(4.5) of the fuzzy-valued LgH-derivative of function F (x) described

in Fig. 1. In the midpoint representation, a vertical curve corresponds to the displace-
ment of the n = 11 computed α-cuts; the red lines on the right pictures reconstruct
the α-cuts. Remark that y and ẑ represent the same domain and that a linear verti-
cal segment in the midpoint representation corresponds to a symmetric membership
function. (Color figure online)
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Analogous results are also immediate, relating strong (local) monotonicity of
F to the “sign” of its left and right derivatives F ′

(l)LgH(x) and F ′
(r)LgH(x); at the

extreme points of [a, b], we consider only right (at a) or left (at b) monotonicity
and right or left derivatives.

Proposition 8. Let F : [a, b] → RF be fuzzy function, where [F (x)]α =(
f̂α(x); f̃α(x)

)
for all α ∈ [0, 1] with left and/or right gH-derivatives at a point

x0 ∈ [a, b]. Then
(i.a) if 0 ≺LU F ′

(l)LgH(x0), then F is strongly (≺LU )-increasing on [x0 − δ, x0]
for some δ > 0 (here x0 > a);
(i.b) if 0 ≺LU F ′

(r)LgH(x0), then F is strongly (≺LU )-increasing on [x0, x0 + δ]
for some δ > 0 (here x0 < b);
(ii.a) if 0 �LU F ′

(l)LgH(x0), then F is strongly (≺LU )-decreasing on [x0 − δ, x0]
for some δ > 0 (here x0 > a);
(ii.b) if 0 �LU F ′

(r)LgH(x0), then F is strongly (≺LU )-decreasing on [x0, x0 + δ]
for some δ > 0 (here x0 < b).

Fig. 6. Level-wise endpoint graphical representation of the fuzzy-valued LgH-derivative

[F ′′
LgH ](x)]α =

[
f̂ ′′

α(x) − |f̃ ′′
α(x)|, f̂ ′′

α(x) + |f̃ ′′
α(x)|

]
where f̂α(x) = 5cos(x) − (

√
2 −

1)cos(5x) and f̃α(x) = (1 − 0.6α)2(1.5 + sin(4x)) for x ∈ [0, 2π]. The core is inter-
cepted by the black-colored curves. The other α-cuts are represented by red-colored
curves for the left extreme functions f−

α (x) and blue-colored curves for the right extreme
functions f+

α (x). (Color figure online)

4 Concavity and Convexity of Fuzzy-Valued Functions

We have three types of convexity, similar to the monotonicity and local extremum
concepts.
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Definition 5. Let F : [a, b] → RF be a function and let �LU be a partial order
on RF. We say that

(a-i) F is (�LU )-convex on [a, b] if and only if F ((1 − λ)x1 + λx2) �LU

(1 − λ)F (x1) + λF (x2), ∀x1, x2 ∈ [a, b] and all λ ∈ [0, 1];

(a-ii) F is (�γ−,γ+)-concave on [a, b] if and only if F ((1−λ)x1 +λx2) �LU

(1 − λ)F (x1) + λF (x2), ∀x1, x2 ∈ [a, b] and all λ ∈ [0, 1].

(b-i) F is strictly (�LU )-convex on [a, b] if and only if F ((1 − λ)x1 +
λx2) �LU (1 − λ)F (x1) + λF (x2), ∀x1, x2 ∈ [a, b] and all λ ∈]0, 1[;

(b-ii) F is strictly (�LU )-concave on [a, b] if and only if F ((1 − λ)x1 +
λx2) �LU (1 − λ)F (x1) + λF (x2), ∀x1, x2 ∈ [a, b] and all λ ∈]0, 1[.

(c-i) F is strongly (≺LU )-convex on [a, b] if and only if F ((1 − λ)x1 +
λx2) ≺LU (1 − λ)F (x1) + λF (x2), ∀x1, x2 ∈ [a, b] and all λ ∈]0, 1[;

(c-ii) F is strongly (≺LU )-concave on [a, b] if and only if F ((1 − λ)x1 +
λx2) �LU (1 − λ)F (x1) + λF (x2), ∀x1, x2 ∈ [a, b] and all λ ∈]0, 1[.

The convexity of a function [F ]α =
(
f̂α; f̃α

)
is related to the concavity of

function [−F ]α =
(
−f̂α; f̃α

)
for all α ∈ [0, 1]. It is easy to see that F is (�LU )-

convex if and only if −F is (�LU )-concave.

Proposition 9. Let F : [a, b] → RF with [F ]α =
(
f̂α; f̃α

)
for all α ∈ [0, 1] and

�LU be a given partial order; then

1. F is (�LU )-convex if and only if f̂α is convex, f̃α − f̂α is concave and f̃α + f̂α

is convex;

2. F is (�LU )-concave if and only if f̂α is concave, f̃α− f̂α is convex and f̃α+ f̂α

is concave.

From Proposition 9, it is easy to see that F is (�LU )-convex (or concave) if
and only if f−

α and f+
α are convex (or concave) for all α ∈ [0, 1]. Also, several

ways to analyze (�LU )-convexity (or concavity) in terms of the first or second
derivatives of functions f̂α, f̂α − f̃α and f̃α + f̂α can be easily deduced.

Proposition 10. Let F :]a, b[→ RF with [F ]α =
(
f̂α; f̃α

)
for all α ∈ [0, 1].

Real-valued functions f̂α and f̃α are differentiable, then;

1. If the first order derivatives f̂ ′
α and f̃ ′

α exist, then:

(1-a) F is (�LU )-convex on ]a, b[ if and only if f̂ ′
α, f̂ ′

α − f̃ ′
α and f̃ ′

α + f̂ ′
α are

increasing (nondecreasing) for all α ∈ [0, 1] on ]a, b[;
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Fig. 7. Membership function and level-wise midpoint representations of two values
F ′′

LgH(2.1) and F ′′
LgH(4.6) of the fuzzy-valued function F (x) described in Fig. 1. In this

midpoint representation, a vertical curve corresponds to the displacement of the n = 11
computed α-cuts; the red lines on the right pictures reconstruct the α-cuts. Remark
that y and ẑ represent the same domain and that a linear vertical segment in the
midpoint representation corresponds to a symmetric membership function, having the
same value for all α ∈ [0, 1]. (Color figure online)

(1-b) F is (�LU )-concave on ]a, b[ if and only if f̂ ′
α, f̂ ′

α − f̃ ′
α and f̃ ′

α + f̂ ′
α are

decreasing (nonincreasing) for all α ∈ [0, 1] on ]a, b[;

2. If the second order derivatives f̂ ′′
α and f̃ ′′

α exist and are continuous, then:

(2-a) F is (�LU )-convex on ]a, b[ if and only if f̂ ′′
α ≥ 0, f̂ ′′

α − f̃ ′′
α ≥ 0 and

f̃ ′′
α + f̂ ′′

α ≥ 0 for all α ∈ [0, 1] on ]a, b[ ;

(2-b) F is (�LU )-concave on ]a, b[ if and only if f̂ ′′
α ≤ 0, f̂ ′′

α − f̃ ′′
α ≤ 0 and

f̃ ′′
α + f̂ ′′

α ≤ 0 for all α ∈ [0, 1] on ]a, b[.

In Fig. 6 we picture the fuzzy-valued second order LgH-derivative of a func-
tion F (x) and in Fig. 7 we show graphically the membership functions of F ′′

LgH(x)
at two points x = 2.2 and x = 4.5. Observe from Fig. 7 that F ′

LgH(2.2) and
F ′

LgH(4.5) are not positive nor negative in the (�LU ) order, denoting that F (x)
is (locally) not convex nor concave around x = 2.2 or x = 4.5. See also Fig. 6
where regions of positive and negative second-order derivative can be identified.

Remark 1. Analogously to the relationship between the sign of second derivative
and convexity for ordinary functions, we can establish conditions for convexity
of fuzzy functions and the sign of the second order LgH-derivative F ′′

LgH(x);
for example, a sufficient condition for strong ≺LU -convexity is the following
(compare with Proposition 10):

1. If F ′′
LgH(x0) ≺LU 0 then F (x) is strongly concave at x0.

2. If F ′′
LgH(x0) �LU 0 then F (x) is strongly convex at x0.
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5 An Outline of Periodic Fuzzy-Valued Functions

Definition 6. A function F : [a, b] → RF is said to be periodic if, for some
nonzero constant T ∈]0, b − a[, it occurs that F (x + T ) = F (x) for all x ∈ [a, b]
with x + T ∈ [a, b] (i.e., for all x ∈ [a, b − T ]). A nonzero constant T for which
this is verified, is called a period of the function and if there exists a least positive
constant T with this property, it is called the fundamental period.

Obviously, if F has a period T , then this also implies that Fα for all α ∈ [0, 1]
has a period T i.e., for all α ∈ [0, 1], f̂α and f̃α are periodic with period T . On the
other hand, the periodicity of functions Fα for all α ∈ [0, 1] does not necessarily
imply the periodicity of F .

Fig. 8. Level-wise endpoint graphical representation of the periodic fuzzy-valued func-

tion [F (x)]α =
[
f̂α(x) − f̃α(x), f̂α(x) + f̃α(x)

]
where f̂α(x) = 5cos(x)−(

√
2−1)cos(5x)

and f̃α(x) = (1 − 0.6α)2(1.5 + sin(4x)) for x ∈ [0, 6π]. The period is p = 2π.

Proposition 11. Let F : [a, b] → RF be a continuous function such that
[F (x)]α = (f̂α(x); f̃α(x)) for all α ∈ [0, 1] with f̂α periodic of period T̂ and
f̃α of period T̃ . Then it holds that:

(1) if the periods T̂ and T̃ are commensurable, i.e., ̂T
˜T

∈ Q ( ̂T
˜T

= p
q , such that p

and q are coprime) then the function F is periodic of period T = lcm(T̂ , T̃ ),
i.e,. T is the least common multiple between T̂ and T̃ (i.e., T = pT̃ = qT̂ );

(2) if the periods T̂ and T̃ are not commensurable, i.e., ̂T
˜T

/∈ Q, then function
F is not periodic.

A periodic function of period p = 2π is given in Fig. 8. It is the function
reported in all figures above, extended to the domain [0, 6π].
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6 Conclusions and Further Work

We have developed new results to define monotonicity ans convexity or concav-
ity for fuzzy-valued functions, in terms of the LU-partial order; similar results
can be obtained for other types of partial orders. It appears that midpoint rep-
resentation of the α-cuts is a useful tool to analyse and visualize properties of
fuzzy-valued functions. In further work, we will analyse important concepts of
(local) minimal and maximal points for fuzzy valued functions, by the use of
first-order and second-order LgH-derivatives.
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Abstract. In this article we present new results on the sum of gH-
differentiable fuzzy functions. We give conditions so that the sum of two
gH-differentiable fuzzy functions become gH-differentiable. We present
also practical rules for obtaining the gH-derivative of the sum of fuzzy
functions.
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1 Introduction

The generalized Hukuhara differentiability (gH-differentiability) for fuzzy func-
tions is a very useful concept in the area of fuzzy mathematical analysis. This
concept has been very important in the development of various topics into fuzzy
theory, for instance, fuzzy differential equations and fuzzy optimization prob-
lems.

Obtaining the gH-derivative of an interval-valued function directly from the
definition is a rather complex task. In contrast, the use of the (lateral) differ-
entiability of its endpoint functions considerably simplifies the problem. In this
direction, a characterization of the gH-differentiable fuzzy functions through of
the (lateral) differentiability of its endpoint functions was obtained in [4].

Calculus for fuzzy functions is an important topic. Several properties of the
gH-differentiable fuzzy functions have been obtained in [2–5]. In particular, some
results on the algebra of gH-differentiable fuzzy functions have been presented
in [1,3,5].
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In this paper we present some results on the sum of gH-differentiable fuzzy
functions. We prove that the (k)gH-derivative is a linear operator. We show
also that the sum of two (k)gH-differentiable fuzzy functions with different k ∈
{i, ii, iii, iv} is not always gH-differentiable. We give conditions so that sum of
fuzzy functions become gH-differentiable.

2 Preliminaries

We denote by I the family of all bounded closed intervals in R, i.e.,

I = {A = [a, a] / a, a ∈ R and a ≤ a} .

On I we consider the algebraic operations “+” and “·” by (see, e.g., [6])

[a, a] +
[
b, b

]
=

[
a + b, a + b

]
λ · [a, a] = [min {λa, λa} ,max {λa, λa}] .

Note that (I,+, ·) is a quasilinear space [7]. An interval A = [a, a] with a < a does
not have an additive inverse. So, in the article [8] was introduced the generalized
Hukuhara difference “�gH” by

[a, a] �gH

[
b, b

]
=

[
min

{
a − b, a − b

}
,max

{
a − b, a − b

}]
.

The gH-difference is a complementary operation in the quasilinear space (I,+, ·).
We note that the gH-difference A �gH B, of two intervals A and B, there is
always.

Let RF denote the family of all fuzzy numbers. Let us denote by [u]α =
[uα, uα] ∈ R the α-level set of u, for all α ∈ [0, 1].

Let u, v ∈ RF , with α-levels represented by [uα, uα] and [vα, vα], respectively,
and let λ ∈ R. The addition u + v and the scalar multiplication λu are defined
via the α-levels by

[u + v]α = [(u + v)α, (u + v)α] = [uα + vα , uα + vα] ,

[λu]α =
[
(λu)α, (λu)α

]
= [min{λuα, λuα},max{λuα, λuα}] , (1)

for every α ∈ [0, 1]. In this case (RF ,+, ·) is a quasilinear space [7].

Definition 1. ([9]) Given two fuzzy numbers u, v, the generalized Hukuhara
difference (gH-difference for short) is the fuzzy interval w, if it exists, such that

u �gH v = w ⇔
{

(i)u = v + w,
or (ii) v = u + (−1)w.

It may happen that there is not gH-difference of two fuzzy numbers [9].
If u �gH v exists then, in terms of α-levels, we have

[u �gH v]α = [u]α �gH [u]α

= [min{uα − vα, uα − vα},max{uα − vα, uα − vα}] ,

for all α ∈ [0, 1], where [u]α �gH [u]α denotes the gH-difference between two
intervals.

Given u, v ∈ RF we define the distance between u and v by

D(u, v) = sup
α∈[0,1]

max {|uα − vα| , |uα − vα|} .
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3 Generalized Hukuhara Differentiable Fuzzy Functions

Henceforth, T =]a, b[ denotes an open interval in R. A function F : T → RF is
said to be a fuzzy function. For each α ∈ [0, 1], associated with F , we define the
family of interval-valued functions Fα : T → I given by Fα(x) = [f(x)]α. For
any α ∈ [0, 1], we denote

Fα(x) =
[
f

α
(x), fα(x)

]
.

Here, for each α ∈ [0, 1], the endpoint functions f
α
, fα : T → R are called upper

and lower functions of F , respectively.
The following definition is the well-known concept of generalized Hukuhara

differentiable fuzzy functions (gH-differentiable fuzzy functions, for short) based
on the gH-difference of fuzzy intervals.

Definition 2. ([3]) The gH-derivative of a fuzzy function F : T → RF at
x0 ∈ T is defined as

F ′(x0) = lim
h→0

1
h

[F (x0 + h) �gH F (x0)] . (2)

If F ′(x0) ∈ RF satisfying (2) exists, we say that F is gH-differentiable at x0.

Obtaining the gH-derivative of a fuzzy function via (2) is a rather complex
problem. The following result characterizes the gH-differentiability of F in terms
of the differentiability of its endpoint functions f

α
and fα which makes it more

practice to calculate the gH-derivative.

Theorem 1. ([4]) Let F : T → RF be a fuzzy function and x ∈ T . Then F is
gH-differentiable at x if and only if one of the following four cases holds:

(i) f
α

and fα are differentiable at x, uniformly in α ∈ [0, 1], (f
α
)′(x) is mono-

tonic increasing and (fα)′(x) is monotonic decreasing as functions of α and
(f

1
)′(x) ≤ (f1)′(x). In this case,

F ′
α(x) =

[
(f

α
)′(x), (fα)′(x)

]
,

for all α ∈ [0, 1].
(ii) f

α
and fα are differentiable at x, uniformly in α ∈ [0, 1], (f

α
)′(x) is mono-

tonic decreasing and (fα)′(x) is monotonic increasing as functions of α and
(f1)′(x) ≤ (f

1
)′(x). In this case,

F ′
α(x) =

[
(fα)′(x), (f

α
)′(x)

]
,

for all α ∈ [0, 1].
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(iii) (f
α
)′
+/−(x) and (fα)′

+/−(x) exist uniformly in α ∈ [0, 1], (f
α
)′
+(x) =

(fα)′
−(x) is monotonic increasing and (fα)′

+(x) = (f
α
)′
−(x) is monotonic

decreasing as functions of α and (f
1
)′
+(x) ≤ (f1)′

+(x). In this case,

F ′
α(x) =

[
(f

α
)′
+(x), (fα)′

+(x)
]

=
[
(fα)′

−(x), (f
α
)′
−(x)

]
,

for all α ∈ [0, 1].
(iv) (f

α
)′
+/−(x) and (fα)′

+/−(x) exist uniformly in α ∈ [0, 1], (f
α
)′
+(x) =

(fα)′
−(x) is monotonic decreasing and (fα)′

+(x) = (f
α
)′
−(x) is monotonic

increasing as functions of α and (f1)′
+(x) ≤ (f

1
)′
+(x). In this case,

F ′
α(x) =

[
(fα)′

+(x), (f
α
)′
+(x)

]
=

[
(f

α
)′
−(x), (fα)′

−(x)
]
,

for all α ∈ [0, 1].

From Theorem 1 we can distinguish four cases. We say that an interval-valued
function F : T → RF is (k)gH-differentiable if case k in Theorem 1 holds, for
k ∈ {i, ii, iii, iv}. Note that if F : T → RF is gH-differentiable at x0 in more
than one case then F is gH-differentiable at x0 in all four cases and F ′(x0) is a
trivial fuzzy number or singleton, i.e. F ′(x0) = χ{a} for some a ∈ R.

4 The Sum of gH-differentiable Fuzzy Functions

Given two fuzzy functions F,G : T → RF the sum operation is defined by

(F + G)(x) = F (x) + G(x),

for all x ∈ T . Via the α-levels, with Fα(x) =
[
f

α
(x), fα(x)

]
and Gα(x) =

[
g

α
(x), gα(x)

]
, for all α ∈ [0, 1], we have

(Fα + Gα) (x) = Fα(x) + Gα(x) =
[
f

α
(x) + g

α
(x), fα(x) + gα(x)

]
,

for all x ∈ T .
In this Section we present results on the gH-differentiability of F + G. We

give rules for calculating it as well.
We start by showing that if F and G are gH-differentiable at x0 with same

type of gH-differentiability, then F + G is also gH-differentiable at x0 with the
same type of gH-differentiability as F and G.

Theorem 2. Let F,G : T → RF be two fuzzy functions. If F and G are
(k)gH-differentiable at x0 for the same k ∈ {i, ii, iii, iv} then F + G is (k)gH-
differentiable at x0. Moreover,

(F + G)′(x0) = F ′(x0) + G′(x0).
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Proof. To prove the result we will consider separately the four possible cases
for k. For k ∈ {1, 2}, the results were proven in [3]. For case k = iii, we
consider Fα(x) =

[
f

α
(x), fα(x)

]
and Gα(x) =

[
g

α
(x), gα(x)

]
, for all x ∈ T ,

and assume that F and G are (iii)gH-differentiable fuzzy functions at x0

then, from Theorem 1 and properties of lateral derivatives, the lateral deriva-
tives (f

α
+ g

α
)′
+/−(x0) and (fα + gα)′

+/−(x0) exist uniformly in α ∈ [0, 1].
In addition, (f

α
+ g

α
)′
+(x0) = (fα + gα)′

−(x0) is monotonic increasing and
(fα + gα)′

+(x0) = (f
α

+ g
α
)′
−(x0) is monotonic decreasing as functions of α and

(f
1

+ g
1
)′
+(x0) ≤ (f1 + g1)′

+(x0). Thus, from Theorem 1, part (iii), F + G is a
(iii)gH-differentiable fuzzy function at x. Moreover

[
(F + G)′ (x0)

]α
=

[(
f

α
+ g

α

)′

+
(x0),

(
fα + gα

)′
+

(x0)
]

=
[(

f
α

)′

+
(x0) +

(
g

α

)′

+
(x0),

(
fα

)′
+

(x0) + (gα)′
+ (x0)

]

=
[(

f
α

)′

+
(x0),

(
fα

)′
+

(x0)
]

+
[(

g
α

)′

+
(x0), (gα)′

+ (x0)
]

= [F ′(x0)]
α + [G′(x0)]

α
,

for all α ∈ [0, 1], and so

(F + G)′(x0) = F ′(x0) + G′(x0).

The proof for k = iv is similar, so we omit it. ��
From Theorem 2 it follows that the (k)gH-derivative is an additive operator,

for k ∈ {i, ii, iii, iv}. Proving that the gH-derivative is a linear operator is our
main objective. For this, given a fuzzy function F : T → RF and a λ ∈ R, we
define the product λ · F by

(λ · F )(x) = λ · F (x), (3)

for all x ∈ T .
Theorem 3. Let F : T → RF be a fuzzy function and let λ ∈ R. If F is
(k)gH-differentiable at x0, for some k ∈ {i, ii, iii, iv}, then λ · F is also (k)gH-
differentiable at x0 and

(λ · F )′(x0) = λ · F ′(x0).

Proof. We consider λ ∈ R and x ∈ T , then from (1) and (3) we have

[(λ · F )(x)]α = [λ · F (x)]α

= λ · [F (x)]α

= λ ·
[
f

α
(x), fα(x)

]

=

⎧
⎪⎪⎨

⎪⎪⎩

[
λf

α
(x), λfα(x)

]
if λ ≥ 0

[
λfα(x), λf

α
(x)

]
if λ < 0.
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To prove the result we consider separately the four possible cases for k. We start
considering k = i and so, from Theorem 1, we have that the endpoint functions
f

α
and fα are differentiable at x0, uniformly in α ∈ [0, 1], and satisfies the

monotonicity conditions in relation to α as in item (i) of the Theorem 1. Now
we consider two cases for λ: λ ≥ 0 and λ < 0.

If λ ≥ 0, taking into account item (i) of Theorem 1 and properties of
monotonous functions, we have that λf ′

α
(x) is monotonic increasing and λf

′
α(x)

is monotonic decreasing as functions of α and λf ′
1
(x) ≤ λf

′
1(x). Then, from

Theorem 1, λF is an (i)gH-differentiable fuzzy function.
On other hand, if λ < 0, taking into account item (i) of Theorem 1 and

properties of monotonous functions, we have that λf
′
α(x) is monotonic increasing

and λf ′
α
(x) is monotonic decreasing as functions of α and λf

′
1(x) ≤ λf ′

1
(x).

Then, from Theorem 1, λF is an (i)gH-differentiable fuzzy function.
In the same way we proof the cases for k = ii, iii, iv. ��
Summarizing, from Theorem 2 and Theorem 3 we have our main result.

Corollary 1. The (k)gH-derivative is a linear operator, for each k ∈
{i, ii, iii, iv}.
Remark 1. Theorem 3 and Corollary 1 correct Remark 31 in [3], where the
authors assert that the (i)gH-derivative and (ii)gH-derivative are not linear
in general.

Following with our study, what happen with the gH-differentiability of the
sum of two (k)gH-differentiable fuzzy functions for different k?. In general, F +
G is not necessarily a gH-differentiable fuzzy function being F and G (k)gH-
differentiable fuzzy functions with different k. In fact, Example 1 in [5], F + G
is not gH-differentiable being that F is (ii)gH-differentiable and G is (iv)gH-
differentiable.

In the same way, if F is (i)gH-differentiable and G is (ii)gH-differentiable
then F + G is gH-differentiable, when F and G are interval-valued functions
which are particular cases of fuzzy functions, (see [5]). More precisely.

Theorem 4. ([5]) Let F,G : T → I be two interval-valued functions. If F is
(i)gH-differentiable at x0 and G is (ii)gH-differentiable at x0 then F + G is
either (i)gH-differentiable or (ii)gH-differentiable at x0. Moreover, we have

(F + G)′(x0) = F ′(x0) �gH (−1)G′(x0). (4)

However, in general Theorem 4 is not valid for fuzzy functions as we will
show in the following example.

Example 1. We consider the fuzzy functions F,G : (0, 1) → RF defined via
α-levels by

Fα(x) = [α, 2 − α] · x2 and Gα(x) =
[
0, 1 − α2

] · (1 − x).



On the Sum of Generalized Hukuhara Differentiable Fuzzy Functions 49

The endpoint functions are

f
α
(x) = αx2, fα(x) = (2 − α)x2,

g
α
(x) = 0, gα(x) = (1 − α2)(1 − x);

which are differentiable. Also, we have that F is (i)gH-differentiable and G is
(ii)gH-differentiable. Now, the endpoint functions of the fuzzy function F + G
are

(F + G)α (x) = f
α
(x) + g

α
(x) = αx2

and (
F + G

)
α

(x) = fα(x) + gα(x) = (2 − α)x2 + (1 − α2)(1 − x).

Clearly, the endpoint functions are differentiable and

(F + G)′
α (x) = 2αx

and (
F + G

)′
α

(x) = 2(2 − α)x − (1 − α2) = 4x − 2αx − 1 + α2.

Thus, the endpoint functions (F + G)α and
(
F + G

)
α

do not satisfy any of the
conditions of the Theorem 1. Therefore F + G is not gH-differentiable.

From (4) we can see that for obtaining (F + G)′(x) depends on the gH-
difference. In fact, in Example 1 there is not the gH-difference F ′(x0) �gH

(−1)G′(x0). The gH-difference of two fuzzy numbers does not always exists
while the gH-difference between interval always exists [9]. So we have to include
conditions on the existence of the gH-difference such as in the following result.

Theorem 5. Let F,G : T → RF be fuzzy functions. If F is (i)gH-differentiable
at x0 and G is (ii)gH-differentiable at x0 and the gH-difference F ′(x0) �gH

(−1)G′(x0) exists, then F + G is gH-differentiable and

(F + G)′(x0) = F ′(x0) �gH (−1)G′(x0). (5)

Proof. Since the gH-difference F ′(x0) �gH (−1)G′(x0) exists, then one of the
following cases holds:

Case(1)

⎧
⎨

⎩

len(F ′(x0)) ≥ len(G′(x0)), ∀α ∈ [0, 1],
f ′

α
(x0) + g′

α
(x0) is monotonic increasing respect to α and

f
′
α(x0) + g′

α(x0) is monotonic decreasing respect to α.

Case(2)

⎧
⎨

⎩

len(F ′(x0)) ≤ len(G′(x0)), ∀α ∈ [0, 1],
f ′

α
(x0) + g′

α
(x0) is monotonic decreasing respect to α and

f
′
α(x0) + g′

α(x0) is monotonic increasing respect to α.

If Case (1) holds then, from Theorem 1 item (i), F + G is (i)gH-differentiable
at x0 and (5) holds. If Case (2) holds then, from Theorem 1 item (ii), F + G is
(ii)gH-differentiable at x0 and (5) holds. Therefore, F + G is (i)gH or (ii)gH-
differentiable at x0 and (5) holds. ��

We note that a similar result to Theorem 5 was obtained in [1] to case of
strongly generalized differentiable fuzzy functions.
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5 Conclusions

In this article we have made a study on the sum of generalized Hukuhara differ-
entiable fuzzy functions. The results obtained in this study should be very useful
in fuzzy and interval optimization, fuzzy and interval differential equations and
other topics in fuzzy and interval mathematical analysis.
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7. Rojas-Medar, M.A., Jiménez-Gamero, M.D., Chalco-Cano, Y., Viera-Brandão, A.J.:
Fuzzy quasilinear spaces and applications. Fuzzy Sets Syst. 152, 173–190 (2005)

8. Stefanini, L., Bede, B.: Generalized Hukuhara differentiability of interval-valued
functions and interval differential equations. Nonlinear Anal. 71(34), 1311–1328
(2009)

9. Stefanini, L.: A generalization of Hukuhara difference and division for interval and
fuzzy arithmetic. Fuzzy Sets Syst. 161, 1564–1584 (2010)



Theoretical and Applied Aspects of
Imprecise Probabilities



Imprecise Classification
with Non-parametric Predictive Inference

Seraf́ın Moral(B), Carlos J. Mantas, Javier G. Castellano,
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Abstract. In many situations, classifiers predict a set of states of a class
variable because there is no information enough to point only one state.
In the data mining area, this task is known as Imprecise Classification.
Decision Trees that use imprecise probabilities, also known as Credal
Decision Trees (CDTs), have been adapted to this field. The adaptation
proposed so far uses the Imprecise Dirichlet Model (IDM), a mathemati-
cal model of imprecise probabilities that assumes prior knowledge about
the data, depending strongly on a hyperparameter. This strong depen-
dence is solved with the Non-Parametric Predictive Inference Model
(NPI-M), also based on imprecise probabilities. This model does not
make any prior assumption of the data and does not have parameters.
In this work, we propose a new adaptation of CDTs to Imprecise Classi-
fication based on the NPI-M. An experimental study carried out in this
research shows that the adaptation with NPI-M has an equivalent per-
formance than the one obtained with the adaptation based on the IDM
with the best choice of the hyperparameter. Consequently, since the NPI-
M is a non-parametric approach, it is concluded that the NPI-M is more
appropriated than the IDM to be applied to the adaptation of CDTs to
Imprecise Classification.

Keywords: Imprecise classification · Credal decision trees · IDM ·
NPI-M · Imprece probabilities

1 Introduction

Supervised classification [15] aims to predict the value of a class variable associ-
ated with an instance, described by a set of features or attributes. This prediction
usually consists of a single value.

However, in many cases, there is no information available enough to point
only one state of the class variable. In these cases, it is more informative that
the classifier predicts a set of values of the class variable, which is known as an
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imprecise prediction. Classifiers that make this type of predictions are known as
imprecise classifiers.

When it is used an imprecise classifier, a set of class values might be obtained.
It is composed of those states for which there is no another “better” one accord-
ing to a criterion, which is called dominance criterion. The set of predicted states
of the class variable is known as the set of non-dominated states.

In order to build an imprecise classifier, it is more suitable to apply models
based on imprecise probabilities, instead of the ones that use the classical proba-
bility theory. In the literature, there are many mathematical theories associated
with imprecise probabilities, such as belief functions, closed and convex sets of
probability distributions (also called credal sets), probability intervals, etc [16].

In the literature, few methods for imprecise classification have been devel-
oped. The first one of them was the Naive Credal Classifier (NCC) [10,24]. It
uses the Imprecise Dirichlet Model (IDM) [22], a mathematical model of impre-
cise probabilities that makes statistical inferences from multinomial data, and
the Naive Bayes assumption (all the attributes are independent given the class
variable) to produce an imprecise classification.

In [4], it is proposed a new adaptation of the Credal Decision Trees (CDTs)
[5], very simple and interpretable models, to Imprecise Classification. It is called
Imprecise Credal Decision Tree (ICDT). In that work, it is shown, via an exper-
imental analysis, that ICDT is a more informative method than NCC since it is
more precise. In this work, we focus on the ICDT algorithm.

The ICDT proposed so far is based on the IDM. This model satisfies several
principles which have been claimed to be desirable for inference, such as the
representation invariance principle [22]. According to it, inferences on future
events should be independent of the arrangement and labeling of the sample
space. Nevertheless, IDM assumes previous knowledge about the data through
a single hyperparameter s [22]. It is not a very desirable property because these
assumptions are not always realistic.

For the previous reason, a Non Parametric model for Predictive Inference
(NPI-M) was proposed in [8]. This model does not make any prior assumptions
about the data. In addition, NPI-M is a nonparametric approach.

Both IDM and NPI-M have been applied to Decision Trees (DT) for precise
classification in the literature [6,18,19]. When the IDM is applied to DTs, it has
been shown that the performance has a strong dependence on the s parameter
[19]. In [6], the NPI-M is shown to have always an equivalent performance to
IDM with the standard s value when both models are applied to DTs.

For the previous reasons, in this work, we propose a new adaptation of CDTs
to Imprecise Classification based on the NPI-M. It is called Imprecise Credal
Decision Tree NPI (ICDT-NPI). It is similar to the already existing adaptation,
but our proposed one is based on the NPI-M, instead of the IDM.

An extensive experimental research is carried out in this work. In it, we use
the ICDT-NPI algorithm and the ICDT with different values of the s parameter
for the IDM. This experimentation shows that, as in precise classification, the
NPI-M provides equivalent results to the IDM with the best choice of the s
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hyperparameter when both models are applied to the adaptation of CDTs to
Imprecise Classification.

This paper is arranged as follows: The Imprecise Dirichlet Model and the
Non-Parametric Predictive Inference Model are explained in Sects. 2 and 3,
respectively. Section 4 describes the dominance criteria for Imprecise Classifi-
cation used in this research. The adaptation of the Credal Decision Trees to
Imprecise Classification is exposed in Sect. 5. Section 6 describes the main evalu-
ation metrics that are used in imprecise classification. In Sect. 7, the experimental
analysis is detailed. Conclusions are given in Sect. 8.

2 The Imprecise Dirichlet Model

Let us suppose that we have a dataset D with N instances. Let X be an attribute
that takes values in {x1, · · · , xt}.

The Imprecise Dirichlet Model (IDM) [22] is subsumed into the probability
intervals theory [11]. According to this model, the variable X takes each one of
its possible values xi, 1 ≤ i ≤ t with a probability that belongs to the following
interval:

Ii =
{[

ni

N + s
,
ni + s

N + s

]}
,∀i = 1, 2, . . . , t, (1)

being ni the number of instances in D for which X = xi, ∀i = 1, 2, . . . , t and
s > 0 a given parameter of the model.

As it is shown in [1], this set of probability intervals is reachable and gives
rise to the following closed and convex set of probability distributions, also called
credal set:

PD(X) =

{
p |

t∑
i=1

p(xi) = 1, p(xi) ∈ Ii, ∀i = 1, 2, . . . , t

}
. (2)

A crucial issue is the selection of the s hyperparameter. It is easy to observe
that, if the s value is higher, then the intervals are wider. This parameter deter-
mines the speed of convergence of lower and upper probabilities as the size of
the training set is larger. In [22], the values s = 1 and s = 2 are proposed.

3 Non-parametric Predictive Inference Model

Let X be a discrete variable whose set of possible values is {x1, · · · , xT }. Let
us suppose that there is a sample of N independent and identically distributed
outcomes of X. Let ni be the number of observations for which X = xi, ∀i =
1, 2, . . . , T . Let us assume that the first t observations have been observed, where
1 ≤ t ≤ T , which implies that ni > 0, ∀i = 1, 2, · · · , t and ni = 0, ∀i =
t + 1, · · · , T . Clearly,

∑t
i=1 ni = N .

The Non-Parametric Predictive Inference Model (NPI-M) [8,9] utilizes a
probability wheel representation of the data. On it, it is used a line from the
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center of the wheel to its boundary to represent each one of the observations.
The wheel is partitioned into N slices with the same size. Each possible value
can be represented only by a single sector of the wheel. This implies that two
or more lines representing the same category must always be positioned next to
each other on the wheel. The NPI-M is based on the circular A(n) assumption
[9]. According to it, the probability that the next observation falls into any given
slice is 1

N . Thus, it must be decided which value of the X variable represents.
If two lines that represent the same category border to a slice, that slice must
be assigned to this value. Nevertheless, when a slice is bordered by two lines
that represent different values, it can be assigned to one of the two categories
associated with the slice’s bordering lines, or to any value that has not been
observed yet.

Let A ⊆ {x1, x2, . . . , xT } be a subset of the set of possible values of the X
variable. Let us denote nA =

∑
xi∈A ni the number of outcomes of X for which

its value belongs to A and rA = |{xi ∈ A | ni > 0, 1 ≤ i ≤ t}| the number of
possible values in A that have been already observed.

In order to determine the lower and upper probabilities of A, NPI-M con-
siders all the possible configurations of the wheel. The difference between both
probabilities is due to the non-observed categories. In [3], it is shown that the
lower and upper probabilities of A are obtained as follows:

P∗(A) =
nA − min(rA,

∣∣A∣∣)
N

, P ∗(A) =
nA + min(|A| , t − rA)

N
. (3)

As it can be seen, for singletons, {xi}, 1 ≤ i ≤ T , the lower and upper
probabilities are given by:

P∗ ({xi}) = max
(

ni − 1
N

, 0
)

, P ∗ ({xi}) = min
(

ni + 1
N

, 1
)

.

Hence, it is disposed of the following set of probability intervals for singletons:

I =
{

[li, ui] , li = max
(

ni − 1
N

, 0
)

, ui = min
(

ni + 1
N

, 1
)

, ∀i = 1, . . . , T

}
.

According to [11], this set of probability intervals corresponds to the following
credal set:

P(I) = {p ∈ P(X) | p(xi) ∈ [li, ui] , ∀i = 1, 2 . . . , T} . (4)

being P(X) the set of all probability distributions on the X variable, li =
max

(
ni−1
N , 0

)
, and ui = min

(
ni+1
N , 1

)
, ∀i = 1, 2, . . . , T .

In [3], it was proved that the lower and upper probabilities associated with
P(I) coincide with the lower and upper probabilities given by (3). Therefore,
the lower and upper probabilities corresponding to the NPI-M can be extracted
via the lower and upper probabilities for singletons, which produce a set of
probability intervals, and, consequently, a credal set. Nevertheless, in [3], it is
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shown that, in this set, there are probability distributions that are not compatible
with the NPI-M.

If we consider all the probability distributions belonging to P(I), it is
obtained an approximated model, called Approximate Non-Parametric Predic-
tive Inference Model (A-NPI-M) [3]. It utilizes the convex hull of the set of
probability distributions compatible with the NPI-M. In this way, when the A-
NPI-M is used, a set of difficult constraints is avoided and the exact model is
simplified. In [3], it is shown that NPI-M and A-NPI-M have a similar behav-
ior when both models are applied to CDTs. For these reasons, in this work, we
consider the A-NPI-M.

4 Dominance Criteria in Imprecise Classification

In Imprecise Classification, it is used a dominance criterion to select the states
of the class variable that are not “defeated” under that criterion by another. In
order to do it, if we have a set of probability intervals, as in this research, we
can use the bounds of the intervals.

Let ci and cj be two possible values of the class variable C. Two dominance
criteria very used are the following:

1. Let [li, ui] and [lj , uj ] be the probability intervals on how ci and cj happen,
respectively. It is said that there is stochastic dominance or strong dominance
of ci on cj if, and only if, li ≥ uj .

2. Let suppose now that the probability of the class variable C is expressed by
a non-empty credal set P. It is said that there is credal dominance of ci on
cj iff p(C = ci) ≥ p(C = cj), for all probability distribution p ∈ P.

Credal dominance is a more significant criterion than stochastic dominance
[24]. However, it is usually more difficult to verify. Under the IDM and the A-
NPI-M, both dominance criteria are equivalent [2]. Hence, with both IDM and
A-NPI-M, if we check that one state dominates stochastically to another, then
we know that there is credal dominance of the first state on the second one.
Therefore, with IDM, as well as with A-NPI-M, it is just necessary to consider
the extreme values of the intervals to know the cases of credal dominance among
the possible states of C.

5 Credal Decision Trees for Imprecise Classification

The adaptation of Credal Decision Tree algorithm (CDT) [5] to Imprecise Clas-
sification (ICDT) was proposed in [4]. It is called Imprecise Credal Decision Tree
algorithm (ICDT).

As in CDTs, in ICDT, each node corresponds to an attribute or feature
variable and there is a branch for each possible value of that attribute. When
entering a feature in a node does not provide more information about the class
variable according to a criterion, a terminal or leaf node is reached. Unlike in
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precise classification, where this leaf node is labeled with the most probable class
value, in ICDTs, the leafs nodes are empty. When a new example is required to
be classified, it is made a path from the root to a terminal node using the values
of its attributes. Whereas in precise classification the most probable class value
in that leaf node is assigned, in ICDTs, for each value of the class variable, it is
obtained a probability interval.

The most important issue of the building process of the ICDT is the split
criterion, i.e, the criterion utilized to select the attribute to split in each node.
In ICDT, the split criterion is the same as the one used in CDT.

Let us suppose that D is a partition of the training set in a certain node.
Let C be the class variable and let us suppose that {c1, . . . , ck} are its possible
values. Let X be an attribute variable and let {x1, x2, . . . , xt} be its possible
values. Let us assume that PD(C) is the credal set on D associated with C
corresponding to a model based on probability intervals1 .

The split criterion utilized in the ICDT algorithm utilizes the maximum of
the Shannon entropy [21] on PD(C):

H∗(PD(C)) = max
{
H(p) | p ∈ PD(C)

}
(5)

being H the Shannon entropy.
The maximum of entropy is a well-established measure on credal sets that

satisfies good properties and behavior [16].
Hence, the split criterion used in ICDT is the Imprecise Information Gain

(IIG) [5]. It is defined as follows:

IIG(C,X) = H∗(PD(C)) −
t∑

i=1

PD(X = xi)H∗(PD(C | X = xi)), (6)

where PD(X) is the maximum of entropy on the credal set corresponding to the
X attribute and H∗(PD(C | X = xi)) is the maximum of the entropy on the
credal set associated with the C variable and with the partition of D composed
by the instances of D that verify that X = xi.

The main difference among the CDT and ICDT algorithms resides in the
criterion utilized to classify an instance once a terminal node is reached. The
CDT algorithm assigns the most frequent class value in that leaf. Nevertheless,
the ICDT algorithm assigns a probability interval to each one of the possible
values of the class variable using the relative frequencies in the leaf node and
a model based on probability intervals. Then, a dominance criterion is used to
obtain the set of non-dominated states. In this research, the models considered
are the IDM and the A-NPI-M. Thus, since with these models stochastic and
credal dominance are equivalent and the first one is much easier to verify, we
use the stochastic dominance in this work.

The procedure to classify a new instance in the ICDT algorithm can be
summarized in Fig. 1.

1 In this work we will consider the A-NPI-M, unlike in [4], where the IDM is employed.
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Procedure Classify Instance ICDT(Built Tree T , new instance x)

1. Apply x in T to reach a leaf node.
2. Obtain the probability intervals in this terminal node for x, based on relative
frequencies using a model based on imprecise probabilities:

{[li, ui] , i = 1, · · · , k}.

3. Apply a dominance criterion to the above intervals to get a set of
non-dominated states for x: {ci1 , ci2 , · · · , cir}, with r ≤ k.

Fig. 1. Classification of a new instance in ICDT algorithm.

In this research, we compare the use of the A-NPI-M for the credal sets
associated with the class variable, in the building process of the ICDT algorithm
and to obtain the probability intervals for the class values in the terminal nodes,
with the use of the IDM with different values of the s parameter.

6 Evaluation Metrics in Imprecise Classification

An evaluation measure for Imprecise Classification should take into consideration
two points. The first one of them is if the prediction is right, i.e if the real class
value is among the predicted ones. The second point is how informative is the
predicted set of states, which is measured by its cardinality.

Several metrics only focus on one of the issues commented above, such as:

– Determinacy: It is the proportion of instances for which the classifier returns
a single class value.

– Single Accuracy: It consists of the accuracy between the instances for which
there is just one predicted state.

– Set Accuracy: It measures, on the instances for which there is more than
one predicted state, the proportion of them for which its real state is among
the predicted ones.

– Indeterminacy Size: It is the average size of the predicted states set.

As it can be observed, none of these metrics is suitable to measure the whole
performance of an imprecise classifier.

In [10], it was proposed a measure to provide a global evaluation of an impre-
cise classifier, called Discounted Accuracy measure (DACC), defined as:

DACC =
1

NTest

NTest∑
i=1

(correct)i
|Ui| , (7)
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where NTest is the number of instances of the test set; Ui is the predicted states
set for the i-th instance; |Ui| its cardinality; (correct)i is equal to 1 if Ui contains
the real class value and 0 otherwise, ∀i = 1, 2, . . . , n.

We shall denote k the number of class values.
It can be observed that DACC is an accuracy measure: it does not add any

value for the erroneous predictions and, for the correct ones, the added value
is “penalized” by the number of predicted states. The optimal value of DACC
is 1. It is achieved when there is always a single predicted state and all the
predictions are right. If the classifier always predicts all the possible values of
the class variable, the value of DACC is 1

k . This value should be lower because
in this case, the classifier is not informative.

In [4], a new metric for imprecise classification, MIC, was proposed. It penal-
izes the errors in a strict sense. When there is a correct prediction for an instance,
MIC adds a value that depends on |Ui|

k . If the prediction for an instance is incor-
rect, MIC adds a constant value, which depends on k. More specifically, MIC is
defined as follows:

MIC =
1

NTest

( ∑
i:Success

log
|Ui|
k

+
1

k − 1

∑
i:Error

log k

)
(8)

As can be seen, the optimal value of MIC is log k. It is reached when, for all
the instances, only the real class value is predicted. Besides, when a classifier
always returns as predicted states all the possible ones, i.e, when |Ui| = k,
∀i = 1, . . . , NTest, the value of MIC is equal to 0. It makes sense because, in
this case, the classifier does not give any information.

7 Experimentation

7.1 Experimental Settings

Remark that, in this experimentation, the aim is to compare the use of the A-
NPI-M versus the IDM in the ICDT algorithm, in the building process and for
the selection of non-dominated states. For the reasons explained in Sect. 5, the
stochastic dominance criterion is used. For evaluation, we use the DACC and
MIC measures, as in [4].

Within this Section, we call ICDT-IDM to the Imprecise Decision Tree with
the IDM and ICDT-NPI to the Imprecise Decision Tree with the A-NPI-M.

To compare the performance between both algorithms, as in the experi-
mentation carried out in [4], 34 known datasets have been used. They can be
downloaded from the UCI Machine Learning repository [17]. These datasets are
diverse concerning the size of the set, the number of continuous and discrete
attributes, the number of values per variable, the number of class values, etc.
The most relevant characteristics of each dataset can be seen in Table 1.

As it was done in [4], in each dataset, missing values have been replaced
with the mean value for continuous variables and with modal values for dis-
crete attributes. After that, in each database, continuous attributes have been
discretized using the Fayyad and Irani’s discretization method [13].
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Table 1. Data set description. Column “N” is the number of instances in the data
sets, column “Feat” is the number of features or attribute variables, column “Num” is
the number of numerical variables, column “Nom” is the number of nominal variables,
column “k” is the number of cases or states of the class variable (always a nominal
variable) and column “Range” is the range of states of the nominal variables of each
data set.

Data set N Feat Num Nom k Range

anneal 898 38 6 32 6 2–10

arrhythmia 452 279 206 73 16 2

audiology 226 69 0 69 24 2–6

autos 205 25 15 10 7 2–22

balance-scale 625 4 4 0 3 –

car 1728 6 0 6 4 3–4

cmc 1473 9 2 7 3 2–4

dermatology 366 34 1 33 6 2–4

ecoli 366 7 7 0 7 –

flags 194 30 2 28 8 2–13

hypothyroid 3772 30 7 23 4 2–4

iris 150 4 4 0 3 –

letter 20000 16 16 0 26 –

lymphography 146 18 3 15 4 2–8

mfeat-pixel 2000 240 0 240 10 4–6

nursery 12960 8 0 8 4 2–4

optdigits 5620 64 64 0 10 –

page-blocks 5473 10 10 0 5 –

pendigits 10992 16 16 0 10 –

postop-patient-data 90 9 0 9 3 2–4

primary-tumor 339 17 0 17 21 2–3

segment 2310 19 16 0 7 –

soybean 683 35 0 35 19 2–7

spectrometer 531 101 100 1 48 4

splice 3190 60 0 60 3 4–6

sponge 76 44 0 44 3 2–9

tae 151 5 3 2 3 2

vehicle 946 18 18 0 4 –

vowel 990 11 10 1 11 2

waveform 5000 40 40 0 3 –

wine 178 13 13 0 3 –

zoo 101 16 1 16 7 2
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We have used the Weka software [23] for this experimentation. We have
started from the implementation of the ICDT-IDM algorithm given in this soft-
ware and we have added the necessary methods to use the ICDT-NPI. For ICDT-
IDM, three values of the s parameter have been used: s = 1, s = 2 and s = 3.
The rest of the parameters used in both algorithms have been the ones given by
default in Weka. This software has been also used for the preprocessing steps
described above. We denote ICDT-IDMi to ICDT-IDM with s = i, for i = 1, 2, 3.

For each dataset, a 10-fold cross-validation procedure has been repeated 10
times.

For statistical comparisons, consistently with [12], we have used the following
tests to compare more than two classifiers on a large number of datasets with a
level of significance of α = 0.05:

– Friedman test [14]: A non-parametric test that ranks the algorithms sepa-
rately for each dataset (the best performing algorithm is assigned to the rank
1, the second-best, rank 2, and so on). The null hypothesis of the Friedman
test is that all the algorithms have equivalent performance.

– When the null hypothesis of the Friedman test is rejected, all the algorithms
are compared to each other by using the Nemenyi test [20].

For the statistical tests, the Keel software [7] has been used.

7.2 Results and Discussion

Tables 2 and 3 show, respectively, the main results corresponding to DACC and
MIC measures. Specifically, these tables allow us to see the average values, the
Friedman ranks, and the pairs of algorithms for which there are significant dif-
ferences according to Nemenyi pos-hoc. We do not show the complete results
here due to the limitations of space, they can be found in http://flanagan.ugr.
es/IPMU2020.html.

Table 2. Summary of the results for the DACC measure. Column “Nemenyi” shows
the algorithms in which the algorithm in the row performs significantly better according
to the Nemenyi test.

Algorithm Average Friedman rank Nemenyi

ICDT-NPI 0.7675 1.9118 ICDT-IDM3

ICDT-IDM1 0.7763 2.3382 ICDT-IDM3

ICDT-IDM2 0.7606 2.4853 –

ICDT-IDM3 0.7482 3.2647 –

As it can be observed, for both DACC and MIC metrics, the best average
value is obtained by ICDT-IDM1, followed by ICDT-NPI, ICDT-IDM2, and

http://flanagan.ugr.es/IPMU2020.html
http://flanagan.ugr.es/IPMU2020.html
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Table 3. Summary of the results for the MIC measure. Column “Nemenyi” shows the
algorithms in which the algorithm in the row performs significantly better according
to the Nemenyi test.

Algorithm Average Friedman rank Nemenyi

ICDT-NPI 1.3414 1.9706 ICDT-IDM3

ICDT-IDM1 1.3652 2.4412 –

ICDT-IDM2 1.3334 2.5 –

ICDT-IDM3 1.3065 3.0882 –

ICDT-IDM3. In addition, for both evaluation measures, the ICDT-NPI algo-
rithm obtains the best rank according to the Friedman test. Regarding ICDT-
IDM, the higher is the value of the s parameter, the higher is the rank. The
results of the Nemenyi post-hoc allow us to observe that the results obtained by
ICDT-NPI are significantly better than the ones obtained by ICDT-IDM with
the worst s value (s = 3) for both MIC and DACC metrics. Also, for DACC,
ICDT-IDM with s = 1 performs significantly better than ICDT-IDM with s = 3.
For both evaluation metrics, ICDT-NPI, ICDT-IDM1, and ICDT-IDM2 have an
equivalent performance.

Hence, the performance of the ICDT-IDM algorithm depends on the choice
of the s hyperparameter. Regarding ICDT-NPI, the results obtained for this
algorithm are statistically equivalent to the ones obtained by ICDT-IDM with
the best s parameter. Furthermore, ICDT-NPI performs significantly better than
ICDT-IDM with the worst value of the s hyperparameter.

For a deeper analysis, Table 4 shows the average values of Determinacy, Single
Accuracy, Set Accuracy and Indeterminacy size for each algorithm.

Table 4. Average results obtained for basic metrics by each algorithm. Best scores are
marked in bold.

Algorithm Determinacy Single accuracy Set accuracy Indeterminacy size

ICDT-NPI 0.9002 0.8237 0.9561 7.9381

ICDT-IDM1 0.9477 0.8023 0.8844 5.2955

ICDT-IDM2 0.8985 0.8119 0.9168 5.9313

ICDT-IDM3 0.8666 0.8151 0.9218 6.1346

Firstly, ICDT-IDM1 achieves the highest average Determinacy. It means that
the highest number of instances for which only one state is predicted is obtained
with ICDT-IDM1. NPI-M obtains the second-highest value in Determinacy, fol-
lowed by ICDT-IDM2 and ICDT-IDM3 for all the noise levels.

However, for the accuracy among the instances for which it is predicted just
a state of the class variable (Single Accuracy), ICDT-IDM obtains the worst
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performance with s = 1. In the ICDT-IDM algorithm, the higher is the value
of the s parameter, the better is the performance in Single Accuracy. The best
Single Accuracy is obtained with ICDT-NPI.

Regarding Set Accuracy, which measures the average number of instances for
which the real class value is between the predicted ones, the results are similar to
the ones obtained in Single Accuracy: ICDT-IDM performs better as the value
of the s parameter is higher and ICDT-NPI outperforms ICDT-IDM with the
three s values considered.

The lowest value of the Indeterminacy size, which measures the average size
of the non-dominated states, is achieved with ICDT-IDM1. Moreover, the lower
is the s value for ICDT-IDM, the lower is the indeterminacy size. The highest
average number of non-dominated states is obtained with ICDT-NPI.

Therefore, with ICDT-NPI, it is attained the best trade-off between pre-
dicting only one state and making correct predictions. This algorithm obtains
the second-highest score in Determinacy and the best one in Single Accuracy,
whereas ICDT-IDM1, which achieves the highest Determinacy, obtains the worst
results in Single Accuracy. Besides, when there is more than one predicted state,
in the ICDT algorithm, the size of the predicted states sets is larger as the value
if the s value is higher and the largest set is obtained with the ICDT-NPI algo-
rithm. Nevertheless, ICDT-NPI obtains the highest percentage of instances for
which the real class value is predicted and, in the ICDT-IDM algorithm, this
percentage is lower as the value of the s parameter is higher.

Summary of the Results: The ICDT-IDM algorithm predicts the real class
value more frequently as long as the value of the s parameter is higher. However,
if the s value is higher, then the predictions made by ICDT-IDM are less infor-
mative in the sense that the size of the predicted class values set is larger. With
ICDT-NPI, although the size of the predicted states set is, on average, larger
than with ICDT-IDM, it is achieved the best trade-off between predicting fewer
states of the class variable and making correct predictions.

The results obtained with DACC and MIC measures allow us to deduce that
ICDT-NPI performs equivalently to ICDT-IDM with the best choice of the s
parameter. Moreover, the results obtained by ICDT-NPI are significantly better
than the ones obtained by ICDT-IDM with the worst s value. Consequently, the
NPI-M is more suitable to be applied to the adaptation of CDTs to Imprecise
Classification, since the NPI-M is free of parameters.

8 Conclusions

In this work, we have dealt with the problem of Imprecise Classification. Specif-
ically, we have considered the adaptation of the Credal Decision Trees, Decision
Trees that use imprecise probabilities, to this field.



Imprecise Classification with Non-parametric Predictive Inference 65

The adaptation of Credal Decision Trees to Imprecise Classification proposed
so far was based on the Imprecise Dirichlet Model, a model based on imprecise
probabilities that assumes prior knowledge about the data through a hyperpa-
rameter s. For this reason, in this research, a new adaptation of Credal Decision
Trees to Imprecise Classification based on the Non-Parametric Predictive Infer-
ence Model has been presented. This model, which is also based on imprecise
probabilities, solves the main drawback of the Imprecise Dirichlet Model: it does
not make any prior assumption about the data; it is a non-parametric approach.

An experimental research carried out in this work has shown that the new
adaptation of Credal Decision Trees to Imprecise Classification based on the
Non-Parametric Predictive Inference Model has equivalent performance to the
Imprecise Credal Decision Tree based on the Imprecise Dirichlet Model with the
best s value. The results obtained by Imprecise Credal Decision Tree with Non-
Parametric Predictive Inference Model are also significantly better than the ones
obtained by Imprecise Credal Decision Tree with the Imprecise Dirichlet Model
with the worst s value. Although with the Non-Parametric Predictive Inference
Model the set of predicted class values is larger than with the Imprecise Dirichlet
Model, with the first model it is achieved a better trade-off between making
correct predictions and predicting fewer states of the class variable.

Therefore, taking into account that the Non-Parametric Predictive Inference
Model is free of parameters, it can be concluded that this model is more suitable
to be applied to the adaptations of Credal Decision Trees to Imprecise Classifi-
cation than the Imprecise Dirichlet Model.
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Abstract. The process of outer approximating a coherent lower prob-
ability by a more tractable model with additional properties, such as
2- or completely monotone capacities, may not have a unique solution.
In this paper, we investigate whether a number of approaches may help
in eliciting a unique outer approximation: minimising a number of dis-
tances with respect to the initial model, or maximising the specificity of
the outer approximation. We apply these to 2- and completely monotone
approximating lower probabilities, and also to possibility measures.

Keywords: Coherent lower probabilities · 2-monotonicity · Belief
functions · Possibility measures · Specificity

1 Introduction

The theory of imprecise probabilities [13] encompasses the different models that
may be used as an alternative to probability theory in situations of imprecise or
ambiguous information. Among them, we can find credal sets [7], coherent lower
probabilities [13], belief functions [11] or possibility measures [15].

Within imprecise probabilities, one of the most general models are coherent
lower and upper probabilities. However, this generality is at times harmed by
the difficulties that arise when using them in practice. For example, there is
no simple procedure for computing the extreme points of its associated credal
set, and there is no unique coherent extension to gambles. These problems are
solved when the coherent lower probability satisfies the additional property of
2-monotonicity [4,12], or that of complete monotonicity.

For this reason, in previous papers [9,10] we investigated the problem of
transforming a coherent lower probability into a 2-monotone one that does not
add information to the model while being as close as possible to it. This led us
to the notion of undominated outer approximations, formerly introduced in [2].
In [9] we analysed the properties of the 2-monotone outer approximations, while
in [10] we studied the completely monotone ones, considering in particular the
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outer approximations in terms of necessity measures. In both cases, we found out
that there may be an infinity of undominated outer approximations, and that
their computation may be quite involved. Nevertheless, in the case of necessity
measures, we proved that there are a finite number of undominated ones and we
introduced a procedure for determining them.

Since in any case there is not a unique undominated outer approximation
in terms of 2- or completely monotone lower probabilities or even in terms of
necessity measures, in this paper we explore a number of possibilities that may
help single out a unique undominated outer approximation. After introducing
some preliminary notions in Sect. 2, formalising the idea of outer approximation
and summarising the main properties from [9,10] in Sect. 3, in Sects. 4 and 5 we
introduce and compare a number of different procedures to elicit an undominated
outer approximation. We conclude the paper in Sect. 6 summarising the main
contributions of the paper. Due to space limitations, proofs have been omitted.

2 Imprecise Probability Models

Consider an experiment taking values in a finite possibility space X =
{x1, . . . , xn}. A lower probability on P(X ) is a monotone function P : P(X ) →
[0, 1] satisfying P (∅) = 0, P (X ) = 1. For every A ⊆ X , P (A) is interpreted
as a lower bound for the true (but unknown) probability of A. Any lower
probability determines the credal set of probability measures that are compat-
ible with it, given by M(P ) = {P | P (A) ≥ P (A) ∀A ⊆ X}. We say that
P avoids sure loss when M(P ) is non-empty, and that it is coherent when
P (A) = min{P (A) | P ∈ M(P )} for every A ⊆ X .

Associated with P , we can consider its conjugate upper probability, given by
P (A) = 1 − P (Ac) for every A ⊆ X . The value P (A) may be interpreted as an
upper bound for the unknown probability of A, and it follows that P ≥ P if and
only if P ≤ P . This means that the probabilistic information given by a lower
probability and its conjugate upper probability are equivalent, and so it suffices
to work with one of them.

A coherent lower probability P is k-monotone if for every 1 ≤ p ≤ k and
A1, . . . , Ap ⊆ X it satisfies P

(∪p
i=1 Ai

) ≥ ∑
∅�=I⊆{1,...,p}(−1)|I|+1P

(∩i∈I Ai

)
. Of

particular interest are the cases of 2-monotonicity and complete monotonicity;
the latter refers to those lower probabilities that are k-monotone for every k.

Any lower probability P can be represented in terms of a function called
Möbius inverse, denoted by mP : P(X ) → R, and defined by:

mP (A) =
∑

B⊆A

(−1)|A\B|P (B), ∀A ⊆ X .

Conversely, mP allows to retrieve P using the expression P (A) =
∑

B⊆A mP (B).
Moreover, mP is the Möbius inverse associated with a 2-monotone lower proba-
bility P if and only if [3] mP satisfies:

∑

A⊆X
mP (A) = 1, mP (∅) = 0, mP ({xi}) ≥ 0 ∀xi ∈ X , (2monot.1)
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∑

{xi,xj}⊆B⊆A

mP (B) ≥ 0, ∀A ⊆ X , ∀xi, xj ∈ A, xi �= xj , (2monot.2)

while it is associated with a completely monotone lower probability if and only
if [11] mP satisfies:

∑

A⊆X
mP (A) = 1, mP (∅) = 0, mP (A) ≥ 0 ∀A ⊆ X . (Cmonot.1)

Completely monotone lower probabilities are also connected to Dempster-Shafer
Theory of Evidence [11], where they are called belief functions. In that case, the
events with strictly positive mass are called focal events.

Another usual imprecise model is that of necessity and possibility measures.
A possibility measure [6,15], denoted by Π, is a supremum-preserving function:

Π(∪i∈IAi) = sup
i∈I

Π(Ai), ∀Ai ⊆ X , i ∈ I.

In our finite framework, the above condition is equivalent to Π(A ∪ B) =
max{Π(A),Π(B)} for every A,B ⊆ X . Every possibility measure is a coher-
ent upper probability. Its conjugate lower probability, denoted by N and called
necessity measure, is a completely monotone lower probability and its focal events
are nested.

3 Outer Approximations of Coherent Lower Probabilities

Even if coherent lower probabilities are more general than 2-monotone ones, the
latter have some practical advantages. For example, they can be easily extended
to gambles [4] and the structure of their credal set can be easily determined [12].
Motivated by this, in [9] we proposed to replace a given coherent lower proba-
bility by a 2-monotone one that does not add information to the model while
being as close as possible to the initial model. The first condition gives rise to the
notion of outer approximation, and the second leads to the notion of undominated
approximations. These concepts were formalised by Bronevich and Augustin [2]:

Definition 1. Given a coherent lower probability P and a family C of coherent
lower probabilities, Q is an outer approximation (OA, for short) of P if Q ≤ P .
Moreover, Q is undominated in C if there is no Q′ ∈ C such that Q � Q′ ≤ P .

Similarly, given a coherent upper probability P and a family C of coherent upper
probabilities, Q ∈ C is an outer approximation of P if Q(A) ≥ P (A) for every
A ⊆ X , and it is called non-dominating in C if there is no Q

′ ∈ C such that
Q � Q

′ ≥ P . It follows that Q is an outer approximation of P if and only if its
conjugate Q is an outer approximation of the lower probability P conjugate of
P .

Let us consider now the families C2, C∞ and CΠ of 2- and completely mono-
tone lower probabilities and possibility measures. In [9,10] we investigated several
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properties of the undominated (non-dominating for CΠ) outer approximations
in these families. We showed that determining the set of undominated OA in
C2 and C∞ is not immediate, and that these sets are infinite in general. The
problem is somewhat simpler for the outer approximations in CΠ , even if in this
case there is not a unique non-dominating OA either. In this paper, we discuss
different procedures to elicit a unique OA.

Before we proceed, let us remark that we may assume without loss of gener-
ality that all singletons have strictly positive upper probability.

Proposition 1. Let P ,Q : P(X ) → [0, 1] be two coherent upper probabilities
such that P ≤ Q. Assume that P ({x}) = 0 < Q({x}) for a given x ∈ X , and let
us define Q

′
: P(X ) → [0, 1] by Q

′
(A) = Q(A \ {x}) for every A ⊆ X . Then:

1. P ≤ Q
′
� Q.

2. If Q is k-alternating, so is Q
′
.

3. If Q is a possibility measure, so is Q
′
.

The proposition above allows us to deduce the following:

Corollary 1. Let P : P(X ) → [0, 1] be a coherent upper probability and let Q
be a non-dominating outer approximation of P in C2, C∞ or CΠ . If P ({x}) = 0,
then also Q({x}) = 0.

As a consequence, we may assume without loss of generality that P ({x}) > 0
for every x ∈ X . This is relevant for the proofs of the results in Sect. 5.

4 Elicitation of an Outer Approximation in C2 and C∞

From [9,10], the number of undominated OAs in C2 and C∞ is not finite in
general. In [9,10] we focused on those undominated OAs in C2 and C∞ that
minimise the BV-distance proposed in [1] with respect to the original coherent
lower probability P , given by dBV (P ,Q) =

∑
A⊆X |P (A) − Q(A)|. It measures

the amount of imprecision added to the model when replacing P by its OA Q.
Hence, its seems reasonable to minimise the imprecision added to the model.

Let CBV
2 (P ) and CBV

∞ (P ) denote the set of undominated OAs in C2 and C∞,
respectively, that minimise the BV-distance with respect to P . One advantage
of focusing our elicitation to CBV

2 (P ) and CBV
∞ (P ) is that these sets can be easily

determined. Indeed, both CBV
2 (P ) and CBV

∞ (P ) can be computed as the set of
optimal solutions of a linear programming problem ([9, Prop. 1], [10, Prop. 3]).
Hence, both sets are convex, and have an infinite number of elements in general.
In the rest of the section we discuss different approaches to elicit an undominated
OA within CBV

2 (P ) and CBV
∞ (P ).

4.1 Approach Based on a Quadratic Distance

One possibility for obtaining a unique solution to our problem could be to use
the quadratic distance, i.e., to consider the OA in CBV

2 or CBV
∞ minimising

dp

(
P ,Q

)
=

∑

A⊆X

(
P (A) − Q(A)

)2
. (1)
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Given δBV
2 = minQ∈C2 dBV (P ,Q) and δBV

∞ = minQ∈C∞ dBV (P ,Q), in CBV
2 we

may set up the quadratic problem of minimising Eq. (1) subject to the constraints
(2monot.1)−(2monot.2), and also to

∑

B⊆A

mQ(B) ≤ P (A) ∀A �= ∅,X . (OA)

∑

A⊆X

⎛

⎝P (A) −
∑

B⊆A

mQ(B)

⎞

⎠ = δBV
2 . (2monot-δ)

Analogously, in CBV
∞ we can minimise Eq. (1) subject to (Cmonot.1), (OA) and:

∑

A⊆X

⎛

⎝P (A) −
∑

B⊆A

mQ(B)

⎞

⎠ = δBV
∞ . (Cmonot-δ)

Proposition 2. Let P be a coherent lower probability. Then:

1. The problem of minimising Eq. (1) subject to (2monot.1) ÷ (2monot.2), (OA)
and (2monot-δ) has a unique solution, which is an undominated OA of P in
CBV
2 (P ).

2. Similarly, the problem of minimising Eq. (1) subject to (Cmonot.1), (OA)
and (Cmonot-δ) has a unique solution, which is an undominated OA of P in
CBV

∞ (P ).

The following example illustrates this result.

Example 1. Consider the coherent P given on X = {x1, x2, x3, x4} by [9, Ex.1]:

P (A) =

⎧
⎪⎨

⎪⎩

0 if |A| = 1 or A = {x1, x2}, {x3, x4}.

1 if A = X .

0.5 otherwise.

For this coherent lower probability, δBV
2 = δBV

∞ = 1, the sets CBV
2 (P ) and

CBV
∞ (P ) coincide and they are given by

{
Q

α
| α ∈ [0, 0.5]

}
, where:

Q
α
(A) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if |A| = 1 or A = {x1, x2}, {x3, x4}.

α if A = {x1, x4}, {x2, x3}.

0.5 − α if A = {x1, x3}, {x2, x4}.

0.5 if |A| = 3.

1 if A = X .

Therefore, if among these Q
α

we minimise the quadratic distance with respect
to P , the optimal solution is Q

0.25
, in both C2 and C∞. �
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Note that the solution we obtain in Proposition 2 is not the OA that minimises
the quadratic distance in C2 (or C∞), but the one that minimises it in CBV

2 (or
CBV

∞ ).
While the quadratic distance is in our view the most promising approach in

order to elicit a unique undominated OA of P in C2 and C∞, it is not the only
possibility. In the rest of the section we explore other approaches.

4.2 Approach Based on the Total Variation Distance

Instead of considering the quadratic distance, we may consider some extensions
of the total variation distance [8, Ch.4.1] defined between lower probabilities:

d1(P 1, P 2) = max
A⊆X

|P 1(A) − P 2(A)|, (2)

d2(P 1, P 2) =
1
2

∑

x∈X
|P 1({x}) − P 2({x})| , (3)

d3(P 1, P 2) = sup
P1≥P 1,P2≥P 2

(
max
A⊆X

|P1(A) − P2(A)|
)
. (4)

Thus, instead of minimising Eq. (1) we may consider the OA in CBV
2 (P ) or

CBV
∞ (P ) that minimises one of di(P ,Q). However, none of d1, d2, d3 determines

a unique OA in CBV
2 (P ) or CBV

∞ (P ), as we next show.

Example 2. Consider the coherent P in a four-element space given by:

A P (A) Q
0
(A) Q

1
(A)

{x1} 0.1 0.1 0.1
{x2} 0 0 0
{x3} 0 0 0
{x4} 0.3 0.3 0.3

{x1, x2} 0.1 0.1 0.1
{x1, x3} 0.3 0.2 0.3
{x1, x4} 0.6 0.6 0.5

A P (A) Q
0
(A) Q

1
(A)

{x2, x3} 0.3 0.3 0.2
{x2, x4} 0.4 0.3 0.4
{x3, x4} 0.4 0.3 0.3

{x1, x2, x3} 0.5 0.5 0.5
{x1, x2, x4} 0.6 0.6 0.6
{x1, x3, x4} 0.7 0.7 0.7
{x2, x3, x4} 0.6 0.6 0.6

X 1 1 1

In [10, Ex.1] we showed that CBV
∞ (P ) is given by

{
Q

0
, Q

1
, Q

α
| α ∈ (0, 1)

}
, where

Q
α

= αQ
0

+ (1 − α)Q
1
. In all the cases it holds that:

d1
(
P ,Q

0

)
= d1

(
P ,Q

1

)
= d1

(
P ,Q

α

)
= 0.1 ∀α ∈ (0, 1).

d2
(
P ,Q

0

)
= d2

(
P ,Q

1

)
= d2

(
P ,Q

α

)
= 0 ∀α ∈ (0, 1).

d3
(
P ,Q

0

)
= d3

(
P ,Q

1

)
= d3

(
P ,Q

α

)
= 0.6 = max

A⊆X
|P (A) − Q

α
(A)| ∀α ∈ (0, 1).

This means that none of d1, d2 and d3 allows to elicit a unique OA from CBV
∞ .�

Consider now the undominated OAs in C2. First of all, note we may disregard
d2, because from [9, Prop.2] every undominated OA Q in C2 satisfies Q({x}) =
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P ({x}) for every x ∈ X , and therefore d2(P ,Q) = 0. The following example
shows that d1 and d3 do not allow to elicit a unique undominated OA from
CBV
2 (P ), either.

Example 3. Consider now the coherent lower probability P given by:

A P (A) Q
0
(A) Q

1
(A)

{x1} 0 0 0
{x2} 0 0 0
{x3} 0.1 0.1 0.1
{x4} 0 0 0

{x1, x2} 0.3 0.2 0.2
{x1, x3} 0.3 0.3 0.3
{x1, x4} 0.2 0.2 0.2

A P (A) Q
0
(A) Q

1
(A)

{x2, x3} 0.3 0.3 0.3
{x2, x4} 0.3 0.2 0.3
{x3, x4} 0.4 0.4 0.3

{x1, x2, x3} 0.5 0.5 0.5
{x1, x2, x4} 0.6 0.6 0.6
{x1, x3, x4} 0.6 0.6 0.6
{x2, x3, x4} 0.6 0.6 0.6

X 1 1 1

It holds that CBV
2 (P ) = CBV

∞ (P ) =
{

Q
0
, Q

1
, Q

α
| α ∈ (0, 1)

}
, where Q

α
=

αQ
0

+ (1 − α)Q
1
. However:

d1
(
P ,Q

0

)
= d1

(
P ,Q

1

)
= d1

(
P ,Q

α

)
= 0.1 ∀α ∈ (0, 1), and

d3
(
P ,Q

0

)
= d3

(
P ,Q

1

)
= d3

(
P ,Q

α

)
= 0.5 = max

A⊆X
∣
∣P (A) − Q

α
(A)

∣
∣, ∀α ∈ (0, 1).

Thus, neither d1 nor d3 determines a unique undominated OA in CBV
2 (P ). �

4.3 Approach Based on Measuring Specificity

When we consider the OAs of P in C∞, we may compare them by measuring
their specificity. We consider here the specificity measure defined by Yager [14],
that splits the mass of the focal events among its elements.
Definition 2. Let Q be a completely monotone lower probability on P(X ) with
Möbius inverse mQ. Its specificity is given by

S(Q) =
∑

∅�=A⊆X

mQ(A)

|A| =
n∑

i=1

1
i

∑

A:|A|=i

mQ(A).

Hence, we can choose an undominated OA in CBV
∞ (P ) with the greatest speci-

ficity. The next example shows that this criterion does not give rise to a unique
undominated OA.
Example 4. Consider again Example 1, where CBV

∞ =
{
Q

α
| α ∈ [0, 0.5]

}
. The

Möbius inverse of Q
α

is given by

mQ
α
({x1, x4}) = mQ

α
({x2, x3}) = α, mQ

α
({x1, x3}) = mQ

α
({x2, x4}) = 0.5−α

and zero elsewhere. Hence, the specificity of Q
α

is

S(Q
α
) =

1
2

(α + α + 0.5 − α + 0.5 − α) = 0.5,

regardless of the value of α ∈ [0, 0.5]. We conclude that all the undominated
OAs in CBV

∞ (P ) have the same specificity. �
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5 Elicitation of an Outer Approximation in CΠ

In [10, Sec.6] we showed that the set of non-dominating OAs in CΠ is finite
and that we have a simple procedure for determining them. Given the conjugate
upper probability P of P , each permutation σ in the set Sn of all permutations
of {1, 2, . . . , n} defines a possibility measure by:

Πσ({xσ(1)}) = P ({xσ(1)}), and (5)

Πσ({xσ(i)}) = max
A∈Aσ(i)

P (A ∪ {xσ(i)}), where for every i > 1 : (6)

Aσ(i) =
{

A ⊆ {xσ(1), . . . , xσ(i−1)} | P (A ∪ {xσ(i)}) > max
x∈A

Πσ({x})
}

, (7)

and Πσ(A) = maxx∈A Πσ({x}) for every A ⊆ X . Then, the set of non-
dominating OAs of P is {Πσ | σ ∈ Sn} (see [10, Prop.11, Cor.13]).

Next we propose a number of approaches to elicit a unique OA of P among
the Πσ determined by Eqs. (5) ÷ (7). Note that the procedure above may deter-
mine the same possibility measure using different permutations. The next result
is concerned with such cases, and will be helpful for reducing the candidate
possibility measures.

Proposition 3. Let {Πσ | σ ∈ Sn} be the set of non-dominating OAs of P in
CΠ . Consider σ ∈ Sn and its associated Πσ. Assume that ∃i ∈ {2, . . . , n} such
that Πσ({xσ(i)}) �= P ({xσ(1), . . . , xσ(i)}). Then, there exists σ′ ∈ Sn such that

Πσ(A) = Πσ′(A) ∀A ⊆ X and

Πσ′({xσ′(j)}) = P ({xσ′(1), . . . , xσ′(j)}) ∀j = 1, . . . , n. (8)

5.1 Approach Based on the BV-Distance

Our first approach consists in looking for a possibility measure, among {Πσ |
σ ∈ Sn}, that minimises the BV-distance with respect to the original model. If
we denote by Nσ the conjugate necessity measure of Πσ, the BV-distance can
be expressed by:

dBV (P ,Nσ) =
∑

A⊆X
(Πσ(A) − P (A)) =

∑

A⊆X
Πσ(A) −

∑

A⊆X
P (A).

To ease the notation, for each σ ∈ Sn we denote by �βσ the ordered vector
determined by the values Πσ({xσ(i)}), i = 1, . . . , n, so that βσ,1 ≤ . . . ≤ βσ,n.
Using this notation:

∑

A⊆X
Πσ(A) = βσ,1 + 2βσ,2 + . . . + 2n−1βσ,n =

n∑

i=1

2i−1βσ,i. (9)

This means that, in order to minimise dBV (P ,Nσ), we must minimise Eq. (9).
Our next result shows that if a dominance relation exists between �βσ and �βσ′ ,
this induces an order between the values in Eq. (9).
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Lemma 1. Let �βσ and �βσ′ be two vectors associated with two possibility mea-
sures Πσ and Πσ′ . Then �βσ ≤ �βσ′ implies that dBV (P ,Nσ) ≤ dBV (P ,Nσ′), and
�βσ � �βσ′ implies that dBV (P ,Nσ) < dBV (P ,Nσ′).

This result may contribute to rule out some possibilities in Sn, as illustrated in
the next example.

Example 5. Consider the following coherent conjugate lower and upper proba-
bilities, as well as their associated possibility measures Πσ and vectors βσ:

A P (A) P (A)

{x1} 0.25 0.4
{x2} 0.2 0.5
{x3} 0.2 0.5

{x1, x2} 0.5 0.8
{x1, x3} 0.5 0.8
{x2, x3} 0.6 0.75

X 1 1

σ Πσ({x1}) Πσ({x2}) Πσ({x3}) �βσ

σ1 = (1, 2, 3) 0.4 0.8 1 (0.4, 0.8, 1)
σ2 = (1, 3, 2) 0.4 1 0.8 (0.4, 0.8, 1)
σ3 = (2, 1, 3) 0.8 0.5 1 (0.5, 0.8, 1)
σ4 = (2, 3, 1) 1 0.5 0.75 (0.5, 0.75, 1)
σ5 = (3, 1, 2) 0.8 1 0.5 (0.5, 0.8, 1)
σ6 = (3, 2, 1) 1 0.75 0.5 (0.5, 0.75, 1)

Taking σ1 and σ3, it holds that �βσ1 � �βσ3 , so from Lemma 1 dBV (P ,Nσ1) <

dBV (P ,Nσ3). Hence, we can discard Πσ3 . The same applies to �βσ1 and �βσ5 ,
whence dBV (P ,Nσ1) < dBV (P ,Nσ5). �
In the general case, the set of all vectors �βσ is not totally ordered. Then, the
problem of minimising the BV-distance is solved by casting it into a shortest
path problem, as we shall now illustrate.

As we said before, the possibility measure(s) in {Πσ : σ ∈ Sn} that minimise
the BV-distance to P are the ones minimising

∑
A⊆X Πσ(A). In turn, this sum

can be computed by means of Eq. (9), once we order the values Πσ({xσ(i)}), for
i = 1, . . . , n. Our next result will be useful for this aim:

Proposition 4. Let {Πσ | σ ∈ Sn} be the set of non-dominating OAs of P in

CΠ . Then
∑

A⊆X Πσ(A) ≤
n∑

i=1

2i−1P ({xσ(1), . . . , xσ(i)}), and the equality holds

if and only if Πσ satisfies Eq. (8).

From Proposition 3, if Πσ does not satisfy Eq. (8) then there exists another
permutation σ′ that does so and such that Πσ = Πσ′ . This means that we can
find Πσ minimising the BV-distance by solving a shortest path problem. For this
aim, we consider the Hasse diagram of P(X ), and if xi /∈ A, we assign the weight
2|A|P (A ∪ {xi}) to the edge A → A ∪ {xi}. Since these weights are positive, we
can find the optimal solution using Dijkstra’s algorithm [5]. In this diagram,
there are two types of paths:

(a) Paths whose associated Πσ satisfies Eq. (8); then
∑

A⊆X Πσ(A) coincides
with the value of the path.

(b) Paths whose associated Πσ does not satisfy Eq. (8); then
∑

A⊆X Πσ(A) shall
be strictly smaller than the value of the path, and shall moreover coincide
with the value of the path determined by another permutation σ′, as estab-
lished in Proposition 3. Then the shortest path can never be found among
these ones.
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As a consequence, the shortest path determines a permutation σ whose asso-
ciated Πσ satisfies Eq. (8). Moreover, this Πσ minimises the BV-distance with
respect to P among all the non-dominating OAs in C∞. And in this manner we
shall obtain all such possibility measures.

Example 6. Consider the coherent conjugate lower and upper probability P and
P from Example 5. The following figure pictures the Hasse diagram with weights
of the edges we discussed before:

∅

{x1} {x2} {x3}

{x1, x2} {x1, x3} {x2, x3}

X

0.4 0.5 0.5

1.6

1.6 1.6 1.5 1.6

1.5

4 4 4

Solving the shortest path problem from ∅ to X using Dijkstra’s algorithm, we
obtain an optimal value of 6 that is attained with the following paths:

∅ → {x1} → {x1, x2} → X , ∅ → {x1} → {x1, x3} → X .

∅ → {x2} → {x2, x3} → X , ∅ → {x3} → {x2, x3} → X .

These four paths correspond to the permutations σ1 = (1, 2, 3), σ2 = (1, 3, 2),
σ4 = (2, 3, 1) and σ6 = (3, 2, 1). Even if they induce four different possibility
measures, all of them are at the same BV-distance to P . Note also that the
other two possibility measures are those that were discarded in Example 5. �

This example shows that with this approach we obtain the Πσ at minimum BV-
distance. It also shows that the solution is not unique, and that the vectors �βσ

and �βσ′ that are not pointwisely ordered may be associated with two different
possibility measures Πσ and Πσ′ minimising the BV-distance (such as σ1 and
σ6 in the example). Nevertheless, we can determine situations in which the BV-
distance elicits one single Πσ, using the following result:

Proposition 5. Let P and P be coherent conjugate lower and upper probabili-
ties. If there is a permutation σ ∈ Sn satisfying

P
({

xσ(1), . . . , xσ(j)

})
= min

|A|=j
P (A) ∀j = 1, . . . , n, (10)

then Πσ minimises the BV-distance.
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As a consequence of this result, if there is only one permutation satisfying
Eq. (10), this approach allows to elicit a unique undominated OA.

Example 7. Consider again P and P from Example 2. We can see that:

P ({x2}) = 0.3 = min
|A|=1

P (A), P ({x2, x3}) = 0.4 = min
|A|=2

P (A),

P ({x1, x2, x3}) = 0.7 = min
|A|=3

P (A).

There is a (unique) chain of events satisfying Eq. (10), namely {x2} ⊆ {x2, x3} ⊆
{x1, x2, x3} ⊆ X , that is associated with the permutation σ = (2, 3, 1, 4). From
Proposition 5, Πσ is the unique undominated OA in CΠ minimising the BV-
distance. �

5.2 Approach Based on Measuring Specificity

Since any possibility measure is in particular the conjugate of a belief function,
it is possible to compare them by means of specificity measures. In this section,
we investigate which possibility measure(s) among {Πσ | σ ∈ Sn} are the most
specific.

With each Πσ in {Πσ | σ ∈ Sn}, we consider its associated vector �βσ. For
possibility measures, the focal events Ai are nested: Ai := {xσ(n−i+1), . . . , xσ(n)},
with m(Ai) = βσ,n−i+1 − βσ,n−i. Hence specificity simplifies to:

S(Πσ) = 1 − βσ,n−1

2
− βσ,n−2

2 · 3
− . . . − βσ,1

n(n − 1)
.

Thus, a most specific possibility measure will minimise

βσ,1

n(n − 1)
+

βσ,2

(n − 1)(n − 2)
+ . . . +

βσ,n−1

2
. (11)

Our first result is similar to Lemma 1, and allows to discard some of the possi-
bility measures Πσ.

Lemma 2. Let �βσ and �βσ′ be the vectors associated with the possibility measures
Πσ and Πσ′ . Then �βσ ≤ �βσ′ implies that S(Πσ) ≥ S(Πσ′) and βσ � βσ′ implies
that S(Πσ) > S(Πσ′).

Example 8. Let us continue with Examples 5 and 6. In Example 5 we showed
the possibility measures {Πσ | σ ∈ Sn} and their associated vectors �βσ. As we
argued in Example 5, �βσ1 � �βσ3 , where σ1 = (1, 2, 3) and σ3 = (2, 1, 3). Hence
from Lemma 2, S(Πσ1) > S(Πσ3), meaning that we can discard Πσ3 . A similar
reasoning allows us to discard Πσ5 . �

In order to find those possibility measures maximising the specificity, we have
to minimise Eq. (11). Here we can make the same considerations as in Sect. 5.1.
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Proposition 6. Let {Πσ | σ ∈ Sn} be the set of non-dominating OAs of P in

CΠ . Then S(Πσ) ≥ 1 −
n−1∑

i=1

P ({xσ(1), . . . , xσ(i)})
(n − i)(n − i + 1)

, and the equality holds if and

only if Πσ satisfies Eq. (8).

Moreover, from Proposition 3 we know that if Πσ does not satisfy Eq. (8) then it
is possible to find another permutation σ′ that does so and such that Πσ = Πσ′ .

This means that we can find the Πσ maximising the specificity by solving a
shortest path problem, similarly to what we did for the BV-distance. For this
aim, we consider the Hasse diagram of P(X ); if xi /∈ A, we assign the weight

P ({A ∪ {xi}})
(n − |A|)(n − |A| − 1)

(12)

to the edge A → A ∪ {xi}, and we give the fictitious weight 0 to X \ {xi} → X .
In this diagram, there are two types of paths:

(a) Paths whose associated possibility measure Πσ satisfies Eq. (8); then the
value of Eq. (11) for Πσ coincides with the value of the path.

(b) Paths whose associated possibility measure Πσ does not satisfy Eq. (8); then
the value of Eq. (11) for Πσ is strictly smaller than the value of the path, and
shall moreover coincide with the value of the path determined by another
permutation σ′, as established in Proposition 3. Then the shortest path can
never be found among these ones.

As a consequence, if we find the shortest path we shall determine a permuta-
tion σ whose associated Πσ satisfies Eq. (8), and therefore that maximises the
specificity; and in this manner we shall obtain all such possibility measures.

Example 9. Consider again the running Examples 5, 6 and 8. In the next figure
we can see the Hasse diagram of P(X ) with the weights from Eq. (12).

∅

{x1} {x2} {x3}

{x1, x2} {x1, x3} {x2, x3}

X

0.06̄ 0.083̄ 0.083̄

0.4

0.4 0.4
0.375

0.4

0.375

0 0 0

The optimal solutions of the shortest path problem are ∅ → {x2} → {x2, x3} →
X and ∅ → {x3} → {x2, x3} → X , which correspond to the permutations
σ4 = (2, 3, 1) and σ6 = (3, 2, 1). �
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These examples also show that the approach based on minimising the BV-
distance and that based on maximising the specificity are not equivalent: in
Example 5 we have seen that the possibility measures minimising the BV-
distance are the ones associated with the permutations (3, 1, 2) and (3, 2, 1),
while those maximising the specificity are the ones associated with (2, 3, 1) and
(3, 2, 1).

To conclude this subsection, we establish a result analogous to Proposition 5.

Proposition 7. Let P and P be coherent conjugate lower and upper probabil-
ities. If there is a permutation σ satisfying Eq. (10), then Πσ maximises the
specificity.

We arrive at the same conclusion of Proposition 5: if there is a unique permuta-
tion satisfying Eq. (10), then there is a unique possibility measure maximising
the specificity; and in that case the chosen possibility measure maximises the
specificity and at the same time minimises the BV-distance.

5.3 Approach Based on the Total Variation Distance

As we did in Sect. 4.2, we could elicit a possibility measure among {Πσ | σ ∈ Sn}
by minimising one of the extensions of the TV-distance. When we focus on upper
probabilities, the distances given in Eqs. (2) ÷ (4) can be expressed by:

d1(P 1, P 2) = max
A⊆X

|P 1(A) − P 2(A)|, d2(P 1, P 2) =
1
2

∑

x∈X
|P 1({x}) − P 2({x})|,

d3(P 1, P 2) = sup
P1≤P 1,P2≤P 2

(
max
A⊆X

|P1(A) − P2(A)|
)

.

As in the case of C2 and C∞, this approach is not fruitful:

Example 10. Consider our running Example 5. The values di(P ,Πj) are given
by:

Πσ1 Πσ2 Πσ3 Πσ4 Πσ5 Πσ6

d1(P ,Πσi
) 0.5 0.5 0.5 0.6 0.5 0.6

d2(P ,Πσi
) 0.4 0.4 0.45 0.425 0.45 0.425

d3(P ,Πσi
) 0.8 0.8 0.8 0.75 0.8 0.75

Thus, none of d1, d2 or d3 allow to elicit a single possibility measure. �

6 Conclusions

In this paper, we have explored a number of approaches to elicit a unique undom-
inated OA of a given coherent lower probability. When the OA belongs to the
families C2 and C∞, we first focus on the ones minimising the BV-distance.
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Among the approaches we have then considered, it seems that the best one is to
consider the OA in C2 and C∞ that minimises the quadratic distance: it singles
out a unique undominated OA, while this is not the case when we minimise the
TV-distance or maximise the specificity.

In the case of CΠ , we know from [10] that there are at most n! non-dominating
OA of a coherent upper probability, and these are determined by Eqs. (5) ÷ (7).
In order to elicit a unique possibility measure we have considered the approaches
based on minimising the BV-distance, maximising the specificity and minimising
the TV-distance. While none of them elicits a unique OA in general, we have
given a sufficient condition for the uniqueness in Propositions 5 and 7. Moreover,
we have seen that we can find the optimal OA according to the BV-distance and
the specificity approaches by solving a shortest path problem.

In a future work, we intend to make a thorough comparison between the
main approaches and to report on additional results that we have not included
in this paper due to space limitations, such as the comparison between the OA
in terms of the preservation of the preferences encompassed by the initial model,
and the analysis of other particular cases of imprecise probability models, such
as probability boxes.
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Abstract. Binary classification is a well known problem in statistics.
Besides classical methods, several techniques such as the naive credal
classifier (for categorical data) and imprecise logistic regression (for con-
tinuous data) have been proposed to handle sparse data. However, a
convincing approach to the classification problem in high dimensional
problems (i.e., when the number of attributes is larger than the number
of observations) is yet to be explored in the context of imprecise proba-
bility. In this article, we propose a sensitivity analysis based on penalised
logistic regression scheme that works as binary classifier for high dimen-
sional cases. We use an approach based on a set of likelihood functions
(i.e. an imprecise likelihood, if you like), that assigns a set of weights to
the attributes, to ensure a robust selection of the important attributes,
whilst training the model at the same time, all in one fell swoop. We do
a sensitivity analysis on the weights of the penalty term resulting in a set
of sparse constraints which helps to identify imprecision in the dataset.

Keywords: Classification · High dimensional data · Imprecise
probability

1 Introduction

Classification is a method for assigning a new object to a class or a group based on
the observed features or attributes of the object. Classification is used in many
applications such as pattern recognition for hand writing, disease treatment,
facial recognition, chemical analysis, and so on. In general, a classifier can be seen
as a function that maps a set of continuous or discrete variables into a categorical
class variable. Constructing a classifier from random samples is an important
problem in statistical inference. In our work, we will restrict ourselves to the
case where there are only two classes to choose from, i.e. ‘binary classification’.

Let C be a random variable that takes values in {0, 1}. Let a be a p-
dimensional vector that denotes the attributes of an object and let b =
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(b1, b2, . . . , bp)T denote the vector of regression coefficients. In a regression set-
ting, we construct a classifier through a generalised linear model (GLM) as fol-
lows:

E(C | a) = h
(
aT b

)
(1)

where h acts as a ‘link’ function and E stands for expectation. We define

π(a) := E(C | a) = P (C = 1 | a). (2)

Logistic regression is a well-used special case of the GLM, which is suitable
for classification with continuous attributes. Note that, for logistic regression, C
follows a Bernoulli distribution. However, in the high dimensional case i.e. when
the number of attributes is more than the number of observations (p > n),
the performance of logistic regression is often not satisfactory. Apart from over-
fitting, numerical optimisation methods often converge to local solutions because
of multi-collinearity. Several techniques have been proposed to deal with this.
Generally, a penalty term is introduced in the negative log-likelihood, leading to
penalised logistic regression. A lasso-type penalty [16] is very popular because
of its variable selection property [15,21]. However, the lasso-type penalty can be
inconsistent. To tackle this, Zou [22] introduced an adaptive version of the lasso
for penalised logistic regression, which satisfies suitable asymptotic properties
[8] for variable selection, and leads to consistent estimates.

Several works related to classification can be found in the imprecise proba-
bility literature. Zaffalon [19] introduced the idea of the naive credal classifier
related to the imprecise Dirichlet model [18]. Bickis [3] introduced an imprecise
logit-normal model for logistic regression. Corani and de Campos [5] proposed
the tree augmented naive classifier based on imprecise Dirichlet model. Paton
et al. [13,14] used a near vacuous set of priors for multinomial logistic regression.
Coz et al. [7] and Corani and Antonucci [4] investigated rejection based classi-
fiers for attribute selection. However, high dimensional problems with automatic
attribute selection are yet to be tackled in the context of imprecise probability.

In this study, we propose a novel imprecise likelihood based approach for high
dimensional logistic regression problems. We use a set of sparsity constraints
through weights in the penalty term. Working with a set of weights relaxes the
assumption of preassigned weights and also helps to identify the behaviour of
the attributes, whereas sparsity constraints help in variable selection which is
essential for working with high dimensional problems. We use cross-validation
for model validation using different performance measures [6].

The paper is organised as follows. We first discuss some properties of
penalised logistic regression in Sect. 2. We discuss our sensitivity based clas-
sifier in Sect. 3. We discuss the model validation in Sect. 4, and we illustrate our
results using two datasets in Sect. 5. We conclude in Sect. 6.

Throughout the paper, capital letters denote random variables or estimators
that are dependent on any random quantity, and bold letters denote matrices.
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2 Logistic Regressions for Sparse Problems

High dimensional regression is considered as sparse problem because of the small
number of non-zero regression parameters. We often look for regularisation meth-
ods to achieve this sparsity/attribute selection. In this section, we discuss dif-
ferent penalised logistic regression schemes which are useful to attain a sparse
model.

2.1 Penalised Logistic Regression (PLR)

Consider the generalised model in Eq. (1). For logistic regression, we use the
following link function:

h(x) :=
exp(x)

1 + exp(x)
. (3)

We define a vector C := (C1, C2, . . . , Cn)T denoting n observed classes such that,
Ci ∈ {0, 1}. The Ci are thus Bernoulli random variables. Let a := [a1, a2, . . . , an],
with ai ∈ R

p, denote the observed attributes for n objects, so that aT corre-
sponds to the design matrix in the terminology of classical statistical modelling.
It is easy to see that the negative log likelihood of the data is:

− log(L(C,a; b)) =
n∑

i=1

(
− Ci

(
aT

i b
)

+ log
(
1 + exp(aT

i b)
)
)

. (4)

Therefore, the maximum likelihood estimate of the unknown parameter b is:

B̂lr := arg min
b

{− log(L(C,a; b))}. (5)

Here, we denote estimates, such as B̂lr, with capital letters because they are ran-
dom variables (as they depend on C, which is random). The matrix of observed
attributes a is denoted with a lower case letter, as it is customary to consider it
as fixed and thereby non-random.

In high dimensional problems, we often seek for regularisation methods to
avoid overfitting. We use penalised logistic regression (PLR) [15,21] as a regu-
larisation method which is defined by:

B̂plr(λ) := arg min
b

{− log(L(C,a; b)) + λP (b)} , (6)

where P (b) is a penalty function. We get sparse estimate for b when:

P (b) :=
p∑

j=1

|bj |q (7)

with 0 ≤ q ≤ 1. However, for q < 1, the problem is non-convex (see Fig. 1) and
the optimisation is computationally expensive. In contrast, for q = 1, the penalty
is a lasso-type penalty [16], which is convex and easy to solve numerically. The
value of λ is chosen through cross-validation, where λ acts as a tuning parameter.
In Fig. 1, we show contours of different �q penalties for two variables.
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q=2 q=1 q=0.5 q=0.01

Fig. 1. Contour plots of (7) for different �q penalties.

2.2 Adaptive Penalised Logistic Regression (APLR)

The lasso type penalty in PLR can be inconsistent in variable selection and
it is also not asymptotically unbiased. This issue can be resolved by assigning
carefully chosen weights in the penalty term. This approach is known to be
adaptive penalised logistic regression (APLR) [2,22].

Let B̂ := (B̂1, B̂2, · · · , B̂p) be any root-n consistent estimate for our logistic
regression problem. Then, for any fixed γ > 0, the APLR [22] estimates are given
by:

B̂aplr(λ, γ) := arg min
b

⎛

⎝− log(L(C,a; b)) + λ

p∑

j=1

Wj(γ)|bj |
⎞

⎠ (8)

where
Wj(γ) :=

1
|B̂j |γ

. (9)

Note that, for γ = 0, Eq. (8) becomes the regular penalised logistic regression
with lasso penalty. Zou [22] showed that with these weights along with some
mild regularity conditions, APLR follows desirable asymptotic properties for
high dimensional problems [8].

Computation. For γ > 0, the objective function of APLR is given by:

J(b) :=

⎛

⎝
m∑

i=1

[−Ci

(
aT

i b
)

+ log
(
1 + exp(aT

i b)
)]

+ λ

p∑

j=1

Wj(γ)|bj |
⎞

⎠ , (10)

where Wj(γ) is given by Eq. (9). Now, for optimality Eq. (10) must satisfy
Karush-Kuhn-Tucker condition. Therefore, we have,

0 ∈
m∑

i=1

[
−ajiCi + aji

exp(aT
i b)

1 + exp(aT
i b)

]
+ λWj(γ)∂(|bj |), (11)

where, ∂|bj | is defined [12] as

∂(|bj |) = sign(bj), (12)
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with

sign(bj) :=

⎧
⎪⎨

⎪⎩

{−1} if bj < 0
[−1, 1] if bj = 0
{1} if bj > 0,

(13)

for j = 1, 2, · · · , p.
Let S := (S1, S2, · · · , Sp) be subject to the constraint S ∈ sign(B̂aplr). Then,

B̂aplr satisfies the following:

m∑

i=1

⎡

⎣−ajiCi + aji

exp
(
aT

i B̂aplr(λ, γ)
)

1 + exp
(
aT

i B̂aplr(λ, γ)
)

⎤

⎦ = −λWj(γ)Sj (14)

m∑

i=1

aji

⎡

⎣Ci −
exp

(
aT

i B̂aplr(λ, γ)
)

1 + exp
(
aT

i B̂aplr(λ, γ)
)

⎤

⎦ = λWj(γ)Sj . (15)

Now, let h(aT B̂) :=
(
h
(
aT
1 B̂

)
, h
(
aT
2 B̂

)
, · · · , h

(
aT

n B̂
))T

, where h is the link
function defined in Eq. (3). Then, we can write Eq. (15) as,

a
[
C − h

(
aT B̂aplr(λ, γ)

)]
= λW (γ) · S (16)

where ‘·’ denotes component wise multiplication. Note that Eq. (16) is not ana-
lytically solvable for B̂aplr. However, any sub-gradient based numerical optimi-
sation method can be applied to solve it. Once we have the estimate, we can
then define, for any new object with known attributes a∗ ∈ R

p and unknown
class C∗,

Π̂(a∗, λ, γ) := P
(
C∗ = 1 | a∗; B̂aplr(λ, γ)

)
= h

(
aT

∗ B̂aplr(λ, γ)
)

. (17)

We can then for instance classify the object as 0 if Π̂(a∗, λ, γ) < 1/2, as 1 if
Π̂(a∗, λ, γ) > 1/2, and as either if Π̂(a∗, λ, γ) = 1/2. The parameter γ is often
simply fixed (usually taken to be equal to 1), and λ is chosen through cross-
validation, as with PLR.

Properties. For a sequence of n observations, where ai is the attribute vector
for the i-th observation, we now denote:

an := a =
[
a1, · · · , an

]
(18)

in order to make the dependence of this p × n matrix on n explicit. Define
by b∗ := (b∗

1, · · · , b∗
p) the vector of true regression coefficients. Assume the

true model to be sparse, then without loss of generality S := {j : b∗
j �= 0} =

{1, 2, · · · , p0}, where p0 < p. Let φ(x) := log(1 + exp(x)), then for any observa-
tion ai ∈ R

p (1 ≤ i ≤ n), we define the Fisher information matrix by:

I(b) := φ′′(aT
i b)aia

T
i =

[
I11 I12
I21 I22

]
(19)

where, I11 is a p0 × p0 matrix.
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Regularity Conditions: We define the following regularity conditions for asymp-
totic properties of APLR.

C.1 Let λn(γ) be a sequence such that, for γ > 0

lim
n→∞

λn(γ)√
n

= 0 and lim
n→∞ λn(γ) · n(γ−1)/2 = ∞. (20)

For example, the above holds for λn(γ) = n1/2−γ/4.
C.2 The Fisher information matrix is finite and positive definite.
C.3 Let there exist an open set B ⊆ R

p, such that b∗ ∈ B. Then for every b ∈ B
and observation ai ∈ R

p (1 ≤ i ≤ n), there exists a function M so that
∣
∣φ′′′(aT

i b)
∣
∣ ≤ M(ai) < ∞. (21)

Let Sn = {j : B̂aplr, j �= 0}.

Theorem 1. Under C.1–C.3, APLR estimates satisfy the following properties:

P.1 Consistency in variable selection, i.e.

lim
n→∞ P (Sn = S) = 1 (22)

P.2 Asymptotic normality, i.e.

√
n
(
B̂aplr, S − b∗

S
)

d→ N(0, I−1
11 ) (23)

Note, that here B̂aplr, S is dependent on both λn(γ) and γ but we skip writing
it for the sake of notation.

P.1 and P.2 are well known results for high dimensional problems and the
proofs can be found in [22].

3 Imprecise Adaptive Penalised Logistic Regression

The use of data-driven weights in APLR makes APLR consistent in attribute
selection, where the parameter γ is pre-assigned (usually equal to 1) or is esti-
mated through cross-validation. However, high dimensional problems are sparse
in nature, i.e. we have to deal with very limited information and therefore a
single vector of weights is often proved to be sensitive and leads to misclassifica-
tion, especially when the variability of the attributes is negligible with respect to
each other. Sometimes, APLR may also perform poorly during model validation
as, a single value of γ can provide two very different vectors of weights for two
different parts of a single dataset. For instance, fixing γ = 1, essentially gives us
the inverse of the absolute values of our estimates, which are generally sensitive
to the data in sparse regime. So, we propose a sensitivity analysis of APLR over
an interval of γ and obtain a non-determinate classifier. We call this method as
imprecise adaptive penalised logistic regression or simply IAPLR. This allows
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the weights to vary in the order of γ providing us a set of sparse constraints
of the form

∑p
j=1 |bj |/|B̂j |γ . This set of weight vectors allows the model to be

flexible but consistent as we only rely on the data-driven weights.
The sensitivity analysis gives us a set of APLR estimates as a function of

γ. We use this set of APLR estimates to obtain a set of estimated probabilities
which are used for the decision making.

3.1 Decision Rule

Consider the APLR estimates defined by Eq. (8) and Eq. (9). As we described
earlier, we perform a sensitivity analysis on the parameter γ. This gives us a
set of estimated probabilities dependent on γ, such that γ ∈ [γ, γ]. We use the
notion of credal dominance [19] for the decision criteria.

We can then for instance classify a new object with attributes a∗ ∈ R
p as

{0} if Π̂(a∗, λ, γ) < 1/2 for all γ ∈ [γ, γ], as {1} if Π̂(a∗, λ, γ) ≥ 1/2 for all
γ ∈ [γ, γ], and as {0, 1} (i.e. indeterminate) otherwise. Note that our classifier
now returns non-empty subsets of {0, 1} rather than elements of {0, 1}, to allow
indeterminate classifications to be expressed.

3.2 Prediction Consistency

We define the following:
a∗,S := [a∗,j ]j∈S , (24)

i.e., a∗,S is a p0-dimensional vector.

Theorem 2. Let a∗ ∈ R
p such that aT

∗,Sa∗,S > 0. Then for γ > 0 and under
C.1–C.3, we have the following:

√
n
(
Π̂(a∗, λn(γ), γ) − π(a∗)

)
d→ N

(
0, [π(a∗) (1 − π(a∗))]

2
aT

∗,SI−1
11 a∗,S

)
(25)

where, I11 is the leading block matrix of the Fisher information matrix defined
in Eq. (19).

Proof. We know that, under C.1–C.3 APLR estimates satisfies P.1. Therefore,
as n → ∞,

aT
∗ B̂aplr = aT

∗,Sn
B̂aplr, Sn

= aT
∗,SB̂aplr, S . (26)

Then from Eq. (26), we have,

Π̂(a∗, λn(γ), γ) = h
(
aT

∗,SB̂aplr, S
)

. (27)

Now, by P.2, we know that B̂aplr, S is root-n consistent. Therefore,
(
B̂aplr, S − b∗

S
)

= Op(n−1/2). (28)
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Following the approach of [1] for logistic regression problems, we apply Taylor’s
series expansion in Eq. (27) with respect to the true parameter b∗

S . Then we have,

Π̂(a∗, λn(γ), γ) = h
(
aT

∗,Sb∗
S
)

+
(
B̂aplr, S − b∗

S
)T ∂h

(
aT

∗,Sb∗
S
)

∂b∗
S

+ op(n−1/2) (29)

= π(a∗) +
(
B̂aplr, S − b∗

S
)T ∂h

(
aT

∗,Sb∗
S
)

∂b∗
S

+ op(n−1/2). (30)

Here, op(n−1/2) comes from the condition mentioned in Eq. (28). Now, re-
arranging the terms we get,

Π̂(a∗, λn(γ), γ) − π(a∗) =
(
B̂aplr, S − b∗

S
)T ∂h

(
aT

∗,Sb∗
S
)

∂b∗
S

+ op(n−1/2). (31)

Now, from P.2 we have,
√

n
(
B̂aplr, S − b∗

S
)

d→ N
(
0, I−1

11

)
. (32)

Then, applying Eq. (32) in Eq. (30), we get

√
n
(
Π̂(a∗, λn(γ), γ) − π(a∗)

)
d→ N

⎛

⎝0,

[
∂h
(
aT

∗,Sb∗
S
)

∂b∗
S

]T

I−1
11

∂h
(
aT

∗,Sb∗
S
)

∂b∗
S

⎞

⎠ .

(33)
Now,

∂h
(
aT

∗,Sb∗
S
)

∂b∗
S

=

⎡

⎢
⎣

exp
(
aT

∗,Sb∗
S
) (

1 + exp
(
aT

∗,Sb∗
S
))− exp

(
aT

∗,Sb∗
S
)2

(
1 + exp

(
aT

∗,Sb∗
S
))2

⎤

⎥
⎦ a∗,S (34)

=

⎡

⎢
⎣

exp
(
aT

∗,Sb∗
S
)

(
1 + exp

(
aT

∗,Sb∗
S
))2

⎤

⎥
⎦ a∗,S (35)

= h
(
aT

∗,Sb∗
S
)
⎡

⎣1 − exp
(
aT

∗,Sb∗
S
)

1 + exp
(
aT

∗,Sb∗
S
)

⎤

⎦ a∗,S (36)

= h
(
aT

∗,Sb∗
S
) (

1 − h
(
aT

∗,Sb∗
S
))

a∗,S (37)

= h
(
aT

∗ b∗) (1 − h
(
aT

∗ b∗)) a∗,S (38)
= π(a∗) (1 − π(a∗)) a∗,S . (39)

Therefore, using Eq. (39) in Eq. (33), we have
√

n
(
Π̂(a∗, λn(γ), γ) − π(a∗)

)
d→ N

(
0, [π(a∗) (1 − π(a∗))]

2
aT

∗,SI−1
11 a∗,S

)
(40)

The result shows that for infinite data stream, the estimated probabilities
will be equal to the true probability π(a∗).
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4 Model Validation

In our method, we perform a sensitivity analysis over γ. This gives us a set of
estimated probabilities for each fixed value of λ. Depending on these values in
this set, the predicted class will be either unique or both ‘0’ and ‘1’. Therefore,
the classical measures of accuracy will not be applicable in this context. So we
use the following performance measures, proposed by Corani and Zaffalon [6] for
Naive Credal Classifier (NCC).

4.1 Measures of Accuracy

We use cross-validation for model validation where λ is used as a tuning param-
eter. We consider the following performance measures [6,14] for credal classifi-
cation.

Definition 1 (Determinacy). Determincay is the performance measure that
counts the percentage of classifications with unique output.

Definition 2 (Single accuracy). Single accuracy is accuracy of the classifi-
cations when the output is determinate.

There are two other performance measures called indeterminate output size
and set accuracy. However, in the context of binary credal classification, inde-
terminate output size is always equal to 2 and set accuracy is always equal to
1.

The above mentioned performance measures will be used for model validation
but for the model selection, we first need to choose an optimal λ, i.e. a value of
λ that maximises the performance of our model. For this purpose, we need to
use a trade-off between determinacy and single accuracy. We use u65 utility on
the discounted accuracy, as proposed by Zaffalon et al. [20]. We display u65 on
the discounted accuracy measure in Table 1, where each row stands for predicted
class and each column stands for the actual class.

Table 1. Discounted utility (u65) table for binary credal classification

{0} {1}
{0} 1 0

{1} 0 1

{0, 1} 0.65 0.65

Note that, for binary credal classification, we can formulate this unified u65

accuracy measure in the following way:

Accuracy = Determinacy × Single accuracy + 0.65 × (1 − Determinacy) (41)
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4.2 Model Selection and Validation

We use nested loop cross-validation for model selection and validation. We first
split the dataset D in 2 equal parts D1 and D2. We take D1 and split it in 5
equal parts. We use 4 of them to train our IAPLR model and use the remaining
part for the selection of λ. We do this for each of the 5 parts to get an optimal
λ based on the averaged performance measure. After obtaining the optimal λ
though cross-validation, we validate our model with D2 for model validation.

We repeat the same for D2, we use D2 to obtain an optimal λ for model
selection and then validate it using D1. By this way, we use each observation
exactly once for testing. This also gives a comparison between these two models
and gives us an idea of interactions between the observations.

5 Illustration

We use two different datasets for illustration. The Sonar dataset is a regular
logistic regressional data while the LSVT dataset is high dimensional. In both
cases, we normalise the attributes to avoid scaling issues and split the datasets
in two equal parts DS,1, DS,2 (Sonar) and DL,1,DL,2 (LSVT). We first select our
model using DS,1 (DL,1). We vary our set of weights through 20 different γ’s
ranging from 0.01 to 1. We take a grid of 50 λ values. We find optimal λ by
5-fold cross validation. We use this optimal λ for model selection.

We compare our results with the naive credal classifier (NCC) [19]. For this,
we first categorise the attributes in 5 factors. We train our model in a grid of
the concentration parameter s with 50 entries ranging from 0.04 to 2. We run
a 5-fold cross-validation the choice of optimal s and this value of s for model
selection. We also compare our result with naive Bayes classifier (NBC) [11] and
APLR [2,22]. For APLR select the value of optimal λ through a 5-fold cross-
validation. We use glmnet [9] for training APLR and IAPLR model. We validate
our model using DS,2 (DL,2). We then select our model using DS,2 (DL,2) and
validate using DS,1 (DL,1) to capture interaction between the observations.

We show a summary of our results in Table 2. The left most column denotes
the training set. We show determinacy in the second column. In third and fourth
column, we display the single accuracy and utility based (u65) accuracy, respec-
tively and in the right most column we display range of active attributes.

5.1 Sonar Dataset

We use the Sonar dataset [10] for the illustration of our method. The dataset
consists of 208 observations on 60 attributes in the range of 0 to 1. Sonar signals
are reflected by either a metallic cylinder or a roughly cylindrical rock, and
the attributes represent the energy of the reflected signal within a particular
frequency band integrated over time. We use these attributes to classify the
types of the reflectors.

In the top row of Fig. 2, we show the cross validation plots with respect to
λ. For DS,1, the optimal λ is found to be 0.039 and for DS,2 the value is equal
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to 0.087. We observe from Table 2, that IAPLR outperforms the rests in terms
of derermincay and u65 utility measure. It also has a good agreement in model
validation with respect to the datasets unlike NCC or NBC which are sensitive
with respect to the training dataset. It performs an automatic variable selection
like APLR. We show the selected variables in the left most column. For IAPLR,
we have a range of active attributes unlike APLR, which is computed using
γ = 1. We observe that for DS,1, the sparsity of the model is more sensitive
than the sparsity of the model trained by DS,2. In the top row of Fig. 3, show
the sensitivity of sparsity with respect to γ for the optimal value of λ obtained
through cross-validation. We observe that for both partitions the method selects
more attributes as the value of γ increases.

5.2 LSVT Dataset

We use the LSVT dataset [17] for the illustration with high dimensional data.
The dataset consists of 126 observations on 310 attributes. The attributes are 310
different biomedical signal processing algorithms which are obtained through 126
voice recording signals of 14 different persons diagnosed with Parkinson’s disease.
The responses denote acceptable (1) vs unacceptable (2) phonation during LSVT
rehabilitation.

In the bottom row of Fig. 2, we show the cross validation plots with respect
to λ. For DL,1, the optimal λ is found to be 0.018 and for DL,2 the value is equal
to 0.014. We observe from Table 2, that IAPLR outperforms the rests. It also has
a good agreement in model validation with respect to the datasets unlike NCC,
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Fig. 2. Cross-validation curve with respect to the tuning parameter λ. The top row rep-
resents the results obtained for DS,1 (left), DS,2 (right) and the bottom row represents
that of DL,1 (left), DL,2 (right).
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Fig. 3. Sensitivity of sparsity with respect to γ. The top row represents the results
obtained for DS,1 (left), DS,2 (right) and the bottom row represents that of DL,1 (left),
DL,2 (right).

Table 2. Summary of model selection and validation

Method Training Deter. Single Acc. u65 Active

IAPLR (λ = 0.039) DS,1 0.87 0.73 0.72 28–43

IAPLR (λ = 0.087) DS,2 0.87 0.77 0.75 17–25

NCC (s = 0.02) DS,1 0.77 0.68 0.67 –

NCC (s = 0.56) DS,2 0.49 0.78 0.72 –

NBC DS,1 – – 0.59 –

NBC DS,2 – – 0.74 –

APLR (λ = 0.104) DS,1 – – 0.71 12

APLR (λ = 0.189) DS,2 – – 0.72 9

IAPLR (λ = 0.018) DL,1 0.98 0.82 0.82 17–24

IAPLR (λ = 0.014) DL,2 0.83 0.85 0.81 40–51

NCC (s = 0.08) DL,1 0.14 0.78 0.67 –

NCC (s = 0.04) DL,2 0.25 0.88 0.71 –

NBC DL,1 – – 0.51 –

NBC DL,2 – – 0.40 –

APLR (λ = 0.052) DL,1 – – 0.81 11

APLR (λ = 0.285) DL,2 – – 0.76 11

NBC and APLR. We notice that the sparsity levels are significantly different for
different partitions of the dataset. We show the sparsity level in the bottom row
of Fig. 3. We observe that for both partitions the method rejects more attributes
as the value of γ increases.
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6 Conclusion

In this article, we introduce a novel binary credal classifier for high dimensional
problems. We exploit the notion of adaptive penalised logistic regression and
use an imprecise likelihood based approach for the classifier. We illustrate our
result using two different datasets One involving sonar signals bounced from two
hard objects and the other involving LSVT rehabilitation of patients diagnosed
with Parkinson’s disease. We compare our result with naive credal classifier,
naive Bayes classifier and adaptive penalised logistic regression. We observe that
our method is in good agreement with NCC in terms of single accuracy but
outperforms NCC in terms of the determinacy and u65 utility measure. We
notice that for both Sonar and LSVT dataset, NCC performs better than any
other method for the second partition of the datasets. We observe that, IAPLR
or APLR performs relatively better than the other methods as it does not rely
on the factorisation. Our method also does an automatic attribute selection. We
notice that the sensitivity of the attribute selection is almost monotone with
respect to the parameter γ.
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Abstract. Ranking problems are difficult to solve due to their combi-
natorial nature. One way to solve this issue is to adopt a decomposi-
tion scheme, splitting the initial difficult problem in many simpler prob-
lems. The predictions obtained from these simplified settings must then
be combined into one single output, possibly resolving inconsistencies
between the outputs. In this paper, we consider such an approach for
the label ranking problem, where in addition we allow the predictive
model to produce cautious inferences in the form of sets of rankings
when it lacks information to produce reliable, precise predictions. More
specifically, we propose to combine a rank-wise decomposition, in which
every sub-problem becomes an ordinal classification one, with a con-
straint satisfaction problem (CSP) approach to verify the consistency of
the predictions. Our experimental results indicate that our approach pro-
duces predictions with appropriately balanced reliability and precision,
while remaining competitive with classical, precise approaches.

Keywords: Label ranking problem · Constraint satisfaction ·
Imprecise probabilities

1 Introduction

In recent years, machine learning problems with structured outputs received
an increasing interest. These problems appear in a variety of fields, including
biology [33], image analysis [23], natural language treatment [5], and so on.

In this paper, we look at label ranking (LR), where one has to learn a map-
ping from instances to rankings (strict total order) defined over a finite, usually
limited number of labels. Most solutions to this problem reduce its initial com-
plexity, either by fitting a probabilistic model (Mallows, Plackett-Luce [7]) with
few parameters, or through a decomposition scheme. For example, ranking by
pairwise comparison (RPC) [24] transforms the initial problem into binary prob-
lems. Constraint classification and log-linear models [13], as well as SVM-based
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methods [30] learn, for each label, a (linear) utility function from which the rank-
ing is deduced. Those latter approaches are close to other proposals [18] that
perform a label-wise decomposition.

In ranking problems, it may also be interesting [9,18] to predict partial rather
than complete rankings, abstaining to make a precise prediction in presence of
too little information. Such predictions can be seen as extensions of the reject
option [4] or of partial predictions [11]. They can prevent harmful decisions
based on incorrect predictions, and have been applied for different decomposi-
tion schemes, be it pairwise [10] or label-wise [18], always producing cautious
predictions in the form of partial order relations.

In this paper, we propose a new label ranking method, called LR-CSP, based
on a label-wise decomposition where each sub-problem intends to predict a set
of ranks. More precisely, we propose to learn for each label an imprecise ordinal
regression model of its rank [19], and use these models to infer a set of possible
ranks. To do this, we use imprecise probabilistic (IP) approaches are well tai-
lored to make partial predictions [11] and represent potential lack of knowledge,
by describing our uncertainty by means of a convex set of probability distribu-
tions P [31] rather than by a classical single precise probability distribution P.
An interesting point of our method, whose principle can be used with any set
of probabilities, is that it does not require any modification of the underlying
learning imprecise classifier, as long as the classifier can produce lower and upper
bounds [P , P ] over binary classification problems.

We then use CSP techniques on the set of resulting predictions to check
whether the prediction outputs are consistent with a global ranking (i.e. that
each label can be assigned a different rank).

Section 2 introduces the problem and our notations. Section 3 shows how
ranks can be predicted from imprecise probabilistic models and presents the
proposed inference method based on robust optimization techniques. Section 4
discusses related work. Finally, Sect. 5 is devoted to experimental evaluation
showing that our approach does reach a higher accuracy by allowing for partial
outputs, and remains quite competitive with alternative approaches to the same
learning problem.

2 Problem Setting

Multi-class problems consist in associating an instance x coming from an input
space X to a single label of the output space Λ = {λ1, . . . , λk} representing
the possible classes. In label ranking, an instance x is no longer associated to a
unique label of Λ but to an order relation1 �x over Λ × Λ, or equivalently to a
complete ranking over the labels in Λ. Hence, the output space is the set L(Λ)
of complete rankings of Λ that contains |L(Λ)| = k! elements (i.e., the set of all
permutations). Table 1 illustrates a label ranking data set example with k = 3.

1 A complete, transitive, and asymmetric relation.



98 Y.-C. Carranza-Alarcon et al.

Table 1. An example of label ranking data set D

X1 X2 X3 X4 Y

107.1 25 Blue 60 λ1 � λ3 � λ2

−50 10 Red 40 λ2 � λ3 � λ1

200.6 30 Blue 58 λ2 � λ1 � λ3

107.1 5 Green 33 λ1 � λ2 � λ3

. . . . . . . . . . . . . . .

We can identify a ranking �x with a permutation σx on {1, . . . , k} such that
σx(i) < σx(j) iff λi �x λj , as they are in one-to-one correspondence. σx(i) is the
rank of label i in the order relation �x. As there is a one-to-one correspondence
between permutations and complete rankings, we use the terms interchangeably.

Example 1. Consider the set Λ = {λ1, λ2, λ3} and the observation λ3 � λ1 � λ2,
then we have σx(1) = 2, σx(2) = 3, σx(3) = 1.

The usual objective in label ranking is to use the training instances D =
{(xi, yi) | i = 1, . . . , n} with xi ∈ X , yi ∈ L(Λ) to learn a predictor, or a ranker
h : X → L(Λ). While in theory this problem can be transformed into a multi-
class problem where each ranking is a separate class, this is in practice undoable,
as the number of classes would increase factorially with k. The most usual means
to solve this issue is either to decompose the problem into many simpler ones,
or to fit a parametric probability distribution over the ranks [7]. In this paper,
we shall focus on a label-wise decomposition of the problem.

This rapid increase of |L(Λ)| also means that getting reliable, precise predic-
tions of ranks is in practice very difficult as k increases. Hence it may be useful
to allow the ranker to return partial but reliable predictions.

3 Label-Wise Decomposition: Learning and Predicting

This section details how we propose to reduce the initial ranking problem in
a set of k label-wise problems, that we can then solve separately. The idea
is the following: since a complete observation corresponds to each label being
associated to a unique rank, we can learn a probabilistic model pi : K → [0, 1]
with K = {1, 2, . . . , k} and where pij := pi(j) is interpreted as the probability
P (σ(i) = j) that label λi has rank j. Note that

∑
j pij = 1.

A first step is to decompose the original data set D into k data sets Dj =
{(xi, σxi

(j)) | i = 1, . . . , n}, j = 1, . . . , k. The decomposition is illustrated by
Fig. 1. Estimating the probabilities pij for a label λi then comes down to solve
an ordinal regression problem [27]. In such problems, the rank associated to a
label is the one minimizing the expected cost Eij of assigning label λi to rank j,
that depends on pij and a distance D : K × K → R between ranks as follows:

Eij =
∑k

�=1
D(j, k)pik. (1)
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Common choices for the distances are the L1 and L2 norms, corresponding to

D1(j, k) = |j − k| and D2(j, k) = (j − k)2. (2)

Other choices include for instance the pinball loss [29], that penalizes asym-
metrically giving a higher or a lower rank than the actual one. An interest of
those in the imprecise setting we will adopt next is that it produces predictions
in the form of intervals, i.e., in the sense that {1, 3} cannot be a prediction
but {1, 2, 3} can. In this paper, we will focus on the L1 loss, as it is the most
commonly considered in ordinal classification problems2.

D

X1 X2 X3 X4 Y
107.1 25 Blue 60 λ1 � λ3 � λ2
−50 10 Red 40 λ2 � λ3 � λ1
200.6 30 Blue 58 λ2 � λ1 � λ3
107.1 5 Green 33 λ1 � λ2 � λ3
. . . . . . . . . . . . . . .

D1

X1 X2 X3 X4 Y
107.1 25 Blue 60 1
−50 10 Red 40 3
200.6 30 Blue 58 2
107.1 5 Green 33 1
. . . . . . . . . . . . . . .

D2

X1 X2 X3 X4 Y
107.1 25 Blue 60 3
−50 10 Red 40 1
200.6 30 Blue 58 1
107.1 5 Green 33 2
. . . . . . . . . . . . . . .

D3

X1 X2 X3 X4 Y
107.1 25 Blue 60 2
−50 10 Red 40 2
200.6 30 Blue 58 3
107.1 5 Green 33 3
. . . . . . . . . . . .

Fig. 1. Label-wise decomposition of rankings

3.1 Probability Set Model

Precise estimates for pi issued from the finite data set Dk may be unreliable,
especially if these estimates rely on little, noisy or incomplete data. Rather than
relying on precise estimates in all cases, we propose to consider an imprecise
probabilistic model, that is, to consider for each label λi a polytope (a convex
set) Pi of possible probabilities. In our setting, a particularly interesting model
are imprecise cumulative distributions [15], as they naturally encode the ordinal
nature of rankings, and are a common choice in the precise setting [22]. They
consist in providing bounds

[
P (A�), P (A�)

]
on events A� = {1, . . . , �} and to

consider the resulting set

Pi =
{

pi : P i(A�) ≤
∑�

j=1
pij ≤ P i(A�),

∑

j∈K
pij = 1

}

. (3)

We will denote by F ij = P i(Aj) and F ij = P i(Aj) the given bounds. Table 2
provides an example of a cumulative distribution that could be obtained in a
ranking problem where k = 5 and for a label λi. For other kinds of sets Pi we
could consider, see [17].
2 The approach easily adapts to the other losses.
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Table 2. Imprecise cumulative distribution for λi

Rank j 1 2 3 4 5

F ij 0.15 0.55 0.70 0.95 1

F ij 0.10 0.30 0.45 0.80 1

This approach requires to learn k different models, one for each label. This is
to be compared with the RPC [24] approach, in which k(k−1)/2 models (one for
each pair of labels) have to be learned. There is therefore a clear computational
advantage for the current approach when k increases. It should also be noted
that the two approaches rely on different models: while the label-wise decompo-
sition uses learning methods issued from ordinal regression problems, the RPC
approach usually uses learning methods issued from binary classification.

3.2 Rank-Wise Inferences

The classical means to compare two ranks as possible predictions, given the
probability pi, is to say that rank � is preferable to rank m (denoted � � m) iff

∑k

j=1
D1(j,m)pij ≥

∑k

j=1
D1(j, �)pij (4)

That is if the expected cost (loss) of predicting m is higher than the expected
cost of predicting �. The final prediction is then the rank that is not dominated
or preferred to any other (with typically a random choice when there is some
indifference between the top ranks).

When precise probabilities pi are replaced by probability sets Pi, a classical
extension3 of this rule is to consider that rank � is preferable to rank m iff it is
so for every probability in Pi, that is if

infpi∈P i

∑k

j=1
(D1(j,m) − D1(j, �))pij (5)

is positive. Note that under this definition we may have simultaneously m �� �
and � �� m, therefore there may be multiple undominated, incomparable ranks,
in which case the final prediction is a set-valued one.

In general, obtaining the set of predicted values requires to solve Eq. (5)
at most a quadratic number of times (corresponding to each pairwise compar-
ison). However, it has been shown [16, Prop. 1] that when considering D1 as
a cost function, the set of predicted values corresponds to the set of possible
medians within Pi, which is straightforward to compute if one uses the gener-
alized p-box [15] as an uncertainty model. Namely, if F i, F i are the cumulative
distributions for label λi, then the predicted ranks under D1 cost are

R̂i =
{

j ∈ K : F i(j−1) ≤ 0.5 ≤ F ij , F i(0) = 0
}

, (6)

3 Also, known as maximality criterion [31].
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a set that is always non-empty and straightforward to obtain. Looking back at
Table 2, our prediction would have been R̂ = {2, 3, 4}, as these are the three
possible median values.

As for the RPC approach (and its cautious versions [9]), the label-wise decom-
position requires to aggregate all decomposed models into a single (partial) pre-
diction. Indeed, focusing only on decomposed models Pi, nothing forbids to pre-
dict the same rank for multiple labels. In the next section, we discuss cautious
predictions in the form of sets of ranks, as well as how to resolve inconsistencies.

3.3 Global Inferences

Once we have retrieved the different set-valued predictions of ranks for each
label, two important questions remain:

1. Are those predictions consistent with the constraint that each label should
receive a distinct rank?

2. If so, can we reduce the obtained predictions by integrating the aforemen-
tioned constraint?

Example 2. To illustrate the issue, let us consider the case where we have four
labels λ1, λ2, λ3, λ4. Then the following predictions

R̂1 = {1, 2}, R̂2 = {1, 2}, R̂3 = {1, 2}, R̂4 = {3, 4}
are inconsistent, simply because labels λ1, λ2, λ3 cannot be given simultaneously
a different rank (note that pair-wisely, they are not conflicting). On the contrary,
the following predictions

R̂1 = {1, 2}, R̂2 = {1, 2, 3}, R̂3 = {2}, R̂4 = {1, 2, 3, 4}
are consistent, and could also be reduced to the unique ranking

R̂′
1 = {1}, R̂′

2 = {3}, R̂′
3 = {2}, R̂′

4 = {4},

as the strong constraint R̂3 = {2} propagates to all other predictions by removing
λ2 from them, which results in a new strong constraint R̂∗

1 = {1} that also
propagates to all other predictions. This redundancy elimination is repeated as
new strong constraints emerge until we get the unique ranking above.

Such a problem is well known in Constraint Programming [12], where it
corresponds to the alldifferent constraint. In the case where all rank predictions
are intervals, that is a prediction R̂i contains all values between min R̂i and
max R̂i, efficient algorithms using the fact that one can concentrate on bounds
alone exist, that we can use to speed up computations [28].

4 Discussion of Related Approaches

As said in the introduction, one of our main goals in this paper is to introduce
a label ranking method that allows the ranker to partially abstain when it has
insufficient information, therefore producing a corresponding set of possible rank-
ings. We discuss here the usefulness of such rank-wise partial prediction (mainly
w.r.t. approaches producing partial orders), as well as some related works.
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4.1 Partial Orders vs Imprecise Ranks

Most existing methods [9,10] that propose to make set-valued or cautious pre-
dictions in ranking problems consider partial orders as their final predictions,
that is pairwise relations �x that are transitive and asymmetric, but no longer
necessarily complete. To do so, they often rely on decomposition approaches
estimating preferences between each pairs of labels [24].

However, while a complete order can be equivalently described by the relation
�x or by the rank associated to each label, this is no longer true when one
considers partial predictions. Indeed, consider for instance the case where the
set of rankings over three labels {λ1, λ2, λ3} we would like to predict is S =
{λ1 � λ2 � λ3, λ1 ≺ λ2 ≺ λ3}, which could correspond to an instance where λ2

is a good compromise, and where the population is quite divided about λ1 and
λ3 that represent more extreme options.

While the set S can be efficiently and exactly represented by providing sets
of ranks for each item, none of the information it contains can be retained in a
partial order. Indeed, the prediction R̂1 = {1, 3}, R̂2 = {2}, R̂3 = {1, 3} perfectly
represents S, while representing it by a partial order would result in the empty
relation (since for all pairs i, j, we have λi � λj and λj � λi in the set S).

We could find an example that would disadvantage a rank-wise cautious
prediction over one using partial orders, as one representation is not more general
than the other4. Yet, our small example shows that considering both approaches
makes sense, as one cannot encapsulate the other, and vice-versa.

4.2 Score-Based Approaches

In a recent literature survey [30], we can see that there are many score-based
approaches, already been studied and compared in [24], such as constraint classi-
fication, log-linear models, etc. Such approaches learn, from the samples, a func-
tion hj for each label λj that will predict a strength hj(x∗) for a new instance.
Labels are then ranked accordingly to their predicted strengths.

We will consider a typical example of such approaches, based on SVM, that
we will call SVM label ranking (SVM-LR). Vembu and Gärtner [30] show that
the SVM method [20] solving multi-label problems can be straightforwardly
generalized to a label ranking problem. In contrast to our approach where each
model is learned separately, SVM-LR fits all the functions at once, even if at
prediction time they are evaluated independently. While this may account for
label dependencies, this comes at a computational cost since we have to solve a
quadratic optimization problem (i.e. the dual problem introduced in [20]) whose
scale increases rapidly as the number of training samples and labels grows.

More precisely, the score functions hj(x∗) = 〈wj | x∗〉 are scalar products
between a weight vector wj and x∗. If αijq are coefficients that represent the

4 In the sense that the family of subsets of ranking representable by one is not included
in the other.
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existence of either the preference λq �xi λj or λj �xi λq of the instance xi, wj

can be obtained from the dual problem in [20, Sect. 5] as follows:

wj =
1
2

n∑

i=1

⎡

⎣
∑

(j,q)∈Ei

αijq −
∑

(p,j)∈Ei

αipj

⎤

⎦xi (7)

where αipq are the weighted target values to optimize into the dual problem. Ei

contains all preferences, i.e.{(p, q)∈Ei ⇐⇒ λp �λq}, of the training instance xi.
It may seem at first that such approaches, once made imprecise, could be

closer to ours. Indeed, the obtained models hi after training also provide label-
wise information. However, if we were to turn these method imprecise and obtain
imprecise scores [hi, hi], the most natural way to build a partial prediction would
be to consider that λi � λj when hi > hj , that is when the score of λi would
certainly be higher than the one of λj . Such a partial prediction would be an
interval order and would again not encompass the same family of subsets of
rankings, as it would constitute a restricted setting compared to the one allowing
for prediction any partial order.

5 Experiments

This section describes our experiments made to test if our approach is (1) com-
petitive with existing ones and if (2) the partial predictions indeed provide more
reliable inferences by abstaining on badly predicted ranks.

5.1 Data Sets

The data sets used in the experiments come from the UCI machine learning
repository [21] and the Statlog collection [25]. They are synthetic label ranking
data sets built either from classification or regression problems. From each origi-
nal data set, a transformed data set (xi, yi) with complete rankings was obtained
by following the procedure described in [8]. A summary of the data sets used
in the experiments is given in Table 3. We perform 10 × 10-fold cross-validation
procedure on all the data sets (c.f. Table 3).

5.2 Completeness/Correctness Trade-Off

To answer the question whether our method correctly identifies on which label
it is desirable to abstain or to deliver a set of possible rankings, it is necessary to
measure two aspects: how accurate and how precise the predictions are. Indeed,
a good balance should be sought between informativeness and reliability of the
predictions. For this reason, and similarly to what was proposed in the pairwise
setting [9], we use a completeness and a correctness measure to assess the quality
of the predictions. Given the prediction R̂ = {R̂i, i = 1, . . . , k}, we propose as
the completeness (CP) and correctness (CR) measure

CP (R̂) =
k2 − ∑k

i=1 |R̂i|
k2 − k

and CR(R̂) = 1 −
∑k

i=1 minr̂i∈R̂i
|r̂i − ri|

0.5k2
(8)
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Table 3. Experimental data sets

# Data set Type #Inst #Attributes #Labels

a authorship classification 841 70 4

b bodyfat regression 252 7 7

c calhousing regression 20640 4 4

d cpu-small regression 8192 6 5

e fried regression 40768 9 5

f glass classification 214 9 6

g housing regression 506 6 6

h iris classification 150 4 3

i pendigits classification 10992 16 10

j segment classification 2310 18 7

k stock regression 950 5 5

l vehicle classification 846 18 4

m vowel classification 528 10 11

n wine classification 178 13 3

where CP is null if all R̂i contains the k possible ranks and has value one if all R̂i

are reduced to singletons, whilst CR is equivalent to the Spearman Footrule when
having a precise observation. Note that classical evaluation measures [36] used
in an IP setting cannot be straightforwardly applied here, as they only extend
the 0/1 loss and are not consistent with Spearman Footrule, and adapting cost-
sensitive extensions [34] to the ranking setting would require some development.

5.3 Our Approach

As mentioned in Sect. 3, our proposal is to fit an imprecise ordinal regression
model for every label-wise decomposition Di, in which the lower and upper
bounds of the cumulative distribution [F i, F i] must be estimated in order to
predict the set of rankings (Eq. 6) of an unlabeled instance x∗. In that regard,
we propose to use an extension of Frank and Hall [22] method to imprecise
probabilities, already studied in detail in [19].

Frank and Hall’s method takes advantage of k ordered label values by
transforming the original k-label ordinal problem to k − 1 binary classifica-
tion sub-problems. Each estimates of the probability5 Pi(A�) := Fi(�) where
A� = {1, . . . , �} ⊆ K and the mapping Fi : K → [0, 1] can be seen as a discrete
cumulative distribution. We simply propose to make these estimates imprecise
and to use bounds

5 For readability, we here drop the condition of a new instance in all probabilities, i.e.
Pi(A�) := Pi(A�|x∗).
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P i(Aj) := F i(j) and P i(Aj) := F i(j)

which is indeed a generalized p-box model [15], as defined in Eq. (3).
To estimate these bounds, we use the naive credal classifier (NCC)6 [35],

which extends the classical naive Bayes classifier (NBC), as a base classifier.
This classifier imprecision level is controlled through a hyper-parameter s ∈ R.
Indeed, the higher s, the wider the intervals [P i(Aj), P i(Aj)]. For s = 0, we
retrieve the classical NBC with precise predictions, and for s >>> 0, the NCC
model will make vacuous predictions (i.e. all rankings for every label).

However, the imprecision induced by a peculiar value of s differs from a
data set to another (as show the values in Fig. 2), and it is essential to have an
adaptive way to quickly obtain two values:

– the value smin corresponding to the value with an average completeness close
to 1, making the corresponding classifier close to a precise one. This value is
the one we will use to compare our approach to standard, precise ones;

– the value smax corresponding to the value with an average correctness close
to 1, and for which the made predictions are almost always right. The corre-
sponding completeness gives an idea of how much we should abstain to get
strong guarantees on the prediction, hence of how “hard” is a given data set.

To find those values, we proceed with the following idea: we start from an
initial interval of values [s, s], and from target intervals [CP,CP ] and [CR,CR],
typically [0.95, 1] of average completeness and correctness. Note that in case of
inconsistent predictions, R̂i = ∅ and the completeness is higher than 1 (in such
case, we consider CR = 0). For smin, we will typically start from s = 0 (for which
CP > 1) and will consider a value s large enough for which CP < 0.95 (e.g.,
starting from s = 2 as advised in [32] and doubling s iteratively until CP < 0.95,
as when s increases completeness decreases and correctness increases in average).
We then proceed by dichotomy to find a value smin for which average predictions
are within interval [CP,CP ]. We proceed similarly for smax.

With smin and smax found, a last issue to solve is how to get intermediate
values of s ∈ [smin, smax] in order to get an adaptive evolution of complete-
ness/correctness, as in Fig. 2. This is done through a simple procedure: first, we
start by calculating the completeness/correctness for the middle value between
smin and smax, that is for (smin+smax)/2. We then compute the distance between
all the pairs of completeness/correctness values obtained for consecutive s val-
ues, and add a new s point in the middle between the two points with the biggest
Euclidean distance. We repeat the process until we get the number of s values
requested, for which we provide completeness/correctness values.

6 Bearing in mind that they can be replaced by any other imprecise classifiers, see [2,6].
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(a) Glass data set (b) Stock data set (c) Calhousing data set

Fig. 2. Evolution of the hyper-parameter s on glass, stock and calhousing data sets.

The Fig. 2 shows that the boundary values of the hyper-parameter of impre-
cision s actually significantly depend on the data set. Our approach enables us
to find the proper “optimal” value smin for each data set, which can be small
(as in glass where smin = 1) or big (as in calhousing where smin = 160).

Figure 2 is already sufficient to show that our abstention method is working
as expected, as indeed correctness increases quickly when we allow abstention,
that is when completeness decreases. Figure 2(a) shows that for some data sets,
one can have an almost perfect correctness while not being totally vacuous (as
correctness of almost 1 is reached for a completeness slightly below 0.5, for a
value s = 4), while this may not be the case for other more difficult data sets
such as calhousing, for which one has to choose a trade-off between completeness
and correctness to avoid fully vacuous predictions. Yet, for all data sets (only
three being shown for lack of space), we witness a regular increase of correctness.

5.4 Comparison with Other Methods

A remaining question is to know whether our approach is competitive with other
state-of-art approaches. To do this, we compare the results obtained on test data
sets (in a 10 × 10 fold cross validation) between the results we obtain for s = smin

and several methods. Those results are indeed the closest we can get to precise
predictions in our setting. The methods to which we compare ourselves are the
following:

– The ranking by pairwise comparisons (RPC), as implemented in [3];
– The Label ranking tree (LRT [8]), that adopt a local non-decomposed scheme;
– The SVM-LR approach that we already described in Sect. 4.2.

As the NCC deals with discrete attributes, we need to discretize continuous
attributes in z intervals before training7. While z could be optimized, we use in
this paper only two arbitrarily chosen levels of discretization z = 5 and z = 6 (i.e.
LR-CSP-5 and LR-CSP-6 models) to compare our method against the others, for
simplicity and because our goal is only to show competitiveness of our approach.

7 Available in https://github.com/sdestercke/classifip.

https://github.com/sdestercke/classifip
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As mentioned, we consider the comparison by picking the value smin. By
fixing this hyper-parameter regulating the imprecision level of our approach,
we then compare the correctness measure (8) with the Spearman Footrule loss
obtained for RCP and LRT methods, and implemented into existing software [3].
For the SVM-LR, of which we did not find an online implementation, we used
a Python package8, which solves a quadratic problem with known solvers [1] for
little data sets, or a Frank-Wolfe algorithm for bigger data sets. In fact, Frank-
Wolfe’s algorithm almost certainly guarantees the convergence to the global min-
imum for convex surfaces and to a local minimum for non-convex surfaces [26].

A last issue to solve is how to handle inconsistency predictions, ones in which
the alldifferent constraint would not find a precise or partial solution but an
empty one. Here, such predictions are ignored, and our results consider cor-
rectness and Spearman footrule on consistent solutions only, as dealing with
inconsistent predictions will be the object of future works.

5.5 Results

The average performances and their ranks in parentheses obtained in terms of the
correctness (CR) measure are shown in Table 4(a) and 4(b), with discretization
5 and 6 respectively applied to our proposal method LR-CSP.

A Friedman test [14] on the ranks yields p-values of 0.00006176 and 0.0001097
for LR-CSP-5 and LR-CSP-6, respectively, thus strongly suggesting performance
differences between the algorithms. The Nemenyi post-hoc test (see Table 5)
further indicates that LR-CSP-5 (and LR-CSP-6) is significantly better than
SVM-LR. Our approach also remains competitive with LRT and RPC.

Finally, recall that our method is also quite fast to compute, thanks to the
simultaneous use of decomposition (requiring to build k classifiers), and of prob-
ability sets and loss functions offering computational advantages that make the
prediction step very efficient. Also, thanks to the fact that our predictions are
intervals, i.e. sets of ranks without holes in them, we can use very efficient algo-
rithms to treat the alldifferent constraints [28].

Note also that our proposal discretized at z = 6 intervals gets more accurate
predictions (and also indicate a little drop in the p-value of all comparisons
of Table 5) what can suggest us that an optimal value of ẑ may improve the
prediction performance (all that remains, of course, hypothetical).

8 Available in https://pypi.org/project/svm-label-ranking/.

https://pypi.org/project/svm-label-ranking/
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Table 5. Nemenyi post-hoc test: null hypothesis H0 and p-value

# H0 LRT RPC SVM-LR

1 LR-CSP-5 = 0.8161 0.6452 0.000066

2 LR-CSP-6 = 0.6450 0.4600 0.000066

6 Conclusion and Perspectives

In this paper, we have proposed a method to make partial predictions in label
ranking, using a label-wise decomposition as well as a new kind of partial pre-
dictions in terms of possible ranks. The experiments on synthetic data sets show
that our proposed model (LR-CSP) produces reliable and cautious predictions
and performs close to or even outperforms the existing alternative models.

This is quite encouraging, as we left a lot of room for optimization, e.g., in
the base classifiers or in the discretization. However, while our method extends
straightforwardly to partially observed rankings in training data when those are
top-k rankings (considering for instance the rank of all remaining labels as k+1),
it may be trickier to apply it to pairwise rankings, another popular way to get
such data. Some of our future works will focus on that.
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and PreServe projects, funded by the French Government, through the National Agency
for Research (Reference ANR-11-IDEX-0004-02 and ANR-18-CE23-0008).
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28. López-Ortiz, A., Quimper, C.G., Tromp, J., Van Beek, P.: A fast and simple algo-
rithm for bounds consistency of the all different constraint. In: IJCAI, vol. 3, pp.
245–250 (2003)

29. Steinwart, I., Christmann, A., et al.: Estimating conditional quantiles with the
help of the pinball loss. Bernoulli 17(1), 211–225 (2011)

https://doi.org/10.1007/978-3-642-15880-3_20
https://doi.org/10.1007/978-3-642-23166-7_4
https://doi.org/10.1007/s10479-016-2253-x
https://doi.org/10.1007/978-3-662-44848-9_21
https://doi.org/10.1007/978-3-662-44848-9_21
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/3-540-44795-4_13
http://arxiv.org/abs/1607.00345


Cautious Label-Wise Ranking with Constraint Satisfaction 111
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Abstract. Convolution kernels are essential tools in signal processing: they are
used to filter noisy signal, interpolate discrete signals, . . .. However, in a given
application, it is often hard to select an optimal shape of the kernel. This is why,
in practice, it may be useful to possess efficient tools to perform a robustness
analysis, talking the form in our case of an imprecise convolution. When convo-
lution kernels are positive, their formal equivalence with probability distributions
allows one to use imprecise probability theory to achieve such an imprecise con-
volution. However, many kernels can have negative values, in which case the
previous equivalence does not hold anymore. Yet, we show mathematically in
this paper that, while the formal equivalence is lost, the computational tools used
to describe sets of probabilities by intervals on the singletons still retain their key
properties when used to approximate sets of (possibly) non-positive kernels. We
then illustrate their use on a single application that consists of filtering a human
electrocardiogram signal by using a low-pass filter whose order is imprecisely
known. We show, in this experiment, that the proposed approach leads to tighter
bounds than previously proposed approaches.

Keywords: Signal filtering · Probability intervals · Signed fuzzy measures ·
Interval-valued filtering

1 Introduction

Filtering a signal aims at removing some unwanted components or features, i.e. other
signals or measurement noise. It is a common problem in both digital analysis and
signal processing [5]. In this context, kernels are used for impulse response modelling,
interpolation, linear and non-linear transformations, stochastic or band-pass filtering,
etc. However, how to choose a particular kernel and its parameters to filter a given
signal is often a tricky question.
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A way to circumvent this difficulty is to filter the signal with a convex set of kernels,
thus ending up with a set-valued signal, often summarized by lower/upper bounds. The
set of kernels has to be convex due to the fact that, if two kernels are suitable to achieve
the filtering, a combination of those two kernel should be suitable too. A key problem is
then to propose a model to approximate this convex set of kernels in a reasonable way
(i.e., without losing too much information) that will perform the set-valued filtering in
an algorithmic efficient way guaranteeing the provided bounds (in the sense that the
sets of signals obtained by filtering with each kernel of the set is contained within the
bounds).

In the case of positive summative kernels, i.e., positive functions summing up to
one, previous works used the formal equivalence between such kernels and probabil-
ities at their advantage, and have proposed to use well-known probability set models
as approximation tools. For example, maxitive [6] and cloudy [4] kernels respectively
use possibility distributions and generalized p-boxes to model sets of kernels, and have
used the properties of the induced lower measure on events to propose efficient filtering
solutions from a computational standpoint.

However, when the kernel set to approximate contains functions that are not pos-
itive everywhere (but still sum up to one), this formal analogy is lost, and impre-
cise probabilistic tools cannot be used straightforwardly to model the set of kernels.
Yet, recent works [9] have shown that in some cases such imprecise models can be
meaningfully extended to accommodate negative values, while preserving the prop-
erties that makes them interesting for signal filtering (i.e., the guarantees of obtained
bounds and the algorithmic efficiency). More formally, this means that we have to study
the extension of Choquet-integral based digital filtering to the situation where kernels
κ :X → [−A,B] ⊆ R can be any (bounded) function.

In this work, we show that this is also true for another popular model, namely prob-
ability intervals [1], that consists in providing lower/upper bound on singleton prob-
abilities. In particular, while principle applied to sets of additive but possibly negative
measures lead to a model inducing a non-monotone set function, called signed measure,
we show that the Choquet integral of such a measure still leads to interesting bounds
for the filtered signal, in the sense that these bounds are guaranteed and are obtained for
specific additive measure dominated by the signed measure. Let us call this new kind
of interval-valued kernels imprecise kernels.

The paper is structured as follows. Section 2 recalls the setting we consider, as well
as a few preliminaries. We demonstrate in Sect. 3 that probability intervals can be mean-
ingfully extended to accommodate sets of additive but non-positive measures. Section 4
shows how these results can be applied to numerical signal filtering.

2 Preliminaries: Filtering, Signed Kernels and Fuzzy Measures

We assume a finite space X = {x1, . . . ,xn} of n points, that is a subset of an infinite
discrete space Ω that may be a discretization of a continuous space (e.g., the real line),
and an observed signal whose values at these points are f (x1), . . . , f (xn), that can rep-
resent a time- or space-dependent record (EEG signal, sound, etc.). A kernel is here a
bounded discrete function η : Ω → [−A,B], often computed from a continuous kernel
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(corresponding, for example, to assumed filter impulse response). This kernel is such
that ∑x∈Ω η(x) = 1, and for a given kernel we will denote bη and aη the sum of the
positive and negative parts of the kernel, respectively. That is:

bη = ∑
x∈Ω

max(0,η(x)) aη = ∑
x∈Ω

max(0,−η(x))

Filtering the signal f by using the kernel η consists of estimating the filtered signal
f̂ at each point x of X by:

f̂ (x) =
n

∑
i=1

f (xi)η(xi − x) =
n

∑
i=1

f (xi)ηx(xi), (1)

where ∀y ∈ X , ηx(y) = η(y− x).
Since filtering f amounts to compute the value of f̂ at each point of X , let us

simplify the previous formal statements by assuming that, at each point x of X exists
a kernel κ = ηx. Note that the domain of κ can be restricted to X without any loss of
generality. Moreover, bκ = ∑x∈Ω max(0,κ(x)) = bη and aκ = ∑x∈Ω max(0,−κ(x)) =
aη .

From any kernel κ , we can build a set function μκ : 2X → [−aκ ,bκ ] such that
μκ(A) = ∑x∈A κ(x) for any A ⊆ X . It is clear that we have μκ(X ) = 1 and μκ( /0) = 0,
but that we can have μκ(A) > μκ(B) with A ⊂ B (simply consider A = /0 and B = x
where κ(x) < 0). Note also that if A∩B = /0, we keep μκ(A∪B) = μκ(A)+ μκ(B),
hence the additivity of the measure.

Estimating the value of the signal f̂ in a given point x ∈ X requires to compute a
value Cκ that can be written as a weighted sum Cκ( f ) = ∑n

i=1 f (xi)κ(xi). If we order
and rank the values of f such that f (x(1)) ≤ f (x(2)) ≤ . . . ≤ f (x(n)), this weighted sum
can be rewritten

f̂ (x) = Cκ( f ) =
n

∑
i=1

(
f (x(i))− f (x(i−1))

)
μκ(A(i)) (2)

where A(i) = {x(i), . . . ,x(n)}, f (x(0)) = 0 and A(1) = X . One can already notice the
similarity with the usual Choquet integral.

Example 1. Consider a kernel η that is a Hermite polynomial of degree 3, and its sam-
pled version pictured in Fig. 1, with a = −2. From the picture, it is obvious that some
of the values are negative.

η(x) =

⎧
⎪⎨

⎪⎩

(a+2)|x|3 − (a+3)|x|2+1 if |x| ≤ 1

a|x|3 −5a|x|2+8a|x|−4a if 1 ≤ |x| ≤ 2

0 else

In this paper, we consider the case where the ideal η is ill-known, that is we only
know that, for each x ∈ X , η belongs to a convex set N , which entails that κ belongs
to a convex set K . This set N (and K ) can reflect, for example, our uncertainty
about which kernel should be ideally used (they can vary in shape, bandwidth, etc.). In
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Fig. 1. Sampled Hermite polynomial of degree 3

the following section, we propose to approximate this set K of kernels that we deem
suitable to filter f at point x by a measure μ

K
that is close to a fuzzy measure: it

shares with such measures the fact that μ
K
( /0) = 0 and μ

K
(X ) = 1, and will be a

standard fuzzy measure in the case where all κ ∈ K are positive. However, in the case
of negative κ ∈ K , we may have μ

K
(A) < 0 for some A, as well as have for some

couple A ⊂ B non-monotonicity in the form μ
K
(A)> μ

K
(B).

3 Approximating Set of Kernels with Extended Probability
Intervals

We now consider a set K of kernels κ defined on X , that can be discretised versions
of a set of continuous kernels. We make no assumptions about this set, except for the
fact that each kernel κ ∈ K is bounded and such that ∑x∈X κ(x) = 1. If K contains
a large amount of kernels, filtering the signal with each of them and getting the set
answer {Cκ |κ ∈ K } for each possible point of the signal can be untractable. Rather
than doing so, we may search some efficient way to find some lower and upper bounds
of {Cκ |κ ∈ K } that are not too wide.

To achieve such a task, we propose here to use tools inspired by the imprecise
probabilistic literature, namely non-additive set functions and the Choquet integral. To
use such tools, we must first build a set-function approximating the setK . To do so, we
will extend probabilistic intervals [1] that consist in associating lower and upper bounds
[l(x),u(x)] to each atom, given a set of probabilities. In our case, for each elements
x ∈ X , we consider the interval-valued kernel

ρ(x) = [ρ(x),ρ(x)] (3)

such that the bounds are given, for each x ∈ X , as

ρ(x) = inf
κ∈K

κ(x) and ρ(x) = sup
κ∈K

κ(x). (4)

Clearly, both can be negative and are not classical probability intervals. Nevertheless,
we will show that set-functions induced by these bounds enjoy properties similar to
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those of standard probability intervals, and hence can be used to efficiently approximate
{Cκ |κ ∈ K }.

From the imprecise kernel ρ , we propose to build the set function μ :X → R such
that, for A ⊆ X

μ
K
(A) =max{∑

x∈A
ρ(x),1− ∑

x 
∈A
ρ(x)}, (5)

which is formally the same equation as the one used for probability intervals. We still
have that μ( /0) = 0 and μ(X ) = 1 (as ρ(x)≤ κ(x) for any μ ∈K , we necessarily have
∑x∈X ρ(x) ≤ 1). However, we can have μ(A) > μ(B) with A ⊂ B, meaning that μ is

not a classical fuzzy measure, and not a so-called coherent lower probability1. It is also
non-additive, as we have μ(A∪B) 
= μ(A)+μ(B) for A∩B= /0 in general.

Simply replacing μκ by μ
K

in Eq. 2 gives us

CK ( f ) =
n

∑
i=1

(
f (x(i))− f (x(i−1))

)
μ
K
(A(i)) (6)

=
n

∑
i=1

f (x(i))
(

μ(A(i))− μ(A(i+1))
)
, (7)

where A(n+1) = /0 and f (x0) = 0.
In the positive case, CK ( f ) is well-known to outer-approximate {Cκ |κ ∈ K }, as

CK ( f ) = infμκ ≥μ
K

Cκ( f ). In the rest of this section, we show that this is also true
when the setK contains non-positive functions. In particular, we will show:

1. that Eq. (6) still provides a lower bound of infμκ ≥μ
K

Cκ( f ) and,
2. that this lower bound corresponds to an infimum, meaning that it is obtained for a

peculiar additive measure of K .

To show the first point, we will first prove the following proposition concerning μ:

Proposition 1. Given a setK , we have for any A ⊆ X

μ
K
(A) ≤ inf

κ∈K
μκ(A)

Proof. To prove it, consider a given κ ∈ K , we have μκ(A) = ∑x∈A κ(x) = 1 −
∑x 
∈A κ(x) since ∑x∈X κ(x) = 1. Now, from Eq. (5), we have either

– μ
K
(A) = ∑x∈A ρ(x) ≤ ∑x∈A κ(x)

– μ
K
(A) = 1−∑x 
∈A ρ(x) ≤ 1−∑x 
∈A κ(x)

and since this is true for any κ ∈ K , we have the inequality.

Note that μ is a tight measure on singletons, since μ(x) = ρ(x) = infκ∈K κ(x), hence
any set-function higher than μ on singletons would not be a lower envelope ofK . The
fact that CK ( f ) ≤ Cκ( f ) for any κ ∈ K then simply follows from Proposition 1. If
K reduces to a single kernel κ , then we find back the classical filtering result. Note

1 The lower envelope of a set of probability measures.
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that CK ( f ) is equivalent to filter f , that is to compute Cκ , with the specific kernel
κ(x(i)) = μ(A(i))− μ(A(i+1)). To prove that CK is a tight lower bound, it remains to
show that such a kernel is withinK .

To show that the bound obtained by Eq. (6) is actually obtained by an additive mea-
sure dominated by μ

K
, we will first show that it still satisfies a convexity property.

Proposition 2. Given a setK of kernels, the measure μ
K

is 2-monotone and convex,
as for every pair A,B ⊆ X we have

μ
K
(A∪B)+μ

K
(A∩B) ≥ μ

K
(A)+μ

K
(B)

Proof. We will mainly adapt the proof from [1, Proposition 5] to the case of non-
positive kernels and signed measures, as its mechanism still works in this case.

A key element will be to show that for any two subsets C,D with C∩D = /0, there
exists a single additive measure μκ with κ ∈ K such that

μ
K
(C) = μκ(C) and μ

K
(C∪D) = μκ(C∪D), (8)

as if we then takeC= A∩B and D= (A∪B)\ (A∩B) and choose κ so that it coincides
on μ

K
for events C,D, we do have

μ
K
(A∩B)+μ

K
(A∪B) = μκ(A∩B)+μκ(A∪B)

= μκ(A)+μκ(B)
≥ μ

K
(A)+μ

K
(B).

By Eq. (5), we know that

μ
K
(A) =max{∑

x∈A
ρ(x),1− ∑

x 
∈A
ρ(x)}

which means that for any event A, we have two possibilities (the two terms of the max).
This means four possibilities when considering C and C∪D together. Here, we will
only show that Eq. (8) is true for one of those case, as the proofs for the other cases
follow similar reasoning.

So let us consider the case where

μ
K
(C) = ∑

x∈C
ρ(x) ≥ 1− ∑

x 
∈C
ρ(x),

μ
K
(C∪D) = 1− ∑

x 
∈C∪D
ρ(x) ≥ ∑

x∈C∪D
ρ(x).

Let us now consider the κ distribution such that κ(x) = ρ(x) if x ∈ C, κ(x) = ρ(x)
if x ∈ (C∪D)c, that fits the requirements of Eq. (8) and so far satisfy the constraints
on K . To get an additive kernel whose weights sum up to one, we must still assign
λ = 1− ∑x∈C ρ(x)− ∑x∈(C∪D)c ρ(x) mass over the singletons composing D. One can
see that ∑x∈D ρ(x) ≤ λ ≤ ∑x∈D ρ(x): for instance, that ∑x∈D ρ(x) ≤ λ immediately
follows from the fact that in this sub-case 1−∑x 
∈C∪D ρ(x) ≥ ∑x∈C∪D ρ(x). This means
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that one can choose values κ(x) ∈ [ρ(x),ρ(x)] for each x ∈ D such that ∑x∈D κ(x) = λ .
So in this case we can build an additive κ ∈ K with ∑κ(x) = 1.

That a single additive κ ∈ K reaching the bounds μ
K
(C) and μ

K
(C ∪D) can

be built in other sub-cases can be done similarly (we refer to [1, Proposition 5], as the
proofs are analogous).

Hence CK is a signed Choquet integral with respect to the convex capacity μ
K
.

We have μ
K
( /0) = 0, so according to [10, Theorem 3], CK is the minimum of the inte-

grals or expectations taken with respect to the additive measures dominating μ
K
, i.e.,

CK ( f ) = min{Cμ |μ ∈ core(μ
K

}, where the core of a capacity is the set of additive
set function that lie above the capacity everywhere. This allows us to state the following
property.

Proposition 3. C μ
K

( f ) =min{Cμ |μ ∈ core(μ
K
)}.

We have therefore shown that, to approximate the result of filtering with any set of
kernels (bounded and with no gain), it is still possible to use tools issued from imprecise
probabilistic literature. However, it is even clearer in this case that such tools should not
be interpreted straightforwardly as uncertainty models (as set-functions are not mono-
tone, a property satisfied by standard fuzzy measures and coherent lower probabilities),
but as convenient and efficient tools to perform robust filtering.

Remark 1. An upper bound CK ( f ) can be obtained by using the conjugate capacity
μK (A) = 1−μ

K
(Ac) in Eq. (6). As μK is a concave capacity, we also have CK ( f ) =

max{Cμ |μ ∈ anticore(μK )}, where the anticore of a capacity is the set of additive set
function that lie below the capacity everywhere. Note that μ ∈ core(μ

K
) is equivalent

to μ ∈ anticore(μK ).

Table 1. Imprecise kernel example

x1 x2 x3 x4 x5

ρ −0.1 0.3 0.9 0.3 −0.1

ρ −0.2 0.2 0.8 0.2 −0.2

Example 2. Consider the imprecise kernel ρ whose values on X = {x1, . . . ,x5} are
given in Table 1. For such an imprecise kernel, we have for instance μ

K
({x1}) =

max(−0.2,1−(1.4))=−0.2 and μ
K
({x1,x5}) =max(−0.4,1−(1.5))=−0.4, show-

ing that the defined measure is not monotonic with inclusion.

Finally, it should be noted that applying Eq. (6) does not require to evaluate our
lower measure on every possible events, but only in a linear number of them (once
function values have been ordered). Moreover, evaluating the value of this lower mea-
sure on any interval is quite straightforward given Eq. (5). So, even though the measure
is non-additive (and not necessarily monotonic), evaluating the filtered values can be
done quite efficiently.
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4 Illustration of Signed Filtering on a Real Case

We now illustrate the use of our method on a real case scenario involving the filtering
of human electrocardiogram (ECG) signals, using data initially collected to detect heart
conditions under different settings [7]. ECG signals contain many types of noises - e.g.
baseline wander, power-line interference, electromyographic (EMG) noise, electrode
motion artifact noise, etc. Baseline wander is a low-frequency noise of around 0.5 to
0.6Hz that is usually removed during the recording by a high-pass filtering of cut-off
frequency 0.5 to 0.6Hz. EMG noise, which is a high frequency noise of above 100Hz,
may be removed by a digital low-pass filter with an appropriate cut-off frequency. In
[7] they propose to use a cut-off frequency of 45Hz to preprocess the ECG signals. The
noisy ECG signal to be filtered is presented in Fig. 2.
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Fig. 2. The ECG signal to be low-pass filtered.

To prevent phase distortion in the bandpass, a Butterworth kernel should preferably
be chosen. Moreover, since the signal has not to be processed on line, a symmetric
Butterworth filter can be used, that is the combination of a causal and an anti-causal
Butterworth kernel. Using such an even kernel prevents from phase delay.

In this experiment, we suppose that the 45Hz cutoff frequency proposed in [7]
is appropriate while the suitable order of the kernel is imprecisely known. Figure 3
presents the superposition of 13 kernels that are the impulse responses of the 13 sym-
metric lowpass Butterworth kernels of orders 1 to 13. Figure 3.a shows the superim-
posed kernels, that constitute the set N of kernels we have to approximate.

Applying our approximation to N provides the upper (ρ) and lower (ρ) bounds
of the imprecise kernel that are pictured in Fig. 3.c, with the lower in red, the upper
in blue. These bounds are simply obtained by computing ρ = minn=1...13 ηn and ρ =
maxn=1...13 ηn where ηn is the impulse response of the lowpass symmetric Butterworth
kernel of order n with cutoff frequency equal to 45Hz.
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Fig. 3. Original kernel family and corresponding imprecise models. (Color figure online)

To have a comparison point, we will also apply to the same signal the maxitive app-
roach proposed in [9], where a signed kernel is approximated by a couple of extended
possibility distributions (π−,π+). This couple of functions is computed in this way:
π+ = maxn=1...13 π+

n , where π+
n is the most specific maxitive kernel that dominates

η+
n =max(0,ηn) and π− =maxn=1...13 π−

n , where π−
n is the most specific maxitive ker-

nel that dominates η−
n = max(0,−ηn) (see [9] Equation (4)). Figure 3.b plots π+ (in

blue) and −π− (in red). One can readily notice that, if their shape are similar, their
boundary values are quite different (the imprecise maxitive kernel varying between
−0.5 and 1.5, and our imprecise kernel between −0.01 and 0.07).
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In Figs. 5 and 4, we have plotted the ECG signal of Fig. 2 filtered by the 13 kernels
of Fig. 3.a, as well as the imprecise signal obtained by using the most specific signed
maxitive kernel defined by the couple of functions (π−,π+), and the imprecise sig-
nal obtained by using the imprecise kernel plotted in Fig. 3.c, respectively. The upper
bounds of the imprecise filtered signals are plotted in blue while their lower bounds is
plotted in red.
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Fig. 4. The ECG signal being low-pass filtered by the 13 classical symmetric Butterworth (in
cyan) and by the imprecise kernel (in red - lower and blue - upper). (Color figure online)

It seems obvious, by looking at Fig. 4, that the imprecise signal obtained by this new
approach reaches our pursued goal, i.e. the obtained imprecise signal contains all the
signals that would have been obtained by using the conventional approach. Moreover,
the bounds are reasonably tight, which means that the core of the imprecise kernel is
specific enough as an approximation. Indeed, non-parametric imprecise representation
of kernels always leads to include unwanted kernels, and may lead to over-conservative
bounds.

This is even more patent if we compare it to the signal bounds obtained with the
maxitive approach, as this latter one leads to a less specific interval-valued signal. For
instance, the values spanned by the interval-valued signal in our approach span from
−500 to 200, and−800 to 500 for the maxitive approach. Another possible advantage of
our approach is that the Krœnecker impulse is not necessarily included in the described
set of kernels, while it is systematically included in a maxitive kernel, meaning that in
this latter case the interval-valued signal always include the noisy original signal itself.
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Fig. 5. The ECG signal being low-pass filtered by the 13 classical symmetric Butterworth (in
cyan) and by the signed maxitive kernel (in red - lower and blue - upper). (Color figure online)

5 Discussion and Conclusion

In this paper, we have explored to which extent some of the tools usually used to model
and reason with sets of probabilities can still be used when considering sets of additive
measures that can be negative and fail the monotonicity condition. Such a situation
happens, for instance, when filtering a signal.

We have proved that approximating such sets with interval-valued bounds on sin-
gletons by extending probability intervals still provides tools that allow on the one hand
to use efficient algorithms, and on the other hand to get tight bounds (in the sense that
obtained bounds are reached by specific additive measures). We have provided some
preliminary experiments showing how our results could be used in filtering problems.

Future works could include the investigation of other imprecise probabilistic models
that also offer computational advantages in the case of positive measures, such as using
lower and upper bounds over sequences of nested events [3,8]. Complementarily, we
could investigate whether computations with some parametric sets of signed kernels
can be achieved exactly and efficiently without resorting to an approximation, as can be
sometimes done for positive kernels [2].
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Abstract. Many uncertainty measures can be generated by the cor-
responding divergences, like the Kullback-Leibler divergence generates
the Shannon entropy. Divergences can evaluate the information gain
obtained by knowing a posterior probability distribution w.r.t. a prior
one, or the contradiction between them. Divergences can be also viewed
as distances between probability distributions. In this paper, we consider
divergences that satisfy a weak system of axioms. This system of axioms
does not guaranty additivity of divergences and allows us to consider,
for example, the Lα-metric on probability measures as a divergence. We
show what kind of uncertainty measures can be generated by such diver-
gences, and how these uncertainty measures can be extended to credal
sets.

Keywords: Uncertainty measures · Divergences · Credal sets

1 Introduction

In our experience, we deal with various types of uncertainty. Probability the-
ory allows us to describe conflict in information, other uncertainty theories can
generalize it admitting imprecision or non-specificity into models like the the-
ory of imprecise probabilities [1,20] or the theory of belief functions [12,17]. We
also need to merge information from different sources, and during this process,
it is important to analyze how these sources are contradictory or conflicting.
Therefore, we need to measure conflict and non-specificity within each source of
information and to measure contradiction among information sources. In proba-
bility theory, there are many functionals for evaluating conflict called entropies
[9,15,16] and there are many statistical distances called also divergences that can
be used for measuring contradiction between probability models [9,16,18,19].
One can notice the visible interactions between various types of uncertainty like
contradiction, conflict and non-specificity.
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In this paper, we argue that a measure of contradiction (or divergence) is the
basic one, and show how other measures of uncertainty can be expressed through
it. The paper has the following structure. In Sect. 2, we give some notations
and definitions related to probability measures and credal sets. In Sect. 3, we
formulate a system of axioms for conflict measures without the requirement
of their additivity. In Sect. 4, we introduce a system of axioms for divergences
and illustrate them by examples like the Kullback-Leibler divergence, the Rényi
divergence, and the g-divergence introduced in the paper. Section 5 is devoted
to the question: how such uncertainty measures can be extended on credal sets.
The paper finishes with the discussion of obtained results and conclusions.

2 Some Notations and Definitions

Let X be a finite non-empty set and let 2X be the powerset of X. A set func-
tion P : 2X → [0, 1] is called a probability measure on 2X if 1) P (∅) = 0 and
P (X) = 1; 2) P (A ∪ B) = P (A) + P (B) for all disjoint sets A,B ∈ 2X . A func-
tion p(x) = P ({x}), x ∈ X, is called the probability distribution. We see that
P (A) =

∑
x∈A p(x) for every non-empty set A ∈ 2X . We say that probabilities

are uniformly distributed on X if p(x) = 1/ |X|. The probability measure that
corresponds to the uniform probability distribution is denoted by Pu. The set of
all probability measures on 2X is denoted by Mpr(X), and we use the notation
Mpr if if the basic set X can be chosen arbitrary.

We use the following operations on Mpr:

a) P = aP1 + (1 − a)P2 is the convex sum of P1, P2 ∈ Mpr(X) with a ∈ [0, 1] if
P (A) = aP1(A) + (1 − a)P2(A) for all A ∈ 2X ;

b) let X and Y be non-empty finite sets, ϕ : X → Y be a mapping, and P ∈
Mpr(X), then Pϕ ∈ Mpr(Y ) is defined by Pϕ(B) = P (ϕ−1(B)), where B ∈
2Y and ϕ−1(B) = {x ∈ X|ϕ(x) ∈ B}.

We see that Mpr(X) is a convex set and its extreme points are Dirac mea-
sures, such measures are defined by a probability distribution px, x ∈ X, for
which px(y) = 1 if x = y, and px(y) = 0 otherwise. Let Px ∈ Mpr be a Dirac
measure with the probability distribution px, then every P ∈ Mpr(X) with a
probability distribution p is represented as the convex sum of Dirac measures:
P =

∑

x∈X

p(x)Px.

Clearly, we can identify every P ∈ Mpr(X), where X = {x1, ..., xn}, with
the point (p(x1), ..., p(xn)) in R

n. A non-empty subset P ⊆ Mpr(X) is called
a credal set [1] if this subset is closed and convex. Further Cr(X) denotes the
family of all possible credal sets in Mpr(X). We reserve the notation Cr if the
basic set X can be chosen arbitrary. In the theory of imprecise probabilities,
the model uncertainty based on credal sets is the general one. Some credal sets
can be defined by monotone measures. A set function μ : 2X → [0, 1] is called
a monotone measure [21] if 1) μ(∅) = 0 and μ(X) = 1; 2) μ(A) � μ(B) for
every A,B ∈ 2X with A ⊆ B. A monotone measure μ on 2X is called a coherent
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upper probability [1,20] if there is a credal set P ∈ Cr(X) such that μ(A) =
sup{P (A)|P ∈ P} for all A ∈ 2X .

In the next, for the sake of notation simplicity, we will write P (x) instead of
P ({x}) omitting the figure brackets.

3 Axioms for a Conflict Measure on Mpr

In this paper, we will use axioms for a measure of conflict presented in [6]. Let
us observe that in [6] such axioms have been formulated for belief functions and
the authors show what it happens if the additivity axiom is dropped. We will
formulate these axioms for probability measures.

A measure of conflict UC is the functional UC : Mpr → [0,+∞) that satisfies
the following axioms.

Axiom 1. UC(P ) = 0 for P ∈ Mpr(X) iff P = Px for some x ∈ X.

Axiom 2. Let ϕ : X → Y be an injection, then UC(Pϕ) = UC(P ) for every
P ∈ Mpr(X).

Axiom 3. Let ϕ : X → Y be an arbitrary mapping, then UC(Pϕ) � UC(P ) for
every P ∈ Mpr(X).

Axiom 4. Let P1, P2 ∈ Mpr(X) and a ∈ [0, 1], then UC(aP1 + (1 − a)P2) �
aUC(P1) + (1 − a)UC(P2).

Let us discuss the above axioms. Axiom 1 postulates that the conflict is equal
to zero only for the information without uncertainty. Axiom2 accumulates two
known axioms for the Shannon entropy [16]. If ϕ : X → Y is the bijection, then
Axiom 2 says that UC(P ) does not depend on how elements of X are labeled. Let
ϕ : X → Y be an injection such that X ⊆ Y and ϕ(x) = x for all x ∈ X, then Pϕ

has the following probability distribution: Pϕ(x) = P (x) if x ∈ X and Pϕ(x) = 0
otherwise. Thus, in this case Axiom 2 postulates that adding dummy elements
to the set X has no influence on UC values. Axiom 3 says that the conflict is
not increases after a mapping. Notice that such a mapping can produce a loss
of information, when two separate elements can map to the same element in Y .
Axiom 4 shows the behavior of UC after merging sources of information using
the mixture rule of aggregation.

In [6], a reader can find the theorem that fully characterizes a system of
functions that defines UC . In this paper, we only give some examples of UC

discussed in [6].

Example 1. Let f : [0, 1] → [0,+∞) be a concave function with the following
properties:

1) f(0) = f(1) = 0;
2) f(t) is strictly decreasing at t = 1.



Metrical Approach to Measuring Uncertainty 127

Then UC(P ) =
∑

x∈X f(P (x)), where P ∈ Mpr(X), is a measure of conflict
on Mpr.

Some notable examples of this class of conflict measures are the Shannon
entropy, when f(t) = −tlog2t, and the Gini index, when f(t) = t(1 − t).

Example 2. The functional UC , defined by UC(P ) = 1 − max
x∈X

P (x), where P ∈
Mpr(X), is a conflict measure on Mpr.

We will establish later the connections between the conflict measure from
Example 2 and the Rényi entropy of order infinity and other functionals for
measuring conflict within belief functions.

4 Distances and Entropies in Probability Theory

Although, the Shannon entropy and that the Kullback-Leibler divergence (also
called Kullback-Leibler distance or relative entropy) are very popular in proba-
bility theory, one can find many other functionals [15,16,18,19] that can be used
to measure conflict within and between probability distributions. It is impor-
tant to say that distances (or more exactly statistical distances) in probability
theory are not distances as a reader would expect. They do not always obey
the triangular inequality and can be non-symmetric. Such statistical distances
measure the conflict (or contradiction) between a prior probability distribution
of a random variable and its posterior distribution. We will also consider another
possible interpretation of contradiction in Sect. 4. The aim of this section is to
illustrate of how such distances or divergences can generate entropies or conflict
measures on Mpr.

We postulate that a statistical distance or divergence is the functional
D: Mpr × Mpr → [0,+∞] that satisfies the following axioms.

Axiom 5. D(P1, P2) = 0 for P1, P2 ∈ Mpr(X) iff P1 = P2.

Axiom 6. D(P1, P2) ∈ [0,+∞) for P1, P2 ∈ Mpr(X) if P1 is absolutely contin-
uous w.r.t. P2.

Axiom 7. Let ϕ : X → Y be an injection, then D(P1
ϕ, P2

ϕ) = D(P1, P2) for
every P1, P2 ∈ Mpr(X).

Axiom 8. Let Pu define the uniform probability distribution on 2X , then

sup
P∈Mpr(X)

D(P, Pu) = max
x∈X

D(Px, Pu).

Axiom 9. Let ϕn : X → Xn be an injection, in which X = {x1, ..., xm}, Xn =
{x1, ...., xn}, n > m, ϕn(x) = x for all x ∈ X, and let P

(n)
u ∈ Mpr(Xn) define

the uniform probability distribution on Xn. Then the functional

UC(P ) = lim
n→∞

(

sup
P ′∈Mpr(Xn)

D(P ′, P (n)
u ) − D(Pϕn , P (n)

u )

)

, P ∈ Mpr(X),

is the conflict measure on Mpr.
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Let us discuss the introduced axioms. Axiom 5 reflects the behavior of D like
a distance or divergence. Axiom 6 allows us to cover the case of the Shannon
entropy and the mentioned above interpretation of divergence. Axiom7 is the
similar to Axiom 2 for a measure of conflict. Axiom 8 postulates that the greatest
distance between Pu (that symbolizes the highest uncertainty in Mpr(X)) and a
P ∈ Mpr(X) is achieved on Px (the case, when uncertainty is absent). Axiom 9
establishes the main definition of UC through D.

We will show several choices of divergences satisfying Axioms 5–9 described
in the next subsections.

4.1 Kullback-Leibler Divergence

We remind that the Kullback-Leibler divergence (distance) [16,19] is defined for
probability measures P1, P2 ∈ Mpr(X) by

D1(P1, P2) =
∑

x∈X

P1(x)log2 (P1(x)/P2(x)).

Computing UC with D = D1 and |X| = n, we get

sup
P∈Mpr(X)

D1(P, Pu) = log2n,

H1(P ) = lim
n→∞

[

log2n − ∑

x∈X

P1(x)log2 (nP1(x))
]

= − ∑

x∈X

P1(x)log2P1(x).

We see that H1 is the Shannon entropy. We don’t check Axioms 5–9 for D1,
because Axioms 5–7 are well-known properties of the Kullback-Leibler divergence
[16,19], Axiom 8 follows from the fact that D(P, Pu) is a convex function of P .

4.2 Rényi Divergence

The Rényi divergence [16,19] is the parametrical generalization of the Kullback-
Leibler divergence with the parameter α ∈ [0,+∞] defined as

Dα(P1, P2) =
1

α − 1
log2

(
∑

x∈X

Pα
1 (x)

Pα−1
2 (x)

)

for α �= 0, 1,+∞.

For special cases, when α = 0, 1,+∞, Dα is defined by taking the limit on α. If
α → 1, then we get the Kullback-Leibler divergence. Analogously,

D0(P1, P2) = −log2P2(A), where A = {x ∈ X|P1(x) > 0} ,

D∞(P1, P2) = max
x∈X

log2
P1(x)
P2(x)

.

The computation of UC for D = Dα with α �= 0, 1,+∞ gives us the result

Hα(P ) = − 1
α − 1

log2

(
∑

x∈X

Pα(x)

)

.
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Hα is called the Rényi entropy of order α. Let us consider also the special cases
α = 0 and α = ∞. Substituting D by D0 in the expression of UC , we get the
result

H0(P ) = log2 |A| , where A = {x ∈ X|P (x) > 0} .

In this case, H0 is called the Hartley entropy. Computing UC with D = D∞, we
get result

H∞(P ) = −log2

(

max
x∈X

P (x)
)

,

and H∞ is called the min-entropy. Again, we do not check axioms, because they
follow from the known properties of the Rényi divergence and the Rényi entropy.

4.3 g-divergence

Let g : [0, 1] → [0, 1] be a convex, strictly increasing and continuous function on
[0,1] such that g(0) = 0 and g(1) = 1. Then the g-divergence is the functional

Dg(P1, P2) =
∑

x∈X

g(|P1(x) − P2(x)|),

where P1, P2 ∈ Mpr(X). Let us compute the functional UC generated by Dg.
Assume that Xn = {x1, ..., xn} and P

(n)
u defines the uniform probability dis-

tribution on 2X . Then sup
P ′∈Mpr(Xn)

D(P ′, P (n)
u ) = D(Px, P

(n)
u ) for every x ∈ Xn

and, for our case,

Dg(Px, Pu) = g(1 − 1/n) + (n − 1)g(1/n).

Without decreasing generality, consider P ∈ Mpr(X), where X = {x1, ..., xm},
such that P (xi) > 0, i = 1, ...,m. Let us choose n such that P (xi) > 1/n,
i = 1, ...,m. Then

Dg(Pϕn , P (n)
u ) =

m∑

i=1

g(P (xi)) + (n − m)g(1/n),

and

UC(P ) = lim
n→∞

(

g(1 − 1/n) + (n − 1)g(1/n) −
m∑

i=1

g(P (xi)) − (n − m)g(1/n)
)

= lim
n→∞

(

g(1 − 1/n) + (m − 1)g(1/n) −
m∑

i=1

g(P (xi))
)

= 1 −
m∑

i=1

g(P (xi)).

Let us denote
Hg(P ) = 1 −

∑

x∈X

g(P (x)),

where P ∈ Mpr(X), and call it the g-entropy. Next result directly follows from
Example 1.
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Proposition 1. Hg is a conflict measure on Mpr if the function f(t) = t−g(t),
t ∈ [0, 1], is strictly decreasing at t = 1.

Proof. Obviously, the expression of Hg can be rewritten using the function f
as Hg(P ) =

∑
x∈X f(P (x)). We see that f(0) = 0, f(1) = 1, f is a concave

function on [0, 1], i.e. the all necessary conditions are fulfilled for Hg to be a
conflict measure.

Theorem 1. Dg satisfies Axioms 5–9 on Mpr ×Mpr if the conditions of Propo-
sition 1 are fulfilled.

Proof. Let us check axioms. We see that the truth of Axioms 5–7 follows from
the definition of Dg. Let us check Axiom 8. It is easy to see that Dg(P, Pu) is a
convex function of P , i.e. Dg(aP1+(1−a)P2, Pu) � aDg(P1)+(1−a)Dg(P2, Pu),
for every a ∈ [0, 1], and P1, P2 ∈ Mpr(X). Thus, sup

P∈Mpr(X)

Dg(P, Pu) is achieved

on extreme points of Mpr(X), i.e.

sup
P∈Mpr(X)

Dg(P, Pu) = max
x∈X

Dg(Px, Pu).

Axiom 9 follows from Proposition 1. The theorem is proved.

Let us analyze the range of Dg. We see that Dg(P1, P2), where P1, P2 ∈
Mpr(X), is convex on both arguments P1 and P2, therefore, the maximum is
achieved on extreme points of Mpr(X) and

sup
P1,P2∈Mpr(X)

Dg(P1, P2) = max
x,y∈X

Dg(Px, Py) = 2.

In some cases, it is convenient that Dg should be normalized. Then we use the
normalized Dg defined by

Dg(P1, P2) = 0.5
∑

x∈X

g(|P1(x) − P2(x)|).

The value Dg(P1, P2) = 1 manifests the highest contradiction between P1 and
P2. As a rule, in information theory, entropies are normalized. This means that
H(Pu) = 1 for an entropy H : Mpr → [0,+∞), where Pu defines the uniform
probability distribution on X and |X| = 2. Thus, we can introduce the normal-
ized entropy Hg(P ) as

Hg(P ) =
1 − ∑

x∈X

g(P (x))

1 − 2g(0.5)
.

4.4 Divergence and Entropy Based on Lα -metric

Let us consider the case, when g(x) = xα, where α > 1, then we denote Dg by
DLα

and

DLα
(P1, P2) = 0.5

∑

x∈X

|P1(x) − P2(x)|α, P1, P2 ∈ Mpr(X).
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We use this notation, because dLα
(P1, P2) =

(
2DLα

(P1, P2)
)1/α is the Lα-metric

on Mpr. In this case, the corresponding Hg for g(x) = xα is

HLα
(P ) =

1 − ∑

x∈X

|P (x)|α

1 − 21−α
.

Consider the case α = 1. We see that

DL1
(P1, P2) = 0.5

∑

x∈X

|P1(x) − P2(x)|,

and we can find the expression for HL1
taking the limit for α → 1. Using

l’Hôpital’s rule, we get

HL1
(P ) = lim

α→1

− ∑

x∈X

ln (P (x)) (P (x))α

21−α ln 2
= −

∑

x∈X

P (x)log2P (x).

Thus, HL1
(P ) is the Shannon entropy.

4.5 Concluding Remarks

We see that any g-divergence has the properties that any metric has, and the
entropies generated by DLα

, α � 1, looks identical to the Rényi entropy Hα of
order α:

Hα(P ) = − 1

α − 1
log2

(∑
x∈X

P α(x)

)
, HLα

(P ) =
1

1 − 21−α

(
1 −

∑
x∈X

P α(x)

)
, α > 0;

HL1
(P ) = H1(P ) = −

∑

x∈X

P (x)log2P (x), α = 0.

We see that HL1
= H1 is the Shannon entropy. If we denote t =

∑

x∈X

P 2(x),

then Hα(P ) = − 1
1−α log2t and HLα

(P ) = 1
1−21−α (1 − t). We see that both

functions ϕ1(t) = − 1
1−α log2t and ϕ2(t) = 1

1−21−α (1 − t) are decreasing on [0, 1],
therefore, Hα and HLα

similarly discriminate uncertainty. Formally, we can take
the Lα-metric

dLα
(P1, P2) =

(
∑

x∈X

|P1(x) − P1(x)|α
)1/α

, α � 1,

as a divergence. The divergence dLα
generates the entropy

hLα
(P ) =

1

1 − 2
1−α

α

⎛

⎝1 −
(

∑

x∈X

Pα(x)

)1/α
⎞

⎠ , α > 1,
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that is identical to the Shannon entropy if α → 1. We can also define dLα
(P1, P2)

and hLα
(P ) if α → +∞. Then

dL∞(P1, P2) = max
x∈X

|P1(x) − P2(x)| , hL∞(P ) = 2
(

1 − max
x∈X

P (x)
)

.

5 Uncertainty Measures on Credal Sets

The main idea is to use divergences or distances on probability measures and
express through them other measures of uncertainty. As it was established by
many papers (see [2] and the references there), imprecise probabilities describe
two types of uncertainty: non-specificity and conflict. A pure conflict is described
by the classical probability theory, non-specificity corresponds to the choice of a
probability model among possible ones. It is also important to evaluate the degree
of total uncertainty that aggregates conflict and non-specificity. In previous sec-
tions, we have described the choice of two functionals UC : Mpr → [0,+∞) and
D : Mpr × Mpr → [0,+∞]. The functional UC evaluates the amount conflict if
uncertainty in information described by a probability measure, and D describes
the contradiction between two sources of information in a probabilistic setting.
It is important to distinguish two possible interpretations of divergence. The
first one related to the Rényi and Kullback-Leibler divergences that evaluate
the contradiction between a prior probability distribution and a posterior one.
Thus, in this case D is not symmetrical, D(P1, P2) = +∞ iff P1 is not absolutely
continuous w.r.t. P2. If D is a g-divergence or the Lα-metric, then D can be used
for evaluating difference between probability models, or for finding the degree
of how information obtained from two sources is the same. Thus, values of UC

can be understood differently. In the case of the Rényi and Kullback-Leibler
divergences, the part D(Pϕn , P

(n)
u ) of U

(1)
C (P ) gives us the amount of informa-

tion gain after obtaining Pϕn w.r.t. the most uncertain information described
by P

(n)
u and the part sup

P ′∈Mpr(Xn)

D(P ′, P (n)
u ) gives us the maximal information

gain, therefore, the difference sup
P ′∈Mpr(Xn)

D(P ′, P (n)
u ) − D(Pϕn , P

(n)
u ) evaluates

the deficiency of information in Pϕn . If D is understood as a distance, then
sup

P ′∈Mpr(Xn)

D(P ′, P (n)
u ) is the distance between exact and the most uncertain

information, and D(Pϕn , P
(n)
u ) characterizes how far Pϕn is located from P

(n)
u .

Assume that P ∈ Cr(X) and P ∈ Mpr(X). Let us introduce the following
functionals:

Φ1(P, P ) = inf{D(P ′, P )|P ′ ∈ P}, Φ2(P, P ) = sup{D(P ′, P )|P ′ ∈ P}.

We see that Φ1(P, P ) and Φ2(P, P ) give the smallest and highest information
gains if the posterior probability distribution is described by the credal set P.
According to the Laplace principle the prior information, described by P , has the
highest uncertainty if P = Pu, where Pu is the uniform probability distribution
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on 2X . Thus, Φ1(P, Pu) gives us the amount of information in P. Using the same
logic as before, we define the measure UT of total uncertainty on Cr as

UT (P) = lim
n→∞

(

sup
P ′∈Mpr(Xn)

D(P ′, P (n)
u ) − inf{D(Pϕn , P (n)

u )|P ∈ P}
)

,

where P ∈ Cr(X) and we use notations and definitions from Axiom9. If P =
{P}, then the expression for UT (P) is simplified to

UT (P ) = lim
n→∞

(

sup
P ′∈Mpr(Xn)

D(P ′, P (n)
u ) − D(Pϕn , P (n)

u )

)

,

i.e. UT is the conflict measure UC defined in Axiom 9. We see that UT on Cr
can be seen as an extension of UT on Mpr by the following formula:

UT (P) = sup{UT (P )|P ∈ P}.

Observe that the functional UT is called the upper or maximal entropy [2,14] if
UT is the Shannon entropy on Mpr. Let us analyze the functional

Φ(P) = sup{D(P, Pu)|P ∈ P} − inf{D(P, Pu)|P ∈ P},

where P ∈ Cr(X) and Pu is the uniform probability distribution on 2X . We see
that it characterizes the amount of uncertainty in choosing a true probability
measure in P. Thus, we can choose as a measure of non-specificity the functional

UN (P) = lim
n→∞

(
sup{D(Pϕn , P (n)

u )|P ∈ P} − inf{D(Pϕn , P (n)
u )|P ∈ P}

)
,

where P ∈ Cr(X) and we use notations and definitions from Axiom9. Assume
that the measure of total uncertainty aggregates non-specificity and conflict
additively, i.e. for every P ∈ Cr

UC(P) + UN (P) = UT (P),

where UC is a measure of conflict on Cr. This assumption implies that

UC(P) = lim
n→∞

(

sup
P ′∈Mpr(Xn)

D(P ′, P (n)
u ) − sup{D(Pϕn , P (n)

u )|P ∈ P}
)

,

and we can express UC(P) through its values on Mpr as

UC(P) = inf{UC(P )|P ∈ P}.

Note that UC is called the minimal or lower entropy [2,14] on Cr if UC is the
Shannon entropy on Mpr.
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6 Discussion and Conclusion

Let us notice that the axioms for the Rényi divergence can be found in [16].
Although, in this paper, the author consider these axioms as evident ones, the
interpretation of some of them seems to be problematic, because they are based
on so called generalized probability distributions that are not necessarily nor-
malized. In our approach, divergences and entropies are not necessarily additive,
that allows, for example, to use Lα-metrics as such divergences.

The results of the paper allow us to resolve some problems in the theory of
belief functions. For example, in this theory [17] the conflict between two sources
of information is evaluated using Dempster’s rule of aggregation. If sources of
information are described by probability measures P1, P2 ∈ Mpr(X), then this
evaluation is produced by the formula:

k(P1, P2) = 1 −
∑

x∈X

P1(x)P2(x).

We see that k(P, P ) = 1− ∑

x∈X

P (x)P (x) = HL2(P ) for P ∈ Mpr(X), i.e. k(P, P )

is the Gini index that can be interpreted as entropy or conflict measure. Another
representation

DL2(P1, P2) =
∑

x∈X

(P1(x) − P2(x))2 = −HL2(P1) − HL2(P2) + 2k(P1, P2)

implies that k(P1, P2) = 0.5(HL2(P1) + HL2(P2) + DL2(P1, P2)) consists of two
parts: the part 0.5(HL2(P1) + HL2(P2)) measures conflict within information
sources and the part 0.5DL2(P1, P2) measures conflict (contradiction) between
information sources. Let us notice that this problem of disaggregating of k on
two parts for belief functions is investigated in [11].

We also pay attention on using hL∞ for defining UC on credal sets. In this
case,

UC(P) = inf{hL∞(P )|P ∈ P} = 2
(

1 − max
x∈X

sup{P (x)|P ∈ P}
)

.

If a credal set P is described by a coherent upper probability μ on 2X , then

the expression for UC can be rewritten as UC(μ) = 2
(

1 − max
x∈X

μ(x)
)

. Such a

functional (without the factor 2) is proposed for measuring inner conflict in the
theory of belief functions [10].

Formally, in this paper we propose to analyze uncertainty by choosing a
divergence D, and then to take the compatible with D measures of uncertainty.
Let us discuss our approach in detail if we choose dL1 as divergence. We see
that we can use dL1 with the Shannon entropy. Let us also look at the following
functional:

U ′
C(P ) = min

x∈X
D(Px, P ), where P ∈ Mpr(X).
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We see that U ′
C(P ) evaluates the distance between P and the exact information

without uncertainty, thus, it can be considered as a candidate for the measure
of conflict. If we take D = dL1 , then it is possible to show that

dL1(P1, P2) = 2

(

1 −
∑

x∈X

min {P1(x), P2(x)}
)

.

This implies that

U ′
C(P ) = 2 min

x∈X
(1 − P (x)) = 2

(

1 − max
x∈X

P (x)
)

= hL∞(P ).

Doing in the same way for D = Dα, we get that U ′
C coincides in this case with

the min-entropy.
Let us consider the functional

Con(P1,P2) = inf {D(P1, P2)|P1 ∈ P1, P2 ∈ P2} ,P1,P2 ∈ Cr(X).

We see that Con(P1,P2) = 0 iff P1 ∩ P2 = ∅, and Con can be used for mea-
suring contradiction between information sources described by credal sets. This
measure of contradiction for D = dL1 is well-known in the theory of belief func-
tions [3,8,13], its axiomatic can be found in [4,7] and its extension to imprecise
probabilities based on generalized credal sets is given in [5,7].

Finalizing our paper, we can conclude that there is the variety of divergences
and the corresponding uncertainty measures. The choice one of them can depend
on the problem statement or on the complexity of realization, or on their addi-
tional desirable properties. We aware that in this paper we do not investigate in
detail ways of evaluating conflict, non-specificity and contradiction in informa-
tion presented by credal sets with the help of divergences. This can be the topic
of our next research.
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Abstract. In previous work [1] we introduced Nearly-Linear (NL) mod-
els, a class of neighbourhood models obtaining upper/lower probabilities
by means of a linear affine transformation (with barriers) of a given
probability. NL models are partitioned into more subfamilies, some of
which are coherent. One, that of the Vertical Barrier Models (VBM),
includes known models, such as the Pari-Mutuel, the ε-contamination or
the Total Variation model as special instances. In this paper we study
conditioning of coherent NL models, obtaining formulae for their natural
extension. We show that VBMs are stable after conditioning, i.e. return
a conditional model that is still a VBM, and that this is true also for the
special instances mentioned above but not in general for NL models. We
then analyse dilation for coherent NL models, a phenomenon that makes
our ex-post opinion on an event A, after conditioning it on any event in
a partition of hypotheses, vaguer than our ex-ante opinion on A.

Keywords: Conditioning · Coherent imprecise probabilities ·
Nearly-Linear models · Dilation

1 Introduction

Among special imprecise probability models, neighbourhood models [10, Sec.
4.6.5] obtain an upper/lower probability from a given (precise) probability P0.
One reason for doing this may be that P0 is not considered fully reliable. Even
when it is, P0(A) represents a fair price for selling event A, meaning that the
buyer is entitled to receive 1 if A is true, 0 otherwise. A seller typically requires
a higher price than P0(A), P (A) ≥ P0(A), for selling A. The upper probability
P , to be interpreted as an infimum selling price in the behavioural approach to
imprecise probabilities [10], is often obtained as a function of P0.

Recently, we investigated Nearly-Linear (NL) models [1], a relatively simple
class of neighbourhood models. In fact, they derive upper and lower probabili-
ties, P and P respectively, as linear affine transformations of P0 with barriers,
to prevent reaching values outside the [0, 1] interval. As proven in [1], some
NL models are coherent, while other ones ensure weaker properties. The most
important coherent NL models are Vertical Barrier Models (VBM), including
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several well-known models as special cases, such as the Pari-Mutuel, the Total
Variation, the ε-contamination model, and others.

In this paper we explore the behaviour of coherent NL models when con-
ditioning. Precisely, after recalling essential preliminary notions in Sect. 2, in
Sect. 3 the events in the (unconditional) domain of P , P are conditioned on
an event B, and the lower/upper natural extensions E, E of P ,P on the new
(conditional) environment are computed. The natural extension is a standard
inferential procedure in the theory of imprecise probabilities [10], which gives
the least-committal coherent extension of a lower (upper) probability. Since
P (P ) is 2-monotone (2-alternating) in a coherent NL model, E (E) is given
by easy-to-apply formulae and is 2-monotone (2-alternating) too. An interest-
ing result is that VMBs are stable after conditioning: the conditional model
after applying the natural extension is still a VBM. We show that this property
extends also to the mentioned special VBMs: conditioning each special VBM
model returns a special VBM model of the same kind. By contrast, the property
does not hold for other NL models. In Sect. 4 we explore the phenomenon of
dilation, where, given a partition of events B, it happens for some event A that
E(A|B) ≤ P (A) ≤ P (A) ≤ E(A|B), for all B ∈ B\{∅}. This means that our a
posteriori evaluations are vaguer than the a priori ones. We derive a number of
conditions for dilation to occur or not to occur. Section 5 concludes the paper.

2 Preliminaries

In this paper we shall be concerned with coherent lower and upper probabilities,
both conditional and unconditional. Coherent means in both cases Williams-
coherent [11], in the structure-free version studied in [6]:

Definition 1. Let D �= ∅ be an arbitrary set of conditional events. A condi-
tional lower probability P : D → R is coherent on D iff ∀n ∈ IN,∀s0, s1, . . . , sn ≥
0,∀A0|B0, A1|B1, . . . , An|Bn ∈ D, defining G =

∑n
i=1 siIBi

(IAi
− P (Ai|Bi)) −

s0IB0(IA0 − P (A0|B0)), B =
∨n

i=0 Bi (IA: indicator of event A), it holds that
max{G|B} ≥ 0.

A similar definition applies to upper probabilities. However, when considering
simultaneously lower and upper probabilities, they will be conjugate, i.e.

P (A|B) = 1 − P (Ac|B). (1)

Equation (1) lets us refer to lower (alternatively upper) probabilities only.
When D is made of unconditional events only, Definition 1 coincides with

Walley’s coherence [10]. In general, a (Williams-)coherent P on D has a coherent
extension, not necessarily unique, on any set of conditional events D′ ⊃ D.

The natural extension E of P on D′ is the least-committal coherent extension
of P to D′, meaning that if Q is a coherent extension of P , then E ≤ Q on D′.
Further, E = P on D iff P is coherent [6,10].

In this paper, we shall initially be concerned with unconditional lower prob-
abilities (P (·)) and their conjugates (P (·)).
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Coherence implies that [10, Sec. 2.7.4]

if A ⇒ B,P (A) ≤ P (B), P (A) ≤ P (B) (monotonicity)

P (A) + P (B) ≥ P (A ∨ B). (2)

The domain D of P (·), P (·) will often be A(IP ), the set of events logically
dependent on a given partition IP (the powerset of IP , in set theoretic language).

A lower probability P , coherent on A(IP ), is 2-monotone if P (A ∨ B) ≥
P (A) + P (B) − P (A ∧ B), ∀A,B ∈ A(IP ). Its conjugate P is 2-alternating,
meaning that P (A ∨ B) ≤ P (A) + P (B) − P (A ∧ B), ∀A,B ∈ A(IP ).

2-monotone and 2-alternating coherent imprecise probabilities have some spe-
cial properties [8–10]. In particular,

Proposition 1. ([9, Thm. 7.2],[10, Sec. 6.4.6]). If P is a coherent 2-monotone
lower probability on A(IP ) and P is its conjugate, given B ∈ A(IP ) such that
P (B) > 0, then, ∀A ∈ A(IP ),

E(A|B) =
P (A ∧ B)

P (A ∧ B) + P (Ac ∧ B)
(3)

E(A|B) =
P (A ∧ B)

P (A ∧ B) + P (Ac ∧ B)
(4)

E is 2-monotone (E is 2-alternating) on A(IP )|B = {A|B : A ∈ A(IP )}, where
B is fixed. E, E are conjugate.

2.1 Nearly-Linear Models

Nearly-Linear models have been defined in [1], where their basic properties have
been investigated.

Definition 2. A Nearly-Linear Model is a couple (P , P ) of conjugate lower and
upper probabilities on A(IP ), where ∀A ∈ A(IP ) \ {∅, Ω}

P (A) = min{max{bP0(A) + a, 0}, 1}, (5)

P (A) = max{min{bP0(A) + c, 1}, 0} (6)

and P (∅) = P (∅) = 0, P (Ω) = P (Ω) = 1.
In Eqs. (5), (6), P0 is an assigned (precise) probability on A(IP ), while

b > 0, a ∈ R, c = 1 − (a + b). (7)

It has been shown in [1, Sec. 3.1] that NL models are partitioned into three
subfamilies, with varying consistency properties. Here we focus on the coherent
NL models, which are all the models in the VBM subfamily and some of the HBM
(to be recalled next), while, within the third subfamily, P and P are coherent
iff the cardinality of IP is 2 (therefore we neglect these latter models).
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Definition 3. A Vertical Barrier Model (VBM) is a NL model where (5), (6)
specialise into

P (A) = max{bP0(A) + a, 0}, ∀A ∈ A(IP ) \ {Ω}, P (Ω) = 1 (8)

P (A) = min{bP0(A) + c, 1}, ∀A ∈ A(IP ) \ {∅}, P (∅) = 0 (9)

0 ≤ a + b ≤ 1, a ≤ 0 (10)

and c is given by (7) (hence c ≥ 0).
In a Horizontal Barrier Model (HBM) P , P are given by Definition 2, hence

by (5), (6), (7) ∀A ∈ A(IP ) \ {∅, Ω}, where a, b satisfy the constraints

a + b > 1, b + 2a ≤ 1 (11)

(implying a < 0, b > 1, c < 0).

Proposition 2. ([1]) P , P are coherent and 2-monotone, respectively 2-alter-
nating in any VBM; in a HBM they are so iff P is subadditive (i.e. P (A) +
P (B) ≥ P (A ∨ B), ∀A,B ∈ A(IP )).

Thus, VBMs and (partly) HBMs ensure very good consistency properties, while
being relatively simple transformations of an assigned probability P0. Further,
a VBM generalises a number of well-known models. Among them we find:

• if a + b = 0, the vacuous lower/upper probability model [10, Sec. 2.9.1]:

PV (A) = 0,∀A �= Ω, PV (Ω) = 1,

PV (A) = 1,∀A �= ∅, PV (∅) = 0;

• if a = 0, 0 < b < 1 (hence c = 1 − b > 0), the ε-contamination model or
linear-vacuous mixture model [10, Sec. 2.9.2], here b = 1 − ε:

P ε(A) = (1 − ε)P0(A), ∀A �= Ω, P ε(Ω) = 1,

P ε(A) = (1 − ε)P0(A) + ε, ∀A �= ∅, P ε(∅) = 0;

• if b = 1 + δ > 1, a = −δ < 0 (hence c = 0), the Pari-Mutuel Model [4,7], [10,
Sec. 2.9.3]:

PPMM (A) = max{(1 + δ)P0(A) − δ, 0},

PPMM (A) = min{(1 + δ)P0(A), 1};

(12)

• if b = 1, −1 < a < 0 (hence c = −a), the Total Variation Model [2, Sec. 3],
[7, Sec. 3.2]:1

PTV M (A) = max{P0(A) + a, 0} ∀A �= Ω,PTV M (Ω) = 1,

PTV M (A) = min{P0(A) − a, 1} ∀A �= ∅, PTV M (∅) = 0.

(13)

1 Note that PTV M (A) ≤ PTV M (A), ∀A, since a < 0.
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3 Conditioning Coherent Nearly-Linear Models

Given a coherent NL model (P , P ) on A(IP ) and an event B ∈ A(IP ) \ {∅},
assumed or known to be true, we look for the natural extensions E(A|B), E(A|B)
of P , P respectively, for any A ∈ A(IP ). In other words, P , P are extended on
A(IP )|B.

When P (B) = 0, we determine E, E quickly thanks to Proposition 3, which
follows after a preliminary Lemma, stated without proof in a finite setting in [7].

Lemma 1. Let P : D → R be a coherent lower probability on D, non-empty
set of unconditional events, and B ∈ D, B �= ∅ such that P (B) = 0. Let also
S = {Ai|B}i∈I be a set of events such that Ai ∈ D, B �⇒ Ai, ∀i ∈ I. Then, the
lower probability P ′ defined by

P ′(E) = P (E), ∀E ∈ D, P ′(Ai|B) = 0, ∀i ∈ I,

is a coherent extension of P on D ∪ {Ai|B}i∈I .

Proof. Firstly, since A ∧ B ⇒ B and P (B) = 0, we can extend in a unique way
P on D ∪ {Ai ∧ B}i∈I preserving coherence, letting P (Ai ∧ B) = 0, ∀i ∈ I.

To prove coherence of P ′, take Ej ∈ D (j = 1, . . . , n), Ak|B ∈ S (k =
1, . . . ,m) and n + m real coefficients sj (j = 1, . . . , n), tk (k = 1, . . . , m), such
that at most one of them is negative, and define

G =
n∑

j=1

sj(IEj
− P ′(Ej)) +

m∑

k=1

tkIB(IAk
− P ′(Ak|B)).

According to Definition 1, we have to prove that max{G|H} ≥ 0, where H = Ω
if n > 0, H = B otherwise. We distinguish two cases.

(a) Let n = 0, hence G =
∑m

k=1 tkIBIAk
. If tk ≥ 0, ∀k = 1, . . . ,m, G ≥ 0

and max{G|H} = max{G|B} ≥ 0. Otherwise, if tk < 0 and tk ≥ 0, ∀k =
1, . . . , m, k �= k, then max{G|H} ≥ max{tkIBIAk

|B} = max{tkIAk
|B} = 0,

where the last equality holds because Ac
k

∧ B �= ∅ (since B �⇒ Ak).
(b) If n > 0, G =

∑n
j=1 sj(IEj

− P ′(Ej)) +
∑m

k=1 tkIBIAk
=

∑n
j=1 sj(IEj

−
P (Ej)) +

∑m
k=1 tk(IAk∧B − P (Ak ∧ B)). Then, max{G|H} = max{G} ≥ 0,

applying Definition 1 to the coherent extension of P on D ∪ {Ai ∧ B}i∈I . ��
Proposition 3. Let P : D → R be a coherent lower probability on D, non-empty
set of unconditional events, and B ∈ D, B �= ∅ such that P (B) = 0. Then the
natural extension E of P on D ∪ {Ai|B}i∈I , where Ai ∈ D, ∀i ∈ I, is given by
E(F ) = P (F ), ∀F ∈ D and, ∀i ∈ I, by

E(Ai|B) = 1 if B ⇒ Ai, E(Ai|B) = 0 otherwise. (14)

Proof. Since P is coherent on D, we have E(F ) = P (F ), ∀F ∈ D.
Let j ∈ I. If B ⇒ Aj , Aj |B = B|B, hence coherence of E implies E(Aj |B) =

1. If B �⇒ Aj , by Lemma 1, P can be extended on Aj |B, letting P (Aj |B) = 0.
Since E is the least-committal coherent extension of P , we get 0 ≤ E(Aj |B) ≤
P (Aj |B) = 0, hence E(Aj |B) = 0. ��
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Proposition 3 ensures that:

• E(A|B) = 0 if B �⇒ A, E(A|B) = 1 if B ⇒ A (just take Ai = A in (14));
• E(A|B) = 1 if B �⇒ Ac, E(A|B) = 0 if B ⇒ Ac (just take Ai = Ac in (14)

and apply conjugacy).

Let us now assume P (B) > 0.
Then, E, E are given by the next

Proposition 4. Let (P , P ) be a coherent NL model on A(IP ). For a given B ∈
A(IP ) such that P (B) > 0, we have that

E(A|B) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 iff P (A ∧ B) = 0
bP0(A ∧ B) + c

bP0(B) + 1 − b
(∈]0, 1[) iff P (Ac ∧ B), P (A ∧ B) ∈]0, 1[

1 iff P (Ac ∧ B) = 0

(15)

E(A|B) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 iff P (Ac ∧ B) = 0
bP0(A ∧ B) + a

bP0(B) + 1 − b
(∈]0, 1[) iff P (A ∧ B), P (Ac ∧ B) ∈]0, 1[

0 iff P (A ∧ B) = 0

(16)

Proof. We derive first the expression (15) for E(A|B).
Since P is 2-alternating, we may apply Eq. (3). There, E depends on P (A∧B)

and P (Ac ∧ B), which cannot be simultaneously 0: by (2), this would imply
0 = P (Ac ∧ B) + P (A ∧ B) ≥ P (B), hence P (B) = 0. Further,

P (Ac ∧ B) = 1 → P (A ∨ Bc) = 0 → P (A ∧ B) = 0,

P (A ∧ B) = 1 → P (Ac ∨ Bc) = 0 → P (Ac ∧ B) = 0,
(17)

using in both derivations conjugacy first, monotonicity then.
Thus, only the following exhaustive alternatives may occur:

(a) P (A ∧ B) = 0
(b) P (Ac ∧ B) = 0
(c) P (Ac ∧ B), P (A ∧ B) ∈]0, 1[.

It is immediate from (3) that E(A|B) = 0 iff P (A∧B) = 0 and that E(A|B) = 1
iff P (Ac ∧ B) = 0. Otherwise, E(A|B) ∈]0, 1[. Precisely, from (3), (5), (6), (7)

E(A|B) =
bP0(A ∧ B) + c

bP0(A ∧ B) + c + bP0(Ac ∧ B) + a
=

bP0(A ∧ B) + c

bP0(B) + 1 − b
.

Turning now to E(A|B), its value in Eq. (16) may be obtained simply by con-
jugacy, using E(A|B) = 1 − E(Ac|B) and (15). ��
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For the VBM, it is productive to write E(A|B), E(A|B) as follows:

Proposition 5. Let (P , P ) be a VBM on A(IP ). For a given B ∈ A(IP ), with
P (B) > 0, we have that

E(A|B) = max{bBP0(A|B) + aB , 0},∀A ∈ A(IP ) \ {Ω}, E(Ω|B) = 1 (18)

E(A|B) = min{bBP0(A|B) + cB , 1}, ∀A ∈ A(IP ) \ {∅}, E(∅|B) = 0 (19)

aB =
a

bP0(B) + 1 − b
, bB =

bP0(B)
bP0(B) + 1 − b

, cB = 1 − (aB + bB). (20)

Moreover, it holds that bB > 0, aB ≤ 0, 0 < aB + bB ≤ 1.

Proof. Preliminarily, note that the denominator in (20) is positive. In fact, by
assumption P (B) > 0, meaning by (8) that bP0(B) + a > 0. Using (7) and
recalling that c ≥ 0 in a VBM, it holds also that

bP0(B) + 1 − b = bP0(B) + a + c > 0.

Given this, let us prove (18) (the argument for (19) is analogous or could be
also derived using conjugacy and will be omitted). For this, recalling (16), it is
sufficient to establish that

(i) bBP0(A|B) + aB ≤ 1, with equality holding iff P (Ac ∧ B) = 0;
(ii) bBP0(A|B) + aB ≤ 0 iff P (A ∧ B) = 0;

(iii) bBP0(A|B) + aB =
bP0(A ∧ B) + a

bP0(B) + 1 − b
∈]0, 1[ iff P (A ∧ B), P (Ac ∧ B) ∈]0, 1[.

(i) Using (20) and the product rule at the first equality, non-negativity of b, c
in the VBM at the inequality, (7) at the second equality, we obtain:

bBP0(A|B) + aB =
bP0(A ∧ B) + a

bP0(B) + 1 − b

≤ bP0(A ∧ B) + bP0(Ac ∧ B) + a + c

bP0(B) + 1 − b
= 1.

Moreover, bBP0(A|B)+aB = 1 iff bP0(Ac ∧B)+ c = 0, which is equivalent
to P (Ac ∧ B) = 0 by (9) (and since bP0(Ac ∧ B) + c ≥ 0).

(ii) Taking account of the first equality in the proof of (i) above and since
bP0(B) + 1 − b > 0, it ensues that

bBP0(A|B) + aB ≤ 0 iff bP0(A ∧ B) + a ≤ 0 iff P (A ∧ B) = 0.

(iii) Immediate from (i), (ii) and recalling (17) (exchanging there A with Ac).

Elementary computations ensure that bB > 0, aB ≤ 0, 0 < aB + bB ≤ 1. ��
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Proposition 5 proves an interesting feature of a VBM: when all events in A(IP )
are conditioned on the same B, the resulting model is still a VBM. (Note the
this holds also when P (B) = 0: here Proposition 5 does not apply, but from
Proposition 3 we obtain the vacuous lower/upper probabilities, a special VBM.)

We synthesise this property saying that a VBM is stable under conditioning.
A natural question now arises: does a HBM ensure an analogous property?

Specifically, condition on B, with P (B) > 0, the events of A(IP ), which are
initially given a HBM lower probability P . Is it the case that the resulting
E(·|B) is determined by the equation

E(A|B) = min{max{bBP0(A|B) + aB , 0}, 1} (21)

with aB , bB given by (20) and obeying the HBM constraints (11) (and similarly
with P , E(·|B))?

The answer is negative: although E(A|B) may occasionally be obtained from
(21), for instance—as is easy to check—when P (A ∧ B), P (Ac ∧ B) ∈]0, 1[,
∀A ∈ A(IP ) \ {∅, Ω}, this is not true in general, as shown in the next example.

Example 1. Given IP = {ω1, ω2, ω3}, Table 1 describes the values of an assigned
P0, and of P , P obtained by (5), (6) with a = −10, b = 12. Since a, b satisfy
(11) and, as can be easily checked, P is subadditive, (P , P ) is a coherent HBM
by Definition 3 and Proposition 2. Now, take A = ω2, B = ω1 ∨ ω2. From

Table 1. Data for Example 1

ω1 ω2 ω3 ω1 ∨ ω2 ω1 ∨ ω3 ω2 ∨ ω3 ∅ Ω

P0
3
10

3
5

1
10

9
10

4
10

7
10

0 1

P 0 0 0 0.8 0 0 0 1

P 1 1 0.2 1 1 1 0 1

(16), E(A|B) = 0, because P (A ∧ B) = P (ω2) = 0. Yet, since bBP0(A|B) +
aB = bP0(ω2)+a

bP0(ω1∨ω2)+1−b = 14 > 1, Eq. (21) would let us mistakenly conclude that
E(A|B) = 1.

Thus, a coherent HBM differs from a VBM with respect to conditioning on some
event B, being not stable.

It is interesting to note that not only the VBM, but also its special submodels
listed in Sect. 2.1 are stable: conditioning one of them on B returns a model of
the same kind. Let us illustrate this in some detail.

For the linear-vacuous model (PV , PV ), it is well-known [10] that EV (A|B) =
0 if B �⇒ A, while EV (A|B) = 1 if B ⇒ A. Note that this follows also from
Proposition 3, since PV (B) = 0. By conjugacy, EV (·|B) is vacuous too.

With the ε-contamination model, its conditional model is again of the same
type: from (18), (20), we get aB = 0, bB = 1 − εB ∈]0, 1[.
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Turning to the Total Variation Model (TVM) and applying again (18), (20)

bB = 1, aB =
a

P0(B)
< 0

ETV M (A|B) = max
{

P0(A|B) +
a

P0(B)
, 0

}

=
1

P0(B)
max{P0(A ∧ B) + a, 0}. (22)

At first sight, the conditional model differs from a TVM. However, we may easily
write (13) in the form (22):

PTV M (A) =
1

P0(Ω)
· max{P0(A ∧ Ω) + a, 0}. (23)

Comparing (22) and (23) we see that the TVM is stable too under conditioning:
PTV M , ETV M may be thought of as normalised on the P0-probability of what
is currently assumed to be true (Ω first, B then).

The conjugate of ETV M (A|B) is ETV M (A|B) = 1
P0(B) min{P0(A∧B)−a, 1}.

ETV M (A|B), ETV M (A|B) determine a credal set (i.e. the set of probabilities P
such that ETV M (A|B) ≤ P (A|B) ≤ ETV M (A|B),∀A ∈ A(IP )) still made of all
probabilities at a total variation distance2 from P0 not larger than −a (> 0).
This is like the unconditional TVM, the difference being that any A is replaced
by A ∧ B, i.e. by what remains possible of A after assuming B true.

Conditioning the Pari-Mutuel Model (PMM) on B leads to similar conclu-
sions: the conditional model is again of the PMM type.

Take for instance PPMM (A), given by (12), where b = 1+δ > 1, a = −δ < 0.
From (18), (20) and recalling that PPMM (B) = (1+ δ)P0(B)− δ > 0, we obtain

aB =
−δ

PPMM (B)
< 0, bB = 1 +

δ

PPMM (B)
> 1,

EPMM (A|B) = max{(1 + δB)P0(A|B) − δB, 0}, δB =
δ

PPMM (B)
.

Clearly, aB + bB = 1, and we may conclude that EPMM (·|B) is again a PMM,
with δ replaced by δB . Note that the starting PPMM (·) may be written as

PPMM (A) = max
{

(1 + δ)P0(A|Ω) − δ

PPMM (Ω)
, 0

}

.

Similarly, we obtain

EPMM (A|B) = min{(1 + δB)P0(A|B), 1}.

Note that δB ≥ δ, with equality holding iff P0(B) = 1. As well known [7,10],
δ (hence δB) has the interpretation of a loading factor, which makes a subject
2 On the total variation distance see e.g. [3, Sec. 4.1].
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‘sell’ A (A|B) for a selling price PPMM (A) (EPMM (A|B)) higher than the ‘fair
price’ P0(A) (P0(A|B)). With respect to this kind of considerations, conditioning
increases the loading factor, and the smaller PPMM (B), the higher the increase.
Next to this, conditioning makes both the seller and the buyer more cautious,
in the sense that they restrict the events they would sell or buy.

From the seller’s perspective, we can see this noting that PPMM (A) < 1 iff
P0(A) < 1

1+δ = tΩ . Here tΩ is the threshold to ensure that selling A may be
considered: when P (A) = 1, the seller is practically sure that A will occur. On
the other hand, s/he will find no rational buyer for such a price: in fact, the buyer
should pay 1 to receive at most 1 if A occurs, 0 otherwise. After conditioning,
EPMM (A|B) < 1 iff P0(A|B) < 1

1+δB
= tB ≤ tΩ . When tB < tΩ , the seller may

have the chance to negotiate A, but not A|B, for some events A.
Analogously, a subject ‘buying’ A (A|B) will be unwilling to do so when

PPMM (A) = 0 (when EPMM (A|B) = 0), which happens iff P0(A) ≤ δ
1+δ = tΩ

(iff P0(A|B) ≤ δB
1+δB

= δ
PPMM (B)+δ = tB). Here tB ≥ tΩ , and again conditioning

makes the buyer more cautious, see also Fig. 1.

Fig. 1. 1) Plot of PPMM against P0 before (dashed bold line) and after (continuous
bold line) conditioning. 2) The same for PPMM against P0.

4 Dilation with Coherent Nearly-Linear Models

Given a coherent NL model on A(IP ), B ∈ A(IP ) \ {∅} and an event A ∈ A(IP ),
if we compute E(A|B), E(A|B) it may happen that

E(A|B) ≤ P (A) ≤ P (A) ≤ E(A|B). (24)

When Eq. (24) holds, the imprecision of our evaluation on A increases, or at
least does not decrease, after assuming B true. Equation (24) is a condition
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preliminary to dilation, which we shall discuss later on. Next, we investigate
when (24) holds.

Preliminarily, say that (24) occurs trivially when it holds and its three
inequalities are equalities, and that A is an extreme event if either P (A) =
P (A) = 0 or P (A) = P (A) = 1. When referring to extreme events in the sequel,
we shall rule out ∅, Ω (for which no inference is needed).

Next, we investigate if Eq. (24) obtains when: P (B) = 0 (Lemma 2); P (B) >
0 and A is either an extreme event (Lemma 3) or non-extreme (Proposition 7).

Lemma 2. Let P (B) = 0. Then,

(a0) If B �⇒ A and B �⇒ Ac, (24) applies.
(b0) If B ⇒ A, (24) occurs, trivially, iff P (A) = P (A) = 1.
(c0) If B ⇒ Ac, (24) occurs, trivially, iff P (A) = P (A) = 0.

Proof. As for (a0), (24) holds because E(A|B) = 0, E(A|B) = 1 by Proposi-
tion 3. By the same Proposition 3, (b0) and (c0) follow easily. ��
Let us suppose now that P (B) > 0. From (15), (16), and since E(·|B) ≥ E(·|B),
the following alternatives may arise:

(a) P (A ∧ B) = 0.
Correspondingly, E(A|B) = E(A|B) = 0.

(b) P (Ac ∧ B), P (A ∧ B) ∈]0, 1[; P (A ∧ B) = 0.
Here E(A|B) ∈]0, 1[, E(A|B) = 0.

(c) P (Ac ∧ B), P (A ∧ B) ∈]0, 1[; P (A ∧ B), P (Ac ∧ B) ∈]0, 1[.
Then, E(A|B), E(A|B) ∈]0, 1[.

(d) P (Ac ∧ B) = 0; P (A ∧ B), P (Ac ∧ B) ∈]0, 1[.
Then, E(A|B) ∈]0, 1[, E(A|B) = 1.

(e) P (Ac ∧ B) = 0.
Correspondingly, E(A|B) = E(A|B) = 1.

(f) P (Ac ∧ B) = P (A ∧ B) = 0.
Here E(A|B) = 0, E(A|B) = 1.

Lemma 3. If P (B) > 0 and A is an extreme event, then (24) occurs trivially.

Proof. If P (A) = P (A) = 0, then P (A ∧ B) = 0 by monotonicity, and from (a)
above E(A|B) = E(A|B) = 0 too. If P (A) = P (A) = 1, then P (Ac) = P (Ac) =
0, hence P (Ac ∧ B) = 0 and E(A|B) = E(A|B) = 1 from (e) above. ��
We still have to establish whether (24) holds assuming that P (B) > 0 and A is
a non-extreme event. Trivially, (24) holds in case (f), while it does not in cases
(a), (e). To see what happens in the remaining instances, let us prove that

Proposition 6. Given a coherent NL model (P , P ), let B ∈ A(IP ), P (B) > 0,
and A ∈ A(IP ), A non-extreme.

(i) If P (A ∧ B), P (Ac ∧ B) ∈]0, 1[, then

E(A|B) ≤ P (A) iff either P0(Bc) = 0 or P (A) ≤ P0(A|Bc).
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(ii) If P (Ac ∧ B), P (A ∧ B) ∈]0, 1[, then

E(A|B) ≥ P (A) iff either P0(Bc) = 0 or P (A) ≥ P0(A|Bc).

Proof. (i) By monotonicity, P (A) ≥ P (A ∧ B) > 0, and P (A) < 1 because
P (A) ≤ P (A ∨ Bc) < 1, the latter inequality holding since (by conjugacy)
P (A ∨ Bc) ∈]0, 1[ iff P (Ac ∧ B) ∈]0, 1[. Which is assumed to be true. Therefore,
by (5), P (A) = bP0(A) + a, while E(A|B) is given by the second line in (16).
Hence,

E(A|B) ≤ P (A) iff
bP0(A ∧ B) + a

bP0(B) + 1 − b
≤ bP0(A) + a. (25)

With some algebraic manipulations on the right-hand side of (25), noting that
by assumption and (2), (5), (6), (7) we have that 0 < P (B) ≤ P (Ac ∧ B) +
P (A ∧ B) = bP0(B) + 1 − b, we obtain

bP0(A ∧ B) + a

bP0(B) + 1 − b
≤ bP0(A) + a iff

bP0(A ∧ B) + a ≤ b2P0(A)(−P0(Bc)) + ab(−P0(Bc)) + bP0(A) + a iff
P0(Bc)(bP0(A)+a) ≤ P0(A) − P0(A ∧ B) = P0(A ∧ Bc) iff

P0(Bc) = 0 or (P0(Bc) > 0 and) bP0(A) + a ≤ P0(A ∧ Bc)
P0(Bc)

= P0(A|Bc),

which proves (i).
(ii) It can be obtained in a very similar way or directly by conjugacy. ��

From Proposition 6, and recalling (15), (16), it follows straightforwardly that

Proposition 7. Let (P , P ) be a coherent NL model on A(IP ), B ∈ A(IP ),
P (B) > 0. For A ∈ A(IP ), A non-extreme, Eq. (24) holds iff

P (Ac ∧ B) = P (A ∧ B) = 0 or P0(Bc) = 0 or P (A) ≤ P0(A|Bc) ≤ P (A). (26)

The left (right) inequality does not apply if E(A|B) = 0 (if E(A|B) = 1).

The previous results pave the way to considerations on dilation with NL models.
When discussing dilation [2,7], we consider a partition B of non-impossible events
and say that (weak) dilation occurs, with respect to A and B, when

E(A|B) ≤ P (A) ≤ P (A) ≤ E(A|B), ∀B ∈ B. (27)

Recall that an event A is logically non-independent of a partition B iff ∃B ∈
B\{∅} such that either B ⇒ A or B ⇒ Ac, logically independent of B otherwise.

We can now introduce several results concerning dilation.

Proposition 8. Let (P , P ) be a coherent NL model on A(IP ), A ∈ A(IP ), B ⊂
A(IP ) \ {∅} a partition.

(j) If A is a non-extreme event logically non-independent of B, dilation does not
occur.
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(jj) If A is an extreme event logically independent of B, dilation occurs.

Proof. (j) Take B ∈ B such that either B ⇒ A or B ⇒ Ac. If P (B) = 0, (24)
does not occur by Lemma 2, either (b0) or (c0). If P (B) > 0, because of the
logical non-independence hypothesis, either A ∧ B = ∅ or Ac ∧ B = ∅, hence
either B = Ac ∧ B or B = A ∧ B, respectively. This rules out case (f), as
assuming it would imply here P (B) = 0. Actually, recalling that A is non-
extreme, case (a) or (e) applies, and (24) does not occur. Thus, the dilation
condition (27) is not satisfied.

(jj) Follows from Lemma 2, (a0) when P (B) = 0, from Lemma 3 otherwise. ��
Dilation is characterised for a non-extreme event A, logically independent of

B, as follows:

Proposition 9. Given a coherent NL model (P , P ) on A(IP ), a partition B ⊂
A(IP ) \ {∅} and A ∈ A(IP ) non-extreme and logically independent of B, dilation
occurs (w.r.t. A, B) iff, ∀B ∈ B such that P (B) > 0, (26) holds, where the left
(right) inequality does not apply if E(A|B) = 0 (if E(A|B) = 1).

Proof. We need not consider those B ∈ B such that P (B) = 0, if any: by
Lemma 2, (a0) they ensure (24). For the others apply Proposition 7. ��
We derive now an interesting sufficient condition for dilation with a VBM,
extending an analogous property of a PMM [7, Corollary 2].

Proposition 10. Dilation for a non-extreme event A, logically independent of
partition B, occurs in a VBM if

P0(A ∧ B) = P0(A) · P0(B), ∀B ∈ B. (28)

Proof. If P (B) = 0, apply Lemma 2, (a0). Otherwise, by Proposition 7, we have
to check that, when P0(Bc) > 0, P (A) ≤ P0(A|Bc) ≤ P (A) holds. Now, if
P (B) > 0, then necessarily by (5) bP0(B) + a > 0, hence P0(B) > 0, because
a ≤ 0 in a VBM. Further, if (28) holds, then P0(A ∧ Bc) = P0(A) · P0(Bc),
hence for those B ∈ B such that P0(Bc) > 0, also P0(A|Bc) = P0(A). Thus, the
condition to check boils down to P (A) ≤ P0(A) ≤ P (A), which always applies
for a VBM. ��
Note that dilation occurs if event A in Proposition 10 is P0-non-correlated with
any B ∈ B.

5 Conclusions

Among coherent NL models, VBMs ensure the property of being stable with
conditioning, as also do several known submodels of theirs, such as the PMM.
This implies also that results found in [5] on natural extensions of (uncondi-
tional) VBMs to gambles still apply here to conditional gambles X|B defined on
the conditional partition IP |B = {ω|B : ω ∈ IP}. By contrast, those HBMs that
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are coherent are generally not stable, thus these models confirm their weaker
properties, in comparison with VBMs, already pointed out, from other perspec-
tives, in [1]. Concerning dilation of A w.r.t. partition B, we have seen that it
may depend on more conditions, such as whether A is extreme or not, or it
is logically independent of B or not, and we supplied several results. In future
work, we plan to study the regular extension [10, Appendix J] of coherent NL
models, determining how its being less conservative than the natural extension
may limit extreme evaluations, as well as dilation. Concepts related to dilation
and not presented here are also discussed in [2] for the ε-contamination and the
Total Variation models, among others. The assumptions in [2] are usually less
general than the present framework. The role of these notions within NL models
is still to be investigated.
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Abstract. This paper considers the problem of learning a generalized
credal network (a set of Bayesian networks) from a dataset. It is based on
using the BDEu score and computes all the networks with score above a
predetermined factor of the optimal one. To avoid the problem of deter-
mining the equivalent sample size (ESS), the approach also considers the
possibility of an undetermined ESS. Even if the final result is a set of
Bayesian networks, the paper also studies the problem of selecting a sin-
gle network with some alternative procedures. Finally, some preliminary
experiments are carried out with three small networks.

Keywords: Generalized credal networks · Learning · Likelihood
regions · Probabilistic graphical models

1 Introduction

Probabilistic graphical models [17] and in particular Bayesian networks have
been very successful for representing and reasoning in problems with several
uncertain variables. The development of procedures to learn a Bayesian network
from a dataset of observations [16] is one the most important reasons of this suc-
cess. Usually, learning is carried out by selecting a score measuring the adequacy
of a model given the data and optimizing it in the space of models. However, in
most of the situations the selection of a single Bayesian network is not justified
as there are many models that explain the data with a similar degree, being the
selection of an optimal network a somewhat arbitrary choice [7]. For this reason,
recently, there has been some effort in computing a set of possible models instead
of selecting a single one [12]. The idea is to compute all the models with a score
within a given factor of the optimal one. In this paper we will follow this line,
but interpreting the result as a generalized credal network: a set of Bayesian
networks which do not necessarily share the same graph [13]. The term credal
network was introduced [6] for a set of Bayesian networks over a single graph
(there is imprecision only in the parameters). The overall procedure is based on
the general framework introduced in [15], where it is proposed a justification
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based on sets of desirable gambles [5,18,22] for the selection of a set of models
instead of a single one, following the lines of Gärdenfors and Shalin [8] and α-cut
conditioning by Cattaneo [2].

The basic criterion used for learning is the so called BDEu score [9]. This score
needs a parameter, the equivalent sample size (ESS), which is usually arbitrarily
selected in practice with a value between 1 and 10. However, there are results
showing that the final network can have a dependence on the ESS, producing
more dense networks when it is higher [4,14,21]. For this reason, our approach
will also consider the possibility of imprecision due to an undetermined ESS.

The paper is organized as follows. Section 2 provides the basic theoretical
framework for our problem. Section 3 describes the algorithms used in the com-
putation. Section 4 is devoted to the experiments. Finally, the conclusions and
future work are in Sect. 5.

2 Learning Imprecise Models

Given a set of variables, X = (X1, . . . , Xm), a Bayesian network [17] is a pair
(G, β), where G is a directed acyclic graph such that each node represents a
variable, and β is the set of parameters: a conditional probability distribution
for each variable Xi given its parents in the graph, Pai, denoted as P (Xi|Pai)
or as P(G,β)(Xi|Pai) when we want to make reference to the associated model.
It will be assumed that each variable Xi takes values on a finite set with Ki

possible values. A generic value for variable Xi is denoted by xi and a generic
value for all the variables X is denoted as x. An assignation of a concrete value
to each variable in Pai is called a configuration and denoted as pai. The number
of possible configurations of Pai is denoted by Ri. There is a joint probability
distribution for variables X associated with a Bayesian network (G, β) that will
be denoted as P(G,β) and that is equal to the product

∏m
i=1 P(G,β)(Xi|Pai).

We will consider that we have a set of full observations D for all the variables
in X. Given a graph G, nijk will denote the number of observations in D where
Xi = xk and its parents Pai take the jth configuration, nij =

∑Ki

k=1 nijk,
whereas n will be the total sample size. In the framework for learning proposed
in [15], it is assumed that we have the following elements:

– A set of parameters Θ that corresponds to the space of possible decisions. In
our case, Θ is the set of pairs (G, s), where G is a direct acyclic graph, and
s is a possible ESS belonging to a finite set of values, S. For example, in our
experiments we have considered S = {0.1, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0}. We
assume a finite set instead of a continuous interval for computational reasons.

– A set of parameters B, and a conditional probability distribution P (β|θ)
specifying the probability on B for each value of the parameter θ ∈ Θ. In our
case the set B is the list of conditional probability distributions P (Xi|Pai),
where the probability values of the conditional distribution of Xi given the jth
configuration of the parents are denoted by βij = (βij1, . . . , βijKi

) (i.e. βijk =
P (Xi = xk|Pai = paj

i )). It is assumed that each βij follows an independent
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Dirichlet distribution D(s/(RiKi), . . . , s/(RiKi)). The set of all parameters
βij will be denoted by β.

– A conditional distribution for an observation of the variables (X1, . . . , Xm)
given a pair (θ, β) ∈ Θ × B (in our case, given G, s and β). The proba-
bility of observing X1 = xk1 , . . . , Xm = xkm

is the product
∏m

i=1 βijki
=

∏M
i=1 P (xki

|paj
i ), where paj

i is the configuration of the parents compatible
with the observation, and ki represents the subscript of the observed value
for Xi = xki

.

In this setting, a set of observations O, defines a likelihood function L in Θ,
which is given at the general case by,

L(θ) =
∫

B

P (β|θ)P (D|β, θ)dβ. (1)

In the particular case of learning generalized credal networks, we have that
this likelihood is identical to the well known BDEu score [9] for learning Bayesian
networks:

L(G, s) = BDEu(G, s) = P (D|G) =

m∏

i=1

Ri∏

j=1

Γ (s/Ri)

Γ (nij + s/Ri)

Ki∏

k=1

Γ (nijk + s/(RiKi))

Γ (s/(RiKi))
. (2)

The score for Pai as set of parents of Xi is the value:

log(BDEu(Pai, s,Xi)) = log

⎛

⎝
Ri∏

j=1

Γ (s/Ri)
Γ (nij + s/Ri)

Ki∏

k=1

Γ (nijk + s/(RiKi))
Γ (s/(RiKi))

⎞

⎠ .

(3)
It is immediate that log(BDEu(G, s)) =

∑m
i=1 log(BDEu(Pai, s,Xi)).

Finally, a generalized uniform distribution on Θ is considered given in terms
of a coherent set of desirable gambles [15]. When Θ is finite as in this case,
associated credal set only contains the uniform probability, but when Θ is a
continuous interval is quite different from the usual uniform density. Then a dis-
counting is considered of this prior information on Θ given by a value ε ∈ [0, 1].
This discounting is a generalization of the ε discounting of a belief function [20].
After the observations are obtained, the model is conditioned to them, obtaining
a posterior information on Θ. It is assumed that the set of decisions is equiv-
alent to the set of parameters Θ and the problem is solved by computing all
un-dominated decisions under a 0–1 loss (details in [15]). Finally, in our case the
set of un-dominated decisions is the set of parameters (G, s) such that:

L(G, s) = BDEu(G, s) ≥ αBDEu(Ĝ, ŝ),

where α = 1−ε
1+ε ∈ [0, 1] and (Ĝ, ŝ) is the pair maximizing the likelihood L(G, s)

for (G, s) ∈ Θ. The set of parameters satisfying the above inequality is denoted
by Hα

L and defines what we shall call the set of possible models.
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In the following, we will use the value α = 1−ε
1+ε ∈ [0, 1] which is computed as

a continuous decreasing function from [0, 1] into [0, 1] and that determines the
factor of the maximum entropy model which makes (G,S) non-dominated.

Given a parameter (G, s), the model for X is given by the Bayesian network
(G, β̂), where β̂ is the Bayesian estimation of β (expected value of β given (G, s)
and D), and which can be computed in closed form by the well known expression:

β̂ijk =
nijk + s/(RiKi)

nij + s/(Ri)
. (4)

The probability distribution associated with (G, β̂) will be also denoted as
P(G,s)(x)1. Finally the set of possible models (a generalized credal network) is
the set of Bayesian networks:

Mα
D = {(G, β̂) | (G, s) ∈ Hα

L}, (5)

and where β̂ is the set of parameters given by Eq. (4).
Though, in our opinion, the result of learning should be the set Mα

D, in some
cases, it is interesting to select a single model. For example, we have carried
out experiments in which we want to compare this approach to learning with a
Bayesian procedure that always selects a single network. For this aim we have
considered two approaches:

– Maximum Entropy: We select the pair (G, β̂) ∈ Mα
D maximizing the entropy,

where the entropy of a model (G, β) is given by:

E(G, β) = −
∑

x

P(G,β)(x) log P(G,β)(x). (6)

– Minimum of Maximum Kullback-Leibler Divergence: If (G, β) and (G′, β′) are
two models, then the Kullback-Leibler divergence of (G, β) to (G′, β′) is given
by the expression:

KL((G′, β′), (G, β)) =
∑

x

P(G′,β′)(x) log
(

P(G′,β′)(x)
P(G,β)(x)

)

. (7)

Then, for each model (G, β̂) ∈ Mα
D, the following value is computed:

MKL(G, β̂) = max{KL((G′, β̂′), (G, β̂)) | (G′, β̂′) ∈ Mα
D}.

Finally, the model (G, β̂) ∈ Mα
D minimizing MKL(G, β̂) is selected.

1 In fact, this probability also depends on D, but we do not include it to simplify the
notation.
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3 Algorithms

Given a set of observations D and a value of ε, our aim is to compute the set
of Bayesian networks given by Eq. (5), where α = 1−ε

1+ε . For this we have taken
as basis the pgmpy package in which basic procedures for inference and learning
with Bayesian networks are implemented [1].

Our first algorithm AllScores(ESS, α) computes the set of possible parents
as well as the logarithm of their scores for each variable Xi, for each sample size
s ∈ S and for a given value of α, being denoted this set as Par(Xi, s, α).

To do it, we compute the value of log(BDEu(Pai, s,Xi)) following Eq. (3)
for each set Pai ⊆ X \ {Xi}, storing the pair (Pai, log(BDEu(Pai, s,Xi)), but
taking into account the following pruning rules as in [12]:

– If Pai ⊂ Pa′
i and log(BDEu(Pai, s,Xi)) > log(BDEu(Pa′

i, s,Xi)) − log(α),
then Pa′

i is not added to Par(Xi, s, α) as there can not be a model in Mα
D

with this set of parents.
– If Pai ⊂ Pa′

i and log(BDEu(Pai, s,Xi)) > log(Ki)+R+
i (Pa′

i)−log(α), where
R+

i (Pa′
i) is the number of configurations of Pa′

i with nij > 0, then Pa′
i is

not added to Par(Xi, s, α) and none of the supersets of Pa′
i is considered as

possible set of parents for Xi.

Once AllScores(S, α) computes Par(Xi, s, α) for any s ∈ S and any variable
Xi, then an A∗ algorithm is applied to compute all the order relationships σ
in {1, . . . , m} and values s ∈ S such that there is a pair (G, s) in Hα

s with
Paσ(i) ⊆ {Xσ(1), . . . , Xσ(i−1)}. For this we introduce two modifications of the
algorithm proposed in [10]: a value α has been considered and we compute not
only the order with the optimal value but also all the orders within a factor α
of the optimal one.

A partial order σk is given by the values (σk(1), . . . , σk(k)) for k ≤ m (only
the first k values are specified). A partial order can be defined for values k =
0, . . . ,m. For k = m we have a full order and for k = 0 the empty order. A graph
G is compatible with a partial order σk when Paσk(i) ⊆ {Xσk(1), . . . , Xσk(i−1)}
for i = 1, . . . , k. Given an ESS s and σk, it is possible to give an upper bound
for the logarithm of the score of all the orders σ that are extensions of σk and
which is given by,

Bound(σk, s) =
k∑

i=1

Best(Xσ(i), {Xσ(1), . . . , Xσ(i−1)}, s)+

m∑

i=k+1

Best(Xσ(i),X \ {Xσ(i)}, s),

(8)

where Best(Xi, A, s) is the best score stored in Par(Xi, s, α), between those set
of parents Pai ⊆ A, i.e. we select the parents compatible with partial order σk

for variables Xσk(1), . . . , Xσk(k) and the rest of the set of parents are chosen in
an arbitrary way.
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Our algorithm is applied to nodes N(Ak, s, score, up), where Ak is a set
{σk(1), . . . , σk(k)} for a partial order σk, s is a value in S, score is the value of
Bound(σk, s), and up is a reference to the node N(Ak−1, s, score

′, up′) such that
σk is obtained by extending partial order σk−1 with the value σk(k).

The A∗ algorithm is initiated with a priority queue with a node for each pos-
sible value of s ∈ S, N(∅, s, score,NULL), where score is obtained by applying
Eq. (8) to partial order σ0 (empty partial order). The algorithm stores a value B
which is the best score obtained so far for a complete order (which is equal to the
score of the first complete order selected from the priority queue) and H(A, s)
which is the best score obtained so far for a node N(Ak, s, score, up) where
Ak = A. Let us note that for a node N(Ak, s, score, up) it is always possible to
recover its corresponding partial order σk as we have that σk(k) = Ak \ Ak−1

where Ak−1 is the set appearing in node N(Ak−1, s, score
′, up′) referenced by up,

and the rest of values can be recursively found by applying the same operation
of the node N(Ak−1, s, score

′, up′).
The algorithm proceeds selecting the node with highest score from the pri-

ority queue while the priority queue is not empty and score ≥ B +log(α). If this
node is N(Ak, s, score, up), then if it is complete (Ak = X), the node is added
to the set of solution nodes. In the case it is not complete then all the nodes
N(Ak+1, s, score

′, up′) obtained by adding one variable Xl, in X\Ak to Ak are
computed, where up′ points to former node N(Ak, s, score, up) and the value of
score′ is calculated taking into account that

score′ = score + Best(Xl, Ak, s) − Best(Xl,X \ {Xσ(k+1)}, s). (9)

The new node is added to the priority queue if and only if score′ ≥
H(Ak+1, s) + log(α). In any case the value of H(Ak+1, s) is updated if score′ >
H(Ak+1, s).

Once A∗ is finished, we have a set of solution nodes N(X, score, s, up). For
each one of these nodes we compute their associated order σ and then the order
is expanded in a set of networks. Details are given in Algorithm 1. In that algo-
rithm, ParOrder(Xσ(k), s, α, σ) is the set of pairs (Paσ(k), t) ∈ Par(Xσ(k), s, α)
such that Paσ(k) ⊆ {Xσ(1), . . . , Xσ(k−1)}, and t is log(BDEu(Paσ(k), s,Xσ(k))).

The algorithm is initially called with a list L with a pair (G, u) where G is
the empty graph, u is the value of score in the solution node N(X, score, s, up)
and with k = 1. It works in the following way: it considers pairs (G, u), where G
is a partial graph (parents for variables Xσ(1), . . . , Xσ(k−1) have been selected,
but not for the rest of variables) and u is the best score that could be achieved if
the optimal selection of parents is done for the variables Xσ(k), . . . , Xσ(m). Then,
the possible candidates for parents of variable Xσ(k) are considered. If Paσ(k) is
a possible candidate set with a score of t and the optimal set of parents for this
variable is T , then if this parent set is chosen, then T − t is lost with respect to
the optimal selection. If u was the previous optimal value, now it is u′ = u−T +t.
This set of parents can be selected only if u′ ≥ B + log(α); in that case, the new
graph G′ obtained from G by adding links from Paσ(k) to Xσ(k) is considered
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Algorithm 1. Computing the networks associated to an order and ESS s

Require: σ, an order of the variables
Require: α, the factor of the optimal score
Require: B, the best score of any network
Require: s, the ESS
Require: L a list of pairs (G, u) where G is a partial graph and u is the best score of

a completion of G
Require: k the node to expand
Ensure: LR = {(G1, . . . , Gk}, a list of graphs with an admissible score compatible

with σ
1: procedure Expand(σ,α,B,s,L,k)
2: if k > m then
3: Let LR the list of graphs G such that (G, u) ∈ L
4: return LR
5: end if
6: Let L′ equal to ∅
7: Let T = max{t : (Paσ(k), t) ∈ ParOrder(Xσ(k), s, α, σ)}
8: for (G, u) ∈ L do
9: Let Q be the set of pairs (Paσ(k), t) ∈ ParOrder(Xσ(k), s, α, σ) with
10: u − T + t ≥ B + log(α)
11: for (Paσ(k), t) ∈ Q do
12: Let G′ the graph G expanded with links from Paσ(k) to Xσ(k)

13: Let u′ = u − T + t
14: Add (G′, u′) to L′

15: end for
16: end for
17: return Expand(σ,score,B,s,L′,k + 1)
18: end procedure

with optimal value u′. The algorithm proceeds by expanding all the new partial
graphs obtained this way, by assigning parents to the next variable, Xσ(k+1).

Finally we compute the list of all the graphs associated to the result of the
algorithm for any solution node N(X, score, s, up) with the corresponding value
s. In this list, it is possible that the same graph is repeated with identical value
of s (the same graph can be obtained with two different order of variables). To
avoid repetitions a cleaning step is carried out in order to remove the repetitions
of identical pairs (G, s). This is the final set of non-dominated set of parameters
Hα

L . Finally the set of possible models Mα
D is the set of Bayesian networks (G, β̂)

that are computed for each pair (G, s) ∈ Hα
L where β̂ has been obtained by

applying Eq. (4).
The number of graphs compatible with an order computed by this algo-

rithm can be very large. The size of L is initially equal to 1, and for each
variable Xσ(k) in 1, . . . ,m, this number is increased in the different calls to
Expand(σ,α,B,s,L,k). The increasing depends of the number of set of parents
in Q (computed in lines 9–10 of the algorithm). If for each, (G, u), we denote by
NU(G, u) the cardinality of Q, then the new cardinality of L′ is given by:
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∑

(G,u)∈L

NU(G, u)

Observe that if NU(G, u) is always equal to k, then the final number of net-
works is O(km), and the complexity is exponential. However, in the experiments
we have observed that this number is not very large (in the low size networks we
have considered) as the cardinality of sets Q is decreasing for most of the pairs
(G, u) when k increases, as the values u′ associated with the new pairs (G′, u′)
in L′ are always lower than the value u in the pair (G, u) giving rise to them
(see line 13 in the algorithm).

Above this, we have implemented some basic methods for computing the
entropy of the probability distribution associated with a Bayesian network
E(G, β) and the Kullback-Leibler divergence from a model (G, β) to another
one (G′, β′) given by KL((G′, β′), (G, β)). For that, following [11, Theorem 8.5],
we have implemented a function computing ELL((G′, β′), (G, β)) given by:

ELL((G′, β′), (G, β)) =
∑

x

P(G′,β′)(x) log(P(G,β)(x)).

For this computation, we take into account that P(G,β)(x) =∏m
i=1 P(G,β)(xi|pai), where pai is a generic configuration of the parents Pai of

Xi in G, obtaining the following expression:

ELL((G′, β′), (G, β)) =
m∑

i=1

∑

pai

P(G′,β′)(xi, pai) log(P(G,β)(xi|pai)).

In this expression, P(G,β)(xi|pai) is directly available in Bayesian network (G, β),
but P(G′,β′)(xi, pai) is not and have to be computed by means of propagation
algorithms in Bayesian network (G′, β′). This is done with a variable elimination
algorithm for each configuration of the parents Pai = pai, entering it as evidence
and computing the result for variable Xi without normalization. This provides
the desired value P(G′,β′)(xi, pai).

Finally, the values of entropy and Kullback-Leibler divergence are computed
as follows:

E(G, β) = −ELL((G′, β′), (G, β))

KL((G′, β′), (G, β)) = ELL((G′, β′), (G′, β)) − ELL((G′, β′), (G, β))

4 Experiments

To test the methods proposed in this paper we have carried out a series of exper-
iments with 3 small networks obtained from the Bayesian networks repository
in bnlearn web page [19]. The networks are: Cancer (5 nodes, 10 parameters),
Earthquake (5 nodes, 10 parameters), and Survey (6 nodes, 21 parameters). The
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main reason for not using larger networks was the complexity associated to com-
pute the Kullback-Leibler divergence for all the pairs of possible models. This is
a really challenging problem, as if the number of networks is T , then T (T − 1)
divergences must be computed, and each one of them, involves a significant num-
ber of propagation algorithms computing joint probability distributions. So, at
this stage the use of large networks is not feasible to select the network with
minimum maximum KL divergence to the rest of possible networks.

4.1 Experiment 1

In this case, we have considered a set of possible values for ESS, S =
{0.1, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0}, and we have repeated 200 times the fol-
lowing sequence:

– A dataset of size 500 is simulated from the original network.
– The set of possible networks is computed with a value of α = e−0.6.
– The maximum entropy network (MEntropy), the minimum of maximum

Kullback-Leibler divergence (MinMaxKL), and the maximum score network
for all the sample sizes (Bayesian) are computed. For all of them the Kullback-
Leibler divergence with the original one are also computed, as well as the
maximum (MaxKL) and minimum divergence (MinKL) of all the possible
models with the original one.

The means of the divergences of the estimated models can be seen in Table 1.
We can observe as the usual method for learning Bayesian networks (considering
the graph with highest score) gives rise to a network with a divergence between
the maximum and minimum of the divergences of all the possible networks,
and that the average is higher than the middle of the interval determined by
the averages of the minimum and the maximum. This supports the idea that
the Bayesian procedure somewhat makes an arbitrary selection among a set of
networks that are all plausible given the data. This idea is also supported by
Fig. 1 in which the density of the Bayesian, MinKL, and MaxKL divergences are
depicted for each one of the networks2. On it we can see the similarities between
the densities of these three values: of course the MinKL density is a bit biased
to the left and MaxKL density to the right, being the Bayesian density in the
middle, but with very small differences. This again supports the idea that all
the computed models should be considered as result of the learning process.

When selecting a single model, we also show that our alternative methods
based on considering a family of possible models and then selecting the one with
maximum entropy or minimum of maximum of Kullback-Leibler divergence pro-
duce networks with a lower divergence on average to the original one than the
usual Bayesian procedure. We have carried out a Friedman non-parametric test
and in the three networks the differences are significant (p-values: 0.000006,
0.0159, 0.0023, for Cancer, Earthquake, and Survey networks, respectively).
In a posthoc Friedman-Nemenyi test, the differences between MinMaxKL and
2 Plotted with Python seaborn package.
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Table 1. Means of divergences of estimated models and the original one

Network Bayesian MinKL MaxKL MEntroKL MinMaxKL

Cancer 0.013026 0.011225 0.014126 0.012712 0.012270

Earthquake 0.017203 0.013132 0.019769 0.016784 0.016072

Survey 0.031459 0.028498 0.033899 0.031257 0.030932

Fig. 1. Density for the Bayesian, minimum, and maximum Kullback-Leibler diver-
gences.

Bayesian are significant in Cancer and Survey networks (p-values: 0.027, 0.017)
but not in Cancer (p-value: 0.1187). The differences of MaxEntropy and the
Bayesian procedure are not significant.

4.2 Experiment 2

In this case, we have a similar setting than in Experiment 1, but what we have
measured is the number of networks that are obtained by our procedure (number
of elements in Mα

D) and the distribution of the number of networks by each ESS
s ∈ S. In Fig. 2 we can see the densities of the number of networks (left) and the
figure with the averages of the networks by each s ∈ S. First, we can observe
that the number of possible networks is low in average (below 5) for our selection
of networks, α, and sample size, but that the right queue of the densities is
somewhat large, existing cases in which the number of possible networks is 20
or more. With respect to the number of networks by value of ESS s, the most
important fact is that the distribution of networks by ESS is highly dependent of
the network, being the networks for Survey obtained with much higher values of
s than in the case of Cancer or Earthquake. This result puts in doubt the usual
practice of selecting a value of s when learning a Bayesian network without
thinking that this does not have an effect in the final result.
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Fig. 2. Densities of the number of networks (left) and average number of networks by
ESS (right).

4.3 Experiment 3

In this case, we compare the results of selecting a unique network by fixing
a value of s (the optimal one for this value) with the result of selecting the
parameter s and the network G optimizing the score. We again repeat a similar
experiment to the other two cases, but we compute the networks: the Bayesian
network, given by the pair (G, s) with highest score (the Bayesian approach
in Experiment 1), and the best graph for each one of the values s ∈ S. For
each one of the networks we compute the Kullback-Leibler divergence with the
original one. The results of the averages of these divergences are depicted in
Fig. 3 for each one of the networks. The dashed line represents the average of
the divergence pair (G, s) with best score. On it, we can see that selecting the
pair with best score is a good idea in Cancer network, as it produces an average
divergence approximately equal to the best selection of value of s, but that is
not the case of Earthquake and Survey networks, as there are many selections
of s producing networks with lowest divergences than the divergence of the pair
with best score. For this reason, is not always a good idea to select the equivalent
sample size by using an empirical likelihood approach (the sample size giving rise
to greatest likelihood). Other observation is that the shape of the densities of
the divergences is quite different by network. For example, in Survey the lowest
divergences are obtained with the highest values of s, while in Cancer a minimum
is obtained for a low sample size of 2.

4.4 Experiment 4

In this case we have tested the evolution of the number of possible networks (ele-
ments in Mα

D) as a function of the sample size. For this aim, instead of fixing a
sample size of 500, we have repeated the generation of a sample and the estima-
tion of the models Mα

D for different samples sizes (n = 400, 500, 1000, 2000, 5000,
10000, 20000, 40000) and for each value of n we have compute the number of
models in Mα

D (repeating it 200 times). Finally Fig. 4 shows the average number
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Fig. 3. Kulback Leibler of the best network and the best network by ESS s.

of models for each sample size. As it can be expected the number of models
decreases when the sample size increases, very fast at the beginning and more
slowly afterwards. In some cases, there are minor increasings in the average
number of models when the sample size increases. We think that this is due
to the fact that the density of the number of models has a long queue to the
right, existing the possibility of obtaining some few cases with a high number of
models. This fact can produce this small local irregularities.

Fig. 4. Evolution of the number of possible networks as a function of the sample size.

5 Conclusions and Future Work

In this paper we have applied the general procedure proposed in Moral [15] to
learn a generalized credal network (a set of possible Bayesian networks) given
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a dataset of observations. We have implemented algorithms for its computation
and we have shown that the results applied to learning from samples simulated
from small networks are promising. In particular, our main conclusion is that
the usual procedure of selecting a network with the highest score does not make
too much sense, when there is a set of networks that are equally plausible and
that represents probability distributions with a similar divergence to the one
associated with the true network. Even in this family, we can find networks
using other alternative procedures with smaller divergences to the original one,
as the case of considering the minimum of the maximum of Kullback-Leibler
divergences in the family of possible models.

Our plans for future work are mainly related to making scalable the proposed
procedures and algorithms. When the number of variables increases a direct
application of the methods in this paper can be unfeasible. We could try to
use more accurate bounds to prune A∗ search [3], but even so, the number of
networks for a threshold could be too large to be computed. Experiments in
this line are necessary. Then it would be convenient to develop approximations
that could learn a set of significant networks from the full family of possible
ones. Other line of research is to integrate several networks into a more compact
representation: for example if a group of networks share the same structure with
different probabilities try to represent it as a credal network with imprecision in
the probabilities.

Other important task is to try to use the set of possible models to answer
structural questions, as: is there a link from Xi to Xj? An obvious way to answer
it is to see whether this link is present in all the networks of set of learned models,
in none of the networks, or in some of them but not in all. In that case, the answer
could be yes, no, or possibly. But a theoretical study justifying this or alternative
decision rules would be necessary, as well as algorithms designed to answer these
questions without an explicit construction of the full set of models.
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Abstract. We consider a set of comparative probability judgements
over a finite possibility space and study the structure of the set of prob-
ability measures that are compatible with them. We relate the existence
of some compatible probability measure to Walley’s behavioural theory
of imprecise probabilities, and introduce a graphical representation that
allows us to bound, and in some cases determine, the extreme points of
the set of compatible measures. In doing this, we generalise some earlier
work by Miranda and Destercke on elementary comparisons.
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1 Introduction

The elicitation of probability measures can be cumbersome in situations of
imprecise or ambiguous information. To deal with this problem, a number of
approaches have been put forward in the literature: we may work for instance
with sets of probability measures, or credal sets; consider lower and/or upper
bounds of the ‘true’ probability measure, representing the information in terms
of non-additive measures; or model the information in terms of its behavioural
implications. These different models are often referred to with the common term
imprecise probabilities [1].

On the other hand, when the available information comes from expert judge-
ments it may be easier to model it in terms of comparative assessments of the
form ‘event A is at least as probable as event B.’ This leads to comparative
probabilities, that were studied first by de Finetti [5] and later by other authors
such as Koopman [9], Good [7] or Savage [15]. For a recent thorough overview,
as well as an extensive philosophical justification and a summary of the most
important results, we refer to [8].

c© Springer Nature Switzerland AG 2020
M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1238, pp. 165–179, 2020.
https://doi.org/10.1007/978-3-030-50143-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50143-3_13&domain=pdf
http://orcid.org/0000-0002-0409-2999
http://orcid.org/0000-0001-7763-3779
https://doi.org/10.1007/978-3-030-50143-3_13


166 A. Erreygers and E. Miranda

In this paper, we consider a collection of comparative probability judgements
over a finite possibility space and study the structure of the set of compatible
probability measures. Specifically, we shall investigate in which cases this set is
non-empty, the number of its extreme points and their features, and the proper-
ties of its associated lower probability. While most earlier work on comparative
probabilities has mainly focused on the complete case—that is, the case where
any two events are compared—ours is not the first study of the incomplete one;
in this respect, the most influential works for this paper are those of Walley [17,
Section 4.5] and Miranda and Destercke [11]. Our present contribution has the
same goals as that of Miranda and Destercke, but our setting is more general:
where they exclusively focused on the specific case of comparisons between ele-
mentary events, we generalise some of their results to the case of comparisons
between arbitrary events.

The paper is organised as follows. We start with a formal introduction of
comparative assessments in Sect. 2, and subsequently discuss the compatibility
problem and show that it can be easily tackled using Walley’s theory of lower
previsions. From Sect. 3 on, we study the set of extreme points of the associated
credal set. To that end, we introduce a graphical representation in Sect. 4; this
representation allows us to determine the number of extreme points in a num-
ber of special cases in Sect. 5, where we also argue that this approach cannot
be extended to the general case. We conclude in Sect. 6 with some additional
comments and remarks. Due to space constraints, proofs have been omitted.

2 Comparative Assessments and Compatibility

Consider a finite possibility space X with cardinality n, and a (finite) number m
of comparative judgements of the form ‘event A is at least as likely as event B.’
For ease of notation, we will represent the i-th judgement as a pair (Ai, Bi)
of events—that is, subsets of the possibility space X . Finally, we collect all m
judgements in the comparative assessment

C := {(Ai, Bi) : i ∈ {1, . . . ,m}, Ai, Bi ⊆ X }.

Equivalently, the comparative judgements can be represented in terms of a
(possibly partial) binary relation � on 2X , the power set of the possibility
space X , with A � B being equivalent to (A,B) ∈ C . Miranda and Dester-
cke [11] exclusively dealt with comparative assessments that consist of com-
parative judgements that concern singletons, or equivalently, are a subset of
{({x}, {y}) : x, y ∈ X }. We follow them in calling such comparative assessments
elementary.

Throughout this contribution we will use a running example to illustrate
much of the introduced concepts.

Running Example. Let X := {1, 2, 3, 4} and

C := {({1}, {2}), ({1, 2}, {3}), ({1, 3}, {4}), ({1, 2}, {4})}.
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Clearly, the corresponding partial binary relation � is given by {1} � {2},
{1, 2} � {3}, {1, 3} � {4} and {1, 2} � {4}. �

Let ΣX denote the set of all probability mass functions on X . We follow the
authors of [8,11,13,17] in considering the set

MC :=
{

p ∈ ΣX : (∀(A,B) ∈ C )
∑
x∈A

p(x) ≥
∑
x∈B

p(x)
}

(1)

of all probability mass functions that are compatible with the comparative judge-
ments. Following Levi [10], we call MC the comparative credal set.

Given a set C of comparative judgements, we should first of all determine
whether or not there is at least one compatible probability measure—that is, if
the comparative credal set MC is non-empty. In the case of elementary judge-
ments [11], this is trivial because the uniform probability distribution is com-
patible with any elementary comparative assessment. Unfortunately, when more
elaborate judgements are allowed this is no longer the case, as is demonstrated
by the following example.

Example 1. Consider the possibility space X := {1, 2, 3} and the comparative
assessment C := {({1}, {2, 3}), ({2}, {1, 3}), ({3}, {1, 2})}. It follows immedi-
ately from these judgements that any compatible probability mass function p
should satisfy p(1) ≥ 1/2, p(2) ≥ 1/2 and p(3) ≥ 1/2. However, this is clearly
impossible, whence MC = ∅. �

2.1 Connection with Sets of Desirable Gambles

The existence of a compatible probability measure was characterized in [16, The-
orem 4.1] in the case of complete comparative assessments and in [14, Propo-
sition 4] and [13, Section 2] in the case of partial comparative assessments; see
also [17, Section 4.5.2]. In this section, we use Walley’s result to establish a con-
nection with the theory of sets of desirable gambles, from which we shall derive
a number of additional results. We refer to [17] for a detailed account of the
theory.

A gamble f is a real-valued map on our finite possibility space X . The set of
all gambles on X is denoted by L, and dominance between gambles is understood
pointwise. Within L we may consider the subset L+ := {f ∈ L : f ≥ 0, f �= 0} of
non-negative gambles, that in particular includes the indicator IA of some event
A ⊆ X , taking value 1 on A and 0 elsewhere.

It is often convenient to think of a gamble f as an uncertain reward expressed
in units of some linear utility scale: in case the outcome of our experiment is
x, our subject receives the—possibly negative—pay-off f(x). With this inter-
pretation, our subject can specify a set of almost desirable gambles K, being
some set of gambles—or uncertain rewards—that she considers acceptable. Such
a set K of almost desirable gambles can be extended to include gambles that
are implied by rational behaviour; the least-committal of these extensions is the
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natural extension of K, which is defined as DK := posi(K ∪ L+), where we con-
sider the topological closure under the supremum norm and the posi operator is
defined for any set of gambles K′ ⊆ L as

posi(K′) :=

{
k∑

i=1

λifi : k ∈ N, λi > 0, fi ∈ K
}

,

with N the set of natural numbers—that is, not including zero. We say that a set
of almost desirable gambles K avoids sure loss if and only if max f ≥ 0 for all
f ∈ DK, and that it is coherent when K = DK. It turns out that DK is coherent
if and only if K avoids sure loss, and that K avoids sure loss if and only if there
exists a probability mass function p such that

∑
x∈X f(x)p(x) ≥ 0 for every

f ∈ K. As a consequence, the compatibility of C is equivalent to verifying that

KC := {IA − IB : (A,B) ∈ C } (2)

avoids sure loss, which immediately leads to the following proposition—see also
[14, Proposition 4], [13, Section 2] or [17, Lemma 3.3.2].

Proposition 1. The comparative credal set MC is non-empty if and only if for
every λ : {1, . . . ,m} → N ∪ {0}, max

∑m
i=1 λ(i)(IAi

− IBi
) ≥ 0.

Any set of gambles K ⊆ L determines a lower prevision PK on L defined as

PK(f) := sup{μ ∈ R : f − μ ∈ K} for all f ∈ L

and a conjugate upper prevision PK defined as PK(f) := −PK(−f) for all f ∈ L.
The lower prevision PK and its conjugate upper prevision PK are coherent if and
only if K is coherent. Throughout this contribution, we let PC and PC denote
the lower and upper previsions determined by DKC

. We can use PC to verify
whether or not a comparative judgement is saturated and/or redundant:

Proposition 2. Consider an assessment C such that MC is non-empty.
If there is a comparative judgement (A,B) ∈ C such that IA − IB ∈
posi(KC \ {IA − IB}), then MC = MC \{(A,B)}. If no (A,B) ∈ C satisfies this
condition, then PC (IA − IB) = 0 for every (A,B) ∈ C if and only if for every
gamble f ∈ KC , f /∈ DKf

with Kf := KC \ {f}.
This means that we should first analyse if each constraint (Ai, Bi) can be
expressed as a positive linear combination of the other constraints in C ; if this
is the case, we can remove (Ai, Bi) from our set of assessments. Once we have
removed all these redundancies, any constraint that cannot be expressed as a
linear combination of the other constraints together with trivial assessments of
the type (A, ∅) with ∅ �= A ⊆ X will be saturated by some p ∈ MC when the
latter set is non-empty.
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3 Bounding the Number of Extreme Points

It follows immediately from the properties of probability mass functions that the
comparative credal set MC defined in Eq. (1) is a convex polytope as it is the
intersection of n + m + 1 half spaces. It is well-known that if a convex polytope
is non-empty, it is completely defined by its extreme points. A bound on the
number of extreme points follows from McMullen’s theorem [4]:

|ext(MC )| ≤
(

m + 1 + �n
2 

m + 1

)
+

(
m + �n

2 �
m + 1

)
. (3)

It is also possible to establish an upper bound on the number of extreme points
that is independent on the number of comparative judgements; its proof is a
relatively straightforward modification of the proofs of [3, Theorem 4.4] or [18,
Theorem 5.13].

Proposition 3. For any assessment C , |ext(MC )| ≤ n! 2n.

To give a sense of the absolute and relative performance of these bounds, we
reconsider our running example.

Running Example. One can easily verify that the extreme points of the credal
set MC are

p1 := (1, 0, 0, 0), p2 := (1/2, 1/2, 0, 0), p3 := (1/2, 0, 1/2, 0),
p4 := (1/2, 0, 0, 1/2), p5 := (1/3, 1/3, 0, 1/3), p6 := (1/3, 0, 1/3, 1/3),
p7 := (1/4, 1/4, 1/2, 0), p8 := (1/5, 1/5, 1/5, 2/5), p9 := (1/6, 1/6, 1/3, 1/3).

Hence, |ext(MC )| = 9; the upper bounds on the number of extreme points of
Eq. (3) and Proposition 3 are 27 and 384, respectively. �

On the other hand, the minimum number of extreme points of a non-empty
comparative credal set MC , regardless of the cardinality of the possibility space,
is 1: if X := {1, . . . , n} and C := {({i}, {i+1}) : i = 1, . . . , n−1}∪{({n}, {1})},
then MC only includes the uniform distribution on X , and as a consequence
there is only one extreme point.

Our upper bound on the number of extreme points depends on the cardinality
of the space n and the number m of comparative assessments; thus, the bound
can be made tighter if we remove constraints that are redundant because they
are implied by other constraints and the monotonicity and additivity properties
of probability measures. For instance, we may assume without loss of generality
that

(∀(A,B) ∈ C ) A �= X , B �= ∅, A ∩ B = ∅. (C0)

This allows us to bound the cardinality of C :

Proposition 4. If C satisfies (C0), then m ≤ 3n − 2n+1 + 1.
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Similarly, we may assume without loss of generality that any (A,B) ∈ C cannot
be made redundant in the following senses:

(� ∃(A′, B′) ∈ C , (A′, B′) �= (A,B)) A′ ⊆ A,B′ ⊇ B. (monotonicity)
(�(A1, B1), (A2, B2) ∈ C ), A = A1 ∪ A2, B = B1 ∪ B2, A1 ∩ A2 = ∅. (additiv.)

(�B1, B2 ∈ 2X , B1 ⊇ B2) (A,B1) ∈ C , (B2, B) ∈ C . (transitivity)

Nevertheless, it is more fruitful to detect redundant constraints using the theory
of coherent lower previsions, as we did in Proposition 2. In this manner, given
an initial (finite) set C of comparative assessments, we may proceed iteratively
and remove all the redundant constraints, and then use Eq. (3) to bound the
number of extreme points of the comparative credal set MC .

4 A Graphical Approach

Essential for the results established in [11] is the representation of the elemen-
tary comparative assessments as a digraph. In the non-elementary case, such a
graphical representation will also be helpful. Throughout this contribution we
use the graph theoretic terminology as defined in [6]; we do allow ourselves one
difference, however: we prefer to use nodes instead of vertices.

4.1 Representing the Comparative Assessment as a Graph

Miranda and Destercke [11] proposed a straightforward but powerful representa-
tion of the elementary comparative assessment C as a digraph: the atoms of the
possibility space correspond to the nodes, and a directed edge is added from x
to y for every ({x}, {y}) ∈ C . The extreme points of the credal set are then
obtained through the top subnetworks generated by certain sets of nodes [11,
Theorem 1].

Because we do not limit ourselves to elementary comparative judgements, we
cannot simply take over their construction. One straightforward generalisation
of the aforementioned construction is to add a directed edge from x to y if there
is a comparative judgement (A,B) ∈ C with x ∈ A and y ∈ B. However, this
approach is not terribly useful because there is loss of information: clearly, the
digraph alone does not contain sufficient information to reconstruct the com-
parative judgements it represents. To overcome this loss of information and to
end up with one-to-one correspondence, we borrow a trick from Miranda and
Zaffalon [12] and add dummy nodes to our graph.

We represent the assessment C as a digraph G as follows. First, we add one
node for every atom x in the possibility space X . Next, for every compari-
son (Ai, Bi) in the assessment C , we add an auxiliary node ξi, and we add a
directed edge from every atom x in Ai to this auxiliary node ξi and a directed
edge from the auxiliary node ξi to every atom y in Bi. Formally, the set of nodes
is N := X ∪ {ξ1, . . . , ξm} and the set of directed edges is

E :=
m⋃

i=1

{(x, ξi) : x ∈ Ai} ∪ {(ξi, y) : y ∈ Bi}.
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Running Example. The corresponding digraph G is depicted in Fig. 1. �

Fig. 1. The digraph G of the running example

Fix some node ν in the digraph G. Following [11], we use H(ν) to denote the set
that consists of the node ν itself and all of its predecessors, being those nodes ν′

such that there is a directed path from ν′ to ν. Following [2,11], for any subset N
of the set of nodes N , we let H(N) := ∪ν∈NH(ν) be the so-called top subnetwork
generated by N . We will exclusively be concerned with the restriction of these
top subnetworks to non-auxiliary nodes; therefore, we define H ′(x) := H(x)∩X
for any x in X and H ′(A) := H(A) ∩ X = ∪x∈AH ′(x) for all A ⊆ X .

Running Example. The top subnetwork of the node 1 is H(1) = {1} and that of
node 3 is H(3) = {1, ξ1, 2, ξ2, 3}. Hence, H ′({1, 3}) = {1, 2, 3}. �

4.2 Some Basic Observations

The following results are straightforward observations that follow almost imme-
diately from our graphical representation G of the comparative assessment C .
The first lemma gives a useful sufficient condition for the existence of a compat-
ible probability measure.

Lemma 1. If the digraph G has a node with zero indegree , then MC �= ∅.
To facilitate the statement of the following and future results, we introduce
some additional notation. For any non-empty event A ⊆ X , we denote the
uniform distribution over A as pA. In the particular case that the event A is
the singleton {x}, we also speak of the degenerate distribution on x. The second
lemma links atoms without predecessors with extreme points that are degenerate
distributions.

Lemma 2. If x ∈ X is a node with zero indegree, then the degenerate distribu-
tion p{x} on x is an extreme point of the comparative credal set MC .

Running Example. Observe that the node 1 is the only node with zero indegree.
Then, Lemmas 1 and 2 imply that (i) the comparative credal set MC is non-
empty; and (ii) the degenerate distribution on 1 is an extreme point because
p1 = p{1}. �



172 A. Erreygers and E. Miranda

Our next result uses the well-known fact—see for instance [6, Sections 1.6
and 1.4.1]—that any digraph H can be uniquely decomposed into its connected
components: the subdigraphs H1, . . . ,Hk such that (i) H = ∪k

i=1Hi, (ii) each
subdigraph Hi is connected, and (iii) Hi and Hj are not connected for any i �= j.
For elementary comparative assessments, it is shown in [11, Proposition 2] that
the extreme points of the comparative credal set can be obtained by determining
the extreme points of the (elementary assessments induced by the) connected
components separately. Our next result generalises this to general comparative
assessments.

Proposition 5. Denote the connected components of the digraph G by
G1, . . . ,Gk. For every connected component Gi, we denote its set of non-auxiliary
nodes by Xi and we let Ci be the comparative assessment with possibility space Xi

that is in one-to-one correspondence with Gi. Then

ext(MC ) =
k⋃

i=1

{extend(pi) : pi ∈ ext(MC i
)},

where extend(pi) is the cylindrical extension of pi to X that is obtained by
assigning zero mass to X \ Xi.

Because of this result, without loss of generality we can restrict our attention in
the remainder to digraphs G that are connected. It is also immediate to establish
the following result.

Proposition 6. Consider a set of comparative assessments C , and let C ′ :=
C ∪{(A,B) : A ⊃ B}. If there is a cycle A1 � A2 � A3 � · · · � Ak � Ak+1 = A1

in C ′, then for any p ∈ MC , any i, j ∈ {1, . . . , k} such that Aj ⊂ Ai and any
x ∈ Ai \ Aj, p(x) = 0.

In the language of Sect. 2, this means that PC (IAi\Ai+1) = 0 if Ai+1 ⊂ Ai, so
any atom in Ai \ Ai+1 will always have zero mass. Hence, we can simplify the
digraph G by removing nodes that are sure to have zero mass: (i) any atom in
Ai \ Ai+1 with Ai+1 ⊂ Ai; and (ii) if these removals result in the formation of
one or more extra disconnected components, the entirety of those disconnected
components that used to be connected exclusively by incoming directed edges
from (the direct successors of) the previously removed atoms.

Remark 1. This graphical representation also allows us to simplify somewhat
the study of the compatibility problem and the extreme points in the following
manner. We define a relationship R between the elements of X as xRy if and
only if there is a directed cycle going through x and y. It is easy to see that R is an
equivalence relationship. Hence, we may consider the different equivalence classes
and the directed edges between them that can be derived from G, leading to a
new acyclic digraph G′ on the equivalence classes. Let G′

i denote the subdigraph
associated with the i-th equivalence class and Ci the corresponding subset of
comparative judgements. Observe that
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– the set MC is non-empty if and only if at least one of the sets MC i
is non-

empty, where the associated graph G′
i has no predecessors in G′;

– if a subgraph G′
i is such that MC i

is empty, then for each of its successors G′
j

any element of MC gives zero probability to the nodes in G′
j .

This also allows us to remove redundant parts of the graph. �

4.3 Acyclic Digraphs

If a digraph is free of directed cycles, then we call it acyclic [6, Section 4.2]. Any
acyclic digraph has at least one node with zero indegree [6, Lemma 4.1]. There-
fore, the following result is an immediate corollary of Lemma 1; alternatively, it
is also a corollary of Propositions 8 and 10.

Corollary 1. If the digraph G associated with the comparative assessment C is
acyclic, then the associated comparative credal set MC is non-empty.

On the other hand, a digraph is acyclic if and only if it has a topological ordering,
sometimes also called an acyclic numbering [6, Proposition 4.1]. This necessary
and sufficient condition allows us to establish the following result.

Proposition 7. The digraph G associated with C is acyclic if and only if there
is an ordering x1, . . . , xn of the atoms of the possibility space X such that

(∀(A,B) ∈ C )(∃i ∈ {1, . . . , n − 1}) A ⊆ {x1, . . . , xi} and B ⊆ {xi+1, . . . , xn}.

Running Example. It is easy to verify using Fig. 1 that the graph G is acyclic,
and we have seen that the comparative credal set is non-empty. Furthermore,
the ordering of Proposition 7 is clearly 1, 2, 3, 4. �

4.4 Strict Comparative Assessments

Our graphical representation also has implications when we consider a strict
preference relation, where A � B is to be interpreted as ‘the event A is more
likely than event B.’ For a given set C of comparative judgements, we now
consider the set

M>
C :=

{
p ∈ ΣX : (∀(A,B) ∈ C )

∑
x∈A

p(x) >
∑
y∈B

p(y)
}

of probability mass functions that are compatible with the strict comparative
judgements. Since the set MC is a polytope, it follows that it is the closure
of M>

C , provided that this latter set is non-empty. In our case, we can prove
something stronger: that M>

C is the topological interior of MC .

Proposition 8. For any comparative assessment C , M>
C = int(MC ).

In our next result, we establish a necessary and sufficient condition for M>
C to

be non-empty.
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Proposition 9. Let C be a finite set of strict comparative assessments. Then
the following are equivalent:

(a) M>
C �= ∅.

(b) Given the set KC defined by Eq. (2), 0 /∈ posi(KC ∪ L+).
(c) For every (A,B) ∈ C , PC (IA − IB) > 0.

In the case of elementary comparisons, it was established in [11, Lemma 1] that
M>

C is non-empty if and only if the digraph C is acyclic. In the general case,
the lack of directed cycles turns out to be sufficient as well.

Proposition 10. Let C be a set of strict comparative assessments. If the asso-
ciated digraph G is acyclic, then M>

C �= ∅.
Quite remarkably and in contrast with the case of elementary probability com-
parisons, M>

C can be non-empty even though the digraph G has directed cycles.
For example, if X = {1, 2, 3} and we make the assessments ({1, 2}, {3}) and
({3}, {1}), then the graph has a cycle involving 1 and 3; however, the probabil-
ity mass function (0.25, 0.45, 0.3) is compatible with the strict assessments.

On the other hand, a necessary condition for M>
C to be non-empty is that

we cannot derive from C a cycle of the type A1 � A2 � · · · � Ak � A1. This
is equivalent to the graph being acyclic in the case of elementary probability
comparisons, and this is what leads to [11, Lemma 1]; however, the two conditions
are not equivalent in the general case.

5 Extreme Points of the Comparative Credal Set

As we have often mentioned before, Miranda and Destercke [11] show that in
the case of elementary comparative assessments, the extreme points of the com-
parative credal set can be determined using the graphical representation. More
specifically, they show that:

E1. all the extreme points of MC correspond to uniform probability distributions
[11, Lemma 2];

E2. if C ⊆ X is the support of an extreme point, then C = H ′(C) [11, Lemma 3];
E3. there are at most 2n−1 extreme points, and this bound is tight [11, Theo-

rem 4].

Unfortunately, these observations do not hold in the case of non-elementary
comparative assessments, as is illustrated by the following example.

Example 2. Let X := {1, . . . , 5}, and let C be given by

C := {({1, 4}, {5}), ({2, 4}, {1}), ({2, 5}, {1}), ({2, 3, 5}, {4}), ({2, 3}, {1}),
({2, 4, 5}, {3}), ({1, 2, 3}, {4, 5}), ({3, 4}, {5}), ({1, 5}, {3}),
({1, 3, 4, 5}, {2}), ({1, 3, 5}, {4}), ({3, 4, 5}, {1})}.

The 34 extreme points of MC are reported in Tab. 1. Note that 34 > 25 = 32. �
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Table 1. The extreme points of the comparative assessment in Example 2.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

pi(1) 1
3

1
3

1
4

3
8

1
7

1
5

1
5

0 1
6

1
4

1
4

1
3

1
4

1
4

1
3

3
14

4
11

pi(2) 1
3

1
3

0 2
8

0 0 1
5

1
2

0 1
4

1
8

1
3

1
4

1
4

1
3

1
14

3
11

pi(3) 0 1
3

1
4

1
8

3
7

2
5

2
5

0 1
3

0 1
8

0 0 1
4

1
6

3
14

1
11

pi(4) 1
3

0 1
4

1
8

1
7

1
5

0 1
4

1
6

3
8

3
8

1
6

1
4

0 0 2
14

1
11

pi(5) 0 0 1
4

1
8

2
7

1
5

1
5

1
4

1
3

1
8

1
8

1
6

1
4

1
4

1
6

5
14

2
11

i 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

pi(1) 3
12

0 1
10

1
6

1
5

2
12

0 1
4

1
4

1
4

1
6

1
8

1
4

0 0 1
4

1
7

pi(2) 1
12

1
4

0 0 1
5

1
12

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
3

1
2

1
2

1
7

pi(3) 2
12

1
4

4
10

1
3

1
5

3
12

1
6

0 0 1
4

1
6

1
4

1
8

1
6

1
8

1
8

3
14

pi(4) 2
12

1
4

2
10

1
3

2
5

5
12

1
6

1
4

1
8

0 0 0 0 1
3

1
4

1
4

3
7

pi(5) 4
12

1
4

3
10

1
6

0 1
12

1
6

0 1
8

0 1
6

1
8

1
8

1
6

1
8

0 1
14

We learn from Example 2 that (E1) does not hold because p4 is not a uni-
form distribution; (E2) does not hold because the support of p1 is {1, 2, 4} but
H ′({1, 2, 4}) = {1, 2, 3, 4, 5}; and (E3) does not hold because there are more
than 25−1 = 16 extreme points. In fact, we see that a comparative credal set
can have more than 2n extreme points. Consequently, we cannot use the strat-
egy of [11, Algorithm 1]—that is, construct the possible supports and use the
uniform distribution over them—to immediately determine the extreme points
of the comparative credal set for some general comparative assessment. That
being said, we have nevertheless identified some special cases other than the
elementary one in which we can generate the extreme points procedurally.

5.1 Multi-level Partitions of Comparative Assessments

As a first special case, we consider a straightforward extension of [11] using a
multi-level approach. At the core of this special case are some nested partitions
of the possibility space and the restriction that the comparative judgements
can only concern events that are on the same level of the nested partitions and
belong to the same part of the partition in the previous level. We will here only
explain the two-level case in detail; extending the approach to multiple levels is
straightforward.

Let C1, . . . , Ck be a partition of the possibility space X . A comparative
assessment C is two-level over this partition if it can be partitioned as

C = C ′ ∪
k⋃

i=1

Ci,

with C ′ ⊆ {(A,B) : A,B ∈ {C1, . . . , Ck}} and Ci ⊆ {(x, y) : x, y ∈ Ci} for
all i ∈ {1, . . . , k}. Observe that if such a decomposition exists, then we can
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interpret C ′ as an elementary comparative assessment with possibility space
X ′ := {C1, . . . , Ck} and, for all i ∈ {1, . . . , k}, we can interpret Ci as an elemen-
tary comparative assessment with possibility space Ci. Hence, we may use the
algorithm described in [11] to determine the extreme points of the comparative
credal sets corresponding to these elementary comparative assessments, which we
shall denote by Mel, Mel,1, . . . , Mel,k, respectively. The following result estab-
lishes that we can combine these extreme points to obtain the extreme points of
the original comparative credal set MC .

Proposition 11. Consider a comparative assessment C that is two-level over
the partition C1, . . . , Ck of the possibility space X . Then ext(MC ) is given by

{comb(p, p1, . . . , pk) : p ∈ ext(Mel), (∀i ∈ {1, . . . , k}) pi ∈ ext(Mel,i)},

where comb(p, p1, . . . , pk) is the probability mass function defined for all i ∈
{1, . . . , k} and x ∈ Ci as comb(p, p1, . . . , pk)(x) := p(Ci)pi(x).

Furthermore, as corollary of Proposition 11 and [11, Theorem 4] we obtain the
following bound on the number of extreme points.

Corollary 2. Consider a comparative assessment C that is two-level over some
partition. Then |ext(MC )| ≤ 2n−1.

5.2 Acyclic Digraphs

Recall from Sect. 4.4 that the absence of cycles simplifies things if we are inter-
ested in the compatibility with strict comparative judgements. Hence, it does
not seem all too far-fetched that determining the (number of) extreme points
of the comparative credal set induced by a (non-strict) comparative assessment
also simplifies under the absence of cycles. As will become clear in the remainder,
this is only certainly so in some special cases.

First, we revisit the three main points of [11] that we recalled at the beginning
of this section in the case of acyclic graphs. Our running example shows that also
in the acyclic case (E1) does not hold because p7, p8 and p9 are not uniform; (E2)
does not hold because p3 has support C3 := {1, 3} but H ′(C3) = {1, 2, 3} �= C3;
and (E3) does not hold because there can be more than 24−1 = 8 extreme points.
Furthermore, since different extreme points can have the same support—in our
running example, this is the case for p7, p8 and p9—there is no reason why
the number of extreme points should be bounded above by 2n. Nevertheless,
and despite our rather extensive search, we have not succeeded in finding an
example of a comparative assessment C with an acyclic digraph G that has a
comparative credal set with more than 2n extreme points. This is in contrast
with the cyclic case, as we have shown in Example 2.

While the absence of cycles alone does not seem to allow us to efficiently
determine the extreme points, there are two interesting special cases that permit
us to do so. Essential to both these special cases is a specific class of subdigraphs
of the digraph G. To define this class, we first need to introduce two concepts
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from graph theory. The first concept is that of the root of a digraph H: a node ν
such that for any other node ν′, there is a directed path from ν to ν′. The
second concept is that of an arborescence: a digraph that has a root and whose
underlying graph is a tree. We now call a subdigraph G′ of the digraph G an
extreme arborescence if (i) it is an arborescence whose root x� has no predecessors
in the digraph G; and (ii) each of its auxiliary nodes has one direct predecessor
and one direct successor.

Important to note here is that all extreme arborescences can be easily pro-
cedurally generated. In essence, one needs to (i) select a node x without pre-
decessors in the original digraph G; (ii) either stop or, if possible, (a) add one
of the outgoing edges of x and the auxiliary node ξ in which it ends, (b) add
one of the outgoing edges of ξ and the atom y such that y is not already in the
arborescence; (iii) repeat step (ii) but with x being any of the atoms already in
the arborescence.
Singular Assessments. The first special case of acyclic digraphs concerns rep-
resenting digraphs where every atom has at most one direct predecessor. We
call a comparative assessment C singular if |{(A,B) ∈ C : x ∈ B}| ≤ 1 for all
x ∈ X .

We see for instance that the comparative assessment in our running exam-
ple is not singular, since 4 appears in both the assessments ({1, 3}, {4}) and
({1, 2}, {4}), while the comparative assessment C := {({1}, {2}), ({1, 2}, {3}),
({2, 3}, {4})}, represented in Fig. 2, is.

1 ξ1 2 ξ2 3 ξ3 4

Fig. 2. A singular digraph G

The graph associated with a singular assessment need not be acyclic—for
example, let X = {1, 2, 3} and consider the comparative judgements ({1}, {2}),
({2}, {3}) and ({3}, {1}). In case it is, we can establish the following:

Theorem 1. Consider a singular assessment C such that the associated
digraph G is acyclic. Then every extreme point p of MC corresponds to a unique
extreme arborescence G′ ⊆ G and vice versa, in the sense that p is the unique
probability mass function that saturates the comparative constraints associated
with the auxiliary nodes in G′ and the non-negativity constraints associated with
the atoms that are not in G′.

Because we can procedurally generate all extreme arborescences, it follows that
we can use Theorem 1 to generate all extreme points of the comparative credal
set. Another consequence of Theorem 1 is that we can establish a lower and
upper bound on the number of extreme points in the singular case.

Theorem 2. Consider a singular assessment C such that the associated
digraph G is acyclic. Then n ≤ |ext(MC )| ≤ 2n−1.
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These lower and upper bounds are reached, as we can see from [11, Section 4.1].

Arborescences. Finally, we consider the case that the digraph G is an arbores-
cence. Clearly, for this it is necessary that C is singular and that |A| = 1 for
every (A,B) ∈ C . As arborescences are special types of acyclic digraphs, we can
strengthen Theorem 1 to be—in some sense—similar to [11, Theorem 1].

Theorem 3. Consider and assessment C such that the associate graph is an
arborescence. Then the set of extreme points of MC consists of the uniform
distributions on H ′(C), where C is any set of atoms such that, for all x, y ∈ C,
the closest common predecessor of x and y is a non-auxiliary node.

We also observe that the bound on the number of extreme points established in
Theorem 2 is still valid. To see that this result does not extend to all singular
assessments, it suffices to take the extreme points of the assessment depicted in
Fig. 2.

6 Conclusions

Although we find the results in this paper promising, there are some open prob-
lems that call for additional research, which should help towards making this
model more operative for practical purposes. First and foremost, we would like
to deepen the study of the acyclic case, and in particular to determine the num-
ber and the shape of the extreme points in other particular cases. In addition, a
bound on the number of linearly independent constraints, in the manner hinted
at in Sect. 3, should let us get a better bound on the number of extreme points.
Finally, we should also look for graph decompositions that allow to work more
efficiently with comparative judgements.
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Abstract. I introduce and study a new notion of Archimedeanity for
binary and non-binary choice between options that live in an abstract
Banach space, through a very general class of choice models, called sets
of desirable option sets. In order to be able to bring horse lottery options
into the fold, I pay special attention to the case where these linear spaces
do not include all ‘constant’ options. I consider the frameworks of con-
servative inference associated with Archimedean choice models, and also
pay quite a lot of attention to representation of general (non-binary)
choice models in terms of the simpler, binary ones. The representation
theorems proved here provide an axiomatic characterisation of, amongst
other choice methods, Levi’s E-admissibility and Walley–Sen maximality.

Keywords: Choice function · Coherence · Archimedeanity · Set of
desirable option sets.

1 Introduction

This paper is about rational decision making under uncertainty using choice
functions, along the lines established by Teddy Seidenfeld and colleagues [12].
What are the underlying ideas? A subject is to choose between options u, which
are typically uncertain rewards, and which live in a so-called option space V.
Her choices are typically represented using a rejection function R or a choice
function C. For any finite set A of options, R(A) ⊆ A contains those options
that our subject rejects from the option set A, and the remaining options in
C(A) = A\R(A) are the ones that are then still being considered. It is important
to note that C(A) is not necessarily a singleton, so this approach allows for
indecision. Also, the binary choices are the ones where A has only two elements,
and I will not be assuming that these binary choices completely determine the
behaviour of R or C on option sets with more than two elements: I will be
considering choice behaviour that is not necessarily binary in nature.

My aim here is to present a theory of coherent and Archimedean choice
(functions), complete with conservative inference and representation results, for
very general option spaces: general Banach spaces that need not have constants.
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For the basic theory of coherent choice (functions) on general linear option spaces
but without Archimedeanity, I will rely fairly heavily on earlier work by Jasper
De Bock and myself [6,7]. The present paper expands that work to include a
discussion of a novel notion of Archimedeanity. Since this approach needs a
notion of closeness, I will need to focus on option spaces that are Banach, but
I still want to keep the treatment general enough so as to avoid the need for
including constant options.

The reasons for working with option spaces that are general linear spaces are
manifold, and were discussed at length in [7]. In summary, doing so allows us
to deal with options that are gambles [14,19], i.e. bounded real-valued maps on
some set of possible states X , that are considered as uncertain rewards. These
maps constitute a linear space G(X ), closed under point-wise addition and point-
wise multiplication with real numbers. But it also brings in, in one fell swoop,
vector-valued gambles [15,23], polynomial gambles to deal with exchangeability
[2,16], equivalence classes of gambles to deal with indifference [18], and abstract
gambles defined without an underlying possibility space [21,22]. In all these
cases, the space of options essentially includes all real constants—or constant
gambles. But when we want our approach to also be able to deal generically
with options that are horse lotteries, it is obvious that we need to consider
option spaces that do not include all real constants.

In order to keep the length of this paper manageable, I have decided to
focus on the mathematical developments only, and to keep the discussion fairly
abstract. For a detailed exposition of the motivation for and the interpreta-
tion of the choice models discussed below, I refer to earlier joint papers by
Jasper De Bock and myself [6,7]. I also recommend Jasper De Bock’s most recent
paper on Archimedeanity [5], as it contains a persuasive motivation for the new
Archimedeanity condition, in the more restrictive and concrete context where
options are gambles. I introduce binary choice models on abstract option spaces
in Sect. 2, and extend the discussion to general—not necessarily binary—choice
in Sect. 3. After these introductory sections, I focus on adding Archimedean-
ity to the picture. The basic representation tools that will turn out to be use-
ful in this more restricted context, namely linear and superlinear bounded real
functionals, are discussed in Sect. 4. The classical approach to Archimedeanity
[10,11,19] for binary choice—which I will call essential Archimedeanity—is given
an abstract treatment in Sect. 5. Sections 6 and 7 then deal with the new notion
of Archimedeanity in the binary and general case, and discuss conservative infer-
ence and the representation of general Archimedean choice models in terms of
binary (essentially) Archimedean ones. I conclude in Sect. 8 by stressing the rele-
vance of my findings. Proofs for the results given below can be found in preprint
version on arXiv [1].

2 Coherent Sets of Desirable Options

We begin by considering a linear space V, whose elements u are called options,
and which represent the objects that a subject can choose between. This option
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space V has some so-called background ordering �, which is ‘natural’ in that we
assume that our subject’s choices will always at least respect this ordering, even
before she has started reflecting on her preferences. This background ordering �
is taken to be a strict vector ordering on u, so an irreflexive and transitive binary
relation that is compatible with the addition and scalar multiplication of options.

We will assume that our subject’s binary choices between options can be
modelled by a so-called set of desirable options D ⊆ V, where an option is
called desirable when the subject strictly prefers it to the zero option. We will
denote the set of all possible set of desirable option sets—all subsets of V—
by D. Of course, a set of desirable options D strictly speaking only covers the
strict preferences � between options u and 0: u � 0 ⇔ u ∈ D. For other strict
preferences, it is assumed that they are compatible with the vector addition of
options: u � v ⇔ u − v � 0 ⇔ u − v ∈ D.

We impose the following rationality requirements on a subject’s strict pref-
erences. A set of desirable options D ∈ D is called coherent [2,3,20] if it satisfies
the following axioms:

D1. 0 /∈ D;
D2. if u, v ∈ D and (λ, μ) > 0, then λu + μv ∈ D;
D3. V�0 ⊆ D.

We will use the notation (λ, μ) > 0 to mean that λ, μ are non-negative real
numbers such that λ + μ > 0. We denote the set of all coherent sets of desirable
options by D.

D is an intersection structure: for any non-empty family of sets of desirable
options Di ∈ D, i ∈ I, its intersection

⋂
i∈I Di also belongs to D. This also

implies that we can introduce a coherent closure operator clD : D → D ∪ {V}
by letting clD(A) :=

⋂{D ∈ D : A ⊆ D} be the smallest—if any—coherent set
of desirable options that includes A. We call an assessment A ⊆ V consistent if
clD(A) �= V, or equivalently, if A is included in some coherent set of desirable
options. The closure operator clD implements conservative inference with respect
to the coherence axioms, in that it extends a consistent assessment A to the most
conservative—smallest possible—coherent set of desirable options clD(A).

A coherent set of desirable options D̂ is called maximal if none of its supersets
is coherent: (∀D ∈ D)(D̂ ⊆ D ⇒ D̂ = D). This turns out to be equivalent to
the following so-called totality condition on D̂ [2,3]:

DT. for all u ∈ V \ {0}, either u ∈ D̂ or −u ∈ D̂.

The set of all maximal sets of desirable options is denoted by DT. These maximal
elements can be used to represent all coherent sets of desirable options.

Theorem 1 ([2]). For any D ∈ D, clD(D) =
⋂{D̂ ∈ DT : D ⊆ D̂}. Hence, a

consistent D is coherent if and only if D =
⋂{D̂ ∈ DT : D ⊆ D̂}.

Corollary 1. A set of desirable options D ∈ D is coherent if and only if there
is some non-empty D ⊆ DT such that D =

⋂{D̂ : D̂ ∈ D}. The largest such set
D is {D̂ ∈ DT : D ⊆ D̂}.
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For more details, and more ‘constructive’ expressions for clD, see [2,7].
I also want to mention another, additional, rationality property, central in

Teddy Seidenfeld’s work [10–12], but introduced there in a form more appropri-
ate for strict preferences between horse lotteries. We can get to the appropriate
counterpart here when we introduce the posi(·) operator, which, for any sub-
set V of V, returns the set of all positive linear combinations of its elements:
posi(V ) := {∑n

k=1 λkuk : n ∈ N, λk ∈ R>0, uk ∈ V }. We call a set of desirable
options D ∈ D mixing if it is coherent and satisfies the following mixingness
axiom:

DM. for all finite subsets A of V, if posi(A) ∩ D �= ∅, then also A ∩ D �= ∅.

We denote the set of all mixing sets of desirable options by DM. They can be
characterised as follows.

Proposition 1 ([15,17]). Consider any set of desirable options D ∈ D and let
Dc := V \ D. Then D is mixing if and only if posi(Dc) = Dc, or equivalently,
D ∩ posi(Dc) = ∅.
They are therefore identical to the so-called lexicographic sets of desirable option
sets introduced by Van Camp et al. [15,17]. For more details, see also [7,15,17].

3 Coherent Sets of Desirable Option Sets

We now turn from strict binary preferences—of one option u over another
option v—to more general ones. The simplest way to introduce those more gen-
eral choice models in the present context goes as follows. We call any finite subset
A of V an option set, and we collect all such option sets into the set Q. We call
an option set A desirable to a subject if she assesses that at least one option in
A is desirable, meaning that it is strictly preferred to 0. We collect a subject’s
desirable option sets into her set of desirable option sets K. We denote the set
of all such possible sets of desirable option sets—all subsets of Q—by K.

The rationality requirements we will impose on such sets of desirable option
sets turn out to be fairly natural generalisations of those for sets of desirable
options. A set of desirable option sets K ⊆ Q is called coherent [7] if it satisfies
the following axioms:

K0. if A ∈ K then also A \ {0} ∈ K, for all A ∈ Q;
K1. {0} /∈ K;
K2. if A1, A2 ∈ K and if, for all u ∈ A1 and v ∈ A2, (λu,v , μu,v) > 0, then also

{λu,vu + μu,vv : u ∈ A1, v ∈ A2} ∈ K;
K3. if A1 ∈ K and A1 ⊆ A2, then also A2 ∈ K, for all A1, A2 ∈ Q;
K4. {u} ∈ K, for all u ∈ V�0.

We denote the set of all coherent sets of desirable option sets by K.
A coherent set of desirable option sets K contains singletons, doubletons,

and so on. Moreover, it also contains all supersets of its elements, by Axiom K3.
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The singletons in K represent the binary choices, or in other words, the pure
desirability aspects. We let DK := {u ∈ V : {u} ∈ K} be the set of desirable
options that represents the binary choices present in the model K. Its elements
are the options that—according to K—are definitely desirable. But there may
be elements A of K of higher cardinality that are minimal in the sense that K
has none of its strict subsets. This means that our subject holds that at least
one option in A is desirable, but her model holds no more specific information
about which of these options actually are desirable. This indicates that the choice
model K has non-binary aspects. If such is not the case, or in other words, if every
element of K goes back to some singleton in K, meaning that (∀A ∈ K)(∃u ∈
A){u} ∈ K, then we call the choice model K binary. With any D ∈ D, our
interpretation inspires us to associate a set of desirable option sets KD , defined
by KD := {A ∈ Q : A ∩D �= ∅}. It turns out that a set of desirable option sets K
is binary if and only if it has the form KD , and the unique representing D is
then given by DK .

Proposition 2 ([7]). A set of desirable option sets K ∈ K is binary if and only
if there is some D ∈ D such that K = KD . This D is then necessarily unique,
and equal to DK .

The coherence of a binary set of desirable option sets is completely determined
by the coherence of its corresponding set of desirable options.

Proposition 3 ([7]). Consider any binary set of desirable option sets K ∈ K
and let DK ∈ D be its corresponding set of desirable options. Then K is coherent
if and only if DK is. Conversely, consider any set of desirable options D ∈ D
and let KD be its corresponding binary set of desirable option sets, then KD is
coherent if and only if D is.

So the binary coherent sets of desirable option sets are given by {KD : D ∈ D},
allowing us to call any coherent set of desirable option sets in K\{KD : D ∈ D}
non-binary. If we replace such a non-binary coherent set of desirable option
sets K by its corresponding set of desirable options DK , we lose information,
because then necessarily KDK

⊂ K. Sets of desirable option sets are therefore
more expressive than sets of desirable options. But our coherence axioms lead
to a representation result that allows us to still use sets of desirable options, or
rather, sets of them, to completely characterise any coherent choice model.

Theorem 2 ([7]). A set of desirable option sets K ∈ K is coherent if and only
if there is some non-empty set D ⊆ D of coherent sets of desirable options
such that K =

⋂{KD : D ∈ D}. The largest such set D is then D(K) := {D ∈
D : K ⊆ KD}.

It is also easy to see that K is an intersection structure: if we consider any
non-empty family of coherent sets of desirable options Ki, i ∈ I, then their inter-
section

⋂
i∈I Ki is still coherent. This implies that we can introduce a coherent

closure operator clK : K → K ∪ {Q} by letting clK(A) :=
⋂{K ∈ K : A ⊆ K}
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be the smallest—if any—coherent set of desirable option sets that includes A.
We call an assessment A ⊆ Q consistent if clK(A) �= Q, or equivalently, if A
is included in some coherent set of desirable option sets. The closure operator
clK implements conservative inference with respect to the coherence axioms,
in that it extends a consistent assessment A to the most conservative—smallest
possible—coherent set of desirable option sets clK(A). In combination with The-
orem 2, this leads to the following important result.

Theorem 3 ([6,7]). For any K ∈ K, clK(K) =
⋂{KD : D ∈ D(K)}. Hence, a

consistent K is coherent if and only if K =
⋂{KD : D ∈ D(K)}.

We can also lift the mixingness property from binary to general choice models,
as Seidenfeld et al. have done [12].

KM. if B ∈ K and A ⊆ B ⊆ posi(A), then also A ∈ K, for all A,B ∈ Q.

We call a set of desirable option sets K ∈ K mixing if it is coherent and satisfies
KM. The set of all mixing sets of desirable option sets is denoted by KM, and it
also constitutes an intersection structure. It therefore comes with its own mixing
closure operator and associated conservative inference system.

The binary elements of KM are precisely the ones based on a mixing set of
desirable options.

Proposition 4 ([7]). For any set of desirable options D ∈ D, KD is mixing if
and only if D is, so KD ∈ KM ⇔ D ∈ DM.

For general mixing sets of desirable option sets that are not necessarily binary,
we still have a representation theorem analogous to Theorem 2.

Theorem 4 ([7]). A set of desirable option sets K ∈ K is mixing if and only
if there is some non-empty set D ⊆ DM of mixing sets of desirable options such
that K =

⋂{KD : D ∈ D}. The largest such set D is then DM(K) := {D ∈
DM : K ⊆ KD}.

How can we connect this choice of model, sets of desirable option sets, to
the rejection and choice functions that I mentioned in the Introduction, and
which are much more prevalent in the literature? Their interpretation provides
the clue. Consider any option set A, and any option u ∈ A. Then, with A �
u := (A \ {u}) − u = {v − u : v ∈ A, v �= u},

u ∈ R(A) ⇔ 0 ∈ R(A − u)
⇔ there is some v ∈ A � u that is strictly preferred to 0
⇔ A � u ∈ K.

4 Linear and Superlinear Functionals

Because the notions of essential Archimedeanity and Archimedeanity that I
intend to introduce further on rely on an idea of openness—and therefore
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closeness—I will assume from now on that the option space V constitutes a
Banach space with a norm ‖·‖V and a corresponding topological closure oper-
ator Cl and interior operator Int. In this section, I have gathered a few useful
definitions and basic results for linear and superlinear bounded real functionals
on the space V. These functionals generalise to our more general context the
linear and coherent lower previsions defined by Peter Walley [19] on spaces of
gambles.

A real functional Γ : V → R on V is called bounded if its operator norm
‖Γ‖V◦ < +∞, where we let ‖Γ‖V◦ := supu∈V\{0}

|Γ(u)|
‖u‖V

. We will denote by V◦

the linear space of such bounded real functionals on V.
This space can be topologised by the operator norm ‖·‖V◦ , which leads to

the so-called initial topology on V◦. If we associate with any u ∈ V the so-
called evaluation functional u◦ : V◦ → R, defined by u◦(Γ) := Γ(u) for all Γ ∈
V◦, then u◦ is clearly a real linear functional on the normed linear space V◦,
whose operator norm supΓ∈V◦\{0}

|u◦(Γ)|
‖Γ‖V◦ ≤ supΓ∈V◦\{0}|u◦(Γ)| ‖u‖V

|Γ(u)| = ‖u‖V <

+∞ is finite, which implies that u◦ is a continuous real linear functional on V◦

[9, Section 23.1]. We will also retopologise V◦ with the topology of pointwise
convergence on V◦, which is the weakest topology that makes all evaluation
functionals u◦, u ∈ V continuous. It is therefore weaker than the (so-called)
initial topology induced by the norm ‖·‖V◦ .

An interesting subspace of V◦ is the linear space V∗ of all linear bounded—
and therefore continuous [9, Section 23.1]—real functionals on V. We will also
consider the set V∗ of all superlinear bounded real functionals Λ on V, mean-
ing that they are elements of V◦ that are furthermore superadditive and non-
negatively homogeneous:

Λ1. Λ(u + v) ≥ Λ(u) + Λ(v) for all u, v ∈ V; [superadditivity]
Λ2. Λ(λu) = λΛ(u) for all u ∈ V and all real λ ≥ 0.[non-negative homogeneity]

Obviously, V∗ is a convex cone, and V∗ ⊆ V∗ ⊆ V◦.
With any Λ ∈ V◦ we can associate its conjugate (functional) Λ : V → R

defined by Λ(u) := −Λ(−u) for all u ∈ V. It is obviously also bounded. Clearly, a
bounded real functional is linear if and only if it is superlinear and self-conjugate,
i.e. equal to its conjugate.

Proposition 5. Any Λ ∈ V∗ is (uniformly) continuous.

If we consider, for any Λ ∈ V∗ its set of dominating continuous linear func-
tionals V∗(Λ) := {Λ ∈ V∗ : (∀u ∈ V)Λ(u) ≤ Λ(u)}, then a well-known version of
the Hahn–Banach Theorem [9, Section 28.4, HB17] leads to the following repre-
sentation result. An important condition for using this version is that Λ should
be both superlinear and continuous.

Theorem 5 (Lower envelope theorem). For all Λ ∈ V∗ and u ∈ V there is
some Λ ∈ V∗(Λ) such that Λ(u) = Λ(u).
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5 Essential Archimedeanity for Sets of Desirable Options

The background ordering � on V introduced in Sect. 2 allows us to define convex
cones of positive real functionals:

V∗
�0 := {Λ ∈ V∗ : (∀u ∈ V�0)Λ(u) > 0} (1)

V∗
�0 := {Λ ∈ V∗ : (∀u ∈ V�0)Λ(u) > 0}. (2)

Observe that V∗
�0 ⊆ V∗

�0. We will implicitly assume from now on that the strict
vector ordering � is such that V∗

�0 �= ∅, which then of course also implies that
V∗

�0 �= ∅. We will also require for the remainder of this paper that Int(V�0) �= ∅:
the background cone of positive options has a non-empty interior.

With any Λ ∈ V∗, we can associate a set of desirable options as follows:

DΛ := Λ>0 = {u ∈ V : Λ(u) > 0}. (3)

Also, given a set of desirable options D ∈ D, we let

V∗(D) := {Λ ∈ V∗ : (∀u ∈ D)Λ(u) > 0} = {Λ ∈ V∗ : D ⊆ DΛ} (4)

V∗(D) := {Λ ∈ V∗ : (∀u ∈ D)Λ(u) > 0} = {Λ ∈ V∗ : D ⊆ DΛ} (5)

where we used Eq. (3) for the second equalities. Clearly, V∗(D) ⊆ V∗(D). These
sets are convex subcones of the convex cone V∗, and V∗(D) is also a convex cone
in the dual linear space V∗ of continuous real linear functionals on V.

Inspired by Walley’s [19] discussion of ‘strict desirability’, we will call a set
of desirable options D ∈ D essentially Archimedean if it is coherent and open.

It turns out that there is a close connection between essentially Archimedean
sets of desirable options and superlinear bounded real functionals. Before we can
lay it bare in Propositions 6–7, we need to find a way to associate a superlinear
bounded real functional with a set of desirable options D ∈ D. There are a
number of different ways to achieve this, but the following approach is especially
productive. Since we assumed from the outset that Int(V�0) �= ∅, we can fix any
uo ∈ Int(V�0). We use this special option uo to associate with the set of desirable
options D a specific (possibly extended) real functional ΛD,uo

by letting

ΛD,uo
(u) := sup{α ∈ R : u − αuo ∈ D} for all u ∈ V. (6)

Proposition 6. Assume that the set of desirable options D is coherent, then
ΛD,uo

∈ V∗. Moreover, ΛD,uo
(u) ≥ 0 for all u ∈ D and ΛD,uo

(v) ≤ 0 for all
v ∈ Dc. Finally, DΛD,uo

= Int(D).

Proposition 7. A set of desirable options D ∈ D is essentially Archimedean if
and only if there is some Λ ∈ V∗

�0 such that D = DΛ . In that case, we always
have that D = DΛD,uo

, and therefore ΛD,uo
∈ V∗(D).
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For sets of desirable options that are essentially Archimedean and mixing,
we have similar results in terms of linear rather than superlinear bounded real
functionals.

Proposition 8. If the set of desirable options D is mixing, then ΛD,uo
∈ V∗,

and we will then denote this linear bounded real functional by ΛD,uo
. Moreover,

ΛD,uo
(u) ≥ 0 for all u ∈ D and ΛD,uo

(v) ≤ 0 for all v ∈ Dc.

Proposition 9. A set of desirable options D ∈ D is essentially Archimedean
and mixing if and only if there is some Λ ∈ V∗

�0 such that D = DΛ . In that
case, we always have that D = DΛD,uo

, and therefore ΛD,uo
∈ V∗(D).

Proposition 7 has interesting implications, and it will be helpful to pay more
attention to them, for a better understanding of what we are actually doing in
Propositions 6–9. The essentially Archimedean sets of desirable options D are all
those and only those for which there is some superlinear bounded real functional
Λ ∈ V∗ such that D = DΛ . But Proposition 7 also guarantees that in this
representation DΛ for D, the superlinear bounded real functional Λ can always
be replaced by the superlinear bounded real functional ΛD,uo

, as we know that
D = DΛ = DΛD,uo

. The import of all this is that we can associate, with any
uo ∈ Int(V�0), the following so-called normalisation map:

Nuo
: V∗ → V∗ : Λ �→ Nuo

Λ :=ΛDΛ ,uo

where, after a few manipulations, we get

Nuo
Λ(u) = sup{α ∈ R : Λ(u − αuo) > 0} for all u ∈ V. (7)

It is the purport of Proposition 7 that if Λ represents an essentially Archimedean
D in the sense that D = DΛ , then so does the version Nuo

Λ, in the sense that
also D = DNuo Λ .

6 Archimedeanity for Sets of Desirable Options

One of the drawbacks of working with essentially Archimedean sets of desirable
options in Sect. 5, is that they do not constitute an intersection structure—
and therefore do not come with a conservative inference method: an arbitrary
intersection of essentially Archimedean sets of desirable options is no longer
necessarily essentially Archimedean, simply because openness is not necessarily
preserved under arbitrary intersections. To remedy this, we now turn to arbitrary
intersections of essentially Archimedean models, which of course do constitute
an intersection structure. We will see that these types of models also allow for a
very elegant and general representation.

We will call a set of desirable options D ∈ D Archimedean if it is coherent
and if the following separation property is satisfied:

DA. (∀u /∈ D)(∃Λ ∈ V∗(D))Λ(u) ≤ 0,
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and we denote by DA the set of all coherent and Archimedean sets of desirable
options. It is an immediate consequence of the Lower Envelope Theorem [Theo-
rem 5] for superlinear bounded real functionals that this separation property is
equivalent to

Dp
A. (∀u /∈ D)(∃Λ ∈ V∗(D))Λ(u) ≤ 0,

which shows that the Archimedean sets of desirable option sets are in particular
also evenly convex; see [4, Definition 1].

Since, by Proposition 7, all essentially Archimedean sets of desirable options
have the form DΛ , Eq. (3) points to the fact that all essentially Archimedean
models are also Archimedean:

(∀Λ ∈ V∗)DΛ ∈ DA and in particular also (∀Λ ∈ V∗)DΛ ∈ DA. (8)

DA is an intersection structure. Indeed, consider any non-empty family of
Archimedean sets of desirable options Di, i ∈ I and let D :=

⋂
i∈I Di, then we

already know that D is coherent, so we only need to check that the separation
condition DA is satisfied. So consider any u /∈ D, meaning that there is some
i ∈ I such that u /∈ Di. Hence there is some Λ ∈ V∗(Di) such that Λ(u) ≤ 0.
Since it follows from Eq. (5) that also Λ ∈ V∗(D), D is Archimedean.

That DA is an intersection structure also implies that we can intro-
duce an Archimedean closure operator clDA

: D → DA ∪ {V} by letting
clDA

(A) :=
⋂{D ∈ DA : A ⊆ D} be the smallest—if any—Archimedean set

of desirable options that includes A. We call an assessment A ⊆ V Archimedean
consistent if clDA

(A) �= V, or equivalently, if A is included in some Archimedean
set of desirable options. The closure operator clDA

implements conserva-
tive inference with respect to the Archimedeanity axioms, in that it extends
an Archimedean consistent assessment A to the most conservative—smallest
possible—Archimedean set of desirable options clDA

(A).

Theorem 6. For any set of desirable options D ∈ D, clDA
(D) =

⋂{DΛ : Λ ∈
V∗(D)} =

⋂{DΛ : Λ ∈ V∗(D)}. Hence, an Archimedean consistent D is
Archimedean if and only if D =

⋂{DΛ : Λ ∈ V∗(D)} =
⋂{DΛ : Λ ∈ V∗(D)}.

The following important representation theorem confirms that the essentially
Archimedean sets of desirable options can be used to represent all Archimedean
sets of desirable options via intersection.

Corollary 2. For any set of desirable options D ∈ D, the following statements
are equivalent:

(i) D is Archimedean;
(ii) there is some non-empty set L ⊆ V∗

�0 of positive superlinear bounded real
functionals such that D =

⋂{DΛ : Λ ∈ L};



190 G. de Cooman

(iii) there is some non-empty set L ⊆ V∗
�0 of positive linear bounded real func-

tionals such that D =
⋂{DΛ : Λ ∈ L}.

The largest such set L is V∗(D), and the largest such set L is V∗(D).

The sets of functionals in these results theorem can of course also be replaced
by Nuo

(V∗(D)), Nuo
(V∗(D)), Nuo

(L) and Nuo
(L) respectively, where uo is any

option in Int(V�0).

7 Archimedeanity for Sets of Desirable Option Sets

We now lift the discussion of Archimedeanity from binary to general choice
models, that is, sets of desirable option sets. Given a set of desirable option
sets K ∈ K, we let

V∗(K) := {Λ ∈ V∗ : (∀A ∈ K)(∃u ∈ A)Λ(u) > 0} = {Λ ∈ V∗ : K ⊆ KΛ}, (9)

where we used Eq. (3) and let

KΛ :=KDΛ
= {A ∈ Q : A ∩ DΛ �= ∅} = {A ∈ Q : (∃u ∈ A)Λ(u) > 0}. (10)

Similarly,
V∗(K) := {Λ ∈ V∗ : K ⊆ KΛ} ⊆ V∗(K). (11)

If we pick any uo ∈ Int(V�0) and associate with it the normalisation map Nuo
,

then since we know that DΛ = DNuo Λ and DΛ = DNuo Λ , we also have that

KΛ = KNuo Λ and KΛ = KNuo Λ for all Λ ∈ V∗ and Λ ∈ V∗. (12)

We will call a set of desirable option sets K ∈ K Archimedean if it is coherent
and if the following separation property is satisfied:

KA. (∀A /∈ K)(∃Λ ∈ V∗(K))(∀u ∈ A)Λ(u) ≤ 0,

and we denote by KA the set of all Archimedean sets of desirable option sets.
If we look at Proposition 7, we see that the essentially Archimedean sets of

desirable options are all the DΛ , and Eq. (10) then tells us that the corresponding
binary sets of desirable option sets KΛ are all Archimedean:

(∀Λ ∈ V∗)KΛ ∈ KA. (13)

But we can go further than this, and establish a strong connection between
Archimedean sets of desirable option sets on the one hand, and Archimedean
binary sets of desirable option sets on the other.

Proposition 10. For any D ∈ D, KD is Archimedean if and only if D is.
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KA is an intersection structure. Indeed, consider any non-empty family of
Archimedean sets of desirable option sets Ki, i ∈ I and let K :=

⋂
i∈I Ki, then

we already know that K is coherent, so we only need to show that the separation
condition KA is satisfied. So consider any A /∈ K, meaning that there is some
i ∈ I such that A /∈ Ki. Hence there is some Λ ∈ V∗(Ki) such that Λ(u) ≤ 0
for all u ∈ A. Since it follows from Eq. (9) that also Λ ∈ V∗(K), we see that,
indeed, K is Archimedean.

That KA is an intersection structure also implies that we can intro-
duce an Archimedean closure operator clKA

: K → KA ∪ {Q} by letting
clKA

(A) :=
⋂{K ∈ KA : A ⊆ K} be the smallest—if any—Archimedean set of

desirable option sets that includes A. We call an assessment K ⊆ Q Archimedean
consistent if clKA

(K) �= Q, or equivalently, if K is included in some Archimedean
set of desirable option sets.

Theorem 7. For any set of desirable option sets K ∈ K, clKA
(K) =⋂{KΛ : Λ ∈ V∗(K)}. Hence, an Archimedean consistent set of desirable option

sets K is Archimedean if and only if K =
⋂{KΛ : Λ ∈ V∗(K)}.

And here too, the following important representation theorem confirms that
the positive superlinear bounded real functionals can be used to represent all
Archimedean sets of desirable option sets.

Corollary 3. A set of desirable option sets K ∈ K is Archimedean if and only
if there is some non-empty set L ⊆ V∗

�0 of positive superlinear bounded real
functionals such that K =

⋂{KΛ : Λ ∈ L}. The largest such set L is V∗(K).

The sets of functionals in these results can also be replaced by Nuo
(V∗(D)) and

Nuo
(L) respectively, where uo is any option in Int(V�0).
To conclude, let us see what happens if we also impose mixingness for sets

of desirable option sets: what can we say about Archimedean and mixing sets of
desirable option sets?

Proposition 11. Consider any set of desirable option sets K ∈ K, any Λ ∈ V∗

and any uo ∈ Int(V�0). If K is mixing, then K ⊆ KΛ implies that Nuo
Λ is

linear. Hence, Nuo
(V∗(K)) = Nuo

(V∗(K)).

And as a sort of converse, the following result identifies the mixing and
Archimedean binary sets of desirable option sets. It extends Proposition 9 from
essential Archimedeanity to Archimedeanity.

Proposition 12. Consider any uo ∈ Int(V�0) and any set of desirable options
D ∈ D, then KD is mixing and Archimedean if and only if D = DΛ for some
Λ ∈ V∗

�0, and we can always make sure that Λ(uo) = 1.

Corollary 4. Consider any uo ∈ Int(V�0), then a set of desirable option sets
K ∈ K is mixing and Archimedean if and only if there is some non-empty set L ⊆
V∗

�0 of positive linear bounded real functionals Λ, with moreover Λ(uo) = 1, such
that K =

⋂{KΛ : Λ ∈ L}. The largest such set L is Nuo
(V∗(K)) = Nuo

(V∗(K)).
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8 Conclusions

The results presented here constitute the basis for a very general theory of binary
and non-binary choice. Its foundations are laid by the coherence axioms, which
can be made stronger by adding mixingness and Archimedeanity, separately or
jointly. For each of the sets of axioms thus formed, we get a conservative infer-
ence framework with corresponding closure operators, as well as representation
theorems that allow us to construe all coherent, Archimedean or mixing models—
as well as combinations of them—as intersections (infima) of specific types of
binary ones. These representations are especially interesting because they lead
to a complete axiomatic characterisation of various well-known decision mak-
ing schemes. To give one example, the (coherent and) Archimedean and mixing
models are exactly the ones that correspond to decision making using Levi’s
E-admissibility scheme [8,13] associated with general—not necessarily closed or
convex—sets of linear previsions. I believe such a characterisation—jointly with
the one in Jasper De Bock’s paper [5]—is achieved here for the first time in its
full generality. And the theory is also flexible enough to allow for characteri-
sations for a plethora of other schemes, amongst which Walley–Sen maximality
[13,19]. Indeed, for the binary choice models we get the decision making schemes
based on maximality for sets of desirable gambles (coherent binary models),
lexicographic probability orderings (mixing binary models), evenly convex sets
of positive superlinear bounded real functionals—lower previsions essentially—
(Archimedean binary models), and evenly convex sets of positive linear bounded
real functionals—linear previsions essentially—(Archimedean and mixing binary
models). And for their more general, non-binary counterparts we get, through
our representation theorems, schemes that are based on arbitrary intersections—
infima—of a whole variety of such binary cases.

What I haven’t talked about here are the more constructive aspects of the
various conservative inference frameworks. The representation results in this
paper essentially allow us to express the closure operator that effects the conser-
vative inference as an intersection of dominating special binary models, which
are not always easy (and in some cases even impossible) to identify construc-
tively. We therefore also need to look for other and more constructive ways of
tackling the conservative inference problem; early work on this topic seems to
suggest that this is not an entirely hopeless endeavour [7]. On a related note, the
Archimedeanity axioms DA, Dp

A and KA are similarly ‘nonconstructive’, as they
are based on the existence of (super)linear functionals that ‘do certain things’.
For an equivalent approach to these axioms with a more constructive flavour,
and with gambles as options, I refer to Jasper De Bock’s paper on this topic [5].

Finally, in a future paper I intend to use the results presented here to derive
similar axiomatic characterisations, conservative inference frameworks and rep-
resentation theorems when the option space is a set of horse lotteries.
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Hryniewicz, O. (eds.) SMPS 2018. AISC, vol. 832, pp. 46–53. Springer, Cham
(2019). https://doi.org/10.1007/978-3-319-97547-4 7

7. De Bock, J., De Cooman, G.: Interpreting, axiomatising and representing coherent
choice functions in terms of desirability. In: International Symposium on Imprecise
Probabilities: Theories and Applications, ISIPTA 2019, Proceedings, vol. 103, pp.
125–134 (2019)

8. Levi, I.: The Enterprise of Knowledge. MIT Press, London (1980)
9. Schechter, E.: Handbook of Analysis and Its Foundations. Academic Press, San

Diego (1997)
10. Seidenfeld, T., Schervish, M.J., Kadane, J.B.: A representation of partially ordered

preferences. Ann. Stat. 23, 2168–2217 (1995). Reprinted in [11], pp. 69–129
11. Seidenfeld, T., Schervish, M.J., Kadane, J.B.: Rethinking the Foundations of

Statistics. Cambridge University Press, Cambridge (1999)
12. Seidenfeld, T., Schervish, M.J., Kadane, J.B.: Coherent choice functions under

uncertainty. Synthese 172(1), 157–176 (2010). https://doi.org/10.1007/s11229-
009-9470-7

13. Troffaes, M.C.M.: Decision making under uncertainty using imprecise probabilities.
Int. J. Approximate Reasoning 45(1), 17–29 (2007). https://doi.org/10.1016/j.ijar.
2006.06.001

14. Troffaes, M.C.M., De Cooman, G.: Lower Previsions. Wiley, Hoboken (2014)
15. Van Camp, A.: Choice Functions as a Tool to Model Uncertainty. Ph.D. thesis,

Ghent University, Faculty of Engineering and Architecture (2018)
16. Van Camp, A., De Cooman, G.: Exchangeable choice functions. Int. J. Approxi-

mate Reasoning 100, 85–104 (2018)
17. Van Camp, A., De Cooman, G., Miranda, E.: Lexicographic choice functions. Int.

J. Approximate Reasoning 92, 97–119 (2018)
18. Van Camp, A., De Cooman, G., Miranda, E., Quaeghebeur, E.: Coherent choice

functions, desirability and indifference. Fuzzy Sets Syst. 341, 1–36 (2018)

http://arxiv.org/abs/2002.05461
http://arxiv.org/abs/2002.05196
https://doi.org/10.1007/978-3-319-97547-4_7
https://doi.org/10.1007/s11229-009-9470-7
https://doi.org/10.1007/s11229-009-9470-7
https://doi.org/10.1016/j.ijar.2006.06.001
https://doi.org/10.1016/j.ijar.2006.06.001


194 G. de Cooman

19. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall,
London (1991)

20. Walley, P.: Towards a unified theory of imprecise probability. Int. J. Approximate
Reasoning 24, 125–148 (2000)

21. Williams, P.M.: Notes on conditional previsions. Technical report, School of Math-
ematical and Physical Science, University of Sussex, UK (1975). Revised journal
version: [21]

22. Williams, P.M.: Notes on conditional previsions. Int. J. Approximate Reasoning
44, 366–383 (2007). Revised journal version of [21]

23. Zaffalon, M., Miranda, E.: Axiomatising incomplete preferences through sets of
desirable gambles. J. Artif. Intell. Res. 60, 1057–1126 (2017)



Archimedean Choice Functions
An Axiomatic Foundation for Imprecise Decision Making
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Abstract. If uncertainty is modelled by a probability measure, decisions are
typically made by choosing the option with the highest expected utility. If an
imprecise probability model is used instead, this decision rule can be generalised
in several ways. We here focus on two such generalisations that apply to sets
of probability measures: E-admissibility and maximality. Both of them can be
regarded as special instances of so-called choice functions, a very general math-
ematical framework for decision making. For each of these two decision rules,
we provide a set of necessary and sufficient conditions on choice functions that
uniquely characterises this rule, thereby providing an axiomatic foundation for
imprecise decision making with sets of probabilities. A representation theorem
for Archimedean choice functions in terms of coherent lower previsions lies at
the basis of both results.

Keywords: E-admissibility · Maximality · Archimedean choice functions ·
Decision making · Imprecise probabilities

1 Introduction

Decision making under uncertainty is typically carried out by combining an uncertainty
model with a decision rule. If uncertainty is modelled by a probability measure, the by
far most popular such decision rule is maximising expected utility, where one chooses
the option—or makes the decision—whose expected utility with respect to this proba-
bility measure is the highest.

Uncertainty can also be modelled in various other ways though. The theory of
imprecise probabilities, for example, offers a wide range of extensions of probabil-
ity theory that provide more flexible modelling possibilities, such as differentiating
between stochastic uncertainty and model uncertainty. The most straightforward such
extension is to consider a set of probability measures instead of a single one, but one
can also use interval probabilities, coherent lower previsions, sets of desirable gambles,
belief functions, to name only a few.

For all these different types of uncertainty models, various decision rules have been
developed, making the total number of possible combinations rather daunting. Choosing
which combination of uncertainty model and decision rule to use is therefore difficult
and often dealt with in a pragmatic fashion, by using a combination that one is familiar
with, that is convenient or that is computationaly advantageous.
c© Springer Nature Switzerland AG 2020
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To motivate the use of a specific combination in a more principled way, one can also
consider its properties. That is, one can aim to select an uncertainty model and decision
rule whose resulting decisions satisfy the properties that one finds desirable for the
decision problem at hand. In some cases, imposing a given set of properties as axioms
can even rule out all combinations but one, thereby providing an axiomatic foundation
for the use of a specific type of uncertainty model and decision rule. The famous work
of Savage [9], for example, provides an axiomatic foundation for maximising expected
utility with respect to a probability measure.

The main contributions of this paper are axiomatic foundations for three specific
decision rules that make use of imprecise probability models [11]. The first two decision
rules, called E-admissibility [7] and maximality [13], apply to a set of probability mea-
sures; they both reduce to maximising expected utility when this set contains only a sin-
gle probability measure, but are otherwise fundamentally different. The third decision
rule applies to sets of coherent lower previsions; it is more abstract then the other two,
but includes both of them as special cases. This allows us to use our axiomatic founda-
tion for the third rule as an intermediate step towards axiomatising E-admissibility and
maximality.

To obtain our results, we make extensive use of choice functions [4,10,12]: a uni-
fying framework for studying decision making. These choice functions require no ref-
erence to an uncertainty model or a decision rule, but are simply concerned with the
decisions themselves, making them an excellent tool for comparing different methods.
We will be especially interested in Archimedean choice functions, because all of the
decision schemes that we consider are of this particular type.

In order to adhere to the page limit constraint, all proofs are omitted; they are avail-
able in the appendix of an extended online version [2].

2 Choice Functions and Uncertainty Models

A choice function C, quite simply, is a function that chooses. Specifically, for every
finite set A of options, it returns a subset C(A) of A. We here consider the special case
where options are gambles: bounded real functions on some fixed state space X . We
letL be the set of all gambles onX and we useQ to denote the set of all finite subsets
of L , including the empty set. A choice function C is then a map from Q to Q such
that, for all A ∈ Q,C(A) ⊆ A.

IfC(A) contains only a single option u, this means that u is chosen from A. IfC(A)
consists of multiple options, several interpretations can be adopted. On the one hand,
this can be taken to mean that each of the options inC(A) is chosen. On the other hand,
C(A) can also be regarded as a set of options among which it is not feasible to choose, in
the sense that they are incomparable based on the available information; in other words:
the elements of A \C(A) are rejected, but those in C(A) are not necessarily ‘chosen’.
While our mathematical results further on do not require a philosophical stance in this
matter, it will become apparent from our examples and interpretation that we have the
later approach in mind.

A very popular class of choice functions—while not necessarily always called as
such—are those that correspond to maximising expected utility. The idea there is to
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consider a probability measure P and to letC(A) be the element(s) of A whose expected
value—or utility—is highest. The probability measure in question is often taken to be
countably additive, but we will not impose this restriction here, and impose only finite
additivity. These finitely additive probability measures are uniquely characterised by
their corresponding expectation operators, which are linear real functionals on L that
dominate the infinum operator. We follow de Finetti in denoting these expectation oper-
ators by P as well, and in calling them linear previsions [6,13].

Definition 1. A linear prevision P on L is a map from L to R that satisfies

P1. P(u ) ≥ infu for all u ∈ L ; boundedness
P2. P(λu) = λP(u) for all real λ and u ∈L ; homogeneity
P3. P(u+v) = P(u)+P(v) for all u,v ∈L . additivity

We denote the set of all linear previsions on L by P.

For any such linear prevision—or equivalently, any finitely additive probability
measure—the choice function obtained by maximising expected utility is defined by

CP(A) :=
{
u ∈ A : (∀v ∈ A \{u}) P(u) ≥ P(v)

}
for all A ∈ Q. (1)

It returns the options u in A that have the highest prevision—or expectation—P(u).
However, there are also many situations in which it is not feasible to represent uncer-

tainty by a single prevision or probability measure [13, Section 1.4.4]. In those cases,
imprecise probability models can be used instead. The most straightforward such impre-
cise approach is to consider a non-empty setP ⊆P of linear previsions—or probability
measures—as uncertainty model, the elements of which can be regarded as candidates
for some ‘true’ but unknown precise model.

In that context, maximising expected utility can be generalised in several ways [11],
of which we here consider two. The first is called E-admissibility; it chooses those
options that maximise expected utility with respect to at least one precise model inP:

CE
P(A) :=

{
u ∈ A : (∃P∈ P)(∀v ∈ A \{u}) P(u) ≥ P(v)

}
for all A ∈ Q. (2)

The second generalisation is called maximality and starts from a partial order on the
elements of A. In particular, for any two options u,v ∈ A, the option u is deemed better
than v if its expectation is higher for every P∈ P . Decision making with maximality
then consists in choosing the options u in A that are undominated in this order, in the
sense that no other option v ∈ A is better than u:

CM
P(A) :=

{
u ∈ A : (∀v ∈ A \{u})(∃P∈ P) P(u) ≥ P(v)

}
for all A ∈ Q. (3)

One can easily verify that CE
P(A) ⊆CM

P(A), making maximality the most conservative
decisions rule of the two. Furthermore, in the particular case where P contains only a
single linear prevision, they clearly coincide and both reduce to maximising expected
utility. In all other cases, however, maximality and E-admissibility are different; see for
example Proposition 3 in Sect. 9 for a formal statement.
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One of the main aims of this paper is to characterise each of these two types of
choice functions in terms of their properties. That is, we are looking for necessary and
sufficient conditions under which a general choice functionC is of the formCE

P orCM
P ,

without assuming a priori the existence of a set of linear previsionsP . Such conditions
will be presented in Sects. 7 and 8, respectively.

A crucial intermediate step in obtaining these two results will consist in finding
a similar characterisation for choice functions that correspond to (sets of) coherent
lower previsions [13], a generalisation of linear previsions that replaces additivity by
the weaker property of superadditivity.

Definition 2. A coherent lower prevision P on L is a map from L to R that satisfies

LP1. P(u)≥ infu for all u ∈L ; boundedness
LP2. P(λu)= λP(u) for all real λ > 0 and u ∈L ; positive homogeneity
LP3. P(u+v)≥ P(u)+P(v) for all u,v ∈L . superadditivity

We denote the set of all coherent lower previsions onL by P.

That linear previsions are a special case of coherent lower previsions follows triv-
ially from their definitions. There is however also a more profound connection between
both concepts: coherent lower previsions are minima of linear ones.

Theorem 1 [13, Section 3.3.3.]. A real-valued map P on L is a coherent lower previ-
sion if and only if there is a non-empty set P ⊆ P of linear previsions such that

P(u) =min{P(u) : P∈ P} for all u ∈ L .

Alternatively, coherent lower previsions can also be given a direct behavioural inter-
pretation in terms of gambling, without any reference to probability measures or linear
previsions [13,14].

Regardless of their interpretation, with any given non-empty set P ⊆ P of these
coherent lower previsions, we can associate a choice functionCP in the following way:

CP(A) :=
{
u ∈ A : (∃P ∈ P)(∀v ∈ A \{u}) P(v−u) ≤ 0

}
for all A ∈ Q. (4)

If the lower previsions in P are all linear, this definition reduces to E-admissibility,
as can be seen by comparing Eqs. (2) and (4). What is far less obvious though, is that
maximality is also a special case of Eq. (4); see Theorem 7 in Sect. 8 for a formal state-
ment. In that case, the setsP in Eqs. (4) and (3) may of course—and typically will—be
different.

Because the choice functions that correspond to E-admissibility and maximality are
both of the form CP , with P a set of coherent lower previsions, any attempt at char-
acterising the former will of course benefit from characterising the latter. A large part
of this paper will therefore be devoted to the development of necessary and sufficient
conditions for a general choice functionC to be of the formCP . In order to obtain such
conditions, we will interpret choice functions in terms of (strict) desirability and estab-
lish a connection with so-called sets of desirable option sets. This interpretation will
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lead to a natural set of conditions that, as we will eventually see in Sect. 6, uniquely
characterises choice functions of the form CP . We start with a brief introduction to
desirability and sets of desirable option sets.

3 Coherent Sets of Desirable Option Sets

The basic notion on which our interpretation for choice functions will be based, and
from which our axiomatisation will eventually be derived, is that of a desirable option:
an option that is strictly preferred over the status quo [1,8,13]. In our case, where
options are gambles u ∈ L on X and the status quo is the zero gamble, this means
that the uncertain—and possibly negative—reward u(x), whose actual value depends
on the uncertain state x ∈ X , is strictly preferred over the zero reward. In other words:
gambling according to u is strictly preferred over not gambling at all.

We will impose the following three principles on desirable options, where we use
‘(λ ,μ) > 0’ as a shorthand notation for ‘λ ≥ 0, μ ≥ 0 and λ + μ > 0’. The first two
principles follow readily from the meaning of desirability. The third one follows from
an assumption that rewards are expressed in a linear utility scale.

d1. 0 is not desirable;
d2. if infu > 0, then u is desirable;1

d3. if u,v are desirable and (λ ,μ)> 0, then λu+μv is desirable.

The notion of a desirable option gives rise to two different frameworks for modelling
a subject’s uncertainty about the value x∈X . The first, which is well established, is that
of sets of desirable options—or sets of desirable gambles. The idea there is to consider
a set D that consists of options that are deemed desirable by a subject. If such a set is
compatible with the principles d1–d3, it is called coherent.

Definition 3. A set of desirable options D ∈ D is coherent if it satisfies:

D1. 0 /∈ D;
D2. if infu > 0, then u ∈ D;
D3. if u,v ∈ D and (λ ,μ)> 0, then λu+μv ∈ D.

We denote the set of all coherent sets of desirable options by D.

Amore general framework, which will serve as our main workhorse in this paper, is
that of sets of desirable option sets [3]. The idea here is to consider a set K of so-called
desirable option sets A, which are finite sets of options that, according to our subject,
are deemed to contain at least one desirable option. To say that A = {u,v} is a desirable
option set, for example, means that u or v is desirable. Crucially, the framework of
sets of desirable option sets allows a subject to make this statement without having to

1 There is no consensus on which properties to impose on desirability; the main ideas and results
are always very similar though [1,8,13,14]. In particular, d2 is often strengthened by requiring
that u is desirable as soon as infu ≥ 0 and u �= 0; we here prefer d2 because it is less stringent
and because it combines more easily with the notion of strict desirability that we will consider
in Sect. 5. Annalogous comments apply to D2 and K2 further on.
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specify—or know—which of the two options u or v is desirable. As explained in earlier
work [4, Section 3],2 it follows from d1–d3 that any set of desirable option sets K should
satisfy the following axioms. If it does, we call K coherent.

Definition 4. A set of desirable option sets K ⊆ Q is coherent if it satisfies:

K0. if A ∈ K then also A \{0} ∈ K, for all A ∈ Q;
K1. {0} /∈ K;
K2. {u} ∈ K for all u ∈ L with infu > 0;
K3. if A1,A2 ∈ K and if, for all u ∈ A1 and v ∈ A2, (λu,v ,μu,v)> 0, then also

{λu,vu+μu,vv : u ∈ A1,v ∈ A2} ∈ K;

K4. if A1 ∈ K and A1 ⊆ A2, then also A2 ∈ K, for all A1,A2 ∈ Q.

We denote the set of all coherent sets of desirable option sets by K.

One particular way of obtaining a set of desirable option sets, is to derive it from a
set of desirable options D, as follows:

KD := {A ∈ Q : A∩D �= /0}. (5)

One can easily verify that if D is coherent, then KD will be as well [4, Proposition 8]. In
general, however, sets of desirable option sets are more expressive than sets of desirable
options. The link between both is provided by Theorem 2, which shows that a set of
desirable option sets can be equivalently represented by a set of sets of desirable options.

Theorem 2 [4, Theorem 9]. A set of desirable option sets K is coherent if and only if
there is some non-empty set D ⊆ D such that K =

⋂{KD : D ∈ D}.
In practice, modelling a subject’s uncertainty does not require her to specify a full

coherent set of desirable option sets though. Instead, it suffices for her to provide an
assessment A ⊆ Q, consisting of option sets A that she considers desirable. If such an
assessment is consistent with coherence, meaning that there is at least one coherent set
of desirable option sets K that includesA , then this assessment can always be extended
to a unique smallest—most conservative—coherent set of desirable option sets, called
the natural extension of A . This natural extension is given by

Ex(A ) :=
⋂{

K ∈ K : A ⊆ K
}
=

⋂{
KD : D ∈ D,A ⊆ KD

}
, (6)

as follows readily from Theorem 2. IfA is not consistent with coherence, Ex(A ) is an
empty intersection, which, by convention, we set equal toQ.

2 Reference [4] deals with the more general case where options take values in an abstract vector
space V , and where d2 imposes that u should be desirable if u 
 0, with 
 an arbitrary but
fixed strict vector ordering. Whenever we invoke results from [4], we are applying them for
the special case where V =L and u 
 v ⇔ inf(u− v)> 0.
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4 Strongly Archimedean Sets of Desirable Option Sets

That sets of desirable option sets can be used to axiomatise choice functions of the type
CP , with P a set of coherent lower previsions, was already demonstrated in earlier
work [4] for the specific case whereP is closed with respect to pointwise convergence.
A key step in that result consisted in strengthening the interpretation of K, replacing
desirability with the stronger notion of strict desirability [13, Section 3.7.7]. We here
repeat the reasoning that led to this result, before adapting it in Sect. 5 to get rid of the
closure condition.

We call a desirable option u strictly desirable if there is some real ε > 0 such that
u− ε is desirable.3 As a simple consequence of this definition and d1–d3, we find that

sd1. 0 is not strictly desirable;
sd2. if infu > 0, then u is strictly desirable;
sd3. if u,v are strictly desirable and (λ ,μ)> 0, then λu+μv is strictly desirable;
sd4. if u is strictly desirable, then u− ε is strictly desirable for some real ε > 0.

By applying these principles to sets of desirable options, we arrive at the concept of a
coherent set of strictly desirable options: a coherent set of desirable options D that is
compatible with sd4. What is particularly interesting about such sets is that they are in
one-to-one correspondence with coherent lower previsions [4,13], thereby allowing us
to move from desirability to lower previsions as a first step towards choice functions
of the form CP . The problem with coherent sets of strictly desirable options, however,
is that they correspond to a single lower prevision P, while we which to consider a set
P of them. To achieve this, we again consider sets of desirable option sets, but now
suitably adapted to strict desirability.

So consider any set of desirable option sets K and let us interpret it in terms of
strict desirability. That A belongs to K then means that A contains at least one strictly
desirable option. Given this interpretation, what properties should K satisfy? Since the
principles sd1–sd3 are identical to d1–d3, K should clearly be coherent, meaning that it
should satisfy K0–K4. Formalising the implications of sd4 is more tricky though, as it
can be done in several ways.

The first and most straighforward approach is to impose the following immediate
translation of sd4 to desirable option sets, where for all A ∈ Q and real ε:

A− ε := {u− ε : u ∈ A}

Definition 5. A set of desirable option sets K is strongly Archimedean4 if it is coherent
and satisfies the following property:

KSA. if A ∈ K, then also A− ε ∈ K for some real ε > 0.

3 Walley’s original notion of strict desirability [13, Section 3.7.7] is slightly different. In his ver-
sion, if infu = 0 (but u �= 0) then u should also be strictly desirable (but need not satisfy sd4).

4 In earlier work [4], we have referred to this property as Archimedeanity. With hindsight, how-
ever, we now prefer to reserve this terminology for the property in Definition 6.
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The reasoning behind this axiom goes as follows. Since A ∈ K is taken to mean that
there is at least one u ∈ A that is strictly desirable, it follows from sd4 that there is some
real ε > 0 such that u− ε is strictly desirable. This implies that A− ε contains at least
one strictly desirable option. It therefore seems sensible to impose that A− ε ∈ K.

To explain the implications of this axiom, and how it is related to lower previsions,
we need a way to link the latter to sets of desirable option sets. The first step is to
associate, with any coherent lower prevision P ∈ P, a set of desirable option sets

KP := {A ∈ Q : (∃u ∈ A)P(u )> 0}. (7)

The coherence of this set can be easily verified [4, Propositions 8 and 24]. More gen-
erally, with any non-empty set P of coherent lower previsions, we associate a set of
desirable option sets

KP :=
⋂

{KP : P ∈ P}. (8)

Coherence is again easily verified; it follows directly from the coherence of KP and the
fact that coherence is preserved under taking intersections. The final tool that we need
to explain the implications of strong Archimedeanity, does the opposite; it starts with a
coherent set of desirable option sets K, and associates a set of coherent lower previsions
with it, defined by

P(K) := {P ∈ P : K ⊆ KP}.
If K is strongly Archimedean, then as the following result shows, P(K) serves as a
mathematically equivalent representation for K, from wich K can be recovered through
Eq. (8). The representing set P(K) will then furthermore be closed with respect to the
topology induced by pointwise convergence.

Theorem 3 [4, Theorem 28 and Proposition 24]. A set of desirable option sets K is
strongly Archimedean if and only if there is some non-empty closed set P ⊆ P of
coherent lower previsions such that K = KP . Closure is with respect to pointwise con-
vergence, and the largest such set P is then P(K).

If the representing coherent lower previsions in P or P(K) were linear, this result
would already brings us very close to decision rules based on sets of linear previsions—
or sets of probability measures. As we will see further on in Sect. 7, this can be achieved
by imposing an additional axiom called mixingness. Before we do so, however, we will
do away with the closure condition in Theorem 3, as it is overly restrictive. Imagine for
example that we are modelling a subject’s uncertainty about the outcome of a coin toss,
and that she beliefs the coin to be unfair. In terms of probabilities, this would mean
that her probability for heads is different from one half. Strong Archimeanity is not
compatible with such an assessment, as the set of probability measures that satisfy this
(strict) probability constraint is not closed. Our first main contribution will consist in
resolving this issue, by suitably modifying the notion of strong Archimedeanity.

5 Archimedean Sets of Desirable Option Sets

At first sight, it may seem as if KSA is the only way in which sd4 can be translated to
option sets. There is however also a second, far more subtle approach.
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The crucial insight on which this second approach is based is that our interpreta-
tion in terms of strict desirability does not require ε to be known; it only imposes the
existence of such an ε . Consider a subject whose uncertainty is represented by a set
of desirable option sets K and let us adopt an interpretation in terms of strict desir-
ability. This implies that the option sets A ∈ K are option sets that, according to her
beliefs, contain at least one strictly desirable option u ∈ A. As a consequence of sd4,
this implies that she beliefs that there is some real ε > 0 such that u − ε is strictly
desirable. Hence, she believes that there is some real ε > 0 such that A− ε contains at
least one strictly desirable option. Strong Archimedeanity, at that point, concludes that
A− ε ∈ K. However, this is only justified if our subject knows ε . If she doesn’t know
ε , but only believes that there is such an ε , then there is no single ε > 0 for which she
believes that A− ε contains at least one strictly desirable option. Since the option sets
in K are options sets for which our subject believes that they contain at least one strictly
desirable option, it follows that A ∈ K need not necessarily imply that A − ε ∈ K for
some ε > 0. Strong Archimedeanity is therefore indeed, as its name suggests, a bit too
strong for our purposes.

So if we can’t infer that A − ε ∈ K, what is it then that we can infer from A ∈ K
and sd4? As explained above, the only thing that can be inferred is that for any A ∈ K,
there is some ε > 0 such that A−ε contains at least one strictly desirable option. Let us
denote this specific epsilon by ε(A). Crucially, we may not know—or rather, our subject
may not know—the specific value of ε(A). Nevertheless, any inferences we can make
without knowing the specific value of ε(A), can and should still be made. Our approach
will therefore consist in finding out what inferences can be made for a specific choice
of the ε(A), to do this for every such choice, and to then only consider those inferences
that can be made regardless of the specific choice of ε(A).

To formalize this, we consider the set RK
>0 of all functions ε that associate a strictly

positive real ε(A)> 0 with every option set A in K. As a consequence of our interpre-
tation, we know that there is at least one ε ∈ R

K
>0 such that, for every A ∈ K, A− ε(A)

contains a strictly desirable option.
Let us now assume for a minute that our subject does know for which specific ε in

R
K
>0 this is the case. In order to be compatible with sd1–sd3, the resulting assessment

Kε := {A− ε(A) : A ∈ K} (9)

should then be consistent with coherence, meaning that there is at least one coherent set
of desirable option sets that includes Kε . Whenever this is the case, then as explained
in Sect. 3, we can use coherence to extend the assessment Kε to the unique smallest
coherent set of desirable option sets that incudes it: the natural extension Ex(Kε) of
Kε . Based on the assessment Kε and coherence, each of the option sets in Ex(Kε) must
necessarily contain a strictly desirable option. Hence, still assuming for the moment
that our subject knows ε , it follows that every option set in Ex(Kε) should belong to K.

Our subject may not know ε though; all we can infer from sd4 is that there must
be at least one ε for which the above is true. Let us denote this specific—but possibly
unkown—ε by ε∗. Then as argued above, for every option set A in Ex(Kε∗), it follows
from our interpretation that A should also belong to K. Since we don’t know ε∗, how-
ever, we don’t know for which option sets this is the case. What we can do though, is
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to consider those option sets A ∈ Q that belong to Ex(Kε) for every possible ε ∈ R
K
>0.

For those option sets, regardless of whether we know ε∗ or not, it trivially follows that
A ∈ Ex(Kε∗), and therefore, that A should belong to K. Any coherent set of desirable
option sets K that satisfies this property, we will call Archimedean.

Definition 6. A set of desirable option sets K is Archimedean if it is coherent and sat-
isfies the following property:

KA. for any A ∈ Q, if A ∈ Ex(Kε) for all ε ∈ R
K
>0, then also A ∈ K.

Note that Archimedeanity also rules out the possibility that Kε is inconsistent for all
ε ∈ R

K
>0, for this would imply that K =Q, hence contradicting K1.

By replacing strong Archimedeanity with Archimedeanity, the condition that the
representing set P must be closed can be removed from Theorem 3, and we obtain a
representation in terms of general sets of lower previsions.

Theorem 4. A set of desirable option sets K is Archimedean if and only if there is some
non-empty setP ⊆ P of coherent lower previsions such that K = KP . The largest such
setP is then P(K).

The significance of this result is that it relates two very different things: sets of desirable
option sets and sets of coherent lower previsions. While this may not yet be obvious, this
is a major step in characterising choice functions of the formCP . In fact, we are nearly
there. The only thing left to do is to connect choice functions with sets of desirable
option sets. As we will explain in the next section, this connection comes quite naturally
once we interpret choice functions in terms of (strict) desirability.

6 Archimedean Choice Functions

In order to provide choice functions with an interpretation, we need to explain what
it means for an option u to be chosen from A, or alternatively, what it means for u to
be rejected from A, in the sense that u /∈ C(A). We here adopt the latter approach. In
particular, if our subject states that u /∈C(A), we take this to mean that she is convinced
that there is at least one other option v in A \{u} that is better that u, where ‘v is better
than u’ is taken to mean that v − u is strictly desirable, or equivalently, that there is
a positive price ε > 0 for which paying ε to exchange the uncertain reward u for v is
preferrable to the status quo. Note however that this interpretation does not not assume
that our subject knows the specific ε and v for which this is the case.

Our interpretation has two implications for C. First, since v − u = (v − u)− 0, it
immediately implies that C should be translation invariant, in the sense that

u ∈C(A) ⇔ 0 ∈C(A−u) for all A ∈ Q and u ∈ A, (10)

with A−u := {v−u : v ∈ A}. Second, for all A ∈Q such that 0 /∈C(A∪{0}), it implies
that A should contain at least one strictly desirable gamble. Indeed, if 0 /∈C(A ∪{0}),
then according to our interpretation, there is some v ∈ (A ∪ {0}) \ {0} ⊆ A such that
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v−0= v is strictly desirable. Hence, A indeed contains a strictly desirable option. For
any choice function C, this leads us to consider the set of desirable option sets

KC :=
{
A ∈ Q : 0 /∈C(A∪{0})}. (11)

According to our interpretation, each of the option sets in KC contains at least one
strictly desirable option. Following the discussion in Sect. 6, we will therefore require
KC to be Archimedean. When a choice function C satisfies both of the conditions that
are implied by our interpretation, we call it Archimedean.

Definition 7. A choice function C is Archimedean if KC is Archimedean and C is trans-
lation invariant.

Instead of deriving a set of desirable options sets KC from a choice function C,
we can also do the converse. That is, with any set of desirable option sets K, we can
associate a choice functionCK , defined by

CK(A) :=
{
u ∈ A : A�u /∈ K

}
for all A ∈ Q, (12)

where A�u := {v−u : v ∈A\{u}}. Similarly to KC , the expression forCK is motivated
by our interpretation. Indeed, for any option u ∈ A, the statement that A�u ∈ K means
that A � u contains a strictly desirable option, so there is some v ∈ A \ {u} such that
v−u is strictly desirable. This is exactly our interpretation for u /∈C(A).

If a set of desirable option sets K is Archimedean, then CK will be Archimedean
as well. In fact, as our next result shows, every Archimedean choice function is of the
formCK , with K an Archimedean set of desirable option sets.

Proposition 1. Let C be a choice function. Then C is Archimedean if and only if there
is an Archimedean set of desirable option sets K such that C =CK. This set K is then
necessarily unique and furthermore equal to KC.

At this point, the hard work in characterising choice functions of the form CP is
done. Proposition 1 relates Archimedean choice functions to Archimedean sets of desir-
able option sets, while Theorem 4 relates Archimedean sets of desirable option sets to
sets of coherent lower previsions P . Combining both results, we find that a choice
function is Archimedean if and only if it is of the form CP .

Theorem 5. A choice function C is Archimedean if and only if there is a non-empty set
P ⊆ P of coherent lower previsions such that C =CP . Whenever this is the case, the
largest such setP is P(KC).

Starting from this result, we will now proceed to axiomatise maximality and E-
admissibility, by combining Archimedeanity with additional axioms.

7 Axiomatising E-Admissibility

Archimedeanity implies that a choice function is representable by a set of coherent
lower previsions P , in the sense that is of the form CP . As can be seen by comparing
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Eqs. (4) and (2), this already brings us very close E-admissibility. Indeed, all that we
need in order to obtain E-admissibility is for the lower previsions in P to be linear.
That is, we would like the role of P(K) to be taken up by

P(K) := {P∈ P : K ⊆ KP}

instead. To achieve this, we impose a property called mixingness [4] on the
Archimedean set of desirable option sets KC that corresponds to C. For any option set
A, this property considers the set

posi(A) :=
{ n

∑
i=1

λiui : n ∈ N,λi > 0,ui ∈ A

}
,

of all positive linear combinations of the elements in A, and requires that if any of these
positive linear combinations—any mixture—is strictly desirable, then A itself should
contain a strictly desirable option as well.

Definition 8. A set of desirable option sets K is mixing if it satisfies

KM. if B ∈ K and A ⊆ B ⊆ posi(A), then also A ∈ K, for all A,B ∈ Q;

A choice function C is called mixing if KC is.

As the following result shows, mixingness achieves exactly what we need: for any
coherent set of desirable option sets K, it guarantees that the coherent lower previsions
in P(K) are in fact linear.

Proposition 2. Let K be a coherent set of desirable option sets that is mixing. Then for
any P ∈ P(K), we have that P ∈ P. Hence, P(K) = P(K).

By combining this result with Theorem 5, it follows that Archimedean choice func-
tions that are mixing correspond to E-admissibility. The next result formalizes this and
furthermore shows that the converse is true as well.

Theorem 6. A choice function C is Archimedean and mixing if and only if there is a
non-empty setP ⊆ P of linear previsions such that C =CE

P . The largest such setP is
then P(KC).

8 Axiomatising Maximality

Having axiomatised E-admissibility, we now proceed to do the same for maximality.
The link with Archimedeanity is not that obvious here though, because there is no
immediate connection between Eqs. (4) and (3). Rather than focus on how to relate
these two equations, we therefore zoom in on the properties of maximality itself. One
such property, which is often used to illustrate the difference with E-admissibility, is
that a choice function that corresponds to maximality is completely determined by its
restriction to so-called binary choices—that is, choices between two options.
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Definition 9. A choice function C is binary if for all A ∈ Q and u ∈ A:

u ∈C(A) ⇔ (∀v ∈ A \{u}) u ∈C({u,v})

Inspired by this observation, we impose binarity as an additional axiom, alongside
Archimedeanity. As the following result shows, these two conditions are necessary and
sufficient for a choice functionC to be of the formCM

P , hence providing an axiomatisa-
tion for decision making with maximality.

Theorem 7. A choice function C is Archimedean and binary if and only if there is a
non-empty setP ⊆ P of linear previsions such that C =CM

P . The largest such setP is
then P(KC).

The formal proof of this result is rather technical, but the basic idea behind the
sufficiency proof is nevertheless quite intuitive. First, for every u ∈C(A), the binarity
of C implies that u ∈ C({u,v}) for every v ∈ A \ {u}. For every such v ∈ A \ {u},
since C is Archimedean, Theorem 5 furthermore implies that there is a coherent lower
prevision P such that P(v − u) ≤ 0. Because of Theorem 1, this in turn implies that
there is a linear prevision such that P(v− u) ≤ 0 and therefore also P(u) ≥ P(v). The
challenging part consists in showing that P∈ P(KC) and establishing necessity.

9 An Axiomatisation for Maximising Expected Utility

As we have seen in Sects. 7 and 8, mixingness and binarity have quite a different
effect on Archimedean choice functions. The former implies that they correspond to
E-admissibility, while the latter leads to maximality. What is intriguing though is that
the set of linear previsionsP is twice the same. Indeed, as can be seen from Theorem 6
and 7, we may assume without loss of generality that this set is equal to P(KC). For a
choice functionC that is mixing and binary, we therefore find thatC =CE

P =CM
P , with

P = P(KC). As the following result shows, this is only possible ifP is a singleton.

Proposition 3. Let P ⊆ P be a non-empty set of linear previsions. Then CE
P =CM

P if
and only ifP = {P} consists of a single linear prevision P ∈ P.

As a fairly immediate consequence, we obtain the following axiomatic characteri-
sation of choice functions that correspond to maximising expected utility.

Theorem 8. A choice function C is Archimedean, binary and mixing if and only if there
is a linear prevision P∈ P such that C =CP.

10 Conclusion and Future Work

The main conclusion of this work is that choice functions, when interpreted in terms
of (strict) desirability, can provide an axiomatic basis for decision making with sets
of probability models. In particular, we were able to derive necessary and sufficient
conditions for a choice function to correspond to either E-admissibility or maximality.
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As a byproduct, we also obtained a characterisation for choice functions that correspond
to maximising expected utility.

The key concept on which these results were based is that of an Archimedean choice
function, where Archimedeanity is itself a combination of several conditions. The first
of these conditions is translation invariance; this condition is fairly simple and allows
for a reduction from choice functions to sets of desirable option sets. The resulting set
of desirable option sets should then satisfy two more conditions: coherence and KA.
Coherence is also fairly simple, because it follows directly from the principles of desir-
ability. The condition KA, however, is more involved, making it perhaps the least intu-
itive component of Archimedeanity.

The abstract character of KA is not intrinsic to the property itself though, but rather
to the framework on which it is imposed. In fact, the basic principle sd4 on which KA

is based is very simple: if u is strictly desirable, then there must be some positive real
ε such that u− ε is strictly desirable as well. The reason why this simplicity does not
translate to KA is because we restrict attention to option sets that are finite. Consider for
example an assessment of the form {u} ∈ K. This means that u is strictly desirable and
therefore implies, due to sd4, that the option set {u− ε : ε ∈ R>0} contains at least one
strictly desirable option. Hence, we should simply impose that this set belongs to K.
This is not possible though because {u− ε : ε ∈ R>0} is infinite, while our framework
of sets of desirable option sets only considers finite option sets.

This situation can be remedied, and the axiom of Archimedeanity can be simplified,
by developing and adopting a framework of sets of desirable options that allows for
infinite option sets, and connecting it to a theory of choice funtions that chooses from
possibly infinite option sets. Explaining how this works is beyond the scope and size of
the present contribution though; I intend to report on those results elsewhere.

Acknowlegements. This work was funded by the BOF starting grant 01N04819 and is part of
a larger research line on choice functions of Gert de Cooman and I [3,4]. Within this line of
research, this contribution is one of two parallel papers on Archimedean choice functions, one
by each of us. My paper—this one—deals with the case where options are bounded real-valued
functions. It axiomatises Archimedean choice functions from the ground up by starting from
(strict) desirability principles and proves that the resulting axioms guarantee a representation
in terms of coherent lower prevision. The paper of Gert [5] defines Archimedeanity directly in
terms of coherent lower previsions—superlinear functionals, actually, in his case—but considers
the more general case where options live in an abstract Banach space; he also extends the concept
of a coherent lower prevision to this more general context and discusses the connection with horse
lotteries. We would like to combine our respective results in future work.
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7. Levi, I.: On indeterminate probabilities. Jo. Philos. 71(13), 391–418 (1974)
8. Quaeghebeur, E., de Cooman, G., Hermans, F.: Accept & reject statement-based uncertainty

models. Int. J. Approximate Reasoning 57, 69–102 (2015)
9. Savage, L.J.: The Foundations of Statistics, 2nd edn. Dover, New York (1972)
10. Seidenfeld, T., Schervish, M.J., Kadane, J.B.: Coherent choice functions under uncertainty.

Synthese 172(1), 157–176 (2010)
11. Troffaes, M.C.M.: Decision making under uncertainty using imprecise probabilities. Int. J.

Approximate Reasoning 45(1), 17–29 (2007)
12. Van Camp, A.: Choice Functions as a Tool to Model Uncertainty. Ph.D. thesis, Ghent Uni-

versity, Faculty of Engineering and Architecture (2018)
13. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London

(1991)
14. Williams, P.M.: Notes on conditional previsions. Int. J. Approximate Reasoning 44, 366–383

(2007)

https://doi.org/10.1007/978-3-319-97547-4_7
https://doi.org/10.1007/978-3-319-97547-4_7
http://arxiv.org/abs/2002.05461
http://arxiv.org/abs/2002.05461


Dynamic Portfolio Selection Under
Ambiguity in the ε-Contaminated

Binomial Model

Paride Antonini1 , Davide Petturiti1(B) , and Barbara Vantaggi2

1 Dip. Economia, University of Perugia, Perugia, Italy
paride.antonini@studenti.unipg.it, davide.petturiti@unipg.it
2 Dip. MEMOTEF, “La Sapienza” University of Rome, Rome, Italy

barbara.vantaggi@uniroma1.it

Abstract. Investors often need to look for an optimal portfolio acting
under ambiguity, as they may not be able to single out a unique real-
world probability measure. In this paper a discrete-time dynamic portfo-
lio selection problem is studied, referring to an ε-contaminated binomial
market model and assuming investors’ preferences are consistent with
the Choquet expected utility theory. We formulate the portfolio selection
problem for a CRRA utility function in terms of the terminal wealth, and
provide a characterization of the optimal solution in the case stock price
returns are uniformly distributed. In this case, we further investigate the
effect of the contamination parameter ε on the optimal portfolio.

Keywords: Ambiguity · Optimal portfolio · ε-Contamination model ·
Choquet integral

1 Introduction

The standard approach to uncertainty in portfolio selection models is to refer to
a unique real-world probability measure P, usually estimated from data. Nev-
ertheless, sometimes, due to the presence of unobserved variables or since the
information is partial, misspecified or “imprecise”, it is no longer possible to
handle uncertainty through a single probability measure. This has led to the
development of models taking care of ambiguity, i.e., coping with a class of
probability measures.

In recent years a growing interest has been addressed towards ambiguity in
decision and economic literature (see, e.g., the survey papers [5] and [6]). Mainly,
the aim is to propose models generalizing the classical subjective expected utility
model in a way to avoid paradoxical situations like that discussed in [4], showing
preference patterns under ambiguity that are not consistent with the expected
utility paradigm. In particular, referring to the Anscombe-Aumann framework,
the seminal papers [17] and [7] incorporate ambiguity in decisions, respectively,
either through a non-additive uncertainty measure or through a class of prob-
ability measures. The two approaches are generally not equivalent but in case
c© Springer Nature Switzerland AG 2020
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of a 2-monotone capacity [19] they reduce to Choquet expected utility. Choquet
expected utility has been investigated also in a von Neumann-Morgenstern-like
framework, by referring to “objective” completely monotone capacities modeling
generalized lotteries [2,10,14].

In this paper, we formalize a dynamic portfolio selection problem under ambi-
guity, referring to an ε-contamination [9] of a binomial market model [3] and to
a CRRA utility function [18]. Thanks to the completeness of the market, we
formulate the dynamic portfolio selection in terms of the final wealth. More-
over, since the lower envelope of the ε-contamination class, obtained from the
real-world probability P, is a completely monotone capacity, we assume that the
investors’ preferences are consistent with the Choquet expected utility theory.
The problem amounts to finding a final wealth maximizing the corresponding
Choquet expected utility functional. We stress that, due to the properties of the
Choquet integral [8], an agent which is a Choquet expected utility maximizer is
actually an expected utility maximinimizer, with respect to the ε-contamination
class.

Notice that, referring to a one-period model, a portfolio selection problem
under ambiguity via maximinimization has been faced in [15,16]. Moreover, our
problem is analogous to that formulated in Appendix C of [11], the latter differing
from ours for working in a continuous setting and considering a distortion of the
probability P.

We show that our problem can be reduced to a family of linearly constrained
concave problems, indexed by the set of all permutations of the sample space.
Moreover, the initial problem is proved to have a unique optimal solution. Focus-
ing on the special case of uniformly distributed stock returns (determining a uni-
form probability distribution on the sample space) we provide a characterization
of the optimal solution relying only on a number of permutations equal to the
cardinality of the sample space. Yet in the uniform case, we study the effect of
the contamination parameter ε on the optimal portfolio, showing the presence
of a threshold above which the optimal self-financing strategy reduces to 0 for
all times: this highlights that with such values of ε the ambiguity in the model
is so high to make the risk-free portfolio the most suitable choice.

This paper differs from the approach used in [12], where among their results,
the authors characterize a generalization of the random walk by replacing a prob-
ability with a capacity on the branches of a tree, for each time and by imposing
dynamic consistency (or rectangularity). We stress that dynamic consistency
is a mathematically helpful property in order to capture a form of martingale
property, but it is a strong limitation for a non-additive measure.

2 Dynamic Portfolio Selection in the Binomial Model

We refer to the multi-period binomial model introduced by Cox, Ross and Rubin-
stein [3]. Such model considers a perfect (competitive and frictionless) market
under no-arbitrage, where two basic securities are traded: a non-dividend-paying
stock and a risk-free bond.
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The evolution of the prices of such securities is expressed by the stochastic
processes {S0, . . . , ST } and {B0, . . . , BT }, with T ∈ N, S0 = s > 0, B0 = 1, and
for t = 1, . . . , T ,

St

St−1
=
{

u, with probability p
d, with probability 1 − p

and
Bt

Bt−1
= (1 + r),

where u > d > 0 are the “up” and “down” stock price coefficients, r is the
risk-free interest rate over each period, satisfying u > (1 + r) > d, and p ∈ (0, 1)
is the probability of an “up” movement for the stock price.

All the processes we consider are defined on a filtered probability space
(Ω,F , {Ft}t=0,...,T ,P), where Ω = {1, . . . , 2T } and Ft is the algebra gener-
ated by random variables {S0, . . . , St}, for t = 0, . . . , T , with F0 = {∅, Ω} and
FT = F = ℘(Ω), where the latter denotes the power set of Ω. As usual EP

denotes the expected value with respect to P.
The process {S0, . . . , ST } is a multiplicative binomial process where the

returns S1
S0

, . . . , ST

ST −1
are i.i.d. random variables, and the probability P, usu-

ally said real-world probability, is completely singled out by the parameter p,
indeed, for t = 0, . . . , T and k = 0, . . . , t, we have that

P(St = ukdt−ks) =
t!

k!(t − k)!
pk(1 − p)t−k.

We consider a self-financing strategy {θ0, . . . , θT−1}, that is an adapted pro-
cess where each θt is the (random) number of shares of stock to buy (if positive)
or short-sell (if negative) at time t up to time t + 1. Such strategy determines
an adapted wealth process {V0, . . . , VT }, where, for t = 0, . . . , T − 1,

Vt+1 = (1 + r)Vt + θtSt

(
St+1

St
− (1 + r)

)
. (1)

This market model is said to be complete, i.e., there is a unique probability mea-
sure Q on F equivalent to P, usually said risk-neutral probability, such that the
discounted wealth process of any self-financing strategy is a martingale under Q:

Vt

(1 + r)t
= EQ

t

[
VT

(1 + r)T

]
,

for t = 0, . . . , T , where EQ
t [·] = EQ[·|Ft] and EQ is the expectation with respect

to Q. Notice that EQ
0 can be identified with EQ. In particular, completeness

implies that every payoff VT ∈ R
Ω depending only on the stock price history can

be replicated by a dynamic self-financing strategy {θ0, . . . , θT−1} and its unique
no-arbitrage price at time t = 0 is

V0 =
EQ[VT ]
(1 + r)T

.
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Notice that the process {S0, . . . , ST } continues to be a multiplicative binomial
process also under Q, the latter being completely characterized by the parameter

q =
(1 + r) − d

u − d
∈ (0, 1),

which replaces p. In particular, every state i ∈ Ω is identified with the path
of the stock price evolution corresponding to the T -digit binary expansion of
number i − 1, in which zeroes are interpreted as “up” movements and ones as
“down” movements. If in such representation there are k “up” movements and
T − k “down” movements, then (we avoid braces to simplify writing)

P(i) = pk(1 − p)T−k and Q(i) = qk(1 − q)T−k.

In the market model we have just introduced, the real-world probability mea-
sure P is assumed to encode the beliefs of an investor. Assuming that investor’s
preferences are consistent with the expected utility theory, given a utility func-
tion u with domu = R++ = (0,+∞), usually assumed to be sufficiently regular,
strictly increasing and strictly concave, and an initial wealth V0 > 0, the dynamic
portfolio selection consists in determining a self-financing strategy {θ0, . . . , θT−1}
resulting in a final wealth VT ∈ R

Ω
++ solving

max
θ0,...,θT −1

EP[u(VT )].

Due to the dynamic consistency property of the conditional expected value oper-
ator, this problem can be efficiently solved through dynamic programming [18].

In this paper we suppose that our investor has ambiguous beliefs, meaning
that, rather than having a single probability P, he/she actually considers a class
of probabilities P. In this case, the choice of {θ0, . . . , θT−1} should take into
account all the probabilities in P, by adopting a suitable criterion of choice,
justified by a normative criterion of rationality.

3 Modeling Ambiguity Through the ε-Contamination
Model

Here we consider the binomial market model (see Sect. 2), introducing ambigu-
ity to get an ε-contaminated binomial model. Given the real-world probability
P defined on F (which is completely singled out by p) and ε ∈ (0, 1), the cor-
responding ε-contamination model (see, e.g., [9,19]) is the class of probability
measures on F defined as

Pp,ε = {P′ = (1 − ε)P + εP′′ : P′′ is a probability measure on F},

whose lower envelope νp,ε = min Pp,ε is a completely monotone normalized
capacity defined on F such that

νp,ε(A) =

{
(1 − ε)P(A), if A �= Ω,

1, if A = Ω.
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For every permutation σ of Ω, we can define a probability measure Pσ on
F , whose value on the singletons (we avoid braces to simplify writing) is

Pσ(σ(i)) = νp,ε(Eσ
i ) − νp,ε(Eσ

i+1),

where Eσ
i = {σ(i), . . . , σ(2T )}, for all i ∈ Ω, and Eσ

2T +1 = ∅. It turns out that
the class Pp,ε is the convex hull of probabilities Pσ’s.

We consider a CRRA utility function defined, for γ > 0, γ �= 1, as

uγ(x) =
x1−γ

1 − γ
, for x > 0.

For every random variable VT ∈ R
Ω
++, we can define the functional

CEUγ,p,ε[VT ] = C

∫
uγ(VT ) dνp,ε,

where the integral on the right side is of Choquet type. In particular, since uγ

is strictly increasing, for all VT ∈ R
Ω
++, if σ is a permutation of Ω such that

VT (σ(1)) ≤ . . . ≤ VT (σ(2T )) then the functional CEUγ,p,ε can be expressed (see
[8]) as follows

CEUγ,p,ε[VT ] =
2T∑

k=1

Pσ(k)
(VT (k))1−γ

1 − γ
. (2)

Proposition 1. The functional CEUγ,p,ε is concave, that is, for all VT , V ′
T ∈

R
Ω
++and all α ∈ [0, 1], it holds

CEUγ,p,ε[αVT + (1 − α)V ′
T ] ≥ αCEUγ,p,ε[VT ] + (1 − α)CEUγ,p,ε[V ′

T ].

Proof. Since uγ is (strictly) concave, for all i ∈ Ω and α ∈ [0, 1], we have

uγ(αVT (i) + (1 − α)V ′
T (i)) ≥ αuγ(VT (i)) + (1 − α)uγ(V ′

T (i)).

Hence, since νp,ε is completely monotone and so 2-monotone, Theorems 4.24 and
4.35 in [8] imply (by monotonicity and concavity of the Choquet integral)

CEUγ,p,ε[αVT + (1 − α)V ′
T ] = C

∫
uγ(αVT + (1 − α)V ′

T ) dνp,ε

≥ C

∫
[αuγ(VT ) + (1 − α)uγ(V ′

T )] dνp,ε

≥ αC

∫
uγ(VT ) dνp,ε + (1 − α)C

∫
uγ(V ′

T ) dνp,ε

= αCEUγ,p,ε[VT ] + (1 − α)CEUγ,p,ε[V ′
T ].

By Theorem 4.39 in [8], we also have that

CEUγ,p,ε[VT ] = min
P′∈Pp,ε

EP′
[uγ(VT )],

therefore, CEUγ,p,ε is a lower expected utility and maximizing it we are actually
applying a maximin criterion of choice.
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Given an initial wealth V0 > 0, our aim is to select a self-financing strategy
{θ0, . . . , θT−1} resulting in a final wealth VT ∈ R

Ω
++, solving

max
θ0,...,θT −1

CEUγ,p,ε[VT ].

Taking into account the completeness of the market, the above problem can be
rewritten maximizing over the final wealth VT

maximize CEUγ,p,ε[VT ]

subject to:{
EQ[VT ] − (1 + r)T V0 = 0,

VT ∈ R
Ω
++.

(3)

By Proposition 1, the objective function in (3) is a concave function on
R

Ω
++, subject to a linear constraint, therefore every local maximum is a global

maximum and, further, the set of global maxima is convex [1].
Since by (2) the computation of CEUγ,p,ε[VT ] depends on a permutation

σ such that the values of VT are increasingly ordered, the above problem (3)
can be decomposed in a family of optimization problems, each indexed by a
permutation σ of Ω = {1, . . . , 2T }, corresponding to a possible ordering of VT :

maximize

[
2T∑

k=1

Pσ(k) (VT (k))1−γ

1−γ

]

subject to:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2T∑
k=1

Q(k)VT (k) − (1 + r)T V0 = 0,

VT (σ(i − 1)) − VT (σ(i)) ≤ 0, for all i ∈ Ω \ {1},

VT ∈ R
Ω
++.

(4)

Denoting by V σ
T an optimal solution related to permutation σ, an optimal solu-

tion V ∗
T for (3) can be found by selecting V σ

T for a permutation σ where the
objective function is maximum. Notice that there can be more permutations
where the maximum is attained.

Proposition 2. The following statements hold:

(i) for every permutation σ, problem (4) has an optimal solution and such opti-
mal solution is unique;

(ii) problem (3) has an optimal solution and such optimal solution is unique.

Proof. (i). The subset Vσ of RΩ satisfying the equality and inequality constraints
in (4) is closed, and Vσ∩R

Ω
++ �= ∅, since VT = (1+r)T V0 ∈ Vσ∩R

Ω
++. Proceeding

as in the proof of Theorem 2.12 in [13], we have that problem (4) has an optimal
solution V σ

T , and such optimal solution is unique since the objective function in
(4) is strictly concave [1], as uγ is strictly concave.
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(ii). Statement (i) implies that problem (3) has an optimal solution V ∗
T

obtained by selecting V σ
T for a permutation σ where the objective function is

maximum. Suppose there are two permutations σ, σ′ attaining the maximum
and such that V σ

T �= V σ′
T . Since the set of optimal solutions of (3) is convex, this

implies that, for all α ∈ [0, 1], V α
T = αV σ

T + (1 − α)V σ′
T is an optimal solution of

(3). So, since the number of permutations of Ω is finite, we can find an α∗ such
that V α∗

T solves (4) for a permutation σ′′ but V α∗
T �= V σ′′

T , reaching a contradic-
tion. Finally, this implies that problem (3) has a unique optimal solution.

3.1 Characterization of the Case p = 1
2

Here we focus on the special case p = 1
2 , for which the probability distribution

Pσ on Ω is such that

Pσ(σ(1)) =
1 + (2T − 1)ε

2T
and Pσ(σ(i)) =

1 − ε

2T
, for all i ∈ Ω \ {1}.

The definition of Pσ shows that only the value σ(1) of every permutation σ
deserves attention: all the permutations σ, σ′ such that σ(1) = σ′(1) can be con-
sidered to be equivalent. Therefore, we can restrict to 2T arbitrary permutations
σ1, . . . , σ2T satisfying σh(1) = h, for all h ∈ Ω.

In this case, the family of optimization problems (4) can be reduced to a
family of optimization problems indexed by the permutations σ1, . . . , σ2T :

maximize

[
2T∑

k=1

Pσh(k) (VT (k))1−γ

1−γ

]

subject to:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2T∑
k=1

Q(k)VT (k) − (1 + r)T V0 = 0,

VT (σh(1)) − VT (σh(i)) ≤ 0, for all i ∈ Ω \ {1},

VT ∈ R
Ω
++.

(5)

Analogously to problem (4), for every permutation σh, problem (5) has a unique
optimal solution V σh

T . Then, the optimal solution V ∗
T for (3) can be found by

selecting a V σh

T for a permutation σh (possibly non-unique) where the objective
function is maximum. This shows that, when p = 1

2 , problem (3) can be solved
by solving 2T problems (5).

Below we provide a characterization of the optimal solution of problem (3).
In what follows, let σ be a permutation of Ω and I ⊆ Ω \ {1}. If I �= ∅, for all
i ∈ I, consider the constants

Aσ,I
i = Pσ(σ(i))∑

k∈I∪{1}
Pσ(σ(k))

[(
Q(σ(i))
Pσ(σ(i)) − Q(σ(1))

Pσ(σ(1))

)( ∑
k∈(I∪{1})\{i}

Pσ(σ(k))

)

+
∑

k∈I\{i}

(
Pσ(σ(k))

(
Q(σ(1))
Pσ(σ(1)) − Q(σ(k))

Pσ(σ(k))

))]
,
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where summations over an empty set are intended to be 0.
In turn, the above constants are used to define the following weights:

λσ,I
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 + r)T V0

2T∑
k=1

Q(σ(k))
(

1
Pσ(σ(k))

(
Q(σ(k)) + 1{1}(k)

(∑
i∈I

Aσ,I
i

)

− ∑
i∈I

1{i}(k)Aσ,I
i

))− 1
γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−γ

,

where 1{i} is the indicator function of the singleton {i}, while, for all i ∈ I, set

λσ,I
i = Aσ,I

i λσ,I
1 ,

and λσ,I
i = 0, for all i ∈ Ω \ (I ∪ {1}). Notice that, if I = ∅, then the two inner

summations involving I in the definition of λσ,I
1 are set to 0: in this case, only

λσ,I
1 will be non-null.

Theorem 1. For p = 1
2 and T ≥ 1, a random variable VT ∈ R

Ω
++ is the optimal

solution of problem (3) if and only if there is a permutation σ of Ω and a subset
I ⊆ Ω \ {1} inducing the weights λσ,I

i ’s such that the following conditions hold:

(i) λσ,I
i ≥ 0, for all i ∈ I;

(ii) VT (σ(1)) =

(
1

Pσ(σ(1))

(
Q(σ(1))λσ,I

1 +
2T∑

k=2

λσ,I
k

))− 1
γ

, for all i ∈ Ω \ {1},

VT (σ(i)) =
(

1
Pσ(σ(i))

(
Q(σ(i))λσ,I

1 − λσ,I
i

))− 1
γ

;
(iii) VT (σ(1)) ≤ VT (σ(i)), for all i ∈ Ω \ (I ∪ {1});

and there is no other permutation σ′ of Ω and no other subset I ′ ⊆ Ω \ {1}
determining the weights λσ′,I′

’s and the random variable V ′
T ∈ R

Ω
++ satisfying

(i)–(iii) such that CEUγ,p,ε[V ′
T ] > CEUγ,p,ε[VT ].

Proof. Let σ be a permutation of Ω. We first show that VT ∈ R
Ω
++ is the

optimal solution of the corresponding problem (5) if and only if there is a
subset I ⊆ Ω \ {1} inducing weights λσ,I

i ’s satisfying (i)–(iii). Denote by
f(VT ) = f(VT (1), . . . , VT (2T )) and g(VT ) = g(VT (1), . . . , VT (2T )) = 0 the objec-
tive function and the equality constraint in (5), which are, respectively, (strictly)
concave and linear. We also have that all inequality constraints in (5) are lin-
ear, therefore, the Karush-Kuhn-Tucker (KKT) conditions are necessary and
sufficient in this case [1]. Define the Lagrangian function

L(VT , λ1, . . . , λ2T ) = f(VT ) − λ1g(VT ) −
2T∑

k=2

λk(VT (σ(1)) − VT (σ(k))),
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for which it holds

∂L

∂VT (σ(1))
= Pσ(σ(1))(VT (σ(1)))−γ − λ1Q(σ(1)) −

2T∑
k=2

λk,

∂L

∂VT (σ(i))
= Pσ(σ(i))(VT (σ(i)))−γ − λ1Q(σ(i)) + λi, for all i ∈ Ω \ {1}.

Imposing the KKT conditions, we look for VT ∈ R
Ω
++, λ1 ∈ R, λ2, . . . , λ2T ≥ 0

such that ∂L
∂VT (σ(k)) = 0, for all k ∈ Ω, g(VT ) = 0, VT (σ(1)) ≤ VT (σ(i)) and

λi(VT (σ(1)) − VT (σ(i))) = 0, for all i ∈ Ω \ {1}.
By ∂L

∂VT (σ(k)) = 0, for all k ∈ Ω, we derive

VT (σ(1)) =

⎛
⎝ 1
Pσ(σ(1))

⎛
⎝λ1Q(σ(1)) +

2T∑
k=2

λk

⎞
⎠
⎞
⎠

− 1
γ

,

VT (σ(i)) =
(

1
Pσ(σ(i))

(λ1Q(σ(i)) − λi)
)− 1

γ

, for all i ∈ Ω \ {1}.

Moreover, by the complementary slackness conditions λi(VT (σ(1))−VT (σ(i))) =
0, for all i ∈ Ω \ {1}, there must exist I ⊆ Ω \ {1} such that λi = 0, for all
i ∈ Ω \ (I ∪ {1}), while, for all i ∈ I, VT (σ(1)) − VT (σ(i)) = 0.

The case I = ∅ is trivial, thus suppose I �= ∅. For every i ∈ I, equation
VT (σ(1)) − VT (σ(i)) = 0 holds if and only if
(

Q(σ(1))

Pσ(σ(1))
− Q(σ(i))

Pσ(σ(i))

)
λ1 +

(
1

Pσ(σ(1))
+

1

Pσ(σ(i))

)
λi +

1

Pσ(σ(1))

∑
k∈I\{i}

λk = 0.

Choose an enumeration of I ∪ {1} = {i1, i2, . . . , in} with i1 = 1. Then the
above equations give rise to the homogeneous linear system Ax = 0, whose
unknown is the column vector x = [λ1 λi2 · · · λin

]T ∈ R
n×1 and whose coeffi-

cient matrix is A = [q|B] ∈ R
(n−1)×n where

q =
[(

Q(σ(1))
Pσ(σ(1)) − Q(σ(i2))

Pσ(σ(i2))

) (
Q(σ(1))
Pσ(σ(1)) − Q(σ(i3))

Pσ(σ(i3))

)

· · ·
(

Q(σ(1))
Pσ(σ(1)) − Q(σ(in))

Pσ(σ(in))

)]T ,

B =

⎡
⎢⎢⎢⎢⎣

(
1

Pσ(σ(1)) + 1
Pσ(σ(i2))

)
1

Pσ(σ(1)) · · · 1
Pσ(σ(1))

1
Pσ(σ(1))

(
1

Pσ(σ(1)) + 1
Pσ(σ(i3))

)

· · · 1
Pσ(σ(1))

.

.

.

.

.

. · · ·
.
.
.

1
Pσ(σ(1))

1
Pσ(σ(1)) · · ·

(
1

Pσ(σ(1)) + 1
Pσ(σ(in))

)

⎤
⎥⎥⎥⎥⎦ .

Hence, B ∈ R
(n−1)×(n−1) can be decomposed in the sum of two matrices

C,D ∈ R
(n−1)×(n−1), where C is a constant matrix with all entries equal to

1
Pσ(σ(1)) and D is the diagonal matrix whose diagonal contains the elements
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1
Pσ(σ(i2))

, . . . , 1
Pσ(σ(in)) . Since the determinant does not change subtracting the

first row from all other rows, we can consider the matrix⎡
⎢⎢⎢⎣

(
1

Pσ(σ(1)) + 1
Pσ(σ(i2))

)
1

Pσ(σ(1)) · · · 1
Pσ(σ(1))

− 1
Pσ(σ(i2))

1
Pσ(σ(i3)) · · · 0

.

.

.

.

.

. · · ·
.
.
.

− 1
Pσ(σ(i2)) 0 · · · 1

Pσ(σ(in))

⎤
⎥⎥⎥⎦ . (6)

Applying the Laplace expansion along the first row we get that

det B = det(C + D) =

n∑
j=1

Pσ(σ(ij))

n∏
j=1

Pσ(σ(ij))
,

and since det B �= 0, we have that rankB = n − 1 and the system admits
non-trivial solutions, depending on one real parameter that we identify with λ1.
Now, apply Cramer’s rule to the reduced system By = −λ1q with unknown the
column vector y = [λi2 · · · λin

]T ∈ R
(n−1)×1.

For j = 2, . . . , n, denote by Bj−1 the matrix obtained by substituting the (j−
1)-th column of B with the vector −λ1q. Applying the Laplace expansion along
the (j − 1)-th column of Bj−1 and noticing that all minors can be transformed
(by swapping rows and keeping track of sign changes) in the sum of a constant
matrix and a diagonal matrix (possibly with a zero on the diagonal), we have

det Bj−1 =

[(
Q(σ(ij))
Pσ(σ(ij))

− Q(σ(1))
Pσ(σ(1))

) ∑

k∈(I∪{1})\{ij}
Pσ(σ(k))

∏

k∈(I∪{1})\{ij}
Pσ(σ(k))

+
∑

k∈I\{ij}

((
Q(σ(1))
Pσ(σ(1)) − Q(σ(k))

Pσ(σ(k))

)
1∏

s∈(I∪{1})\{ij ,k}
Pσ(σ(s))

)]
λ1

therefore, λij
= detBj−1

detB = Aσ,I
ij

λ1.
Substituting in g(VT ) = 0 the expressions of VT (σ(k)), for all k ∈ Ω, and λi,

for all i ∈ Ω \ {1}, we get for λ1 the expression of λσ,I
1 , thus λi coincides with

λσ,I
i . Hence, VT ∈ R

Ω
++ is the optimal solution for the problem (5) if and only if

there exists I ⊆ Ω \ {1} inducing weights λσ,I
i ’s satisfying (i)–(iii).

For every h ∈ Ω, let σh be a permutation of Ω such that σh(1) = h and
denote by V σh

T the optimal solution of problem (5) for σh. By the definition of
the Choquet integral [8], problem (3) is equivalent to maximizing CEUγ,p,ε over
optimal solutions of the family of problems (4), indexed by all permutations of
Ω. In turn, since, for every permutations σ, σ′ of Ω such that σ(1) = σ′(1), it
holds Pσ = Pσ′

, such maximization can be reduced to maximizing CEUγ,p,ε

over optimal solutions of the family of problems (5), indexed by permutations
σ1, . . . , σ2T of Ω. This finally proves the theorem.

Theorem 1 allows to find the analytic expression of the optimal solution of
problem (3) in the case p = 1

2 , reducing it to 2T combinatorial optimization
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problems, each corresponding to a permutation σh of Ω such that σh(1) = h, for
all h ∈ Ω.

Example 1. Consider a two-period model with T = 2, γ = 2, ε = 1
50 , p = 1

2 ,
u = 2, and d = 1

2 . Suppose S0 = e100, V0 = e10, and the risk-free interest
rate is r = 5% over every period. This implies that q = 11

30 while, for every
permutation σ of Ω = {1, 2, 3, 4}, it holds Pσ(σ(1)) = 53

200 and Pσ(σ(i)) = 49
200 .

For σ1 = 〈1, 2, 3, 4〉 the only subset of Ω \ {1} satisfying (i)–(iii) is I = {4}
with:

• λσ1,I
1 = 0.00822164, λσ1,I

2 = 0, λσ1,I
3 = 0, λσ1,I

4 = 0.00118255,
• V σ1

2 (1) = 10.7623, V σ1
2 (2) = 11.328, V σ1

2 (3) = 11.328, V σ1
2 (4) = 10.7623,

• CEUγ,p,ε[V σ1
2 ] = −0.0906436.

For σ2 = 〈2, 1, 3, 4〉 the only subset of Ω \ {1} satisfying (i)–(iii) is I = {4}
with:

• λσ2,I
1 = 0.00803641, λσ2,I

2 = 0, λσ2,I
3 = 0, λσ2,I

4 = 0.000778428,
• V σ2

2 (1) = 15.0585, V σ2
2 (2) = 10.0101, V σ2

2 (3) = 11.4578, V σ2
2 (4) = 10.0101,

• CEUγ,p,ε[V σ2
2 ] = −0.0886014.

For σ3 = 〈3, 1, 2, 4〉 the only subset of Ω \ {1} satisfying (i)–(iii) is I = {4}
with:

• λσ3,I
1 = 0.00803641, λσ3,I

2 = 0, λσ3,I
3 = 0, λσ3,I

4 = 0.000778428,
• V σ3

2 (1) = 15.0585, V σ3
2 (2) = 11.4578, V σ3

2 (3) = 10.0101, V σ3
2 (4) = 10.0101,

• CEUγ,p,ε[V σ3
2 ] = −0.0886014.

For σ4 = 〈4, 1, 2, 3〉 the only subset of Ω \ {1} satisfying (i)–(iii) is I = ∅
with:

• λσ4,I
1 = 0.0079751, λσ4,I

2 = 0, λσ4,I
3 = 0, λσ4,I

4 = 0,
• V σ4

2 (1) = 15.1162, V σ4
2 (2) = 11.5017, V σ4

2 (3) = 11.5017, V σ4
2 (4) = 9.1017,

• CEUγ,p,ε[V σ4
2 ] = −0.0879255.

A simple inspection shows that the maximum value of CEUγ,p,ε is obtained
for σ4, therefore we take V ∗

2 = V σ4
2 .

Using the martingale property with respect to Q of the wealth process
{V ∗

0 , V ∗
1 , V ∗

2 }, that is V ∗
1 = EQ

1 [V ∗
2 ]

1+r and V ∗
0 = V0 = EQ

0 [V ∗
2 ]

(1+r)2 , we can recover
the optimal self-financing strategy {θ0, θ1} through (1):

Ω V ∗
0 V ∗

1 V ∗
2 θ0 θ1

1 e10 e12.2162 e15.1162 0.018 0.012
2 e10 e12.2162 e11.5017 0.018 0.012
3 e10 e9.5064 e11.5017 0.018 0.032
4 e10 e9.5064 e9.1017 0.018 0.032
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4 The Effect of ε on the Optimal Portfolio

Now we investigate the effect of ε on the optimal portfolio. Figures 1 and 2 show
the optimal value of CEUγ,p,ε for V0 = e10, u ∈ {1.2, 1.4, 1.6, 1.8, 2}, d = 1

u ,
r = 5%, γ = 2, p = 1

2 and ε ranging in [0, 1) with step 0.01, for T = 2 and T = 3,
respectively. In particular, ε = 0 stands for absence of ambiguity.

In both figures we can see that, for increasing ε, the optimal value of CEUγ,p,ε

decreases until reaching a constant value that corresponds to uγ((1 + r)T V0). It
actually holds that, once the optimal value of CEUγ,p,ε reaches uγ((1 + r)T V0),
the optimal portfolio results in the final risk-free wealth V ∗

T = (1 + r)T V0. In
such cases, the corresponding self-financing strategy is such that θt = 0, for
t = 0, . . . , T − 1, i.e., the optimal portfolio consists of only a risk-free bond
investment for all the periods.
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u = 1.2
u = 1.4
u = 1.6
u = 1.8

u = 2

Fig. 1. Optimal values of CEUγ,p,ε for T = 2, V0 = e10, u ∈ {1.2, 1.4, 1.6, 1.8, 2},
d = 1

u
, r = 5%, γ = 2, p = 1

2
and ε ranging in [0, 1) with step 0.01.

Figures 1 and 2 highlight the existence of a value ε∗(T, γ, p, u, d, r, V0) above
which the optimal self-financing strategy reduces to 0 for all times. In a sense,
we may think at ε∗(T, γ, p, u, d, r, V0) as a threshold above which the ambigu-
ity incorporated in the real-world probability P through the ε-contamination
is so high to make the risk-free portfolio the most suitable choice. The follow-
ing Table 1 reports the intervals containing ε∗(T, γ, p, u, d, r, V0) for the param-
eter setting of Figs. 1 and 2. Let us stress that a numerical approximation of
ε∗(T, γ, p, u, d, r, V0) can be achieved by applying a suitable bisection algorithm,
while its analytic expression will be the aim of future research.
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Fig. 2. Optimal values of CEUγ,p,ε for T = 3, V0 = e10, u ∈ {1.2, 1.4, 1.6, 1.8, 2},
d = 1

u
, r = 5%, γ = 2, p = 1

2
and ε ranging in [0, 1) with step 0.01.

Table 1. Intervals containing ε∗(T, γ, p, u, d, r, V0) for T ∈ {2, 3}, V0 = e10, u ∈
{1.2, 1.4, 1.6, 1.8, 2}, d = 1

u
, r = 5%, γ = 2, p = 1

2
.

γ = 2 T = 2 T = 3

u = 1.2 [0.33, 0.34] [0.45, 0.46]

u = 1.4 [0.04, 0.05] [0.06, 0.07]

u = 1.6 [0.23, 0.24] [0.33, 0.34]

u = 1.8 [0.36, 0.37] [0.49, 0.5]

u = 2 [0.46, 0.47] [0.6, 0.61]

5 Conclusions and Future Works

In this paper we formulate a dynamic portfolio selection problem under ambigu-
ity by referring to an ε-contaminated binomial market model and a CRRA utility
function. We provide a characterization of the optimal solution in the case the
stock price returns are uniformly distributed and investigate the effect of the con-
tamination parameter ε on the optimal portfolio. It turns out that, in the uniform
case, one can find a threshold for ε above which the optimal portfolio reduces to a
risk-free investment on every period. An analytic characterization of such thresh-
old is reserved for future research. Further, a characterization of the optimal solu-
tion in the general case remains open, as well as the generalization to other classes
of utility functions. Another line of investigation is the design of efficient algo-
rithms to solve the family of concave optimization problems to which the initial
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problem can be reduced, since, being indexed by the permutations of the sample
space, they constitute a computational challenge.
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Abstract. We study the limit behaviour of upper and lower bounds on
expected time averages in imprecise Markov chains; a generalised type
of Markov chain where the local dynamics, traditionally characterised
by transition probabilities, are now represented by sets of ‘plausible’
transition probabilities. Our main result is a necessary and sufficient
condition under which these upper and lower bounds, called upper and
lower expected time averages, will converge as time progresses towards
infinity to limit values that do not depend on the process’ initial state.
Remarkably, our condition is considerably weaker than those needed to
establish similar results for so-called limit—or steady state—upper and
lower expectations, which are often used to provide approximate infor-
mation about the limit behaviour of time averages as well. We show that
such an approximation is sub-optimal and that it can be significantly
improved by directly using upper and lower expected time averages.

Keywords: Imprecise Markov chain · Upper expectation · Upper
transition operator · Expected time average · Weak ergodicity

1 Introduction

Markov chains are probabilistic models that can be used to describe the uncertain
dynamics of a large variety of stochastic processes. One of the key results within
the field is the point-wise ergodic theorem. It establishes a relation between the
long-term time average of a real-valued function and its limit expectation, which
is guaranteed to exist if the Markov chain is ergodic.1 For this reason, limit
expectations and limit distributions have become central objects of interest. Of
course, if one is interested in the long-term behaviour of time averages, one could
also study the expected values of these averages directly. This is not often done
though, because the limit of these expected time averages coincides with the

1 The term ergodicity has various meanings; sometimes it refers to properties of
an invariant measure, sometimes it refers to properties such as irreducibility (with
or without aperiodicity), regularity, ... Our usage of the term follows conventions
introduced in earlier work [2,8] on imprecise Markov chains; see Sects. 2 and 4.
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aforementioned limit expectations, which can straightforwardly be obtained by
solving a linear eigenproblem [10].

We here consider a generalisation of Markov chains, called imprecise Markov
chains [2,4,9], for which the considerations above are not necessarily true. Impre-
cise Markov chains are sets of traditional (“precise”) probabilistic models, where
the Markov property (history independence) and time-homogeneity apply to the
collection of precise models as a whole, but not necessarily to the individual mod-
els themselves. Imprecise Markov chains therefore allow one to incorporate model
uncertainty about the numerical values of the transition probabilities that make
up a Markov chain, but also, and more importantly, about structural assump-
tions such as time-homogeneity and the Markov property. For such an imprecise
Markov chain, one is then typically interested in obtaining tight upper and lower
bounds on inferences for the individual constituting models. The operators that
represent these upper and lower bounds are respectively called upper and lower
expectations.

Just like traditional Markov chains can have a limit expectation, an imprecise
Markov chain can have limit upper and lower expectations. There are necessary
and sufficient conditions for their existence [8] as well as an imprecise variant
of the point-wise ergodic theorem [2]. An important difference with traditional
Markov chains however, is that upper and lower bounds on expectations of time
averages—we will call these upper and lower expected time averages—may not
converge to limit upper and lower expectations. Nevertheless, because they give
conservative bounds [11, Lemma 57], and because they are fairly easy to com-
pute, limit upper and lower expectations are often used as descriptors of the
long-term behaviour of imprecise Markov chains, even if one is actually inter-
ested in time averages. This comes at a cost though: as we illustrate in Sect. 4,
both inferences can differ greatly, with limit expectations providing far too con-
servative bounds.

Unfortunately, apart from some experiments in [11], little is known about
the long-term behaviour of upper and lower expected time averages in imprecise
Markov chains. The aim of this paper is to remedy this situation. Our main result
is an accessibility condition that is necessary and sufficient for upper and lower
expected time averages to converge to a limit value that does not depend on
the process’ initial state; see Sect. 7. Remarkably, this condition is considerably
weaker than the ones required for limit lower and upper expectations to exist.

Technical proofs are relegated to the appendix of an extended online ver-
sion [12]. This is particularly true for the results in Sect. 7, where the main text
provides an informal argument that aims to provide intuition.

2 Markov Chains

We consider an infinite sequence X0X1X2 · · · of uncertain states, where each
state Xk at time k ∈ N0 := N ∪ {0} takes values in some finite set X , called
the state space. Such a sequence X0X1X2 · · · will be called a (discrete-time)
stochastic process. For any k, � ∈ N0 such that k ≤ �, we use Xk:� to denote the
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finite subsequence Xk · · · X� of states that takes values in X �−k+1. Moreover,
for any k, � ∈ N0 such that k ≤ � and any xk:� ∈ X �−k+1, we use Xk:� =
xk:� to denote the event that Xk = xk · · · X� = x�. The uncertain dynamics
of a stochastic process are then typically described by probabilities of the form
P(Xk+1 = xk+1|X0:k = x0:k), for any k ∈ N0 and any x0:k+1 ∈ X k+2. They
represent beliefs about which state the process will be in at time k + 1 given
that we know that it was in the states x0 · · · xk at time instances 0 through k.
Additionally, our beliefs about the value of the initial state X0 can be represented
by probabilities P(X0 = x0) for all x0 ∈ X . The local probability assessments
P(Xk+1 = xk+1|X0:k = x0:k) and P(X0 = x0) can now be combined to construct
a global probability model P that describes the dynamics of the process on a more
general level. This can be done in various ways; one of the most common ones
being a measure-theoretic approach where countable additivity plays a central
role. For our purposes however, we will only require finite additivity. Regardless,
once you have such a global probability model P, it can then be used to define
expectations and make inferences about the uncertain behaviour of the process.

For any set A, let us write L (A) to denote the set of all real-valued functions
on A. Throughout, for any a ∈ A, we use Ia to denote the indicator of a: the
function in L (A) that takes the value 1 in a and 0 otherwise. We will only be
concerned with (upper and lower) expectations of finitary functions: functions
that depend on the state of the process at a finite number of time instances. So if
f is finitary, we can write f = g(X0:k) for some k ∈ N0 and some g ∈ L (X k+1).
Note that finitary functions are bounded; this follows from their real-valuedness
and the fact that X is finite. The expectation of a finitary function f(X0:k)
conditional on some event X0:� = x0:� simply reduces to a finite weighted sum:

EP(f(X0:k)|X0:� = x0:�) =
∑

x�+1:k∈X k−�

f(x0:k)
k−1∏

i=�

P(Xi+1 = xi+1|X0:i = x0:i).

A particularly interesting case arises when studying stochastic processes that
are described by a probability model P that satisfies

P(Xk+1 = y |X0:k = x0:k) = P(Xk+1 = y |Xk = xk),

for all k ∈ N0, all y ∈ X and all x0:k ∈ X k+1. This property, known as
the Markov property, states that given the present state of the process the
future behaviour of the process does not depend on its history. A process of
this type is called a Markov chain. We moreover call it (time) homogeneous
if additionally P(Xk+1 = y |Xk = x) = P(X1 = y |X0 = x), for all k ∈ N0

and all x, y ∈ X . Hence, together with the assessments P(X0 = x0), the
dynamics of a homogeneous Markov chain are fully characterised by the prob-
abilities P(X1 = y |X0 = x). These probabilities are typically gathered in a
transition matrix T ; a row-stochastic |X | × |X | matrix T that is defined by
T (x, y) := P(X1 = y |X0 = x) for all x, y ∈ X . This matrix representation T
is particularly convenient because it can be regarded as a linear operator from
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L (X ) to L (X ), defined for any k ∈ N0, any f ∈ L (X ) and any x ∈ X by

Tf(x) :=
∑

y∈X

f(y)P(Xk+1 = y |Xk = x) = EP(f(Xk+1) |Xk = x).

More generally, we have that EP(f(Xk+�) |Xk = x) = T �f(x) for all k ∈ N0,
all � ∈ N0 and all x ∈ X . Then, under some well-known accessibility conditions
[8, Proposition 3], the expectation T �f(x) converges for increasing � towards
a constant E∞(f) independently of the initial state x. If this is the case for
all f ∈ L (X ), the homogeneous Markov chain will have a steady-state dis-
tribution, represented by the limit expectation E∞, and we call the Markov
chain ergodic. The expectation E∞ is in particular also useful if we are inter-
ested in the limit behaviour of expected time averages. Indeed, let fk(X�:�+k) :=
1/(k + 1)

∑�+k
i=� f(Xi) be the time average of some function f ∈ L (X ) evaluated

at the time instances � through k + �. Then, according to [11, Theorem 38], the
limit of the expected average limk→+∞ EP(fk(X0:k)) coincides with the limit
expectation E∞(f). One of the aims of this paper is to explore to which extent
this remains true for imprecise Markov chains.

3 Imprecise Markov Chains

If the basic probabilities P(Xk+1|X0:k = x0:k) that describe a stochastic process
are imprecise, in the sense that we only have partial information about them,
then we can still model the process’ dynamics by considering a set Tx0:k of
such probabilities, for all k ∈ N0 and all x0:k ∈ X k+1. This set Tx0:k is then
interpreted as the set of all probability mass functions P(Xk+1|X0:k = x0:k) that
we deem “plausible”. We here consider the special case where the sets Tx0:k

satisfy a Markov property, meaning that Tx0:k = Txk
for all k ∈ N0 and all

x0:k ∈ X k+1. Similar to the precise case, the sets Tx, for all x ∈ X , can be
gathered into a single object: the set T of all row stochastic |X |×|X | matrices
T such that, for all x ∈ X , the probability mass function T (x, ·) is an element
of Tx. A set T of transition matrices defined in this way is called separately
specified [9]. For any such set T, the corresponding imprecise Markov chain
under epistemic irrelevance P ei

T [3] is the set of all (precise) probability models
P such that P(Xk+1|X0:k = x0:k) ∈ Txk

for all k ∈ N0 and all x0:k ∈ X k+1. The
values of the probabilities P(X0 = x0) will be of no importance to us, because
we will focus solely on (upper and lower) expectations conditional on the value
of the initial state X0.

Clearly, an imprecise Markov chain P ei
T also contains non-homogeneous, and

even non-Markovian processes. So the Markov property does in this case not
apply to the individual probability assessments, but rather to the sets Tx0:k .
The model P ei

T is therefore a generalisation of a traditional Markov chain where
we allow for model uncertainty about, on the one hand, the mass functions
P(Xk+1|X0:k = x0:k) and, on the other hand, about structural assumptions such
as the Markov and time-homogeneity property. However, there are also types of
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imprecise Markov chains that do impose some of these properties. For a given set
T, the imprecise Markov chain under complete independence P ci

T is the subset
of P ei

T that contains all, possibly non-homogeneous, Markov chains in P ei
T [11].

The imprecise Markov chain under repetition independence P ri
T is the subset of

P ei
T containing all homogeneous Markov chains [11]. Henceforth, we let T be

some fixed, arbitrary set of transition matrices that is separately specified.
Now, for any probability model P in the imprecise Markov chain P ei

T , we
can again consider the corresponding expectation operator EP. The upper and
lower expectation are then respectively defined as the tightest upper and lower
bound on this expectation:

E
ei

T (f |A) := sup
P∈P ei

T

EP(f |A) and E ei
T (f |A) := inf

P∈P ei
T

EP(f |A),

for any finitary function f and any event A of the form X0:k = x0:k. The opera-
tors E

ei

T and E ei
T are related by conjugacy, meaning that E ei

T (·|·) = −E
ei

T (− · |·),
which allows us to focus on only one of them; upper expectations in our case. The
lower expectation E ei

T (f |A) of a finitary function f can then simply be obtained
by considering the upper expectation −E

ei

T (−f |A).
In a similar way, we can define the upper expectations E

ci

T and E
ri

T and the
lower expectations Eci

T and Eri
T as the tightest upper and lower bounds on the

expectations corresponding to the models in P ci
T and P ri

T , respectively. Since
P ri

T ⊆ P ci
T ⊆ P ei

T , we have that E
ri

T (f |A) ≤ E
ci

T (f |A) ≤ E
ei

T (f |A) for any
finitary function f and any event A of the form X0:k = x0:k.

As we have mentioned before, imprecise Markov chains generalise traditional
Markov chains by incorporating different types of model uncertainty. The corre-
sponding upper (and lower) expectations then allow us to make inferences that
are robust with respect to this model uncertainty. For a more detailed discus-
sion on the motivation for and interpretation behind these and other types of
so-called imprecise probability models, we refer to [1,5,14].

Within the context of imprecise Markov chains, we will be specifically con-
cerned with two types of inferences: the upper and lower expectation of a function
at a single time instant, and the upper and lower expectation of the time aver-
age of a function. For imprecise Markov chains under epistemic irrelevance and
under complete independence, both of these inferences coincide [11, Theorem 51
& Theorem 52]. For any f ∈ L (X ) and any x ∈ X , we will denote them by

Ek(f |x) = E
ei

T (f(Xk)|X0 = x) = E
ci

T (f(Xk)|X0 = x)

and Eav,k(f |x) = E
ei

T (fk(X0:k)|X0 = x) = E
ci

T (fk(X0:k)|X0 = x),

respectively, where the dependency on T is implicit. The corresponding lower
expectations can be obtained through conjugacy: Ek(f |x) = −Ek(−f |x) and
Eav,k(f |x) = −Eav,k(−f |x) for all f ∈ L (X ) and all x ∈ X . In the remainder,
we will omit imprecise Markov chains under repetition independence from the
discussion. Generally speaking, this type of imprecise Markov chain is less stud-
ied within the field of imprecise probability because of its limited capacity to
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incorporate model uncertainty. Indeed, it is simply a set of time-homogeneous
precise Markov chains and therefore only allows for model uncertainty about the
numerical values of the transition probabilities. Moreover, as far as we know, a
characterisation for the ergodicity of such Markov chains—a central topic in this
paper—is currently lacking. We therefore believe that this subject demands a
separate discussion, which we defer to future work.

4 Transition Operators, Ergodicity and Weak Ergodicity

Inferences of the form Ek(f |x) were among the first ones to be thoroughly stud-
ied in imprecise Markov chains. Their study was fundamentally based on the
observation that Ek(f |x) can be elegantly rewritten as the k-th iteration of the
map T : L (X ) → L (X ) defined by

Th(x) := sup
T∈T

Th(x) = sup
T (x,·)∈Tx

∑

y∈X

T (x, y)h(y),

for all x ∈ X and all h ∈ L (X ). Concretely, Ek(f |x) = [T kf ](x) for all x ∈ X
and all k ∈ N0 [4, Theorem 3.1]. The map T therefore plays a similar role as the
transition matrix T in traditional Markov chains, which is why it is called the
upper transition operator corresponding to the set T.

In an analogous way, inferences of the form Eav,k(f |x) can be obtained as the
k-th iteration of the map Tf : L (X ) → L (X ) defined by Tfh := f + Th for all
h ∈ L (X ). In particular, if we let m̃f,0 := f = Tf (0) and

m̃f,k := f + Tm̃f,k−1 = Tfm̃f,k−1 for all k ∈ N, (1)

then it follows from [11, Lemma 41] that Eav,k(f |x) = 1
k+1m̃f,k(x) for all x ∈ X

and all k ∈ N0. Applying Eq. (1) repeatedly, we find that for all x ∈ X :

Eav,k(f |x) = 1
k+1m̃f,k(x) = 1

k+1 [T k
f m̃f,0](x) = 1

k+1 [T k+1
f (0)](x). (2)

The same formula can also be obtained as a special case of the results in [13].
These expressions for Ek(f |x) and Eav,k(f |x) in terms of the respective oper-

ators T and Tf are particularly useful when we aim to characterise the limit
behaviour of these inferences. As will be elaborated on in the next section, there
are conditions on T that are necessary and sufficient for Ek(f |x) to converge to
a limit value that does not depend on the process’ initial state x ∈ X . If this
is the case for all f ∈ L (X ), the imprecise Markov chain is called ergodic and
we then denote the constant limit value by E∞(f) := limk→+∞ Ek(f |x). Simi-
larly, we call an imprecise Markov chain weakly ergodic if, for all f ∈ L (X ),
limk→+∞ Eav,k(f |x) exists and does not depend on the initial state x. For a
weakly ergodic imprecise Markov chain, we denote the common limit value by
Eav,∞(f) := limk→+∞ Eav,k(f |x). In contrast with standard ergodicity, weak
ergodicity and, more generally, the limit behaviour of Eav,k(f |x), is almost
entirely unexplored. The aim of this paper is to remedy this situation. The main
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contribution will be a necessary and sufficient condition for an imprecise Markov
chain to be weakly ergodic. As we will see, this condition is weaker than those
needed for standard ergodicity, hence our choice of terminology. The following
example shows that this difference already becomes apparent in the precise case.

Example 1. Let X = {a, b}, consider any function f =
[ fa

fb

] ∈ L (X ) and
assume that T consists of a single matrix T =

[
0 1
1 0

]
. Clearly, T is not ergodic

because T (2�+1)f = T (2�+1)f =
[
0 1
1 0

]
f =

[ fb

fa

]
and T (2�)f =

[
1 0
0 1

]
f =

[ fa

fb

]
for

all � ∈ N0. T is weakly ergodic though, because

T
(2�)
f (0) = �

[ fa+fb

fa+fb

]
and T

(2�+1)
f (0) = f + T T

(2�)
f (0) = f + �

[ fa+fb

fa+fb

]
,

for all � ∈ N0, which implies that Eav,∞(f) := limk→+∞ T k
f (0)/k = (fa + fb)/2

exists. ♦

Notably, even if an imprecise Markov chain is ergodic (and hence also weakly
ergodic) and therefore both E∞(f) and Eav,∞(f) exist, these inferences will
not necessarily coincide. This was first observed in an experimental setting [11,
Section 7.6], but the differences that were observed there were marginal. The
following example shows that these differences can in fact be very substantial.

Example 2. Let X = {a, b}, let Ta be the set of all probability mass functions
on X and let Tb := {p} for the probability mass function p = (pa, pb) = (1, 0)
that puts all mass in a. Then, for any f =

[ fa

fb

] ∈ L (X ), we have that

Tf(x) =

{
max f if x = a;
fa if x = b,

and T 2f(x) =

{
max Tf = max f if x = a;
Tf(a) = max f if x = b.

It follows that T kf = max f for all k ≥ 2, so the limit upper expectation E∞(f)
exists and is equal to max f for all f ∈ L (X ). In particular, we have that
E∞(Ib) = 1. On the other hand, we find that T

(2�)
Ib

(0) = � and T
(2�+1)
Ib

(0) =
Ib + T T

(2�)
Ib

(0) =
[

�
�+1

]
for all � ∈ N0. This implies that the upper expectation

Eav,∞(Ib) := limk→+∞ T k
Ib

(0)/k exists and is equal to 1/2. This value differs
significantly from the limit upper expectation E∞(Ib) = 1.

In fact, this result could have been expected simply by taking a closer look
at the dynamics that correspond to T. Indeed, it follows directly from T that,
if the system is in state b at some instant, then it will surely be in a at the next
time instant. Hence, the system can only reside in state b for maximally half of
the time, resulting in an upper expected average that converges to 1/2. These
underlying dynamics have little effect on the limit upper expectation E∞(Ib)
though, because it is only concerned with the upper expectation of Ib evaluated
at a single time instant. ♦

Although we have used sets T of transition matrices to define imprecise
Markov chains, it should at this point be clear that, if we are interested in
the inferences Ek(f |x) and Eav,k(f |x) and their limit values, then it suffices to
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specify T . In fact, we will henceforth forget about T and will assume that T is
a coherent upper transition operator on L (X ), meaning that it is an operator
from L (X ) to L (X ) that satisfies

C1. min h ≤ Th ≤ max h [boundedness];
C2. T (h + g) ≤ Th + Tg [sub-additivity];
C3. T (λh) = λTh [non-negative homogeneity],

for all h, g ∈ L (X ) and all real λ ≥ 0 [5,14,15], and we will regard Ek(f |x) and
Eav,k(f |x) as objects that correspond to T . Our results and proofs will never
rely on the fact that T is derived from a set T of transition matrices, but will
only make use of C1–C3 and the following two properties that are implied by
them [14, Section 2.6.1]:

C4. T (μ + h) = μ + Th [constant additivity];
C5. if h ≤ g then Th ≤ Tg [monotonicity],

for all h, g ∈ L (X ) and all real μ. This can be done without loss of generality
because an upper transition operator T that is defined as an upper envelope
of a set T of transition matrices—as we did in Sect. 4—is always coherent [14,
Theorem 2.6.3]. Since properties such as ergodicity and weak ergodicity can be
completely characterised in terms of T , we will henceforth simply say that T
itself is (weakly) ergodic, instead of saying that the corresponding imprecise
Markov chain is.

5 Accessibility Relations and Topical Maps

To characterise ergodicity and weak ergodicity, we will make use of some well-
known graph-theoretic concepts, suitably adapted to the imprecise Markov chain
setting; we recall the following from [4] and [8]. The upper accessibility graph
G (T ) corresponding to T is defined as the graph with vertices x1 · · · xn ∈ X ,
where n := |X |, with an edge from xi to xj if T Ixj

(xi) > 0. For any two
vertices xi and xj , we say that xj is accessible from xi, denoted by xi → xj , if
xi = xj or if there is a directed path from xi to xj , which means that there is
a sequence xi = x′

0, x
′
1, · · · , x′

m = xj of vertices, with m ∈ N, such that there
is an edge from x′

�−1 to x′
� for all � ∈ {1, · · · ,m}. We say that two vertices

xi and xj communicate and write xi ↔ xj if both xi → xj and xj → xi.
The relation ↔ is an equivalence relation (reflexive, symmetric and transitive)
and the equivalence classes are called communication classes. We call the graph
G (T ) strongly connected if any two vertices xi and xj in G (T ) communicate, or
equivalently, if X itself is a communication class. Furthermore, we say that T
(or G (T )) has a top class R if

R := {x ∈ X : y → x for all y ∈ X } 	= ∅.

So, if T has a top class R, then R is accessible from any vertex in the graph
G (T ). As a fairly immediate consequence, it follows that R is a communication



232 N. T’Joens and J. De Bock

class that is maximal or undominated, meaning that x 	→ y for all x ∈ R and all
y ∈ Rc. In fact, it is the only such maximal communication class.

Having a top class is necessary for T to be ergodic, but it is not sufficient.
Sufficiency additionally requires that the top class R satisfies [8, Proposition 3]:

E1. (∀x ∈ R)(∃k∗ ∈ N)(∀k ≥ k∗) min T k
Ix > 0 [Regularity];

E2. (∀x ∈ Rc)(∃k ∈ N) T k
IRc(x) < 1 [Absorbing].

We will say that T is top class regular (TCR) if it has a top class that is regular,
and analogously for top class absorbing (TCA). Top class regularity represents
aperiodic behaviour: it demands that there is some time instant k∗ ∈ N such
that all of the elements in the top class R are accessible from each other in
k steps, for any k ≥ k∗. In the case of traditional Markov chains, top class
regularity suffices as a necessary and sufficient condition for ergodicity [4,10].
However, in the imprecise case, we need the additional condition of being top
class absorbing, which ensures that the top class will eventually be reached. It
requires that, if the process starts from any state x ∈ Rc, the lower probability
that it will ever transition to R is strictly positive. We refer to [4] for more
details. From a practical point of view, an important feature of both of these
accessibility conditions is that they can be easily checked in practice [8].

The characterisation of ergodicity using (TCR) and (TCA) was strongly
inspired by the observation that upper transition operators are part of a spe-
cific collection of order-preserving maps, called topical maps. These are maps
F : Rn → R

n that satisfy

T1. F (μ + h) = μ + Fh [constant additivity];
T2. if h ≤ g then F (h) ≤ F (g) [monotonicity],

for all h, g ∈ R
n and all μ ∈ R. To show this, we identify L (X ) with the

finite-dimensional linear space R
n, with n = |X |; this is clearly possible because

both are isomorph. That every coherent upper transition operator is topical
now follows trivially from C4 and C5. What is perhaps less obvious, but can be
derived in an equally trivial way, is that the operator Tf is also topical. This
allows us to apply results for topical maps to Tf in order to find necessary and
sufficient conditions for weak ergodicity.

6 A Sufficient Condition for Weak Ergodicity

As a first step, we aim to find sufficient conditions for the existence of Eav,∞(f).
To that end, recall from Sect. 4 that if Eav,∞(f) exists, it is equal to the limit
limk→+∞ T k

f (0)/k. Then, since Tf is topical, the following lemma implies that it
is also equal to limk→+∞ T k

f h/k for any h ∈ L (X ).

Lemma 1 [7, Lemma 3.1]. Consider any topical map F : Rn → R
n. If the limit

limk→+∞ F kh/k exists for some h ∈ R
n, then the limit exists for all h ∈ R

n and
they are all equal.
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Hence, if limk→+∞ T k
f h/k converges to a constant vector μ for some h ∈ L (X ),

then Eav,∞(f) exists and is equal to μ. This condition is clearly satisfied if the
map Tf has an (additive) eigenvector h ∈ L (X ), meaning that T k

f h = h + kμ
for some μ ∈ R and all k ∈ N0. In that case, we have that Eav,∞(f) = μ, where
μ is called the eigenvalue corresponding to h.

To find conditions that guarantee the existence of an eigenvector of Tf ,
we will make use of results from [6] and [7]. There, accessibility graphs are
defined in a slightly different way: for any topical map F : Rn → R

n, they
let G ′(F ) be the graph with vertices v1, · · · , vn and an edge from vi to vj if
limα→+∞[F (αIvj

)](vi) = +∞. Subsequently, for such a graph G ′(F ), the acces-
sibility relation · → · and corresponding notions (e.g. ‘strongly connected’, ‘top
class’, . . . ) are defined as in Sect. 5. If we identify the vertices v1, · · · , vn in G ′(T )
and G ′(Tf ) with the different states x1, · · · , xn in X , this can in particular be
done for the topical maps T and Tf . The following results show that the resulting
graphs coincide with the one defined in Sect. 5.

Lemma 2. For any two vertices x and y in G ′(T ), there is an edge from x to
y in G ′(T ) if and only if there is an edge from x to y in G (T ).

Proof. Consider any two vertices x and y in the graph G ′(T ). Then there is an
edge from x to y if limα→+∞[T (αIy)](x) = +∞. By non-negative homogeneity
[C3], this is equivalent to the condition that limα→+∞ α[T Iy](x) = +∞. Since
moreover 0 ≤ T Iy ≤ 1 by C1, this condition reduces to T Iy(x) > 0. ��
Corollary 1. The graphs G ′(Tf ), G ′(T ) and G (T ) are identical.

Proof. Lemma 2 implies that G ′(T ) and G (T ) are identical. Moreover,
that G ′(Tf ) is equal to G ′(T ), follows straightforwardly from the definition
of Tf . ��

In principle, we could use this result to directly obtain the desired condition
for the existence of an eigenvector from [6, Theorem 2]. However, [6, Theorem 2]
is given in a multiplicative framework and would need to be reformulated in an
additive framework in order to be applicable to the map Tf ; see [6, Section 2.1].
This can be achieved with a bijective transformation, but we prefer to not do
so because it would require too much extra terminology and notation. Instead,
we will derive an additive variant of [6, Theorem 2] directly from [6, Theorem 9]
and [6, Theorem 10].

The first result establishes that the existence of an eigenvector is equivalent
to the fact that trajectories are bounded with respect to the Hilbert semi-norm
‖·‖H, defined by ‖h‖H := max h − min h for all h ∈ R

n.

Theorem 1 [6, Theorem 9]. Let F : Rn → R
n be a topical map. Then F has

an eigenvector in R
n if and only if

{∥∥F kh
∥∥
H

: k ∈ N
}
is bounded for some (and

hence all) h ∈ R
n.

That the boundedness of a single trajectory indeed implies the boundedness of
all trajectories follows from the non-expansiveness of a topical map with respect
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to the Hilbert semi-norm [6]. The second result that we need uses the notion
of a super-eigenspace, defined for any topical map F and any μ ∈ R as the set
Sμ(F ) := {h ∈ R

n : Fh ≤ h + μ}.

Theorem 2 [6, Theorem 10]. Let F : Rn → R
n be a topical map such that the

associated graph G ′(F ) is strongly connected. Then all of the super-eigenspaces
are bounded in the Hilbert semi-norm.

Together, these theorems imply that any topical map F : Rn → R
n for which the

graph G ′(F ) is strongly connected, has an eigenvector. The connection between
both is provided by the fact that trajectories cannot leave an eigenspace. The
following result formalises this.

Theorem 3. Let F : Rn → R
n be a topical map such that the associated graph

G ′(F ) is strongly connected. Then F has an eigenvector in R
n.

Proof. Consider any h ∈ R
n and any μ ∈ R such that max(Fh − h) ≤ μ. Then

Fh ≤ h + μ, so h ∈ Sμ(F ). Now notice that F (Fh) ≤ F (h + μ) = Fh + μ
because of T1 and T2, which implies that also Fh ∈ Sμ(F ). In the same way,
we can also deduce that F 2h ∈ Sμ(F ) and, by repeating this argument, that
the whole trajectory corresponding to h remains in Sμ(F ). This trajectory is
bounded because of Theorem 2, which by Theorem 1 guarantees the existence
of an eigenvector. ��
In particular, if G ′(Tf ) is strongly connected then Tf has an eigenvector, which
on its turn implies the existence of Eav,∞(f) as explained earlier. If we combine
this observation with Corollary 1, we obtain the following result.

Proposition 1. An upper transition operator T is weakly ergodic if the associ-
ated graph G (T ) is strongly connected.

Proof. Suppose that G (T ) is strongly connected. Then, by Corollary 1, G ′(Tf ) is
also strongly connected. Hence, since Tf is a topical map, Theorem 3 guarantees
the existence of an eigenvector of Tf . As explained in the beginning of this
section, this implies by Lemma 1 that Eav,∞(f) exists, so we indeed find that T
is weakly ergodic. ��

In the remainder of this paper, we will use the fact that T is coherent—so
not just topical—to strengthen this result. In particular, we will show that the
condition of being strongly connected can be replaced by a weaker one: being
top class absorbing. It will moreover turn out that this property is not only
sufficient, but also necessary for weak ergodicity.

7 Necessary and Sufficient Condition for Weak Ergodicity

In order to gain some intuition about how to obtain a more general sufficient
condition for weak ergodicity, consider the case where T has a top class R and
the process’ initial state x is in R. Since R is a maximal communication class, the
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process surely remains in R and hence, it is to be expected that the time average
of f will not be affected by the dynamics of the process outside R. Moreover,
the communication class R is a strongly connected component, so one would
expect that, due to Proposition 1, the upper expected time average Eav,k(f |x)
converges to a constant that does not depend on the state x ∈ R. Our intuition
is formalised by the following proposition. Its proof, as well as those of the other
statements in this section, are available in the appendix of [12].

Proposition 2. For any maximal communication class S and any x ∈ S, the
upper expectation Eav,k(f |x) is equal to Eav,k(fIS |x) and converges to a limit
value. This limit value is furthermore the same for all x ∈ S.

As a next step, we want to extend the domain of convergence of Eav,k(f |x)
to all states x ∈ X . To do so, we will impose the additional property of being
top class absorbing (TCA), which, as explained in Sect. 5, demands that there
is a strictly positive (lower) probability to reach the top class R in a finite time
period. Once in R, the process can never escape R though. One would therefore
expect that as time progresses—as more of these finite time periods go by—this
lower probability increases, implying that the process will eventually be in R
with practical certainty. Furthermore, if the process transitions from x ∈ Rc

to a state y ∈ R, then Proposition 2 guarantees that Eav,k(f |y) converges to a
limit and that this limit value does not depend on the state y. Finally, since the
average is taken over a growing time interval, the initial finite number of time
steps that it took for the process to transition from x to y will not influence the
time average of f in the limit. This leads us to suspect that Eav,k(f |x) converges
to the same limit as Eav,k(f |y). Since this argument applies to any x ∈ Rc, we
are led to believe that T is weakly ergodic. The following result confirms this.

Proposition 3. Any T that satisfies (TCA) is weakly ergodic.

Conversely, suppose that T does not satisfy (TCA). Then there are two
possibilities: either there is no top class or there is a top class but it is not
absorbing. If there is no top class, then it can be easily deduced that there are at
least two maximal communication classes S1 and S2. As discusssed earlier, the
process cannot escape the classes S1 and S2 once it has reached them. So if it
starts in one of these communication classes, the process’ dynamics outside this
class are irrelevant for the behaviour of the resulting time average. In particular,
if we let f be the function that takes the constant value c1 in S1 and c2 in S2,
with c1 	= c2, then we would expect that Eav,k(f |x) = c1 and Eav,k(f |y) = c2
for all k ∈ N0, any x ∈ S1 and any y ∈ S2. In fact, this can easily be formalised
by means of Proposition 2. Hence, Eav,∞(f |x) = c1 	= c2 = Eav,∞(f |y), so the
upper transition operator T cannot be weakly ergodic.

Proposition 4. Any weakly ergodic T has a top class.

Finally, suppose that there is a top class R, but that it is not absorbing. This
implies that there is an x ∈ Rc and a compatible precise model such that the
process is guaranteed to remain in Rc given that it started in x. If we now let
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f = IRc , then conditional on the fact that X0 = x, the expected time average of
f corresponding to this precise model is equal to 1. Furthermore, since f ≤ 1,
no other process can yield a higher expected time average. The upper expected
time average Eav,k(f |x) is therefore equal to 1 for all k ∈ N0. However, using
Proposition 2, we can also show that Eav,k(f |y) = 0 for any y ∈ R and all
k ∈ N0. Hence, Eav,∞(f |x) = 1 	= 0 = Eav,∞(f |y), which precludes T from being
weakly ergodic.

Proposition 5. Any weakly ergodic T that has a top class satisfies (TCA).

Together with Propositions 3 and 4, this allows us to conclude that (TCA) is a
necessary and sufficient condition for weak ergodicity.

Theorem 4. T is weakly ergodic if and only if it is top class absorbing.

8 Conclusion

The most important conclusion of our study of upper and lower expected time
averages is its final result: that being top class absorbing is necessary and suffi-
cient for weak ergodicity; a property that guarantees upper and lower expected
time averages to converge to a limit value that does not depend on the process’
initial state. In comparison with standard ergodicity, which guarantees the exis-
tence of a limit upper and lower expectation, weak ergodicity thus requires less
stringent conditions to be satisfied. We illustrated this difference in Example 1,
where we considered a(n imprecise) Markov chain that satisfies (TCA) but not
(TCR).

Apart from the fact that their existence is guaranteed under weaker condi-
tions, the inferences Eav,∞(f) are also able to provide us with more information
about how time averages might behave, compared to limit expectations. To see
why, recall Example 2, where the inference Eav,∞(Ib) = 1/2 significantly dif-
fered from E∞(Ib) = 1. Clearly, the former was more representative for the
limit behaviour of the time average of Ib. As a consequence of [11, Lemma 57],
a similar statement holds for general functions. In particular, it implies that
Eav,∞(f) ≤ E∞(f) for any function f ∈ L (X ). Since both inferences are upper
bounds, Eav,∞(f) is therefore at least as informative as E∞(f).

In summary then, when it comes to characterising long-term time aver-
ages, there are two advantages that (limits of) upper and lower expected time
averages have over conventional limit upper and lower expectations: they exist
under weaker conditions and they are at least as (and sometimes much more)
informative.

That said, there is also one important feature that limit upper and lower
expectations have, but that is currently still lacking for upper and lower expected
time averages: an (imprecise) point-wise ergodic theorem [2, Theorem 32]. For
the limit upper and lower expectations of an ergodic imprecise Markov chain,
this result states that

E∞(f) ≤ lim inf
k→+∞

fk(X0:k) ≤ lim sup
k→+∞

fk(X0:k) ≤ E∞(f),
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with lower probability one. In order for limit upper and lower expected time
averages to be the undisputed quantities of interest when studying long-term
time averages, a similar result would need to be obtained for weak ergodicity,
where the role of E∞(f) and E∞(f) := −E∞(−f) is taken over by Eav,∞(f)
and Eav,∞(f) := −Eav,∞(−f), respectively. If such a result would hold, it would
provide us with (strictly almost sure) bounds on the limit values attained by
time averages that are not only more informative as the current ones, but also
guaranteed to exist under weaker conditions. Whether such a result indeed holds
is an open problem that we would like to address in our future work.

A second line of future research that we would like to pursue consists in
studying the convergence of Eav,k(f |x) in general, without imposing that the
limit value should not depend on x. We suspect that this kind of convergence
will require no conditions at all.
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Abstract. Characterizing the degree of similarity or difference between
two sets is a very important topic, since it has many applications in
different areas, including image processing or decision making. Several
studies have been done about the comparison of fuzzy sets and its exten-
sions, in particular for interval-valued fuzzy sets. However, in most of
the cases, the results of the comparison is just a number. In order to
avoid this reduction of the information, we have introduced a measure
for comparing two interval-valued fuzzy sets such that it is an interval
itself, which can be reduced to a number if it is necessary. Thus, a richer
class of measures is now considered.

Keywords: Interval-valued fuzzy set · Order between intervals ·
Dissimilarity · Divergence measure

1 Introduction

In many real-life situations, we have to compare two objects, opinions, etc having
an incomplete or not precise information about them. One of the most extended
approach to model these situations is to consider fuzzy sets and compare them
when necessary. Comparison represents an important topic in fuzzy sets such
that several measures for comparing fuzzy sets have been proposed in literature.
A general study was done by Bouchon-Meunier et al. in 1996 [5]. Since then, a
lot of measures have been introduced, some of them as constructive definitions,
that is, specific formulas (see, among many others, [1,30,31,34]) and some of
them by means of axiomatic definitions (see [12,20,23] for instance).

The necessity of dealing with imprecision in real world problems has been
a long-term research challenge that has originated different extensions of the
fuzzy sets. Interval–valued fuzzy sets are one of the most challenging extensions.
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They were introduced independently by Zadeh [33], Grattan-Guiness [17], Jahn
[19] and Sambuc [24] in the seventies. Interval-valued fuzzy sets can be use-
ful to deal with situations where the classical fuzzy tools are not so efficient
as, for instance, when there is not an objective procedure to select the crisp
membership degrees. This extension has attracted very quickly the attention of
many researchers, since they could see the high potential of them for different
applications. Thus, for instance, Sambuc [24] used them in medical diagnosis in
thyrodian pathology, Bustince [6] and Gozalczany [16] in approximate reasoning
and Cornelis et al. [11] and Turksen [29] in logic.

Based on their utility, several concepts, tools and trends related to this exten-
sion have to be studied. In particular, we are specially interested on the measures
of similarity, or their dual measures of the difference, between interval-valued
fuzzy sets. There are a lot of papers related to this topic in the literature (see
e.g. [2,13,32,35]).

Another very related concept is the notion of intuitionistic fuzzy set, intro-
duced by Atanassov [3] about ten years later than interval-valued fuzzy sets.
Despite the semantic differences, it was proven by many authors that intuition-
istic fuzzy sets and interval-valued fuzzy sets are equipollent ([4,14]), that is,
there is a bijection function mapping one onto the other. Thus, the measures
of comparison between intuitionistic fuzzy sets (see, for instance, [21,22]) could
propose us a first idea about the way to compare two interval-valued fuzzy sets,
although they cannot be directly used, as it was shown in [10,25,26].

Many of the previously introduced measures represent the result of the com-
parison as a value in the real line. However, if we are dealing with interval-valued
fuzzy sets, even the total similarity of incomplete descriptions does not guaran-
tee the total similarity of the described objects. In order to solve this problem,
a similarity described by means of a range of values could be more appropriate.
However, this is not the usual case and, as far as we know, it has been only
considerer in a few number of works (see [28,36]).

Although interval-valued fuzzy sets could be compared by means of distances,
the most usual case in the literature is the use of dissimilarity measures. However,
it was noticed in [22] that these measures could not be appropriate in some
cases, for some counterintuitive examples, when we are comparing Atanassov
intuitionistic fuzzy sets. To avoid this problem, it is necessary to introduce a
measure of comparison with stronger properties than dissimilarities. Thus, the
main aim of this work is to obtain a first idea on dissimilarity and divergence
measures which are able to compare two interval-valued fuzzy sets assuming
values in the set of closed real intervals and to relate both concepts.

This paper is organized as follows. In Sect. 2, some basic concepts are intro-
duced and the notation is fixed for the remaining parts of the paper. Section 3
is devoted to the new definition of divergence measures between interval-valued
fuzzy sets and dissimilarities. Finally, some conclusions and open problems are
drawn in Sect. 4.
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2 Basic Concepts

Let X denote the universe of discourse. An interval-valued fuzzy subset of X
is a mapping A : X → L([0, 1]) such that A(x) = [A(x), A(x)], where L([0, 1])
denotes the family of closed intervals included in the unit interval [0, 1]. Thus,
an interval-valued fuzzy set A is totally characterized by two mapping, A and
A, from X into [0, 1] such that A(x) ≤ A(x),∀x ∈ X. These maps represent
the lower and upper bound of the corresponding intervals. Let us notice that if
A(x) = A(x),∀x ∈ X, then A is a classical fuzzy sets. The collection of all the
interval-valued fuzzy sets in X is denoted by IV FS(X) and the subset formed
by all the fuzzy sets in X is denoted by FS(X).

Several operations have been considered to this concept in the literature. We
will consider now the most usual ones, since they are the most usual particular
case of the general operations defined by means of t-norms and t-conorms defined
on L([0, 1]) (see e.g. [15]). Thus, for any A,B ∈ IV FS(X), we have that:

– The intersection of A and B is the interval-valued fuzzy set defined by
A ∩ B(x) = min{A(x), B(x)} and A ∩ B(x) = min{A(x), B(x)} for any
x ∈ X.

– The union of A and B is the interval-valued fuzzy set defined by A ∪ B(x) =
max{A(x), B(x)} and A ∪ B(x) = max{A(x), B(x)} for any x ∈ X.

– The complement of A is the interval-valued fuzzy set defined by Ac(x) =
1 − A(x) and Ac(x) = 1 − A(x) for any x ∈ X.

– A is a subset of B if, and only if, A(x) ≤ B(x) and A(x) ≤ B(x) for any
x ∈ X. Thus, in fact, we are saying that A is included in B if the membership
degree of any element in X is an interval lower than or equal to the interval
representing the membership degree of B, when we use the usual lattice-
ordering between closed intervals of the real line. We are going to consider
here this order but, of course, any other order between intervals (see, for
instance, [7]) could be considered to define the inclusion.

Another important partial order on IV FS(X) could be considered:

A � B iff A(x) ⊆ B(x),∀x ∈ X

for the usual inclusion between intervals.
A first intuitive ways to compare two interval-valued fuzzy sets, based on the

Hausdorff distance (see [18]), could be:

dH(A,B) =
∑

x∈X

max{|A(x) − B(x)|, |A(x) − B(x)|}

where X is a finite universe.
Note that in all the above mentioned families of measures, the degree of

difference between two sets is just a number. In the following some axiomatic
definitions about how to compare two sets while keeping the original information
as much as possible are introduced.
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3 Interval-Valued Measures for the Difference
for Interval-Valued Fuzzy Sets

The measure of the difference between two interval-valued fuzzy sets is defined
axiomatically on the basis of some natural properties:

– It is non negative and symmetric.
– It becomes zero when the two sets are fuzzy and equal, since the equality of

two interval-valued fuzzy sets does not imply they are equal.

Every definition of divergence or dissimilarity satisfies the two previous prop-
erties. However, divergences and dissimilarities differ in a third axiom, the one
representing the idea that the closer sets, the less differences.

On the other hand, when intervals are considered their width should be also
considered as an evidence of uncertainty. Thus,

– For a wider interval, the uncertainty is greater and therefore the width of the
difference with another interval should be bigger.

The usual way to compare two sets is by means of dissimilarities. If we
adapt the previous ideas to our purposes, we could define a dissimilarity between
interval-valued fuzzy sets as follows.

Definition 1. [28] A map D : IV FS(X) × IV FS(X) → L([0, 1]) is a dissimi-
larity on IV FS(X) if for any A,B,C ∈ IV FS(X) the following conditions are
fulfilled:

(Dis1) D(A,B) = [0, 0] iff A,B ∈ FS(X) and A = B.
(Dis2) D(A,B) = D(B,A).
(Dis3) if A ⊆ B ⊆ C, then D(A,B) ≤ D(A,C) and D(B,C) ≤ D(A,C).
(Dis4) if B � C, then D(A,B) ⊆ D(A,C).

Example 1. From [28] we can obtain several examples of dissimilarity measures:

– The trivial dissimilarity:

D0(A,B) =
{

[0, 0] if A,B ∈ FS(X), A = B,
[0, 1] otherwise.

– The dissimilarity induced by a numerical distance:

D1(A,B) =
1

|X|
∑

x∈X

[
inf

a∈A(x),b∈B(x)
|a − b|, sup

a∈A(x),b∈B(x)

|a − b|
]

– The dissimilarity induced by the numerical trivial dissimilarity:

D2(A,B) =

⎧
⎨

⎩

[0, 0] if A,B ∈ FS(X), A = B,
[0, 1] if A 
= B and A(x) ∩ B(x) 
= ∅,∀x ∈ X,
[1, 1] if ∃x ∈ X such that A(x) ∩ B(x) = ∅.
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Although dissimilarities are the usual way to compare two sets, they are based
on a partial order on IV FS(X), so one of the main properties is only required for
a few number of elements in IV FS(X), what represents an important drawback.
In fact, we could find some counterintuitive dissimilarities based on the numerical
measure given by Chen [9]. Thus, to avoid this circumstance, the third axiom
could be replaced as follows.

Definition 2. A map D : IV FS(X)× IV FS(X) → L([0, 1]) is a divergence on
IV FS(X) if for any A,B,C ∈ IV FS(X) the following conditions are fulfilled:

(Dis1) D(A,B) = [0, 0] iff A,B ∈ FS(X) and A = B.
(Dis2) D(A,B) = D(B,A)
(Div3) D(A ∩ C,B ∩ C) ≤ D(A,B) and D(A ∪ C,B ∪ C) ≤ D(A,B)
(Dis4) if B � C, then D(A,B) ⊆ D(A,C).

A fuzzy set can be seen as a particular case of interval-valued fuzzy set such
that the width of the membership interval is always zero. Thus, another logical
requirement would be that when we restrict a divergence measure to the set
formed by all the fuzzy sets in X, we obtain a divergence measure in the sense
introduced in [23], although now the value could be an interval instead of just a
number. This requirement was not added, since it is a consequence of the other
four axioms, as we can see at the following proposition.

Proposition 1. Let D be a divergence measure in IV FS(X). Then the map
D|FS(X) defined by

D|FS(X)(A,B) = D(A′, B′)

with A′(x) = [A(x), A(x)] and B′(x) = [B(x), B(x)] for any x ∈ X and for any
A,B ∈ FS(X), is a divergence measure in FS(X).

The same proposition could be proven for dissimilarities. It is clear that both
concepts are very related. In fact, the family of divergence measures is really a
subfamily of the dissimilarities, as we can see from the following proposition.

Proposition 2. If a map D : IV FS(X)×IV FS(X) → L([0, 1]) is a divergence
on IV FS(X), then it is a dissimilarity on IV FS(X).

Thus, any example of divergence is an example of dissimilarity. However, the
converse is not true, as we can see at the following example.

Example 2. Let us consider the map D3 : IV FS(X) × IV FS(X) → L([0, 1])
defined by

D3(A,B) =

⎧
⎨

⎩

[0, 0] if A,B ∈ FS(X), A = B,
[0, 0.5] if A 
= B and A 
= X,B 
= X,
[0, 1] otherwise.

First we check that D3 is a dissimilarity. It is trivial that Axioms (Dis1) and
(Dis2) are fulfilled. For Axiom (Dis3) we are going to consider three cases:
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– If D(A,C) = [0, 1], then it is trivial.
– If D(A,C) = [0, 0.5], then A 
= C, A 
= X and C 
= X. Since B ⊆ C, then
B 
= X. Thus, D(A,B) = [0, 0] or D(A,B) = [0, 0.5] and the same happens
for D(B,C).

– If D(A,C) = [0, 0], then A = C and A,C ∈ FS(X). Then, B = A and
therefore D(A,B) = D(B,C) = [0, 0].

Finally, for Axiom (Dis4), we have again three cases:

– If D(A,C) = [0, 1], then it is trivial.
– If D(A,C) = [0, 0.5], then A 
= C, A 
= X and C 
= X. Since B � C, then
B 
= X. Thus, D(A,B) = [0, 0] or D(A,B) = [0, 0.5].

– If D(A,C) = [0, 0], then A = C and A,C ∈ FS(X). Since B � C, then
B = C and therefore D(A,B) = D(A,C).

Thus, D3 is a dissimilarity, but it is not a divergence since for X = {x, y}, if
we consider the sets A, B defined by A(x) = [1, 1], A(y) = [0, 1], B(x) = [0, 1]
and B(y) = [1, 1], we have that A ∪ B = X. Then, D3(A,B) = [0, 0.5] but
D3(A ∪ B,B ∪ B) = D3(X,B) = [0, 1] which is not lower than or equal to
D3(A,B). Then Axiom (Div3) is not fulfilled by D3.

Example 3. Trivial dissimilarity D0 in Example 1 is neither a divergence as
D0(A,B) = [0, 0] when A,B ∈ FS(X), A = B, but D0(A ∪ C,B ∪ C) is not
necessary [0, 0]. For example, if X = {x}, A(x) = B(x) = {0.5} and C(x) =
[0.2, 0.6]}, then A ∪ C(x) = [0.2, 0.5] and B ∪ C(x) = [0.2, 0.5]. A ∪ C(x), B ∪
C(x) /∈ FS(X), then D0(A ∪ C,B ∪ C) = [0, 1] and thus axiom (Div3) is not
satisfied.

As the previous result shows, divergences are particular cases of dissimilari-
ties, with specific properties. Next proposition show several interesting properties
satisfied by divergences defined by means of a range of values.

Proposition 3. Let D : IV FS(X) × IV FS(X) → L([0, 1]) be a divergence on
IV FS(X). Then, ∀A,B ∈ IV FS(X)

1. [0, 0] ≤ D(A,B).
2. D(A ∩ B,B) ≤ D(A,A ∪ B).
3. D(A ∩ B,B) ≤ D(A,B).
4. D(A ∩ B,B) ≤ D(A ∩ B,A ∪ B).
5. D(B,A ∪ B) ≤ D(A ∩ B,A ∪ B).

From these measures we could obtain the ones defined just by a number if,
for instance, we aggregate the lower and upper bound of the divergence measure
in order to obtain just a number. This could be done by any average function as
the arithmetic mean or the median.
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4 Concluding Remarks

In this work we have introduce a way to compare two interval-valued fuzzy sets
such that the value is itself an interval instead of the usual numbers. Dissimilar-
ities and the particular case of divergences are defined and some properties are
studied. Of course, this is just a first approach to this topic and a lot of work is
still pending. In particular, we would like to study in detail the importance of the
width of the interval, in a similar way as it was done in [8,27], since distances,
dissimilarities and divergences are concepts clearly related. Apart from that, we
would like to consider a more general definition of the concepts of intersection,
union and complement based on general t-norms and study the behaviour of the
proposed measures in that general case. We would also like to develop methods
for building divergence measures.
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Abstract. The question under investigation about verbal metaphor is what kind
of thinking and reasoning can help catching the metaphorical target category
(e.g., octopus meaning citrus press, child meaning son or daughter, pizzas
meaning people) from a source category (children, pizzas or octopuses);
knowing that this kind of “logically false” way of talking/understanding and of
reasoning appears to be the most prominent kind of human of thinking. We are
reviewing some of the prominent work of Bernadette Bouchon-Meunier with
her team to evaluate how much the fuzzy logic computation of metaphorical
reasoning and schemes can be used to model the human computation of
metaphors.

Keywords: Thinking � Reasoning � Similarity � Analogy � Metaphor

1 Introducing Metaphor as One of Main Ways of Thinking
and Reasoning

Let’s imagine three situations

1) A grandmother and her grandson

– The grandson: Granny, is Dad your child?
– Grandmother: Yes, he is my child
– The grandson: Yes but yet, dad is no longer a child!

2) A waiter of a restaurant and a group of 3 friends who have lunch together in this
restaurant

– The first client says to the waiter: I’m going to have a pizza!
– The second client: me too!
– The third client: I too will have a pizza.
– (after the meal, the customers pay and leave)
– The waiter shouting: hey you! The 3 pizzas, you’re forgetting your change!

3) Philippe Starck, who is a designer, invented his famous citrus press that has an
octopus shape, named Juicy Salif, by drawing on the paper tablecloth of an Italian
restaurant, while tasting octopus seasoned with lemon. People that see Juicy Salif
are usually saying “oh this is an octopus!”.
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Homonyms are words that are spelled the same and sound the same way but have
different meanings. In these three situations, either child, pizza or octopus has two
different meanings although they are not homonyms:

– one meaning relates to a known category of things (children, pizzas or octopuses)
and is properly used (child used by the grandson as being a boy or girl from the
time of birth until he or she is an adult; pizza as a large circle of flat bread baked
with cheese, tomatoes, and so on or octopus as a sea creature with a soft, oval body
and tentacles), while

– the other meaning relates to a different category (child used by the grandmother as
being a son or daughter of any age, pizzas to denote customers, octopus to rep-
resent a citrus press).

Thus, the question under investigation is what kind of thinking and reasoning can
help catching the metaphorical (e.g., octopus meaning citrus press), pragmatic (e.g.,
child meaning son or daughter) or metaphorical target category (e.g., pizzas meaning
people) from a source category (children, pizzas or octopuses); knowing that this kind
of “logically false” way of talking/understanding and of reasoning appears to be the
most prominent kind of human thinking [1]. From now, we label “metaphor”, from the
Latin “metaphora”, itself from the Greek “lesauoqά”, a figure of style based on
attributive categorization [2]. It designates a target thing (e.g., some specific people
being called as “pizzas”) with the name of another category (pizza) as a source for
attributing to the target thing some of the features of the source category (have a pizza
for lunch). Thus, instead of saying “Hey you people that were eating pizzas”, they can
be named and recognized as the meanings of “pizzas” in a sentence such as “hey you,
the pizzas, you have forgotten your money”.

2 The Logic Behind Metaphor Thinking

Associations, - such as Juliet is my sun (she brings me joy and shine) in the Romeo’s
diary of Shakespeare’s Romeo and Juliet-, are in fact based on some fuzzy resem-
blance, on analogy or metaphor (upon, according to/so to speak) [1]. Analogy is
usually based on similarity of things and on a computation based on “partial agreement,
likeness or proportion between things”, i.e. for transfer of learning. Although such
metaphorically-based reasoning is providing sentences that do not have an evidential
support and are logically “false”, this kind of reasoning appears to be the most
prominent kind of human of thinking [1].

Although Metaphors seem to be produced through metaphorical reasoning based on
comparison (e.g., “Peter is a dog”): Peter, who is a troubadour, sings to beg for a little
love. Droopy, who is a dog, barks to beg for food. Peter’s voice sounds like a barking:
a proposition such as “Jean is barking” is an analogy, while “Peter is a dog” is a
metaphorical proposition [2] based on attributive categorization.

Unlike deduction which provides “true” conclusions, the human inferences which
produce a metaphor (major premise: a person had a meal, minor premise: the meal was
pizza, conclusion: this person is a pizza) concludes with a false expression (not literal;
not legally comparable). In such way of thinking, the things that are under cognitive
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investigation (e.g. the people forgetting their change in a restaurant) that are used to
produce metaphors are of inter-domain constraints (people are not food). Although they
are of different categories, generally of exclusive domains, inference is made by
starting from an example of a given category and ends with another different category.

First, note the process is done from target-to-source to produce a metaphor (to
produce Juliette is my sun: from Juliette, Shakespeare had to find a source of resem-
blance) whereas to understand the resemblance of the source, the cognitive inquiry of
the listener is a process from source-to-target (to understand that Juliette is my sun: from
the sun, the listener must find the resemblance that is to be to attributed to Juliette) [3].

Note also that if the metaphor is based on implication (x is a kind of y), the source
(that serve as vehicle to transmit meanings) and the target (that is the topic) cannot
swap: “Peter is a dog”, the reverse is not true: dogs are not like John [2]. This is
somewhat an asymmetric similarity measure on sets, not to compare a variant to a
prototype [4], but a prototype to many variants.

In fact, there is a scientific and technological problem that is very difficult to solve:
the what and the how of thought processes that are capable of producing and under-
standing metaphors. What type of calculation linking a target category to a source
category belonging to another domain could be able to support reasonings based on
imperfection, imprecision and approximation, graduality, imprecision, blurring,
uncertainty and plausibility.

It seems to us that significant advances in the metaphor resolution stem from the
work of Bernadette Bouchon-Meunier with her team: the calculation in fuzzy logic of
reasoning and metaphorical schemes [5, 6].

3 The Cognitive Psychology of Metaphorical Thinking

There are psychological models of producing and of understanding metaphors. The
model of Ortony [7] tries to apprehend the statements and the metaphors and proposes
that the comparative statements are not necessarily true: their value of truth depends on
the fact that the terms which they compare can be effectively assigned common
predicates. Thus, the difference between literal comparisons and non-literal compar-
isons would arise from the fact that the terms linked in the literal comparisons have one
or more significant predicates in common ((e.g., John is an Irish man, comparing Jogn
to Irish people)). In non-literal comparisons, the common predicate, if a salient one, is
only marginal for the topic (e.g., John is a fox, comparing John to foxes). Thus, non-
literal statements induce graduality. Ortony is also following Tversky by taking into
account the features of both topic and vehicle and explains that a “feature is as an
attribute or a predicate in a rather general sense: feature X is something that we know
about X”» and that according to Tversky the degree of similarity between two objects
is a weighting function of the common features according to the features which dis-
tinguish them. Ortony argued that the essence of metaphoricity is salience imbalance;
an imbalance that can be enhanced by attribute inequality. His proposals predict “that
nonliteral similarity statements will tend to be much less reversible than literal simi-
larity statements and that in cases in which reversals still result in meaningful com-
parisons, the meaning change will be greater for similes than for literals”.
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Thus, Ortony attempts to explain the way in which people understand metaphors by
proposing “the model of the salient imbalance”. This model focuses on the fact that we
must assign properties to the terms constituting the statements in order to be able to
understand and interpret the metaphors. According to Ortony, there are a large number
of properties that fight against each other (there is a confrontation of properties) and it
is the most salient property that will allow to have a representation of a given object.
Glucksberg and Keysar [8] offer their concept of understanding metaphor, which is
based on a process of categorization. The authors believe that when an individual reads
a metaphor, he activates the vehicle category (i.e. the term that gives metaphorical
meaning) which allows him to have a representation of the situation. For example, the
statement “Sophie is an ice cube” is a metaphor made up of a vehicle (i.e. ice cube)
which qualifies a topic (i.e. Sophie). To understand the latter, the individual activates
the category to which the ice cube vehicle belongs (i.e. cold things) before assigning
the properties of the ice cube to the Sophie topical. Through their studies on the
treatment of metaphorical statements, [7, 8] highlight the attribution of properties to
objects via the transfer of knowledge. These studies show, moreover, that regardless of
the differences in strategies implemented to process the statements, it is the transfer of
knowledge which is at the origin of the recovery of information initiating the pro-
cessing strategy.

Counterfactual reasoning, which is conventionally used in psychology as a diag-
nostic tool for evaluating creative potential, can help stem the phenomenon of
metaphorical thought. According to [9–11] counterfactual reasoning makes it possible
to transfer properties from one object to another object by an alternative attribution of
categorized properties. This type of reasoning based on an alternative reality [12]
implemented in our mind [1] allows a specific transfer of property between objects
allowing not to refer to the prototype of the object to be considered but to what the
object is not and could have been. For example, someone saying on Monday a
counterfactual such as “If Paris was London” might imagine Parisian Museums being
open on Mondays.

4 The Fuzzy Logic Computation of Metaphors

Since Zadeh’s pioneering work on modifiers and on the one of Bouchon-Meunier and
Colleagues [13, 14] which exploit the distribution of defined categories in a single
universe, the mathematical transformation can be applied to different kinds of features,
the concept of fuzzy relations being a generalization of the concept of relation, cor-
responding again to a fuzzy subset. In contrast to the preceding case concerning
modifiers, this fuzzy set will not be constructed from a fuzzy set but from a value for
two parts: the relation part of a specific feature and a category part. It is then possible to
define mechanisms such that from a given feature and category, the fuzzy set repre-
senting the utterance can be constructed.

A major advance made by Bernadette Bouchon-Meunier that can be used for
processing metaphor is the use of the main principle of fuzzy logic: that is to say the
graduality of the membership function. Thus, the analogy as a metaphor (Juliet is the
sun of Romeo) are fuzzy sets of particular types: analogy being calculated as a
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particular case of metaphor, with relations of transitivity, asymmetry and irreflexivity.
This is due to her insight that the main principle of fuzzy logic, i.e. the graduality of
membership function, might be a central core of metaphorical thinking and reasoning.
There is a graduality of membership function that can be used both for “John is a man”
and “John is a cat”; certainty (John is a man) being a special case of uncertainty (John
is a cat). So, as crisp sets, that are representing precise and certain descriptions of
objects, are to be regarded as particular cases of fuzzy sets [10], tautology as identity
(the sun is the sun), analogy as comparison (the nuclear of the atom is as the sun of the
solar system) and antilogy as metaphorical contradiction (Juliet is the sun although
Juliet is not the sun) are all fuzzy sets of special kinds: identity being computed as a
particular case of analogy, analogy being computed as a particular case of metaphor,
with transitivity, asymmetry and irreflexivity relations [2].

As for analogy, concerning metaphorical reasoning, there are inter-domain rela-
tionships: a target object [T], that is to say the subject/tenor, is studied from the point of
view of a source which is used as a vehicle (V) for the transmission of meanings [2].
Having comparisons between the same category (tautology), between different cate-
gories in the same domain (analogy), between different categories between domains or
between inter-domain categories (metaphor), T and V can be calculated according to
the evaluation of their “Proximity” through fuzzy modifiers to measure their similarity
[6]. Thus, the proximity of two objects (i.e. the moon and the sun) as semantic distance
(very close, close, far, very far) can be described through fuzzy sets which can manage
the approximation. Indeed, the approximation of the proximity depends on the con-
textual role of T and V (the moon-sun proximity in “the moon is a sun” having a
different value in “the sun is a moon”), according to the context (the moon proximity:
sun in “tonight the moon is a sun” (is very bright in the night) being of a different value
in “today at noon the moon is a sun”) being very large; depending on the motif (the
moon-sun proximity in “in your drawing; the moon is a sun “being of another value”
in the sky, the moon is a sun”).

In the past, most of the cognitive models of metaphor understanding have adopted
the approach according to which metaphor is an implicit comparison: understanding a
metaphor “X (topic) is Y (vehicle)” consists in converting it into a simile “X (the topic)
is like Y (the vehicle)”. This comparison-based model of metaphor understanding is a
mechanism of property matching. This is why these models are confronted with the
problem of measuring the similarity of properties as well as with the problem of
calculating the distance between properties, which makes a simile literal or unliteral -
metaphoric.

As a difference with analogies, metaphors appear to be assertions that have a not
reversible structure: if New York is a big apple, a big apple is not New York. Metaphor
is inter-domains and the source is not a particular thing, but a category of things that
serve to make the Target inherit the properties of the category. If the understanding of
metaphor is based on the similarity computation of T and V; the comparison would be
symmetrical and reversible: T can be compared to V and V can be compared to T.
When two objects, situations or domains are comparable, either one or the other can
serve as a source or as target. However, Metaphor is a particular case of comparison.
Most of source-target comparison are oriented: a target can imply a source, the reverse
being not true.
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There is a clear distinction between the objects of the physical world and the
categories that humans use to represent them, in order to think, speak and communicate
about them. Categories as sources of understanding can be used literally as in deduction
and induction, but also in vague terms in metaphors. Like, we recommend that in both
cases, the categorization of a target as being of a source type provides invisible fea-
tures. As semantic relationships, metaphors are based on categorization. They activate a
category and the functions attached to it. They also activate the superordinate cate-
gories and the functionalities attached to them.

For metaphors understanding [5] in which a source (for example, the sun) is a
vehicle for transferring meanings to the target subject (for example, Juliet), the liter-
ature is about the notion that vehicles in metaphors are attributive categories. This
categorization-based approach is mainly the Glucksberg’s class inclusion model: a
metaphorical statement of the type “X is Y” is solved by searching for the category,
(represented by the term Y), that provides source properties potentially relevant to the
topic target X. The general assumption underlying Glucksberg’s approach is that
understanding the metaphor involves including the topic in the source vehicle category
and assigning it properties in that category that are consistent with what is known about
the topic.

Following Glucksberg, we assume that the interpretation is constructed online and
that knowledge of the subject comes into play at an early stage of processing by
constraining the selection of functionalities. Bouchon-Meunier [15] noted that crisp sets
representing precise descriptions and certain objects could be considered as special
cases of fuzzy sets. Likewise, we argue that deduction, induction, abduction, induction,
analogy and verbal metaphor are a special case of metaphorical thinking, from the least
fuzzy-certain to the most fuzzy-uncertain; analogy being a special case of metaphor.

Bouchon-Meunier [11] proposed fuzzy reasoning based on prototypes for the
fabrication and resolution of analogies. A fuzzy prototype of a category makes it
possible to generate the typicity and the set of relevant objects and can therefore be
used to match the source to the target; as Tversky suggests, the degree of typicity
depends both on the resemblance to other objects of the same category and on the
dissimilarity with objects of other categories. Thus, the metaphorical question that
arises is “does the target gradually satisfy the prototype of the source category?” These
are solutions for different modes of reasoning, including analogy and metaphor.
Bouchon-Meunier and Valverde [12] were also tackling the problem of representing
the similarities involved in metaphorical reasoning and used fuzzy relations to compare
situations. Because vagueness involves various forms of reasoning, from real literal
sentences to false non-literal sentences, it is a powerful method of calculation for
human thinking and reasoning which is primarily reasoning based on metaphor and
analogy. In addition, analogical and metaphorical sentences often include modifiers
that Bouchon-Meunier and Marsala put at the core of fuzzy systems that can be
interpreted.
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5 The Fuzzy Logic Computation of Metaphors

In short, according to Bouchon-Meunier [12], we use fuzzy relations to compare sit-
uations that can be used to model natural analogy: resemblance relations can be used to
define a kind of metaphorical scheme compatible with approximate reasoning in fuzzy
logic, with measures of satisfiability, likeness and inclusion. These fuzzy relationships
can be seen as measures of a categorization process devoted to analogy and metaphor
in order to convey knowledge from source to target.

Analogies and metaphors are common modes of thinking and reasoning, although
based on a false categorization: “this lawyer is really a shark”. So there is a powerful
use of approximation and imprecision by the brain using analogies and metaphors
through fuzzy inference. According to Bouchon-Meunier [11], progressive reasoning
can be obtained using linguistic modifiers, the link between gradual reasoning and
metaphorical reasoning corresponding to the use of a relation between the variations of
X and the variations of Y expressed in progressive knowledge to deduce a value of Y
from a given value of X. Thus Bouchon-Meunier and her collaborators introduced a
general framework representing the analogy, on the basis of a link between variables
and measures of comparison between values of variables. This metaphorical scheme is
a common description of several forms of reasoning used in fuzzy control or in the
management of knowledge-based systems, such as deductive reasoning, inductive
reasoning or prototypical reasoning, progressive reasoning.
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Abstract. We consider objects associated with a fuzzy set-based rep-
resentation. By using a classic method of measurement theory, we char-
acterize dissimilarity relations agreeing with a particular class of fuzzy
dissimilarity measures. Dissimilarity measures in the considered class are
those only depending on the attribute-wise distance of fuzzy description
profiles. In particular, we analyze the subclass of weighted Manhattan
dissimilarity measures.

Keywords: Dissimilarity relation · Fuzzy description profiles ·
Axioms · Weighted Manhattan dissimilarity measure

1 Introduction

Many situations in daily life or in science need to distinguish between sev-
eral objects. Therefore, similarity and dissimilarity measures are important to
evaluate a degree of resemblance between two or more objects. Many similar-
ity/dissimilarity measures are available in the literature and the choice of one
of them is done each time two images, cases, objects, situations, texts or data
must be compared.

We are interested in measuring the similarity/dissimilarity of general objects
characterized by a profile formed by a finite number of attributes or features.
Then any object is identified by a vector which is binary (if the features can
only belong or not to the object) or, as it has been more recently preferred, with
elements in [0, 1] (if a partial degree of membership is accepted). In this setting,
one can simply compare the vectors, rather than the objects themselves. For that,
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many papers on this subject present in the literature (see for instance [5,7,10])
discuss about the opportunity of considering as dissimilarity measure a (pseudo)
distance function or a measure of comparison, as studied in [1] generalizing
Tversky’s contrast model [11] (for a general parametrised form, see [5]). Usually
the comparison is made for a particular environment and “a posteriori” (on the
basis of the obtained results), focusing on one or more specific properties.

With the purpose to provide conscious reasons to use a particular similarity
measure on the basis of the semantics behind this choice, in [2–4] we charac-
terized two classes of similarity measures using the paradigm of measurement
theory. These classes are very large and contain as particular cases almost all the
known measures in the sense of Tversky’s contrast model and its generalizations.
The study starts from the concept of comparative similarity and provides the
conditions related to the primitive idea of similarity which are accepted when
choosing a measure of this class.

The aim of this paper is to make an equivalent study for dissimilarity mea-
sures which only depend on the distances between the degrees of membership
of two objects, related to any feature. This class contains many distances (for
instance, the Manhattan distance, the Minkowski distance, and the weighted
Euclidean distance). The particular subclass of the weighted Manhattan dis-
tance (depending on a vector of parameters) is then considered and is completely
characterized by the comparative dissimilarity agreeing with one element of such
class.

2 Preliminaries

Let H be a set of p attributes hk, (k ∈ I = {1, . . . , p}), each of which being
present in an object with a degree of membership μk(·) ∈ [0, 1].

Assume that the attributes in H are ordered increasingly according to indices
in I. Let Y = [0, 1]p be the set of all fuzzy description profiles: objects are
identified through vectors X = (x1, . . . , xp) ∈ Y, where xi ∈ [0, 1] expresses the
degree of membership of attribute i in the considered object. In other words,
fuzzy description profiles in Y can be regarded as membership functions of fuzzy
subsets of the ordered set H of p attributes. Let us stress that Y is endowed with
the partial order relation ≤ defined component-wise.

Since the attributes can be expressed by a vague characterization, we can
regard each of them as a fuzzy subset of a corresponding hidden variable. So
each X ∈ Y is a projection of the Cartesian product of p possibly fuzzy subsets
of p variables. For instance if the attributes h1 and h2 represent a person as
“old” and “fat”, every X = (x1, x2) is a projection of the Cartesian product
of the fuzzy sets “old” and “fat” of variables “age” and “weight”, both taking
values in R.

We denote by X ⊂ Y the set of crisp description profiles, i.e., X = {0, 1}p,
and for any X ∈ Y, we consider the support sX = {i : xi > 0}, so, in particular,
0 is the fuzzy description profile with sX = ∅. More generally, if ε ∈ [0, 1], then
ε denotes the element of Y whose components are all equal to ε.
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For every 0 ≤ δ ≤ xi and 0 ≤ η ≤ 1 − xi we denote by x−δ
i the value

xi − δ, and by xη
i the value xi + η, and consider the elements of Y: X−δ

k =
(x1, . . . , x

−δ
k , . . . , xp), and Xη

k = (x1, . . . , x
η
k, . . . , xp).

Given X,Y ∈ Y, we denote by U = |X − Y | the element of Y whose k-th
component is uk = |xk − yk|, while W = Xc is the element of Y, whose k-th
component is wk = 1 − xk, which is referred to as the complement of X.

Let us now consider a comparative dissimilarity that is a binary relation �
on Y2, with the following meaning: for all X,Y,X ′, Y ′ ∈ Y, (X,Y ) � (X ′, Y ′)
means that X is no more dissimilar to Y than X ′ is dissimilar to Y ′.

The relations ∼ and ≺ are then induced by � in the usual way: (X,Y ) ∼
(X ′, Y ′) stands for (X,Y ) � (X ′, Y ′) and (X ′, Y ′) � (X,Y ), while (X,Y ) ≺
(X ′, Y ′) stands for (X,Y ) � (X ′, Y ′) and not (X ′, Y ′) � (X,Y ).

If � is assumed to be complete, then ∼ and ≺ are the symmetric and the
asymmetric parts of �, respectively.

Definition 1. Let � be a comparative dissimilarity and D : Y2 → R a
dissimilarity measure. We say that D represents � if and only if, for all
(X,Y ), (X ′, Y ′) ∈ Y2, it holds that{

(X,Y ) � (X ′, Y ′) =⇒ D(X,Y ) ≤ D(X ′, Y ′),

(X,Y ) ≺ (X ′, Y ′) =⇒ D(X,Y ) < D(X ′, Y ′).

As is well-known, if � is complete, the above conditions can be summarized
as follows:

(X,Y ) � (X ′, Y ′) ⇐⇒ D(X,Y ) ≤ D(X ′, Y ′).

3 Basic Axioms

Given a comparative dissimilarity relation � on Y2, in the following we propose
a set of axioms that reveal to be necessary and sufficient for � to have a dissim-
ilarity measure representation inside a suitable class of dissimilarity measures.

(FD0) � is a weak order on Y2 (i.e., it is a complete and transitive binary
relation on Y2).

We note that the completeness of relation � can be removed and required
only in some specific cases: we assume it for simplicity.

The next axiom requires the comparative degree of dissimilarity to be inde-
pendent of the common increment of presence/absence of the features in the
objects of a pair. In fact, what is discriminant is the difference between the
membership degrees of each feature.

(FD1) For all X,Y ∈ Y, for all k ∈ I, for all ε ≤ min(xk, yk), it holds:

(X,Y ) ∼ (X−ε
k , Y −ε

k ).
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The next example shows a situation of three pairs that the axioms (FD0)
and (FD1) require to be equivalent.

Example 1. Let us consider a comparative dissimilarity among apartments in
New York, described by the following attributes:

– a = it is small;
– b = it is centrally located;
– c = it has a modern kitchen;
– d = it has a panoramic view;
– e = it is near a metro station.

Given the fuzzy description profiles below, axioms (FD0) and (FD1) require
that one must retain (X,Y ) ∼ (X ′, Y ′) ∼ (X ′′, Y ′′).

H a b c d e
X 0.5 0.4 0.9 0.6 0.1
Y 0.4 0.8 0.3 0.8 0.2
X ′ 0.3 0.2 0.6 0.2 0.05
Y ′ 0.2 0.6 0.2 0.4 0.15
X ′′ 0.1 0 0.6 0 0
Y ′′ 0 0.4 0 0.2 0.1

The next axiom is a local strong form of symmetry.

(FD2) For all X,Y ∈ Y, for all k ∈ I, denoting X ′
k = (x1, . . . , yk, . . . , xp) and

Y ′
k = (y1, . . . , xk, . . . , yp), it holds:

(X,Y ) ∼ (X ′
k, Y ′

k).

Example 2. Refer to the features in Example 1 and consider the fuzzy description
profiles below.

H a b c d e
X ′′ 0.1 0 0.6 0 0
Y ′′ 0 0.4 0 0.2 0.1
X ′′′ 0.1 0.4 0.6 0.2 0.1
Y ′′′ 0 0 0 0 0

Accepting axioms (FD0) and (FD2) implies to set (X ′′, Y ′′) ∼ (X ′′′, Y ′′′).

As the following proposition shows, for a transitive complete relation, local
symmetry implies symmetry. We note that the transitivity is necessary and that
the converse does not hold.

Proposition 1. Let � a comparative dissimilarity on Y2. If � satisfies axioms
(FD0) and (FD2), then, for every X,Y ∈ Y one has: (X,Y ) ∼ (Y,X).

Proof. The proof trivially follows by applying at most p times (FD2) and
(FD0). �
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The next proposition shows that under axioms (FD0) and (FD1), all pairs
of identical fuzzy description profiles are equivalent.

Proposition 2. Let � be a comparative dissimilarity on Y2. If � satisfies
axioms (FD0) and (FD1), then for every X ∈ Y one has: (1, 1) ∼ (X,X) ∼
(0, 0).

Proof. For every X ∈ Y, in particular X = 1, apply p times axiom (FD1) taking
ε = xk and then use (FD0). �

The following axiom is a boundary condition. It provides a natural left lim-
itation: “the elements of each pair (X,Y ) are at least dissimilar to each other
as an element of the pair is from itself”. On the other hand, for the right limi-
tation it is not enough to refer to any pair (X,Xc) formed by a profile and its
complement, but it is required that the profile X is crisp, or equivalently that
the supports of X and Xc are disjoint.

(FD3)
a) for every X,Y ∈ Y,

(X,X) � (X,Y ) and (Y, Y ) � (X,Y ),
b) for every X ∈ X and Y ∈ Y,

1) (X,Y ) � (X,Xc),
2) if (Y,Z) � (Y, Y c) for any Z ∈ Y, then Y ∈ X .

The following is a monotonicity axiom.

(FD4) For all X,Y ∈ Y, for all k ∈ I, such that xk ≤ yk, for all 0 < ε ≤ xk and
0 < η ≤ 1 − yk, it holds:

(X,Y ) � (X−ε
k , Y ) and (X,Y ) � (X,Y η

k ).

The following Theorem 1 shows that the introduced axioms are necessarily
satisfied by any comparative dissimilarity agreeing with a dissimilarity measure,
taking into account the distances of the degree of membership of each feature in
the compared fuzzy description profiles. The same axioms become necessary and
sufficient together with the following structural axiom (Q), known as Debreu’s
condition [6], which assures the representability of a weak order � by a real
function.

(Q) There is a countable ≺-dense set Z ⊆ Y2 (i.e., for all (X,Y ), (X ′, Y ′) ∈ Y2,
with (X,Y ) ≺ (X ′, Y ′), there exists (X ′′, Y ′′) ∈ Z, such that (X,Y ) ≺
(X ′′, Y ′′) ≺ (X ′, Y ′)).

We need to precise that we adopt as fuzzy inclusion the classic concept intro-
duced by Zadeh [12], as follows: if X,Y are fuzzy sets of a set C = {z1, . . . , zn},
then

X ⊆ Y if and only if μX(zk) ≤ μY (zk) for every zk ∈ C. (1)

In particular, in our case, we have that X ⊆ Y if and only if every component
of X is smaller than or equal to the same component of Y , i.e. every attribute
is no more present in X than it is in Y . So, X ⊆ Y can be written as X ≤ Y ,
where the inequality is component-wise.
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Theorem 1. Let � be a comparative dissimilarity relation on Y2. Then, the
following statements are equivalent:

(i) � satisfies (FD0)–(FD4) and (Q);
(ii) there exists a function (unique under increasing transformations) Φ : Y2 →

[0, 1] representing � in the sense of Definition 1 and a function ϕ : Y → R

such that:
a) Z ⊆ Z ′ =⇒ ϕ(Z) ≤ ϕ(Z ′), for every Z,Z ′ ∈ Y;
b) ϕ(0) = 0, and ϕ(1) = 1;
c) for all X,Y ∈ Y:

Φ(X,Y ) = Φ(|X − Y |, 0) = ϕ(|X − Y |).
Proof. We first prove that (i) =⇒ (ii). Axioms (FD0) and (Q) are sufficient
conditions for the existence of a function Φ : Y2 → [0, 1] representing � [8].
Now, applying at most p times (FD1) with ε = min(xi, yi) and at most p

2 times
(FD2) we get, by (FD0), that (X,Y ) ∼ (|X − Y |, 0). Then, since Φ represents
� we have Φ(X,Y ) = Φ(|X −Y |, 0). Thus it is sufficient to define, for all Z ∈ Y,
ϕ(Z) = Φ(Z, 0).

We now prove the validity of statement a) of condition (ii). Let Z = |X−Y | ⊆
Z ′ = |X ′ − Y ′|. Among the pairs respectively equivalent to (Z, 0) and (Z ′, 0)
there are two pairs in the hypotheses of axiom (FD4) for at least one index.
So, from (FD4) condition a) follows. Condition b) follows by axiom (FD3), by
considering that |X − Y | = 0 is obtained if and only if X = Y and |X − Y | = 1
is obtained if and only if X = Y and Y = Xc and X ∈ X . Then it is sufficient
to recall that Φ is unique under increasing transformations.

Let us consider now the implication (ii) =⇒ (i). Every binary relation � rep-
resentable by a real function satisfies axiom (FD0) and (Q) [8]. We must prove
that � satisfies axioms (FD1)–(FD4): taking into account representability of
� by Φ we deduce that condition c) in (ii) implies (FD1) and (FD2) whereas
condition a) implies (FD3). To prove axiom (FD4) it is sufficient to consider
that Φ assigns 1 to all and only the elements of the equivalence class of (1, 0),
i.e. only to the pairs (X,Xc) with X ∈ X . Similarly, Φ assigns 0 to all and only
the elements of the equivalence class of (0, 0), i.e. to the pairs (X,X) for every
X ∈ Y. �

4 Representation by a Weighted Manhattan Distance

Condition (ii) of Theorem 1 identifies a too wide and therefore too general class
of functions. In the following we will study the relations representable by the
elements of a particular subclass of functions Φ that is the class of the weighted
Manhattan distances.

Definition 2. A weighted Manhattan distance is a function Dα : Y2 → R

parameterized by α = (α1, . . . , αp) with αk ≥ 0 and
∑p

k=1 αk = 1, defined, for
every X,Y ∈ Y, as

Dα (X,Y ) =
p∑

k=1

αk|xk − yk|.
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The next axiom will represent “the constraint accepted” to obtain that the
function representing our comparative dissimilarity � belongs to this particular
subclass.

4.1 Rationality Principle

(R) For all n ∈ N, for all (X1, Y1), . . . , (Xn, Yn), (X ′
1, Y

′
1), . . . , (X ′

n, Y ′
n) ∈ Y2

with (Xi, Yi) � (X ′
i, Y

′
i ), i = 1, . . . , n, for all λ1, . . . , λn > 0 it holds:

n∑
i=1

λi|X ′
i − Y ′

i | ≤
n∑

i=1

λi|Xi − Yi| =⇒ (Xi, Yi) ∼ (X ′
i, Y

′
i ), i = 1, . . . , n.

The above axiom has an easy interpretation. First of all it requires to evaluate
as equally dissimilar every pairs (X,Y ) and (|X − Y |, 0). Moreover, it asserts
that if you have n pairs (Xi, Yi) of fuzzy profiles and you judge the elements of
each of them no more dissimilar than those of other n pairs (X ′

i, Y
′
i ), with at

least a strict comparison, combining in a positive linear combination the first
and the second you cannot obtain two vectors Z and Z ′ such that the fuzzy
description profiles W = Z∑n

i=1 λi
and W ′ = Z′

∑n
i=1 λi

satisfy W ′ ≤ W .
In the next example we provide a comparative dissimilarity assessment which

violates the above rationality principle.

Example 3. Referring to the features in Example 1, let us consider the following
profiles:

H a b c d e
X1 1/2 1 1/4 3/4 1/10
Y1 1/2 2/3 1/4 1/2 1/10
X2 1 1 1/6 1/2 1/2
Y2 1/2 1 1/6 1/2 1/2
X3 2/3 2/3 1/3 0 1/4
Y3 1/6 1 1/3 0 1/4
X4 1/8 1 1/2 1/2 0
Y4 1/8 1 1/3 1/4 0
X5 1 1/8 0 0 1
Y5 1/2 1/8 0 1/4 1
X6 0 1/2 1/3 0 0
Y6 0 1/6 1/3 0 2/3
X7 1/4 1/6 1/6 1 1/3
Y7 1/4 1/6 0 1 1
X8 0 1/3 1/4 3/4 0
Y8 1/2 0 1/4 1/2 0

Suppose now to assign the following reasonable relation: (X1, Y1) ≺ (X2, Y2),
(X3, Y3) ≺ (X4, Y4), (X5, Y5) ≺ (X6, Y6), (X7, Y7) ≺ (X8, Y8).
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It is easy to prove that the relation violates axiom (R). By trivial computa-
tions, taking all λi’s equal to 1, one obtains

|X1 − Y1| + |X3 − Y3| + |X5 − Y5| + |X7 − Y7| = (1, 2/3, 1/6, 1/2, 2/3) =
|X2 − Y2| + |X4 − Y4| + |X6 − Y6| + |X8 − Y8|.

The next theorem shows that, for a complete �, condition (R) implies all
the axioms from (FD0) to (FD4). Nevertheless, since condition (R) deals with
finite sets of pairs, condition (Q) is not guaranteed to hold, so (R) does not
assure representability of � on the whole Y2.

Theorem 2. Let � be a complete comparative dissimilarity relation on Y2 sat-
isfying (R). Then � is transitive and axioms (FD1)–(FD4) hold.

Proof. To prove transitivity suppose that we have (X,Y ) � (X ′, Y ′), (X ′, Y ′) �
(X ′′, Y ′′) and (X ′′, Y ′′) ≺ (X,Y ). Then we have

|X − Y | + |X ′ − Y ′| + |X ′′ − Y ′′| = |X ′ − Y ′| + |X ′′ − Y ′′| + |X − Y |,
contradicting (R). The proof of the other cases is similar.

To prove (FD1) and (FD2) it is sufficient to note that |X − Y | = |X−ε
k −

Y −ε
k | = |X ′

k−Y ′
k|. Condition a) of (FD3) follows immediately from the inequality

|0| = |X − X| = |Y − Y | ≤ |X − Y |. To prove condition b) let us consider that
for all and only X ∈ X one has |X − Xc| = 1 ≥ |X − Y |. Similar considerations
prove (FD4). �

4.2 Representability Theorems

In the following we consider nontrivial relations �, i.e., we assume that there
exist (X,Y ), (X ′, Y ′) with (X,Y ) ≺ (X ′, Y ′).

Theorem 3. Let � be a nontrivial complete comparative dissimilarity relation
on a finite F ⊂ Y2. Then, the following statements are equivalent:

(i) � satisfies (R);
(ii) there exists a weight vector α = (α1, . . . , αp) with αk ≥ 0 and

∑p
k=1 αk = 1

such that, for all (X,Y ), (X ′Y ′) ∈ F , it holds that

(X,Y ) � (X ′, Y ′) ⇐⇒ Dα (X,Y ) ≤ Dα (X ′, Y ′).

Proof. Since F is finite, the binary relation � amounts to a finite number of
comparisons. Consider the sets

S = {((X,Y ), (X ′, Y ′)) ∈ Y2 : (X,Y ) ≺ (X ′, Y ′)},

W = {((X,Y ), (X ′, Y ′)) ∈ Y2 \ S : (X,Y ) � (X ′, Y ′)},

with s = cardS and w = card W, and fix two enumerations S =
{((Xj , Yj), (X ′

j , Y
′
j ))}j∈J and W = {((Xh, Yh), (X ′

h, Y ′
h))}h∈H with J =

{1, . . . , s} and H = {1, . . . , w}.
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Condition (ii) is equivalent to the solvability of the following linear system⎧⎨
⎩

Aβ > 0,
Bβ ≥ 0,
β ≥ 0,

with unknown β ∈ R
p×1, and A ∈ R

s×p and B ∈ R
w×p, where the s rows of A

are the vectors |X ′
j −Y ′

j |− |Xj −Yj |, for all j ∈ J , while the w rows of B are the
vectors |X ′

h − Y ′
h| − |Xh − Yh|, for all h ∈ H. Indeed, if we have a weight vector

α satisfying (ii), then setting β = αT we get a solution of the above system. On
the converse, if β is a solution of the above system, then defining αk = βk∑p

i=1 βi
,

we get a weight vector α satisfying (ii).
By the Motzkin theorem of the alternative [9], the solvability of the above

system is equivalent to the non-solvability of the following system⎧⎨
⎩

μA + νB ≤ 0,
μ,ν ≥ 0,
μ = 0,

with unknowns μ ∈ R
1×s and ν ∈ R

1×w. In particular, the first inequality
reduces to∑

j∈J

μj(|X ′
j − Y ′

j | − |Xj − Yj |) +
∑
h∈H

νh(|X ′
h − Y ′

h| − |Xh − Yh|) ≤ 0,

thus the non-solvability of the above system is equivalent to condition (R). �

Remark 1. We note that, in the hypotheses of previous theorem, if
(X,Y ), (X ′, Y ′) ∈ F and it holds |X − Y | < |X ′ − Y ′| then it must be (X,Y ) ≺
(X ′, Y ′). In particular, if (0, 0), (1, 0) ∈ F , then it must be (0, 0) ≺ (1, 0).

Consider now the case where � is a nontrivial complete relation on Y2. In this
case, axiom (R) is not sufficient to assure representability of � by a dissimilarity
measure Dα on the whole Y2. Indeed, axiom (R) guarantees representability
only on every finite subset Y2, by virtue of Theorem 3. This implies that the
parameter α characterizing Dα depends on the particular finite subset F . To
remedy this problem it is necessary to introduce a further axiom which requires
that in each equivalence class (|X − Y |, 0) there must be one pair (ε, 0).

(FD5) For all (X,Y ) ∈ Y2 there exists ε ∈ [0, 1], such that (X,Y ) ∼ (ε, 0).

Theorem 4. Let � be a nontrivial complete comparative dissimilarity relation
on Y2. Then, the following statements are equivalent:

(i) � satisfies (R) and (FD5);
(ii) there exists a weight vector α = (α1, . . . , αp) with αk ≥ 0 and

∑p
k=1 αk = 1

such that, for all (X,Y ), (X ′Y ′) ∈ Y2, it holds

(X,Y ) � (X ′, Y ′) ⇐⇒ Dα (X,Y ) ≤ Dα (X ′, Y ′).
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Moreover, the weight vector α is unique.

Proof. The implication (ii) =⇒ (i) is easily proven, therefore we only prove (i)
=⇒ (ii).

For every finite F ⊂ Y2 such that the restriction of � to F is nontrivial, The-
orem 3 implies the existence of a weight vector αF = (αF

1 , . . . , αF
p ) with αF

k ≥ 0
and

∑p
k=1 αF

k = 1, such that the corresponding DαF represents the restriction
of � to F . Notice that, by Remark 1 every finite subset of Y2 containing (0, 0)
and (1, 0) meets nontriviality, as it must be (0, 0) ≺ (1, 0).

Next, axiom (FD5) implies that, for all (X,Y ) ∈ Y2, there exists ε(X,Y ) ∈
[0, 1], such that (X,Y ) ∼ (ε(X,Y ), 0). In particular, denoting by Ek the element
of Y whose k-th component is 1 and the others are 0, we have that there exists
αk ∈ [0, 1] such that (Ek, 0) ∼ (αk, 0). Now, for every (X,Y ), (X ′, Y ′) ∈ Y2 we
consider the finite subset of Y2

F = {(X,Y ), (X ′, Y ′), (ε(X,Y ), 0), (ε(X′,Y ′), 0),

(E1, 0), . . . , (Ep, 0), (α1, 0), . . . , (αp, 0), (0, 0), (1, 0)}.

By the previous point we have that there is a weight vector αF = (αF
1 , . . . , αF

p )
with αF

k ≥ 0 and
∑p

k=1 αF
k = 1 such that

(X,Y ) � (X ′, Y ′) ⇐⇒ DαF (X,Y ) ≤ DαF (X ′, Y ′),
(X,Y ) ∼ (ε(X,Y ), 0) ⇐⇒ DαF (X,Y ) = DαF (ε(X,Y ), 0) = ε(X,Y ),

(X ′, Y ′) ∼ (ε(X′,Y ′), 0) ⇐⇒ DαF (X ′, Y ′) = DαF (ε(X′,Y ′), 0) = ε(X′,Y ′).

Moreover, for all k = 1, . . . , p, we have

(Ek, 0) ∼ (αk, 0) ⇐⇒ DαF (Ek, 0) = αF
k = αk = DαF (αk, 0),

thus we get

ε(X,Y ) =
p∑

k=1

αk|xk − yk| and ε(X′,Y ′) =
p∑

k=1

αk|x′
k − y′

k|.

Hence, there exists a weight vector α = (α1, . . . , αp) with αk ≥ 0 and
∑p

k=1 αk =
1 such that, for all (X,Y ), (X ′Y ′) ∈ Y2, it holds that

(X,Y ) � (X ′, Y ′) ⇐⇒ Dα (X,Y ) ≤ Dα (X ′, Y ′),

and such weight vector is unique. Indeed, suppose there exists α′ = (α′
1, . . . , α

′
p)

with α′
k ≥ 0 and

∑p
k=1 α′

k = 1, such that Dα ′ represents � on the whole Y2 and
α′ = α. For k = 1, . . . , p, it holds that

(Ek, 0) ∼ (αk, 0) ⇐⇒ Dα ′(Ek, 0) = α′
k = αk = Dα ′(αk, 0),

reaching in this way a contradiction. �



268 G. Coletti et al.

5 Conclusions

In this paper we characterize comparative dissimilarities on fuzzy description
profiles, representable by elements of a class of dissimilarity measures only
depending on the attribute-wise distance. This very large class contains all Lp

distances and, in particular, the weighted Manhattan distances. Then, we char-
acterize comparative dissimilarities representable by the latter subclass. Our aim
for future research is to provide a characterization of comparative dissimilarities
representable by other distinguished subclasses.
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Abstract. In this paper, we advocate Tversky’s ratio model as an
appropriate basis for computational approaches to semantic similarity,
that is, the comparison of objects such as images in a semantically mean-
ingful way. We consider the problem of learning Tversky similarity mea-
sures from suitable training data indicating whether two objects tend
to be similar or dissimilar. Experimentally, we evaluate our approach to
similarity learning on two image datasets, showing that is performs very
well compared to existing methods.

Keywords: Similarity · Machine learning · Semantic features · Image
data

1 Introduction

Similarity is an important cognitive concept and a key notion in various branches
of artificial intelligence, including case-based reasoning [26], information retrieval
[5], machine learning [6], data analysis [30] and data mining [4], among others.
Specified as a numerical (real-valued) function on pairs of objects, it can be
applied in a rather generic way for various problems and purposes [21]. In par-
ticular, similarity is of great interest for structured objects such as text and
images. In such domains, similarity measures are normally not defined by hand
but learned from data, i.e., they are automatically extracted from sample data
in the form of objects along with information about their similarity.

In the image domain, numerous methods of that kind have been proposed,
based on different types of feature information, including visual [12,37] and
semantic features [24], and exploiting different types of measurements, such as
non-metric [5,15] and metric ones [19]. Most common is a geometrical model of
similarity that relies on an embedding of objects as points in a suitable (often
high-dimensional) vector space, in which similarity between objects is inversely
related to their distance. As popular examples of (dis-)similarity measures in
this field, let us mention the Euclidean and the Cosine distance [25].

Somewhat surprisingly, another concept of similarity, the one put forward by
Tversky [35], appears to be less recognized in this field, in spite of its popularity
in psychology and cognitive science. Tversky argued that the geometrical model
of similarity is not fully compatible with human perception, and empirically
c© Springer Nature Switzerland AG 2020
M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1238, pp. 269–280, 2020.
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demonstrated that human similarity assessment does not obey all properties
implied by this model, such as minimality, symmetry, and triangle inequality
[36]. Due to its cognitive plausibility, we hypothesize that Tversky similarity
could provide a suitable basis for mimicking human similarity assessment in
domains such as art images [20]. For example, an art historian will probably
find the copy of a painting more similar to the original than the original to the
copy, thereby violating symmetry. Not less importantly, Tversky similarity is a
potentially interpretable measure, which does not merely produce a number, but
is also able to explain why two objects are deemed more or less similar. In other
words, it is able to fill the semantic gap between the extracted visual information
and a human’s interpretation of an image. This feature of explainability is of
critical importance in many applications [29]. Last but not least, the similarity
also exhibits interesting theoretical properties; for example, see [9] for a recent
analysis from the perspective of measurement theory.

In this paper, we elaborate on the potential of Tversky similarity as an alter-
native to existing measures, such as Euclidean and Cosine distance, with a spe-
cific focus on the image domain. In particular, we consider the problem of learn-
ing Tversky similarity from data, i.e., tuning its parameters on the basis of suit-
able training data, a problem that has not received much attention so far. As a
notable exception we mention [2], where the problem of learning the importance
of features (and feature combinations) for a generalized Jaccard measure (a spe-
cial case of the Tversky measures) on the basis of training data is addressed, so
as to achieve optimal performance in similarity-based (nearest neighbor) classi-
fication; to this end, the authors make use of stochastic optimization techniques
(particle swarm optimization and differential evolution). On the other side, it is
also worth noticing that the problem of learning Tversky similarity is in gen-
eral different from the use of the Tversky measure as a loss function in machine
learning [1,27]. Here, the measure serves as a means to accomplish a certain goal,
namely to learn a classification model (e.g., a neural network) that achieves a
good compromise between precision and recall, whereas is our case, the measure
corresponds to the sought model itself.

The paper is organized as follows. After a brief review of related work in the
next section, we recall Tversky’s notion of similarity based on the ratio model
in Sect. 3. In Sect. 4, we then propose a method for learning this similarity from
suitable training data. Finally, we present experimental results in Sect. 5, prior
to concluding the paper in Sect. 6.

2 Related Work

2.1 Image Similarity

Image similarity and its quantitative assessment in terms of similarity mea-
sures strongly depends on the image representation. Numerous approaches have
been presented to extract different types of representations based on visual and
semantic features of images [12,22]. Most of the state-of-the-art methods for
extracting visual features are based on deep neural networks, which produce a
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variety of features, ranging from low level features in the early layers to more
abstract features in the last layers [18,39]. In general, however, similarity is a
complex concept that can not be derived from visual features alone. Therefore,
some studies have exploited the use of prior knowledge as well as intermediate or
high-level representation of features to capture similarity in specific applications
[3,11,12].

The similarity or distance on individual features is commonly combined into
an overall assessment using measures such as weighted Euclidean or weighted
Cosine distance, whereas Tversky similarity is much less used in the image
domain in this regard. There are, however, a few notable exceptions. For exam-
ple, Tversky similarity is used in the context of image retrieval in [28] and for
measuring the similarity between satellite images in [33].

2.2 Metric Learning

As already said, the notion of similarity is closely connected to the notion of dis-
tance. Whether relationships between objects are expressed in terms of similarity
or distance is often a matter of taste, although small differences in the respec-
tive mathematical formalizations also exist. In the literature, distance seems to
be even a bit more common than similarity. In particular, there is large body
of literature on distance (metric) learning [19]. Most distance learning meth-
ods focus on tuning the weights of attributes in the Mahalanobis distance or
weighted Euclidean distance. As training information, these methods typically
use constraints on pairwise or relative relations among objects [7,16].

3 Tversky Similarity

Tversky suggested that humans perceive the similarity between objects based
on contrasting (the measure of) those features they have in common and those
on which they differ [35]. Moreover, he suggested that more attention is paid
to the shared than to the distinctive features. Thus, in his (feature-matching)
model, an object is represented as a set of meaningful features, and similarity is
defined based on suitable set operations.

3.1 Formal Definition

More formally, consider a set of objects X and a finite set of features F =
{f1, . . . , fm}. Each feature is considered as a binary predicate, i.e., a mapping
fi : X −→ {0, 1}, where fi(x) = 1 is interpreted as the presence of the ith

feature for the object x, and fi(x) = 0 as the absence. Thus, each object x ∈ X
can be represented by the subset of features it exhibits:

F (x) =
{
fi | fi(x) = 1, i ∈ {1, . . . ,m}} ⊆ F
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Tversky similarity, in the form of the so-called ratio model, is then defined as a
function Sα,β : X 2 −→ [0, 1] as follows:

Sα,β(x,y) =
g( |A ∩ B| )

g( |A ∩ B| ) + α g( |A \ B| ) + β g( |B \ A| ) , (1)

where A = F (x), B = F (y), and g is a non-negative, increasing function N0 −→
N0; in the simplest case, g is the identity measuring set cardinality. According
to (1), Tversky similarity puts the number of features that are shared by two
objects in relation to the number of relevant features, where relevance means that
a feature is present in at least one of the two objects—features that are absent
from both objects are completely ignored, which is an important property of
Tversky similarity, and distinguishes it from most other similarity measures.

The coefficients 0 ≤ α, β ≤ 1 in (1) control the impact of the distinctive
features as well as the asymmetry of the measure. The larger these coefficients,
the more important the distinctive feature are. For α = β, the similarity measure
is symmetric, i.e., Sα,β(x,y) = Sα,β(y,x) for all x,y ∈ X , for α �= β it is
asymmetric. Important special cases include the Jaccard coefficient (α = β = 1)
and the Dice similarity (α = β = 1/2).

3.2 Feature Weighting

The Tversky similarity (TS) measure (1) implicitly assumes that all features
have the same importance, which might not always be true. In fact, g is only a
function of the cardinality of feature subsets, but ignores the concrete elements of
these subsets. In other words, only the number of shared and distinctive features
is important, no matter what these features are.

A natural generalization of (1) is a weighted variant of Tversky similarity
(WTS), in which each feature fi is weighted by some wi ∈ [0, 1]:

Sα,β,w (x,y) =
∑m

i=1 wifi(x)fi(y)
∑m

i=1 wi

(
fi(x)fi(y) + αfi(x)f̄i(y) + βf̄i(x)fi(y)

) , (2)

with f̄i(·) = 1 − fi(·). Thus, in addition to α and β, this version of Tversky
similarity is now parametrized by a weight vector w = (w1, . . . , wm).

3.3 Semantic Similarity

As already said, we believe that Tversky similarity may offer a semantically
meaningful and cognitively plausible tool for object comparison, especially in
the image domain—provided the fi are “semantic features”, that is, features
with a meaningful semantic interpretation. In the image domain, such features
are normally not given right away. Instead, meaningful (high-level) features have
to be extracted from “low-level” feature information on the pixel level.

Thus, what we envision is an approach to image similarity based on a two-
level architecture, in which semantic features are extracted from images in the
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Fig. 1. Two-level architecture for semantic similarity.

first step, and these features are then used to specify similarity in the second
step (cf. Fig. 1). While the features could be predefined by a human domain
expert, the feature extraction itself should be accomplished automatically based
on suitable image processing techniques.

For example, a human expert may know that, in a certain context, the pres-
ence of water on an image is a relevant feature. Water might then be included
as a feature fi in F . The function fi itself is a mapping that assumes an image
(represented as a set of pixels) as an input and returns 0 or 1 as an output,
depending on whether water is visible on the image or not. It could be realized,
for example, by a neural network that has been trained to recognize water on
images. Obviously, feature descriptors obtained in this way are never perfect, so
that feature descriptions F (x) will be “noisy” in practice.

4 Learning Tversky Similarity

In this section, we address the problem of learning the Tversky similarity, that
is, tuning the parameters of the measure so as the optimally adapt it to a con-
crete application at hand. To this end, we assume suitable training data to be
given, which informs about the similarity or dissimilarity between objects. More
specifically, we assume training data of the following form:

D =
{
(F (xn), F (yn), sn)

}N

n=1
⊂ X × X × {0, 1} (3)

Each training example is a triplet (F (xn), F (yn), sn), where sn ∈ {0, 1} indicates
whether the two objects xn and yn are considered similar or not. Thus, instead
of precise numerical similarity degrees, the feedback is binary and only provides
a rough indication. Note that the objects in the training data are already rep-
resented in terms of a feature description, i.e., we disregard the step of feature
extraction here and completely focus on specifying the Tversky similarity.
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4.1 Contrastive Loss

A common approach to learning similarity or distance functions is to minimize a
suitable loss function on the training data D. Here, we make use of the contrastive
loss [7], which has been employed quite successfully in the image domain. This
loss function compares a “predicted” similarity ŝ = Sα,β,w (x,y) ∈ [0, 1] with
given feedback s ∈ {0, 1} as follows:

Lm(s, ŝ) = s(1 − ŝ) + (1 − s)max
(
m − 1 + ŝ, 0

)
, (4)

where m is a margin (and a parameter of the loss). Thus, if s = 1 (objects x
and y are considered similar), the loss is given by 1 − ŝ and increases linearly
with the distance from the ideal prediction ŝ = 1. If s = 0, the loss is specified
analogously, except that a loss of 0 only requires ŝ ≤ 1 − m (instead of ŝ = 0).
Thus, positive and negative examples are treated in a slightly different way: A
high (predicted) similarity on negative pairs is penalized less strongly than a
low similarity on positive pairs. This could be meaningful, for example, when
the feedback s is obtained from class membership in a classification or clustering
context (as will be the case in our experiments) with many classes, some of which
may (necessarily) overlap to a certain extent.

4.2 Loss Minimization

Training the weighted Tversky similarity (WTS) essentially consists of minimiz-
ing the total loss on the training data, i.e., finding

(α∗, β∗,w∗) = argmin
α,β,w

N∑

n=1

Lm(sn, Sα,β,w (xn,yn)) (5)

Besides, we consider two restricted variants of this problem: Learning the
(unweighted) TS measure comes down to omitting the weight vector w from
(5), and enforcing symmetry to optimizing a single parameter α instead of two
parameters α and β.

Our learning algorithm (see Algorithm 1) is quite simple and essentially based
on gradient descent optimization. Gradients for the parameter updates are com-
puted on mini-batches. To avoid overfitting of the training data, we take a part
of the data for validation and apply an early stopping technique. More specifi-
cally, we stop the training process as soon as the accuracy on the validation data
decreases by more than 0.01 in 20 consecutive iterations.

5 Experiments

In this section, we present the results of our experimental study. Before doing so,
we first describe the data we used for the experiments, the experimental setting,
and the baseline methods we compared with.
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Algorithm 1. Learning Algorithm
Input: maximum iteration MT , batch size B, margin m, training data D
Output: α, β,w

1: split D into training data Dtrain and validation data Dval

2: randomly initialize parameters α, β,w
3: while ( t < MT ) and (stopping criterion = false)
4: sample mini-batch uniformly at random from similar and dissimilar pairs
5: compute Sα,β,w according to (2)
6: update parameters by minimizing (5)
7: test stopping condition on Dval

8: end while

5.1 Data

Since the extraction of semantic features (cf. Sect. 3.3) is beyond the scope of
this paper, we collected two image datasets for which this information, or at
least information that can be interpreted as such, is already given.

The a-Pascal-VOC2008 data [14] consists a total of 4340 images, which
are split into 2113 training and 2227 test images. Each image is labeled with
one of 32 class categories, such as “horse”. Moreover, each image is described by
64 additional binary attributes, which we interpret as semantic features. Mostly,
these features characterize the presence of certain objects on the image, such as
saddle, tail, or snout.

The Sun attributes dataset [23] includes 14340 images equally distributed
over 717 categories, such as “forest road” or “mountain path”. Each image is
also described by 102 attributes, such as “snow”, “clouds”, “flowers”, etc., which
describe images in a semantically meaningful way. These features are attached
by 3 human annotators, and we assume the presence of each attribute in an
image if it is attached by at least one of them.

5.2 Experimental Setting

We split the Sun attribute dataset into training data, validation data, and test
data with a ratio of 70/10/20. The validation data is used to fine-tune parameters
like the margin m of the contrastive loss. After each iteration of the training
procedure (cf. Algorithm 1), the model is evaluated on validation data, and the
model with highest performance is stored. We consider the same setting for the
a-Pascal-VOC dataset, except for adopting the predefined train/test split. For
this data, we extract 10% of the training data for validation.

Training examples for similarity learning (i.e., triplets of the form (x,y, s))
are extracted from the set of images belonging to the training data as follows:
A pair of images x,y is considered as similar (s = 1) if both images have the
same class label, and otherwise as dissimilar (s = 0). To facilitate learning and
have balanced batches, similar and dissimilar pairs of images are sampled with
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the same probability of 0.5 (and uniformly within the set of all similar pairs and
all dissimilar pairs, respectively).

Once a similarity measure S (or distance measure) has been learned, its per-
formance is evaluated on the test data. To this end, we generate data in the
form of triplets (x,y, s) in the same way as we did for training. The similarity
measure is then used as a threshold classifier (x,y) 	→ �S(x,y) > t� with a
threshold t tuned on the validation data, and evaluated in terms of its classifi-
cation rate (percentage of correct predictions) and F1 measure. Eventually, the
average performance is determined over a very large set of randomly selected
triplets (4M in the case of the a-Pascal-VOC2008 data and 6M in the case of
Sun attributes), so that the estimation error is essentially 0.

5.3 Methods

We train both variants of the Tversky similarity, the unweighted (TS) and the
weighted one (WTS). Since the “ground-truth” similarity in our data is sym-
metric by construction, we restrict to the respective symmetric versions (α = β).
We train unweighted Tversky similarity and weighted Tversky similarity using
stochastic gradient descent with Nestrov’s momentum [31] (learnin rate 0.01)
and Adagrad [13] (learning rate 0.01), respectively.

As baselines for comparison, we learn two common similarity/distance met-
rics, namely the weighted Euclidean distance and weighted Cosine distance. Both
distances are trained using Adam optimization [17] (with learning rate 0.001),
in very much the same ways as the Tversky similarity. To prevent overfitting,
the contrastive loss is combined with L1 and L2 regularization terms.

Moreover, we include LMNN [38] and a modified Siamese network (Siamese
Net Semantic) based on [15]. The modified Siamese network consists of two
blocks: two feature extraction blocks with shared weights for a pair of objects
and a non-metric similarity block. A feature extraction block maps the input
semantic feature vector into an embedding space, in which similar objects have
small and dissimilar objects a larger distance. The non-metric similarity block
predicts the similarity score that indicates the degree of similarity or dissimilarity
of the input pair.

Since the number of input (semantic) features for the feature extraction block
is relatively low in our experiments with the Sun attribute dataset, we only use
three fully connected layers of size [64, 32, 16] and activation functions [Relu,
Relu, Sigmoid], respectively. Correspondingly, the dimensions of two fully con-
nected layers are [32, 16] with [Relu, Sigmoid] as activation functions for the
a-Pascal-VOC2008 dataset. The non-metric network consists of an L1 distance
part and two fully connected layers. In the L1 distance part, we calculate the
L1 distance between features of the object pair, produced by the feature extrac-
tion blocks. The dimensions of two fully connected layers are [16, 1] with [Relu,
Sigmoid] as activation functions, respectively. The parameters of the modified
Siamese network are learned by minimizing a combination of two common loss
functions using back propagation and the Adam optimization method [17] with
learning rate 0.01. The contrastive loss is exploited to pull the representation
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of similar images closer and push the dissimilar ones apart. Moreover, since the
evaluation is eventually done on a binary classification task, we combine the con-
trastive loss with the cross-entropy loss to improve the classification accuracy.

To show the effectiveness of our method in obtaining semantic similarity
among images, we also train the modified Siamese network based on only visual
features (Siamese Net Visual). The inputs of this network are the original images,
and the output is a similarity prediction that indicates whether the two input
images are similar or not. In the feature extraction block, we extract high-level
features from the pre-trained Inception-V3 [32] followed by a flatten layer, batch
normalization, and two fully connected layers with dimensions [256, 128] and
activation functions [Relu, Sigmoid]. We also use the same non-metric similarity
block and optimization method as explained above with a learning rate 0.01.

5.4 Results

Table 1. Performance on the a-Pascal-VOC2008 dataset.

Method Classification rate F1 measure

Weighted Euclidean 0.65 0.74

Weighted Cosine 0.81 0.78

LMNN [38] 0.78 0.81

Siamese Net Semantic [15] 0.82 0.84

Tversky (TS) 0.82 0.82

Weighted Tversky (WTS) 0.83 0.84

Table 2. Performance on the Sun attribute dataset.

Method Classification rate F1 measure

Weighted Euclidean 0.76 0.77

Weighted Cosine 0.78 0.80

LMNN [38] 0.79 0.81

Siamese Net Semantic [15] 0.79 0.81

Siamese Net Visual [15] 0.74 0.78

Tversky (TS) 0.80 0.81

Weighted Tversky (WTS) 0.81 0.83

The results are summarized in Tables 1 and 2. As can be seen, Tversky sim-
ilarity performs very well and is highly competitive. Somewhat surprisingly, the
performance of the simple unweighted version of Tversky similarity is already
extremely strong. It can still be improved a bit by the weighted version, but not
very much.
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The Euclidean (and likewise the Cosine) distance performs quite poorly. As
a possible explanation, note that the Euclidean distance is not able to ignore
presumably irrelevant features that occur in none of the two objects (images)
at hand. Since the distance between the corresponding feature values is 0, such
features contribute to the similarity of the objects (e.g., the simultaneous absence
of, say, trees on two images contributes to their similarity). This is certainly a
strength of the Tversky similarity (and part of its motivation).

6 Conclusion

This paper presents first steps toward learning Tversky similarity, i.e., machine
learning methods for tuning the parameters of Tversky’s similarity model to
training data collected in a concrete application context. To the best of our
knowledge, such methods do not exist so far, in spite of the popularity of Tver-
sky’s model. The experimental results we obtained for image data so far, even if
preliminary, are quite promising.

There are various directions for extending the approach presented in this
paper, which ought to be addressed in future work:

– Our learning algorithm implements a rather plain solution and essentially
applies a general purpose learning technique (a gradient-based optimization)
to a specific loss function. More sophisticated methods, specifically tailored to
the Tversky similarity and exploiting properties thereof, promise to improve
efficiency and perhaps even boost performance. In this regard, we plan to
elaborate on different ideas, such as alternating optimization and correlation
analysis to judge feature importance.

– In practical applications, other types of training data may become relevant.
An interesting example is relative similarity information of the form “object
x is more similar to y than to z”. Devising methods for learning from data
of that kind is another important topic of future work.

– Likewise, other loss functions and performance metrics should be considered,
both for training and evaluation. Specifically relevant are ranking measures
from information retrieval, because similarity is often used for the purpose of
object retrieval (e.g., ranking images stored in a database in decreasing order
of their similarity to a query image).

– Further generalizations of the Tversky similarity itself could be considered as
well, for example using fuzzy instead of binary features [8,10,34].
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3. Baltrušaitis, T., Ahuja, C., Morency, L.P.: Multimodal machine learning: a survey
and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41(2), 423–443 (2018)

4. Bouchon-Meunier, B., Rifqi, M., Lesot, M.-J.: Similarities in fuzzy data mining:
from a cognitive view to real-world applications. In: Zurada, J.M., Yen, G.G.,
Wang, J. (eds.) WCCI 2008. LNCS, vol. 5050, pp. 349–367. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-68860-0 17

5. Chechik, G., Sharma, V., Shalit, U., Bengio, S.: Large scale online learning of image
similarity through ranking. J. Mach. Learn. Res. 11, 1109–1135 (2010)

6. Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzanti, L.: Similarity-based
classification: concepts and algorithms. J. Mach. Learn. Res. 10, 747–776 (2009)

7. Chopra, S., Hadsell, R., Le Cun, Y.: Learning a similarity metric discriminatively,
with application to face verification. In: IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 539–546 (2005)

8. Coletti, G., Bouchon-Meunier, B.: Fuzzy similarity measures and measurement
theory. In: Proceedings FUZZ-IEEE, International Conference on Fuzzy Systems,
New Orleans, LA, USA, pp. 1–7 (2019)

9. Coletti, G., Bouchon-Meunier, B.: A study of similarity measures through the
paradigm of measurement theory: the classic case. Soft. Comput. 23(16), 6827–
6845 (2019)

10. Coletti, G., Petturiti, D., Vantaggi, B.: Fuzzy weighted attribute combinations
based similarity measures. In: Antonucci, A., Cholvy, L., Papini, O. (eds.)
ECSQARU 2017. LNCS (LNAI), vol. 10369, pp. 364–374. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61581-3 33

11. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: ideas, influences, and
trends of the new age. ACM Comput. Surv. 40(2), 1–60 (2008)

12. Deselaers, T., Ferrari, V.: Visual and semantic similarity in ImageNet. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1777–1784.
IEEE (2011)

13. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

14. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their
attributes. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1778–1785. IEEE (2009)

15. Garcia, N., Vogiatzis, G.: Learning non-metric visual similarity for image retrieval.
Image Vis. Comput. 82, 18–25 (2019)

16. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-
identification. arXiv preprint arXiv:1703.07737 (2017)

17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems
(NIPS), pp. 1097–1105 (2012)

19. Kulis, B., et al.: Metric learning: a survey. Found. Trends R© Mach. Learn. 5(4),
287–364 (2013)

20. Lang, S., Ommer, B.: Attesting similarity: supporting the organization and study
of art image collections with computer vision. Digit. Scholarsh. Humanit. 33(4),
845–856 (2018)

https://doi.org/10.1007/978-3-642-31718-7_22
https://doi.org/10.1007/978-3-540-68860-0_17
https://doi.org/10.1007/978-3-319-61581-3_33
http://arxiv.org/abs/1703.07737
http://arxiv.org/abs/1412.6980


280 J. Rahnama and E. Hüllermeier
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Abstract. We apply Dempster-Shafer theory in order to reveal impor-
tant elements in undirected weighted networks. We estimate cooperation
of each node with different groups of vertices that surround it via con-
struction of belief functions. The obtained intensities of cooperation are
further redistributed over all elements of a particular group of nodes that
results in pignistic probabilities of node-to-node interactions. Finally,
pairwise interactions can be aggregated into the centrality vector that
ranks nodes with respect to derived values. We also adapt the proposed
model to multiplex networks. In this type of networks nodes can be dif-
ferently connected with each other on several levels of interaction. Var-
ious combination rules help to analyze such systems as a single entity,
that has many advantages in the study of complex systems. In partic-
ular, Dempster rule takes into account the inconsistency in initial data
that has an impact on the final centrality ranking. We also provide a
numerical example that illustrates the distinctive features of the pro-
posed model. Additionally, we establish analytical relations between a
proposed measure and classical centrality measures for particular graph
configurations.

Keywords: Belief functions · Network analysis · Centrality measures

1 Introduction

Dempster-Shafer theory of belief functions [1,2] is a widely used tool to measure
belief or conflict between elements in a considered system [1,2]. Recently it has
also found use in the field of social network analysis [3]. Social networks represent
interactions that are met between people, countries, in transportation systems,
etc.

One of the core problems in network science is the detection of central ele-
ments. In [4] a modified evidential centrality and evidential semi-local centrality
in weighted network are proposed. The measures use the combination of “high”,
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“low” and “(high, low)” probabilities of the influence based on weighted and
unweighted degrees of nodes via Dempster’s rule. In [5] the same rule is applied
in order to combine different node-to-node interactions in a network. The pro-
posed measures that are able to detect social influencers were applied to Twitter
data.

The theory of belief functions can be also adapted to the problem of com-
munity detection, i.e. the partition of nodes into tightly connected groups. For
instance, in [6] the author proposed a novel method based on local density mea-
sures assigned to each node that are further used for the detection density peaks
in a graph.

In the frame of the recent work we mostly focus on the problem of the detec-
tion of the most influential as well as the most affected elements in networks. The
knowledge about the position of nodes plays a significant role in understanding
of structural properties of complex systems.

There exist several networking approaches that aim to assess the impor-
tance of nodes in graphs. The first class of the methods refers to classical cen-
trality measures [7]. It includes degree centrality measure that prioritizes over
nodes with the largest number of neighbors or with the largest sum of incom-
ing/outcoming weights. The eigenvector group of centralities, that includes eigen-
vector centrality itself, Bonacich, PageRank, Katz, Hubs and Authorities, Alpha
centrality, etc., takes into account the importance of neighbors of a node, i.e.
the centrality of a vertex depends on centralities of the adjacent nodes [8–12].
Closeness and betweenness centralities consider the distance between nodes and
the number of the shortest paths that go through nodes in a network [13,14].

Another class of measures, that detect the most important elements, employs
cooperative game theoretical approach. It includes the estimation of Myerson
values, that is similar to Shapley-Shubik index calculation [15]. It also requires
the introduction of nodes set functions, that can vary depending on the problem
statement. In [16] the Hoede–Bakker index is adjusted to the estimation of the
influence elements in social networks. In [17] Long-Range Interaction Central-
ity (LRIC) is proposed, that estimates node-to-node influence with respect to
individual attributes of nodes, the possibility of the group influence and indirect
interactions through intermediate nodes.

However, all the approaches described above are designed for so-called mono-
plex networks and require adaptation to complex structures with many types
of interactions between adjacent nodes (so-called multilayer networks [18]). In
recent years multilayer networks became one of the central topics in the field
of network science. A multilayer network where the set of nodes (or a part of
nodes) remains the same through all layers is called multiplex network, which is
the object of the research in this work.

There exist several ways for the assessment of central elements in multi-
plex networks. Firstly, one can calculate centralities for each layer separately
and further aggregate the obtained values through all considered networks. Sec-
ondly, one can aggregate connections between pairs of nodes to obtain monoplex
network and then apply centrality measures to a new weighted graph. The mod-
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ification of classical centrality measures to interconnected multilayer networks is
described in [18,19]. In [20] social choice theory rules are applied to multiplex
networks in order to detect key elements.

However, the final results for these approaches are calculated from the sec-
ondary data. In this work we propose a novel technique of the key elements
assessment. We construct a mapping between each node and sets of other nodes,
which is a mass function. In case of several layers we combine mass functions on
each layer to a unique function that can be used for the centrality estimation
in the whole system. The key advantages of our approach are that we take into
account interactions with different groups of nodes and we are able to estimate
node-to-node influence within the whole network structure. We also take into
account the consistency on connections on different network layers.

This paper is organized as follows: in Sect. 2 we describe some basic concepts
from belief functions theory. In Sect. 3 we propose a centrality measure for one-
layer network and apply it to a toy example. In Sect. 4 we develop an approach
to elucidate important elements in networks with several layers. In the same
Section we apply the proposed method to two-layers network. Section 5 contains
a discussion of our approach as well as conclusion to the work.

2 Background to the Theory of Belief Functions

In this Section we will remind some basic definitions and notions from Dempster-
Shafer theory of belief functions [1,2] that are further employed in this work.

Let X be a finite set that is called frame of discernment and 2X is a set
of all subsets of X. Function m : 2X → [0; 1] that meets the requirements of
normalization condition, i.e. m(∅) = 0 and

∑
A∈2X m(A) = 1, is called basic

probability assignment or a mass function. All A ∈ 2X such that m(A) > 0 are
called focal elements and the family of all focal elements is called the body of
evidence.

Mass function m can be associated with two set functions namely a belief
function denoted by g(A) =

∑
B⊂A m(B) and a plausibility function denoted

ḡ(A) =
∑

B:A∩B �=∅ m(B), that is dual to belief function g(A). These two func-
tions can be considered as lower and upper bounds for the probability estimation
of event A : g(A) ≤ P (A) ≤ ḡ(A), A ∈ 2X . The value of function g(A) reflects
the belief level to the fact that x ∈ A ⊆ X, where x from X. We denote by
Bel(X) a set of all belief functions g on set X.

Belief function g can be also represented as a convex combination of categor-

ical belief functions ηB(A) =

{
1, B ⊆ A

0, B �⊆ A
, B ∈ 2X \{∅} with {m(B)} multipliers:

g(A) =
∑

B m(B)ηB(A). Note that ηX describes vacuous evidence that x ∈ X.
Thus, we call this function as vacuous belief function. Additionally, mass function
m(A) can be also expressed from belief function g with Möbius transformation
as m(A) =

∑
B⊂A (−1)|A\B|g(B).

In this work we mainly focus on combination techniques adopted from
Dempster-Shafer theory. By combination we mean some operator R : Bel(X)×
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Bel(x) → Bel(X) that transforms two belief functions into one belief function.
We denote by m = m1 ⊗R m2 the combinations of two mass functions m1 and
m2 under rule R.

There exist various combination rules that are widely used in the theory and
applications of belief functions. For instance, Dempster rule [1], that is regarded
as the pioneered and the most popular combination technique in Dempster-
Shafer theory, is calculated as follows:

m(A) = (m1 ⊗D m2)(A) =
1

1 − K

∑

B∩C=A

m1(B) · m2(C) (1)

for all A �= ∅ and m(∅) = 0, where K =
∑

B∩C=∅ m1(B) · m2(C). Parameter
K = K(m1,m2) ∈ [0; 1] indicates the level of conflict between two evidences. If
K = 1 then the level of conflict is the highest and rule (1) is not applicable in
this case.

Another combination technique that is similar to Demster rule is Yager com-
bination rule [21] that is defined as

m(A) = (m1 ⊗Y m2)(A) =
∑

B∩C=A

m1(B) · m2(C) (2)

for all A �= ∅, m(∅) = 0 and m(X) = K + m1(X) · m2(X). According to this
rule, the value of conflict K is reallocated among the mass of ignorance m(X).

Other combination rules are also described in [22], some generalizations can
be found in [23,24], axiomatics and the description of conflict rules are reviewed
in [25–28].

Additionally, discounted technique proposed in [1] can be applied to mass
functions in case when various sources of information that are determined by
their belief functions have different levels of reliability or different priority. Dis-
counting of mass functions can be performed with the help of parameter α ∈ [0; 1]
as follows:

mα(A) = (1 − α)m(A) for A �= X and mα(X) = (1 − α)m(X) + α.

If α = 0 then the source of information is regarded as thoroughly reliable and
mα(A) = m(A) ∀A ∈ 2X . Conversely, if α = 1 then mα(X) = 1 and the related
belief function is vacuous.

3 Centrality Assessment with Belief Functions

In this Section we describe a graph model with one layer of interaction as well as
the construction of centrality measure based on a mass function for a network.

We consider connected graph as tuple G = (V,E,W ), where V = {v1, ..., vn}
is a set of nodes, |V | = n, and E = {e(vi, vj)} as a set of edges. For the simplicity,
we associate vk with number k, k = 1, ..., n and denote e(vi, vj) as eij . In this
work we consider undirected network, i.e. eij ∈ E implies that eji ∈ E. We also
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analyze weighted networks, i.e. each edge eij in network G associates with weight
wij ∈ W . Without loss of generality, we assume that all weights wij ∈ [0; 1] and
wij = 0 implies that eij �∈ E. Weight wij between nodes vi and vj indicates the
degree of interaction between corresponding nodes.

Our main focus is to range nodes with respect their importance in a network.
We assume that a node is considered to be pivotal if it actively interacts with
other nodes in a graph. In our analysis we take into account the connections
with distant nodes as well as the cooperation with group of other nodes. More
precisely, we suppose that centrality of a node depends on relative aggregated
weight of adjacent subgraphs to the considered node. At the same time, the
aggregated weight of a subgraph can be estimated with the help of monotonic
measures including such measures as belief functions.

We consider a family of belief functions gk =
∑

B mk(B)ηB for all vertices
vk ∈ V in network G. Let N

(p)
k be a p-neighborhood of node vk, i.e. a set of

nodes of graph G whose distance from node vk is at most p edges and vk �∈ N
(p)
k .

We denote by |W | = ∑
i<j wij the total sum of all weights in a graph. Next, we

define mass function mk of node vk in connected graph G as follows:

mk(A) =
1

|W |

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

wik, if A = {vi} ⊆ N
(1)
k ,

γ
(k)
ij · wij , if A = {vi, vj} ⊆ N

(p)
k ∧ eij ∈ E,

|W | − ∑

vi∈N
(1)
k

wik − ∑

vi,vj∈N
(p)
k

eij∈E

γ
(k)
ij · wij , if A = V,

0, otherwise,

(3)

where N
(p)
k �= ∅ and γ

(k)
ij ∈ [0; 1] is a discount factor that decreases the impor-

tance of the connection of node vk with distant nodes. This coefficient can be
determined in the following way:

γ
(k)
ij =

1
1 +min{dik, djk} , (4)

where d is a distance between corresponding nodes. A mass function of the k-th
node reaches the higher values on single nodes that are adjacent to the k-th node
and the lower values on the pairs of connected nodes that both belongs to the
p-neighborhood of node k. Thus, the value of mass function (3) on one- and two-
element sets is proportional to the weights on corresponding edges and inversely
proportional to the distance to a considered node. Belief function gk aggregates
the obtained mass functions and corresponding weights over all nodes and edges
that are contained in p-neighborhood of the k-th node. Other characteristics can
be also taken into account as weighted path between nodes, the joint intensity
of the connections along the considered path, etc.

It can be seen that the proposed mass function mk : 2V → [0; 1] satisfies the
normalization condition: mk(∅) = 0,

∑
A∈2V mk(A) = 1. Thus, we can regard

mk as basic probability assignments and gk =
∑

B mk(B)ηB are belief functions
of V .
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Similar measures for the nodes influence assessment in networks are proposed
in [29].

The proposed mass function mk(A) characterizes the distribution of pure
interaction of node vk with a set of closely located nodes from A, i.e. we exclude
the interactions with other subsets of A in mk(A). The value mk(V ) indicates
the level of ignorance of the interactions between node vk and distant nodes in
the graph outside N

(p)
k .

The pairwise interaction between nodes can be estimated by the reallocation
of mk(A) among all nodes in A. This can be done with the help of so-called
pignistic probabilities proposed in [30]:

Betvk
({u}) =

∑

A:u∈A

mk(A)
|A| . (5)

It has been known that pignistic probabilities for belief function gk =∑
B mk(B)ηB defined on V coincide with Shapley values [31] that are widely

used in cooperative game theory and are calculated as follows:

Betvk
({u}) =

∑

A⊆V
u∈A

(n − |A|)!(|A| − 1)!
n!

(gk(A) − gk(A \ {u})).

Value Betvk
({u}) indicates the fraction of interaction of node vk with node u.

Hence, the value
qv =

∑

u∈V

Betv({u}), ∀v ∈ V (6)

shows the total cooperation with node v in graph G. Consequently, the ranking
of q values demonstrates the importance on nodes with respect to their activity
in the considered graph.

We also note that if graph G has several connected components then the
proposed analysis is provided for each component separately. The size of each
component can be taken into account in order not to overestimate the interac-
tions in small groups.

We illustrate the proposed model on a toy example represented on Fig. 1.
For the graph on Fig. 1 |W | = 3.2. Let us estimate the belief functions for

each node according to formulas (3) and (4) taking into account 2-neighborhood
of each node:

g1 =
9

32
η{v2} +

3

32
η{v2,v4} +

3

32
η{v2,v5} +

5

96
η{v4,v5} +

23

48
ηV ,

g2 =
9

32
η{v1} +

3

16
η{v4} +

3

16
η{v5} +

3

64
η{v3,v4} +

3

64
η{v3,v5} +

5

64
η{v4,v5} +

11

64
ηV ,

g3 =
3

32
η{v4} +

3

32
η{v5} +

3

32
η{v2,v4} +

3

32
η{v2,v5} +

5

64
η{v4,v5} +

35

64
ηV ,

g4 =
3

16
η{v2} +

3

32
η{v3} +

5

32
η{v5} +

9

64
η{v1,v2} +

3

32
η{v2,v5} +

3

64
η{v3,v5} +

9

32
ηV ,

g5 =
3

16
η{v2} +

3

32
η{v3} +

5

32
η{v4} +

9

64
η{v1,v2} +

3

32
η{v2,v4} +

3

64
η{v3,v4} +

9

32
ηV .
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Fig. 1. Graph for the numerical example.

Hence, the matrix of pignistic probabilities with Betvk
({vi}) values in the k-th

row and the i-th column is the following:

Bet =

⎛

⎜
⎜
⎜
⎜
⎝

0.096 0.471 0.096 0.169 0.169
0.316 0.034 0.081 0.284 0.284
0.109 0.203 0.109 0.289 0.289
0.127 0.361 0.173 0.056 0.283
0.127 0.361 0.173 0.283 0.056

⎞

⎟
⎟
⎟
⎟
⎠

Finally, the vector of interactions q = (q1, ..., q5) is equal to (0.774, 1.43, 0.633,
1.081, 1.081). As the result, the final ranking of centrality vector arranges nodes
in the following order: v2 � v4 = v5 � v1 � v3. The same ranking can be
obtained with eigenvector centrality measure, which confirms the consistency of
the proposed approach.

It can be also proved that if we consider a 1-neighborhood of a node that, in its
turn, induces an acyclic subgraph (i.e. a star subgraph) then the centrality value
of a node according to formulas (3)–(6) is associated with a degree centrality
measure. More precisely, it can be formulated as follows.

Proposition 1. If centrality value qv for node v ∈ V in graph G = (V,E,W ),
|V | = n, n ≥ 2 is calculated with regard to 1-neighborhood N

(1)
v of node v and a

subgraph constructed on nodes N
(1)
v ∪ {v} is a star graph with center v then the

interaction value of node v is equal to

qv =
n(v)
|W | + 1 − 2

n
,

where n(v) =
∑

u:e(v,u)∈E w(v, u) is a weighted degree of node v, n = |V |.
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According to Proposition 1, the interaction centrality value qv constructed
via belief functions is proportional to weighted degree centrality of node v up to
the constant term independent of node v with respect to configuration described
above.

4 Centrality Assessment in Multiplex Network

In many real-world systems the same set of objects can interact with each other
in several ways. Thus, an appropriate network model is required in order to
qualitatively analyze the relations between nodes. This can be done with the
help of a multiplex network that represents a system of graphs with many layers
of interaction. The key point here is that the whole system of graphs should be
analyzed jointly as a single entity. Next, we describe a multiplex graph model
and the technique for the assessment of important elements in such systems.

We consider a multiplex graph as the family of networks G = (V,E(s),W (s))
with the common set of nodes V = {v1, ..., vn} but distinct set of edges
E(s) = {e(s)(vi, vj)}, where s = {1, ..., l} indicates a particular network-layer
in a multiplex graph with l levels of interaction. As it is stated above, we asso-
ciate node vk with number k, k = 1, ..., n and denote e(s)(vi, vj) as e

(s)
ij . The

other notations remain the same adjusted to layer s.
In order to obtain central elements in the whole system we can estimate the

important elements at each layer separately, for example, with the help of the
approach described above. As the result, we derive a family of vectors q(s) that
can be aggregated into a single ranking. However, we consider all layers indepen-
dently of each other, which means that multiplex system loses its significance.
Instead, we consider another approach.

Firstly, we calculate the set of mass functions
{

m
(s)
k

}n

k=1
for each layer s,

s = 1, ..., l. Further, this set can be put together into an aggregated mass function
with the help of combination rule R as mk = m

(1)
k ⊗R ... ⊗R m

(l)
k . Note that

discounted coefficients α can be applied at this stage as well. Finally, we can
derive centralities for all elements in the considered system as it is described in
formulas (5) and (6).

In order to demonstrate the whole idea let us investigate the following exam-
ple. Assume that the system of nodes from the graph on Fig. 1 also interacts on
another layer as it is shown on Fig. 2.

The sum of weights for the second graphs is |W | = 4.2. Hence, the belief
functions for each node of the graph on Fig. 2 with respect to 2-neighborhood of
nodes are following:
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Fig. 2. The second graph for the numerical example.

g
(2)
1 =

1
7
η{v2} +

3
14

η{v4} +
4
21

η{v5} +
5
84

η{v2,v3} +
1
21

η{v3,v4}

+
1
14

η{v3,v5} +
1
21

η{v4,v5} +
19
84

ηV ,

g
(2)
2 =

1
7
η{v1} +

5
42

η{v3} +
3
28

η{v1,v4} +
2
21

η{v1,v5} +
1
21

η{v3,v4}

+
1
14

η{v3,v5} +
2
63

η{v4,v5} +
97
252

ηV ,

g
(2)
3 =

5
42

η{v2} +
2
21

η{v4} +
1
7
η{v5} +

1
14

η{v1,v2} +
3
28

η{v1,v4}

+
2
21

η{v1,v5} +
1
21

η{v4,v5} +
9
28

ηV ,

g
(2)
4 =

3
14

η{v1} +
2
21

η{v3} +
2
21

η{v5} +
1
14

η{v1,v2} +
2
21

η{v1,v5}

+
5
84

η{v2,v3} +
1
14

η{v3,v5} +
25
84

ηV ,

g
(2)
5 =

4
21

η{v1} +
1
7
η{v3} +

2
21

η{v4} +
1
14

η{v1,v2} +
3
28

η{v1,v4}

+
5
84

η{v2,v3} +
1
21

η{v3,v4} +
2
7
ηV .

The matrix of pignistic probabilities Bet
(2)
k ({vi}) for Numerical example 2 is

equal to

Bet(2) =

⎛

⎜
⎜
⎜
⎜
⎝

0.045 0.218 0.135 0.307 0.295
0.321 0.077 0.256 0.170 0.176
0.201 0.219 0.064 0.237 0.279
0.357 0.125 0.220 0.060 0.238
0.337 0.123 0.253 0.230 0.057

⎞

⎟
⎟
⎟
⎟
⎠
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As the result, centrality vector q(2) is equal to (1.261, 0.762, 0.928, 1.006, 1.045),
that ranks nodes in the following order: v1 � v5 � v4 � v3 � v2, that also
coincides with eigenvector centrality ranking.

We now bring two graphs together and calculate pairwise aggregation of
belief functions g

(1)
k and g

(2)
k with the help of Dempster rule D according to

formula (1). As the result, we obtain new belief functions gk = D(g(1)k , g
(2)
k ) that

indicate the interactions between nodes in the multiplex structure. Assuming
that discounting parameter α = 0 for both networks we obtain the following
belief functions:

g1 = 0.291η{v2} + 0.186η{v4} + 0.172η{v5} + 0.037η{v2,v3} + 0.027η{v2,v4}
+ 0.027η{v2,v5} + 0.029η{v3,v4} + 0.044η{v3,v5} + 0.048η{v4,v5} + 0.139ηV ,

g2 = 0.0318η{v1} + 0.051η{v3} + 0.174η{v4} + 0.178η{v5} + 0.025η{v1,v4}
+ 0.023η{v1,v5} + 0.039η{v3,v4} + 0.047η{v3,v5} + 0.053η{v4,v5} + 0.092ηV ,

g3 = 0.116η{v2} + 0.167η{v4} + 0.208η{v5} + 0.045η{v1,v2} + 0.068η{v1,v4}
+ 0.060η{v1,v5} + 0.035η{v2,v4} + 0.035η{v2,v5} + 0.063η{v4,v5} + 0.203ηV ,

g4 = 0.148η{v1} + 0.144η{v2} + 0.119η{v3} + 0.211η{v5} + 0.103η{v1,v2}
+ 0.038η{v1,v5} + 0.024η{v2,v3} + 0.040η{v2,v5} + 0.053η{v3,v5} + 0.120ηV ,

g5 = 0.138η{v1} + 0.143η{v2} + 0.145η{v3} + 0.208η{v4} + 0.102η{v1,v2}
+ 0.044η{v1,v4} + 0.024η{v2,v3} + 0.039η{v2,v4} + 0.042η{v3,v4} + 0.116ηV .

Hence, the matrix of pignistic probabilities of aggregated belief functions is

Bet =

⎛

⎜
⎜
⎜
⎜
⎝

0.028 0.364 0.083 0.266 0.259
0.361 0.018 0.113 0.251 0.257
0.127 0.214 0.041 0.291 0.328
0.243 0.251 0.181 0.024 0.301
0.234 0.249 0.201 0.293 0.023

⎞

⎟
⎟
⎟
⎟
⎠

Finally, the vector of centrality values q for the multiplex network is equal to
(0.992, 1.097, 0.618, 1.125, 1.168), that ranks nodes as v5 � v4 � v2 � v1 � v3.
If we average over eigenvector centrality values then we obtain the following
ordering: v1 � v5 � v4 � v2 � v3, that almost agrees with the ordering of the
second graph.

As we can see, the results obtained by two approaches differ significantly. This
can be explained by the choice of aggregation rule (1) that takes into account
the possible disagreement in initial data. It means that if the connections diverse
for some node on different levels of interaction it leads to the decrease of the
importance of this node in aggregated ranking. This fact can be seen by the
example of node 1 that has only one strong connection in the first graph and
three connections in the second graph. Despite the fact that this node is ranked
as the first for the second network it has low position in aggregated ranking.

Another important point is that stability through all layers is encouraged
by higher ranks. For instance, node 5 is ranked as the first one for both layers
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separately. However, in aggregated ranking it takes the first place as this node
demonstrates more stable connections through both layers as well as node 4.

Additionally, if we consider a 1-neighborhood of nodes in multiplex acyclic
graphs with two layers then the following propositions concerning the aggregated
interaction centrality value can be proved.

Proposition 2. If centrality value qv for node v ∈ V in acyclic graph G =
(V,E(s),W (s)), s = 1, 2, |V | = n, n ≥ 2 is calculated with regard to 1-
neighborhood N

(1)
v of node v and the Dempster combination rule (1) is used

then the aggregated interaction value of node v is equal to

qv =
1

|W (1)||W (2)|
∑

u∈V

w(1)(u, v)w(2)(u, v)
1 − Ku

+
1

|W (1)|
∑

u∈V

w(1)(u, v)
1 − Ku

(

1 − n(2)(u)
|W (2)|

)

+
1

|W (2)|
∑

u∈V

w(2)(u, v)
1 − Ku

(

1 − n(1)(u)
|W (1)|

)

+ B(G),

where n(s)(v) =
∑

u:e(v,u)∈E(s) w(s)(v, u) is a weighted degree of node v in
graph G on layer s, s = 1, 2; Ku = 1

|W (1)||W (2)|
∑

x,y∈V :x�=y,

e(u,x)∈E(1),

e(u,y)∈E(2)

w(1)(u, x)w(2)(u, y)

is the level of conflict of node u ∈ V ; B(G) = 1
n

∑
u∈V

1
1−Ku

(
1 − n(1)(u)

|W (1)|
)

(
1 − n(2)(u)

|W (2)|
)
is a constant that is independent of node v.

If we apply Yager combination rule (2) then this expression is simplified.

Proposition 3. If centrality value qv for node v ∈ V in acyclic graph G =
(V,E(s),W (s)), s = 1, 2, |V | = n, n ≥ 2 is calculated with regard to 1-
neighborhood N

(1)
v of node v and the Yager combination rule (2) is used then the

aggregated interaction value of node v is equal to

qv =
n(1)

|W (1)| +
n(2)

|W (2)|
+

1

|W (1)||W (2)|
∑

u∈V

(
w(1)(u, v)w(2)(u, v)− w(1)(u, v)n(2)(u)− w(2)(u, v)n(1)(u)

)

+ C(G),

where C(G) = 1
n

∑
u∈V

(
Ku +

(
1 − n(1)(u)

|W (1)|
) (

1 − n(2)(u)
|W (2)|

))
is a constant that is

independent of node v.

It can be seen that in the last case the aggregated interaction centrality value
of node v is represented as a sum of normalized weighted degree centralities on
each layer and the value that represents the interactions of v’s neighbors through
different layers.
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5 Conclusion

In this work we propose a new approach for the nodes importance assessment in
multiplex networks. We apply Dempster-Shafer theory in order to reveal key ele-
ments in undirected weighted graphs as well as to aggregate interactions between
nodes into the total ranking.

We assess the cooperation of nodes with different subgroups of vertices by
evaluating the corresponding belief functions. The proposed model of belief func-
tion takes into account the cooperation with nodes and the groups of nodes that
are located in a given neighborhood of a considered vertex. Further, the obtained
intensities of cooperation with different groups of nodes are redistributed among
the participants of these groups that results in node-to-node intensity of cooper-
ation. The obtained values show real interactions between nodes with respect to
distant connections, that is already informative and cannot be derived with most
of the classical centrality measures. Finally, we aggregate the pairwise interac-
tion into the final centrality vector that gives the ranking of nodes and helps to
reveal key elements in a network.

If nodes cooperate with each other on different levels of interactions then
we apply a combination rule to mass functions obtained for different layers of a
multiplex structure. In particular, Dempster rule takes into account the disagree-
ment in data on different levels of interaction, i.e. it rewards nodes that have
consistent connections through all layers and reduces the importance of nodes
with unstable links. Additionally, other combination rules can be used as well in
order to estimate the aggregated centralities in multilayer networks. These rules
may consider the reliability, the inconsistency, the uncertainty, etc. of a network
structure in various ways.

It is important to note that the proposed approach can be easily adapted to
directed networks. We also emphasize that parameters of the introduced func-
tions such as discounting coefficients, the radius of nodes neighborhood, etc. can
be tuned in accordance with the problem statement.

It is also shown that the proposed methods give comparable results for one-
layer networks and take into account specifications of a multilayer structure.
In further research we aim to improve the proposed approach and apply the
developed methods to real networks.
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Abstract. Our application concerns the fusion of classifiers for the
recognition of trees from their leaves, in the framework of belief functions
theory. In order to improve the rate of good classification it is necessary
to correct Bayesian mass functions. This correction will be done from the
meta-knowledge which is estimated from the confusion matrix. The cor-
rected mass functions considerably improve the recognition rate based
on the decisions provided by the classifiers.

Keywords: Belief functions theory · Mass correction ·
Meta-knowledge · Fusion of classifiers

1 Introduction

Tree species recognition is the problem of identifying the species of a given tree.
This task may be easy for a botanist who has strong knowledge about trees.
However, a novice or a lover of the trees universe may have difficulties. This
paper is part of the ReVeRiES project that seeks to develop a mobile applica-
tion that recognizes tree species without needing an internet connection. Indeed,
the application will be used in nature, forests, mountains where an internet con-
nection is not available. In the context of tree species recognition, we treat a
real problem since the photos of leaves are taken in the natural environment.
The processing of this type of data is complicated because of their specificities
due firstly to the nature of the objects to be recognized (inter-species similarity
and intra-species variability) and secondly to the environment. Errors can be
accumulated during the pre-fusion process. The merit of the fusion is to take
into account all the imperfections that can taint the available data and try to
model them well. The fusion is more effective if the data are well modeled. The
theory of belief functions represents one of the best theoretical frameworks able
to manage and represent uncertainty, inaccuracy, conflict, etc. This theory is
important because of its wealth of tools to manage the various sources of imper-
fections as well as the specificities of the available data. In the framework of
this theory, it is possible to model the data through the construction of mass
functions. It is also possible to manage the computational complexity thanks to
the approximations allowing to reduce the number of focal elements. Conflict
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being one of the most present sources of imperfections, can be dealt through
the selection of the best combination rule. By merging sources of information
with different degrees of reliability, the least reliable source may affect the data
issued from the most reliable one. One of the solutions for this problem is to
try to improve the performances of the least reliable source. Thus, by merging
with other sources, it will provide useful information and will in turn contribute
in improving the performance of the fusion system. The performance improve-
ment of an information source can be affected through the correction of mass
functions. In this context, the correction can be made based on measures of the
relevance or sincerity of the studied source [14]. The confusion matrices present
a data source from which meta-knowledge characterizing the state of a source
can be extracted [17]. In this paper, the proposed fusion system is a hierarchical
fusion system set up within the framework of belief function theory. It allows to
merge data from leaves and provides the user with a list of the most likely species
while respecting the educational purpose of the application. The computational
complexity of this fusion system is quite small allowing, in the long term, to
implement the application on a Smartphone.

The paper is organized in the following way: Sect. 2 describes the fusion sys-
tem. Section 3 presents the different mechanisms for correcting the mass func-
tions. A correction method is proposed in Sect. 4 which we have applied to our
fusion system. Section 5 shows the improvement brought by this correction on
real data.

2 Fusion System

The sub-classification strategy consists on recognizing a leaf through its botani-
cal properties. The application consists of taking a photo of a leaf with a smart-
phone and the system extracts morphological characteristics (the lobe shape

−→
AF

described by the Polygonal model, the Margin
−→
AC , the Base and the Apex

−−→
ABS).

The fusion system is composed of three classifiers based on random forests that
have been previously trained on learning images. As outputs of each classifier
Si, we have a distribution of probabilities Pj [ei] in the species referential with
ei ∈ Ω = 72 the number of species [1]. The fusion system, shown in Fig. 1,
consists of 3 steps:

1. Mass functions construction: the passage towards the belief functions
theory requires the construction of mass functions based on the distributions
of probabilities.

2. Mass functions approximation: to reduce the computational complexity.
3. Mass functions combination: in the framework of the belief functions

theory, several combination rules exist. Each one allows to manage one of
more sources of imperfections.
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Fig. 1. Hierarchical fusion system for combining leaves data characteristics

2.1 Mass Functions Construction

Let Ω = {w1, w2, ..., wN} be a frame of discernment composed of N exclusive
and exhaustive hypothesis wi. The set of all subsets A of Ω is called the power
set of Ω and is denoted 2Ω = {A|A ⊆ Ω} = {∅, w1, w2, ..., wN , w1 ∪w2, ..., Ω}. A
mass function on Ω is a mapping m from the power set 2Ω , to the interval [0, 1]
such that: ∑

A⊆Ω

m(A) = 1 (1)

Subsets A of Ω such that m(A) > 0 are called focal sets of m. A mass function
is said to be: vacuous if Ω is its only focal set, in which case it is denoted by mΩ;
inconsistent if ∅ is its only focal set, in which case it is denoted by m∅; dogmatic
if Ω is not a focal set; normal if ∅ is not a focal set.

Mass functions construction from probability distributions is an important
step in the fusion process. Indeed, the mass functions must be sufficiently repre-
sentative of all available information. In our case, the data obtained at the output
of the classifiers are uncertain because the sources have different degrees of reli-
ability and are sometimes conflicting. It is therefore important that the mass
functions can represent all these imperfections and take into account as much
information as possible [1]. In our case, we have a large discernment framework
(Ω = 72 assumptions). To construct 272 focal elements and to give a mass to
all possible combinations would lead to significant computational complexity. In
the literature, there are several methods for constructing a mass function from
a probability distribution, the best known of which are: bayesian mass func-
tions and consonant mass functions [2]. We have studied and analyzed these two
methods in depth. Following these studies, we found that by building bayesian
mass functions, we obtain precise and certain focal elements. The obtained mass
functions are representative enough of the available information and the focal ele-
ments are singletons which causes the elimination of certain species. Concerning
consonant mass functions, we noticed that this method leads to the construc-
tion of large focal elements (made up of several species). It has the advantage of
allowing a better presentation of all available information.
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2.2 Mass Functions Approximation

One of the major problems of belief function theory is the computational com-
plexity which is relatively high compared to other theories such as probability
theory and possibility theory. Computational complexity increases exponentially
with the number of sources to be combined, and becomes even more important
when the space of discernment is large. To limit the complexity of calculations,
existing approaches rely either on procedures that involve exact calculations or
on approximation techniques. In the first category, an optimal calculation algo-
rithm has been proposed by Kennes in [9]. This algorithm makes it possible
to considerably optimize the number of addition and multiplication operations
when calculating mass functions and to reduce the complexity of the calcula-
tions. The disadvantage of this method is that the number of focal elements is
not reduced since it is a procedure that performs exact calculations. This can be
problematic in our case because we have to manage a large area of discernment
and perform the same calculation for several sources of information. The second
category of approaches is composed of mass functions approximation procedures.
The mass functions approximation procedures allow the reduction of the number
of focal elements based on different selection criteria. In particular, we focused
on the most commonly used procedures: the “Inner” and “Outer” approxima-
tions [4], the k − l − x [21] and the “Summation method” [11]. The analysis,
as well as the experiments carried out, have led to the choice of the summation
approximation as the most suitable method for our case since it offers the best
relationship between computational complexity and preservation of a maximum
of useful information.

“Summation” approximation consists of keeping the k−1 focal elements
having the largest mass. The union of the remaining focal elements forms the
kth focal element whose sum of their masses is transferred to the element k. The
application of this approximation in our specific context is interesting. Unlike
the k − l − x approximation, even focal elements with low mass will be kept.
Thus, a maximum of information will be transferred allowing more flexibility to
the fusion process. In addition, this approximation is simple, and it does not
require a lot of calculation operations which reduces the processing time.

2.3 Mass Functions Combination

To better manage the imperfections of the data, several combination rules have
been proposed as part of the theory of belief functions. Each rule has been put
in place to handle one or more aspects of imperfections. Given the limited and
variable performance of the data sources to be combined, we consider that we
have to deal with unreliable sources of data. According to Lefevre et al. [10]
the combination rules proposed in the literature represent solutions to manage
the different sources of conflict. They divide these combination rules into two
categories:

1. the first category groups together the combination rules requiring that the
sources of information to combine are reliable.
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2. the second category groups combination rules where at least one of the sources
of information is reliable without necessarily knowing which one.

In our case, the main problematic situation we face is the following:

– no intersection between 2 focal elements issued from two sources. In that case,
our need is to transfer mass to the elements involved in the conflict.

– two or more sources propose the true species. In that case, our need is to
transfer mass to the intersection.

– no intersection between the species proposed by the different sources (total
conflict). In that case, our need is to transfer mass to the partial ignorance.

After the study and analysis of the different existing combination rules:
Dempster combination rule [18], Dubois and Prade combination rule [6], Mixte
combination rule, Florea and Jousselme combination rule [8], PCR6 [12] and
DPCR combination rule [13], we found that the DPCR combination rule is
the best compromise between a good recognition rate of the first species and the
processing time per species (see Table 1). Indeed, it transfers the mass to the
intersection, the elements involved in the conflict as well as to partial ignorance.
It also offers the best compromise between classification ratio and computa-
tional complexity. DPCR is called the rule of proportional redistribution of the
weakened conflict, this rule was proposed by Martin [13]. It is an extension of
the PCR5 combination rule. It consists in applying a discounting procedure to
transfer part of the partial conflict to partial ignorance (the union).

Table 1. Processing time per species and recognition rate according to the combination
rule

Combination rule Processing time per species Recognition rate

Florea 522ms 57.1%

PCR6 163ms 51%

Dubois et Prade 199ms 57.2%

Mixte 634ms 56%

DPCR 305ms 58.3%

2.4 Decision Making Criteria

Since the objective of the application is to present a list of the top 10 most
probable species, we are interested in the decision criterion “the maximum of
pignistic probability” or BetP which is proposed by Smets in [20]. These decision-
making criteria makes it possible to transform the mass functions into measures
of probabilities for all wk ∈ Ω, but in our case, we work with bayesian bba and
in a such a case, we have the same results. Thus, we can to provide the user
with an ordered list of the most likely species and not an ordered list of the most
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likely sets of species. The criterion makes it possible to lift the inaccuracy which
can taint the data since we work with consonant mass functions. The dashed
colored lines in the Fig. 1 represents the different choices made for the different
blocks of the fusion system, which nave been previously explained. The three
sources Si are three feature vectors (the Polygonal model, the Margin, the Base
and the Apex) that are used as input for the three classifiers (Random Forest).

3 Belief Function Corrections

The theory of belief functions provides a flexible framework for modeling and
managing information uncertainty. Several tools are proposed in the literature,
they allow to modify or correct some of the information based on additional
information on the relevance or sincerity of a source.

3.1 Discounting Based on Degree of Relevance

Historically, discounting is the first correction tool proposed in the literature [19].
It is based on the degree of relevance of an information source S to weaken the
mass of information it provides [16]. The discounting was developed as part of
the Transferable Belief Model (TBM) [20]. Suppose that an information source S
provides information represented by a mass function mS and assume that β with
β in [0, 1], is the degree of relevance relating to this source S. The discounting
is done as follows:

m(A) = βmS(A) + (1 − β)mΩ(A),∀A ⊆ Ω (2)

Discounting therefore consists of weakening the initial mass function accord-
ing to its degree of relevance and giving more weight to ignorance. The reverse
operation of the discounting, called, de-discounting was introduced in [5]. If after
making the discounting it turns out that the information on the relevance of the
source was false, the de-discounting allows to find mS(A) from m(A). This cor-
rection method uses the overall degree of relevance to weaken the mass functions.
However, this measure is insufficient since the degree of relevance may vary from
one class to another. Given the quality of the data, it would be more useful to
apply contextual correction methods where the weakening of a mass function
takes into account each context.

3.2 Contextual Discounting Based on the Degree of Relevance

In [15], Mercier et al. studied contextual discounting based on the degree of con-
textual relevance of an information source. Its application requires the presence
of additional information on the relevance of an information source conditionally
in different contexts A of Ω such as the union of subsets A form a partition of
Ω. Suppose that βA, with βA in [0, 1], is the degree of relevance of a source S
in a context A and the union of context elements A form the A partition of Ω.
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The belief m obtained by taking contextual elements A into account is defined
as follows:

m = mS ∪
A∈AAβA

(3)

where ∪
A∈A represents the canonical disjunctive decomposition, AβA

repre-
sents a simple mass function having as focal elements ∅ and A whose correspond-
ing masses are βA and 1 − βA respectively. A more general case of contextual
discounting is discussed in [14]. Its application is simpler and more general since
the formation of a partition by A context elements is no longer required. Thus,
this correction tool can be applied even if the A context elements do not form
a partition of Ω. Suppose βA, with βA the degree of relevance given to a source
of information in a context A and that A is the set of contexts for which we
know contextually the degree of relevance of the information source. The result-
ing mass function by taking into account these context elements is calculated as
follows:

m = mS ∪ { ∩
A∈A(A)1−βA} (4)

where ∩
A∈A represents the canonical conjunctive decomposition. The con-

textual discounting discussed in this section is based on contextual elements that
provide information about the contextual relevance of the information source.
This technique of mass function correction is interesting in our case since the
relevance of our classifiers is variable from one species to another. With this tech-
nique, it would be possible to introduce additional information on the contextual
relevance of each source of information to each species. Contextual discounting
can also be applied to contextually modify a mass function based on another
measure of reliability: sincerity.

3.3 Correction Techniques Based on the Degree of Sincerity

a) Discounting based on the degree of sincerity
It is possible to estimate the sincerity or not of a source of information by
assuming that it is reliable. Thus, the correct decisions and incorrect decisions
of the source respectively correspond to a sincere or insincere behavior of the
source of information. Suppose a source of information is sincere with a β degree
and not sincere with a 1 − β degree. According to [7], the correction of mass
functions by taking into account meta-knowledge about the sincerity of a source
can be done in 3 different ways:

– by weakening the initial mass while giving mass to ignorance as follows:

m = βmS + (1 − β)mΩ (5)

– by weakening the initial mass given to A (∀A ⊆ Ω) while tuning more mass
to its complement A (∀A ⊆ Ω) as follows:

m = βmS + (1 − β)mS (6)
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– by weakening the initial mass by a factor of β = 1 − 2ε, where ε is the
classification error rate in the previous Equation, and guarantying mass to
ignorance.

According to the degree of sincerity of the source of information, the initial
mass is weakened while granting mass to ignorance as shown by the Eqs. 5. The
Eq. 6 presents a slightly different way since the weakening of the initial mass
is coupled to a mass transfer to A which is the complement set of the focal
element A in question. This approach is very interesting because it allows a
better preservation of the specificity of the information. In the next section,
we are particularly interested in this approach and will propose a method to
contextually define the complement set A of A.

b) The contextual discounting based on the degree of sincerity
The definition of different forms of non-veracity in [17] made it possible to define
a new form of contextual discounting based on the degree of sincerity. Suppose
the source S is negatively untrue in A. This new form of contextual discounting
is defined as follows:

m = mS ∪
A∈AAβA

(7)

c) Contextual reinforcement based on the degree of sincerity
In [14], Mercier and et al. define a new correction mechanism called contextual
reinforcement. Suppose the source S is positively untrue in A. This new form of
contextual reinforcement is defined as follows:

m = mS ∩
A∈AAβA

(8)

These two new forms of discounting represented in the Eqs. 7 and 8 are
interesting because the discounting takes into account the contextual sincerity of
the source of information. Its application requires the setting up of assumptions
in relation to the sincerity of the source. So we need meta-knowledge to assert
if the source is negatively untrue in A or if it is positively untrue in A.

3.4 Estimation of Knowledge from a Confusion Matrix

The application of the correction mechanisms requires knowledge of the state
of the information source to be processed. This knowledge, called “meta-
knowledge”, is used to characterize the state of a data source: relevant or not,
sincere or not. This meta-knowledge is generally uncertain and often presented
by mass functions [17]. In the context of classifiers fusion, we are interested in
the estimation of meta-knowledge from the confusion matrices obtained for each
classifier. A confusion matrix Mi = (nkl)k∈{1,...,K},l∈{1,...,K} is a table charac-
terizing the performance of a data source Si on a test set of K classes (Table 2).
Each line k in the confusion matrix represents the decision made in favor of wlk.
Each column l represents the truth wl. Note that nk. =

∑K
l=1 nkl represents the

number of objects in wk and n.l =
∑K

k=1 nkl is the number of objects in wl. The
total number of objects is n =

∑K
k=1

∑K
l=1 nkl.
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Table 2. Illustration of a confusion matrix

Verity decision w1 . . . wl . . . wK

w1 n11 . . . n1K

...
. . .

wk

... nkl

...
...

. . .

wK nK1 . . . nKK

3.5 Estimation of Contextual Relevance of a Source from the
Confusion Matrix

In [7], Elouedi et al. define two ways to calculate the contextual relevance for each
context: using the percentage of correct classifications for each context, and using
a distance to determine the reliability rate of a source in the different contexts.
The contextual weakening of a mass function based on its degree of contextual
relevance is interesting. In our case, the application of this approach amounts to
disjunctively combining the initial mass function with the 72 contextual elements
that can be highlighted by the confusion matrix. This is very complicated from
a computational point of view since it involves making 72 combinations for each
mass function and for each source of information.

So, in the following we will use the confusion matrix to estimate the sincerity
of the source.

3.6 Estimation of a Source Sincerity from the Confusion Matrix

It is possible to estimate the sincerity of a source always using a confusion matrix.
In [17], Pichon et al. suggest the three approaches that can be used: generation of
a Bayesian mass function characterizing the sincerity of a source, generation of
a mass function from the pignistic probability, or generation of a mass function
to characterize the sincerity of a source based on the work of Dempster [3].

As we mentioned, we are interested in the weakening of the mass function
as proposed in Eq. 10. Indeed, in some applications, it is easy to define the set
A complement of A. This is even simpler when it comes to a small discernment
space or where relevant knowledge is available (such as expert opinion). In our
case, we can assimilate the set A complement of A to the set of all the classes
belonging to the discernment space Ω but not belonging to A. Assume that A
is formed of 10 species, a mass will be transferred to the complement set A
composed of 62 species. The specificity of the information can be lost. For all
these reasons, and considering the quality of the processed data as well as the
available information, we were interested in defining the A complement set for
each context.
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4 The Proposed Correction Method

The proposed correction method consists in reinforcing, contextually, the mass
attributed to some classes. This correction requires retrieving information from
the test database’s confusion matrix to define the complement set Ai of each
context ci. The proposed approach consists of the following 3 steps:

– construction of the Bayesian mass functions from the probability dis-
tributions obtained at the output of a classifier

– extraction of contextual meta-knowledges from the confusion matrix.
These meta-knowledges allow to define a complement set Ai for each context
ci

– contextual use of meta-knowledge to correct the Bayesian mass functions

4.1 Building Bayesian Mass Functions

At the output of a classifier, we obtain a probability distribution Pi(ek) between
the species. To move from probability theory to belief function theory, we con-
struct Bayesian mass functions and transfer all available information to it as
follows:

mi{ek} = Pi(ek), ∀ek ∈ Ω (9)
mi{X} = 0, if |X| 	= 1 (10)

where X is any set containing more than one species. Mass mi equal to the
probability Pi is given to each element ek of Ω having a non-zero probability. A
zero mass is given to all subsets.

4.2 Meta-knowledge Extraction

The purpose of this step is to use the confusion matrix to define, for each context
ci, the complement set Ai. In our case, there are 72 contexts corresponding to
the 72 species forming the discernment space Ω. In a confusion matrix, each line
k represents the decision made in favor of wk. Each column l represents the truth
wl. By traversing the matrix of confusion line by line without considering the
diagonal, it is possible to extract, for a decision wk, all the species in which the
truth is found. This set is the complement set Ak for a context ck corresponding
to wk decision.

Example 2: Let’s consider the confusion matrix shown in the Table 3.
Let’s analyze the confusion matrix line by line without taking into account

the diagonal. The first line corresponds to the decision e1. We notice through
the third column that the classifier decides e1 whereas it is e3. We thus consider,
that for the context c1 corresponding to the decision e1, the complement set
is A1 = {e3}. So, the idea is to assign a mass to e3 each time the classifier
decides e1.
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Table 3. Example of confusion matrix

Truth decision e1 e2 e3

e1 3 0 2

e2 1 4 2

e3 1 0 3

The second line corresponds to the decision e2. We notice through the first
column that once on 5 the classifier decides e2 when it is e1 and through the
third column that the classifier decides e2 when it is e3. So a mass will be given
to e1 and e3 each time the classifier decides e2.

The third line corresponds to the decision e3. According to the first column,
once out of 5 the classifier decides e3 whereas it is e1.

By going through the confusion matrix line by line, and following the clas-
sifier’s decision, the three complementary sets corresponding respectively to a
decision in favor of e1, e2 and e3 are obtained:

L(decision = e1) = L1 = A1 = {e3}
L(decision = e2) = L2 = A2 = {e1, e3}
L(decision = e3) = L3 = A3 = {e1}

(11)

4.3 Using Meta-knowledge for Bayesian Mass Function Correction

Following the extraction of the complementary sets of each context, the correc-
tion of the mass functions is carried out by applying the approach presented in
the Eq. 10. Applying this equation, must not change the Bayesian form of the
mass function so that we can then build consonant mass functions. The informa-
tion available will therefore be represented in the best possible way. The initial
mass function will be weakened by β and a mass equal to (1−β)/|Ai| is given to
each element of the complement set. Depending on how the degree of sincerity
β is calculated, the correction can be done in two ways:

1. β = overall degree of sincerity of the information source.
2. β = degree of contextual sincerity. In this case, the value of β is extracted

from the diagonal of the confusion matrix for the 72 assumptions.

To weaken a mass function, the idea is to contextually vary the value of β.
Thus, if the classifier decides that it is the species e2, the contextual value of β
is that corresponding to the degree of sincerity of the classifier relative to the
species e2. It is important to note that in our case, we consider that the decision
of a classifier corresponds to the species with the maximum mass. Note that for
most species, the context value of β is zero. Thus, in these cases, the initial mass
function is multiplied by zero and a null mass is given to the complement set.
In other words, the mass function becomes zero.
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5 Experiments and Results: Application of the Mass
Function Correction Method

5.1 Dataset Description

In the data set, there is 5104 leaves photos unequally distributed on 72 species.
In fact, we have some species that are well presented in the dataset. However,
we have some other species that are less presented and some species that have
only two exemplary. We used 2572 leaves photos for training and the rest for
testing.

5.2 What About Degree of Sincerity: Global or Contextual?

When the degree of sincerity is global, the value of β is the same for all contexts,
while when the degree of sincerity is contextual, the value of β will depend on
the context. We notice that in many contexts the value of β is null: 21 contexts
for the Polygonal model classifier S1, 22 contexts for the Margin classifier S2 and
34 contexts for the Base and Apex classifier S3. Even though contextual values
of β usually allow contextual truthfulness to be taken into account in each case,
in our case this approach is useless since, in most contexts, β have a null value.

5.3 Impact of the Proposed Method on the Classifier Performances

In order to evaluate the performance of the classifiers before and after the correc-
tion of the mass functions, the idea is to use the 10-fold cross-validation proce-
dure. Meta-knowledge is extracted from 9/10th samples, and the effectiveness of
the correction method is tested on the remaining 10. This operation is repeated
10 times, and each time the configuration and test samples are randomly drawn.
The end result is the average value of the 10 results corresponding to the 10
repetitions. Figure 2 shows the results obtained before and after the correction
of the mass functions of the test database. Since botanists like to see similar
species, we have presented the results of the good classification rate according to
the number N of species selected. We note a significant improvement in classifier
performance for both modalities. Nevertheless, through Table 4 representing the

Table 4. Standard deviation of the different classifiers without and with the correction
of mass functions, N is the number of returned species

Modality Characteristics Standard deviation

Without correction With correction

N = 1 N = 5 N = 10 N = 1 N = 5 N = 10

Leaf S1: Polygonal model 4.4604 4.7424 4.3574 4.4326 6.0894 2.9342

S2: Margin 3.7012 4.3951 5.0837 5.3637 6.5911 4.4604

S3: Base and Apex 5.4614 3.9912 3.2008 3.8133 3.8328 3.2924
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Fig. 2. Recognition rate without and with mass correction.

standard deviation for each classifier, we notice that the standard deviation is
often important. Indeed, by randomly pulling the configuration data, the sets
formed can be quite representative of the variations existing in the data as they
can be weakly representative of these variations. The quality of the extracted
meta-knowledge, therefore, varies according to the relevance of the configura-
tion database, which subsequently influences the ability of the fusion system to
generalize.

6 Conclusion

In this paper, we presented the different mechanisms for correcting mass func-
tions and applied the most appropriate ones for our application. We have shown
that the use of the confusion matrix allows us to define meta-knowledge useful
for the correction of mass functions. We applied this technique to our merging
system and showed that it significantly improved the rate of good classification.
Work is in progress on the addition of the bark modality from which we can
extract characteristics such as texture, color, ... which would allow us to dif-
ferentiate between neighboring species. The bark-derived characteristics could
serve as a meta-knowledge that we will use to resolve ambiguities when there
are significant conflicts on species associated with leaf recognition. This would
improve the performance of this system.

Acknowledgements. This work is part of ReVeRIES project supported by the French
National Agency for Research with the reference ANR-15-CE38-0004.
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Abstract. Data association is one of the main tasks to achieve in per-
ception applications. Its aim is to match the sensor detections to the
known objects. To treat such issue, recent research focus on the evidential
approach using belief functions, which are interpreted as an extension of
the probabilistic model for reasoning about uncertainty. The data fusion
process begins by quantifying sensor data by belief masses. Thereafter,
these masses are combined in order to provide more accurate informa-
tion. Finally, a probabilistic approximation of these combined masses is
done to make-decision on associations. Several probabilistic transforma-
tions have been proposed in the literature. However, to the best of our
knowledge, these transformations have been evaluated only on simulated
examples. For this reason, the objective of this paper is to benchmark
most of interesting probabilistic transformations on real-data in order
to evaluate their performances for the autonomous vehicle perception
problematic.

Keywords: Data association · Evidential theory · Belief functions ·
Probabilistic transformation

1 Introduction

Multiple Target Tracking (MTT) is important in perception applications
(autonomous vehicle, surveillance, etc.). The MTT system is usually based on
two main steps: data association and tracking. The first step associates detected
objects in the perceived scene, called targets, to known objects characterized
by their predicted tracks. The second step estimates the track states over time
typically thanks to Kalman Filters [1], or improved state estimation techniques
(like particle filters, etc). Nevertheless, bad associations provide wrong track
estimation and then leads to false perception results.
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The data association problem is usually resolved by Bayesian theory [1,2].
Several methods have been proposed as the Global Nearest Neighbor (GNN)
method, the Probabilistic Data Association Filter (PDAF), and the Multiple
Hypothesis Tracking (MHT) [3,12,22]. However, the Bayesian theory doesn’t
manage efficiently data imperfection due to the lack of knowledge we can have
on sensor quality, reliability, etc. To circumvent this drawback, the Evidential
theory [9,25] appears as an interesting approach because of its ability to model
and deal with epistemic uncertainty. Its provides a theoretical framework to
manage ignorance and data imperfection.

Several evidential data association approaches have been proposed [6,10,20,
23] in the framework of belief functions. Rombaut [23] uses the Evidential the-
ory to measure the confidence of the association between perceived and known
obstacles. To manage efficiently objects appearance and disappearance, Gruyer
and Cherfaoui [15] propose the bi-directional data association. The first direc-
tion concerns the target-to-track pairings which provides a good way to manage
the appearance of the new tracks. The second direction concerns the track-to-
target pairings and then manage disappearance of tracks. This approach has
been extended by Mercier et al. [20] to track vehicles by using a global opti-
mization to make assignment decisions. To reduce the complexity for real-time
applications, a local optimization has been used [5,6]. For all these methods,
the data fusion process begins by defining belief masses from sensor information
and prior knowledge. These masses represent the belief and ignorance on the
assignment hypotheses. Thereafter, the masses are combined in order to provide
a complete information of the considered problem. Finally, to make a decision,
the belief masses are classically approximated by a probability measure thanks
to a chosen probabilistic transformation.

For data association applications, the widely used probabilistic transfor-
mation (i.e. approximation) is the pignistic transformation [5,6,17,20]. This
transformation is based on a simple mapping process from belief to probability
domain. However, several published works criticize the pignistic transformation
and propose generalized and/or alternative transformations [7,8,11,19,21,30].
To our knowledge, the proposed transformations have been evaluated by their
authors only on simulated examples. The main objective of this paper is to
compare these transformations on real-data in order to determine which one is
well-suited for assignment problems.

The rest of the paper is structured as follows. Section 2 recalls the basics
of belief functions and their uses in data association problems. In Sect. 3, the
most appealing probabilistic transformations are presented and compared on
the well-known KITTI public database in Sect. 4. Finally, Sect. 5 concludes the
paper.
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2 Belief Functions for Data Association

To select “best” associations, the data fusion process consists in four steps:
modeling, estimation, combination and decision-making. This section presents
their definitions and principles.

2.1 Basic Fundamentals

The Belief Functions (BF) have been introduced by Shafer [25] based on Demp-
ster’s researches [9]. They offer a theoretical framework for reasoning about
uncertainty. Let’s consider a problem where we have an exhaustive list of
hypotheses (Hj) which are mutually exclusive. They define a so-called frame
of discernment Θ:

Θ =
k⋃

j=1

{Hj} with Hi ∩ Hj = ∅ (1)

The power set 2Θ is the set of all subsets of Θ, that is:

2Θ = {∅,H1, ...,Hk, ..., {H1,H2,H3} , ..., Θ} (2)

The proposition A = {H1,H2,H3} represents the disjunction meaning that
either H1 or H2 or H3 can be the solution to the problem under concern. In
other words, A represents a partial ignorance if A is the disjunction of several
elements of Θ. The union of all hypotheses Θ represents the total ignorance and
∅ is the empty set that represents the impossible solution (interpreted usually
as the conflicting information).

The truthfulness of each proposition A ∈ 2Θ issued from source j is modeled
by a basic belief assignment (bba) mΘ

j (A):

mΘ
j : 2Θ → [0, 1],

∑

A∈2Θ

mΘ
j (A) = 1 (3)

Thereafter, the different bbas (mΘ
j ) are combined which provides a global

knowledge of the considered problem. Several rules of combination have been
proposed [29], the conjunctive operator is widely used in many rules proposed in
the literature for the combination of sources of evidence. For instance, Shafer [25]
did propose Dempster’s rule of combination below which is nothing but the
normalized version of the conjunctive rule [26]:

⎧
⎨

⎩
mΘ

DS(A) = 1
1−K

∑
A1∩...∩Ap=A

p∏
j=1

mΘ
j (Aj)

mΘ
DS(∅) = 0,

(4)

where K is a normalized coefficient:

K =
∑

A1∩...∩Ap=∅

p∏

j=1

mΘ
j (Aj). (5)
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Finally, in order to make decisions in Θ, a probabilistic approximation of the
combined bbas (mΘ

DS(A)) is usually done. The upper and the lower bounds of the
unknown probability P (A) are defined by the belief Bel(A) and the plausibility
Pl(A) functions given respectively by:

⎧
⎪⎪⎨

⎪⎪⎩

Bel(A) =
∑

B⊆A

mΘ
DS(B)

Pl(A) =
∑

B∩A�=∅

mΘ
DS(B)

(6)

2.2 Belief Modeling

The data association problem can be analyzed from two points of view: target-to-
track and track-to-target association. Consequently, two frames of discernment
are defined: Θi,. and Θ.,j , i = 1, ..., n, with n the number of targets, and j =
1, ...,m, with m the number of tracks:

Θi,. =
{
Y(i,1), Y(i,2), ..., Y(i,m), Y(i,∗)

}

Θ.,j =
{
X(1,j),X(2,j), ...,X(n,j),X(∗,j)

} (7)

where Θi,. is composed of the m possible target(i)-to-track(j) associations
denoted Y(i,j). The hypothesis of appearance is represented by Y(i,∗)1. Θ.,j con-
tains the n possible track(j)-to-target(i) associations denoted X(i,j), and X(∗,j)

is the track disappearance.

2.3 Basic Belief Assignment

For target-to-track assignment, three bba’s are used to answer the question “Is
target Xi associated with track Yj?”:

– m
Θi,.

j (Y(i,j)): belief in “Xi is associated with Yj”,

– m
Θi,.

j (Y(i,j)): belief in “Xi is not associated with Yj”2,

– m
Θi,.

j (Θi,.): the degree of ignorance.

The recent benchmark [4] on huge real data shows that the most suited model
is the non-antagonist model [14,23] which is defined as follows:

m
Θi,.

j (Y(i,j)) =
{

0 , Ii,j ∈ [0, τ ]
Φ1(Ii,j) , Ii,j ∈ [τ, 1] (8)

m
Θi,.

j (Y(i,j)) =
{

Φ2(Ii,j) , Ii,j ∈ [0, τ ]
0 , Ii,j ∈ [τ, 1] (9)

1 Y(i,∗) refers to the fact that no track is assigned to the target(i).
2 Y(i,j) defines the complementary hypothesis of Y(i,j),
Y(i,j) = {Y(i,1), . . . , Y(i,j−1), Y(i,j+1), . . . , Y(i,m), Y(i,∗)}.
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m
Θi,.

j (Θi,.) = 1 − m
Θi,.

j (Y(i,j)) − m
Θi,.

j (Y(i,j)), (10)

where 0 < τ < 1 represents the impartiality of the association process and
Ii,j ∈ [0, 1] is an index of similarity between Xi and Yj . Φ1(.) and Φ2(.) are two
cosine functions defined by:

⎧
⎨

⎩
Φ1(Ii,j) = α

2

[
1 − cos(π Ii,j−τ

τ )
]

Φ2(Ii,j) = α
2

[
1 + cos(π Ii,j

τ )
]
,

(11)

where 0 < α < 1 is the reliability factor of the data source. In the same manner,
belief masses are generated for the track-to-target assignment.

2.4 Belief Combination

Based on Dempster’s rule (4), the combined masses mΘi,. (and mΘ.,j ) over 2Θi,.

(and 2Θ.,j ) can be computed as follows [24]:

mΘi,.
(
Y(i,j)

)
= K · m

Θi,.

j

(
Y(i,j)

) m∏

a=1
a�=j

α(i,a)

mΘi,.({Y(i,j), . . . , Y(i,l), Y(i,∗)}) = K · γ(i,(j,...,l))

m∏

a=1

a�=j

......

a�=l

β(i,a)

mΘi,.
(
Y(i,∗)

)
= K ·

m∏

a=1

β(i,a)

mΘi,. (Θi,.) = K ·
m∏

a=1

mΘi,.
a (Θi,.)

(12)

with: ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(i,a) = 1 − m
Θi,.
a

(
Y(i,a)

)

β(i,a) = m
Θi,.
a

(
Y(i,a)

)

γ(i,(j,...,l)) = m
Θi,.

j (Θi,.) . . . m
Θi,.

l (Θi,.)

K =

⎡

⎢⎣
m∏

a=1

α(i,a) +
m∑

a=1

mΘi,.
a

(
Y(i,a)

) m∏

b=1
b�=a

α(i,b)

⎤

⎥⎦

−1

2.5 Decision-Making

Finally, the probabilities matrix Pi,. (P.,j) is obtained by using a probabilistic
transformation. Table 1 presents the Pi,. matrix where each line defines the asso-
ciation probabilities of the target Xi with all tracks Yj . Pi,.(Y(i,∗)) represents the
appearance probability of Xi.
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Table 1. Probabilities of target-to-track associations

Pi,.(.) Y1 . . . Ym Y∗

X1 P1,.(Y(1,1)) . . . P1,.(Y(1,m)) P1,.(Y(1,∗))

X2 P2,.(Y(2,1)) . . . P2,.(Y(2,m)) P2,.(Y(2,∗))
...

...
...

...
...

Xn Pn,.(Y(n,1)) . . . Pn,.(Y(n,m)) Pn,.(Y(n,∗))

The association decisions are made by using a global or a local optimization
strategy. The Joint Pignistic Probability (JPP) [20] selects associations that
maximize the probability product. However, this global optimization is time-
consuming and can select doubtful local associations. To cope these drawbacks,
local optimizations have been proposed as the Local Pignistic Probability (LPP).
Interested readers in the benchmark of these algorithms can refer to [17,18].

3 Probabilistic Transformations

The generalized formula of the probabilistic transformation can be defined as
follows:

Pi,.

(
Y(i,j)

)
= mΘi,.

(
Y(i,j)

)
+

∑

A∈2Θi,.

Y(i,j)⊂A

T (Y(i,j), A) · mΘi,. (A),
(13)

where A represents the partial/global ignorance about the association of target
Xi and T (Y(i,j), A) represents the rate of the ignorance mass mΘi,. (A) which is
transferred to singleton Y(i,j).

Several probabilistic transformations have been proposed in the literature.
In this section, only the most interesting ones are presented.

3.1 Pignistic Probability

The pignistic transformation denoted by BetP and proposed by Smets [27,28]
is still widely used for evidential data association applications [6,14,16,20]. This
transformation redistributes equitably the mass of ignorance on singletons as
follows:

TBetPi,.
(Y(i,j), A) = 1

|A| , (14)
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where |A| represents the cardinality of the subset A. However, the pignistic
transformation (14) ignores the bbas of singletons which can be considered as a
crude commitment. BetP is easy to implement because it has a low complexity
due to its simple redistribution process.

3.2 Dezert-Smarandache Probability

Besides of the cardinality, Dezert-Smarandache Probability (DSmP ) transfor-
mation [11] considers the values of masses when transferring ignorance on sin-
gletons:

TDSmPi,.
(Y(i,j), A) =

mΘi,.(Y(i,j))+ε∑

Y(i,k)⊂A

mΘi,.
(
Y(i,k)

)
+ ε · |A| (15)

The value of the tuning parameter ε ≥ 0 is used to adjust the effect of focal
element’s cardinality in the proportional redistribution, and to make DSmP
defined and computable when encountering zero masses. Typically, one takes
ε = 0.001. The smaller ε, the better approximation of probability measure we
get [11]. DSmP allows to obtain in general a higher Probabilistic Information
Content (PIC) [31] than BetP because it uses more information than BetP for
its establishment. The PIC indicates the level of the available knowledge to make
a correct decision. PIC = 0 indicates that no knowledge exists to take a correct
decision.

3.3 MultiScale Probability

The Multiscale Probability (MulP ) transformation [19] highlights the propor-
tion of each hypothesis in the frame of discernment by using a difference function
between belief and plausibility:

TMulPi,.
(Y(i,j), A) =

(PlΘi,.(Y(i,j))−BelΘi,.(Y(i,j)))q

∑

Y(i,k)⊂A

(PlΘi,.
(
Y(i,k)

) − BelΘi,.
(
Y(i,k)

)
)q

,
(16)

where q ≥ 0 is a factor used to amend the proportion of the difference (Pl(·) −
Bel(·)). However, the TMulPi,.

is not defined (00 ) when m(·) is a Bayesian mass
(Pl(·) = Bel(·)).
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3.4 Sudano’s Probabilities

Sudano proposes several alternatives to BetP as the Proportional Plausibility
(PrP l) and the Proportional Belief (PrBel) transformations [11,30]. Those lat-
ter redistribute respectively the ignorance mass according to the normalized
plausibility and belief functions:

TPrPli,.
(Y(i,j), A) =

PlΘi,.(Y(i,j))∑

Y(i,k)⊂A

PlΘi,.
(
Y(i,k)

)
(17)

TPrBeli,.
(Y(i,j), A) =

BelΘi,.(Y(i,j))∑

Y(i,k)⊂A

BelΘi,.
(
Y(i,k)

)
(18)

3.5 Pan’s Probabilities

Other proportional transformations have been proposed in [21]. Those transfor-
mations assume that the bba are proportional to a function S(·) which is based
on the belief and the plausibility:

TPrBPi,.
(Y(i,j), A) = S(i,j)∑

Y(i,k)⊂A

S(i, k)
,

(19)

where different definitions of S have been proposed:
⎧
⎨

⎩

PrBP1i,. : S(i, j) = PlΘi,.
(
Y(i,j)

) · BelΘi,.
(
Y(i,j)

)

PrBP2i,. : S(i, j) = BelΘi,.(Y(i,j)) · (1 − PlΘi,.(Y(i,j)))−1

PrBP3i,. : S(i, j) = PlΘi,.(Y(i,j)) · (1 − BelΘi,.(Y(i,j)))−1
(20)

4 Results

This section presents a benchmark of the probabilistic transformations in the
framework of the object association system for autonomous vehicles. The aim
is to assign detected objects in the scene (targets) to known ones (tracks). The
transformations have been evaluated on real data.
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Fig. 1. Examples of images provided by KITTI [4].

The KITTI dataset3 provides 21 sequences recorded from cameras mounted
on a moving vehicle on urban roads [13]. To our knowledge, no comparison of
probabilistic transformations has been done on real data where more than 30000
associations have been observed. These latter cover different road scenario as
shown in Fig. 1. For this work, detections are defined only by 2D bounding box
in the image plane as presented in Fig. 1.

4.1 Experimental Setting

The assignment information are based on the distance between objects in the
image plane. For that, the distance di,j is defined as follows:

di,j =
1
2
(d right

i,j + d left
i,j ), (21)

where d right
i,j (resp. d left

i,j ) is the Euclidean distance between bottom-right (resp.
top-left) corners of the bounding boxes of target Xi (detected object) and track
Yj (known object) as presented in Fig. 2.

3 http://www.cvlibs.net/datasets/kitti/eval tracking.php.

http://www.cvlibs.net/datasets/kitti/eval_tracking.php
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Fig. 2. The illustration of the distances d right
i,j and d left

i,j [4].

The parameters of the bba model (11) are: α = 0.9 and τ = 0.5. The index
of similarity is defined as follows:

Ii,j =
{

1 − di,j

D , if di,j < D
0 , otherwise,

(22)

where D is the limit distance for association which is determined heuristically,
e.g. D = 210 in this work.

The tuning parameters ε = 0.001 and q = 5 for DSmP and MulP transfor-
mations respectively. The LPP algorithm has been used as optimization strategy
in the decision-making step.

4.2 Comparison of Probabilistic Transformations

All discussed transformations are characterized by an equivalent complexity
except the pignistic transformation. BetP is computed directly from combined
masses which leads to a lower computational time.

To compare the performance of the probabilistic transformations presented
previously, the object association system is evaluated by the True Associations
Rate (TAR):

TAR =
∑

t True Associationt∑
t Ground Trutht

, (23)

where t is the frame index.
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Table 2 compares association outcomes of the system based on different prob-
abilistic transformations. Only target-to-track association results have been pre-
sented in Table 2 due to the lack of space. However, from track-to-target associa-
tion results, similar comments/conclusions hold. The penultimate row of Table 2
shows the weighted average of TAR value based on all sequences which is given
by:

TARavg =
20∑

i=0

wiTARi (24)

where TARi is the TAR value of the i-th sequence, and where the weight wi is
wi = ni/

∑20
i=0 ni and ni being the number of associations of the i-th sequence.

For instance, TARavg = 0.9852 (or 98.52%) for the BetP transformation, etc.
The last row of Table 2 represents the weighted standard deviation (σw) of asso-
ciation scores defined as follows:

σw =

√√√√
20∑

n=0

wi(TARi − TARavg)2 (25)

Table 2. target-to-track associations score (in %) obtained by different probabilistic
transformations.

Seq. n◦ nb of Frame nb of Ass. BetP DSmP PrPl PrBel MulP PrBP1 PrBP2 PrBP3

Seq. 0 154 675 99.41 99.11 99.41 99.26 99.41 99.41 99.26 99.11

Seq. 1 447 2643 97.50 96.71 97.43 96.03 97.47 95.88 95.50 97.39

Seq. 2 233 668 99.70 99.70 99.70 97.75 99.70 98.65 97.46 99.70

Seq. 3 144 337 99.41 99.41 99.41 98.81 99.41 99.11 98.81 99.41

Seq. 4 314 545 89.72 93.39 93.21 92.29 90.09 92.29 91.56 93.76

Seq. 5 297 925 98.59 97.51 98.16 96.00 99.46 96.32 95.24 97.95

Seq. 6 270 474 100 100 100 98.95 100 98.95 98.73 100

Seq. 7 800 2084 97.60 96.55 97.17 95.11 97.55 95.25 94.63 97.02

Seq. 8 390 492 99.19 98.78 99.19 97.76 99.39 97.76 97.56 99.19

Seq. 9 802 2888 98.44 97.33 98.10 97.09 98.37 97.13 96.92 97.82

Seq. 10 294 541 98.71 98.34 98.71 97.78 99.26 98.15 98.89 98.34

Seq. 11 373 3001 99.37 98.77 99.30 99.30 99.33 99.27 99.27 99.23

Seq. 12 78 67 100 100 100 100 100 100 100 100

Seq. 13 340 617 93.35 95.62 94.00 93.35 93.19 93.35 92.06 94.00

Seq. 14 106 374 89.04 89.57 88.50 88.77 88.50 89.84 89.04 88.77

Seq. 15 376 1249 99.28 99.28 99.28 99.04 99.28 98.80 98.80 99.28

Seq. 16 209 1872 97.54 96.63 97.44 96.69 97.54 96.85 96.90 97.38

Seq. 17 145 486 99.18 98.35 99.18 96.71 99.18 97.33 96.91 99.18

Seq. 18 339 1130 99.82 98.41 99.65 98.94 99.82 99.03 98.94 99.29

Seq. 19 1059 4968 99.42 98.73 99.42 97.83 99.36 97.89 97.36 99.34

Seq. 20 837 4673 99.68 98.35 99.59 98.35 99.64 98.20 98.10 99.42

All Seq. 8007 30709 98.52 97.85 98.47 97.35 98.52 97.40 97.10 98.37

std. dev. σw 1.38 1.05 1.22 1.26 1.39 1.21 1.36 1.18
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The obtained results show that PrBel, PrBP1, and PrBP2 provide the
worst mean associations scores (≤97.40%) with the largest standard deviation
(1.36%) for PrBP2. It can be explained by the fact that these transformations
are based on the Bel function which is a pessimistic measurement. The rest of the
transformations provide rates of correct association (i.e. scores) >98.40% which
represents a gain of +1%. The best mean score ≈98.50% is given by BetP , PrP l,
and MultP transformations. Based only on the mean score criterion, BetP seems
more interesting because it provides better scores on 15 sequences from 21 as
illustrated in Fig. 3. In addition, BetP is based on a very simple transferring
process of uncertainty which makes BetP a good choice for real-time applica-
tions. However, this apparent advantage of BetP needs to be seen in relative
terms because BetP also generates a quite large standard deviation of 1.38%,
which clearly indicate that BetP is not very precise. PrP l and MultP are also
characterized by a relatively high standard deviation (1.22% and 1.39%). On the
other hand, the lower standard deviation 1.05% is given by DSmP transforma-
tion with a good association score = 97.85%. This transformation performs well
in term of PCI criteria which leads to make correct decisions [11]. Consequently,
DSmP is an interesting alternative to BetP for the data association process in
autonomous vehicle perception system.

Number of worst/best scores
0 5 10 15

BetP

DSmP

PrPl

PrBel

MulP

PrBP1

PrBP2

PrBP3

15

6

8

1

12

3

1

7

1

4

1

3

1

1

12

1 Best scores
Worst scores

Fig. 3. The number of worst/best scores obtained by each probabilistic transformation
on 21 sequences; e.g. PrBel provides three worst scores (sequences 3, 10, and 17) and
only one best score on sequence 12.
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5 Conclusion

An evaluation of several probabilistic transformations for evidential data asso-
ciation has been presented in this paper. These transformations approximate
the belief masses by a probability measure in order to make association deci-
sions. The widely used probabilistic approximation is the pignistic transforma-
tion. However, several published studies criticize the choice of this method of
approximation and propose generalized transformations.

We did compare the performances of these probabilistic transformations on
real-data in order to determine which one is more suited for assignment prob-
lems in the context of autonomous vehicle navigation based on real datasets. The
obtained results based on the well-known KITTI dataset show that the pignistic
transformation provides one of the better scores. However, it provides a quite
large standard deviation contrary to DSmP transformation which provides the
lowest standard deviation. In addition, DSmP procures a nearly similar associa-
tion score to that given by BetP . Consequently, DSmP can be a good alternative
to BetP for the autonomous vehicle perception problematic requiring a bit more
computational power with respect to BetP .
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Abstract. Artificial Immune Recognition Systems (AIRS) are super-
vised classification methods inspired by the immune system metaphors.
They enjoy a great popularity in the filed of machine learning by achiev-
ing good and competitive classification results. Nonetheless, while these
approaches work properly under a certain framework, they present some
weaknesses basically related to their inability to deal with uncertainty.
This is considered as an important challenge in real-world classification
problems. Furthermore, using traditional AIRS approaches, all memory
cells are considered with the same importance during the classification
process which may affect the final generated results. To tackle these
issues, we propose in this paper a new AIRS approach under the belief
function framework. Our approach tends to handle the uncertainty per-
vaded in the classification stage while taking into account the number of
training antigens represented by each memory cell. The performance of
the proposed evidential AIRS approach is validated on real-world data
sets and compared to state of the art AIRS under certain and uncertain
frameworks.

Keywords: Machine learning · Classification · Artificial Immune
Recognition Systems · Uncertainty · Belief function theory

1 Introduction

Artificial Immune Recognition System (AIRS) [1] is considered as a popular
supervised classification method fully inspired by the biological immune system
metaphors. It allows us to make suitable decisions related to various types of
problems. Yet, the AIRS technique has achieved better and competitive classifi-
cation results when compared to other well-established classification techniques
like Naive Bayes, decision trees and artificial neural networks classifiers [2]. That
is why, it has attracted a great deal of attention in different areas such as pat-
tern recognition, computer virus detection, anomaly detection, optimization and
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robotics [3]. Different AIRS approaches have been proposed in the literature aim-
ing to improve the classification accuracy [4]. However, while these approaches
work properly under a certain framework, they present some weaknesses basi-
cally related to their inability to deal with uncertainty. In fact, uncertainty may
undoubtedly spread throughout the classification process, which may deeply
affect the classification results. Thus, managing uncertainty in AIRS systems
becomes a widespread interest.

In this context, various theories like the fuzzy set and the possibility the-
ories [5,6] can be adopted to deal with imperfection within AIRS. The belief
function theory [7,8] is considered among the most appropriate and powerful
theories for representing and reasoning under uncertainty. It presents a flexible
and rich framework for handling imperfection in different levels ranging from the
complete ignorance to the total certainty. Indeed, some works have focused on
the problem of managing uncertainty in the field of AIRS, either by means of
fuzzy set theory [10–13] or possibility theory [14]. For instance, a new medical
decision making system conceived by fuzzy-AIRS was proposed in [10] for the
task of lymph diseases diagnosis. In such work, the resource allocation mecha-
nism of AIRS was replaced by fuzzy resource allocation in order to improve its
classification performance. However, Golzari et al. [11] performed a statistical
study that proved that the integration of fuzzy resource allocation causes signif-
icant improvement in a minority of data sets. On this basis, they assumed that
investigating the more accurate fuzzy memberships, fuzzy rules and fuzzy values
may increase the accuracy in more data sets. Later, authors in [12] proposed a
fuzzy weighted pre-processing strategy before the application of AIRS which is
based on sample means of each feature values. More specifically, they defined
two membership functions known as input and output membership functions
which are allowed to allocate a new feature value for each feature in accordance
with its old value. An extended version of AIRS with Fuzzy-KNN has been pro-
posed in [13] where classes memberships have been assigned as a function of the
vectors distance from the K-nearest neighbors. On the other hand, authors in
[14] have introduced a new classification technique combining the AIRS method
within the possibility theory, where the training instances have been represented
via possibility distributions. More recently, a very preliminary work has been
proposed under the belief function theory [15] where the K-nearest antigens are
considered as different pieces of evidence contributing to the final class assign-
ment. Nonetheless, in such AIRS approaches, all memory cells are considered
with the same importance during the classification process which may affect
the generated results. Actually, an improved version of AIRS, called AIRS3, has
been proposed in this context. Despite its good performance, such approach is
not able to deal with the uncertainty pervaded in the final classification results.
That is why, we propose in this paper a new AIRS3 approach under the belief
function framework. Our aim in this work is not only to handle the uncertainty
pervaded throughout the classification process, but also to take into account the
number of training antigens represented by each memory cell.
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The remainder of this paper is organized as follows: Sect. 2 recalls the belief
function theory basic concepts. Section 3 introduces the Artificial Immune Recog-
nition System. Our proposed Evidential AIRS approach is described in Sect. 4.
Section 5 illustrates its experimental results conducted on real-world data sets.
Finally, the paper is concluded in Sect. 6.

2 Belief Function Theory

The belief function theory, also called evidence theory, is a flexible and rich
framework for dealing with uncertainty [7,8]. In this section, we recall its basic
concepts and operations as interpreted in the Transferable Belief Model [9].

2.1 Frame of Discernment

In the belief function theory, a problem domain is represented by a finite set of
elementary events called the frame of discernment, denoted by Θ, which contains
hypotheses concerning the given problem [9] such that: Θ = {θ1, θ2, · · · , θn}. In
fact, all the possible values that each subset of Θ can take is called the power
set of Θ and denoted by 2Θ, where 2Θ = {A : A ⊆ Θ}.

2.2 Basic Belief Assignment

A basic belief assignment (bba) is an expression of the belief committed to the
elements of the frame of discernment Θ [8]. It is a mapping function such that:

m : 2Θ → [0, 1] and
∑

A⊆Θ

m(A) = 1 (1)

Each mass m(A), called a basic belief mass (bbm), quantifies the degree of
belief exactly assigned to the event A of Θ.

2.3 Simple Support Function

The bba which has at most one focal element aside from the frame of discernment
Θ is called simple support function. It is defined as follows:

m(X) =

⎧
⎨

⎩

w if X = Θ
1 − w if X = A for some A ⊆ Θ
0 otherwise

(2)

where A is the focal element and w ∈ [0,1].
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2.4 Dempster’s Rule of Combination

Considering two bba’s m1 and m2 induced from two reliable and independent
information sources, the evidence can be combined using Dempster’s rule of
combination defined as:

(m1 ⊕ m2)(A) = k.
∑

B,C⊆Θ:B∩C=A

m1(B) · m2(C) (3)

where (m1 ⊕ m2)(∅) = 0 and k−1 = 1 −
∑

B,C⊆Θ:B∩C=∅

m1(B) · m2(C)

2.5 Decision Making

To make decisions, beliefs can be represented by pignistic probabilities such as:

BetP (A) =
∑

B⊆Θ

|A ∩ B|
|B|

m(B)
(1 − m(∅))

for all A ∈ Θ (4)

3 The Artificial Immune Recognition System

Artificial Immune Recognition System (AIRS) is a resource limited supervised
learning algorithm inspired by immune metaphors [1]. In what follows, we recall
the two improved versions of AIRS namely AIRS2 [19] and AIRS3 [20].

3.1 AIRS2 Method

Two major phases characterize the AIRS2 method namely, the learning-
reduction procedure and the classification procedure.

The Learning-Reduction Procedure
The learning-reduction procedure represents the main phase in the AIRS algo-
rithm. The input data present the training set T where each object is considered
as an antigen following the same representation as an antibody [20]. Each anti-
gen is represented by a set of attributes values and class values. The output
of this procedure is a reduced data set called memory cell pool (MC) contain-
ing memory cells, which are later used in the classification process. This phase
is divided into four stages: initialization step, memory cell identification and
Artificial Recognition Balls (ARB) generation, competition for resources and
development of a candidate memory cell, and memory cell introduction.

1. Initialization
The initialization step can be considered as a pre-processing stage and it is
performed on the following three steps:
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– Data normalization
This step consists in normalizing all numeric attributes of the training
data in order to make sure that the Euclidean distance between two train-
ing items is in the range of [0,1]. The normalized Euclidean distance is also
used as an affinity measure between two cells. It is computed as follows:

affinity (ag1, ag2) =

√√√√
m∑

i=1

(ag1i − ag2i)2 (5)

Where ag1 and ag2 are the two attribute vectors representing two cells
(data samples) and m is the number of attributes.

– Computing the affinity threshold
After normalization has been performed, the affinity threshold is then
computed based on Eq. (6).

affinity threshold =

∑n
i=1

∑n
j=i+1 affinity (agi, agj)

n·(n−1)
2

(6)

Where n is the number of antigens in the training set, agi and agj are
receptively the ith and jth antigens and affinity (agi, agj) represents the
affinity measure between the two antigens agi and agj .

– MC and AB initializations
The final stage is the initialization of the memory cell pool (MC) and the
ARB pool. This is done by randomly selecting 0 or more antigens from
the training set to be included in the MC and ARB sets.

2. Memory cell identification and ARB generation
At this level, only one antigen from the training instances is required in the
training process and the following steps outlined below are applied.

– mc match identification
For each memory cell in the MC pool having the same class as the training
antigen ag, we calculate the stimulation according to Eq. (7) below:

Stim(ag,mc) = 1 − affinity(ag,mc) (7)

The cell having the greatest stimulation is selected as the best match
memory cell denoted as mc match. It will be employed in the affinity
maturation process. If there is no mc in the MC pool having the same
class as the training antigen, this antigen will be integrated directly to
MC.

– New ARBs generation
Once the mc match is selected, this memory cell is used to generate a
number of mutated clones added to ARB pool. The number of clones is
proportional to the affinity between mc match and the presented antigen
ag and it is computed as follows:

mc match·Numclones = ColanalRate·HyperColanlRate·Stim(ag,mc match)
(8)
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3. Competition for resources and development of a candidate memory
cell
At this point, a set of ARBs which includes mc match and mutations of
mc match is considered. We aim in this phase to extract a candidate memory
cell (mc candidate) which better recognizes the given antigen ag. To this end,
a computation of the normalized stimulation between each ARB and the
antigen is first performed and a finite number of resources is then allocated
to each ARB such as:

ARB.resources = ClonalRate · Stim normalized(ag,ARB) (9)

Each class has a restricted number of resources allowed to be allocated. If
the total number of resources of all the ARBs overcomes the allowed limit,
the surplus resources are eliminated from the weakest ARB and then empty
ARBs will be deleted from the system. Therefore, only ARBs with the highest
stimulation level are able to compete for resources. After this competition, a
testing process of the stopping criterion is performed. This latter is achieved
if the mean affinity value for all the existing ARBs with the antigen sur-
passes the Stimulation threshold which is a pre-defined parameter. Other-
wise, ARBs will be mutated and the new mutated clones will be included into
the ARB pool. Then, the competition for resources processes will be held and
only survived ARBs are going to move through the clonal expansion and the
mutation procedures until the stopping criterion is reached. The number of
clones corresponding to each ARB is measured using the following equation:

ARB.num Clones = Stim(ag,ARB) · ClonalRate (10)

Finally, the ARB having the highest stimulation level will be picked up as
the candidate memory cell (mc candidate).

4. Memory cell introduction
This step corresponds to the final stage of the training process where the
memory cell pool is revised. If the affinity between the extracted mc candidate
and the antigen ag is higher than that of the mc match, the mc candidate will
be integrated to MC, becoming a long-lived memory cell. Moreover, if the
affinity measure between mc match and mc candidate is also lower than the
product of the affinity threshold and affinity threshold scalar, mc match
will be replaced by mc candidate in the set of memory cells.

The Classification Step
Once the training phase is achieved, the resulting MC pool will be used for the
classification process. In this context, the K-Nearest Neighbors (KNN) technique
is adopted and the test antigen is classified by the majority vote of the K nearest
memory cells.

3.2 AIRS3 Method

In order to improve the performance of AIRS2, a new version called AIRS3 has
been proposed in [20]. The main idea of the AIRS3 is to add a new component
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allowing to keep the number of represented antigens (numRepAg) for each mem-
ory cell in the resulting memory cell pool. This number is preserved during the
training phase and will be used in the classification stage. An extended version of
the K-Nearest Neighbors is then applied in the classification process to take into
account numRepAg. In this version, the K value becomes the number of train-
ing antigens represented by some memory cells in MC instead of the number of
selected memory cells. The sum of numRepAg of all chosen cells must be equal
to K. Thereafter, for each class label, the sum of numRepAg of all the selected
cells having the same class label will be computed. Finally, the new unlabeled
antigen will be assigned to the class with the highest sum of numRepAg.

The two standard versions of AIRS2 and AIRS3 show a good performance
under a certain context. However, these two AIRS approaches are not able to
deal with the uncertainty pervaded in the final classification results. Hence, we
propose a new version of AIRS3, where we embrace the belief function theory
for handling such uncertainty while taking into account the number of training
antigens represented by each memory cell. The proposed approach is called the
Evidential AIRS3, that we introduce in the next section.

4 Evidential AIRS3 Approach

Inspired by the standard AIRS3 method, we propose a new classification version
of AIRS under the belief function framework. Our main goal is to improve the
classification performance of the existing AIRS approaches under certain and
uncertain frameworks. For this purpose, we opt for the Evidential K-Nearest
Neighbors (EKNN) [16,17] in order to take into account the uncertain aspect of
the final classes assignment. Instead of the standard K-Nearest Neighbors [18]
commonly used in AIRS, the EKNN formalism is adapted within the AIRS3
where different belief function tools come into play. The proposed approach, that
we denote by Evidential AIRS3 (EAIRS3), is based on two consecutive reduc-
tion phases. The first one is performed during the learning-reduction procedure
where we obtain the first reduced memory cell pool (MC pool). Otherwise, the
second reduction is performed during the selection of the best-stimulated sam-
ples, taking into account the number of represented antigens by each memory
cell denoted by numRepAg. Hence, we get in the end a new reduced MC poll
called R-MC pool. The obtained R-MC pool will be considered as the input for
the EKNN and the classification task will be performed accordingly.

Figure 1 below illustrates the flowchart of the Evidential AIRS3 approach.

4.1 Notations

In order to better explain our contribution, let us first define and clarify the
basic notations to be used in our approach.

– Θ = {c1, c2, · · · , cM}: The frame of discernment including a finite set of classes
where M refers to the number of classes.
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– n: The number of the obtained memory cells in the R-MC pool.
– R-MC = { (mc(1), c1), · · · , (mc(n), cn) }: The reduced memory cell pool includ-

ing the available information of n selected memory cells and their correspond-
ing class labels ci.

– m({cp}|mc(i)): The basic belief mass assigned to the class cp.
– In = {I1, · · · , In}: represents the indexes of the n memory cells in the R-MC

pool.

Fig. 1. Evidential AIRS3 process

4.2 Initialization Step

The classification process of the Evidential AIRS3 is based on two parameters,
α and γ = (γ1, · · · , γp) which will be used in the next stages. Therefore, the
first step consists in initializing and computing these two parameters. We assign
to the parameter α the value 0.95 as mentioned in the EKNN formalism [16].
In fact, this value is highly recommended in order to have good results and
to obtain a best classification accuracy. Otherwise, in order to compute the γp

parameter, we extract the set of the training samples having the same class Cp

and we calculate the inverse of the mean distance between each pair of antigens
in this set. This computation is executed based on the normalized Euclidean
distance defined by:

Dist (ag1, ag2) =

√√√√
dim∑

i=1

(ag1i − ag2i)2 (11)

Where ag1 and ag2 are the two attribute vectors representing two data samples
and dim is the number of attributes. In the end of this step, we store the values
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of γp computed for each class in a vector γ. This latter will be further employed
in the creation of the basic belief assignment (bba).

4.3 Creation of the R-MC Pool

The second phase of the Evidential AIRS3 approach is the collection of the best-
stimulated antigens while taking into account the number of represented antigens
(numRepAg) by each memory cell in the MC pool. That is why, we calculate first
the similarity between the unlabeled antigen and the whole samples in the MC
pool. According to the computed distances, we have to pick out the memory cells
having the lowest distances. Unlike the evidential approach proposed in [15], the
selection procedure is achieved when the sum of the numRepAg corresponding
to the selected cells is equal to K. Hence, the result of this step is a new reduced
MC pool, named R-MC pool, containing the nearest neighbors to the test antigen
having in total:

∑
numRepAg = K.

4.4 Generation of bba’s

Traditional methods in this step, generate the basic belief assignments (bba’s)
of all the K-nearest neighbors which could be too complicated for a large value
of K. In our approach, we aim to alleviate this problem by generating only the
bba’s of the obtained cells in the R-MC pool. In other words, these extracted
cells will be the pieces of evidence on which we will rely on the classification
and the decision making processes. By exploring the R-MC pool obtained in the
previous step, we have to generate the basic belief assignment (bba) for the n
selected memory cells such that:

m(.|mc(i)) =

⎧
⎪⎨

⎪⎩

m({cp}|mc(i)) = αφp(d(i))
m(Θ|mc(i)) = 1 − αφp(d(i))

m({E}|mci) = 0, ∀E ∈ 2Θ \ {Θ, {cp}}
(12)

Where di = d(ag,mc(i)) is the euclidean distance between the antigen ag
and each memory cell mc(i) ∈ In, cp is the class of mc(i) (i.e. ci = cp), φp is a
decreasing function verifying:

φp(0) = 1 and lim
d(i)→∞

φp(d(i)) = 0. (13)

A popular choice for the decreasing function φp(d(i)) is:

φp(d(i)) = exp−(γp·(d(i))
2) (14)

We recall here that γp and α are the two parameters already computed in
the first step.
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4.5 Combination of bba’s

Once the bba’s are generated for each memory cell in the R-MC pool, we combine
these bba’s using the Dempster’s rule of combination as illustrated in Fig. 2 such
that:

m = m(.|mc(1)) ⊕ ... ⊕ m(.|mc(n)) (15)

Fig. 2. Combination of the n bba’s in R-MC pool

In order to get the final bba corresponding to the unlabeled antigen, the
evidence of the n memory cells are aggregated using the following expression:

m({cp}) =
1

N
(1−

∏

i∈In,p

(1−αφp(d(i)))·
∏

r �=p

∏

I∈In,r

(1−αφr(d(i)))) ∀p ∈ {1, · · · , M}

(16)

m(Θ) =
1

N

M∏

r=1

(1 −
∏

I∈In,r

(1 − αφr(d(i))))

Where N is a normalized factor [16].

4.6 Decision Making

The last step of our approach is the decision making process where we should
provide an appropriate class to the test antigen. That is why, we opt for the
pignistic transformation function, denoted by BetP , which allows us to create
a probability function from the n generalized basic belief assignments. Once the
pignistic probability distribution is derived, the test antigen is assigned to the
class having the maximum degree of pignistic probability.
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5 Experimental Study

In order to evaluate the performance of our Evidential AIRS3 approach, we
performed various experiments on real world data sets selected from the U.C.I
repository. In these tests, we compare the Evidential AIRS3 with the two stan-
dard AIRS methods under a certain framework namely, AIRS2 and AIRS3.
Furthermore, two other AIRS approaches working under uncertainty have been
compared namely the Fuzzy AIRS2 and the Evidential AIRS2.

5.1 The Framework

Five real data sets have been used in our experiments namely, Cryotherapy (C),
Wine (W), Fertility (F), Somerville Happiness Survey (SHS) and Pima Indians
Diabetes (PID). The specifications of each data set are shown in Table 1 below,
where # nbInstances is the number of antigens, # nbAttributes represents the
number of attributes and # nbclass is the number of class labels of a data set.

Table 1. The characteristics of used data sets

Data set #nbInstances #nbAttributes #nbClass

C 90 6 2

W 178 13 3

F 100 9 2

SHS 143 6 2

PID 768 8 2

For all these data sets, we used the following parameter values for all the
diverse versions of AIRS employed in our comparison: AIRS2, AIRS3, Fuzzy
AIRS2, Evidential AIRS2 (EAIRS2), and Evidential AIRS3 (EAIRS3):

Clonal rate = 10, Mutation rate = 0.4, HyperClonal Rate = 2, Number of
resources = 200, Stimulation threshold = 0.3, Affinity threshold scalar = 0.2.

In addition, we have tested with different values of K = [3, 5, 7, 8, 9, and 10].

5.2 Evaluation Criterion

In order to evaluate our approach, we rely on one of the most frequent met-
rics which is the Percent Correct Classification (PCC). This evaluation metric
computes the classification accuracy using the following expression:

PCC =
Number of correctly classified instances

Total number of classified instances
(17)

Therefore, during our experiments, we opt to the cross-validation technique
in order to assess the performance of our method. More specifically, we choose to
use the 10-fold cross-validation where we estimate the efficiently of our approach
by averaging the accuracies derived in all the 10 cases of cross validation.
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5.3 Experimental Results

Considering different versions of AIRS, we compare the accuracy of our method
to the traditional AIRS2, AIRS3, Fuzzy AIRS2 and EAIRS2. Our comparison is
based on the PCC of the several used K-values. The experimental results through
the different K values are illustrated in Fig. 3.

Fig. 3. Accuracy of used data sets through different K-values

Accordingly, we observe that our approach EAIRS3, outperforms the other
versions of AIRS in most data sets through the various selected K-values. For
example, for the data set W with K = 10, the PCC reaches 85.95% with EAIRS3,
while it corresponds respectively to 54.35% with AIRS2, 84.18% with AIRS3,
68.01% with Fuzzy AIRS2 and 55.03% with EAIRS2.

In Table 2, we represent the comparison results of the average PCC obtained
for each data set with the different employed K-values.

We can notice through the results shown in Table 2, that EAIRS3 surpasses
all the other versions of AIRS in term of classification accuracy for all the used
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Table 2. The average PCC (%) of evidential AIRS3 VS AIRS2, AIRS3, Fuzzy AIRS2
and EAIRS2.

Data sets AIRS2 AIRS3 Fuzzy AIRS2 EAIRS2 EAIRS3

C 68.62 77.44 76.78 74.82 78.51

W 59.00 85.41 73.90 60.80 86.13

F 82.66 82.91 86.30 86.36 86.63

SHS 59.75 60.57 58.23 59.54 61.40

PID 62.99 69.67 65.88 63.69 70.03

data sets. If we take for example the data set F, our EAIRS3 achieves the best
result of 86.63% compared to 82.66% for AIRS2, 82.91% for AIRS3, 86.3% for
Fuzzy AIRS2 and 86.36% for EAIRS2. These results prove the greatest perfor-
mance of our approach over all the other traditional AIRS in term of classification
accuracy.

6 Conclusion

In this paper, we have proposed a new AIRS approach under the belief func-
tion theory. Our Evidential AIRS3 approach allows not only to deal with the
uncertainty pervaded in the classification process, but also to take into account
the number of training antigens represented by each memory cell. Experimental
results have shown an improvement of the classification performance over state
of the art AIRS methods under certain an uncertain frameworks.
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Abstract. Online reviews are considered as one of the most prevalent
reference indicators for people to evaluate the quality of different prod-
ucts or services before purchasing. Since these reviews affect the buying
decision of customers and control the success of the different e-commerce
websites, the activity of fake reviews posting is more and more increasing.
These fraudulent reviews are posted by a large number of spammers who
try to promote or demote target products or companies. The reviewers
spammers generally work collaboratively under group of spammers to
take control of reviews given to some products, which seriously damage
the review system. To deal with this issue, we propose a novel method
aim to detect group spammers while relying on various group spamming
behavioral indicators. Our approach is based on the K-nearest neighbors
algorithm under the belief function theory to treat the uncertainty in
the used behavioral indicators. Our method succeeds in distinguishing
between genuine and fraudulent group of reviewers. It was tested on two
large real datasets extracted from yelp.com.

Keywords: Fake reviews · Group spammers · Uncertainty · Belief
function theory · Evidential KNN · E-commerce

1 Introduction

Products, brands, hotels, restaurant, cities, places to visit and all services are
now identified through a rating score which is generally the average score of the
different reviews given by customers. Such rating score or reviews become one
of the most influenced source on consumer’s purchase decisions. We can assume
that, online reviews nowadays control e-commerce and even international com-
merce. To increase their market share and to stay ahead of their competitors,
companies and business try to over qualify their products by posting fake positive
reviews, and even by posting fake negative reviews to damage their competitors’
e-reputation. Those who post these fake reviews are called fake reviewers or
review spammers, and the products being spammed are called target products.
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As the commercialization of these fraudulent activities, such spammers are orga-
nized to collaboratively write fake reviews in order magnify the effect of review
manipulation. Such review group spammers are more frequently occurred to
control the sentiment of the target products. They are even more harmful than
individual review spammers’ cause over their ability to deviate the overall rating
in a short time interval and with different reviewers profiles to mislead spammer
detection tools. The review spam detection issue attracts significant researchers
during the last years. The main objective of these methods is to distinguish
between fake and genuine reviews in order to protect ensure a safe environment
and an equitable concurrence between companies. These research can be clas-
sified into three categories [11]; review spam detection, review spammer detec-
tion and group spammer detection. Several approaches are based on the review
spam text information as the semantic and linguistic aspects [7,17]. Moreover,
there are different methods which try to detect spammers through graph based
aspects [1,8,23]. Others, detect spammers while relying on the spammers behav-
ioral indicators [12,15,18], and on the brust patterns as new indicators [9]. These
approaches give significant results in the spam reviews detection field. Recently,
there were increasingly research interests in group spamming detection aspects
cause of their powerful manipulation thanks to their huge reviewers’ members.
The first study was introduced by Mukherjee et al. [14], in which they rely
on the Frequent Itemset Mining (FIM) technique to generate candidate review
spammers groups. This technique considers reviewers as items and products as
transactions. Through the FIM technique and by initializing the minimum sup-
port count to 3, they can spot at least 2 reviewers, while each reviewer review
at least 3 common products. Many techniques rely on these candidate groups
and propose different computing frameworks to evaluate the suspicion of each
candidate spammer groups. Such that, in [14] authors proposed an iterative com-
puting GSRank to rank candidate groups which spots the relationship among
candidate groups, target products and individual reviewers. Xu et al. [27] intro-
duce a statistical model based on the EM algorithm to calculate the collusiveness
of each group member from one FIM candidate group at least. Another proposed
method in [24] relies on FIM method to capture bicliques or sub-bicliques can-
didates them check them to detect real collusion groups through group spam
indicators. Moreover, Xu et al. [28] use FIM to find groups of reviewers who
have reviewed various common products. They introduce a KNN-based method
and a graph based classification method to predict the fake or not fake labels
for each reviewer belonging to at least one FIM candidate group. They evalu-
ated the effectiveness of the used group spammer indicators on a large Chinese
review websites. The KNN-method proves its performance in this study. Some
other recent works in this aspect do not rely on the FIM techniques such in
[25], where authors propose a top-down computing framework (GGSpam) to
detect review spammer groups by exploiting the topological structure of the
underlying reviewer graph. We can also cite [26] which propose an unsuper-
vised approach named LDA-based group spamming detection in product reviews
(GSLDA) which adapt Latent Dirichlet Allocation (LDA) in order to bound the
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closely related group spammers into small cluster of reviewers and extracts high
suspicious reviewers groups from each LDA-clusters. These proposed methods
achieve also significant results. The spam review detection issue can be consid-
erate as one of the most uncertain challenging problem due to the ambiguity
provided by the spammers and the group spammers to mislead the detection
systems. Nevertheless, the previous proposed methods did not take into consid-
eration the uncertain aspect while trying to detect group spammers. We think
that ignoring such uncertainty may deeply affect the quality of detection. For
these reasons, we propose a novel method aims to detect group spammers based
on the FIM technique to generate candidate group and also on the different
group spammer indicators, using the K-nearest neighbors’ algorithm within the
belief function theory. This theory has shown its robustness in this field through
our previous methods which achieve significant results [2–4]. Furthermore, the
use of the Evidential K-NN has been based on its robustness in the real world
classification problems under uncertainty. We seek to involve imprecision in the
Group spammers behaviors indicators which are considered as the fundamen-
tal interest in our approach since they are used as features for the Evidential
K-NN. In such way, our method predicts the labels spammers or not spammers
reviewers (belonging or not to the FIM candidate groups).

This paper is structured as follows: In the first section, we present the basic
concepts of the belief function theory and the Evidential K-nearest neighbors,
then we elucidate the proposed method in Sect. 2. Section 3 is consecrated for
the experimental results and we finish with a conclusion and some future work.

2 Belief Function Theory

In section, we elucidate the fundamentals of the belief function theory as well as
the Evidential K-nearest neighbors classifier.

2.1 Basic Concepts

The belief function theory, called also the Dempster Shafer theory, is one of the
powerful theories that handles uncertainty in different tasks. It was introduced
by Shafer [20] as a model to manage beliefs.

In this theory, a given problem is represented by a finite and exhaustive set
of different events called the frame of discernment Ω. 2Ω is the power set of Ω
that includes all possible hypotheses and it is defined by: 2Ω = {A : A ⊆ Ω}.

A basic belief assignment (bba) named also a belief mass represents the degree
of belief given to an element A. It is defined as a function mΩ from 2Ω to [0, 1]
such that: ∑

A⊆Ω

mΩ(A) = 1. (1)

A focal element A is a set of hypotheses with positive mass value mΩ(A) > 0.
Several types of bba’s have been proposed [21] in order to model special

situations of uncertainty. Here, we present some special cases of bba’s:
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– The certain bba represents the state of total certainty and it is defined as
follows: mΩ({ωi}) = 1 and ωi ∈ Ω.

– The categorical bba has a unique focal element A different from the frame
of discernment defined by: mΩ(A) = 1, ∀A ⊂ Ω and mΩ(B) = 0, ∀B ⊆ Ω
B �= A.

– Simple support function: In this case, the bba focal elements are {A,Ω}. A
simple support function is defined as the following equation:

mΩ(X) =

⎧
⎨

⎩

w if X = Ω
1 − w if X = A for some A ⊂ Ω
0 otherwise

(2)

where A is the focus and w ∈ [0,1].

Belief Function
The belief function, denoted bel, includes all the basic belief masses given to the
subsets of A. It quantifies the total belief committed to an event A by assigning
to every subset A of Ω the sum of belief masses committed to every subset of
A. bel is represented as follows:

bel(A) =
∑

∅�=B⊆Ω

mΩ(B)

(3)
bel(∅) = 0

(4)
Combination Rules
Several combination rules have been proposed in the framework of belief func-
tions to aggregate a set of bba’s provided by pieces for evidence from different
experts. Let mΩ

1 and mΩ
2 two bba’s modeling two distinct sources of information

defined on the same frame of discernment Ω. In what follows, we elucidate the
combination rules related to our approach.

1. Conjunctive rule: It was introduces in [22], denoted by ∩© and defined as:

mΩ
1 ∩©mΩ

2 (A) =
∑

B∩C=A

mΩ
1 (B)mΩ

2 (C) (5)

2. Dempster’s rule of combination: This combination rule is a normalized version
of the conjunctive rule [5]. It is denoted by ⊕ and defined as:

mΩ
1 ⊕ mΩ

2 (A) =

{
mΩ

1 ∩©mΩ
2 (A)

1−mΩ
1 ∩©mΩ

2 (∅) if A �= ∅,∀A ⊆ Ω,

0 otherwise.
(6)

Decision Process
The belief function framework provides numerous solutions to make decision.
Within the Transferable Belief Model (TBM) [22], the decision process is per-
formed at the pignistic level where bba′s are transformed into the pignistic prob-
abilities denoted by BetP and defined as:

BetP (B) =
∑

A⊆Ω

|A ∩ B|
|A|

mΩ(A)
(1 − mΩ(∅))

∀ B ∈ Ω (7)
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2.2 Evidential K-Nearest Neighbors

The Evidential K-Nearest Neighbors (EKNN) [6] is one of the best known clas-
sification methods based in the belief function framework. It performs the clas-
sification over the basic crisp KNN method thanks to its ability to offer a credal
classification of the different objects. This credal partition provides a richer infor-
mation content of the classifier’s output.

Notations

– Ω = {C1, C2, ..., CN}: The frame of discernment containing the N possible
classes of the problem.

– Xi = {X1,X2, ...,Xm}: The object Xi belonging to the set of m distinct
instances in the problem.

– A new instance X to be classified.
– NK(X): The set of the K-Nearest Neighbors of X.

EKNN Method
The main objective of the EKNN is to classify a new object X based on the
information given by the training set. A new instance X to be classified must
be allocated to one class of the NK(X) founded on the selected neighbors. Nev-
ertheless, the knowledge that a neighbor Xi belongs to class Cq may be deemed
d(X,Xi) as a piece of evidence that raises the belief that the object X to be
classified belongs to the class Cq. For this reason, the EKNN technique deals
with this fact and treats each neighbor as a piece of evidence that support some
hypotheses about the class of the pattern X to be classified. In fact, the more
the distance between X and Xi is reduces, the more the evidence is strong. This
evidence can be illustrated by a simple support function with a bba such that:

mX,Xi
({Cq}) = α0 exp−(γ2

q d(X,Xi)
2) (8)

mX,Xi
(Ω) = 1 − α0 exp−(γ2

q d(X,Xi)
2) (9)

Where:

– α0 is a constant that has been fixed in 0.95.
– d(X,Xi) represents the Euclidean distance between the instance to be clas-

sified and the other instances in the training set.
– γq assigned to each class Cq has been defined as a positive parameter. It

represents the inverse of the mean distance between all the training instances
belonging to the class Cq.

After the generation of the different bba′s by the K-nearest neighbors, they can
be combined through the Dempster combination rule as follows:

mX = mX,X1 ⊕ ... ⊕ mX,XK
(10)

where {1, ...,K} is the set including the indexes of the K-Nearest Neighbors.
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3 Proposed Method

The idea behind our method is to take into account the uncertain aspect in
order to improve detecting the group spammer reviewers. For that, we propose a
novel approach based on FIM techniques to generate candidate groups, different
group spammers indicators and we rely on the Evidential K-nearest neighbors
which is famous classifier under the belief function framework. In the remainder
of this section, we will elucidate the different steps of our proposed approach;
in the first step we will construct the different group spammers from data and
we model the group spammers indicators which will be used as features in our
method. In the second step, we detail the applying of the EKNN in which we
present the initialization and learning phase. Finally, we distinguish between the
group spammers and the innocent reviewers through the classification phase.

3.1 Step1: Pre-processing Phase

Spammers who get paid to post fake reviews can not just writing one review
for a single product because they would not make enough money that way.
Rather, they post various reviews for many products. That’s why, we use Fre-
quent pattern mining, that can find them working together on multiple products,
to construct candidate spammer groups. Then, we elucidate the different group
spammers indicators [14] which can control the candidate spammers behaviors
and to find out whether these groups behave strangely.

1- Construction of Spammer Groups From Data
To create a dataset that holds sufficient colluders for evaluation, the first task is
to search for the places where colluders would probably be found. A good way to
achieve this is to use frequent itemset mining (FIM). In such context, reviewer
IDs are regarded as items, each transaction is the set of reviewer IDs who have
reviewed a particular product.

Through FIM, groups of reviewers who have reviewed multiple common prod-
ucts can be found. Here we use maximal frequent itemset mining (MFIM) to dis-
cover groups with maximal size since we focus on the worst spamming activities
in our dataset.

2-Group Spammer Indicators
In our method, we rely on these different group spammers indicators:

– Time Window (TW): Reviewers in a spammer group usually work together
in order to post fake reviews for a target product in a short time interval.

– Group Deviation (GD): Members of group spammers are generally give either
very high (5*) or very low (1*) ratings to the products. The same products
typically are also reviewed by other genuine reviewers. Group spammers gen-
erally deviate in their ratings by a significant amount from the mean review
ratings score. Therefore, the bigger the deviation, the worse the group is.

– Group Content Similarity (GCS): Members of group spammers usually copy
reviews among themselves. Therefore, the products or the services which are
victims of such group spamming can have many reviews with similar content.
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– Member Content Similarity (MCS): The members of a group may not know
one another. Each of them just copy or modify his/her own previous reviews.
If multiple members of the group do this, the group is more likely to be a
spammer group.

– Early Time Frame (ETF): One damaging group spam activity is to strike right
after a product is launched or is made available for reviewing. The purpose
is to make a big impact and to take control of the sentiment on the product.

– Ratio of Group Size (RGS): The ratio of the group size and the total number
of reviewers for the product is also a good indicator of spamming. In one
extreme (the worst case), the group members are the only reviewers of the
product, which is very damaging.

– Group Size (GS): The group size itself also tells something quite interesting. If
a group is large, then the probability of members happening to be in the group
by chance is small. Furthermore, the larger the group, the more devastating
is its effect.

– Support Count (SC): Support count is the number of products for which the
group has worked on together. If a group has a very high support count, it is
clearly alarming.

3.2 Step2: Evidential KNN Application

After applying the FIM algorithm with fixed parameter settings, we note that
the suspicious groups are found to be highly similar with each other in term
of members, reviewed product also similar ratings. This is because of the dense
reviewer product bipartite graph that can decomposed into many small pieces
of fully connected sub-graphs (groups). This may have many overlapped nodes
(members and products) and such small sub-graphs may dilute the effectiveness
of some indicators. However, being used properly, these tiny groups may be
favorable to detect colluders in a novel way.

That’s why, we propose to rely on the Evidential KNN-based method to
detect colluders by utilizing the similarities between such groups. Let {gj} j =
1..m a set of groups and {Ri} i = 1..n be a set of reviewers with each associated
with an vector ai of attributes which are the different group spammer indicators
mentioned above. Note that each reviewer may belong to multiple groups.

By modeling the colluder detection problem as a binary classification problem
our goal is to assign each reviewer Ri with a class label Ω = {S, S̄} where S
represents the class of the spammers reviewers and S̄ contains the class of the
not spammers (innocent) reviewers.

The idea is that given a set of groups, the reviewers who belong to “similar”
groups may be more likely to have the same class labels. Thus the class label of
a reviewer Ri can be determined commonly by a set of k reviewers who belong
to groups most “similar” to the groups Ri belongs to.

1-Initialization and Learning Phase
When applying the Evidential K-NN classifier, we start by initializing the param-
eters α0 et γ0 to be used in the learning phase. The α0 is fixed to 0.95, as men-
tioned in the EKNN algorithm [6]. To ensure the γIi computation performance,
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first of all we must find reviewers belonging to different groups are having sepa-
rately exclusive group spammers indicators. We measure the pairwise similarity
of two groups which consists of three measurements as follows:

Common Member Ratio
It measures the Jaccard similarity of the sets of members of two groups:

Scm =
|Mi ∩ Mj |
|Mi ∪ Mj | (11)

Where Mi and Mj are the member sets of groups gi and gj .

Common Product Ratio
It is computed as the sum of the number of products (hotel/ restaurant) of
the same brand reviewed by each group, divided by the sum of the number of
products reviewed by each group:

Scp = maxb∈B
(Pb,i) + (Pb,j)

Pi + Pj
(12)

where B is the set of common brands reviewed by both groups gi and gj . Pb,i

(respectively Pb,j) is the set of the products with brand b reviewed by group gi

(respectively gj), and Pi (respectively Pj) is the set of the products reviewed by
group gi (respectively gj).

Common Rating Deviation
It computes the deviation between the average ratings given to the products of
common restaurant/hotel reviewed by two groups:

Scrd =
1

1 +
√

1
|B|

∑
b∈B(r̄b,i − r̄b,j)2

(13)

where r̄b,i (respectively r̄b,j) is the average rating given to the products with
brand b by group gi (respectively gj). Accordingly, the pairwise similarity of two
groups is defined as the weighted average of the above components:

Sgi,j =
wkSk∑
wkSk

(14)

where Sk ∈ {Scp, Scrd, Scm} and wk is a non negative weight for Sk where∑
k wk = 1.

After defining the pairwise similarity of two groups, the pairwise similarity of
two reviewers is computed by taking the average over the pairwise similarity of
each pair of their respective groups:

d(Ri, Rj) =

∑
k∈Gi

∑
l∈Gj

Sgk,l

|Gi||Gj | (15)

where Gi and Gj are the set of groups that have reviewer Ri and Rj respec-
tively. Then, we must select a set of reviewers and for each reviewer Rj in the
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database, we measure its distance with the target reviewer Ri. Given a target
reviewer, we have to select its K-most similar neighbors, by choosing only the
K reviewers having the smallest distances values that is calculated through the
pairwise similarity of two reviewers calculated above.

2-Classification Phase
In this part, we aim to classify the target reviewer Ri into spammer or not where
our frame of discernment Ω = {S, S̄}.

The bba’s Generation
Each reviewer RI provides a piece of evidence that represents our belief about the
class that he belongs. However, this information does not offer certain knowledge
about the class. In the belief function framework, this case is represented by
simple support functions, where only a part of belief is assigned to ωi ∈ Ω and
the rest is committed to Ω. Consequently, we obtain bba as follows:

mRi,Rj
({ωi}) = αRi

(16)

mRi,Rj
(Ω) = 1 − αRi

(17)

Where Ri is the target reviewer and Rj is its similar reviewer that j = {1..K},
αRi

= α0 exp(−γIid(Ri,Rj)), α0 and γIi are two parameters and d(Ri, Rj) is the
distance between the two reviewers Ri and Rj measured above.

In our situation, each neighbor of the target reviewer has two possible
hypotheses. It can be near to a spammer reviewer in which his the commit-
ted belief is assigned to the spammer class S and the rest is given Ω. On the
contrary, it can be similar to an innocent reviewer where the committed belief
is allocated to the not spammer class S̄ and the rest to the whole frame Ω. We
treat the K-most similar reviewers independently where each one is represented
by a bba. Hence, K various bba’s can be created for each reviewer.

The bba’s Combination
After the bba’s generation for each reviewer Ri, we detail how to aggregate these
bba’s in order to get the final belief concerning the reviewer classification. We
combine these bba’s through the Dempster combination rule to obtain the whole
bba that represent the evidence of the K-nearest Neighbors regarding the class
of the reviewer. Hence, this global mass function m is calculated as such:

mRi
= mRi,R1 ⊕ mRi,R2 ⊕ .... ⊕ mRi,RK

(18)

Decision Making
In order to determine the membership of the reviewer Ri to one of the classes of
Ω, we apply the pignistic probability BetP . Therefore, the classification decision
is made either the reviewer is a spammer or innocent. For this, we select the class
that has the grater value of BetP as the final classification.
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4 Experimentation and Results

The evaluation in the fake reviews detection problem was always a challenging
issue due to the unavailability of the true real world growth data and variability
of the features also the classification methods used by the different related works
which can lead to unsafe comparison in this field.

Data Description
In order to test our method performance, we use two datasets collected from
yelp.com. These datasets represent the more complete, largest, the more diversi-
fied and general purpose labeled datasets that are available today for the spam
review detection field. They are labeled through the classification based on the
yelp filter which has been used in various previous works [2,10,16,19,26] as
ground truth in favor of its efficient detection algorithm based on experts judg-
ment and on various behavioral features. Table 1 introduces the datasets content
where the percentages indicate the filtered fake reviews (not recommended) also
the spammers reviewers.

The YelpNYC dataset contains reviews of restaurants located in New York
City; the Zip dataset is bigger than the YelpNYC datasets, since it includes
businesses in different regions of the U.S., such that New Jersey, New York,
Vermont and Connecticut. The strong points of these datasets are:

– The high number of reviews per user, which facilities to modeling of the
behavioral features of each reviewer.

– The divers kinds of entities reviewed, i.e., hotels and restaurants.
– Above all, the datasets hold just basic information, such as the content, label,

rating, and date of each review, connected to the reviewer who generated
them. Thanks to the over-specific information, we can generalize the proposed
method to different review sites.

Table 1. Datasets description

Datasets Reviews (filtered %) Reviewers (Spammer %) Services (Restaurant or hotel)

YelpZip 608,598 (13.22%) 260,277 (23.91%) 5,044

YelpNYC 359,052 (10.27%) 160,225 (17.79%) 923

Evaluation Criteria
We rely on the three following criteria to evaluate our method performance:
Accuracy, precision and recall, they can be defined as Eqs. 19, 20, 21 respectively
where TP , TN , FP , FN denote True Positive, True Negative, False Positive
and False Negative respectively.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(19)

http://www.yelp.com
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Precision =
TP

(TP + FP )
(20)

Recall =
TP

(TP + FN)
(21)

Experimental Results
First of all, we apply the frequent itemset mining FIM, where I is the set of
all reviewer ids in our two datasets. Each transaction is the set of the reviewer
ids who have reviewed a particular hotel or restaurant. Thus, each hotel or
restaurant generates a transaction of reviewer ids. By mining frequent itemsets,
we find groups of reviewers who have reviewed multiple restaurants or hotels
together. Then, we rely on the Maximal Frequent Itemset Mining (MFIM) to
spot groups with maximal size in order to focus on the worst spamming activities.
In the YelpZip dataset we found 74,364 candidate groups and 50,050 candidate
groups for the YelpNYC dataset. We use k = 3 for our proposed approach.

Trying to ensure a safe comparison, we compare our method named Evi-
dential Group Spammers Detection (EGSD) with two previous works in which
authors rely on the FIM technique to generate the candidate groups and almost
the same features used in our work. The first method introduced in [13] Detect-
ing Group Review Spam (DGRS) used the FIM to generate candidate groups
then computed the different indicators value and use the SVM rank algorithm to
rank them, the other method proposed in [14] we focus on the Ranking Group
Spam algorithm (GSRank) which rely on an iterative algorithm to effectively
rank the group spammers. The results are reported in the Table 2.

Table 2. Comparative results

Evaluation Criteria Accuracy Precision Recall

Methods DGRS GSRank EGSD DGRS GSRank EGSD DGRS GSRank EGSD

YelpZip 65% 78% 85% 70% 76% 83.5% 71% 74% 86%

YelpNYC 60% 74% 84.3% 62% 76.5% 83.55% 61.3% 77.2% 85%

Our method achieves the best performance detection according to accuracy,
precision and recall over-passing the compared methods. We record at best an
accuracy improvement over 10% in both YelpZip and YelpNYC data-sets com-
pared to DGRS and over 7% compared to GSRank.

5 Conclusion

In this work, we tackle the group spammer review detection problem which
become a real issue to the online rating systems and we propose a novel app-
roach that aims to distinguish between the spammer and the innocent reviewers
while taking into account the uncertainty in the different suspicious behavioral
group spammer indicators. Experimental study on a real-world datasets against
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several state-of-the-art approaches verifies the effectiveness and efficiency of our
method. Our proposed approach can be useful for different reviews sites in vari-
ous fields. As future work, we aim to introduce other features to further improve
the detection.
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Abstract. Dealing with uncertainty has always been a challenging topic in the
area of knowledge representation. Nowadays, as the internet provides a vast
platform for knowledge exploitation, the need becomes even more imminent.
The kind of uncertainty encountered in most of these cases as well as its dis-
tributed nature make Dempster-Shafer (D-S) Theory to be an appropriate
framework for its representation. However, we have to face the drawback of the
computation burden of Dempster’s rule of combination due to its combinatorial
behavior. Constraint Programming (CP) has proved to be an efficient tool in
cases where results have to satisfy some specified properties and pruning of the
computation space can be achieved. As D-S theory measures’ computation
fulfills this requirement, CP seems a promising framework to employ for this
purpose. In this paper, we present our approach to use CP to compute the belief
and plausibility measures of D-S Theory and Dempster’s rule of combination as
well as the results of the effort. As it was expected, the results are quite
promising and in many cases impressive.

Keywords: Dempster-Shafer theory � Uncertainty � Constraint Programming �
ECLiPSe prolog

1 Introduction

In the area of Knowledge Representation there are many frameworks whose purpose is
to model the raw information available so as to create a meaningful and useful inference.
Unfortunately, knowledge is not always expressed if terms of indisputable facts. It can
be either uncertain or vague or both. Uncertainty may be the product of incomplete or
unreliable knowledge and it raises a significant confusion as to how it should be treated.
A lot of research has been done in the area and different approaches have been sug-
gested. Efforts combine results from computer science, statistics, game theory and
philosophy [1]. These include, but are not limited to, probability, possibility theory [2],
probabilistic reasoning such as Bayesian Networks [3], Non-monotonic reasoning [4]
and Dempster-Shafer (D-S) theory [1, 5–7]. In case of imprecise or vague information,
its modeling has been somehow interrelated with Fuzzy Sets and Fuzzy Logic [8, 9].

The Internet, the World Wide Web (WWW) and the ongoing evolution of the
Semantic Web (SW) [10], provide an enormous information store for knowledge
extraction and exploitation. The need for an efficient framework able to reason under
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uncertainty is more urgent than ever. Apart from the above mentioned problems,
frequently missing information, the size of the available data and its distributed nature
provide some special characteristics. As an example, consider the case of the online
traveling sites which provide information about hotels and a user’s need to be provided
with some accommodation suggestion according to some personal criteria. Hotel
information is distributed among the sites, information is stored heterogeneously and
some of it may be missing from some sites. Regarding dealing with the uncertainty in
the Web, a detailed discussion can be found in [11].

Dempster-Shafer (D-S) theory, also referred to as the theory of belief functions or
evidence theory is able to deal with ignorance and missing information (i.e. epistemic
uncertainty). It is a generalization of the Bayesian theory of subjective probabilities and
as such it allows for a greater degree of flexibility. For compositionality purposes, it
also offers a rule for combining evidence from different independent sources [12]. The
Theory has already been adopted in WWW or SW environments even as a tool for
inexact knowledge modelling [13–17]. Some criticism has been done regarding when
to use Dempster’s Rule of Combination, as it might produce counter intuitive results in
some cases [18, 19]. However, the Theory is widely used, especially in practical
situations relative to data fusion [20]. According to [21], whether Dempster’s rule of
combination is appropriate depends on the problem’s characteristics. Although D-S
theory is a valuable framework for handling uncertainty with the current traits of
knowledge representation, the computation of Dempster’s rule puts a significant barrier
to the theory being used more in practice because of its high complexity. It has been
proved that computing Dempster’s rule of combination is a #P-complete problem [22]
and so it cannot be performed in an acceptable time when the data grow significantly,
although methods of computing Dempster’s rule in a more efficient way have been
proposed [23]. To overcome this obstacle of complexity, many researchers have
resorted to approximation algorithms [23–27]. In general, their efforts fall into two
categories. The first one contains algorithms that make use of Monte Carlo, or similar
random methodologies, to compute a solution [23]. The second category [24–27]
consists of algorithms which alter the input data, in order to create an easier to compute
problem. This is carried out by disregarding facts that have little evidence.

In order to avoid losing accuracy and be able to use Dempster’s Rule of Combi-
nation as is, our approach to the complexity of the rule is to use Constraint Pro-
gramming for its computation. Constraint programming (CP) [28] is a programming
paradigm where relationships between the variables of the problem’s computational
space are stated in the form of constraints. In the case of Dempster’s Rule of Com-
bination, we utilize constraints to compute only the combinations that have a non-
empty intersection (we can extract the normalization factor out of these). CP is also
used to avoid evaluating redundant combinations, when computing belief and plausi-
bility of a specific set by setting constrains on subset and non-empty intersection
relationships, respectively. In order to evaluate the method, we employed ECLiPSe
Prolog [29] using its set constraints solver [30, 31]. We created a program that performs
Dempster’s rule of combination on any number of mass functions using constraints and
we compared it with a generate-and-test implementation. The latter evaluates every
possible focal point combination. For comparison reasons, both programs ran on a
number of random test cases that we created by using a variable number of: i) mass
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functions, ii) focal points per mass function, and iii) elements of the Universe. The
constrain-and-generate program outperformed the generate-and-test one in the tests.
As expected, the time the constraint program needed was relative to the number of
combinations which have a non-empty intersection, whereas the generate-and-test
program’s time was related to the total number of combinations. When computing the
belief (or plausibility) for a set A, the time needed by the constraint program was
relative to the number of combinations whose intersection is a subset of (or intersects
with) A. Thus, for the constraint-and-generate method no redundant sets are generated.

It is worth mentioning that Constraint Systems (CS), the formalism that models
constraint problems, and D-S theory have already been related since many years ago.
CS have been employed to model the uncertainty expressed by belief functions in a
variety of early works, for instance [32]. In addition, recently, Constraint Satisfaction
Problems (CSPs) have been extended with uncertainty. In [33], a unifying CSP
extension based on the D-S theory is presented that supports uncertainty, soft and
prioritized constraints and preferences over the solutions.

In this paper, we present our approach in using CP to reduce the computation time
for D-S theory measures, namely belief and plausibility, as well as Dempster’s rule of
combination and summarize our results. The paper is structured as follows. The nec-
essary background on D-S theory will be recalled in Sect. 2. In Sect. 3 the complexity
of Dempster’s rule as well as related work will be discussed. A brief description of
Constraint Programming and Logic Programming will be given in Sect. 4, as constraint
programming within logic programming is used in our prototype implementation. Our
approach, its implementation and test results will be presented in Sect. 5. Section 6 will
then conclude this paper.

2 Dempster Shafer Theory

Dempster-Shafer (D-S) Theory is a framework designed for reasoning under uncer-
tainty, which allows to combine evidence from different independent sources. The latter
is achieved by Dempster’s rule of combination. This rule produces common shared
belief between multiple sources and distributes non-shared belief through a normal-
ization factor. Dempster’s rule of combination is a powerful and useful tool and one of
the reasons why the D-S theory has been so widely spread in many areas in computer
science, from artificial intelligence to databases as it allows the Theory to deal with
distributed sources.

D-S theory considers a universe, U, of mutually exclusive events. A basic mass
function, m, assigns subjective probabilities to subsets of U. Then, on top of m, belief
and plausibility functions are defined for any subset of U assigning lower and upper
likelihoods to each of them. Composition of different mass functions on the same
universe is achieved using Dempster’s Rule of Combination considering independent
sources. More formally, these measures are defined as follows.
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2.1 Formal Definition

Let U be the Universe, i.e. the set containing all possible states of a system under
consideration. The power set 2U of U, is the set of all subsets of U, including the empty
set Ø.

Mass Function: A mass function (also called basic probability assignment or basic
belief assignment) is the most fundamental function for assigning degrees of belief to a
set of one or more hypotheses. Formally, a mass function m is a function from 2U to
½0; 1�: m : 2U �!½0; 1� with the following properties:

1. The mass of the empty set is equal to zero mð£Þ ¼ 0, and
2. The masses of the elements of the power set must sum to a total of one.P

A22U
mðAÞ ¼ 1

Belief Function: The belief (also known as support) of a set A 2 2U , denoted by belðAÞ
expresses the total amount of belief committed to A and is defined as:

belðAÞ ¼
X

B�A

mðBÞ; 8A�U:

Plausibility Function: The plausibility for a set A 2 2U , denoted by plðAÞ expresses the
amount of belief not committed to the complement of A and thus declares how plau-
sible A is. It is computed as:

plðAÞ ¼
X

B\A6¼£

mðBÞ; 8A�U:

Dempster’s Rule of Combination: The theory of evidence also handles the problem of
how to combine evidence from different independent sources.

Let m1;m2; . . .;mn be mass functions defined over the same Universe U. Then
using Dempster’s rule of combination we can compute a new mass function that
incorporates the evidence of m1;m2; . . .;mn. We use � to denote the operator of
Dempster’s rule of combination. Then the combination of m1;m2; . . .;mn is called the
joint mass m1;2;::;n � m1 � m2 � . . .� mn and is defined as:

m1 � m2 � . . .� mn ¼ �n
i¼1

miðAÞ ¼ 1
1�K

P

B1;::;Bnj \ n
i¼1Bi¼A

m1ðB1Þ � . . . � mnðBnÞ; 8A�U;A 6¼ £

where,

K ¼
X

B1;::;Bnj \ n
i¼1Bi¼£

m1ðB1Þ � . . . � mnðBnÞ:

Dempster-Shafer Theory 357



Here, K is a normalization constant that accounts for the products of mass values
corresponding to the empty intersections of focal points. It can be considered as a
measure of conflict between the mass functions.

3 Complexity of Dempster’s Rule of Combination
– Approximation Algorithms

Dempster’s Rule of Combination has exponential complexity. In [22], it was shown
that evaluating the rule is a #P-complete problem.

To handle the complexity problem, many have resorted to approximation algo-
rithms to compute the rule. An approximation algorithm is an efficient algorithm that
finds approximate solutions for the desired problem with provable guarantees on the
distance of the evaluated solution to the exact one. Towards this, a lot of work has been
done into trying to reduce the size of input (i.e. the number of focal points of each mass
function), with some of the most well-known methods being the Bayesian approxi-
mation [24], the k-l-x method [25], the summarization method [26], and the D1
Approximation [27]. There has also been effort into developing algorithms to directly
compute an approximate value for Dempster’s rule’s result using Monte Carlo models
and/or Markov Chain models [23].

When a lot of information is available, i.e. the size of the problem is big, we can
resort to approximation algorithms, as a loss of accuracy can be tolerated, for the sake
of a significant reduction in time needed for the computation. On the other hand, when
we have only a few sources of evidence to combine, and/or a small number of focal
points per mass function, an approximation can be deceptive, thus we have to compute
the exact solution.

To give a better understanding of the problem, we can summarize it as follows.
Given a frame of discernment U of size |U|, a mass function m can have up to
2|U| (2|U| − 1 to be precise, as the empty set cannot be a focal point) focal points. Given
a mass function m, the computation of the belief, or the plausibility function for m is
linear to the number of focal points of m (as computation of sums). Note, however, that
the combination of two mass functions through Dempster’s rule of combination
requires the computation of up to 22|U| intersections. To generalize, let n be the number

of mass functions m1; . . .;mn, the computation of the joint mass m1;...;n ¼ �n
i¼11

mi needs

up to 2n jUj intersections to be computed. Thus the worst case complexity of Dempster’s
rule is Oð2n jUjÞ. To be precise, say we know the number of focal elements of each mass
function, i.e. let q1,…,qn- be the number of focal points of each mass function
m1; . . .;mn respectively, then the complexity of the rule of combination is HðQÞ, where
Q is the product Q ¼ q1 � q2 � . . . � qn.
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When Constraint Programming is involved while computing Dempster’s rule of
combination, we consider only the number of combinations that result in a desired non-
empty set. Let A be a set and QA the number of combinations whose intersection is a
subset of A, then a method utilizing Constraint Programming would need time pro-
portional to QA, where obviously QA < Q, where Q as above.

In the following section we shall give a short description of constraint programming
as well as logic programming to allow a better understanding of the approach that we
follow.

4 Constraint Programming and Logic Programming

Constraint Programming (CP) [28] is a powerful paradigm that can be used to solve a
variety of problems referred to as Constraint Satisfaction Problems (CSP). In CP a
declarative description of the problem is given by the programmer and a constraint
solver is used to find an acceptable solution to it. More precisely, a CSP can be
described as a set of Variables, each associated with a domain of values, and a set of
Constraints over subsets of these Variables. A solution to the problem is an assignment
of values to the Variables so that all Constraints are satisfied. Constraint Programming
uses constraint propagation to reduce the search space allowing for solving the problem
faster. However, the time that the constraint propagation process needs must be taken
into account. We are concerned with CSPs where Variables are sets of integers. It is
shown in [34] that a CSP with Set Variables with at least one binary constraint (i.e. a
constraint that involves two Variables) has exponential complexity.

Logic Programming [35], as the name suggests is based on the idea “that logic can
be used as a programming language”. A logic program (i.e. a program written in a logic
programming language) is a sequence of sentences in logical form, each of which
expresses a fact or a rule for a given domain. More precisely, a logic program consists
of clauses named Horn Clauses. Horn clauses can have the form of a fact, e.g. likes
(mary,john), denoting that “mary likes john”, or a rule, e.g. parent(x,y)^male(x)!
father(x,y), denoting that for any unknown individuals x and y, in case x is parent of
y and x is male then x is father of y. Horn clauses can also have the form of a goal, e.g.
father(x,mary)!. In this case, the goal is said to be satisfied if there is an individual
x that is father of mary. In particular, Prolog [36] is a practical logic programming
language based on Horn clauses.

Constraint Programming can be hosted by a Logic Programming language. Then it
is referred to as Constraint Logic Programming [37, 38].

We will be working with ECLiPSe Prolog, a software system implementing Prolog
that also offers libraries for Constraint Programming. We will be using ECLiPSe’s ic
library that supports finite domain constraints, as well as the ic_sets library which
implements constraints over the domain of finite sets of integers and cooperates with ic.
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The constraint propagation algorithm that ECLiPSe’s solver uses for Set Variables has
a complexity O(ld + (e − l)dd′), where l is the number of inclusion constraints, e the
number of total constraints, d the sum of cardinalities of the largest domain bounds and
d’ their difference [30]. More about ECLiPSe Prolog can be found in [29].

5 Constraint Programming for Computing Dempster’s Rule
of Combination

To face the complexity problem that Dempster’s Rule of Combination introduces, we
use Constraint Programming to perform the computation. The idea behind using CP is
to reduce the number of computations needed to evaluate the Rule to the ones that are
absolutely necessary. Constraint Logic Programming (CLP) has been chosen for the
sake of simplicity and prototype experimentation. The Complexity of the Rule is
directly related to the number of focal points each mass function has, as we have to
evaluate all combinations of focal points. Each combination of focal points might either
intersect to a set or not. By using Constraint Programming, we enumerate only those
combinations of focal points whose intersection is not empty. We know beforehand that
this method does not improve the computational class of the Rule, as in worst case, all
combinations intersect, but nevertheless it might reduce the number of computations
needed, and thus the time needed, to compute Dempster’s Rule of Combination.

In addition, we use Constraint Programming to compute belief/plausibility for a
given set. Recall that belief of a set A�U, where U is the Universe, is the sum of the
mass values of all subsets of A. When computing the belief of a set A, given mass
functions m1; . . .;mn, we use constraints so that only the desired combinations of focal
points, i.e. those that intersect to a subset of A, are created. In the general case, we need
also to compute the normalization constant, K, in order to normalize the value, which
means that every intersecting combination (or every non-intersecting combination) will
have to be evaluated anyway, and thus the number of combinations to be evaluated is
not reduced. However, even in the special case where we know that K = 0, that is there
is no conflict between the different sources of evidence, we trust that constraints will be
proved useful for computing the belief of a set A.

5.1 Implementation

We implemented both algorithms, i.e. the generate-and-test and the constrain-and-
generate, in ECLiPSe Prolog, so that we accomplish a more fair time comparison. The
generate-and-test algorithm evaluates every possible combination of focal points and,
then, the unnecessary results are discarded. The constrain-and-generate one exploits
CP and constraints are set in order to generate only combinations with the desired
properties. In the following figures, the fundamental predicates for both algorithms are
presented (Figs. 1 and 2).
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The predicate compute/3 is used to compute every combination of focal points
whose intersection is a non-empty subset of Hyper for both the generate-and-test and
the constrain-and-generate algorithms. This predicate is called while computing the
belief/plausibility of a desired set, as well as the joint mass.

5.2 Test Results

In order to compare both methods and examine whether the use of Constraint Pro-
gramming reduces the time needed for the computation we created a number of random
test cases on which we ran both programs. When creating random sets, we experi-
mented with different values of the following parameters: i) the cardinality of Universe,
ii) the number of mass functions, and iii) the number of focal points per mass function
(for simplicity this is the same for every mass function). Both methods were run on
each test case and the time needed for the execution was recorded.

The values of many parameters were highly influenced from values used in [8].
A Universe of size jUj ¼ 20 was assumed as a basis for most of the tests. As focal
points are created at random, choosing a small Universe results in mass functions
sharing the same focal points (high “density”), whereas picking a large Universe will
result in mass functions with different focal points (low “density”). We found that the
value jUj ¼ 20 keeps a good balance between a “sparse” and a “dense” case.

Fig. 1. generate-and-test

Fig. 2. constrain-and-generate
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In the following, the first part is concerned with comparing the two methods for
evaluating Dempster’s Rule of Combination for every possible set so as to compute the
joint mass. Next, we focus on computing belief for a specific set.

Computing the Joint Mass
To demonstrate the time gain of the constrain-and-generate algorithm as discussed in
Sect. 3, we created a number of random test cases with fixed parameters and recorded
the number of combinations that intersect and time needed for the computation for both
the generate-and-test, and the constrain-and-generate algorithms. Notice that the time
needed for the constrain-and-generate algorithm is proportional to the number of
intersecting combinations. On the other hand, the generate-and-test algorithm always
evaluates all possible combinations and its run-time is unrelated to the number of
intersecting combinations, but depends on the total number of possible combinations.
Some sample test cases are presented below (Figs. 3, 4, 5 and Tables 1, 2).

Table 1. |U| = 20, number of focal points per
mass function = 3

Number of
mass
functions

generate-
and-test
(s)

constrain-
and-generate
(s)

10 0.58 0.22
11 1.77 1.28
12 5.39 0.52
13 8.45 0.20
14 21.55 0.66
15 113.41 0.86
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constrain-and-generate

Fig. 3. |U| = 20, number of focal points per
mass function = 3

Table 2. |U| = 20, number of mass
functions = 10

Number of
focal points
per mass
function

generate-
and-test
(s)

constrain-
and-
generate
(s)

3 0.58 0.22
4 7.94 4.97
5 66.70 8.23
6 249.36 56.89
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Fig. 4. |U| = 20, number of mass functions = 10
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Table 3 does not contain time results for the generate-and-test algorithm as it did
not execute within an acceptable time.

Computing Belief
In this section, we discuss the results of the algorithms regarding computing belief of a
specific set. Note that, similar results hold for computing plausibility, as we can
compute plausibility (resp. belief) for a set by computing the belief (resp. plausibility)
of its complement. Recall that when computing the belief of a set the normalization
factor K must be evaluated in order to normalize the result. Note that, computing K is
of the same complexity as computing the joint mass and the benefit of using CP in this
case was discussed in the previous paragraph. So, we considered a case where K ¼ 0 in
order to examine the extra benefit by using CP in the case of belief evaluation.

We worked as before, creating random test cases so as to compare both methods.
The number of all possible combinations is qn, where n is the number of mass func-
tions, and q is the number of focal points for each mass function. We have already
mentioned that the generate-and-test (g-t) algorithm has to evaluate all qn combinations
and then discard those that do not intersect to the desired set, i.e. a subset of the set
under consideration, whereas the constrain-and-generate (c-g) one sets constraints to
be satisfied, so as to avoid evaluating every possible combination. We tested with
different sizes of Universe, number of focal points per mass function, and number of
mass functions. The run-time for both algorithms and the number of combinations that
had to be evaluated for each set were recorded. The last set in each trial was the
Universe itself. In all test cases for sets different from the Universe, improvement was
noticed on run-time. A sample result is shown below.
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22000 32000 42000 52000
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Number of intersec ng 
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constrain-and-generate

Fig. 5. |U| = 20, number of mass func-
tions = 5, number of focal points per mass
function = 10

Table 3. |U| = 20, number of mass func-
tions = 5, number of focal points per mass
function = 10

Possible
combinations

Intersecting
combinations

constrain-
and-
generate
(s)

100000 22240 2.17
25204 2.36
36753 3.05
39085 3.16
41821 3.84
48379 3.98
53184 4.68
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Table 4 and Fig. 6 highlight the importance of constraints for computing belief for
sets that are smaller than the Universe, or, otherwise stated, sets that are formed out by
fewer combinations than the Universe.

To sum up, from the test results verified that Constraint Programming can help to
reduce the time needed for computing Dempster’s Rule of Combination whether we
wish to compute the joint mass or belief/plausibility for a set. How much we can benefit
from CP, depends deeply on the number of intersections that must be evaluated, which,
unfortunately, is unknown prior to the computation. In general, the constrain-and-
generate’s performance is remarkable in cases where empty intersections exist, as it
executes the calculation much faster than the generate-and-test method.

6 Conclusions and Future Work

Dempster-Shafer theory remains one of the most expressive frameworks for reasoning
under uncertainty. However, the high complexity of Dempster’s rule of combination
imposes a significant restriction to its application. This becomes worse, considering the
tremendous amount of data available. The method that we proposed to overcome this
problem makes use of Constraint Programming to optimize the evaluation of Demp-
ster’s rule by computing only the appropriate combinations. The conclusion that can be

Table 4. |U| = 20, number of mass func-
tions = 13, number of focal points per mass
function = 3

Set Combinations g-t (s) c-g (s)

[1, 7, 9] 0

4.438

0.156

[4, 5, 9, 10] 14848 1.422

[2, 3, 6, 9, 10] 15360 1.625

[2, 6, 8] 15888 1.828

[2, 4–7, 10] 16128 1.719

[4, 8–10] 30736 3.313

[1, 2, 4, 5, 8–10] 31488 3

[2, 3, 7, 8, 10] 31788 3.5

[1, 3, 4, 6–8, 10] 31808 3.234

[1–8, 10] 32256 4.391

U 32768 4.438
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Fig. 6. |U| = 20, number of mass func-
tions = 13, number of focal points per mass
function = 3
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drawn from the empirical testing that we performed is that the constrain-and-generate
algorithm utilizing Constraint Programming needs considerable less time to compute
the joint mass, or belief/plausibility of a specific set, than the generate-and-test algo-
rithm. Therefore, such a method allows the computation of Dempster’s rule of com-
bination to be performed in an acceptable time even for more complex cases.

However, concerning the implementation platform, we have to make some
remarks. ECLiPSe Prolog is one of the first systems to embed Constraint Programming
libraries. While working with the ic_sets library, though, we encountered some
anomalies. In cases where the combinations that have to be evaluated are significantly
large, even the generation part of the constrain-and-generate method takes too much
time, even more than the time needed by the simple generate-and-test. As far as we
know, this could be an overhead of the library itself, or the way it handles some
constraints.

As we have already pointed out, Constraint Programming allowed us to avoid
generating non intersecting combinations. Notice that we can compute the normal-
ization factor, K, by generating either all intersecting combinations or all non-
intersecting ones. An idea that we would like to exploit is the concurrent computation
of the intersecting and non-intersecting combinations in order to evaluate the nor-
malization factor. This approach should ensure the fastest termination in all cases.

As mentioned, our implementation provides us with a prototype experimentation. It
would be worthwhile to compare the use of constraint programming with approxi-
mation methods using data from a real-life application so as the comparison depicts the
benefit we would gain in real world. Moreover, we believe it would be meaningful to
compare our method with methods using the Fast Mobius Transformation [39–41]. In
this case, another CP platform may be considered.
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Abstract. As for many classifiers, decision trees predictions are natu-
rally probabilistic, with a frequentist probability distribution on labels
associated to each leaf of the tree. Those probabilities have the major
drawback of being potentially unreliable in the case where they have been
estimated from a limited number of examples. Empirical Bayes methods
enable the updating of observed probability distributions for which the
parameters of the prior distribution are estimated from the data. This
paper presents an approach of smoothing decision trees predictive binary
probabilities with an empirical Bayes method. The update of probabil-
ity distributions associated with tree leaves creates a correction concen-
trated on small-sized leaves, which improves the quality of probabilistic
tree predictions. The amplitude of these corrections is used to generate
predictive belief functions which are finally evaluated through the ensem-
blist extension of three evaluation indexes of predictive probabilities.

Keywords: Smoothing · Correction · Predictive probabilities ·
Decision trees · Bayesian empirical methods · Predictive belief
functions · Uncertain evaluation

1 Introduction

Even if the predictions provided by classifiers are generally considered in a pre-
cise or crisp form, they are often initially computed as soft predictions through
probability distributions, most probable labels being used as hard predictions
at the final predictive or decision-making step. Decision trees are basic classi-
fiers and regressors that are at the basis of many famous supervised learning
algorithms (random forest, XGBoost, etc.). Once a tree built, the proportions
of labels contained in each leaf are used to compute these predictive probabil-
ities. Small leaves, i.e. containing only a small number of examples, therefore
produce unreliable predictive probabilities since they are computed from a lim-
ited amount of data. Those unreliable leaves are usually cut in a post-pruning
step in order to avoid overfitting, but due to the complexity pruning method-
ologies often involve, users tend to choose pre-pruning strategies, i.e. set more
conservative stopping criteria, instead.

In the classic machine learning literature some work focus on classifiers pre-
dictive probabilities calibration in order to make them smoother or to correct
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some intrinsic biases typical of different predictive models [16]. These approaches
often involve the systematic application of mathematical functions requiring a
set of dedicated data at the stage of calibration and sometimes requiring heavy
computations in terms of complexity [20] or only considering a subset of the
learning data [27]. Statistical approaches such as Laplacian or additive smooth-
ing provide tools that are known to correct estimators in order to increase the
impact of classes for which only few or even no data are available. Those tech-
niques have been largely used in Natural Language Processing [12] and Machine
learning [21,23]. From a Bayesian point of view, Laplacian smoothing equates to
using a non-informative prior, such as the uniform distribution, for updating the
expection of a Dirichlet distribution. Other works based on evidential models
enable local adjustments during the learning phase of decision trees. In these
methodologies class labels estimates are carried out on small subsets of data
independently to the dataset global distribution [7].

This works aims at providing basic adjustments of decision trees outputs
based on the tree structure and the global distribution of the learning data
without involving any additional complexity. The approach presented in this
article allows the correction of classification trees predictive probabilities in the
case of binary classes. To achieve this, an empirical Bayesian method taking into
account the whole learning sample as prior knowledge is applied and results in
the adjustments of the probabilities associated with leaves relatively to their
size. Unlike Bayesian smoothing which takes benefits only from the size of sub-
samples corresponding to leaves, empirical Bayesian smoothing uses the whole
distribution of labels in regards to leaves which can be viewed as a rich piece
of information and is therefore legitimate to be incorporated in any predictive
evidential modelling. To this extent, the ranges of the resulting estimates correc-
tions are finally used to generate predictive belief functions by discounting the
leaves predictive probabilities which can be finally evaluated following extensions
of existing evaluation metrics. It should be noticed that this work is out of the
scope of learning decision trees from uncertain data as in [6,25,26]. In this paper
all the learning data are precise, it is at the prediction step that the uncertainty
is modelled by frequentist probabilities wich are smoothed and transformed into
belief functions from their correction ranges.

After recalling the necessary background in Sect. 2, the proposed approach
is described in detail in Sect. 3. Taking into account the predictive probabil-
ity adjustments amplitude enables, in Sect. 4, the formalisation of an evidential
generative model and the extension of three evaluation metrics of predictive
probabilities to the case of uncertain evidential predictions. In Sect. 6, a first set
of experiments shows the contribution of the methodology on the one hand in
a pragmatic point of view in terms of predictive performance and on the other
hand by the flexibility of decision-making it offers.

2 Basics

The learning of a decision tree corresponds to a recursive partitioning of the
attributes space aiming at separating labels as well as possible (classification) or
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to decrease their variance (regression) [1]. The learning data are thus distributed
in the different tree leaves, which are then associated with probability distribu-
tions over class variables according to the proportions of labels in the examples
they contain. In this article we restrict ourselves to the case of binary classes
noted {1, 0} or {+,−}.

Fig. 1. Predictive probabilities

Fig. 1 is an example of a decision tree in which any example younger than
65 years old will have a positive class probability estimated by P (+) = 7

10 ,
for any older example (than 65 years old) and heavier than 80 kg we will have
P (+) = 2

7 and finally for examples older than 65 years old and weighing less
than 80 kg we will predict P (+) = 1

3 . This last probability is here estimated
from only 3 examples, it is therefore natural to consider it relatively unreliable
(in comparison to the two others based on respectively 10 and 7 examples).

Various stopping criteria can be used during the learning of a decision tree
depending on the structure of the tree (leaves number, depth, etc.) or in terms
of information (impurity gain, variance). In order to avoid overfitting, pruning
strategies are generally implemented to limit the number of leaves (which reduces
variance and complexity).

2.1 Empirical Bayesian Methods

Bayesian inference is an important field of Statistics which consists in using some
prior knowledge in order to update the estimations computed on data (according
to Bayes theorem). This updates often result in predictive probabilities whose
quality directly depends on the prior information. While Bayesian priors are gen-
erally constituted of probability distributions that the user subjectively express
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about the phenomenon of interest (expert opinions are often at the basis of the
prior’s modelling), for the Bayesian empirical methods [4,22], the parameters
of these prior distributions are estimated from the data. Some authors consider
these methods as approximations of hierarchical Bayesian models [19].

Considering a sample of a binary variable y = (y1, ..., yn) ∈ {0, 1}n, for all
subset y∗ ⊆ y, a natural (and frequentist) estimate of the probability of label 1,
i.e. of p∗ = P (Y = 1|Y ∈ y∗), is its observed frequency p̃∗ = |{yi∈y∗: yi=1}|

|y∗| . This
estimator makes implicitly the assumption that the sample y∗ is large enough
to estimate the probability of label 1 by a random draw in it.

In Bayesian statistics, for the binomial model corresponding to y∗’s gener-
ation, a prior knowledge about p∗ is usually modelled in terms of probability
distribution by p∗ ∼ Beta(α, β) (flexible prior) and the model update from the
data y∗ results in a posterior distribution p∗

| y∗ ∼ Beta(α+n∗
1, β +n∗ −n∗

1) with
n∗
1 = |{yi ∈ y∗ : yi = 1}| and n∗ = |y∗|.

The Bayesian (posterior) estimator of p∗ is finally computed as its conditional
expectation given y∗:

p̂∗ = E[p∗|y∗] =
n∗
1 + α

n∗ + α + β
(1)

By doing so, p̃∗ is shifted toward its global expectation E[p̃∗] = α
α+β and this

shift’s range relies on the value of n∗.
Whereas in standard Bayesian works the prior ’s parameters are often set

by an expert according to his knowledge, i.e. subjectively, or by default in a
non-informative form as with Laplacian smoothing (p∗ ∼ Beta(1, 1) is equiv-
alent to p∗ ∼ U [0, 1]), in empirical Bayesian approaches they are estimated
from the whole sample y (by likelihood maximisation) with the hypothesis that
p ∼ Beta(α, β). One direct consequence is that the smaller the size of y∗, the
greater the amplitude of the shift of p∗ toward its global expectation on y. The
Bayesian estimator of this approach, illustrated for the number of successful
baseball shots per player in [2], is here applied to the probabilistic predictions
attached with the leaves of binary classification trees.

2.2 Evaluation of Predictive Probabilities

Even if the evaluation of a classifier is often done from precise or crisp predic-
tions by comparing them to the real class labels through different metrics (e.g.
accuracy, precision, recall, etc.) it can however be done at the level of predictive
probabilities, thus upstream. Three metrics for evaluating binary probabilistic
predictions are presented hereinafter.

Let y = (y1, ..., yn) ∈ {1, 0}n be the true labels of a given sample of size n and
p = (p1, ..., pn) = [P (Y1 = 1), ..., P (Yn = 1)] the class predictive probabilities of
label {1} according to a given predictive model M , applied to the sample x. The
Table 1 summarizes the definitions of the log-loss, the Brier score and the area
under the ROC curve (AUC). The log-loss can be interpreted as a Kullback–
Leibler divergence between p and y that takes into account p’s entropy and
is therefore called cross-entropy by some authors. The Brier score is defined
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as the mean squared difference between p and y. The log-loss and Brier score
thus measure the difference between observations and predicted probabilities,
penalizing the probabilities of the least probable labels. The ROC curve is a
standard measure of a binary classifier’s predictive power, it represents the rate
of true positives or sensibility (i.e. the proportion of positive examples that are
predicted as positive) as a function of the rate of false positives or 1−specificity
(i.e. the proportion of negative examples that are predicted as positive), we have
ROC : sensibility(1 − specificity). The AUC area under the ROC curve is a
well known indicator of the quality of probabilistic predictions.

The three metrics thus defined lie in [0, 1] and a good binary classifier will
be characterized by log-loss and Brier score values close to 0 and an AUC value
close to 1. It should be noted, however, that these three metrics are defined for
standard uncertain predictions, i.e. probabilistic predictions.

Table 1. Evaluation metrics of binary probabilistic predictions (p1, ...pn) with respect
to true labels (y1, ...yn)

Name Definition

Log-loss − 1
n

n∑

i=1

[
yi log(pi) + (1 − yi) log(1 − pi)

]

Brier score 1
n

n∑

i=1

(yi − pi)
2

AUC
1∫

0

ROC(p, y, λ)dλ

3 Empirical Bayesian Correction of Decision Trees
Predictive Probabilities

The approach presented in this paper consists in correcting the predictive prob-
abilities of a binary classification tree containing H leaves denoted l1, ..., lH with
an empirical Bayesian method. It is assumed that the proportion of label {1}
within the leaves of the tree follows a Beta(α, β) distribution (without setting a
priori the values of the parameters α and β). We can notice that the Beta distri-
bution is both a special case of the Dirichlet distribution (widely used in Bayesian
statistics) and a generalization of the uniform distribution (U[0,1] = Beta(1, 1))
which is supposed to model non-informative prior knowledge.

Once the hypothesis of the Beta law is formulated, its parameters α and β
are estimated from the set {p11, ..., p

H
1 } of label proportions {1} within the H

leaves of the considered tree. In order to penalize small leaves, we will consider
an artificial sample denoted E containing each ph

1 proportion repeated a number
of times equal to the size of the considered leaf, i.e. to the number of examples
it contains.
We have E = ( p11, ..., p

1
1

︸ ︷︷ ︸

, ..., pH
1 , ..., pH

1
︸ ︷︷ ︸

).

|l1| times |lH | times
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The estimation of the parameters α and β can then be performed on E by
likelihood maximisation following different approaches (moments, least squares,
etc.). This step makes α and β’s values take into account the leaves sizes through
an artificial weighting that is defined according to their sizes. By doing so, the
information of the tree structure is used through the leaves partitioning and
their sizes to define the prior or the empirical Bayes model. The probabilities p̃h

1

of the leaves l1, ..., lH are finally corrected according to the Eq. (1):

p̃h
1 =

nh
1

nh
� p̂h

1 =
nh
1 + α

nh + α + β
(2)

with nh and nh
1 denoting respectively the size of the leaf lh (i.e. the number of

examples it contains) and the number of examples it contains that have the label
{1}.

It should be recalled that other works [20,27] allow a calibration of the pre-
dictive probabilities by different approaches using either only the distributions
of the examples contained in the leaves independently from one another, or
the distribution of the whole learning sample but applying systematic trans-
formations based on estimations requiring many computations (often obtained
by cross-validation). The method proposed in this paper uses both the whole
distribution of the training data (once distributed in the different leaves of a
tree) and remains very simple in terms of complexity, the α and β parameters
of Eq. (2) being estimated only once for the whole sample and then used locally
on leaves according to their sizes at the prediction step. Nevertheless the range
of these probabilistic correction represent a piece of information by itself that
should be incorporated into the leaves in order to express a confidence level on
themselves. In the next section an evidential generative model based on these
correction ranges is presented.

4 Generation of Predictive Belief Functions

The uncertainty expressed in the predictive probabilities of a classifier is mainly
aleatory. It is based on the mathematical model underlying the classifier and on
frequentist estimates. The knowledge of the empirical Bayesian adjustment and
its range is a piece of information in itself that can allow epistemic uncertainty
to be incorporated into the leaves predictive probabilities. It is indeed natural
to consider unreliable the predictive probabilities that are estimated on a small
number of examples (and therefore highly adjusted).

Unlike many works on belief functions generation where uncertain data are
used in evidential likelihoods applied to parametric models [9,14] or random gen-
eration is extended to mass function [3], the context of this article is restricted
to the case of discounting leaves predictive probabilities according to the range
of their empirical Bayesian adjustment. As a first approach, we propose to gen-
erate a belief function from a predictive probability using its empirical Bayesian
correction range |p̃ − p̂| as unreliability indicator (p̃ and p̂ denoting respectively
standard frequentist and empirical Bayesian adjusted estimates of p), assigning
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its weight to ignorance and substracting it uniformly to singletons probabilities.
The resulting belief function can be viewed as a type of evidential discounted
predictive probabilities. This modeling relies on the hypothesis that the more a
predictive probability is corrected (i.e. the smaller the subsample considered),
the less reliable it is.

⎧

⎨

⎩

m({1, 0}) = |p̃ − p̂|
m({1}) = p̃ − |p̃−p̂|

2

m({0}) = 1 − p̃ − |p̃−p̂|
2

(3)

In order to make as few assumptions as possible, once the mass of ignorance is
defined, the mass of the two classes are symmetrically discounted. We can notice
that we have Bel({0}) = 1 − Pl(({1}) and Bel({1}) = 1 − Pl(({0}).

Remark: This belief function modelling can also be written in terms of
imprecise probability: p ∈ [p−, p+] with

{

p−= p̃ − |p̃−p̂|
2

p+= p̃ + |p̃−p̂|
2

(4)

The generative model (3–4) can be interpreted as a reliability modelling of the
corrected leaves predictive probabilities. The output nature of a classification
tree can thus be considered through imprecise probabilities. In the next section,
an imprecise evaluation model is presented that keeps an evidential uncertainty
level until final outputs of decision trees evaluation.

5 Imprecise Evaluation

Evidential predictions evaluation remains a challenging task, some works have
been presented based on evidential likelihood maximisation of evaluation model
parameters (error rate or accuracy) [25] but in case of a predictive belief function
the simplest evaluation solution is to convert it into standard probability with
the pignistic transform for instance. The main drawback of such practice is that
all the information contained in the uncertain modelling of the predictions is lost
but it has the pragmatic advantage of providing crisp evaluation metrics that
can be easily interpreted.

In order to keep the predictive uncertainty or imprecision provided by the
model (4) until the stage of the classifiers evaluation, it is possible to consider
the metrics defined in Table 1 in an ensemblist or intervalist perspective. Indeed,
to a set of predictive probabilities naturally corresponds a set of values taken by
these evaluation metrics. An imprecise probability [p−, p+] computed according
to the model (4) will thus be evaluated imprecisely by an interval defined as
follows:
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eval([p−, p+], y) =

[

min
p∈[p−,p+]

eval(p, y), max
p∈[p−,p+]

eval(p, y)

]

where eval is one of the metrics defined in Table 1.
This type of evaluation approach involves that, the smaller the leaves of the

evaluated decision tree, the more the probabilities associated with these leaves
will be adjusted and the more imprecise the evaluation of these trees will be
(i.e. the wider the intervals obtained). This approach is therefore a means of
propagating epistemic uncertainty about the structure of the tree into its evalu-
ation metrics. It should be noted, however, that this solution requires an effective
browse of the entire [p−, p+] interval, which implies a significant computational
cost.

6 Experiments

In this section, a set of experiments is implemented to illustrate the practi-
cal interest of the empirical Bayesian correction model presented in this paper.
Using six benchmark datasets from the UCI1 and Kaggle2 sites, 10-fold cross-
validations are carried out with, for each fold of each data set, the learning of
decision trees corresponding to different complexities on the nine other folds and
an evaluation on the fold in question using the three precise metrics defined in
Table 1. The ‘cp’ parameter (of the ‘rpart’ function in R) allows to control the
trees complexity, it represents the minimal relative information gain of each con-
sidered cut during the learning of the trees. Trees denoted ‘pruned’ are learned
with a maximum complexity (cp = 0) and then pruned according to the classical
cost-complexity criteria approach of the CART algorithm [1]. The evaluations
consist of the precise metrics computations presented in Table 1 as well as their
uncertain extensions defined in Sect. 5. These steps are repeated 150 times in
order to make the results robust to fold random generation and only the mean
evaluations of the trees predictive probabilities are represented here. The codes
used for the implementation of all the experiments presented below are available
at https://github.com/lgi2p/empiricalBayesDecisionTrees.

Table 2 represents the characteristics of the different datasets used in terms
of number of examples (n), number of attributes or predictor variables (J) and
number of class labels (K). The Tables 3, 4, 5, 6, 7 and 8 contain the mean
evaluations computed for each dataset and for each tree type, over all 150 cross-
validations performed, before and after empirical Bayesian smoothing. Figures 2
and 3 illustrate the distributions of these results with evaluation intervals for
the log-loss on the ‘banana’ dataset and for the Brier score on the ‘bankLoan’
dataset with respect to the supports of the corresponding uncertain evaluations
(only the extreme points of the uncertain metrics are represented).

The log-loss of corrected trees is almost always lower than that of original
trees. This increase in performance is clear for large trees (learnt with a low

1 https://archive.ics.uci.edu/ml/datasets.html.
2 https://www.kaggle.com/datasets.

https://github.com/lgi2p/empiricalBayesDecisionTrees
https://github.com/lgi2p/empiricalBayesDecisionTrees
https://archive.ics.uci.edu/ml/datasets.html
https://www.kaggle.com/datasets
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Table 2. Datasets dimensions

n J K

banana 5300 2 2

bankLoan 5000 12 2

banknote 1372 4 2

mammo 830 5 2

pima 768 8 2

ticTacToe 958 9 2

Table 3. Log-loss before smoothing

dataset\cp 0 0.001 0.005 0.01 0.05 pruned

banana 0.410 0.351 0.355 0.419 0.425 0.359

bankLoan 1 0.665 0.568 0.571 0.571 0.566

banknote 0.330 0.329 0.322 0.331 0.347 0.329

mammo 0.444 0.437 0.414 0.409 0.450 0.416

pima 0.886 0.884 0.742 0.655 0.565 0.630

ticTacToe 0.221 0.221 0.213 0.210 0.549 0.214

Table 4. Log-loss after smoothing

dataset\cp 0 0.001 0.005 0.01 0.05 pruned

banana 0.287 0.300 0.334 0.418 0.424 0.358

bankLoan 0.640 0.582 0.568 0.571 0.571 0.566

banknote 0.173 0.174 0.180 0.225 0.346 0.328

mammo 0.419 0.419 0.410 0.406 0.450 0.416

pima 0.557 0.557 0.545 0.541 0.564 0.630

ticTacToe 0.188 0.188 0.188 0.191 0.550 0.214

Table 5. Brier score before smoothing

dataset\cp 0 0.001 0.005 0.01 0.05 pruned

banana 0.084 0.086 0.097 0.129 0.131 0.086

bankLoan 0.229 0.204 0.190 0.192 0.192 0.189

banknote 0.040 0.040 0.043 0.057 0.098 0.041

mammo 0.130 0.130 0.125 0.123 0.140 0.126

pima 0.188 0.188 0.184 0.183 0.189 0.186

ticTacToe 0.061 0.061 0.061 0.062 0.187 0.062
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Table 6. Brier score after smoothing

dataset\cp 0 0.001 0.005 0.01 0.05 pruned

banana 0.083 0.086 0.097 0.129 0.131 0.086

bankLoan 0.219 0.198 0.190 0.192 0.192 0.189

banknote 0.040 0.040 0.042 0.057 0.098 0.041

mammo 0.129 0.129 0.125 0.123 0.140 0.126

pima 0.183 0.183 0.179 0.179 0.188 0.186

ticTacToe 0.060 0.060 0.060 0.062 0.187 0.061

Table 7. AUC before smoothing

dataset\cp 0 0.001 0.005 0.01 0.05 pruned

banana 0.946 0.936 0.920 0.872 0.867 0.937

bankLoan 0.778 0.772 0.747 0.722 0.720 0.755

banknote 0.843 0.838 0.821 0.799 0.777 0.827

mammo 0.852 0.848 0.835 0.819 0.789 0.839

pima 0.839 0.836 0.826 0.812 0.771 0.821

ticTacToe 0.861 0.858 0.850 0.838 0.758 0.846

Table 8. AUC after smoothing

dataset\cp 0 0.001 0.005 0.01 0.05 pruned

banana 0.948 0.937 0.920 0.872 0.867 0.937

bankLoan 0.781 0.773 0.747 0.722 0.720 0.755

banknote 0.845 0.840 0.822 0.799 0.777 0.827

mammo 0.854 0.850 0.836 0.819 0.789 0.838

pima 0.842 0.839 0.828 0.813 0.771 0.821

ticTacToe 0.864 0.860 0.851 0.839 0.758 0.845

Fig. 2. Precise and uncertain log-loss as a function of the complexity



378 N. Sutton-Charani

Fig. 3. Precise and uncertain Brier score as a function of the complexity

value of the hyper-parameter ‘cp’ and thus containing many leaves), slightly
less visible for small trees and very limited for pruned trees. This difference
in terms of performance gain in regards to the tree size is probably due to
the fact that the bigger the trees, the smaller are their leaves. Indeed, if the
examples of the same learning data are spread into a higher number of leaves,
their number inside the leaves have to be lower (in average). This conclusion
shows that empirical Bayesian adjustment makes sense especially for complex
models. The same phenomenon of gain in performance proportional to tree size
is globally observable for the Brier score and the AUC index but in smaller
ranges.

Other works have already illustrated the quality increase of decision trees pre-
dictions by smoothing methods [5,17,18] but none of these neither illustrated
nor explained the link between pruning and those increase ranges based on over-
fitting intuition. Moreover, using the learning sample labels distribution as prior
knowledge is a new proposal that has not yet been studied in the context of
decision trees leaves, especially in order to generate predictive belief functions
(and their evaluation counterpart). Even if it was not in the scope of this arti-
cle, some experiments have been carried on in order to compare the empirical
Bayesian smoothing with the Laplacian one, and no significant differences were
observed in terms of increase of the predictive evaluation metrics used in this
paper.

The intervals formed by the uncertain evaluations correspond roughly to the
intervals formed by the precise evaluations without and with Bayesian smooth-
ing. However, it can be seen in Fig. 2 and 3 that uncertain evaluations sometimes
exit from these natural bounds (pruned trees in Fig. 2 and large trees in Fig. 3),
thus highlighting the non-convexity of the proposed uncertain metrics for eval-
uating evidential predictions.

7 Conclusion

The empirical Bayesian correction model presented in this paper for decision
trees predictive probabilities is of interest in terms of predictive performance,
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and this interest is particularly relevant for large trees. The fact that Bayesian
corrections hardly improve the performance of small (i.e. with low complexity)
or pruned trees suggests that the Bayesian correction represents an alternative
to pruning. By shifting the predictive probabilities of small leaves to their global
averages (i.e. calculated within the total learning sample) it reduces the phe-
nomenon of overfitting.

In this paper Bayesian corrections are only performed at the predictive stage,
i.e. at the leaf level. Adopting the same approach throughout the learning process
is possible by proceeding in the same way at the purity gain computation level
(i.e. for all the considered cuts). It would be interesting to compare the approach
presented in this work with the one of [7] which pursues the same goal (penalizing
small leaves) based on an evidential extension of purity gain computation where
a mass of 1

n+1 is assigned to ignorance in the impurity measure presented in
[15] that combines variability and non-specificity computed on belief functions.
It is important to note that the approach previously mentioned is based on the
distribution of examples within the leaves individually, in case of unbalanced
learning samples they do not allow correction in the direction of the general
distribution as it is the case with the empirical Bayesian model.

The approaches of predictive belief functions generation based on the use of
evidential likelihood [9,13] also represent an interesting alternative to which it
will be important to compare oneself both in terms of predictive performances
and with respect to the underlying semantics. In the same vein, the approach
presented in this paper for the binary classification context could be extended
to the multi-class case following the approaches used in [24]. More generally, all
classifiers whose learning at the predictive stage involves frequentist probability
computations could potentially benefit from this type of Bayesian correction.
Ensemble learning approaches could be enhanced by empirical Bayesian correc-
tions at different levels. When their single classifiers are decision trees, it could
be straightforward to correct trees with the correction model presented in this
article. A global adjustment could be also be achieved at the aggregation phase
with the same type of artificial sample creation as for tree correction (leaves level
could be extended to classifiers level).

The model for generating predictive belief functions and especially the exten-
sion of evaluation metrics to the credibility context proposed in this work could
be greatly enriched by a more refined modeling of the uncertainty resulting from
the initial predictive probabilities and their corrections. For example, it would
be possible to use the distances proposed in [11] in order to make the represen-
tation of uncertain assessment metrics more complex beyond simple intervals. It
would also be desirable to directly estimate the bounds of the uncertain evalua-
tion intervals without having to browse them effectively from simulation-based
approaches such as in [8] or by optimization results such as in [10].
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Abstract. Recently introduced marginal problem – which addresses the ques-
tion of whether or not a common extension exists for a given set of marginal
basic assignments – in the framework of evidence theory is recalled. Sets of solu-
tions are studied in more detail and it is shown, by a simple example, that their
structure is much more complicated (i.e. the number of extreme vertices of the
convex set of solutions is substantially greater) than that in an analogous prob-
lem in probabilistic framework. The concept of product extension of two basic
assignments is generalized (via operator of composition) to a finite sequence of
basic assignments. This makes possible not only to express the extension, if it
exists, in a closed form, but also enables us to find the sufficient condition for the
existence of an extension of evidential marginal problem. Presented approach is
illustrated by a simple example.

Keywords: Marginal problem · Extension · Product extension

1 Introduction

The marginal problem is one of the most challenging problem types in probability the-
ory. It addresses the question of whether or not a common extension exists for a given
set of marginal distributions. The challenges lie not only in a wide range of the relevant
theoretical problems (probably the most important among them is to find conditions
for the existence of a solution to this problem), but also in its applicability to various
problems of artificial intelligence [11], statistics [4] and computer tomography [6]. The
importance of this problem type is emphasized by the fact that from 1990 a series of
conferences with this topic takes place every three years. During the last two decades
it has also been studied in other frameworks, for example, in possibility theory [9] and
quantum mathematics [7].

In [10] we introduced an evidential marginal problem analogous to that encoun-
tered in the probabilistic framework. We demonstrated the similarities between these
frameworks concerning necessary conditions and convexity of sets of solutions. We
also introduced the concept of product extension of two marginal basic assignments.
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This paper is a natural continuation of the above-mentioned one. We study the con-
vex sets of solutions in more details and reveal one substantial difference concerning the
complexity of sets of all extensions between probabilistic and evidential frameworks.
Nevertheless, the main attention is devoted to the generalization of product extension to
finite sets of marginal basic assignments. This generalization is realized via operator of
composition introduced in [5], which makes possible to express the product extension
of a sequence of marginal basic assignments in an elegant way. This finally allows us to
find sufficient condition for the existence of evidential marginal problem solution.

The paper is organised as follows: after a brief overview of necessary concepts and
notation (Sect. 2) we start Sect. 3 by a motivation example, then we recall the evidential
marginal problem (and what was done in [10]) and we also study convex sets of exten-
sions. In Sect. 4 we deal with generalization of product extension to finite sets of basic
assignments and find a sufficient condition for the existence of an extension. Finally,
before the Conclusions we present a solution of the motivation example via perfect
sequence model.

2 Basic Concepts and Notation

In this section we will, as briefly as possible, recall basic concepts from evidence theory
[8] concerning sets and set functions.

2.1 Set Projections and Extension

For an index set N = {1,2, . . . ,n}, let {Xi}i∈N be a system of variables, each Xi having
its values in a finite set Xi. In this paper we will deal with a multidimensional frame of
discernment

XN = X1 ×X2 × . . .×Xn,

and its subframes (for K ⊆ N)

XK =×i∈KXi.

Throughout this paper, XK will denote a group of variables {Xi}i∈K when dealing
with groups of variables on these subframes.

For M ⊂ K ⊆ N and A ⊂ XK , we denote by A↓M a projection of A into XM:

A↓M = {y ∈ XM | ∃x ∈ A : y= x↓M},

where, forM = {i1, i2, . . . , im},
x↓M = (xi1 ,xi2 , . . . ,xim) ∈ XM.

In addition to the projection, in this text we will also need its inverse operation that
is usually called a cylindrical extension. The cylindrical extension of A ⊂ XK to XL

(K ⊂ L) is the set
A↑L = {x ∈ XL : x

↓K ∈ A} = A×XL\K .
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A more complex instance is to make a common extension of two sets, which will
be called a join [1]. By a join of two sets A ⊆ XK and B ⊆ XL (K,L ⊆ N), we will
understand a set

A �� B= {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that, for anyC ⊆ XK∪L, it naturally holdsC ⊆C↓K ��C↓L, but generally
C 	=C↓K ��C↓L.

Let us also note that if K and L are disjoint, then the join of A and B is just their
Cartesian product, A �� B= A×B, and if K = L then A �� B= A∩B. If K ∩L 	= /0 and
A↓K∩L ∩B↓K∩L = /0 then A �� B = /0 as well. Generally, A �� B = A↑K∪L ∩B↑K∪L, i.e.,
a join of two sets is the intersection of their cylindrical extensions.

2.2 Set Functions

In evidence theory [8], two dual measures are used to model the uncertainty: belief and
plausibility measures. Each of them can be defined with the help of another set function
called a basic (probability or belief) assignment m on XN , i.e.,

m :P(XN) −→ [0,1],

where P(XN) is the power set of XN , and

∑
A⊆XN

m(A) = 1.

Furthermore, we assume that m( /0) = 0.1 A set A ∈ P(XN) is a focal element if
m(A) > 0.

For a basic assignment m on XK and M ⊂ K, a marginal basic assignment of m on
XM is defined (for each A ⊆ XM) by the equality

m↓M(A) = ∑
B⊆XK

B↓M=A

m(B). (1)

In this paper we will confine ourselves to basic assignments.

3 Marginal Problem and Its Solutions

In this section we first recall what we understand under evidential marginal problem,
then we briefly discuss the necessary condition for the existence of a solution and finally
study in more detail convex sets of its solutions.

1 This assumption is not generally accepted, e.g. , in [2] it is omitted.
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3.1 Motivation Example—Poll Opinion

Let us consider the following situation. We have obtained poll opinion contained in the
left part of Table 1 expressing the dependence of preferences P with values A and B on
sex S (M,F). Some voters are still undecided, we denote this fact by {A,B}.

From last census we can get data concerning education E (primary—P, high
school—H and university—U) and place of residence R (town—T and countryside—
C) both of them with respect to sex. They are contained in the middle and right part of
of Table 1, respectively. In both cases some values, denoted by {P,H,U} and {T,C} are
missing.

Throughout this example we will express values of basic assignments in the per-
centage form in order to avoid to small numbers in the joint model.

Table 1. Motivation example: poll opinion and census.

S & P percentage S & E percentage S & R percentage

M,A 19 M,P 24 M,T 22

M,B 23 M,H 15 M,C 25

M,{A,B} 7 M,U 7 M,{T,C} 2

F,A 25 M,{P,H,U} 3 F,T 27

F,B 16 F,P 18 F,C 23

F,{A,B} 10 F,H 23 F,{T,C} 1

F,U 8

F,{P,H,U} 2

Our aim is to get more detailed information about the voters by integrating infor-
mation from all these tables together. Undecided voters and missing data suggest that
this problem has to be modeled by evidence theory. In Sect. 5 one can find solution via
method presented in this paper, more precisely in Sect. 4.

3.2 Definition

The evidential marginal problem was, analogous to probability theory, introduced in
[10] as follows: Let us assume that Xi, i ∈ N, 1 ≤ |N| < ∞ are finitely-valued variables,
K is a system of nonempty subsets of N and

S = {mK ,K ∈ K } (2)

is a family of basic assignments, where each mK is a basic assignment on XK .
The problem we are interested in is the existence of an extension, i.e., a basic assign-

ment m on X whose marginals are basic assignments from S ; or, more generally, the
set

E = {m : m↓K = mK ,K ∈ K } (3)

is of interest.
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In the above-mentioned paper we proved that the necessary condition for the exis-
tence of an extension of basic assignments fromS is their pairwise projectivity. Having
two basic assignments m1 and m2 on XK and XL, respectively (K,L ⊆ N), we say that
these assignments are projective if

m↓K∩L
1 = m↓K∩L

2 .

If set S consists of just two basic assignments this condition is also sufficient, but
in more general case it need not be, as we showed in [10].

3.3 Sets of Solutions

In [10] we started to study also sets of all solutions of a marginal problem. We proved
that, analogous to probabilistic framework, the set is convex. Nevertheless, as suggests
the following simple example, resulting convex set is much more complicated.

Example 1. Consider, for i= 1,2, two basic assignments mi on Xi = {ai,bi}, specified
in Table 2. Our task is to find basic assignments on X1×X2 which are extreme points of
the set E (m1,m2). We found the 23 extreme points2 summarized in Table 3. Let us note,
that any of basic assignments m2−7, m9−14 and m16−21 stands for six basic assignments,
where three focal elements are fixed (as suggested in the table) and the fourth one is
one set A from

A = {X1 ×X2 \{(a1,a2)},X1 ×X2 \{(a1,b2)},X1 ×X2 \{(b1,a2)},

X1 ×X2 \{(b1,b2)},{(a1,a2),(b1,b2)},{(a1,b2),(b1,a2)}},

with the values contained in the last column.

Table 2. Example 1: basic assignments m1 and m2.

A ⊆ X1 m1(A) A ⊆ X2 m2(A)

{a1} 0.2 {a2} 0.6

{b1} 0.3 {b2} 0

X1 0.5 X2 0.4

On the other hand, although they are numerous, they are quite “nice”, as any of
them has only four focal elements in contrary to the basic assignments from the interior
of E , any of which has twelve focal elements (from possible 15 in case of two binary
variables). An example of these basic assignments is mi, presented in last line of the
table, a convex combination of m1, . . . ,m22, where, in contrary to m1, . . . ,m22 each set
from A is a focal element with the same value (as indicated in the table).

From this point of view a deeper study of extreme points of solutions seems to be
of importance. We intend to concentrate to this problem in the future research.

2 Let us note that in analogous case of two binary variables in probabilistic framework the result-
ing convex set has two extreme points.
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Table 3. Example 1: extreme points of E (m1,m2).

{(a1,a2)} {(b1,a2)} {a1}×X2 {b1}×X2 X1 ×{a2} X1 ×X2 A

m1 0.2 0.3 0 0 0.1 0.4 0

m2−7 0.2 0.3 0 0 0.1 0 0.4

m8 0.2 0 0 0.3 0.4 0.1 0

m9−14 0.2 0 0 0.3 0.4 0 0.1

m15 0 0.3 0.2 0 0.3 0.2 0

m16−21 0 0.3 0.2 0 0.3 0 0.2

m22 0 0.1 0.2 0.2 0.5 0 0

m23 0.1 0 0.1 0.3 0.5 0 0

mi 0.1 0.205 0.1 0.095 0.295 0.07 0.0225

4 Product Extension of Sets of Marginals

In this section we will first recall the concept of product extension [10] as well as the
composition operator [5] of two basic assignments. We will show that the former is a
special case of the latter. Then we use this relationship in order to generalize product
extension to finite sets of basic assignments and finally to find a sufficient condition for
the existence of an extension.

4.1 Product Extensions

Dempster’s rule of combination [8] (and its various modifications as e.g. [3]) is the
usual way to combine, in the framework of evidence theory, information from different
sources. It is quite natural that several attempts were done to use it in order to merge
information expressed by marginal basic assignments. Nevertheless none of them was
able to keep both marginals even in case of projective basic assignments. We discussed
this problem in more detail in [10].

Instead of the use of Dempster’s rule we suggested to use product extension of
marginal basic assignments defined as follows.

Definition 1. Let m1 and m2 be projective basic assignments on XK and XL (K,L⊆N),
respectively. We will call basic assignment m on XK∪L product extension of m1 and m2

if for any A= A↓K �� A↓L

m(A) =
m↓K
1 (A↓K) ·m↓L

2 (A↓L)
m↓K∩L
1 (A↓K∩L)

, (4)

whenever the right-hand side is defined, and m(A) = 0 otherwise.

Let us note that the expression on the right-hand side of (4) is only seemingly asym-
metric, as m1 and m2 are supposed to be projective. Therefore, it is irrelevant which
marginal is used in the denominator.

From the following theorem proven in [10] one can easily see that product extension
is superior to Dempster’s rule as concerns keeping marginals.
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Theorem 1. Let m1 and m2 be two projective basic assignments on XK and XL (K,L⊆
N), respectively, and m be their product extension. Then

m↓K(B) = m1(B),
m↓L(C) = m2(C)

for any B ∈ XK and C ∈ XL, respectively.

4.2 Composition Operator

Now, let us recall the concept of composition operator, introduced in [5].

Definition 2. For two arbitrary basic assignments m1 on XK and m2 on XL a compo-
sition m1 �m2 is defined for all A ⊆ XK∪L by one of the following expressions:

[a] if m↓K∩L
2 (A↓K∩L) > 0 and A= A↓K �� A↓L then

(m1 �m2)(A) =
m1(A↓K) ·m2(A↓L)
m↓K∩L
2 (A↓K∩L)

;

[b] if m↓K∩L
2 (A↓K∩L) = 0 and A= A↓K ×XL\K then

(m1 �m2)(A) = m1(A↓K);

[c] in all other cases
(m1 �m2)(A) = 0.

The purpose of the composition operator is to integrate information from two
sources expressed by basic assignments m1 and m2. The resulting basic assignment
m1 �m2 has to keep all the information contained in the first basic assignment, and as
much as possible from the second one.

The definition completely fulfills this requirement. The only focal elements are
those obtained via [a] or [b]. Both of them keep the first marginal, i.e. all the infor-
mation contained in m1.

In case [a] “as much as possible from the second basic assignment” is obtained via
multiplication by m2 (divided by its marginal). If m1 and m2 are projective, then also all
the information from m2 is kept3 (cf. Theorem 1 and Lemma 1).

In case [b] no information about A↓K∩L is available, so m1 �m2 is the least specific
basic assignment with marginal m1—its vacuous extension.

The following lemma reveals, that product extension of two basic assignments is a
special case of composition of two basic assignments.

Lemma 1. Let m1 and m2 be projective basic assignments. Then (m1 �m2)(A) is equal
to their product extension defined by (4).

Proof. First, let us note that when m1 and m2 are projective, case [b] is not applied.
Therefore, (m1 �m2)(A) is computed via [a], which is equal to the right hand side of
(4) (due to projectivity of m1 and m2), whenever it is defined. Otherwise, by [c] (m1 �
m2)(A) = 0.

3 Let us note that if K and L are disjoint, then m1 and m2 are trivially projective.
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4.3 Iterative Application of Composition Operator

Composing of m1,m2, . . . ,mn defined on XK1 , . . . ,XKn , respectively, together by multi-
ple application of the operator of composition, one gets multidimensional basic assign-
ments on XK1∪K2∪...∪Kn . However, since the operator of composition is neither com-
mutative nor associative (cf. [5]), we have to specify what “composing them together”
means.

To avoid using too many brackets let us make the following convention. Whenever
we put down the expression m1 �m2 � . . . �mn we will understand that the operator of
composition is performed successively from left to right:4

m1 �m2 � . . . �mn = (. . .((m1 �m2)�m3)� . . .)�mn.

Therefore, it is obvious that ordering of basic assignments in question is substantial
for the properties of the resulting model. Let us demonstrate it by the following simple
example.

Example 2. Consider three variables X1,X2 and X3 with values in X1,X2 and X3,
respectively, Xi = {ai,bi}, i= 1,2,3. Let m1,m2 and m3 be defined as shown in Table 4.

Table 4. Example 2: basic assignments m1, m2 and m3.

A ⊆ X1 ×X2 m1(A) A ⊆ X2 ×X3 m2(A) A ⊆ X1 ×X3 m3(A)

{(a1,a2)} 0.5 {(a2,a3)} 0.5 {a1}×X3 0.5

X1 ×X2 0.5 X2 ×X3 0.5 X1 ×{a3} 0.5

These basic assignments are pairwise projective (any one-dimensional marginal has
just two focal elements, namely {ai} and Xi), but common extension does not exist (as
we already showed in [10]). One can judge that application of the operator of compo-
sition to different orderings of these three basic assignments will lead to different joint
basic assignments on X1 × X2 × X3. And it is the case. Each of these composed basic
assignments has again only two focal elements, namely

{(a1,a2,a3)},X1 ×X2 ×X3

for m1,m2,m3 and m2,m1,m3,

{(a1,a2)}×X3,X1 ×X2 ×{a3}
for m1,m3,m2 and m3,m1,m2 and, finally,

X1 ×{(a2,a3)},{a1}×X2 ×X3

for m2,m3,m1 and m3,m2,m1.

In the next section we will deal with special kind of sequences of basic assignments.

4 Naturally, if we want to change the ordering in which the operators are to be performed we
will do so with the help of brackets.
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4.4 Perfect Sequences and Sufficient Condition

When representing knowledge in a specific area of interest, a special role is played by
the so-called perfect sequences, i.e., sequences m1,m2, . . . ,mn, for which

m1 �m2 = m2 �m1,

m1 �m2 �m3 = m3 � (m1 �m2),
...

m1 �m2 � . . . �mn = mn � (m1 � . . . �mn−1).

The following theorem proven in [5] explains why perfect sequences are useful for
marginal problem solution.

Theorem 2. A sequence m1,m2, . . . ,mn is perfect if and only if all m1, m2, . . . , mn are
marginal basic assignments of the multidimensional basic assignment m1�m2�. . .�mn:

(m1 �m2 � . . . �mn)↓Ki = mi,

for all i= 1, . . . ,n.

Let us note that this theorem expresses necessary and sufficient condition for the
existence of an extension of basic assignments from S , however, this condition is
hardly verifiable as it is obvious from the definition of the perfect sequence. Never-
theless, we can formulate a sufficient condition expressed by Theorem 3. Before doing
it, let us recall the well-known running intersection property and a lemma (proven in
[5]) necessary to prove Theorem 3.

We say that K1,K2, . . . ,Kn meets the running intersection property iff

∀i= 2,3, . . . ,n ∃ j(1 ≤ j < i) such that Ki ∩ (K1 ∪ . . .∪Ki−1) ⊆ Kj.

Lemma 2. A sequence m1,m2, . . . ,mn is perfect iff the pairs of basic assignments mi

and (m1 � . . . �mi−1) are projective, i.e. if

m↓Ki∩(K1∪...∪Ki−1)
i = (m1 � . . . �mi−1)↓Ki∩(K1∪...∪Ki−1),

for all i= 2,3, . . . ,n.

Theorem 3. Let S be a system of pairwise projective basic assignments on XK, K ∈
K , and let K be ordered in such a way that K1,K2, . . . ,Kn meets running intersection
property. Then E 	= /0.

Proof. We have to prove that the sequence of basic assignments m1,m2, . . . ,mn on
XK1 ,XK2 , . . . ,XKn , respectively, is perfect. Then, according to Theorem 2 (m1 �m2 �
. . . �mn) ∈ E .

Due to Lemma 2 it is enough to show that for each i= 2, . . . ,n basic assignment mi

and the composed assignmentm1�. . .�mi−1 are projective. Let us prove it by induction.
For i = 2 the required projectivity is guaranteed by the fact that we assume pair-

wise projectivity of all m1, . . . ,mn. So we have to prove it for general i > 2 under the



On Solutions of Marginal Problem in Evidence Theory 391

assumption that the assertion holds for i− 1, which means (due to Theorem 2) that all
m1,m2, . . . ,mi−1 are marginal to m1 � . . . �mi−1. Since we assume that K1, . . . ,Kn meets
the running intersection property, there exists j ∈ {1,2, . . . i− 1} such that Ki ∩ (K1 ∪
. . . ∪Ki−1) ⊆ Kj. Therefore (m1 � . . . �mi−1)↓Ki∩(K1∪...∪Ki−1) and m↓Ki∩(K1∪...∪Ki−1)

j are
the same marginals of m1 � . . . �mi−1 and therefore they have to equal to each other:

(m1 � . . . �mi−1)↓Ki∩(K1∪...∪Ki−1) = m↓Ki∩(K1∪...∪Ki−1)
j .

However we assume that mi and mj are projective and therefore also

(m1 � . . . �mi−1)↓Ki∩(K1∪...∪Ki−1) = m↓Ki∩(K1∪...∪Ki−1)
i .

Nevertheless, there exist a big “grey zone” of problems satisfying necessary condi-
tion but not the sufficient one. In this case the answer can be negative (as in Example 2)
or positive (as in the following example).

Example 3. Consider again three variables X1,X2 and X3 with values in X1,X2 and X3,
respectively, Xi = {ai,bi}, i= 1,2,3. Let m1,m2 and m′

3 be defined as shown in Table 5.
The only difference with Example 2 consists in using m′

3 instead of m3.

Table 5. Example 3: basic assignments m1, m2 and m′
3.

A ⊆ X1 ×X2 m1(A) A ⊆ X2 ×X3 m2(A) A ⊆ X1 ×X3 m′
3(A)

{(a1,a2)} 0.5 {(a2,a3)} 0.5 {(a1,a3)} 0.5

X1 ×X2 0.5 X2 ×X2 0.5 X1 ×X3 0.5

These basic assignments are again pairwise projective and the running intersection
property for {1,2},{2,3} and {1,3} (for any ordering of these sets) does not again
hold. However, in this case a common extensions exist; product extension can be found
in Table 6.

Table 6. Example 3: product extension of m1, m2 and m′
3.

A ⊆ X1 ×X2 ×X3 m(A)

{(a1,a2,a3)} 0.5

X1 ×X2 ×X3 0.5

The difference between Examples 2 and 3 consists in the fact that m1, m2 and m′
3

is perfect (although running intersection property is no satisfied) in contrary to m1, m2

and m3.
From this example one can see, that perfectness does not depend only on relations

among different subframes (or their index sets), on which low-dimensional basic assign-
ments are defined, but also of the individual structure of any of them.
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5 Poll Opinion—Solution

It can be easily seen from Table 1 that m1,m2 and m3 are pairwise projective, as

m1(M) = m2(M) = m3(M) = 0.49

and
m1(F) = m2(F) = m3(F) = 0.51.

Since the sequence {S,O},{S,E},{S,R}, satisfies RIP, m1,m2 and m3 form a perfect
sequence. Application of composition operator to m1 and m2 and then to m1 �m2 and
m3 gives rise to the joint basic assignment contained in Table 7.

Table 7. Poll opinion—solution

Male Female

T C {C,T} T C {C,T}
P= A E = P 4.19 4.75 0.38 4.67 3.98 0.17

E = H 2.61 2.97 0.24 5.99 5.1 0.22

E = A 1.21 1.38 0.11 2.07 1.76 0.08

E = {P,H,U} 0.54 0.61 0.05 0.53 0.45 0.02

P= B E = P 5.08 5.78 0.46 2.96 2.53 0.11

E = H 3.15 3.58 0.29 3.82 3.26 0.14

E = A 1.49 1.69 0.13 1.33 1.13 0.05

E = {P,H,U} 0.63 0.71 0.06 0.32 0.27 0.01

P= {A,B} E = P 1.54 1.74 0.14 1.86 1.57 0.07

E = H 0.94 1.07 0.09 2.39 2.04 0.09

E = A 0.45 0.51 0.04 0.85 0.72 0.03

E = {P,H,U} 0.18 0.2 0.02 0.21 0.18 0.01

This table contains all focal elements of the basic assignment m1 �m2 �m3, i.e
only 72 from possible almost 17 million. Therefore it is evident, that despite the fact
that evidential models are super-exponentially complex, compositional models belong
(among them) to those with lower complexity. However, complexity of the resulting
model strongly depends on the complexity of input basic assignments as well as on
their number.

From this table one can obtain by simple marginalization marginal tables of the
relationship between some variables of interest — e.g. preference and education.

6 Conclusions

We have recalled an evidential marginal problem introduced in [10] in a way analogous
to a probability setting, where marginal probabilities are substituted by marginal basic
assignments.
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We studied the structure of the sets of extensions of the problem in more detail and
realized that it is much more complicated than that in analogous probabilistic case. This
will be topic of our future research.

We also generalized concept of product extension to a finite set of basic assignments
using the operator of composition introduced in [5]. The result of this effort is not only
the closed form of an extension of a finite set of basic assignments (if it exists), but also
the sufficient condition for the existence of such an extension. The obtained results are
illustrated by a simple practical example.
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Abstract. Predictions from classification models are most often used
as final decisions. Yet, there are situations where the prediction serves
as an input for another constrained decision problem. In this paper, we
consider such an issue where the classifier provides imprecise and/or
uncertain predictions that need to be managed within the decision prob-
lem. More precisely, we consider the optimisation of a mix of material
pieces of different types in different containers. Information about those
pieces is modelled by a mass function provided by a cautious classifier.
Our proposal concerns the statement of the optimisation problem within
the framework of belief function. Finally, we give an illustration of this
problem in the case of plastic sorting for recycling purposes.

Keywords: Belief functions · Sum rule of mass functions · Mixture
optimisation · Plastic sorting

1 Introduction

Mixing materials in the right amount is a common problem in many industries.
Depending on the desired properties, the mixture must meet certain constraints
on the proportions of each material. In the case where the mixing is done progres-
sively, one must know, at each step, the materials present in the piece to be added
and the materials present in the existing mixture in order to check if the new
mixture respects the proportion constraints. This problem can be encountered in
several applications; when refining crude-oil into useful petroleum products, one
has to manage the mixture of different hydrocarbon products; when recycling
plastic, the portion of some material type should not exceed some thresholds;
when producing different types of wood paneling, each type of paneling is made
by gluing and pressing together a different mixture of pine and oak chips; etc.
The work presented in this paper is motivated by the problem of plastic sort-
ing for recycling purposes, that will serve as a running and illustrative example
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of our proposal. More precisely, we have to assign plastic pieces issued from a
deposit to various containers, knowing that pieces can be of different materials,
and that each container should satisfy some constraints w.r.t. the proportion of
materials it contains. Our goal is then to find the sorting optimizing the recycling
process.

As sorting plastic manually is time and cost-consuming, automatic processing
machines are now put in place, with several sensors (e.g., infra-red cameras)
installed to recognize the material of a plastic piece. The obtained signal is
then processed by automatic model learned from pieces labelled in favourable
conditions (see [8] for more details). Of course, as real conditions are much less
favourable, there may be a lot of uncertainties regarding the actual material of
on-line processed pieces, which explains the need for reliable yet precise enough
classifiers [2,8,11,15]. In our setting, we consider that such classifiers returns
mass functions modelling our knowledge about the material type.

A classical tool to perform optimization under uncertainty is stochastic opti-
mization. We will extend such a setting to belief functions, first by considering
the Choquet integral instead of the classical expectation as an objective function,
and second by replacing the probability measure by the pair belief/plausibility
measures. As we add pieces to a given container, we will also have to compute the
global uncertainty of a container by adding mass functions of different weights.
To do so, we will adapt the technique proposed in [7] for general intervals to the
case of discrete proportions.

The paper is organised as follows. The problem is formalized as a stochas-
tic optimisation problem in Sect. 2. Section 3 gives some reminders about belief
functions, summing operation of mass functions, cautious prediction, and Cho-
quet integral. In Sect. 4, the optimisation problem of pieces sorting is formalized
in the framework of belief functions. The illustration concerning plastic sorting
is presented in Sect. 5.

2 Stochastic Optimisation Problem Formalisation

We consider a deposit of scrap plastic, crude-oil, wood, etc., with a total physical
weight W . This weight represent a set of pieces that will be put in C containers
depending on the composition of each piece. In the end, each container c will

contain a weight of material wend
c , with

C∑

c=1
wend

c = W . The n types of mate-

rials are represented by the set S = {s1, . . . , sn}, and we denote by θc,end
i the

proportion of material si present in the container at the end of the sorting.
Since pieces are supposed to be on conveyor belts, the optimisation pro-

cess will be performed step-wisely, deciding for each new piece in which con-
tainer it should go. Doing so, the final step, i.e., end, gives the proportions
θc,end
1 , θc,end

2 , . . . , θc,end
n in each container and the weights wend

1 , . . . , wend
n can

be deduced by weighting each container. To avoid complicating notations, we
omit the time or step reference in the optimisation problem. The optimisation
problem can be set as follows:
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max
c∈{1,...,C}

gc(sf ) (1a)

subject to hc(θc
1, . . . , θ

c
n) ≤ 0, c = 1, . . . , C, (1b)

n∑

i=1

θc
i = 1, c = 1, . . . , C (1c)

where:

– The objective function (1a) is such that g : S → R
+, with gc(si) the gain

obtained if a material of type si is added to container c;
– θc

i is the proportion of material type si in the container c after adding the
new piece to it,

– The constraints (1b) are expressed using function hc : [0, 1]n → [−1, 1]. They
are of the form hc,A(θ1, . . . , θn) =

∑

i∈A

θi − αc ≤ 0 with A ⊆ S, meaning that

the proportion of materials of types A should not exceed αc in container c;
– The constraint (1c) means simply that proportions sum up to 1.

The deterministic version of this problem is easy to solve, but becomes more
complicated if the piece f composition is uncertain, for instance given by a
probability mass function (pmf) p(.|f) over S. The optimisation becomes then
stochastic, and (1a) is replaced by

max
c∈{1,...,C}

Ep(.|f)[gc] (2)

where Ep(.|f) is the expectation w.r.t. p(.|f). Remark then that p(.|f)
can be converted to a pmf over the discrete subset of proportions
{(1, 0, . . . , 0), . . . , (0, . . . , 1)} of [0, 1]n. Indeed, to check to which extent con-
straints are satisfied, we will need to compute probabilities over proportions.
We denote by pc ⊕ p(.|f) the result of adding the current probabilistic propor-
tions pc of the container with p(.|f), accounting for the current weight of the
container and the weight of f .

The constraints (1b) are then replaced by chance constraints

Pf,c(hc,A(θc
1, . . . , θ

c
n) ≤ 0) ≥ η, c = 1, . . . , C. (3)

where Pf,c is the measure induced from pc ⊕ p(.|f), and η is typically close to 1.
Finally the stochastic optimisation problem is the following

max
c∈{1,...,C}

Ep(.|f)[gc] (4a)

subject to Pf,c(hc,A(θc
1, . . . , θ

c
n) ≤ 0) ≥ η, c = 1, . . . , C, (4b)

n∑

i=1

θc
i = 1, c = 1, . . . , C. (4c)

However, it may be the case that pieces uncertainty is too severe to be mod-
elled by probabilities, in which case more general models, such as belief functions,
should be used. In the next sections, we discuss an extension of Eqs. (2)–(3) for
such uncertainty models.



Handling Mixture Optimisation Problem 397

3 Reminders

3.1 Belief Functions

Belief functions [12,14] are uncertainty models that combine probabilistic and
set-valued uncertainty representations, therefore providing an expressive and
flexible framework to represent different kinds of uncertainty. Beyond probabil-
ities and sets, they also extend possibility theory [5].

Given a space X with elements x, the basic tools used within belief function
theory is the mass function, also called basic belief assignment (bba), is a set
function m : 2X → [0, 1] satisfying

m(∅) = 0 and
∑

A⊆X
m(A) = 1.

The elements A ∈ 2X such that m(A) > 0 are called focal elements and they
form a set denoted F. (m,F) is called body of evidence.

The belief function Bel : 2X → [0, 1] is a set function that measures how
much an event A is implied by our information such that

Bel(A) =
∑

B⊆X ,B⊆A

m(B).

The plausibility function Pl : 2X → [0, 1] is a set function that measures how
much an event A is consistent with our information such that

Pl(A) =
∑

B⊆X ,B∩A �=∅
m(B).

Note that when focal elements are singletons x, we have Bel = Pl and retrieve
probabilities.

3.2 Sum Operation on Imprecise Proportion

Let us denote the unit simplex by U = {(θ1, . . . , θn) ∈ [0, 1]n :
n∑

i=1

θi = 1}.

Let us consider two sets of pieces sf1 and sf2 made of materials among S =
{s1, . . . , sn} with physical masses w1 and w2. The information about the material
type proportions in sf1 and sf2 are given respectively by the bodies of evidence
(m1,F1) and (m2,F2) defined over U, with discrete focal elements in a finite
number. A focal element in F

1 (resp. F
2) is in the form J = J1 × . . . × Jn

(resp. K = K1 × . . . × Kn) where Ji (resp. Ki), i ∈ {1, . . . , n} is an imprecise
information about the proportion of si in sf1 (resp. sf2).

The information resulting from adding sf2 with sf1 is a mass function
denoted m1⊕2 and defined as follows for I ⊂ U [7]:

m1⊕2(I) =
∑

J∈F
1,K∈F

2

I=J�K

m1(J) . m2(K). (5)
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where F
1⊕2 is a finite set made of discrete subsets of U resulting from sum-

ming proportion in F
1 and F

2; the total weight associated to the mixture is
w1 + w2 and � is defined for two focal elements J ∈ F

1 and K ∈ F
2 as follows:

J � K = I1 × . . . × In, with Ii = {w1 x + w2 y

w1 + w2
, x ∈ Ji, y ∈ Ki}.

Note that in case where imprecise information are convex sets, e.g. inter-
vals, only the lower and the upper bounds of the intervals are involved in the
determination of J � K [7].

Example 1. Let us consider the case where S = {s1, s2, s3, s4} and sf1 and sf2

are both composed of a single piece each with weight 1 kg. In Table 1, we give an
example of two bodies of evidence for these two sets of pieces. The focal elements
presented in Table 1 have the following meaning: J1 means that sf1 is a pure
material of type s1 or s2, and J2 means that sf1 is a pure material of type s2,
and similarly for K1,K2.

Table 1. Bodies of evidence.

sf1 (w1 = 1kg) sf2 (w2 = 1kg)

F
1 m1

F
2 m2

J1 = {0, 1} × {0, 1} × {0} × {0} 0.5 K1 = {0, 1} × {0, 1} × {0} × {0} 0.6

J2 = {0} × {1} × {0} × {0} 0.5 K2 = {1} × {0} × {0} × {0} 0.4

The obtained mass function when mixing sf1 and sf2 is given by its body
of evidence ({I1, I2, I3, I4},m1⊕2) as follows:

I1 = J1 � K1 = {0,
1
2
, 1} × {0,

1
2
, 1} × {0} × {0}, m1⊕2(I1) = 0.3,

I2 = J1 � K2 = {1
2
, 1} × {0,

1
2
} × {0} × {0}, m1⊕2(I2) = 0.2,

I3 = J2 � K1 = {0,
1
2
} × {1

2
, 1} × {0} × {0}, m1⊕2(I3) = 0.3,

I4 = J2 � K2 = {1
2
} × {1

2
} × {0} × {0}, m1⊕2(I4) = 0.2.

3.3 Inference from Imprecise Proportions

The set Aα of vector proportions that satisfy
∑

i∈A

θi ≤ α is of interest in our

problem because it allows expressing constraints containers must respect, as
indicate Eq. (1b). Thus we need to make inferences over such event. Given focal
elements I = I1 × ...×In, in case where Ii = [�i, ui] are intervals it was shown [7]
that

I ⊆ Aα ⇔ min(
∑

si∈A

ui, 1 −
∑

si �∈A

�i, ) ≤ α
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I ∩ Aα �= ∅ ⇔ max(
∑

si∈A

�i, 1 −
∑

si �∈A

ui) ≤ α

In the discrete case where Ii = {τ1, τ2, . . . , τ|Ii|}, τi ∈ [0, 1], the two previous
formulae remain valid when considering ui = max

t=1,...,|Ii|
τt and �i = min

t=1,...,|Ii|
τt.

3.4 Cautious Predictions

In our case, belief functions will be produced by classifiers that will be learned
from a set of examples/pieces f1, . . . , fl having m features X1, . . . , Xm having
received a label in S. Given a new object f , this classifier will output a mass
m(.|f) as a prediction.

Such classifiers are indeed useful in our application, as they provide more reli-
able information, and can account for many defects, such as the missingness of
some feature Xj for f (due to a broken sensor), or the fact that measurements are
done by industrial on line machine device instead of laboratory measurements,
meaning that variability in measurement due to atmospheric disturbances, age-
ing of plastics, black or dark-coloured materials, etc. lead to reducing the quality
of the spectrum obtained from plastic pieces. In this situation, classifier produc-
ing point prediction, i.e., single element from S as prediction, will make to many
errors to provide a reliable sorting. Instead of point prediction classifiers, we will
use classifiers providing cautious predictions in form of a posterior mass func-
tion over S [8], but the approach could apply to other such classifiers [3,4,11].
It should be stressed that in our case, one could prefer to put a good plastic in a
low price container rather than ruining a high price container by violating con-
straints (1b), so being cautious by accounting for imperfectness of information
is essential.

3.5 Choquet Integral

The Choquet integral [9] is an integral that applies to non-additive measures,
often referred as fuzzy measures [10]. Since a Belief function defined over a
space S is such a fuzzy measure1, we can apply the Choquet integral to it in the
following way: given a vector of real positive values y = (y1, ..., yn) ∈ R

+n, its
Choquet integral w.r.t. Bel is defined as

CBel(y) =
n∑

i=1

(yσ(i) − yσ(i−1))Bel({sσ(i), sσ(i+1), ..., sσ(n)}) (6)

where 0 = yσ(0) ≤ yσ(1) ≤ yσ(2) ≤ ... ≤ yσ(n) (σ is a permutation over
{1, . . . , n}).

If Bel = Pl, then Eq. (6) is simply the standard expectation operator. Oth-
erwise, it can be interpreted as the lower expectation taken over all probabilities
Bel ≤ P ≤ Pl, i.e., all probabilities bounded by our imprecise knowledge.
1 It is such that Bel(∅) = 0, Bel(S) = 1 and is montonic, i.e., A ⊆ B → Bel(A) ≤

Bel(B).
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4 Optimisation Problem Statement in the Framework
of Belief Function

We now provide an equivalent of the optimisation problem ingredients (4a)–(4c)
in the framework of belief function. We consider all the previous ingredients,
except that now the information about a new piece to add to a container is given
by a mass function m(.|f) defined over S = {s1, . . . , sn}, and our information
about the proportions of materials in a given container c is also given by a mass
function mc bearing on U. As before, one can easily go from a mass m(.|f) on
S to a mass on U (see Example 1 for an illustration).

4.1 The Objective Function

The expected value in the objective function (2) can be replaced by the Choquet
integral based on the belief function Bel(.|f). As in Sect. 2, we will only be
interested to model in the objective function the potential gain of adding the
new piece f to one of the container, without bothering about the container
current proportions, as those will be treated in the constraints. If g is the overall
gain of a container containing materials of a specified kind A, where elements
A ⊂ S are considered as impurities whose percentage should not exceed αc, we
simply consider the function gc(s) = g(s) for s ∈ A, and gc(s) = αc · g(s).

Example 2. Consider four material types S = {s1, . . . , s4} and three containers.
Table 2 presents an example of gains obtained when adding piece f to each con-
tainer. We consider that container 1 is dedicated to s1 and other type proportions
should not exceed α1; container 2 is dedicated to s2 and s3 (deemed compatible
for recycling) and other type proportions should not exceed α2; container 3 is
the garbage bin, so α3 = 1.

Table 2. Container gains.

s1 s2 s3 s4

Container 1 100$ α1 . 100$ α1 . 100$ α1 . 100$

Container 2 α2 . 100$ 100$ 100$ α2 . 100$

Container 3 1$ 1$ 1$ 1$

The example of Table 2 shows that the larger the threshold, the higher the gain
when adding impurities to a container.

Still denoting by gc(si) the gain obtained if the real type of the added piece
to the container c is si, Eq. (2) becomes:

max
c∈{1,...,C}

CBel(.|f)(gc(s1), . . . , gc(sn)) (7)
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The objective function (7) is an expected value based on Choquet inte-
gral where gains are weighted related to our belief on the material type of
the new piece including imprecise information. Let denotes x(1) = min

i=1,n
gc(si),

. . ., x(n) = max
i=1,n

gc(si) such as x(1) ≤ x(2) ≤ . . . ≤ x(n), then this expected

value guarantee x(1) surely and adds to it the gaps x(i) − x(i−1) weighted
by Bel({s(i), . . . , s(n)}|f).

Example 3. Let us consider a mass function m(.|f) with the following body of
evidence ({{s1}, {s1, s2}}, (0.2, 0.8)). The resulting Bel(.|f) is given in Table 3.

Table 3. Belief function.

∅ {s1} {s2} {s1, s2} {s3} {s1, s3} {s2, s3} {s1, s2, s3}
Bel(.|f) 0 0.2 0 1 0 0.2 0 1

{s4} {s1, s4} {s2, s4} {s1, s2, s4} {s3, s4} {s1, s3, s4} {s2, s3, s4} {s1, s2, s3, s4}
Bel(.|f) 0 0.2 0 1 0 0.2 0 1

If we consider α1 = 0.25 and α2 = 0.3 in Table 2, we obtain the gains in
Table 4. In this case, without considering constraints, f should go in container 1.

Table 4. Container gains.

s1 s2 s3 s4 Expected gain

Container 1 100$ 25$ 25$ 25$ 25 + 75 Bel({s1}|f) = 40

Container 2 30$ 100$ 100$ 30$ 30 + 70 Bel({s2, s3}|f) = 30

Container 3 1$ 1$ 1$ 1$ 1

4.2 The Constraints

Let us consider that the physical weight of f is wf and the physical weight of
the current pieces in the container c is wc. The formula (5) gives us the new
mass function mf⊕c when adding the piece f to the container c. The constraints
in (3) check whether impurities in containers are not too high. However, we
must now replace he probability measure P

f⊕c in this constraint is by the pair
(Belf⊕c, P lf⊕c). One may reasonably requires the degree of certainty that a
constraint is satisfied to be very high, and the degree of plausibility of this same
constraint to be satisfied to be close to 1. Such a reasoning can be applied by
replacing the constraint (3) by two constraints:

Belf⊕c(hc(θ1, . . . , θn) ≤ 0) > ηc, c = 1, . . . , C, (8a)

Plf⊕c(hc(θ1, . . . , θn) ≤ 0) ∼ 1, c = 1, . . . , C. (8b)
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where ηc ∈]0, 1] are enough large. Note that such ideas are not new, and have
been for instance recently applied to the travelling salesman problem [6].

Example 4. If we go back to the Example 2, the considered constraints for each
container can be given as follows:
Container 1:

Belf⊕c(
∑

i�=1

θi ≤ α1) > η1, P lf⊕c(
∑

i�=1

θi ≤ α1) ∼ 1,

Container 2:

Belf⊕c(
∑

i�=2,3

θi ≤ α2) > η2, P lf⊕c(
∑

i�=2,3

θi ≤ α2) ∼ 1,

Container 3:

Belf⊕c(
∑

i�=4

θi ≤ α3) > η3, P lf⊕c(
∑

i�=4

θi ≤ α3) ∼ 1.

Let us denote Aα the set of vector proportions that satisfy
∑

i∈A

θi ≤ α. In

Sect. 3.3 we give the way to determine Bel(Aα) and Pl(Aα) that are required to
check the constraints (8a) and (8b).

Finally, we have the following optimisation problem to decide in each con-
tainer a piece f should be added:

max
c∈{1,...,C}

CBel(.|f)(gc(s1), . . . , gc(sn)) (9a)

subject to Belf⊕c(hc(θc
1, . . . , θ

c
n) ≤ 0) > ηc, c = 1, . . . , C, (9b)

Plf⊕c(hc(θc
1, . . . , θ

c
n) ≤ 0) ∼ 1, c = 1, . . . , C, (9c)

n∑

i=1

θc
i = 1, c = 1, . . . , C. (9d)

To solve the optimisation problem (9a)–(9d) one needs to assess (9a) for each
container for the finite number of pieces in the deposit. Complexity issues arise
when the number of pieces is very large. Indeed, the number of focal elements
involved when determining Belf⊕c (9b) and Plf⊕c (9c) become exponential, yet
one can easily solve this issue by considering approximations (e.g., deleting focal
elements of very small mass).

5 Illustration

In this section we present an application concerning plastic sorting where the
pieces of a deposit should be separated by types of materials in different con-
tainers prior to recycling due to some physico-chemical reasons related to non-
miscibility. Optical sorting devices are used to automatically sort the pieces. As
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Fig. 1. Example of sorting device

it is shown in Fig. 1 borrowed from [1], pieces of plastics arrive continuously on
a conveyor belt before being recorded by an infra-red camera. However, the on
line acquired information is subject to several issues inducing the presence of
imprecision on one hand, i.e. some features information are not precise enough
to draw clear distinctions between the materials type, and uncertainty on the
other hand, i.e. due to the reliability of information caused by atmospheric dis-
turbance, etc (please refer to [8] for more details). Two sources of information are
used to collect data. The first source of data is the Attenuated Total Reflection
(ATR) which gives excellent quality of spectra that allows experts to label pieces
easily. The second source is the optical device which provides spectra of lesser
quality. Since small quantity of badly sorted plastics can lead to high decreases
of impact resistance [13] and of monetary value, impurities should be limited.
Thus, experts have defined tolerance threshold on the proportions of impurities.

In this illustration we propose a sorting procedure based on the optimisation
problem in (9a)–(9d). The cautious classification is provided using the evidential
classifier proposed in [8].

Let us recap the procedure performed to sort each fragment f :

– Estimate the resulting composition of each container c if we add f to it as a
mass function mf⊕c using the sum operation defined in Sect. 3.2.

– Select the containers verifying the constraints (9b) and (9c).
– Compare the objective function (9a) for the selected container.
– Update the evidence about the chosen container.

5.1 Data Presentation

Let us consider a plastic waste deposit composed of 25 pieces of four material
types s1, s2, s3, s4. All the pieces have the weight w = 1. Each piece should be
sent to one of the three containers dedicated for specific material types. The first
container is dedicated to plastic types s1, s2 and the proportions of impurities, i.e
s3, s4, should not exceed α1 = 0.05. The second container is dedicated to plastic
types s3, s4, and the proportions of impurities, i.e s1, s2, should not exceed
α2 = 0.05. The third container is actually the reject option, thus all types of
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plastics are considered as impurities (or considered as valid materials), but there
is no need to control them, thereby α3 = 1. Table 5 gives the gains considered
for the containers.

Table 5. Container gains for plastic sorting.

s1 s2 s3 s4

Container 1 100$ 100$ 5$ 5$

Container 2 5$ 5$ 100$ 100$

Container 3 1$ 1$ 1$ 1$

The database used for the experimentation are 23365 industrially acquired
spectra. Each example of the database is composed of its 154-dimension features
and its ATR label.

5.2 Simulations

The evidential classifier proposed in [8] has been trained on the 11747 examples
and applied on the testing set, i.e., 11618 other examples. We obtained 11618
mass functions m(.|f1), . . . ,m(.|f11618). In order to evaluate the sorting proce-
dure, we tested the performances on 40 simulations of fragment streams. The
simulation of a stream was done by selecting randomly indexes orders of test-
ing fragments f1, . . . , f11618. For computational reasons, we stopped the sorting
procedure at the 25th fragment for each simulation. Note that the complexity
of the sorting procedure is exponential, i.e., O((2|S|)nb of pieces) [7]. Figure 2, 3
and 4 show respectively the evolution of the weight of materials in the two first
containers, the belief that the constraints are respected and the real proportions
of impurities. Each curves represents one simulation and we keep the same color
in all the figures. The thresholds are set to η1 = η2 = 0.6.
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Fig. 2. Evolution of the weight of materials in container 1 and 2.
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In Fig. 2 we observe that the choice between the two first containers is
balanced. As we can see in Fig. 3, the constraints defined in (9b) are always
respected. Using the testing labels we can evaluate the real proportions of impu-
rities.
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Fig. 3. Evolution of the belief that the constraints are respected in containers 1 and 2.

In Fig. 4, we observe that the proportion of impurities are most of the times
below the required threshold except for a few simulations where mistakes are
made for the first pieces added in container 1 and 2. Since at the beginning of
the sorting, there are only few pieces, the mistakes have a high impact on the
proportions. After checking, it turned out that the mass functions provided for
these examples were not accurate. In order to evaluate the quality of the result-
ing sorted material, we introduce the score qc as the percentage of simulations
respecting impurities proportions constraints at the end of the sorting in the
container c. With the proposed approach we obtain q1 = 77.5% and q2 = 62.5%.
This is significantly higher than the required levels 60%, which is in-line with the
fact that we are acting cautiously. In terms of gains, the average gain obtained
in the simulations is 1901.475$ while the optimal would have been 2500$, in
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Fig. 4. Evolution of real proportions of impurities in containers 1 and 2.
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the ideal case where all pieces are sorted in the correct container. However, this
would only have been possible if we had perfect classification results, something
that is unlikely.

5.3 Discussion

In order to verify the benefit of the proposed sorting procedure based on the
optimisation problem (9a)–(9d), named here evidential procedure, we compare it
to the stochastic procedure based on the stochastic optimisation problem (4a)–
(4c) and to the deterministic procedure based on optimisation problem (1a)–(1c).
We consider stochastic procedure based on the Pignistic probability derived from
m(.|f) while the deterministic procedure is based on a classifier producing point
prediction. The simulations whose results are in the Table 6 are made in the
same settings and numbers as in Sect. 5.2. Two criteria are used to perform this
comparison: the quality of the resulting materials in the two containers q1, q2;
the rate of average gain obtained on all simulations, denoted Rag.

What we see here is that not accounting for uncertainty, or considering a less
expressive model (i.e., probabilities) do indeed bring a better average gain, but
fails to meet the constraints imposed to the containers for them to be usable at
all. Indeed, the evidential procedure achieves high quality of the sorting mate-
rial while the two other procedures do not respect the required constraints on
the containers composition. This could be solved by considering more penalizing
gains in case of bad sorting for the deterministic procedure and stochastic pro-
cedure, yet this would complexify the procedure. Thus the evidential procedure
seems preferable for applications where constraints on impurities are strong, i.e.
very small α or when the confidence level required for the application is high,
i.e., η closer to 1. When such requirements are not necessary, we would advice
the use of an alternative procedure less computationally demanding.

Table 6. Comparison with alternative procedures

Procedures Rag q1 q2

Evidential 0.76059 77.5% 62.5%

Probabilistic 0.77984 67.5% 57.5%

Deterministic 0.9297 52.5% 27.5%

6 Conclusion

We proposed in this paper a formulation of the mixture problem of material
types in the framework of belief functions. The usefulness of this work is illus-
trated using the sorting procedure of plastic material. A stepwise approach is
proposed to avoid the complicated complete resolution. As perspectives for this
work, one should optimise the stepwise summing of mass functions in on line
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sorting procedure by controlling the focal elements generated at each step in
order to overcome the exponential complexity. Furthermore, one may relax the
constraints on impurities at each step by requiring them only at the end of the
sorting procedure.
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Radlinského 9, 812 37 Bratislava, Slovakia

anna.kolesarova@stuba.sk
2 Faculty of Civil Engineering, Slovak University of Technology,
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Abstract. Atanassov’s intuitionistic fuzzy set theory is based on the
lattice L∗ of intuitionistic values and their aggregation. There are lots
of works dealing with this topic, but mostly considering some particular
cases. In this contribution, we offer a rather general view on aggregation
of intuitionistic values with transparent proofs of several properties which
significantly shorten the related proofs for particular cases known from
the literature.
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1 Introduction

The first connectives/aggregation functions for intuitionistic fuzzy logic/theory
were proposed by Atanassov [1,2]. They were related to the basic aggregation
functions on [0, 1], i.e., minimum, maximum, product and probabilistic sum of
aggregation functions. Later, Deschrijver and Kerre [11] introduced a class of
intuitionistic connectives based on t-norms on [0, 1] and the corresponding dual
t-conorms. Xu [19] introduced several functions dealing with intuitionistic values,
including aggregation functions based on the standard product, such as intuition-
istic fuzzy weighted averaging (IFWA) operator. Similar functions/aggregation
functions dealing with intuitionistic values but based on the Einstein t-norm
(a particular t-norm from the Hamacher family [16]) were proposed in [18] and
consequently mentioned in several other papers. In papers [15,17], Hamacher’s
product or Dombi’s t-norms were considered for deriving aggregation functions
acting on intuitionistic values.

In all mentioned cases, one can find long and tedious proofs of some properties
of the introduced functions, in particular, the proofs of the basic fact that (in
some cases) they are aggregation functions on the lattice L∗ of intuitionistic
values.
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The main aim of this contribution is to propose a unified approach to intu-
itionistic aggregation based on strict t-norms and provide short and transparent
proofs of important properties of the introduced functions. As a byproduct, our
results can help to the researchers who work in intuitionistic fuzzy set theory to
avoid introducing “new” intuitionistic aggregation functions whose only novelty
is that they are based on t-norms which have not been explicitly mentioned in
the literature yet. Moreover, we show several techniques for making proofs of
new results in aggregation domain shorter and more transparent.

2 Preliminaries

We expect that the readers are familiar with the basics of fuzzy set theory [20]
and intuitionistic fuzzy set theory [1–3]. Similarly, the basic knowledge concern-
ing triangular norms [16] and aggregation functions [4,6,13] is expected. Here
we only recall some most relevant basic notions.

Note that the concept of Atanassov’s intuitionistic fuzzy sets was introduced
to generalize the concept of Zadeh’s fuzzy sets [20], and the original definition
[1] of an Atanassov intuitionistic fuzzy set (AIFS for short) in a universe X can
be recalled as follows:

Definition 2.1. Let X �= ∅ be any set. An Atanassov intuitionistic fuzzy set A
in X is defined as a set of triplets

A = {(x, μA(x), νA(x)) | x ∈ X},

where μA, νA : X → [0, 1], and for all x ∈ X, also μA(x) + νA(x) ∈ [0, 1].

Note that, for each element x ∈ X, μA(x) and νA(x) are called the mem-
bership and the non-membership degrees of x to A, respectively, and the pair
(μA(x), νA(x)) is called an Atanassov intuitionistic fuzzy value [18].

Denote by L∗ the set of all possible intuitionistic values, i.e.,

L∗ = {(a, b) ∈ [0, 1]2 | a + b ≤ 1}.

In particular, the set L∗ with the partial order ≤L∗ , given by

(a, b) ≤L∗ (c, d) if and only if a ≤ c and b ≥ d,

form a bounded lattice with the top element 1L∗ = � = (1, 0) and bottom
element 0L∗ = ⊥ = (0, 1).

Then an Atanassov intuitionistic fuzzy set A in a universe X can be seen as
a mapping A : X → L∗. To define basic operations of union and intersection of
AIFSs, Atanassov [1] has proposed to apply pointwisely some appropriate binary
functions mapping (L∗)2 onto L∗. Due to their associativity, the n-ary forms of
these operations are uniquely defined.

The first intuitionistic connectives proposed in [1] are just the join ∨L∗ and
meet ∧L∗ , inducing the union and intersection of AIFSs. Clearly,

(a, b) ∨L∗ (c, d) = (a ∨ c, b ∧ d), (1)
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and
(a, b) ∧L∗ (c, d) = (a ∧ c, b ∨ d). (2)

As another type of operations on L∗, Atanassov [1] proposed the operations
given by

(a, b) ⊕ (c, d) = (a + c − ac, bd), (3)

and
(a, b) ⊗ (c, d) = (ac, b + d − bd). (4)

Obviously, all four operations ∨L∗ ,∧L∗ ,⊕ and ⊗ are binary aggregation func-
tions on L∗ [5,18], i.e., they are non-decreasing in each variable with respect to
the order ≤L∗ , and they aggregate � and � into � and also ⊥ and ⊥ into ⊥.
Moreover, they are commutative and associative, � is a neutral element of ∧L∗

and ⊗, whereas ⊥ is a neutral element of ∨L∗ and ⊕. Hence, ∧L∗ and ⊗ can be
seen as t-norms, and ∨L∗ and ⊕ as t-conorms on L∗. In all four cases we see the
connection with the standard t-norms TM and TP and the standard t-conorms
SM and SP , defined on the real unit interval [0, 1] by

TM (a, b) = min{a, b}, TP (a, b) = ab,

SM (a, b) = max{a, b}, SP (a, b) = a + b − ab.

For more details see, e.g., [16]. Formally, ∨L∗ ≈ (SM , TM ), i.e.,

(a, b) ∨L∗ (c, d) = (SM (a, c), TM (b, d)).

Further, ∧L∗ ≈ (TM , SM ), and thus it can be seen as a dual operation to ∨L∗

on L∗. Similarly, ⊕ ≈ (SP , TP ) and ⊗ ≈ (TP , SP ) are dual operations.
This observation has been generalized by Deschrijver and Kerre [11]. For

an arbitrary t-norm T : [0, 1]2 → [0, 1] and the corresponding dual t-conorm
S : [0, 1]2 → [0, 1], satisfying, for each (a, b) ∈ [0, 1]2, S(a, b) = 1−T (1−a, 1−b),
the mappings TT ,ST : (L∗)2 → L∗,

TT ≈ (T, S) and ST ≈ (S, T ), (5)

are called a representable t-norm and a t-conorm on L∗, respectively.
For possible applications of AIFS theory some other operations/aggregation

functions have also been proposed. For example, Xu [19] has proposed to define
the product “·”, · : ]0,∞[×L∗ → L∗ by

λ · (a, b) = (1 − (1 − a)λ, bλ) (6)

and the power on the same domain by

(a, b)λ = (aλ, 1 − (1 − b)λ). (7)

Based on these functions, in [19] some new n-ary aggregation functions on L∗

were proposed and studied, for example, IFWAw (intuitionistic fuzzy weighted
average) given by

IFWAw((a1, b1), . . . , (an, bn)) =

(
1 −

n∏
i=1

(1 − ai)wi ,

n∏
i=1

bwi

)
, (8)
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where w = (w1, . . . , wn) ∈ [0, 1]n,
n∑

i=1

wi = 1, is a weighting vector. Evidently,

formulas (6), (7) and (8) are based on the product t-norm. Similarly, modifying
formulas (6), (7) and (8), Wang and Liu [18] have proposed functions dealing
with values from L∗ based on the Einstein t-norm TE : [0, 1]2 → [0, 1] given
by TE(a, b) = ab

2−a−b+ab and its dual, Einstein t-conorm, SE : [0, 1]2 → [0, 1],
SE(a, b) = a+b

1+ab (note that the formula defining SE is just the Einstein formula
for summing relative velocities). For example, the product ·E : ]0,∞[×L∗ → L∗

they have defined as follows:

λ ·E (a, b) =
(

(1 + a)λ − (1 − a)λ

(1 + a)λ + (1 − a)λ
,

2bλ

(2 − b)λ + bλ

)
. (9)

3 Representable Aggregation Functions on L∗

All till now discussed aggregation functions on L∗ have been based on some
aggregation function A : [0, 1]n → [0, 1] and its dual Ad : [0, 1]n → [0, 1],

Ad(a1, . . . , an) = 1 − A(1 − a1, . . . , 1 − an)

and defined as follows: A : (L∗)n → L∗, A ≈ (A,Ad),

A((a1, b1), . . . , (an, bn)) = (A(a1, . . . , an), Ad(b1, . . . , bn)). (10)

It is obvious that for any aggregation functions A,B : [0, 1]n → [0, 1] such that
B ≤ Ad, the mapping A : (L∗)n → L∗, A ≈ (A,B),

A((a1, b1), . . . , (an, bn)) = (A(a1, . . . , an), B(b1, . . . , bn)) (11)

is an aggregation function on L∗. Moreover, A inherits all common properties of
A and B. In particular, if both A and B are associative (symmetric/idempotent
or if they have a neutral element/an annihilator) then A ≈ (A,B) also pos-
sesses this property. Such types of intuitionistic aggregation functions are called
representable intuitionistic aggregation functions [10,12]. They also cover intu-
itionistic aggregation functions mentioned in (1)–(5) and (8).

As an example when B �= Ad consider A = TP and B = SM . Clearly,
SM ≤ T d

P = SP and thus T ≈ (TP , SM ) given by

T((a, b), (c, d)) = (ac, b ∨ d)

is a representable t-norm on L∗.
Note that there are also non-representable aggregation functions on L∗,

including t-norms. For example, consider the mapping T : (L∗)2 → L∗ given
by

T((a, b), (c, d)) = (a ∧ c, (b ∨ (1 − c)) ∧ ((1 − a) ∨ d)).

Then T is a t-norm on L∗ which is not representable. For more examples see
[10].
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4 Main Results

Formulas (3), (4), (6), (7) and (8) are related to the product t-norm. Similarly,
(9) and several other formulas in [15] and [18] are related to the Hamacher and
Einstein t-norms, respectively, and formulas based on Dombi’s t-norms have been
discussed in [17]. In all mentioned cases, a strict t-norm T : [0, 1]2 → [0, 1] and
its dual t-conorm S : [0, 1]2 → [0, 1] have been considered. The main advantage
of strict t-norms is the fact that they are generated by an additive generator
t : [0, 1] → [0,∞] which is a decreasing bijection, i.e.,

T (a, b) = t−1(t(a) + t(b)).

To have a unique correspondence between strict t-norms and their additive gener-
ators, one can always choose the generator satisfying t(0.5) = 1. Then the dual t-
conorm S is generated by an additive generator s : [0, 1] → [0,∞], s(x) = t(1−x),

S(a, b) = s−1(s(a) + s(b)) = 1 − t−1(t(1 − a) + t(1 − b)).

Clearly, a representable intuitionistic t-norm TT ≈ (T, S) and t-conorm ST ≈

(S, T ) in their n-ary form are given by

TT ((a1, b1), . . . , (an, bn)) =

(
t−1

(
n∑

i=1

t(ai)

)
, 1 − t−1

(
n∑

i=1

t(1 − bi)

))

and

ST ((a1, b1), . . . , (an, bn)) =

(
1 − t−1

(
n∑

i=1

t(1 − ai)

)
, t−1

(
n∑

i=1

t(bi)

))
.

Now, fix a strict t-norm T having an additive generator t, and introduce the
mappings:

λ ·T (a, b) =
(
1 − t−1 (λt(1 − a)) , t−1 (λt(b))

)
, λ > 0, (a, b) ∈ L∗, (12)

(a, b)λT =
(
t−1 (λt(a)) , 1 − t−1 (λt(1 − b))

)
, λ > 0, (a, b) ∈ L∗, (13)

and for all (a1, b1), . . . , (an, bn) ∈ L∗,

IFWAT
w((a1, b1), . . . , (an, bn)) = ST (w1 ·T (a1, b1), . . . , wn ·T (an, bn)). (14)

Then we have

IFWAT
w((a1, b1), . . . , (an, bn)) =

(
1− t−1

(
n∑

i=1

wit(1− ai)

)
, t−1

(
n∑

i=1

wit(bi)

))
, (15)

and the following results hold:

Theorem 4.1. Let T : [0, 1]2 → [0, 1] be a strict t-norm with an additive gener-
ator t. Then
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(i) ST ((a, b), (a, b)) = 2 ·T (a, b);
(ii) TT ((a, b), (a, b)) = (a, b)2T ;
(iii) IFWAT

w is an idempotent representable n-ary aggregation function on L∗,
which is ⊕T -additive where ⊕T = ST .

Proof: The proofs of (i) and (ii) are only a matter of simple calculations, e.g.,

ST ((a, b), (a, b)) =
(
1 − t−1 (2t(1 − a)) , t−1 (2t(b))

)
= 2 ·T (a, b).

To prove (iii), first observe that for any b1, . . . , bn ∈ [0, 1] and a weighting
vector w, the formula

t−1

(
n∑

i=1

wit(bi)

)
= Tw(b1, . . . , bn)

defines a weighted t-norm Tw, see [7]. Obviously, for the dual t-conorm S to T
and a1, . . . , an ∈ [0, 1], the formula

1 − t−1

(
n∑

i=1

wit(1 − ai)

)
= Sw(a1, . . . , an) = T d

w(a1, . . . , an)

gives the weighted t-conorm Sw, and the weighted aggregation functions Tw and
Sw based on the same weighting vector are dual. Then IFWAT

w ≈ (Sw, Tw) is a
representable aggregation function on L∗. As both Sw and Tw are idempotent,
IFWAT

w is also idempotent.
Finally, verification of the ⊕T -additivity of IFWAT

w, i.e., the property

IFWAT
w ((a1, b1) ⊕T (c1, d1), . . . , (an, bn) ⊕T (cn, dn))

= IFWAT
w ((a1, b1), . . . , (an, bn)) ⊕T IFWAT

w ((c1, d1), . . . , (cn, dn))

is a matter of an easy computation. ��
Note that the proofs of these results realized for particular t-norms known

from the literature, see, e.g. [18,19], are rather long and non-transparent.

Remark 4.1. Nilpotent t-norms [16] are also generated by additive generators.
In this case, an additive generator is a decreasing bijection t : [0, 1] → [0, 1], and
then

T (a, b) = t−1 (min{1, t(a) + t(b)}) ,

and for the corresponding dual t-conorm S we have

S(a, b) = t−1 (min{1, t(1 − a) + t(1 − b)}) .

Surprisingly, nilpotent t-norms are rarely applied in intuitionistic fuzzy set the-
ory (IFST), possibly except the �Lukasiewicz t-norm TL, TL(a, b) = max{0, a +
b − 1} and its dual t-conorm SL, SL(a, b) = min{1, a + b}. The corresponding
intuitionistic t-norm TL ≈ (TL, SL) and t-conorm SL ≈ (SL, TL) form the basis
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of probability theory in IFST, see [14] and several Riečan’s works [8,9]. Based
on a nilpotent t-norm with additive generator t, one can introduce the related
product, power and weighted mean, paraphrasing formulas (12), (13) and (15).
Considering TL and its additive generator tL : [0, 1] → [0, 1], tL(x) = 1 − x, we
obtain:

λ ·TL
(a, b) =

(
1 − t−1

L (min{1, λtL(1 − a)}) , t−1
L (min{1, λtL(b)})

)
= (min{1, λa},max{0, 1 − λ(1 − b)}) ;

(a, b)λTL = (max{0, 1 − λ(1 − a)},min{1, λb}) ,

and

IFWATL
w ((a1, b1), . . . , (an, bn)) =

(
n∑

i=1

wiai,

n∑
i=1

wibi

)
,

i.e., IFWATL
w is an intuitionistic fuzzy weighted arithmetic mean. Note that

considering continuous t-norms and their weighted forms discussed in [7], one
can introduce more general types of weighted aggregation functions also in the
intuitionistic framework.

5 Concluding Remarks

We have introduced a rather general approach to functions dealing with intu-
itionistic values from L∗, in particular to functions based on continuous Archime-
dean t-norms and their additive generators. Our results significantly generalize
the related results based on special strict t-norms (e.g., the standard product,
Einstein’s t-norm, Dombi’s t-norms) known from the literature. The main advan-
tage of our approach is its transparentness and obtaining short general proofs
of the results in contrast to the long and non-transparent proofs of results in
particular cases. We believe that our paper will contribute not only to the theo-
retical basis of IFST, but in particular, it can make intuitionistic fuzzy sets more
efficient for applications. Moreover, it can also help in related domains, such as
picture fuzzy sets, neutrosophic fuzzy sets, etc.
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APVV-18-0052 and the grant VEGA 1/0614/18.
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6. Calvo, T., Kolesárová, A., Komorńıková, M., Mesiar, R.: Aggregation operators:
properties, classes and construction methods. In: Calvo, T., Mayor, G., Mesiar,
R. (eds.) Aggregation Operators, pp. 3–107. Physica-Verlag, Heidelberg (2002).
https://doi.org/10.1007/978-3-7908-1787-4

7. Calvo, T., Mesiar, R.: Weighted triangular norms-based aggregation oper-
ators. Fuzzy Sets Syst. 137(1), 3–10 (2003). https://doi.org/10.1016/S0165-
0114(02)00428-1
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Pal, S.K., Petrosino, A. (eds.) WILF 2009. LNCS (LNAI), vol. 5571, pp. 101–107.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02282-1 13
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Abstract. Based on bi-capacities and related Choquet integral intro-
duced by Grabisch and Labreuche, a new generalization of OWA oper-
ators, namely BIOWA operators are introduced. Our approach is exem-
plified by several examples. Bi-capacities leading to the standard Yager’s
OWA operators on real line are completely characterized.

Keywords: Aggregation function · Bi-capacity · Choquet integral ·
OWA operator

1 Introduction

Bi-capacities arise as a natural generalization of capacities (fuzzy measures,
normed monotone measures) in the context of decision making where under-
lying scales are bipolar. They, together with the related Choquet integral, are
able to capture a wide variety of decision behaviours, encompassing models such
as Cumulative Prospect Theory [9]. The related Choquet integral generalizes
the standard extensions of the original Choquet integral, such as the asymmet-
ric Choquet integral [3] or the symmetric (Šipoš) integral [10]. Hence we expect
possible applications in all areas dealing with the aggregation of data from bipo-
lar scales, such as expert systems [8].

In what follows, for an arbitrary n > 0 denote N = {1, . . . , n}. Then a
set function μ : 2N → [0, 1] is capacity if it is increasing and fulfils boundary
conditions μ(∅) = 0 and μ(N) = 1. The capacity μ is symmetric if

μ(A) = μ(π(A)) for any A ∈ 2N and permutation π : N → N,

π(A) = {π(i)|i ∈ A}. This symmetry holds if and only if μ(A) = g(cardA), where
g : N ∪ {0} → [0, 1] is an increasing function fulfilling g(0) = 0 and g(n) = 1.

Let f : N → R
+ and μ be a capacity on N . The Choquet integral [2] of f

with respect to μ is defined by

Chμ(f) :=
∫ ∞

0

μ({i| f(i) ≥ t})dt =
n∑

i=1

f(τ(i)) · [μ(Aτ,i) − μ(Aτ,i+1)], (1)

c© Springer Nature Switzerland AG 2020
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where τ : {1, . . . , n} → {1, . . . , n} is any permutation such that f(τ(1)) ≤ · · · ≤
f(τ(n)), Aτ,i = {τ(i), . . . , τ(n)} and Aτ,n+1 := ∅. If μ is a symmetric capacity
generated by g, then (1) can be rewritten into

Chμ(f) =
n∑

i=1

f(τ(i)) · [g(n − i + 1) − g(n − i)]. (2)

The Choquet integral (2) is a symmetric n-ary aggregation function on R
+,

i.e., for any permutation π it hold Chμ(f ◦ π) = Chμ(f), where (f ◦ π)(i) =
f(π(i)). Formula (2) can be applied also for inputs from R (corresponding to the
asymmetric Choquet integral [7]).

Moreover it is enough to put wg
i = g(n − i + 1) − g(n − i) to see that

Chμ(f) = OWAwg(f),

i.e., we get an OWA operator introduced by Yager [11]. Following [7], the Cho-
quet integral Chμ coincides with OWA operator if and only if Chμ is a symmetric
aggregation function, or equivalently, if and only if μ is a symmetric capacity,
μ(A) = g(cardA). In our contribution we apply and study the same ideas on
bi-capacity-based Choquet integral [5].

The structure of this contribution is as follows. In the next section, some
necessary preliminaries are given. In Sect. 3 we define a new generalization of
OWA operators, BIOWA operators, based on symmetric bi-capacities. Several
examples are illustrating our new approach. Finally, some concluding remarks
are given.

2 Preliminaries

Grabisch and Labreuche [5] have introduced bi-capacities ν : 3N → [−1, 1] and
related Choquet integrals [6] Cν : Rn → R. Recall that 3N = {(A,B)|A,B ∈
2N , A ∩ B = ∅}. Then bi-capacity is defined as follows.

Definition 1. The function ν : 3N → [−1, 1] is a bi-capacity whenever

– ν(N, ∅) = 1, ν(∅, ∅) = 0 and ν(∅, N) = −1,
– ν is increasing in the first coordinate and decreasing in the second coordinate.

More, the Choquet integral Cν : Rn → R is defined by

Cν(f) =
n∑

i=1

|f(σ(i))| ·
[
ν
(
Aσ,i ∩ N+

f , Aσ,i ∩ N−
f

)
(3)

− ν
(
Aσ,i+1 ∩ N+

f , Aσ,i+1 ∩ N−
f

)]
,

where σ : N → N is an arbitrary permutation such that

|f(σ(1))| ≤ · · · ≤ |f(σ(n))|,
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N+
f = {i ∈ N |f(i) ≥ 0} and N−

f = N \ N+
f .

Note that Aσ,i = {σ(i), . . . , σ(n)} for i = 1, . . . , n and if f ≥ 0 then Cν(f) =
Chμ(f), where the right-hand side is the standard Choquet integral with respect
to the capacity μ : 2N → [0, 1], μ(A) = ν(A, ∅). Similarly, if f ≤ 0 then Cν(f) =
−Chγ(−f), where γ : 2N → [0, 1] is the capacity given by γ(B) = −ν(∅, B).

3 BIOWA Operator

In our contribution, we discuss symmetric Choquet integrals with respect to bi-
capacities, which can be seen as an important generalization of standard OWA
operators on R [11]. We will define a bi-capacity based OWA operator, BIOWA
operator, as a symmetric Choquet integral Cν , i.e. for any permutation π and a
real function f : N → R it holds Cν(f) = Cν(f ◦ π). Clearly

|f ◦ π ◦ π−1 ◦ σ(1)| ≤ · · · ≤ |f ◦ π ◦ π−1 ◦ σ(n)|,

so, for f ◦ π, the role of ordering permutation is done by π−1 ◦ σ, sim-
ilarly N+

f◦π−1 = π−1(N+
f ), N−

f◦π−1 = π−1(N−
f ). Based on the fact that

Cν(1A − 1B) = ν(A,B) for any disjoint A,B ⊆ N , the symmetry of the
Choquet integral Cν is equivalent to the symmetry of the related bi-capacity
ν, ν(A,B) = ν(π−1(A), π−1(B)) for any permutation π. We denote Ñ =
{(i, j)|i, j ∈ N ∪ {0}, i + j ≤ n}.

Lemma 1. A bi-capacity ν : 3N → [−1, 1] is symmetric if and only if

ν(A,B) = h(cardA, cardB),

where h : Ñ → [−1, 1]

– satisfies 3 boundary conditions h(n, 0) = 1, h(0, 0) = 0, h(0, n) = −1,
– is increasing in the first coordinate and
– is decreasing in the second coordinate.

Example 1. Among several interesting examples of functions h, we mention here
the next:

(i) had(a, b) =
a − b

n
(the additive h)

(ii) h0(a, b) =

⎧⎪⎨
⎪⎩

1 if a = n,

−1 if b = n,

0 otherwise;

(iii) h∗(a, b) =

⎧⎪⎨
⎪⎩

1 if a > 0,

0 if b < n, a = 0,

−1 if b = n;
(the greatest h)
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(iv) h∗(a, b) =

⎧⎪⎨
⎪⎩

1 if a = n,

0 if a < n, b = 0,

−1 if b < n;
(the smallest h)

(v) h1(a, b) =

⎧⎪⎨
⎪⎩

1 if a > 0, b = 0,

−1 if b > 0, a = 0,

0 otherwise;

(vi) hg(a, b) = g(a) − 1 + g(n − b), where g : N ∪ {0} → [0, 1] is an increasing
function fulfilling boundary conditions g(0) = 0, g(n) = 1. Note that if
g(i) = i

n then hg = had.

In the formula for the Choquet integral Cν (3), the absolute values |f(σ(i))| of
aggregated inputs are multiplied by weights

wf
i =

[
ν
(
Aσ,i ∩ N+

f , Aσ,i ∩ N−
f

)
− ν

(
Aσ,i+1 ∩ N+

f , Aσ,i+1 ∩ N−
f

)]
.

For f : N → R
n, we define function sf : N → {(1, 0), (0, 1)} by

sf (i) :=

{
(1, 0) if σ(i) ∈ N+

f ,

(0, 1) if σ(i) ∈ N−
f ,

, (4)

where σ : n → n is the unique permutation such that |f(σ(1))| ≤ · · · ≤ |f(σ(n))|,
and if for some i < j it holds |f(σ(i))| = |f(σ(j))| then either signf(σi) = −1
and signf(σj) = 1, or signf(σi) = signf(σj) and σ(i) < σ(j).

Consider a symmetric bi-capacity ν described by a function h. Then

wf
i = h

⎛
⎝ n∑

j=i

sf (j)

⎞
⎠ − h

⎛
⎝ n∑

j=i+1

sf (j)

⎞
⎠ , (5)

with convention that
n∑

j=n+1

sf (j) = (0, 0). Then Cν(f) =
∑n

i=1 wf
i |f(σ(i))|. As

we can see from (5), for a fixed h the weights wf
i depend on the function sf only,

and thus we have, in general, 2n possible weighting vectors ws = (ws
1, . . . , w

s
n),

ws
i = h

⎛
⎝ n∑

j=i

s(j)

⎞
⎠ − h

⎛
⎝ n∑

j=i+1

s(j)

⎞
⎠ . (6)

Now, we can define the BIOWA operator.

Definition 2. Consider a symmeric bi-capacity ν : 3N → [−1, 1] described by a
generating function h. Then BIOWA operator BIOWAh : Rn → R is defined as

BIOWAh(f) = Cν(f) =
n∑

i=1

ws
i |f(σ(i))|, (7)

where the weighting vector ws is defined by (6) and s = sf is given by (4).
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Obviously, properties of the bi-polar capacities-based Choquet integrals are her-
ited by the BIOWA operators. In particular, each BIOWA operator is an idem-
potent, continuous, positively homogenous and symmetric aggregation function
on R [6].

Example 2. Let us consider N = {1, 2, 3, 4, 5}, and f : (1, 2, 3, 4, 5) →
(−4,−1, 2, 3, 0). Then σ = (5, 2, 3, 4, 1), N+

f = {3, 4, 5}, N−
f = {1, 2} and

sf : (1, 2, 3, 4, 5) → ((1, 0), (0, 1), (1, 0), (1, 0), (0, 1)). Then the weighting vector
ws is given by

ws
1 = h(3, 2) − h(2, 2)

ws
2 = h(2, 2) − h(2, 1)

ws
3 = h(2, 1) − h(1, 1)

ws
4 = h(1, 1) − h(0, 1)

ws
5 = h(0, 1)

and the corresponding BIOWA operator is

BIOWAh(f) = ws
1 · 0 + ws

2 · 1 + ws
3 · 2 + ws

4 · 3 + ws
5 · 4

= h(2, 2) − h(2, 1) + 2(h(2, 1) − h(1, 1)) + 3(h(1, 1) − h(0, 1)) + 4h(0, 1)

= h(2, 2) + h(2, 1) + h(1, 1) + h(0, 1).

For h = had we get

BIOWAhad(f) =
1
5

− 1
5

= 0 =
1
5

5∑
i=1

f(i).

Note that:

– if f ≥ 0 (i.e., N+
f = N,N−

f = ∅), then the standard OWAw+ is recovered,
where w+ = (w+

1 , . . . , w+
n ), w+

i = h(n − i + 1, 0) − h(n − i, 0),

BIOWAh(f) = OWAw+(f) =
n∑

i=1

w+
i f(τ(i)),

where f(τ(1)) ≤ · · · ≤ f(τ(n)).
– if f < 0 (i.e., N+

f = ∅, N−
f = N), again an OWA operator is recovered, but

related to the weighting vector w−, w−
i = h(0, i−1)−h(0, i),

5∑
i=1

wi = 1, and

then

BIOWAh(f) = OWAw−(f) =
n∑

i=1

w−
i f(τ(i)).

where f(τ(1)) ≤ · · · ≤ f(τ(n)). Note that this formula holds also if f ≤ 0.

These two facts justify the name BIOWA operator.
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The BIOWA operator BIOWAh : Rn → R is a standard OWA operator of
Yager if and only if h(a, b) = hg(a, b) from the Example 1 (vi), (i.e., g generates
weighting vector w = (w1, . . . , wn), wi = g(n − i + 1) − g(n − i)). Then

BIOWAhg
(f) =

n∑
i=1

f(τ(i)) · (g(n − i + 1) − g(n − i)),

where τ : N → N is a permutation such that f(τ(1)) ≤ · · · ≤ f(τ(n));

Example 3.

(i) Consider h = had. Then

BIOWAhad(f) =
1
n

n∑
i=1

f(i) = AM(f) (arithmetic mean).

(ii) Consider h = h0. Then

BIOWAh0(f) = med0(f(1), . . . , f(n)) = med

(
min
i∈N

f(i), 0,max
i∈N

f(i)

)
(0-median),

for more details about 0-median see [1].
(iii) Consider h = h∗. Then

BIOWAh∗(f) = max{f(i)|i ∈ N}.

(iv) Consider h = h∗. Then

BIOWAh∗(f) = min{f(i)|i ∈ N}.

(v) Consider h = h1. Then

BIOWAh1(f) = max{f(i)|f(i) ≥ 0} + min{f(i)|f(i) ≤ 0}.

If n = 2, f(1) = x, f(2) = y, then

BIOWAh1(f) =

⎧⎪⎨
⎪⎩

max{x, y} if x, y ≥ 0,

min{x, y} if x, y < 0,

x + y otherwise.

Remark 1. If we define dual function to h by hd(a, b) = −h(b, a) then

BIOWAhd(f) = −BIOWAh(−f);

Note that hd
ad = had and hd

0 = h0, thus BIOWAhad and BIOWAh0 are homoge-
nous. This is not the case of h∗ and h∗, as hd

∗ = h∗ �= h∗.
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4 Concluding Remarks

Based on symmetric bi-capacities and related Choquet integral introduced by
Grabisch and Labreuche, we have introduced and discussed BIOWA operators.
These operators act just as standard OWA operator of Yager once all inputs have
the same sign (but such two OWA operators may differ in weights). Symmetric
bi-capacities yielding standard OWA operators being in coincidence with the
related BIOWA operator are completely characterized.

We believe that the introduced BIOWA operators will find numerous appli-
cations in all areas where real data are successfully processed by means of OWA
operators [4], as well as in all areas dealing with the aggregation of data from
bipolar scales, such as expert systems, see [8].

Acknowledgments. The support of the grants APVV-17-0066 and VEGA 1/0006/19
is kindly announced.
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Abstract. We present a method of generalization of the Lovász exten-
sion formula combining two known approaches - the first of them based on
the replacement of the product operator by some suitable binary function
F and the second one based on the replacement of the minimum opera-
tor by a suitable aggregation function A. We propose generalization by
simultaneous replacement of both product and minimum operators and
investigate pairs (F,A) yielding an aggregation function for all capacities.

Keywords: Aggregation function · Choquet integral · Capacity ·
Möbius transform

1 Introduction

Aggregation of several values into a single value proves to be useful in many fields,
e.g., multicriteria decision making, image processing, deep learning, fuzzy sys-
tems etc. Using the Choquet integral [3] as a mean of aggregation process allows
to capture relations between aggregated data through so-called fuzzy measures
[9]. This is the reason of the nowadays interest in generalizations of the Choquet
integral, for a recent state-of-art see, e.g., [4].

In our paper we focus on generalizations of the Choquet integral expressed
by means of the so-called Möbius transform, which is also known as Lovász
extension formula, see (2) below. Recently, two different approaches occured - in
the first one the Lovász extension formula is modified by replacing of the product
operator by some suitable binary function F and the second one is based on the
replacement of the minimum operator by a suitable aggregation function A. We
study the question, when these two approaches can be used simultaneously and
we investigate the functional Im

F,A obtained in this way.
The paper is organized as follows. In the next section, some necessary prelim-

inaries are given. In Sect. 3, we propose the new functional Im
F,A and exemplify

the instances, when the obtained functional is an aggregation function for all
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capacities and when it is not. Section 4 contains results concerning the binary
case. Finally, some concluding remarks are given.

2 Preliminaries

In this section we recall some definitions and results which will be used in the
sequel. We also fix the notation, mostly according to [5], wherein more informa-
tion concerning the theory of aggregation functions can be found.

Let n ∈ N and N = {1, · · · , n}.

Definition 1. A function A : [0, 1]n → [0, 1] is an (n-ary) aggregation function
if A is monotone and satisfies the boundary conditions A(0, . . . , 0) = 0 and
A(1, . . . , 1) = 1.

We denote the class of all n-ary aggregations functions by A(n).

Definition 2. An aggregation function A ∈ A(n) is

– conjunctive, if A(x) ≤ min
i∈N

xi for all x ∈ [0, 1]n,

– disjunctive, if A(x) ≥ max
i∈N

xi for all x ∈ [0, 1]n.

Definition 3. A set function m : 2N → [0, 1] is a capacity if m(C) ≤ m(D)
whenever C ⊆ D and m satisfies the boundary conditions m(∅) = 0, m(N) = 1.

We denote the class of all capacities on 2N by M(n).

Definition 4. The set function Mm : 2N → R, defined by

Mm(I) =
∑

K⊆I

(−1)|I\K|m(K)

for all I ⊆ N , is called Möbius transform corresponding to a capacity m.

Möbius transform is invertible by means of the so-called Zeta transform:

m(A) =
∑

B⊆A

Mm(B), (1)

for every A ⊆ N .
Denote Rn � R the range of the Möbius transform. The bounds of the

Möbius transform have recently been studied by Grabisch et al. in [6].

Definition 5. Let m : 2N → [0, 1] be a capacity and x = (x1, . . . , xn) ∈ [0, 1]n.
Then the Choquet integral of x with respect to m is given by

Chm(x) =
∫ 1

0

m({i ∈ N |xi ≥ t}) dt,

where the integral on the right-hand side is the Riemann integral.



428 L’. Horanská

Proposition 1. Let m : 2N → [0, 1] and x ∈ [0, 1]n. Then the discrete Choquet
integral can be expressed as:

Chm(x) =
∑

∅�=B⊆N

(
Mm(B) · min

i∈B
xi

)
. (2)

Formula (2) is also known as the Lovász extension formula [8].
Now we recall two approaches to generalization of the formula (2). The first

one is due to Kolesárová et al. [7] and is based on replacing the minimum operator
in (2) by some other aggregation function in the following way:

Let m ∈ M(n) be a capacity, A ∈ A(n) be an aggregation function. Define
Fm,A : [0, 1]n → R by

Fm,A(x1, . . . , xn) =
∑

B⊆N

Mm(B)A(xB), (3)

where (xB)i = xi whenever i ∈ B and (xB)i = 1 otherwise. The authors focused
on characterization of aggregation functions A yielding, for all capacities m ∈
M(n), an aggregation function Fm,A extending the capacity m, i.e., on such A
that Fm,A ∈ A(n) and Fm,A(1B) = m(B) for all B ⊆ N (here 1B stands for the
indicator of the set B).

Remark 1. There was shown in [7] that (among others) all copulas are suitable to
be taken in rôle of A in (3). For instance, taking A = Π, where Π(x) =

∏n
i=1 xi

is the product copula, we obtain the well-known Owen multilinear extension
(see [10]).

The second approach occured recently in [2] and is based on replacing the
product of Mm(A) and minimum operator in the formula (2) by some function
F : R × [0, 1] → R in the following way:

Let m ∈ M(n), F : R × [0, 1] → R be a function bounded on [0, 1]2. Define
the function IF

m : [0, 1]n → R by

IF
m(x) =

∑

∅�=B⊆N

F (Mm(B),min
i∈B

{xi}). (4)

The authors focused on functions F yielding an aggregation function IF
m for all

capacities m ∈ M(n).

Remark 2. It was shown in [2] that all functions F yielding for all m ∈ M(n)

aggregation functions IF
m with a given diagonal section δ ∈ A(1) are exactly

those of the form

F (u, v) = u h(v) +
δ(v) − h(v)

2n − 1
, (5)

where h : [0, 1] → R is a function satisfying

−δ(y) − δ(x)
2n − 2

≤ h(y) − h(x) ≤ δ(y) − δ(x),
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for all (x, y) ∈ [0, 1]2, such that x < y.
However, there is no full characterization of all functions F yielding an aggre-

gation function IF
m for every m ∈ M(n) in [2].

3 Double Generalization of the Lovász Extension Formula

Let F : R × [0, 1] → [0, 1] be a function bounded on [0, 1]2, A be an aggrega-
tion function A ∈ A(n), m be a capacity m ∈ M(n). We define the function
Im

F,A : [0, 1]n → R as

Im
F,A(x) =

∑

∅�=B⊆N

F (Mm(B), A(xB)), (6)

where (xB)i = xi whenever i ∈ B and (xB)i = 1 otherwise.

Lemma 1. Let F : R × [0, 1] → R be a function bounded on [0, 1]2 and c ∈ R.
Let Fc : R × [0, 1] → R be a function defined by

Fc(x, y) = F (x, y) + c(x − 1
2n − 1

).

Then, that for any m ∈ M(n), it holds Im
F,A(x) = Im

Fc,A(x) for all x ∈ [0, 1]n.

Proof. Since
∑

∅�=B⊆N

c

(
Mm(B) − 1

2n − 1

)
= 0, the result follows.

Consequently, one can consider F (0, 0) = 0 with no loss of generality (compare
with Proposition 3.1 in [2]).

Let us define

F0 = {F : R × [0, 1] → R |F (0, 0) = 0 and F is bounded on [0, 1]2}
Definition 6. A function F ∈ F0 is I-compatible with an aggregation function
A ∈ A(n) iff Im

F,A ∈ A(n) for all m ∈ M(n).

Note that, according to Remark 1, the product operator Π(u, v) = uv is I-
compatible with every copula. Next, according to Remark 2, all binary functions
of the form (5) are I-compatible with A = min.

Example 1. Let F (u, v) = v
2n−1 , A ∈ A(n) be a conjunctive aggregation function.

We have
Im

F,A(x) =
1

2n − 1

∑

∅�=B⊆N

A(xB).

Clearly, it is a monotone function and Im
F,A(1) = 1. Moreover, conjunctivity of

A gives Im
F,A(0) = 0. Thus, Im

F,A is an aggregation function for all capacities
m ∈ M(n) and therefore F is I-compatible with every conjunctive aggregation
function A ∈ A(n).
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Example 2. Let f : [0, 1] → [0, 1] be a nondecreasing function such that f(0) = 0
and f(1) = 1, i.e., f ∈ A(1). Let F (u, v) = (2 − 2n)u + f(v). Then F is I-
compatible with every disjunctive aggregation function A ∈ A(n). Indeed, dis-
junctivity of A implies A(xB) = 1 for all x ∈ [0, 1]n, ∅ �= B � N . Then, using
(1), we obtain

Im
F,A(x) = (2 − 2n)

∑

∅�=B⊆N

Mm(B) +
∑

∅�=B⊆N

f(A(xB))

= 2 − 2n + f(A(x)) +
∑

∅�=B�N

f(A(xB))

= 2 − 2n + f(A(x)) + 2n − 2 = f(A(x)),

which is an aggregation function for all m ∈ M(n).
On the other hand, for n > 1, F is not I-compatible with the minimal

aggregation function A∗ defined as A∗(x) = 1 if x = 1 and A∗(x) = 0 otherwise,
since in this case Im

F,A∗(x) = 2 − 2n for all x �= 1. Note that for n = 1 we obtain
Im

F,A∗ = A∗.

For a measure m ∈ M(2) let us denote m({1}) = a and m({2}) = a.

Example 3. Let n = 2. Let F (u, v) = u vu+1, A(x, y) = max{x + y − 1, 0}. Then

Im
F,A(x, y) =

{
axa+1 + byb+1 + (1 − a − b)(x + y − 1)2−a−b if x + y ≥ 1
axa+1 + byb+1 otherwise ,

which is an aggregation function for all m ∈ M(2), thus F is I-compatible with A.
However, taking a disjunctive aggregation function in rôle of A, we obtain

Im
F,A(x, y) = a + b + (1 − a − b)A(x, y)2−a−b,

which is not an aggregation function for all capacities up to the minimal one
(a = b = 0). Hence, F is not I-compatible with any disjunctive aggregation
function.

4 Binary Case

Let n = 2. Then the function Im
F,A defined by (6) can be expressed as

Im
F,A(x, y) = F (a,A(x, 1)) + F (b, A(1, y)) + F (1 − a − b, A(x, y)). (7)

Proposition 2. Let F ∈ F0, A ∈ A(2). Then F is I-compatible with A iff the
following conditions are satisfied

(i) There exist constants k, κ ∈ R such that for any u ∈ R2 = [−1, 1] it holds
F (u,A(0, 1)) = F (u,A(1, 0)) = k(u − 1

2 )
F (u, 0) = ku,
F (u, 1) = κu + 1−κ

3 .
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(ii) For all x, x′, y, y′ ∈ [0, 1] such that x ≤ x′ and y ≤ y′ it holds

F (a,A(x′, 1))−F (a,A(x, 1))+F (1−a−b, A(x′, y))−F (1−a−b, A(x, y)) ≥ 0

and

F (b, A(1, y′))−F (b, A(1, y))+F (1−a−b, A(x, y′))−F (1−a−b, A(x, y)) ≥ 0,

for any a, b ∈ [0, 1].

Proof. It can easily be checked that conditions (i) ensure boundary conditions
Im

F,A(0, 0) = 0 and Im
F,A(1, 1) = 1. To show necessity, let us consider the following

equation:

Im
F,A(0, 0) = F (a,A(0, 1)) + F (b, A(1, 0)) + F (1 − a − b, A(0, 0)) = 0,

for all a, b ∈ [0, 1].
Denoting F (u,A(0, 1)) = f(u), F (u,A(1, 0)) = h(u) and F (u, 0) = g(u), for

u ∈ [−1, 1], the previous equation takes form

f(a) + h(b) + g(1 − a − b) = 0, (8)

for all a, b ∈ [0, 1]. Following techniques used for solving Pexider’s equation (see
[1]), we can put a = 0 and b = 0 respectively, obtaining

f(0) + h(b) + g(1 − b) = 0,

f(a) + h(0) + g(1 − a) = 0.

Thus, for any t ∈ [0, 1], we have

f(0) + h(t) + g(1 − t) = 0,

f(t) + h(0) + g(1 − t) = 0.

Consequently

h(t) = f(t) + f(0) − h(0), (9)
g(t) = −f(1 − t) − h(0). (10)

Therefore, formula (8) turns into

f(a + b) = f(a) + f(b) + f(0) − 2h(0),

for all a, b ∈ [0, 1]. Now, denoting ϕ(t) = f(t) + f(0) − 2h(0), we get

ϕ(a + b) = ϕ(a) + ϕ(b), (11)

which is the Cauchy equation. Taking a = b = 0, we get ϕ(0) = 0. Therefore,
putting a = t, b = −t, we get ϕ(t) = −ϕ(−t), i.e., ϕ is an odd function. Since we
suppose F to be bounded on [0, 1]2, according to Aczél [1], all solutions of the
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Eq. (11) on the interval [−1, 1] can be expressed as ϕ(t) = kt, for some k ∈ R.
Therefore,

f(t) = kt − f(0) + 2h(0),

for all t ∈ [−1, 1], which for t = 0 gives f(0) = h(0). Denoting f(0) = c, by (9)
and (10) we obtain

f(t) = kt + c,

h(t) = kt + c,

g(t) = −f(1 − t) − h(0) = kt − k − 2c.

Since by assumption g(0) = F (0, 0) = 0, we have c = −k
2 and consequently,

f(t) = h(t) = k(t − 1
2
), (12)

g(t) = kt, (13)

for all t ∈ [−1, 1] as asserted.
The second boundary condition for Im

F,A gives

Im
F,A(1, 1) = F (a,A(1, 1)) + F (b, A(1, 1)) + F (1 − a − b, A(1, 1)) = 1,

for all a, b ∈ [0, 1]. As A is an aggregation function, it holds A(1, 1) = 1. Denoting
F (u, 1) = ψ(u) we obtain

ψ(a) + ψ(b) + ψ(1 − a − b) = 1,

for all a, b ∈ [0, 1]. Similarly as above, this equation can be transformed into the
Cauchy equation (see also [2]) having all solutions of the form ψ(t) = κt + 1−κ

3 ,
for κ ∈ R and t ∈ [−1, 1].

The conditions (ii) are equivalent to monotonicity of Im
F,A, which completes

the proof.

Considering aggregation functions satisfying A(0, 1) = A(1, 0) = 0 (e.g., all
conjunctive aggregation functions are involved in this subclass), the conditions
in Proposition 2 ensuring the boundary conditions of Im

F,A can be simplified in
the following way.

Corollary 1. Let F ∈ F0, A ∈ A(2) be an aggregation function with A(0, 1) =
A(1, 0) = 0. Then the following holds:

(i) Im
F,A(0, 0) = 0 iff F (u, 0) = 0 for any u ∈ R2,

(ii) Im
F,A(1, 1) = 1 iff there exist a constant κ ∈ R such that

F (u, 1) = κu + 1−κ
3 for any u ∈ R2. Moreover, if F is I-compatible with A,

then κ ∈ [− 1
2 , 1].
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Proof. We have F (u,A(0, 1)) = F (u,A(1, 0)) = F (u, 0) for all u ∈ Rn. The
conditions (i) in Proposition 2 yield k(u − 1

2 ) = ku, and consequently k = 0,
thus F (u, 0) = 0 for all u ∈ Rn as asserted.

Supposing that F is I-compatible with A and considering nondecreasingness
of Im

F,A in the first variable, we obtain

0 ≤ Im
F,A(0, 0) − Im

F,A(1, 0)
= F (a,A(0, 1)) − F (a,A(1, 1)) + F (1 − a − b, A(0, 0)) − F (1 − a − b, A(1, 0))
= F (a, 0) − F (a, 1) + F (1 − a − b, 0) − F (1 − a − b, 0)
= F (a, 0) − F (a, 1),

for all a ∈ [0, 1].
Hence,

0 = F (u, 0) ≤ F (u, 1) = κu +
1 − κ

3

for all u ∈ [0, 1] and consequently − 1
2 ≤ κ ≤ 1, which completes the proof.

Considering aggregation functions satisfying A(0, 1) = A(1, 0) = 1 (e.g., all
disjunctive aggregation functions are involved in this subclass), the conditions
in Proposition 2 ensuring the boundary conditions of Im

F,A can be simplified in
the following way.

Corollary 2. Let F ∈ F0, A ∈ A(2) be an aggregation function with A(0, 1) =
A(1, 0) = 1. Then the following holds:

(i) Im
F,A(0, 0) = 0 iff F (u, 0) = −2u for any u ∈ R2,

(ii) Im
F,A(1, 1) = 1 iff F (u, 1) = −2u + 1 for any u ∈ R2,

Proof. Since A(0, 1) = A(1, 0) = 1, the Eq. (8) takes form

f(a) + f(b) + g(1 − a − b) = 0,

for all a, b ∈ [0, 1]. Taking b = 1 − a and considering g(0) = 0 we obtain

f(a) = −f(1 − a),

for all a ∈ [0, 1], and thus f( 12 ) = 0. Proposition 2(i) yields

F

(
1
2
, 1

)
=

κ

2
+

1 − κ

3
= 0,

thus κ = −2, and consequently formulae (12),(13) imply the assertion.

5 Conclusion

We have introduced a new functional Im
F,A generalizing the Lovász extension for-

mula (or the Choquet integral expressed in terms of Möbius transform) using



434 L’. Horanská

simultaneously two known approaches. We have investigated when the obtained
functional is an aggregation function for all capacities and exemplified positive
and negative instances. In case of the binary functional we have found a charac-
terization of all pairs (F,A) which are I-compatible, i.e., yielding an aggregation
function Im

F,A for all capacities m. In our future reasearch we will focus on the
characterization of all I-compatible pairs (F,A) in general n-ary case. Another
interesting unsolved problem is the problem of giving back capacity, i.e., char-
acterization of pairs (F,A) satisfying Im

F,A(1E) = m(E) for all E ⊆ N .
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Abstract. The main property of disjunction is substitutability, i.e., the
fully satisfied predicate substitutes the rejected one. But, in many real–
world cases disjunction is expressed as the fusion of full and optional
alternatives, which is expressed as OR ELSE connective. Generally, this
logical connective provides a solution lower than or equal to the MAX
operator, and higher than or equal to the projection of the full alter-
native, i.e., the solution does not go below any averaging function and
above MAX function. Therefore, the optional alternative does not influ-
ence the solution when it is satisfied with a degree lower than the degree
of full alternative. In this work, we propose further generalization by
other disjunctive functions in order to allow upward reinforcement of
asymmetric disjunction. Finally, the obtained results are illustrated and
discussed.

Keywords: Asymmetric disjunction · Averaging functions ·
Probabilistic sum · �Lukasiewicz t–conorm · Generalization · Upward
reinforcement

1 Introduction

One of the key properties of disjunction is commutativity, i.e., the order of
predicates is irrelevant. The full substitutability means that at least one predicate
should be met [7]. In technical systems, it is a desirable property, because if one
unit fails, the others substitute its functionality. But, in evaluating records from
a large data set, a larger number of records might be selected and moreover a
significant proportion of them might get the ideal evaluation score. An example is
searching for a house which has spacious basement or spacious attic or suitable
tool–shed for storing the less–frequently used items. Such query might lead to
the over–abundant answer problem. This problem was discussed in [3], where
several solutions have been proposed. People often consider disjunction as the
left–right order of predicates (alternatives), that is, the first predicate is the full
alternative, whereas the other ones are less relevant options [10,13], or formally
P1 OR ELSE P2 OR ELSE P3.
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In the above example, predicates might not be the equal substitutes for a
particular house buyer. In such cases, the substitutability should be more restric-
tive. If an entity fails to meet the first predicate, but meets the second one, it
is still considered as a solution, but as a non–ideal one (the evaluation degree
should be lower than the ideal value, usually denoted as 1). This observation
leads to the intensified disjunction. The literature offers two approaches: bipolar
and asymmetric. The bipolar form of OR ELSE connective consists of the pos-
itive pole, which expresses the perfect values (full alternative) and the negative
pole expressing the acceptable values. This approach has been examined in, e.g.,
[4,12].

In this work, the focus is on the latter. Asymmetric disjunction has been
proposed by Bosc and Pivert [2], where authors suggested weighted arithmetic
mean for reducing the strength of substitutability of the optional alternative. The
axiomatization of averaging functions for covering a larger scale of possibilities
for disjunctive asymmetric behaviour is proposed by Hudec and Mesiar [9]. This
work goes further by examining possibilities for replacing MAX function by any
disjunctive function and therefore extending asymmetric disjunction to cover
diverse managerial evaluation tasks based on the disjunctive principle of human
reasoning.

The structure of paper is as follows: Sect. 2 provides the preliminaries of
aggregation functions. Section 3 is dedicated to the formalization of averaging
and disjunctive functions in OR ELSE, whereas Sect. 4 discusses the results, and
emphasizes strengths and weak points. Finally, Sect. 5 concludes the paper.

2 Preliminaries of Aggregation Functions

Disjunction belongs to the large class of aggregation functions, i.e., functions
A : [0, 1]n → [0, 1] which are monotone and satisfy the boundary conditions
A(0, ..., 0) = 0 and A(1, ..., 1) = 1, n ∈ N. The standard classification of aggrega-
tion functions is due to Dubois and Prade [6]. Namely, conjunctive aggregation
functions are characterized by A(x) ≤ min(x), disjunctive by A(x) ≥ max(x),
averaging by min(x) ≤ A(x) ≤ max(x), and remaining aggregation functions
are called mixed, where x is a vector, x = (x1, ..., xn).

In this work, we denote by Av averaging aggregation functions, and by Dis
disjunctive aggregation functions. More, Av2 is the set of bivariate averaging
functions, whereas Dis2 represents the set of bivariate disjunctive functions.
Note that if the arity of a considered aggregation is clear (mostly n = 2), we will
use notation Av instead of Av2, and Dis instead of Dis2.

The extremal elements of Av2 are MAX (which is also called Zadeh’s dis-
junction, OR operator) and MIN (Zadeh’s conjunction, AND operator). To
characterize the disjunctive (conjunctive) attitude of members of Av2, one can
consider the ORNESS measure ORNESS : Av2 → [0, 1] given by

ORNESS(A) = 3 ·
∫ 1

0

∫ 1

0

A(x, y) dy dx − 1 (1)
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Fig. 1. An illustrative example of aggregation functions.

Analogously, the ANDNESS measure ANDNESS : Av2 → [0, 1] character-
izes the conjunctive attitude by

ANDNESS(A) = 2 − 3 ·
∫ 1

0

∫ 1

0

A(x, y) dy dx (2)

More details regarding these measures can be found in, e.g., [8,11]. Obviously,
the disjunctive attitude of MAX is equal to 1, whereas the conjunctive attitude
of MAX is 0. The opposite holds for MIN.

The arithmetic mean is an element of Av having the full compensation effect,
or neutrality [7] (ORNESS and ANDNESS measures are equal to 0.5). There-
fore, the remaining elements of Av have either partial disjunctive or partial
conjunctive behaviour.

The extremal elements of Dis are MAX and drastic sum

SDS(x, y) =
{

max(x, y) for min(x, y) = 0
1 otherwise

where MAX is the only idempotent element. The other elements have upward
reinforcement property [1], like probabilistic sum

SP (x, y) = x + y − xy

and �Lukasiewicz t–conorm

SL(x, y) = min 1, x + y

used in this work.
Analogously, the extremal elements of the set of conjunctive functions (Con)

are drastic product and MIN, where MIN is the only idempotent element. The
other elements have downward reinforcement property.

These observations for the symmetric case are illustrated in Fig. 1, where
predicate P1 is satisfied with 0.8 (x = 0.8) and predicate P2 with 0.2 (y = 0.2).
Generally, P1 and P2 can be any kind of predicates (elementary, compound,
quantified, etc.). Just as reminder, geometric mean is G(x, y) =

√
xy, arithmetic

mean is W = 1
2 (x + y) and quadratic mean is Q(x, y) =

√
0.5x2 + 0.5y2.
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3 Asymmetric Disjunction

In asymmetric disjunction the first predicate is full alternative, whereas the other
ones are optional. An illustrative example is the requirement: “buy broccoli or
else cauliflower” [9]. If we find neither broccoli nor cauliflower, the score is 0. If
we find both, the score is 1. If we find only broccoli, the score is 1. Finally, if we
find only cauliflower, the score should be less than 1, but better than 0. Thus,
the last option should be managed by an element of Av2, whereas the other
options by an element of Dis2 and therefore we should aggregate both cases.

Contrary, in the frame of two–valued logic, the left–right order of predicates
has been solved by the Qualitative Choice Logic [5]. In that approach, when
first predicate is satisfied, the solution gets value 1; when second is satisfied, the
solution gets value 2; etc. If not a single predicate is satisfied, the solution is 0.
The problem arise when it is integrated into a complex predicate like: P1 AND
P2 AND (P3 OR ELSE P4 OR ELSE P5)., i.e., the overall solution is expected
to be in the unit interval.

3.1 The Formalization of Asymmetric Disjunction

Bosc and Pivert [2] proposed the following six axioms in order to formalize
OR ELSE operator D, where x and y are the values of predicates P1 and P2,
respectively:

A1 D is more drastic than OR operator: D(x, y) ≤ max(x, y), i.e. we are crossing
the border between averaging and disjunctive functions.

A2 D is softer than when only P1 appears, because P2 opens new choices:
D(x, y) ≥ x.

A3 D is an increasing function in its first argument.
A4 D is an increasing function in its second argument.
A5 D has asymmetric behaviour, i.e. D(x, y) �= D(y, x) for some (x, y) ∈ [0, 1]2.
A6 D is equivalent to x OR ELSE (x OR y): D(x, y) = D(x, x ∨ y).

Note that, for the simplicity, sometimes we use the lattice connectives nota-
tion ∨ = MAX and ∧ = MIN.

The operator which meets these axioms is expressed by the function

DA(x, y) = max(x,A(x, y)) (3)

where A ∈ Av2.
As a typical example of OR ELSE operator (3), Bosc and Pivert [2] have

proposed a parametrized class of functions

DBPk(x, y) = max(x, k · x + (1 − k)y) (4)

where k ∈]0, 1] (i.e., A is the weighted arithmetic mean Wk) and BP stands for
the Bosc-Pivert operator. For the asymptotic extremal value k = 0, we get the
disjunction expressed by the MAX function: max(x, y). For k = 0.5 and y ≥ x
we get the non–weighted arithmetic mean W , i.e., DW

BP0.5(x, y) = max(x, x+y
2 ).
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Another example is [9]

DG
BPk(x, y) = max(x,Gk(x, y)) (5)

where Gk is the weighted geometric mean and k ∈]0, 1]. Analogously to (4), we
write

DG
BPk(x, y) = max(x, xk · y(1−k)) (6)

where k ∈]0, 1]. For k = 0.5 we get DG
BP0.5(x, y) = max(x,

√
xy)

Similarly, we can use the other elements of Av, e.g., quadratic mean, where
for k = 0.5 we get

DQ
BP0.5(x, y) = max(x,

√
0.5x2 + 0.5y2) (7)

The asymmetric disjunction considers all Av elements including the extremal
elements MIN and MAX. Obviously,

DMAX
BP0.5 = max(x,max(0.5x, 0.5y)) =

{
max(x, 0.5x) = x for x ≥ y
max(x, 0.5y) for x < y

The analogous observation holds for the extremal element MIN.
Recently, Hudec and Mesiar [9] proposed the axiomatization of asymmet-

ric conjunction and disjunction for continuous as well as non–continuous cases
(P1 OR ELSE P2, but when P2 has a high satisfaction degree it becomes the
full alternative, i.e., broccoli or else cauliflower, but if cauliflower is very ripe,
then it becomes the full alternative), and discussed requirements for associative
behaviour. In all above cases D = MAX. The next example illustrates semantics
of diverse elements of Av.

Example. Let a house buyer has raised conditions regarding the storage space
for the less–frequently or seasonally used items by the condition: spacious base-
ment or else spacious attic. Here x (resp. y) stands for the intensity of spacious-
ness for basement (resp. attic).

The following observations illustrate the suitable elements of Av for several
decision–making requirements:

– The ORNESS measure for MAX is 1, i.e., we have the full substitutability
of alternatives, A = MAX, or disjunction x ∨ y.

– The ORNESS measure for arithmetic mean W is 0.5 (regardless of the num-
ber of predicates), i.e., we model the basic case when attic is less suitable
alternative to basement, A = W.

– The ORNESS measure for geometric mean G is 0.33 (for two predicates),
so we are able to model the situation for an elderly buyer and a quite steep
ladder, to decrease the relevance for the optional alternative, and even reject
house having no basement (all heavy items must be stored in attic), A = G.

– The ORNESS measure for quadratic mean Q is 0.62 (for two predicates),
thus we model the situation for a younger buyer and a less steep stairs, to
increase the relevance for the optional alternative and to still keep attic as a
less convenient than basement, A = Q.
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The solution is shown in Table 1 for several hypothetical houses, where the
solution is lower than or equal to the MAX operator, and higher than or equal
to the projection of the full alternative. Observe that H2 and H8 have the same
suitability degree, but H8 might be considered as a better option.

Table 1. OR ELSE connective expressed by the continuous Bosc–Pivert operators for
arithmetic mean, geometric mean and quadratic mean, where k = 0.5.

House x y A = W (4) A = G (6) A = Q (7)

H1 0.80 0.80 0.80 0.80 0.80

H2 0.80 0.20 0.80 0.80 0.80

H3 0.20 0.80 0.50 0.40 0.583

H4 1 0.50 1 1 1

H5 0.50 1 0.75 0.707 0.791

H6 0 1 0.50 0 0.707

H7 0.10 0.90 0.50 0.30 0.64

H8 0.80 0.78 0.80 0.80 0.80

H9 0.90 1 0.95 0.949 0.951

H10 0.34 1 0.67 0.58 0.75

H11 0.33 1 0.65 0.548 0.74

H12 0.70 0.10 0.70 0.70 0.70


�

3.2 The Generalization of Asymmetric Disjunction

Axioms A1 and A2 ensure for any OR ELSE operator D its idempotency, i.e.,
D(x, x) = x for all x ∈ [0, 1]. The question is, whether we can apply other
disjunctive functions than MAX in (3), e.g., probabilistic sum or �Lukasiewicz
t–conorm, or whether the idempotency is mandatory.

Therefore, a general form of (3) is

DH,A(x, y) = H(x,A(x, y)) (8)

where A ∈ Av and H ∈ Dis, i.e., H : [0, 1]2 → [0, 1] is a disjunctive aggregation
function.

Observe that the idempotency of D in (8) is equivalent to H = MAX, i.e.,
to the original approach proposed by Bosc and Pivert [2].

This structure keeps the asymmetry in the most cases, but not in general.
So, e.g., if H is the second projection (i.e., one keeps the second argument) and
A is symmetric, then also DH,A given by (8) is symmetric. The same claim is
valid if H is symmetric and A is the second projection. The following examples
support this claim:
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DH,MAX(x, y) =
{
H(x, x) if x ≥ y
H(x, y) for x < y

DH,MIN (x, y) =
{
H(x, y) if x ≥ y
H(x, x) for x < y

DSP ,G(x, y) = x +
√
xy − x · √xy

DSP ,A(x, y) = x + (1 − x) · A(x, y)

An interesting class of our operators introduced in (8) is generated by a
generator g : [0, 1] → [0,∞], g being an increasing bijection. Then H given by
H(x, y) = g−1(g(x) + g(y)) is a strict t–conorm, and Ak, k ∈ [0, 1] given by
Ak(x, y) = g−1(k · g(x)+ (1−k) · g(y)) is a weighted quasi–geometric mean. The
related operator DH,Ak

= Dg,k is then given by Dg,k(x, y) = g−1((1+k) · g(x)+
(1 − k) · g(y)).

For g(x) = − log(1 − x) the related strict t–conorm is the probabilistic sum
SP and then Dg,k(x, y) = 1 − (1 − x)1+k · (1 − y)1−k.

For the extremal cases we obtain Dg,0 = SP = H and Dg,1(x, y) = 2x−x2 =
SP (x, x).

As another example, consider g(x) = x/(1 − x). Then H = SH is the t–
conorm dual to the Hamacher product, and then Dg,k(x, y) = ((1 + k)x + (1 −
k)y−2xy)/(1+kx−ky−xy), and Dg,0 = SH , Dg,1(x, y) = 2x/(1+x) = SH(x, x).

In general, DH,A(x, y) ≥ x. Thus, the newly introduced operators DH,A

allow to increase the value x (of the first argument), i.e., x ≤ DH,A(x, y) ≤ 1.
Consequently

0 ≤ DH,A(x, y) − x ≤ 1 − x (9)

The minimal compensation 0 = DH,A(x, y) − x (for any x, y ∈ [0, 1]) is obtained
if and only if H is the first projection, H(x, y) = x, and A ∈ Av2 is arbitrary, or
H = MAX and A is the first projection.

On the other hand, the maximal compensation 1 − x = DH,A(x, y) cannot
be attained if x = y = 0, as then, for any H and A, D(0, 0) = H(0, A(0, 0)) =
H(0, 0) = 0. However, if we insist that for any (x, y) �= (0, 0) the compensa-
tion DH,A(x, y) − x = 1 − x is maximal, then necessarily DH,A = A∗ is the
greatest aggregation function given by A∗(x, y) = 1 whenever (x, y) �= (0, 0) and
A∗(0, 0) = 0.

Obviously, we obtain DH,A = A∗ whenever A = A∗. A similar claim is valid
if H = A∗ and A(0, y) > 0 for any y > 0. Complete proofs will be added into
the full version of this contribution.

For the probabilistic sum Sp (an Archimedean t–conorm) we have

DSp,A(x, y) = x + A(x, y) − x · A(x, y) (10)

and then DSp,A(x, x) = 2x − x2 for an arbitrary A ∈ Av2.
For the �Lukasiewicz t–conorm SL (a nilpotent t–conorm) we have

DSL,A(x, y) = min(1, x + A(x, y)) (11)

and then DSL,A(x, x) = min(1, 2x) for an arbitrary A ∈ Av2.
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Table 2. OR ELSE connective expressed by (10) for arithmetic mean, geometric mean
and quadratic mean, where k = 0.5.

House x y A = W (4) A = G (6) A = Q (7) SL*

H1 0.80 0.80 0.96 0.96 0.96 0.96

H2 0.80 0.20 0.90 0.88 0.9166 0.84

H3 0.20 0.80 0.60 0.52 0.6665 0.84

H4 1 0.50 1 1 1 1

H5 0.50 1 0.875 0.8535 0.8953 1

H6 0 1 0.50 0 0.7701 1

H7 0.10 0.90 0.55 0.37 0.6763 0.91

H8 0.80 0.78 0.958 0.9579 0.9581 0.956

H9 0.90 1 0.995 0.9949 0.9951 1

H10 0.34 1 0.782 0.725 0.833 1

H11 0.33 1 0.755 0.683 0.817 1

H12 0.70 0.10 0.82 0.779 0.85 0.73
∗to compare with the symmetric case Sp = x + y − x · y

For the same data as in Table 1, we have the solution for H = Sp shown in
Table 2, whereas for H = SL the solution is in Table 3.

Observe that houses H2 and H8 are now distinguishable (Table 2), that is,
H8 is preferred due to significantly higher value y. Further, the differences among
averaging functions for H8 are almost negligible (due to high values of x and
y). For H = MAX and H = Sp the optional alternative influences solution also
when y > x, but does not become the full alternative (see, H9, H10, H11 in
Tables 1 and 2).

The feature of �Lukasiewicz t–conorm is reflected in the evaluation. Houses,
which significantly meet full and optional alternatives get value 1 and become
undistinguishable, see Table 3. For H = SL the optional alternative influences
solution also when y > x and moreover becomes the full alternative, especially
for A = Q, compare H10 and H11.

Theoretically, MAX in (3) can be replaced by any disjunctive function. In
such cases, the asymmetric disjunction is more flexible allowing optional alter-
native to influence the solution in all cases, including when y < x. But, we
should keep solution equal to 1 when both alternatives, or only full alternative
assign value 1. When only optional alternative gets value 1, the solution should
be less than the ideal satisfaction, thus nilpotent t–conorm functions are not
suitable. Further, various averaging functions emphasize or reduce the relevance
of optional alternatives as was illustrated in example in Sect. 3.1. Therefore, the
proposed aggregation covers diverse managerial needs in evaluation tasks.
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Table 3. OR ELSE connective expressed by (11) for arithmetic mean, geometric mean
and quadratic mean, where k = 0.5.

House x y A = W (4) A = G (6) A = Q (7) SL*

H1 0.80 0.80 1 1 1 1

H2 0.80 0.20 1 1 1 1

H3 0.20 0.80 0.70 0.60 0.78 1

H4 1 0.50 1 1 1 1

H5 0.50 1 1 1 1 1

H6 0 1 0.50 0 0.71 1

H7 0.10 0.90 0.60 0.40 0.74 1

H8 0.80 0.78 1 1 1 1

H9 0.90 1 1 1 1 1

H10 0.34 1 1 0.923 1 1

H11 0.33 1 0.95 0.848 1 1

H12 0.70 0.10 1 0.96 1 0.80
∗to compare with the symmetric case SL = min(1, x + y)

4 Discussion

In the literature, we find that the general models of substitutability should not
go below the neutrality, or arithmetic mean W [7]. The asymmetric disjunction
proposed by Bosc and Pivert [2] is inside this frame (ORNESS of W is 0.5 regard-
less of weights). It also does not go above MAX. The asymmetric disjunction
proposed by Hudec and Mesiar [9] goes below W , i.e., A ∈ Av\{MIN,MAX},
but not above MAX (3) to cover further users expectations, and meets axioms
A1–A6. So, these approaches do not support upward reinforcement.

This model considers the whole classes of Av and Dis Fig. 1, i.e., above
MAX and idempotency for upwardly reinforcing evaluated items as disjunction
do (see, Table 2, e.g., H1, H2 and H8 ). In the case of (10), i.e., H = Sp, we
cannot reach solution 1 when x < 1 and y = 1. Thus, the optional alternative
influences solution even when y < x, but does not become the full alternative.

On the other hand, by Eq. (11) the optional alternative in certain situations
becomes a full one, namely when x + A(x, y) ≥ 1 ∧ y > x. Observe that for
A = Wk, we get D(x, y) = min(1, x+kx+(1−k)y) and therefore for x > 1/(1+k),
the solution is equal to 1, regardless of value y. This situation is plotted in Fig. 2.
For instance, for k = 0.5, we have DSL,W (0.7, 0.1) = 1. But, by symmetric
disjunction we have SL(0.7, 0.1) = 0.8. For the completeness Table 3 shows the
solution for disjunction SL.

Theoretically, for H = SL we have asymmetric aggregation, but from the
perspective of human logic evaluation of optional alternative it is questionable.
The solution might be penalization when y > x and the solution is equal to 1
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Fig. 2. Asymmetric disjunction by H = SL and A = W0.5.

(when the optional alternative becomes the full one). In general, if D(x, y) =
SL(x,A(x, y)), then considering (9) we assign D(x, y)−x = min((1−x,A(x, y)).

The answer to the question: “is the idempotency mandatory?” is as fol-
lows: The idempotency property may be too restrictive for general purpose of
asymmetric disjunction and therefore other functions than MAX in (3) may be
appropriate to cover diverse requirements in evaluation tasks. We have proven
that for H = Sp and A ∈ Av we have an upwardly reinforced asymmetric dis-
junction. Therefore, H = Sp can be directly used. But, it does not hold for
H = SL where we should adopt penalization. The drastic sum has the theoreti-
cal meaning of an upper bound of Dis without significant applicability. Hence,
the same observation holds for asymmetric disjunction when H = SDS .

Axioms A2–A6 are still valid. Axiom A1 should be relaxed for the generalized
asymmetric disjunction. Generally, we can apply Archimedean t–conorms for H,
but for the nilpotent one, we should consider penalty. The work in this field
should continue in generalization of the other connectives and in evaluation,
which of them correlate with the human reasoning.

In idempotent disjunction, i.e., MAX function, lower values than the maximal
one do not influence solution. In all other functions, lower values somehow influ-
ence the solution. This holds for the symmetric case. We offered this option for
the asymmetric case. In cases when lower values of optional alternative should be
considered, we need this approach. For instance, in aforementioned requirement:
spacious basement or else spacious attic, clearly, a house of 0.7 spaciousness of
basement and 0.4 of attic is better than a house of values (0.7 and 0.3), which
is better than (0.4, 0.7).

Considering the afore results, we propose to entitle this operator as Compen-
satory OR ELSE, due to the integrated asymmetry and compensative effect.

It is worth noting that the asymmetric disjunction can be combined with
the other logic aggregations. For instance, consider buying a house. A buyer
might pose the following requirement: size around 200 m2 AND short distance
to work AND (spacious basement OR ELSE spacious attic) AND (most of
the following requirements: {short distance to theatre, short distance to train
station, low population density, detached garage, etc.} satisfied). In the first step,
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we should calculate matching degrees of asymmetric disjunction and quantified
aggregation, while in the second step we calculate the overall matching degree.

5 Conclusion

It is a challenging task to cover the diverse needs for disjunctively polarized deci-
sion making and evaluation tasks. Hence, practice searches for the robust math-
ematical solutions to cover the whole range of disjunctive aggregation, including
the asymmetric case of full and optional predicates. In order to contribute, the
theoretical part of this work has recognized and formalized requirements for
asymmetric disjunction, which are illustrated on the illustrative examples. The
answer to the question whether the idempotency is mandatory is the following:
The idempotency property may be too restrictive for general purpose of asym-
metric disjunction and therefore other functions than MAX may be appropriate.
We have proven that for H = Sp and A ∈ Av we get an upwardly reinforced
asymmetric disjunction. Therefore, H = Sp can be directly used. But, it does
not hold for H = SL, where we should adopt penalization to keep the solution
equal to 1 when both alternatives, or only the full alternative is satisfied with
value 1.

In the everyday decision making tasks and database queries, asymmetric
disjunction could appear as the whole condition. On the other hand, in the
complex managerial evaluation of entities asymmetric disjunction is just a part
of the overall criterion as is illustrated in Sect. 4. The topics for the future work
should include extending this study for the weighted asymmetric disjunction
case, testing on real–world data sets, and examining the consistency with the
disjunctive managerial decision making and evaluation.
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Abstract. Fuzzy logic is widely used in linguistic modeling. In this
work, fuzzy logic is used in a multicriteria decision making framework in
two different ways. First, fuzzy sets are used to model an expert prefer-
ence relation for each of the individual information sources to turn raw
data into satisfaction degrees. Second, fuzzy rules are used to model the
interaction between sources to aggregate the individual degrees into a
global score. The whole framework is implemented as an open source
software called GeoFIS . The potential of the method is illustrated using
an agronomic case study to design a soil chemical quality index from
expert knowledge for cacao production systems. The data come from
three municipalities of Tolima department in Colombia. The output
inferred by the fuzzy inference system was used as a target to learn
the weights of classical numerical aggregation operators. Only the Cho-
quet Integral proved to have a similar modeling ability, but the weights
would have been difficult to set from expert knowledge without learning.

Keywords: Fusion · Multicriteria · Preference · Decision

1 Introduction

Fuzzy logic is widely used as an interface between symbolic and numerical spaces,
allowing the implementation of human reasoning in computers. Fuzzy inference
systems are well known for their ability for linguistic modeling and approximate
reasoning. They are used in this work in the framework of multicriteria decision
making to model expert knowledge.

Complex systems, such as agricultural production systems, are characterized
by several interrelated dimensions, for instance agronomic, social and economic.
The production process includes different steps performed systematically, from
the plant selection to the commercialization. Decisions are made at each step of
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this process that may degrade or support the sustainability of the production
system.

Decision making usually involve several, may be conflicting, attributes. Mul-
ticriteria decision analysis (MCDA) has been indicated as the appropriate set
of tools to perform assessments of sustainability, by considering different sus-
tainability spheres, perspectives, stakeholders, values, uncertainties and intra
and inter-generational considerations [2]. In this article five MCDA methods
are reviewed on the basis of ten criteria that they should satisfy to properly
handle problems concerning sustainability. The methods are from three main
families: i) utility-based theory: multi attribute utility theory (MAUT) and ana-
lytical hierarchy process (AHP), ii) outranking relation theory: elimination and
choice expressing the reality (ELECTRE) and preference ranking organization
method for enrichment of evaluations (PROMETHEE), iii) the sets of decision
rules theory: dominance based rough set approach (DRSA). The latter uses crisp
‘if . . . then’ rules where the premise compares for each criterion its satisfaction
degree to a threshold and the conclusion is a category or a set of categories.

In a review about MCDA applied to forest and other natural resource man-
agement [7] a special attention is paid to methods that deal with uncertainty.
The possible causes of uncertainty are analyzed and the study reports how the
methods are adapted to manage some dimension of uncertainty. A fuzzy multiple
objective linear programming method is mentioned [8].

Agricultural production systems involve agronomic, social, cultural, institu-
tional, economic and other natural elements that are interrelated. Cacao pro-
duction has been studied for many years. It is grown in climatic, economic and
social uncertain contexts, then more efforts by farmers (time, money or land) do
not always produce more quality, quantity, profitability nor a better life qual-
ity for farmers. So, it is a dynamic and complex system characterized by non-
linear relationships dependent of local contexts. Moreover data is not enough
and knowledge is needed to turn data into valuable agronomic information, for
instance to make a decision about fertilization from a soil content analysis.

The challenge is to design a tool that includes the available scientific knowl-
edge to help farmers in decision making. This tool is designed as an indicator
with three main components: agronomic, economic and social, and final product
quality. For sustainable and competitive cacao production the fertility status of
the soil is an important variable that is generally related to cacao agronomic
yield. A subsystem of the agricultural quality part is analyzed in this work: the
soil chemical quality index.

The implementation is achieved by the means of an open source software,
called GeoFIS1, a platform for spatial data processing with a decision support
perspective. The fusion module uses fuzzy logic in two different contexts: first to
turn raw data into satisfaction degrees and second to model variable interaction
using linguistic rules.

1 https://www.geofis.org.

https://www.geofis.org


Fuzzy Inference System as an Aggregation Operator 449

Section 2 describes the data fusion framework, a subsystem of the soil chemi-
cal quality index is studied in Sect. 3. In Sect. 4 the FIS is compared with classical
numerical operators. Finally the main conclusions are summarized in Sect. 5.

2 Data Fusion and Multicriteria Decision Making

The process of data fusion for decision making is driven by expert knowledge.
Information fusion is done with a specific goal, for instance risk level evaluation
or variable application rate in agriculture. The selection of the relevant and
available information sources is done by the decision maker. Then the next step
is to evaluate what could be the level of decision, e.g. risk or rate, according
to each of the sources for a given entity defined by its spatial coordinates. The
final step comes down to aggregate these partial levels, or degrees, to make the
final decision. The aggregation function models the decision maker preferences:
Are some attributes more important than others? How to combine conflicting
information sources?

The whole framework can be illustrated as follows:
(a1, . . . ,an) , (b1, . . . ,bn) A−→ f(a) , f(b)

↑ c ↓

(x1, . . . ,xn) , (y1, . . . ,yn) ≺
∼

(a,b)

There are two steps to formalize expert knowledge and preferences for the
decision process. The first one deals with each individual variable, or information
source. The second one addresses the interaction between sources.

The first step aims to turn, for each individual variable, xi or yj , raw data
into satisfaction degrees, ai or bj . This is done by defining a preference relation
through a fuzzy set. The scale is the unit interval, [0, 1] with zero meaning the
criterion is totally not satisfied and that it is fully satisfied with one. Then the
degrees are aggregated using the f function to compute a global score, f(a) or
f(b).

2.1 Numerical Operators

The most popular techniques to aggregate commensurable degrees are numerical
operators. The main families of such operators, with suitable properties, are the
Weighted Arithmetic Mean (WAM ), the Ordered Weighted Average (OWA) and
the Choquet Integral (CI ).

Let X be the set of sources to aggregate: X = {a1, . . . , an}.
The WAM aggregation is recalled in Eq. 1.

WAM(a1, . . . , an) =
n∑

i=1

wiai (1)
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with wi ∈ [0, 1] and
n∑

i=1

wi = 1. The weights are assigned to the sources of

information.
The OWA is computed as shown in Eq. 2.

OWA(a1, . . . , an) =
n∑

i=1

wia(i) (2)

where (.) is a permutation such as a(1) ≤ · · · ≤ a(n).
In this case, the degrees are ordered and the weights are assigned to the

locations in the distribution, from the minimum to the maximum, whatever the
information sources.

These operators are easy to use, the number of parameters is the number
of information sources to aggregate2, but their modeling ability is limited. The
Choquet Integral [1] proved to be useful in multicriteria decision making [3]. It
is computed according to Eq. 3.

CI(a1, . . . , an) =
n∑

i=1

(a(i) − a(i−1))w(A(i)) (3)

where (.) is a the permutation previously defined with a(0) = 0 and A(i) =
{(i), . . . , (n)}, meaning the set of sources with a degree a ≥ a(i).

The weights must fulfill the two following conditions:

1. Normalization: w(∅) = 0, w(X) = 1
2. Monotonicity condition: ∀A ⊂ B ⊂ X, w(A) ≤ w(B).

The weights are not only defined for each of the information sources but for
all their possible combinations. Specific configurations include WAM and OWA
modeling. The Choquet Integral is equivalent to a WAM when the sum of the
weights assigned to the individual sources is one and when the weight of any
coalition is the sum of the weights of its individual components. In this case the
measure is additive. It is equivalent to an OWA when the weight of a coalition
only depends on its size: for instance all the subsets with two elements have the
same weight. This kind of measure is said to be symmetric. In the general case,
the aggregation of n information sources requires 2n − 2 coefficients. These are
usually set by learning algorithms [9].

2.2 Fuzzy Inference Systems

A fuzzy inference system usually requires more parameters than the former
numerical aggregators but, in this particular case of data fusion, the design
can be simplified as all the input variables are satisfaction degrees that share
the same scale, the unit interval, and the same meaning. Strong fuzzy partitions

2 Only (n− 1) parameters have to be defined for n sources as their sum is 1.
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with regular grids are used to ensure semantic integrity. The inference system
is also automatically defined: the membership degrees are aggregated using the
minimum operator to compute the matching degree of each rule, the rule con-
clusions are aggregated using the Sugeno operator in the crisp case or using the
centroid operator if fuzzy. More details are available in the FisPro documenta-
tion3.

The unique parameter left to the user is the number of linguistic terms for
each input variable. In this work it was set at 2, Low and High, for all of them.
With two linguistic labels by variable, the number of rules is 2n, i.e. the number
of coefficients required by the Choquet Integral. A rule describes a local context
the expert domain, the decision maker, is able to understand. In this way, the
rule conclusions are easier to define than the Choquet Integral coefficients.

2.3 Implementation

The fusion module is implemented as an open source software in the GeoFIS pro-
gram. The data must be co-located, i.e. a record includes the spatial coordinates
of the cell, from a pixel to a zone, and the corresponding attributes.

The available functions to turn raw data into degrees are of the following
shapes:

SemiTrapInf : low values are preferred
SemiTrapSup : high values are preferred
Trapezoidal : about an interval
Triangular : about a value

Three aggregation operators are currently available: WAM, OWA and a fuzzy
inference system (FIS) including linguistic rules.

For WAM and OWA the weights can be learned provided a co-located target
is available. Rule conclusions can also be learned using the FisPro software [4].

Rule conclusion can be either a linguistic term, fuzzy output, or a real value,
crisp output. Using a fuzzy output, it would be necessary to define as many
labels as different suitable rule conclusions. As a crisp conclusion may take any
value in the output range, it allows for more versatility.

The output should also range in the unit interval. This constraint ensures
the output can feed a further step of the process as shown in Fig. 1.

S2

S1
In 2

In 1

In 3
Out 1

Out 2    

Fig. 1. A hierarchical structure.

3 https://www.fispro.org.

https://www.fispro.org
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Fig. 2. The chemical subsystem.

In this way, the intermediate systems can be kept small, making their design
and interpretation easier.

The GeoFIS program includes a distance function based on a fuzzy partition
that allows for integrating expert knowledge into distance calculations [5] as well
other functionalities, such as a zone delineation algorithm [10]. An illustration
of its potential use in Precision Agriculture can be found in [6].

3 Case Study

Different indicators had been designed as guidance for characterizing and
improving agricultural system sustainability, one of them is Soil Fertility. It
is defined by the Soil Science Society of America as4: “The quality of a soil that
enables it to provide nutrients in adequate amounts and in proper balance for
the growth of specified plants or crops.”

The chemical index structure is shown in Fig. 2. The Soil Nutritional Balance
is analyzed in this work. This subsystem include three input variables:

– Soil pH depends of the nature of the soil and controls the chemical processes
that take place in the soil; specifically, the availability of nutrients. Moreover,
it is a parameter that is very easy to measure in the field. The preference
relation is defined as: 5, 5.5, 6.5, 7.5 [11].

– Organic matter brings Carbon that is an important macronutrient, its pres-
ence is very regular and usual in cacao plantations and, usually, it is not a
limiting criterion. The preference relation is defined as: 3, 5 [11].

– Macronutrients: this variable is calculated from a combination of soil chemical
data as shown in Fig. 2.

It is worth mentioning that the knowledge included in the index is generic:
it is not related to a specific location but results from a worldwide analysis.

The study area is located in three municipalities of Tolima department in
Colombia.

Soils were sampled at depth 0–15 cm (3 points per farm and 3 repetitions
in each one). An agronomist surveyed the crops and filled out field register

4 https://www.soils.org/publications/soils-glossary.

https://www.soils.org/publications/soils-glossary
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about nutritional, productivity and plant health stage. An economist applied a
structured interview to farmers to collect information about their agronomic and
post-harvest practices and socioeconomic conditions. The fieldwork was achieved
between December 2018 and January 2019.

Table 1. The Soil Nutritional Balance rule base.

Organic matter Soil pH Macronutrients Conclusion

1 Low Low Low 0.0

2 Low Low High 0.2

3 Low High Low 0.4

4 Low High High 0.6

5 High Low Low 0.3

6 High Low High 0.5

7 High High Low 0.7

8 High High High 1.0

Even if the main interactions are known, there are various ways of modeling
them. Rule conclusions were valued taking account hierarchical importance of each
input variable and their contribution to aggregated variable when it is satisfied
individually and when it is satisfied in combination with others. Always consider-
ing the premise that all is more than the sum its parts. The rule base for the Soil
Nutritional Balance is given in Table 1. The most important input variable is Soil
pH because it controls the chemical processes that take place in the soil, so when
only this variable is satisfied,High, then the conclusion is 0.4, rule number 3. If only
Organic matter or Macronutrients is High then the respective rule conclusions are
0.3 and 0.2. For any combination of two variables with High, the rule conclusion is
set at the sum of conclusions when only one of them isHigh. For instance, rule num-
ber 4 involves the High label for Soil pH and Macronutrients and the conclusion is
0.6 = 0.4 + 0.2. However, when the three variables are satisfied to a High level the
conclusion is higher than the sum of the individual contributions, 0.9, to highlight
their positive interaction on the crop agricultural quality. The corresponding rule
conclusion, number 8, is set at 1.

4 Comparison with Numerical Aggregation Operators

The output of the fuzzy system for the 10 farms from the Chaparral municipality
is used to learn the weights of the WAM, OWA and Choquet Integral. The weights
of the WAM and the OWA were learned using a least square minimization
procedure under two constraints for the weights: they must be positive and their
sum should be 1. The pnnls function from the lsei R package was used. In a
preprocessing step, the degrees for each farm were sorted in an increasing order
to learn the OWA weights.
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The data are given in Table 2.

Table 2. Comparison of the aggregation operators using the 10 farms from Chaparral.

OM pH MacN FIS WAM OWA CI

1 1 0.5 0.696 0.655 0.731 0.730 0.655

2 0.87 0.76 0.414 0.586 0.666 0.660 0.607

3 0 1 0.337 0.467 0.437 0.447 0.463

4 0 1 0.669 0.534 0.561 0.520 0.533

5 0.525 1 0.470 0.675 0.653 0.680 0.687

6 0.86 1 0.484 0.770 0.764 0.759 0.749

7 0.355 1 0.559 0.652 0.632 0.641 0.651

8 0 1 0.773 0.555 0.599 0.543 0.555

9 0 0.6 0.380 0.309 0.328 0.307 0.315

10 0 1 0.614 0.523 0.540 0.508 0.522

R2 - 0.912 0.936 0.993

The degrees to aggregate are in the first three columns for Organic mat-
ter (OM), Soil pH (pH) and Macronutrients (MacN), followed by the output
inferred by the fuzzy system (FIS). The remaining columns give the score for
the Soil Nutritional Balance for the three aggregation operators tested. The
determination coefficient between the operators and the FIS target are in the
last row.

As expected, the WAM yields the poorest result. The weights for OM , pH
and MacN are: 0.317, 0.312 and 0.371. The score for the first farm is similar
to the one for farm #6 and higher than the one for farm #5. This result is not
expected as soil of farm #1 has a less suitable Soil pH than farm #6. Farm #2
is also assigned a high score, higher than the ones of farms #5 and #7. This is
not expected as the degrees of Soil pH and, to a lower extent, of Macronutrients
are better for farms #5 and #7. The exception of Organic matter should not
have been sufficient to get a higher score.

The weights for the OWA, from the minimum to the maximum, are: 0.407,
0.220 and 0.373. The results are slightly improved compared to the WAM, but
the same comments about the score of farm #1 can be made. Farm #2 also gets
an higher score than farm #7.

The Choquet Integral gives the best results and the farms are ranked in the
same order. This is not surprising as the model requires more coefficients, 2n −2
as the empty coalition is assigned a zero value and the whole set a one. The
weights yielded by the HLMS algorithm [9] are shown in Table 3.

This table shows that the coefficients of the optimal Choquet Integral are
really different from the fuzzy rule conclusions reported in Table 1. Two weights,
OM and MacN , are set at zero. The first one has been optimized by the algo-
rithm but this is not the case for the weight assigned to MacN . This is explained
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Table 3. The weights of the Choquet Integral learned by the HLMS algorithm using
the 10 farms from Chaparral.

OM pH MacN OM -pH OM -MacN pH-MacN

0.000 0.392 0.000 0.558 0.794 0.603

by the fact that this degree is never the highest in the training set. This is an
identified drawback of the algorithm, some values are not handled by the algo-
rithm, depending on the data: they are called untouched coefficients in [9]. Any
value lower or equal to 0.603, the minimum value for a coalition that includes
MacN , would be acceptable.

A zero value for OM does not mean this variable is not used: the weight was
put on coalitions that include OM . In the two cases, the weight of the set is
higher that the sum of the weights of its elements. For instance, the OM -pH set
is given a 0.558 weight, higher than the sum 0 + 0.392.

Even if the Choquet Integral proved to have an important modeling ability,
its tuning remains difficult without learning algorithms.

5 Conclusion

In multicriteria decision making various kinds of operators can be used. Some
are easy to use but have a limited modeling ability, such as the Weighted Arith-
metic Mean. Others are more efficient but require a more important number
of parameters whose setting may be difficult. This is the case for the Choquet
Integral. This work shows that fuzzy logic can be used in two key steps of the
aggregation process. First, fuzzy membership functions are used to model indi-
vidual preferences and to turn raw data into satisfaction degrees for each of the
information sources. Second, fuzzy inference systems, that implement linguistic
reasoning, are suitable to model variable interaction and collective behavior in
local contexts. Linguistic rules are easy to design for domain experts as they
naturally use linguistic reasoning.

In the general case fuzzy inference systems require a lot of parameters to
define the input partitions and the inference operators. In the particular case
of data aggregation all the input variable are satisfaction degrees with common
scale and common meaning. This leads to a automatic setting of inputs using a
strong fuzzy partition with two linguistic terms, Low and High. As a consequence,
only the rule conclusions have to be specifically defined by the user. This is the
way expert knowledge about variable interaction is modeled.

This framework is implemented as an open source software called GeoFIS
(See footnote 1). This is a strong asset as software support availability is a key
factor for a method to be adopted.

The proposal was used to design a soil chemical quality index for cacao
crop. It has a hierarchical structure with intermediate outputs easy to analyze.
The membership functions were defined according to the available scientific knowl-
edge. Even if the main interactions are known, there are several ways of modeling
them. The results were easy to analyze and consistent with the field observations.
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The output inferred by the fuzzy system was used as a target to learn the
weights of alternative numerical aggregation operators. The most simple ones,
WAM and OWA, yielded poor results. Only the Choquet Integral proved able
to fit the target. The weights defined by the learning algorithm proved that the
expert tuning of the Choquet Integral would have been difficult.

Fuzzy inference systems thanks to their proximity with natural language and
expert reasoning are a good alternative framework for modeling preferences and
multicriteria decision making.
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Abstract. This paper deals with interaction between criteria in a gen-
eral Choquet integral model. When the preference of the Decision Maker
(DM) contains no indifference, we first give a necessary and sufficient
condition for them to be representable by a Choquet integral model.
Using this condition, we show that it is always possible to choose from
the numerical representations, one relatively for which all the Shapley
interaction indices are strictly positive. We illustrate our results with an
example.

Keywords: Interaction index · General Choquet integral model ·
Shapley interaction indices

1 Introduction

In Multiple Criteria Decision Making (MCDM), the independence hypothesis of
preferences is often considered to be restrictive. Thus, several other models that
do not require the independence hypothesis have been developed, including the
Choquet integral model. The Choquet integral model assumes that the criteria
has been constructed so as to be commensurate. Here, we are not concerned with
the commensurability hypothesis and therefore we assume that the criteria have
been constructed to be commensurate.

In [6] we find two necessary and sufficient conditions for a preferential infor-
mation on set of binary alternatives to be represented by a 2-additive Choquet
integral model (i.e., a Choquet integral model using a 2-additive capacity). This
result is extended by using a representation of the general model based on a
set of generalized binary alternatives. We extend this result. Indeed, our first
result gives a necessary and sufficient condition for preferential information on
generalized binary alternatives to be representable by a general model of Cho-
quet integral. In [5] it is proven that in the framework of binary alternatives,
if the preferential information contains no indifference, and is representable by
a 2-additive Choquet model, then we can choose among these representations
one for which all Shapley interaction indices between two criteria are strictly
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M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1238, pp. 457–466, 2020.
https://doi.org/10.1007/978-3-030-50143-3_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50143-3_36&domain=pdf
https://doi.org/10.1007/978-3-030-50143-3_36


458 P. A. Kaldjob Kaldjob et al.

positive. We extend also this result. Indeed, under the conditions of our first
result, we shows that in the framework of generalized binary alternatives, if the
preference information contains no indifference, it is always possible to represent
it by a general Choquet integral model which all interaction indices are strictly
positive.

This paper is organized as follows. After having recalled in the second section
some basic elements on the model of the Choquet integral in MCDM, in the third
section, we talk about of concept of necessary and possible interaction introduced
in [5]. Then, in the fourth section, we expose our two results. Indeed, we begin by
giving a necessary and sufficient condition for preferential information on the set
of generalized binary alternatives containing no indifference to be represented
by Choquet integral model. Under this condition, we show that it is always
possible to represent this preferential information by a Choquet integral model
where all interaction indices are strictly positive. We illustrate our results with
an example, and we end with a conclusion.

2 Notations and Definitions

2.1 The Framework

Let X be a set of alternatives evaluate on a set of n criteria N = {1, 2, ..., n}.
The set of all alternatives X is assumed to be a subset of a Cartesian product
X1 × X2 × ... × Xn.

The criteria are recoded numerically using, for all i ∈ N, a function ui from
Xi into R. Using these functions allows to assume that the various recoded
criteria are “commensurate” and, hence, the application of the Choquet integral
model is meaningful [4].

For all x = (x1, ..., xn) ∈ X, we will sometimes write u(x) as a shorthand for
(u1(x1), ..., un(xn)).

We assume the DM is able to identify on each criterion i ∈ N two reference
levels 1i and 0i:

– the level 0i in X is considered as a neutral level and we set ui(0i) = 0;
– the level 1i in X is considered as a good level and we set ui(1i) = 1.

For a subset S ⊆ N we define the element aS = (1S ; 0−S) of X such that ai = 1i

if i ∈ S and ai = 0i otherwise. We suppose that for all S ⊆ N, aS ∈ X.

2.2 Choquet Integral

The Choquet integral [3] in an aggregation function known in MCDM as a tool
generalizing the arithmetic mean. It is based on the notion of capacity μ defined
as a function from the powerset 2N into [0, 1] such that:
μ(∅) = 0,
μ(N) = 1,
∀S, T ∈ 2N , [S ⊆ T =⇒ μ(S) ≤ μ(T )] (monotonicity).
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For an alternative x = (x1, ..., xn) ∈ X, the expression of the Choquet integral
w.r.t. a capacity μ is given by:

Cμ(u(x)) = Cμ(u1(x1), ..., un(xn))

=
n∑

i=1

[
uσ(i)(xσ(i)) − uσ(i−1)(xσ(i−1))

]
μ({σ(i), ..., σ(n)})

Where σ is a permutation on N such that uσ(1)(xσ(1)) ≤ uσ(2)(xσ(2)) ≤ ... ≤
uσ(n)(xσ(n)) and uσ(0)(xσ(0)) = 0.

Our work is based on the set B defined as following.

Definition 1. The set of generalized binary alternatives is defined by B =
{aS = (1S , 0−S) : S ⊆ N}.

Remark 1. For all S ⊆ N , we have Cμ(aS) = μ(S).

The idea is to ask to the DM its preferences by comparing some elements of B.
We obtain the binary relations P and I defined as follows.

Definition 2. An ordinal preference information {P, I} on B is given by:

P = {(x, y) ∈ B × B: DM strictly prefers x to y},
I = {(x, y) ∈ B × B: DM is indifferent between x and y}.

We add to this ordinal preference information a relation M modeling the mono-
tonicity relations between binary alternatives, and allowing us to ensure the
satisfaction of the monotonicity condition [S ⊆ T =⇒ μ(S) ≤ μ(T )].

Definition 3. For all aS , aT ∈ B, aSMaT if [not(aS(P ∪ I)aT ) and S ⊇ T ].

Remark 2. aSMaT =⇒ Cμ(aS) ≥ Cμ(aT ).

Definition 4. There exists a strict cycle of (P ∪M) if there exists the elements
x0, x1..., xr of B such that x0(P ∪ M)x1(P ∪ M)...(P ∪ M)xr(P ∪ M)x0 and for
a least one i ∈ {0, ..., r − 1}, xiPxi+1.

2.3 General Interaction Index

Definition 5. The general interaction [2] index w.r.t. a capacity μ is defined
by:
∀A ⊆ N,

Iμ
A =

∑

K⊆N\A

(n − k − a)!k!
(n − a + 1)!

∑

L⊆A

(−1)a−�μ(K ∪ L)

where � =| L |, k =| K | and a =| A |≥ 2.
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Remark 3. Given a capacity μ and A ⊆ N, we can rewrite the general interaction
index as follows

Iμ
A =

∑

K⊆N\A

(n − k − a)!k!
(n − a + 1)!

ΔK
A

where � =| L |, a =| A | and k =| K | with ΔK
A =

∑

L⊆A

(−1)a−�μ(K ∪ L).

The following lemma gives a decomposition of ΔK
A (we assume that 0 is an even

number).

Lemma 1. ∀A ⊆ N, ∀K ⊆ N \ A,

ΔK
A =

a∑

p=0,
p even

[ ∑

L⊆A,
�=a−p

μ(K ∪ L) −
∑

L⊆A,
�=a−p−1

μ(K ∪ L)
]
.

Proof. We will reason according to the parity of a.

– If a is even.

ΔK
A =

∑

L⊆A

(−1)a−�μ(K ∪ L)

ΔK
A =

[ ∑

L⊆A,
�=a

μ(K ∪ L) −
∑

L⊆A,
�=a−1

μ(K ∪ L)

]
+

[ ∑

L⊆A,
�=a−2

μ(K ∪ L) −
∑

L⊆A,
�=a−3

μ(K ∪ L)

]
+ ...

+

[ ∑

L⊆A,
�=2

μ(K ∪ L) −
∑

L⊆A,
�=1

μ(K ∪ L)

]
+

[ ∑

L⊆A,
�=0

μ(K ∪ L) −
∑

L⊆A,
�=−1

μ(K ∪ L)

]

where
∑

L⊆A,
�=−1

μ(K ∪ L) = 0.

ΔK
A =

a∑

p=0,
p even

[ ∑

L⊆A,
�=a−p

μ(K ∪ L) −
∑

L⊆A,
�=a−p−1

μ(K ∪ L).

]

– If a is odd.

ΔK
A =

∑

L⊆A

(−1)a−�μ(K ∪ L)

ΔK
A =

[ ∑

L⊆A,
�=a

μ(K ∪ L) −
∑

L⊆A,
�=a−1

μ(K ∪ L)

]
+

[ ∑

L⊆A,
�=a−2

μ(K ∪ L) −
∑

L⊆A,
�=a−3

μ(K ∪ L)

]
+ ...
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+

[ ∑

L⊆A,
�=1

μ(K ∪ L) −
∑

L⊆A,
�=0

μ(K ∪ L)

]

ΔK
A =

a−1∑

p=0,
p even

[ ∑

L⊆A,
�=a−p

μ(K ∪ L) −
∑

L⊆A,
�=a−p−1

μ(K ∪ L)

]

ΔK
A =

a∑

p=0,
p even

[ ∑

L⊆A,
�=a−p

μ(K ∪ L) −
∑

L⊆A,
�=a−p−1

μ(K ∪ L)

]

since a is odd but p is even. ��
Remark 4. Let N be the set of criteria, A ⊆ N, K ⊆ N \ A and 1 ≤ t ≤ a. We
have:∑

L⊆A,
�=t

∑

i∈L

μ(K ∪ L \ {i}) = C1
a−t+1

∑

L⊆A,
�=t−1

μ(K ∪ L) where Cp
n =

n!
p!(n − p)!

.

Let us illustrate Remark 4 with this example.
Example 1. Let N = {1, 2, 3, 4}, A = {1, 2, 3} and K ⊆ N \ A = {4}. We have:

∑

L⊆A,
�=2

∑

i∈L

μ(K ∪ L \ {i}) =
∑

i∈{1,2}
μ(K ∪ {1, 2} \ {i}) +

∑

i∈{1,3}
μ(K ∪ {1, 3} \ {i})

+
∑

i∈{2,3}
μ(K ∪ {2, 3} \ {i})

= 2μ(K ∪ {1}) + 2μ(K ∪ {2}) + 2μ(K ∪ {3})
= 2

∑

L⊆A,
�=1

μ(K ∪ L)

with 2 = C1
3−2+1.

3 Necessary and Possible Interaction

Once the DM compares a number a alternatives in terms of strict preferences (P )
or indifference (I), the following definition tells us when this ordinal preference
information is representable by Choquet integral model.

Definition 6. An ordinal preference information {P, I} on B is representable by
a Choquet integral model if we can find a capacity μ such that: For all S, T ⊆ N ,

aSPaT =⇒ Cμ(u(aS)) > Cμ(u(aT ));
aSIaT =⇒ Cμ(u(aS)) = Cμ(u(aT )).

The set of all capacities that can be used to represent the ordinal preference
information {P, I} at hand will be denoted CPref (P, I). When there is no ambi-
guity on the underlying ordinal preference information, we will simply write
CPref .

The following definition of necessary and possible interactions will be central
in the rest of this text. This definition is given in [5].
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Definition 7. Let A be a subset of N . We say that:

1. There exists a possible positive (resp. null, negative) interaction among
the elements of A if there exists a capacity μ ∈ CPref such that Iμ

A >
0 (resp. Iμ

A = 0, Iμ
A < 0);

2. There exists a necessary positive (resp. null, negative) interaction among the
elements of A if Iμ

A > 0 (resp. Iμ
A = 0, Iμ

A < 0) for all capacity μ ∈ CPref .

Remark 5. Let be A a subset of criteria.

– If there exists a necessary positive (resp. null, negative) interaction among
the elements of A, then there exists a possible positive (resp. null, negative)
interaction among the elements of A.

– If there is no necessary positive (resp. null, negative) interaction among the
elements of A, then there exists a possible negative or null (resp. positive or
negative, positive or null) interaction among the elements of A.

Let A be a subset of N and {P, I}, an ordinal preference information. We can
have a possible but not necessary interaction, what makes the interpretation
difficult because dependent on the capacity chosen into CPref (P, I). Indeed, the
interpretation of the interaction only makes sense in the case of the necessary
interaction.

4 Results

The following proposition gives a necessary and sufficient condition for an ordinal
preference information on B containing no indifference to be representable by a
Choquet integral model.

Proposition 1. Let {P, I} be an ordinal preference information on B such that
I = ∅.
{P, I} is representable by a Choquet integral if and only if the binary relation
(P ∪ M) contains no strict cycle.

Proof. Necessity. Suppose that the ordinal preference information {P, I} on B
is representable by a Choquet integral. So there exists a capacity μ such that
{P, I} is representable by Cμ.

If P ∪M contains a strict cycle, then there exists x0, x1, ..., xr on B such that
x0(P ∪ M)x1(P ∪ M)...(P ∪ M)xr(P ∪ M)x0 and there exists xi, xi+1 ∈
{x0, x1, ..., xr} such that xiPxi+1. Since {P, I} is representable by Cμ, there-
fore Cμ(x0) ≥ ... ≥ Cμ(xi) > Cμ(xi+1) ≥ ... ≥ Cμ(x0), then Cμ(x0) > Cμ(x0).
Contradiction.
So, P ∪ M contains no strict cycle.

Sufficiency. Assume that (P ∪ M) contains no strict cycle, then there exists
{B0,B1, ...,Bm} a partition of B, builds by using a suitable topological sorting
on (P ∪ M) [1].
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We construct a partition {B0,B1, ...,Bm} as follows:
B0 = {x ∈ B : ∀y ∈ B, not[x(P ∪ M)y]},
B1 = {x ∈ B \ B0 : ∀y ∈ B \ B0, not[x(P ∪ M)y]},
Bi = {x ∈ B \ (B0 ∪ ... ∪ Bi−1) : ∀y ∈ B \ (B0 ∪ ... ∪ Bi−1), not[x(P ∪ M)y]}, for
all i = 1; 2; ...;m.

Let us define the mapping f : B −→ R and μ : 2N −→ [0, 1] as follows: for
� ∈ {0, 1, ...,m},

∀x ∈ B�, f(φ(x)) =
{

0 if � = 0,
(2n)� if � ∈ {1, 2, ...,m}.

μ(S) = fS

α , where fS = f(φ(aS)) and α = fN = (2n)m.
Let aS , aT ∈ B such that aSPaT . Show that Cμ(aS) > Cμ(aT ).

As I = ∅, then B0 = {a0} and Bm = {aN}.

– If T = ∅, then aT ∈ B0 and aS ∈ Br with r ≥ 1.

We have Cμ(aS) =
(2n)r

α
> 0 = μ(∅) = Cμ(aT ).

– If ∅ � T , since aS , aT ∈ B, and {B0,B1, ...,Bm} is a partition of B (with
B0 = {a0} ), then there exists r, q ∈ {1, ...,m} such that aS ∈ Br, aT ∈ Bq.

Therefore Cμ(aS) = μ(S) =
fS

α
=

(2n)r

α
, Cμ(aT ) = μ(T ) =

fT

α
=

(2n)q

α
.

Moreover aSPaT , then r > q, so (2n)r > (2n)q, therefore
(2n)r

α
>

(2n)q

α
, i.e.,

Cμ(aS) > Cμ(aT ).

In both cases, Cμ(aS) > Cμ(aT ). Therefore {P, I} is representable by Cμ. ��
Given the ordinal preference information {P, I} on B, under the previous con-
ditions, the following proposition shows that: it is always possible to choose in
CPref (P, I), one capacity allowing all the interaction indices are strictly positive.
This result shows that positive interaction is always possible into all subsets of
criteria in general Choquet integral model.

Proposition 2. Let {P, I} be an ordinal preference information on B such that
I = ∅, and (P ∪ M) containing no strict cycle.

There exists a capacity μ such that Cμ represents {P, I} and for all A ⊆
N, Iμ

A > 0.

Proof. To show that Iμ
A > 0, we will prove that for all K ⊆ N \

A,
∑

L⊆A

(−1)a−�μ(K ∪ L) > 0.

The partition {B0, ...,Bm} of B and the capacity μ are built as in proof of
Proposition 1. Since I = ∅, then we have B0 = {a0} and Bm = {aN}.

Consider capacity μ define by: μ(S) = fS

α , where fS = f(φ(aS)) and α =
fN = (2n)m.

Let K ⊆ N \ A. According to the previous Lemma 1 we have
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∑

L⊆A

(−1)a−�μ(K ∪ L) =
a∑

p=0,
p even

[ ∑

L⊆A,
�=a−p

μ(K ∪ L) −
∑

L⊆A,
�=a−p−1

μ(K ∪ L)
]

Let L ⊆ A, | L |= a − p with p ∈ {0, 1, ..., a} and even number.
As K ∪ L � K ∪ L \ {i} for all i ∈ L, then aK∪L(P ∪ M)aK∪L\{i}, hence

there exists q ∈ {1, 2, ...,m} such that aK∪L ∈ Bq and ∀i ∈ L, there exists
ri ∈ {0, 1, 2, ...,m} such that aK∪L\{i} ∈ Bri

with ri ≤ q − 1.

B0

Bri

Bq

Bm

a0

aK∪L\{i}

aK∪L

aN

Fig. 1. An illustration of the elements Bm, Bq, Bri , and B0 such that m > q > ri > 0
with i ∈ N .

Then μ(K ∪ L) = (2n)q = (2n)(2n)q−1.∑

i∈L

μ(K ∪ L \ {i}) =
∑

i∈L

(2n)ri ≤
∑

i∈L

(2n)q−1 = l(2n)q−1

As 2n > l, then μ(K ∪ L) >
∑

i∈L

μ(K ∪ L \ {i}) , hence
∑

L⊆A,
l=a−p

μ(K ∪ L) >

∑

L⊆A,
l=a−p

∑

i∈L

μ(K ∪ L \ {i}) According to Remark 4 (with t = a − p), we have

∑

L⊆A,
�=a−p

∑

i∈L

μ(K ∪ L \ {i}) = C1
p+1

a∑

L⊆A,
�=a−p−1

μ(K ∪ L) >

a∑

L⊆A,
�=a−p−1

μ(K ∪ L) since

C1
p+1 = p + 1 > 1.
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So
∑

L⊆A,
�=a−p

μ(K∪L) >
∑

L⊆A,
�=a−p−1

μ(K∪L), i.e.,
∑

L⊆A,
�=a−p

μ(K∪L)−
∑

L⊆A,
�=a−p−1

μ(K∪L)>0.

We then have
a∑

p=0,
p even

[ ∑

L⊆A,
�=a−p

μ(K ∪ L) −
∑

L⊆A,
�=a−p−1

μ(K ∪ L)
]

> 0.

We have just proved that For all K ⊆ N \ A,
∑

L⊆A

(−1)a−�μ(K ∪ L) > 0.

We can therefore conclude that Iμ
A > 0. ��

The following example illustrates our two results.

Example 2. N = {1, 2, 3, 4}, P = {(a23, a1), (a234, a123), (a2, a13)}.
The ordinal preference information {P, I} contains no indifference and the

binary relation (P ∪ M) contains no strict cycle, so {P, I} is representable by a
Choquet integral model.

A suitable topological sorting on (P ∪ M) is given by:
B0 = {a0}; B1 = {a1, a3, a4}; B2 = {a13, a14, a34}; B3 = {a2}; B4 =
{a12, a23, a24};
B5 = {a123, a124, a134}; B6 = {a234} and B7 = {aN}.

The ordinal preference information {P, I} is representable by a following
capacity μ:

S ∅ {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}N

87 × μ(S) 0 8 83 8 8 84 82 82 84 84 82 85 85 85 86 87

Considering the previous capacity, the corresponding interaction indices are
given by the following table:

A {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4} {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} N

87 × I
μ
A

611.33 611.66 688.16 726.16 726.16 726.33 899 899 612.83 612.83 612.83

We can see that Iμ
A > 0, ∀A ⊆ N such that | A |≥ 2.

5 Conclusion

This article deals with the notion of interaction within a subset of criteria of any
size, in the Choquet integral model. Our first result gives a necessary and suffi-
cient condition for ordinal preference information on generalized binary alterna-
tives to be representable by a general model of Choquet integral. This extends
theorem 1, Page 305 [6].

Under condition of our first result, our second result shows that in the frame-
work of generalized binary alternatives, if the ordinal preference information
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contains no indifference, it is possible to represent it by a general Choquet inte-
gral model which all Shapley interaction indices between a subset of criteria are
strictly positive. This extends theorem 2, Page 10 [5].

The subject of this paper offer several avenues for future research. In fact, It
would be interesting as in [5] to provide a linear program to test the necessary
interaction outside the framework of generalized binary alternatives. Otherwise
we will examine the case where I �= ∅. We are also interested in duality. Indeed,
is it always possible to build a capacity relative to which all the interaction
indices will be strictly negative? It would finally be interesting to study the case
of bipolar scales. We are already investigating some of these research avenues.
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Abstract. In this paper, we introduce two rather effective methods for
constructing new families of nullnorms with a zero element on the basis
of the closure operators and interior operators on a bounded lattice under
some additional conditions. Our constructions can be seen as a gener-
alization of the ones in [28]. As a by-product, two types of idempotent
nullnorms on bounded lattices are obtained. Several interesting exam-
ples are included to get a better understanding of the structure of new
families of nullnorms.

Keywords: Bounded lattice · Construction method · Closure
operator · Interior operator · Nullnorm

1 Introduction

The definitions of t-operators and nullnorms on the unit interval were introduced
by Mas et al. [20] and Calvo et al. [4], respectively. In [21], it was shown that
nullnorms coincide with t-operators on the unit interval [0, 1] since both of them
have identical block structures on [0, 1]2. As a generalization of t-norms and t-
conorms on the unit interval, nullnorms have a zero element s derived from the
whole domain, regardless of whether t-norms and t-conorms have zero elements
0 and 1, respectively. In particular, a nullnorm is a t-norm if s = 0 while it is a
t-conorm if s = 1. These operators are effective in various fields of applications,
such as expert systems, fuzzy decision making and fuzzy system modeling. They
are interesting also from theoretical point of view. For more studies about t-
norms, t-conorms, nullnorms and related operators on the unit interval, it can
be referred to [5,10,14,17,19,22–24,26,27,29].

In recent years, the study of nullnorms on bounded lattices was initiated
by Karaçal et al. [18]. They demonstrated the presence of nullnorms with a
zero element on the basis of a t-norm and a t-conorm on a bounded lattice.
Notice that the families of nullnorms obtained in [18] are not idempotent, in
general. For this reason, Çaylı and Karaçal [6] introduced a method showing
the presence idempotent nullnorms on bounded lattices such that there is only
c© Springer Nature Switzerland AG 2020
M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1238, pp. 467–480, 2020.
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one element incomparable with the zero element. Moreover, they proposed that
there does not need to exist an idempotent nullnorm on a bounded lattice. After
then, Wang et al. [28] and Çaylı [7] presented some methods for constructing
idempotent nullnorms on a bounded lattice with some additional conditions on
theirs zero element. Their methods can be viewed as a generalization of the
proposed method in [6]. On the contrary to the approaches in [6,7,28] based on
the only infimum t-norm on [s, 1]2 and supremum t-conorm on [0, s]2, in [8,9]
by using an arbitrary t-norm on [s, 1]2 and an arbitrary t-conorm on [0, s]2 , it
was described some construction methods for nullnorms on a bounded lattice L
having a zero element s with some constraints.

In general topology, by considering a nonempty set A and the set ℘ (A) of all
subsets of A, the closure operator (resp. interior operator) on ℘ (A) is defined as
an expansive, isotone and idempotent map cl : ℘ (A) → ℘ (A) (resp. a contrac-
tive, isotone and idempotent map int : ℘ (A) → ℘ (A)). Both of these operators
can be used for constructing topologies on A in general topology [15]. More
precisely, a one-to-one correspondence from the set of all topologies on A to
the set of all closure (interior) operators on ℘ (A). That is, any topology on a
nonempty set can induce the closure (interior) operator on its underlying pow-
erset. It should be pointed out that closure and interior operators can be defined
on a lattice (℘ (A) ,⊆) of all subsets of a set A with set union as the join and set
intersection as the meet. Hence, Everett [16] extended the closure operator (resp.
interior operator) on ℘ (A) to a general lattice L where the condition cl (∅) = ∅
(resp. int (A) = A) is omitted.

The main aim of this paper is to present some methods for yielding new
families of nullnorms with a zero element by means of closure operators and
interior operators on a bounded lattice. The remainder of this paper is organized
as follows. In Sect. 2, we recall some preliminary details about bounded lattices
and nullnorms, interior and closure operators on them. In Sect. 3, considering a
bounded lattice L, we propose two new methods for generating nullnorms with a
zero element based on the presence of closure operators cl : L → L and interior
operators int : L → L. We note that our constructions are a generalization of
the constructions in [28]. We also provide some corresponding examples showing
that our constructions actually create new types of nullnorms on bounded lattices
different from those in [28]. It should be pointed out that our methods need some
sufficient and necessary conditions to generate a nullnorm on a bounded lattice.
As a by product, two classes of idempotent nullnorms on bounded lattices are
obtained when taking the closure operator cl : L → L as cl (x) = x for all
x ∈ L and the interior operator int : L → L as int (x) = x for all x ∈ L.
Furthermore, we exemplify that we cannot force new nullnorms to coincide with
another predefined t-conorm [0, s]2 and t-norm [s, 1]2 apart from the t-conorm
S∨ : [0, s]2 → [0, s] defined by S∨ (x, y) = x∨y for all x, y ∈ [0, s] and the t-norm
T∧ : [s, 1]2 → [s, 1] defined by T∧ (x, y) = x∧y. Finally, some concluding remarks
are added.
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2 Preliminaries

In this part, some basic results about bounded lattices and nullnorms, closure
and interior operators on them are recalled.

A lattice L is a nonempty set with the partial order ≤ where any two elements
x, y ∈ L have a smallest upper bound (called join or supremum), denoted by
x ∨ y and a greatest lower bound (called meet or infimum), denoted by x ∧ y.
For a, b ∈ L, we use the notation a < b where a ≤ b and a 	= b. Moreover, we use
the notation a ‖ b to denote that a and b are incomparable. For s ∈ L\{0, 1},
we denote Ds = [0, s] × [s, 1] ∪ [s, 1] × [0, s] and Is = {x ∈ L | x ‖ s}.

A bounded lattice (L,≤,∧,∨) is a lattice having the top and bottom ele-
ments, which are written as 1 and 0, respectively, that is, there are two elements
1, 0 ∈ L such that 0 ≤ x ≤ 1 for all x ∈ L.

Given a, b ∈ L with a ≤ b, the subinterval [a, b] is a sublattice of L defined
by [a, b] = {x ∈ L | a ≤ x ≤ b}.

The subintervals ]a, b] , [a, b[ and ]a, b[ are defined by ]a, b] = {x ∈ L | a <
x ≤ b}, [a, b[ = {x ∈ L | a ≤ x < b} and ]a, b[ = {x ∈ L | a < x < b} (see [1]).

Definition 1 ([6–9,18]). Let L be a bounded lattice. A binary operation F :
L × L → L is called a nullnorm on L if, for any x, y, z ∈ L, it satisfies the
following properties:

(1) F (x, z) ≤ F (y, z) for x ≤ y.
(2) F (x, F (y, z)) = F (F (x, y) , z) .
(3) F (x, y) = F (y, x).
(4) There exists an element s ∈ L called the zero element, such we obtain

F (x, 0) = x for all x ≤ s and F (x, 1) = x for all x ≥ s.

F is called an idempotent nullnorm on L whenever F (x, x) = x for all x ∈ L.
We note that a triangular norm T (t-norm for short) on L is a special case of
nullnorm with s = 0 whereas a triangular conorm S (t-conorm for short) on L
is a special case of nullnorm with s = 1 (see [2,3]).

Proposition 1 ([13,18]). Let L be a bounded lattice and F be a nullnorm on L
with the zero element s ∈ L\{0, 1}. Then the following statements hold:

i) F |[0, s]2 : [0, s]2 → [0, s] is a t-conorm on [0, s]2.
ii) F |[s, 1]2 : [s, 1]2 → [s, 1] is a t-norm on [s, 1]2.

Proposition 2 ([9]). Let L be a bounded lattice and F be an idempotent null-
norm on L with the zero element s ∈ L\{0, 1}. Then the following statements
hold:

i) F (x, y) = x ∨ y for all (x, y) ∈ [0, s]2.
ii) F (x, y) = x ∧ y for all (x, y) ∈ [s, 1]2.
iii) F (x, y) = x ∨ (y ∧ s) for all (x, y) ∈ [0, s] × Is.
iv) F (x, y) = y ∨ (x ∧ s) for all (x, y) ∈ Is × [0, s].
v) F (x, y) = x ∧ (y ∨ s) for all (x, y) ∈ [s, 1] × Is.
vi) F (x, y) = y ∧ (x ∨ s) for all (x, y) ∈ Is × [s, 1].
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Definition 2 ([11,12,16]). Let L be a lattice. A mapping cl : L → L is called a
closure operator if, for any x, y ∈ L, it satisfies the following properties:

(1) Expansion: x ≤ cl(x).
(2) Preservation of join: cl(x ∨ y) = cl(x) ∨ cl(y).
(3) Idempotence: cl(cl(x)) = cl(x).

For a closure operator cl : L → L and for any x, y ∈ L, we obtain that
cl(cl(x)) ≤ cl(x) and cl(x) ≤ cl(y) whenever x ≤ y.

Definition 3 ([11,12,25]). Let L be a lattice. A mapping int : L → L is called
an interior operator if, for any x, y ∈ L, it satisfies the following properties:

(1) Contraction: int(x) ≤ x.
(2) Preservation of meet: int(x ∧ y) = int(x) ∧ int(y).
(3) Idempotence: int(int(x)) = int(x).

For an interior operator int : L → L and for any x, y ∈ L, we obtain that
int(x) ≤ int(int(x)) and int(x) ≤ int(y) whenever x ≤ y.

3 Construction Methods for Nullnorms

In this section, considering a bounded lattice L, we introduce two methods to
construct the classes of nullnorms Fcl : L × L → L and Fint : L × L → L with
the zero element on the basis of the closure operator cl : L → L and interior
operator int : L → L, respectively. We note that our constructions require
some sufficient and necessary conditions on the bounded lattice and the closure
(interior) operator. These conditions play an effective role in our constructions,
and they yield a nullnorm on a bounded lattice in only particular cases. We
also present some illustrative examples to have a better understanding of the
structures of new constructions.

Theorem 1. Let L be a bounded lattice and s ∈ L\{0, 1} such that a∧ s = b∧ s
and a ∨ s = b ∨ s for all a, b ∈ Is. Given a closure operator cl : L → L such
that cl (p) ∨ cl (q) ∈ Is for all p, q ∈ Is, the following function Fcl : L × L → L
defined by

Fcl (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∨ y if (x, y) ∈ [0, s]2 ,
x ∧ y if (x, y) ∈ [s, 1]2,
s if (x, y) ∈ Ds,
y ∧ (x ∨ s) if (x, y) ∈ Is × [s, 1],
x ∧ (y ∨ s) if (x, y) ∈ [s, 1] × Is,
y ∨ (x ∧ s) if (x, y) ∈ Is × [0, s],
x ∨ (y ∧ s) if (x, y) ∈ [0, s] × Is,
cl (x) ∨ cl (y) if (x, y) ∈ I2s

(1)

is a nullnorm on L with the zero element s.
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Theorem 2. Let L be a bounded lattice, s ∈ L\{0, 1} such that a ∧ s = b ∧ s
for all a, b ∈ Is and cl : L → L be a closure operator. If the function Fcl defined
by the formula (1) is a nullnorm on L with the zero element s, then there holds
p ∨ s = q ∨ s and cl (p) ∨ cl (q) ∈ Is for all p, q ∈ Is.

Proof. Let the function Fcl defined by the formula (1) be a nullnorm on L with
the zero element s.

Given p, q ∈ Is, from the monotonicity of Fcl, we have q ≤ cl (q) ≤ cl (p) ∨
cl (q) = Fcl (p, q) ≤ Fcl (p, 1) = p ∨ s and p ≤ cl (p) ≤ cl (p) ∨ cl (q) = Fcl (p, q) ≤
Fcl (1, q) = q∨s. Then q∨s ≤ p∨s and p∨s ≤ q∨s. Hence, it holds p∨s = q∨s
for any p, q ∈ Is.

Assume that cl (p)∨cl (q) ∈ [0, s] . Then we have p∨q ≤ cl (p)∨cl (q) ≤ s, i.e,
p ≤ s. This is a contradiction. So, cl (p) ∨ cl (q) ∈ [0, s] does not hold. Supposing
that cl(p) ∨ cl(q) ∈]s, 1], we have Fcl(0, Fcl(p, q)) = s and Fcl(Fcl(0, p), q) =
Fcl(p∧ s, q) = (p∧ s)∨ (q ∧ s) = p∧ s. From the associativity of Fcl, it holds s =
p ∧ s, i.e., s ≤ p. This is a contradiction. So, cl(p) ∨ cl(q) ∈]s, 1] does not hold.
Therefore, we have cl(p) ∨ cl(q) ∈ Is for any p, q ∈ Is.

Consider a bounded lattice L, s ∈ L\{0, 1} such that a ∧ s = b ∧ s for all
a, b ∈ Is and a closure operator cl : L → L. We observe that the conditions
p ∨ s = q ∨ s and cl (p) ∨ cl (q) ∈ Is for all p, q ∈ Is are both sufficient and
necessary to yield a nullnorm on L with the zero element s of the function
Fcl defined by the formula (1). In this case, one can ask whether the condition
a ∧ s = b ∧ s for all a, b ∈ Is is necessary to be a nullnorm on L with the zero
element s of Fcl. We firstly give an example to show that in Theorem 1, the
condition a ∧ s = b ∧ s for all a, b ∈ Is cannot be omitted, in general.

Example 1. Consider the bounded lattice L1 = {0, v, s, r, u, t, 1} depicted by
Hasse diagram in Fig. 1. Define the closure operator cl : L1 → L1 by cl(0) =
cl (v) = v, cl (r) = cl (u) = cl (t) = t and cl (s) = cl(1) = 1. Notice that
p ∨ s = q ∨ s and cl (p) ∨ cl (q) ∈ Is for all p, q ∈ Is but t ∧ s = v 	=
0 = r ∧ s for r, t ∈ Is. In this case, by using the approach in Theorem 1,
we have Fcl (0, Fcl (u, r)) = Fcl (0, cl (u) ∨ cl (r)) = Fcl (0, t) = t ∧ s = v and
Fcl (Fcl (0, u) , r) = Fcl (u ∧ s, r) = Fcl (0, r) = r ∧ s = 0. Then, Fcl is not asso-
ciative for the indicated closure operator on L1. Therefore, Fcl is not a nullnorm
on L1 which does not satisfy the condition a ∧ s = b ∧ s for all a, b ∈ Is.

From Example 1, we observe that the condition a ∧ s = b ∧ s for all a, b ∈ Is
is sufficient in Theorem 1. Taking into account the above mentioned question,
we state that this condition is not necessary in Theorem 1. In order to show
this fact, we provide an example of a bounded lattice violating this condition on
which the function Fcl defined by the formula (1) is a nullnorm with the zero
element s.

Example 2. Consider the lattice L1 depicted in Example 1 and the closure opera-
tor cl : L1 → L1 defined by cl (x) = x for all x ∈ L1. If we apply the construction
in Theorem 1, then we obtain the function Fcl : L1×L1 → L1 given as in Table 1.
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Fig. 1. Lattice L1

It is easy to check that Fcl is a nullnorm with the zero element s for the chosen
closure operator on L1.

Table 1. Nullnorm Fcl on L1

Fcl 0 v s r u t 1

0 0 v s 0 0 v s

v v v s v v v s

s s s s s s s s

r 0 v s r u t 1

u 0 v s u u t 1

t v v s t t t 1

1 s s s 1 1 1 1

In view of Theorems 1 and 2, when taking the closure operator cl : L → L
as cl (x) = x for all x ∈ L, we have the following Corollary 1 which shows the
presence of idempotent nullnorms on L with the zero element s ∈ L\{0, 1}.

Corollary 1. Let L be a bounded lattice and s ∈ L\{0, 1} such that a∧s = b∧s
for all a, b ∈ Is. Then, the following function F1 : L × L → L defined by

F1 (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∨ y if (x, y) ∈ [0, s]2 ,
x ∧ y if (x, y) ∈ [s, 1]2,
s if (x, y) ∈ Ds,
y ∧ (x ∨ s) if (x, y) ∈ Is × [s, 1],
x ∧ (y ∨ s) if (x, y) ∈ [s, 1] × Is,
y ∨ (x ∧ s) if (x, y) ∈ Is × [0, s],
x ∨ (y ∧ s) if (x, y) ∈ [0, s] × Is,
x ∨ y if (x, y) ∈ I2s

is an idempotent nullnorm on L with the zero element s if and only if p∨s = q∨s
and p ∨ q ∈ Is for all p, q ∈ Is.
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Remark 1. Let L be a bounded lattice, s ∈ L\{0, 1}, a∧s = b∧s and a∨s = b∨s
for all a, b ∈ Is. Consider a closure operator cl : L → L such that cl (p)∨cl (q) ∈ Is
for all p, q ∈ Is. It should be pointed out that the classes of the nullnorms V∨
introduced in [28, Theorem 2] and Fcl defined by the formula (1) in Theorem
1 are different from each other. Fcl differs from V∨ on the domain Is × Is. The
value of Fcl is cl (x)∨ cl (y) whereas V∨ has the value x∨y when (x, y) ∈ Is × Is.
Both of them have the same value on all remainder domains. From Corollary
1, we can easily observe that the nullnorm Fcl coincides with the nullnorm V∨
when defining the closure operator cl : L → L by cl (x) = x for all x ∈ L.
More precisely, our construction in Theorem 1 encompass as a special case the
construction of V∨ in [28, Theorem 2]. Furthermore, the nullnorms Fcl and V∨
do not have to coincide with each other. In the following, we present an example
to illustrative the correctness of this argument.

Example 3. Given the lattice L2 = {0, u,m, n, s, v, p, q, t, r, 1} characterized by
Hasse diagram in Fig. 2, it is clear that a ∧ s = b ∧ s and a ∨ s = b ∨ s for all
a, b ∈ Is. Take the closure operator cl : L2 → L2 as cl(0) = cl (v) = v, cl (u) =
cl (n) = cl (s) = cl (m) = u, cl (t) = cl(q) = q, cl(p) = cl(r) = r and cl (1) = 1.
Then, by use of the approaches in Theorem 1 and [28, Theorem 2], respectively,
the nullnorms Fcl, V∨ : L2×L2 → L2 are defined in Tables 2 and 3, respectively.
These nullnorms are different from each other since Fcl (p, t) = r 	= p = V∨ (p, t)
for p, t ∈ L2.

Fig. 2. Lattice L2

Theorem 3. Let L be a bounded lattice and s ∈ L\{0, 1} such that a∧ s = b∧ s
and a ∨ s = b ∨ s for all a, b ∈ Is. Given an interior operator int : L → L such
that int (p)∧ int (q) ∈ Is for all p, q ∈ Is, the following function Fint : L×L → L
defined by
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Table 2. Nullnorm Fcl on L2

Fcl 0 v n s t p q r m u 1

0 0 v n s v v v v s s s

v v v n s v v v v s s s

n n n n s n n n n s s s

s s s s s s s s s s s s

t v v n s q r q r m u u

p v v n s r r r r m u u

q v v n s q r q r m u u

r v v n s r r r r m u u

m s s s s m m m m m m m

u s s s s u u u u m u u

1 s s s s u u u u m u 1

Table 3. Nullnorm V∨ on L2

V∨ 0 v n s t p q r m u 1

0 0 v n s v v v v s s s

v v v n s v v v v s s s

n n n n s n n n n s s s

s s s s s s s s s s s s

t v v n s t p q r m u u

p v v n s p p r r m u u

q v v n s q r q r m u u

r v v n s r r r r m u u

m s s s s m m m m m m m

u s s s s u u u u m u u

1 s s s s u u u u m u 1

Fint (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∨ y if (x, y) ∈ [0, s]2 ,
x ∧ y if (x, y) ∈ [s, 1]2,
s if (x, y) ∈ Ds,
y ∧ (x ∨ s) if (x, y) ∈ Is × [s, 1],
x ∧ (y ∨ s) if (x, y) ∈ [s, 1] × Is,
y ∨ (x ∧ s) if (x, y) ∈ Is × [0, s],
x ∨ (y ∧ s) if (x, y) ∈ [0, s] × Is,
int (x) ∧ int (y) if (x, y) ∈ I2s

(2)

is a nullnorm on L with the zero element s.

Theorem 4. Let L be a bounded lattice, s ∈ L\{0, 1} such that a ∨ s = b ∨ s
for all a, b ∈ Is, int : L → L be an interior operator. If the function Fint defined
by the formula (2) is a nullnorm on L with the zero element s, then there holds
p ∧ s = q ∧ s and int (p) ∧ int (q) ∈ Is for all p, q ∈ Is.

Proof. Let the function Fint defined by the formula (2) be a nullnorm on L with
the zero element s.

Given p, q ∈ Is, from the monotonicity of Fint, we have q ≥ int (q) ≥ int (p)∧
int (q) = Fint (p, q) ≥ Fint (p, 0) = p ∧ s and p ≥ int (p) ≥ int (p) ∧ int (q) =
Fint (p, q) ≥ Fint (0, q) = q∧s. In this case, we obtain q∧s ≤ p∧s and p∧s ≤ q∧s.
So, it holds p ∧ s = q ∧ s for any p, q ∈ Is.

Assume that int (p)∧int (q) ∈ [s, 1] . Then we have s ≤ int (p)∧int (q) ≤ p∧q.
That is, s ≤ p which is a contradiction. Hence, int (p) ∧ int (q) ∈ [s, 1] can-
not hold. Suppose that int(p) ∧ int(q) ∈ [0, s[. Then, it is obtained that
Fint (1, Fint (p, q)) = s and Fint (Fint (1, p) , q) = Fint (p ∨ s, q) = (p ∨ s) ∧
(q ∨ s) = p ∨ s. Since Fint is associative, we get s = p ∨ s, i.e., p ≤ s which
is a contradiction. Hence, int(p)∧ int(q) ∈ [0, s[ cannot hold. Therefore, it holds
int (p) ∧ int (q) ∈ Is for any p, q ∈ Is.
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Consider a bounded lattice L, s ∈ L\{0, 1} such that a ∨ s = b ∨ s for all
a, b ∈ Is and an interior operator int : L → L. It should be pointed out that
the conditions p ∧ s = q ∧ s and int (p) ∧ int (q) ∈ Is for all p, q ∈ Is are both
sufficient and necessary to generate a nullnorm on L with the zero element s of
the function Fint defined by the formula (2). Then a natural question arises: is it
necessary the condition a ∨ s = b ∨ s for all a, b ∈ Is to be a nullnorm on L with
the zero element s of Fcl. At first, by the following example, we demonstrate
that in Theorem 3, the condition a∨s = b∨s for all a, b ∈ Is cannot be omitted,
in general.

Example 4. Consider the bounded lattice L3 = {0, s, k, n, t,m, 1} with the lattice
diagram shown in Fig. 3. Define the interior operator int : L3 → L3 by int (x) =
x for all x ∈ L3. It holds p ∧ s = q ∧ s and int (p) ∧ int (q) ∈ Is for all p, q ∈ Is,
however, t ∨ s = m 	= 1 = n ∨ s for n, t ∈ Is. Then, by applying the method in
Theorem 3, we obtain Fcl (1, Fcl (k, n)) = Fcl (1, int (k) ∧ int (n)) = Fcl (1, t) =
t ∨ s = m and Fcl (Fcl (1, k) , n) = Fcl (k ∨ s, n) = Fcl (1, n) = n ∨ s = 1. In that
case, Fint is not associative for the indicated interior operator on L3. Hence, Fint

is not a nullnorm on L3 violating the condition a ∨ s = b ∨ s for all a, b ∈ Is.

By Example 4, we observe that the condition a ∨ s = b ∨ s for all a, b ∈ Is is
sufficient in Theorem 3. Moreover, we answer the above question so that this is
not a necessary condition in Theorem 3. In order to illustrative this observation,
we provide an example of a bounded lattice violating this condition on which
the function Fint defined by the formula (2) is a nullnorm on L with the zero
element s.

Example 5. Consider the bounded lattice L4 = {0, s,m, k, t, 1} with the lattice
diagram shown in Fig. 4. Notice that t∨s = m 	= 1 = k∨s for k, t ∈ Is. Define the
interior operator int : L4 → L4 by int (x) = x for all x ∈ L4. Then, by applying
the construction in Theorem 3, we obtain the function Fint : L4×L4 → L4 given
as in Table 4. It can be easily seen that Fint is a nullnorm on L4 with the zero
element s.

Fig. 3. Lattice L3 Fig. 4. Lattice L4
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Table 4. Nullnorm Fint on L4

Fint 0 s t k m 1

0 0 s 0 0 s s

s s s s s s s

t 0 s t t m m

k 0 s t k m 1

m s s m m m m

1 s s m 1 m 1

Taking into consideration Theorems 3 and 4, if we choose the interior operator
int : L → L as int (x) = x for all x ∈ L, then we get the following Corollary 2
which shows the presence of idempotent nullnorms on L with the zero element
s ∈ L\{0, 1}.

Corollary 2. Let L be a bounded lattice and s ∈ L\{0, 1} such that a∨s = b∨s
for all a, b ∈ Is. Then, the following function F2 : L × L → L defined by

F2 (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∨ y if (x, y) ∈ [0, s]2 ,
x ∧ y if (x, y) ∈ [s, 1]2,
s if (x, y) ∈ Ds,
y ∧ (x ∨ s) if (x, y) ∈ Is × [s, 1],
x ∧ (y ∨ s) if (x, y) ∈ [s, 1] × Is,
y ∨ (x ∧ s) if (x, y) ∈ Is × [0, s],
x ∨ (y ∧ s) if (x, y) ∈ [0, s] × Is,
x ∧ y if (x, y) ∈ I2s

(3)

is an idempotent nullnorm on L with the zero element s if and only if p∧s = q∧s
and p ∧ q ∈ Is for all p, q ∈ Is.

Remark 2. Let L be a bounded lattice, s ∈ L\{0, 1}, a ∧ s = b ∧ s and a ∨ s =
b ∨ s for all a, b ∈ Is. Consider an interior operator int : L → L such that
int (p) ∧ int (q) ∈ Is for all p, q ∈ Is. We note that Fint defined by the formula
(2) in Theorem 3 can create new type of nullnorm different from V∧ described
in [28, Theorem 2]. In particular, Fint differs from V∧ on the domain Is × Is.
While Fint has the value of int (x) ∧ int (y) on Is × Is, the value of V∧ is x ∧ y.
Both of them have same value on all remainder domains. By Corollary 2, when
considering the interior operator int : L → L as int (x) = x for all x ∈ L,
we observe that the nullnorm Fint coincides with the nullnorm V∧. To be more
precise, the class of the nullnorm Fint is a generalization of the class of the
nullnorm V∧. Moreover, the nullnorms Fint and V∧ do not need to coincide with
each other. We provide the following example to demonstrate this observation.

Example 6. Consider the lattice L2 with the given order in Fig. 2 and the interior
operator int : L2 → L2 defined by int(0) = 0, int (v) = v, int (p) = int (q)
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Table 5. Nullnorm Fint on L2

Fint 0 v n s t p q r m u 1

0 0 v n s v v v v s s s

v v v n s v v v v s s s

n n n n s n n n n s s s

s s s s s s s s s s s s

t v v n s t t t t m u u

p v v n s t t t t m u u

q v v n s t t t t m u u

r v v n s t t t r m u u

m s s s s m m m m m m m

u s s s s u u u u m u u

1 s s s s u u u u m u 1

Table 6. Nullnorm V∧ on L2

V∧ 0 v n s t p q r m u 1

0 0 v n s v v v v s s s

v v v n s v v v v s s s

n n n n s n n n n s s s

s s s s s s s s s s s s

t v v n s t t t t m u u

p v v n s t p t p m u u

q v v n s t t q q m u u

r v v n s t p q r m u u

m s s s s m m m m m m m

u s s s s u u u u m u u

1 s s s s u u u u m u 1

= int (t) = t, int (m) = m, int (r) = r, int(n) = int(s) = n and int(u) =
int (1) = u. Then, by use of the approaches in Theorem 3 and [28, Theorem 2],
respectively, the nullnorms Fint, V∧ : L2 × L2 → L2 are defined in Tables 5 and
6, respectively. These nullnorms are different from each other since Fint (q, r) =
t 	= q = V∧ (q, r) for q, r ∈ L2.

Remark 3. It should be noted that the restriction of the nullnorms Fcl and Fint

on [0, s]2 is the t-conorm S∨ : [0, s]2 → [0, s] defined by S∨ (x, y) = x ∨ y for all
x, y ∈ [0, s] . However, Fcl and Fint do not need to coincide with another prede-
fined t-conorm except for the t-conorm S∨ on [0, s]2. To illustrate this argument,
considering the lattice L5 = {0, k, t,m, s, n, 1} according to the lattice diagram
shown in Fig. 5, we assume that the restriction of the nullnorms Fcl and Fint on
[0, s]2 is the t-conorm S : [0, s]2 → [0, s] given as in Table 7. Then, by applying
the construction approaches in Theorems 1 and 3, we have Fcl (Fcl (t, k) , n) = m
(Fint (Fint (t, k) , n) = m) and Fcl (t, Fcl (k, n)) = s (Fint (t, Fint (k, n)) = s).
Since Fcl and Fint do not satisfy associativity property, we cannot force Fcl and
Fint to coincide with another prescribed t-conorm except for the t-conorm S∨
on [0, s]2.

Similarly, we note that the restriction of the nullnorms Fcl and Fint on [s, 1]2

is the t-norm T∧ : [s, 1]2 → [s, 1] defined by T∧ (x, y) = x ∧ y for all x, y ∈ [s, 1] .
However, Fcl and Fint do not need to coincide with another predefined t-norm
except for the t-norm T∧ on [s, 1]2. To illustrate this observation, we consider
the lattice L6 = {0, k, s, t, r,m, n, 1} according to the lattice diagram shown in
Fig. 6 and assume that the restriction of the nullnorms Fcl and Fint on [s, 1]2

is the t-norm T : [s, 1]2 → [s, 1] given as in Table 8. Then, by means of the
construction approaches in Theorems 1 and 3, we have Fcl (Fcl (m,n) , k) = r
(Fint (Fint (m,n) , k) = r) and Fcl (m,Fcl (n, k)) = t (Fint (m,Fint (n, k)) = t).
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Fig. 5. Lattice L5 Fig. 6. Lattice L6

Table 7. T-conorm S on [0, s]2

S 0 k t m s

0 0 k t m s

k k k m m s

t t m s s s

m m m s s s

s s s s s s

Table 8. T-norm T on [s, 1]2

T s t r m n 1

s s s s s s s

t s t t t t t

r s t t t t r

m s t t r r m

n s t t r r n

1 s t r m n 1

Since Fcl and Fint do not satisfy associativity property, we cannot force Fcl and
Fint to coincide with another prescribed t-norm except for the t-norm T∧ on
[s, 1]2.

4 Concluding Remarks

Following the characterization of nullnorms on the real unit interval [0, 1], the
structure of nullnorms concerning algebraic structures on bounded lattices has
attracted researchers’ attention. The definition of nullnorms was extended to
bounded lattices by Karaçal et al. [18]. They also demonstrated the presence of
nullnorms based on a t-norm and a t-conorm on bounded lattices. Some further
methods for constructing nullnorms (in particular, idempotent nullnorms) on
a bounded lattice were introduced in the papers [2,6–9,28]. In this paper, we
continued to investigate the methods for obtaining new classes of nullnorms
on bounded lattices with the zero element different from the bottom and top
elements. More particularly, by using the existence of closure operators and
interior operators on a bounded lattice L, we proposed two different construction
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methods for nullnorms on L with the zero element s ∈ L\{0, 1} under some
additional conditions. We also pointed out that our constructions encompass as
a special case the ones in [28]. The proposed constructions for nullnorms both in
this paper and in [28] coincide with the supremum t-conorm S∨ on [0, s]2 and the
infimum t-norm T∧ on [s, 1]2 . We demonstrated that these classes of nullnorms
do not need to coincide with another predefined t-conorm except for S∨ on
[0, s]2 and t-norm except for T∧ on [s, 1]2. Moreover, some specific examples
were presented to illustrate more clearly new methods of nullnorms on bounded
lattices.
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Abstract. Some aggregation functions that are not necessarily associa-
tive, namely overlap and grouping functions, have called the attention
of many researchers in the recent past. This is probably due to the fact
that they are a richer class of operators whenever one compares with
other classes of aggregation functions, such as t-norms and t-conorms,
respectively. In the present work we introduce a more general proposal for
disjunctive n-ary aggregation functions entitled general grouping func-
tions, in order to be used in problems that admit n dimensional inputs in
a more flexible manner, allowing their application in different contexts.
We present some new interesting results, like the characterization of that
operator and also provide different construction methods.
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1 Introduction

Overlap functions are a kind of aggregation functions [3] that are not required
to be associative, and they were introduced by Bustince et al. in [4] to measure
the degree of overlapping between two classes or objects. Grouping functions
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are the dual notion of overlap functions. They were introduced by Bustince et
al. [5] in order to express the measure of the amount of evidence in favor of
either of two alternatives when performing pairwise comparisons [1] in decision
making based on fuzzy preference relations [6]. They have also been used as the
disjunction operator in some important problems, such as image thresholding
[17] and the construction of a class of implication functions for the generation
of fuzzy subsethood and entropy measures [13].

Overlap and grouping functions have been largely studied since they are
richer than t-norms and t-conorms [18], respectively. Regarding, for instance,
some properties like idempotency, homogeneity, and, mainly, the self-closeness
feature with respect to the convex sum and the aggregation by generalized com-
position of overlap/grouping functions [7,8,10,12]. For example, there is just one
idempotent t-conorm (namely, the maximum t-conorm) and two homogeneous
t-conorms (namely, the maximum and the probabilistic sum of t-conorms). On
the contrary, there are uncountable numbers of idempotent, as well as homoge-
nous, grouping functions [2,11]. For comparisons among properties of grouping
functions and t-conorms, see [2,5,17]

However, grouping functions are bivariate functions. Since they may be non
associative, they can only be applied in bi-dimensional problems (that is, when
just two classes or objects are considered). In order to solve this drawback,
Gómez et al. [16] introduced the concept of n-dimensional grouping functions,
with an application to fuzzy community detection.

Recently, De Miguel et al. [20] introduced general overlap functions, by relax-
ing some boundary conditions, in order to apply to an n-ary problem, namely,
fuzzy rule based classification systems, more specifically, in the determination
of the matching degree in the fuzzy reasoning method. Then, inspired on the
paper by De Miguel et al. [20], the objective of this present paper is to intro-
duce the concept of general grouping functions, providing their characterization
and different construction methods. The aim is to define the theoretical basis
of a tool that can be used to express the measure of the amount of evidence
in favor of one of multiple alternatives when performing n-ary comparisons in
multi-criteria decision making based on n-ary fuzzy heterogeneous, incomplete
preference relations [14,19,26], which we let for future work.

The paper is organized as follows. Section 2 presents some preliminary con-
cepts. In Sect. 3, we define general grouping functions, studying some properties.
In Sect. 4, we study the characterization of general grouping functions, providing
some construction methods. Section 5 is the Conclusion.

2 Preliminary Concepts

In this section, we highlight some relevant concepts used in this work.

Definition 1. A function N : [0, 1] → [0, 1] is a fuzzy negation if it holds: (N1)
N is antitonic, i.e. N(x) ≤ N(y) whenever y ≤ x and (N2) N(0) = 1 and
N(1) = 0.
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Definition 2. [3] An n-ary aggregation function is a mapping A : [0, 1]n →
[0, 1] satisfying: (A1) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1; (A2) increas-
ingness: for each i ∈ {1, . . . , n}, if xi ≤ y then A(x1, . . . , xn) ≤
A(x1, . . . , xi−1, y, xi+1, . . . , xn).

Definition 3. An n-ary aggregation function A : [0, 1]n → [0, 1] is called con-
junctive if, for any #„x = (x1, . . . , xn) ∈ [0, 1]n, it holds that A( #„x ) ≤ min( #„x ) =
min{x1, . . . , xn}. And A is called disjunctive if, for any #„x = (x1, . . . , xn) ∈
[0, 1]n, it holds that A( #„x ) ≥ max( #„x ) = max{x1, . . . , xn}.
Definition 4. [4] A binary function O : [0, 1]2 → [0, 1] is said to be an overlap
function if it satisfies the following conditions, for all x, y, z ∈ [0, 1]:

(O1) O(x, y) = O(y, x);
(O2) O(x, y) = 0 if and only if x = 0 or y = 0;
(O3) O(x, y) = 1 if and only if x = y = 1;
(O4) if x ≤ y then O(x, z) ≤ O(y, z);
(O5) O is continuous;

Definition 5. [5] A binary function G : [0, 1]2 → [0, 1] is said to be a grouping
function if it satisfies the following conditions, for all x, y, z ∈ [0, 1]:

(G1) G(x, y) = G(y, x);
(G2) G(x, y) = 0 if and only if x = y = 0;
(G3) G(x, y) = 1 if and only if x = 1 or y = 1;
(G4) If x ≤ y then G(x, z) ≤ G(y, z);
(G5) G is continuous;

For all properties and related concepts on overlap functions and grouping
functions, see [2,5,7,9,10,21,23–25].

Definition 6. [22] A function G : [0, 1]2 → [0, 1] is a 0-grouping function if
the second condition in Definition 5 is replaced by: (G2′) If x = y = 0 then
G(x, y) = 0. Analogously, a function G : [0, 1]2 → [0, 1] is a 1-grouping function
if the third condition in Definition 5 is replaced by: (G3′) If x = 1 or y = 1 then
G(x, y) = 1.

Both notions were extended in several ways and some of them are presented
in the following definitions.

Definition 7. [15] An n-ary function G : [0, 1]n → [0, 1] is called an n-
dimensional grouping function if for all #„x = (x1, ..., xn) ∈ [0, 1]n:

1. G is commutative;
2. G( #„x ) = 0 if and only if xi = 0, for all i = 1, . . . , n;
3. G( #„x ) = 1 if and only if there exists i ∈ {1, . . . , n} with xi = 1;
4. G is increasing;
5. G is continuous.
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Definition 8. [20] A function GO : [0, 1]n → [0, 1] is said to be a general over-
lap function if it satisfies the following conditions, for all #„x = (x1, . . . , xn) ∈
[0, 1]n:

(GO1) GO is commutative;

(GO2) If
n∏

i=1

xi = 0 then GO( #„x ) = 0;

(GO3) If
n∏

i=1

xi = 1 then GO( #„x ) = 1;

(GO4) GO is increasing;
(GO5) GO is continuous.

3 General Grouping Functions

Following the ideas given in [20], we can also generalize the idea of general
grouping functions as follows.

Definition 9. A function GG : [0, 1]n → [0, 1] is called a general grouping func-
tion if the following conditions hold, for all #„x = (x1, . . . , xn) ∈ [0, 1]n:

(GG1) GG is commutative;

(GG2) If
n∑

i=1

xi = 0 then GG( #„x ) = 0;

(GG3) If there exists i ∈ {1, . . . , n} such that xi = 1 then GG( #„x ) = 1;
(GG4) GG is increasing;
(GG5) GG is continuous.

Note that (GG2) is the same of saying that 0 is an anhilator of the general
grouping function GG.

Proposition 1. If G : [0, 1]n → [0, 1] is an n-dimensional grouping function,
then G is also a general grouping function.

Proof. Straighforward. ��
From this proposition, we can conclude that the concept of general grouping

functions is a generalization of n-dimensional grouping functions, which on its
turn is a generalization of the concepts of 0-grouping functions and 1-grouping
functions.

Example 1. 1. Every grouping function G : [0, 1]2 → [0, 1] is a general grouping
function, but the converse does not hold.

2. The function GG(x, y) = min{1, 2 − (1 − x)2 − (1 − y)2} is a general grouping
function, but it is not a bidimensional grouping function, since GG(0.5, 0.5) =
1.

3. Consider G(x, y) = max{1 − (1 − x)p, 1 − (1 − y)p}, for p > 0 and SL(x, y) =
min{1, x + y}. Then, the function GGSL(x, y) = G(x, y)SL(x, y) is a general
grouping function.
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4. Take any grouping function G, and a continuous t-conorm S. Then, the gen-
eralization of the previous item is the binary general grouping function given
by: GG(x, y) = G(x, y)S(x, y)

5. Other examples are:

Prod S Luk(x1, . . . , xn) =

(

1 −
n∏

i=1

(1 − xi)

)

∗
(

min

{
n∑

i=1

xi, 1

})

GM S Luk(x1, . . . , xn) =

⎛

⎝1 − n

√
√
√
√

n∏

i=1

(1 − xi)

⎞

⎠ ∗
(

min

{
n∑

i=1

xi, 1

})

.

The generalization of the third item of Example 1 can be seen as follows.

Proposition 2. Take any grouping function G, and any t-conorm S. Then, the
binary general grouping function given by: GG(x, y) = G(x, y)S(x, y).

Proposition 3. Let F : [0, 1]n → [0, 1] be a commutative and continuous aggre-
gation function. Then the following statements hold:

(i) If F is disjunctive, then F is a general grouping function.
(ii) If F is conjunctive, then F is neither a general grouping function nor an

n-dimensional grouping function.

Proof. Consider a commutative and continuous aggregation function
F : [0, 1]n → [0, 1]. It follows that:
(i) Since F is commutative (GG1), continuous (GG5) and clearly increasing
(GG4), then it remains to prove the following:

(GG2) Suppose that
n∑

i=1

xi = 0. Then, since F is an aggregation function, it

holds that F (0, . . . , 0) = 0.
(GG3) Suppose that, for some #„x = (x1, . . . , xn) ∈ [0, 1]n, there exists i ∈
{1, . . . , n} such that xi = 1. Then, since F is disjunctive, then F ( #„x ) ≥
max{x1, . . . , 1, . . . , xn} = 1, which means that F ( #„x ) = 1.
(ii) Suppose that F is a conjunctive aggregation function and it is either a general
grouping function or an n-dimensional grouping function. Then, by either (GG3)
or (G3), if for some #„x = (x1 . . . , xn) ∈ [0, 1]n, there exists i ∈ {1, . . . , n} such
that xi = 1, then F ( #„x ) = 1. Take #„x = (1, 0 . . . , 0), it follows that F (1, 0 . . . , 0) =
1 = max{1, 0 . . . , 0} 	≤ 0 = min{1, 0 . . . , 0}, which is a contradiction with the
conjunctive property. Thus, one concludes that F is neither a general grouping
function nor an n-dimensional grouping function. ��

We say that an element a ∈ [0, 1] is a neutral element of GG if for each
x ∈ [0, 1], GG(x, a, . . . , a

︸ ︷︷ ︸
(n−1)

) = x.

Proposition 4. Let GG : [0, 1]n → [0, 1] be a general grouping function with
a neutral element a ∈ [0, 1]. Then, a = 0 if and only if GG satisfies, for all
#„x = (x1, . . . , xn) ∈ [0, 1]n, the following condition:
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(GG2′) If GG( #„x ) = 0, then
n∑

i=1

xi = 0.

Proof. (⇒) Suppose that (i) the neutral element of GG is a = 0 and (ii)
GG(x1, . . . , xn) = 0. Then, by (i), one has that, for each x1 ∈ [0, 1], it holds
that x1 = GG(x1, 0 . . . , 0). By (ii) and since GG is increasing, it follows that

x1 = GG(x1, 0 . . . , 0) ≤ GG(x1, . . . , xn) = 0.

Similarly, one shows that x2, . . . , xn = 0, that is
n∑

i=1

xi = 0.

(⇐) Suppose that GG satisfies (GG2′) and that GG(x1, . . . , xn) = 0, for

(x1, . . . , xn) ∈ [0, 1]n. Then, by (GG2′), it holds that
n∑

i=1

xi = 0. Since a is

the neutral element of GG, one has that GG(0, a, . . . , a) = 0, which means that
a = 0, by (GG2′). ��
Remark 1. Observe that the result stated by Proposition 4 does not mean that
when a general grouping function has a neutral element, then it is necessarily
equal to 0. In fact, for each a ∈ (0, 1), the function GG : [0, 1]n → [0, 1], for all
#„x = (x1 . . . , xn) ∈ [0, 1]n, defined by:

GG( #„x ) =

⎧
⎪⎪⎨

⎪⎪⎩

min{ #„x}, if max{ #„x} ≤ a

max{ #„x}, if min{ #„x} ≥ a

min{ #„x }+max{ #„x }
(
1−min{ #„x }

)
−a

1−a , if min{ #„x} < a < max{ #„x}
is a general grouping function with a as neutral element.

Proposition 5. If 0 is the neutral element of a general grouping function
GG : [0, 1]n → [0, 1] and GG is idempotent, then GG is the maximum.

Proof. Since GG is idempotent and increasing in each argument, then one
has that for all #„x = (x1, . . . , xn) ∈ [0, 1]n: (1) GG(x1, . . . , xn) ≤
GG(max( #„x ), . . . ,max( #„x )) = max{ #„x}. Then we have that xk = max{ #„x}
for some k = 1, . . . , n; so we have xk = GG(0, . . . , xk, . . . , 0) ≤
GG(x1, . . . , xk, . . . , xn) and then (2) GG(x1, . . . , xn) ≥ xk = max{ #„x}. So, from
(1) and (2) one has that GG(x1, . . . , xn) = max{ #„x}, for each #„x ∈ [0, 1]n. ��

3.1 General Grouping Functions on Lattices

Following a similar procedure described in [20] for general overlap functions on
lattices, it is possible to characterize general grouping functions. In order to do
that, first we introduce some properties and notations.

Let us denote by Gn the set of all general grouping functions. Define the
ordering relation ≤Gn ∈ Gn × Gn, for all GG1,GG2 ∈ Gn by:

GG1 ≤Gn GG2 ⇔ GG1( #„x ) ≤ GG2( #„x ), for all #„x = (x1, . . . , xn) ∈ [0, 1]n.
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The supremum and infimum of two arbitrary general grouping functions
GG1,GG2 ∈ Gn are, respectively, the general grouping functions GG1∨GG2,GG1∧
GG2 ∈ Gn, defined, for all #„x = (x1, . . . , xn) ∈ [0, 1]n by: GG1 ∨ GG2( #„x ) =
max{GG1( #„x ),GG2( #„x )} and GG1 ∧ GG2( #„x ) = min{GG1( #„x ),GG2( #„x )}.

The following result is immediate:

Theorem 1. The ordered set (Gn,≤Gn) is a lattice.

Remark 2. Note that the supremum of the lattice (Gn,≤Gn) is given, for all
#„x = (x1, . . . , xn) ∈ [0, 1]n, by:

GGsup( #„x ) =

⎧
⎨

⎩

0, if
n∑

i=1

xi = 0

1, otherwise.

On the other hand, the infimum of (Gn,≤Gn) is given, for all #„x = (x1, . . . , xn) ∈
[0, 1]n, by:

GGinf( #„x ) =

{
1, if ∃i ∈ {1, . . . , n} : xi = 1
0, otherwise.

.

However, neither GGsup nor GGinf are general grouping functions, since they
are not continuous. Thus, in the lattice (Gn,≤Gn) there is no bottom neither
top elements. Then, similarly to general overlap functions, the lattice (Gn,≤Gn)
is not complete.

4 Characterization of General Grouping Functions
and Construction Methods

In this section we provide a characterization and some constructions methods
for general grouping functions.

Theorem 2. The mapping GG : [0, 1]n → [0, 1] is a general grouping function
if and only if

GG( #„x ) =
f( #„x )

f( #„x ) + h( #„x )
(1)

for some f, h : [0, 1]n → [0, 1] the following properties hold, for all #„x ∈ [0, 1]n:

(i) f and h are commutative;
(ii) f is increasing and h is decreasing.

(iii) If
n∑

i=1

xi = 0, then f( #„x ) = 0.

(iv) If there exists i ∈ {1, . . . , n} such that xi = 1, then h( #„x ) = 0.
(v) f and h are continuous.
(vi) f( #„x ) + h( #„x ) 	= 0 for any #„x ∈ [0, 1]n.
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Proof. It follows that:
(⇒) Suppose that GG is a general grouping function, and take f( #„x ) = GG( #„x )
and h( #„x ) = 1 − f( #„x ). Then one always have f( #„x ) + h( #„x ) 	= 0, and so Equation
(1) is well defined. Also, conditions (i)–(v) trivially hold.
(⇐) Consider f, h : [0, 1]n → [0, 1] satisfying conditions (i)–(v). We will show
that GG defined according to Eq. (1) is a general grouping function. It is imme-
diate that GG is commutative (GG1) and continuous (GG5). To prove (GG2),

notice that if
n∑

i=1

xi = 0 then f( #„x ) = 0 and thus GG( #„x ) = 0. Now, let us prove

that (GG3) holds. For that, observe that if there exists i ∈ {1, . . . , n} such that
xi = 1, then h( #„x ) = 0, and, thus, it is immediate that GG( #„x ) = 1. The proof of
(GG4) is similar to [20, Theorem 3]. ��
Example 2. Observe that Theorem 2 provides a method for constructing general
grouping functions. For example, take the maximum powered by p, defined by:

maxp( #„x ) = max1≤i≤n{xp
i },

with p > 0. So, if we take the function Tmaxp
α : [0, 1]n → [0, 1], called α-

truncated maximum powered by p, given, for all #„x ∈ [0, 1]n and α ∈ (0, 1),
by:

Tmaxp
α( #„x ) =

{
0, if maxp( #„x ) ≤ α

maxp( #„x ), if maxp( #„x ) > α
(2)

then it is clear that Tmaxp
α is not continuous. However, one can consider the

function CTmaxp
α,ε : [0, 1]n → [0, 1], called the continuous truncated maximum

powered by p, for all #„x ∈ [0, 1]n, α ∈ [0, 1] and ε ∈ (0, α], which is defined by:

CTmaxp
α,ε(

#„x ) =

⎧
⎪⎨

⎪⎩

0, if maxp( #„x ) ≤ α − ε
α
ε (maxp( #„x ) − (α − ε)) , if α − ε < maxp( #„x ) < α

maxp( #„x ), if maxp( #„x ) ≥ α.

(3)

Observe that taking f = CTmaxp
α,ε, then f satisfies conditions (i)–(iii) and (v)

in Theorem 2. Now, take h( #„x ) = min1≤i≤n{1 − xi}, which satisfies conditions
(i)–(ii) and (iv)–(v) required in Theorem 2. Thus, this assures that

GG( #„x ) =
CTmaxp

α,ε(
#„x )

CTmaxp
α,ε( #„x ) + min1≤i≤n{1 − xi}

is a general grouping function.

Remark 3. Observe that the maximum powered by p is an n-dimensional group-
ing function [15] and that CTmaxp

α,ε is a general grouping function. However,
CTmaxp

α,ε is not an n-dimensional grouping function, for α − ε > 0, since
CTmaxp

α,ε(α − ε, . . . , α − ε) = 0.
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Corollary 1. Consider the functions f, h : [0, 1]n → [0, 1] and let GG : [0, 1]n →
[0, 1] be a general grouping function constructed according to Theorem 2, and
taking into account functions f and h. Then GG is idempotent if and only if, for
all x ∈ [0, 1), it holds that:

f(x, . . . , x) =
x

1 − x
h(x, . . . , x).

Proof. (⇒) If GG is idempotent, then by Theorem 2 it holds that:

GG(x, . . . , x) =
f(x, . . . , x)

f(x, . . . , x) + h(x, . . . , x)
= x.

It follows that: f(x, . . . , x) = x(f(x, . . . , x) + h(x, . . . , x))

(1 − x)f(x, . . . , x) = x h(x, . . . , x)

f(x, . . . , x) =
x

1 − x
h(x, . . . , x).

(⇐) It is immediate. ��
Example 3. Take the function αβ-truncated maximum powered by p, Tmaxp

αβ :
[0, 1]n → [0, 1], for all #„x ∈ [0, 1]n; α, β ∈ (0, 1) and α < β, defined by:

Tmaxp
αβ( #„x ) =

⎧
⎪⎨

⎪⎩

0, maxp( #„x ) ≤ α

maxp( #„x ), α < maxp( #„x ) < β

1, maxp( #„x ) ≥ β

It is clear that Tmaxp
αβ is not continuous. However, we can define its continuous

version, CTmaxp
αβ,εδ : [0, 1]n → [0, 1], for all #„x ∈ [0, 1]n; α ∈ [0, 1); β, ε, δ ∈ (0, 1];

α + ε, β − δ ∈ (0, 1) and α + ε < β − δ, as follows:

CTmaxp
αβ,εδ(

#„x ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, maxp( #„x ) ≤ α
1−(α+ε)

ε
(α − maxp( #„x )), α < maxp( #„x ) < α + ε

1 − maxp( #„x ), α + ε ≤ maxp( #„x ) ≤ β − δ

1 − (β − δ) − β−δ
δ

(β − δ − maxp( #„x )), β − δ < maxp( #„x ) < β

1, maxp( #„x ) ≥ β

Observe that CTmaxp
αβ,εδ satisfies conditions (GG1)-(GG5) from Definition 9,

and then it is a general grouping function. But, whenever α 	= 0 or β 	= 1, then
CTmaxp

αβ,εδ is not an n-dimensional grouping function, once CTmaxp
αβ,εδ(α −

ε, . . . , α − ε) = 0, for α − ε > 0, because maxp(α − ε, . . . , α − ε) = α − ε < α.

The following Theorem generalizes Example 3 providing a construction
method for general grouping functions from truncated n-dimensional grouping
functions.
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Theorem 3. Consider α ∈ [0, 1); β, ε, δ ∈ (0, 1]; α+ ε, β − δ ∈ (0, 1) and α < β,
α+ ε < β − δ. Let G be an n-dimensional grouping function, whose αβ-truncated
version is defined, for all #„x = (x1, . . . , xn) ∈ [0, 1]n, by:

TGαβ( #„x ) =

⎧
⎪⎨

⎪⎩

0, G( #„x ) ≤ α

G( #„x ), α < G( #„x ) < β

1, G( #„x ) ≥ β

Then, the continuous version of TGαβ, for all #„x = (x1, . . . , xn) ∈ [0, 1]n, is given
by:

CTGαβ,εδ( #„x ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, G( #„x ) ≤ α
1−(α+ε)

ε (α − G( #„x )), α < G( #„x ) < α + ε

1 − G( #„x ), α + ε ≤ G( #„x ) ≤ β − δ

1 − (β − δ) − β−δ
δ (β − δ − G( #„x )), β − δ < G( #„x ) < β

1, G( #„x ) ≥ β

and it is a general grouping function. Besides that, whenever α = 0 and β = 1,
then CTGαβ,εδ is an n-dimensional grouping function.

The following proposition shows a construction method of general grouping
functions that generalizes Example 1(4).

Proposition 6. Let G : [0, 1]n → [0, 1] be an n-dimensional grouping function
and let F : [0, 1]n → [0, 1] be a commutative and continuous aggregation function
such that, for all #„x = (x1, . . . , xn) ∈ [0, 1]n, if there exists i ∈ {1, . . . , n} such
that xi = 1, then F ( #„x ) = 1. Then GGGF ( #„x ) = G( #„x )F ( #„x ) is a general grouping
function.

Proof. It is immediate that GGGF is well defined, (GG1) commutative, (GG4)
increasing and (GG5) continuous, since G, F and the product operation are

commutative, increasing and continuous. To prove (GG2), whenever
n∑

i=1

xi = 0,

then by (G2), it holds that G( #„x ) = 0, and, thus, GGGF ( #„x ) = G( #„x )F ( #„x ) = 0.
For (GG3), whenever there exists i ∈ {1, . . . , n} such that xi = 1, then, by (G3),
one has that G( #„x ) = 1, and, by the property of F , it holds that F ( #„x ) = 1. It
follows that: GGGF ( #„x ) = G( #„x )F ( #„x ) = 1. ��

The following result is immediate.

Corollary 2. Let GH : [0, 1]n → [0, 1] be a general grouping function and let
F : [0, 1] → [0, 1] be a commutative and continuous aggregation function such
that, for all #„x = (x1, . . . , xn) ∈ [0, 1]n, if there exists i ∈ {1, . . . , n} such that
xi = 1, then F ( #„x ) = 1. Then GGGH,F ( #„x ) = GH( #„x )F ( #„x ) is a general grouping
function.

Note that Gn is closed with respect to some aggregation functions, as stated
by the following results, which provide construction methods of general grouping
functions.
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Theorem 4. Consider M : [0, 1]2 → [0, 1]. For any GG1,GG2 ∈ Gn, define the
mapping MGG1,GG2 : [0, 1]n → [0, 1], for all #„x ∈ [0, 1]n, by:

MGG1,GG2(
#„x ) = M(GG1( #„x ),GG2( #„x )).

Then, MGG1,GG2 ∈ Gn if and only if M is a continuous aggregation function.

Proof. It follows that:
(⇒) Suppose that MGG1,GG2 ∈ Gn. Then it is immediate that M is con-
tinuous and increasing (A2). Now consider #„x = (x1, . . . , xn) ∈ [0, 1]n and

suppose that
n∑

i=1

xi = 0. Then, by (GG2), one has that: MGG1,GG2(
#„x ) =

M(GG1( #„x ),GG2( #„x )) = 0 and GG1( #„x ) = GG2( #„x ) = 0. Thus, it holds that
M(0, 0) = 0. Now, consider #„x = (x1, . . . , xn) ∈ [0, 1]n, such that there exists
i ∈ {1, . . . , n} such that xi = 1. Then, by (GG3), one has that: MGG1,GG2(

#„x ) =
M(GG1( #„x ),GG2( #„x )) = 1 and GG1( #„x ) = GG2( #„x ) = 1. Therefore, it holds that
M(1, 1) = 1. This proves that M also satisfies (A1), and, thus, M is a continuous
aggregation function.
(⇐) Suppose that M is a continuous aggregation function. Then it is immediate
that MGG1,GG2 is (GG1) commutative, (GG4) increasing and (GG5) continuous.

For (GG2), consider #„x = (x1, . . . , xn) ∈ [0, 1]n such that
n∑

i=1

xi = 0. Then, by

(GG2), one has that GG1( #„x ) = GG2( #„x ) = 0. It follows that: MGG1,GG2(
#„x ) =

M(GG1( #„x ),GG2( #„x )) = M(0, 0) = 0, by (A1), since M is an aggregation func-
tion. Finally, for (GG3) consider that there exists i ∈ {1, . . . , n} such that xi = 1
for some #„x = (x1, . . . , xn) ∈ [0, 1]n. Then, it holds that GG1( #„x ) = GG2( #„x ) = 1.
It follows that: MGG1,GG2(

#„x ) = M(GG1( #„x ),GG2( #„x )) = M(1, 1) = 1, by (A1),
since M is an aggregation function. This proves that MGG1,GG2 ∈ Gn. ��
Example 4. In the sense of Theorem 4, Gn is closed under any bidimensional
overlap functions, grouping functions and continuous t-norms and t-conorms
[18].

Corollary 3. Consider M : [0, 1]2 → [0, 1]. For any n-dimensional grouping
functions G1,G2 : [0, 1]n → [0, 1], define the mapping MG1,G2 : [0, 1]n → [0, 1],
for all #„x = (x1, . . . , xn) ∈ [0, 1]n, by:

MG1,G2(
#„x ) = M(G1( #„x ),G2( #„x )).

Then, MG1,G2 ∈ Gn if and only if M is a continuous aggregation function.

Proof. It follows from Theorem 4, since any n-dimensional grouping function is
a general grouping function. ��

Theorem 4 can be easily extended for n-ary functions Mn : [0, 1]n → [0, 1]:

Theorem 5. Consider Mn : [0, 1]n → [0, 1]. For any GG1, . . . ,GGn ∈ Gn, define
the mapping MGG1,...,GGn

: [0, 1]n → [0, 1], for all #„x ∈ [0, 1]n, by:

MGG1,...,GGn
( #„x ) = Mn(GG1( #„x ), . . . ,GGn( #„x )).
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Then, MGG1,...,GGn
∈ Gn if and only if Mn : [0, 1]n → [0, 1] is a continuous

n-ary aggregation function.

Proof. Analogous to the proof of Theorem 4. ��
This result can be extended for n-dimensional grouping functions.

Corollary 4. Consider Mn : [0, 1]n → [0, 1] and fr any n-dimensional grouping
functions G1, . . . ,Gn define the mapping MG1,...,Gn

: [0, 1]n → [0, 1], for all #„x =
(x1, . . . , xn) ∈ [0, 1]n, by:

MG1,...,Gn
( #„x ) = Mn(G1( #„x ), . . . ,Gn( #„x )).

Then, MG1,...,Gn
is a general grouping function if and only if Mn : [0, 1]n → [0, 1]

is a continuous n-ary aggregation function.

Corollary 5. Let GG1, . . . ,GGm : [0, 1]n → [0, 1] be general grouping functions

and consider weights w1, . . . , wm ∈ [0, 1] such that
m∑

i=1

wi = 1. Then the convex

sum GG =
m∑

i=1

wiGGi is also a general grouping function.

Proof. Since the weighted sum is a continuous commutative n-ary aggregation
function, the result follows from Theorem 5. ��

It is possible to obtain general grouping functions from the generalized com-
position of general grouping functions and aggregation functions satisfying spe-
cific conditions:

Theorem 6. Let GG2 : [0, 1]n → [0, 1] be a general grouping function and let the
n-ary aggregation functions A1, . . . , An : [0, 1]n → [0, 1] be continuous, commu-
tative and disjunctive. Then, the function GG1 : [0, 1]n → [0, 1] defined, for all
#„x = (x1, . . . , xn) ∈ [0, 1]n, by: GG1( #„x ) = GG2(A1( #„x ), . . . , An( #„x )) is a general
grouping function.

Proof. Since GG2, A1, . . . , An are commutative, increasing and continuous func-
tions, then GG1 satisfies conditions (GG1), (GG4) and (GG5). So, it remains to
prove:

(GG2) Let #„x = (x1, . . . , xn) ∈ [0, 1]n be such that
n∑

i=1

xi = 0. Then, since A1

is disjunctive, we have that A1( #„x ) ≥ max( #„x ) = 0, that is A1( #„x ) = 0. Equiva-
lently, one obtains A2( #„x ), . . . , An( #„x ) = 0. Thus, since GG2 is a general grouping
function, one has that GG1( #„x ) = GG2(A1( #„x ), . . . , An( #„x )) = GG2(0, . . . , 0) = 0.
(GG3) Suppose that, for some #„x = (x1, . . . , xn) ∈ [0, 1]n, there exists i ∈
{1, . . . , n} such that xi = 1. So, since A1 is disjunctive then A1( #„x ) ≥ max( #„x ) =
1, that is A1( #„x ) = 1. Since GG2 is a general grouping function, it follows that
GG1( #„x ) = GG2(A1( #„x ), . . . , An( #„x )) = GG2(1, A2( #„x ), . . . , An( #„x )) = 1. ��

Next proposition uses the n-duality property.
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Proposition 7. Consider a continuous fuzzy negation N : [0, 1] → [0, 1] and a
general overlap function GO : [0, 1]n → [0, 1], then for all #„x = (x1, . . . , xn) ∈
[0, 1]n:

GG( #„x ) = N(GO(N(x1), . . . , N(xn))) (4)

is a general grouping function. Reciprocally, if GG : [0, 1]n → [0, 1] is a general
grouping function, then for all #„x = (x1, . . . , xn) ∈ [0, 1]n:

GO( #„x ) = N(GG(N(x1), . . . , N(xn))) (5)

is a general overlap function.

Proof. Since we have a continuous fuzzy negation and bearing in mind that gen-
eral overlap functions and general grouping functions are commutative, increas-
ing and continuous functions according to Definition 8 and Definition 9, respec-
tively, then GO and GG satisfy conditions (GO1), (GG1); (GO4), (GG4) and
(GO5), (GG5). So, it remains to prove:
(GG2) For Eq. (4), take xi = 0, for all i ∈ {1, . . . , n}. Therefore,

GG( #„x ) = N(GO(N(0), . . . , N(0))) N2= N(GO(1, . . . , 1)) GO3= N(1) N2= 0.

(GG3) If there exists a xi = 1, for some i ∈ {1, . . . , n}, then

GG( #„x ) = N(GO(N(x1), . . . , N(1), . . . , N(xn)))
N2= N(GO(N(x1), . . . , 0, . . . , N(xn)))

GO2= N(0) N2= 1.

(GO2) Similarly, for Eq. (5), take a xi = 0 for some i ∈ {1, . . . , n}. So,

GO( #„x ) = N(GG(N(x1), . . . , N(0), . . . , N(xn)))
N2= N(GG(N(x1), . . . , 1, . . . , N(xn)))
GG3= N(1) N2= 0.

(GO3) Now, consider that xi = 1, for all i ∈ {1, . . . , n}. Then,

GO( #„x ) = N(GG(N(1), . . . , N(1))) N2= N(GG(0, . . . , 0)) GG2= N(0) N2= 1.

��

5 Conclusions

In this paper, we first introduced the concept of general grouping functions and
studied some of their properties. Then we provided a characterization of general
grouping functions and some construction methods.

The theoretical developments presented here allow for a more flexible app-
roach when dealing with decision making problems with multiple alternatives.
Immediate future work is concerned with the development of an application in
multi-criteria decision making based on n-ary fuzzy heterogeneous, incomplete
preference relations.
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15. Gómez, D., Rodŕıguez, J.T., Montero, J., Bustince, H., Barrenechea, E.: n-
Dimensional overlap functions. Fuzzy Sets Syst. 287, 57–75 (2016). https://doi.
org/10.1016/j.fss.2014.11.023. Theme: Aggregation Operations
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Abstract. In the context of the representation of a preference informa-
tion by a 2-additive Choquet integral, we introduce the necessary and
possible importance relations allowing to compare the Shapley values of
two criteria. We present some sufficient conditions, using a set of binary
alternatives, to get a necessary importance relation among two criteria.

Keywords: MCDA · Binary alternatives · Shapley value · Choquet
integral · Necessary relations

1 Introduction

In Operational Research domain, Multiple Criteria Decision Making (MCDM)
is a scientific field which tries to represent the preferences of a Decision Maker
(DM) over a set of alternatives evaluated on a set of criteria often contradictory.
To represent a preference information of a DM, allowing some dependencies or
interactions among criteria, a 2-additive Choquet integral model, a generaliza-
tion of the well-known arithmetic mean, is usually elaborated.

The 2-additive Choquet integral is a particular case of the Choquet integral
[1–3,7], an aggregation function based on the notion of capacity or fuzzy measure.
The identification of the capacity leads to the computation of two important
parameters of the 2-additive integral model: the interaction index [10] related
to only two criteria and the importance of each criterion (corresponding to the
Shapley value [12]).

We assume that the DM can expresses his preferences through two binary
relations on the set of alternatives: a strict and an indifference preference infor-
mation. There exist some characterization about the representation of such infor-
mation by a 2-additive Choquet integral, especially when the set of binary alter-
natives is considered [6,7,9]. A binary action is a fictitious alternative which
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takes either the neutral value 0 for all criteria, or the neutral value 0 for all
criteria except for one or two criteria for which it takes the satisfactory value 1.

Under these hypotheses, we try to analyze, in this paper, the comparison of
the importance index of two given criteria. To do so, we introduce the notions of
necessary and possible importance relations among two criteria. A criterion i is
possibly more important than criterion j, if there exists a compatible 2-additive
capacity, representing the preference information given by the DM, such that
the Shapley value associated to i is greater than the one associated to j. If this
conclusion is made for all the compatible capacities, then i is judged necessarily
more important than j. The concept of necessary and possible relations were
introduced for the alternatives in a robust ordinal regression approach [5], and
extended for the interactions indices in the 2-additive Choquet integral model [9].
We give also some sufficient conditions in order to obtain a necessary importance
relation among criteria, in the framework of binary alternatives.

The paper is organized as follows. The next section presents the basic material
we need on the 2-additive Choquet integral. The new notions of necessary and
possible relations among criteria are introduced in Sect. 3, after a motivating
example based on hospitals rankings, in a real-world situation. Our results are
presented in Sect. 4 and we end the paper by giving some perspectives of this
work.

2 A Choquet Integral w.r.t. a 2 Additive Capacity

Let X be a finite set of alternatives evaluated on a set of n criteria N =
{1, . . . , n}. The notation 2N refers to the set of all subsets of N . The set of
attributes is denoted by X1, . . . , Xn. An alternative x is presented by x =
(x1, . . . , xn) where xi ∈ Xi, i = 1, . . . , n.

The notion of interaction among criteria is more simple and understandable,
in MCDA, when it concerns only two criteria. That is why the Choquet integral
w.r.t. a 2-additive capacity [6,7], also called 2-additive Choquet, was proposed
in order to take into account the type of interaction between two criteria. This
aggregation function, considered as a fuzzy integral, is based on the concept
of capacity or fuzzy measure μ defined as a set function from the powerset of
criteria 2N to [0, 1] such that:

1. μ(∅) = 0
2. μ(N) = 1
3. ∀A,B ∈ 2N , [A ⊆ B ⇒ μ(A) ≤ μ(B)] (monotonicity).

We associate to each capacity another set function called the Möbius trans-
form mμ : 2N → R defined by

mμ(T ) :=
∑

K⊆T

(−1)|T\K|μ(K),∀T ∈ 2N . (1)
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A capacity μ on N satisfying the following two conditions:

• For all subset T of N such that |T | > 2, mμ(T ) = 0;
• There exists a subset B of N such that |B| = 2 and mμ(B) 	= 0.

is said to be 2-additive.

In the sequel, we use, for a capacity μ and its Möbius transform mμ, the
following notations: μi := μ({i}), μij := μ({i, j}), mμ

i := mμ({i}), mμ
ij :=

mμ({i, j}), for all i, j ∈ N , i 	= j. Whenever we use i and j together, it always
means that they are different.

Given an alternative x := (x1, ..., xn) of X, the 2-additive Choquet integral
of x is expressed as follows [4]:

Cμ(u(x)) =
n∑

i=1

φi ui(xi) − 1
2

∑

{i,j}⊆N

Iij |ui(xi) − uj(xj)| (2)

where

• For all i ∈ N , ui : Xi → R+ is a marginal utility function associated to the
attribute Xi;

• u(x) = (u1(x1), . . . , un(xn)) for x = (x1, ..., xn) ∈ X;
• Iμ

ij = μij − μi − μj is the interaction index between the two criteria i and j
[2,10];

• φμ
i =

∑

K⊆N\i

(n − |K| − 1)!|K|!
n!

(μ(K ∪ i) − μ(K)) = μi +
1
2

∑

j∈N,j �=i

Iμ
ij is

defined as the importance of criterion i and it corresponds to the Shapley
value of i w.r.t. μ [11].

Equation (2) proves that the 2-additive Choquet integral is a generalization of the
weighted sum. Indeed, when there is no interaction among criteria, the Shapley
value φμ

i is the weight associated to the criterion i. There is another expression
of Cμ(u(x)), related to the coefficients of the Möbius transform of μ, given by:

Cμ(u1(x1), . . . , un(xn)) =
∑

i∈N

mμ
i ui(xi) +

∑

i,j∈N

mμ({i, j}) min(ui(xi), uj(xj))

(3)
We assume that the DM expresses his preferences on X by giving a strict

preference relation P and an indifference relation I on X. We say that the
preference information {P, I} on X is representable by a 2-additive Choquet
integral if we have: for all x, y ∈ X,

{
x P y =⇒ Cμ(u(x)) > Cμ(u(y))
x I y =⇒ Cμ(u(x)) = Cμ(u(y)) (4)



Necessary and Possible Importance Relation Among Criteria 499

3 The Importance Relation Among Criteria Is Not Stable

3.1 A Motivating Example

Let us consider eight hospitals (see Table 1), specialized in weight loss surgery1,
and evaluated on four criteria given by the French magazine “Le Point2” [8] (see
their evaluations in Table 1 below):

• Criterion 1 - Activity : number of procedures performed during one year. Since
a hospital has a good score on activity then its teams are more trained and
often have good results. Therefore this criterion has to be maximized.

• Criterion 2 - Notoriety : It corresponds to the reputation and attractiveness
of the hospital. It is a percentage of patients treated in the hospital but
living in another French administrative department. The more the percentage
increases, more the hospital is attractive.

• Criterion 3 - Average Length Of Stay (ALOS): a mean calculated by dividing
the sum of inpatient days by the number of patients admissions with the same
diagnosis-related group classification. If a hospital is more organized in terms
of resources then its ALOS score should be low.

• Criterion 4 - Technicality : this particular indicator measures the ratio of pro-
cedures performed with an efficient technology compared to the same proce-
dures performed with obsolete technology. The higher the percentage is, the
more the team is trained in advanced technologies or complex surgeries.

Table 1. Evaluations of eight hospitals on activity, Notoriety, ALOS and Technicality.

1- Activity 2- Notoriety 3- ALOS 4- Technicality

Hospital 1 (H1) 200 65 3.5 85

Hospital 2 (H2) 450 60 4 75

Hospital 3 (H3) 450 50 2.5 55

Hospital 4 (H4) 350 50 3.5 85

Hospital 5 (H5) 350 55 2 75

Hospital 6 (H6) 150 65 2.5 80

Hospital 7 (H7) 200 55 2 55

Hospital 8 (H8) 150 60 4 80

Based on its expertise, the DM (a team of some specialists on weight loss
surgery) provides the following preferences where P refers to the strict preference
relation:

H1 P H2; H3 P H4; H5 P H6; H8 P H7. (5)
1 http://en.wikipedia.org/wiki/Bariatric surgery.
2 https://www.lepoint.fr/sante/le-palmares-des-hopitaux-et-cliniques-methodologie-

21-08-2019-2330873 40.php.

http://en.wikipedia.org/wiki/Bariatric_surgery
https://www.lepoint.fr/sante/le-palmares-des-hopitaux-et-cliniques-methodologie-21-08-2019-2330873_40.php
https://www.lepoint.fr/sante/le-palmares-des-hopitaux-et-cliniques-methodologie-21-08-2019-2330873_40.php
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Based on these preferences, he also asks himself the following questions which
seem reasonable:

• Is the criterion Activity more important than the criterion Notoriety?
• Is the criterion Activity more important than the criterion ALOS?
• . . .

First of all, let us try to model his preferences by an additive model. The
four preferences could be representable by an arithmetic mean model, w.r.t. a
vector of weights (w1, w2, w3, w4) associated to the four criteria, if the following
system is feasible:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H1 P H2 ⇒ u1(200)w1 + u2(65)w2 + u3(3.5)w3 + u4(85)w4 >
u1(450)w1 + u2(60)w2 + u3(4)w3 + u4(75)w4

H3 P H4 ⇒ u1(450)w1 + u2(50)w2 + u3(2.5)w3 + u4(55)w4 >
u1(350)w1 + u2(50)w2 + u3(3.5)w3 + u4(85)w4

H5 P H6 ⇒ u1(350)w1 + u2(55)w2 + u3(2)w3 + u4(75)w4 >
u1(150)w1 + u2(65)w2 + u3(2.5)w3 + u4(80)w4

H8 P H7 ⇒ u1(200)w1 + u2(55)w2 + u3(2)w3 + u4(55)w4 >
u1(150)w1 + u2(60)w2 + u3(4)w3 + u4(80)w4

(6)

It is not difficult to see that the first three equations in this system lead
to [u1(200) − u1(150)]w1 + [u2(55) − u2(60)]w2 + [u3(2) − u3(4)]w3 + [u4(55) −
u4(80)]w4 > 0 contradicting the last equation. Therefore the arithmetic mean is
not able to model the DM preferences (5).

To prove that these preferences are modeled by a 2-additive Choquet inte-
gral, we assume that the marginal utility functions are constructed by using the
following monotone normalization formula of the criterion i, where Ui (respec-
tively Li) represents a upper bound (respectively a lower bound) associated to
the values of Xi: Given a hospital h = (h1, h2, h3, h4),

⎧
⎪⎨

⎪⎩

ui(hi) =
hi

Ui
if i is to be maximized (criteria 1, 2 and 4)

ui(hi) = 1 − hi

Li
if i is to be minimized (criterion 3)

(7)

By choosing U1 = 500, U2 = U4 = 100 and L3 = 5, the obtained utility
functions, associated to each hospital, are given by the Table 2.

Table 3 below presents five 2-additive capacities allowing to represent the
preferences (5) by 2-additive Choquet integral.

These results show that the importance index of Activity is more important
than Notoriety when the capacity of the Parameters 1, 4 and 5 are chosen. Con-
versely the importance index of the criterion Notoriety is more important than
Activity for the capacity of Parameters 2 and 3. Hence, based on the preference
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Table 2. Utility functions of eight hospitals on Activity, Notoriety, ALOS and
Technicality.

1- Activity 2- Notoriety 3- ALOS 4- Technicality

Hospital 1 (H1) 0.4 0.65 0.3 0.85

Hospital 2 (H2) 0.9 0.60 0.2 0.75

Hospital 3 (H3) 0.9 0.50 0.5 0.55

Hospital 4 (H4) 0.7 0.50 0.3 0.85

Hospital 5 (H5) 0.7 0.55 0.6 0.75

Hospital 6 (H6) 0.3 0.65 0.5 0.80

Hospital 7 (H7) 0.4 0.55 0.6 0.55

Hospital 8 (H8) 0.3 0.60 0.2 0.80

giving by the Dean, it is not easy to conclude about the importance of the crite-
rion Activity compared to the criterion Notoriety. We have similar conclusions
with Activity and ALOS.

To overcome this limits we introduce in the next section the new notion of
necessary and possible importance relation among two criteria.

3.2 Necessary and Possible Importance of Criteria

Let {P, I} be a preference information on X representable by a 2-additive Cho-
quet integral. We denote by C{P,I}

2 the set of all the 2-additive capacities com-
patible with {P, I}.

Definition 1. Given two different criteria i and j. We say that:

• i is possibly more important than j, if there exists μ ∈ C{P,I}
2 such that

φμ
i > φμ

j .

• i is necessarily more important than j, if for all μ ∈ C{P,I}
2 , we have φμ

i > φμ
j .

• i and j are possibly equally important if there exists μ ∈ C{P,I}
2 such that

φμ
i = φμ

j .

• i and j are necessarily equally important if for all μ ∈ C{P,I}
2 , we have

φμ
i = φμ

j .

Using these definitions, we can conclude that, in our previous example, the
criterion Activity is not necessary important than Notoriety. The converse is also
true. There exists only a possible importance relation among these two criteria.
Now, let us give some sufficient conditions allowing to get the necessary impor-
tance relation among two given criteria when the DM expresses his preferences
on a set of binary alternatives.
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Table 3. Five capacities compatible with the preferences (5)

Par.1 Par.2 Par.3 Par.4 Par.5

Cµ(H1) 0.5713 0.5723 0.5850 0.6413 0.5695

Cµ(H2) 0.5613 0.5560 0.5750 0.5929 0.5415

Cµ(H3) 0.5582 0.5531 0.5325 0.6513 0.6925

Cµ(H4) 0.5482 0.5431 0.5134 0.6413 0.5695

Cµ(H5) 0.6259 0.6228 0.5812 0.6931 0.6735

Cµ(H6) 0.5483 0.5509 0.5712 0.6831 0.545

Cµ(H7) 0.4920 0.4935 0.5117 0.5476 0.4735

Cµ(H8) 0.5020 0.5035 0.5217 0.5724 0.494

μ1 0.1175 0.1056 0.0712 0.3438 0.4799

μ2 0.0948 0.0956 0.0612 0.01 0.01

μ3 0 0 0 0 0

μ4 0.2243 0.2175 0.0812 0.6206 0.4899

μ12 0.2124 0.2012 0.1812 0.3538 0.4899

μ13 0.3864 0.3762 0.2062 0.3593 0.99

μ14 0.3418 0.3231 0.1525 0.6208 0.4899

μ23 0.0948 0.0956 0.0724 0.0099 0.01

μ24 0.6135 0.6237 0.7337 0.6206 0.4899

μ34 0.2243 0.2175 0.0812 0.9844 0.4899

φµ
1 0.2520 0.2409 0.1631 0.1796 0.495

φµ
2 0.2420 0.2509 0.3868 0.005 0.0049

φµ
3 0.1344 0.1353 0.073 0.1896 0.255

φµ
4 0.3714 0.3728 0.3768 0.6256 0.245

Iµ
12 0 0 0.0487 0 0

Iµ
13 0.2689 0.2706 0.135 0.0155 0.51

Iµ
14 0 0 0 −0.3438 −0.4799

Iµ
23 0 0 0.0112 0 0

Iµ
24 0.2943 0.3106 0.5912 −0.0099 −0.0099

Iµ
34 0 0 0 0.3638 0

4 Sufficient Conditions Using the Set of Binary
Alternatives

4.1 Preference Information on the Set of Binary Alternatives

In this section, we suppose that the DM is able to identify on each criterion i
two reference levels: 1i (the satisfactory or good level) and 0i (the neutral level).
These references are usually used in the elicitation of the parameters of the
Choquet integral (see [3,4]). We set for convenience ui(1i) = 1 and ui(0i) = 0.
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We ask to the DM, a preference information on a reference subset B of X ,
called the set of binary alternatives and defined by

B = {0N , (1i,0N−i), (1ij ,0N−ij), i, j ∈ N, i 	= j} ⊆ X

where

• 0N = (1∅,0N ) =: a0 is an action considered neutral on all criteria.
• (1i,0N−i) =: ai is an action considered satisfactory on criterion i and neutral

on the other criteria.
• (1ij ,0N−ij) =: aij is an action considered satisfactory on criteria i and j and

neutral on the other criteria.

The following remark shows that the use of the binary alternatives can help to
the determination of the 2-additive capacity.

Remark 1. Let μ be a 2-additive capacity. We have

• Cμ(u(a0)) = 0;

• Cμ(u(ai)) = μi = φμ
i − 1

2

∑

l∈N\{i}
Iμ
il;

• Cμ(u(aij)) = μij = φμ
i + φμ

j − 1
2

∑

l∈N\{i,j}
(Iil + Ijl).

We introduce the relation M modeling the natural monotonicity constraints
μij ≥ μi ≥ 0, i, j ∈ N for a 2-additive capacity μ. Let x, y ∈ B, x M y if one of
the following two conditions is satisfied:

1. y = a0 and not(x (P ∪ I) a0),
2. ∃i, j ∈ N such that [x = aij , y = ai] and not[x (P ∪ I) y].

Definition 2. Given two binary alternatives x and y,

• The notation x TC y means that there is a path from x to y, i.e., there exists
x1, x2, . . . , xp ∈ B such that x = x1 (P ∪ I ∪ M) x2 (P ∪ I ∪ M) · · · (P ∪ I ∪
M) xp−1 (P ∪ I ∪ M) xp = y.

• A path of (P ∪ I ∪ M) from x to x is called a cycle of (P ∪ I ∪ M).
• x TCP y denotes a path from x to y containing a strict preference P .

It is proven in [7] that, when the indifference relation is empty, the relation
P is representable by a 2-additive Choquet integral if and only if the relation
(P ∪ M) contains no strict cycle, i.e., a cycle containing an element of P .

4.2 Our Results When I = ∅
Lemma 1. Let μ be a 2-additive capacity on a finite set of n criteria N . Let
i, j be two different criteria. We have:

φμ
i − φμ

j =
1
2

[
(4 − n)(μi − μj) +

∑

l∈N\{i,j}
(μil − μjl)

]
. (8)
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Proof. Let μ be a 2-additive capacity on N and i, j ∈ N . The expression of the
importance of these criteria w.r.t. μ are

φμ
i = μi +

1
2

∑

l∈N\{i}
Iμ
il

φμ
j = μj +

1
2

∑

k∈N\{j}
Iμ
jk.

Then we have:

φµ
i − φµ

j = μi +
1

2
Iµij +

1

2

∑

l∈N\{i,j}
Iµil − μj − 1

2
Iµij − 1

2

∑

k∈N\{i,j}
Iµjk

= μi +
1

2

∑

l∈N\{i,j}
Iµil − μj − 1

2

∑

l∈N\{i,j}
Iµjl

= μi − μj +
1

2

∑

l∈N\{i,j}
(μil − μi − μl) − 1

2

∑

l∈N\{i,j}
(μjl − μj − μl)

= μi − μj +
1

2

∑

l∈N\{i,j}
(μil − μi − μl − μjl + μj + μl)

= μi − μj +
1

2

∑

l∈N\{i,j}
μil − 1

2

∑

l∈N\{i,j}
μi − 1

2

∑

l∈N\{i,j}
μjl +

1

2

∑

l∈N\{i,j}
μj

=
1

2

[
(4 − n)(μi − μj) +

∑

l∈N\{i,j}
(μil − μjl)

]

�

This Lemma will help us to prove our proposition of sufficient conditions to
obtain the necessary importance relation of two given criteria. As the number
4 − n appears in Eq. (8), we examine three cases of these sufficient conditions:
n = 3, n = 4 and n ≥ 5.

Proposition 1. Let P be a strict preference relation on B representable by a
2-additive Choquet integral.

1. Case N = {i, j, k}.

If

⎧
⎨

⎩

ai TCP aj

and
aik TCP ajk

or

⎧
⎨

⎩

ai TCP ajk

and
aik TCP aj

, then we have φμ
i > φμ

j , for all μ ∈ C{P}
2 ,

i.e., criterion i is necessary more important than criterion j.
2. Case N = {i, j, k, l}.

If

⎧
⎨

⎩

aik TCP ajk

and
ail TCP ajl

or

⎧
⎨

⎩

aik TCP ajl

and
ail TCP ajk

, then we have φμ
i > φμ

j , for all μ ∈ C{P}
2 ,

i.e., criterion i is necessary more important than criterion j.
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3. Case |N | ≥ 5.
Let i, j ∈ N . We set N \ {i, j} = {l1, l2, . . . , ln−2}.
If there exists a permutation σ on N \ {i, j} such that⎧
⎨

⎩

aj TCP ai

and
ailt TCP ajσ(lt) , t = 1, . . . , n − 2

, then we have φμ
i > φμ

j , for all μ ∈ C{P}
2 ,

i.e., criterion i is necessary more important than criterion j.

Proof. 1. Case N = {i, j, k}.

From Lemma 1 we have φμ
i − φμ

j =
1
2

[
(μi − μj) + (μik − μjk)

]
=

1
2

[
(μi −

μjk) + (μik − μj)
]
.

Let μ ∈ C{P}
2 .

If

⎧
⎨

⎩

ai TCP aj

and
aik TCP ajk

then we have

⎧
⎨

⎩

μi > μj

and
μik > μjk

. Hence φμ
i > φμ

j .

The proof is similar if

⎧
⎨

⎩

ai TCP ajk

and
aik TCP aj

2. Case N = {i, j, k, l}.

From Lemma 1 we have φμ
i − φμ

j =
1
2

[
(μik − μjk) + (μil − μjl)

]
=

1
2

[
(μik −

μjl) + (μil − μjk)
]
.

Let μ ∈ C{P}
2 .

If

⎧
⎨

⎩

aik TCP ajk

and
ail TCP ajl

then we have

⎧
⎨

⎩

μik > μjk

and
μil > μjl

. Hence φμ
i > φμ

j .

The proof is similar if

⎧
⎨

⎩

aik TCP ajl

and
ail TCP ajk.

3. Case |N | ≥ 5.

Let i, j ∈ N . Let μ ∈ C{P}
2 .

If there exists a permutation σ on N \ {i, j} = {l1, l2, . . . , ln−2} such that⎧
⎨

⎩

aj TCP ai

and
ailt TCP ajσ(lt) , t = 1, . . . , n − 2

, then we have

⎧
⎨

⎩

μj > μi

and
μilt > μjσ(lt) , t = 1, . . . , n − 2.
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Since φμ
i − φμ

j =
1
2

[
(4 − n)(μi − μj) +

∑

l∈N\{i,j}
(μil − μjl)

]
can be rewritten

φμ
i − φμ

j =
1
2

[
(4 − n)(μi − μj) +

n−2∑

h=1

(μilh − μjlσ(h))
]

then we have φμ
i > φμ

j .
�

Example 1. We suppose that the DM in our previous example on hospitals
expresses his preferences on the following set of binary alternatives:

B = {a0, a1, a2, a3, a4, a12, a13, a14, a23, a24, a34}

. he provides these two strict preferences:

• a13 P a24: a satisfactory hospital on Activity and ALOS is strictly preferred
to a satisfactory hospital on Notoriety and Technicality.

• a14 P a23: a satisfactory hospital on Activity and Technicality is strictly pre-
ferred to a satisfactory hospital on Notoriety and ALOS.

Using Proposition 1 for |N | = 4, we can conclude that the criterion Activity
is necessary important than Notoriety.

Example 2. Let N = {1, 2, 3, 4, 5} and P = {(a2, a1); (a13, a25), (a14, a23),
(a15, a24)}.

It is not difficult to see that the conditions given in Proposition 1, for |N | = 5,
are satisfied. The permutation σ used here is σ(3) = 5, σ(4) = 3 and σ(5) = 4.

Therefore criterion 1 is necessary more important than criterion 2, even if
the DM prefers a2 to a1.

Definition 3. Let {P, I} be a preference information on B representable by a
2-additive Choquet integral. Let i, j ∈ N .

j is p-dominated (possibly dominated) by i if there exists l0 ∈ N \ {i, j}
such that the following conditions are satisfied:

1. ail0 TCP a0;
2. for all k ∈ N \ {i, j}, not(ajk TC ail0).

This property ensures to have an element ail0 not dominated by any element
related to the criterion j. The next proposition shows that, in this case, we
always have i possibly important than j.

Proposition 2. Let P be a strict preference relation on B representable by a
2-additive Choquet integral. Let i, j ∈ N .

If j is p-dominated by i, then there exists μ ∈ C{P}
2 such that φμ

i > φμ
j .

In other words, if j is p-dominated by i then the criterion j is not necessary
more important than i.
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Proof. Let i, j ∈ N . We suppose that j is p-dominated by i, i.e., there exists
l0 ∈ N \ {i, j} such that for all k ∈ N \ {i, j}, not(ajk TC ail0) and ail0 TCP a0.

We add to the binary relation (P ∪ M), another binary relation T on B
defined by: for all x, y ∈ B,

x T y ⇔

⎧
⎨

⎩

x = ail0 , y = ajk, k ∈ N \ {i, j}
and

not(x(P ∪ M)y)

Since P is representable by a 2-additive Choquet integral, (P ∪ M ∪ T )
contains no strict cycle. Then there exists a partition {B0, B1, ..., Bm} of B,
build by using an appropriate topological sorting on (P ∪ M ∪ T ), as the one
detailed in Sect. 5.2. of [7].

Therefore there exists p ∈ {1, ...,m} (since ail0 TCP a0) such that ail0 ∈ Bp

and each element ajk, k ∈ N\{i, j} belongs to a set Bqk
with qk ∈ {0, ...,m}, qk <

p. We have also ail0 (P ∪ M) ai and ajk (P ∪ M) aj . Hence ai ∈ Br, r < p and
aj ∈ Br′ , r′ < p, r, r′ ∈ {0, ...,m}.

Let us define the mapping f : B → R and μ : 2N → [0, 1] as follows: For
l ∈ {0, ...,m},

∀x ∈ Bl, f(x) =
{

0 if l = 0
(2n)l otherwise. (9)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ∅ = 0
μi = fi

α , ∀i ∈ N

μij = fij

α , ∀i, j ∈ N

μ(K) =
∑

{i,j}⊆K

μij − (|K| − 2)
∑

i∈K

μi, ∀K ⊆ N, |K| > 2.

(10)

where fi := f(ai), fij := f(aij) and α =
∑

{i,j}⊆N

fij − (n − 2)
∑

i∈N

fi.

The capacity μ, defined like this, is 2-additive (see Proposition 7 in Sect. 5.3.
of [7]). Since p > r and p > pk, k ∈ N \ {i, j}, we have

(2n)p ≥ (2n)(2n)p−1 ≥ n(2n)r + n
∑

k∈N\{i,j}
(2n)pk ≥ (n − 4)(2n)r +

∑

k∈N\{i,j}
(2n)pk

i.e.,
μil0 ≥ (n − 4)μi +

∑

k∈N\{i,j}
μjk.
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Hence φμ
i ≥ φμ

j since

φμ
i − φμ

j =
1
2

[
(4 − n)(μi − μj) +

∑

l∈N\{i,j}
(μil − μjl)

]

=
1
2

[
(n − 4)μj − (n − 4)μi +

∑

l∈N\{i,j}
μil −

∑

l∈N\{i,j}
μjl

]

=
1
2

[
(n − 4)μj

∑

l∈N\{i,j,l0}
μil + μil0 − (n − 4)μi −

∑

l∈N\{i,j}
μjl

]

�

Example 3 In the previous Example 1 related to the hospitals, we had a13 P a24

and a14 P a23.

Using these preferences, it is not difficult to check that the criterion 4 is
p-dominated by the criterion Notoriety, criterion 3.

Indeed, if we choose l0 = 1, then we have not(a14 TC a13), not(a24 TC a13)
and not(a34 TC a13).

As indicated in the previous proof, the binary relation T is added to (P ∪M)
as follows: a13T a14 and a13T a34.

Hence the partition of B, obtained after the topological sorting on (P ∪ I ∪T )
given in the previous proof, leads to the following 2-additive capacity μ:

• B0 = {a0} −→ 0

• B1 = {a1, a2, a3, a4} −→ (2 × 4)1

α
=

8
4800

• B2 = {a12, a23, a24, a34} −→ (2 × 4)2

α
=

64
4800

• B3 = {a14} −→ (2 × 4)3

α
=

512
4800

• B4 = {a13} −→ (2 × 4)4

α
=

4096
4800

where α = 84 + 83 + 4 × 82 − 2 × 8 = 4800

Therefore we have

φμ
3−φμ

4 =
1
2

[
(μ13−μ14)+(μ23−μ24)

]
=

1
2

[
(
4096
4800

− 512
4800

)+(
64

4800
− 64

4800
)
]

> 0.

5 Conclusion

We introduced the concepts of necessary and possible importance relation among
the criteria. These notions allow to have a robust interpretation when the param-
eters of the 2-additive Choquet integral are inferred from a preference informa-
tion given by the DM. Of course, in the direct elicitation process, the DM may
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give directly a preference over the Shapley value of two criteria. In this case,
the necessary relation is obviously obtained. The main perspective will be the
complete characterization of the necessary and possible importance relations.
We provided here some sufficient conditions as a first step of this future work.
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Abstract. The measurement of polarization has been studied over the
last thirty years. Despite the different applied approaches, since polariza-
tion concept is complex, we find a lack of consensus about how it should
be measured. This paper proposes a new approach to the measurement
of the polarization phenomenon based on fuzzy set. Fuzzy approach
provides a new perspective whose elements admit degrees of member-
ship. Since reality is not black and white, a polarization measure should
include this key characteristic. For this purpose we analyze polarization
metric properties and develop a new risk of polarization measure using
aggregation operators and overlapping functions. We simulate a sample
of N = 391315 cases across a 5-likert-scale with different distributions to
test our measure. Other polarization measures were applied to compare
situations where fuzzy set approach offers different results, where mem-
bership functions have proved to play an essential role in the measure-
ment. Finally, we want to highlight the new and potential contribution
of fuzzy set approach to the polarization measurement which opens a
new field to research on.

Keywords: Polarization · Fuzzy set · Ordinal variation

1 Introduction

Polarization is one of the most studied concepts in social sciences, specially
over the last few years due to the recent growth of polarization episodes in
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different scenarios. The concept of polarization has been studied in social sciences
from different perspectives [1,6,14,16–18]. As can be seen after a fast literature
review there is not an universal and accepted measure. As a consequence, there
is not a well-defined consensus in the literature about what is the true nature of
polarization.

Nevertheless, one of the most cited and used polarization measures was
defined in the economics framework. Wolfson (1992) and Esteban and Ray (1994)
among others, were some of the first authors in measuring polarization [5–7,19].
These polarization measures are strongly linked to the concept of inequality.
Since then, a growing number of diverse polarization measures has arisen, most
of them based on the idea given in [6] and [7], although there are others that
have also had a significant impact [1,4,16,17].

It is important to remark that in the classical definition of Esteban and
Ray of 1994 (and any other polarization measure based on Esteban and Ray)
concepts like identification, membership, alienation and at the end aggregation
are included in respective formulas.

Some of the previous concepts allow graduation and are vague in nature.
For example, the way in which an individual feels identified with a group can
be modeled by a fuzzy membership function. These functions represents the
individual’s membership degree in a given group.

Focusing in the idea of Esteban and Ray in the bipolar case (i.e there are
two extreme situations), in this paper we propose a new polarization measure
expressed in terms of fuzzy membership functions. These functions are aggre-
gated by adequate aggregation operators to obtain a final polarization score.

2 Preliminaries

2.1 Polarization Measures

Polarization literature is essentially divided in two main approaches. First, those
measures which only admit the existence of two groups, where the maximum
polarization values are found in those cases where the group size is equal. Accord-
ing to this point of view, polarization follows a bimodal distribution (e.g.: Reynal-
Querol, 2001 [17]). Otherwise, there are approaches which accept the presence of
multiple groups. So that, those measures which take into account such diversity,
are closer to terms like dispersion and variation. Since the more different values
the more polarized is a population, the measure is moderated by the existence
of two main groups with significant size. In this section, we focus our attention
in measures based on diversity. Furthermore, we use the IOV index [2] as a ref-
erence measure in following sections because of its closeness to the concept of
polarization.

– Esteban and Ray (1994): Being one of the first polarization measures pro-
posed, in [6] it is defined the ER polarization measure. This measure was
proposed because of the need of measuring the polarization concept, where
inequality indices do not fit to this task. Esteban and Ray aimed to establish
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a difference between polarization and inequality proposing three main basics
of a polarization measure. So that, must be:

1. a) high degree of homogeneity within groups.
2. b) high degree of heterogeneity between groups.
3. c) few number of groups with significant size.

To assess this, given a population of N individuals that take values X along
a given numeric variable, in [6] the measurement of polarization is based on
the effective antagonism approach. This is also called the IA approach that
contains two concepts: identification (I) and alienation (a). The first one,
reflects the degree in which a given individual feels closeness with the group
that he/she belongs to. Otherwise, a shows the absolute distance between two
individuals in terms of income.
Finally, the authors proposed the next polarization measure:

P (π,y) =
n∑

i=1

n∑

j=1

πiπjT(I(πi), a(δ(yi, yj))) (1)

Where identification (I) is a function which depends on πi group’s relative
size, alienation (a) reflects the absolute distance between the groups yi and yj .
Regarding these two key aspects, effective antagonism is the product between
I and a. It is worth mentioning that in the following years other authors have
adapted ER measure (i.e. [4,15]). This model assume a symmetric alienation
between individuals. Authors also established an asymmetric model in [6].
According to Eq. (1), the most used and simplified version of this formula
(that we have denoted as PS here) are reformulated for those cases in which
the only information available about the population N is the variable X =
{Xu, u ∈ N} with its relative distribution: {(x1, π1), . . . , (xn, πn)}. So that,
the following assumptions are made:

• The population N is partitioned into groups according to different values
of X. An individual u ∈ N that takes the value xi belongs to the group
yi = {u ∈ N Xu = xi }.

• The relative frequency of the group yi is denoted by πi.
• The identification felt by one individual u to his/her group yi depend

by the relative size of that group. In fact, we have that this value is
I(u) = πα

i . The value of α should be greater than 1 (see [6]).
• The value of δ((yi, yj)) that represents the discrepancy between these two

groups (yi and yj) is the absolute difference between the values that they
takes in the variable X, (i.e δ(yi, yj) = |xi − xj |).

• The alienation function a is the identification function.
• Finally, the function T is the product operator between the I and a.

Taking this into account, previous expression is commonly used as follow:

PS(X,α) =
n∑

i=1

n∑

j=1

πiπj (πα
i |xi − xj |) . (2)
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Example 1. Let us have a given population N with |N | = 1500. Let the variable
X be a variable that takes values {1, 2, 3} with a relative frequency of 0.3, 0.5
and 0.2. Then:

PS(X,α = 2) = (0.3 ∗ 0.5 ∗ 0.32) + (0.3 ∗ 0.2 ∗ 0.32 ∗ 2) + . . . (0.2 ∗ 0.5 ∗ 0.22).

Let us recall again that the definition of Esteban and Ray of polarization (and of
course its simplified version PS) assumes certain hypothesis that it is necessary
to remark. From now on, we will denote by Ci, the group that is denoted as yi

by Esteban and Rey.

1. The different values of income present at X determine how many K groups
are. So that, given a set of responses X with a finite domain DX = {xi, i =
1 . . . K}, the class of groups C = {C1, . . . , CK} are perfectly defined as Ci =
{j ∈ N , xj = xi}.

2. Individuals can be only assigned to one group, since the C is a partition of
N . Also let us observe that |Cl| = Nπl.

3. Given a group Cl, if we denote μCl(i) as the degree to which the individual
i feels identification to the group Cl, this value is assumed to be:

μCl(i) =
{

πα
l if xi = xl,
0 otherwise.

Taking previous considerations into account, formula (2) can be viewed as

PS(X,α) =
1

|N |
∑

i,j∈N

Iij (3)

where Ii,j = T (μCi(i), a(δ(Ci, Cj))) is the effective antagonism felt by person i to
individual j that is not symmetric. The effective antagonism of two individuals
is the aggregation T of two values: the identification of individual i with the
group to which he/she belongs (μCi(i)) and the alienation a of the discrepancy
of the groups to which individuals i and j belong δ(Ci, Cj).

Example 2. Let X = {1, 2, 1, 3, 3, 4, 5, 5} be a population of N = 8 individuals.
Following the assumptions of Esteban and Ray we have 5 groups that are per-
fectly identified with those individuals that takes values in DX = {1, 2, 3, 4, 5}.
So the relative frequency are π = (28 , 1

8 , 2
8 , 1

8 , 2
8 ).

In order to obtain the final polarization score, we have to sum for each pair of
relative frequencies the value T (I(i,∈ Ci), a(δ(Ci, Cj))). Now we are going to see
how this expression performs starting with two individuals i, j. Let us assume
that i = 1 and j = 7. Then their values x1 and x7 are 1 and 5 respectively.
Assuming that I(i, Ci) = πα

i , a(u) = u, T (u, v) = uv we have that the expression
corresponding to the individuals 1 and 7 is

I1,7 = πα
1 |5 − 1|.

If we chose α = 2 for a clearer example, we have that I1,7 = 16
64 = 1

4 .
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– IOV Blair and Lacy. Ordinal index variation.
The concept of polarization have been confusing frequently with variation.
Variability, dispersion and variance are key concepts in Statistics, and they
are main argument to describe both the distribution of random variables
and to describe the observed values of a statistical variable. In the last con-
text, according to [12] the measurement of dispersion is usually associated to
continuous statistical variables. When the dispersion has to be measured in
ordinal variables (like for example a Likert-scale) the common approach is to
convert the ordinal estimation into a numerical one by assigning numerical
values to each ordinal variable category. Afterwards it is then possible to use
a classical dispersion measure. But some authors [3,8,9] have pointed out
that this procedure can lead to misunderstanding and misinterpretation of
the measurement results.
Hence, some ordinal dispersion measures have been defined [3,8,9] to prop-
erly deal with ordinal statistical variables instead of forcing the use of classical
measures (such as entropy, standard deviation, variance or quasivariance) that
do take into account such ordinal characteristic.
Although other measures could be alternatively used within our ordinal
framework, in this paper we will focus on the ordinal dispersion measure
defined by Berry and Mielke [2], usually called as IOV.
Given an ordinal variable with values X = {L1, . . . , Ln} and a relative fre-
quency vector f = (f1, . . . , fn), the ordinal dispersion measure IOV is defined
as:

IOV =
n−1∑

i=1

n∑

j=i+1

fifj(j − i). (4)

2.2 Aggregation Operators: Overlapping and Grouping Functions

Fuzzy set were introduced by Zadeh in 1965 [20], with the idea of sets with a con-
tinuum grades of membership, instead of the classical dual (yes/no) membership.
Thus, as [13] remark in their work:

Definition 1. A fuzzy set Ã over the domain X is defined as

Ã = {(x, μA(x)) x ∈ X}
where μA represents a membership degree function, i.e. μA : X −→ [0, 1].

Aggregation Operators (AO) are one of the hottest disciplines in information
sciences. AO appears in a natural way when the soft information has to be aggre-
gated. At the beginning, AO were defined to aggregate values from membership
functions associated to fuzzy set (see [20]). A key concept for the development
of this paper is that of aggregation function.

Definition 2. A function A : [0, 1]n → [0, 1] is said to be an n-ary aggregation
function if the following conditions hold:
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(A1) A is increasing in each argument: for each i ∈ {1, . . . , n}, if xi ≤ y, then
A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn);

(A2) A satisfies the boundary conditions: A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

It is important to emphasize that previous definition can be extended into a
more general framework allowing to deal with more general objects than values
into [0, 1].

Given two degrees of membership x = μA(c) and y = μB(c) of an object c
into classes A and B, an overlap function is supposed to yield the degree z up
to which the object c belongs to the intersection of both classes. Particularly, an
overlap function was defined in [10] as a particular type of bivariate aggregation
function characterized by a set of commutative, natural boundary and mono-
tonicity properties. These authors extended the bivariate aggregation function
to a n-dimensional case.

Definition 3. A function O : [0, 1]2 → [0, 1] is said to be an overlap function if
the following conditions hold:

(O1) O is commutative;
(O2) O(x, y) = 0 if and only if xy = 0;
(O3) O(x, y) = 1 if and only if xy = 1;
(O4) O is increasing in each argument;
(O5) O is continuous.

Grouping functions are supposed to yield the degree z up to which the com-
bination (grouping) of the two classes A and B is supported, that is, the degree
up to which either A or B (or both) hold.

Definition 4. A function G : [0, 1]2 → [0, 1] is said to be a grouping function if
the following conditions hold:

(G1) G is commutative;
(G2) G(x, y) = 0 if and only if x = y = 0;
(G3) G(x, y) = 1 if and only if x = 1 or y = 1;
(G4) G is increasing in each argument;
(G5) G is continuous.

Overlap functions are particularly useful. Furthermore, their applicability
can be extended to community detection problems [11] or even to edge detection
methods in the field of computer vision.

3 A New Polarization Measure from a Fuzzy Set
Perspective: The One-Dimensional and Bipolar Case

In this section we are focused on the case in which the only available information
of a given population is a one-dimensional variable X.

This variable X could be incomes (as it is assumed in ER approach) or
even opinions. Now, let us assume that this variable X, presents two poles XA
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and XB . In this situation we will say that the variable X is bipolar or present
two extreme values. Furthermore, we assume that the communication between
individual for those extreme poles is broken, and thus, polarization does exist.

The only information we need to assume for the measure here propose is
that we are able to measure the identification (or membership or closeness) of
each individual with both extreme values/poles. Let us denote by μXA

, μXB

the two membership degree functions that represent the membership degree.
μXA

, μXB
: N −→ [0, 1] are functions and for each i ∈ N , μXA

(i) and μXB
(i)

represent the membership degree of individual i to the classes of extreme opinion
XA and extreme opinion XB respectively (Fig. 1).

For this bipolar case, in which we assume the existence of two radical/extreme
or poles opinions and we don’t have a-priori groups, we understand that polar-
ization is associated when the following two situations appear:

1. a) A significant part of population is close to the pole XA.
2. b) A significant part of population is close to the pole XB .

Fig. 1. A membership function of a bi-polarized population.

Also, as it happen with the ER case, we are going to assume that we are
able to measure the discrepancy between these two poles or extreme situations
by δ(XA,XB).

Finally, the polarization measure that we propose here can be expressed as
the sum of the aggregation of three important concepts and could be understood
as the risk of polarization. Let us remark that polarization appears when two
groups break their relationships and also their communication.

We consider the risk of polarization between two individuals (e.g.: i, j) as the
possibility of these two situations:

– How individual i is close to the extreme position XA and j is close to the
other pole XB .

– How individual i is close to the extreme position XB and j is close to the
other pole XA.
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So that, if we assume that polarization appears in the last two situations we
propose:

JDJ(X) =
∑

i,j∈N,i≤j

ϕ (φ(μXA
(i), μXB

(j)), (φ(μXB
(i), μXA

(j))) (5)

where φ : [0, 1]2 −→ [0, 1] is an overlapping aggregation operator and ϕ :
[0, 1]2 −→ [0, 1] is a grouping function.

Example 3. To a better understand of the previous formula, let us analyze for a
given pair of individuals i, j ∈ N how the value is computed.

1. Case 1. Individual i is close to the pole A and j is close to the pole
B. High polarization. In this case, we have that μA,B(i) = (μA(i), μB(i)) =
(1, β) and μA,B(j) = (μA(i), μB(i)) = (γ, 1). Then we have to aggregate by a
grouping function (ϕ) two values: the degree to which i belong to A and j to
B a = φ(μXA

(i), μXB
(j)) = φ(1, 1) = 1 and the degree to which i belong to

B and j to A b = φ(μXB
(i), μXA

(j)) = φ(0, 0) = 0.
Finally, we have to verify which one of these two facts are true by a grouping
function ϕ(1, 0) = 1, since this is a case with high polarization.

2. Case 2. Individuals i and j are in the middle of poles A and B.
Here we propose the following case: μA,B(i) = (μA(i), μB(i)) = (0.5, 0.5) and
μA,B(j) = (μA(i), μB(i)) = (0.5, 0.5). We have two individuals in the middle
of the distribution. Then we have to aggregate by a grouping function the
ϕ the results of two values: the degree to which i belong to A and j to B
a = φ(μXA

(i), μXB
(j)) = φ(0.5, 0.5) = 0.5 and the degree to which i belong

to B and j to A b = φ(μXB
(i), μXA

(j)) = φ(0.5, 0.5) = 0.5.
Finally, we have ϕ(0.5, 0.5) = 0.5. Since this is a case with medium polariza-
tion.

3. Case 3. Individual i is close to pole A and j is also close to pole B.
μA,B(i) = (μA(i), μB(i)) = (1, 0) and μA,B(j) = (μA(j), μB(j)) = (1, 0.5). We
have two individuals close to the pole A. No polarization case. Then we have
to aggregate by a grouping function the ϕ the results of two value: the degree
to which i belong to A and j to B a = φ(μA(i), μB(j)) = φ(1, 0) = 0 and the
degree to which i belong to B and j to A b = φ(μB(i), μA(j)) = φ(0, 1) = 0.
Finally we have ϕ(0, 0) = 0. Since this is a case with low polarization.

Remark 1. Also let us note that since φ is an aggregation function, any increment
of the three component will increase the polarization values for a fixed i, j ∈ N .

Remark 2. Those situations where a population X is partitioned into k groups,
there will be as much groups as values are in the variable X (i.e. DX =
{X1, . . . , XK}).

The previous bi-polarization index will be

JDJ(X) =
∑

i=1,K

∑

j=1,K

πiπjφ(μXA
(i), μXB

(j)) (6)

So that, the difference with the other polarization index is the way in which
I(i, j) are measured for each pair of the groups Ci, Cj .



518 J. A. Guevara et al.

4 A Comparison Between Polarization Measures
in a 5-Liker Scale

Let us analyze the case in which we have a population with N individuals that
takes values on a discrete/ordinal variable X with domain Dx = {1, 2, 3, 4, 5}.
In order to build the JDJ polarization measure defined in the previous section,
we need to chose the grouping, overlapping and membership functions that we
are going to use. For simplicity, the grouping function that we have chosen is
the Maximum aggregation operator. Furthermore, we are going to study two
well-known overlapping functions: the minimum and the product. Finally we are
going to analyze a triangular membership function μT (see Fig. 2):

(
μT
1 (x), μT

5 (x)
)

= (1 − x − 1
4

,
x − 1

4
) (7)

Fig. 2. Membership degree µT
1 , µ

T
5 for the two extreme poles XA = 1, XB = 5.

It is possible to consider different triangular membership functions too. For
example, we can reduce the triangular membership function domain if we want
to force the μ1 function to zero for those values in x greater than a as well as to
force the μ5 function to be zero for those values in x lower than b.

For this experiment we have always considered ϕ(u, v) = Max{u, v} and
φ(x, y, z) = Min{x, y, z} or φ(x, y, z) = xyz. We have also considered two
options for JDJ polarization index denoted by JDJMax−Min−Tri(a=3,b=3) and
JDJMax−Pro−Tri.

In the following experiment, we reproduce a sample of N = 391315 cases and
their different relative frequency distributions along a 5-Likert Scale with the
same probability.

Therefore, three polarization measures were applied and compared for each
case: Esteban and Ray measure (ER), and the last two index mentioned above
JDJ Max − Pro − Tri (JDJ Pro) and JDJ Max − Min − Tri(a = 3, b = 3)
(JDJ MIN). Furthermore, an index of ordinal variance (IOV ) is applied. Thus,
next table shows some descriptive statistics for the measures applied (Table 1).

As the following histograms suggest (see Fig. 3), it is worth mentioning the
opposite skewed between ER and JDJ Pro measures, finding lower ER values of
polarization than JDJ Pro. In fact, this is a key aspect between both measures
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Table 1. Descriptive statistics for IOV , ER, JDJ Pro T and JDJ MIN T a3b3.

Mean SD Median Trimmed Mad Min Max Range Skew Kurtosis

IOV 0.60 0.17 0.60 0.60 0.19 0.00 1.00 1.00 −0.15 −0.49

ER 0.37 0.10 0.35 0.36 0.10 0.00 1.00 1.00 0.80 1.17

JDJ Pro T 0.75 0.13 0.76 0.76 0.12 0.00 1.00 1.00 −0.85 1.23

JDJ MIN T a3b3 0.28 0.18 0.27 0.27 0.20 0.00 1.00 1.00 0.41 −0.37

that underlies a difference between their conceptual and model properties that we
explain below. Otherwise, low values of polarization are shown by JDJ MIN .
It is due to the membership function of JDJ MIN .

Fig. 3. Underlying frequency distribution for IOV , ER, JDJ Pro T and JDJ MIN .

In Fig. 4 we show the relationship between each polarization measure and
the IOV values grouped by deciles. We can see a natural tendency to find the
higher polarization the higher IOV values. In fact, correlation between IOV
and all polarization measures can be found in the figure below, where JDJ Pro
shows the highest correlation value (0.87), JDJ MIN has a correlation value of
0.843 and ER shows the lower (0.78). Otherwise, we can see in ER measure a
significant portion of medium values of polarization in the first decile of IOV ,
finding a lack of stability in this scenario.



520 J. A. Guevara et al.

Fig. 4. Box plot displaying a distribution of polarization measures (ER, JDJ Pro and
JDJ MIN T ) for each decile of IOV .

5 Conclusions and Final Remarks

The concept of polarization is rich and complex and there is a need to find an
approach which includes both metric and conceptual perspectives at the same
time. According to this, for those cases where not all information are available
in data (such as communication flow), we shall propose not to mean polarization
itself but a risk of polarization for the bipolar case.

In this work, we present a fuzzy set approach to measure the risk of bi-
polarization. Moreover, polarization has been understood as a synonym of vari-
ation. Regarding this, despite we find high correlation between ordinal variation
and polarization values, we want to highlight that these small discrepancies make
the difference.

Otherwise, as another main proposal in this work, is to provide a new method-
ology on the measurement of polarization. As a main tool to this new point of
view, fuzzy set provides the appropriate resources. In one hand, in daily life
people does not only feel identified with one single group but to some others
too. Although, this duality is not a strict dichotomy but a long spectrum of
nuances. Reality is fuzzy itself. As an example, an individual can be a strong
supporter of a given political party but being identified with some contrary
party proposals as well. In other hand, from a metric building perspective, using
aggregation operators and membership functions, fuzzy set approach allows to
pursue this philosophy. The membership functions used in this work are just a
general example to apply this methodology. Along the different 391315 popula-
tions for a 5 likert scale, we have seen how the membership function determines
the model behaviour. Specially for both measures proposed here, whose different
membership functions reflect different results. Other membership functions more
adequate are up to being develop for being applied.

Specifically, this key aspect has two main consequences: a) the frequency
or bias to show high or low values of each polarization measure and b) those
specific scenarios where high or low values should appear. It is important the
equivalence between this membership functions and reality (e.g.: in those cases
where individuals get clustered into two antagonistic groups, a given polarization
measure should offer its highest values).
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To conclude, we suggest for some directions for future research. Regarding
membership functions, we consider as an important task to research about which
membership function is more adequate for a given scenario. Furthermore, to
develop new polarization measure incorporating a multi-dimensional case with
multiples features. Moreover, including more theoretical polarization concepts
like communication flow is needed to build an adequate polarization measure.
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Abstract. In this contribution the concept how to solve the problem of
comparability in the interval-valued fuzzy setting and its application in
medical diagnosis is presented. Especially, we consider comparability of
interval-valued fuzzy sets cardinality, where order of its elements is most
important. We propose an algorithm for comparing interval-valued fuzzy
cardinal numbers (IVFCNs) and we evaluate it in a medical diagnosis
decision support system.
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1 Introduction

Many new methods and theories behaving imprecision and uncertainty have
been proposed since fuzzy sets were introduced by Zadeh [26]. Extensions of
classical fuzzy set theory, intuitionistic fuzzy sets [3] and interval-valued fuzzy
sets [22,25] are very useful in dealing with imprecision and uncertainty (cf. [5]
for more details). In this setting, different proposals for comparability relations
between interval-valued fuzzy sets have been proposed (e.g. [23,30]). However,
the motivation of the present paper is to propose a new methods to compa-
rability between interval-valued fuzzy sets (and their special type which are
interval-valued fuzzy cardinal numbers) taking into account the widths of the
intervals. We assume that the precise membership degree of an element in a given
set is a number included in the membership interval. For such interpretation,
the width of the membership interval of an element reflects the lack of precise
membership degree of that element. Hence, the fact that two elements have the
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same membership intervals does not necessarily mean that their corresponding
membership values are the same. This is why we have taken into account the
importance of the notion of width of intervals while proposing new algorithms.

Additionally, these developments are made according to the standard partial
order between intervals, but also with respect to admissible orders [6], which are
linear.

The paper is organized as follows. In Sect. 2 basic information on interval-
valued setting are recalled. Especially, orders in interval setting and aggregation
operators based on them are considered. Afterwards, in Sect. 3 we propose algo-
rithm to compare interval values and finally in Sect. 4 we present mentioned
methodology for comparing IVFCNs in the decision making used in the Ova-
Expert system (intelligent decision support system for the diagnosis of ovarian
tumors) (see [12,13,29]).

2 Preliminaries

Firstly, we recall some facts from interval-valued fuzzy set theory.

2.1 Orders in the Interval-Valued Fuzzy Settings

Definition 1 (cf. [22,25]). An interval-valued fuzzy set IVFS ˜A in X is a map-
ping ˜A : X → LI such that ˜A(x) = [A(x), A(x)] ∈ LI for x ∈ X, where

˜A ∩ ˜B =
{〈x,

[

min{A(x), B(x)},min{A(x), B(x)}]〉 : x ∈ X
}

,

˜A ∪ ˜B =
{〈x,

[

max{A(x), B(x)},max{A(x), B(x)}]〉 : x ∈ X
}

and
LI = {[x, x] : x, x ∈ [0, 1], x ≤ x}.

The well-known classical monotonicity (partial order) for intervals is of the form

[x, x] ≤LI [y, y] ⇔ x ≤ y, x ≤ y,

where [x, x] <LI [y, y] ⇔ [x, x] ≤LI [y, y] and (x < y or x < y).

In LI the operations joint and meet are defined respectively

[x, x] ∨ [y, y] = [max(x, y),max(x, y)],

[x, x] ∧ [y, y] = [min(x, y),min(x, y)].

Note that the structure (LI ,∨,∧) is a complete lattice, with the partial order
≤LI , where

1 = [1, 1] and 0 = [0, 0]

are the greatest and the smallest element of (LI ,≤LI ), respectively.
We are interested in extending the partial order ≤LI to a linear order, solving

the problem of existence of incomparable elements. We recall the notion of an
admissible order, which was introduced in [6] and studied, for example, in [2] and
[27]. The linearity of the order is needed in many applications of real problems,
in order to be able to compare any two interval data [7].
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Definition 2 (cf. [6]). An order ≤Adm in LI is called admissible if it is linear
and satisfies that for all x, y ∈ LI , such that x ≤LI y, then x ≤Adm y.

Proposition 1 (cf. [6]). Let B1, B2 : [0, 1]2 → [0, 1] be two continuous aggre-
gation functions, such that, for all x = [x, x], y = [y, y] ∈ LI , the equalities
B1(x, x) = B1(y, y) and B2(x, x) = B2(y, y) hold if and only if x = y. If the
order ≤B1,2 on LI is defined by x ≤B1,2 y if and only if

B1(x, x) < B1(y, y) or (B1(x, x) = B1(y, y) and B2(x, x) ≤ B2(y, y)),

then ≤B1,2 is an admissible order on LI .

Example 1 (cf. [6]). The following are special cases of admissible linear orders
on LI :

– The Xu and Yager order:

[x, x] ≤XY [y, y] ⇔x + x < y + y or (x + x = y + y and x − x ≤ y − y).

– The first lexicographical order (with respect to the first variable), ≤Lex1

defined as:

[x, x] ≤Lex1 [y, y] ⇔ x < y or (x = y and x ≤ y).

– The second lexicographical order (with respect to the second variable), ≤Lex2

defined as:

[x, x] ≤Lex2 [y, y] ⇔ x < y or (x = y and x ≤ y).

– The αβ order, ≤αβ defined as:

[x, x] ≤αβ [y, y] ⇔Kα(x, x) < Kα(y, y) or

(Kα(x, x) = Kα(y, y) and Kβ(x, x) ≤ Kβ(y, y))

for some α �= β ∈ [0, 1] and x, y ∈ LI , where Kα : [0, 1]2 → [0, 1] is defined as
Kα(x, y) = αx + (1 − α)y.

The orders ≤XY , ≤Lex1 and ≤Lex2 are special cases of the order ≤αβ with
≤0.5β (for β > 0.5), ≤1,0, ≤0,1, respectively. The orders ≤XY , ≤Lex1, ≤Lex2,
and ≤αβ are admissible linear orders ≤B1,2 defined by pairs of aggregation func-
tions, namely weighted means. In the case of the orders ≤Lex1 and ≤Lex2, the
aggregations that are used are the projections P1, P2 and P2, P1, respectively.

Remark 1. In the later part we will use the notation ≤ both for the partial or
admissible linear order, with 0 and 1 as minimal and maximal element of LI ,
respectively. Notation ≤LI will be used while the results for the admissible linear
orders will be used with the notation ≤Adm.
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2.2 Interval-Valued Aggregation Functions

Let us now recall the concept of an interval-valued aggregation function, or an
aggregation function on LI , which is an important notion for many applications.
We consider interval-valued aggregation functions both with respect to ≤LI and
≤Adm. In many papers we may find the study of properties and possible applica-
tions of interval-valued operators/aggregation functions (e.g. [4,5,7,14,18,20]).

Definition 3 (cf. [16,27]). An operation A : (LI)n → LI is called an interval-
valued aggregation function if it is increasing with respect to the order ≤ (partial
or total) and

A(0, ...,0
︸ ︷︷ ︸

n×
) = 0, A(1, ...,1

︸ ︷︷ ︸

n×
) = 1.

A special class of interval-valued aggregation functions is the one formed by
the so-called representable interval-valued aggregation functions.

Definition 4 (cf. [9,11]). An interval-valued aggregation function A : (LI)n →
LI is said to be representable if there exist aggregation functions A1, A2 :
[0, 1]n → [0, 1] such that

A(x1, . . . , xn) = [A1(x1, . . . xn), A2(x1, . . . , xn)]

for all x1, . . . , xn ∈ LI , provided that A1 ≤ A2.

Example 2. Lattice operations ∧ and ∨ on LI are examples of representable
aggregation functions on LI with respect to the partial order ≤LI , with A1 =
A2 = min in the first case and A1 = A2 = max in the second one. However,
∧ and ∨ are not interval-valued aggregation functions with respect to ≤Lex1,
≤Lex2 or ≤XY .

The following are other examples of representable interval-valued aggregation
functions with respect to ≤LI .

– The representable arithmetic mean:

Amean([x, x], [y, y]) = [Amean(x, y), Amean(x, y)] = [
x + y

2
,
x + y

2
].

– The representable geometric mean:

Agmean([x, x], [y, y]) = [Agmean(x, y), Agmean(x, y)] = [
√

xy,
√

xy].

Representability is not the only possible way to build interval-valued aggre-
gation functions with respect to ≤LI . Moreover, we may built interval-valued
aggregation functions with respect to the other orders, i.e. ≤Adm.

Let A : [0, 1]2 → [0, 1] be an aggregation function.
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– The function A1 : (LI)2 → LI , where

A1(x, y) =
{

[1, 1], if (x, y) = ([1, 1], [1, 1]),
[0, A(x, y)], otherwise

is a non-representable interval-valued aggregation function with respect to
≤LI .

– The function A2 : (LI)2 → LI ([19]), where

A2(x, y) =
{

[1, 1], if (x, y) = ([1, 1], [1, 1])
[0, A(x, y)], otherwise

is non-representable interval-valued aggregation functions with respect to
≤Lex1.

– Amean is an aggregation function with respect to ≤αβ (cf. [2]).
– The following function

Aα(x, y) = [αx + (1 − α)y, αx + (1 − α)y]

is an interval-valued aggregation function on LI with respect to ≤Lex1, ≤Lex2

and ≤XY for x, y ∈ LI and α ∈ [0, 1] (cf. [27]).

3 Subsethood Measure

Subsethood, or inclusion, measures have been studied mainly from constructive
and axiomatic approaches and have been introduced successfully into the theory
of fuzzy sets and their extensions. Many researchers have tried to relax the
rigidity of Zadeh’s definition of subsethood to get a soft approach which is more
compatible with the spirit of fuzzy logic. For instance, Zhang and Leung (1996)
defended that quantitative methods were the main approaches in uncertainty
inference, a key problem in artificial intelligence, so they presented a generalized
definition for subsethood measures, called including degrees.

3.1 Precedence Indicator

We use the notion of an interval subsethood measure for a pair of intervals
with the partial and admissible orders and the width of intervals introduced and
examined in [21].

Definition 5. A function Prec : (LI)2 → LI is said to be a precedence indi-
cator if it satisfies the following conditions for any a, b, c ∈ LI

P1 if a = 1LI and b = 0LI , then Prec(a, b) = 0LI ,
P2 if a < b, then Prec(a, b) = 1LI for any a, b ∈ LI ,
P3 Prec(a, a) = [1 − w(a), 1] for any a ∈ LI ,
P4 if a ≤ b ≤ c and w(a) = w(b) = w(c), then Prec(c, a) ≤ Prec(b, a) and

Prec(c, a) ≤ Prec(c, b), for any a, b, c ∈ LI , where
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w(a) = a − a. (1)

The following construction method is based on the aggregation and negation
functions which play important rule in many applications (e.g. [4,9,11,14]) and
is presented in the next theorem. Recall that an interval-valued fuzzy negation
NIV is an antytonic operation that satisfies NIV (0LI ) = 1LI and NIV (1LI ) = 0LI

([1,10]).

Proposition 2 ([21]). For a, b ∈ LI the operation PrecA : (LI)2 → LI is the
precedence indicator

PrecA(a, b) =

⎧

⎨

⎩

[1 − w(a), 1], a = b,
1LI , a < b,
A(NIV (a), b), otherwise

for a, b ∈ LI and the interval-valued fuzzy negation NIV , such that

NIV (a) = [N(a), N(a)] ≤ [1 − a, 1 − a],

where N is a fuzzy negation and A is a representable interval-valued aggregation
such that A ≤ ∨.
Using the construction methods from Proposition 2 we obtain the following
examples.

Example 3. The following function is an interval subsethood measure with
respect to ≤LI :

PrecAmeanLI
(x, y) =

⎧

⎨

⎩

[1 − w(x), 1], x = y,
1, x <LI y,

[
1−x+y

2 , 1−x+y
2 ], otherwise,

where NIV (x) = [1 − x, 1 − x].
Moreover, the following function is a subsethood measure with respect to ≤Lex2:

PrecAmeanLex2(x, y) =

⎧

⎨

⎩

[1 − w(x), 1], x = y,
1, x <Lex2 y,

[
y

2 , 1−x+y
2 ], otherwise.

Using the interval-valued aggregation function Aα for α ∈ [0, 1], we get the
subsethood measure

PrecAαLex2(x, y) =
⎧

⎪

⎪

⎨

⎪

⎪

⎩

[1 − w(x), 1], x = y,
1, x <Lex2 y,
[(1 − α)y,

α(1 − x) + (1 − α)y], otherwise,

where

NIV (x) =
{

1, x = 0,
[0, 1 − x], otherwise

is an interval-valued fuzzy negation with respect to ≤Lex2.
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Remark 2 (cf. [27]). The aggregation Aα preserves the width of the intervals of
the same width.

Another construction method, which is inspired by the construction presented
for generalization of the subsethood measure at paper [21], presents the following
proposition.

Proposition 3. The operation

Precw(a, b) =
{

1LI , a < b,
[1 − max(w(a), r(a, b)), 1 − r(a, b)], else

is the precedence indicator with respect to ≤, where for a, b ∈ LI

r(a, b) = max{|a − b|, |a − b|}.

3.2 Interval-Valued Fuzzy Cardinal Numbers (IVFCNs)

In this section we briefly introduce main ideas about cardinalities of IVFSs.
More details can be found in the monographs [12,24]. Such numbers are of
great importance in solving decision problems in which uncertainty occurs (see
[8,15,28]). In further part we will use the following notations:

– For given fuzzy set A a symbol [A]i is defined as:

[A]i :=
∨

{t ∈ (0, 1] : |At| ≥ i} for i ∈ N.

– Function f : [0, 1] → [0, 1] is called cardinality pattern if it meets the following
conditions:
1. is nondecreasing i.e. ∀a,b∈[0,1]f(a) ≤ f(b) if a ≤ b,
2. and meets limit conditions f(0) = 0 i f(1) = 1.

– Symbol ∩T means the triangular norm and N the fuzzy negation.

Generalized Fuzzy Cardinal Numbers

1. Generalized cardinal number FGCount is interpreted as a degree to
which fuzzy set A has at least k elements

FGf (k) := f([A]1) ∩T f([A]2) ∩T . . . ∩T f([A]k) for k ∈ N.

2. Generalized cardinal number FLCount is interpreter as a degree to
which A includes at most k elements

FLf (k) := N(f([A]k+1)) ∩T N(f([A]k+2)) ∩T · ∩T N(f([A]n)) for k ∈ N.

3. Generalized cardinal number FECount expresses the degree to which A
has exactly k elements where

FEf (k) := f([A]1) ∩T f([A]2) ∩T . . . ∩T f([A]k)∩T

N(f([A]k+1)) ∩T N(f([A]k+2)) ∩T . . . ∩T N(f([A]n)) for k ∈ N.

FEf is the intersection of FGf and FLf . It may be perceived as the ‘actual’
generalized cardinal number of a fuzzy set A.
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Fuzzy Cardinality of IVFS. Cardinalities of interval-valued fuzzy sets are
defined in a natural manner using cardinalities of fuzzy sets described in previous
section.

For a finite interval-valued fuzzy set ˜A = [A,A] fuzzy type cardinalities are
defined as interval-valued fuzzy sets in N (see [24]).

Definition 6 (cf. [12,24]).

1. f-FGCount of IVFS ˜A for a given cardinality pattern f is defined as:

˜FGf ( ˜A) = [FGf (A), FGf (A)], (2)

i.e. for k ∈ N:

˜FGf ( ˜A)(k) =[FGf (A)(k), FGf (A)(k)] = [f([A]k), f([A]k)], (3)

where FGf (A) and FGf (A) are the fuzzy cardinalites defined in previous
section.

2. f-FLCount of IVFS ˜A for a given cardinality pattern f is defined as:

˜FLf ( ˜A) = [FLf (A), FLf (A)], (4)

i.e. for k ∈ N:

˜FLf ( ˜A)(k) =[FLf (A)(k), FLf (A(k)] = [1 − f([A]k+1), 1 − f([A]k)], (5)

where FLf (A) and FLf (A) are the fuzzy cardinalities defined in previous
section.

3. f-FECount of IVFS ˜A for a given cardinality pattern f is defined as:

˜FEf ( ˜A) = ˜FGf ( ˜A) ∩ ˜FLf ( ˜A), (6)

i.e. for k ∈ N:

˜FEf ( ˜A)(k) = [f([A]k) ∧ (1 − f([A]k+1)), f([A]k) ∧ (1 − f([A]k+1)]. (7)

To simplify the notations, f-FECount of an IVFS will be denoted by σ̃ and we
will call it Interval-Valued Fuzzy Cardinal Number (in short IVFCN).

Comparability Algorithm of IVFCNs. In many decision-making applica-
tions, an important problem to solve is comparing the cardinalities of IVFSs.

To define algorithm more formally, we need to introduce some basics nota-
tions.

Definition 7. Representative Rep(x) ∈ R of an interval x ∈ LI for α ∈ [0, 1] is
defined as:

Rep(x) = Kα(x) = x + α ∗ w(x), (8)

where w fulfills (1).
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In a special case value of representative of an interval can lead to middle or
bounds of interval:

1. if a = 0 then Rep(x) = x - lower bound of the interval;
2. if a = 1 then Rep(x) = x - upper bound of the interval;
3. if a = 0.5 then Rep(x) = (x + x)/2 - middle of the interval.

To order the IVFCNs we propose the following method inspired on [17] used
in the next section for group decision making.

Algorithm for Ordering of IVFCNs

Step 1 (Inputs). Input data: interval-valued fuzzy cardinal numbers: Xi ∈
IV FCNs, i = {1, . . . , n}, n ∈ N

Xi = {[xk, xk], where k = {1, . . . , m} m ∈ N}.

Step 2 (Representatives). For input data with intervals data, we need the
following process (representatives (see (8))):

Rep(xk) = xk + α ∗ w(xk), where α ∈ [0, 1]

and we obtain xi = {Rep(xk)}.
Step 3 (Aggregations). For m elements support we construct aggregations
matrix with difference aggregation functions Let F = (F1, ...Fm) be a sequence
of m aggregation functions, Fi : [0, 1]m → [0, 1], then we calculate

F1(x1), . . . , Fm(x1)
. . .
F1(xn), . . . , Fm(xn)

for x1, ...xn and we calculate for each 1 ≤ i, j ≤ k the measure of connectivity
for pairs of values xi and xj , i �= j,

CON(xi,xj) =
∑

1≤l≤m

(Fl(xi(t)) − Fl(xj(t))), 1 ≤ t ≤ n.

Step 4 (Selection). For each 1 ≤ i, j ≤ n we find

max
1≤i,j≤n

CON(xi,xj) = CON(xz,xw), 1 ≤ z, w ≤ n;

The element xz is chosen as most appropriate.
We repeat Step Selection by omitting the wining values xz in the next iteration.
If max1≤i,j≤n CON(xi,xj) = CON(xz,xw) = CON(xz′ ,xw′), 1 ≤ z, z′, w, w′ ≤
n, then we find

C1 :=
∑

1≤w≤n

(max(0, CON(xz,xw)))
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and
C2 :=

∑

1≤w′≤n

(max((0, CON(xz′ ,xw′))).

If C1 > C2 then the element xz is chosen as the most appropriate otherwise
the element xz′ is chosen as most appropriate. Otherwise if both C1 and C2 are
equal than xz = xz′ .

As a consequence we obtain the sequence: xz � xz′ � . . . and thus Xz �
Xz′ � . . .. In particular, if we compare only two IVFCNs, i.e two sequences of
representatives x,y, then x � y if CON(x,y) > CON(y,x) else if CON(x,y) <
CON(y,x), then x � y, otherwise they are equivalent.

4 Application in Decision Making

The presented methodology for comparing IVFCNs can be applied in the deci-
sion model used in the OvaExpert system. OvaExpert is an intelligent decision
support system for the diagnosis of ovarian tumors. The system was developed as
a result of joint research of two Polish research centers: the Division of Gyneco-
logic Surgery of the Poznan University of Medical Sciences and the Department
of Imprecise Information Processing Methods, Faculty of Mathematics. More
detailed information about the system can be found in [12].

Figure 1 presents diagram showing OvaExpert counting approach for making
decisions. This method of decision making utilised in the system is based on
voting strategy with counting. On input system gets incomplete information
about patient. In Step 1 many diagnostic models are computed and it results as
IVFS of decisions. Then in Step 2 two IVFSNs are computed (which represents
positive and negative diagnosis). And finally in Step 3 comparison of this two
IVFSNs resulting decision. This step utilize methods presented earlier in this
work.

4.1 Decision Making Algorithm Based on Bipolar Voting Strategy

The idea behind decision algorithm is to use bipolar perspective on IVFS.
Because such an IVFS contains information on uncertainty level, it carries both
information supporting and rejecting the decision. This property of IVFS is used
in decision algorithm. The basic idea behind this algorithm consists of a couple
of steps:

– As an input we have two IVFS’s P and C (representing number of decision’s
Dpro and Dcontra supporting given decision):

P = σ(Dpro) - representing the number of decisions ‘for’;
C = σ(Dcontra) - representing the number of decisions ‘against’;

– To make decisions, we must choose a set that is more numerous e.g. decide if
(or vice versa):

P < C.

For equivalency of P and C (see Algorithm. Ordering of IVFCNs) then we do
not make decisions.
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Fig. 1. OvaExpert counting approach for making medical decision

4.2 Results and Discussion

The presented algorithm have been tested on real medical data. These data
described 388 cases of patients diagnosed and treated in the Division of Gyneco-
logical Surgery, Poznan University of Medical Sciences, between 2005 and 2015.
Out of them 61% have been diagnosed as suffering from benign tumours and 39%
as suffering from malign tumours. Moreover, 56% of patients had full diagnostic
(no test required by diagnostic scales was missing), 40% had significant amounts
of missing data varying from (0%, 50%], and for the remaining ones 50% of data
was missing. Detailed description of data used for evaluation can be found in
[12].

The goal of evaluation was to select a decision algorithm that would best
classify malignity cases with the top possible decisiveness.

We tested the algorithm for the weighted average functions of Fi in F (see
Step 3 of Algorithm. Ordering of IVFCNs).

(Weighted Average). We will use the following case of aggregation functions,
i.e. arithmetic weight mean AWw : ([0, 1])m → [0, 1]

AWw(x1, ..., xm) =
∑m

i=1 wixi
∑m

i=1 wi
, (9)

where the adequate vectors w = (w1, ...wm) we generate in the following way: In
the first step divide a sum of supports of both IVFCNs S = supp(P ) ∪ supp(C)
into two equal parts S1 and S2. In the second step compare precedence indicators
from both parts separately in the following way:
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If Prec(P (xi), C(xi)) ≤ Prec(C(xi), P (xi)) on S1

then we generate weights wi from [0.5, 1] otherwise from [0, 0.5];
If Prec(P (xi), C(xi)) > Prec(C(xi), P (xi)) on S2

then we generate weights wi from [0.5, 1] otherwise from [0, 0.5], where:
S1 = [min(S), (max(S) − min(S)/2)], S2 = [(max(S) − min(S))/2,max(S)]
and Prec ∈ {PrecA,Precw} and ≤∈ {≤LI ,≤Adm}.

Evaluation of the Algorithm. We use the following notations for evalu-
ate the results of the classification: Accuracy (acc), Sensitivity (sen), Speci-
ficity (spec) and Precision (prec) (cf. [12]).

Fig. 2. Impact of α selection on decision quality

The Table 1 below presents analysis of different parameters of α (different
methods to calculate representatives). We check values of α by different crite-
ria, i.e., the best acc, sen, spec, prec, respectively. We present the best results
obtained in series of tests for Precw and Xu and Yager linear order. We observe
that we obtained comparable results to [12]. With comparison to OEA base-
line model (which is current decision method in OvaExpert system) we see that
new algorithm give the better results of specificity, but very similar values of
other performance measures (like sensitivity and accurency). Figure 2 shows the
impact of α selection on decision quality. So proposed algorithms are interesting
from point of view possible applications and in other data also may be better
methods to compare IV values.

Table 1. The best evaluation results for different α

F/ crit. of α the best α acc sen spec prec

acc/sen/prec 0.4 85.31 84.88 85.96 90.12

spec 0 80.34 76.21 86.79 90.0

To obtain the best acc and sen values, the α values should be in the range
of [0.15, 0.5], which indicates a strong relationship between these values and the
designated representatives.
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For spec and prec values, the initial range of [0, 0.45] is relatively neutral,
only after exceeding the value of 0.45 for α, the above variables have a decreasing
trend. To obtain the best results for all parameters, the recommended alpha
values should be in the range [0.15, 0.45].

5 Conclusions and Future Plans

In this presentation, we discuss possible algorithms for compare in interval-
valued fuzzy setting, where these notions with widths of intervals involved.
Moreover, new algorithms of comparing and ranking cardinalities of IVFS were
applied in decision making algorithm. In future we will test presented algorithms
for other types data. Moreover, we are currently working on several other types
of ranking methods that uses aggregation functions.
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Abstract. In the paper Jin et al. [8] the authors introduced a general-
ized phi-transformation of aggregation functions. This is a kind of two-
step aggregation. This transformation was further developed in Jin et
al. [9] into a Generalized-Convex-Sum-Transformation. A special case of
the proposed Generalized-Convex-Sum-Transformation is the well-known
*-product, also known as the Darsow product of copulas. This approach
covers also the discrete Choquet integral. In this paper we study the
monotone systems of functions, particularly the case when functions in
these systems are just two-valued.

Keywords: Aggregation function · Copula · Generalized-convex-sum
transformation · Monotone system of functions

1 Introduction

Jin et al. in [8] introduced a generalized ϕ-transformation of aggregation func-
tions. This method is based on a so-called parametrized chain and an aggrega-
tion function F . The original aggregation function A is transformed into A〈F,c〉,
where c is a vector-function and F (c(t)) = t. This method was modified by the
same authors in [9] into a generalized-convex-sum-transformation. A special case
of this generalized-convex-sum-transformation is the well-known ∗-product, also
known as Darsow product, see [4]. As it is shown in [9], this method general-
izes the discrete Choquet integral. The transformation is based on systems of
monotone functions as follows (we illustrate here the transformation of binary
aggregation functions)

AF(x, y) =

1∫

0

A(fx(t), gy(t))dt,

where F is the pair of monotone systems of functions {fx}x∈[0,1], {gy}y∈[0,1]. This
means that the particular choice of the pair F of monotone systems of functions
c© Springer Nature Switzerland AG 2020
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{fx}x∈[0,1], {gy}y∈[0,1] influences the resulting transform AF of the (in this case)
binary aggregation function A.

In this contribution we will study the case when the systems of functions
{fx}x∈[0,1], {gy}y∈[0,1] are two-valued, i.e., fx(t) ∈ {0, 1} and gy(t) ∈ {0, 1} for
all x, y, t ∈ [0, 1].

After recalling some preliminary notions and results in Sect. 2, in Sect. 3 we
provide the results of our study. Finally, conclusions are given in Sect. 4.

2 Preliminaries

In this section we recall some basic definitions and known facts on aggregation
functions. In the second part we provide basic idea of the generalized-convex-
sum-transformation that was introduced in [9].

2.1 Basic Definitions and Known Facts

In this contribution we will deal with (n-ary) aggregation function on [0, 1].
For more details including definitions and discussion concerning examples and
properties of aggregation functions we recommend [1,2,7,10,12].

Some distinguished families of n-ary aggregation functions are given in the
following definition.

Definition 1 ([7]). An n-ary aggregation function A is said to be

(1) an n-ary semi-copula if e = 1 is its neutral element,
(2) a t-norm if it is an associative and symmetric semi-copula,
(3) dual to a semi-copula if e = 0 is a neutral element,
(4) a t-conorm if it is associative and symmetric and dual to a semi-copula,
(5) an n-ary quasi-copula if it is a 1-Lipschitz semi-copula, i.e.,

|A(x1, . . . , xn) − A(y1, . . . , yn)| ≤
n∑

i=1

|xi − yi|.

Definition 2 ([12]). An n-ary aggregation function Cn : [0, 1]n → [0, 1] is said
to be an n-ary copula if it is an n-ary semi-copula which is n-increasing, i.e., if
for all x(0) ∈ [0, 1]n and x(1) ∈ [0, 1]n such that x(0) ≥ x(1) the following holds

∑
(i1,...,in)∈I

(−1)
∑n

k=1 ikCn(x(i1)
1 , . . . , x(in)

n ) ≥ 0, (1)

where I = {0, 1}n.

Lemma 1 ([12]). Every copula C is 1-Lipschitz.

Proposition 1 ([12]). Let C be a binary copula (or a quasi-copula). Then for
every (x, y) ∈ [0, 1]2

max(0, x + y − 1) ≤ C(x, y) ≤ min(x, y). (2)
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Let us remark that the functions related to the lower and upper bound occur-
ring in inequality (2) are denoted by

W (x, y) = max(0, x + y − 1), M(x, y) = min(x, y) (3)

and are called the lower and upper Fréchet-Hoeffding bounds, respectively. In the
theory of t-norms the function W is usually denoted by TL and M is denoted
by TM and are called the Łukasiewicz and minimum t-norm, respectively.

2.2 Generalized-Convex-Sum-Transformation

In this section we briefly recall some definitions and results from [9] explaining
the construction method using transformation of a given aggregation function A
by an n-tuple of monotone systems of functions Fn. The notion of a monotone
system of functions is crucial in the construction method in question.

Definition 3. Let F = {fx}x∈[0,1] be a family of functions such that

1. for every x ∈ [0, 1] fx : [0, 1] → [0, 1] is a Lebesgue integrable function,
2. fx1 ≤ fx2 for x1 ≤ x2,
3. for all z ∈ [0, 1] f0(z) = 0 and f1(z) = 1.

Then F is called a Monotone System of Functions, MSF for brevity.

Example 1. For every x ∈ [0, 1] let fx : [0, 1] → [0, 1] and gx : [0, 1] → [0, 1] be
defined by

fx(t) =

{
0 for x < 1,

1 for x = 1,
gx(t) =

{
0 for x = 0,

1 for x > 0.

Then F = {fx}x∈[0,1] and G = {gx}x∈[0,1] are the least and the greatest Mono-
tone Systems of Functions, respectively.

Definition 4. Let F (i) =
{

f
(i)
x

}
x∈[0,1]

, i = 1, 2, . . . , n, be MSF (Definition 3).

Then Fn = (F (1),F (2), . . . ,F (n)) is called an n-tuple of the Monotone Systems
of Functions, n-MSF for brevity.

Lemma 2 ([9]). Let A : [0, 1]n → [0, 1] be any Lebesgue integrable n-ary aggre-
gation function and Fn = (F (1),F (2), . . . ,F (n)) be an arbitrary n-MSF. Let a
function AFn

: [0, 1]n → [0, 1] be given by

AFn
(x1, . . . , xn) =

∫ 1

0

A
(
f (1)
x1

(t), . . . , f (n)
xn

(t)
)
dt, (4)

where f
(1)
x1 ∈ F (1),. . . , f

(n)
xn ∈ F (n). Then AFn

is an aggregation function.

Definition 5. An n-ary aggregation function AFn
defined by formula (4), where

Fn = (F (1), . . . ,F (n)) is an n-tuple of monotone systems of functions, is said
to be a Generalized-Convex-Sum-Transform of A by Fn, or a GCS-transform in
short.
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Definition 6. (i) Let F = {fx}x∈[0,1] be an MSF. If
1∫
0

fx(t) dt = x is fulfilled

for all x ∈ [0, 1] then F is called a Standard Monotone System of Functions,
or SMSF for brevity.

(ii) Let F (i) =
{

f
(i)
x

}
x∈[0,1]

, i = 1, 2, . . . , n, be an SMSF.

Then Fn = (F (1),F (2), . . . ,F (n)) is called an n-tuple of the Standard Mono-
tone Systems of Functions, or n-SMSF for brevity.

Remark 1. It follows directly from Definition 3 and 6 that the set containing all
the MSF and SMSF is convex.

Example 2 ([9]). Consider an SMSF F = {fx}x∈[0,1] such that

fx(t) =

{
1 for x ∈ ]0, 1] and t ∈ [0, x],
0 otherwise.

(5)

Denote x(0) = 0 and A(fx1(t), . . . , fxn
(t)) = A(1{(i),...,(n)}) for t ∈ ]

x(i−1), x(i)

]
.

Then for an arbitrary n ≥ 2, an arbitrary n-ary aggregation function A and the
n-tuple Fn = (F , . . . ,F) the following holds

AFn
(x) =

∫ 1

0

A(fx1(t), . . . , fxn
(t))dt

=
∫ x(1)

0

A(1{(1),...,(n)})dt +
∫ x(2)

x(1)

A(1{(2),...,(n)})dt + · · · +

+
∫ x(n)

x(n−1)

A(1{(n)})dt

=x(1)mA({(1), . . . , (n)}) + (x(2) − x(1))mA({(2), . . . , (n)}) + · · · +
+ (x(n) − x(n−1))mA({(n)}) = ChmA

(x),

where mA : 2{1,...,n} → [0, 1] is a capacity given by mA(E) = A(1E), (·) :
{1, . . . , n} → {1, . . . , n} is any permutation satisfying x(1) ≤ x(2) ≤ · · · ≤ x(n),
and ChmA

is the Choquet integral (see [3,6]) with respect to the capacity mA.
This fact shows that our construction method can be seen as a significant exten-
sion of the Choquet integrals.

3 0 - 1 Valued Standard Monotone Systems of Functions

In the rest of the paper we will consider only standard monotone systems of
functions F = {fx}x∈[0,1] that fulfill the constraint fx(t) ∈ {0, 1} for all x ∈ [0, 1]
and t ∈ [0, 1]. We will call them 0-1-valued monotone systems of functions,
abbreviation 0-1-SMSF.

Let F = {fx}x∈[0,1] and G = {gx}x∈[0,1] be 0-1-valued monotone systems of
functions and F = (F ,G) be a pair of 0-1-SMSF. Define CF : [0, 1]2 → [0, 1] by

CF(x, y) =
∫

fx(t)gy(t)dt. (6)
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Let A be a binary aggregation function. Then, obviously

AF(x, y) =
∫ 1

0

A(fx(t), gy(t))dt

=
(
x − CF(x, y)

)
A(1, 0) +

(
y − CF(x, y)

)
A(0, 1) + CF(x, y).

In other words, knowing CF we know the result of the GCS-transform AF of A.
We will focus our attention only to binary aggregation functions and their

GCS-transforms.

Proposition 2. Let F = {fx}x∈[0,1] and G = {gx}x∈[0,1] be arbitrary 0-1-SMSF
and F = (F ,G). Then, CF defined by formula (6) is a copula.

Proof. Directly by Definitions 3 and 6 we have that CF is a semi-copula. Let us
prove the two-increasingness. Assume x1 ≥ x2 and y1 ≥ y2 be arbitrary elements
of [0, 1]. Then for all t ∈ [0, 1] the following holds

fx1(t) ≥ fx2(t), gy1(t) ≥ gy2(t). (7)

These imply

CF(x1, y1) − CF(x2, y1) =
∫ 1

0

(fx1(t) − fx2(t))gy1(t)dt (8)

CF(x1, y2) − CF(x2, y2) =
∫ 1

0

(fx1(t) − fx2(t))gy2(t)dt. (9)

Formulae (8) and (9) imply

(CF(x1, y1) − CF(x2, y1)) − (CF(x1, y2) − CF(x2, y2))

=
∫ 1

0

(fx1(t) − fx2(t))(gy1(t) − gy2(t)dt,

and by inequalities (7),
∫ 1

0

(fx1(t) − fx2(t))(gy1(t) − gy2(t)dt ≥ 0.

��
Definition 7. Let F = {fx}x∈[0,1] and G = {gx}x∈[0,1] be arbitrary 0-1-SMSF
and F = (F ,G). Then we denote CF the copula given by Eq. (6) and we say that
CF is generated by F.

The following example illustrates some 0-1-SMSF and the copulas they generate.

Example 3. Denote F̃ = {fx}x∈[0,1] where fx are given by formula (5). Further,
set G1 = { 1gx}x∈[0,1], G2 = { 2gx}x∈[0,1], G3 = { 3gx}x∈[0,1], G4 = { 4gx}x∈[0,1],
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G5 = { 5gx}x∈[0,1], where igx are given by formulae (10), (11), (12), (13) and
(14), respectively:

1gx(t) =

{
1 if t ∈ [0, x

2 ] ∪ [1 − x
2 , 1],

0 otherwise,
(10)

2gx(t) =

{
1 if t ∈ [1−x

2 , 1+x
2 ],

0 otherwise,
(11)

3gx(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for: x ≤ 1
2 and t ∈ [0, x],

x ∈ ]
1
2 , 3

4

[
and t ∈ [

0, 1
2

] ∪ [
3
2 − x, 1

]
,

t ≥ 3
4 and t ∈ [

0, x − 1
4

] ∪ [
3
4 , 1

]
,

0 otherwise,

(12)

4gx(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for: x ≤ 1
2 and t ∈ [0, x2] ∪ [1 − x + x2, 1],

x ∈ ]
1
2 , 3

4

[
and t ∈ [

0, 1
4

] ∪ [
3
4 , 1

] ∪ [
1 − x, 1

2

]
,

t ≥ 3
4 and t ∈ [

0, x − 1
4

] ∪ [
3
4 , 1

]
,

0 otherwise,

(13)

5gx(t) =

{
1 for t ∈ [

0, x
2

] ∪ [
1
2 , 1

2 (2 − x)
]
,

0 otherwise.
(14)

t

x

1

0

1

0.5

x x
+

y−
1

y
2

0.5

Fig. 1. Left the layout of G1, right the copula CF
(1)

where F
(1) = (F̃ ,G1)

The copula sketched in the right part of Fig. 1 is the so-called tent copula
(see, e.g., [4]).

The following lemma is straightforward.

Lemma 3. Let F = {fx}x∈[0,1] and G = {gx}x∈[0,1] be arbitrary 0-1-SMSF.
Then
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Fig. 2. Left the layout of G2, right the copula CF
(2)

where F
(2) = (F̃ ,G2).
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Fig. 3. Left the layout of G3, right the copula CF
(3)

where F
(3) = (F̃ ,G3)

(a) CF = M for F = (F ,F),
(b) if F = (F ,G) generates a copula CF then F = (G,F) generates the copula

CF such that CF(x, y) = CF(y, x),
(c) C F̂ = W for F̂ = (F ,Fd), where Fd = {fd

x}x∈[0,1] and fd
x (t) = 1 − f1−x(t).

Proposition 3. Let F̃ be the 0-1-SMSF defined by formula (5). There exists a
pair of 0-1-SMSF G = (G(1),G(2)) and the copula CG generated by G such that
for arbitrary 0-1-SMSF F = {fx}x∈[0,1] and the pair of 0-1-SMSF F = (F̃ ,F)
we have

CG 
= CF.

Proof. Choose (x, y) ∈ [0, 1]2. Then

CF(x, y) =
∫ x

0

fy(t)dt.

There are three possibilities for the result of CF(x, y).
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Fig. 4. Left the layout of G4, right the copula CF
(4)

where F
(4) = (F̃ ,G4)
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Fig. 5. Left the layout of G5, right the copula CG where G = (G1,G5)

1. gy(t) = 0 almost everywhere on the interval [0, x], i.e., λ({t ∈ [0, x]; gy(t) 
=
0}) = 0, where λ is the Lebesgue measure. In this case CF(x, y) = 0.

2. There exists ϕ(y) ∈ [0, 1] such that fy(t) = 1 almost everywhere on the
interval [0, ϕ(y)] and, if x > ϕ(y) fy(t) = 0 almost everywhere on [ϕ(y), x].
Then

CF(x, y) =

{
x if x ≤ ϕ(y),
ϕ(y) if x > ϕ(y).

3. There exists a countable (finite or infinite) system of pairwise disjoint intervals
{[ai, bi]}i∈I such that [ai, bi] ∩ [0, x] 
= ∅, fy(t) = 1 almost everywhere for
t ∈ ⋃

i∈I

and fy(t) = 0 almost everywhere for t ∈ [0, x] \ ⋃
i∈I

. There are two

possibilities:
– bi ≤ x for all i ∈ I, then

CF(x, y) =
∑
i∈I

(bi − ai),
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– there exists j ∈ I such that bj > x, then

CF(x, y) =
∑
i∈I

(bi − ai) − (bj − x).

This gives the following – setting G(1) = G1 and G(2) = G5, where G1 and G5

are defined by formulae (10) and (14), respectively, and G = (G(1),G(2)) (see
also Fig. 5), then the copula CG cannot be generated by any pair of 0-1-SMSF
F = (F̃ ,F). ��
Remark 2. Analysing the proof of Proposition 3 we see that if a copula has a
component that is non-linear in the first variable, then it cannot be generated
by a pair of 0-1-SMSF (F̃ ,F) where F̃ is the 0-1-SMSF defined by formula (5).
Another consequence that can be derived is that the copula CG sketched on
Fig. 5 cannot be generated by a pair of 0-1-SMSF (F̃ ,F) nor by (F , F̃).

A characterization by the second mixed partial derivatives of copulas gener-
ated by pairs of 0-1-SMSF is contained in the following proposition.

Proposition 4. Let F be a pair of 0-1-SMSF and CF the copula generated by
F. Then

∂2CF

∂x∂y
(x, y) = 0 (15)

for all (x, y) ∈ [0, 1]2 where the second mixed partial derivative exists.

Durante et al. [5] have shown that if formula (15) holds for a copula CF then
CF still may have a density.

Finally, we show how we can construct an arbitrary shuffle of M by a pair
of 0-1-SMSF. The family of all shuffles of min is very important, since, as it is
proven in [11], this family is dense in the system of all bivariate copulas.

A geometrical visualisation of a shuffle of min is quite straightforward. We
choose a natural number n > 1, a system of nods 0 = a0 < a1 < · · · < an = 1
and cut the minimum copula parallel to the y-axis into n strips using those
nods. Then we shuffle the strips (this means we choose a permutation Π :
{1, 2, . . . , n} → {1, 2, . . . , n}) and paste them together in the permuted order.
If we denote bi = ai − ai−1 for i ∈ {1, 2, . . . , n} then choosing a permutation
Π : {1, 2, . . . , n} → {1, 2, . . . , n}, a shuffle of min is given by S = 〈n, (bi)ni=1,Π〉.
Example 4. Set n = 5, the permutation Π by (2, 1, 4, 3, 5) and the nodes are given
by (0, 0.3, 0.4, 0.7, 0.9, 1). Then the corresponding 0-1-SMSF G6 = { 6gx}x∈[0,1]

is given by formula (16) and the shuffle copula is then generated by the pair of
0-1-SMSF F6 = (F̃ ,G6) and displayed in Fig. 6.
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Fig. 6. Left the layout of G6, right the copula CF
(6)

where F
(6) = (F̃ ,G6)

The explicit formula for 0-1-SMSF G6 = {6gx}x∈[0,1] is given by

6gx(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 for: x ∈ [0, 0.1] and t ∈ [0.3, x + 0.3],
x ∈ [0.1, 0.4] and t ∈ [0, x − 0.1] ∪ [0.3, 0.4],
x ∈ [0.4, 0.6] and t ∈ [0, 0.4] ∪ [0.7, x + 0.3],
x ∈ [0.6, 0.9] and t ∈ [0, x − 0.2] ∪ [0.7, 0.9],
x ∈ [0.9, 1] and t ∈ [0, x],

0 otherwise.

(16)

Shuffles of min are in [11] described in a more general way than we have
illustrated by Example 4. Namely, the shuffles can be combined with flips (a flip
of the minimum copula M is W ). This combination is sketched in Fig. 3. The
following proposition gives a characterization of all shuffles (possibly combined
with flips) of min as special cases of copulas generated by a pair of 0-1-SMSF. In
this case a shuffle of min is given by 〈n, (bi)ni=1,Π, (mi)ni=1〉, where bi denotes the
width of the i-th strip, Π is a permutation of {1, 2, . . . , n} and mi = 1 (m = 0)
if we use the flip (if we do not use the flip) in the square [ai−1, ai]2, where
ai =

∑i
j=1 bj . We skip the proof of Proposition 5 since the construction there is

just a generalization of formulae (12) and (16).

Proposition 5. Set n > 1 a natural number, for i ∈ {1, . . . , n} let bi > 0 be such

that
n∑

i=1

bi = 1, mi ∈ {0, 1} and Π : {1, . . . , n} → {1, . . . , n} be a permutation.

Denote a0 = ã0 = 0 and for i ∈ {1, . . . , n} ai =
i∑

j=1

bj and ãi =
i∑

j=1

bΠ−1(j).

The shuffle of min given by 〈n, (bi)ni=1,Π, (mi)ni=1〉, is generated by the pair of
0-1-SMSF F = (F̃ ,H), where H = {hx}x∈[0,1] is defined by



Aggregation Functions Transformed by 0 - 1 MSF 547

hx(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 for x ∈ [0, ã1] and t ∈ A1,

x ∈ [ãi−1, ãi] and t ∈ Ai ∪
i−1⋃
j=1

[ãj−1, ãj ], for 2 ≤ i ≤ n,

0 otherwise,

(17)

where, for i ∈ {1, 2, . . . , n},

Ai =

{
[a−1

Π (i) + ãi−1 − x, aΠ−1(i)] if m = 1,

[a−1
Π (i) − 1, x − (aΠ−1(i) − ãi)] if m = 0.

4 Conclusion

This paper contributes to a study of Generalized-Convex-Sum-Transformation
of (binary) aggregation functions. Particularly, we have studied copulas that can
be generated by pairs of 0-1-SMSF (see formula (6)). Though, the 0-1-SMSF F̃
given by formula (5) is, in a sense, a basic 0-1-SMSF, when we like to generate all
possible copulas by pairs of 0-1-SMSF, it is not sufficient to consider only those
pairs where one of the 0-1-SMSF is F̃ . We have also shown that every shuffle of
the minimum copula (possibly combined with flips) can be generated by a pair
of 0-1-SMSF and in Proposition 5 we have written down an explicit formula for
such 0-1-SMSF.
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Abstract. Traditionally, the term aggregation is associated with an
aggregation function, implicitly assuming that any aggregation process
can be represented by a function. However, the concept of computable
aggregation considers that the core of the aggregation processes is the
program that enables it. This new concept of aggregation introduces the
scenario where the aggregation can even be non-deterministic. In this
work, this new class of aggregation is formally defined, and some desir-
able properties related with consistency, robustness and monotonicity
are proposed.
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1 Introduction

Aggregation is a fundamental part of any decision, compression or summarization
process of complex information [1–4]. For many years, aggregation has become
one of the most relevant topics in soft computing, with multiple applications
to decision making, artificial intelligence, data science, and image processing
among many others. Aggregation processes have been associated in literature
with aggregation functions. An aggregation process was usually represented by
means of a function or a family of functions so that the aggregation result asso-
ciated to a vector of elements was obtained through the image of the vector by
the function.
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However, this association between aggregation processes and functions was
broken in [5] with the definition of computable aggregations. In that paper, the
authors put the emphasis in the programs enabling the aggregation processes,
not necessarily being expressed in funct terms of functions. In that sense, the core
of an aggregation process is the program allowing its computation, and not only
the function that describes it. Given a function that describes an aggregation
process, it can be implemented in many ways and the way in which this process is
carried out is relevant. This new idea of aggregation, allow us to classify classical
aggregation operators according to their algorithmic complexity [5], or to classify
aggregation functions according to new ideas of recursivity [6,7] in terms of the
programs instead of the functions.

The rupture between functions and aggregation operators opens the domain
of aggregation processes to a field not yet analyzed in this discipline: non-
deterministic computable aggregations. Aggregation processes where the same
input can produce different outputs. This type of aggregation is very common
in statistics, where, due to the volume of information to be processed, it is fre-
quent to choose a representative sample on which the aggregation is operated.
Obviously, replicating the process does not imply obtaining the same sample
and consequently the result can change. Obviously, these types of aggregation
processes can never be modeled by functions, as a result of the intrinsic defi-
nition of function. But leaving the well known arena of functions, studying the
desirable properties for these new concept of aggregations represents a significant
challenge.

The present paper focuses on the definition of properties related to robust-
ness, stability, boundary conditions, and monotony, on nondeterministic com-
putable aggregations.

2 Preliminaries

2.1 Aggregation Operators

Aggregation is a fundamental part of science. The process of aggregating the
information is a key tool for most knowledge based systems. In general, we can
say that aggregation has the aim of merging different pieces of information to
come to a conclusion or a decision. Several research communities consider this
kind of tools, such as multi-criteria community, decision-sensor fusion commu-
nity, decision making community, data mining community, among many others.

Although this is not a necessary assumption, aggregation operators [4,8–11]
are associated to the use of membership functions, and this is the reason why
they are usually defined as follows:

Definition 1 [12]. An aggregation operator is a mapping Ag : [0, 1]n → [0, 1]
that satisfies:

1. Ag(0, 0..., 0) = 0 and Ag(1, 1, .., 1) = 1.
2. Ag is monotonic.
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Let us observed that this definition presents an aggregation operator as a
function that is linked to the value of n. There is a different function for each
n. Other authors (see [12] for example) present an aggregation operator as a
function that considers any cardinality for the set of items to be aggregated,
defining Ag as a function Ag : ∪n[0, 1]n → [0, 1]]. It is also possible (see for
example [13–15]) to define the concept of family of aggregation functions as a set
{Agn} assuming some additional constraints for the relations between functions
Agk, Agl of different cardinality.

The original definition of aggregation functions work on the unit interval.
This classical definition has been extended to a more general class of situations
replacing the lattice [0, 1] into a more general scenario T . Another extension of
aggregation operators was done by relaxing the monotonicity or boundary condi-
tions. One of these new classes of aggregation operators are the pre-aggregation
functions in which the concept of directional monotonicity was introduced [16].
These pre-aggregations could be extended replacing the unit interval for a gen-
eral T as it is done with the classical aggregation functions. We can find some
interesting studies in this line in [17].

It is even possible in some cases to define aggregation processes going beyond
functions by considering methods that do not match with the concept of function.
To analyze this option let us first remind the concept of Computable aggregation,
as well as that of function.

2.2 Computable Aggregation

In [5], it was introduced the concept of computable aggregation focusing on the
idea that in aggregation processes we should pay our attention in the program
that makes possible the aggregation instead of a generic function that has not
yet been implemented.

Would it make sense to talk about an aggregation process where the consid-
ered function could not be implemented?. From the actual definition of aggrega-
tion operator the answer is yes of course. Or even more, given the same aggrega-
tion function, it is not equivalent at all to implement it in one way or another.
And therefore, it would make sense to analyze the properties of the implementa-
tion (program), although from the functional point of view both implementations
coincide. The main contribution in [5] was to separate the strong association that
existed between “aggregation processes” and explicit functions.

In order to formally introduce computable aggregations it is necessary first
to introduce what we understand by a program, a list and/or an algorithm.

Definition 2. A list L is an abstract data type (ADT) that represents a sequence
of values. A list can be defined by its behavior, and its implementation must
provide at least the following operations: test whether a list is empty, add a
value, remove a value, and compute the length of a list (number of elements).

A list can be defined under a template data type. For example, a list L<[0, 1]>
is a list of values in the space X = [0, 1].
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Another definition that we need to give here is what we understand by algo-
rithm and computer program. These concepts are necessary to formally define
computable aggregations.

Definition 3 [18]. In mathematics and computer science, an algorithm is a
self-contained step-by-step set of operations to be performed.

Algorithms can be expressed in many kinds of notation, including natural lan-
guages, pseudocode, flowcharts, drakon-charts, programming languages or control
tables.

Definition 4 [19]. A computer program, or simply a program, is a sequence
of instructions written to perform a specified task on a computer.

Now, we are able to define the concept of a computable aggregation as it was
defined in [5].

Definition 5. Let L<T> be a finite and non-empty list of n elements with type
T . A computable aggregation is a program P that transform the list L<T>
into an element of T .

3 Non Deterministic Computable Aggregations

It is important to emphasize that the computable aggregation paradigm broad-
ens the set of possible aggregation methods, being in this case not limited to
those methods for which there is a function that explains the aggregation pro-
cess.

In [7], it was demonstrated that any classical aggregation process (aggrega-
tion operators, pre-aggregations, fusion functions or extended fusion functions)
can be implemented by an algorithm and by a program. However the opposite
is not always true.

As was mentioned in [5], given an aggregation operator Ag in any of the
previous settings, it is possible to build a program P that for any list L of T ,
Ag|L|(L) = P (L).

But let us note that the opposite is not always true. Given a program P , there
exist some situations in which it is not possible to build a function associated to
the program P .

Example 1. Let’s consider a population X of size n (X = {x1, . . . , xn}). Suppose
that the objective of the aggregation process is to estimate the average value of
X. If n is too large considering the available time for computing the aggregation,
a reasonable solution would be to estimate the average value through statistical
sampling. In such a situation, k elements of the population will be drawn at
random to further calculate the average, i e., given the set {x1, ..xn}, we choose
{xi1, . . . , xik} at random, computing the arithmetic mean of these k elements.
Obviously, this aggregation process can’t be defined by means of an explicit
function since the same input does not always produce the same output. This
is a computable aggregation that can’t be modeled as an aggregation function,
and it is important to integrate such a situation in aggregation processes.
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From previous example we can distinguish between those computable aggre-
gations in which there exist an explicit function, from those in which this explicit
function does not exist. Formally we can partition the set of computable aggre-
gation programs into two groups. In order to establish this partition we will
introduce first the concept of deterministic algorithm and program.

It is important to notice that in this framework, the concept of determinism
is approached in two different ways:

– A determinism that only considers input/output relations.
– A determinism that considers the whole process, including the internal states.

With the first approach, a deterministic algorithm will be an algorithm which,
given a particular input, will always produce the same output. On the other
hand, the second approach assumes also that the underlying machine always
passes through the same sequence of states.

From the point of view of computer programs as implementation of aggre-
gation processes, our interest relies on input-output relations. Consequently we
will focus on the first conception when defining a deterministic program.

Definition 6. A program P is deterministic, or repeatable, if it produces the
very same output when given the same input no matter how many times it is
run.

It would be possible adding to this definition of deterministic program, a
concept similar to the same sequence of states considered for the deterministic
algorithm. In fact, according to [20], in a deterministic program there is at most
one instruction to be executed next, so that from a given initial state only one
execution sequence is generated. This could be a good option in case we were
interested in the verification of a program, being the execution process a key
aspect. But it is obviously too restrictive for our purpose, since we are only
interested in the result of the Program. Consequently, we will consider Defini-
tion 6 as our conception of a deterministic program.

No matter which of the two possible definitions we consider, when applying
a deterministic program P we can refer to the output produced for a particular
input (a list L), as P (L). That is because the same input (L) will always produce
the same output (P (L)), generating a mapping.

Obviously, a program or an algorithm are non-deterministic when they do
not match with the previous definitions.

It is clear according to the definitions that (when having the same app-
roach to determinism) a non-deterministic algorithm will always produce a non-
deterministic program. Consequently, when analyzing if a computable aggrega-
tion is deterministic or non-deterministic we should simply consider the corre-
sponding Program.

Definition 7. A computable aggregation P over the set T is non deterministic
if and only if the program P is non deterministic.
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From this definition we will say that a computable aggregation P is deter-
ministic when the program P is deterministic, implying that the underlying
algorithm is also deterministic.

Let us denote by PD the class of deterministic computable aggregations and
by PND the set of non deterministic computable aggregations.

From now on, we will analyze the case in T = [0, 1].

3.1 Some Non Deterministic Computable Aggregations

It is obvious that in many cases the non-deterministic behavior of a program
relates to an inappropriate coding that generates an unexpected problem. This
is usually the case when we have a deterministic algorithm that being wrongly
programed produces a non-deterministic output. But this is not the kind of
non-determinism we are interested in. Our interest relies on programs describing
aggregation processes that are intrinsically non-deterministic, processes where,
as an example, random or probabilistic decisions are involved.

In this subsection, we will define some interesting cases of non deterministic
computable aggregations (NDCAs).

Definition 8. Given a value p ∈ (0, 1], and given a family of aggregation oper-
ators {Agn : [0, 1]n −→ [0, 1], n ≥ 2} , let us define the computable aggregation
PAg,p as the two steps program that for a given list l = (x1, . . . , xn) ∈ L<[0, 1]>
performs the following actions:

– Step 1. To reduce the list l into another list lp of lower (or equal) dimension
by randomly erasing the elements of the list with probability 1 − p.

– Step 2. To return the value Ag|lp|(lp) if |lp| ≥ 2 and 0 otherwise.

Note that the computable aggregation PAg,p=1 coincides with the program
associated with the family of aggregation operators {Agn, n ≥ 2} and is deter-
ministic since the list lp = l when p = 1.

Obviously, PAg,p as described in Definition 8 is not only a computational
aggregation, it is in fact a generic approach that induces as many different com-
putable aggregation as the possible families of aggregation operators {Agn}. In
particular, we will analyze in this paper three cases: the arithmetic mean, max-
imum and minimum aggregation operators. From now on, we will denote the
three of them as: PM,p, PMax,p and PMin,p described as the sample mean or
average, the sample maximum and the sample minimum respectively.

Another way to build a class of Non deterministic computable aggregations
should be to fix a value k, and randomly select k elements from the list, as those
to be aggregated. Given a list of n elements of [0, 1], l = {x1, . . . , xm} ∈ <[0, 1]>,
let us denote by Selk a program that randomly chooses a sample (without re-
sampling) of k elements of the list if m ≥ k, and maintains the same list in other
case.

Definition 9. Given a family of aggregation operators {Agn n ≥ 2}, the com-
putable aggregation PAg,k, with k ≤ n, is defined as the program that for a given
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list l of m elements, first applies the procedure l′ = Selk(l), and then computes
the value Ag|l′|(l′).

It is very easy to see that the computable aggregation PAg,k is also a non-
deterministic computable aggregation (being deterministic when k ≥ m). The
main difference with the previous computable aggregation is that here the dimen-
sion of the list to be aggregated is upper bounded by k, consequently the family
of aggregation operators is also bounded in dimension, no matter the dimensions
of the list to be aggregated.

Definition 10. Given a normal distribution N(μ, σ) and a family of aggregation
operators {Agn : [0, 1]n −→ [0, 1], n > 2}, we define the noisy computable
aggregation PN(μ,σ),Ag as the program that for any list l ∈ <[0, 1]>, with
|l| ≤ n, returns PN(μ,σ),Ag = Ag(lN ), where lN is the list generated by replacing
each element in l with the same element after being modified by adding noise
generated by the normal distribution (truncated to 0 or 1 in case that the resulting
value was out of the [0, 1] interval).

Definition 11. The pure random computable aggregation PPR is a program that
for any list l ∈ <[0, 1]> returns a random value in [0, 1].

Definition 12. The bounded random computable aggregation PBR is a pro-
gram that for any list l ∈ <[0, 1]> returns a random value in the interval
[Min(l),Max(l)].

Proposition 1. The computable aggregation operators: PM,p, PMax,p, PMin,p

PAg,k, PN(μ,σ),Ag, PPR, PBR are non deterministic computable aggregation oper-
ators if σ > 0 and p < 1.

An example of C++ program P implementing PM,p and PMax,p is described
in Fig. 1.

Fig. 1. An implementation of PM,p and PMax,p in C++.
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4 Exploring Non Deterministic Computable Aggregations

Given a computable aggregation P that aggregates a list l ∈ L<T>, let us
denote by P(l) the theoretical distribution after all possible realizations of the
program P over the fixed list l. Obviously, if P ∈ PD, the associate P(l) for any
list will be a single value. For non deterministic programs, we will have here a
probability distribution P(l) for each fixed value of l.

In general, given a non deterministic computable aggregation P , it is not
possible to know the theoretical distribution P(l). Nevertheless, we could try to
approximate it by making many realizations of P (l). In the following definition
we distinguish between the empirical and theoretical distribution.

Definition 13. Given a computable aggregation P and given a list l ∈ L<T>,
the distribution of results obtained after n executions of the program P over the
list l, will be referred us the empirical distribution with size n of the program P
over the list l, represented by DPn,l.

Proposition 2. Given a deterministic computable aggregation P , the following
holds:

DPn,l = P(l)

To analyze the aggregation process previously described and implemented by
an NDCA we have several components to consider. There is a list l ∈ L<T>
of elements to be aggregated. There is also a family of aggregation operators
({Agn}) underlying in the non deterministic aggregation process. Finally, two
distributions describe the aggregation process: the theoretical distribution P(l)
and the empirical distribution (DPn,l). It is obvious that the interactions and
relations among these elements will describe and characterize an NDCA.

Some of the questions to be considered are obvious, as the relations between
the properties of both distributions (the theoretical and the empirical). But it
could also be interesting to consider potential relations between some properties
of the list l (analyzed as a distribution) and the corresponding properties of
the theoretical/empirical distribution. Another important question could be to
compare the result produced by the deterministic underlying aggregation, that is
Ag|l|(l), and some properties of the distributions (mean, median, etc) generated
by the NDCA.

As said before, it is in general not possible to know the theoretical distribution
generated by a non deterministic computable aggregation P when applied on a
list l (P(l)). We will replace it with an empirical distribution (DPn,l), and we
need both to have similar properties.

In that sense we can define the concept of robustness of an NDCA as a
measure of the similarity of both distributions (theoretical and empirical).

Definition 14 Robust. A non deterministic computable aggregation P is said
to be Robust, if and only if, for any l ∈ L<[0, 1]>, for any t ∈ [0, 1], and for
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any ε > 0, there exists n0 such that the absolute difference between the empirical
distribution function

̂DPl,n(t) =
number of elements inDPl,n ≤ t

n

and the real distribution function FP (l)(t) is lower than ε for n ≥ n0.

4.1 Empirically Exploring Non Deterministic Computable
Aggregations

Given a non deterministic computable aggregation P = agg and a list l, Fig. 2
presents a C++ program generating the empirical distribution DPn,l for a list l
with length 1000.

Fig. 2. An implementation of Daggl,n in C++.

Figure 3 presents the empirical distribution (DPn,l) for some of the previously
defined NDCAs1, with n = 1000 and being l a list of 10000 random values2

generated either using a uniform(0,1) distribution or a Normal(0.5,0.1) bounded
in [0, 1]3.

Note that the sample and the noisy mean NDCA have a normal distribution
and the pure random and bounded pure random NDCA have uniform distri-
bution. Note also that the sample min and the sample max NDCA have more
dispersion in the N(0.5, 0.1 population generated list that with the U(0, 1) pop-
ulation generated list.
1 The C++ program could be downloaded from https://github.com/lgarmend/

NonDeterministicComputableAggregations/.
2 The generated population is available in file GeneratedPopulationData.txt,

at https://github.com/lgarmend/NonDeterministicComputableAggregations/blob/
master/GeneratedPopulationData.txt.

3 The executions lists are saved in file GeneratedExecutionsList.txt for the cases of
uniform and Normal population distribution.

https://github.com/lgarmend/NonDeterministicComputableAggregations/
https://github.com/lgarmend/NonDeterministicComputableAggregations/
https://github.com/lgarmend/NonDeterministicComputableAggregations/blob/master/GeneratedPopulationData.txt
https://github.com/lgarmend/NonDeterministicComputableAggregations/blob/master/GeneratedPopulationData.txt
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Fig. 3. Empirical distribution for some NDCAs

5 Characterizing Non Deterministic Computable
Aggregations

Three properties were initially considered in aggregation operators theory: two
boundary conditions plus monotonicity property. Taking into account now that
for a non-deterministic computable aggregation the output for a fixed input
does not necessarily have to be a single-point value, in this section we will try
to extend (or at least give possible extensions) of how these concepts could be
generalized in the context of non deterministic computable aggregations.

In the following definition, we present the pure case in which a computable
aggregation satisfies the boundary conditions and also the idempotent property.
Firs at all, let us denote by la a list with all elements equal to a, i.e la = (a, . . . , a).

Definition 15 A computable aggregation P over the set T = [0, 1] is idempotent
if and only P (la) = a for all a ∈ [0, 1].

Definition 16 A computable aggregation P over the set T = [0, 1] satisfies the
two classical boundary conditions if and only the following holds:

– P (l0) = 0.
– P (l1) = 1.

Let us note that if a computable aggregation is idempotent then it satisfies
the two boundary condition.
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Proposition 3 If the family {Agn} of aggregation operators is idempotent, then
the following holds:

– The computable aggregation PAg,p is idempotent.
– The computable aggregation PAg,k is idempotent.

As a consequence of the previous proposition the following corollary holds.

Corollary 1. The computable aggregations PM,p, PMax,p, PMin,p, PM,k,
PMax,k, PMix,k are idempotent.

Proposition 4. If the family {Agn} of aggregation operators satisfies the bound-
ary conditions then the following holds:

– The computable aggregation PAg,p satisfies the boundary conditions.
– The computable aggregation PAg,k satisfies the boundary conditions.

As a consequence of the previous proposition the following corollary holds.

Corollary 2. The computable aggregations PM,p, PMax,p, PMin,p, PM,k,
PMax,k, PMix,k satisfy the boundary conditions.

Proposition 5. The computable aggregations PBR, PPR, PN(μ,σ) are non idem-
potent and do not satisfy the boundary conditions.

In previous section we introduced robustness as the way to establish that both
the theoretical and the empirical distributions are similar. This idea will allow
us to work on the basis of DPl,n, considering that in most cases the theoretical
distribution is unknown.

We will introduce now the idea of consistency of an NDCA, as the property
that considers how close is the behavior of P , with that of Ag, the underlying
aggregation process considered by the NDCA.

Definition 17 Consistent in φ. A non deterministic computable aggregation
P is said to be robust in φ, if and only if, for any l ∈ L<[0, 1]>, and for any
ε > 0, there exists n0 such that the absolute difference between φ(π(DPl,n)) and
φ(l) is lower than ε for any n ≥ n0, where (π(DPl,n)) is the vector representation
of the set DPl,n.

Proposition 6 If p ∈ (0, 1], the following holds:

– PM,p is Consistent in mean.
– PMax,p is Consistent in Max.
– PMin,p is Consistent in Min.

Proof. For random sample theory, it can be seen that the convergence of
M(π(DPl,n) is M(l), Max(π(DPl,n) is Max(l) and Min(π(DPl,n) is Min(l).

It would be also important to consider how the dispersion of DPl,n evolves
with n. Ideally we would like the dispersion to reduce when n increases.
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Definition 18 Concentrate. A non deterministic computable aggregation P
is said to concentrate when the dispersion of DPl,n decreases (is non increasing)
with n.

Now let us define what we understand as monotonicity in non deterministic
computable aggregation, since for the deterministic the definition can be repro-
duced in the same way. A definition of monotony for any function f : X −→ Y
required first the definition of an order in the spaces X and Y , in such a way
if we have two inputs l, l′ ∈ X with l ≤X l′ then monotonicity implies that
f(l) ≤Y f(l′).

Taking into account this, if we want to define some class of monotonicity in
the case of non-deterministic computable aggregations we have to define first
an order in the input space (the set of possible lists L<[0, 1]>) and also an
order relation in the space of finite subsets of [0, 1]. Let us denote by ˜≤L<[0,1]>

an order between lists and let us denote by ˜≤PF [0,1] an order between finite
sets contained in [0, 1]. Once these two order relations be explicitly defined, the
monotony definition is fixed as follow:

Definition 19 Let ˜≤L<[0,1]> be a partial order on the list set and let ˜≤PF [0,1]

be a partial order on the sets of finite sets contained in [0, 1], then a computable
aggregation P is monotone if and only if given any pair of lists l and l′ with
l ˜≤L<[0,1]>l′ this implies that DPl,n ˜≤PF [0,1]DPl′,n with n large enough.

Although this definition is perfectly valid, it would be interesting to study in
deep different possibilities that will produce different ideas of monotonicity. In
particular, in this article we provide a possible order but others could be defined.

The problem of establishing a possible order among the set of ordered lists
does not seem very complex if we focus on the case in which the lists presents
equal size, since the order relationship coincides with the natural order relation-
ship in [0, 1]k, so we will consider that natural order. The case of order over finite
sets (even if they have the same size) is much more complex.

In this paper, we propose a possible idea of order that is related with a
majority rule. A finite set S ≤T S′ if and only if the following holds:

|{(x, y) ∈ S × S′ / x ≤ y}| ≥ |{(x, y) ∈ S × S′ / y ≤ x}|.

Just to put an example we have that the set S = {0.1, 0.3, 0.5} is lower
than S′ = {0.2, 0.6, 0.7} since from the 9 pairwise comparison the elements of
S′ win in 7 of the cases. Taking into account this consideration the following
monotonicity definition is given:

Definition 20 Tournament monotonicity. A non deterministic computable
aggregation P over the domain T is Tournament monotonic if and only if for
any pair of lists l,l′ of T with the same cardinal such that l ≤ l′ there exist n0

in which the following holds

DPn,l ≤T DPn,l′ for n ≥ n0.
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6 Conclusions

The definition of Computable aggregation implies a rupture between functions
and aggregation processes allowing the incorporation of a new class of aggre-
gations: the non deterministic computable aggregation. This new class of com-
putable aggregations is characterized by aggregations where the result of the
process could change even if we fix the information that has to be aggregated.
Obviously, no function can model this class of aggregation process since by def-
inition the output of a function is always the same for a fixed input value.

It is important to emphasize that there are many real situation in which the
information is aggregated in a non deterministic way. For example, any inference
based on random sampling is a well-known example of this. If the population
is huge, it is very frequent to obtain a sample and operate over it. But this is
not the only case, any aggregation process in which randomness appear could be
understood as a non deterministic process. Many artificial intelligence or machine
learning aggregation process could be classified also as non deterministic.

In this paper, we have tried to define some desirable properties for these new
class of aggregation process as robustness, stability, boundary conditions, and
monotonicity. This questions open the gate for further research.
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1 Introduction

The Choquet integral [4] can be regarded as a generalization of additive aggre-
gation functions replacing the requirement of additivity by that of comonotone
additivity. In recent years it was shown that, in some cases, additive aggregation
functions are not appropriate to model even quite simple situations, which, on
the other hand, can be treated with Choquet integrals [1,5,8,9,14,15]. In the
literature, some generalizations of the Choquet integral appeared: in [11,12,16]
the product operator was replaced by a more general function; in the same
pattern, using the distributivity of the product operator and then replacing
its two instances by two different functions under some constraints, in [6,17],
generalizations of the Choquet integral were obtained; some Choquet-like inte-
grals defined in terms of pseudo-addition and pseudo-multiplication are studied
in [18]; a fuzzy t-conorm integral that is a generalization of Choquet integral is
introduced in [19]; a non-linear integral that need not be increasing is introduced
in [20]; a concave integral generalizing the Choquet integral is introduced in [13];
and a level dependent Choquet integral was also introduced in [10]. An overview
of some recent extensions of the Choquet integral can be found in [7].

Our aim is to replace the difference between the inputs in the definition of the
Choquet integral by a restricted dissimilarity function [2,3] in order to generalize
the Choquet integral. We refer to the obtained function as d-Choquet integral.
This approach allows us to construct a wide class of new functions, d-Choquet
integrals, which, unlike the “standard” Choquet integral, may be possibly outside
of the scope of aggregation functions, since the monotonicity may be violated for
some restricted dissimilarity function, and also the range of such functions can
be wider than [0, 1]. Our work can be seen as the first step to the generalization
of the Choquet integral to various settings where the difference causes problems
(for example, intervals).

The structure of the paper is as follows. First, we present some preliminary
concepts. In Sect. 3, we introduce the notion of d-Choquet integral, describe its
construction in terms of automorphisms and study its monotonicity and direc-
tional monotonicity. Conclusions and future research are described in Sect. 4.

2 Preliminaries

The necessary basic notions and terminology are recalled in this section.
A function δ : [0, 1]2 → [0, 1] is called a restricted dissimilarity function on

[0, 1] if it satisfies, for all x, y, z ∈ [0, 1], the following conditions:

1. δ(x, y) = δ(y, x);
2. δ(x, y) = 1 if and only if {x, y} = {0, 1};
3. δ(x, y) = 0 if and only if x = y;
4. if x ≤ y ≤ z, then δ(x, y) ≤ δ(x, z) and δ(y, z) ≤ δ(x, z).

An n-ary aggregation function is a mapping A : [0, 1]n → [0, 1] satisfying the
following properties:
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(A1) A is increasing in each argument;
(A2) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

An automorphism of [0, 1] is a continuous, strictly increasing function ϕ :
[0, 1] → [0, 1] such that ϕ(0) = 0 and ϕ(1) = 1. Moreover, the identity on [0, 1]
is denoted by Id.

It is well-known that a function f : [0, 1]n → [0, 1] is additive if

f(x1 + y1, . . . , xn + yn) = f(x1, . . . , xn) + f(y1, . . . , yn) (1)

for all (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n such that (x1+y1, . . . , xn+yn) ∈ [0, 1]n.
From now on, [n] denotes the set {1, . . . , n}. Vectors (x1, . . . , xn), (y1, . . . , yn) ∈
[0, 1]n are comonotone if there exists a permutation σ : [n] → [n] such that
xσ(1) ≤ . . . ≤ xσ(n) and yσ(1) ≤ . . . ≤ yσ(n). A function f : [0, 1]n → [0, 1]
is called comonotone additive if Equality (1) holds for all comonotone vectors
(x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n such that (x1 + y1, . . . , xn + yn) ∈ [0, 1]n.

A function μ : 2[n] → [0, 1] is called a fuzzy measure on [n] if μ(∅) = 0,
μ([n]) = 1 and μ(A) ≤ μ(B) for all A ⊆ B ⊆ [n].

Let r = (r1, . . . , rn) be a real n-dimensional vector such that r �= 0. A
function f : [0, 1]n → [0, 1] is r-increasing if, for all (x1, . . . , xn) ∈ [0, 1]n and for
all c ∈ ]0, 1] such that (x1 + cr1, . . . , xn + crn) ∈ [0, 1]n, it holds

f(x1 + cr1, . . . , xn + crn) ≥ f(x1, . . . , xn).

A function f : [0, 1]n → [0, 1] is said to be an n-ary pre-aggregation function if
f(0, . . . , 0) = 0, f(1, . . . , 1) = 1 and f is r-increasing for some real n-dimensional
vector r = (r1, . . . , rn) such that r �= 0 and ri ≥ 0 for every i = 1, . . . , n. In this
case, we say that f is an r-pre-aggregation function.

3 d-Choquet Integral

A new approach to generalization of Choquet integral based on dissimilarity
functions is introduced in this section and its monotonicity is studied.

The discrete Choquet integral on the unit interval with respect to a fuzzy
measure μ : 2[n] → [0, 1] is defined as a mapping Cμ : [0, 1]n → [0, 1] such that

Cμ(x1, . . . , xn) =
n∑

i=1

(xσ(i) − xσ(i−1))μ
(
Aσ(i)

)
(2)

where σ is a permutation on [n] satisfying xσ(1) ≤ . . . ≤ xσ(n), with the conven-
tion xσ(0) = 0 and Aσ(i) = {σ(i), . . . , σ(n)}.

In order to generalize the Choquet integral, we replace the difference xσ(i) −
xσ(i−1) by a restricted dissimilarity function δ : [0, 1]2 → [0, 1] and refer to the
obtained function as d-Choquet integral.



568 H. Bustince et al.

Definition 1. Let n be a positive integer and μ : 2[n] → [0, 1] be a fuzzy measure
on [n]. Let δ : [0, 1]2 → [0, 1] be a restricted dissimilarity function. An n-ary dis-
crete d-Choquet integral on [0, 1] with respect to μ and δ is defined as a mapping
Cμ,δ : [0, 1]n → [0, n] such that

Cμ,δ(x1, . . . , xn) =
n∑

i=1

δ(xσ(i), xσ(i−1))μ
(
Aσ(i)

)
(3)

where σ is a permutation on [n] satisfying xσ(1) ≤ . . . ≤ xσ(n), with the conven-
tion xσ(0) = 0 and Aσ(i) = {σ(i), . . . , σ(n)}.

It is easy to check that, in general, the range of Cμ,δ need not be a subset of
[0, 1], but it is a subset of [0, n]. The following condition assures that the outputs
of d-Choquet integral Cμ,δ would be from [0, 1], which is often a desired property
for some applications:

(P1) δ(0, x1) + δ(x1, x2) + . . . + δ(xn−1, xn) ≤ 1 for all x1, . . . , xn ∈ [0, 1] where
x1 ≤ . . . ≤ xn.

Under the condition we obtain Cμ,δ : [0, 1]n → [0, 1] so we have the following
straightforward result.

Proposition 1. Let Cμ,δ : [0, 1]n → [0, n] be an n-ary discrete d-Choquet inte-
gral on [0, 1] with respect to μ and δ given by Definition 1. If δ satisfies the
condition (P1), then

Cμ,δ(x1, . . . , xn) ∈ [0, 1]

for all x1, . . . , xn ∈ [0, 1] and for any measure μ.

Example 1. Let μ be a fuzzy measure on {1, 2, 3} defined by μ({1}) = μ({2}) =
μ({3}) = 0.3, μ({1, 2}) = 0.75, μ({2, 3}) = 0.55 and μ({1, 3}) = 0.6.

(i) Then

Cμ(0.2, 0.9, 0.6) = 0.2 · 1 + 0.4 · 0.55 + 0.3 · 0.3 = 0.51.

It is easy to see that for δ(x, y) = |x − y| it holds Cμ,δ = Cμ for any possible
inputs and any measure μ.

(ii) However, if δ(x, y) = (x − y)2 we have

Cμ,δ(0.2, 0.9, 0.6) = 0.04 · 1 + 0.16 · 0.55 + 0.09 · 0.3 = 0.155.

(iii) Finally, taking

δ(x, y) =
{

0, if x = y;
|x−y|+1

2 , otherwise,

we obtain

Cμ,δ(0.2, 0.9, 0.6) = 0.6 · 1 + 0.7 · 0.55 + 0.65 · 0.3 = 1.18,

where we can see that Cμ,δ(0.2, 0.9, 0.6) > 1. This may happen since the condi-
tion (P1) is not satisfied as can be seen if we take, for instance, (0, 0.5, 1).
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The construction of d-Choquet integrals is directly connected with the con-
struction of restricted dissimilarity functions with desired properties. In [2], a
construction method for restricted dissimilarity functions in terms of automor-
phisms was introduced.

Proposition 2 [2]. If ϕ1, ϕ2 are two automorphisms of [0, 1], then the function
δ : [0, 1]2 → [0, 1] defined by

δ(x, y) = ϕ−1
1

(
|ϕ2(x) − ϕ2(y)|

)

is a restricted dissimilarity function.

We write Cμ,ϕ1,ϕ2 instead of Cμ,δ if the restricted dissimilarity function δ is
given in terms of automorphisms ϕ1, ϕ2 as in the previous proposition.

Proposition 3. Let n be a positive integer, δ : [0, 1]2 → [0, 1] be a restricted dis-
similarity function given in terms of automorphisms ϕ1, ϕ2 as in Proposition 2.
If ϕ1 ≥ Id for all x ∈ [0, 1], then δ satisfies (P1).

Example 2. The restricted dissimilarity functions δ(x, y) = (x − y)2, δ(x, y) =
|√x − √

y|, δ(x, y) = |x2 − y2| and δ(x, y) = (
√

x − √
y)2 satisfy the condition

(P1) which means that the corresponding d-Choquet integrals have the ranges
in [0, 1]. However, for the restricted dissimilarity function δ(x, y) =

√|x − y|,
the condition (P1) is violated. For instance, δ(0, 0.1) + δ(0.1, 1) = 1.2649 > 1.

Clearly, d-Choquet integral Cμ,δ for the restricted dissimilarity function
δ(x, y) = |x − y| recovers the “standard” Choquet integral.

Theorem 1. Let n be a positive integer, μ : 2[n] → [0, 1] be a fuzzy measure on
[n], δ : [0, 1]2 → [0, 1] be the function δ(x, y) = |x − y|, Cμ,δ : [0, 1]n → [0, 1] be
an n-ary discrete d-Choquet integral on [0, 1] with respect to μ and δ given by
Definition 1 and Cμ : [0, 1]n → [0, 1] be an n-ary discrete Choquet integral on
[0, 1] with respect to μ given by Eq. (2). Then

Cμ,δ(x1, . . . , xn) = Cμ(x1, . . . , xn)

for all x1, . . . , xn ∈ [0, 1].

Corollary 1. Let n be a positive integer, μ : 2[n] → [0, 1] be a fuzzy measure on
[n]. Then

Cμ,Id,Id(x1, . . . , xn) = Cμ(x1, . . . , xn)

for all x1, . . . , xn ∈ [0, 1].

3.1 Monotonicity of d-Choquet Integrals

In general, d-Choquet integrals are not monotone, hence we study conditions
under which a d-Choquet integral is increasing in each component. Note that,
since the boundary conditions are satisfied, any increasing d-Choquet integral is
an aggregation function.
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Theorem 2. Let n be a positive integer, δ be a restricted dissimilarity func-
tion and Cμ,δ be an n-ary d-Choquet integral with respect to μ and δ. Then the
following assertions are equivalent:

(i) For any fuzzy measure μ on [n], Cμ,δ(x1, . . . , xn) ≤ Cμ,δ(y1, . . . , yn) when-
ever x1 ≤ . . . ≤ xn, y1 ≤ . . . ≤ yn, x1 ≤ y1, . . . , xn ≤ yn.

(ii) δ(0, x1)+δ(x1, x2)+. . .+δ(xm−1, xm) ≤ δ(0, y1)+δ(y1, y2)+. . .+δ(ym−1, ym)
for all m ∈ [n] and x1, . . . , xm, y1, . . . , ym ∈ [0, 1] where x1 ≤ . . . ≤ xm,
y1 ≤ . . . ≤ ym, x1 ≤ y1, . . . ,≤ xm ≤ ym.

Corollary 2. Let n be a positive integer, δ be a restricted dissimilarity func-
tion and Cμ,δ be an n-ary d-Choquet integral with respect to μ and δ. If for
all m ∈ [n] there exists an increasing function fm : [0, 1] → [0, 1] such that
δ(0, x1) + δ(x1, x2) + . . . + δ(xm−1, xm) = fm(xm) for all x1, . . . , xm ∈ [0, 1]
where x1 ≤ . . . ≤ xm, then for any fuzzy measure μ on [n], Cμ,δ(x1, . . . , xn) ≤
Cμ,δ(y1, . . . , yn) whenever x1 ≤ y1, . . . , xn ≤ yn.

Corollary 3. Let n be a positive integer, δ : [0, 1]2 → [0, 1] be a restricted dis-
similarity function given in terms of automorphisms ϕ1, ϕ2 as in Proposition 2.
Let Cμ,ϕ1,ϕ2 be an n-ary d-Choquet integral with respect to μ and δ. If ϕ1 = Id,
then for any fuzzy measure μ on [n], Cμ,δ(x1, . . . , xn) ≤ Cμ,δ(y1, . . . , yn) when-
ever x1 ≤ y1, . . . , xn ≤ yn.

It is easy to see that for ϕ1 = Id we have:

Cμ,Id,ϕ2(x1, . . . , xn) = Cμ(ϕ2 (x1) , . . . , ϕ2 (xn)),

i.e. Cμ,Id,ϕ2 is fully determined by a “standard” Choquet integral Cμ. It also
means that Cμ,Id,ϕ2 is an aggregation function.

Since the monotonicity is not always satisfied, we also study directional mono-
tonicity. From the previous results it is clear that, in general, an n-ary d-Choquet
integral is not r-increasing for a vector r = (r1, . . . , rn) such that there exists
k ∈ {1, . . . , n} with ri �= 0 if and only if i = k. In what follows we focus on the
directional monotonicity with respect to the vector r = (1, . . . , 1).

Theorem 3. Let n be a positive integer and Cμ,δ : [0, 1]n → [0, n] be an n-ary
d-Choquet integral with respect to a fuzzy measure μ and a restricted dissimilarity
function δ. Then

(i) Cμ,δ is 1-increasing for any fuzzy measure μ whenever

δ(x + c, y + c) ≥ δ(x, y)

for all x, y, c ∈ [0, 1] such that x + c, y + c ∈ [0, 1];
(ii) Cμ,δ is 1-increasing for any fuzzy measure μ whenever for all m ∈ [n] there

exists an increasing function fm : [0, 1] → [0, 1] such that

δ(0, x1) + δ(x1, x2) + . . . + δ(xm−1, xm) = fm(xm)

for all x1, . . . , xm ∈ [0, 1] where x1 ≤ . . . ≤ xm.
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Corollary 4. Let n be a positive integer, δ : [0, 1]2 → [0, 1] be a restricted dis-
similarity function given in terms of automorphisms ϕ1, ϕ2 as in Proposition 2.
Let Cμ,ϕ1,ϕ2 : [0, 1]n → [0, n] be an n-ary d-Choquet integral with respect to μ
and δ. Then Cμ,δ is 1-increasing for any fuzzy measure μ whenever at least one
of the following conditions is satisfied:

(i) ϕ2 is convex;
(ii) ϕ1 = Id.

The conditions under which an n-ary d-Choquet integral is a 1-pre-
aggregation function directly follow from the previous results.

Corollary 5. Let n be a positive integer, δ : [0, 1]2 → [0, 1] be a restricted dis-
similarity function given in terms of automorphisms ϕ1, ϕ2 as in Proposition 2.
Then the n-ary d-Choquet integral with respect to μ and δ is a 1-pre-aggregation
function for any fuzzy measure μ on [n] whenever at least one of the following
conditions is satisfied:

(i) ϕ1 = Id;
(ii) ϕ1 > Id and ϕ2 is convex.

Ch AF 1-pre-AFd-Choquet

(i)
(ii)

(iii)
(iv)

Fig. 1. The relations among the classes of all standard Choquet integrals (Ch), aggre-
gation functions (AF), 1-pre-aggregation functions (1-pre-AF) and d-Choquet integrals
(d-Choquet).

Taking the following restricted dissimilarity functions, we obtain an example
of d-Choquet integral which is (see Fig. 1):

(i) a standard Choquet integral, if δ(x, y) = |x − y|;
(ii) an aggregation function which is not a standard Choquet integral, if

δ(x, y) = |√x − √
y| or δ(x, y) = |x2 − y2|;

(iii) an 1-pre-aggregation function which is not an aggregation function, if
δ(x, y) = (x − y)2;

(iv) a d-Choquet integral which is not an 1-pre-aggregation function, if δ(x, y) =√
|√x − √

y|.
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4 Conclusions

In this paper we have introduced a generalization of the Choquet integral replac-
ing the difference by a restricted dissimilarity function. Our approach results in
a wide class of d-Choquet integrals that encompasses the class of all “standard”
Choquet integrals. We have shown that, based on the choice of a restricted dis-
similarity function, the d-Choquet integral is or is not an aggregation function
or pre-aggregation function.

The class of d-Choquet integrals can be useful in applications where Cho-
quet integrals have shown themselves valuable, for instance in image processing,
decision making or classification. In particular, these new functions can be used
in the settings where the difference causes problems, for example for intervals.
In this sense, we intend to make a research of possibilities to apply our results
in image processing and classification problems in the interval-valued setting
in such a way that classical fuzzy algorithms which make use of the Choquet
integral can be appropriately formulated.

The Choquet integral can be equivalently expressed in terms of differences of
capacity weights on a nested family of sets or in terms of the Moebius transform.
We intend to develop an analysis similar to this one regarding the former; nev-
ertheless the equivalence between the two representations will be most probably
lost in our more general setting. The possible extension of our generalization
idea to Choquet integrals expressed in terms of Moebius transform does not
seem so easily achievable, since it is not clear how the information provided by a
restricted dissimilarity function can be included in such representation. We will
analyze this question in future works.
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Abstract. In a global competitive environment, companies’ ability to develop
products and respond to customer demands is crucial to their success. Quality
Function Deployment is an approach that companies use to meet customer needs
and expectations in the product design process. It provides competitive
advantage to the firm by shortening the development period of products that
meet customer expectations. The purpose of this research is to explore the
feasibility of the QFD approach in the design of an e-commerce web site. In this
context, the QFD application has been implemented to meet customer expec-
tations and increase competitive power of the site to be designed. Bipolar fuzzy
numbers are used to express customers’ decisions. This research contributes to
the literature with a new QFD approach with bipolar fuzzy numbers and practice
by expanding QFD’s application field in software sector.

Keywords: Bipolar Fuzzy Set � Hamacher aggregation operator � House of
Quality � Software Quality Function Deployment

1 Introduction

Due to globalization, companies must use innovation in order to be able to withstand
competition and customer-oriented production has become mandatory. Thus, customer-
oriented approaches such as Quality Function Deployment (QFD) used in product
design have become popular in determining product features [1]. For this reason, it is
important to understand which product features are meaningful to the customer and
reflect the feedback from the customer to the product design and development process
[2].

In terms of competition in the market, the effectiveness of the new product design
process emerges as one of the most important success conditions for companies. QFD
has been working on designing new products or improving existing products to ensure
that customer requirements are accurately reflected in the product. The correct reflec-
tion of the customers’ desires and requirements on the product means the satisfaction of
the customers, which is one of the objectives of the firms.

In this study, QFD has been implemented in order to increase customer satisfaction
in designing an e-commerce site and to create a user-oriented site. The contribution of
this paper is to examine front-end and back-end features of a music streaming web site
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and relate this features with customer expectations by using for the first time Software-
QFD with bipolar fuzzy Hamacher aggregation operators. The paper’s overview is as
follows. Section 2 illustrates the literature highlights. Section 3 presents proposed
methodology, which is formalized as bipolar fuzzy House of Quality. A music
streaming website design is selected as the application area in Sect. 4. Finally, the
comments and discussion are given in the last section.

2 Literature Review

The House of Quality is a set of matrices that relate customer wants and quality
characteristics determined to meet them, compares quality characteristics based on
objective measures, and determines positive or negative correlations between them [3].
Graphical presentation, known as “House of Quality” used in QFD, is a rich and easily
accessible information bank. This clear communication mechanism enables the basic
facts to occur more timely and more accurately than traditional development
documents.

QFD-based product development provides significant competitive advantages by
prioritizing more customer satisfaction, product reaching the market in a shorter time,
and improved product performance compared to other conventional methods. With this
method, the priorities of the customer requests and requirements are determined and
according to the voice of customer, the features related to the products are ordered
according to their importance. Therefore, the product is designed and manufactured to
include the most desirable features.

Software Quality Function Deployment (S-QFD) is a type of QFD (used in the
manufacturing industry) used for software products. S-QFD has a significant positive
impact on: user engagement, management support and participation, and techniques to
shorten the software development life cycle.

In recent years, fuzzy set theory has evolved to solve real world problems. In many
studies, fuzzy logic was included in mathematical modeling. Pandey [4] performed
evaluating the strategic design parameters of airports in Thailand to meet service
expectations of Low-Cost Airlines using the Fuzzy-based QFD method. He demon-
strates and signifies that the Fuzzy based QFD method is a promising and pragmatic
decision-making tool for customer-oriented airport strategic planning. Aijun et al. [5]
studied a fuzzy three-stage multi-attribute decision-making approach based on cus-
tomer needs for sustainable supplier selection. They use interval-valued intuitionistic
trapezoidal fuzzy numbers with QFD and combined with VIKOR. Pooya [6] stressed
about an extended approach for manufacturing strategy process based on organization
performance through Fuzzy QFD. His proposed model is implemented in an auto-
motive rubber profile manufacturer in Iran. Efe [7] applied fuzzy cognitive map based
quality function deployment approach to dishwasher machine selection. His paper
contributes to the literature by integrating QFD approach and fuzzy cognitive map
approach. Wei et al. [8] presented pythagorean hesitant fuzzy Hamacher aggregation
operators in multiple-attribute decision making process. Garg [9] performed intu-
itionistic fuzzy Hamacher aggregation operators. He used this operators on entropy
weight and their applications to multi-criteria decision-making problems. Abtahi et al.
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[10] studied to design cloud computing service using QFD. They used flexibility,
scalability, high accessibility and cost-effectiveness as features of their software. Prasad
et al. [11] proposed a QFD-based decision making model for computer-aided design
software selection. They stressed on design and development of a QFD-based decision
making model in Visual BASIC 6.0 for selection of computer- aided design software
for manufacturing organizations.

3 Methodology

In this section, the preliminaries and definitions of the proposed method with bipolar
fuzzy information [12, 13] are given. Then it is shown step by step how to apply.

3.1 Preliminaries

Definition: [12, 13] Let X be a fix set. A bipolar fuzzy set (BFS) is an object having
the form

B ¼ x; lþ
B xð Þ; v�B xð Þ� �� �jx 2 X

� � ð1Þ

where the positive membership degree function lþ
B xð Þ : X ! 0; 1½ � denotes the satis-

faction degree of an element x to the property corresponding to a BFS B and the
negative membership degree function v�B xð Þ : X ! �1; 0½ � denotes satisfaction degree
of an element x to some implicit counter-property corresponding to a BFS B, respec-
tively, and for every x 2 X.

Let ~b ¼ lþ ; v�ð Þ be a bipolar fuzzy number (BFN). Now we can define a score
function and an accuracy function for ~b.

Definition: The score function S of ~b ¼ lþ ; v�ð Þ is evaluated as

S ~b
� � ¼ 1

2
1þ lþ þ v�ð Þ; S ~b

� � 2 0; 1½ �:

Definition: The accuracy function H of ~b ¼ lþ ; v�ð Þ is evaluated as

H ~b
� � ¼ 1

2
lþ � v�ð Þ;H ~b

� � 2 0; 1½ �:

It is evident that S ~b
� � 2 0; 1½ � and H ~b

� � 2 0; 1½ �. Note that H ~b
� �

assesses the degree of

accuracy of ~b. A larger value of H ~b
� �

implies a higher degree of accuracy of the BFN
~b. Appling the score function S and the accuracy function H, the next definition is an
ordered relation between two BFNs ~b1 ¼ lþ

1 ; v�1
� �

and ~b2 ¼ lþ
2 ; v�2

� �
.

Definition: If S ~b1
� �

\S ~b2
� �

, or S ~b1
� � ¼ S ~b2

� �
but H ~b1

� �
\H ~b2

� �
, then ~b1 is smaller

than ~b2, denoted by ~b1\~b2; If S ~b1
� � ¼ S ~b2

� �
and H ~b1

� � ¼ H ~b2
� �

, then ~b1 ¼ ~b2.
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Hamacher [14] proposed a more generalized t-norm and t-conorm. Hamacher
operations, i.e., Hamacher product and Hamacher sum, are respective instances of t-
norms and t-conorms.

Hamacher product � is a t-norm and Hamacher sum � is a t-conorm, where

T a; bð Þ ¼ a� b ¼ ab
cþ 1� cð Þ aþ b� abð Þ ; c[ 0:

T* a; bð Þ ¼ a� b ¼ aþ b� ab� 1� cð Þab
1� 1� cð Þab ; c[ 0:

Let ~b1 ¼ lþ
1 ; v�1

� �
, ~b2 ¼ lþ

2 ; v�2
� �

and ~b ¼ lþ ; v�ð Þ denote BFNs. Basic Hama-
cher operators of BFNs with c[ 0 can be define as follows:

~b1 � ~b2 ¼ lþ
1 þ lþ

2 � lþ
1 lþ

2 � 1� cð Þlþ
1 lþ

2

1� 1� cð Þlþ
1 lþ

2
;

�v�1 v
�
2

cþ 1� cð Þ v�1 þ v�2 � v�1 v
�
2

� � !

~b1 � ~b2 ¼ lþ
1 lþ

2

cþ 1� cð Þ lþ
1 þ lþ

2 � lþ
1 lþ

2

� � ; v�1 þ v�2 � v�1 v
�
2 � 1� cð Þv�1 v�2

1� 1� cð Þv�1 v�2

 !

k~b ¼ 1þ c� 1ð Þlþð Þk� 1� lþð Þk
1þ c� 1ð Þlþð Þk þ c� 1ð Þ 1� lþð Þk

;
�c v�j jk

1þ c� 1ð Þ 1þ v�ð Þð Þk þ c� 1ð Þ v�j jk
 !

; k[ 0

~b
� �k¼ c lþð Þk

1þ c� 1ð Þ 1� lþð Þð Þk þ c� 1ð Þ lþð Þk ;
1þ c� 1ð Þ v�j jð Þk� 1þ v�ð Þk

1þ c� 1ð Þ v�j jð Þk þ c� 1ð Þ 1þ v�ð Þk
 !

; k[ 0

Let ~bj ¼ lþ
j ; v�j

� 	
(j = 1 ,2, …, n) be a collection of BFNs. Bipolar fuzzy

Hamacher arithmetic aggregation operators can be established as follows:

Definition: The bipolar fuzzy Hamacher weighted average (BFHWA) operator is

BFHWAx
~b1; ~b2; . . .; ~bn
� � ¼ �

j¼1

n
xJ~bj
� �

where x ¼ x1;x2; . . .;xnð ÞT denotes the weight vector associated with
~b1 j ¼ 1; 2; . . .; nð Þ; and xj [ 0;

Pn
j¼1 xj ¼ 1; c[ 0:

Theorem: [16] The BFHWA operator returns a BFN with
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BFHWAx
~b1; ~b2; . . .; ~bn
� � ¼ �

j¼1

n
xJ~bj
� �

¼
Qn

j¼1 1þ c� 1ð Þlþ
j

� 	xj�Qn
j¼1 1� lþ

j

� 	xj

Qn
j¼1 1þ c� 1ð Þlþ

j

� 	xj� c� 1ð ÞQn
j¼1 1� lþ

j

� 	xj
;

�c
Qn

j¼1 v�j



 


xj

Qn
j¼1 1þ c� 1ð Þ 1þ v�j

� 	� 	xj� c� 1ð ÞQn
j¼1 v�j



 


xj

0B@
1CA

3.2 Proposed Model

In this section, we introduce the steps of new S-QFD approach with bipolar fuzzy
Hamacher aggregation operators. HoQ is essentially a four-stage process [15]. Detailed
information of stages is given in the application section.

Stage 0: Planning
Stage 1: Collection of “Voice of Customer”
Stage 2: Creating House of Quality.

• Determination of customer requirements and importance levels with

– Step 1: Applying the BFHWA operator to process the information in CR rela-
tionship matrix fCR, derive the overall values ecri i ¼ 1; 2; . . .;mð Þ of the CRi.

ecr i ¼ lþ
i ; v�i

� � ¼ BFHWAx ecri1; ecri2; . . .; ecrimð Þ ¼ �
j¼1

m
xJ ecrij� �

¼
Qm

j¼1 1þ c� 1ð Þlþ
j

� 	xj�Qm
j¼1 1� lþ

j

� 	xj

Qm
j¼1 1þ c� 1ð Þlþ

j

� 	xj� c� 1ð ÞQm
j¼1 1� lþ

j

� 	xj
;

�c
Qm

j¼1 v�j



 


xj

Qm
j¼1 1þ c� 1ð Þ 1þ v�j

� 	� 	xj� c� 1ð ÞQm
j¼1 v�j



 


xj

0B@
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– Step 2: Calculate the scores S( ecriÞ i ¼ 1; 2; . . .;mð Þ and importance levels.

• Determination of technical requirements
• Determination of the relationships between customer requirements and technical

requirements with bipolar fuzzy sets.
– Step 1: Applying the BFHWA operator to process the information in interre-

lationship matrix fIR, derive the overall values eiri i ¼ 1; 2; . . .; nð Þ of the IRi.

eir i ¼ lþ
i ; v�i

� � ¼ BFHWAx eiri1; eiri2; . . .; eirin� � ¼ �n
j¼1

xJeir ij� 	

¼
Qn

j¼1 1þ c� 1ð Þlþ
j

� 	xj�Qn
j¼1 1� lþ

j

� 	xj

Qn
j¼1 1þ c� 1ð Þlþ

j

� 	xj� c� 1ð ÞQn
j¼1 1� lþ

j

� 	xj
;

�c
Qn

j¼1 v�j



 


xj

Qn
j¼1 1þ c� 1ð Þ 1þ v�j

� 	� 	xj� c� 1ð ÞQn
j¼1 v�j



 


xj

0B@
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• Step 2: Calculate the scores S(eiriÞ i ¼ 1; 2; . . .; nð Þ:
• Step 3: Rank all the alternatives Ai i ¼ 1; 2; . . .; nð Þ in terms of S

(eiriÞ i ¼ 1; 2; . . .; nð Þ. If there is no difference between two scores S(eiriÞ and S(eirjÞ,
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then calculate the accuracy degrees H(eiriÞ and H(eirjÞ to rank the alternatives Ai and
Aj.

Stage 3: Analysis and interpretation of results.

4 Case Study

In this study QFD technique was applied to design a music stream website. Thus,
customer needs, technical requirements and their importance are determined for music
streaming website design.

4.1 Stage 0: Planning

Music streaming services do not have a specific target group. People of all ages and
professions can use these services. Although the general tendency is thought to be the
young people generation, we did not limit the age in survey. Many professions and age
groups are included in the research. Based on the literature review and the opinions of
experts, 10 types of customer requirements were identified.

4.2 Stage 1: Collection of “Voice of Customer”

For survey, 50 people were randomly selected and no personal information was
received. The goal is to make the assessment of the group more meaningful because
this service is used by people of all ages and professions. The profile of the customer
participating in the study is shown in Fig. 1.

82% of the participants are between 20 and 30 years old. The gender distribution of
participants is shown in Fig. 2.

Frequency

Age

Fig. 1. The profile of the customer participating
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4.3 Stage 2: Creating House of Quality

Determination of Customer Requirements and Importance Levels
The QFD application to music delivery services is to show the points that need to be
improved in order to improve customer satisfaction. 10 customer requirements are
shown in Table 1.

• Step 1: Applying the BFHWA operator to process the information in CR rela-
tionship matrix fCR. Criteria are evaluated using bipolar fuzzy numbers by 50
customers. The aggregated ratings are presented in the following matrix.

Fig. 2. The gender distribution of participants

Table 1. Customer requirements

Criteria code Criteria

C1 Song capacity
C2 User-friendly interface
C3 Free version
C4 Fast music download
C5 Music list properties
C6 Sound quality
C7 Mobile application
C8 Access without internet on mobile application
C9 Fast search engine
C10 No adds between songs
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• Step 2: Calculate the scores S( ecriÞ i ¼ 1; 2; . . .;mð Þ and importance levels. (The
weight vector is 0.1 for all criteria and c ¼ 3) (Table 2).

Determination of Technical Requirements
Three experts defined the specifications of this software. The specifications are divided
into two categories: front-end and back-end in Table 3.

Determination of the Relationship Between Customer Requirements and Tech-
nical Requirements
Three experts participated in the creation of the interrelational matrix in Table 4. Their
shared opinions are expressed in order to establish the relationship between customer
and technical requirements. (c ¼ 3, no relationship = (0, −1)).

Table 2. Scores of importance levels of customer requirements

S ecrCið Þ Score Importance levels (percentage of score)

S ecrC1ð Þ 0,584 0,114
S ecrC2ð Þ 0,535 0,104
S ecrC3ð Þ 0,406 0,079
S ecrC4ð Þ 0,472 0,092
S ecrC5ð Þ 0,334 0,065
S ecrC6ð Þ 0,604 0,118
S ecrC7ð Þ 0,376 0,073
S ecrC8ð Þ 0,697 0,136
S ecrC9ð Þ 0,408 0,080
S ecrC10ð Þ 0,714 0,139

Table 3. Technical measures of music streaming services.

Code Front-end Code Back-end

T1 No advertising while listening to music T7 High speed search
T2 Capability of colors and font T8 Detailed product information
T3 Personalization T9 Link with other social media
T4 Video animation T10 Update list
T5 See comments of other users T11 Storage of user information
T6 High speed access and high quality music T12 Good conception and organization

T13 Security keys for purchase
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4.4 Stage 3: Analysis and Interpretation of Results

The aim of this study is to specify priority orders for designing customer requirements
and technical requirements. Ratings are calculated using the relationship between
customer requirements and technical requirements. The final version of the House of
Quality is shown in Table 4. According to the final table, “high-speed access and high
quality music-good conception and organization-high speed search” are the three most
important technical features that will increase customer satisfaction in music streaming
site design.

5 Conclusions and Future Work

Quality function deployment-based product development offers significant competitive
advantages by emphasizing more importance to customer satisfaction and by
improving product performance compared to other conventional methods. The prior-
ities of the customer requirements are determined and according to the customer’s
voice, the features related to the products are ordered according to their importance.
Thus, the designer has to choose one of customer demands due to technical or aesthetic
reasons in the product design. In addition, determining the importance levels of
technical requirements reveals which technical specifications should be studied more
carefully during design.

Table 4. The final version of the House of Quality for Music Streaming Website Design using
bipolar fuzzy Hamacher aggregation operators

CR Weights Technical measures of music streaming services

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

C1 0,114 (0.2,

−0,6)

(0.9,

−0,2)

(0.8,

−0,1)

C2 0,104 (0.9,

−0,3)

(0.4,

−0,3)

(0.3,

−0,1)

(0.2,

−0,5)

(0.7,

−0,2)

(0.5,

−0,4)

(0.4,

−0,6)

(0.8,

−0,3)

C3 0,079 (0.4,

−0,4)

(0.9,

−0,3)

(0.3,

−0,8)

C4 0,092 (0.6,

−0,8)

(0.7,

−0,2)

(0.8,

−0,5)

(0.5,

−0,1)

(0.4,

−0,7)

C5 0,065 (0.9,

−0,4)

(0.4,

−0,2)

(0.3,

−0,8)

(0.6,

−0,4)

(0.3,

−0,5)

(0.5,

−0,6)

C6 0,118 (0.9,

−0,4)

C7 0,073 (0.4,

−0,7)

(0.4,

−0,3)

(0.5,

−0,8)

(0.2,

−0,1)

C8 0,136 (0.3,

−0,8)

(0.5,

−0,6)

(0.8,

−0,5)

C9 0,080 (0.4,

−0,5)

(0.9,

−0,1)

(0.7,

−0,4)

(0.4,

−0,5)

(0.3, −,

−0,1)

C10 0,139 (0.9,

−0,5)

(0.4,

−0,1)eiri (0,336,

−0,101)

(0,039,

−0,564)

(0,207,

−0,027)

(0,107,

−0,110)

(0,044,

−0,247)

(0,446,

−0,021)

(0,351,

−0,008)

(0,088,

−0,252)

(0,018,

−0,595)

(0,106,

−0,084)

(0,039,

−0,603)

(0,381,

−0,009)

(0,075,

−0,222)

S eirTi� �
0,617 0,237 0,590 0,499 0,399 0,712 0,672 0,418 0,212 0,511 0,218 0,686 0,426

Rank 4 11 5 7 10 1 3 9 13 6 12 2 8
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In this study, QFD with bipolar fuzzy set is used in designing a music streaming
website considering customer satisfaction. Ten customer expectations were taken into
account and three experts established the relation of these specifications. At the end of
the application, “high-speed access and high quality music-good conception and
organization-high speed search” are selected as most desirable features in e-commerce
site design.

In future studies, this methodology can be applied to other web service design areas
with criteria weighting techniques and QFD matrix can be constructed by other fuzzy
set types.

Acknowledgements. Galatasaray University Research Fund financially supports this research.
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Abstract. OWA operators have been ubiquitous in many disciplines
since they were introduced by Yager in 1988. Aside of some other intu-
itive properties (e.g. monotonicity and idempotence), OWA operators
are known to be continuous and, for some carefully constructed weigh-
ing vectors, very robust in the presence of outliers. In a recent paper, a
natural extension of OWA operators to the setting of multidimensional
data has been proposed based on the use of a linear extension of the prod-
uct order by means of several weighted arithmetic means. Unfortunately,
OWA operators constructed in such a way focus too strongly on the level
sets of one of the weighted arithmetic means. It is here shown that this
focus ultimately results in a forfeit of the properties of continuity and
robustness in the presence of outliers.

Keywords: OWA operator · Multidimensional data · Linear
extension · Weighted arithmetic mean

1 Introduction

Back in 1988, Yager introduced OWA operators in the context of decision mak-
ing [12] as a family of functions that lie in between the ‘and’ and the ‘or’ opera-
tors. Formally, an OWA operator simply is the result of applying a symmetriza-
tion process to a weighted arithmetic mean [7] in which the weighted arithmetic
mean is applied to the order statistics of the values to be aggregated rather than
to the values themselves. Aside of symmetry, OWA operators satisfy very natural
properties such as (increasing) monotonicity, idempotence and continuity.

Several families of OWA operators have been studied in the literature [13],
probably centered OWA operators being the most prominent family [14]. Inter-
estingly, some centered OWA operators have been studied in the field of statis-
tics due to their robustness in the presence of outliers, e.g., the median, trimmed
means and winsorized means.
This research has been partially supported by the Spanish MINECO project (TIN2017-
87600-P) and the Research Foundation of Flanders (FWO17/PDO/160).
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The field of multivariate statistics has studied for a long time how to extend
the notion of median to the multidimensional setting [10]. The field of aggrega-
tion theory is also experimenting an increasing interest in this multidimensional
setting. For instance, one can find recent works on penalty-based aggregation of
multidimensional data [5] and on the property of monotonicity for multidimen-
sional functions [6,9]. It is no surprise then that an extension of OWA operators
to the multidimensional setting has been recently proposed by De Miguel et
al. [2] by making use of a linear extension of the product order. Unfortunately,
as we shall see in the upcoming sections, the consideration of a linear extension
of the product order extends OWA operators to the multidimensional setting at
the cost of losing continuity and, if applicable, the robustness in the presence of
outliers.

The remainder of the paper is structured as follows. In Sect. 2, it is discussed
how a linear extension of the product order can be defined by means of several
weighted arithmetic means. Section 3 presents the extension of OWA operators
to the multidimensional setting by De Miguel et al. The strange behaviour of
such extension is discussed in Sect. 4. We end with some concluding remarks in
Sect. 5.

2 Linear Extensions of the Product Order by Means
of Weighted Arithmetic Means

Consider n points x1, . . . ,xn ∈ R
m. The j-th component of the point xi is

denoted by xi(j). The product order ≤m on R
m is defined as xi1 ≤m xi2 if

xi1(j) ≤ xi2(j) for any j ∈ {1, . . . , m}. Obviously, ≤m is not a linear order
on R

m.
As discussed in [2] (see Proposition 2), a linear extension of ≤m can

be defined by means of m linearly independent weighted arithmetic means
M1, . . . ,Mm : Rm → R. More precisely, the linear extension �M of ≤m based
on M = (M1, . . . ,Mm) is defined by xi1 � Mxi2 if xi1 = xi2 or there exists
k ∈ {1, . . . , m} such that

Mj(xi1) ≤ Mj(xi2), for any j ∈ {1, . . . , k − 1},

Mk(xi1) < Mk(xi2).

The most prominent such linear extensions of R
m are the lexicographic

orders �σ [4], where a permutation σ of {1, . . . , n} serves for establishing a
sequential order in which the different components are considered. Formally, for
any j ∈ {1, . . . , k}, Mj is defined as Mj(xi) = xi(σ(j)).

In the two-dimensional case, Xu and Yager’s linear order �XY on R
2 [11]

(induced by M1(xi) = 1
2xi(1) + 1

2xi(2) and M2(xi) = xi(2)) is also very well-
known1 in the context of intervals and intuitionistic fuzzy sets.
1 It is admittedly more common to find an equivalent definition of the order in which
M2 is defined as M2(xi) = xi(2)−xi(1). This equivalent definition is here abandoned
in order to guarantee M2 to be monotone increasing.
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Example 1. Consider x1 = (3, 1), x2 = (1, 3) and x3 = (3, 3). It obviously holds
that x1 ≤2 x3 and x2 ≤2 x3, however, x1 and x2 are not comparable with
respect to ≤2.

If one considers Xu and Yager’s linear order �XY on R
2, it holds that x1 �

XYx2 due to the fact that

M1(x1) =
1
2
x1(1) +

1
2
x1(2) = 2 ≤ 2 =

1
2
x2(1) +

1
2
x2(2) = M1(x2),

M2(x1) = x1(2) = 1 < 3 = x2(2) = M2(x2).

It is concluded that x1 � XYx2 � XYx3.
An illustration of this procedure is given in Fig. 1.

•

•

•

Fig. 1. Graphical representation of the linear extension of the product order based on
M1(xi) = 1

2
xi(1) + 1

2
xi(2) and M2(xi) = xi(2) for the points x1 = (3, 1), x2 = (1, 3)

and x3 = (3, 3). The green area represents the points that lead to values of M1 smaller
than those given by x1 and x2. The blue area represents the points that lead to values
of M2 smaller than that given by x2. The green and blue dashed arrows respectively
represent the direction in which M1 and M2 increase.

3 Extending OWA Operators to the Setting
of Multidimensional Data by Means of a Linear
Extension of the Product Order

OWA operators as defined by Yager [12] for the aggregation of unidimensional
data are characterized by a weighing vector w = (w1, . . . , wn) with wi ≥ 0 for any
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i ∈ {1, . . . , n} and
∑n

i=1 wi = 1. In particular, the OWA operator fw : Rn → R

associated with w is defined as

fw (x1, . . . , xn) =
n∑

i=1

wi x(i),

where x(i) denotes the i-th largest value among x1, . . . , xn.
Typical examples of OWA operators are

– the minimum, where w = (0, . . . , 0, 1);
– the mid-range, where w = (12 , 0, . . . , 0, 1

2 );
– the arithmetic mean, where w = ( 1

n , . . . , 1
n );

– the median, where,
if n is odd, w = (0, . . . , 0, 1, 0, . . . , 0), where the 1 appears at the middle
position, or,
if n is even, w = (0, . . . , 0, 1

2 , 1
2 , 0, . . . , 0), where the two 1

2 appear at the
middle positions;

– and the maximum, where w = (1, 0, . . . , 0).

When moving to the setting of multidimensional data, since ≤m is not a
linear order on R

m, it is possible that one cannot simply identify the i-th largest
point among x1, . . . ,xn. De Miguel et al. proposed to consider a linear extension
of R

m in order to straightforwardly extend OWA operators to the setting of
multidimensional data. More precisely, given a linear extension � of the product
order ≤m on R

m, the OWA operator fw,� : (Rm)n → R
m associated with a

weighing vector w = (w1, . . . , wn) and � is defined as follows:

fw,� (x1, . . . ,xn) =
n∑

i=1

wi x(i),

where x(i) denotes the i-th largest point among x1, . . . ,xn according to �.

Example 2. Continue with Example 1. Consider w = (14 , 1
2 , 1

4 ). Due to the fact
that x1 � XYx2 � XYx3, it holds that

fw,�XY (x1,x2,x3) =
1
4
x3 +

1
2
x2 +

1
4
x1 =

1
4
(3, 3) +

1
2
(1, 3) +

1
4
(3, 1) =

(

2,
5
2

)

.

4 A Strange Behaviour

A further look reflects that the computation of the OWA operator fw,�M
:

(Rm)n → R
m associated with a weighing vector w = (w1, . . . , wn) and a linear

extension �M of the product order by means of m weighted arithmetic means M
works as follows. At first R

m is reduced into the unidimensional quotient space
spanned by the level sets of M1. The unidimensional OWA operator fw : Rn → R

associated with w is computed within this unidimensional space and it is only
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in case the order of the points x1, . . . ,xn ∈ R
m is not uniquely determined that

M2, . . . ,Mm are further considered.
This oversimplification of an m-dimensional space into a unidimensional

space leads to two main issues. Firstly, unlike in the unidimensional setting,
OWA operators as defined in the previous section are no longer continuous func-
tions.

Example 3. Continue with Example 2. Consider now x′
2 = (1 − ε, 3) for some

ε > 0. It then holds that x′
2 � XYx1 � XYx3, and, thus,

fw,�XY (x1,x′
2,x3) =

1
4
x3 +

1
2
x1 +

1
4
x′
2 =

1
4
(3, 3) +

1
2
(3, 1) +

1
4
(1 − ε, 3)

=
(

5
2

− ε

4
, 2

)

.

It is concluded that fw,�XY is not continuous.

Even worse, points have such an undesirable freedom of movement within
its own level set of the first weighted arithmetic mean that even very robust
OWA operators in the presence of outliers in the unidimensional setting become
non-robust in higher dimensions.

Example 4. Continue with Example 2. Consider now the weighing vector w′ =
(0, 1, 0) associated with the median. Note that, for any a > 0, it holds that
x1 � XY

(
x2 + (−a, a)

) � XYx3. For instance, let a = 100, it holds that

fw′,�XY (x1,x2,x3) = x2 = (1, 3),

fw′,�XY

(
x1,

(
x2 + (−a, a)

)
,x3

)
= x2 + (−a, a) = (−99, 103) .

It is concluded that fw′,�XY is not robust. Actually, this example implies that the
finite sample breakdown point [3,8] of the median is 1

n in the multidimensional
setting, rather than 1

2 as in the unidimensional setting. This lack of robustness
might not be a big deal in the context of De Miguel et al. [2] since the use of
these OWA operators is restricted to a unit hypercube, however, it definitely
becomes a major problem if dealing with an unbounded domain (as typically is
the case in multivariate statistics [5]).

5 Concluding Remarks

In this paper, a recent extension of OWA operators to the setting of multidi-
mensional data is discussed. As natural as said extension sounds, it is proven to
lead to functions that are neither continuous, nor robust. This is due to the fact
that the use of a linear extension of the product order is inherently linked to a
unidimensional behaviour, and should definitely be abandoned in the multidi-
mensional setting. The use of geometric quantiles [1] instead of linear extensions
of the product order in the construction of OWA operators for multidimensional
data is encouraged by the author. This direction will be further explored in
future work.
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Abstract. A large amount of labelled data (absolute information) is
usually needed for an ordinal classifier to attain a good performance.
As shown in a recent paper by the present authors, the lack of a
large amount of absolute information can be overcome by addition-
ally considering some side information in the form of relative informa-
tion, thus augmenting the method of nearest neighbors. In this paper,
we adapt the method of nearest neighbors for dealing with a specific
type of relative information: frequency distributions of pairwise compar-
isons (rather than a single pairwise comparison). We test the proposed
method on some classical machine learning datasets and demonstrate its
effectiveness.

Keywords: Ordinal classification · Nearest neighbors · Absolute
information · Relative information · Frequency distributions

1 Introduction

Typically for ordinal classification there is only absolute information available,
i.e., examples with an associated class label of a fixed ordinal scale. Unfortu-
nately, in real-life applications, it is often the case that the amount of absolute
information available is limited, thus largely impacting the performance of an
ordinal classifier. Fortunately, different types of side information can be addi-
tionally collected and make up for the limitation regarding the little amount of
absolute information available [1,2]. A popular type of such side information is
relative information, i.e., couples of examples without an explicitly given class
label but with an order relation between them.

Interestingly, in real-life applications, relative information with frequency dis-
tributions arises quite commonly. For instance, the emergence of online trans-
action platforms such as Amazon Mechanical Turk offers some possibilities to
distribute evaluation tasks to consumers and collect a large amount of relative
information. However, the order relations from relative information are usually
c© Springer Nature Switzerland AG 2020
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less informative than the class labels from absolute information. It is also quite
common for customers to have contradictory order relations for the same cou-
ple of examples. Due to these facts, it is better to consult several customers for
collecting the preference among two examples, thus obtaining for each couple
of examples a frequency distribution of order relations (hereinafter referred to
as relative information with frequency distributions). Hence, how to combine a
small amount of absolute information and a large amount of relative information
with frequency distributions becomes our main goal.

Some related works [3,4] have shown the effectiveness of fusing absolute and
relative information. In the field of ordinal classification, for example, Sader
et al. [5] proposed an ordinal classification method for combining both abso-
lute and relative information to perform prediction tasks. This method needs to
learn many parameters for solving a constrained convex optimization problem.
In a similar direction, our previous work [6] incorporated both types of informa-
tion into the method of nearest neighbors, and proposed an augmented method
for ordinal classification that is non-parametric and easy to explain. However,
this method was designed to deal with just one order relation for each couple of
examples and not with a frequency distribution of order relations. An immediate
extension of this method to the latter setting reduces the study of the nearest
couples of examples to just the nearest couple of examples, thus impacting its
overall performance. To properly address our problem setting, where there is a
small amount of absolute information and a large amount of relative information
with frequency distributions available, we propose a method to incorporate both
types of information into the method of nearest neighbors for ordinal classifica-
tion on the basis of our previous work [6].

The remainder of this paper is organized as follows. In Sect. 2, we formulate
our problem. We propose our method in Sect. 3. In Sect. 4, we perform experi-
ments and analyze the performance. Some conclusions are presented in Sect. 5.

2 Problem Setting

The available data is composed of absolute and relative information. We
denote the input examples by D = {x1,x2, . . . ,xn}. The input examples
xi = (xi1, . . . , xid) belong to the input space X ⊆ R

d and their correspond-
ing class labels yi belong to the output space Y = {C1, C2, . . . , Cr}, where the
class labels are supposed to be ordered as follows: C1 ≺ C2 ≺ . . . ≺ Cr. Absolute
information is collected in a set A = {(x1, y1), (x2, y2), . . . , (xn, yn)}.

Although for some examples there is no explicitly given class label, it is
still possible to have some side information in the form of relative informa-
tion. Relative information is typically expressed for a set of couples of exam-
ples C = {(ai,bi), . . . , (am,bm)} ∈ X 2. With each couple (ai,bi), a frequency
distribution (αi, βi) is associated, αi representing the proportion of times that
ai is preferred to bi and βi representing the proportion of times that bi is
preferred to ai. Obviously, αi + βi = 1. Relative information is collected in
a set R = {((a1,b1), (α1, β1)), ((a2,b2), (α2, β2)), . . . , ((am,bm), (αm, βm))}.
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If ((ai, bi), (αi, βi)) belongs to R, then ((bi,ai), (βi, αi)) is supposed also to
belong to R. Note that here we do not consider the case in which ap and bp are
equally preferred. The main characteristic of our problem is that the amount of
absolute information is typically smaller than the amount of relative information,
i.e., n � m.

3 Proposed Method

3.1 Existing Method: Fusing Absolute and Relative Information
for Augmenting the Method of Nearest Neighbors

In this subsection, we recall the method proposed in our previous work [6].
Firstly, according to a fixed distance metric d, we find the k nearest neighbor
examples Dk = {xij}k

j=1 of the test example x∗. We see each couple (x∗,xij )
as a new object and look for the � nearest neighbor couples Cj

� = {(aj
q,b

j
q)}�

q=1

of this new object (x∗,xij ). For this process, we compute the distance between
couples according to the product distance metric (see [7], page 83, with p=1),
which is defined as

d∗((u,v), (w, t)) = d(u,w) + d(v, t). (1)

Secondly, we rely on the assumption that a couple and its nearest neighbor
couples have similar order relations. More in detail, for the new object (x∗,xij ),
we focus on the nearest neighbor couple and get its corresponding order relation.
For instance, if the nearest neighbor couple of (x∗,xij ) is (aj

1,b
j
1) and its given

order relation is aj
1 � bj

1, then we assume the same order relation x∗ � xij

for (x∗,xij ). Since the class label of xij is known to be, for instance, Ccj , the
class label of x∗ is expected to be at least Ccj . The same applies to the other
� − 1 neighbor couples. For each among these � relations, we obtain an interval
of potential class labels for x∗. We denote this interval as Ijq = [lIjq , rIjq ], where
j ∈ {1, . . . , k} and q ∈ {1, . . . , �}. For instance, if the given class label of xij is
Ccj and we obtain that the relation for the couple (x∗,xij ) is x∗ � xij according
to its q-th nearest neighbor couple, then the interval of possible values of y∗

is Ijq = [lIjq , rIjq ] = [Ccj , Cr]. Similarly, if the relation is x∗ ≺ xij , then the
interval of possible values of y∗ is Ijq = [lIjq , rIjq ] = [C1, Ccj ].

Finally, we denote by I = (Ijq)j∈{1,...,k},q∈{1,...,�} the list of all the obtained
intervals. We consider the penalty function associated with the median for inter-
vals (see, for instance, Beliakov et al. [8]):

P (I, y) =
k∑

j=1

�∑

q=1

(|lIjq − y| + |rIjq − y|), (2)

where |Ci − Cj | denotes the L1-distance between two class labels Ci and Cj .
Note that the L1-distance metric treats all class labels of the ordinal scale as if
they were equidistant, something that is not always advisable depending on the
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nature of Y. The class label y∗ of x∗ is then determined using the corresponding
penalty-based (aggregation) function:

y∗ = f(y∗) = arg min
y∈Y

P (I, y). (3)

3.2 New Method: Combining Absolute and Relative Information
with Frequency Distributions

The method above only focuses on how to deal with couples provided with only
one order relation. However, in our problem setting, we have relative information
with frequency distributions. More specifically, we have a frequency distribution
of order relations for each (aj ,bj). We use (αj , βj) to characterize this frequency
distribution. In the following, we explain how to deal with such information.

Firstly, we repeat the process above to look for the k nearest neighbor exam-
ples of the test example x∗. We see each couple (x∗,xij ) as a new object, search
for the � nearest neighbor couples, and get their frequency distributions of order
relations. We rely on the same assumption above that a couple and its nearest
neighbor couples have similar order relations. More in detail, if the nearest neigh-
bor couple of (x∗,xij ) is (aj

q,b
j
q) and its frequency distribution is (αj

q, β
j
q), which

implies that a proportion αj
q of times the order relation of (aj

q,b
j
q) is aj

q � bj
q

and a proportion βj
q of times the order relation of (aj

q,b
j
q) is aj

q ≺ bj
q, then in

case the couple (x∗,xij ) needs to be labelled, we would expect that a proportion
αj

q of times the order relation of (x∗,xij ) is x∗ � xij and a proportion βj
q of

times the order relation of (x∗,xij ) is x∗ ≺ xij .
For the new couple (x∗,xij ) in which the given class label of xij is Ccj , we get

αj
q times the interval [Ccj , Cr] and βj

q times the interval [C1, Ccj ] for the potential
class label y∗ of x∗. We repeat this process for the other � − 1 nearest neighbor
couples. Exploiting all k nearest neighbors and � nearest neighbor couples, we
get a list of intervals of potential class labels for x∗. We denote by I the list of
all gathered intervals.

Finally, differently to the previous section, here we do not use the notation
Ijq = [lIjq , rIjq ] to represent the interval. More specifically, we now have a pro-
portion αj

q of times the interval [Ccj , Cr] and a proportion βj
q of times the interval

[C1, Ccj ] for each nearest neighbor couple of (x∗,xij ). Thus, the penalty function
associated with the median reads as follows:

P (I, y) =
k∑

j=1

�∑

q=1

βj
q(|C1 − y| + |Ccj − y|) + αj

q(|Ccj − y| + |Cr − y|)

=
k∑

j=1

�∑

q=1

(βj
q |C1 − y| + |Ccj − y| + αj

q|Cr − y|),
(4)

where (aj
q,b

j
q) is the q-th nearest neighbor couple of the couple (x∗,xij ), (αj

q, β
j
q)

is the corresponding frequency distribution and the given class label of the j-th
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Table 1. Description of the benchmark datasets.

Dataset #Examples #Features #Classes

Real ordinal classification datasets

Tae (TA) 151 54 3

Automobile (AU) 205 26 6

Balance-scale (BS) 625 4 3

Eucalyptus (EU) 736 91 5

Red-wine (RW ) 1599 12 6

Car (CA) 1728 21 4

Discretized regression datasets

Housing5 (HO5) 506 14 5

Abalone5 (AB5) 4177 11 5

Bank1-5 (BA1-5) 8192 8 5

Bank2-5 (BA2-5) 8192 32 5

Computer1-5 (CO1-5) 8192 12 5

Computer2-5 (CO2-5) 8192 21 5

Housing10 (HO10) 506 14 10

Abalone10 (AB10) 4177 11 10

Bank1-10 (BA1-10) 8192 8 10

Bank2-10 (BA2-10) 8192 32 10

Computer1-10 (CO1-10) 8192 12 10

Computer2-10 (CO2-10) 8192 21 10

nearest neighbor xij of x∗ is Ccj . The class label y∗ of x∗ is then determined
using the corresponding penalty-based (aggregation) function:

y∗ = f(y∗) = arg min
y∈Y

P (I, y). (5)

4 Experiments

4.1 Datasets

We perform the experiments on some classical machine learning datasets from
some typical repositories [9–11]. The detailed characteristics of these datasets can
be found in Table 1, including the number of examples, features and classes. All
the features have been properly normalized (by making all the features to have
zero mean and unit standard deviation) to avoid the impact of the scale of fea-
tures. Note that the datasets do not contain relative information with frequency
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distributions. Based on a similar generation process of relative information as the
one described in [6], we generate couples with frequency distributions of order
relations.

More in detail, when comparing two examples for generating a couple (ai,bi),
we randomly sample αi or βi from a uniform distribution. For example, if the real
order relation of these two examples is ai � bi, then we sample αi from a uniform
distribution on [0.5, 1] and set βi = 1 − αi. Similarly, if the real order relation
of these two examples is ai ≺ bi, then we sample βi from a uniform distribution
on [0.5, 1] and set αi = 1 − βi. Thus, we generate a couple ((ai,bi), (αi, βi)).

To test our method, we construct two different datasets for each original
dataset. Based on a similar generation process as in our previous work [6], we fix
10% of the data that will be shared by both datasets for testing. The remaining
90% is used for generating the data for training. We keep 5% of the remaining
90% as absolute information. We use the remaining 95% for generating relative
information following the aforementioned description. Dataset 1 includes just
absolute information. Dataset 2 not only includes the same absolute information
as Dataset 1, but also includes relative information with frequency distributions.
By comparing the performance on these two datasets, we test the impact of
incorporating relative information with frequency distributions.

4.2 Performance Measures

We use the three most common performance measures to evaluate ordinal clas-
sification models [13,14]: the Mean Zero-one Error (MZE), the Mean Absolute
Error (MAE) and the C-index.

The MZE describes the error rate of the classifier and is computed as

MZE =
1
T

T∑

i=1

δ(y∗
i �= yi) = 1 − Acc, (6)

where T is the number of test examples, yi is the real class label and y∗
i is the

predicted class label. Acc is the accuracy of the classifier. The value of MZE
ranges from 0 to 1. It describes the global performance, but it neglects the
relations among the class labels.

The MAE is the average absolute error between yi and y∗
i . If the class labels

are represented by numbers, the MAE is computed as:

MAE =
1
T

T∑

i=1

|yi − y∗
i |. (7)

The value of MAE ranges from 0 to r − 1 (maximum absolute error between
classes). Because the real distances among the class labels are unknown, the
numerical representation of the class labels has a big impact on the MAE per-
formance.

In order to avoid this impact, one could consider the relations between the
real class label and the predicted class label. Here we use the concordance index
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Table 2. Performances on the two newly constructed datasets for each original dataset.
The best results are highlighted in boldface.

Dataset MZE MAE 1 – C-index

Dataset 1 Dataset 2 Dataset 1 Dataset 2 Dataset 1 Dataset 2

TA 0.5959 0.5839 0.7664 0.6889 0.4549 0.3963

AU 0.6047 0.5395 0.9410 0.7522 0.3804 0.2749

BS 0.2366 0.2080 0.3549 0.3039 0.1817 0.1547

EU 0.6383 0.5693 1.0267 0.8329 0.3275 0.2539

WR 0.4997 0.4914 0.5747 0.5608 0.3338 0.3180

CA 0.2269 0.2205 0.2778 0.2744 0.2440 0.1976

HO5 0.5496 0.5089 0.7456 0.6837 0.2085 0.1871

AB5 0.5937 0.6007 0.8547 0.8750 0.2515 0.2548

BA1-5 0.7187 0.6979 1.1602 1.0993 0.3622 0.3372

BA2-5 0.7761 0.7682 1.4203 1.4043 0.4615 0.4520

CO1-5 0.4159 0.4039 0.4856 0.4707 0.1243 0.1207

CO2-5 0.3727 0.3552 0.4217 0.3948 0.1064 0.0990

HO10 0.7921 0.7468 1.6814 1.4935 0.2367 0.2091

AB10 0.7750 0.7732 1.7603 1.8014 0.2531 0.2571

BA1-10 0.8699 0.8576 2.4688 2.3383 0.3796 0.3522

BA2-10 0.8850 0.8827 2.8525 2.8630 0.4535 0.4497

CO1-10 0.6141 0.6072 1.0158 0.9876 0.1294 0.1256

CO2-10 0.5853 0.5787 0.8784 0.8555 0.1080 0.1051

Median difference −0.0120 −0.02755 −0.01860

p-value 0.00053 0.00329 0.00074

or C-index to represent these relations. The C-index is computed as the pro-
portion of the number of concordant pairs to the number of comparable pairs
(see [15], page 50):

C-index =
1∑

Cp≺Cq
TCp

TCq

∑

yi≺yj

(δ(y∗
i ≺ y∗

j ) +
1
2
δ(y∗

i = y∗
j )), (8)

where TCp
and TCq

are respectively the numbers of test examples with the class
label Cp and Cq, {yi, yj} is the real pair from the test examples, while {y∗

i , y∗
j } is

the corresponding predicted pair. When there are only two different class labels,
the C-index amounts to the area under the Receiver Operating Characteristic
(ROC) curve [16] and ranges from 0.5 to 1. A lower MZE or MAE means a
better performance, while a higher C-index means a better performance. Here, we
replace C-index by (1−C-index) to keep an analogy with the other performance
measures and facilitate the discussion of the results.
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4.3 Performance Analysis

In this subsection, we analyze the performance of the proposed method on the
different datasets listed in Subsect. 4.1. All the experimental results are obtained
by applying ten-fold cross validation. We perform experiments on all datasets,
setting the number k of nearest neighbor examples to 5. Table 2 shows the perfor-
mance on Dataset 1 and Dataset 2. It is clear that the performance on Dataset 2
is better than the performance on Dataset 1 for almost all original datasets
except for AB5 and AB10.

In order to test whether there is a significant difference in performance on
these two datasets, we perform the Wilcoxon signed-rank test [12] at a signifi-
cance level of α = 0.05. If the p-value is smaller than the fixed significance level
of α, then it means that there exists a statistically significant difference between
these two datasets. In Table 2, it can be seen that the p-values for MZE, MAE
and 1−C-index are smaller than α, which means that there exists a statistically
significant difference between the performance on these two datasets obtained
from all original datasets. The experimental results, together with the obtained
p-values and associated point estimates (median differences), show that using
relative information with frequency distributions is meaningful.

5 Conclusions and Future Work

Based on our previous work [6], we have proposed an augmented method for
ordinal classification for the setting in which there exists a small amount of
absolute information and a large amount of relative information with frequency
distributions. Specifically, we adapt the method of nearest neighbors for deal-
ing with relative information with frequency distributions. We have carried out
experiments on some classical ordinal classification or regression datasets. The
experimental results show that the performance improves when relative informa-
tion with frequency distributions is considered, which validates the usefulness of
taking into account relative information with frequency distributions.

We see several interesting future directions for extending this work. On the
one hand, absolute information with frequency distributions is also common.
How to combine both absolute and relative information with frequency distri-
butions for ordinal classification is still an open problem. On the other hand, in
case the amount of relative information is large, it might be necessary to explore
how to select the most informative pairwise comparisons for relative information
in order to reduce the computational complexity of the proposed method.

Acknowledgements. Mengzi Tang is supported by the China Scholarship Coun-
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5. Sader, M., Verwaeren, J., Pérez-Fernández, R., De Baets, B.: Integrating expert
and novice evaluations for augmenting ordinal regression models. Inf. Fusion 51,
1–9 (2019)
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Abstract. Recent advances in the literature have leveraged the fuzzy
integral (FI), a powerful multi-source aggregation operator, where a fuzzy
measure (FM) is used to capture the worth of all combinations of sub-
sets of sources. While in most applications, the FM is defined either by
experts or numerically derived through optimization, these approaches
are only viable if additional information on the sources is available. When
such information is unavailable, as is commonly the case when sources
are unknown a priori (e.g., in crowdsourcing), prior work has proposed
the extraction of valuable insight (captured within FMs) directly from
the evidence or input data by analyzing properties such as specificity
or agreement amongst sources. Here, existing agreement-based FMs use
established measures of similarity such as Jaccard and Dice to estimate
the source agreement. Recently, a new similarity measure based on bidi-
rectional subsethood was put forward to compare evidence, minimizing
limitations such as aliasing (where different inputs result in the same sim-
ilarity output) present in traditional similarity measures. In this paper,
we build on this new similarity measure to develop a new instance of the
agreement-based FM for interval-valued data. The proposed FM is pur-
posely designed to support aggregation, and unlike previous agreement
FMs, it degrades gracefully to an average operator for cases where no
overlap between sources exists. We validate that it respects all require-
ments of a FM and explore its impact when used in conjunction with
the Choquet FI for data fusion as part of both synthetic and real-world
datasets, showing empirically that it generates robust and qualitatively
superior outputs for the cases considered.

Keywords: Data aggregation · Fuzzy measures · Fuzzy integrals ·
Subsethood · Similarity measure · Interval-valued data

1 Introduction

Data aggregation from multiple sources has become more prevalent in many
applications including sensor fusion [8], and crowdsourcing [20]. In such aggre-
gation contexts, the fuzzy integral (FI) which is specified in respect to a fuzzy
measure (FM) [9] is often used to capture the importance of information arising
c© Springer Nature Switzerland AG 2020
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from different combinations of sources. Generally, FMs are defined by experts
or generated through algorithms, such as the Sugeno λ-measure [19] and the
Decomposable measure [7] which leverage the ‘worth’ of the singletons (individ-
ual sources), a.k.a. the densities. Another approach to generating FMs is opti-
mization based on tuning an FM in respect to the behaviour of an aggregation
function such as the FI and training data [2,4]. If training data or information
on the densities is limited or missing, specifying a FM is a challenging task, even
though such a situation arises often, for example in aggregating crowdsourced
data. To deal with this, Wagner and Anderson [21] first extracted FMs directly
from the input data (the evidence) by analyzing and extracting key properties
such as agreement, and specificity. Later, Havens et al. [11,12] introduced more
data-driven FMs which refined the established agreement FM in particular to
leveraging a generic similarity measure (SM) to extract the property of ‘agree-
ment’ amongst evidence from combinations of sources. This paper focuses on a
recently introduced SM – bidirectional subsethood based SM [14,15] which has
been shown to address a number of limitations in common existing SMs such as
Jaccard [13] and Dice [6], and explores the impact of its use in conjunction with
agreement-based FMs.

So far, three agreement-based FMs have been proposed—the FM of Agree-
ment (AG) [21], the FM of Generalized Accord (GenA) [12], and the Additive
Measure of Agreement (AA) [11]. The AG FM captures the source agreement
by using the intersection operation which considers only the overlap amongst
multi-source data without tracking changes in their cardinality/size. This lim-
itation of the intersection operation causes the AG FM to generate the same
agreement and thus worth for very different subsets of sources. Figure 1 shows
such a situation for interval-valued data with the AG FM. On the other hand,
the use of the Jaccard or Dice SM with the GenA and AA FMs to estimate
the source agreement makes the resulting FM susceptible to limitations of these
measures, in particular aliasing–returning the same similarity for very different
sets of intervals [14,15]. Figure 2 presents such a case where the GenA and AA
FMs produce identical agreement values and thus worth for different sets.

(a) Scenario 1 (b) Scenario 2

Fig. 1. Example highlighting the behaviour of AG FM [21], where U2 and U3 capture
the union of the intersections of all of two and three source combinations as per (8).
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(a) Interval-valued set h (b) Interval-valued set r

Fig. 2. Two different interval-valued sets h = [h1, h2] and r = [r1, r2] with equal
Jaccard similarity of 0.33 and Dice similarity of 0.50 respectively. Clearly, the intervals
within h and r do not appear to be in equal agreement to each other.

Given this context, this paper focuses on developing a new instance of an
agreement FM to avoid the limitations of the existing ones. The proposed FM
leverages the bidirectional subsethood based SM [14,15] to minimize aliasing in
the inter-source agreement and worth calculation. The proposed FM is designed
following the concept of the GenA FM [12], and considers both cases where
sources are overlapping (some agreement) or non-overlapping (no agreement).
When sources are non-overlapping, the proposed FM in combination with the FI
gracefully degrades to an average operator, whereas existing agreement FMs are
not designed to deal with such cases. Beyond developing this FM, this paper also
demonstrates its behaviour against the existing agreement FMs in aggregating
interval datasets when used in combination with the Choquet FI (CFI) [5].

The paper is structured as follows: Sect. 2 reviews FMs and FIs along with
a brief discussion of subsethood and the bidirectional subsethood based SM
[14,15]. Section 3 discusses existing agreement FMs. Section 4 develops a new
instance of the agreement-based FM exploiting the bidirectional subsethood
based SM. Section 5 demonstrates the behaviour of the proposed FM against
the existing agreement FMs in aggregating interval-valued datasets when used
with an FI for both synthetic and real-world datasets. Finally, Sect. 6 concludes
the paper with suggestions and future work (Table 1).

Table 1. Acronyms and notation

FM Fuzzy Measure FI Fuzzy Integral

CFI Choquet Fuzzy Integral SFI Sugeno Fuzzy Integral

SM Similarity Measure AG Fuzzy Measure of Agreement

GenA Fuzzy Measure of
Generalized Accord

AA Additive Measure of Agreement

ASh Proposed Agreement Fuzzy
Measure

gAG AG gGenA GenA

gAA AA gASh ASh

Sh Subsethood SSh
Bidirectional Subsethood based SM

a Crisp set a Interval {a ⊆ R : a = [a−, a+], a− ≤ a+}
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2 Background

This section initially reviews FMs and FIs and then provides a short discussion
on subsethood and the new bidirectional subsethood based SM [14,15].

2.1 Fuzzy Measures

FMs are defined as a hierarchical weighting structures (lattices) that capture
the worth of all subsets in a set of sources, including that of the singletons, also
referred to as the densities. Mathematically, an FM, g defined on a finite set of
sources, X = {x1, ..., xn} is a function g : 2X → [0, 1] satisfying the properties
[9]:

(P1) g(∅) = 0 and g(X) = 1 (Boundedness)
(P2) If a ⊆ b ⊆ X then g(a) ⊆ g(b) ⊆ g(X) (Monotonicity)

Here, g(a) is the worth of a subset a of X. Property (P1) states that the worth
of empty set (∅) is 0 and the worth of universal set (X) is 1. We note that the
worth of the universal set is not always required to be 1, but this convention is
adopted here. Property (P2) shows the monotonicity of g, stating that if a is a
subset of b (a ⊂ b), the worth of a is smaller or equal to the worth of b. There is
a third property of continuous FMs, which is not applicable to discrete FMs, as
used in this paper and most practical applications.

In practice, the FMs are defined in various ways, such as expert-defined, or
derived by algorithms or optimization based on existing data and in conjunction
with an aggregation functions such as the FI; for more details, please see [11,22].
This paper focuses only on algorithmically derived FMs leveraging the evidence
data arising from multiple sources. Section 3 reviews such FMs that are derived
on the concept of source agreement.

2.2 Fuzzy Integrals

FIs have been efficiently used as powerful non-linear aggregation operators in
evidence fusion [3,9]. They aggregate multi-source data (evidence) by combining
it with the worth information of all subsets of sources (captured by an FM). Two
well-known FIs are the Sugeno FI (SFI) [19] and the Choquet FI (CFI) [5]. In
practice, discrete SFI and CFI are commonly used [17] and in this paper, we
focus on the discrete CFI as it is most popular for evidence aggregation.

Let h : X → [0,∞) be a real-valued function that presents the evidence from
a source. The discrete CFI is defined as

∫
CFI

h ◦ g = CFIg(h) =
n∑

i=1

h(xπ(i))[g(Ai) − g(Ai−1)], (1)

where π is a permutation of X arranged like h(xπ(1)) ≥ h(xπ(2)) ≥ ... ≥ h(xπ(n)).
Ai = {xπ(1), xπ(2), ..., xπ(i)} is a subset of sources. g is the FM where g(Ai) is
the worth of the subset Ai with g(A0) = 0.
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In most cases, the multi-source data h is provided in a numeric form. However,
in some applications h is better represented by interval-valued or fuzzy set-valued
data. Considering this, FIs have been generalized for non-numeric evidence [1,
10,16]. Let h : X → I(R) be a set of interval-valued data where I(R) is the
set of all closed intervals over the real numbers and hi = h(xi) = [h−

i , h+
i ] be

the ith interval (where h−
i and h+

i are the left and right endpoints respectively).
Following the notation in [12], the CFI on h is defined as

∫
CFI

h ◦ g = CFIg(h) = [CFIg(h−), CFIg(h+)], (2)

where the output CFIg(h) is itself interval-valued [7]. In other words, the CFI
for interval-valued data is computed by applying the CFI for the numeric case
of the left and right interval endpoints separately. Please see [11,12,21] for more
detail about the interval aggregation using the FM and the CFI.

2.3 Subsethood

The subsethood between two sets a and b is a relation, indicating the degree to
which a is a subset of b [18]. It is defined as

Sh (a, b) =
|a ∩ b|

|a| , (3)

where |a ∩ b| is the cardinality of the intersection of a and b, and |a| is the
cardinality of a. It is always bounded on the interval [0, 1], where 1 means that
a is a subset of b (a ⊆ b) and 0 means that a and b are disjoint (a 
⊂ b).

Similarly, the degree of subsethood of two intervals a and b can be defined as

Sh

(
a, b

)
=

∣∣a ∩ b
∣∣∣∣a∣∣ , (4)

where
∣∣a ∩ b

∣∣ is the size of the intersection between a and b and |a| 
= 0.

2.4 Bidirectional Subsethood Based Similarity Measure

A new SM was introduced in [14,15] which uses the reciprocal subsethoods of
intervals to capture their similarity. This measure for two intervals a and b is,

SSh

(
a, b

)
= �

(
Sh(a, b), Sh(b, a)

)
, (5)

where � is a t-norm. We can rewrite (5) using the definition of Sh at (4) as

SSh

(
a, b

)
= �

( |a ∩ b|
|a| ,

|a ∩ b|
|b|

)
. (6)
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3 Existing Agreement Fuzzy Measures

Here, we briefly recapture the AG [21], GenA [12], and AA [11] FMs with respect
to a set of intervals h = {h1, h2, ..., hn} arising from n individual sources.

3.1 Fuzzy Measure of Agreement

Wagner and Anderson [21] proposed the AG FM by extracting it from the
interval-valued data with no prior knowledge about sources. The AG FM is
defined as

g̃AG
(
Ai

)
=

⎧⎨
⎩

0 for i = 0, 1 (7a)
i∑

K=2

∣∣ŪK

(
Ā

)
i

∣∣ zK for i = [2 : n] (7b)

where Ai = {hπ(1), hπ(2)..., hπ(i)} is the permuted set of intervals with A0 = ∅,
zi = i

n and |.| refers to the cardinality/size of the interval. Here, UK(Ai) unites
the intersections of the K-tuples in Ai ⊆ h as defined in (8) [11,12].

UK(Ai) =
i−K+1⋃
k1=1

i−K+2⋃
k2=k1+1

...

i⋃
kK=kK−1+1

(hπ(k1) ∩ hπ(k2) ∩ ... ∩ hπ(kK)) (8)

Further, the g̃AG(Ai) is normalized by g̃AG(h) to satisfy the property of the
FM, i.e., gAG(Ai) = g̃AG(Ai)

g̃AG(h)
.

3.2 Additive Measure of Agreement

Havens et al. [11] proposed the AA FM in order to alleviate the asymmetry
issue of agreement FMs. This FM utilizes the SMs for determining the source
agreement. The AA FM is expressed in (9).

g̃AA(Ai) = g̃AA(Ai−1) +
n∑

j=1
j �=i

Sp(hj , hπ(i)), i = [n], p ≥ 0 (9)

where p is a tuning parameter and S is the SM. Further, g̃AA(Āi) is normalized
by g̃AA(Ān) like gAA(Ai) = g̃AA(Ai)

g̃AA(An)
.

3.3 Fuzzy Measure of Generalized Accord

Havens et al. [12] proposed the GenA FM leveraging a generic SM to estimate
the agreement (accord) of subsets of sources. The GenA FM is defined as

gGen
(
Ai

)
=

⎧⎨
⎩

0 for i = 0, 1 (10a)

αh̄

i∑
K=2

SK

(
Āi

)
for i = [2 : n] (10b)
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where Ai = {hπ(1), hπ(2)...., hπ(i)} is the permuted set of intervals with A0 = ∅,
and SK(Ai) is defined in (11).

SK(Ai) =
(

n

K

)−1 ∑i−K

k1=1

∑i−K+1

k2=
k1+1

...
∑i

kK=
kK−1+1

S({hπ(k1), hπ(k2), ..., hπ(kK)})

(11)
Here,

(
n
K

)
is the number of possible K-tuples in h and S is the SM. The quantity

SK(Ai) is the sum of similarities of the K-tuples in Ai ⊆ h, weighted by
(

n
K

)−1.
Further, the constant αh is defined in (12) so that gGenA(h) = 1.

αh =

(
n∑

K=2

SK(Ān)

)−1

(12)

In [11,12], the GenA and AA FMs are explored in respect to the popular SMs
(within (11) and (9)). As detailed in [14,15], we note however that Jaccard
or Dice SMs are liable to aliasing, thus making the GenA and AA FMs to
generate the same worth for very different subsets of sources which in turn
affects the quality of the overall aggregation. To avoid this, in the next section, we
leverage the recently introduced bidirectional subsethood based SM (minimizing
aliasing), designing a new instance of the GenA FM.

4 A New Instance of the Agreement Fuzzy Measure
Based on Bidirectional Subsethood

Here, we develop a new instance of agreement FM following the concept of the
GenA FM and exploit the new bidirectional subsethood based SM for computing
the source agreement. As the new SM minimizes aliasing, it helps the proposed
FM avoid generating the same agreement and worth for different subsets of
sources. This section first defines the subsethood for a set of intervals. Then, the
new SM at (5) is revisited to enable it to compute similarity for a set of intervals.
Finally, the new instance of agreement FM involving the new SM is introduced.

4.1 Defining Subsethood for a Set of Intervals

The subsethood of an interval, hr as regards to a set of intervals Ai ⊆ h is
defined as a mean of its subsethood to each interval ht in Ai. It is expressed as

Sh(hr, Ai) =
1

|Ai|
∑

ht∈Ai

Sh(hr, ht) =
1

|Ai|
∑

ht∈Ai

|hr ∩ ht|
|hr|

, (13)

where Sh(hr, Ai) → [0, 1] such that Sh(hr, Ai) = 1 when hr ⊂ ht, for all ht ∈ Ai

and Sh(hr, Ai) = 0 when hr 
⊂ ht for any of ht ∈ Ai.
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4.2 Defining Bidirectional Subsethood Based Similarity Measure
for a Set of Intervals

The bidirectional subsethood based SM, SSh
for h is the t-norm (�) of their

reciprocal subsethoods, i.e.,

SSh

(
h
)

= �
(
Sh(h1, {h2, ..., hn}), ..., Sh(hn, {h1, ..., hn−1})

)
= �

(
Sh(h1, h\h1), ..., Sh(hn, h\hn)

) (14)

where h\hi is the nonempty subset of intervals excluding hi, i ∈ {1, ..., n}. In this
paper, we use the minimum t-norm (�) as it is the most common in practice.

4.3 Bidirectional Subsethood Based Agreement Fuzzy Measure

Consider again the set of n intervals, h. For any nonempty subset Ai ∈ h,
1 ≤ i ≤ n, the new FM, g̃ASh using the new SM (14) is defined as follows (which
is later normalized to a proper FM, gASh):

g̃ASh(A0) = 0, (15a)

g̃ASh(A1) =
(

n

1

)−1

×
1∑

k1=1

SSh

(
hk1 , hk1

)
=

1
n

, (15b)

g̃ASh(Ai) = i × g̃ASh(A1) +
(

n

2

)−1 i−1∑
k1=1

i∑
k2=k1+1

SSh

(
hk1 , hk2

)
+ ... (15c)

+
(

n

i

)−1

SSh

(
h1, ..., hi

)
,

where A0 = ∅, A1 is a singleton subset, and Ai is a non-singleton subset with
i sources, 1 < i ≤ n.

(
n
K

)
is total number of K-tuples in the set, h, where

1 ≤ K ≤ n. (15a) is the worth of A0, which is always 0. (15b) is the worth of A1,
which is the similarity of 1, weighted by

(
n
1

)−1. (15c) is the worth of Ai, which is
the sum of the similarities of all K -tuples in Ai, 1 ≤ K ≤ i, weighted by

(
n
K

)−1.

Remark 1. (15b) captures the worth of singleton subsets (A1) which is, g̃ASh(A1)
= 1

n , where n = |h|. For a non-singleton subset consisting of all disagreeing
sources, the inclusion of the worth of the singleton subsets in (15c) enables it to
generate the worth information for this set.

Following [11,12], (15c) is rewritten as follows,

g̃ASh(Ai) =
i

n
+

i∑
K=2

[(
n

K

)−1

ZK(Ai)

]
, i ≥ 1, (16)

where the first part of (16) is the sum of the worth of all singletons in Ai. The
other part gives summation of the similarities of all K -tuples in Ai (K ≥ 2),
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weighted by
(

n
K

)−1. ZK(Ai) captures the cumulative similarity for all K -tuples
in Ai (K ≥ 2) using (14) and is defined in (17).

ZK

(
Ai

)
=

∑i−K+1

k1=1

∑i−K+2

k2=
k1+1

...
∑i

kK=
kK−1+1

�
(
Sh(hk1 , Ai\hk1), ..., Sh(hkK , Ai\hkK )

)

(17)

Finally, g̃ASh(Ai) is normalized by g̃ASh(h) in (18) so that gASh(Ai) ≤ 1 and
gASh(h) = 1, which maintains the bounded property of the FM.

gASh(Ai) =
g̃ASh(Ai)
g̃ASh(h)

, 1 ≤ i ≤ n. (18)

In the following Example 1 demonstrates that unlike the gGenA and gAA

FMs, the new instance agreement FM, gASh avoids generating the same agree-
ment and worth for different sets of sources. In addition, Example 2 presents
the interval aggregation using the gASh FM and the CFI.

Example 1: Consider two interval-valued datasets, h and r, as shown in Fig. 3.
Their corresponding FM lattices using the gASh , gAG, gGenA, and gAA FMs are
also shown in Fig. 3 (we skip showing the FM values for ∅ and h). Due to aliasing
of the Jaccard SM, both gGenA and gAA FMs generate the same FM lattices for
these sets whereas the gASh and gAG FMs generate distinct FM lattice.

(a) Interval-valued set h (b) Interval-valued set r

(c) FM lattice for h (d) FM lattice r

Fig. 3. Example showing avoidance of generating same FM lattice for different subsets
of sources by the gASh FM. Any subset {h1, h2} or {r1, r2} is presented as {1, 2}.
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Example 2: Consider the interval-valued dataset, r in Fig. 3(b) and its corre-
sponding gASh FM lattice in Fig. 3(d). Using (1), the aggregation of left interval
endpoints is, CFIg(h−) = 3 × [gASh({1}) − gASh({∅})] + 1 × [gASh({1, 3}) −
gASh({1})] + 0 × [gASh({1, 2, 3}) − gASh({1, 3})] = 3 × [0.22 − 0] + 1 × [0.54 −
0.22]+0× [1−0.54] = 0.98. Similarly, the aggregation of right interval endpoints
is, CFIg(h+) = 10×[0.22−0]+6×[0.54−0.22]+3×[1−0.54] = 5.5. Finally, using
(2) the interval aggregation is, CFIg(h) = [CFIg(h−), CFIg(h+)] = [0.98, 5.5].

5 Demonstration

This section demonstrates the behaviour of the new FM against the AG, GenA,
and AA FMs for two synthetic datasets and a real-world example. For conve-
nience, the new instance of agreement FM is denoted as ASh and the CFI is used
throughout. Further, the Jaccard SM is used for the GenA and AA FMs, and
AV G represents the arithmetic mean of the left and right endpoints of the intervals
respectively. In all experiments, we follow the assumption that no worth informa-
tion of sources is available (e.g. as in crowdsourcing). If there was such information,
it could be captured and a meta-measure could be created (see [21]).

(a) Interval-valued set-I (b) Interval-valued set-II

(c) Interval-valued set-III (d) Interval-valued set-IV

Fig. 4. Comparison of aggregation results from the CFI with the ASh, AG, GenA and
AA FMs for four different interval-sets.
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5.1 Demonstration with Synthetic Dataset-1

Figure 4 shows four examples of synthetic datasets together with aggregated
results based on the CFI using the ASh, AG, GenA, and AA FMs.

(1) The interval-valued set-I shown in Fig. 4(a) consists of three smaller inter-
vals h4, h5, and h6 that agree completely and three larger intervals h1, h2 and
h3 agreeing to a certain degree. The aggregation results (Fig. 4(a)) show that
the AG FM gives importance only to the subset of larger intervals, whereas the
GenA and AA FMs are influenced by the subset of smaller intervals as they agree
totally. However, the ASh FM not only gives more importance to the subset of
smaller intervals having a complete agreement, but also considers other subsets,
{h1, h3} and {h2, h3} with agreement to a certain degree.

(2) For the interval-valued set-II shown in Fig. 4(b), there are three intervals
h1, h2 and h3 having higher agreement than three other intervals h4, h5 and h6.
Here, the AG FM is greatly influenced by the subset {h1, h2, h3}, whereas the
GenA, AA, and ASh FMs show more balanced aggregation by considering the
two subsets ({h1, h2, h3} and {h4, h5, h6}) when used with the CFI.

(3) The interval-valued set-III shown in Fig. 4(c) includes three intervals agree
to each other completely and the other three wholly disagrees. Here, the AG,
GenA and AA FMs are completely influenced by the subset of agreed intervals,
i.e., {h4, h5, h6}. Like other FMs, the ASh FM shows the influence of the subset
{h4, h5, h6}, concurrently, it also considers disagreed singletons, {h1, h2, h3}.

(4) The interval-valued set-IV shown in Fig. 4(d) consists of five intervals where
all intervals are completely non-overlapped. At this situation, the AG, GenA,
and AA FMs are not designed to generate the worth information for the sub-
sets of sources and hence do not provide aggregation when combined with the
CFI. Contrarily, the ASh FM, by its construction, assigns worth to all single-
tons, which is later normalized by g̃ASh(h). Even though there is no agreement
amongst the sources regarding their intervals, the ASh FM still can estimate
the worth of other subsets by utilizing the worth of singletons. Table 2 shows
the normalized worth of all subsets of intervals for the dataset-IV (in Fig. 4(d))
using the ASh FM, where all intervals are in complete disagreement. Intuitively,
when there is no overlap between intervals and all intervals are unique, then all
sources should be treated with an equal worth and the aggregation should be
equal to the average. In Fig. 4(d), only the ASh FM with the CFI generates the
aggregation results accordingly (i.e., performs like an average operator).

5.2 Demonstration with Synthetic Dataset-2

Here, we investigate how the FMs in combination with the CFI behave in pro-
ducing the aggregation result when the overlap between intervals are gradually
decreased. Five different sets of two intervals h1 and h2 are considered in Fig. 5(a)
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Table 2. The normalized worth of subsets of intervals using the ASh FM (gASh)

|{Ai}| = 1 |{Ai}| = 2 |{Ai}| = 3

gASh({h1})=0.2 gASh({h1, h2})=0.4 gASh({h1, h2, h3})=0.6

gASh({h2})=0.2 gASh({h1, h3})=0.4 gASh({h1, h2, h4})=0.6

gASh({h3})=0.2 gASh({h1, h4})=0.4 gASh({h1, h2, h5})=0.6

gASh({h4})=0.2 gASh({h1, h5})=0.4 gASh({h1, h3, h4})=0.6

gASh({h5})=0.2 gASh({h2, h3})=0.4 gASh({h1, h3, h5})=0.6

gASh({h2, h4})=0.4 gASh({h1, h4, h5})=0.6

gASh({h2, h5})=0.4 gASh({h2, h3, h4})=0.6

gASh({h3, h4})=0.4 gASh({h2, h3, h5})=0.6

gASh({h3, h5})=0.4 gASh({h2, h4, h5})=0.6

gASh({h4, h5})=0.4 gASh({h3, h4, h5})=0.6

|{Ai}| = 4 |{Ai}| = 5

gASh({h1, h2, h3, h4})=0.8 gASh({h2, h3, h4, h5})=1.0

gASh({h1, h2, h3, h5})=0.8

gASh({h1, h2, h4, h5})=0.8

gASh({h1, h3, h4, h5})=0.8

gASh({h2, h3, h4, h5})=0.8

with 100%, 75%, 50%, 25%, and 0% overlap respectively. Note that h1 is set to
[0, 1] in all five sets, while h2 is altered depending on the % of overlap. Figure 5(b)
shows that all FMs (used with the CFI) aggregates the intervals equally (i.e.,
[0, 1]) when 100% overlap exists. However, despite degrading overlap, the AG
and GenA FMs continue to show the same aggregation (i.e., [0, 1]), whereas the
AA and ASh FMs follow the overlap degradation and aggregate the intervals
accordingly. Finally, when the intervals are in complete disagreement (i.e., 0%
overlap), the ASh FM with the CFI performs like an average operator, whereas
the other FMs do not support aggregation.

5.3 A Real-World Example

This experiment uses the outcome of different ageing methods (Pubic Symphysis
(PS ), Auricular Surface (AS ), Ectocranial Suture-Vault (ESV ), and Ectocra-
nial Suture-Lateral Anterior(ESLA)) to estimate the age-at-death of an indi-
vidual skeleton [3] which is useful for forensic and biological anthropologists.
Each of them provides an estimated age range for the individual skeleton. Con-
sidering the worth information of the aging methods are unknown, here our
aim is to fuse their estimated age range directly to get a combined view of the
skeletal age-at-death. In this aggregation experiment, the more intuitive aggre-
gation outcome is likely to be a narrow age range capturing the actual age-at-
death. Figure 6 presents the estimated age range of each aging methods for three
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(a) Sets of interval-valued data (b) Aggregation results

Fig. 5. (a) Five sets of interval-valued data with degrading interval-overlap (b) Aggre-
gation results of the AG, GenA, AA and ASh FMs with the CFI for Fig. 5(a).

(a) Skeletal Dataset-1 (b) Skeletal Dataset-2 (c) Skeletal Dataset-3

Fig. 6. Aggregation of estimated age range of four different ageing methods using the
agreement FMs with the CFI. The vertical line shows chronological age-at-death.

individual skeletons together with their true chronological age-at-death. Figure 6
also shows the aggregation results for all agreement FMs when used with the
CFI. The results reveal that the gASh FM specifies the age range more nar-
rowly (while also capturing the true chronological age-at-death) compared to
other agreement-based FMs. While this is only one example and not an exten-
sive study, it demonstrates the interesting potential robustness in aggregation
outcome of the proposed agreement FM.

6 Conclusions

As the agreement calculation of agreement FMs are affected by the limitations
of popular SMs, this paper has developed a new instance of an evidence-driven
agreement FM for interval-valued datasets building on the structure of GenA
FM, and leveraging a recently introduced SM [14,15] to provide better capture
of the inter-source agreement and worth estimation. Further, the proposed FM
is designed to deal with cases where no agreement exists amongst the evidence
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arising from sources. Here, in combination with the CFI, it gracefully degrades
to an average operator, whereas existing agreement FMs are not designed to
deal with such instances. The behaviour of this FM has been compared with
existing agreement FMs by aggregating both synthetic and real interval-valued
data in combination with the CFI, showing that it provides robust and qualita-
tively superior outcomes in agreement-based data aggregation. In future, we will
experiment with this new instance of agreement FM in combination with the
FI for aggregating fuzzy set-valued data. In addition, we will extend this FM to
address the asymmetry issue noted in [11].
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Abstract. Parkinson’s is a chronic, progressive neurological disease
with no known cause that affects the central nervous system of older
people and compromises their movement. This disorder can impair daily
aspects of people and therefore identify their existence early, helps in
choosing treatments that can reduce the impact of the disease on the
patient’s routine. This work aims to identify Parkinson’s traces through
a voice recording replications database applied to a fuzzy neural network
to identify their patterns and enable the extraction of knowledge about
situations present in the data collected in patients. The results obtained
by the hybrid model were superior to state of the art for the theme,
proving that it is possible to perform hybrid models in the extraction of
knowledge and the classification of behavioral patterns of high accuracy
Parkinson’s.

Keywords: Parkinson’s disease · Fuzzy neural network · Hybrid
models

1 Introduction

Parkinson’s disease - PD [12], progressively affects specific areas of the central
nervous system composed of the brain and spinal cord, caused by the intense
loss of nerve cells in parts of the basal ganglia known as the black substance,
located mainly in a small region of the brain mass. These neurotransmitters are
responsible for carrying out the voluntary movements of the body automatically,
that is, all those in which there is no need to think to perform them, the muscles
perform them to the presence of this substance in the brain. Dopamine is one of
the main neurotransmitters in the basal ganglia, and its primary function is to
intensify nerve impulses to the muscles [12]. In the absence of it, the individual’s
control is lost, causing characteristic signs and symptoms. The initial phase
of the disease presents subtle symptoms such as variation in speech and other
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notable ones, such as extensive and rhythmic tremors in the hands, stiffness in
the muscles and joints making movement difficult, balance, and posture are also
gradually compromised. PD is the second most common degenerative disease
of the central nervous system, after Alzheimer’s disease [6], so early diagnosis
can provide the patient with a significant improvement in the quality of life and
control of PD progression.

In order to carry out a diagnosis in an efficient and less invasive way to
patients, methods that evaluate voice recordings are being used to perform an
acoustic analysis on speech signals and tones to identify various diseases ([18,21,
29,33,38]). Many works already consider this sound recording technique useful
for the creation of intelligent systems or using smart approaches to diagnose the
disease, and these approaches allow discriminating healthy people from those
with PD ([2,3,7,29,30,36,41]). These structures facilitate the decision making
of specialists in the correct diagnosis of patients, with a reduction in the risk
of failures and a decrease in false-positive diagnoses, and taking into account
the time provided to the patient in a medical follow-up. The classification is
only possible by Naranjo et al. [28] that made available a database with 195
recordings consisting of people with PD and healthy people. This work proposes
the use of a hybrid model, a Fuzzy Neural Network (FNN), in order to extract
diffuse rules and maintain a high level of precision for the results obtained,
this interpretability allows the extraction of knowledge from the database. The
WEKA tool [14] presents the leading machine learning tools, and it will be
possible to compare the results of the FNN network with the main machine
learning techniques.

In addition to the introduction, this article presents the following sections:
right after that, the related works (Sect. 2) and the main concepts that guide
this research are present. In Sect. 3, concepts of fuzzy neural networks and the
architecture used in this paper are presented to the reader. Also, in Sect. 4,
Parkinson’s detection tests are presented, and finally, in Sect. 5 it presents the
conclusions obtained in the paper and future works that may expand what was
accomplished in this paper.

2 Related Works

2.1 Parkinson’s Disease

It can be said that the cause of PD is considered uncertain (first), with more
than one factor involved in triggering the disease. These factors can be genetic
or environmental. Studies indicate that due to the abnormal accumulation of
synuclein (a protein in the brain that helps the communication of nerve cells).
These neurotransmitters, called Lewy bodies, can accumulate in various regions
of the brain, mainly in the black substance, and consequently interfere with
brain function. When performing an early diagnosis, the impacts on quality of
life are reduced by monitoring and treatment by specialists [39]. Medication and
physical activities are the main assets for reducing the progression of PD.
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2.2 Intelligent Approaches in Parkinson Disease Detection

The treatment and early identification of Parkinson’s disease have stimulated
several scientists to produce renowned academic works. In this paper, the
database developed by Naranjo et al. [28] obtained excellent results using
Bayesian models. Their studies generated other proposals and approaches with
the same database. A summary of these works is listed in Table 1.

Table 1. Pattern Classification Models.

Models

Applications Accuracy Sens Spec.

Variable selection and classification
approach for Parkinson’s disease [29]

0.779 (0.080) 0.765 (0.135) 0.792 (0.150)

Bayesian approach [28] 0.752 (0.086) 0.786 (0.135) 0.718 (0.132)

3 Fuzzy Neural Networks

Fuzzy neural networks are an example of hybrid models that act in the synergy
between interpretability (provided by fuzzy systems) and the ability to gener-
alize training (provided by artificial neural networks) [24]. These models are
seen as the union of a fuzzy inference system and a neural aggregation network
responsible for carrying out actions of different natures, such as solving problems
in the software area [8], astronomy [10], and the time series prediction [9,34].
It should be noted that these models have been working efficiently to become
a reference in solving problems in the area of health and human behavior, such
as in solving problems related to immunotherapy [20], breast cancer [32], ECG
[23], autism detection [13], in addition to helping in the detection of cognitive
and motor problems in children and adolescents [35]. The FNN model presented
in this paper acts with three main layers, a fuzzification technique based on data
density [17], training following the concepts of Extreme Learning Machine [16],
and the classification of patterns performed by a singleton neuron that uses the
ReLU [27] approach as a function of activation. Its architecture can be seen in
Fig. 1, and its layers and training methodology are explained below.

3.1 First Layer- Data Density Fuzzification

The first layer of the model is responsible for the fuzzification process and the
formation of Gaussian-type fuzzy neurons that will compose the model’s input
structure. All information will be fuzzified using a technique based on data clus-
ters due to its density. Thus, the neurons formed in this layer, represent the
data cluster and, in turn, assist in the construction of a more compact FNN
architecture and with neurons more significant to the problem.
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Fig. 1. Fuzzy neural network architecture

The objective of the clustering technique proposed by Hyde and Angelov
[17] is to autonomously determine the clusters to be formed by the data, thus
allowing the use of a simple fuzzification process and inspired by the behavior of
the problem data. For this, the following concepts are fundamental, such as data
distribution data density, radii and distances between reference points, among
others.

The DDC works initially with the average of all the data to be evaluated.
They are recursively calculated in order to decrease the complexity of the fuzzi-
fication approach and can be expressed by [17]:

μ0 =
1
N

N∑

i=1

xi (1)

where xi represents a sample from the problem, and N is the number of samples
[17]. The next step is to calculate the sample density recursively and is expressed
by [17]:

Xo =
1
N

N∑

i=1

x2
i (2)

The concepts reported in the Eqs. 1 and 2 provide the fundamental calculation in
the construction of clusters. The density, as a result of the previous calculations,
is also recursively calculated. Thus, it is expressed by [17]:

Di =
1

1 + ‖xi − μ0‖2 + X0 − ‖μ0‖2 (3)

Finally, in order to adjust the centers found in the grouping procedure, the
following training algorithm is used [17]:

r2j = αr20 + (1 − α)
1

Nj

N∑

i=1

‖xi = μj‖2 (4)
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where α it is seen as a learning parameter that can be set by the user or using data
propagation. In this paper, the second option was defined so that the clustering
approach was autonomous, based on the data essence.

Therefore, the clustering algorithm in this paper works by defining the sample
with the highest density, transforming it into a center, and starting from there,
defining the forms of clustering with the adjacent samples. Therefore, cluster C
will have centers that will allow the construction of Gaussian neurons in the first
layer of the model. They will be constructed based on the final centers found
by the DDC approach and a sigma value defined in the unit interval, that is,
between 0 and 1. For each input variable xij , L neurons are defined Alj , l = 1,
... L, whose activation functions are composed of membership functions in the
corresponding neurons. Therefore, it is represented by:

ajl = ϑAl
, j = 1... n, l = 1 ... L (5)

where ϑ is the membership degree. The number of Gaussian neurons in the first
layer will be equal to the number of centers found by the fuzzification technique
and these neurons can be expressed by:

gauss = (xij , cl, σl) =
n∑

j=1

e
− 1

2

( xij−cl
σl

)2

, for l = 1 ... L (6)

3.2 Second Layer- Fuzzy Rules

The second layer is composed of fuzzy neurons capable of expressing knowledge
relationships on the database through IF-THEN rules. For this purpose, fuzzy
logical neurons are constructed through the aggregation of the Gaussian neurons
of the first layer of the model. To perform the proper calculations, operators
such as t-norm (product) and s-norm (probabilistic sum) [5] are applied to the
aggregation operators, which in the specific case of this paper, is called uninorm
[40].

The uninorm [40] is an aggregator that allows functions of t-norm and s-norm
to be used within the same context, because depending on a term, sometimes
the operator can perform calculations with the product, sometimes with the
probabilistic sum. These factors facilitate the construction of more interpretable,
contextual rules that represent the problem domain in a clear and precise way.
The uninorm format used in this paper is defined by:

U(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

o T (x
o , y

o ), if y ∈ [0, o]
o + (1 − o)S(x−o

1−o , y−o
1−o ), ify ∈ [o, 1]

δ(x, y), otherside
and

δ(x, y) =
{

max(x, y) − if g ∈ [0, 0.5]
min(x, y) − if g ∈ (0.5, 1]

(7)

where T is a t-norm, S is a s-norm and o is the activation of the fuzzy neuron
randomly set between [0, 1]. In order for the uninorm to act on fuzzy neurons,
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two preliminary steps are required. The first procedure is the transformation
of the neuron input (ai) (which in the case of this paper is represented by the
Gaussian neuron of the first layer) together with a weight value (wi), defined in
a random between 0 and 1 with Eq. 7, for i =1, ... L. The second step aggregates
all the values resulting from the first step through the following Equation:

p(w, a, o) = wa + w̄o (8)

where w̄ represents the complement of w. The fuzzy neuron (z) that uses uninorm
to aggregate neurons in the first layer with weights is called a unineuron [22] and
can be described by:

z = UNI(w; a; o) = Un
i=1p(wi, ai, o) (9)

The z neurons are seen as an aggregation of the first layer to obtain knowledge
about the database. In this case, these neurons can be interpreted as a set of
fuzzy rules of the IF-THEN type that can be expressed as:

Rulez : IF xi1 is A1
1 with certainty w11...

THEN zz = vz

(10)

The concept of certainty can also be extended to the rule consequent in
Eq. 10.

THEN z = Class Υ with certainty wΥ (in[0, 1]) (11)

In binary problems, Eq. 11 could be seen as an auxiliary process to interpret fuzzy
rules. Therefore, in a hypothetical example where z = Class 0 with certainty 0.8
would mean that this rule has certainty 0.8 in Class 0 and 0.2 in Class 1.

As the relationship of z neurons occurs through the fuzzification process and
the determination of centers, it is concluded that the model that makes up the
first two layers of the model can be seen as a fuzzy inference system based on the
density of the data evaluated in the model. Where the values of v are defined by
training the model and represent the weights that connect the fuzzy inference
system with the third layer. Another view for the value of v is that it represents
the weight of that rule in the context of the expected output.

3.3 Third Layer- Artificial Neural Network

The third layer of the model merges the fuzzy rules and provides the expected
answers to the problem. It is composed of an artificial neuron (can also be seen
as a Singleton), which receives the z neurons of the second layer as input and
performs the due calculations with a set of weights v obtained analytically. The
neuron activation function, responsible for the necessary calculations for the
final responses of the model, uses the Leaky ReLU approach [25]. Therefore, the
neurons of the third layer can be expressed by:
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y = sign

l∑

j=0

fω(zl, vl) (12)

where ω is defined by the leaky ReLU activation function and the sign function
represents the signal function. This activation function introduces a β factor to
prevent neurons from being discarded when analyzing the problem. Its function
is expressed by [25]:

fLeakyReLU (z, β) = max(βz, z) (13)

where, in this paper, β = 0.001.
The process carried out in the third layer can also be seen as the stage of

defuzzification of the model, allowing fuzzy relations to return to crisp values.

3.4 Training

The training of the model is based on the concepts of Extreme Learning Machine,
where the parameters of the hidden layer are defined randomly, and the weights
used by the neural aggregation network (third layer) are calculated analytically,
through the Moore Penrose pseudoinverse. Thus, we can express the obtainment
of the weights that connect the fuzzy inference system to the neural aggregation
network by the Equation:

v = Z+y (14)

where Z+ is the Moore Penrose pseudoinverse of Z, which is defined by:

Z =

⎡

⎣
UNI(w1, a1 + o1) ... UNI(wl, a1 + ol)
UNI(w1, a2 + o1) ... UNI(wl, a2 + ol)
UNI(w1, an + o1) ... UNI(wl, aN + ol)

⎤

⎦

N×l

(15)

The model proposed in this paper needs the initial radii value in the fuzzifi-
cation process and the sigma value of neurons in the first layer. The other values
are defined according to the training algorithm. That makes the model simple
and easy to adapt to solve the Parkinson’s problem.

The fuzzification technique can generate some redundant neurons. To avoid
this problem, a resampling technique linked to the LARS [11] model is used to
select the best neurons, which consequently will be the best rules. This technique,
called bolasso [4], was proposed by Bach and has been widely used in hybrid
models for this purpose.

It combines several random replications with fuzzy rules and assesses their
relevance to the model’s expected outputs. Thus it is possible to define a sub-
group of fuzzy candidate rules. At each replication, a different number of candi-
date rules are selected, and a consensus threshold defines the final selection of
fuzzy rules. For example, if in 16 replications with the base, four rules were the
most significant in 50% of the replications (that is, 8), they are selected to
compose the final model. This selection is made before the weights are
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generated, so it is guaranteed that the weights that connect the cloudy inference
system and the model’s output layer are generated with the significant rules of
the problem.

4 Parkinson’s Detection Test

In order to verify the capacity of the model proposed in this paper, standard
classification tests will be performed with a database that was worked on by
Naranjo et al. [28]. Initially, the database has 48 features. However, for these
experiments, the ID dimension, which is responsible for identifying the peo-
ple in the experiment, was discarded. The collected records were 240, and the
database is balanced, as there are 120 people identified with Parkinson’s and 120
others without the disease. Figure 2 presents some of the dimensions present in
the database, where the blue colors represent healthy people, and the red color
identifies a person with Parkinson’s.

Fig. 2. Parkinson dataset- example (Color figure online)

To verify the model’s ability to identify people with Parkinson’s disease,
the dataset will be divided into 70% for training the model, and the remain-
ing 30% will be used to evaluate the results. All samples were normalized and
were selected at random. To avoid trends in the test results, 30 repetitions were
performed for the model that is part of the test.

As it is a database with binary outputs, the evaluation criteria of an intelli-
gent model are well known by the academic community. The following criteria
assess the model’s ability to correct the diagnosis, the number of false positives
and false negatives.
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accuracy =
TP + TN

TP + FN + TN + FP
(16)

sensitivity =
TP

TP + FN
(17)

specificity =
TN

TN + TP
(18)

AUC =
1
2

(sensitivity + specificity) (19)

where, TP = true positive, TN = true negative, FN = false negative and
FP = false positive.

The model proposed in this paper used the following values: σ = 1.9 and
radii = 0.08 defined through a preliminary 10 k-fold procedure for the following
value range of σ = [1.5, 1.6, 1.7, 1.8, 1.9, 2.0] and radii = [0.05, 0.06, 0.07, 0.08,
0.09]. For the experiments in this paper, the replication values were defined as
16, consensus threshold = 60% after cross-validation and 10 -fold tests with the
database for training the model1. The other models used in the test are listed
below:
SVM - Support vector machine algorithm [37] is to find a hyperplane in an
N -dimensional space that distinctly classifies the data points.2

MLP - Multilayer Perceptron [26]. It uses training based on the backpropagation
technique and has a hidden layer.3

NB - The Naive Bayes [19] algorithm is a probabilistic classifier based on the
Bayes Theorem.4

C4.5 - Generating a pruned or unpruned C4.5 decision tree [31].5

RNT - Random Tree [1] is use for constructing a tree that considers K randomly
chosen attributes at each node.6

1 For replication values between 8 and 32 and for the consensus threshold between 40
to 80%.

2 In all tests that the model was used, one should consider the linear kernel. For more
information on the code used, visit https://la.mathworks.com/help/stats/support-
vector-machines-for-binary-classification.html.

3 In all tests the following settings were used: batch size = 100, hidden layers= 1,
learning rate = 0.3, momentum = 0.2, validation Threshold= 20.

4 In all tests the following settings were used: batch size = 100, use kernet Estima-
tor = false, Supervised Discretization = false.

5 In all tests the following settings were used: batch size = 100, confidence fac-
tor = 0.25, min. num. obj= 2, num. Folds= 3, seed = 1, reduce Error pruning= false,
unpruned= false, laplace = false.

6 In all tests the following settings were used: batch size = 100, breakTiesRan-
domly = false, KValue = 0, num. Folds= 3, seed = 1, minNum = 1.0, allowUnclassi-
fiedInstances= false, maxDepth = 0.

https://la.mathworks.com/help/stats/support-vector-machines-for-binary-classification.html
https://la.mathworks.com/help/stats/support-vector-machines-for-binary-classification.html
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The values in parentheses are standard deviations. Simulations were per-
formed on a Core (TM) 2 Duo CPU, 2.27 GHz, with 3-GB RAM. Time is rep-
resented by the sum of training time and test (seconds) in each of the models.
Neurons represent the most representative neurons after the pruning or regular-
ization of the models.

Table 2. Results Optical Interconnection database.

Models Accuracy AUC Sens. Spec. Time

This Paper 80.88 (4.43)* 0.8204 (0.05)* 0.8534 (0.65)* 0.7875 (0.09) 10.11 (0.42)

SVM 79.93 (4.20)* 0.7969 (0.10) 0.8244 (0.04)* 0.7695 (0.06) 129.94 (16.22)

MLP 77.69 (4.95)* 0.8599 (0.04)* 0.7935 (0.07) 0.9263 (0.10)* 5.63 (0.06)

NB 78.51 (4.56)* 0.8693 (0.04)* 0.8213 (0.06)* 0.9173 (0.05)* 0.01 (0.01)

C-4.5 73.47 (4.97) 0.7386 (0.06) 0.7426 (0. 08) 0.7346 (0.65) 0.01 (0.01)

RNT 79.81 (3.32)* 0.8807 (0.04)* 0.8343 (0.06)* 0.9271 (0.21)* 0.12 (0.01)

The results presented in the Table 2 present the total accuracy more signifi-
cant than the other models used in the test and also surpass the original dataset.
All test results were evaluated using a statistical test (ANOVA) [15]. With a 95%
probability, we can say that all results marked with an ‘*’ are statistically equal
concerning the equitable performance of the factors collected between the mod-
els analyzed in the test. All premises (normality of residues, homoscedasticity,
and independence) were not violated.

Therefore, it proves the efficiency of fuzzy neural networks in solving prob-
lems. It should be noted that the total fuzzy rules generated initially revolved
around 46 fuzzy relations. After the regularization technique, around 5 to 6 rules
are used in the 30 executions performed during the procedures reported in the
tests. Another relevant factor reported in the results is that the Random Tree
algorithm has results very close to the hybrid model, also standing out in AUC
and specificity. The model proposed in this paper had better results in sensitiv-
ity (the ability of the diagnostic test to detect truly positive individuals, that is,
to correctly diagnose patients with Parkinson’s disease). So we can say that the
model has the best ability to identify people who have the disease. The following
fuzzy rule was extracted from the dataset in an experiment with a final accuracy
of 84% probability of defining a patient with a Parkinson’s diagnosis.

IF Gender is female with certainty 0.33 AND/OR Jitterrel is very high with
certainty 0.90 AND/OR Jitterabs is very small with certainty 0.12 AND/OR Jit-
terRAP is very small with certainty 0.81 AND/OR JitterPPQ is very small with
certainty 0.12 AND/OR Shimloc is small with certainty 0.15 AND/OR ShimdB
is very high with certainty 0.94 AND/OR ShimAPQ3 is very small with certainty
0.04 AND/OR ShimAPQ5 is very small with certainty 0.74 AND/OR ShiAPQ11
is very small with certainty 0.73 AND/OR HNR05 is very small with certainty
0.72 AND/OR HNR15 is very small with certainty 0.90 AND/OR HNR25 is
very small with certainty 0.15 AND/OR HNR35 is very small with certainty 0.83
AND/OR HNR38 is very small with certainty 0.04 AND/OR RPDE is medium
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with certainty 0.72 AND/OR DFA is medium with certainty 0.07 AND/OR
PPE is medium with certainty 0.05 AND/OR GNE is very small with cer-
tainty 0.76 AND/OR MFCC0 is medium with certainty 0.87 AND/OR MFCC1
is medium with certainty 0.98 AND/OR MFCC2 is small with certainty 0.65
AND/OR MFCC3 is very small with certainty 0.32 AND/OR MFCC4 is very
small with certainty 0.03 AND/OR MFCC5 is high with certainty 0.04 AND/OR
MFCC6 is small with certainty 0.65 AND/OR MFCC7 is very high with cer-
tainty 0.45 AND/ORMFCC8 is very high with certainty 0.62 AND/OR MFCC9
is very small with certainty 0.05 AND/OR MFCC10 is small with certainty 0.08
AND/OR MFCC11 is very small with certainty 0.14 AND/OR MFCC12 is
medium with certainty 0.11 AND/OR Delta0 is medium with certainty 0.10
AND/OR Delta1 is extremely high with certainty 0.64 AND/OR Delta2 is
very high with certainty 0.77 AND/OR Delta3 is very high with certainty 0.65
AND/OR Delta4 is very small with certainty 0.75 AND/OR Delta5 is small
with certainty 0.66 AND/OR Delta6 is very small with certainty 0.15 AND/OR
Delta7 is medium with certainty 0.54 AND/OR Delta8 is medium with certainty
0.02 AND/OR Delta9 is extremely high with certainty 0.32 AND/OR Delta10
is very high with certainty 0.16 AND/OR Delta11 is very high with certainty
0.34 AND/OR Delta12 is extremely high with certainty 0.16 THEN Status is
Parkinson with certainty 0.18.

5 Conclusion

The results of the tests carried out corroborate that the fuzzy neural network
proposed in this paper can act efficiently in the identification of patients with
Parkinson’s. That corroborates the high accuracy of the model in identifying
intricate patterns within a database, and the fuzzification technique based on
the data essence demonstrates that the constructed fuzzy neurons can efficiently
represent characteristics of the problem. This paper encourages new works to
be elaborated for the construction of rules more representative of the Parkin-
son’s problem, at the same time that it provides the evolution of comparative
techniques using all dimensions of the problem. In future work, it is expected to
expand the techniques to be used in hybrid models, such as new fuzzification,
training, and defuzzification techniques.

Acknowledgment. The authors acknowledge the support by the Austrian Science
Fund (FWF): contract number P32272-N38, acronym IL-EFS.
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28. Naranjo, L., Pérez, C.J., Campos-Roca, Y., Mart́ın, J.: Addressing voice record-
ing replications for Parkinson’s disease detection. Expert Syst. Appl. 46, 286–292
(2016)
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Abstract. This paper addresses the problem of mapping equivalent
items between two databases based on their textual descriptions. Specif-
ically, we will apply this technique to link the elements of two food com-
position databases by calculating the most likely match of each item
in another given database. A number of experiments have been carried
by employing different distance metrics, some of them involving Fuzzy
Logic. The experiments show that the mappings are highly accurate and
Fuzzy Logic improves the precision of the model.
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1 Introduction

Nutrition and health organizations offer specialized and curated resources
describing food and food composition, often under open access licenses. The
most widely used resource is the database of the United States Department of
Agriculture (USDA), which collects and harmonizes food facts from academic
and industrial sources [10]. In Europe, the primary reference is the European
Food Information Resource Network (EuroFIR), which compiles data from dif-
ferent European countries’ databases [15]. There are also private initiatives such
as i-Diet [22], an information system addressed to nutritionists to create per-
sonalized diets and focused on Spanish cuisine. Along with their nutritional
information, i-Diet includes food item labels in Spanish and English.

These resources differ in scope and focus and usually struggle to capture the
peculiarities of regional cuisines and the specificity of local products. At the same
time, diet recommendation systems must be localized to the patients’ context
and need to be effective. Based on this principle, the Stance4Health project1 aims
1 Stance4Health (Smart Technologies for Personalised Nutrition and Consumer

Engagement) is a project funded by the European Union under the Horizon 2020
research and innovation programme. More information: https://www.stance4health.
com.
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M.-J. Lesot et al. (Eds.): IPMU 2020, CCIS 1238, pp. 635–647, 2020.
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at developing a personalized and localized nutrition service that will optimize
the gut microbiota activity and long-term consumer commitment. The absence
of wide-scope large databases, including regional and local products at the Euro-
pean and Spanish levels [16], makes it necessary in Stance4Health to combine
resources mentioned above, e.g., USDA and i-Diet. However, this task is not
trivial since these databases have significant differences in structure, semantics,
and coverage. The latter, along with the vagueness associated to the language
(e.g., a mapping of two equivalent items with different level of specialization)
calls for flexible approaches to calculate the mappings.

In this paper, we propose a methodology based on a word embedding model
to map food items’ databases from their respective short descriptions in English.
Similarity between items is calculated by using a (fuzzy) distance metric. In
particular, we use this methodology to map the i-Diet and USDA databases:
given an i-Diet food item, we calculate the most similar USDA item by measuring
the distance between their embedding representations, obtained after encoding
the short text associated with each of them with the learnt model.

In contrast to similar works, we use a larger corpus to train the language
model and consider the complete recipes instead of just the ingredient list. This
approach allows us to find matches between items that are different but have a
similar role in several preparations, e.g., hazelnut and almond butter. This con-
tribution could be used to cross-link food items used in different regional cuisines
and to propose ingredient substitutions (or even new fusion dishes). More impor-
tantly, we expect that the mapped databases will support personalized nutrition
in Stance4Health, as well as other Food Computing applications such as recipe
nutrients calculation before and after cooking.

The remainder of this paper is structured as follows. In the following section,
we contextualize our work within the recent literature on food item mapping
and Food Computing. In Sect. 3, we further describe the data sources used in
the study: USDA, i-Diet, and the corpus of recipes. Afterward, we describe the
methodological approach (Sect. 4) and the experiments carried out (Sect. 5). In
the last section, we analyze the results and interpret them. The paper finishes
unfolding the conclusions of the work and hinting some promising directions for
future work.

2 Related Work

Food Computing researchers have long acknowledged the need for a standard
and open food and food components resource considering regional cuisines and
cultural differences [20]. Given the effort required for such development and the
absence of a central organization, the usual procedure is to extend the USDA
database according to application needs [11]. In this regard, database and ontol-
ogy merging and alignment techniques can be applied to find similarities and
links between item registries automatically [21].

Food databases’ principal elements are meals and ingredients. Therefore, it is
possible to leverage ingredient detection and cuisine prediction methods to match
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food items based on their constituents. For instance, in [28] and [25], we can find
algorithms to classify recipes by country from their ingredients. Similarly, in [19],
the authors identified cuisine by using topics extracted from the recipe’s text.
Predictive models have also been used to translate typical dishes from one region
to another by applying an encoder-decoder Deep Learning architecture [12].

From a broader perspective, other research works studied the relation among
ingredients and cooking methods from food data descriptions, as in [1]. These
relationships can be reused to match food items in different databases. Our work
follows the same strategy, but we learn a language model based on embeddings
instead of a network of ingredients that appear together in recipes. Our app-
roach has some advantages over the latter, such as avoiding the need for precise
ingredient identification in the texts. The latter problem has been extensively
addressed in the literature, mostly by applying customized parsers statistical
natural language processing, with limited results, e.g., [6,7,29].

Regarding the use of Deep Learning for recipe text processing, Food2Vec
used a word embedding model trained only with the list of ingredients included
in recipes [2]. In contrast, we also use the text describing the cooking instruc-
tions. Therefore, we obtain close encodings for ingredients that appear together
in recipes (as in Food2Vec), but also for those that are involved in similar prepa-
rations (which is useful for cross-cultural item matching). The Recipe2Vec [5]
tool does encode the whole text, although it focuses on recipe comparison and
retrieval and not publicly available. Food images were used in [26] to enhance
the embedding model. Since we do not have image information in the recipes
of our corpus, analyzing the possible improvement after incorporating images
remains as future work.

Furthermore, we must take into account that the food text includes the use
of food brands, often replacing ingredients themselves. Moreover, brand informa-
tion also appears in the USDA database. Consequently, our language model must
be able to deal with such terms. We follow the guidelines of [8], which identified
semantically-related terms with an embedding model, including brands.

Finally, we can use several metrics to measure the distance between two words
encoded according to the model [9] and, more interestingly, between two short
texts [13]. In this context, similarity techniques combining token-based similarity
and Fuzzy Logic [30] can be applied to obtain the mappings. We leverage and
validate these approaches to formulate a fuzzy distance metric to tackle both
vagueness of the language and syntactic/semantic content within the tokens.

3 Data

We used the English recipe corpus published by archive.org2 to build the word
embedding model. This corpus collates recipes extracted from several websites,
e.g., BBC Food Recipe, Epicurious, Cookstr, and AllRecipes. The final corpus
includes 267,071 texts. The records corresponding to each recipe source can be
seen in Table 1.
2 https://archive.org/download/recipes-en-201706.

https://archive.org/download/recipes-en-201706
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Table 1. Recipe corpus: sources and number of records

Data source Records

BBC Food Recipe 10,679

Epicurious 20,111

Cookstr 225,602

AllRecipes 10,679

Total of records 267,071

As mentioned in the introduction, the databases used in this work are i-Diet
and the USDA Food Composition Databases. i-Diet is a proprietary database
that provides nutritional content of food items usually found in Spanish diets.
The USDA database, in turn, contains more extensive and more detailed data,
since its scope goes beyond the use in diet recommendations. Examples of their
structure and fields are respectively shown in Tables 2 and 3. Due to the nature
of the databases, item descriptions have a substantial variability.

Each register in the i-Diet Food Composition Database corresponds to a
food item, which can be a complete meal or an ingredient. A food item register
consists of an identification number, a description of the item in Spanish, the
corresponding translation of the description into English, and the food group to
which the item belongs in Spanish. Translations in i-Diet have been performed
manually by nutritionists. Additionally, each register includes numerical fields
corresponding to the nutritional values of the item. The mapping procedure only
uses the English description field; others are discarded.

Table 2. Example of food items in the i-Diet Food Composition Database

ID Description (ENG) Group ...

96 Onion HORTALIZAS BULBOSASa ...

290 Apple FRUTASb ...
a Bulbous vegetables
b Fruits

The structure of the USDA Food Composition Database is similar. Each food
item register in USDA encompasses an identification number, a short description
of the item, a food group category, and the category description. The rest of the
fields are related to the item nutritional facts (mostly major and minor nutrient
values). The mapping only uses the description field; the others are discarded.

4 Methods

Our methodology is organized into four main steps: (1) data preprocessing, (2)
word embedding model training and parameter tuning, (3) distance metrics,



A Word Embedding Model for Food DBs Using Fuzzy Logic 639

Table 3. Example of food items in the USDA Food Composition Database

Food code Main food description WWEIA Category
code

WWEIA Category
description

...

75117020 Onions, mature, raw 6414 Onions ...

63101210 Apple, cooked or
canned, with syrup

6002 Apples ...

(4) calculation of mappings by computing the Word Mover’s Distance between
pairs of short texts from the encodings obtained with the trained model, and (5)
validation of the mappings. These steps are further described in the following
sections.

4.1 Data Preprocessing

Although the recipe corpus was already collated and published on the web in a
readable format, an extra preprocessing stage was required to prepare the data
to train the model:

1. We extracted the data from the text files, i.e., the ingredient list and the
cooking instructions. (Note that we did not consider ingredients and instruc-
tion separately.) These two pieces of data were filtered and saved in text files,
one per recipe.

2. We performed a typical text cleaning process: conversion to lowercase; removal
of punctuation marks, digits and special characters; removal of stop words;
and lemmatization.

3. The clean data was used to train a bigram model to detect compound words.
For this step, we used the Software Framework for Topic Modelling with Large
Corpora [24]. English stop words were also imported from this module.

The steps above were applied to the cooking instructions presented in the
recipes, e.g., the recipe text “Combine nutritional yeast, salt, cumin, garlic
powder, onion powder, paprika, chili powder, and cayenne pepper in a small
bowl.” is turned into “combin nutrit yeast salt cumin garlic powder onion powder
paprika chili powder cayenn pepper small bow” after the preprocessing phase.

4.2 Model Training and Parameter Tuning

We built the language model from a corpus of text recipes by using Word2Vec [17,
18], an unsupervised Deep Learning algorithm for the creation of word embed-
dings. An embedding is a set of numeric vectors, each one coding a feature, which
represents a language unit preserving its semantics [3]. That is, two related lan-
guage units (e.g., words) will have encodings located closely in the embeddings
space. Therefore, they allow us to operate with the embeddings in a meaningful
way; e.g., 〈 king 〉 - 〈 man 〉 + 〈 woman 〉 = 〈 queen 〉. There are other algorithms
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for learning word embeddings that can be used with the same purpose, such as
GloVe [23] and fasttext [4].

Since a generic word embedding model does not encompass such a specific
domain as food from a nutritional context, a Word2Vec model was trained on
the preprocessed corpus by using the Continuous Bag Of Words (CBOW) imple-
mentation, also provided by the Software Framework for Topic Modelling with
Large Corpora [24]. We trained the model using the cooking instructions as a
whole entry to the training model, instead of processing every sentence from each
recipe separately. The nature of the text of the corpus, with short sentences and
frequent anaphora, suggests that this is the most suitable approach. Experimen-
tal work and comparison to other works confirmed this assumption [27].

4.3 Distance Metrics

Let Si be the textual representation of an item, and let Ti = {t1, ..., tn} be
the token set obtained as a result of the preprocessing task of such item; e.g.,
consider the item k whose textual representation is Sk=“Canned fish, average”,
the corresponding Tk would be {“can”, “fish”, “averag”}.

We formulate the mapping problem between two items as finding the mini-
mal distance of an item token set against every item token set from the other
database. For that purpose, the different distance metrics listed below were com-
pared.

Crisp Distance Metrics

– Jaccard Distance: JACCARD is a token-based distance metric which quan-
tifies the distance based on the lexical difference between the token sets [30]:

JACCARD(S1, S2) = 1 − |T1 ∩ T2|
|T1| + |T2| − |T1 ∩ T2| (1)

– Word Mover’s Distance: WMD treats a text document as a cloud of words;
each word represented as a point in the vector embeddings space [14]. The
distance between two clouds is quantified by the minimum cumulative dis-
tance that words from one text document need to travel to match exactly the
point cloud of the other text document. To calculate the distance between
two single words, an Euclidean Distance between the corresponding vector
representation is used. Therefore, WMD takes advantage from the semantic
information provided by the word embedding model.

– Hybrid Distance: Preliminary studies within this work showed that using
a unique distance measure, either lexical or semantic, strongly reduces the
precision of the model. Therefore, we propose a hybrid distance measure for-
mulated as a weighted combination of Jaccard and Word Mover’s Distances.

HDISTANCE(t1, t2) = wJACCARD(t1, t2) + (1 − w)WMD(t1, t2) (2)

where w ∈ IR and 0 ≤ w ≤ 1
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Fuzzy Distance Metrics

– Fuzzy Jaccard Distance [30]: This metric consists of a combination of token-
based similarity and character-based similarity to determine the fuzzy overlap
set. The Jaccard Distance described above is used to measure the distance
between tokens, and a threshold determines which ones belong to the fuzzy
overlap set. This latter parameter has been empirically tuned to 0.2.

FJACCARDδ(S1, S2) =

∣
∣
∣T1

∼∩δ T2

∣
∣
∣

|T1| + |T2| −
∣
∣
∣T1

∼∩δ T2

∣
∣
∣

(3)

δ = 0.2

– Fuzzy Document Distance: We propose a fuzzy approach of the distance
between short documents, considering each document as a token set. The
distance between two sets is calculated as the Euclidean Distance between
the vectors’ tokens in both sets. These vectors correspond to the numerical
representation obtained from the Word Embedding model previously trained.
The fuzzy function is described as follows:

FDIST (S1, S2) =
∑

xεT1∪T2
min(μS1)x×min(μT2)x

∑
xεT1

(μT1)(x)+
∑

xεT2
(μT2)(x)−

∑
xεT1∪T2

min(μS1)x×min(μT2)x

μTi
(x) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sigmoid( 1
distance(ti,x)

) 0 < distance(ti, x) < ∞

1 distance(ti, x) = 0

0 distance(ti, x) = ∞

(4)

where distance(ti, x) is the Euclidean distance between ti and x

Noted that the membership of a token x to a set Si is defined as the minimum
distance of x to every token in Si.

4.4 Mapping Food Items

Once the embedding model is available, it can be used to compare the similarity
of two words. To this aim, as already introduced, we tested different metrics to
get the most accurate results. Our mapping procedure calculated item mappings
for each i-Diet register. That is, for each i-Diet item, we obtained the distance
between its English description and the description of every USDA item. The
algorithm finally returns the USDA item that minimizes the distance, i.e., the
most likely match. Let us mention that we tackle the mapping as a multilabel
classification problem, where there are many labels as USDA items apart from
the “No matches” label (which represents the case where there is not a possible
matching for an item between the databases).
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4.5 Validation

A nutrition expert validated the quality of the mappings by verifying their exact-
ness. Note that, in some cases, there may be more than one best candidate map-
ping (i.e., with the same quality). This situation typically happens when items
in one database are more general (hypernym) than the corresponding items in
the other one (hyponyms). In these cases, the validation labels the mapping as
correct as long as one of the possible best mappings is retrieved.

Different flexibility levels have been considered to detect the robustness of the
model. We obtained the number of i-Diet items where the best possible matching
is achieved. We also calculate a less restrictive accuracy value, that allows us to
determine the number of items whose best matching is reached between the first
and the tenth candidate from the whole USDA database.

5 Experiments

The embedding model was trained during 30 epochs with vector dimensionality
set to 300 and a window of size 5. Words that appear less than three times in the
whole corpus are ignored. The final model yielded a vocabulary of 11,288 words.
Mappings were calculated for every i-Diet food item (735 items). One human
expert manually assigned the validation label of each mapping.

The results of the validation of the mappings with the different metrics are
showed in Table 4. The first column “Top 1” shows, for each metric, the percent-
age of items whose best possible matching is achieved by the model. The rest of
columns show, respectively, the percentage of items in which the best matching
is found in the 2,3,5 or 10 best candidates. The weight parameter of (3) was
empirically tuned to achieve the optimal performance (w = 0.2).

Table 4. Accuracy of the model (%) obtained with the different metrics

Distance metric Top 1 Top 2 Top 3 Top 5 Top 10

(1) Jaccard Distance 16.75 20.16 22.20 25.20 27.52

(2) Word Mover’s Distance 30.65 35.55 36.92 40.87 44.82

(3) Hybrid Distance 32.15 37.12 40.19 43.05 47.41

(4) Fuzzy Jaccard Distance 23.84 29.70 33.37 39.23 45.64

(5) Fuzzy Document Distance 35.55 40.46 43.46 47.00 53.26

A sample of the final results is provided in Tables 5 and 6. In both cases,
matching are carried out using the distance metric with the best performance
(see Table 4). Both tables have the same structure. In the first column, we show
the original i-Diet item name. Columns from 2 to 4 show the results of the
mapping: from left to right, the English description of the source i-Diet item,
the description of the mapped USDA item, and the distance between both of
them. The last column corresponds to the most accurate mapping identified
manually.
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6 Discussion

Table 5 shows a selection of successful mappings between i-Diet and USDA, i.e.,
mappings labeled as correct. Rows (1) to (3) show that when equivalent items
had a similar text description in both databases, the model was able to match
them properly. Note that a lower distance value of a mapping with respect to
another one does not necessarily entail that it is better. The relative values of
the distance metric are useful to select the best match for a given item, but not
to compare different mappings.

Table 5. Selected examples of correct mappings

Mapping

� � � ©
1 Pickle, cucum-

ber, sour
Cucumber
pickles, sour

0.0 Cucumber pickles, sour

2 All Bran Kel-
logg’s

(Kellogg’s All-
Bran)

0.25 (Kellogg’s All-Bran)

3 Sunflower seeds Sunflower
seeds, NFS

0.333 Sunflower seeds, NFS

4 Meat extract
’Bovril’

Meat, NFS 0.578 Meat, NFS

5 Blue Cheese Cheese, Blue or
Roquefort

0.333 Cheese, Blue or Roquefort

6 Pears canned Pear, cooked or
canned, in light
syrup

0.571 Pear, cooked or canned, in light
syrup

7 Canned fish,
average

Fish, NS as to
type, canned

0.6 Fish, NS as to type, canned

8 Chicken giblets Chicken liver,
fried

0.5 Chicken liver, fried

9 Pate liver not
specified

Liver paste or
pate, chicken

0.6 Liver paste or pate, chicken

� i-Diet text (ENG) � USDA mapped item � WMD © Best USDA mapping

Rows (4) to (6) illustrate more difficult mappings that were correctly solved
by the procedure. In these cases, the model was capable of matching item descrip-
tions even though one of them was slightly less specific than the other. In partic-
ular, row (4) includes a commercial brand. Rows (5) and (6) correspond to cases
in which the model can map a broad (i-Diet) description with a more precise
one (in USDA). Last but not least, the rows (7) to (9) show correct mappings
that were not as obvious as the previous ones.

We also found some limitations to our approach, as depicted in Table 6,
largely due to the coverage of the corpus and errors in translations in i-Diet
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from the original Spanish item description into the English one. First, in rows
(1) and (2), we can see that items with no real translation and that are never used
in the English recipe corpus were not mapped. We expected this behavior since
there is no proper embedding for the terms used in the description. Accordingly,
a more diverse corpus should be used, including recipes for local cuisines.

Table 6. Selected examples of not found, acceptable, approximate, and wrong map-
pings

Mapping

� � � ©
1 Salchichon No matches 1.0 Sausage, NFS
2 Morcilla asturi-

ana (38,5%H)
No matches 0.793 Blood Sausage

3 Fondu cheese Cheese fondue 0.0 Cheese fondue
4 Cottage cheese Cheese, cot-

tage, NFS
0.0 No matches

5 cocoa and
hazelnut but-
ter, Nocilla,
Nutela

Almond butter 0.8 No matches

6 Wine Special Wine, nonalco-
holic

0.666 No Wine, table, white

7 Strawberry
mermelade

Strawberries,
raw

0.666 Jam, preserve, all flavors

8 Low fat sausage Buttermilk,
low fat (1%)

0.5 Sausage, NFS / Pork sausage

9 Scallop Potato, scal-
loped, NFS

0.66 Scallops, cooked, NS as to cooking
method

� i-Diet text (ENG) � USDA mapped item � WMD © Best USDA mapping

Besides, rows (3) and (4) illustrate mappings where the Spanish text is poorly
translated, and therefore the mapped item has a slightly different meaning. In
these cases, mappings are marked as acceptable because, despite their similar
semantics, there is a better match in USDA. These problems could be addressed
by manually editing the translations or by using a (more accurate) machine
translation system.

Rows (5) to (7) show approximate mappings in which the link USDA is
semantically related, but the association is not correct or can be improved. It
is interesting to highlight that row (5) include a food brand that is correctly
identified. Also, row (5) shows a case of mapping a local item and a replacement
with similar usage.

Finally, rows (8) and (9) depict incorrect mappings due to the limitations of
the corpus and the (unfrequent) case that the i-Diet item is more specific than
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the possible USDA candidates. The last column of (9) shows that dealing with
hypernym and hyponyms is difficult, and can lead to several possible candidate
mappings in USDA for one item in i-Diet.

As shown in Table 4, the fuzzy metrics improved the outcomes obtained with
crisp approaches. From the obtained results we can draw the conclusion that
vagueness of the language can make Fuzzy Logic a suitable option to tackle the
matching task. Given the dimensionality and complexity of the problem, the
results are reasonably accurate.

7 Conclusions and Future Work

This research work was motivated by the need for mapping two food composition
databases with different scopes. This problem poses additional obstacles when
the food items correspond to different regions and local cuisines. We created a
word embedding model to address these issues and showed that this technique
has the potential to facilitate working with non-overlapping data resources in
the Food Computing domain. Our model worked well with regional brands and
was able to some extent to identify substitute items used in similar preparations.
Fuzzy distance metrics showed better performance than crisp alternatives.

For the future, we plan to improve the mappings by training the embed-
ding model with a larger-scale recipe corpus and by improving the translations
of Spanish item descriptions into English in i-Diet. A relevant aspect of our
approach that can be further explored is the capability for finding ingredient
replacements in recipes, which also entails using more imprecise knowledge.
These replacements can either refer to the same item expressed differently, or to
similar ingredients more often used in a particular region or cuisine. This kind
of situation cannot be addressed by more traditional techniques –e.g., regex and
concordances– without resorting to a specialized and comprehensive knowledge
base. The absence of such resources is indeed the original motivation for our
work. This same idea can be applied to recipe retrieval and automatic genera-
tion of recipes.

This work only considered English text recipes from the web. Consequently,
some bias is introduced, since the popular dishes from other countries could
not have sufficient representation in the collected corpus. Nevertheless, since
international dishes have been introduced in cuisines from all over the world we
consider that this corpus is suitable to generate useful word embeddings. We
acknowledge that including typical recipes from other cuisines would help to
improve the model performance. As well, more sophisticated measures can be
added as well as combined with the implemented ones. Additionally, Machine
Translation techniques can be applied to the Spanish text descriptions in order
to reduce the errors generated by the manual translations. Also, we plan to
research a multi-modal extension of this work, combining short text embeddings
with the numerical fields from Food Composition Databases and other media
resources, e.g., images.
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Abstract. With the exponential growth of users and user-generated
content present on online social networks, fake news and its detection
have become a major problem. Through these, smear campaigns can be
generated, aimed for example at trying to change the political orientation
of some people. Twitter has become one of the main spreaders of fake
news in the network. Therefore, in this paper, we present a solution
based on Text Mining that tries to find which text patterns are related
to tweets that refer to fake news and which patterns in the tweets are
related to true news. To test and validate the results, the system faces a
pre-labelled dataset of fake and real tweets during the U.S. presidential
election in 2016. In terms of results interesting patterns are obtained that
relate the size and subtle changes of the real news to create fake news.
Finally, different ways to visualize the results are provided.

Keywords: Association rules · Social media mining · Fake news ·
Text Mining · Twitter

1 Introduction

With the rise of social networks and the ease with which users can generate
content, publish it and share it around the world, it was only a matter of time
before accounts and people would appear to generate and share fake news. These
fake news can be a real problem as it usually includes content that can go
viral and be taken as true by a large number of people. In this way, political
orientations, confidence in products and services, etc. can be conditioned. The
textual nature of these news, has made it perfectly approachable by Data Mining
techniques such as Text Mining, a sub area of Data Mining that tries to obtain
relevant information from unstructured texts.

Because of the potential of these techniques in similar problems, in this paper
we address the analysis of tweets that deal with fake content and real content by
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using text mining by means of association rules. With this, we intend to prove
that through these techniques relevant information can be obtained that can be
used for the detection of patterns related to fake news. The contribution to the
state of the art of paper is twofold:

– A reusable workflow that can get patterns on fake and real news, that can be
the input of a posterior classification algorithm in order to discern between
both types of news.

– A comprehensive analysis of patterns related to fake and real news during
the 2016 US presidential election campaign.

In order to test and validate the system a tweet dataset has been used in
which the tweets have been previously labelled as fake and real. The dataset [4]
corresponds to tweets from the 2016 presidential elections in the United States.
On this dataset, very interesting conclusions and patterns have been drawn, such
as the tendency of fake news to slightly change real news to make it appear real.
Different visualization methods are also offered to allow a better analysis of the
patterns obtained.

The paper is structured as follows: Sect. 2 reviews some of the related theoret-
ical concepts that allow to understand the following sections. Section 3 describes
the related work. Section 4 explains the methodology followed. Finally Sect. 5
includes the experimentation carried out. The paper concludes with an analysis
of the proposed approach and the future lines that this work opens.

2 Preliminar Concepts

In this section we will see the theoretical background of the Data Mining tech-
niques that will be mentioned throughout the paper and that were used for the
experimental development.

2.1 Association Rules

Association rules belong to the Data Mining field and have been used and studied
for a long time. One of the first references to them dates back to 1993 [1]. They
are used to obtain relevant knowledge from large transactional databases. A
transactional database could be for example, a shopping basket database, where
the items would be the products, or a text database, as in our case, where the
items are the words. In a more formal way, let t = {A,B,C} be a transaction
of three items (A, B and C), and any combination of them forms an itemset.
Examples of differents itemsets are {A,B,C}, {A,B}, {B,C}, {A,C}, {A}, {A},
{B} and {C}. According to this, an association rule would be represented in
the form X→Y where X is an itemset that represents the antecedent and Y an
itemset called consequent. As a result, we can conclude that consequent items
have a co-occurrence relationship with antecedent items. Therefore, association
rules can be used as a method of extracting hidden relationships between items or
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elements within transactional databases, data warehouses or other types of data
storage from which it is interesting to extract information to help in decision-
making processes. The classical way of measuring the goodness of association
rules regarding a given problem is with two measures: support and confidence.
To these metrics, new metrics have been added over time, among which the
certainty factor [5] stands out, which we have used in our experimental process
and we will define together with the support and confidence in the following
lines.

– Support of an itemset. It is represented as supp(X), and is the proportion of
transactions containing item X out of the total amount of transactions of the
dataset (D). The equation to define the support of an itemset is:

supp(X) =
|t ∈ D : X ⊆ t|

|D| (1)

– Support of an association rule. It is represented as supp(X → Y ), is the total
amount of transactions containing both items X and Y , as defined in the
following equation:

supp(X → Y ) = supp(X ∪ Y ) (2)

– Confidence of an association rule. It is represented as conf(X → Y ) and rep-
resents the proportion of transactions containing item X which also contains
Y . The equation is:

conf(X → Y ) =
supp(X ∪ Y )
supp(X)

(3)

– Certainty factor. It is used to represent uncertainty in rule-based expert sys-
tems. It has been shown to be one of the best models for measuring the fit
of rules. Represented as CF (X → Y ), a positive CF measures the decrease
of probability that Y is not in a transaction when X appears. If we have
a negative CF , the interpretation will be analogous. It can be represented
mathematically as follows:

CF (X → Y ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

conf(X → Y ) − supp(Y )
1 − supp(Y )

if conf(X → Y ) > supp(Y )

conf(X → Y ) − supp(Y )
supp(Y )

if conf(X → Y ) < supp(Y )

0 otherwise

(4)

The most widespread approach to obtain association rules is based on two
stages using the downward-closure property. The first of these stages is the gener-
ation of frequent itemsets. To be considered frequent the itemset have to exceed
the minimum support threshold. In the second stage the association rules are
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obtained using the minimum confidence threshold. In our approach, we will
employ the certainty factor to extract more accurate association rules due to
the goo properties of this assessment measure (see for instance [9]). Within this
category we find the majority of the algorithms for obtaining association rules,
such as Apriori, proposed by Agrawal and Srikant [2] and FP-Growth proposed
by Han et al. [10]. Although these are the most widespread approaches, there are
other frequent itemset extraction techniques such as vertical mining or pattern
growth.

2.2 Association Rules and Text Mining

Since association rules demonstrated their great potential to obtain hidden co-
occurrence relationships within transactional databases, they have been increas-
ingly applied in different fields. One of the fields is Text Mining [14]. In this field,
text entities (paragraphs, tweets, ...) are handled as a transaction in which each
of the words is an item. In this way, we can obtain relationships and metrics
about co-occurrences in large text databases. Technically, we could define a text
transaction as:

Definition 1. Text transaction: Let W be a set of words (items in our context).
A text transaction is defined as a subset of words, i.e. a word will be present or
not in a transaction.

In a text database, in which each tweet is a transaction, it will be composed
of each of the terms that appear in that tweet once the cleaning processes
have been carried out. So the items will be the words. The structure will be
stored in a matrix of terms in which the terms that appear will be labelled
with 1 and those that are not present as 0. For example for the transactional
database D = {t1, t2} being t1 = (just, like, emails, requested, congress) and
t2 = (just, anyone, knows, use, delete, keys) the representation of text transac-
tions would be as we can see in Table 1.

Table 1. Example of a database with two textual transactions.

Transactionn\Item Anyone Congress Delete Emails Just Keys Knows Like Requested Use

t1 0 1 0 1 1 0 0 1 1 0

t2 1 0 1 0 1 1 1 0 0 1

3 Related Work

In this section, we will see in perspective the use of Data Mining techniques
applied in the field of fake news. This is a thriving area within Data Mining and
more specifically Text Mining, in which there are more and more related articles
published.
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Within the field of text analysis or Natural Language Processing for the
detection of fake news, solutions based on Machine Learning and concretely
classification problems stand out. This is corroborated in the paper [7], where
the authors make a complete review of the approaches to address the problem of
analysing fakes news and clearly highlight the problems of classification either
by traditional techniques or by deep learning. According to the traditional tech-
niques we find works like [17], in which Ozbay and Alatas, apply 23 different
classification algorithms over a set previously labelled fake news coming from
the political scene. With this same approach we find the paper [8] in which, the
authors apply again a battery of different classification methods that go from the
traditional decision trees to the neural networks, all of them with great results.
If we look at the branch of deep learning, we also find some works [13,15,16] in
which the authors try to train neural network models to classify texts in fake
news or real. If we look at other Machine Learning methods, another interest-
ing work that focuses on selecting which features are interesting to classify fake
news is the paper [18]. On the other hand, we also find solutions based on lin-
ear regression as presented by Luca Alfaro et al. in the paper [3]. These works,
despite being at the dawn of their development, work quite well but are difficult
to generalize to other domains in which they have not been trained.

Because of this, within the aspect of textual entities based on fake news,
another series of studies appear that try to address the problem from the descrip-
tive and unsupervised perspective of Text Mining. A very interesting work in this
sense, because it combines NLP metrics with a rule-based system is [11], in which
in a very descriptive way a solution is provided that is based on the combination
of a rule-based system with metrics such as the length of the title, the % of
stop-words or the proper names. In the same line there is the proposal in [6] in
which authors try to improve the behaviour of a random forest classifier using
Text Mining metrics like bigrams, or word frequencies. Finally, in this more
descriptive aspect that combines classification and NLP or Text Mining tech-
niques, we also find the social network analysis aspect [12], where the authors
classify fake or real news in twitter according to network topologies, information
dissemination and especially patterns in retweets.

As far as we know, this is the first work that applies association rules in
the field of fakes news. By using this technique we will try to find out which
patterns are related to fake news within our domain and try to generalize to
possible general patterns related to fake news in other domains of the political
field. Due to the impossibility of confronting the system against a similar one,
we will carry out in the next sections a descriptive study of the obtained rules.

4 Our Proposal

In this section we will depict the procedure followed in our proposal. For that we
will detail the pre-processing carried out on the data. We will also look at the
pattern mining process on the textual transactions. For a better understanding
we can look at Fig. 1. In it we can see how the first part of the process passes
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Fig. 1. Process flow for association rule extraction in Twitter transactions

through pre-processing the data, then the textual transactions are obtained, the
association rules are applied and results are obtained for fake and real news.

Through this processing flow, we offer a system that discovers patterns on
fake and real news that can set the basis of new interesting input values for a
latter system to, for instance, obtain and classify new coming patterns into real
or fake news. In this first approach the system is able to obtain, in a very friendly
and interpretable way for the user, which patterns or rules can be related to fake
and/or real news.

4.1 Pre-processing

The data obtained from Twitter are often very noisy so it is necessary a pre-
processing step before working with them. The techniques used have been:

– Language detection. We are only interested in English tweets.
– Removal of links, removal of punctuation marks, non-alphanumeric charac-

ters, and missing values (empty tweets).
– Removal of numbers.
– Removal of additional white spaces.
– Elimination of empty words in English. We have eliminated empty English

words, such as articles, pronouns and prepositions. Empty words from the
problem domain have been also added, such as, the word via or rt, which
can be considered empty since in Twitter it is common to use this word to
reference some account from which information is extracted.

– Hashtags representing readable and interpretable terms are taken as normal
words, and longer words which do not represent an analysable entity are
eliminated.
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– Retweets are removed.
– Content transformation to lower case letters.

At this point, we have a set of clean tweets on which we can apply the
association rules mining techniques.

4.2 Mining Text Patterns

The first step in working with association rules and pattern mining in text is to
obtain the text entities. To achieve this, the typical text mining corpus of tweets
used so far has to be transformed into a transactional database. This structure
requires a lot of memory since it is a very scattered matrix, taking into account
that each item will be a word and each transaction will be a tweet. To create
the transactions, the tweets have been transformed into text transactions as we
saw in Sect. 2.2. We have used a binary version in which if an item appears in
a transaction it is internally denoted with a 1, and if it does not appear in that
transaction the matrix will have a 0.

The association rule extraction algorithm described in [1] has been used for
the results. For this purpose, the parameters of minimum support threshold of
0.005 and minimum certainty factor of 0.7 have been chosen. For experimenta-
tion, we have varied the support value from 0.05 to 0.001, with fixed values of
confidence and certainty factor.

5 Experimentation

In this section we will go into detail on the experimental process. We will study
the dataset, the results obtained according to the input thresholds for the Apriori
algorithm and finally the visualization methods used to interpret the operation
of the system.

5.1 Dataset

In order to compare patterns from fake news and on the other from real news
we have divided the dataset [4] into two datasets depending on whether they are
labelled as fake news or not.

After this, we have two datasets, which will be analysed together but being
able to know which patterns correspond to each one. The fake news dataset is
composed of 1370 transactions (tweets), on the other hand, the real news dataset
is composed of 5195 transactions.

5.2 Results

The experimentation has been carried out with different values of supports aim-
ing to obtain interesting patterns within the two sets of data. It is possible to



Mining Text Patterns over Fake and Real Tweets 655

observe in Fig. 2 how the execution time is greater as the support decreases, due
to the large set of items that we find with these support values.

In the Fig. 3 we can see the number of rules generated for the different support
values. According to the comparison of both graphs we could draw a correlation
between this graph and the previous runtime graph. As for the volume of rules
generated and also the time in generating them (that as we have seen offers a
graph of equal tendency), it is necessary to emphasize as the dataset fake offers
more time and rules, in spite of having less transactions something that comes
offered by the variability of the items inside this dataset.

Moreover, in the Figures we see how the AprioriTID algorithm has an expo-
nential increase in the number of rules and execution time when it is executed
with low support values or with more transactions. This would rule out in ver-
sions based on Big Data, where the volume of input data increases and support
must be lowered.

Fig. 2. Execution time of the experiments with different supports

This variability and an interpretation of the obtained patterns can be seen
attending to the Table 2 where we have the strongest rules of both datasets. If
we pay attention to its interpretation, it is curious how for both datasets we
can find very similar rules but with some differences. This may be due to the
fact that fake news are usually generated with real news to which some small
element is changed. This is something that the rules of association discover for
example in the rules {sexism, won} → {electionnight, hate} for fake news and
the rule {sexism, won} → {electionnight} for real news. We can also observe how
the tendency is to discover more items in the rules corresponding to fake news,
probably caused by these sensationalist adornments that are usually charged to
fake news.
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Fig. 3. Number of rules of the experiments with different supports

Table 2. Example of rules obtained in the experiments

Antecedent Consequent Supp Conf Dataset

Electionnight, won, hate Sexism 0.0075 0.909 Fake

Sexism, won Electionnight; hate 0.0075 0.9 Fake

Didn’t, trump, won, electionnight,

sexism, win, racism

Hate 0.06 1 Fake

Sexism, won Electionnight 0.0051 0.97 Real

Projects Foxnews 0.005 1 Real

5.3 Visualization

A system that is easily interpretable must have visualization methods so we
have focused part of the work on obtaining and interpreting interesting and
friendly graphics on the fake and real news. We can observe the results obtained
through the graphics of the Figures. In Fig. 4 we can see the rules obtained for
the fake news, where we can appreciate that the resulting rules associate in great
quantity of occasions to trump with sexist, winning or racist. But some of them
are interesting because the indicate the opposite, like the rule that relatesracist,
trump, didnt and sexist.

On the other hand, in Fig. 5 we can see the rules obtained for the real news.
Here we can see how fewer rules are obtained for experimentation and that the
terms that appear in them encompass media such as fox, news, usa or winning.
Studying the terms that appear in both examples we can see racist that in this
case is associated with fox and donald.

Finally, a graph has been generated, which can be seen in Fig. 6, with the
results of the fake news filtering the 80 rules with a higher certainty factor. It
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Fig. 4. Example of rules in fake news

Fig. 5. Example of rules in real news
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can be seen that there are three groups of terms, one with very interconnected
negative terms and another with very frequent terms due to the subject matter.

Fig. 6. Example of rules in fake news

6 Conclusions and Future Work

In conclusion, we can see how the application of Data Mining on this kind of data
allows us to extract hidden patterns. These patterns allow us to know better the
terms more used in each type of news according to if it is false or real in addition
to the interrelations between them.

Data mining techniques and, in particular, association rules have also been
corroborated as techniques that can provide relevant and user-friendly informa-
tion in Text Mining domains such as this.

In future works we will extend this technique in order to classify new tweets
using the information provided after the application of association rule mining.
Another application would be the use of the extracted patterns in order to create
a knowledge base that can be applied in real time data.
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Abstract. In this paper we tackle a variant of the job shop scheduling
problem where task durations are uncertain and only an interval of pos-
sible values for each task duration is known. We propose a genetic algo-
rithm to minimise the schedule’s makespan that takes into account the
problem’s uncertainty during the search process. The behaviour of the
algorithm is experimentally evaluated and compared with other state-
of-the-art algorithms. Further analysis in terms of solution robustness
proves the advantage of taking into account interval uncertainty during
the search process with respect to considering only the expected process-
ing times and solving the problem’s crisp counterpart. This robustness
analysis also illustrates the relevance of the interval ranking method used
to compare schedules during the search.

Keywords: Job shop scheduling · Interval processing time · Genetic
algorithms · Robustness

1 Introduction

Scheduling plays an important role in most manufacturing and production sys-
tems as well as in most information processing environments, transportation and
distribution settings and, more generally, in service industries [24]. One of the
most relevant problems in scheduling is the job shop, both because it is consid-
ered to be a good model for many practical applications and because it poses
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a challenge to the research community due to its complexity. This complexity
is the reason why approximate methods and, in particular, metaheuristic search
techniques, are especially suited for solving the job shop [28].

Traditionally, it has been assumed that scheduling problems are determinis-
tic. However, for many real-world problems design variables such as processing
times may be subject to perturbations or changes, dependent on human factors,
etc. The most common approach to handling uncertainty is that of stochas-
tic scheduling, modelling the duration of tasks by probability distributions [24].
However, not only does this present some tractability issues, but also, probability
distributions are better suited to model variability of repetitive tasks instead of
uncertainty due to lack of information [8]. Alternatively, fuzzy scheduling mod-
els uncertain durations as fuzzy numbers or fuzzy intervals, that is, possibility
distributions representing more or less plausible values, in an approach that is
computationally more appealing and presupposes less knowledge [9]. A third
and simpler way of representing uncertainty for activity durations are intervals.
Interval uncertainty is present as soon as information is incomplete and it does
not assume any further knowledge. Also, it represents a first step towards solv-
ing problems in the other uncertain frameworks. Indeed, an interval can be seen
as a uniform probability distribution or the support of an unknown probability
distribution [1]. Also, an interval not only is a particular case of a fuzzy interval,
but also the α-cuts of fuzzy intervals are intervals, so a fuzzy scheduling problem
can be decomposed in multiple interval scheduling problems.

Despite its interest, research on the job shop scheduling problem with interval
activity durations is still scarce. In [15] a job shop scheduling problem with inter-
val processing times is considered and a population-based neighborhood search
(PNS) is presented to optimize the makespan. A genetic algorithm is proposed
in [16], but with the objective of minimising the total tardiness with respect to
job due dates. Different variants of multiobjective interval job shop problems
are considered in [17] and [19]. The former incorporates non-resumable jobs and
flexible maintenance to the problem and proposes a multi-objective artificial
bee colony algorithm to minimise both the makespan and the total tardiness.
The latter considers a dual-resource constrained job shop with heterogeneous
resources, and a dynamical neighbourhood search is proposed for lexicographic
minimisation of carbon footprint and makespan. Finally, we find a flexible job
shop problem with interval processing times in [18], where a shuffled frog-leaping
algorithm is adopted to minimise the makespan. Uncertain activity durations are
also modelled as intervals in scheduling problems other than the job shop and its
variants in [1,11,20,26]. At a more theoretical level, several attempts have been
made to study how to compute earliest and latest starting times of all activities
and, therefore, critical paths, over all duration scenarios in an activity-on-node
network where the duration of every activity is an interval. This is essential to
devise successful local search methods, as shown in deterministic job shop. A
summary of the main results together with a thorough literature review can be
found in [3].

This paper constitutes a starting point for a systematic study of solving
methods for the interval job shop scheduling problem with makespan minimi-
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sation. We propose a solution for Interval Job Shop Scheduling Problem using
genetic algorithms. The paper is organised as follows. Section 2 briefly describes
the interval job shop scheduling problem. In Sect. 3 the concept of ε-robustness is
introduced to measure the error of the prediction made by the a-priori makespan
compared to the executed makespan with respect to its expected value used in
this work is introduced. Section 4 details the basic schema of a genetic algorithm
and the coding approach. Finally, in Sect. 5 an experimental study is developed
to check the performance of the genetic algorithm in solving this problem. In
addition, we also test if modelling uncertainty as intervals for processing times
during the search process is worth the while and carry out some preliminary
analysis of the influence of the different interval rankings. Some conclusions are
drawn in Sect. 6.

2 The Job Shop Problem with Interval Durations

The classical job shop scheduling problem, or JSP in short, consists in scheduling
a set of jobs J = {J1, . . . , Jn} on a set of physical resources or machines M =
{M1, . . . ,Mm}, subject to a set of constraints. There are precedence constraints,
so each job Jj , j = 1, . . . , n, consists of mj ≤ m tasks (o(j, 1), . . . , o(j,mj)) to be
sequentially scheduled. There are also resource constraints, whereby each task
o(j, l) requires the uninterrupted and exclusive use of a machine νo(j,l) ∈ M for
its whole processing time po(j,l). We assume w.l.o.g. that tasks are indexed from
1 to N =

∑n
j=1 mj , so we can refer to a task o(j, l) by its index o =

∑j−1
i=1 mi + l

and simply write νo, po to refer respectively to its machine and processing time.
The set of all tasks is denoted O = {1, . . . , N}.

A solution to this problem is a schedule s, i.e. an allocation of starting times
for each task, which, besides being feasible (in the sense that all precedence
and resource constraints hold), is optimal according to some criterion, most
commonly minimising the makespan Cmax, that is, the completion time of the
last operation (and therefore, of the whole project).

2.1 Interval Durations

In real-life applications, it is often the case that the time it takes to process a
task is not exactly known in advance; instead, only some uncertain knowledge
about the duration is available. If only an upper and a lower bound of each
duration are known, an uncertain processing time can be represented as a closed
interval of possible values denoted a = [a, a] = {x ∈ R : a ≤ x ≤ a}.

Let IR denote the set of closed intervals. The job shop problem with
makespan mimisation essentially requires two arithmetic operations on IR: addi-
tion and maximum. These are defined by extending the corresponding operations
on real numbers [21], so given two intervals a = [a, a],b = [b, b] ∈ IR,

a + b = [a + b, a + b], (1)

max(a,b) = [max(a, b),max(a, b)]. (2)
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Another issue to be taken into account when processing times take the form
of intervals is that of comparisons. Indeed, if several schedules are available,
the “best” one would be the one with “minimal” value of the makespan (an
interval). However, there is no natural total order in the set of intervals, so an
interval ranking method needs to be considered among those proposed in the
literature [7,14].

In [7], the authors highlight the following three total orders in IR with certain
nice behaviour (called admissibility in that work):

a ≤Lex1 b ⇔ a < b ∨ (a = b ∧ a < b) (3)

a ≤Lex2 b ⇔ a < b ∨ (a = b ∧ a < b) (4)

a ≤Y X b ⇔ a + a < b + b ∨ (a + a = b + b ∧ a − a ≤ b − b) (5)

Both (3) and (4) are derived from a lexicographical order of interval extreme
points while the last one is proposed in [27]. Obviously, all three linear orders
can be used to rank intervals. In [15], a different ranking method is used for the
interval job shop:

a ≤pd b ⇔ P (b ≥ a) ≥ 0.5 ∨ P (a ≥ b) ≤ 0.5 (6)

where P (a ≥ b) is the possibility degree that a is greater or equal than b as
introduced in [13]:

P (a ≥ b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 a ≥ b

0.5 · b−a
a−a · b−a

b−b
b ≤ a < b ≤ a

b−a
a−a + 0.5 · b−b

a−a a < b < b ≤ a
b−a
a−a + a−b

a−a · b−a
b−b

+ 0.5 a−b
a−a · a−b

b−b
a < b ≤ a < b

b−a
b−b

+ 0.5 · a−a

b−b
b ≤ a < a < b

1 a ≤ b

(7)

It can be easily shown that this ranking is equivalent to the one induced by the
interval midpoint:

a ≤MP b ⇔ m(a) ≤ m(b) (8)

where ∀a ∈ IR, m(a) = (a+a)
2 . It coincides with the classical Hurwicz criterion for

interval comparison with α = 1/2 [12], used for interval scheduling in [1]. Also,
since the interval’s midpoint is the expected value of the uniform probability
distribution in that interval, using the midpoint for comparing interval-valued
objective functions is also closely related to the stochastic dominance based on
expectation used in stochastic scheduling [24].

2.2 Interval Schedules

A schedule s establishes an order π among tasks requiring the same machine.
Conversely, given a task processing order π, the schedule s (starting times of all
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tasks) may be computed as follows. For every task o ∈ O with processing time
po, let so(π) and co(π) denote respectively the starting and completion times
of o, let PMo(π) and SMo(π) denote the predecessor and successor tasks of o
in the machine νo according to π, and let PJo and SJo denote respectively the
predecessor and successor tasks of o in its job (PMo(π) = 0 or PJo = 0 if o is
the first task to be processed in its machine or its job). Then the starting time
so(π) of o is an interval given by so(π) = max(sPJo +pPJo , sPMo(π)+pPMo(π)).
Clearly, co(π) = so(π) + po(π). If there is no possible confusion regarding the
processing order, we may simplify notation by writing so and co. The completion
time of the last task to be processed according to π thus calculated will be
the makespan, denoted Cmax(π) or simply Cmax. We obtain an interval-valued
schedule in the sense that the starting and completion times of all tasks and the
makespan are intervals, interpreted as the possible values that the times may
take. However, notice that the task processing ordering π that determines the
schedule is crisp; there is no uncertainty regarding the order in which tasks are
to be processed.

2.3 Problem Formulation

We are now in a position to formulate the Interval Job Shop Scheduling Problem
or IJSP in short, as follows:

min
R

Cmax (9)

subject to: Cmax = max
1≤j≤n

{co(j,mj)} (10)

co = so + p
o
, ∀o ∈ O (11)

co = so + po, ∀o ∈ O (12)
so(j,l) ≥ co(j,l−1), 1 ≤ l ≤ mj , 1 ≤ j ≤ n (13)

so(j,l) ≥ co(j,l−1), 1 ≤ l ≤ mj , 1 ≤ j ≤ n (14)
so ≥ co′ ∨ so′ ≥ co,∀o 	= o′ ∈ O : νo = νo′ (15)
so ≥ co′ ∨ so′ ≥ co,∀o 	= o′ ∈ O : νo = νo′ (16)

where the minimum minR Cmax in (9) is the smallest interval according to a
given ranking R in the set of intervals IR. Constraint (10) defines the makespan
as the maximum completion time of the last task of each job. Constraints (11)
and (12) establish the relationship between the starting and completion time of
each task. Constraints (13) and (14) correspond to precedence relations between
tasks within each job and constraints (15) and (16) establish that the execution of
two tasks requiring the same machine cannot overlap. Notice that the completion
time of each job Jj in the resulting schedule s is the completion time of the last
task in that job, given by Cj = co(j,mj).

The resulting problem will be denoted J |p
o

≤ po ≤ po|Cmax, following the
three-field notation schema for scheduling problems. Clearly, the IJSP is NP-
hard, since setting all processing times to crisp numbers yields the classical JSP,
which is itself NP-hard [24].
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3 Robust Schedules

A solution to the IJSP provides an interval of possible values for the starting
time of each task and, hence, an interval of possible values for the makespan. In
fact, it is impossible to predict what the exact starting and completion times will
be until the project is actually executed. This idea is the basis for a semantics
for fuzzy schedules from [10] by which solutions to a job shop problem with
uncertainty should be understood as a-priori solutions. Only when tasks are
executed according to the ordering π provided by the schedule we shall know
their real duration and, hence, obtain an a-posteriori solution with deterministic
times po ∈ [p

o
, po] for all tasks o ∈ O.

It would be expected that the predictive schedule does not differ much from
the actual executed one. This is strongly related to the idea of robust schedule as
one that minimises the effect of executional uncertainties on its performance [4].
This high-level definition is subject to many different interpretations when it
comes to specifying robustness measures [25]. Here, we adapt the concept of ε-
robustness first proposed for fuzzy scheduling problems in [22] inspired by the
work on stochastic scheduling from [5].

The rationale behind this concept is to measure the predictive error of the
a-priori makespan, the interval Cmax, compared to the actual makespan Cex

max

obtained after execution. Notice that Cex
max is a real number that corresponds

to a specific realisation of task processing times P ex = {pex
o ∈ [p

o
, po], o ∈ O},

usually called a configuration in the literature. Assuming that tasks are exe-
cuted without unnecessary delays at their earliest possible starting times (as
explained in Sect. 2.2), it is clear that Cex

max ∈ Cmax. Thus, the prediction is
always accurate in terms of bounds for the possible makespan values after exe-
cution. Now, if we are to give a single value as predicted makespan based on the
interval Cmax, in the absence of further information it seems natural to con-
sider the expected or mean value of the uniform distribution on that interval,
E[Cmax] = (Cmax − Cmax)/2. We can then measure the error of the predic-
tion made by the a-priori makespan as the (relative) deviation of the executed
makespan with respect to this expected value. In consequence, for a given ε ≥ 0,
a predictive schedule with makespan interval value Cmax will be considered to
be ε-robust if the relative error made by E[Cmax] with respect to the makespan
Cex

max of the executed schedule is bounded by ε, that is:

|Cex
max − E[Cmax]|

E[Cmax]
≤ ε. (17)

Clearly, the smaller the bound ε, the more accurate the a-priori prediction is or,
in other words, the more robust the interval schedule is.

Although the expression for the expected value E[Cmax] is the same as the
interval’s midpoint used in the ranking criterion ≤MP , this is just a mere coin-
cidence. In general, a robustness measure must be independent of the ranking
method used to compare schedules. In particular, E[Cmax] represents a pre-
diction based on Cmax in the absence of further knowledge on how values are
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distributed in that interval, whereas the midpoint m(Cmax) is a weighted aver-
age of the optimistic Cmax and pessimistic Cmax makespan values, representing
a decision maker’s equilibrium between those two extreme attitudes.

Finally, this measure of robustness is dependent on a specific configuration
P ex of task processing times obtained upon execution of the predictive schedule
s. In the absence of real data regarding executions of the project, as is the
case with the usual synthetic benchmark instances for job shop, we may resort
to Monte-Carlo simulations. The idea is to simulate K possible configurations
P k = {pk

o ∈ [p
o
, po], o ∈ O} for task processing times, using uniform probability

distributions to sample possible durations for every task. For each configuration
k = 1, . . . , K, let Ck

max denote the exact makespan obtained after executing
tasks according to the ordering provided by s. Then, the average ε-robustness
of the predictive schedule across the K possible configurations, denoted ε, can
be calculated as:

ε =
1
K

K∑

k=1

|Ck
max − E[Cmax]|

E[Cmax]
. (18)

This value provides an estimate of how robust is the predictive schedule s across
different processing times configurations. Again, the lower ε, the better.

4 A Genetic Algorithm for the IJSP

Genetic algorithms have proved to be a very useful tool for solving job shop prob-
lems, either on their own or combined with other metaheuristics [28]. Roughly
speaking, a genetic algorithm starts by building a set of initial solutions or initial
population P0. This population is then evaluated and the algorithm begins an
iterative process until a stopping criterion is met, typically a fixed number of iter-
ations or consecutive iterations without improvement. At each step i, individuals
from the population Pi are selected and paired for mating and, recombination
operators of crossover and mutation are applied to each pair with probability
pcross and pmut respectively, creating a new population of offspring solutions
Offi. The new population is evaluated and a replacement operator is applied
to merge Pi and Offi into the new population Pi+1 for the next iteration. Once
the stopping criterion is met, the best solution according to the interval ranking
is selected and returned from the last population. Algorithm 1 summarises these
steps.

In this work, several well-known selection, recombination and replacement
operators for Job Shop Scheduling problems are tried in order to find the best
setup for the genetic algorithm. The set of operators and their impact on solving
this problem are detailed in Sect. 5. A crucial part in designing algorithms is
how to encode and decode solutions. Following [6], we encode a solution as a
permutation with repetition. This is a permutation of the set of tasks, where
each task o(j, l) is represented by its job number j. For example, a topological
order (o(2, 1), o(1, 1), o(2, 2), o(3, 1), o(3, 2), o(1, 2)) is encoded as (2 1 2 3 3 1).
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Require: An IJSP instance
Ensure: A schedule

Generate a pool P0 of random solutions.
Evaluate P0

i ← 0;
while stop condition not satisfied do

Offi ← pairs of individuals selected from Pi;
for each pair of individuals in Offi do

Apply crossover operator with probability pcross;
Apply mutation operator with probability pmut;

Evaluate Offi
Pi+1 ← Apply replacement operator in (Pi, Offi);
i ← i + 1;

Best ← Best solution in Pi based on the order on intervals;
return Best

Algorithm 1: Main steps of the genetic algorithm

The decoding is done using an insertion strategy: we iterate along the chro-
mosome and for each task o(j, l) we schedule it at its earliest feasible inser-
tion position as follows. Let ηk be the number of tasks scheduled on machine
k = νo(j,l) and let σk = (0, σ(1, k), ..., σ(ηk, k)) denote the partial processing
order of tasks already scheduled in machine k. Then a feasible insertion position
q, 0 ≤ q < ηk for o(j, l) is a position such that max{cσ(q,k), co(j,l−1)} + p

o(j,l)
≤

sσ(q+1,k) and max{cσ(q,k), co(j,l−1)} + po(j,l) ≤ sσ(q+1,k), so the earliest feasible
insertion position is the smallest value q∗ verifying these inequalities. We set
so(j,l) = max{cσ(q∗,k), co(j,l−1)} if q∗ exists, and so(j,l) = max{cσ(ηk,k), co(j,l−1)}
otherwise.

5 Experimental Study

The purpose of the experimental study is threefold: assess the proposed genetic
algorithm, see if considering the uncertainty in processing times during the search
process is worth the while and carry out a preliminary analysis of the influence
of the different interval rankings.

To test the algorithm, we consider 12 very well-known instances for the job
shop problem: classical instances FT10 (size 10 × 10) and FT20 (20 × 5), and
instances La21, La24, La25 (15×10), La27, La29 (20×10), La38, La40 (15×15),
and ABZ7, ABZ8, ABZ9 (20 × 15) that form the set of 10 problems identified
in [2] as hard to solve for classical JSP. The processing times are modified to
be intervals as follows: given the original crisp processing time of an operation
po, the interval time is generated as po = [po − δ, po + δ], where δ is a random
value in [0, 0.15po]. The resulting IJSP instances are available online1. All the
experiments reported in this section have been run on a PC with Intel Xeon
1 Repository section at http://di002.edv.uniovi.es/iscop.

http://di002.edv.uniovi.es/iscop
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Gold 6132 processor at 2.6 Ghz and 128 Gb RAM with Linux (CentOS v6.9),
using a C++ implementation.

Regarding the algorithm’s parameter configuration, we have run several tests
to find the best setup. A first batch of experiments are conducted to test different
recombination operations and probabilities as well as selection strategies. The
considered operators are given in Table 1, with the best setup values in bold. In
all cases the stopping criterion is set to 500 iterations.

Table 1. Parameter tuning with the best configuration in bold

Parameter Tested values

Crossover operator Generalised Order Crossover (GOX)

Job-Order Crossover (JOX)

Precedence Preservative Crossover (PPX)

Crossover probability 0.5, 0.75, 1

Mutation operator Insertion, Inversion, Swap

Mutation probability 0, 0.15, 0.25

Selection operator Roulette

Tournament (t = 3)

Shuffle

Stochastic Universal Sampling (SUS)

Replacement Generational replacement with elitism (k = 1, 12, 25)

Tournament 2/4 parents-offspring (allowing repetition)

Tournament 2/4 parents-offspring (no repetition)

A second test based on convergence demonstrates that the best popula-
tion size is 250. Figure 1 shows the average evolution of the expected value of
makespan across 30 runs of the algorithm on instance FT10. The dotted line
corresponds to the expected makespan of the best solution in the population
and the continuous line to the average of the whole population. It is clear that
within 500 iterations, the algorithm reaches a convergence point. The behaviour
on the remaining instances is similar, so we adopt this number of iterations as
stopping criterion for the algorithm.

To asses the performance of the genetic algorithm (GA in the following), we
compare it with the PNS algorithm proposed in [15], which to our knowledge
constitutes the state-of-the art in the IJSP with makespan minimisation. The
authors use ≤pd to rank different intervals in PNS. Since ≤pd is equivalent to
≤MP and for the sake of a fair comparison, we also adopt the same ranking. GA
is run on the same set of 17 instances as PNS, which are adapted versions of the
well-known crisp instances ORB1–5, LA16–25 and ABZ5–6, and the stopping
criterion is set to 25 consecutive iterations without improvement. Table 2 shows
for each algorithm, the average expected makespan across all the runs (20 runs
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Fig. 1. Evolution of the best and average individual for FT10 instance.

for PNS and 30 for GA) together with runtimes, as well as a column with the
relative difference between the performances of GA and PNS. We can see that,
despite not having a neighbourhood search component, GA outperforms PNS in
14 out of the 17 instances, and is marginally worse in the remaining 3 instances
(0.4% worse in ORB2, 0.5% in La16 and 0.01% in La17). Overall, GA obtains
an average improvement of 1.2% compared to PNS. Additionally, a t-test for
paired samples is run to compare the results of GA and PNS (after both samples
pass a Kolmogorov-Smirnov normality test), confirming that there are indeed
significant differences between both algorithms for a significance level of 0.05.
Regarding runtime, GA is 93.8% faster than PNS. Notice however, that runtimes
of PNS are those provided by the authors using their own machine and therefore
comparisons in this sense must be done with caution.

We have used the set of 17 instances considered in [15] in Table 2 to compare
GA with the state-of-the-art. However, in the deterministic case, the original
crisp instances have already been solved to optimality and their fuzzy counter-
parts offer little room for improvement, as shown in [23]. For this reason we will
now switch to the set of more challenging instances introduced at the beginning
of this section for the remaining experimental results.

One may wonder if solving the crisp problem that results from considering
only the midpoint of the interval processing times yields similar results to using
intervals with the added advantage of having all the available tools for deter-
ministic JSP. Including uncertainty in the search process adds some difficulty
to the problem: different concepts need to be adapted or redefined and solving
methods tailored to handle the uncertainty need to be proposed, usually with an
increased complexity. It is also natural to see if the choice of a ranking method
in the interval setting has any influence on the outcome. To try to answer these
questions, we carry out a new set of experiments. For every IJSP instance we
run GA 30 times considering each of the four different ranking methods and 30
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Table 2. Computational results and times of PNS and GA

Instance PNS GA Relative diff.

Avg. E[Cmax] Runtime (s) Avg. E[Cmax] Runtime (s)

ORB1 1187.00 6.7 1171.12 0.5 −1.3%

ORB2 968.25 6.8 971.93 0.4 0.4%

ORB3 1145.23 3.5 1117.23 0.7 −2.4%

ORB4 1110.85 6.8 1087.13 0.6 −2.1%

ORB5 974.60 6.9 955.02 0.4 −2.0%

ABZ5 1308.45 5.3 1296.58 0.3 −0.9%

ABZ6 1012.40 6.3 998.95 0.3 −1.3%

La16 1019.40 6.2 1024.52 0.4 0.5%

La17 834.45 6.5 834.50 0.3 0.0%

La18 912.95 6.7 900.75 0.3 −1.3%

La19 919.65 6.0 904.95 0.5 −1.6%

La20 966.50 6.4 952.87 0.3 −1.4%

La21 1173.45 16.9 1150.73 1.0 −1.9%

La22 1036.05 16.8 1019.98 1.1 −1.6%

La23 1105.45 16.8 1083.27 0.9 −2.0%

La24 1047.55 16.9 1038.40 0.9 −0.9%

La25 1089.15 17.1 1077.05 1.0 −1.1%

times on the instance’s crisp counterpart. Notice that the objective function is
an interval in the first four cases and a crisp value in the last one, so they are
not directly comparable. Instead, we measure the ε-robustness of the 30 solutions
obtained by GA in each case using K = 1000 possible realisations, to compare
the resulting solutions in terms of their quality as predictive schedules.

Figure 2 depicts for each instance the boxplots with the ε values with the
schedules that result from the 30 runs of GA in each case. We can see that,
regardless of the ranking considered, solutions are more robust when intervals are
taken into account during the search process. This is confirmed by several t-tests,
showing that the ε-robustness of the interval schedules, regardless of the ranking,
is significantly better than the one of the crisp schedule for a significance level
of 0.05 on all instances expect La25. Regarding the choice of ranking method,
according to the t-tests there is no significant difference between ≤MP and ≤Y X

on any instance. This is actually not surprising, since ≤Y X can be understood
as a refinement of ≤MP , but it shows that this refinement does not necessarily
translate into more robust schedules. Also, there are no significant differences
between ≤MP and ≤Lex1 on any instance except ABZ9, La21 and La24. More
interestingly, the ranking ≤Lex2 yields solutions significantly more robust than
those obtained using any other ranking on all instances except FT20, La24 and
La40, where it is not significantly better than ≤MP and ≤Y X . We may conclude
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Fig. 2. ε-robustness of solutions obtained with four different rankings and solving the
crisp counterpart



A Genetic Approach to IJSP 675

that solving the interval JSP results in more robust schedules than solving a
simpler deterministic counterpart and that the choice of interval ranking method
does have an influence on the outcome.

6 Conclusions

In this work we have developed an approach to solving the IJSP using a GA.
Results show that GA is competitive with the existing methods from the liter-
ature. In addition, incorporating the interval uncertainty in the search process
yields more robust solutions than solving an alternative crisp problem. On the
other hand, the choice of interval ranking method plays an important role in
the final solution’s performance. Further work needs to be done to obtain more
powerful search methods specifically designed for handling interval uncertainty
and to thoroughly analyse the influence of different ranking methods in order to
make a proper choice.
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Abstract. Traditional linear regression analysis aims at finding a linear
functional relationship between predictor and response variables based
on available data of a given system, and, when this relationship is found,
it is used to predict the future behaviour of the system. The differ-
ence between the observed and predicted data is supposed to be due
to measurement errors. In fuzzy linear regression, on the other hand,
this difference is supposed to be mainly due to the indefiniteness of the
system. In this paper, we assume that predictor and response variables
are LR-type fuzzy numbers, and so are all regression coefficients; this is
known as fully fuzzy linear regression (FFLR) problem. We transform
the FFLR problem into a fully fuzzy multiobjective linear programming
(FFMOLP) problem. Two fuzzy goal programming methods based on
linear and Chebyshev scalarisations are proposed to solve the FFMOLP
problem. The proposed methods are compared with a recently published
method and show promising results.

Keywords: Fully fuzzy linear regression · Fully fuzzy multiobjective
linear programming · Fuzzy goal programming · Linear scalarisation ·
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1 Introduction and Preliminaries

Traditional linear regression is one of the most frequently applied technique
for finding functional relationships between predictor and response variables,
and for making predictions. However, decision problems arising in ever-changing
environments are difficult to describe or formulate with precise terms. Expert
knowledge then gains a special value, and the need for its introduction into clas-
sical decision-making techniques has motivated the appearance and development
of several mathematical theories dealing with uncertainty and vagueness. Among
those theories, Fuzzy Sets Theory [31] has succeeded in numerous practical sit-
uations and is now an established research field.
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Fuzzy linear regression is a natural extension of the classical regression anal-
ysis and allows to predict the future behaviour of systems whose structure is
not well defined and/or is influenced by subjectivity. It is particularly useful to
forecast, e.g., future demands, resource availability and prices that could then
be used to set up fuzzy optimisation problems in areas such as production,
transportation, project management and so forth. Fuzzy linear regression has
been used to forecast airport demand [21], oil consumption [1], house prices [32],
sales [5] and short-term load in power distribution systems [24]. Several other
applications are reported in [6].

Numerous fuzzy linear regression models and methods have been developed
since the 1980s. Tanaka et al. [25] introduced fuzzy linear regression analysis and
formulated a regression problem with crisp predictor variables, fuzzy response
variable and fuzzy coefficients as a conventional linear programming problem.
A modified version of Tanaka et al.’s [25] fuzzy linear regression method allow-
ing negative spreads in the parameters was proposed in [3]. Chang and Lee [2]
proposed fuzzy least square deviation and least absolute deviation models based
on ranking functions. A multiobjective approach was proposed by Sakawa and
Yano [23] by simultaneous consideration of the model fit and fuzziness. Recent
methods for fuzzy linear regression have been presented in [14,18,22]. A com-
prehensive review until year 2019 is provided by Chukhrova and Johannssen [6].

So far, fuzzy linear regression methods mainly resort to the minimisation of
crisp-valued distance functions between fuzzy numbers, either by direct generali-
sations of known crisp distance functions or by the use of linear ranking functions
to defuzzify response observations and model predicted values, and then taking
the absolute value of the difference as the distance between the two fuzzy num-
bers. A simulation study, considering distance functions from both approaches,
was conducted in [14] to determine the best distance function in fuzzy linear
regression using Monte Carlo methods. Notably, Voxman [26] has argued that
the distance between two fuzzy numbers should also be a fuzzy number, and pro-
posed a fuzzy-valued distance function. However, to the best of our knowledge,
fuzzy-valued distance functions have not been used in fuzzy regression analysis.

In this paper, we seek to evaluate other models and methods for fuzzy linear
regression analysis, which do not rely on crisp-valued distance functions. We
propose two methods based on FFMOLP for fuzzy linear regression analysis,
in which the predictor variables, response variable and regression coefficients
are LR-type fuzzy numbers. The proposed methods rely on the lexicographic
approach to fully fuzzy linear programming (FFLP) with inequality constraints
recently proposed in [19]. The rest of the paper is organised as follows. Section 1.1
presents some fundamental definitions on LR-type fuzzy numbers. Section 1.2
outlines the lexicographic method [19] for solving FFLP problems. In Sect. 2,
we formulate the FFLR problem as a FFMOLP problem, and propose two
fuzzy scalarisation methods based on classical goal programming to solve it.
Section 3 discusses a numerical example. Lastly, Sect. 4 presents the conclusions
and remarks for future work.
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1.1 LR-type Fuzzy Numbers

Dubois and Prade [8] defined the concept of LR-type fuzzy number and proposed
simple formulae for arithmetic operations. In this section, we present some defi-
nitions concerning LR-type fuzzy numbers taken from reference [8].

Definition 1. A fuzzy number ã = (m,α, β)LR is said to be an LR-type fuzzy
number if its membership function is given by:

μã(x) =

{
L

(
m−x

α

)
m − α ≤ x ≤ m, α > 0

R
(

x−n
β

)
m ≤ x ≤ m + β, β > 0

where m is the modal value; L and R (called left and right reference func-
tions, respectively) are non-increasing functions [0,+∞) → [0, 1], fulfilling
L(0) = R(0) = 1; α and β are the left and right spreads of ã, respectively.
The set of all LR-type fuzzy numbers, defined on �, is denoted by F(�).

Definition 2. Let ã1 = (m1, α1, β1)LR and ã2 = (m2, α2, β2)LR be any LR-type
fuzzy numbers, then ã1 = ã2 if and only if m1 = m2, α1 = α2 and β1 = β2.

Definition 3. An LR-type fuzzy number ã = (m,α, β)LR is said to be non-
negative (resp. non-positive) if m − α ≥ 0 (resp. m + β ≤ 0). This is denoted by
ã ≥ 0 (resp. ã ≤ 0).

Definition 4. An LR-type fuzzy number ã = (m,α, β)LR is said to be unre-
stricted if m is an arbitrary real number.

Definition 5. Let ã1 = (m1, α1, β1)LR and ã2 = (m2, α2, β2)LR be two LR-type
fuzzy numbers, then fuzzy addition is given by ã1 ⊕ ã2 = (m1 + m2, , α1 + α2,
β1 + β2)LR.

Definition 6. The product of two non-negative LR-type fuzzy numbers ã1 =
(m1, α1, β1)LR and ã2 = (m2, α2, β2)LR is given by ã1 � ã2 = (m1m2,m1α2 +
α1m2 − α1α2, n1β2 + β1n2 + β1β2)LR.

The reader is referred to [15] for the definition of the product of unrestricted
LR-type fuzzy numbers.

1.2 FFLP Problem and Lexicographic Solution Method

Due to the vast number of practical situations where fuzzy quantities must be
compared, ranking fuzzy numbers is still recognised as a fundamental research
problem in Fuzzy Sets Theory. Many ranking methodologies have been proposed
in the literature [29,30]. However, several researchers have noticed that most
existing ranking methodologies cannot yield a total order of fuzzy numbers in
a strict sense. To resolve this issue, lexicographic ranking criteria have been
proposed as an alternative [11,27,28].
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The integration of lexicographic ranking criteria into FFLP methods started
with [12,13] and has been recently investigated in [7,9,10,16,19,20]. In partic-
ular, the use of lexicographic ranking criteria for handling fuzzy inequality con-
straints has been proposed in [12,19,20]. In this section, we present the lexico-
graphic method [19] for solving FFLP problems with inequality constraints. This
method constitutes the basis of the results presented in the following sections.

Firstly, we need to introduce an order relation on F(�). Let ã = (m,α,
β)LR be an arbitrary LR-type fuzzy number, and suppose we have three linear
functions of the parameters of ã, fk(ã) := wk1m + wk2α + wk3β for k = 1, 2, 3.
If each wkr is chosen such that matrix [wkr] is non-singular, then ã1 = ã2 if and
only if fk(ã1) = fk(ã2) for k = 1, 2, 3.

Based on the above idea, we may consider the following criterion for ranking
LR-type fuzzy numbers.

Definition 7. Let ≤lex denote the lexicographic order relation on �3. For
any ã1, ã2 ∈ F(�), the strict inequality ã1 ≺ ã2 holds, if and only if
(fk(ã1))k=1,2,3 <lex (fk(ã2))k=1,2,3. The weak inequality ã1 � ã2 holds, if and
only if (fk(ã1))k=1,2,3 <lex (fk(ã2))k=1,2,3 or (fk(ã1))k=1,2,3 = (fk(ã2))k=1,2,3.

It can be shown that � satisfies the total order properties. That is, for all ã, b̃
and c̃ in F(�):

– ã � ã (reflexivity);
– ã � b̃ or b̃ � ã (comparability);
– if ã � b̃ and b̃ � c̃, then ã � c̃ (transitivity);
– if ã � b̃ and b̃ � ã, then ã = b̃ (anti-symmetry).

Next, we present the lexicographic method proposed in [19] for solving FFLP
problems with equality and inequality constraints.

The FFLP problem can be formulated as follows, where c̃j , ãij and b̃i are
LR-type fuzzy parameters, x̃j denote the LR-type fuzzy decision variables, and
� is an order relation on F(�); here, we assume that � is given by Definition 7.

min
n∑

j=1

c̃j � x̃j

s.t.
n∑

j=1

ãij � x̃j{�,=,�}b̃i; i = 1, 2, . . . , m

x̃j ∈ F(�); j = 1, 2, . . . , n (1)

By using Definitions 2 and 7, FFLP problem (1) is transformed into problem (2),
which is then transformed into problem (3). To carry out these transformations,

we have assumed that z̃ =
n∑

j=1

c̃j � x̃j , ãi = (ma
i , αa

i , βa
i )LR =

n∑
j=1

ãij � x̃j ,

b̃i =
(
mb

i , α
b
i , β

b
i

)
LR

and x̃j =
(
mx

j , αx
j , βx

j

)
LR

. In addition, Ie, Ile and Ige denote
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the index sets of the fuzzy equality, less-than-or-equal-to and greater-than-or-
equal-to constraints of FFLP problem (1), respectively; ε and M are positive
real numbers sufficiently small and large, respectively.

lexmin (fk (z̃))k=1,2,3

s.t. (fk (ãi))k=1,2,3 {≤lex,≥lex}
(
fk

(
b̃i

))
k=1,2,3

; i ∈ Ile ∪ Ige (2)

ma
i = mb

i , α
a
i = αb

i , β
a
i = βb

i ; i ∈ Ie

αx
j ≥ 0, βx

j ≥ 0; j = 1, 2, . . . , n

lexmin (fk (z̃))k=1,2,3

s.t. − M
k−1∑
p=1

yip + εyik ≤ fk

(
b̃i

)
− fk (ãi) ≤ Myik; i ∈ Ile, k = 1, 2, 3

− M

k−1∑
p=1

yip + εyik ≤ fk (ãi) − fk

(
b̃i

)
≤ Myik; i ∈ Ige, k = 1, 2, 3

ma
i = mb

i , α
a
i = αb

i , β
a
i = βb

i ; i ∈ Ie (3)
yik ∈ {0, 1}; i ∈ Ile ∪ Ige, k = 1, 2, 3
αx

j ≥ 0, βx
j ≥ 0; j = 1, 2, . . . , n

Theorem 1. FFLP problem (1) is equivalent to problem (3).

Proof. See [19]. ��
Remark 1. In order to solve FFLP problem (1), we must choose a lexicographic
criterion for ranking LR-type fuzzy numbers. There are several such criteria in
the literature (see, e.g., [11,27]). Notably, the solution method outlined here is
general enough so as to allow a decision-maker to use the criterion that best fits
the decision-making problem at hand.

2 FFLR: Proposed Methods

Let x̃j , Ãj (j = 0, 2, . . . , n) and ỹ be LR-type fuzzy numbers. Then the FFLR
model is formulated as in Eq. (4).

ỹ = Ã0 ⊕ Ã1 � x̃1 ⊕ Ã2 � x̃2 ⊕ · · · ⊕ Ãn � x̃n = Ã0 ⊕
n∑

j=1

Ãj � x̃j (4)

In Eq. (4), each x̃j is termed fuzzy predictor variable, ỹ fuzzy response vari-
able and Ãj fuzzy regression coefficient. Now, let us consider a sample of LR-

type fuzzy numbers
(
X̃|Ỹ

)
, where X̃ = (x̃ij)i=1,2,...,m

j=1,2,...,n
contains the observa-

tions corresponding to each fuzzy predictor variable x̃j , and the column vector
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Ỹ = (ỹi)i=1,2,...,m contains the observations of the fuzzy response variable ỹ. We
wish to determine the estimates of Ãj so as to obtain the best fitting model
given the available data.

In what follows, we formulate the FFLR problem as a FFMOLP problem.
To this aim, we introduce two non-negative fuzzy deviation variables S̃pi and
S̃ni for each sample. Thus, the following set of fuzzy equalities is obtained.

Ã0 ⊕
n∑

j=1

Ãj � x̃ij ⊕ S̃pi = ỹi ⊕ S̃ni; i = 1, 2, . . . ,m

Therefore, we may consider the following FFMOLP problem:

min
(
S̃p1 ⊕ S̃n1, S̃p2 ⊕ S̃n2, . . . , S̃pm ⊕ S̃nm

)

s.t: Ã0 ⊕
n∑

j=1

Ãj � x̃ij ⊕ S̃pi = ỹi ⊕ S̃ni; i = 1, 2, . . . ,m (P1)

Ãj unrestricted; j = 0, 1, . . . , n

S̃pi ≥ 0, S̃ni ≥ 0; i = 1, 2, . . . ,m

In order to solve (P1), we resort to two known classical scalarisation methods
based on goal programming, which are extended to the fuzzy case: linear scalar-
isation method and Chebyshev (minimax) scalarisation method.

2.1 Linear Scalarisation Method

In this method, each objective function is multiplied by a positive weighting
factor and the resulting expressions are added together. Thus, we have,

min
m∑

i=1

wi

(
S̃pi ⊕ S̃ni

)

s.t: Ã0 ⊕
n∑

j=1

Ãj � x̃ij ⊕ S̃pi = ỹi ⊕ S̃ni; i = 1, 2, . . . ,m (l-P1)

Ãj unrestricted; j = 0, 1, . . . , n

S̃pi ≥ 0, S̃ni ≥ 0; i = 1, 2, . . . ,m

Hereafter, wi = 1 for i = 1, 2, . . . ,m since no particular preference for the
objective functions shall be considered.

2.2 Chebyshev Scalarisation Method

In this case the scalarising function is S̃ = max
(
S̃p1⊕S̃n1, S̃p2⊕S̃n2, . . . , S̃pm⊕

S̃nm

)
; hence, we have that S̃pi ⊕ S̃ni � S̃ for i = 1, 2, . . . ,m. By substituting
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into (P1), we obtain,

min S̃

s.t: Ã0 ⊕
n∑

j=1

Ãj � x̃ij ⊕ S̃pi = ỹi ⊕ S̃ni; i = 1, 2, . . . ,m

S̃pi ⊕ S̃ni � S̃; i = 1, 2, . . . , m (ch-P1)

Ãj unrestricted; j = 0, 1, . . . , n

S̃ ≥ 0, S̃pi ≥ 0, S̃ni ≥ 0; i = 1, 2, . . . ,m

thus, the objective is to minimise the maximal deviation.

2.3 Steps of the Proposed FFLR Methods

The whole procedure can be summarised in the following six steps.

1. Input: Sample data X̃ and Ỹ ;
2. choose a lexicographic criterion for ranking LR-type fuzzy numbers;
3. set up FFMOLP problem (P1);
4. choose either of the proposed scalarisation methods, and set up FFLP prob-

lem (l-P1) or FFLP problem (ch-P1);
5. solve the FFLP problem chosen in Step 4 by using the lexicographic method

outlined in Sect. 1.2;
6. output: Ãj for j = 0, 1, . . . , n as the estimated regression parameters.

3 Numerical Example

The example in this section is taken from references [4,17,18]. The dataset con-
tains 30 samples, each having four predictor variables and one response vari-
able (see Table 1). It is a real-life dataset comprising triangular fuzzy numbers
used to subjectively evaluate employee’s performance according to work quality,
inability to endure job stress, frequency of delays, and communication and coor-
dination ability. As part of the solution procedure from Sect. 2.3, the functions
f1(ã) := 3m + β − α, f2(ã) := m + β and f3(ã) := α + β were used to define a
lexicographic order relation on F(�).

We applied the proposed methods and obtained the following two models.
The estimated responses of both models are shown in Table 2.

ỹlinear =(0.85684, 0, 0)LR � x̃1 ⊕ (−0.12989, 0, 0)LR � x̃2

⊕ (−0.17893, 0.01697, 0)LR � x̃3 ⊕ (0.04995, 0, 0)LR � x̃4

⊕ (12.60258, 0.14101, 0)LR

ỹchebyshev =(0.85662, 0, 0)LR � x̃1 ⊕ (−0.15074, 0.03749, 0)LR � x̃2

⊕ (−0.14948, 0, 0)LR � x̃3 ⊕ (0.09081, 0, 0)LR � x̃4

⊕ (10.03612, 0, 0)LR
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Table 1. Sample dataset.

x̃1 x̃2 x̃3 x̃4 ỹ

(50, 8, 8)LR (98, 6, 2)LR (71, 9, 11)LR (70, 11, 13)LR (30, 11, 9)LR

(29, 8, 8)LR (76, 6, 2)LR (61, 9, 11)LR (46, 11, 13)LR (20, 13, 10)LR

(41, 8, 8)LR (88, 6, 2)LR (73, 9, 11)LR (58, 11, 13)LR (25, 11, 12)LR

(60, 9, 7)LR (62, 9, 10)LR (79, 9, 6)LR (66, 8, 9)LR (45, 12, 10)LR

(49, 9, 7)LR (50, 9, 10)LR (75, 9, 6)LR (54, 8, 9)LR (38, 12, 8)LR

(59, 9, 7)LR (60, 9, 10)LR (85, 9, 6)LR (64, 8, 9)LR (43, 11, 9)LR

(61, 9, 11)LR (77, 8, 6)LR (85, 5, 8)LR (18, 7, 13)LR (40, 17, 11)LR

(58, 9, 11)LR (75, 8, 6)LR (82, 5, 8)LR (16, 7, 13)LR (38, 11, 12)LR

(55, 9, 11)LR (72, 8, 6)LR (79, 5, 8)LR (13, 7, 13)LR (37, 12, 12)LR

(66, 8, 7)LR (59, 17, 11)LR (39, 8, 9)LR (83, 14, 11)LR (60, 11, 12)LR

(69, 8, 7)LR (63, 17, 11)LR (49, 8, 9)LR (87, 14, 11)LR (59, 10, 9)LR

(59, 8, 7)LR (53, 17, 11)LR (39, 8, 9)LR (77, 14, 11)LR (54, 11, 8)LR

(74, 4, 6)LR (89, 11, 5)LR (70, 12, 13)LR (82, 14, 10)LR (61, 14, 3)LR

(41, 4, 6)LR (57, 11, 5)LR (58, 12, 13)LR (50, 14, 10)LR (34, 10, 8)LR

(49, 4, 6)LR (65, 11, 5)LR (66, 12, 13)LR (58, 14, 10)LR (38, 9, 9)LR

(76, 8, 7)LR (75, 10, 8)LR (37, 8, 11)LR (75, 5, 10)LR (64, 16, 9)LR

(57, 8, 7)LR (56, 10, 8)LR (18, 8, 11)LR (56, 5, 10)LR (56, 13, 7)LR

(72, 8, 7)LR (71, 10, 8)LR (33, 8, 11)LR (71, 5, 10)LR (63, 11, 9)LR

(78, 7, 8)LR (65, 6, 6)LR (82, 11, 11)LR (64, 8, 12)LR (66, 16, 5)LR

(58, 7, 8)LR (45, 6, 6)LR (62, 11, 11)LR (44, 8, 12)LR (49, 12, 9)LR

(72, 7, 8)LR (59, 6, 6)LR (76, 11, 11)LR (58, 8, 12)LR (55, 10, 12)LR

(90, 8, 5)LR (95, 13, 3)LR (80, 11, 8)LR (72, 7, 13)LR (67, 11, 14)LR

(68, 8, 5)LR (73, 13, 3)LR (58, 11, 8)LR (50, 7, 13)LR (53, 10, 9)LR

(71, 8, 5)LR (76, 13, 3)LR (61, 11, 8)LR (53, 7, 13)LR (54, 9, 10)LR

(92, 8, 6)LR (76, 6, 9)LR (78, 10, 6)LR (27, 9, 15)LR (70, 13, 7)LR

(94, 8, 6)LR (78, 6, 9)LR (80, 10, 6)LR (29, 9, 15)LR (68, 9, 10)LR

(87, 8, 6)LR (71, 6, 9)LR (73, 10, 6)LR (22, 9, 15)LR (65, 10, 9)LR

(94, 6, 5)LR (51, 9, 8)LR (30, 9, 11)LR (29, 9, 16)LR (75, 5, 14)LR

(95, 6, 5)LR (52, 9, 8)LR (31, 9, 11)LR (30, 9, 16)LR (84, 10, 7)LR

(86, 6, 5)LR (43, 9, 8)LR (22, 9, 11)LR (21, 9, 16)LR (80, 12, 6)LR

The obtained models’ predicted values were compared with the ones reported
by Li et al. [18], according to the overall absolute distance from the observed
responses, using Eqs. (5) and (6).

d
(
ỹobs

i , ỹpred
i

)
=

∣∣∣mobs
i − mpred

i

∣∣∣ +
∣∣∣mobs

i − αobs
i −

(
mpred

i − αpred
i

)∣∣∣
+

∣∣∣mobs
i + βobs

i −
(
mpred

i + βpred
i

)∣∣∣ (5)
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Table 2. Estimated values reported by Li et al. [18] and the ones obtained by using
the proposed methods. The observed values have been kept to aid visual comparison.

Observed response Li et al. [18] Chebyshev Scalarisation Linear Scalarisation

(30, 11, 9)LR (32.053, 10.999, 9.352)LR (33.837, 13.547, 10.283)LR (33.508, 11.166, 9.894)LR

(20, 13, 10)LR (17.915, 10.916, 9.352)LR (18.480, 12.722, 10.283)LR (18.962, 10.996, 9.894)LR

(25, 11, 12)LR (25.053, 10.962, 9.352)LR (26.247, 13.172, 10.283)LR (26.138, 11.199, 9.894)LR

(45, 12, 10)LR (45.501, 12.046, 8.795)LR (46.271, 13.540, 9.516)LR (45.121, 12.068, 9.227)LR

(38, 12, 8)LR (37.998, 11.999, 8.795)LR (38.166, 13.090, 9.516)LR (37.371, 12.000, 9.227)LR

(43, 11, 9)LR (43.947, 12.038, 8.795)LR (44.638, 13.465, 9.516)LR (43.350, 12.170, 9.227)LR

(40, 17, 11)LR (39.767, 11.304, 12.074)LR (39.611, 13.558, 12.557)LR (40.558, 11.992, 12.009)LR

(38, 11, 12)LR (37.874, 11.296, 12.074)LR (37.609, 13.483, 12.557)LR (38.684, 11.941, 12.009)LR

(37, 12, 12)LR (36.090, 11.285, 12.074)LR (35.668, 13.370, 12.557)LR (36.890, 11.890, 12.009)LR

(60, 11, 12)LR (59.973, 12.457, 9.485)LR (59.387, 13.753, 10.754)LR (58.658, 11.549, 10.187)LR

(59, 10, 9)LR (60.580, 12.472, 9.485)LR (60.222, 13.903, 10.754)LR (59.120, 11.719, 10.187)LR

(54, 11, 8)LR (54.633, 12.434, 9.485)LR (53.750, 13.528, 10.754)LR (53.140, 11.549, 10.187)LR

(61, 14, 3)LR (56.998, 8.863, 8.283)LR (56.992, 10.919, 9.500)LR (56.019, 8.653, 9.217)LR

(34, 10, 8)LR (34.060, 8.741, 8.283)LR (32.435, 9.720, 9.500)LR (32.449, 8.449, 9.217)LR

(38, 9, 9)LR (38.818, 8.772, 8.283)LR (37.613, 10.020, 9.500)LR (37.233, 8.585, 9.217)LR

(64, 16, 9)LR (64.026, 11.115, 9.292)LR (65.113, 13.269, 9.608)LR (65.107, 11.068, 9.228)LR

(56, 13, 7)LR (52.726, 11.043, 9.292)LR (52.817, 12.557, 9.608)LR (53.745, 10.745, 9.228)LR

(63, 11, 9)LR (61.647, 11.100, 9.292)LR (62.525, 13.119, 9.608)LR (62.715, 11.000, 9.228)LR

(66, 16, 5)LR (59.633, 10.203, 9.923)LR (60.608, 11.934, 10.492)LR (59.518, 10.865, 10.202)LR

(49, 12, 9)LR (47.738, 10.127, 9.923)LR (47.664, 11.184, 10.492)LR (47.558, 10.526, 10.202)LR

(55, 10, 12)LR (56.064, 10.180, 9.923)LR (56.725, 11.709, 10.492)LR (55.930, 10.763, 10.202)LR

(67, 11, 14)LR (68.175, 12.176, 6.479)LR (67.391, 12.811, 9.068)LR (66.661, 10.661, 8.591)LR

(53, 10, 9)LR (55.091, 12.092, 6.479)LR (53.152, 11.986, 9.068)LR (53.505, 10.287, 8.591)LR

(54, 9, 10)LR (56.877, 12.104, 6.479)LR (55.094, 12.099, 9.068)LR (55.299, 10.338, 8.591)LR

(70, 13, 7)LR (68.807, 10.989, 8.026)LR (68.181, 13.111, 8.901)LR (68.952, 11.114, 8.459)LR

(68, 9, 10)LR (69.995, 10.996, 8.026)LR (69.475, 13.186, 8.901)LR (70.148, 11.148, 8.459)LR

(65, 10, 9)LR (65.834, 10.970, 8.026)LR (64.945, 12.923, 8.901)LR (65.962, 11.029, 8.459)LR

(75, 5, 14)LR (82.242, 9.475, 7.819)LR (81.020, 11.020, 8.438)LR (82.602, 9.435, 7.863)LR

(84, 10, 7)LR (82.837, 9.479, 7.819)LR (81.667, 11.057, 8.438)LR (83.200, 9.452, 7.863)LR

(80, 12, 6)LR (77.484, 9.445, 7.819)LR (75.842, 10.720, 8.438)LR (77.818, 9.299, 7.863)LR

Overall distance 113.448 142.3720 109.9628

dT =
m∑

i=1

d
(
ỹobs

i , ỹpred
i

)
(6)

In order to compare the predicted values, first Li et al.’s [18] solution is converted
to LR representation of fuzzy numbers, since the authors used a different repre-
sentation. From the last row of Table 2, it can be seen that the model obtained
by the Linear Scalarisation Method (FFLP problem (l-P1)) has the smallest
overall distance value, followed by Li et al.’s [18] model and the model obtained
by using the proposed Chebyshev Scalarisation Method.
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4 Concluding Remarks

In this paper, we proposed two methods for FFLR analysis. Contrary to existing
methodologies that use crisp-valued distance functions, we formulated the FFLR
problem as a FFMOLP problem. Fuzzy linear and Chebyshev scalarisations were
proposed to solve the FFMOLP problem using a lexicographic method for FFLP.

The proposed methods were compared with a recently published method
and showed promising results. In a future work, we plan to conduct an extensive
simulation study and consider real-world applications to gain more insights into
the performance of the proposed methods. In addition, the use of fuzzy-valued
distance functions for FFLR analysis will be investigated.

Acknowledgements. The research of José Luis Verdegay is supported in part by
project TIN2017-86647-P (Spanish Ministry of Economy and Competitiveness and
FEDER funds from the European Union).

References

1. Azadeh, A., Khakestani, M., Saberi, M.: A flexible fuzzy regression algorithm for
forecasting oil consumption estimation. Energy Policy 37(12) (2009). https://doi.
org/10.1016/j.enpol.2009.08.017

2. Chang, P.T., Lee, E.S.: Fuzzy least absolute deviations regression based on
the ranking of fuzzy numbers. In: Proceedings of 1994 IEEE 3rd International
Fuzzy Systems Conference, pp. 1365–1369. IEEE (1994). https://doi.org/10.1109/
FUZZY.1994.343613

3. Chang, P.T., Lee, E.S.: Fuzzy linear regression with spreads unrestricted in
sign. Comput. Math. Appl. 28(4), 61–70 (1994). https://doi.org/10.1016/0898-
1221(94)00127-8

4. Chen, L.h., Hsueh, C.C.: Fuzzy regression models using the least-squares method
based on the concept of distance. IEEE Trans. Fuzzy Syst. 17(6), 1259–1272 (2009).
https://doi.org/10.1109/TFUZZ.2009.2026891

5. Chen, T., Wang, M.J.J.: Forecasting methods using fuzzy concepts. Fuzzy Sets
Syst. 105(3), 339–352 (1999). https://doi.org/10.1016/S0165-0114(97)00265-0

6. Chukhrova, N., Johannssen, A.: Fuzzy regression analysis: systematic review and
bibliography. Appl. Soft Comput. J. 84, 105708 (2019). https://doi.org/10.1016/
j.asoc.2019.105708

7. Das, S.K., Mandal, T., Edalatpanah, S.A.: A mathematical model for solving fully
fuzzy linear programming problem with trapezoidal fuzzy numbers. Appl. Intell.
1–11 (2016). https://doi.org/10.1007/s10489-016-0779-x

8. Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. Syst. Sci. 9(6), 613–626
(1978). https://doi.org/10.1080/00207727808941724

9. Ebrahimnejad, A.: An effective computational attempt for solving fully fuzzy lin-
ear programming using MOLP problem. J. Ind. Prod. Eng. 36(2), 59–69 (2019).
https://doi.org/10.1080/21681015.2019.1585391

10. Ezzati, R., Khorram, E., Enayati, R.: A new algorithm to solve fully fuzzy linear
programming problems using the MOLP problem. Appl. Math. Model. 39(12),
3183–3193 (2015). https://doi.org/10.1016/j.apm.2013.03.014

https://doi.org/10.1016/j.enpol.2009.08.017
https://doi.org/10.1016/j.enpol.2009.08.017
https://doi.org/10.1109/FUZZY.1994.343613
https://doi.org/10.1109/FUZZY.1994.343613
https://doi.org/10.1016/0898-1221(94)00127-8
https://doi.org/10.1016/0898-1221(94)00127-8
https://doi.org/10.1109/TFUZZ.2009.2026891
https://doi.org/10.1016/S0165-0114(97)00265-0
https://doi.org/10.1016/j.asoc.2019.105708
https://doi.org/10.1016/j.asoc.2019.105708
https://doi.org/10.1007/s10489-016-0779-x
https://doi.org/10.1080/00207727808941724
https://doi.org/10.1080/21681015.2019.1585391
https://doi.org/10.1016/j.apm.2013.03.014


A Fuzzy Goal Programming Approach to Fully Fuzzy Linear Regression 687

11. Farhadinia, B.: Ranking fuzzy numbers based on lexicographical ordering. Int. J.
Appl. Math. Comput. Sci. 5(4), 248–251 (2009)

12. Hashemi, S.M., Modarres, M., Nasrabadi, E., Nasrabadi, M.M.: Fully fuzzified
linear programming, solution and duality. J. Intell. Fuzzy Syst. 17(1), 253–261
(2006)

13. Hosseinzadeh Lotfi, F., Allahviranloo, T., Alimardani Jondabeh, M., Alizadeh,
L.: Solving a full fuzzy linear programming using lexicography method and fuzzy
approximate solution. Appl. Math. Model. 33, 3151–3156 (2009). https://doi.org/
10.1016/j.apm.2008.10.020
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19. Pérez-Cañedo, B., Concepción-Morales, E.R.: A method to find the unique optimal
fuzzy value of fully fuzzy linear programming problems with inequality constraints
having unrestricted L-R fuzzy parameters and decision variables. Expert Syst.
Appl. 123, 256–269 (2019). https://doi.org/10.1016/j.eswa.2019.01.041
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Abstract. The availability of Wi-Fi connection points or hotspots in
places such as parks, transport stations, libraries, and so on is one of
the key aspects to allow people the usage of Internet resources (to study,
work or meet). This is even more important in Central America and
Caribbean countries where the deployment of huge cost infrastructure
(like optical fiber) to provide Internet access at home is not envisaged
neither in the short or mid term. And this is clearly the case in Havana,
Cuba.

This contribution presents the problem of planning the Wi-Fi access
points activation, where each point can have different signal power levels
and availability along the time. Due to power consumption constraints,
it is impossible to have all the points activated simultaneously with max-
imum signal strength.

The problem is modelled as a dynamic maximal covering location
one with facility types and time dependant availability. A metaheuristic
approach is used to solve the problem by using an Algorithm portfolio
and examples on how solutions can be analyzed (beyond the coverage
provided) are shown.

Keywords: Signal levels · Wi-Fi access points

1 Introduction

In a recent report from the International Telecommunication Union (ITU)
(United Nations specialized agency for information and communication tech-
nologies) [8], one can read:

... Internet use continues to grow globally, with 4.1 billion people now using
the Internet, or 53.6% of the global population. However, an estimated 3.6
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billion people remain offline, with the majority of the unconnected living
in the Least Developed Countries where an average of just two out of every
ten people are online.

In all regions of the world, households are more likely to have Internet
access at home than to have a computer because Internet access is also
possible through other devices. While 93% of the world’s population lives
within reach of a mobile broadband (or Internet) service, just over 53%
actually uses the Internet.

According to the World Bank’ DataBank (an analysis and visualisation tool
that contains collections of time series data on a variety of topics)1 Cuba has
the following figures:

2010 2011 2012 2013 2014 2015 2016 2017 2018

Individuals using the
Internet (% of population)

15,90 16,02 21,20 27,93 29,07 37,31 42,98 57,15 ...

Fixed broadband
subscriptions (per 100
people)

0,03 0,04 0,04 0,05 0,07 0,07 0,13 0,30 0,87

Mobile cellular subscriptions
(per 100 people)

8,93 11,70 14,94 17,69 22,38 29,45 35,18 40,69 47,39

Although Internet usage and mobile cellular subscriptions are steadily
increasing, they are still quite low. Also in the rest of Central America and
Caribbean countries the deployment of huge cost infrastructure (like optical
fiber) to provide Internet access at home is not envisaged neither in the short or
mid term. So deploying wireless connection is one of the steps needed to enlarge
Internet usage among the people.

These Wi-Fi access points (WAPs), provide signal to the users if they are
within its radius of signal. That means, the location of the WAP is very impor-
tant for the satisfactory access to Internet. With this approach, the questions of
where to locate the WAPs and how to plan their activation/deactivation can be
treated as special cases of location problems.

A classic location problem is the maximal covering location problem (MCLP)
proposed by Church and ReVelle in [3]. The MCLP aims to locate a limited
number of facilities in order to maximize the coverage over a set of demand
nodes. The term “facility” should be understood in a wide sense, ranging from
warehouses, bus stops or, as in our case, WAPs.

Several examples of the application of MCLP for placing wireless devices may
be found in the literature. In [12], one the first contributions in telecommunica-
tions scenarios was proposed. A greedy-add method was used over the MCLP
and the set covering location problem (SCLP) to design a network of cellular
mobile communication system.

1 https://databank.worldbank.org/.

https://databank.worldbank.org/
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In [9] the MCLP was used to locate wireless routers, taking into account a
central tower with a main signal. The routers share its signal, therefore they must
be located at a certain distance from each other to maintain the signal strength.
In [11] a variant of MCLP was proposed to locate routers and gateways. The
model has capacity constraint to guarantee the correct flow on the connections.
In [1] a multi-objective MCLP was proposed to locate the nodes in a wireless
network with bandwidth capacity constraints. The objectives were: to maximize
the coverage, to minimize the bandwidth usage, and to minimize the cost of
the network and the interference signal. The NSGA-II algorithm was used to
obtain the Pareto-front of the problem. In [2] an extension of MCLP was used to
locate a set of access points in a wireless network in order to maximize the total
offloaded traffic in an area. A greedy adding algorithm with substitution was
used to solve the problem. In [7] a fuzzy MCLP was proposed to locate Wi-Fi
antennas in Havana City. The fuzzy constraint describe uncertain information
about the availability of antennas due to meteorological events near the coast.
A parametric approach was used to solve the fuzzy problem. In [4] a variant of
DMCLP to locate flying base stations was proposed. These bases move according
to the change in population density over time. The bases have user connectivity
capacity constraints.

Let’s now consider the following situation. Havana City is exploring ways to
provide Internet access to their citizens. There is information about the pop-
ulation density and how they may move. During a day the number of users
requiring an Internet connection can change. For example, in the early morning
there are less users than the afternoon. Besides, there is a set of deployed WAPs
that provide a wireless signal, which provide coverage up to a maximal distance,
named the coverage radius. A WAP has different signal levels or strength (e.g.
strong, medium and low), that affects the coverage radius and just one level can
be activated.

Due to energy saving policies, it is impossible to activate all of the available
WAPs with a strong signal level (which would be the obvious solution to the
problem). For example, during the early morning all signal levels may be avail-
able, since it is when the overall power consumption in the city is lower. However,
at night, only the lowest signal level can be used, since it is where the highest
energy consumption is perceived. The previous situation can be modelled using
the location problem presented in [10]: the dynamic maximal covering location
problem with facilities types and time dependant availability (DMCLP-FT).

In this contribution we apply the DMCLP-FT to manage the WAPs activa-
tion in Havana, Cuba. The paper is organized as follows: Sect. 2 describes the
DMCLP-FT. Section 3 presents the DMCLP-FT to activate a set of WAPs in
Havana City, Cuba and comments the principals results and analysis. Finally,
we present the conclusions of our contribution.
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2 Dynamic Maximal Covering Location Problem
with Facility Types and Time Dependant Availability

Several features should be considered when solving the problem but we highlight
two of them: 1) WAPs may not have available all the different signal levels and
2) the demand at a geographic area may change over the time. For example, the
number of users can decreased or increased depending on the schedule, in the
morning there more users on-line than the early morning.

These features can be modelled using a generalization of DMCLP presented
in [10]: the dynamic maximal covering location problem with facility types and
time dependent availability (DMCLP-FT). The mathematical formulation of the
DMCLP-FT, applied to the WAPs activation, is the follows:

– i, I: the index and set of user nodes.
– j, J : the index and set of WAPs.
– t, T : the index and number of time periods.
– k, K: index and number of signal levels.
– ait: population or number of users at node i in period t.
– dij : the shortest distance (or time) from demand node i to Wi-Fi access j.
– pk: number of WAPs to be activated with level k.
– Sk: coverage radius provided by a signal level k. It is the minimum distance

(or time) between a node and WAP to be considered as covered.
– Wjtk ∈ {0; 1}: a binary variable, 1 if the WAP j has available the level k in

period t, 0 otherwise.
– Nitk= {j|dij ≤ Sk and Wjtk = 1}: set of potential WAPs that can cover the

users at node i if a WAP with level k is available in the location j in period t.
– Xjtk ∈ {0; 1}: a binary variable, 1 if a WAP at location j is activated with

level k in period t, 0 otherwise.
– Yit ∈ {0; 1}: a binary variable, 1 if the node i is covered by one or more WAPs

in period t, 0 otherwise.

The objective function is:

Maximize : Z =
∑

t∈T

∑

i∈I

aitYit (1)

Subject to:

Yit ≤
∑

k∈K

∑

j∈Nitk

Xjtk,∀i ∈ I,∀t ∈ T (2)

∑

t∈T

∑

j∈J

Xjtk = pk,∀k ∈ K (3)

∑

k∈K

pk < J ∗ T (4)
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∑

t∈T

∑

j∈J

Wjtk > pk,∀k ∈ K (5)

∑

t∈T

∑

k∈K

Wjtk ≥ 1,∀j ∈ J (6)

∑

k∈K

Xjtk ≤ 1,∀j ∈ J,∀t ∈ T (7)

∑

k∈K

Xjtk ≤ Wjtk,∀j ∈ J,∀t ∈ T (8)

The objective function (1) is aimed at maximizing the coverage of the nodes
(sets of users). Constraint (2) shows that a node can be covered if an activated
WAP with level k in period t belong to set Nitk. Constraint (3) shows that the
number of WAPs with level k to activate must be equal to pk. Constraint (4)
shows that the total of WAPs with level k that will be activated should be less
than the total of available WAPs.

Constraint (5) shows that the availability of WAP with level k must be greater
than the number of WAPs with level k that will be activated in all time periods.
Constraint (6) shows that a WAP must have at least one available signal level
in some period t. Constraint (7) shows that a WAP j can be activated with only
one level k. Finally, constraint (8) shows that a WAP can be activated with an
available level k.

3 The Case in Havana City, Cuba

In this section we describe the problem of planning the WAPs activation for
a whole day in Havana City, Cuba. The WAPs can adjust their signal levels
(signal power), thus affecting the covered area. The stronger the signal level is,
the higher the covered area (the higher the number of users served). Due to
energy saving policies in Cuba, it is not possible to have the already deployed
WAPs working simultaneously with a strong signal. Thus, in short, the problem
is to determine which WAP (and when) should be activated and with which
signal level.

There are several factors that may influence the availability of a given signal
level in a schedule. Firstly, the consumption of electrical energy. At night, the
energy consumption is higher and therefore, it is not possible to use strong signal
levels, since it consumes more energy.

Secondly, geographical features during working hours (morning and after-
noon). During these schedules of the day, activities are carried out that need
WAPs with a certain signal level. For example, cultural or economic activities,
where the signal levels suitable for a WAP are known.

Finally, at early morning, the energy consumption is low, so there are no
restrictions on the signal levels.
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As the user may notice, within a day the availability of the signal levels per
access point would change, depending on the access point location.

In this case study we aim at planning the activation just for one day divided
in four stages.

3.1 Problem Information

Part of the data available for the problem is taken from [7]. We include T = 4
time periods that represent times of a day: t = 1 is early morning, t = 2 is morn-
ing, t = 3 is afternoon and t = 4 is night. There are I = 956 areas or user nodes
and for each node i and time period t there is a demand estimation or number
of users to be covered ait. At period t = 1, the values ai1 are taken from the
data set used in [7]. Then, the demand ait for t = 2, 3, 4 was randomly generated
using values between [MIN(ai1) − 1;MAX(ai1) + 1]. The total demand/users
to be covered for each time period are {35350, 146820, 145646, 144771} for to
t = 1 (early morning), t = 2 (morning), t = 3 (afternoon) and t = 4 (night)
respectively.

There are J = 200 WAPs deployed, and K = 3 signal levels for each WAP j
are considered. The availability of the signal levels is as follows: at t = 1 every
WAPs can be activated with any signal level. At t = 2 and t = 3, 70% of J have
available the low power level k = 1, 50% with medium power level k = 2 and
30% with strong power level k = 3. Please note that a WAP may have available
more than one type of signal during a time period.

Finally, at t = 4 the WAPs can only be activated with a low power signal
level k = 1.

For each signal level k, the corresponding coverage radius Sk is calculated
as follows. Firstly, it is computed the maxD = max(dij). Then, for each signal
level, the coverage radii are defined as: S1 = maxD × 0.02, S2 = maxD × 0.03
and S3 = maxD × 0.04.

In a day, we can activate p1 = 30 WAPs with low signal, p2 = 18 with
medium signal and p3 = 12 with a strong signal.

3.2 Solving Strategy

As we assume that imprecision can be present in the problem’ information, we
propose to solve it by means of an approximate method. Instead of choosing
just a single strategy (like an isolated metaheuristic), we focus in an Algorithm
portfolio (AP) presented in [6]. The AP is composed by different metaheuristics,
that are used in a cooperative way to obtain good solutions for optimization
problems. Here, the portfolio is composed by: a Hill climbing, an Evolutionary
strategy and a basic Genetic algorithm, both with a population size = 10 and
a Simulated annealing with and initial temperature tinitial = 10000, a cooling
rate α = 0.9, a number of iterations at each temperature iter = 50 and a final
temperature tfinal = 0.005 [5].
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A solution of the DMCLP-FT can be represented as an integers’ list where
the value 0 means that the WAP is off, k means that the WAP is activated with
level k and −1 means that the WAP has not any signal level in that period.

As we are not aiming at performing comparisons among several metaheuris-
tics method, we omit more details about the implementation used.

3.3 Results

The AP method was run 30 times. Figure 1 displays the best solution obtained.
The overall coverage was 370314 (78.36%). The activated WAPs have a circle
that represents the radius corresponding to the signal level used. It is interesting
to observe the number of users covered at each time period.

Fig. 1. Description of the best solution after 30 runs.

At the center of Fig. 1 a pie chart appears showing the number of WAPs
activated per time period. The black/grey/white series indicates the level k =
1, 2, 3 respectively.

At period t = 1 there are 6 WAPs activated: 1 WAP with level k = 1 and 5
with level k = 2. At the period t = 2, 12 WAPs were activated: 1 WAP with level
k = 1, 4 with k = 2 and 7 with k = 3. At period t = 3, 17 WAPs are activated: 3
WAPs with level k = 1, 9 with level k = 2 and 5 with level k = 3 were activated.
Finally, at period t = 4, a higher number of WAPs is used because they can only
use a low level signal strength.

Figure 1 also shows the geographical distribution of the WAPs, together with
their coverage radii (associated with the circle radii). In the solution, we can see
that the WAPs were activated in areas where there is high concentration of users
to be connected. It can be observed that at period t = 1, just a few WAPs were
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activated. This period corresponds with the early morning, where the demand is
lower. At t = 2, WAPs with medium and strong signals are used. At t = 3, the
covered area is quite similar but with a different configuration for the WAPs.
By the end of the day (t = 4), the covered demand is reduced due to the use of
WAPs with low level signals.

As we made 30 runs of the portfolio, we analyse a set of different solutions
with a similar value of demand covered. Figure 2 shows a graphic where we can
see the behaviour in the number of activated WAPs during a day. We denoted
each level using the previous scheme. For visualization purposes, just 14 solutions
(out of 30) achieving different coverage values are selected. The solutions are
sorted by the coverage value (solution 14 is the one showed in Fig. 1).

Fig. 2. Distribution of activated WAPs and their types for a day. Solutions have a
different value of coverage.

For each solution we indicate the number of users covered. The end of the
periods are marked by lines and for each one we show the number of users
covered. For each series we can see the number of WAPs that were activated.

In general, we can see that the variability among the solutions is low. The
graph provides insight on how the coverage is attained. The use of WAPs in the
period t = 1 was not prioritized. The algorithm makes use of WAPs with level
k = 1 in the last period t = 4, and not in the previous periods. An example is the
best solution (14), which provides new and varied combinations that resulted in
a better planning. The activated WAPs with level k = 3 were the most used in
the period t = 2.

It is interesting to note that solution 9 uses the same distribution of levels
as the best solution. When we explore the location of the WAPs we observed
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that both solutions differ in 16 activated WAPs. The selection used by the best
solution allowed to obtain a greater number of users covered.

We can also note that solution 13 has the same number of WAPs activated in
the period t = 3 as the solution 14. However, solution 13 has more users covered
in that period than the solution 14. We could obtain an even better solution
than solution 14, if we keep the distribution of WAPs activated in the periods
t = 1, t = 2 and t = 4 of solution 14, and replace the distribution of t = 3
obtained in solution 13.

In general, in the period t = 1, we can see few difference between the solu-
tions, in terms of the number of users covered. You can also note that the solution
6 was the only one that used a WAP with level k = 3 at t = 1, but it does not
yield to better results. In the best solutions, the use of low power level k = 1 is
almost neglected in the first periods. From solutions 2 to 5, we can see that the
main difference was in the period t = 4, where the quality of the distribution of
the WAPs with signal level k = 1 made the difference.

4 Conclusions and Future Research

In this contribution we propose a model and an algorithm to deal with the
planning of WAPs activation in Havana. A dynamic maximal covering location
problem with facility types and time dependant availability were used to model
the situation.

As we consider the data available as imprecise, we discard solving the problem
with an exact solver. Instead, we applied an Algorithm portfolio composed by
classic metaheuristics that allows us to obtain a set of good solutions. We explore
several ways to analyse them, ranging from simple coverage values, to the type
of signal levels used in the WAPs, and to the WAPs geographical distribution.

Several venues are opened now. One is regarding how the quality of a solution
should be assessed. In our opinion, a sort of max-min approach can be useful:
to maximize the minimum level of coverage provided at any time of the day.
Second is to consider some activation/deactivation costs for the WAPs. Both
aspects are under study.
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Abstract. This study compares three fuzzy based model approaches for solving
a realistic extension of the Time Dependent Traveling Salesman Problem. First,
the triple Fuzzy (3FTD TSP) model, where the uncertain costs between the nodes
depend on time are expressed by fuzzy sets. Second, the intuitionistic fuzzy
(IFTD TSP) approach, where including hesitation was suitable for quantifying
the jam regions and the bimodal rush hour periods during the day. Third, the
interval-valued intuitionistic fuzzy sets model, that calculates the interval-valued
intuitionistic fuzzy weighted arithmetic average (IIFWAA) of the edges’ con-
firmability degrees and non-confirmability degrees, was contributing in mini-
mizing the information loss in cost (delay) calculation between nodes.

Keywords: Rush hours � Jam regions � Interval-valued fuzzy sets �
Intuitionistic fuzzy set � Fuzzy set

1 Introduction

The Traveling Salesman Problem (TSP) is one of the extensively studied NP-hard graph
search problems [1]. Various approaches are known for finding the optimum or semi
optimum solution. The Time Dependent Traveling Salesman Problem (TD TSP) is a
more realistic extension of the TSP, where the costs of edges vary in time, depending on
the jam regions and rush hours. In the TD TSP, the edges are assigned higher weights if
they are traveled within the traffic jam regions during rush hour periods, and lower
weights otherwise [2]. The information on the rush hour periods and jam regions is
uncertain and vague (fuzzy), hence, representing them by crisp numbers in the classic
TD TSP does not quantify the effects of traffic jams accurately [2]. This limitation of
simulating real life cases was to the point in constructing three novel fuzzy models
capable of addressing the TD TSP with jam regions and rush hours more efficiently. In
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the Triple Fuzzy (3FTD TSP) model, the costs between the nodes may depend on time
and location; and are expressed by fuzzy sets [3]. Here, fuzzy values represent the
uncertainties of the costs caused by the fuzzy extensions of the traffic jam areas and rush
hour times, which depend on several vague or non-deterministic factors. Rush hour time
was represented as a bimodal piecewise linear normal fuzzy set, the jam areas as fuzzy
oblongs, and the costs as trapezoidal sets. This model expressed the uncertain costs
affected by the jam situations, and calculated the overall tour length quantitatively [3].
Second, the Intuitionistic Fuzzy IFTD TSP approach, involves a hesitation part
expressing the effects of membership and non-membership values allowing a higher
level of uncertainty [4]. In the IFTD TSP, the use of intuitionistic fuzzy sets ensured an
even more realistic cost estimate of the TD TSP problem. By successfully representing
simultaneously the higher degrees of association and the lower degrees of non-
association of the jam factor and rush hours and lower degrees of hesitation to edges
cost, resulted in a more accurate cost of the tours [4]. Third, we proposed the interval-
valued intuitionistic fuzzy set model (IVIFTD TSP) [5]. In the IVIFTD TSP, additional
uncertainty was modeled, and by using an aggregation of the costs rather than using the
max-min composition of the fuzzy factors resulted in an even more adequate model. In
this paper, the three models are briefly presented and examined, from the point of view
of realistical representation and results.

2 Solution of the Classic TSP

The original TSP was first formulated in 1930 [6]. A salesman starts the journey from
the headquarters and visits each city or shop exactly once then returns to the starting
point. The task is to find the route with minimum overall travelled distance visiting all
destination points. TSP is a graph search problem with edge weights in Eq. 1. In the
symmetric case with n nodes cij = cji, so, in the graph, there is only one edge between
every two nodes. Let xij = {0, 1} be the decision variable (i, j = 1, 2,…, n), and xij = 1,
if edge eij between nodei and nodej is part of the tour. Let xii ¼ 0 i ¼ 1; 2; . . .; nð Þ,
GTSP ¼ Ncities;Econnð Þ, C: Ncities � Ncities ! R;C ¼ Cij

� �
n�n C is called cost matrix,

where Cij represent the cost of going from city i to city j. then:

Ncities ¼ n1; n2; . . .; nnf g;Econn �f ni; nj
� �ji 6¼ jg ð1Þ

Xn�1

i¼1
CPi;Piþ 1

� �
þCPn;P1 ð2Þ

The goal is to find the directed Hamiltonian cycle with minimal total length.

3 The Time Dependent TSP (TD TSP)

Despite TD TSP’s good results in determining the overall cost for a trip under realistic
traffic conditions, yet one major drawback is the crisp values used for the proportional
jam factors [2]. The total cost of any trip consists of two main elements: costs
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proportional to physical distances and costs increased by traffic jams occurring in rush
hour periods or in certain areas between the pairs of nodes (such as in city center areas).
The first can be looked at as constant; although transit times are subject to external and
unexpected environmental factors. Thus, even they should be treated as uncertain
variables, in particular, as fuzzy cost coefficients. In the TD TSP, the edges have fixed
costs, which may be multiplied by a rush hour factor). This representation of the traffic
jam effects is too rigid for real life circumstances.

4 The Triple Fuzzy TD TSP (3FTD TSP)

In the 3FTD TSP approach [Put here a citation of our paper] two parameters modify the
fuzzy edge costs, the actual jam factor calculated from the membership degree of being in
the jam region, and the degree of membership being in the rush hour period in the given
moment. We proposed to use a simple Mamdani rule base [7] in the form: If Ni is in the
traffic jam region J and tj is in the rush hour time R then the cost is Ck. Here, membership
functions from the unit interval [0, 1] help describe the uncertainty of the jam region and
the rush hour period, more efficiently. In this model, the distance between cities is also
expressed in terms of the elapsed time. Here, we introduced a velocity (v) as a new
parameter of the TSP route. The costs were represented by asymmetrical triangular fuzzy
numbers. The total cost of the tour was calculated as follows:

C0 tð Þ ¼ C0
L;C

0
C;C

0
R

� � ¼ CL;CC;CRð Þ � 1þ jamfactor � 1
� �� l1 � l2

� � ð3Þ

where l1 and l2 are obtained from the Fuzzy Jam Region (J) and Fuzzy Traffic Rush
Hours (R) membership functions. A valid solution for the problem is a permutation of
the nodes:

P1;P2; . . .;Pn;P1 ð4Þ

where p1 is the starting and end node of the tour. The time needed for visiting the first
city from the start node is:

tP1;P2 ¼
COG C0

P1;P2
t ¼ 0ð Þ

� �

v
ð5Þ

where P1 is the starting node, P2 is the first visited one and v is the velocity. The
calculation of travel time is necessary as the costs are time dependent, and the actual
cost between two cities can be determined by Eq. 3, thus, the time dependency in the
cost matrix is represented by virtual distance values. The cost of the trip is calculated
from

tPk ;Pkþ 1 ¼
COG C0

Pk ;Pkþ 1
telapsedk
� �� �

v
ð6Þ
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The total cost is:

S ¼
Xn�1

i¼1
COG C0

Pi;Piþ 1
telapsedi
� �� �

þCOG C0
Pn;P1

telapsedn
� �� �

ð7Þ

where pn is the location last visited, and telapsedk is the total time elapsed from the
beginning of the tour till the salesman arrives in city pk. In the implementation, the
three fuzzy elements used were triangular fuzzy costs between the edges, fuzzy oblong
type membership function(s) of the fuzzy jam region(s) J; and bimodal normal
piecewise linear membership function(s) for the traffic rush hour time period(s) R – see
next sections.

4.1 Triangular Fuzzy Costs for the “Distances”

The uncertain costs between the nodes, is expressed by triangular fuzzy numbers.
Triangular fuzzy numbers may be expressed by the support C = [CL, CR], and the peak
value CC is, so it is denoted by ~C = (CL, CC, CR). To calculate the overall distance of
the tour, these fuzzy values are summed up. The calculation of the total length of the
tour was done by the defuzzified values of the fuzzy numbers using Center of Gravity
(COG) [8].

4.2 The Membership Function of the Jam Regions

The fuzzy extensions of the city center areas (the degree of belonging to the jam region
J) are expressed by fuzzy borders as in Fig. 1. Thus, l1 is simply calculated as

l1 ¼ f d1ð Þþ f d2ð Þ
2 , where d1, d2 are the distances from the peak of J. This approach

sophisticates Schneider’s original model (cf. [2]), so that the breakpoints are: [0, 1000,
5000, 6000], (see Fig. 1).

4.3 Membership Function of the Traffic Rush Hour Periods

The model uses the bimodal membership function in Fig. 2 for representing the Traffic
Rush Hour Time (l2). In this example, the two peak rush hour periods are from 7 to 8
a.m. and from 4 to 6 p.m. Between the two periods the traffic is lower. (We used the
traffic data base …). The breakpoints of J are {0, 5, 7, 8, 14, 16, 18, 22, 24}, and its

Fig. 1. Jam regions membership function (J) Fig. 2. Rush hours membership function (R)

702 R. Almahasneh et al.



membership value at 14 h is 0.75. For illustration, assuming a jam factor of 5, a sample
calculation is run to clarify the approach. The peak point of the fuzzy triangular cost for
each edge is the Euclidean distance between the end-points, namely, the left-side and
right-side points were determined randomly (0–50% lower and higher than the middle
point) in this test.

Table 1 was calculated by averaging five times runs for jam factor 5.0 for the three
areas of the triangular membership functions (low, medium and high). Table 2 shows
the middle values of the supports of the triangular fuzzy numbers for that specific case
(for jam factor 5). Depending on Table 1 the average elapsed time is 22.19562.

Applying the same approach results in Table 3, which contains the total time in
hours required to visit each location with different jam factors by applying the same
concept explained in the previous section

Table 1. Computational results for jam factor equal 5.0.

Run 1 Run 2 Run 3 Run 4 Run 5

Elapsed time 22.2021 22.1314 22.3246 22.3067 22.0133
Low 16.5611 16.2926 16.5862 16.642 16.8112
Middle 22.4831 22.6905 22.4858 23.0948 22.3641
High 27.562 27.4111 27.9018 27.2832 27.3146

Table 2. Support value for jam factor 5

Run 1 Run 2 Run 3 Run 4 Run 5 Average elapsed time

11.0009 11.1185 11.3156 10.6412 10.5034 10.91592

Table 3. Computational results for the 3FTD TSP.

Jam factor Average elapsed time

1.00 19.5
1.05 19.6
1.20 19.7
1.50 20.3
2.00 20.9
3.00 21.6
5.00 22.2
10.00 23.1
20.00 23.5
50.00 24.2
100.00 24.7
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With such high jam factors, the tour lengths were longer for the 3FTD TSP
problem, because the traffic jam period is longer compared to the classic TD TSP.

5 Intuitionistic Fuzzy TD TSP (IFTD TSP)

In this model, we moved one step further and extended the model by using intu-
itionistic fuzzy set theory. First some related definitions as introduced [4].

5.1 Basic Definitions of Intuitionistic Fuzzy Sets (IFS)

Let a universal set E be fixed and 0� lA xð Þþ vA xð Þ� 1. An intuitionistic fuzzy set or
IFS A in E is an object having the form

A ¼ x; lA xð Þ; vA xð Þh ijx� Ef g ð8Þ

The amount pA xð Þ ¼ 1� ðlA xð Þþ vAÞ is called the hesitation part, which may
cater to either the membership value or to the non-membership value, or to both [9, 10].
If A is an IFS of X, the max-min-max composition of the If Relation
(IFR) R (X ! Y) with A is an IFS B of Y denoted by B ¼ R � Að Þ and is defined by the
membership function

lR�A yð Þ ¼ _x lA xð Þ ^ lR x; yð Þ½ � ð9Þ

and the non-membership function

vR�A yð Þ ¼ ^x vA xð Þ _ vR x; yð Þ½ � ð10Þ

The previous formulas hold for all Y. Let Q X ! Yð Þ and R Y ! Zð Þ be two IFRs.
The max-min-max composition R � Qð Þ is the intuitionistic fuzzy relation from X to Z,
defined by the membership function

lR�Q x; zð Þ ¼ _y lQ x; yð Þ ^ lR y; zð Þ� � ð11Þ

and the non-membership function 8 x; zð Þ 2 X � Z and 8y 2 Y is given by

VR�Q x; zð Þ ¼ ^y vQ x; yð Þ _ vR y; zð Þ½ � ð12Þ

Let A be an IFS of the set J, and R be an IFR from J to C. Then the max-min-max
composition B of IFS A with the IFR R (J ! C) denoted by B ¼ A � R gives the cost of
the edges as an IFS B of C with the membership function given by

lB cð Þ ¼ _j�J lA jð Þ ^ lR j; cð Þ½ � ð13Þ

704 R. Almahasneh et al.



and the non-membership function given as:

vB cð Þ ¼ ^j�J vA jð Þ _ vR j; cð Þ½ � ð14Þ
8c 2 C: Here ^¼ min and _ maxð Þ

If the state of the edge E is described in terms of an IFS A of J; then E is assumed to
be the assigned cost in terms of IFSs B of C, through an IFR R from J to C, which is
assumed to be given by a knowledge base directory (given by experts) on the desti-
nation cities and the extent (membership) to which each one is included in the jam
region. This will be translated to the degrees of association and non-association,
respectively, between jam and cost.

5.2 IFTD TSP Applied on the TD TSP Case

Let there be n edges Ei; i = 1; 2;…, 16 as in Fig. 3; in a trip. Thus ei 2 E. Let R be an
IFR J ! Cð Þ and construct an IFR Q from the set of edges E to the set of jam factors
J. Clearly, the composition T of IFRs R and T ¼ R � Qð Þ give the cost for each edge
from E to C by the membership function given as:

lT ei; cð Þ ¼ _j�J lQ ei;j
� � ^ lR j; cð Þ� � ð15Þ

and the non-membership function 8ei 2 E and c 2 C given as:

vT ei; cð Þ ¼ ^j�J vQ ei;j
� � _ vR j; cð Þ� � ð16Þ

For given R and Q, the relation T ¼ R � Q can be computed. From the knowledge
of Q and T, an improved version of the IFR R can be computed, for which the
following holds valid:

(i) JR ¼ lR � vR � pR is greatest
(ii) The equality T ¼ R � Q is retained

Fig. 3. Tour for a simple example Fig. 4. Fuzzy membership and non- membership
functions of the rush hour periods
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Table 4 shows each edge of the tour and the jam factors associated. The ultimate
goal is to be able to calculate the total tour jam factor which will be multiplied by the
physical distances between two nodes. The intuitionistic fuzzy relations Q E ! Jð Þ are
given as shown in Table 4, and R J ! Cð Þ as in Table 5, and the composition ðT ¼
R � QÞ as in Table 6. Then we calculated the jam region cost factors ðcjamÞ (see
Table 7), where the four cost factors are c1 ¼ 1:2; c2 ¼ 1:5; c3 ¼ 2; c4 ¼ 5 with
weighted average calculations:

cjame ¼
P

i ji � ciP
i ji

ð17Þ

The rush hour cost factors of each tour edge ðcrushÞ are determined in a similar
intuitionistic model. The relations between the tour time and the rush hour periods (�Q)
are described with intuitionistic fuzzy functions in Fig. 4. An IFR (�R) is given between
the rush hour periods and the cost factors similarly, as it was done for the jam regions
in Table 5. Then the composition ð�T ¼ �Q � �R is calculated. Finally, rush hour cost
factors were calculated with weighted averaging. The cost of the edges is calculated
taking into account the two cost factors (diste is the Euclidean distance):

IF cjame [ 0 AND crushe [ 0 [the edge belongs to at least one of the jam regions and is
passed during rush hour periods] THEN ce ¼ cjame � crushe � diste ELSE Ce ¼ diste.

Table 4. Route1 = (Edge 1 … Edge 17)

(Q) Jam Region1 Jam Region2 Jam Region3 Jam Region4

E1 (0.8, 0.1) (0.6, 0.1) (0, 1) (0, 1)
E2 (0, 1) (0, 1) (0.2, 0.8) (0.6, 0.1)
E3 (0.8, 0.1) (0.8, 0.1) (0, 1) (0, 1)
E4 (0, 1) (0, 1) (0, 0.6) (0.2, 0.7)
E5 (0.8, 0.1) (0.8, 0.1) (0, 0.6) (0.2, 0.7)
E6 (0, 0.8) (0.4, 0.4) (0, 1) (0, 1)
E7 (0, 1) (0, 1) (0.6, 0.1) (0.1, 0.7)
E8 (0, 0.8) (0.4, 0.4) (0.6, 0.1) (0.1, 0.7)
E9 (0.6, 0.1) (0.5, 0.4) (0, 1) (0, 1)
E10 (0, 1) (0, 1) (0.3, 0.4) (0.7, 0.2)
E11 (0, 0.8) (0.4, 0.4) (0.6, 0.1) (0.1, 0.7)
E12 (0, 0.8) (0.4, 0.4) (0, 1) (0, 1)
E13 (0, 1) (0, 1) (0.2, 0.8) (0.6, 0.1)
E14 (0, 1) (0, 1) (0.6, 0.1) (0.1, 0.7)
E15 (0.8, 0.1) (0.8, 0.1) (0, 0.6) (0.2, 0.7)
E16 (0, 0.8) (0.4, 0.4) (0.6, 0.1) (0.1, 0.7)
E17 (0.6, 0.1) (0.5, 0.4) (0, 1) (0, 1)
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Table 5. Jam factors

Jam area (R) Cost factor 1 (c1) Cost factor 2 (c2) Cost factor 3 (c3) Cost factor 4 (c4)

Jam Region1 (0.4, 0) (0.7, 0) (0.3, 0.3) (0.1, 0.7)
Jam Region2 (0.3, 0.5) (0.2, 0.6) (0.6, 0.1) (0.2, 0.4)
Jam Region3 (0.1, 0.7) (0, 0.9) (0.2, 0.7) (0.8, 0)
Jam Region4 (0.4, 0.3) (0.4, 0.3) (0.2, 0.6) (0.2, 0.7)

Table 6. T ¼ R � Q
Jam cost (T) Cost factor 1 Cost factor 2 Cost factor 3 Cost factor 4

E1 (0.4, 0.1) (0.7, 0.1) (0.6, 0.1) (0.2, 0.4)
E2 (0.4, 0.3) (0.4, 0.3) (0.2, 0.6) (0.2, 0.2)
E3 (0.4, 0.1) (0.7, 0.1) (0.6, 0.1) (0.2, 0.4)
E4 (0.2, 0.7) (0.2, 0.7) (0.2, 0.7) (0.2, 0.6)
E5 (0.3, 0.1) (0.7, 0.1) (0.6, 0.1) (0.2, 0)
E6 (0.3, 0.5) (0.2, 0.6) (0.4, 0.4) (0.2, 0.4)
E7 (0.1, 0.7) (0.1, 0.7) (0.2, 0.7) (0.6, 0.1)
E8 (0.3, 0.5) (0.2, 0.6) (0.4, 0.4) (0.6, 0.1)
E9 (0.4, 0.1) (0.6, 0.1) (0.5, 0.3) (0.2, 0.4)
E10 (0.4, 0.3) (0.2, 0.6) (0.2, 0.6) (0.3, 0.4)
E11 (0.3, 0.5) (0.2, 0.6) (0.4, 0.4) (0.6, 0.1)
E12 (0.3, 0.5) (0.2, 0.6) (0.4, 0.4) (0.2, 0.4)
E13 (0.4, 0.3) (0.4, 0.3) (0.2, 0.6) (0.2, 0.2)
E14 (0.1, 0.7) (0.1, 0.7) (0.2, 0.7) (0.6, 0.1)
E15 (0.3, 0.1) (0.7, 0.1) (0.6, 0.1) (0.2, 0)
E16 (0.3, 0.5) (0.2, 0.6) (0.4, 0.4) (0.6, 0.1)
E17 (0.4, 0.1) (0.6, 0.1) (0.5, 0.3) (0.2, 0.4)

Table 7. Intuitionistic jam region costs for edges

JR JR1 C1 JR2 C2 JR3 C3 JR4 C4 Total jam regions cost

E1 0.35 1.2 0.68 1.5 0.57 2 0.04 5 1.695
E2 0.31 1.2 0.31 1.5 0.08 2 0.08 5 1.791
E3 0.35 1.2 0.68 1.5 0.57 2 0.04 5 1.695
E4 0.13 1.2 0.13 1.5 0.13 2 0.08 5 2.151
E5 0.24 1.2 0.68 1.5 0.57 2 0.2 5 2.04
E6 0.2 1.2 0.08 1.5 0.32 2 0.36 5 2.97
E7 0 1.2 0 1.5 0.13 2 0 5 2
E8 0.2 1.2 0.08 1.5 0.32 2 0.57 5 3.291
E9 0.35 1.2 0.57 1.5 0.44 2 0.04 5 1.682
E10 0.31 1.2 0.08 1.5 0.08 2 0.18 5 2.388

(continued)
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Clearly, the improved version of R in the IFTD TSP model is more adequate in
translating the higher degrees of association and lower degrees of non-association of
the jam factors and rush hours as well as lower degrees of hesitation to any cost C; If
almost equal values in T are obtained, then we consider the case for which hesitation is
least. From a refined version of R one may infer cost from jam factors in the sense of a
paired value, one being the degree of association and other the degree of non-
association. Ultimately, this model offers more realistic costs calculation for the trav-
eled routes under real traffic conditions.

6 The Interval Valued IFTD TSP (IVIFTD TSP)

First, some basic definitions are overviewed [11, 12]. In a type-2 fuzzy set, the uncertain
values of the membership function ~A in Eq. 18 consists of a rounded region called
“footprint of uncertainty” (FOU). It is the union of all primary memberships

FOU ~A
� � ¼

[
x2X Jx ð18Þ

FOUs emphasize the distribution that sits on top of the primary membership
function of the type-2 fuzzy set. The shape of this distribution depends on the choice
made for the secondary grades. When they are equal between two bounds, it gives an
interval type-2 fuzzy set as given in Eq. 19.

~A ¼ x; uð Þ; lA x; uð Þh ij8x� X; 8u 2 Jx � 0; 1½ �f g ð19Þ

For discrete universe of discourse X and U, an embedded type-2 set ~Ae has N
elements, where ~Ae contains exactly one element from set Jx1;x2.........xN , namely U1;2...N ,
with its associated secondary grade fx1 u1ð Þ, fx2 u2ð Þ. . .. . .fxN uNð Þ, which equals to
Eq. 20.

~Ae xð Þ ¼
XN

i¼1
fxi uið Þ=ui½ �=xijui 2 Jxi �U ¼ 0; 1½ � ð20Þ

Table 7. (continued)

JR JR1 C1 JR2 C2 JR3 C3 JR4 C4 Total jam regions cost

E11 0.2 1.2 0.08 1.5 0.32 2 0.57 5 3.291
E12 0.2 1.2 0.08 1.5 0.32 2 0.36 5 2.917
E13 0.31 1.2 0.31 1.5 0.08 2 0.08 5 1.791
E14 0 1.2 0 1.5 0.13 2 0 5 2
E15 0.24 1.2 0.68 1.5 0.57 2 0.2 5 2.04
E16 0.2 1.2 0.08 1.5 0.32 2 0.57 5 3.291
E17 0.35 1.2 0.57 1.5 0.44 2 0.04 5 1.682

708 R. Almahasneh et al.



As we discussed previously, the jam factor costs on the edges in a tour were
represented as fuzzy relations between the jam factors and the predicted costs (delays).

Let J ¼ J1; J2; J3; . . .; Jmf g, C ¼ C1;C2;C3; . . .;Cnf g and E ¼ E1;E2;E3; . . .;f
Eqg denote the sets of jam factors, costs and edges, respectively. Two fuzzy relations
(FR) Q and R are defined in Eqs. 21 and 22.

Q ¼ e; jð Þ; lQ e; jð Þ; vQ e; jð Þ� 	 j e; jð Þ 2 E � J

 � ð21Þ

R ¼ j; cð Þ; lR j; cð Þ; vR j; cð Þh i j j; cð Þ 2 J � Cf g ð22Þ

where lQ e; jð Þ and vQ e; jð Þ indicates jam factors degrees for edges. The degree is the
relationship between the edges and the jam factors (rush hours or jam regions). Hence,
lQ e; jð Þ indicates the degree to which jam factor j affects edge E and vQ e; jð Þ indicates
the degree to which jam factor j does not affect the same edge. Similarly, lR j; cð Þ and
vR j; cð Þ are the relationships between the jam factors and the respective costs. (This is
called confirmability degree in the coming sections). j; cð Þ represents the degree to
which jam factor j confirms, and vR j; cð Þ the degree to which jam factor j does not
confirm the presence of cost c, respectively [5]. Since Q is defined on set E � J and
R on set J � C; the composition T of R and Q (T ¼ R � Q) for the prediction of the cost
for a specific edge in terms of the cost can be represented by FR from E to C, given the
membership function in Eq. 23 and non membership function in Eq. 24 for all
e 2 E and c 2 C

lT e; cð Þ ¼ maxj min lQ e; jð Þ; lR j; cð Þ� �
 � ð23Þ

vT e; cð Þ ¼ minj max vQ e; jð Þ; vR j; cð Þ½ �
 � ð24Þ

Let any two IVIFS A ¼ xi;MA xið Þ;NA xið Þh if gi ¼ 1; 2. . .. . .nð Þ be a collection of
interval-valued intuitionistic fuzzy degrees. Then, an IIFWAA operator is defined in
Eq. (25)

IFFWAA Að Þ ¼
½1�Qn

n¼1 ð1�MAL xið ÞÞwi ;
1�Qn

n¼1 ð1�MAU xið ÞÞwiÞ�;Qn
n¼1 ð1� NAL xið ÞÞwi ;

Qn
n¼1 ð1� NAU xið ÞÞwiÞ�

ð25Þ

In the next section, we explain the IVIFTD TSP by simulating a simple real life
TD TSP cost problem. The approach consists of four main steps:
Step 1. Prediction for the rush hours and jam regions of the edges, in the sense that if
the trip between the two cities happens during the rush hours and within the jam
regions, both will be taken into consideration and none of the factors will be neglected.
Table 8 identifies the cost of each jam factor, which is supposed to be predefined by
experts in this domain, according to the rush hours and the jam regions.
Step 2. Calculation of the interval-valued intuitionistic fuzzy weighted arithmetic
average (IIFWAA) of the edges’ confirmability and non-confirmability degrees,
respectively with the chosen aggregation [13]. where w1;w2. . .. . .:wið ÞT are the weight
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vectors of A. Further, wi [ 0 and
Pn

i¼1 wi ¼ 1. In our model we propose giving equal
weights to the factors by wi ¼ 1=n. For finding the final jam factor cost, we first
calculate the IIFWAA from the degrees given in Table 8 and then use a measure based
on distance between IVIFS.
Step 3. Calculating the distance between the IFSs using the IIFWAA obtained in
Step 2.

To calculate the jam factor cost based on the Park distance model between IVIFS
[14]. Particularly, we consider the hesitation part to modify the Park distances. The
normalized Hamming distance considering the hesitation part, is defined as below for
any A ¼ xi;MA xið Þ;NA xið Þh if gi ¼ 1; 2. . .. . .nð Þ and ¼ xi;MB xið Þ;NB xið Þh if g i ¼ ð1;
2. . .. . .n). The normalized Hamming distance considering the hesitation part (where
H is the hesitation part) is defined as:

lh A;Bð Þ ¼ 1=4nð Þ
X

½ MAL xið Þ �MBL xið Þj j þ MAU xið Þ �MBU xið Þj j þNAL xið Þ
�NBL xið Þ þj jNAU xið Þ � NBU xið Þ þj jHAL xið Þ � HBL xið Þ þj jHAU xið Þ � HBU xið Þj�

ð26Þ

Step 4. Determination of the final jam factor affected costs based on the distance
(assuming equal weights for all factors).

6.1 The IVIFTD TSP Model Applied on the TD TSP Case

To illustrate how to apply the proposed new model on a TD TSP case study with
double uncertain jam regions and rush hours, let us consider that E1 is the first edge of
a tour as in Fig. 4. There are different traffic factors assumed, they may represent jam
regions or rush hours Factors (1.1, 1.2, 1.3, 1.4, 2.1 and 2.2 in bold Table 8) affecting
E1 simultaneously. Here, we use MQ e; jð Þ;NQ e; jð Þ� 	

assigned by domain experts, to

Table 8. Knowledge base for rush hours and jam regions costs

Traffic factor IF degree

Cost1 Cost2 Cost3
lR vR lR vR lR vR

Factor 1.1 [0.6, 0.7] [0.1, 0.2] [0.2, 0.3] [0.5, 0.6] [0.1, 0.3] [0.4, 0.6]
Factor 1.2 [0.6, 0.7] [0.2, 0.3] [0.2, 0.4] [0.4, 0.6] [0.4, 0.6] [0.1, 0.2]
Factor 1.3 [0.5, 0.6] [0.1, 0.2] [0.1, 0.2] [0.6, 0.7] [0.3, 0.4] [0.3, 0.5]
Factor 1.4 [0.7, 0.8] [0.1, 0.2] [0.1, 0.2] [0.6, 0.8] [0.1, 0.2] [0.7, 0.8]
… … … … … … …

Factor 2.1 [0.5, 0.6] [0.2, 0.3] [0.2, 0.3] [0.4, 0.6] [0.2, 0.3] [0.5, 0.6]
Factor 2.2 [0.7, 0.8] [0.1, 0.2] [0.1, 0.2] [0.6, 0.7] [0.1, 0.2] [0.6, 0.7]
… … … … … … …

Factor n.1 [0.6, 0.8] [0.1, 0.2] [0.1, 0.2] [0.6, 0.7] [0.2, 0.3] [0.6, 0.7]
Factor n.n lRU; lRL½ � ½vRU; vRL� lRU; lRL½ � ½vRU; vRL� lRU; lRL½ � ½vRU; vRL�
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indicate the degrees how a jam factor j affects edge e as in Eq. 23, and the con-
firmability degree as in Eq. 24 is given by MR j; cð Þ;NR j; cð Þh i.
Step 1. Table 9 shows the confirmability and non-confirmability degrees of the jam
factors assigned to E1, according to their degree of belonging to the rush hour periods
and jam regions

Step 2. Based on Tables 9 and 8, calculate the results in Tables 10 and 11 by applying
the IIFWAA operator (see Eq. 26). For example, [0.61, 0.71], an IIFWAA MR of
Table 11, is calculated as follows: The confirmability membership degrees of the edge
jam factors (1.1, 1.2, 1.3 and 1.4) are ([0.6, 0.7], [0.6, 0.7], [0.5, 0.6], [0.7, 0.8])
respectively, the first edge, for example, belongs to four jam factors, then wi ¼ 1=n,

and the distributed weight for n = 4 is w ¼ 1
4 ;

1
4 ;

1
4 ;

1
4 then; 0:61 ¼ 1� 1� 0:6Þ14

� �n o
	

1� 0:6Þ14
� �n o

	 1� 0:5Þ14
� �n o

	 1� 0:7Þ14
� �n o

and 0:71 ¼ 1� ð1� 0:7Þ14
n o

	
ð1� 0:7Þ14

n o
	 ð1� 0:6Þ14
n o

ð1� 0:8Þ14
n o

. NR in Table 11 is calculated by taking the

confirmability values for the non-membership degrees of the jam factors [0.1, 0.2] [0.2,
0.3] [0.1, 0.2] [0.1, 0.2] and applying IIFWAA. 0:12 ¼ 0:11=4

� � 	 0:21=4
� �	


0:11=4
� � 	 0:11=4

� �g and 0:22 ¼ 0:21=4
� � 	 0:31=4

� � 	 0:21=4
� � 	 0:21=4

� �
 �

Step 3. Calculate the distance by applying Eq. 25, taking values from Tables 11
and 12.

Table 9. E1 degrees of jam factors. MQ E1; Jð Þ, NQ E1; Jð Þ
E1 traffic factors 1.1 1.2 1.3 1.4 2.1 2.2

MQ E1ð Þ [0.5, 0.6] [0.5, 0.6] [0.4, 0.6] [0.7, 0.8] [0.5, 0.6] [0.5, 0.7]
NQ E1ð Þ [0.2, 0.3] [0.1, 0.3] [0.1, 0.2] [0.1, 0.2] [0.1, 0.2] [0.2, 0.3]

Table 10. E1 IVIF degrees (IIFWAA MQ, IIFWAANQ)

Q Factor1 Factor2

Edge 1 ([0.54, 0.66], [0.12, 0.24]) [0.5, 0.65], [0.14, 0.24]

Table 11. E1 confirmability degrees (IIFWAA MR, IIFWAANR)

R Cost1 Cost2 Cost3

Factor1 IIFWAA [0.61, 0.71],
[0.12, 0.22]

[0.15, 0.28],
[0.52, 0.67]

[0.24, 40],
[0.30, 0.47]

Factor2 IIFWAA [0.37, 0.51],
[0.24, 0.39]

[0.21, 0.31],
[0.35, 0.46]

[0.55, 70],
[0.10, 0.24]
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Step 4. The lowest distance points of the traffic costs that affect the edge the most, will
cause the most extreme delays In our case, this is 0.16 as shown in Table 12. Carrying
out the same calculations for all the edges, we end up with Table 13. It contains the jam
factor costs for all edges, depending on their confirmabilities (“–” indicates the absence
of confirmability).

The results indicate that this model effectively simulates the real-life conditions and
successfully quantifies the traffic delays without information loss [5]. It gives more
tangible conditions for such intangible factors as vagueness and non-determinnistic
effects with better accuracy than all previous models.

7 Conclusions

In this paper, we constructed a comparison of three different fuzzy extensions of the
Time Dependent Traveling Salesman Problem, namely, the 3FTD TSP, the IFTD TSP,
and the IVIFTD TSP. These models offer alternative extensions of the abstract TD TSP

Table 12. Distance for E1 with traffic factors lh

T Cost1 Cost2 Cost3

Edge 1 0.16 0.26 0.24

Table 13. Distances for E1, 2, …, E16 with traffic factors lh

Edge Cost1 Cost2 Cost3

Edge 1 0.16 0.26 0.24
Edge 2 0.13 0.20 –

Edge 3 0.15 – 0.24
Edge 4 0.16 0.14 0.44
Edge 5 0.3 0.6 0.2
Edge 6 0.16 – 0.24
Edge 7 0.16 0.30 0.20
Edge 8 0.16 0.06 0.44
Edge 9 0.04 0.36 –

Edge 10 0.1 0.23 0.34
Edge 11 0.6 – 0.3
Edge 12 – 0.27 0.23
Edge 13 0.13 0.20 –

Edge 14 0.16 0.30 0.20
Edge 15 0.3 0.6 0.2
Edge 16 0.16 0.06 0.44
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with crisp traffic regions and time dependent rush hour periods. The 3FTD TSP rep-
resents the jam regions and rush hour costs by fuzzy sets. The IFTD TSP offers higher
degrees of association and lower degrees of non-association of the jam factors and rush
hours as well as lower degrees of hesitation to any edge cost. Lastly, the IVIFTD TSP
decreases the information loss by employing the IIFWAA operator to aggregate
interval-valued fuzzy information from the jam factors in order to measure the final cost
based on the distance between IVIFS(s) for the TD TSP.

The results of the examples indicate that our models effectively simulate real-life
conditions and successfully quantify the traffic jam regions and rush hours with min-
imum information loss. After fuzzification of the jam regions and rush hours each
model slightly differs in the optimal solution it suggests, including the best tour and the
total cost. Although each one of those proposed approaches uniquely contributes to a
more adequate calculation of the jam regions and rush hours under vague and uncertain
circumstances, yet it is hard to choose one as the unambiguously best solution. In our
future work, we are eager to simulate those approaches on more complicated examples,
with larger instances and to compare the results with other models, to test their
capability and efficiency.
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Abstract. Tourism is a relevant economic activity that provides impor-
tant resources (income, employment,...) to countries. When a tourist
visits a country or city, he/she wants to know their points of interest.
To do this, he/she must select some of the places according to his/her
preferences and design routes to visit them. This problem can be ade-
quately modeled as a Team Orienteering Problem with Time Windows
(TOPTW). In this paper we propose a fuzzy GRASP and a multi-agent
simulation model to solve the TOPTW. Our proposal incorporates two
criteria to build the restricted candidate list. The computational results
obtained show the validity of the proposal.

Keywords: Tourism · GRASP · Fuzzy · Simulation model

1 Introduction

Tourism plays an important role in the economy of the countries and represents
an important source of income. According to the World Tourism Organization1,
1400 million people moved around the world in 2019. A significant percentage of
these tourists want to visit the points of interest of the country or city they visit.
Travel agencies and specialized companies offer routes to visit these points that
generally do not satisfy the preferences of all tourists. An interesting route for
one tourist may not be suitable for another. It is therefore necessary to design
tools that provide routes adapted to the preferences of each tourist. In addition
to tourist preferences, other factors must be considered to build customized
routes. Some of the most relevant are the importance of the points of interest,
the duration of the routes and the opening hours.

The previous problem can be modeled as a Team Orienteering Problem with
Time Windows (TOPTW). The TOPTW is an extension of the Team Orien-
teering Problem (TOP) [4], in which, given a set of visiting points with a score

1 https://www.unwto.org.
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and service time, the objective is to maximize the sum of the collected scores
in a given number of routes, while guarantying a maximum travel time in each
route. For solving the TOP, different exact an heuristic algorithms have been
proposed [6]. In the TOPTW, each visiting point has to be visited within a given
time window.

In this paper we present a Fuzzy Greedy Randomized Adaptive Search Proce-
dure (GRASP) to solve the TOPTW. GRASP is a metaheuristic which consists
of two phases. In the constructive phase, a solution is built by iteratively selecting
an element of a restricted candidate list. In the improvement phase, the above
solution is improved by applying a local search. These steps are repeated until a
stopping rule is met. In our case, the restricted list of candidates is formed by the
appropriate points of interest to be included in some route. Unlike the standard
GRASP, Fuzzy GRASP uses two criteria to build this restricted candidate list.
The first criterion evaluates the point of interest by attending to time increment
of the route. The second criterion uses the score to evaluate the point of interest.
On the other hand, we also propose a multi-agent simulation model aimed at
handling the randomness of the optimization problem in practical scenarios. We
consider that the scores associated to the points of interest are not deterministic,
but can have low, moderate and high levels of variability instead. This means
that some points have been clearly bad or good for most visitors, but others
have not.

We use a classic set of instances to test our proposal. The obtained compu-
tational results show its good behavior. Fuzzy GRASP efficiently identifies high
quality solutions in insignificant computational time.

2 Problem Description

The problem addressed in this paper is modelled as a multiple route-planning
problem, specifically as a TOPTW. It consists of a set I of n points of interests
(POIs), each with a given score, and a set K of m routes with the aim of visiting
some of them in a given limited time. Each POI has associated a score or profit,
a visit time, and a time windows. The starting and ending points are fixed, and
represent tourists place of stay. However, not all POIs have to be visited. The
number of routes corresponds to the number of stay days at destination. The
objective function is to maximize the total collected score.

The POIs are identified by an index i, i = 1, 2, ..., n. Indexes 1 and n represent
the starting and ending POIs. Each route is represented by an index k, k =
1, 2, ...,m. The score obtained in each POI is si, i = 1, 2, ..., n. The time spent
by the tourist when visiting POI i is ri, i = 1, 2, ..., n. The travel time from POI
i to POI j is denoted by tij , i, j = 0, 1, ..., n. T k

max is the limit time for route
k, k = 1, ...,m, considering travel, visit and waiting times. m is the number of
tourist stay days. The time windows are represented by ei, li, the opening and
closing times of a POI i, respectively; i = 1, 2, ..., n.

The variable decisions of the mathematical model are: xk
ij , yk

i , and ak
i , i, j =

1, ..., n, k = 1, 2, ...,m. xk
ij is a binary variable that takes value 1 if route k goes
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from POI i to j, and 0 otherwise. The binary variable yk
i is equal to 1 if POI i

is visited in route k and yk
j = 0 otherwise. The arrival time at POI i in route k

is contained in variable ak
i .

On the other hand, the TOPTW can be formulated as a linear programming
problem (LP) as follows:

Maximize:
m∑

k=1

n∑

i=1

siy
k
i (1)

m∑

k=1

n∑

j=1

xk
0j =

m∑

k=1

n∑

i=1

xk
i0 = m (2)

m∑

k=1

yk
i ≤ 1 i ∈ I (3)

n∑

j=0

xk
ji =

n∑

j=0

xk
ij = yk

i k ∈ K, i ∈ I (4)

ak
i + ri + tij − ak

j ≤ M(1 − xk
ji) k ∈ K, i, j ∈ I0 (5)

ak
i + ti0 ≤ T k

max k ∈ K, i ∈ I (6)
ei ≤ ak

i ≤ li k ∈ K, i ∈ I (7)
xk
ij ∈ {0, 1} k ∈ K, i, j ∈ I0 (8)

yk
i ∈ {0, 1} k ∈ K, i ∈ I (9)

ak
i ≥ 0 k ∈ K, i ∈ I (10)

The objective function is represented in Eq. (1). The (2) constraints guarantee
that routes start and end at point 0. The constraints (3) ensure that every
location is visited at most once. The subtour elimination and flow conservation
rule in constraints (4) and (5) establish the connectivity and time of each tour,
where M is a large constant. The constraints (6) guarantee the maximum time
for each tour. The time windows constraints are identified in (7). The condition
variables are defined in (8), (9) and (10).

The values of xk
ij , k = 1, 2, ...,m, i, j = 0, 1, ..., n variables define the routes.

With these variables, the selected POIs can be obtained by Eqs. (4). The combi-
nation of (5) and (7) leads to the arrival time at each POI j is iteratively given
by

ak
j = max{ak

i , ei} + ri + tij (11)

for the previously point i in this day k; i.e., such that xk
ij = 1.

3 Literature Review

The Team Orienteering Problem with Time Windows (TOPTW) [18] has been
extensively addressed in the literature over the last decade. For a comprehensive
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survey on variants of the orienteering problem, we refer the reader to the paper
by Gunawan et al. [6].

Due to the complexity of the TOPTW, most papers in the scientific literature
tackle it by means of heuristic algorithms. Among the metaheuristic algorithms
proposed for solving the TOPTW, there are implementations of Iterated Local
Search, Local Search algorithm, Simulated Annealing, Variable Neighborhood
Search, Large Neighborhood Search and Greedy Randomized Adaptive Search
(GRASP).

A simple, fast and effective iterated local search that combines insert and
shake steps to escape from local optima is presented in [18]. A variable neighbor-
hood search algorithm for a multiple time windows extension has been addressed
in [17]. A hybrid algorithm that combines GRASP with the evolutionary local
search is designed in [10]. A Local Search algorithm is proposed in [9]. Two
versions of a simulated annealing algorithm are developed in [11]. A variable
neighborhood search procedure based on exploring granular instead of complete
neighborhoods is presented in [9]. Granular exploration allows to obtain an effi-
cient and effective algorithm. A Simulated Annealing with restart strategy is
proposed in [12] for a multiple time windows extension. A Capacitated TOPTW,
in which customers have associated also demands is presented in [2]. An iterated
local search and a hybrid algorithm based on simulated annealing and iterated
local search are proposed in [7]. A new variant of the TOPTW that includes
mandatory visits is considered in [13]. In order to solve this problem, a multi-
start simulated annealing is developed. A large neighborhood search algorithm
is proposed in [15]. A multi-objective version of the TOPTW, in which the score
has to be maximized and the time needed for the itinerary of the tourist is mini-
mized, is presented in [8]. It is developed an iterated local search into adjustment
iterated local search, in which the construction phase is performed heuristically.
The uncertainty theory is used in [19] to consider uncertain travel times when
solving the TOPTW. In this regard, simulation is a powerful tool to handle these
scenarios. They have been successfully applied to a wide variety of environments.
This is illustrated in [5] and [3], among others. Due to its versatility and capa-
bility to model specific features of the environment under analysis, simulation
based on multiple agents [1] has become in one of the most relevant paradigms.
For this reason, this is the approach considered in this paper.

In this work, we propose a Fuzzy GRASP for solving the TOPTW, in which
the restricted candidate list used in the construction phase of GRASP is the
fuzzy set of the high quality points of interest according to their travel time and
score. Furthermore, we propose a multi-agent simulation model to deal with the
randomness associated with the optimization problem in practical scenarios.

4 Solution Approach

4.1 Solver

A Fuzzy GRASP (Greedy Randomized Adaptive Search Procedure) is proposed
in order to solve the proposed problem and obtain high-quality solutions in
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reasonable time. The GRASP metaheuristic [14], in its standard version, consists
of two phases; a first construction phase, and a second local search improvement
phase.

The construction phase obtains a feasible solution by iteratively selecting at
random a new location from a Restricted Candidate List (RCL) with size given
by the parameter RCLsize. Finally, the neighborhood of the solution is explored
until a local minimum is found in the second phase. The Algorithm1 shows the
GRASP phases cited above with maxIterations as the maximum number of
iterations of the GRASP procedure.

Algorithm 1. GRASP
1: function GRASP(maxIterations, RCLsize)
2: readInput()
3: for i:=1 to maxIterations do
4: solution = GRASPConstructionPhase(RCLsize)
5: solution = localSearch(solution)
6: updateSolution(solution, bestSolution)
7: end for
8: return bestSolution
9: end GRASP

In Algorithm 2 the construction phase of GRASP is shown. The initial solu-
tion has m = |K| empty routes. The procedure starts with the initial solution,
and subsequently the construction mechanism adds step-by-step a new POI to
the current partial solution guaranteeing the solution feasibility.

The mechanism inserts each new no visited POI i in the best possible position
guaranteeing the feasibility of the partial route. The several feasible positions in
which insert a new POI i is defined as the (i, j, k) triplet with yk

j = 1. For the
partial route k, the mentioned insertion consists in inserting the POI i after j.
The variables yk

i , xk
ji and xk

ih are set to 1 in order to get the new solution. Then
for the only index h such that xk

jh is 1; this variable xk
jh is also set to 0.

The variables ak
i for this route k have to be computed using (11) and feasi-

bility tested by the corresponding time limit constraints (6) and time window
constraints (7). A greedy travel time function f computes the travel time increase
in the route produced by an insertion represented by the triplet defined previ-
ously. The f function is defined as f(i, j, k) = tkji + tkih − tkjh for the above index
h.

A Restricted Candidate List (RCL) with candidate POIs to be visited in
the solution is constructed using the greedy function f . The standard version of
GRASP designs the RCL introducing RCLsize feasible insertion triplets (i, j, k)
with the best quality values for function f . In this paper a fuzzy version of the
GRASP is proposed.

The proposed fuzzy mechanism considers the fuzzy set of the high quality
POIs of the RCL based on their score. μ(·) is the membership function of the
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Algorithm 2. Construction Phase of the GRASP
1: function GRASPConstructionPhase(RCLsize)
2: Initialize the partialSolution with m empty routes
3: while (it is possible to visit new locations) do
4: CL = ∅
5: for all location i ∈ I do
6: Find the best feasible triplet (i, j, k) to insert this new location i in

partialSolution according to greedy time function f(i, j, k)
7: Add the feasible triplets (i, j, k) to the Candidate List CL
8: end for
9: Create the Restricted Candidate List, RCL, with the best RCLsize triplets

(i, j, k) from CL according to f
10: Select a random triplet (i, j, k) from RCL
11: Update the variables of route k by inserting the location i at position j
12: end while
13: return partialSolution
14: end GRASPConstructionPhase

set stated by μ(i) = si/smax with si the score related with POI i and smax the
highest score in RCL. RCL∗ is the set with the best locations in RCL created
by the α-cut of RCL related with μ(·), with α ∈ [0, 1].

RCL∗ = {(i, j, k) ∈ RCL : μ(si) ≥ α}}
The new POI inserted in the solution is randomly selected from RCL∗. The deci-
sion maker is responsible of fixing the α parameter. The choice of this parameter
influences the quality of the POI that will be inserted into the solution. The
Algorithm 3 shows the fuzzy GRASP construction phase.

Basically, the selection of the best insertion position of POIs in a tour com-
poses the candidate list. The greedy function f evaluates the increase in time
due to the POI insertion in partial route. The value of f determine the posi-
tion of candidate in the list. The best position to insert a candidate POI for all
routes is located by the procedure. The goal of the best position is minimize
the total time after the insertion of POI. Finally the list is ordered ascending
by the increase in time such that lowest time increase candidates are placed at
candidate list top. The candidate list size is settled in RCLsize due to build the
RCL. Subsequently, the α-cut, that recognizes the best score POIs, conforms
RCL∗. The decision maker fix the α value.

The proposed GRASP mix the minimization of travel times in the RCL
composition and maximization score in the RCL∗ composition. Therefore the
RCL∗ contains the best POIs that combines the two criteria mentioned. The
POIs that will be insert in current partial solution are those with low travel
time increase and high score. Later, in RCL∗ a POI is randomly selected and
inserted into partial solution. The inserted POI is banned for future candidate
lists. Finally, the feasible solution is obtained and construction phase ends.

The next phase is an improvement phase that uses a local search for this pur-
pose. Commonly, a local search procedure performances iteratively by replacing
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Algorithm 3. Construction Phase of the Fuzzy GRASP
1: function GRASPFuzzyConstructionPhase(RCLsize, α)
2: Initialize the partialSolution with m empty routes
3: while (it is possible to visit new locations) do
4: CL = ∅
5: for all location i ∈ I do
6: Find the best position j to insert i in a partial route k of the partialSolution

according to greedy time function f(i, j, k)
7: Add the feasible triplets (i, j, k) to the Candidate List CL
8: end for
9: Create the Restricted Candidate List, RCL, with the top RCLsize triplets

(i, j, k) from CL
10: Get RCL∗ = {(i, j, k) ∈ RCL : μ(si) ≥ α}
11: Select a random triplet (i, j, k) from RCL∗

12: Update the variables of route k by inserting the location i at position j
13: end while
14: return partialSolution
15: end GRASPFuzzyConstructionPhase

the current solution with a improved solution achieved in the neighborhood. The
stop criteria of local search is not to find a better solution in the neighborhood.
The Algorithm 4 presents a standard local search procedure. The proposed local
search applies exchange movements between POIs in order to minimize the total
travel time. The POIs can be selected in the same or different routes. A best-
improving strategy is used, so that the search explores all neighborhoods in order
to replace the current solution by the best solution found. Once the total travel
time of the solution has been improved, the procedure tries to insert a new POI
in the solution with the aim of maximize the solution score.

Algorithm 4. FUZZY GRASP improvement phase
1: function localSearch(solution)
2: s = solution
3: repeat
4: Find the best neighbor n of current solution s according the total time
5: if (TotalT ime(n) ≤ TotalT ime(s)) then
6: s = n
7: end if
8: until TotalT ime(n) ≥ TotalT ime(s) for all neighbor n
9: return s

10: end localSearch

Overall, the aim of the proposed solver is to maximize the total solution
score. The procedure is an two-phases iterated algorithm that progress until the
stop criteria is met. The introduced fuzzy mechanism in the standard GRASP
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allows to consider two criteria in construction of the RCL list; the minimization
of travel time and the maximization of score.

4.2 Simulation Model

In this paper, we also propose a simulation model aimed at handling randomness
associated with the optimization problem in practical scenarios. This randomness
is derived from the potential changes in the preferences of the visitors, inadequate
treatment of the staff in the points or unadvertised changes in the time windows,
among others. Thus, the scores of the points of interest are considered as random
variables instead of constant values, as done in previous works found in the
scientific literature so far.

We design a multi-agent simulation approach that uses asynchronous time
and receives a feasible solution of the problem. This solution is provided by the
solver previously described. It also receives the random variables that defines the
behaviour of the scores. The model is composed of a hierarchy of agents, The base
agent is governed by the state machine shown in Fig. 1 and is aimed at simulating
a route of the solution. The nodes in the state machine represent states of the
visitor during its route, whereas the arcs represent transitions between pairs of
consecutive states. This way, a transition is applied when the triggering event
occurs. As can be checked, the visitor moves to the next point of interest and
waits until it is open. This is visited once the point is open. Then, next point is
checked or the visitor goes to its end point. It is worth mentioning that the score
obtained when visiting a point of interest is derived from sampling the random
variable that defines it. At the same time, there is a manager agent which is
responsible for assign routes to the base agents and managing the performance
metrics (i.e., number of points visited, time in each point, etc.). Thus, the model
is composed of one manager agent and m base agents.

POIs > 0? Moving to
POI

Waiting
opening

Visiting
POI

POIs > 0?

Moving to
end POI

yes

no

arrived open visited

yes

no

arrived

Fig. 1. State machine of an agent aimed at simulating a route
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5 Computational Experiments

5.1 Solver Computational Experiments

This section describes the results from the first computational experiment carried
out in our study. The aim of this experiment is to evaluate the accuracy of the
Fuzzy GRASP metaheuristic proposed to solve the TOPTW and get high-quality
solutions.

The benchmark suite tackled along this section is based on the classical set of
instances introduced by [16] for Vehicle Routing Problem with Time Windows.
Vansteenwegen et al. [18] provide a set of locations with a given score which
can be visited. A time windows and service time have been defined for each
location. The limit number of routes match with the number of vehicles of the
original Solomon data set. The number of locations used is equal to 100 and the
limit time per route varies according to the specific instance. This benchmark
considers travel times equal to euclidean distances. Regarding the geographical
data, there are three kinds of instances: instances with clustered customers (C),
instances with random customers (R) and a mixture of random and clustered
customers (RC).

The instances data set used are described in Table 1 in more detail.
The parameter of the proposed Fuzzy GRASP are:

1. The α value of α-cut of μ(sj)
2. The size sRCL of the GRASP restricted candidate list

The parameter values of the proposed solver assess during the computational
experiments are shown in Table 2.

The GRASP procedure was run 1000 times for each instance and parameter
combination used in computational experiments. The results are presented in
Table 3 and show the comparison between the best solutions obtained by stan-
dard GRASP and Fuzzy GRASP, and the optimal solution. The score of the
optimal solutions is the sum of scores for all locations. Column one and two give
the name of the instance and the score of the optimal solution, respectively. The
third and fourth columns show the best solutions scores of standard and Fuzzy
GRASP, respectively. The gap between the best solutions of the standard and
Fuzzy GRASP and the optimal solution are given by the fifth and sixth columns,
respectively. Finally, the last column shows the execution time of Fuzzy GRASP.
The computational experiments confirm that Fuzzy GRASP is highly efficient
when solving the instances under analysis.

5.2 Simulation Analysis

We have carried out several experiments dedicated to check the suitability of the
simulation model proposed in Sect. 4.2. In this case, the score associated with
the points of interest is modelled as a random variable, S, that does not follow
any arbitrary non-negative probability distribution. In particular, a Log-Normal
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Table 1. Instances used in experimentation

Instance Size Max. routes Max. time

c101 100 10 1236

c102 100 10 1236

c103 100 10 1236

c104 100 10 1236

c105 100 10 1236

c106 100 10 1236

c107 100 10 1236

c108 100 10 1236

c109 100 10 1236

r101 100 19 230

r102 100 17 230

r103 100 13 230

r104 100 9 230

r105 100 14 230

r106 100 12 230

r107 100 10 230

r108 100 9 230

r109 100 11 230

r110 100 10 230

r111 100 10 230

r112 100 9 230

rc101 100 14 240

rc102 100 12 240

rc103 100 11 240

rc104 100 10 240

rc105 100 13 240

rc106 100 11 240

rc107 100 11 240

rc108 100 10 240

Table 2. Parameters used by Fuzzy GRASP

Parameter Values

α value of α-cut α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
Size of RCL sRCL ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
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Table 3. Comparative results

Instance Opt. GRASP Fuzzy
GRASP

Gap (%)
Fuzzy GRASP

Gap (%)
GRASP

Fuzzy GRASP
Execution time (ms)

c101 1810 1600 1700 6.1 11.6 7.07

c102 1810 1730 1780 1.7 4.4 4.17

c103 1810 1800 1810 0.0 0.6 5.32

c104 1810 1810 1810 0.0 0.0 71.45

c105 1810 1710 1770 2.8 5.5 4.66

c106 1810 1710 1770 2.8 5.5 3.93

c107 1810 1800 1810 0.0 0.6 3.84

c108 1810 1810 1810 0.0 0.0 4.18

c109 1810 1810 1810 0.0 0.0 4.94

r101 1458 1429 1447 0.7 2.0 4.01

r102 1458 1441 1444 0.8 1.2 4.95

r103 1458 1421 1443 1.0 2.5 5.45

r104 1458 1352 1403 3.8 7.3 5.32

r105 1458 1415 1435 1.6 2.9 3.93

r106 1458 1379 1418 2.6 5.4 4.77

r107 1458 1366 1405 3.8 6.3 5.51

r108 1458 1391 1418 2.0 4.6 5.55

r109 1458 1386 1403 3.3 4.9 4.38

r110 1458 1356 1401 3.5 7.0 5.29

r111 1458 1377 1421 3.6 5.6 5.87

r112 1458 1372 1414 3.6 5.9 5.58

rc101 1724 1658 1640 4.5 3.8 3.88

rc102 1724 1566 1677 4.4 9.2 4.48

rc103 1724 1628 1688 2.6 5.6 4.86

rc104 1724 1693 1696 1.8 1.8 5.70

rc105 1724 1636 1665 2.9 5.1 4.50

rc106 1724 1595 1631 5.1 7.5 4.02

rc107 1724 1652 1688 2.1 4.2 4.86

rc108 1724 1633 1674 3.0 5.3 5.77

distribution with V ar[S] = k · E[S]. k = {0.25, 1, 2} to represent scenarios with
low, moderate, and high levels of variability.

Table 4 shows the average computational results obtained by the proposed
model when simulating the behaviour of 10 solutions selected at random. In
this case, the score, travelled distance, total time, minimum time in the routes,
maximum time in the routes, and slack time used to satisfy the time windows
are shown when changing the level of variability in the scenarios. Due to the
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fact that the variability impacts only on the score of the points of interest, the
remaining metrics are not altered in the different scenarios and their values are
only provided for further analysis. In this case, the results indicate that the score
obtained when visiting the involved points of interest in the routes increases when
the variability of the scenarios is higher.

Table 4. Computational results obtained by the simulation model

k = 0.25 k = 1 k = 2

Score 1302.606 1304.991 1308.624

Distance 1100.106 1100.106 1100.106

Time 1970.106 1970.106 1970.106

Min. time 201.583 201.583 201.583

Max. time 226.534 226.534 226.534

Slack 6388.068 6388.068 6388.068

6 Conclusions and Future Research

This work proposes a Fuzzy GRASP metaheuristic and a multi-agent simulation
model to solve the Team Orienteering Problem with Time Windows, in which the
scores associated to the points of interest are not deterministic. In the first place,
we develop a Fuzzy GRASP to solve the optimization problem with deterministic
scores to obtain a set of high-quality solutions. Then, these solutions are used by
the designed multi-agent simulation model to consider low, moderate and high
levels of variability in the scores.

The computational experiments carried out in this work corroborate that
the GRASP metaheuristic can reach a set of high-quality solutions in reasonable
computational time. Moreover, the simulation model is a tool able to perform
experiments about the impact of changes in the score of the points of interest
on the quality of the solutions in realistic scenarios. However, there are still
several promising lines for further research. In particular, uncertainty can be
associated with travelling times between pairs of points of interest, and therefore
the optimization and simulation approaches must be modified appropriately to
handle this. At the same time, it is highly interesting to develop recommendation
systems to propose visiting routes to the tourists according to their individual
features.
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Abstract. Currently, there are no guidelines to determine what are the
most suitable machine learning pipelines (i.e. the workflow from data pre-
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1 Introduction

A well-established strategy to tackle congestion is the design, development and
implementation of TF systems. TF can be defined as the prediction of near-
future traffic conditions (e.g. travel time) [16]. The recent emergence of telecom-
munications technologies integrated into transportation infrastructure generates
vast volumes of traffic data. This unprecedented data availability and growing
computational capacities have incremented the use of Machine Learning (ML)
to address TF. From a ML perspective, TF is focused on building a predictive
model using historical data to make predictions of traffic measures based on new
and unseen data.

In spite of the aforementioned progress, different ML algorithms and prepro-
cessing approaches may be more appropriate for different kinds of traffic data.
Determining the best pipeline (sequence of data preprocessing techniques and
a learning algorithm) for making traffic predictions is not a trivial task. In the
ML area, this challenge is known as the Model Selection Problem (MSP) and
Automated Machine Learning (AutoML) has been one of the most successful
approaches addressing it so far. AutoML aims at automatically finding the best
combination of preprocessing techniques, ML algorithm and hyperparameters
that maximise a performance measure on given data without being specialized
in the problem domain where this data comes from. The search strategy to find
the mentioned combination can be based either on a “pure” optimisation process
that tests different promising combinations from a predefined base of preprocess-
ing and learning algorithms [10]; or it can be based on a hybrid search where the
optimisation is complemented with learning strategies such as meta-learning [3].
In the latter case, the learning approach is in charge of systematically observing
how different ML pipelines perform on a wide range of tasks to take advantage
of this experience to learn new tasks faster [14]. Roughly speaking, it can be
seen as using ML for designing ML algorithms.

AutoML methods have successfully approached the MSP in other areas
[8,18], however, it has hardly been explored in TF [1]. In the latter area, the
current progress is focused only on AutoML methods designed purely on opti-
misation approaches; thus, leaving aside the study of AutoML methods that
have hybrid search strategies. Having this idea in mind, the contribution of this
paper is to study the benefits in terms of performance and computational cost
of hybrid AutoML for TF. We use Auto-sklearn [3], a state-of-the-art hybrid
AutoML method whose search strategy of pipelines uses bayesian optimisation,
meta-learning and ensemble learning. To accomplish this objective, we use as
a benchmark a multi-class imbalanced classification problem for different time
horizons and for freeway and urban environments. Under these traffic forecasting
settings, we explore the performance of the Auto-sklearn’s components through
three scenarios: I) a hybrid search strategy that uses its three components (opti-
misation, meta-learning, ensemble learning), II) a meta-learning strategy com-
bined with ensemble learning, and III) a strategy based on the estimation of the
best performing pipeline from those suggested by the meta-learning.
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The rest of this paper is structured as follows. Sections 2 and 3 present back-
ground and related work about AutoML methods in TF. Section 4 exposes the
methodology followed in this paper. Then, Sect. 5 analyzes the main results
obtained. Finally, conclusions are discussed in Sect. 6.

2 Background

This section reviews literature related to AutoML in the context of TF. We
start presenting the foundations of general-purpose AutoML methods and finally,
Sect. 2.2 reviews Auto-sklearn, the state-of-the-art hybrid AutoML method used
in this research.

2.1 Automated Machine Learning

According to [18], a ML pipeline P can be defined as a combination of algorithms
A that transforms input data X into target values Y . Let A be defined as

A = {Apreprocessing ∪ Afeature ∪ Aalgorithm} (1)

wherein Apreprocessing is a subset of preprocessing techniques, Afeature a subset
of feature engineering methods, and Aalgorithm a ML algorithm with configu-
ration of hyperparameters λi ∈ Λ. In order to build a ML pipeline with this
structure, human effort and high computational capacities are needed because
there is no pipeline that can achieve good performance on every learning problem
[6,17]. This usually is done by means of a trial and error approach in an iterative
manner, which causes that the success of ML comes at a great price [17].

AutoML is an emerging sub-area in ML that seeks to automatise the ML
workflow from data preprocessing to model validation [5]. It allows reducing
human bias and improving computational costs by making the construction of
ML applications more efficient. The process consists of identifying the most
promising combination PAi,λi that satisfies a given performance metric or con-
dition when PAi,λi is trained on training data D

(i)
train and evaluated on test data

D
(i)
test.

Current literature [5,18] reports a variety of general-purpose AutoML meth-
ods. According to Chen et al. [17], there are two types of taxonomies that can cat-
egorise these methods. First, a “what” taxonomy that determines which stages of
a ML pipeline are going to be automated (e.g., data preprocessing and algorithm
selection, algorithm selection and hyperparameters, or even the entire pipeline).
Within this taxonomy, the most common case is the CASH [13] (Combined
Algorithm Selection and Hyperparameter) problem wherein AutoML is focused
on finding the best combination of ML algorithm and its hyperparameters set-
ting, leaving the data preprocessing up to the human user. In this paper, we are
focused on the automation of fixed-size ML pipelines composed of data prepro-
cessing techniques and a classifier algorithm with their respective hyperparam-
eters configurations.
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In contrast, the second taxonomy proposed by [17] classifies how the automa-
tion process to find the most promising pipeline is done. On the one hand, some
AutoML methods use only an optimisation strategy wherein the ML pipeline
is built testing multiple possible combinations from a predefined search space
of preprocessing methods, ML algorithms and hyperparameters configurations.
From this perspective, the ML pipeline building problem consists of finding a
pipeline structure PA,λ that minimises a cross-validation loss function

PA∗,λ∗ = argmin
A(i)∈A,λ(i)∈Λ

1
K

k∑

i=1

γ
(
PA(i),λ(i) ,Dtrain,Dtest

)
(2)

As shown in Eq. 2, this search process can be considered as a black-box opti-
misation problem that is not easily solvable as the search space can be large and
complex. This equation is usually non-smooth and derivative-free, and conver-
gence speed is a critical problem for building ML pipelines. Some methods to
solve this equation are grid search, random search, bayesian optimisation and
sequential Model-Based Optimisation.

On the other hand, regarding the second taxonomy proposed by [17], there
are other AutoML methods that use the aforementioned optimisation in combi-
nation with learning strategies to constitute a hybrid search strategy with the
purpose of reducing computational costs. In this case, the focus is on apply-
ing a ML algorithm at the meta-level to learn meta-knowledge that guides the
AutoML process; this approach is known as meta-learning [7,14]. Meta-learning
is the data-driven task of systematically observing how different learning algo-
rithms or pipelines perform on different learning tasks and then learning from
this experience to warm-start the optimisation process in a new and unknown
ML task. This warm-start consists of promising pipelines that are used by the
optimisation as starting points to be evaluated in the first place before trying
pipelines extracted from a predefined search space.

Meta-learning can extract meta-knowledge using three different strategies
[14]. First, there is the “Learning from prior evaluations” strategy wherein a
set of known-previous learning tasks tj ∈ T , a set of configurations λi ∈ Λ
(e.g., hyperparameter settings), and a set of all prior evaluations Pi,j coming
from applying the configurations Λ over the tasks T , have to be given. Having
this knowledge, the objective is to train a meta-learner L able to recommend
promising hyperparameters configurations λi for an unseen and new task tnew.
In contrast, the second approach is known as “Learning from task properties”. It
is based on characterising the known-previous learning tasks tj ∈ T using meta-
features mj ∈ M (e.g, number of instances and features, class imbalance), then
extracting the configurations λi ∈ Λ of the learners associated with these prior
tasks, and finally collecting the performance Pi,j of the trained models given the
meta-features mj and the configurations λi. Having this meta-knowledge, the
objective is to train a meta-leaner L that predicts the performance of pipelines
or recommend them for an unseen and new task tasknew.

Lastly, the third approach is “Learning from prior models”. In this case, the
focus is on training a meta-learner given the parameters mj ∈ M (e.g. model
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parameters, features) of prior learnt models, their configurations λi, and the
performance Pi,j of these learners over the previous and known tasks. Then,
the objective is to train a meta-learner L that transfers trained models to save
computational costs at the moment of approaching a new task tnew.

Within this paper, we focus on Auto-sklearn, the AutoML method with a
hybrid search strategy that includes optimisation and meta-learning based on
the approach “Learning from task properties”. This method is presented with
more details in the following section.

2.2 Auto-sklearn

Auto-sklearn is an AutoML method that uses meta-learning, bayesian optimisa-
tion and ensemble selection to find promising ML pipelines composed of prepro-
cessing methods and ML classifiers. Here we provide a brief description of the
method. The interested reader is referred to [3] for further details.

In an off-line phase, for a repository of 121 data-sets, bayesian optimisation
is used to determine an optimised ML pipeline with high performance on every
data-set. These pipelines are generated from a search space of 15 classifiers, 14
feature preprocessing methods, and 4 data preprocessing methods. Then, for
each data-set, a set of 38 meta-features is extracted to characterise every set of
data; these meta-features include simple, information-theoretic and statistical
information such as statistics about the number of data points, features, the
number of classes, data skewness, the entropy of the targets, among others.
Later on, instead of storing the 121 data-sets, their meta-features and the ML
pipelines are saved in a meta-knowledge base wherein each instance contains the
set of meta-features describing every data-set and the optimised pipeline that
works well on it.

In the online phase, that is, when a new data-set Dnew is given, Auto-sklearn
computes its meta-features, ranks all the data-sets stored in the meta-knowledge
base (stored in the form of meta-features and not the data itself) by their L1 dis-
tance w.r.t. Dnew, and selects the stored ML pipelines for the k nearest data-sets
(by default k = 25). The assumption is that these selected pipelines are likely
to perform quite well in Dnew as they performed well on data-sets with similar
meta-features (pipelines closer to the first position of the ranking would expect
higher performance on Dnew). This selection of K most promising pipelines is
used then to seed the bayesian optimisation component as a warm-start app-
roach, which boosts the performance of the optimisation. In addition to the
recommendations done by the meta-learning component, the bayesian optimisa-
tion process (under a time budget constraint) generates and tests new pipeline
structures from the same aforementioned search space. In the final step of Auto-
sklearn’s workflow, the best pipelines identified during the bayesian search pro-
cess are used to construct an ensemble. This automated ensemble construction
avoids to commit itself to a single hyper-parameter setting, and it is more robust
than only using the best pipeline found with the optimisation component.
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3 Related Work

Within the most representative AutoML methods are Auto-WEKA [13], Auto-
sklearn [3], TPOT [10], ATM [12], and ML-Plan [9]. In the case of the first two
methods, they are focused on the construction of fixed ML pipelines in which
the pipeline structure is a linear sequence of data preprocessing and algorithm
learning. The other methods work by building pipeline structures that can be
more complex and diverse. In the case of Auto-WEKA, TPOT, ATM and ML-
Plan, they use an optimisation approach to find pipeline structures; meanwhile,
Auto-sklearn is the state-of-the-art method to generate ML pipelines using a
hybrid search strategy. As a common denominator, all these AutoML methods
are agnostic w.r.t. the problem domains in which they have been applied; in this
sense, they are general-purpose methods that have shown competitive perfor-
mance in different applications areas [5].

In the transportation area, to the best authors’ knowledge, only three papers
have used AutoML methods for TF [1,2,15]. The first research carried out by
Vlahogianni et al. [15] proposed a meta-modelling technique that, based on sur-
rogate modelling and a genetic algorithm with an island model, optimises both
the algorithm selection and the hyper-parameter setting. The AutoML task is
performed from an algorithms base of three ML methods (Neural Network, Sup-
port Vector Machine and Radial Base Function) that forecast average speed in
a time horizon of 5 min, using a regression approach. After that, Angarita et
al. in [1] and [2] used Auto-WEKA, an AutoML method that applies sequential
model-based bayesian optimisation [4] to find optimal ML pipelines. Both papers
compared the performance of Auto-WEKA w.r.t. the general approach, which
consists of selecting by trial and error the best of a set of algorithms to predict
traffic. In the case of [2], the paper was centred in forecasting traffic LoS at a
fixed freeway location through multiple time horizons. On the other hand, in
[1], the authors were focused on predicting traffic speed on a subset of families
of TF regression problems focused on making predictions at the point and the
road segment levels within the freeway and urban environments.

The main differences between this research and the three aforementioned
papers lay on the typology of AutoML method used and the addressed TF
problems. Whereas the previous three focused on “pure” AutoML optimization
approaches, in this research, we centre on a hybrid strategy based on meta-
Learning, optimization and ensemble learning with the purpose of evaluating
the benefits that the former has on TF within three scenarios: by its own (with-
out optimization and ensemble learning), in combination solely with ensemble
learning, and integrated to optimization plus ensemble learning.

4 Methodology

This research seeks to keep exploring the benefits that meta-learning within
AutoML of hybrid search strategies can bring to TF. To accomplish such pur-
pose, we analyse to what extent Auto-sklearn, the state-of-the-art AutoML
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Table 1. Data-sets

Type Data-sets # Instances # Attributes # Instances per class Imbalance ratios

Type I Fw T+CD in

time horizons of

5, 15, 30, 45,

60min

[10927-9906] 13 A = 4533, B = 3640

C = 893, D = 850

IR (A/D) = 5,07

IR (A/B) = 1,24

IR (A/C) = 5,33

Fw TS+CD in

time horizons of

5, 15, 30, 45,

60min

[10927-9906] 28 A = 5983, B = 4580,

C = 363

IR (A/B) = 1,30

IR (A/C) = 16,48

Type II Fw T+CD in

time horizons of

5, 15, 30, 45,

60min

[10927-9906] 13 A = 4533, B = 4023,

C = 136

IR (A/B) = 1,12

IR (A/C) = 3,33

Fw TS+CD in

time horizons of

5, 15, 30, 45,

60min

[10927-9906] 28 B = 7782, C = 2125,

A = 101

IR (B/C) = 3,66

IR (B/A) = 7,63

Type I Ub T+CD in

time horizons of

15, 30, 45, 60min

[2684-2634] 13 A = 1337, B = 1188,

C = 111

IR (A/B) = 1,12

IR (A/C) = 12,04

Ub TS+CD in

time horizons of

15, 30, 45, 60min

[2684-2634] 28 B = 1659, A = 691,

C = 33

IR (B/A) = 2,40

IR (B/C) = 4

Type II Ub T+CD in

time horizons of

15, 30, 45, 60min

[2684-2634] 13 A = 1337

B = 1299

IR (A/B) = 1,02

Ub TS+CD in

time horizons of

15, 30, 45, 60min

[2684-2634] 28 B = 1561

A = 1122

IR (B/A) = 1,39

method for this category of search strategies, is able to recommend competitive
ML pipelines for TF. In this context, the following parts of these sections are
devoted to giving more details about the data-sets used for the experimentation
(Sect. 4.1); and the experimental set-up of this study (Sect. 4.2).

4.1 Data-Sets

For experimentation, we considered two TF environments: freeway and urban.
For the freeway environment, the data was collected from the Caltrans Perfor-
mance Measurement System1 whereas for the urban one, the data was collected
from the Madrid Open Data Portal2. In both cases, the traffic measure used
was thee months of speed in aggregation times of 5 and 15 min, respectively. For
more details about the raw data used to generate the data-sets employed in this
research, the interested reader is referred to [1].

Concretely, we approach two types of TF classification problems with two
problem instances for each of them. In both problems, the objective is to predict

1 http://pems.dot.ca.gov.
2 https://datos.madrid.es/portal/site/egob/.

http://pems.dot.ca.gov
https://datos.madrid.es/portal/site/egob/
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a categorical measure named LoS as a multi-class classification problem based
on continuous traffic speed. LoS is used to categorise the quality levels of traffic
through letters from A to E in a gradual way3 [11].

The first TF problem corresponds to the prediction of LoS at a target location
in a freeway environment. The first instance of this problem is based only on
past traffic speed data of the target location (temporal data, T); meanwhile, the
second instance considers historical traffic data coming from the target location
and from four downstream positions (temporal and spatial, TS). It is important
to clarify that these two instances of the first TF problem are correlated because
they share the same target location.

The second kind of TF problem is focused on forecasting LoS within an urban
context independent of the freeway data described above. Repeatedly, the two
correlated instances of this problem are: predict LoS for a single target location
considering exclusively historical data of this spot, and forecasting LoS taking
into account past traffic speed of the target location together with other four
downstream positions.

For the two TF problems described above, we generated 36 data-sets (20
for freeway data and 16 for urban data). In the freeway case, the time horizons
wherein LoS is predicted are 5, 15, 30, 45, and 60 min using data granular-
ity of 5 min (granularity means how often and how long the traffic measure is
aggregated). Unlike the previous one, for the urban TF problem, the forecast-
ing time steps are 15, 30, 45, and 60 min with data granularity of 15 min. To
better identify the data-sets, they are named following the next structure: Con-
text InputData TimeHorizon.

Attributes of the freeway and urban data-sets where the input is composed
of only temporal traffic data from the target location and calendar data are: 1)
Day of the week; Minute of the day, 2) Traffic speed of the objective spot at
past 5, 10, 15, 20, 25, 30, 35, 40, 45 min for freeway and 15, 30, 45, 60, 75, 90,
105, 120, 135 min for urban, and 3) LoS in the target location. In the case of the
freeway and urban data-sets where the input consists of historical speed taken
from the target location and from four downstream detectors, the attributes are
the same mentioned above for the target location and include also attributes of
traffic speed of the four downstream locations at the same past times.

Table 1 presents a summary of the 36 data-sets that includes the number
of instances, the number of attributes, the number of instances per class and
the Imbalance Ratios (IRs) of each data-set. The IR is calculated by dividing
the number of instances of the majority class over the instances of each of all
the other classes. IR values show that the generated data-sets have a different
imbalance degree. Some data-sets do not contain all the possible classes because
on some occasions some of the classes had an extremely low presence (e.g. 20
samples) which introduced noise in the results. Samples of these classes where
tagged as classes of the closest label with the lowest number of samples. More-
over, the differences between freeway and urban data-sets of Type I and Type II

3 Category A indicates light to moderate traffic, whereas a category E means extended
delays.
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are their class distributions. Within each type, the class distribution is the same
for all time horizons. In this sense, we can explore the capacity of Auto-sklearn
when approaching different degrees of imbalanced data-sets.

4.2 Experimental Set-Up

Considering the traffic forecasting setting presented, we explore the performance
of the Auto-sklearn’s components through three scenarios using the data-sets
presented above. First, a default scenario in which the hybrid search strategy of
the AutoML method uses its three components to find pipelines. In this case,
we considered three execution times for Auto-sklearn (ET): 15, 60 and 120 min.
They correspond to the time that the bayesian optimisation can take to find
the best pipelines and their hyper-parameter configuration for a given data-set.
For assessing the performance of this scenario, the data-sets are partitioned in
training (80%) and test (20%), keeping the chronological order of the data.

In the second scenario, we probe an alternative approach in which the rec-
ommendations done via meta-learning are combined in two ensembles based on
weighted-voting without using the optimisation process. First, we extract the 25
best ML pipelines (default value used by Auto-sklearn) suggested by the meta-
learning component, which then are combined in the weighted-voting ensemble
named MetaEns25. To test this ensemble, the data-sets are partitioned in the
same way as Auto-sklearn, such as was described above. For the second ensem-
ble, we extract the complete list of 121 ML pipelines that can be suggested by
the meta-learning component and choose again 25 best pipelines, based on their
validation error, to generate the ensemble MetaEn25-121. In this case, we do the
following procedure: the data-sets are partitioned in training (60%), validation
(20%) and test (20%). To select the 25 best pipelines, these are trained on the
training set and their performance is assessed on the validation set. Then, the
ensemble is built with the 25 pipelines with the best validation error. Finally, the
ensemble is trained on training+validation partitions (same number of instances
as previous strategies, that is, 80%) and validated on the test set.

Lastly, for the third test scenario, we consider the meta-learning component
in isolation. We follow a similar approach to that of MetaEn25-121, that is,
we split the data-sets in training (60%), validation (20%) and test (20%). This
means that for every data-set, we train the 121 pipelines suggested by meta-
learning on the training set and based on their error on the validation set, we
choose the best pipeline. The latter is then trained on training+validation (that
is, over an 80% of the instances) and assessed over the test set.

To evaluate the experimental set-up presented, we use the metric G-measure
(mGM) that is applied for multi-class imbalanced data in classification problems.

Its calculation is expressed as mGM = M

√∏M
i=1 specificityi · recalli where M is

the total number of classes.
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5 Results

This section presents the results obtained with the experimental set-up proposed
in the previous section. Table 2 shows the mean mGM values obtained by the
three execution times (ET) of Auto-sklearn (AutoS ET), the two voting ensem-
bles (MetaEns25 and MetaEn25-121) and the best pipeline in validation from the
meta-learning component (BestPipe Val). These mGM values were calculated
by carrying out five repetitions for each approach on every data-set. mGM val-
ues in bold indicate the best result achieved in every data-set. Besides, the last
column of Table 2 shows which is the winner approach in terms of performance
on each data-set.

In the cases wherein the best performing is obtained by the BestP ipe V al
approach, we indicate the following information: the first pair between brackets
indicates the ranking position of the winner pipeline according to the similarity
metric used by Auto-sklearn, and the difference between the value of this metric
and the one from the pipeline in the first position of the ranking, whereas in
the second tuple between brackets, the value of the metric for the pipelines in
positions 1, 25 and 121 (this information appears in the same order in the column
named “Winner” of Table 2). In this way, we can observe whether there is a
positive correlation between the ranking positions and the actual performance of
the pipelines. The assumption of Auto-sklearn is that pipelines closer to position
1 (distances near 0) are likely to perform better on the input data.

From Table 2, the following highlights can be extracted regarding the
behaviour of the methods AutoML methods compared. The BestPipe Val com-
ponent is by far the best performing approach when making traffic predictions.
Concretely, it is able to suggest the best pipeline in 33 out of 36 data-sets, per-
forming even better than the longer ET (120 min) of Auto-sklearn. However,
these results also show that the distance measure in which Auto-sklearn is based
it is not well correlated with performance as we explain below.

If we check carefully the winner pipelines in the last column of Table 2, only in
5 cases (data-sets: Fw TS+CD 5 - Type II, Ub T+CD 15 - Type I, Ub T+CD 15
- Type II, Ub T+CD 60 - Type II, Ub TS+CD 60 - Type II) the pipelines are
located in a position higher than 25. As it was stated in Sect. 2.1, this is the
default value that Auto-sklearn uses to recommend the 25 pipelines that are
more likely to perform well on the input data. Such recommendation is made
by the similarity metric that compares the meta-features of the input data-sets
against the meta-features stored in the meta-knowledge base. Considering such
comparison, the similarity metric chooses the best pipelines found in the off-line
Auto-sklearn’s phase for each of the 25 most similar data-sets w.r.t. the one at
hand. Based on results of Table 2, the meta-features used for the comparison
are not working properly and they are providing information to the similarity
metric that makes it leaving out competitive pipelines located beyond position
25. In conclusion, the majority of pipelines in the column winner of Table 2
are associated to data-sets, that with the current Auto-sklearn’s meta-features
comparison, are no being categorised as similar w.r.t the TF data-sets.
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For the default scenario in which Auto-sklearn uses its three components to
find competitive pipelines, longer ET are supposed to improve the final results
of predictions. However, the improvements only rank from 0.01 to 0.07, approx-
imately, in the best of the cases (e.g., Fw TS+CD 5 - Type I). This could be
due to the fact that the meta-learning component is suggesting low-performance
pipelines for the warm-start process of the optimisation component. Opposite to
this tendency are data-sets Fw TS +CD 15 - Type I, Fw T +CD 15 - Type II
and Ub TS + CD 15 - Type I wherein the best mGM value is found by an ET
shorter than 120m ET. We observed that this worsening is due to the over-fitting
produced by the hyperparameters tuning of Auto-sklearn on the recommended
pipelines. This result indicates that it is necessary to introduce mechanisms in
the hybrid search strategy of AutoML to deal with over-fitting, especially when
execution times of the optimisation are higher.

Regarding the performance of the two ensembles approaches based on
weighted-voting (MetaEns25 and MetaEns25-121), the results of MetaEns25-121
are quite similar w.r.t. the results obtained when the optimisation component
is taken into account. Concretely, in data-sets of freeway Types I-II and urban
Type II, the MetaEns25-121 is able to outperform Auto-sklearn in multiple cases.
In particular, in the data-sets Fw TS + CD 45 - Type II, Fw TS + CD 45 -
Type I and Fw TS+CD 5 - Type I the performance of MetaEns25-121 is better
than any of the Auto-sklearn’s ET. This can be explained because this latter
ensemble is built using already optimised pipelines located beyond position 25
of the ranking, and as it was stated before, in those positions are competitive
pipelines whose performance is boosted by the ensemble without the need of
doing optimisation. For the case of MetaEns25, its performance is lower than
MetaEns25-121 and the three ET of Auto-sklearn. However, it is interesting to
note that these ensembles are not better than the best pipeline suggested via
meta-learning; in this sense, it would be interesting to explore why the ensembles
obtains a performance worse than the best pipeline in isolation.

As the computational cost is a key factor in AutoML, Table 3 shows the
execution times in minutes that the BestPipe Val and the two meta-ensembles
took to make predictions on every data-set. As can be seen, in the majority of
the cases, the three approaches spent less than 60 min, which is the second longer
ET of Auto-sklearn.

Finally, additional results that are observed regardless of what approach is
the one with the highest mGM values are discussed below. In the cases of data-
sets freeway Types I-II and urban Type I, as the time horizon of predictions
increases, the performance of all approaches decreases. For these data-sets, the
ones that have a time horizon of five minutes are the TF problems in which
the six approaches perform better. Besides, in data-sets Fw TS + CD 30 and
Fw TS + CD 60, most of them have problems predicting the minorities classes
and therefore their mGM values in these cases are equal to zero.

Regarding urban data-set of Type I with only temporal traffic data (T), the
three ET of Auto-sklearn and the two ensembles have the lowest performance.
This is due to the fact that these data-sets have the highest IRs (IR(A/B) = 1.12
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IR(A/C) = 12.04). This demonstrates that Auto-sklearn does not incorporate
in its inner structure mechanisms to deal with high imbalanced classification
data-sets. Meanwhile, in the case of urban data-sets of Type I with spatial and
temporal data (TS) and all urban data-sets of Type II, the performance of the
six approaches is quite acceptable and homogeneous across them. This behaviour
can be argued as these 12 data-sets are the most balanced of the 36 data-sets
(IR(B/A) = 2.40, IR(B/C) = 4.98; IR(A/B) = 1.02, IR(B/A) = 1.39).

6 Conclusions

In this paper, we studied the benefits in terms of performance and computational
cost of hybrid AutoML for TF. We use Auto-sklearn, a state-of-the-art hybrid
AutoML method whose search strategy of pipelines uses bayesian optimisation,
meta-learning and ensemble learning. We focused on how well Auto-sklearn is
able to recommend competitive ML pipelines to forecast traffic, modelled as a
multi-class imbalanced classification problem, along different time horizons in
urban and freeway environments.

From the results, we drew interesting conclusions. A simple approach based
on estimating the best pipeline from Auto-sklearn’s meta-learning component
is able to suggest competitive pipelines that perform better than the results
obtained by the three ET of Auto-sklearn considered and the two weighted-
voting ensembles. However, these winner pipelines usually were not included in
the 25 suggestions done by default by the Auto-sklearn’s meta-learning compo-
nent. Instead, they were located in lower positions, which could lead to thinking
that the meta-features and the similarity metric in charge of recommending
pipelines are not performing as expected for these data-sets. As a result, the
ranking positions are not directly related to the performance that the pipelines
could have on the TF data-sets.

Another interesting conclusion is that the optimisation component is not
adding too much to the final mGM values. Higher execution times for Auto-
sklearn not always lead to better results as we can expect; this was also corrob-
orated by previous research that approached the use of Auto-WEKA (another
AutoML method) for TF [1,2]. In spite of this, the performance of the optimisa-
tion process could be improved if the ranking recommended by the meta-learning
component was re-organized using the validation error of these pipelines on the
input data. Thus, the optimisation would only be fed by pipelines that already
are corroborated for having high performance on the data-set at hand. How-
ever, caution needs to be taken to check the computational cost consumed when
calculating the validation error of the 121 pipelines in the meta-knowledge base.

Further research lines that we aim to explore in the future are: I) improving
the synergy between meta-learning and ensemble learning; II) determining the
TF problems in which the optimisation is strictly necessary to improve the results
obtained via meta-learning.
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Abstract. In the theory of Hesitant Fuzzy Sets (HFS), the membership
degree of an element is characterized by a membership function which
always returns a fuzzy set. This approach enables one to express, for
example, the hesitance of several experts in the process of decision mak-
ing based on multiple attributes and multiple criteria. In this work, we
focus on the study of a class of implication functions for typical hesitant
fuzzy sets (THFS). The novelty of our proposal lies on the fact that it
is the first time that an admissible order is used to define operators on
hesitant fuzzy setting. Thus, we introduce typical hesitant fuzzy nega-
tions, typical hesitant t-norms and typical hesitant implication functions
considering an admissible order, which allows the comparison of typical
hesitant fuzzy elements with different cardinalities.

Keywords: Hesitant Fuzzy Sets · Admissible orders on THFS ·
Typical Hesitant Implication Functions · (T,N)-implication functions

1 Introduction

In situations where there are conflicts among the several experts in the process of
decision making based on multiple attributes and multiple criteria, it is common
to use Hesitant Fuzzy Sets (HFS). In the HFS theory [25], one considers, as the
membership degree of an element, a membership function which always returns
a fuzzy set expressing this hesitance. Since its introduction in 2010, relevant
research in decision making has used HFS theory, for example, the studies found
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in [12,28–30]. In particular, several weighted average and ordered weighted aver-
age (OWA)-like operators have been proposed to be used in decision making, as
we can see in [5,29,34].

A frequent issue in the context of decision making is that it is not always
possible to find a consensus between a group of experts. So, it seems more appro-
priate to consider a set of possible values taking into account everyone’s opinion.
For instance, in order to provide a membership degree for an element of the
universe, HFS can be useful to express this membership degree through a set of
typical hesitant fuzzy elements (THFE), which will consider each opinion given
by everyone in the group of experts.

On the other hand, it is common sense the importance of fuzzy implication
functions which have been widely investigated and applied in many fields, as for
example in decision making [9,17,23] and clustering [27]. In order to have a better
understanding of logical connectives, one must know their properties and main
characteristics. There are many different ways to model implication-like opera-
tors. In [6,18,19], a class of implication functions named (T,N)-implications was
investigated and in their definition it is used a t-norm and a fuzzy negation. In
this context, this work presents the definition of Typical Hesitant Implication
Functions, including the class of (T,N)-implications, and the correspondent anal-
ysis of their main properties. Besides, and important contribution of the present
work is that an admissible order on a HFS is provided allowing the comparison
of hesitant fuzzy elements with different cardinalities. This novelty corroborates
with the meaning of hesitant implication functions, providing semantic interpre-
tation for implications setting found in multi-valued fuzzy logics. Therefore, the
main properties proposed in the literature for fuzzy implications were studied
and extended to HFS, which we discuss in this paper and present the properties
of what we call Typical Hesitant (T,N)-Implication Functions (THIF).

This work is organized as follows: some preliminary and necessary concepts
are given in Sect. 2, which allow us to provide in Sect. 3 an admissible order
for the HFS elements and also allow us to introduce some operators, such as
the typical hesitant fuzzy negations and typical hesitant t-norms. Then, Sect. 4
presents typical hesitant implication functions and discusses their main proper-
ties, including an incipient study on typical hesitant (T,N)-implication functions.
Finally, Sect. 5 concludes the study.

2 Preliminaries

We start with some basic concepts of aggregation functions on the unit interval
[0, 1], and then we recall triangular norms, fuzzy negations and fuzzy implication
functions, for more details refer to [1,3,7,8,14,15].

Definition 1. A function A : [0, 1]n → [0, 1] is an n-ary aggregation func-
tion (AF) if it verifies, respectively, the isotonicity and boundary conditions, as
follows:

(A1) If xi ≤ yi for each i = 1, . . . , n, then A(x1, . . . , xn) ≤ A(y1, . . . , yn);
(A2) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.
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Definition 2. A function A :
∞⋃

n=1
[0, 1]n → [0, 1] is an extended aggregation

function (EAF) if the following condition holds:

(A3) For each natural number n ≥ 2, A � [0, 1]n : [0, 1]n → [0, 1] is an AF and
A(x, . . . , x) = x, for each x ∈ [0, 1].

Definition 3. A function T : [0, 1]2 → [0, 1] is a t-norm if, for each x, y, z ∈
[0, 1], it satisfies:

(T1) T (x, y) = T (y, x) (commutativity);
(T2) T (x, T (y, z)) = T (T (x, y), z) (associativity);
(T3) If x ≤ y then T (x, z) ≤ T (y, z) (isotonicity);
(T4) T (x, 1) = x (neutrality of 1-element).

Observe that each t-norm is a bivariate aggregation function.

Definition 4. A function N : [0, 1] → [0, 1] is a fuzzy negation if

(N1) N(0) = 1 and N(1) = 0;
(N2) If x ≤ y then N(y) ≤ N(x), for all x, y ∈ [0, 1].

A fuzzy negation N is strict if it is continuous and N(x) < N(y) when y < x
and additionally, it is strong if it is involutive, i.e.

(N3) N(N(x)) = x,∀x ∈ [0, 1].

The most common strong fuzzy negation is NS(x) = 1 − x, also known as
the standard or Zadeh negation. Each strong fuzzy negation is strict but the
converse does not hold. For example, the negation N(x) = 1 − √

x is strict but
it is not strong.

An important notion in our work is the concept of implication functions, in
the sense of Fodor and Roubens, see [2,3,10,20]) for additional information.

Definition 5. A fuzzy implication is a function I : [0, 1]2 → [0, 1] such that, for
every x, y, z ∈ [0, 1]:

(I1) If x ≤ y then I(y, z) ≤ I(x, z) (first place antitonicity);
(I2) If y ≤ z then I(x, y) ≤ I(x, z) (second place isotonicity);
(I3) I(0, y) = 1 (left boundary);
(I4) I(x, 1) = 1 (right boundary);
(I5) I(1, 0) = 0 (corner condition).

Finally, let us recall the notions of partial ordering. Let P be a non-empty
set, we say that a partial order � on the set P is a binary relation on P which
satisfies, respectively, the reflexivity, antisymmetry and transitivity properties:

(P1) p � p, for each p ∈ P ,
(P2) If p � q and q � p, then p = q for all p, q ∈ P ,
(P3) If p � q and q � r, then p � r for all p, q, r ∈ P .

Note that we say a ≺ b when (a, b) is in a relation � but a 	= b. A set P with
a partial order � is referred to as a partially ordered set (poset) and denoted
by (P,�). If any two elements a, b are comparable in a poset (P,�), i.e. either
a � b or b � a, then the partial order � is said to be a linear (or total) order
(and then P is a chain).
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2.1 Typical Hesitant Fuzzy Sets

Hesitant Fuzzy Sets (HFS) were introduced by Torra in [24] and Torra and
Narukawa in [25]. In their work, the membership degree of an element that
belongs to a set was represented by means of a subset of [0, 1]. In the process
of decision-making, HFS can be useful to handle situations where there is inde-
cision among many possible values for the preferences over objects. Formally,
let ℘([0, 1]) be the power set of [0, 1]. A HFS A defined over U , where U is a
non-empty set, is given by:

A = {(x, μA(x))|x ∈ U}. (1)

and μA : U → ℘([0, 1]), where μA is the membership function. There is a partic-
ular case when μA(x) is finite and non-empty for each x ∈ U , and in this case
we have Typical Hesitant Fuzzy Sets (THFS).

Definition 6. [5] Let H = {X ⊆ [0, 1]|X is finite and X 	= ∅}. A THFS A
defined over U is given by Eq. (1), where μA : U → H.

Each X ∈ H is named Typical Hesitant Fuzzy Element (THFE) of H and the
cardinality of X, i.e. the number of elements of X, is referred to as #X. The ith

smallest element of a THFE X will be denoted by X(i).
Some examples of THFS are X = {0.1, 0.4, 0.7} and Y = {0.1, 0.6, 0.9} where

#X = #Y = 3. In those examples, X(1) = 0.1 and Y (2) = 0.6.

Definition 7. From every EAF A, and knowing that the least and the great-
est elements are 0H = {0} and 1H = {1}, respectively, we define the function
fA : H → [0, 1] as:

fA(X) =

⎧
⎪⎨

⎪⎩

0, if X = 0H

1, if X = 1H

k · A(X(1), . . . , X(#X)) + 1−k
2 , otherwise.

where 0 < k < 1.

For example, if A is the arithmetic average, k = 0.8 and X =
{0.1, 0.2, 0.4, 0.9} then fA(X) = 0.8 · 0.4 + 0.2

2 = 0.42.
In the literature, one can find many proposals of orders for THFE, such as

the ones found in [5,13,26,31–33]. The unique consensus among all these orders
is that all of them refine1 the following order on H:

X �H Y iff X = 0H or Y = 1H or (#X = #Y and X(i)≤Y (i),∀i = 1, . . . ,#X)
(2)

considered in [5]. However, this is very restrictive, since for two THFE to become
comparable, it is required that both have the same cardinality.

1 A partial order ≤1 on a set S refines another partial order ≤2 on S if (S,≤2) ⊆
(S,≤1), i.e. for each x, y ∈ S such that x ≤2 y we have that x ≤1 y.
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Our aim in the present work is to establish an admissible order to allow
comparisons between THFE without this restriction. The idea of admissible
order was presented in [11] for interval-valued fuzzy sets and after in [16] for
interval-valued Atanassov’s intuitionistic fuzzy sets. And in [21], the study of
admissible total orders on hesitant fuzzy sets was included as a challenge. We
acknowledge that some efforts have already been made in order to establish
an admissible ordering for hesitant fuzzy sets, as seen in [26]. However, their
proposal requires that both THFE must have the same cardinality.

In the next section, we present an admissible order in the typical hesitant
fuzzy setting, which will allow us to introduce the notion of some typical hesitant
connectives.

3 Admissible Orders for Typical Hesitant Fuzzy Elements

Take H
(m) = {X ⊆ [0, 1]|#X = m}, we start by defining an admissible ordering

for the typical hesitant fuzzy elements with cardinality m.

Definition 8. [26] A total order ≤H(m) on H
(m) is said to be admissible if for

all X,Y ∈ H
(m), we have that X ≤H(m) Y if and only if X(i) ≤ Y (i) for each

1 ≤ i ≤ m.

Example 1. (i) At first, take H
(m) for m ≥ 1, and then consider the lexicographi-

cal order (with respect to the first variable) [11]. So, we have that X ≤H(m) Y ,
if X = Y or exists an i such that X(i) is strictly less than Y (i) and for all
j < i,X(j) = Y (j). For instance, X = {0.1, 0.4, 0.7} ≤H(3) {0.1, 0.6, 0.9} = Y .

Definition 9. A total order ≤H on H is said to be admissible if, for all X,Y ∈
H, we have that X ≤H Y whenever X �H Y .

Observe that (H,≤H) is a bounded chain with the least and the greatest
elements 0H = {0} and 1H = {1}, respectively.

Remark 1. Note that for all admissible orders ≤H on H, their restriction to H
(m)

is an admissible order on H
(m).

Next, we provide a method to generate admissible order for THFE based on
an indexed family of admissible order ≤H(m) , where m ∈ N

+.

Theorem 1. Let (≤H(m))m∈N+ be family of indexed admissible orders and an

EAF operator A :
∞⋃

n=1
[0, 1]n → [0, 1]. Then, the binary relation

X ≤A
H

Y ⇔

⎧
⎪⎨

⎪⎩

fA(X) < fA(Y ), or

fA(X) = fA(Y ) and #Y < #X, or

fA(X) = fA(Y ) and #Y = #X = m and X ≤H(m) Y

(3)

is an admissible order on H.
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Proof. It is straightforward the prove that the binary relation ≤A
H

is reflexive
and antisymmetric. In addition, the relation ≤A

H
is also a transitive relation on

H, which is shown as follows:

(i) If X ≤A
H

Y and Y ≤A
H

Z for a given X,Y,Z ∈ H, then fA(X) ≤ fA(Y ) ≤
fA(Z). In case fA(X) < fA(Y ) and fA(Y ) ≤ fA(Z) or fA(X) ≤ fA(Y ) and
fA(Y ) < fA(Z), it follows that fA(X) < fA(Z). In case fA(X) = fA(Y ) =
fA(Z), we need to consider the four situations as described below:
Case 1 :

fA(X) = fA(Y ) and #Y < #X

fA(Y ) = fA(Z) and #Z < #Y

}
⇒ fA(X) = fA(Z) and #Z < #X;

Case 2 :

fA(X) = fA(Y ) and #Y<#X

fA(Y ) = fA(Z) and #Z = #Y = mand Y≤
H
(m)Z

}
⇒fA(X) = fA(Z) and #Z<#X;

Case 3 :

fA(X) = fA(Y ) and #X = #Y = m and X≤
H
(m)Y

fA(Y ) = fA(Z) and #Z < #Y

}
⇒fA(X) = fA(Z) and #Z<#X;

Case 4 :

fA(X) = fA(Y ) and #X = #Y = m and X≤
H
(m)Y

fA(Y ) = fA(Z) and #Y = #Z = m and Y≤
H
(m)Z

}
⇒fA(X) = fA(Z) and #X = #Z = m

and X≤
H
(m)Z.

For any of the above cases, X ≤A
H

Z and, therefore, the ≤H(m)-transitivity
holds.

(ii) Besides, we also have to prove that either X ≤A
H

Y or Y ≤A
H

X. There
are three possible situations: (1) fA(X) < fA(Y ) and therefore X ≤A

H
Y . (2)

fA(Y ) < fA(X) and therefore Y ≤A
H

X. (3) fA(X) = fA(Y ) and so, we also
have three cases:

(3a) #X < #Y , so Y ≤A
H

X.
(3b) #Y < #X, so X ≤A

H
Y .

(3c) #X = #Y = m, so since ≤H(m) is admissible, then X ≤H(m) Y or
Y ≤H(m) X.

Hence, X ≤A
H

Y or Y ≤A
H

X.

(iii) Finally, let X,Y ∈ H and suppose X ≺H Y , then by Eq. (2), we have three
possibilities: (1) X = 0H, and in this case, fA(X) = 0 and fA(Y ) > k

2 and so,
fA(X) < fA(Y ), i.e. X <A

H
Y . (2) Y = 1H, which is analogous to (1). At last, (3)

(#X = #Y = m and X(i) ≤ Y (i),∀i = 1, . . . ,m) then, because A is an EAF,
we have A(X(1), . . . , X(m)) ≤ A(Y (1), . . . , Y (m)) and therefore, fA(X) ≤ fA(Y ).
Hence, X ≤H(m) Y . Therefore, Theorem 1 holds.

Example 2. Considering the THFS X = {0.1, 0.4, 0.7}, Y = {0.1, 0.6, 0.9} and
Z = {0, 1} the following EAF operators:
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(1) A1(x1, . . . , xn) =
n∑

i=1

xi

n ;

(2) A2(x1, . . . , xn) = max{xi}1≤i≤n;

(3) A3(x1, . . . , xn) = n

√
n∏

i=1

xi.

Thus, one can easily observe the following relations:

i. X ≤A1
H

Z ≤A1
H

Y .
ii. X ≤A2

H
Y ≤A2

H
Z.

iii. Z ≤A3
H

X ≤A3
H

Y .

In the sequence, some operators are given regarding admissible ordering on H.

3.1 Typical Hesitant Fuzzy Negations

In [4,22], different definitions of Typical Hesitant Fuzzy Negations (THFN) were
provided, both using partial orders. Now we introduce the concept of 〈H,≤H〉-
negations, which consider an admissible order ≤H.

Definition 10. Let N : H → H be a function. N is said to be a THFN with
respect to an admissible order ≤H, 〈H,≤H〉-negation in short, if the following
conditions hold:

(N1) N (0H) = 1H and N (1H) = 0H.
(N2) If X ≤H Y then N (Y ) ≤H N (X).

Additionally, we state that the 〈H,≤H〉-negation N is strong if it is involutive,
i.e. if for each X ∈ H, it satisfies a third property, namely:

(N3) N (N (X)) = X.

Example 3. Consider an admissible order ≤H on the EAF A1, A2 and A3, given
in Example 2. Now take the function NS : H → H, defined as follows:

NS(X) = {1 − x|x ∈ X}

It is easy to see that NS is a 〈H,≤H〉-negation for ≤A1
H

and ≤A3
H

, but not for ≤A2
H

.

Remark 2. NS is a trivial example of a strong THFN with respect to the admis-
sible orders ≤A1

H
and ≤A3

H
.

3.2 Typical Hesitant Triangular Norms

The extension of the notion of t-norms for typical hesitant fuzzy elements was
presented in [5], taking into account the partial order proposed in that paper.
The following definition generalizes this notion by considering admissible orders
on H.
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Definition 11. Let T : H2 → H and let ≤H be an admissible order on H. T
is a typical hesitant triangular norm with respect to ≤H, or 〈H,≤H〉-t-norm in
short, if

(T 1) It is commutative: T (X,Y ) = T (Y,X);
(T 2) It is associative: T (X, T (Y,Z)) = T (T (X,Y ), Z);
(T 3) It is monotonic, i.e., if X ≤H Y then T (X,Z) ≤H T (Y,Z); and
(T 4) 1H is the neutral element: T (X,1H) = X.

Remark 3. Observe that each 〈H,≤H〉-t-norm also verifies the following prop-
erty:

(T 5) T (X,0H) = 0H, ∀X ∈ H.

In fact, T (X,0H) ≤H T (1H,0H) = 0H, for all X ∈ H.

Other additional property is reported below:

(T 6) T (X,N (X)) = 0H, ∀X ∈ H.

Example 4. Consider an admissible order ≤H on the EAF A1, A2 and A3, given
in Example 2. Now take the functions TP , TM , TL : H2 → H, defined as follows:

i. TP (X,Y ) = {x · y | x ∈ X, y ∈ Y }
ii. TM (X,Y ) = {min{x, y} | x ∈ X, y ∈ Y }
iii. TL(X,Y ) = {max{x + y − 1, 0} | x ∈ X, y ∈ Y }

It is possible to prove that TP , TM and TL are 〈H,≤H〉-t-norms for ≤A1
H

, ≤A2
H

and ≤A3
H

.

4 Typical Hesitant Implication Functions

Here we introduce the notion of 〈H,≤H〉-typical hesitant implication functions,
〈H,≤H〉-THIF in short, considering an admissible order ≤H, discussing their
main properties.

The typical hesitant fuzzy approach for a fuzzy implication is conceived as
an extension of axioms in Definition 5.

Definition 12. Let I : H2 → H and let ≤H be an admissible order. I is a typical
hesitant fuzzy implication function with respect to ≤H, 〈H,≤H〉-THIF in short,
if for each X,Y,Z ∈ H, the following properties are verified:

(I1) If X ≤H Y then I(Y,Z) ≤H I(X,Z) (first place antitonicity);
(I2) If Y ≤H Z then I(X,Y ) ≤H I(X,Z) (second place isotonicity);
(I3) I(0H,0H) = 1H (corner condition 1);
(I4) I(1H,1H) = 1H (corner condition 2); and
(I5) I(1H,0H) = 0H (corner condition 3).
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Table 1. Typical Hesitant Implication Functions

〈H,≤H〉-THIF Restrictions

IFD(X,Y ) =

{
1H, if X ≤H Y,

max(NS(X), Y ), otherwise
NS is a 〈H,≤H〉-negation

IGD(X,Y ) =

{
1H, if X ≤H Y,

Y, otherwise
–

IWB(X,Y ) =

{
1H, ifX ≤H 1H,

Y, if X = 1H.
–

IGR(X,Y ) =

{
1H, if X ≤H Y,

0H, otherwise
–

Proposition 1. If I is an 〈H,≤H〉-THIF then it also satisfies the following
properties:

(I6a) I(0H, Y ) = 1H (left boundary);
(I6b) I(X,1H) = 1H (left and right boundary).

Proof. Straightforward.

There are other properties that some 〈H,≤H〉-THIF can verify as the listed
ones presented in the following.

(I7) I(1H,X) = X (left neutrality property);
(I8) I(X,X) = 1H (identity principle);
(I9) I(X, I(Y,Z)) = I(Y, I(X,Z)) (exchange principle);
(I10) I(X,N (Y )) = I(Y,N (X)), if N is a strong 〈H,≤H〉-negation (right con-

traposition or contrapositive symmetry w.r.t. N );
(I11) I(X,Y ) = I(N (Y ),N (X)), if N is a strong 〈H,≤H〉-negation (law of

contraposition w.r.t. N ).

See in Table 1 examples illustrating the extension of important 〈H,≤H〉-
THIF, namely: Fodor (IFD), Gödel (IGD), Weber (IWB) and Gaines-Rescher
(IGR), with respect to the admissible ≤H-order.

4.1 Obtaining 〈H,≤H〉-THIF from 〈H,≤H〉-t-norms
and 〈H,≤H〉-negations

Inspired in [6,18,19], which introduced a family of implication functions con-
structed from fuzzy negations and a triangular norm, in the following proposi-
tion we present a method to construct a 〈H,≤H〉-THIF from a H-t-norm and a
〈H,≤H〉-negation.

Theorem 2. Let T be a 〈H,≤H〉-t-norm and let N be a 〈H,≤H〉-negation. The
function IN

T : H2 → H defined by

IN
T (X,Y ) = N (T (X,N (Y ))) (4)

is a typical hesitant implication function, denoted as 〈H,≤H〉-implication.
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Proof. We have to prove that IN
T satisfies the five properties of Definition 12.

(I1) If X ≤H Y then by the monotonicity of T , we have T (X,N (Z)) ≤H

T (Y,N (Z)), and by (N1), N (T (Y,N (Z))) ≤H N (T (X,N (Z))). So,
IN

T (Y,Z) ≤H IN
T (X,Z).

(I2) If Y ≤H Z then, by (N1), N (Z) ≤H N (Y ). Therefore, by the mono-
tonicity of T , we have T (X,N (Z)) ≤H T (X,N (Y )) and N (T (X,N (Y ))) ≤H

N (T (X,N (Z))). Thus, IN
T (X,Y ) ≤H IN

T (X,Z).

(I3) IN
T (0H,0H)

Eq.(4)
= N (T (0H,N (0H)))

(N1)
= N (T (0H,1H))

(T 4)
= N (0H)

(N1)
= 1H.

(I4) IN
T (1H,1H)

Eq.(4)
= N (T (1H,N (1H)))

(N1)
= N (T (1H,0H))

(T 4)
= N (0H)

(N1)
= 1H.

(I5) IN
T (1H,0H)

Eq.(4)
= N (T (1H,N (0H)))

(N1)
= N (T (1H,1H))

(T 4)
= N (1H)

(N1)
= 0H.

Therefore, Theorem 2 is verified.

Definition 13. Let T be a 〈H,≤H〉-t-norm and let N be a 〈H,≤H〉-negation.
The function IN

T defined by Eq. (4) is called a typical hesitant (T,N)-implication
function.

Now, it is shown that a 〈H,≤H〉-t-norm can be constructed from a 〈H,≤H〉-
THIF.

Proposition 2. [6] Let N be a strong 〈H,≤H〉-negation and let T be a 〈H,≤H〉-
t-norm. Then, for each X,Y ∈ H,

T (X,Y ) = N (IN
T (X,N (Y ))).

Proof. Straightforward.

Proposition 3. Let IN
T be a typical hesitant (T,N)-implication function, let T

be a 〈H,≤H〉-t-norm and let N be a strong 〈H,≤H〉-negation, then:

(i) IN
T satisfies the left neutrality property (I7);

(ii) IN
T satisfies the exchange principle (I9);

(iii) IN
T satisfies the law of right contraposition w.r.t. N (I10);

(iv) IN
T satisfies the law of contraposition w.r.t. N (I11).

Proof. (I7) Bearing in mind that T is a 〈H,≤H〉-t-norm, then for

any X ∈ H, we have: IN
T (1H,X)

Eq. (4)
= N (T (1H,N (X)))

(T 1)/(T 4)
=

N (N (X))
(N3)
= X.

(I9) Once N is a strong 〈H,≤H〉-negation and T is a 〈H,≤H〉-t-norm, we
have

IN
T (X, IN

T (Y, Z))
Eq.(4)
= N (T (X,N (N (T (Y,N (Z))))))

(N3)
= N (T (X,T (Y,N (Z))))

(T 1)
= N (T (X,T (N (Z), Y )))

(T 2)
= N (T (T (X,N (Z)), Y ))

(T 1)
= N (T (Y, T (X,N (Z))))

(N3)
= N (T (Y,N (N (T (X,N (Z))))))

Eq.(4)
= IN

T (Y, IN
T (X,Z)).
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(I10) Due to the commutativity property of T and since N is a strong
〈H,≤H〉-negation, it follows that

IN
T (X,N (Y ))

Eq. (4)
= N (T (X,N (N (Y ))))

(N3)
= N (T (X,Y ))

(T 1)
= N (T (Y,X))

(N3)
= N (T (Y,N (N (X))))

Eq. (4)
= IN

T (Y,N (X)).

(I11) Analogously, from the commutativity of T and as N is a strong
〈H,≤H〉-negation, we have the next results

IN
T (N (Y ),N (X))

Eq. (4)
= N (T (N (Y ),N (N (X))))

(N3)
= N (T (N (Y ),X))

(T 1)
= N (T (X,N (Y )))

Eq. (4)
= IN

T (X,Y ).

Proposition 4. Let IN
T be a typical hesitant (T,N)-implication and T be a

〈H,≤H〉-t-norm satisfying T 6. Then IN
T satisfies the identity principle (I8).

Proof. Suppose that IN
T is a typical hesitant (T,N)-implication, T is a 〈H,≤H〉-

t-norm such that T (X,N (Y )) = 0H. Then, the following results are verified:

IN
T (X,X)

Eq.(4)
= N (T (X,N (X))

(T 6)
= N (0H) = 1H.

Therefore, Proposition 4 is verified.

Concluding, three examples illustrating such methodology are presented in
the following:

Example 5. Based on the methodology established in Theorem 2 and main oper-
ators presented in Examples 2 and 4, we construct new 〈H,≤H〉-implication func-
tions in the class of typical hesitant (T,N)-implication functions. Meaning that,
the next three functions INS

TP
, INS

TM
, INS

TL
: H

2 → H, respectively expressed as
follows

INS

TP
(X,Y ) = NS(TP (X,NS(Y ))),

INS

TM
(X,Y ) = NS(TM (X,NS(Y ))),

INS

TL
(X,Y ) = NS(TL(X,NS(Y )));

are 〈H,≤H〉-THIF with respect to the admissible linear ≤A1
H

-order and ≤A3
H

-
order:
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5 Final Remarks

Regarding many extensions of multi-valued fuzzy logics, this paper introduces
the definition of the class of (T,N)-implications in the context of Typical Hesitant
Implication Functions, extending such analysis in order to consider their main
properties: left neutrality property, right boundary, law of contraposition and
its corresponding right contraposition based on 〈H,≤H〉-negations, also includ-
ing the identity and exchange principles. As another important contribution,
we investigate the conditions under which the use of admissible orders based
on aggregation operators, performed on 〈H,≤H〉-lattice, allows a comparison of
THFS with different cardinalities. Additionally, among several partial orders
defined over 〈H,≤H〉, the discussed admissible orders on 〈H,≤H〉 promote com-
parisons even between THFS with different cardinalities.

Our results in the class of 〈H,≤H〉-implication functions, named (T,N)-
implications extend the previous study presented in [19]. Thus, this novelty
methodology corroborates with the meaning of 〈H,≤H〉-implication functions,
providing semantic interpretation for implications setting found in multi-valued
fuzzy logics.

As ongoing work, we are considering to prove some other properties of
〈H,≤H〉-THIF operators as a support to generate hesitant fuzzy subsethood
measures, based on the studied class of (T,N)-implications. This study needs
to consider the discussion about how can we have any (generalized) property
of typical hesitant (T,N)-implication, for which the standard property is not
satisfied by the standard (T,N)-implication.

One can easily observe that fuzzy implications have been used in preference
computations also including ordering relations in related works, see e.g. [9]. Fol-
lowing such research approach, further work also intends to apply the present
results on typical hesitant (T,N)-implication in order to achieve new results on
hesitant-based fuzzy preferences relations.
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21. Rodŕıguez, R.M., et al.: A position and perspective analysis of hesitant fuzzy sets on
information fusion in decision making. Towards high quality progress. Inf. Fusion
29, 89–97 (2016). https://doi.org/10.1016/j.inffus.2015.11.004

22. Santos, H.S., Bedregal, B.R.C., Santiago, R.H.N., Bustince, H.: Typical hesitant
fuzzy negations based on Xu-Xia-partial order. In: IEEE Conference on Norbert
Wiener in the 21st Century (21CW), Boston, pp. 1–6 (2014). https://doi.org/10.
1109/NORBERT.2014.6893951

23. Shi, Y., Gasse, B.V., Kerre, E.: The role a fuzzy implication plays in a multi-criteria
decision algorithm. Int. J. Gen. Syst. 42(1), 111–120 (2013). https://doi.org/10.
1080/03081079.2012.710441

24. Torra, V., Narukawa, Y.: On hesitant fuzzy sets and decision. In: Proceedings
of the FUZZ-IEEE 2009, IEEE International Conference on Fuzzy Systems, Jeju
Island, Korea, 20–24 August 2009, pp. 1378–1382 (2009). https://doi.org/10.1109/
FUZZY.2009.5276884

25. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25, 529–539 (2010). https://doi.
org/10.1002/int.20418

26. Wang, H., Xu, Z.: Admissible orders of typical hesitant fuzzy elements and their
application in ordered information fusion in multi-criteria decision making. Inf.
Fusion 29(C), 98–104 (2016). https://doi.org/10.1016/j.inffus.2015.08.009

27. Wang, Z., Xu, Z., Liu, S., Yao, Z.: Direct clustering analysis based on intuitionistic
fuzzy implication. Appl. Soft Comput. 23, 1–8 (2014). https://doi.org/10.1016/j.
asoc.2014.03.037

28. Wei, G.: Hesitant fuzzy prioritized operators and their application to multiple
attribute decision making. Knowl.-Based Syst. 31, 176–182 (2012). https://doi.
org/10.1016/j.knosys.2012.03.011

29. Xia, M., Xu, Z.: Hesitant fuzzy information aggregation in decision making. Int.
J. Approx. Reason. 52(3), 395–407 (2011). https://doi.org/10.1016/j.ijar.2010.09.
002

30. Xia, M., Xu, Z., Chen, N.: Some hesitant fuzzy aggregation operators with their
application in group decision making. Group Decis. Negot. 22(2), 259–279 (2013).
https://doi.org/10.1007/s10726-011-9261-7

31. Xu, Z., Xia, M.: Distance and similarity measures for hesitant fuzzy sets. Inf. Sci.
181(11), 2128–2138 (2011). https://doi.org/10.1016/j.ins.2011.01.028

32. Zhang, H.Y., Yang, S.Y.: Typical hesitant fuzzy rough sets. In: 2015 International
Conference on Machine Learning and Cybernetics (ICMLC), vol. 1, pp. 328–333,
July 2015. https://doi.org/10.1109/ICMLC.2015.7340943

33. Zhang, H., Yang, S.: Inclusion measure for typical hesitant fuzzy sets, the rela-
tive similarity measure and fuzzy entropy. Soft Comput. 20(4), 1277–1287 (2015).
https://doi.org/10.1007/s00500-015-1851-x

34. Zhu, B., Xu, Z., Xia, M.: Hesitant fuzzy geometric Bonferroni means. Inf. Sci. 205,
72–85 (2012). https://doi.org/10.1016/j.ins.2012.01.048

https://doi.org/10.1016/j.inffus.2015.11.004
https://doi.org/10.1109/NORBERT.2014.6893951
https://doi.org/10.1109/NORBERT.2014.6893951
https://doi.org/10.1080/03081079.2012.710441
https://doi.org/10.1080/03081079.2012.710441
https://doi.org/10.1109/FUZZY.2009.5276884
https://doi.org/10.1109/FUZZY.2009.5276884
https://doi.org/10.1002/int.20418
https://doi.org/10.1002/int.20418
https://doi.org/10.1016/j.inffus.2015.08.009
https://doi.org/10.1016/j.asoc.2014.03.037
https://doi.org/10.1016/j.asoc.2014.03.037
https://doi.org/10.1016/j.knosys.2012.03.011
https://doi.org/10.1016/j.knosys.2012.03.011
https://doi.org/10.1016/j.ijar.2010.09.002
https://doi.org/10.1016/j.ijar.2010.09.002
https://doi.org/10.1007/s10726-011-9261-7
https://doi.org/10.1016/j.ins.2011.01.028
https://doi.org/10.1109/ICMLC.2015.7340943
https://doi.org/10.1007/s00500-015-1851-x
https://doi.org/10.1016/j.ins.2012.01.048


Is the Invariance with Respect to Powers
of a t-norm a Restrictive Property on

Fuzzy Implication Functions?
The Case of Strict t-norms

Raquel Fernandez-Peralta1,2 , Sebastia Massanet1,2(B) , and Arnau Mir1,2

1 Soft Computing, Image Processing and Aggregation (SCOPIA) Research Group,
Department Mathematics and Computer Science, University of the Balearic Islands,

07122 Palma, Spain
{r.fernandez,s.massanet,arnau.mir}@uib.es

2 Balearic Islands Health Research Institute (IdISBa), 07010 Palma, Spain

Abstract. The invariance with respect to powers of a t-norm has
emerged as an important property for fuzzy implication functions in
approximate reasoning. Recently, those fuzzy implication functions sat-
isfying this property where fully characterized leading to seemingly new
families of these operators. In this paper, the additional properties of the
family of fuzzy implication functions which are invariant with respect to
powers of a strict t-norm are analyzed. In particular, properties such as
the exchange principle, the law of importation with respect to a t-norm
or the left neutrality principle, among others, can be fulfilled by some
members of this family. This study allows to characterize the intersection
of these operators with the most important families of fuzzy implication
functions.
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1 Introduction

In the last decades, dozens of families of fuzzy implication functions have been
proposed in the literature (see [1,2,5] and references therein). Although some of
these families have boosted some applications in which fuzzy implication func-
tions play a key role, other families struggle to stand out since they do not satisfy
any differentiating additional property with respect to the rest. Moreover, this
vast number of families is starting to cause some major problems in the research
of the field [6]. Therefore, it is necessary to analyze in depth those families of
fuzzy implication functions which provide uncommon but useful properties and
to analyze their relationship and intersections with other well-known families.
This will allow the community to disclose more about the structure of these
operators and to open new potentially useful lines of research.
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In this direction, the invariance property with respect to powers of a contin-
uous t-norm was proposed in [8] as an additional property of fuzzy implication
functions with applications in approximate reasoning. As it is stated in [8], the
fulfillment of this property ensures that the following fuzzy propositions from
the classical example given in [10]:

If the tomato is red, then it is ripe.
If the tomato is very red, then it is very ripe.
If the tomato is little red, then it is little ripe.

have the same truth value whenever the linguistic modifiers “very” and “little”
are modeled using powers of continuous t-norms. This additional property is not
satisfied in general by the most usual families of fuzzy implication functions.
Therefore, in [8], the so-called T -power based implications are introduced as a
family of fuzzy implication functions satisfying the invariance for many t-norms
(see the corrigendum [7] also). Later, in [9], the complete characterization of all
fuzzy implication functions satisfying the invariance property with respect to
powers of a continuous t-norm is achieved. Indeed, the characterization depends
on the type of continuous t-norm and provides the expression of the family
of fuzzy implication functions fulfilling the property. However, in [9], only this
property is studied and up to now, it is unknown which other additional proper-
ties can be satisfied by the members of these families of invariant implications.
Thus, the goal of this paper is to study which well-known additional proper-
ties these fuzzy implication functions satisfy and under which conditions. As a
first approach to this problem, this paper deals with the family of fuzzy impli-
cation functions which are invariant with respect to powers of a strict t-norm.
This study will encourage the use of fuzzy implication functions in approximate
reasoning where other additional properties may be required in addition to the
invariance property. Moreover, as a straightforward consequence, the study of
the additional properties of this family allows to determine the intersection of
this family with some of the most important families of fuzzy implication func-
tions, namely (S,N), R, QL and Yager’s f and g generated implications (see
[1]).

The paper is organized as follows. In the next section we recall some basic
definitions and properties on fuzzy implication functions. In Sect. 3, the family of
fuzzy implication functions which are invariant with respect to powers of strict
t-norms is recalled and its definition is revisited. Then, in Sect. 4, the additional
properties of the family are deeply analyzed and the conditions under which this
family fulfills them are determined. After that, in Sect. 5, the intersections of
this family with some well-known families is derived from the study carried out
in the previous section. The paper ends with some conclusions and future work.

2 Preliminaries

To make this work self-contained, we recall here some of the concepts and results
which will be used throughout the paper. Although we will suppose the reader
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is familiar with basic results on t-norms (see [4,12] for more details), we recall
the definition of a strict t-norm and the expression of its powers.

Definition 1 ([4]). A function T : [0, 1]2 → [0, 1] is called a strict t-norm
if there exists a continuous, strictly decreasing function t : [0, 1] → [0,+∞]
with t(0) = +∞ and t(1) = 0, which is uniquely determined up to a positive
multiplicative constant, such that T is given by

T (x, y) = t−1(t(x) + t(y))

for all x, y ∈ [0, 1].

Powers of a t-norm T , which are defined in detail in [12] and will be denoted
by x

(r)
T with x ∈ [0, 1] and r ∈ [0,+∞], can be expressed for strict t-norms T in

terms of an additive generator of the t-norm.

Proposition 1 ([12]). Let T be a strict t-norm with additive generator t. Then

x
(r)
T = t−1(rt(x)) for all x ∈ [0, 1] and r ∈ [0,+∞]

with the convention that +∞ · 0 = 0.

We start now with the definition of a fuzzy implication function.

Definition 2 ([1,3]). A binary operator I : [0, 1]2 → [0, 1] is said to be a fuzzy
implication function if it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈ [0, 1].
(I2) I(x, y) ≤ I(x, z) when y ≤ z, for all x ∈ [0, 1].
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

From the definition, it can be easily derived that I(0, x) = 1 and I(x, 1) = 1
for all x ∈ [0, 1]. On the other hand, the symmetrical values I(x, 0) and I(1, x)
are not predetermined from the definition.

Along the history of fuzzy implication functions, additional properties of
these functions have been postulated (see [1,3,11] for more details). Among
the most important and those that are relevant for this work we stand out the
following ones:

– The identity principle

I(x, x) = 1, x ∈ [0, 1]. (IP)

– The ordering property

I(x, y) = 1 ⇔ x ≤ y, x, y ∈ [0, 1]. (OP)

– The exchange principle

I(x, I(y, z)) = I(y, I(x, z)), x, y, z ∈ [0, 1]. (EP)
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– The law of importation with respect to a t-norm T

I(T (x, y), z) = I(x, I(y, z)), x, y, z ∈ [0, 1]. (LI)T

– The left neutrality principle

I(1, y) = y, y ∈ [0, 1]. (NP)

– The iterative boolean law

I(x, y) = I(x, I(x, y)), x, y ∈ [0, 1]. (IB)

In addition to the previous additional properties, the invariance property
with respect to t-norms was recently proposed in [8] in order to deal with the
classical problem of the tomato recalled in the introduction.

Definition 3 ([8]). Let I be a fuzzy implication function and T a continuous
t-norm. It is said that I is invariant with respect to T -powers, or simply that it
is T -power invariant when

I(x, y) = I
(
x
(r)
T , y

(r)
T

)
, (PIT)

holds for all real number r > 0 and for all x, y ∈ [0, 1] such that x
(r)
T , y

(r)
T �= 0, 1.

3 Strict T -power Invariant Implications

In [9] all fuzzy implication functions which are invariant with respect to T -powers
when T is a strict t-norm were characterized in the following theorem.

Theorem 1 ([9, Theorem 8]). Let T be a strict t-norm and t an additive
generator of T . A mapping I : [0, 1]2 → [0, 1] is a fuzzy implication function
invariant with respect to T -powers if and only if there exists an increasing map-
ping ϕ : [0,+∞] → [0, 1] with ϕ(0) = 0, ϕ(+∞) = 1 and such that I is given
by

I(x, y) = ϕ

(
t(x)
t(y)

)
, for all (x, y) ∈ [0, 1]2 \ {(x, 0), (1, y)|0 < x, y < 1}, (1)

with the convention that 0
0 = +∞

+∞ = +∞, and such that the remaining values
I(x, 0) and I(1, y) preserve the monotonicity conditions.

The aim of this paper is to study the family of fuzzy implication functions
described in the theorem above. In order to do so, we first provide a concrete
definition of such family and we establish the conditions which ensure that these
functions are indeed fuzzy implication functions.

Let us consider T a strict t-norm, t an additive generator of T and I :
[0, 1]2 → [0, 1] a fuzzy implication function invariant with respect to T -powers.
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From Theorem 1 we know that there exists an increasing mapping ϕ : [0,+∞] →
[0, 1] with ϕ(0) = 0, ϕ(+∞) = 1 and such that I is given by (1).

First of all, notice that since the additive generator of a t-norm is unique up to
a positive multiplicative constant, the definition of I is independent from the
considered additive generator of T . Let us define f(x) = I(x, 0) for all x ∈ (0, 1)
and g(y) = I(1, y) for all y ∈ (0, 1). Now, in order for I to be a fuzzy implication
function, the functions f and g need to respect the monotonicity conditions (I1)
and (I2). From (I2) we get that g has to be an increasing function and, for a
fixed x ∈ (0, 1) the following condition must hold

f(x) = I(x, 0) ≤ I(x, y) = ϕ

(
t(x)
t(y)

)
, for all y ∈ (0, 1). (2)

On the other hand, from (I1) we get that f has to be a decreasing function and,
for a fixed y ∈ (0, 1) the following condition must hold

g(y) = I(1, y) ≤ I(x, y) = ϕ

(
t(x)
t(y)

)
, for all x ∈ (0, 1). (3)

Now, it is easy to prove that inequalities (2) and (3) hold if and only if

inf
w∈(0,+∞)

ϕ(w) ≥ max

{
sup

y∈(0,1)

g(y), sup
x∈(0,1)

f(x)

}
.

Having said this, we provide the following definition of the family of fuzzy
implication functions that are T -power invariant with respect to a strict t-norm.

Definition 4. Let T be a strict t-norm and t an additive generator of T . Let
f : (0, 1) → [0, 1] be a decreasing function and ϕ : [0,+∞] → [0, 1], g : (0, 1) →
[0, 1] increasing functions such that ϕ(0) = 0, ϕ(+∞) = 1 and

inf
w∈(0,+∞)

ϕ(w) ≥ max

{
sup

y∈(0,1)

g(y), sup
x∈(0,1)

f(x)

}
. (4)

The function IT
ϕ,f,g; [0, 1]2 → [0, 1] defined by

IT
ϕ,f,g(x, y) =

⎧
⎪⎨
⎪⎩

f(x) if x ∈ (0, 1) and y = 0,
g(y) if x = 1 and y ∈ (0, 1),
ϕ

(
t(x)
t(y)

)
otherwise,

(5)

with the understanding 0
0 = +∞

+∞ = +∞, is called a strict T -power invariant
implication.

In Fig. 1 we can see the structure of fuzzy implication functions given by Expres-
sion (5).
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1

01

1 1

f(x)

1 g(y)ϕ
(

t(x)
t(y)

)

Fig. 1. Structure of the family of strict T -power invariant implications.

Notice that Condition (4) imposes that the function ϕ is bounded below by
any possible value of f and g (see Example 1). Although the structure of strict T -
power invariant implications may seem flexible since it depends of three unknown
functions, as a matter of fact, Condition (4) severely restricts the choices of
functions ϕ, f and g for which IT

ϕ,f,g is a fuzzy implication function. Indeed, the
following proposition studies the continuity of strict T -power implications and
shows that certain desired properties of IT

ϕ,f,g lead to impose that ϕ, f or g are
constant functions.

Proposition 2. Let IT
ϕ,f,g be a strict T -power invariant implication. The fol-

lowing statements hold:

(i) If ϕ is continuous at w = 0, then f(x) = g(y) = 0 for all x, y ∈ (0, 1).
(ii) If lim

x→0+
f(x) = 1 or lim

y→1−
g(y) = 1, then ϕ(w) = 1 for all w ∈ (0, 1).

(iii) IT
ϕ,f,g is continuous at (x, 0) for x ∈ (0, 1) if and only if f(x) = lim

w→0+
ϕ(w).

(iv) IT
ϕ,f,g is continuous at (1, y) for y ∈ (0, 1) if and only if g(y) = lim

w→0+
ϕ(w).

(v) IT
ϕ,f,g is continuous at (x, 1) and (0, x) for all x ∈ [0, 1] if and only if
lim

w→+∞ ϕ(w) = 1.

(vi) IT
ϕ,f,g is continuous at (x0, y0) with x0, y0 ∈ (0, 1) if and only if ϕ is contin-

uous at t(x0)
t(y0)

. In this case, IT
ϕ,f,g is also continuous at the following points

(
x, t−1

(
t(x)t(y0)

t(x0)

))
, for all x ∈ (0, 1).

Moreover, from (ii) in the previous result it is easy to see that IT
ϕ,f,g is never

a continuous function.

Corollary 1. Let IT
ϕ,f,g be a strict T -power invariant implication. Then at least

one of the following conditions holds:

(i) IT
ϕ,f,g is discontinuous at (1,0).

(ii) IT
ϕ,f,g is discontinuous at (0,0) or (1,1).
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Example 1. Let us show two examples of strict T -power invariant implications.

(i) Let us consider t(s) = 1−s
s for all s ∈ [0, 1], f(x) = 1−x

3 for all x ∈ (0, 1),
g(y) = y

3 for all y ∈ (0, 1) and

ϕ(w) =
{

0 if w = 0,
w+1
w+3 otherwise.

The corresponding strict T -power invariant implication is given by

I1(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

1 if (x, y) ∈ {(1, 1), (0, 0)},
1−x
3 if x ∈ (0, 1] and y = 0,

y
3 if x = 1 and y ∈ (0, 1),
y−2xy+x
y−4xy+3x otherwise.

(ii) Let us consider t(s) = 1−s
s for all s ∈ [0, 1], f(x) = g(y) = 0 for all x, y ∈

(0, 1) and

ϕ(w) =
{

w if w < 1,
1 otherwise.

The corresponding strict T -power invariant implication is given by

I2(x, y) =

⎧
⎨
⎩

0 if (x ∈ (0, 1] and y = 0) or (x = 1 and y ∈ (0, 1)),
(1−x)y
(1−y)x if 0 < x < y < 1,

1 otherwise.

These two fuzzy implication functions are displayed in Fig. 2.

(i) I1 (ii) I2

Fig. 2. Plots of fuzzy implication functions given in Example 1.
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4 Additional Properties

In [8] it was shown that T -power based implications do not satisfy most of
the main additional properties of fuzzy implication functions such as the left
neutrality principle, the exchange property or the law of importation with respect
to any t-norm. This situation represents a problem if we want to consider fuzzy
implication functions that are T -power invariant but also satisfy other common
additional properties. In this section, we generalize the study made in [8] by
considering strict T -power invariant implications and we show that, in this case,
there are choices for ϕ, f and g which ensure that IT

ϕ,f,g can also satisfy the
properties considered.

First of all, we consider the identity principle and the ordering prop-
erty. These two properties were already studied in [9] to show that although
IT
ϕ,f,g(x, x) is constant for all x ∈ (0, 1), (IP) is not guaranteed.

Proposition 3 ([9, Theorem 9]). Let IT
ϕ,f,g be a strict T -power invariant

implication. Then IT
ϕ,f,g satisfies (IP) if and only if ϕ(1) = 1. In this case,

IT
ϕ,f,g satisfies (OP) if and only if ϕ(w) < 1 for all w < 1.

Next, we show that if a strict T -power invariant implication satisfies the left
neutrality principle then it is constant to 1 for all x, y ∈ (0, 1).

Proposition 4. Let IT
ϕ,f,g be a strict T -power invariant implication. Then IT

ϕ,f,g

satisfies (NP) if and only if g(y) = y for all y ∈ (0, 1). Moreover, in this case
IT
ϕ,f,g is given by

IT
ϕ,f,g(x, y) =

⎧
⎨
⎩

f(x) if x ∈ (0, 1) and y = 0,
y if x = 1 and y ∈ [0, 1),
1 otherwise.

(6)

In Fig. 3 we can see the structure of strict T -power invariant implications that
fulfill (NP) and (OP).

1

01

1 1

f(x)

1 y1

1

01

1 1

f(x)

1 g(y)
1

ϕ
(
t(x)
t(y)

)

Fig. 3. Structure of strict T -power invariant implications that satisfy (NP) and (OP),
respectively.
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Now, let us consider the exchange principle. The next result shows that
there are five possible configurations of strict T -power invariant implications
that result in functions that satisfy (EP).

Proposition 5. Let IT
ϕ,f,g be a strict T -power invariant implication. Then IT

ϕ,f,g

satisfies (EP) if and only if one of the following conditions hold:

(i) Let C ∈ (0,+∞), then ϕ(w) = t−1
(

C
w

)
for all w ∈ (0,+∞) and f(x) =

g(y) = 0 for all x, y ∈ (0, 1).
(ii) Let k ∈ [0, 1], then ϕ(w) = k for all w ∈ (0,+∞) and f(x) = g(y) = 0 for

all x, y ∈ (0, 1).
(iii) Let k ∈ (0, 1], then ϕ(w) = k for all w ∈ (0,+∞) and one of the following

conditions holds:
(a) f(x) =

{
k if x ∈ A,
0 if x ∈ (0, 1) \ A,

where A is (0, a] or (0, a) with a ∈ (0, 1) or

A = ∅ and Im g ⊆ (0, k].
(b) f(x) = k for all x ∈ (0, 1) and Im g ⊆ [0, k].
(c) Im f ⊆ (0, k], Im g ⊆ (0, k] and g(y) = y for all y ∈ Im f \ {1}.

Moreover, if k < 1, g must additionally satisfy g(k) = k.

In Fig. 4 we summarize the possible configurations of strict T -power invariant
implications that fulfill (EP). Notice that only configuration (i) corresponds to
a fuzzy implication function that is not constant in (0, 1)2.

Example 2. Let us consider t(s) = 1−s
s for all s ∈ [0, 1]. The corresponding strict

T -power invariant implication that satisfies (EP) and is non-constant in (0, 1)2

is given by

I3(x, y) =

⎧
⎨
⎩

1 if x = 0 and y = 1,
0 if (y = 0 and x ∈ (0, 1)) or (x = 1 and y ∈ [0, 1)),

(1−x)y
Cx−Cxy+y−xy otherwise,

where C ∈ (0,+∞). Note that I3 corresponds to the solution given in Proposi-
tion 5-(i). In Fig. 5 we can see the plots of some members of this family of fuzzy
implication functions for C = 1, C = 10 and C = 100.

Next, we study the law of importation with respect to a t-norm T ∗. The
following result establishes the three possible configurations of strict T -power
invariant implications that satisfy the law of importation with respect to some
t-norm.

Proposition 6. Let IT
ϕ,f,g be a strict T -power invariant implication and T ∗ a

t-norm. Then IT
ϕ,f,g satisfies (LI) with respect to T ∗ if and only if one of the

following conditions hold:

(i) ϕ(w) = 0 for all w ∈ (0,+∞), f(x) = g(y) = 0 for all x, y ∈ (0, 1) and T ∗

is a positive t-norm.
(ii) Let k ∈ (0, 1], then ϕ(w) = k for all w ∈ (0,+∞), g(y) = y for all y ∈

Im g \ {0, 1}, and one of the following conditions hold:
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1

01

1 1

0

1 0t−1
(

Ct(y)
t(x)

)

(i) Case (i)

1

01

1 1

0

1 0k ∈ [0, 1]

(ii) Case (ii)
1

01

1 1

1 k ∈ (0, 1]
g(k) = k if k < 1

Im g ⊆ (0, k]

ak 0

(iii) Case (iii)-(a)

1

01

1 1

1 k ∈ (0, 1]
g(k) = k if k < 1

Im g ⊆ [0, k]

k

(iv) Case (iii)-(b)
1

01

1 1

1 k ∈ (0, 1]

Im f ⊆ (0, k]

g(k) = k if k < 1

g(y) = y, y ∈ Im f \ {1}
Im g ⊆ (0, k]

(v) Case (iii)-(c)

Fig. 4. Structure of strict T -power invariant implications that satisfy (EP) defined in
Proposition 5.

(a) f(x) =
{

k if x ∈ A,
0 if x ∈ (0, 1) \ A,

where A is (0, a] or (0, a) with a ∈ (0, 1) or

A = ∅, T ∗ satisfies the following property:

T ∗(x, y) ∈ (0, 1] \ A if and only if x, y ∈ (0, 1] \ A,

and Im g ⊆ (0, k].
(b) 0 �∈ Im f , f(x) = k for all x ∈ Im T ∗|(0,1)2 \ {0}, g(y) = y for all y ∈

Im f \ {1} and Im g ⊆ [0, k] but g(y) > 0 for all y ∈ (0, 1) when f is not
a function constant to k.

Moreover, if k < 1, g must additionally satisfy g(k) = k and T ∗ must be a
positive t-norm.
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(i) C = 1 (ii) C = 10 (iii) C = 100

Fig. 5. Plots of fuzzy implication function given in Example 2 for C = 1, C = 10 and
C = 100.

Example 3. Let us consider ϕ(w) = 1
2 for all w ∈ (0, 1), f(x) = 1

2 for all x ∈ (0, 1)
and

g(y) =

⎧
⎪⎨
⎪⎩

y if y ∈ (0, 1
4 ),

1
2 if y ∈ [ 14 , 1

2 ],
1 if y ∈ ( 12 , 1).

The corresponding strict T -power invariant implication

IT
ϕ,f,g(x, y) =

⎧
⎨
⎩

y if x = 1 and y ∈ [0, 1
4 ),

1 if x = 0 or y = 1 or (x = 1 and y ∈ (12 , 1)),
1
2 otherwise,

satisfies the law of importation with respect to any positive t-norm, for instance
the minimum t-norm TM (x, y) = min(x, y) or the product t-norm TP (x, y) = xy.

Remark 1. Let us consider a strict T -power invariant implication under the con-
ditions of (iii)-(a) in Proposition 6 where A = (0, a) with a ∈ (0, 1) and k ∈ (0, 1).
Then, this fuzzy implication function satisfies the law of importation with respect
to any positive t-norm T ∗ such that T ∗(x, y) ∈ [a, 1] if and only if x, y ∈ [a, 1].
For instance, T ∗ can be a continuous positive t-norm with a as an idempotent
element. However, a further study must be made in order to characterize all
t-norms that fulfill such condition.

Finally, we analyze under which conditions strict T -power invariant implica-
tions satisfy the iterative boolean law. In this case, we see that ϕ needs to be a
constant function or its only possible values are 0 and 1.

Proposition 7. Let IT
ϕ,f,g be a strict T -power invariant implication. Then IT

ϕ,f,g

satisfies (IB) if and only if one of the following conditions hold:

(i) Im ϕ ⊆ {0, 1}, ϕ is not constant to 1 and f(x) = g(y) = 0 for all x, y ∈ (0, 1).
(ii) Let k ∈ (0, 1], then ϕ(w) = k for all w ∈ (0,+∞), Im f ⊆ {0, k}, Im g ⊆

[0, k] and g(y) = y for all y ∈ Im g \ {0, 1}.
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Example 4. Let T be any strict t-norm, t an additive generator of T , f(x) =
g(y) = 0 for all x, y ∈ (0, 1) and

ϕ(w) =
{

0 if w < 1
a ,

1 otherwise,

with a ∈ (0,+∞). Then, the corresponding strict T -power invariant implication

IT
ϕ,f,g(x, y) =

{
0 if y < t−1(at(x)),
1 otherwise,

satisfies the iterative boolean law.

Remark 2. According to Propositions 4, 5, 6 and 7 all strict T -power invariant
implications that satisfy (NP), (EP), (IB) or (LI)T except case (i) in Propo-
sition 5 and case (i) in Proposition 7, are given by a ϕ which is constant in
(0,+∞). Therefore, these fuzzy implication functions are given by an expression
which is independent from the generator of the corresponding t-norm. Then,
they are also T -power invariant with respect to any strict t-norm. This fact
reflects that imposing the T -power invariance with some additional property is
very restrictive and usually results in degenerated solutions.

5 Intersection with the Main Families of Fuzzy
Implication Functions

It is well-known that an important step when studying a new family of fuzzy
implication functions is to study their intersection among other families of fuzzy
implication functions. In this section we investigate whether the family of strict
T -power invariant implications intersects with five of the most well-known fam-
ilies of fuzzy implication functions. Let us denote the following families of fuzzy
implication functions:

I
T
ϕ,f,g − the family of all strict T -power invariant implications;
IS,N − the family of all (S,N)-implications;
IT − the family of all R-implications;

IQL − the family of all QL-implications;
IF − the family of all f -generated implications;
IG − the family of all g-generated implications.

In [8] it was pointed out that T -power based implications have no intersection
with all the above families because they do not satisfy the left neutrality prin-
ciple. However, we have seen that there are choices for f , g and ϕ such that the
corresponding strict T -power invariant implication satisfies (NP). For instance,
the following fuzzy implication function satisfies both (NP) and (EP):

I∗(x, y) =

⎧
⎨
⎩

f(x) if x ∈ (0, 1) and y = 0,
y if x = 1 and y ∈ [0, 1),
1 otherwise,
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where f : (0, 1) → [0, 1] is any decreasing function with Im f ⊆ (0, 1]. Notice
that if we choose f(x) = 1 for all x ∈ (0, 1) we obtain the well-known Weber
implication

IWB(x, y) =
{

y if x = 1 and y ∈ [0, 1],
1 otherwise.

Thanks to the study of the previous section, we are able to prove that strict
T -power invariant implications have non-empty intersection with R, QL and
(S,N)-implications. Indeed, the following proposition provides the complete
characterization of the intersections of interest.

Proposition 8. The following equalities are true:

– I
T
ϕ,f,g ∩ IT = IWB.

– I
T
ϕ,f,g ∩ IS,N = I

T
ϕ,f,g ∩ IQL = I∗.

– I
T
ϕ,f,g ∩ IF = I

T
ϕ,f,g ∩ IG = ∅.

Notice that although the intersection of strict T -power invariant implications
and R, QL and (S,N)-implications is not empty, the fuzzy implication functions
that belong to this intersection are constant to 1 in (0, 1)2. Therefore, we can
conclude that the T -power invariance property with respect to a strict t-norm is
not satisfied for almost all fuzzy implication functions that belong to the most
well-known families of fuzzy implication functions. In this sense, it is relevant to
study strict T -power invariant implications as a new family of fuzzy implication
functions.

6 Conclusions and Future Work

In this paper, the most usual additional properties of fuzzy implication functions
have been studied for the family of strict T -power invariant implications, those
fuzzy implication functions which are invariant with respect to powers of a strict
t-norm. The results show that members of this family can satisfy other additional
properties in addition to the invariance property. While for some properties such
as (NP) or (LI)T, the only solutions are fuzzy implication functions which are
constant in (0, 1)2, other properties such as (IB), (OP) or (EP) provide richer
non-constant solutions. Note that these results are in fact characterizations of
all fuzzy implication functions which satisfy both the invariance with respect
to powers of a strict t-norm and the corresponding other additional property.
Finally, from these results, the intersections with the most well-known families
is fully determined leading to some R, QL and (S,N)-implications which are
also invariant with respect to powers of a strict t-norm.

As future work, we want to perform a similar study for the family of nilpotent
T -power invariant implications and also for those fuzzy implication functions
which are invariant with respect to powers of an ordinal sum t-norm.
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Abstract. In our contribution we give some remarks and conclusions
regarding reasoning schemas used in approximate reasoning. Based on
created computer tool for image customization we give some advices
regarding FITA. Also, we show some facts regarding Bandler-Kohout
subproduct and we present results for several inference schemas.
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1 Introduction

Approximate reasoning is an often used concept when it is required to obtain
meaningful results from imprecise data. One idea comes from Zadeh [15], where
we use some inference schemas to receive such results. These schemas are based
on their classic versions like:

– hypothetical syllogism
A → B ∧ B → C
∴ A → C

– modus ponens
A → B ∧ A
∴ B

– modus tollens
A → B ∧ ¬B
∴ ¬A

– reduction to absurdity
¬A → B ∧ ¬B
∴ A

where A,B,C are any statements. The one which is the most commonly applied
is generalized modus ponens (GMP):
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RULE: IF x is A, THEN y is B.
FACT: x is A′.

CONCLUSION: y is B′,

where x, y are some objects and A,B,A′, B′ are some properties. In our case
these properties are represented by fuzzy sets so we are able to compute the
values of B′ using the following method:

B′ := A′ � R,

where R is a fuzzy relation and � is a composition of such R and a fuzzy set A′.
More precisely, if we use the composition proposed by Zadeh - the compositional
rule of inference (CRI), which is the most popular, we have the following formula
for our result:

B′(y) := sup
x∈X

T (A′(x), I(A(x), B(y))), y ∈ Y, (1)

where T is a t-norm (or any generalization of classical conjunction) and I is a
fuzzy implication (or any generalization of classical implication). Another kind
of a composition � is the Bandler-Kohout subproduct (BKS) [3,13]. In this case
we usually use different model of a relation R and we consider the following
formula:

B′(y) := inf
x∈X

I(A′(x), T (A(x), B(y))), y ∈ Y. (2)

For both of them we almost always require a minimal property of interpolativity.
It is nothing else but satisfying a classic version of modus ponens, i.e., if we take
A′ = A, then we should obtain B′ = B. Therefore, if we take into account all
possible values of fuzzy sets A,B (i.e., the unit interval [0, 1]), then from (1)
and (2) we receive the following two functional equations:

y = sup
x∈[0,1]

T (x, I(x, y)), y ∈ [0, 1], (CRI-GMP)

y = inf
x∈[0,1]

I(x, T (x, y)), y ∈ [0, 1], (BK-GMP)

where T is a t-norm and I is a fuzzy implication. Both functional equations
(or their counterparts written as inequalities) were studied extensively in the
literature for different classes of operations (see [2,14]).

In many applications of generalized modus ponens, the rule base is not con-
sisted of only one rule IF - THEN, but is contains more of them. Hence we have
the following scheme:

IF x is A1, THEN y is B1, (3)
IF x is A2, THEN y is B2,

. . .

IF x is An, THEN y is Bn,

FACT: x is A′.
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To obtain the conclusion: y is B′ (which is based on all given rules) there are
two main strategies (see [2,10]):

– FATI - First Aggregate, Then Infer:

Aggregate: R(x, y) = G(R1(x, y), . . . , Rn(x, y))
= G(I(A1(x), B1(y)), . . . , I(An(x), Bn(y))),

Infer: B′(y) := A′(x) ◦ R(x, y);

– FITA - First Infer, Then Aggregate:

Infer: B′
i(y) = A′(x)

T◦ Ri(x, y) = A′(x)
T◦ I(Ai(x), Bi(y)),

for all i ∈ {1, . . . , n},

Aggregate: B′(y) = G(B′
1(y), . . . , B′

n(y)),

where G is some aggregation function (it can be a t-norm).
Later we will present some conclusions regarding usage of FITA. Moreover,

in our paper we would like to present some other results and corollaries that we
obtained during work on a computer tool for image customization. We prepared
it in order to test if our theoretical results concerning some reasoning schemas
have an impact on applications of approximate reasoning (and what type). We
used GMP scheme and this is a starting point for some other investigations.

The paper is organized as follows. Section 2 contains briefly description of
the mentioned tool and some preliminaries which will be used in a sequel. In
Sect. 3 we present some observations based on exemplary images. In Sect. 4 we
conclude our paper and give some plans for future work.

2 Basic Notions and Facts

2.1 Preliminaries

To make this paper self-contained we placed here some basic definitions regarding
fuzzy connectives and some aggregation operators.

Definition 2.1 (see [2,9]). A non-increasing function N : [0, 1] → [0, 1] is
called a fuzzy negation, if N(0) = 1, N(1) = 0. Moreover, a fuzzy negation N is
called

(i) strict if it is strictly decreasing and continuous,
(ii) strong if it is an involution, i.e., N(N(x)) = x for all x ∈ [0, 1].

Definition 2.2 ([8]). Let n ∈ N. An aggregation function in [0, 1]n is a function
A(n) : [0, 1]n → [0, 1] which satisfies the following conditions:

(i) it is nondecreasing (in each variable),
(ii) A(n)(0, . . . , 0) = 0 and A(n)(1, . . . , 1) = 1.
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Definition 2.3 ([7]). A function S : [0, 1]2 → [0, 1] is called a semicopula if it
satisfies the following conditions:

(i) S(x, 1) = S(1, x) = x, x ∈ [0, 1],
(ii) S is non-decreasing with respect to each variable.

Definition 2.4 ([8]). An n-ary mean in [0, 1]n is an aggregation function M (n)

which is internal, i.e.,

min{x1, . . . , xn} ≤ M (n)(x1, . . . , xn) ≤ max{x1, . . . , xn},

for all (x1, . . . , xn) ∈ [0, 1]n.

Definition 2.5 ([9, Definition 1.1]). A function T : [0, 1]2 → [0, 1] is called
a triangular norm (shortly t-norm) if it satisfies the following conditions, for all
x, y, z ∈ [0, 1]:

(T1) T (x, y) = T (y, x), i.e., T is commutative,
(T2) T (x, T (y, z)) = T (T (x, y), z), i.e., T is associative,
(T3)]T is non-decreasing with respect to each variable,
(T4) T (x, 1) = x.

Definition 2.6 ([1]). The diagonal of a t-norm T is the function δT : [0, 1] →
[0, 1] defined by

δT (x) = T (x, x), x ∈ [0, 1]. (4)

For more detailed facts about diagonals of t-norms see [11].

Definition 2.7 ([8, Definition 2.45]). A function F : [0, 1]n → R is idempo-
tizable if its diagonal δF is strictly increasing and satisfies ran(δF ) = ran(F ).

Definition 2.8 ([8, Definition 4.2]). A function M : [0, 1]n → [0, 1] is an
average in [0, 1]n if there exists a nondecreasing and idempotizable function
F : [0, 1]n → R such that

F = δF ◦ M.

In this case, we say that M is as average associated with F in [0, 1]n.

Definition 2.9 ([2, Definition 1.1.1]). A function I : [0, 1]2 → [0, 1] is called
a fuzzy implication if it satisfies the following conditions:

(I1) I is non-increasing with respect to the first variable,
(I2) I is non-decreasing with respect to the second variable,
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

The set of all fuzzy implications will be denoted by FI.
Definition 2.10 (see [2]). We say that a fuzzy implication I satisfies

(i) the left neutrality property, if

I(1, y) = y, y ∈ [0, 1], (NP)
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(ii) the ordering property, if

x ≤ y ⇐⇒ I(x, y) = 1, x, y ∈ [0, 1]. (OP)

Definition 2.11 ([2, Definition 2.5.1]). A function I : [0, 1]2 → [0, 1] is called
an R-implication if there exists a t-norm T such that

I(x, y) = sup{t ∈ [0, 1] : T (x, t) ≤ y}, x, y ∈ [0, 1].

If I is generated from a t-norm T , then it will be denoted by IT .

Definition 2.12 ([2, Definition 1.4.15]). Let I be a fuzzy implication. A func-
tion NI : [0, 1] → [0, 1] given by

NI(x) = I(x, 0), x ∈ [0, 1], (5)

is called the natural negation of I.

Example 2.13. Some basic t-norms and generated R-implications are presented
in Fig. 1.

t-norm T R-implication IT

TD(x, y) =

{
0, x, y ∈ [0, 1)
min{x, y}, otherwise

IWB(x, y) =

{
1, x < 1
y, x = 1

TLK(x, y) = max{0, x + y − 1} ILK(x, y) = min{1, 1 − x + y}
TP(x, y) = x · y IGG(x, y) =

{
1, x ≤ y
y
x
, x > y

TM(x, y) = min{x, y} IGD(x, y) =

{
1, x ≤ y

y, x > y

Fig. 1. Examples of basic R-implications.

2.2 Description of a Computer Tool

Let us take any picture where colors are given in RGB romat. Any pixel of such
image can be seen as an object where we could adjust properties according to
user choice/preferences. For instance, the user wants to change the color palette
like below:

[76, 153, 0] → [128, 255, 0]
from green to lighter between yellow and green
[255, 255, 0] → [255, 178, 102]

from yellow to one with orange tones.
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We can use GMP to compute values of such “vectors” of all pixels.
Let us consider some examples. Firstly, let us take the pair (TLK, ILK). In the

phase of aggregating (here for FITA) we need to apply an aggregation function.
It turns out the same t-norm will not give satisfying results. Let us compare
images presented in Fig. 2. Better results (according to our subjective opinion)
are obtained in Fig. 2(b) and worse are presented in Fig. 2(c). For this pair we
used different aggregation methods – the arithmetic mean and the �Lukasiewicz
t-norm. In the next part of our paper we give some possible justification which
shows why it is better to apply some means instead of t-norms or other class of
aggregation functions.

(a) The original image

(b) Image obtained with
(TLK, ILK) and arithmetic
mean for aggregating

(c) Image obtained with
(TLK, ILK) and TLK for
aggregating

Fig. 2. Examples of images used in our programme – CRI.
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3 Main Results

3.1 Case of FITA

As we mentioned in Introduction, the basic property for compositions like CRI
or BKS is interpolativity. Sometimes it is also called consistency [5] (in fact
in [4,5] the authors showed that FATI is not consistent). However, when we are
thinking about this property we focus mainly on IF - THEN rules. Nevertheless,
for the cases of more than one rule it is important to choose a proper aggrega-
tion operator. Note that for the rule base (3) and the fact x is A′ and taking
A′ = Ai, i ∈ {1, . . . , n}, we can check interpolativity separately for each rule.
So for the aggregation operator G we would obtain G(B1, . . . , Bn). Based on
intepolativity, an intuitive approach is when Bi = B, i ∈ {1, . . . , n} and then
G(B, . . . , B) should be equal to B, which means G is idempotent. Such func-
tions are for instance OWA functions, medians, averaging aggregation functions.
Among them there are also means.

Remark 3.1 (cf [8]). For many t-norms and means there is the following rela-
tionship between M (a mean) and T (a t-norm):

δT ◦ M = T.

Example 3.2. Some classical means associated with t-norms are presented in
Fig. 3.

M T δT

TM TM x
x+y
2

TLK max{0, 2x − 1}√
xy TP x2

2
1
x
+ 1

y

TH(x, y) =

{
0, x = 0 ∧ y = 0,

xy
x+y−xy

, otherwise.
x2

2x−x2

Fig. 3. Classical means, corresponding t-norms and their diagonals.

Motivated by the above usage of means and t-norms we can define the fol-
lowing class of aggregation functions.

Proposition 3.3. Let G : [0, 1]2 → [0, 1] be an idempotent function and let
T1, T2 be t-norms. Then a function GT1,T2 : [0, 1]2 → [0, 1] defined by a formula

GT1,T2(x, y) = G(T1(x, y), T2(x, y)), x, y ∈ [0, 1], (6)

is a commutative semicopula.
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Proof. It is easy to see that all properties are satisfied. For instance an existence
of the neutral element 1 is as follows:

GT1,T2(1, y) = G(T1(1, y), T2(1, y)) = G(y, y) = y, y ∈ [0, 1].

	

Proposition 3.4. Let G,T1, T2 : [0, 1]2 → [0, 1], let G be an idempotent and let
T1, T2 be t-norms. If T1 = T2 then a function GT1,T2 defined by a formula (6) is
a t-norm.

Proof. It is clear since for T1 = T2 and x, y ∈ [0, 1] we have

GT1,T2(x, y) = G(T2(x, y), T2(x, y)) = T2(x, y).

However usually GT1,T2 is not a t-norm.

Example 3.5. Let G be the arithmetic mean and T1 = TM, T2 = TLK. Then for
x = 0.8, y = 0.8 and z = 0.5 we have

GTM,TLK
(GTM,TLK

(x, y), z) = GTM,TLK
(G(0.8, 0.6), 0.5)

= GTM,TLK
(0.7, 0.5) = G(0.5, 0.2) = 0.35,

while

GTM,TLK
(x,GTM,TLK

(y, z)) = GTM,TLK
(0.8, G(0.5, 0.3))

= GTM,TLK
(0.8, 0.4) = G(0.4, 0.2) = 0.3.

3.2 Case of Usage BK-subproduct

Firstly we cite the following result, which justify the reason of choice of pairs of
functions for the generalized hypothetical syllogism and CRI.

Theorem 3.6 ([12, Theorem 3.2]). Let T be a t-norm. Then the following
statements are equivalent:

(i) T is left-continuous.
(ii) The pair (T, IT ) satisfies the following functional equation

sup
z∈[0,1]

(T (I(x, z), I(z, y))) = I(x, y), x, y ∈ [0, 1]. (CRI-GHS)

In fact, we have the similar result for (CRI-GMP).

Proposition 3.7 For a t-norm T the following statements are equivalent:

(i) T is left-continuous.
(ii) The pair (T, IT ) satisfies (CRI-GMP).
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Proof (i) =⇒ (ii) If T is left continuous, then from Theorem 3.6 it satisfies
(CRI-GHS). Putting x = 1 in (CRI-GHS) we obtain

sup
z∈[0,1]

(T (I(1, z), I(z, y))) = I(1, y), y ∈ [0, 1].

But IT satisfies the left neutrality property (NP) (see [2, Theorem 2.5.4]), so

sup
z∈[0,1]

(T (z, I(z, y))) = y, y ∈ [0, 1],

and thus (ii) is satisfied.
(ii) =⇒ (i) Let T be a t-norm and let us assume that the pair (T, IT )

satisfies (CRI-GMP), but T is not left-continuous. Based on [2, Proposition 2.5.5]
we know that residual principle is not valid, so there exist x, y, z ∈ [0, 1] such
that IT (x, y) ≥ z and T (x, z) > y. Then, using the fact that (CRI-GMP) is valid
for these x, y, z, we have

y < T (x, z) ≤ T (x, IT (x, y)) ≤ sup
t∈[0,1]

T (t, IT (t, y)) = y;

a contradiction. 	

Therefore, we know which pairs can be used in (CRI-GMP), like we consid-

ered earlier the pair (TLK, ILK). Moreover, note that if we use it we don’t have
to take care about the commutativity, i.e., the same result we would obtain for
the functional equation

y = sup
x∈[0,1]

T (IT (x, y), x), y ∈ [0, 1].

However, if we consider BK-subproduct where there is a different composition
and a different relation R, then the situation is unlike. Usually, we consider the
Eq. (BK-GMP). Nevertheless, when in case of CRI we can change the order of
arguments, here we would obtain:

y = inf
x∈[0,1]

I(T (x, y), x), y ∈ [0, 1]. (BK-GMP-Rev)

Of course, it makes a big difference since we have a fuzzy implication I. This is
in fact so called supercomposition � or actually a superdirect image of a fuzzy
set A under a relation R [6]:

R�(A)(y) := inf
x∈X

I(R(x, y), A(x)), y ∈ Y.

Now, let us mention about another functional equation obtained from the
generalized hypothetical syllogism and based on the Bandler-Kohout subprod-
uct:

I2(x, y) = inf
z∈[0,1]

I1(C(x, z), C(z, y)), x, y ∈ [0, 1], (BK-GHS)
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which is a generalization of the following equation, where A,B,C are fuzzy sets,

I(A(x), B(y)) = inf
z∈Z

I(T (A(x), C(z)), T (C(z), B(y))), x ∈ X, y ∈ Y. (7)

The next two results can be proven as corollaries from our previous article [12].

Proposition 3.8. Let I ∈ FI satisfies (NP) and let C be a semicopula. If
the triplet (C, I, I) satisfies (BK-GHS), then the pair (C, I) satisfies (BK-GMP).

Proposition 3.9. For any t-norm T the pair (T, IT ) satisfies (BK-GMP).

However, in applications except interpolativity property we know that we
have discrete cases, so the infimum is in fact the minimum. Moreover, these
results are also valid for such cases.

Proposition 3.10. Let A,B,C be fuzzy sets and let T be a t-norm. If C is
normal, then the triplet (T, IT , IT ) satisfies (7).

Proposition 3.11. Let A,B be fuzzy sets and let T be a t-norm. If A is normal,
then the pair (T, IT ) satisfies

B(y) = inf
x∈X

I(A(x), T (A(x), B(y))), y ∈ Y.

Note that for any fuzzy implication I with (OP) we have the following equality
T (x, y) ≤ x ⇐⇒ I(T (x, y), x) = 1, x, y ∈ [0, 1], and then I(x, T (x, y)) < 1.
Hence, for such fuzzy implications I Eq. (BK-GMP-Rev) does not have any
solutions. But as we can see on Fig. 4, usage of such order gave in our tool results
which cannot be called useless. This could be a reason why we should consider
these composition (BKS and supercomposition �) in different frameworks then
CRI and check some other properties besides interpolativity.

(a) Image obtained from BKS
with (TP, IGG)

(b) Image obtained with su-
percomposition � (TP, IGG)

Fig. 4. Examples of images used in our programme – BK-subproduct.
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Now let us give some other examples of using BK-subproduct for other rea-
soning schemas which does and does not have solutions. Firstly, let us consider
generalized modus tollens:

N(x) = inf
y∈[0,1]

I(N(y), T (x, y)), x ∈ [0, 1]. (BK-GMT)

Remark 3.12. Note that (BK-GMT) have no solutions. Indeed,

inf
y∈[0,1]

I(N(y), T (x, y)) ≤ I(N(0), T (x, 0)) = I(1, 0) = 0 �= N(x),

for all x ∈ [0, 1].

Hence, now let us focus on the following functional equation

N1(x) = inf
y∈[0,1]

I(T (x, y), N2(y)), x ∈ [0, 1], (BK-GMT-Rev)

where I ∈ FI, T is a t-norm and N1, N2 are some fuzzy negations.

Proposition 3.13. Let I ∈ FI, T be a t-norm and N1, N2 be any fuzzy nega-
tions. Then the following statements are equivalent:

(i) The quadruple (T, I,N1, N2) satisfies (BK-GMT-Rev).
(ii) N1 = NI .

Proof. It is enough to see that

inf
y∈[0,1]

I(T (x, y), N2(y)) = I(T (x, 1), N(1)) = I(x, 0) = NI(x).

	

Next, let us consider the functional equation obtained from the reduction to

absurdity:

x = inf
y∈[0,1]

I(N(y), T (N(x), y)), x ∈ [0, 1]. (BK-GRA)

Here note that there is an analogous case as in (BK-GMT) equation.

Remark 3.14. Let I ∈ FI, T be a t-norm and N be a fuzzy negation. Then
there does not exist any triplet (T, I,N) that satisfies (BK-GRA). Indeed, let
us take x ∈ [0, 1]. Then

inf
y∈[0,1]

I(N(y), T (N(x), y)) ≤ I(N(0), T (N(x), 0)) = I(1, 0) = 0 �= x,

for any x > 0.
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Hence, similarly as for (BK-GMT), when we consider the reverse order of
arguments we can write the following functional equation:

x = inf
y∈[0,1]

I(T (N(x), y), N(y)), x ∈ [0, 1]. (BK-GRA-Rev)

Proposition 3.15. Let I ∈ FI, T be a t-norm, N be a negation and let NI be
a strict negation. Then the following statements are equivalent:

(i) The triplet (T, I,N) satisfies (BK-GRA-Rev).
(ii) N−1

I = N .

Proof. Take x ∈ [0, 1]. Then

inf
y∈[0,1]

I(T (N(x), y), N(y)) = I(T (N(x), 1), N(1)) = I(N(x), 0),

so from the fact x is arbitrarily fixed we have

x = NI(N(x)) ⇐⇒ N−1
I (x) = N(x),

because NI is strict. 	


4 Conclusions

In this paper we briefly described the tool which we created. We can conclude
that in case of FITA it may be worth to use means associated with t-norms for
the aggregation part. Also, we noticed that a different look on BK-subproduct
may give various results. Moreover, we presented some results regarding differ-
ent functional equations. For the future work we would like to examine BK-
subproduct deeply and investigate differences, which we discovered from our
tool, between it and CRI.

Acknowledgment. The work on this paper was supported by the National Science
Centre, Poland, under Grant No. 2015/19/B/ST6/03259.
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Abstract. In fuzzy rules based systems, fuzzy implication functions
are usually considered to model fuzzy conditionals and to perform for-
ward and backward inferences. These processes are guaranteed by the
fulfilment of the Modus Ponens and Modus Tollens properties by the
fuzzy implication function with respect to the considered conjunction
and fuzzy negation. In this paper, we investigate which residual impli-
cations derived from uninorms satisfy both Modus Ponens and Modus
Tollens properties with respect to the same t-norm and a fuzzy negation
simultaneously. The most usual classes of uninorms are considered and
many solutions are obtained which allow to model the fuzzy condition-
als in a fuzzy rules based systems (and perform backward and forward
inferences) with a unique residual implication derived from a uninorm.

Keywords: Fuzzy implication function · Modus Ponens · Modus
Tollens · Uninorm

1 Introduction

Fuzzy implication functions have been extensively studied in the last decades
(see [3,4,18] and references therein). There exist two main reasons to support the
great effort made by the scientific community in this field. First, fuzzy implication
functions have proved useful in many applications ranging from approximate rea-
soning to image processing, including fuzzy control, fuzzy relational equations,
fuzzy DI-subsethood measures or computing with words, among other fields. The
second reason is a direct consequence of their definition, which imposes only some
monotonicities and corner conditions to ensure that they generalize the binary
implication when restricted to {0, 1}. This fact opens a plethora of additional
properties which, although they are studied from a theoretical point of view, are
useful to obtain feasible and more adequate fuzzy implication functions in the
applications.

Two of such additional properties are the (generalized) Modus Ponens and
Modus Tollens. These properties are of paramount importance in approximate
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reasoning. Indeed, in any fuzzy rules based system, the fuzzy conditionals are
usually modelled by fuzzy implication functions. However, in order to perform
backward and forward inferences, the considered fuzzy implication functions
must satisfy the aforementioned (generalized) Modus Ponens and Modus Tollens
properties with respect to the conjunction and fuzzy negation considered in the
system. These properties are usually carried out through the Compositional Rule
of Inference (CRI) of Zadeh, based on the sup−T composition, where T is a t-
norm (see for instance [5] or Chapter 7 in [3]). Applying this approach, the
(generalized) Modus Ponens and Modus Tollens are usually expressed by the
following two functional inequalities:

T (x, I(x, y)) ≤ y, for all x, y ∈ [0, 1],

T (N(y), I(x, y)) ≤ N(x), for all x, y ∈ [0, 1],

where T is a t-norm, I a fuzzy implication function and N a fuzzy negation.
These properties have been studied in the literature for the most usual families
of fuzzy implication functions such as (S,N), R, QL and D-implications derived
from t-norms and t-conorms [2,3,16,18,23–25] or from uninorms [14,15]. Even
recently, a whole new line of research has been proposed in which the t-norm T
is generalized to a more general conjunction such as a conjunctive uninorm [19]
or an overlap function [8], leading to the so-called U -Modus Ponens or O-Modus
Ponens.

Although the functional inequalities of Modus Ponens and Modus Tollens
have quite similar expressions, it is well-known that both properties are not
equivalent. Thus, in [23,24], the simultaneous fulfillment of both properties was
studied for the first time for some restricted classes of (S,N), R, QL and D-
implications. It was proved that when the fuzzy negation N is a strong negation,
both properties are equivalent if the fuzzy implication function satisfies the con-
trapositive symmetry with respect to N . The importance of the disposal of fuzzy
implication functions satisfying both properties lies on the possibility of consid-
ering a unique implication to model fuzzy conditionals regardless of whether
backward or forward inference processes have to be performed.

Following this line of research, in this paper, we analyze which residual impli-
cations derived from uninorms, or RU -implications for short, satisfy both the
Modus Ponens and the Modus Tollens properties with respect to the same t-
norm T and a fuzzy negation N (continuous, but not necessarily strong). It
has to be said that the Modus Ponens property had been already studied for
this family of uninorms in [15] and the Modus Tollens property was analyzed in
[14]. However, while in [15], the results were given in terms of the t-norm TU

associated to the uninorm U , in [14] the results were presented for each class of
uninorms separately. This fact makes it difficult to coordinate the results of both
studies in order to find RU -implications satisfying both properties. This is the
main goal of this paper in addition to find some cases for which the fulfillment
of one property implies the fulfillment of the other one.

The paper is organized as follows. In the next section we recall some basic def-
initions and properties on fuzzy implication functions and uninorms. In Sect. 3,
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we introduce the so-called Modus Ponens Tollens property and we discuss its
fulfillment when the fuzzy implication function satisfies the contrapositive sym-
metry with respect to a strong negation. After that, in Sect. 4, the Modus Ponens
Tollens property is studied in depth for RU -implications depending on the class
of the uninorm U considered. The paper ends with some conclusions and future
work.

2 Preliminaries

We will suppose the reader to be familiar with the theory of t-norms, t-conorms
and fuzzy negations (all necessary results and notations can be found in [11]).
We also suppose that some basic facts on uninorms are known (see for instance
[9]) as well as their most usual classes (see [13] for a complete survey), that
is, uninorms in Umin ([9]), representable uninorms ([9]), idempotent uninorms
([6,12,22]) and uninorms continuous in the open unit square ([10]).

We recall here only some facts on implications and uninorms in order to
establish the necessary notation that we will use along the paper.

Definition 1 ([3]). A binary operator I : [0, 1] × [0, 1] → [0, 1] is said to be a
fuzzy implication function, or a fuzzy implication, if it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈ [0, 1].
(I2) I(x, y) ≤ I(x, z) when y ≤ z, for all x ∈ [0, 1].
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Note that, from the definition, it follows that I(0, x) = 1 and I(x, 1) = 1 for
all x ∈ [0, 1] whereas the symmetrical values I(x, 0) and I(1, x) are not derived
from it.

Definition 2 ([3]). A function N : [0, 1] → [0, 1] is called a fuzzy negation
if it is decreasing, N(0) = 1 and N(1) = 0. If N is a fuzzy negation that is
strictly decreasing and continuous, it will be called strict, and if it is involutive,
N(N(x)) = x for all x ∈ [0, 1], then it will be called strong.

Definition 3 ([3]). Let T be a t-norm. A function NT : [0, 1] → [0, 1] defined
as

NT (x) = sup{y ∈ [0, 1] | T (x, y) = 0}, x ∈ [0, 1]

is called the natural negation of T or the negation induced by T .

Definition 4 ([9]). A uninorm is a two-place function U : [0, 1]2 → [0, 1] which
is associative, commutative, increasing in each place and such that there exists
some element e ∈ [0, 1], called neutral element, such that U(e, x) = x for all
x ∈ [0, 1].

Evidently, a uninorm with neutral element e = 1 is a t-norm and a uninorm
with neutral element e = 0 is a t-conorm. For any other value e ∈]0, 1[ the
operation works as a t-norm in the [0, e]2 square, as a t-conorm in [e, 1]2 and
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its values are between the minimum and the maximum in the set of points A(e)
given by

A(e) = [0, e[× ]e, 1] ∪ ]e, 1] × [0, e[.

We will usually denote a uninorm with neutral element e and underlying
t-norm TU and t-conorm SU by U ≡ 〈TU , e, SU 〉. For any uninorm it is satisfied
that U(0, 1) ∈ {0, 1} and a uninorm U is called conjunctive if U(1, 0) = 0 and
disjunctive when U(1, 0) = 1. On the other hand, let us recall the most usual
classes of uninorms in the literature that will be used along the paper. We start
with the class of uninorms in Umin.

Definition 5. Let U be a conjunctive uninorm with neutral element e ∈]0, 1[. If
the mapping x 
→ U(x, 1) is continuous except in x = e, then it is said that U is
a uninorm in Umin.

Theorem 1 ([9]). Let U : [0, 1]2 → [0, 1] be a function. Then U is a uninorm
in Umin if and only if U is given by

U(x, y) =

⎧
⎪⎨

⎪⎩

eTU

(
x
e , y

e

)
if (x, y) ∈ [0, e]2,

e + (1 − e)SU

(
x−e
1−e , y−e

1−e

)
if (x, y) ∈ [e, 1]2,

min(x, y) if (x, y) ∈ A(e),

where TU is a t-norm, and SU is a t-conorm. We will denote a uninorm in Umin

with underlying t-norm TU , underlying t-conorm SU and neutral element e as
U ≡ 〈TU , e, SU 〉min.

The class of idempotent uninorms, that satisfy U(x, x) = x for all x ∈ [0, 1],
was characterized first in [6] for those uninorms with a lateral continuity and in
[12] for the general case. An improvement of this last result was done in [22] as
follows.

Theorem 2 ([22]). U is an idempotent uninorm with neutral element e ∈ [0, 1]
if and only if there exists a non increasing function g : [0, 1] → [0, 1], symmetric
with respect to the identity function, with g(e) = e, such that

U(x, y) =

⎧
⎪⎨

⎪⎩

min(x, y) if y < g(x) or (y = g(x) and x < g2(x)),
max(x, y) if y > g(x) or (y = g(x) and x > g2(x)),
x or y if y = g(x) and x = g2(x),

being commutative in the points (x, y) such that y = g(x) with x = g2(x).

Any idempotent uninorm U with neutral element e and associated function
g will be denoted by U ≡ 〈g, e〉ide and the class of idempotent uninorms will be
denoted by Uide. Obviously, for any of these uninorms, the underlying t-norm is
the minimum and the underlying t-conorm is the maximum.
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Definition 6 ([9]). Let e be in ]0, 1[. A binary operation U : [0, 1]2 → [0, 1] is
a representable uninorm if and only if there exists a strictly increasing function
h : [0, 1] → [−∞,+∞] with h(0) = −∞, h(e) = 0 and h(1) = +∞ such that

U(x, y) = h−1(h(x) + h(y))

for all (x, y) ∈ [0, 1]2\{(0, 1), (1, 0)} and U(0, 1) = U(1, 0) ∈ {0, 1}. The function
h is usually called an additive generator of U .

Any representable uninorm U with neutral element e and additive generator
h will be denoted by U ≡ 〈h, e〉rep and the class of representable uninorms will
be denoted by Urep. For any of these uninorms the underlying t-norm and t-
conorm are always strict. For all representable uninorm U , a strong negation
can be defined from U as NU (x) = h−1(−h(x)) for all x ∈ [0, 1].

Another studied class of uninorms is Ucos, composed by all uninorms contin-
uous in ]0, 1[2. They were introduced and characterized in [10] as follows.

Theorem 3 ([10]). Suppose U is a uninorm continuous in ]0, 1[2 with neutral
element e ∈]0, 1[. Then one of the following cases is satisfied:

(a) There exist u ∈ [0, e[, λ ∈ [0, u], two continuous t-norms T1 and T2 and a
representable uninorm R such that U can be represented as

U(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λT1(x
λ , y

λ ) if (x, y) ∈ [0, λ]2,
λ + (u − λ)T2(x−λ

u−λ , y−λ
u−λ ) if (x, y) ∈ [λ, u]2,

u + (1 − u)R(x−λ
1−λ , y−λ

1−λ ) if (x, y) ∈ [λ, u]2,
1 if min(x, y) ∈]λ, 1]

and max(x, y) = 1,
λ or 1 if (x, y) ∈ {(λ, 1), (1, λ)},

min(x, y) elsewhere.

(b) There exist v ∈]e, 1] ω ∈ [v, 1], two continuous t-conorms S1 and S2 and a
representable uninorm R such that U can be represented as

U(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vR(x
v , y

v ) if (x, y) ∈]0, v[2,
v + (ω − v)S1( x−v

ω−v , y−v
ω−v ) if (x, y) ∈ [v, ω]2,

ω + (1 − ω)S2(x−ω
1−ω , y−ω

1−ω ) if (x, y) ∈ [ω, 1]2,
0 if max(x, y) ∈ [0, ω[

and min(x, y) = 0,
ω or 0 if (x, y) ∈ {(0, ω), (ω, 0)},

max(x, y) elsewhere.

Now we will recall residual implications from uninorms: RU -implications.

Definition 7 ([7]). Let U be a uninorm. The residual operation derived from
U is the binary operation given by

IU (x, y) = sup{z ∈ [0, 1] | U(x, z) ≤ y} for all x, y ∈ [0, 1].
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Proposition 1 ([7]). Let U be a uninorm and IU its residual operation. Then
IU is a fuzzy implication if and only if the following condition holds

U(x, 0) = 0 for all x < 1.

In this case IU is called an RU -implication.

This includes all conjunctive uninorms but also many disjunctive ones, for
instance in the classes of representable uninorms (see [7]) and idempotent uni-
norms (see [20]).

Some properties of RU -implications have been studied involving the main
classes of uninorms, those previously stated: uninorms in Umin, idempotent uni-
norms and representable uninorms (for more details see [1,3,7,17,20,21]).

3 Modus Ponens Tollens

First of all, let us recall the definition of the Modus Ponens and the Modus
Tollens in the framework of fuzzy logic.

Definition 8. Let I be a fuzzy implication function and T a t-norm. It is said
that I satisfies the Modus Ponens property with respect to T if

T (x, I(x, y)) ≤ y for all x, y ∈ [0, 1]. (MP)

Definition 9. Let I be a fuzzy implication function, T a t-norm and N a fuzzy
negation. It is said that I satisfies the Modus Tollens property with respect to T
and N if

T (N(y), I(x, y)) ≤ N(x) for all x, y ∈ [0, 1]. (MT)

The Modus Ponens and Modus Tollens properties have been studied for dif-
ferent types of implications, usuallly taking into account continuous t-norms T
and continuous fuzzy negations N . If we consider RU -implications, (MP) and
(MT) have been studied in depth in [15] and [14], respectively. These properties
are not equivalent in general, as it is stated in the following examples. First, we
have a fuzzy implication function that satisfies (MP) but not (MT).

Example 1. Consider U ≡ 〈h, 3
4 〉rep a representable uninorm with TU = TP, the

product t-norm (with additive generator tU (x) = − ln(x) up to a multiplicative
constant) and SU any strict t-conorm. Let us consider its residual implication IU

which will be given later in Proposition 10. Let us also consider T = TP and the
negation N(x) = 1−x

1+10x which belongs to the family of Sugeno negations with
λ = 10. In this case, IU safisfies (MP) with respect to T by using Proposition 9
in [15]. However, IU does not satisfy (MT) with respect to T and N (just taking
x = 0.7 and y = 0.5 in Eq. (MP)).

Next example provides an RU -implication that satisfies (MT) but not (MP).
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Example 2. Let U ≡ 〈h, 1
2 〉rep be a representable uninorm with additive gener-

ator h(x) = ln
(

x
1−x

)
for all x ∈ [0, 1]. Let T be a t-norm whose expression

is given by the ordinal sum T ≡ (〈0, 1
2 , TP〉, 〈 12 , 1, T1〉) with T1 any continuous

t-norm and let us consider the continuous fuzzy negation N given by

N(x) =

{
1 − x if x ≤ 1

2 ,√
x − x2 otherwise.

In this case, IU is given by

IU (x, y) =

{
1 if (x, y) ∈ {(0, 0), (1, 1)},
(1−x)y

x+y−2xy otherwise.

According to Proposition 5.3.20-(ii) in [14], IU satisfies (MT) with respect to
T and N . However, a simple computation shows that g : [0, 1] → [0, 1] given by
g(x) = − ln( 2

1+ex ) is not subadditive (for instance, take x = 0.3 and y = 0.2)
and therefore, by using Proposition 10 in [19], IU does not satisfy (MP) with
respect to T .

Then, as we have seen, (MT) and (MP) are not equivalent in general, and
the question about which fuzzy implication functions satisfy both properties
with respect to the same t-norm T and fuzzy negation N is worthy to study.

Definition 10. Let I be a fuzzy implication function, T a t-norm and N a
fuzzy negation. It is said that I satisfies the Modus Ponens Tollens (MPT)
property with respect to T and N whenever Eqs. (MP) and (MT) are satisfied
simultaneously.

Remark 1. Note that, when x ≤ y we have N(y) ≤ N(x) and then (MT) triv-
ially holds in these cases. Similarly, (MP) is satisfied in these cases. Thus, both
properties need to be checked only in points (x, y) ∈ [0, 1]2 where y < x.

Anyway, a special case that can be considered is when I satisfies the contra-
positive symmetry with respect to N . Contrapositive symmetry is a well known
property, which is related to the Modus Ponens Tollens as it is stated in the
following results.

Definition 11. Consider I a fuzzy implication function and N a fuzzy negation.
Then I satisfies the contrapositive symmetry with respect to N if

I(x, y) = I(N(y), N(x)) for all x, y ∈ [0, 1]. (CP)

Theorem 4 ([24]). Consider I a fuzzy implication function, T a t-norm and
N a strong negation. If I satisfies the contrapositive symmetry with respect to
N , then I satisfies (MP) with respect to T if and only if I satisfies (MT) with
respect to N and T .
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From the result above, in the case that a fuzzy implication function I satisfies
(CP) with respect to N , only one of (MP) or (MT) needs to be checked in order
to satisfy (MPT). Now, let us recall the result on contrapositive symmetry for
residual implications derived from idempotent uninorms.

Proposition 2 ([20]). Consider U ≡ 〈g, e〉ide an idempotent uninorm with
g(0) = 1, IU its residual implication and N a strong negation. Then IU sat-
isfies (CP) with respect to N if and only if g = N .

As a consequence of the previous result, we have infinite RU -implications that
satisfy (MPT) for any t-norm T , by using Proposition 5.3.14 in [14].

Corollary 1. Let N be a strong negation, U ≡ 〈N, e〉ide an idempotent uninorm,
IU its residual implication, and T a t-norm. Then IU satisfies (MPT) with
respect to T and N .

Coming up next, we recall the case of (CP) for uninorms continuous in ]0, 1[2.

Proposition 3 ([21]). Let U be a uninorm in Ucos such that U(0, x) = 0 for all
x < 1, IU its residual implication and N a strong negation. Then IU satisfies
(CP) with respect to N if and only if U is representable and N = NU .

4 Modus Ponens Tollens for Implications Derived from
Different Classes of Uninorms

In this section we investigate the Modus Ponens Tollens property (MPT) for
fuzzy implication functions derived from three well known classes of uninorms.

4.1 Case When U is a Uninorm in Umin

In this section we will deal with RU -implications derived from uninorms in Umin,
that is, uninorms U ≡ 〈TU , e, SU 〉min with neutral element e ∈]0, 1[. Recall that
for this kind of uninorms, RU -implications have the following structure.

Proposition 4 (Theorem 5.4.7 in [3]). Let U ≡ 〈TU , e, SU 〉min a uninorm in
Umin and IU its residual implication. Then

IU (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if x ≤ y < e,

eITU
(x

e , y
e ) if y < x ≤ e,

e + (1 − e)ISU
(x−e
1−e , y−e

1−e ) if e ≤ x ≤ y,

e if e ≤ y < x,

y elsewhere.

For this family of RU -implications we have the following result.

Proposition 5. Let U ≡ 〈TU , e, SU 〉min a uninorm in Umin and IU its residual
implication. Let T be a continuous t-norm, and N be a continuous fuzzy negation
with fixed point s ∈]0, 1[. Then, it holds that:
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– If IU satisfies (MPT) with T and N , then T is nilpotent with normalized
additive generator t : [0, 1] → [0, 1] and associated negation NT (x) = t−1(1 −
t(x)) for all x ∈ [0, 1] such that N(y) ≤ NT (y) for all y ≤ e.

Thus, from now on, let us consider T satisfying the previous conditions. In this
case,

(i) If TU = min then IU always satisfies (MPT) with respect to T and N .
(ii) If TU is a strict t-norm with additive generator tU and either s ≥ e or

N(y) = NT (y) for all y ≤ e, then IU satisfies (MPT) with respect to T
and N if and only if the following condition holds:

(�1) Function g : [0, t(0)] → [t(e), 1] given by the formula g(x) = t(et−1
U (x)) is

subadditive.
(iii) If TU is a strict t-norm with additive generator tU , s < e and N(y) < NT (y)

for some y ≤ e, then IU satisfies (MPT) with respect to T and N if and
only if Property (�1) is fulfilled and the following condition holds:

(�2) For all y < x < e,

et−1
U

(
tU

(y

e

)
− tU

(x

e

))
≤ t−1(t(N(x)) − t(N(y))).

(iv) If TU is a nilpotent t-norm with additive generator tU and either s ≥ e or
N = NT , then IU satisfies (MPT) with respect to T and N if and only if
Property (�1) and the following property holds:

(�3) For all x ≤ e

e · NTU

(x

e

)
≤ NT (x).

(v) If TU is a nilpotent t-norm with additive generator tU , s < e and N(y) <
NT (y) for some y ≤ e, then IU satisfies (MPT) with respect to T and N
if and only if Properties (�1), (�2) and (�3) hold.

Example 3. Let us consider the uninorm U ≡ 〈TM, e, SU 〉min with TM is the
minimum t-norm and SU any t-conorm. Let TL be the �Lukasiewicz t-norm and
N = Nc the classical negation given by Nc(x) = 1−x for all x ∈ [0, 1]. Thus, from
the previous proposition, taking into account that Nc(x) = 1 − x ≤ NTL

(x) =
1 − x, IU satisfies (MPT) with respect to TL and Nc.

Example 4. Let us take now U ≡ 〈TP, 1
2 , SU 〉min with SU any t-conorm. Let

TL be the �Lukasiewicz t-norm (with additive generator t(x) = 1 − x up to
a multiplicative constant), and N = Nc. In this example, we are under the
conditions of Case (ii) from the previous result, and it remains only to prove
that g : [0, 1] → [12 , 1] given by g(x) = 1− 1

2e−x is subadditive. A straightforward
computation ensures this fact. Therefore, IU satisfies (MPT) with respect to TL

and Nc.

Example 5. Let us consider U ≡ 〈TP, 1
2 , SU 〉min with SU any t-conorm. Let T =

TL and let us take

N(x) =

{
1 − 2x if x ≤ 1

2 ,

0 elsewhere,
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a continuous fuzzy negation with fixed point s = 1
3 . Note that in this case

NT = Nc(x) = 1 − x and N( 14 ) < NT ( 14 ). Thereby, we are under the conditions
of Case (iii) of the previous proposition, and then Properties (�1) and (�2)
must be checked. A simple computation shows that g : [0, 1] → [12 , 1] given by
g(x) = 1 − 1

2e−x is subadditive and so Property (�1) is fulfilled. With respect
to Property (�2), we obtain the inequality y

2x ≤ 1 − 2(x − y) which is valid for
y < x < 1

2 . Consequently, IU satisfies (MPT) with respect to TL and N .

Example 6. Let us consider U ≡ 〈TL, 1
2 , SU 〉min with SU any t-conorm. Let us

consider T = TL and the same negation N used in the previous example. In this
case, again it holds that NT = Nc and it follows that N(x) < NT (x) (take for
instance x = 1

3 , N( 13 ) = 1
3 < NTL

( 13 ) = 2
3 ). Now, we are under the conditions

of Case (v) from the previous result, and then we must check Properties (�1),
(�2) and (�3). Property (�1) follows directly. With respect to Property (�2), we
have g : [0, 1] → [12 , 1] given by g(x) = 1+x

2 is obviously subadditive. Finally
a simple computation shows Property (�3). Consequently, IU satisfies (MPT)
with respect to TL and N .

4.2 Case When U is an Idempotent Uninorm

In this section we will deal with RU -implications derived from idempotent uni-
norms, that is, uninorms U ≡ 〈g, e〉ide with neutral element e ∈ [0, 1] and such
that g(0) = 1. Recall that for this kind of uninorms, the corresponding RU-
implications have the following structure.

Proposition 6 ([20]). Let U ≡ 〈g, e〉ide be an idempotent uninorm with neutral
element e ∈]0, 1[ and such that g(0) = 1. Then IU is given by

IU (x, y) =
{

max(g(x), y) if x ≤ y,
min(g(x), y) if x > y.

(1)

From results in [15], for an idempotent uninorm U ≡ 〈g, e〉ide with g(0) = 1,
as TU = min, IU satisfies (MP) with respect to any t-norm. Therefore, we can
write the following result.

Proposition 7. Let U ≡ 〈g, e〉ide be an idempotent uninorm with neutral ele-
ment e ∈]0, 1[ and such that g(0) = 1, T a t-norm and N a fuzzy negation. Then
IU satisfies (MPT) with respect to T and N if and only if IU satisfies (MT)
with respect to T and N .

Thus, in the rest of the section, all the conditions in the results will be
related to the fulfillment of (MT) (that was studied in [14]), which will imply
the fulfillment of (MPT). Now we will distinguish two cases depending on the
value of g(1). We will start with the case g(1) > 0.

Proposition 8. Let U ≡ 〈g, e〉ide with g(0) = 1 and g(1) > 0 and IU its residual
implication. Let T be a t-norm and N a continuous fuzzy negation. If IU satisfies
the (MPT) property with respect to T and N , then the following statements are
true:



798 I. Aguiló et al.

(i) T (N(y), y) = 0 for all y ≤ g(1).
(ii) If T is a continuous t-norm then T must be nilpotent with normalized addi-

tive generator t : [0, 1] → [0, 1] and associated negation NT , which is given
by NT (x) = t−1(1 − t(x)), such that N(y) ≤ NT (y) for all y ≤ g(1).

Although this result provides only necessary conditions on T , the following
example gives infinite cases of residual implications IU from U an idempotent
uninorm such that satisfy (MPT) with respect a t-norm T and a strong negation
N .

Example 7. Consider U ≡ 〈g, e〉ide any idempotent uninorm, T = TL the �Lukas-
iewicz t-norm and N = Nc the classical negation. Take x, y ∈ [0, 1] such that
y < x, then we have:

TL(Nc(y),min(g(x), y)) = max(0,min(g(x), y) − y) = 0,

and, by Remark 1, (MT) is satisfied and by Proposition 7, IU satisfies (MPT)
with respect to TL and Nc. If g = N , IU satisfies (MPT) with respect to TL

and Nc but IU does not have (CP) with respect to Nc.

When g(1) = 0 we have a first result which can be applied for any fuzzy
negation N .

Theorem 5. Let U ≡ 〈g, e〉ide be an idempotent uninorm with neutral element
e ∈]0, 1[ and g(0) = 1, g(1) = 0 and IU its residual implication. Let T be a t-
norm and N a continuous fuzzy negation. Then IU satisfies (MPT) with respect
to T and N if and only if

min(T (N(y), y), T (N(y), g(x))) ≤ N(x) for all y < x.

Example 8. Let us consider U ≡ 〈Nc,
1
2 〉ide an idempotent uninorm, T = TL and

N = Nc. Similarly to the previous Example 7 we have

min(TL(Nc(y), y), TL(Nc(y), g(x))) = 0

and then IU satisfies (MPT) with respect to TL and Nc.

When N is strict, the following result provides an easier condition in order
to verify the fulfillment of (MPT).

Proposition 9. Let T be a t-norm, N a strict fuzzy negation, and U ≡ 〈g, e〉ide
be an idempotent uninorm with neutral element e ∈]0, 1[ with g(0) = 1, g(1) = 0
and IU its residual implication. Then IU satisfies (MPT) with respect to T and
N if and only if g(x) ≤ N(x) for all x ≥ e.

Example 9. Let us consider U ≡ 〈g, 1
4 〉ide an idempotent uninorm where

g(x) =

{
1 − 3x if x ≤ 1

3 ,

0 otherwise,

T = TP and N = Nc. It is straightforward to prove that g(x) ≤ N(x) for
all x ≥ 1

4 . Then, we are under the conditions of the previous result. Thus, IU

satisfies (MPT) with respect to T and N .
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4.3 Case When U is a Representable Uninorm

In this section we will deal with RU -implications derived from representable
uninorms, that is, from uninorms U ≡ 〈h, e〉rep with neutral element e ∈]0, 1[.
Let us recall in this case the expression of the residual implication derived from
U .

Proposition 10 (Theorem 5.4.10 in [3]). Let U ≡ 〈h, e〉rep be a representable
uninorm with neutral element e ∈]0, 1[. Then IU is given by

IU (x, y) =
{

1 if (x, y) ∈ {(0, 0), (1, 1)},
h−1(h(y) − h(x)) otherwise.

For this kind of uninorms we will consider only continuous t-norms which are
not an ordinal sum, namely, the minimum t-norm and continuous Archimedean
t-norms.

Proposition 11. Let U ≡ 〈h, e〉rep be a representable uninorm with neutral
element e ∈]0, 1[ and IU its residual implication. Let T be a continuous non-
ordinal sum t-norm and N a continuous fuzzy negation. Then, it holds that:

– If IU satisfies (MPT) with T and N , then T is continuous Archimedean with
additive generator t : [0, 1] → [0,+∞], up to a multiplicative constant.

Thus, in this case, the following statements are true:

(i) IU satisfies (MPT) with respect to T and N if and only if Property (�1) is
fulfilled and the following property holds:

(•1) For all y ≤ x,

h−1(h(y) − h(x)) ≤ t−1(t(N(x)) − t(N(y))).

(ii) If T is nilpotent and N = NT , IU satisfies (MPT) with respect to T and N
if and only if the following property holds:

(•2) Function φ : [0, 1] → [−∞,+∞] given by φ(x) = h(t−1(x)) for all x ∈
[0, 1] is subadditive.

Example 10. Let us consider T = TL and N = Nc. Let U be the representable
uninorm given by

U(x, y) =
{

0 if (x, y) ∈ {(0, 0), (1, 1)},
xy

xy+(1−x)(1−y) otherwise.

which has e = 1
2 as neutral element and additive generator h(x) = ln( x

1−x ). In
this case, φ(x) = h(t−1(x)) = ln

(
1−x

x

)
which is clearly subadditive. By applying

Case (ii) of the previous proposition, we conclude that IU satisfies (MPT) with
respect to T and N .
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5 Conclusions and Future Work

In this paper, we have studied the fulfillment of the so-called Modus Ponens
Tollens property (MPT) by the family of RU -implications, i.e., we have ana-
lyzed which RU -implications satisfy at the same time the Modus Ponens and the
Modus Tollens properties with respect to a t-norm T and a negation N . From
this study, many solutions are available. On the one side, all RU -implications
which satisfy the Modus Ponens property with respect to a t-norm T and the
contrapositive symmetry with respect to a strong negation N are solutions of
(MPT). On the other side, when N is not strong or the contrapositive symme-
try is not satisfied, other solutions exist within RU -implications derived from
uninorms in Umin, representable uninorms and idempotent uninorms. For most
of these families, necessary and sufficient conditions are presented and in some
cases, it is shown that the fulfillment of the Modus Tollens property implies the
fulfillment of the Modus Ponens property.

As future work, we want to complete the results presented in this paper
by considering also continuous ordinal sum t-norms as T in some of the results
presented in Sect. 4 and to deepen the study in the particular case of idempotent
uninorms with g(0) = 1 and g(1) > 0.
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