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Preface

The 9th International Workshop on Biomedical Image Registration (WBIR 2020,
https://wbir2020.org) was to be held in Portorož, Slovenia, June 16–17, 2020. At the
time of writing, the global crisis and the Covid-19 pandemic are in full swing. To
ensure the safety and well-being of all participants the Organization Committee decided
to postpone the meeting to December 1–2, 2020. We sincerely hope that the global
situation will improve over time and permit us to host the meeting at the set date so that
we can enjoy WBIR 2020 together.

The WBIR 2020 meeting is a two-day special session in conjunction with the 8th
European Medical and Biological Engineering Conference (EMBEC 2020), organized
by the Slovenian Society for Medical and Biological Engineering. Preceding editions
of WBIR have been running mostly as standalone two-day workshops at various
locations: Bled, Slovenia (1999); Philadelphia, USA (2003); Utrecht, The Netherlands
(2006); Lübeck, Germany (2010); Nashville, USA (2012); London, UK (2014); Las
Vegas, USA (2016), and Leiden, The Netherlands (2018). As with previous editions,
the major appeal of WBIR 2020 is its scientific program in a relaxed two-day format,
allowing for a lot of interaction and discussion among peers. As everyone’s mindset is
on image registration, it makes it easier for students to approach and meet their dis-
tinguished colleagues. The workshop program includes both oral and poster presen-
tations in a single track, two keynote lectures, and ample opportunities for discussion.

The WBIR 2020 proceedings, published in the Lecture Notes in Computer Science,
were established through a rigorous peer-review process in a double-blind fashion, with
each submission evaluated by at least three members of the Program Committee. The
International Program Committee consisted of 29 senior scientists in the field of
medical image registration. From a total of 22 submissions, 16 were selected for oral
and poster presentation. In this edition topics of papers varied, including five regis-
tration initialization and acceleration, two on interventional, two on landmark based
registration, five on multi-channel image registration, and two on sliding motion.
Submissions of one-page abstracts are also invited in addition to full-paper submis-
sions. The one-page abstracts do not appear in the proceedings, but are set to be
presented at the workshop. The aim is to give scientists the opportunity to present early
work and to get feedback from workshop attendees on recently published or submitted
journal papers not presented previously.

We expect two excellent keynote speakers at WBIR 2020. With rich experience in
translating and commercializing image analysis algorithms, Prof. Dr. Sébastien
Ourselin from King’s College London will speak about translating medical imaging
research towards real-world clinical applications. This subject is highly relevant since,
from our observation, a large and ever-growing number of exciting clinical applications
and solutions that utilize advanced medical image analysis are proposed each year,
however, few seem to penetrate into the clinical world. As the adoption of machine and
deep learning tools for the image registration tasks seems to finally be gaining traction

https://wbir2020.org


in the research community, Prof. Dr. Mattias Heinrich from University of Lübeck will
discuss how to make deep learning work in medical image registration, and present
current advances, pitfalls, and remaining challenges.

Many contributed to the organization and future success of WBIR 2020. In par-
ticular, we would like to thank the members of the Program Committee for their work
that assures the high quality of the workshop. We also thank the organizers of EMBEC
2020, especially the general chair Prof. Dr. Damijan Miklavčič, for the organizational
effort and kind support of WBIR 2020. We thank the UCL Institute of Healthcare
Engineering for their financial support and the MICCAI Society for their endorsement.
Finally, we would like to thank all authors and prospective participants of WBIR 2020
for their contributions.

June 2020 Žiga Špiclin
Jamie McClelland

Jan Kybic
Orcun Goksel

vi Preface
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Nonlinear Alignment of Whole
Tractograms with the Linear

Assignment Problem

Emanuele Olivetti1,2, Pietro Gori3, Pietro Astolfi1,2,4(B),
Giulia Bertó1,2, and Paolo Avesani1,2

1 NeuroInformatics Laboratory (NILab) Bruno Kessler Foundation, Trento, Italy
{olivetti,pastolfi}@fbk.eu

http://nilab.fbk.eu
2 Center for Mind and Brain Sciences (CIMeC), University of Trento, Trento, Italy

3 LTCI, Télécom Paris, IP Paris,
Palaiseau, France

4 PAVIS, Italian Institute of Technology, Genova, Italy

Abstract. After registration of the imaging data of two brains, homol-
ogous anatomical structures are expected to overlap better than before
registration. Diffusion magnetic resonance imaging (dMRI) techniques
and tractography techniques provide a representation of the anatomical
connections in the white matter, as hundreds of thousands of stream-
lines, forming the tractogram. The literature on methods for aligning
tractograms is in active development and provides methods that operate
either from voxel information, e.g. fractional anisotropy, orientation dis-
tribution function, T1-weighted MRI, or directly from streamline infor-
mation. In this work, we align streamlines using the linear assignment
problem (LAP) and propose a method to reduce the high computa-
tional cost of aligning whole brain tractograms. As further contribu-
tion, we present a comparison among some of the freely-available linear
and nonlinear tractogram alignment methods, where we show that our
LAP-based method outperforms all others. In discussing the results, we
show that a main limitation of all streamline-based nonlinear registra-
tion methods is the computational cost and that addressing such problem
may lead to further improvement in the quality of registration.

1 Introduction

Image registration is a cornerstone of brain imaging applications. After registra-
tion of the data of two brains, homologous anatomical structures are expected to
overlap better than before registration. Typically, brain images are registered to
atlases, or between different subject, for different purposes, such as: conducting
group-studies, guiding segmentation, or for building new atlases [9].

Diffusion magnetic resonance imaging (dMRI) techniques measure the ori-
entation of diffusion of water molecules in biological tissues. By means of trac-
tography techniques on dMRI data from the brain, it is possible to obtain a
c© Springer Nature Switzerland AG 2020
Ž. Špiclin et al. (Eds.): WBIR 2020, LNCS 12120, pp. 3–11, 2020.
https://doi.org/10.1007/978-3-030-50120-4_1
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representation of the anatomical connections in the white matter, as hundreds
of thousands of streamlines, forming the tractogram.

The linear or nonlinear transformation to register the tractogram of one
subjects to that of another subject can be estimated in two main ways: from
volumetric data, such as T1-weighted, fractional anisotropy (FA), or orientation
distribution functions (ODFs), see [3,4,11], or directly from streamlines. In this
last case, the literature on nonlinear methods addresses the registration of bun-
dles, which are just a portion of the tractogram, usually because of the very
high computational cost of the algorithms, see [5,17,18,20,21]. Differently, in
the case of linear methods, solutions to compute an affine transformation from
whole tractograms are available, see [7,9].

Recently, a new concept has been proposed to accurately align tractograms,
based on the idea of streamline correspondence [10] and formalized as a graph
matching (GM) problem. There, the building block of the methodology is to
compute which streamline of the first subject corresponds to which streamline
of the second subject, as in a combinatorial optimization problem. The princi-
ple of streamline correspondence has also been used for the problem of bundle
segmentation [6,8,12,13,19].

In this work, we present two contributions: first, we propose the use of the
linear assignment problem (LAP) as computational building block to align entire
brain tractograms from streamline information, extending the work of [12], which
addressed only bundles and segmentation. The alignment obtained with LAP
acts locally, as in a nonlinear transformation. Second, we quantitatively com-
pare the proposed method against some methods in the state of the art for
tractogram alignment, for which the implementation is freely-available. To the
best of our knowledge, it is pretty infrequent to find quantitative comparisons
between tractogram alignment methods, in the literature.

In order to carry out the quantitative comparison, we designed an experiment
where, given the tractograms of two subjects, we computed the transformation
of the first in order to match the second one. Similarly to [10], we quantified the
accuracy of the whole tractogram alignment by estimating the degree of overlap
between homologous bundles. The reason behind it is that, after registration, the
anatomy of the white matter of the two subjects should match more accurately
than before. On 90 pairs of subjects from the dMRI dataset of the Human
Connectom Project [14], we compared the registration obtained with 5 different
methods, using 10 main bundles as landmarks for the quantification.

The results show that the proposed method outperforms voxel-based meth-
ods and streamline-based methods in almost all cases. Moreover, as expected,
linear methods are outperformed by nonlinear methods. The Symmetric Normal-
ization (SyN) algorithm of the Advanced Normalization Tools (ANTs, see [1]),
despite being designed for volumetric images, shows excellent results against
streamline based methods, outperforming them in some cases. The main limita-
tion of streamline-based methods is the high computational cost, which requires
to resort to approximations.
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In the following, we briefly describe the proposed method. Then, in Sect. 3,
we describe the details of the experiments. In Sect. 4 we discuss the claims in
the light of the results.

2 Methods

Let s = {x1, . . . ,xn} be a streamline, i.e. a sequence of points in 3D space,
i.e. xi = [xi, yi, zi] ∈ R

3, ∀i. Let T = {s1, . . . , sN} be a tractogram and
b ⊂ T the set of streamlines corresponding to a white matter bundle of inter-
est, e.g. the cortico-spinal tract (cst). With | · | we indicate the number of
objects in a set. Typically, |T | is in the order of 105–106. Several distances
has been defined between streamlines, see [9] In this work, we adopt the com-
monly adopted mean of closest distances, d(sa, sb) = dm(sa,sb)+dm(sb,sa)

2 , where
dm(sa, sb) = 1

|sa|
∑

xi∈sa
minxj∈sb ||xi − xj ||2.

2.1 Streamline Correspondence

Given two tractograms, TA and TB , the problem of aligning them can be framed
as finding the correspondences between each streamline in TA the corresponding
one in TB, see [10]. If sAi ∈ TA corresponds to sBj ∈ TB, the transformation
obtained from such correspondence is the one that returns sBj when given sAi .
The set of correspondences will provide a good alignment of tractograms if, after
the transformation, homologous anatomical structures will match. Previously,
the task of finding a good set of correspondences has been formulated as graph
matching [10].

2.2 Linear Assignment Problem

Given two sets of objects, e.g. TA and TB , of the same size N , and a N ×N cost
matrix C, whose element cij ∈ R is the cost of assigning sAi ∈ TA to sBj ∈ TB , e.g.
cij = d(sAi , sBj ), then the linear assignment problem (LAP) is the combinatorial
optimization problem that attempt to optimally assign each element of TA to
each element of TB , with a one-to-one assignment, minimizing the total cost:

P ∗ = argmin
P∈P

N∑

i=1

N∑

j=1

cijpij (1)

where P is the set of all possible one-to-one assignments, each represented as
a N × N permutation matrix, i.e. P ∈ P is a binary matrix where each row
and column sum up to 1 and the element pij = 1 if sAi is assigned to sBj and 0
otherwise. Notice that LAP for streamlines, the minimization of the total cost
is the minimization of the distances of corresponding streamlines and, in many
cases, the one-to-one constraint forces the correspondences to follow the local
differences between the anatomical structures, see [13]. When |TB | > |TA|, the
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problem is called rectangular LAP (RLAP), which seeks the best assignment of
{sA1 , . . . , sAN} to subset of size N of TB . The most efficient algorithm to find the
optimal solution of LAP and RLAP is LAPJV, see [2], whose time complexity
is O(N3) and space complexity is O(N2). In practice, even LAPJV is unfeasible
to be executed on problems where N > 104, both in terms of time and memory
required.

2.3 Large-Scale Approximation

The correspondence between entire tractograms cannot be computed even with
LAPJV, because of the excessive computational cost. Here, we adopt a hierarchi-
cal two-steps procedure that exploits the geometrical structure of tractograms.
In the first step, both TA and TB are clustered into k clusters, named {αi}i=1...k

for TA and {βj}j=1...k for TB . Then, each tractogram is simplified with k stream-
lines, i.e. the centroids of the respective clusters. Then, LAP is computed between
the two simplified tractograms, as explained above, i.e. a k × k LAP is solved.
This first step aims at finding corresponding clusters across the two tractograms,
e.g. αi corresponds to βj . In the second step, given two corresponding clusters,
the correspondence of streamlines is computed by solving the RLAP between the
streamlines of the two clusters1. Details are given below. In total, the two-steps
procedure requires to solve 1 LAP with a k × k cost matrix and k RLAPs each
with, approximately, a N

k × N
k cost matrix. For this reason, the resulting time

complexity is reduced from O(N3) to O
(
k3 + N3

k2

)
and space complexity from

O(N2) to O(k2 + N2

k ).
In the second step of the procedure, assuming cluster αi ⊂ TA to correspond

to cluster βj ⊂ TB , there are two possible scenarios: either (i) |αi| ≤ |βj |, for
which finding the corresponding streamlines of αi in βj is a straightforward
RLAP, or (ii) |αi| > |βj |, for which there are not enough streamlines in βj to set
up a LAP or RLAP. In this last case, we propose to compute the corresponding
streamlines of αi by violating the one-to-one constraint and assigning one or
streamlines of αi to each of βj . The procedure is the following: first we solve the
reverse RLAP, i.e. we compute the optimal assignment of all the streamlines in βj

to (some of) those in αi. In this way, a subset of the streamlines in αi will obtain
their corresponding ones in βj . We denote such subset of assigned streamlines
as αa

i ⊂ αi and that of the remaining ones, i.e. the non assigned streamlines,
as αna

i ⊂ αi. Then, for each non assigned streamline s ∈ αna
i , we compute

its nearest neighbor in αa
i . Finally, we define the corresponding streamline of

s ∈ αna
i as the one corresponding to its nearest neighbor in αa

i .

3 Experiments

We selected 30 healthy subjects at random from the publicly available Human
Connectome Project (HCP) dMRI dataset [14] (90 gradients; b = 2000; voxel
1 In general, the number of streamlines of the two corresponding clusters is different,

thus leading to a RLAP.
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size = 1.25 mm isotropic). For each subject, tractograms of 400–500 thousands
streamlines were obtained using the constrained spherical deconvolution (CSD)
algorithm [15] and the local deterministic tracking algorithm implemented in
DiPy2 (step size = 0.625 mm, 1 seed/voxel from the white matter). We segmented
14 major bundles from each tractogram, using the TractQuerier/white matter
query language (WMQL, see [16]) and we used some of them as ground truth.
In order to reduce the impact of poor segmentations obtained in some cases, we
jointly selected 10 subjects and 10 bundles in order to minimize the differences
in number of streamlines for each bundles across the subjects. These bundles are
(both left and right): cingulum (cb), cortico-spinal tract (cst), inferior fronto-
occipital fasciculus (ifof), thalamo prefrontal (thpref) and uncinate fasciculus
(uf). We visually inspected the resulting bundles to avoid outliers. The experi-
ments were then conducted on the 90 pairs of different tractograms that can be
obtained from the selected 10 subjects.

3.1 Comparison

We quantified the quality of alignment between two tractograms as the degree
of overlap between the voxel masks of homologous bundles, after registration,
see [7,10]. The degree of overlap was quantified as dice similarity coefficient
(DSC): DSC = 2×(|v(b̂A)∩v(bB)|)

|v(b̂A)|+|v(bB)| , where v(b̂A) is the voxel mask of the bun-
dle bA ∈ TA after the alignment of the entire tractogram TA to TB . In other
words, v(b̂A) attempts to approximate the voxel mask of the homologous bun-
dle of the target subject, v(bB), considered as ground truth. In the comparison,
we considered the following methods to align tractograms: 1) registration based
on anterior and posterior commissures (AC-PC), directly provided within the
HCP dataset, used as baseline. 2) Streamline linear registration (SLR, from
DiPy, see [7]): in [10], SLR has shown slightly superior quality of registration
with respect to other linear methods, so we considered it as a good represen-
tative of the linear methods. 3) The voxel-based nonlinear registration method
of ANTs3, see [1], used with default values. As reference volume, we considered
the T1w images of the two subjects and the fractional anisotropy (FA) volumes.
4) Deformetrica4 [5], a diffeomorphic streamline-based registration method for
bundles. Streamlines were modeled as varifolds and we used 7 mm and 15 mm
for the varifolds and diffeomorphic kernel bandwidths respectively. 5) Correspon-
dence between streamlines as graph matching (GM5, see [10]). 6) Correspondence
between streamlines as linear assignment problem (LAP) (Sect. 2). Some of the
methods have too high computational cost when computed on whole tracot-
grams. For this reason, tractograms were simplified for such methods following
the simplification step described in Sect. 2.3, using the fast mini-batch k-means

2 http://nipy.org/dipy.
3 http://stnava.github.io/ANTs.
4 http://www.deformetrica.org/.
5 https://github.com/emanuele/graph matching tractograms.

http://nipy.org/dipy
http://stnava.github.io/ANTs
http://www.deformetrica.org/
https://github.com/emanuele/graph_matching_tractograms
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algorithm, as described in [10]. For each tractogram, we computed the approx-
imate k-means clustering on streamlines, with k = 1000 and k = 5000. The
simplified tractogram consisted of the k centroid streamlines. Note that such
values of k ensure an extensive coverage of the brain, which we can assume to
be enough to guarantee reasonable one-to-one assignments. We provide code
and datasets of all experiments under a Free/OpenSource license here: https://
github.com/FBK-NILab/WBIR2020 experiments.

3.2 Results

In Table 1 we report degree of overlap (higher is better) between homologous
bundles after whole tractogram registration, with different methods. The DSC
value is averaged over 90 pairs of subjects. The standard deviation of the means
is always below 0.01. All computations were executed on a modern desktop
computer, i.e. Intel Xeon E5 8 cores, 3.50 GHz, 16 Gb RAM, always using only
CPU6. In Fig. 1, we show an example of matching between homologous bundles
(IFOF left) after whole tractogram alignment for some of the methods.

Table 1. For each of the 10 bundles considered in this study (one per column), the table
reports the degree of voxel-overlap after whole brain tractogram alignment, quantified
as DSC (higher is better) and averaged over 90 pairs of subjects, across different meth-
ods - one per row. In each cell, the standard deviation of the mean is always below
0.01. In bold face are reported the highest values for each bundle, as well as those
within 0.01 from them. The last column reports the computational time in minutes for
aligning a pair of tractograms.

cbL cbR cstL cstR ifofL ifofR thprefL thprefR ufL ufR Time

AC-PC 0.42 0.38 0.41 0.43 0.32 0.29 0.38 0.38 0.21 0.19 –

SLR 0.47 0.43 0.46 0.50 0.38 0.37 0.44 0.45 0.27 0.25 5

ANTs (T1w) 0.61 0.56 0.56 0.59 0.54 0.51 0.54 0.55 0.37 0.35 30

ANTs (FA) 0.62 0.57 0.56 0.61 0.57 0.53 0.55 0.56 0.38 0.36 30

Deform (k=1000) 0.46 0.42 0.44 0.48 0.41 0.38 0.44 0.44 0.28 0.27 170

GM (k=1000) 0.46 0.45 0.57 0.59 0.62 0.64 0.56 0.57 0.39 0.35 480

LAP (k=1000) 0.52 0.48 0.60 0.63 0.63 0.64 0.56 0.57 0.40 0.34 60

LAP (k=5000) 0.56 0.52 0.63 0.66 0.66 0.67 0.60 0.60 0.43 0.39 120

4 Discussion and Conclusions

In this work, we describe the use of the linear assignment problem (LAP) to
align entire tractograms of two different subjects, by introducing approximations
as computational shortcuts. The LAP acts locally, as a nonlinear registration
method. In Table 1, we compare the proposed method with some linear and
nonlinear methods in the literature. The results show that LAP (k = 5000)

6 To note that Deformetrica has also a GPU implementation.

https://github.com/FBK-NILab/WBIR2020_experiments
https://github.com/FBK-NILab/WBIR2020_experiments
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Fig. 1. Example of homologous bundles after tractogram registration of TA (HCP
subject ID: 199655) to TB (HCP subject ID: 599671). In green, on the left, the IFOF
left of the static TB , as segmented by WMQL. In yellow, the IFOF left of the moving
TA, after tractogram registration with four different methods. Red circle indicates the
location of major differences with respect to the (green) IFOF left in TB . (Color figure
online)

outperforms other methods on almost all bundles. The only exception is the
cingulum (cbL, cbR) for which ANTs provides significantly better DSC, with
LAP second in the ranking.

The results also show a number of other interesting facts and confirm basic
sanity checks: despite the limited quality of the ground truth provided by the
WMQL, the values of DSC increase steadily from AC-PC registration, to linear
registration and to nonlinear methods. 90 pairs of subjects selected as described
in Sect. 3 are enough to keep the standard deviation of the means low enough
(≤0.01) to clearly see differences between the methods. It is also reassuring that,
for each bundle, the results are sufficiently similar across the two hemispheres,
e.g. ifofL and ifofR obtain almost the same score, for all methods. Nonlinear
methods outperform linear methods in all cases, with the exception of Defor-
metrica, most probably because we could not perform a large model selection
for the user-selected parameters due to the high computational time. Further-
more, the introduced approximations might interfere too much with the under-
lying method, which is tailored to register bundles. ANTs provided excellent
results, given the fact that it does not operate on streamline information. Most
probably this occurs because the grid on which ANTs operates, i.e. the voxel
grid, is much more dense than what the simplified tractograms offer. The results
between graph matching (GM) and LAP are not very different, for the same
level of approximation (k = 1000), with LAP in advantage. This advantage can
be explained by the fact that LAPJV computes the exact solution of the RLAPs,
while in the case of GM the underlying algorithm, DSPFP (see [10]), provides
only an approximate solution. Notably, LAP is 8 times faster than GM for this
size of tractograms, see Table 1 last column, which allowed us to run LAP with
k = 5000 in a reasonable amount of time and to obtain substantially superior
scores.
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All this evidence supports the hypothesis that the results are limited also by
the level of approximation and that, by improving algorithms and implementa-
tions to reduce computational cost, some of the methods may reach even better
results.
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Abstract. The use of different stains for histological sample prepara-
tion reveals distinct tissue properties and may result in a more accurate
diagnosis. However, as a result of the staining process, the tissue slides
are being deformed and registration is required before further process-
ing. The importance of this problem led to organizing an open challenge
named Automatic Non-rigid Histological Image Registration Challenge
(ANHIR), organized jointly with the IEEE ISBI 2019 conference. The
challenge organizers provided several hundred image pairs and a server-
side evaluation platform. One of the most difficult sub-problems for the
challenge participants was to find an initial, global transform, before
attempting to calculate the final, non-rigid deformation field. This arti-
cle solves the problem by proposing a deep network trained in an unsu-
pervised way with a good generalization. We propose a method that
works well for images with different resolutions, aspect ratios, without
the necessity to perform image padding, while maintaining a low number
of network parameters and fast forward pass time. The proposed method
is orders of magnitude faster than the classical approach based on the
iterative similarity metric optimization or computer vision descriptors.
The success rate is above 98% for both the training set and the evaluation
set. We make both the training and inference code freely available.

Keywords: Image registration · Initial alignment · Deep learning ·
Histology · ANHIR

1 Introduction

Automatic registration of histological images stained using several dyes is a
challenging and important task that makes it possible to fuse information and
potentially improve further processing and diagnosis. The problem is difficult
due to: (i) complex, large deformations, (ii) difference in the appearance and
partially missing data, (iii) a very high resolution of the images. The importance
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of the problem led to organizing an Automatic Non-rigid Histological Image Reg-
istration Challenge (ANHIR) [1–3], jointly with the IEEE ISBI 2019 conference.
The provided dataset [1,4–7] consists of 481 image pairs annotated by experts,
reasonably divided into the training (230) and the evaluation (251) set. There
are 8 distinct tissue types that were stained using 10 different stains. The image
size varies from 8k to 16k pixels in one dimension. The full dataset description,
including the images size and the acquisition details, is available at [3]. The chal-
lenge organizers provide an independent, server-side evaluation tool that makes
it possible to perform an objective comparison between participants and their
solutions.

One of the most difficult subproblems for the challenge participants was to
calculate the initial, global transform. It was a key to success and all the best
scoring teams put a significant effort to do this correctly, resulting in algorithms
based on combined brute force and iterative alignment [8,9], or applying a fixed
number of random transformations [10]. In this work, we propose a method
based on deep learning which makes the process significantly faster, more robust,
without the necessity to manually find a set of parameters viable for all the image
pairs.

Medical image registration is an important domain in medical image analysis.
Much work was done in the area, resulting in good solutions to many important
and challenging medical problems. Medical image registration can be divided into
classical algorithms, involving an iterative optimization for each image pair [11]
or learning-based algorithms where the transformations are being learned and
then the registration is performed during the inference [12]. The main advantage
of the learning-based approach over the classical, iterative optimization is a fast,
usually real-time registration, which makes the algorithms more useful in clinical
practice. During the ANHIR challenge the best scoring teams [8–10] used the
classical approach. However, we think that it is reasonable to solve the problem
using deep networks, potentially both improving the results and decreasing the
computation time.

Deep learning-based medical image registration can be divided into three
main categories, depending on the training procedure: (i) a supervised train-
ing [13,14], where a known transformation is applied and being reconstructed,
(ii) an unsupervised training [15–17], where a given similarity metric with a
proper regularization or penalty terms is being optimized, (iii) an adversarial
training [18,19], where both a discriminator and a generator are being trained
to not only find the correct transformation but also learn a correct similarity
metric. All the approaches have their strengths and weaknesses. The supervised
approach does not require to define a similarity metric, however, in the case
of multi-modal registration, the images must be first registered manually or by
using a classical algorithm. The transformations applied during training can
be both synthetic or already calculated using the state-of-the-art algorithms.
However, in the case of synthetic deformations, one must ensure that they cor-
respond to the real deformations and in case of using deformation calculated by
the state-of-the-art algorithms, it is unwise to expect better results, only a lower
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registration time. In the case of unsupervised training, a differentiable similar-
ity metric must be defined which for many imaging modalities is not a trivial
task [20]. However, if the similarity metric can be reliably defined, unsupervised
training tends to provide a better generalization [17]. The adversarial approach,
just like the supervised approach, does not require defining a similarity metric
but it still requires a ground-truth alignment that for many medical problems
can not be determined. The adversarial training provides much better generaliza-
tion than the supervised one [19]. However, the disadvantage of the adversarial
approach is the fact that training this kind of network is hard and much more
time-consuming than the supervised/unsupervised alternatives because finding
a good balance between the generator and the discriminator is usually a difficult,
trial and error procedure.

We decided to use the unsupervised approach because: (i) the state-of-the-art
similarity metrics can capture the similarity of the histological images well, (ii)
it does not require ground-truth to train the network, (iii) it is easy to train and
has a great generalization ability. Currently, the most widely used approach for
training the registration networks is to resize all the training images to the same
shape using both resampling and image padding. As much as resampling the
images makes sense, especially considering the initial alignment where the fine
details are often not necessary, the padding is usually not a good idea, especially
when the aspect ratio is high. It results in a high image resolution with much
empty, unused space that then requires a deeper network to ensure large enough
receptive field [21]. Therefore, we propose a network that can be trained using
images with substantially different resolutions, without the necessity to perform
the padding, while maintaining a relatively low number of network parameters,
almost independent of the image resolution.

In this work we propose a deep network to calculate the initial affine trans-
form between histological images acquired using different dyes. The proposed
algorithm: (i) works well for images with different resolution, aspects ratios and
does not require image padding, (ii) generalizes well to the evaluation set, (iii)
does not require the ground-truth transform during training, (iv) is orders of
magnitude faster than the iterative or descriptor-based approach, (v) success-
fully aligns about 98% of the evaluation pairs. We achieved this by proposing
a patch-based feature extraction with a variable batch size followed by a 3-D
convolution combining the patch features and 2-D convolutions to enlarge the
receptive field. We make both the training and inference code freely available [22].

2 Methods

2.1 General Aspects

The proposed method adheres strictly to the ANHIR challenge requirements,
namely the method is fully automatic, robust and does not require any parame-
ter tuning during the inference time. The method can be divided into a prepro-
cessing and the following affine registration. Both steps are crucial for the correct
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registration. A step by step summary of the proposed registration procedure is
described in Algorithm 1.

2.2 Preprocessing

The preprocessing consists of the following steps: (i) smoothing and resampling
the images to a lower resolution using the same, constant factors for each image
pair, (ii) segmenting the tissue from the background, (iii) converting the images
to grayscale, (iv) finding an initial rotation angle by an iterative approach.

The smoothing and resampling is in theory not strictly mandatory. However,
since the fine details are not necessary to find a correct initial alignment, it is
unwise to use the full resolution due to high computational time and memory
consumption. Both the resampling and the smoothing coefficients were deter-
mined empirically, without an exhaustive parameter tuning. The resampling pre-
serves the aspect ratio. After the resampling, the size across the larger dimension
varies from ∼600 to ∼2000 pixels, depending on the tissue type.

The next step is to remove the background. This procedure significantly
improves the results for mammary glands or mice kidneys because there are
staining artifacts in the background that have a strong influence on the similar-
ity metric. In this work, we remove the background using smoothed Laplacian
thresholding with a few morphological operations. It works for all the cases and
more advanced background removal algorithms are not necessary. Nonetheless,
this is data specific step. For other digital pathology data sets, this step may be
unnecessary or can look differently (e.g. a stain deconvolution or deep learning-
based segmentation).

Finally, after converting both images to grayscale, an initial rotation angle is
being optimized. We decided to use a simple procedure similar to [8,9] because
optimization of a single parameter can be done extremely fast and does not
require any advanced optimization techniques. As a result, the network architec-
ture can be much simpler and requires fewer parameters to capture the possible
transformations. The initial rotation angle is being optimized by the iterative
rotation of the source image around the translated center of mass, with a given,
pre-defined angle step. Then, the angle with the largest global normalized cross-
correlation (NCC) is used as the best one. In practice, this step calculation
time depends on the predefined angle step and can be optimized by performing
it using a GPU. However, even considering an unoptimized, single-core CPU
implementation, the computational time of this step is negligible compared to
the data loading, initial resampling, and background removal. The affine regis-
tration network was trained using the preprocessed data and therefore this step
is required during inference.

2.3 Affine Registration

We propose a network architecture that is able to calculate the correct affine
transformation in a single pass, independently of the image size and the aspect
ratio. The idea behind the network is as follows. First, the images are passed to
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Fig. 1. An overview of the proposed network architecture. The source and target are
unfolded and passed independently to the feature extractor where the batch size is
equal to the number of patches after unfolding. Then, the extracted features are con-
catenated and passed to the feature combiner, patch combiner, and fully connected
layers respectively. The whole network has slightly above 30 million parameters, inde-
pendently of the input image size.

the network independently. They are unfolded to a grid of patches with a given,
predefined size (224 × 224 in our case) and stride equal to the patch size, the
patches do not overlap. Then, the patches are combined to a single tensor where
the number of patches defines the batch size. This step is followed by a feature
extraction by a relatively lightweight, modified ResNet-like architecture [23]. The
feature extractor weights are shared between the source and the target. Then,
the features are concatenated and passed through additional 2-D convolutions
to combine the source and target into a single representation. Finally, the global
correspondence is extracted by a 3-D convolution followed by a variable number
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of 2-D convolutions using the PyTorch dynamic graphs. The final step allows
getting global information from the unfolded patches. The number of final 2-D
convolutions depends on the image resolution and can be extended dynamically
to enlarge the receptive field. In practice, on the resampled ANHIR dataset (the
larger dimension contains from ∼600 to ∼2000 pixels) a single convolutional layer
is sufficient. Eventually, the features are passed to adaptive average pooling and
fully connected layers, which output the transformation matrix. The network
architecture and the forward pass procedure is presented in Fig. 1. The number
of parameters is slightly above 30 million, the forward pass memory consumption
depends on the image resolution.

The proposed network is trained in a relatively unusual way. The batch is not
strictly the number of pairs during a single pass through the network. The image
pairs are given one by one and the loss is being backwarded after each of them.
However, the optimizer is being updated only after a gradient of a given num-
ber of images (the real batch size) was already backpropagated. This approach
makes its possible to use any real batch size during training but it requires an
architectural change. Since all the image pairs have a different resolution, they
are divided into a different number of patches during unfolding. As a result, it is
incorrect to use the batch normalization layers because during inference they are
unable to automatically choose the correct normalization parameters and strong
overfitting is observed. Therefore, we replaced all the batch normalization layers
by a group normalization [24], which solved the problem. One can argue that this
approach significantly increases the training time. This is not the case because
the batch size dimension after unfolding is sufficiently large to utilize the GPU
correctly.

Algorithm 1. Algorithm Summary.
Input : Mp (moving image path), Fp (fixed image path)
Output: T (affine transformation (2x3 matrix)

1 M, F = load both the images from Mp and Fp

2 M, F = smooth and resample the images to a lower resolution using the same,
constant factors for each image pair

3 M, F = segment the tissues from the background
4 M, F = convert the M, F images to the grayscale and invert the intensities
5 Trot = find the initial rotation angle by an iterative approach which

maximizes the NCC similarity metric between M and F
6 Mrot = warp M using Trot

7 Taff = pass Mrot and F through the proposed network to find the affine
matrix

8 T = compose Trot and Taff

9 return T

The network was trained using an Adam optimizer, with a learning rate equal
to 10−4 and a decaying scheduler after each epoch. The global negative NCC
was used as the cost function. No difference was observed between the global
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NCC and the patch-based NCC. Moreover, the results provided by NCC were
better than MIND or NGF since the latter two are not scale-resistant and would
require additional constraints. The dataset was augmented by random affine
transformations applied both to the source and the target, including translating,
scaling, rotating and shearing the images. The network was trained using only the
training dataset consisting of 230 image pairs. The evaluation dataset consisting
of 251 image pairs was used as a validation set. However, no decision was made
based on the validation results. The network state after the last epoch was used
for testing. Thanks to the augmentation, no overfitting was observed. Moreover,
the loss on the validation set was lower than on the training set. No information
about the landmarks from both the training and the validation set was used
during the training. The source code, for both the inference and training, is
available at [22].

3 Results

The proposed algorithm was evaluated using all the image pairs provided for the
ANHIR challenge [1–3]. The data set is open and can be freely downloaded, so
results are fully reproducible. For a more detailed data set description, includ-
ing the tissue types, the procedure of the tissue staining and other important
information, we refer to [3].

We evaluated the proposed algorithm using the target registration error
between landmarks provided by the challenge organizers, normalized by the
image diagonal, defined as:

rTRE =
TRE√
w2 + h2

, (1)

where TRE denotes the target registration error, w is the image width and h
is the image height. We compare the proposed method to the most popular
computer vision descriptors (SURF [25] and SIFT [26]) as well as the intensity-
based, iterative affine registration [27]. All the methods were applied to the
dataset after the preprocessing and the parameters were tuned to optimize the
results. Unfortunately, we could not compare to initial alignment methods used
by other challenge participants because the submission system reports only the
final results after nonrigid registration. The cumulative histogram of the target
registration error for the available landmarks is shown in Fig. 2. In Table 1 we
summarize the rTRE for the evaluation set using the evaluation platform pro-
vided by the challenge organizers. We also show the success ratio and the affine
registration time, excluding data loading and preprocessing time, which is the
same for all the methods. As the success ratio, we define cases that are registered
in a manner that can we followed by a converging, generic, nonrigid registration
algorithm like B-Splines free form deformations or Demons. In Fig. 3 we show an
exemplary case for which the proposed method is successful and the remaining
methods failed or were unable to converge correctly.
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Table 1. Quantitative results of the rTRE calculated using the ANHIR submission
website [3] as well as the average processing time for the affine registration step. The
success rate for the initial state shows the ratio of pairs not requiring the initial align-
ment.

rTRE Time [ms] Success rate

Median Average Max (Avg) Average [%]

Initial 0.056 0.105 0.183 – 31.15

Preprocessed 0.023 0.035 0.069 – 67.36

Proposed 0.010 0.025 0.060 4.51 98.34

SIFT [26] 0.005 0.085 0.174 422.65 79.21

SURF [25] 0.005 0.100 0.201 169.59 78.38

Iterative [27] 0.004 0.019 0.050 3241.15 97.30

Fig. 2. The cumulative histogram of the target registration error for the proposed and
compared methods. Please note that all the compared methods use the same prepro-
cessing pipeline to make them comparable. We experimentally verified that the prepro-
cessing does not deteriorate the results for the feature-based approach and significantly
improves the results for the iterative registration.



20 M. Wodzinski and H. Müller

Fig. 3. An exemplary failure visualization of the evaluated methods. Please note that
the calculated transformations were applied to the images before the preprocessing.
It is visible that the feature-based approach failed and the iterative affine registration
was unable to converge correctly.

4 Discussion and Conclusion

The proposed method works well for more than 98% of the ANHIR image pairs.
It calculates a transformation that can be a good starting point for the following
nonrigid registration. The registration time is significantly lower than using the
iterative or feature-based approach. However, it should be noted that currently
more than 99% of the computation time is spent on the data loading, initial
smoothing, and resampling. This step could be significantly lowered by proposing
a different data format, which already includes the resampled version of the
images.

It can be noticed that both the iterative affine registration and the feature-
based alignment provide slightly better results when they can converge correctly.
However, the registration accuracy achieved by the proposed method is sufficient
for the following nonrigid registration for which the gap between the proposed
method and the iterative alignment is not that important. The proposed method
is significantly faster and more robust, resulting in a higher success ratio, which
in practice is more important than the slightly lower target registration error.
The feature-based methods often fail and without a proper detection of the
failures they cannot be used in a fully automatic algorithm. On the other hand,
the proposed method does not suffer from this problem.

To conclude, we propose a method for an automatic, robust and fast initial
affine registration of histology images based on a deep learning approach. The
method works well for images with different aspect ratios, resolutions, generalizes
well for the evaluation set and requires a relatively low number of the network
parameters. We make the source code freely available [22]. The next step involves
a deep network to perform the non-rigid registration, using the highest resolution
provided by the challenge organizers. We think it is possible to solve this problem
efficiently, even though a single image can take up to 1 GB of the GPU memory.
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Abstract. Aligning thousands of images from serial imaging tech-
niques can be a cumbersome task. Methods ([2,11,21]) and programs
for automation exist (e.g. [1,4,10]) but often need case-specific tuning of
many meta-parameters (e.g. mask, pyramid-scales, denoise, transform-
type, method/metric, optimizer and its parameters). Other programs,
that apparently only depend on a few parameter often just hide many of
the remaining ones (initialized with default values), often cannot handle
challenging cases satisfactorily.

Instead of spending much time on the search for suitable meta-
parameters that yield a usable result for the complete image series, the
described approach allows to intervene by manually aligning problematic
image pairs. The manually found transform is then used by the automatic
alignment as an initial transformation that is then optimized as in the
pure automatic case. Therefore the manual alignment does not have to
be very precise. This way the worst case time consumption is limited
and can be estimated (manual alignment of the whole series) in contrast
to tuning of meta-parameters of pure auto-alignment of complete series
which can hardly be guessed.

1 Introduction

The general approach to reconstruct 3D by 2D serial sections (also termed array
tomography) is long known and can be applied with various imaging techniques
[2,7,22,30]. This method has the common drawback that the images of the serial
sections need to be aligned to the image of the adjacent slice. While this can be
done manually with various programs (e.g. midas of IMOD, Fiji/ImageJ, VV,
Gimp, PhotoShop), this can be very tedious labour. Although visual inspection
seems easy, it often is hard to decide which transform is the “best”, one reason
being the fact that adjacent images in general contain similar but not equal
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content due to the structure change in the 3rd dimension. This becomes of
particular importance when employing registration allowing local deformations,
because the natural 3D structure change is not meant to be corrected by local
deformation.

Therefore, various procedures for digital automatic alignment have been
investigated, which in general are based on finding a transformation that opti-
mizes a metric (a well defined quantification in contrast to visually “best”).
Many types of transformations, metrics and optimizers have been developed of
which specific ones need to be chosen depending on the given data and desired
results. Apart from the parameters of the transformation that get optimized
during the processing, parameters of the chosen optimizer, metric and general
ones such as denoising, size/shape of a mask and pyramid resolutions need to
be set before the processing can start [4,10,32]. These parameters are referred
to as meta-parameters and need to be tuned with expert knowledge in order to
get an acceptable results for as many consecutive images as possible. The more
serial sections the image series contains, the more difficult and time consum-
ing this task can become. Experience shows, that for a series of a few hundred
up to a few thousand realistic (i.e. non-ideal) images, the finding of suitable
meta-parameters can take a few weeks, without a guarantee to succeed at all.

In order to have a better guarantee to succeed in practice, the procedure
described in this paper limits the time consumption to that needed for a pure
manual alignment of the whole series, while trying to use automation as much
as possible.

2 Method

First Elastix [10], later SimpleElastix [16] was chosen as the framework that
provides the means for automated registration. In general other implementa-
tion could be chosen, however Elastix (based on ITK [8]) already accepts initial
transformations. Even if an initial transformation is provided by manual align-
ment, it can still enter the automatic optimization and therefore get improved
quantitatively as in the default case of pure automated optimization. In other
words, if the automated optimization gets trapped in a local optimum i.e. fails
to find the global optimum, a manual initial transform provides a different start
point for the optimization such that the global optimum is reached.

The work presented here is based on three distinct pieces of software:

1. The Python-implemented registration program recRegStack.py which
employs SimpleElastix.1

2. Extra programs and commands needed to convert gigapixel slice scans from
a Carl Zeiss slide scanner (in CZI fromat) to an image series usable by
recRegStack.py.

1 http://github.com/romangrothausmann/elastix scripts/.

http://github.com/romangrothausmann/elastix_scripts/
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3. A build and invocation system to apply these to a full-size image series, with
adjustments needed for the specific data at hand, using gnuplot [31] and
GNU Parallel [29].2

Fig. 1. Processing dependencies
Schematic flow graph to visualize the dependencies involved in the iterative process.
Images are represented by squares, text-files by ovals. The parameters used by default
(dfl. PF, dPF) during the registration (reg.) need to be tuned for the integral image
series (2D series) in order to reduce the need for manual interactions. The first image at
the start is copied unchanged. The last aligned image (ali. Img) is used as fixed image
(fix. Img, fI) for registering the next image from the series (mov. Img, mI). In the case
that the default parameters do not yield an acceptable result for an individual image
pair, it is possible to supply a manual initial transform (man. iT, mIT) and/or provide
individual registration parameters (idv. PF, iPF). Tuning the default parameters (dPF)
is the most difficult (time consuming, red) task, adjusting some individual parameters
less problematic (iPF, yellow) while creating a manual initial transform (mIT, green)
with e.g. midas is easiest. In case some images need to be re-scanned (due to scan-
artefacts, defocus, etc), the transform parameter files (tra. PF, tPF) can be used to
register the new image exactly the same way (reprod.) or the registration process can
be re-initiated to make use of the improved image quality.

recRegStack.py takes an Elastix/ITK parameter file (containing the defini-
tion of various meta-parameters) into account, which allows changing the default
values used by SimpleElastix. The last transformed image is used to register the
following one, see Fig. 1.

For the proof of principle, midas of the IMOD package [19] was chosen for
manual alignment due to its superior precision and interaction possibilities. Man-
ually created initial transform files (mITs, Fig. 1) will then be taken into account

2 http://github.com/romangrothausmann/CZIto3D.

http://github.com/romangrothausmann/CZIto3D
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by recRegStack.py when continuing the automated alignment. In addition, it
is possible to adjust the meta-parameters for individual image pairs (iPF, Fig. 1)
in case the mIT together with the global defaults (dPF, Fig. 1) do not lead to
a satisfactory result.3 This can happen for example if the fixed image (fI) and
the moving image (mI) come from different section bands, possibly differing
significantly in focus quality.

3 Application and Results

The described approach was applied to an image series of about 2600 histological
serial section of lung tissue (rat, details can be found in [27]), referred to as K2-
dataset. An EM UC7 microtome (Leica, Germany) was used to cut semi-thin
sections with a thickness of 1µm connected to bands of about 1 to 20 sections.
These bands were placed on 177 glass slides (where possible as a single row)

Fig. 2. Bands of serial sections of stained lung tissue on glass slides
Some exemplary thumbnails of slide scans with bands of serial sections of lung tissue
stained on glass slides. Ranging from good (left, one band well aligned and no signif-
icant staining variations) to bad (right, broken bands with unobvious order, staining
variations and slice loss due to folds and extending slide border). Lines indicate different
glass slide.

3 The iPF also allows to suppress further auto adjustments of an mIT in case the
global optimum does not represent the correct transformation, which can happen
for very destorted slices with repetitive, similar structures.
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Fig. 3. Exemplary image pairs
Left column: fixed image, middle column: moving image, right column: Magenta-Green
overlay of the image pair (similar to midas). Image pair rows:
1. ideal (no mIT or iPF needed).
2. dirt (mIT but no iPF needed).
3. defocus (no mIT or iPF needed).
4. folds (no mIT or iPF needed).
Metric for 3 without mIT is 34974 and with mIT 20214. (Color figure online)
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see Fig. 2. After staining with toluidine blue, the slides were digitalized at a
magnification of 10X by an AxioScan Z1 (Zeiss, Germany) using a single-channel
fluorescence camera with a very low transmission light in order to get greyscale
images (in CZI format) with a dynamic range above 8-bits.

The build and invocation system for this image series can be found in http://
gitlab.com/romangrothausmann/K2 fibrosis/. This git repository holds refer-
ences to the raw-data (CZIs) in an annex (https://git-annex.branchable.com/),
imports http://github.com/romangrothausmann/CZIto3D as a subtree for local
adjustments as needed for the specific data and serves as processing protocol.
recRegStack.py from http://github.com/romangrothausmann/elastix scripts/
is invoked via a docker-image (http://www.docker.com/) containing all the
needed libraries to reproducibly register the images. There is a short (down-
scaled) image series for testing in tests/recRegStack/.

Fig. 4. Plot of metric values with markers for mIT and iPF
The point densities of mITs and iPFs are visualized with kernel density plots on the
negative y-axis (unrelated to metric value, σ = 10). Mean of metric: ≈ 4100, Std. Dev.:
≈ 9300, some values are outside of the plot range, iPFs (52) are needed less often then
mITs (621), mostly in cases of high metric values. The largest interval without any
manual intervention (no mITs) is from 305 to 393 even though the default parameter
file (dPF) was tuned at different locations (e.g. slice 929, 1266 and 1379). The centre
xz- and yz-slice of the result stack (as shown in Fig. 5) are plotted for comparison.
Distortions due to alignment drift can be seen, especially in the xz-slice up to slice 500.

http://gitlab.com/romangrothausmann/K2_fibrosis/
http://gitlab.com/romangrothausmann/K2_fibrosis/
https://git-annex.branchable.com/
http://github.com/romangrothausmann/CZIto3D
http://github.com/romangrothausmann/elastix_scripts/
http://www.docker.com/
http://github.com/romangrothausmann/elastix_scripts/tree/ba86940716bacfed96641a48a39053014519cb54/tests/recRegStack
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Fiji [6] was used to roughly mark the centre of each section in thumb-
nail images of the gigapixel scans (czi2stack/Makefile). These centres were
then used to automatically extract the region of each slice as its own image
(3000 x 3000 pixel, PNG) with bfconvert [23] (czi2stack/Makefile). In case of
broken bands, the ordering implied by the centre marks had to be adjusted
to match the physical order (czi2stack/slides/slideOrder.lst, discrepancies often
only visible after a registration). This order was then used to register the
consecutive slices (czi2stack/Makefile). The mask for registration and the
default parameter file (dPF) were adjusted to fit the K2-dataset, applying
rigid registration using a “MultiResolutionRegistration” with “AdvancedMean-
Squares” metric and “AdaptiveStochasticGradientDescent” as optimizer, see
czi2stack/parameterFile.txt for details. Still, 621 mITs (in average every 4th
image) and 52 iPFs (in average every 50th image) were needed to align all 2607
images, see Fig. 4. Some exemplary image pairs (good, dirt, defocus, folds) are
shown in Fig. 3. Since the registration reconstructs the spatial correspondence
in the 3rd dimension, the resulting image stack can then be regarded as a 3D
dataset of 3000 x 3000 x 2607 voxel (about 44 GB @ 16-bit), see Fig. 5.

Fig. 5. Volume rendering of the 3D stack
Volume rendered visualization of the reconstructed 3rd dimension of the lung tissue
block (sub-extent of 1000 × 1000 × 2607 voxel). Tissue dark, resin semi-transparent grey
(airspaces and blood vessels).

The volume in lung samples occupied by tissue is only about 10%–20% [3,7],
so there is about 90%–80% mostly non-correlating texture in image pairs which
disturbs the registration process. This is one reason why the registration of serial
sections of lung tissue is challenging. A possible countermeasure is to “fill” the
non-tissue space with (roughly) correlating data. This can be achieved by first
auto-thresholding the image to roughly binarize tissue and non-tissue and then
generating a distance map, which is implemented in the branch ot+dm and leads

http://github.com/romangrothausmann/CZIto3D/blob/4da67edd107303b23ed00a6230cc38775a3b9007/czi2stack/Makefile#L96-L104
http://github.com/romangrothausmann/CZIto3D/blob/4da67edd107303b23ed00a6230cc38775a3b9007/czi2stack/Makefile#L179-L192
http://gitlab.com/romangrothausmann/K2_fibrosis/blob/ba87b312a8047e58dc0fcd0ebcdd000465c902fe/morph-fib/czi2stack/slides/slideOrder.lst
http://gitlab.com/romangrothausmann/k2_fibrosis/blob/ba87b312a8047e58dc0fcd0ebcdd000465c902fe/morph-fib/czi2stack/Makefile#L111-115
http://gitlab.com/romangrothausmann/k2_fibrosis/blob/ba87b312a8047e58dc0fcd0ebcdd000465c902fe/morph-fib/czi2stack/parameterFile.txt
http://github.com/romangrothausmann/elastix_scripts/tree/ot+dm
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to image pairs as in Fig. 6. However, applying this version of recRegStack.py
to the K2-dataset (K2 fibrosis@a5617581) showed, that more mITs are needed.4

A reason for this might be that this approach is more sensitive to dirt, which
ends up in the tissue segment and therefore causes significant disturbance in the
distance transform, see Fig. 6. Another promising approach could be registration
based on landmarks generated by SIFT [14,15], similar to Fiji’s “Register Virtual
Stack Slices” [4] but using Elastix/ITK in order to keep the features of manual
intervention (mIT and iPF)5.

Fig. 6. Exemplary image pair for ot+dm variant
Top row: image pair as is (no mIT or iPF needed), fixed image, moving image, Magenta-
Green overlay. Bottom row: ot+dm image pair for images on the left (blue-white-red
LUT from -50 to 50, blue: air, blood space; red: tissue, dirt). (Color figure online)

4 A full alignment with ot+dm was not pursued further because currently SimpleITK
of SimpleElastix does not allow to set a mask for the otsu-threshold calculation
(ot-mask). Therefore, the continuation feature of recRegStack.py cannot be used
so that after each mIT creation the registration has to start from the beginning and
therefore the whole procedure needs much more time. An alternative would be to
port recRegStack.py to ITKElastix.

5 The lack of the possibility for manual intervention and a trial of more than two weeks
to find meta-parameters to register the K2-dataset with Fiji’s “Register Virtual Stack
Slices” was actually the motivation for implementing recRegStack.py.

http://gitlab.com/romangrothausmann/k2_fibrosis/commit/a5617581eb7b50acf443dd57b72637dcdcb3b923
http://github.com/romangrothausmann/elastix_scripts/tree/ot-mask
http://github.com/InsightSoftwareConsortium/ITKElastix
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4 Discussion

The described proof of principle combines automated alignment with manual
intervention such that ideally the automation does the whole work but also
ensures that “in the worst case” at least the result of a pure manual alignment
will be achieved. This comes with a need to balance the two time consuming
tasks: Either tuning the meta-parameters for the automated alignment of as
many images in the series as possible (total time consumption can be unlimited)
or helping the automation with initial manual alignments (total time is limited).

While the current implementation with Makefiles serves as a proof of prin-
ciple, it can be further improved to a more intuitive and user-friendly program.
For example, by incorporating the processing done by various commands into
the Python code, as well as avoiding midas and other IMOD-tools or abort-
ing auto alignment in order to provide a manual alignment to continue with.
A graphical user interface (GUI) could provide visual feedback (similar to the
image viewer geeqie), incorporate the needed midas functionality and offer a
“manual intervention” button. In principle, a threshold on the final metric value
could be used to automatically trigger the suggestion of a manual alignment.

Another variant of recRegStack.py (branch combT 01) accumulates all for-
mer transforms and adds the newly found transform of the processed image pair
as in [21]. While the two approaches should yield similar results, accumulation
of a few hundred transforms can become problematic but in return can avoid
larger differences in case of already similarly recorded image pairs. A third vari-
ant (branch reg2tra+prevTra) uses both approaches and chooses the result with
the better metric value finally achieved.

Ideally, a (non-destructive) tomogram or some form of markers should be
used for guiding 3D reconstruction of serial sections (e.g. constrain local defor-
mation corrections and avoid continuous drift), such functionality is offered by
e.g. HistoloZee [1].

recRegStack.py provides the option to ignore some images of the series in
case some slices are too distorted for registration or lost during the preparation
(czi2stack/lostSlieds.lst). After aligning the next usable image of the series, a
reconstruction of the lost slice can be created from the adjacent slices [14].

Acknowledgement. Special thanks go to Susanne Faßbender (for excellent technical
assistance), Lena Ziemann (for slide scanning and creation of mITs and iPFs), Kasper
Marstal, Fabien Pertuy, Stefan Klein and Marius Staring (for feedback on use of Elastix,
SimpleElastix and debugging) and to David Mastronarde, Daniel Adler (for feedback
on IMOD and HistoloZee details) and Oleg Lobachev (for feedback on the general
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Abstract. We propose an unsupervised deep learning method for atlas-
based registration to achieve segmentation and spatial alignment of the
embryonic brain in a single framework. Our approach consists of two
sequential networks with a specifically designed loss function to address
the challenges in 3D first trimester ultrasound. The first part learns the
affine transformation and the second part learns the voxelwise nonrigid
deformation between the target image and the atlas. We trained this
network end-to-end and validated it against a ground truth on synthetic
datasets designed to resemble the challenges present in 3D first trimester
ultrasound. The method was tested on a dataset of human embryonic
ultrasound volumes acquired at 9weeks gestational age, which showed
alignment of the brain in some cases and gave insight in open challenges
for the proposed method. We conclude that our method is a promising
approach towards fully automated spatial alignment and segmentation
of embryonic brains in 3D ultrasound.
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1 Introduction

Ultrasound imaging is prominent in prenatal screening since it is noninvasive,
real-time, safe, and has low cost compared to other imaging modalities [10]. How-
ever the processing of ultrasound data is challenging due to low image quality,
high variability of positions and orientations of the embryo, and the presence of
the umbilical cord, placenta, and uterine wall. We propose a method to spatially
align and segment the embryonic brain using atlas-based image registration in
one unsupervised deep learning framework.
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Learning based spatial alignment and segmentation in prenatal ultrasound
has been addressed before. In Namburete [11] a supervised multi-task approach
was presented, which employed prior knowledge of the orientation of the head
in the volume, annotated slices, and manual segmentations of the head and eye.
Spatial alignment and segmentation was achieved on fetal US scans acquired
at 22 till 30 weeks gestational age. Atlas-based registration was proposed by
Kuklisova-Murgasova [9] where a MRI atlas and block matching was used to
register ultrasound images of fetuses of 23 till 28 week gestational age. Finally
Schmidt [13] proposed a CNN and deformable shape models to segment the
abdomen in 3D fetal ultrasound. All these works focus on ultrasound data
acquired during the second trimester or later and rely on manual annotations.
Ground truth segmentations for our application were not available and are labo-
rious to obtain, which motivated our unsupervised approach.

Developing methods for processing of ultrasound data acquired during the
first trimester is of great clinical relevance, since the periconception period
(14 weeks before till 10 weeks after conception) is of crucial importance for future
health [15]. Therefore our method is developed for first trimester ultrasound.

Recently there has been quite some attention for unsupervised deep learning
approaches for image registration, since these methods circumvent the need for
manual annotations. Several methods were developed to learn dense nonrigid
deformations under the assumption that the data is affinely registered [2,17].
Employing multi-level or multi-stage methods, affine registration can also be
included [6,7,16]. The framework presented here is based on the method pre-
sented in [2] and follows the idea of [6,7,16] to dedicate part of the network to
learn the affine transformation.

To the best of our knowledge this is the first work that addresses the develop-
ment of a framework for the alignment and segmentation of the embryonic brain,
captured by ultrasound during the first trimester, applying unsupervised deep
learning methods for atlas-based registration. Segmentation and alignment are
important preprocessing steps for any image analysis task, hence this method
contributes to our ultimate goal: further improve precision medicine of human
brain disorders from the earliest moment in life.

2 Method

Let I and A be two images defined in the n-D spatial domains (ΩI , ΩA) ∈ R
n,

with I the target image and A the atlas. Both images contain single-channel
grayscale data. Assume that A is in standard orientation and the segmentation
SA is available. Our aim is to find two deformations φa and φd such that:

A(x) ≈ I (φa ◦ φd(x)) ∀x ∈ ΩA, (1)

where φa is an affine transformation and φd a voxelwise nonrigid deformation.
To obtain φa and φd a convolutional neural network (CNN) is used to model

the function gθ: (φa, φd) = gθ(I,A), with θ the network parameters. The affine
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transformation φa := Tx is learned as a m-dimensional1 vector containing the
coefficients of the affine transformation matrix T ∈ R

(n+1)×(n+1). The voxelwise
nonrigid deformation is defined as a displacement field u(x) with φd := x+u(x).

Figure 1 provides an overview of our method. The input of the network is
an image pair consisting of the atlas A and target image I. The first part of
the network outputs φa and the affine registered image I(φa(x)). The input of
the second part is the affinely registered image together with atlas A. The final
output of the network consists of φa, φd, along with the registered and segmented
target image ISA

(φa ◦ φd(x)) = SA(x) · I(φa ◦ φd(x)) and the affinely registered
image I(φa(x))2.

Since this is an unsupervised method no ground truth deformations are used
for training. The parameters θ are found by optimizing the loss function on the
training set. The proposed loss function is described in the next section. After
training, a new image I can be given to the network together with the atlas to
obtain the registration.

Fig. 1. Architecture of our network. Light blue: convolutional layers with a stride of
2 (encoder). Green: convolutional layers with stride of 1, skip-connection, up-sampling
layer (decoder). Purple: fully connected layers with 500 neurons and ReLU activation.
Dark blue: convolutional layers at full resolution. Orange: φa, red: φd. All convolutional
layers have a kernel size of 3 and have a LeakyReLU with parameter 0.2. (Color figure
online)

1 For n = 2, m = 6 and for n = 3, m = 12.
2 Note that I(φa(x)) is not segmented, since this is an intermediate result.
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2.1 Network Architecture

The target image I and atlas A are fed to the network as a two-channel image.
The first part of the network consists of an encoder where the images are down-
sampled, followed by a global average pooling layer. The global average pooling
layer outputs one feature per feature map, which forces the network to encode
position and orientation globally, and is followed by fully connected layers. The
output layer consists of the entries of the affine transformation matrix T . The
architecture of the second part of the network is the same as Voxelmorph [2] and
consists of an encoder and decoder and convolutional layers at full resolution.
The output layer contains the dense displacement field u(x).

The method is implemented using Keras [3] with Tensorflow backend [1].
The ADAM optimizer is used with a learning rate of 10−4. Each training batch
consist of one pair of volumes and by default we use 500 epochs.

2.2 The Loss Function

The loss function is defined as follows:

L(A, I, φd, φa) = Lsim [A, I (φa ◦ φd(x))] + λdiffusionLdiffusion [φd]
+ λscalingLscaling [φa] .

(2)

The first term promote intensity based similarity between the atlas and the
deformed image, the second and third therm regularize φd and respectively φa.
Each term is discussed in detail below.

Since in 3D first trimester ultrasound there are other objects in the volumes
besides the brain, the similarity terms are only calculated within the region
of interest defined by segmentation of the atlas SA. Lsim is chosen as either
the mean squared error (MSE) or cross-correlation (CC). They are defined as
follows:

MSE(A, Y ) =
1
M

∑

p∈Ω

W (p) · (A(p) − Y (p))2 (3)

CC(A, Y ) =

1
M

∑

p∈Ω

W (p) ·
(∑

pi
[A(pi) − Ā(p)][YSA

(pi) − ȲSA
(p)]

)2

(∑
pi

[A(pi) − Ā(p)]2
) (∑

pi
[YSA

(pi) − ȲSA
(p)]2

) , (4)

where M is the number of nonzero elements in W , unless stated otherwise W =
SA, the subscript SA indicates segmented, Ā and Ȳ denote: Ā(p) = A(p) −
1
j3

∑
pi

A(pi), where pi iterates over a j3 volume around p ∈ Ω with j = 9 as in
[2].

Image registration is an ill-posed problem; therefore regularization is needed.
φd is regularized by:

Ldiffusion(u) =
1
M

∑

p∈Ω

‖∇u(p)‖2, (5)
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which penalizes local spatial variations in φd to promote smooth local deforma-
tions [4].

Initial experiments revealed that, when objects in the background of the
target image are present, the affine transformation degenerate towards extreme
compression or expansion. To prevent this, extreme zooming is penalized as
regularization for φa. The zooming factors must be extracted for T (x). This is
done using the Singular Value Decomposition (SVD) [5], which states that any
square matrix T ∈ R

n×n can be decomposed in the following way:

T = UΣV ∗, (6)

where the diagonal matrix Σ contains non-negative real singular values repre-
senting the zooming factors. The scaling loss is defined as:

Lscaling = ‖Diag(Σ) − S‖1. (7)

with S an n-dimensional vector containing ones.
For λdiffusion and λscaling the optimal values must be chosen. This is addressed

in the experiments.

3 Data

The following three datasets were used in the experiments.

3.1 Synthetic 2D Dataset 1

To develop and validate our method against a ground truth, we created two
synthetic 2D datasets. These synthetic datasets were created by affinely trans-
forming and nonrigidly deforming the synthetic atlas. As synthetic atlas the
Shepp-Logan phantom [14] is used, which was nonrigidly deformed. The first
dataset was created by first applying a random affine transformation φ̄−1

a on the
atlas, followed by a nonrigid deformation φ̄−1

d .
The coefficients for the affine transformation matrix φ̄−1

a (x) := T−1
gt x were

drawn as follows: translation coefficients tx, ty ∈ [0, 40] pixels, rotation angle
θ ∈ [0, 360] degrees, anisotropic zooming factors zx, zy ∈ [0.5, 1.5], and shear
stress in the x direction θs ∈ [0, 30] degrees. The nonrigid deformation φ̄−1

d (x) :=
x+αu−1

gt (x) was generated using a normalized random displacement field u−1
gt (x),

were α defines the magnitude of the displacement. The smoothness of u−1
gt (x) is

controlled using σ, representing the standard deviation of the Gaussian, which
was convolved with u(x). We used α = 40, and σ ∈ [3,7].

3.2 Synthetic 2D Dataset 2

The second synthetic dataset was created in the same manner as the first, with
additionally a background consisting of ellipses which have a random size and
orientation. The ellipses are around, behind and adjacent to the synthetic atlas,
to mimic the presence of the uterine wall around the embryo, and the body
of the embryo attached to the head. Both datasets contain 3000 training, 100
validation and 100 test images.
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3.3 3D Ultrasound Data: Rotterdam Periconceptional Cohort

The Rotterdam Periconceptional Cohort (Predict study) is a large hospital-based
cohort study embedded in tertiary patient care of the department of Obstetrics
and Gynaecology, at the Erasmus MC, University Medical Center Rotterdam,
the Netherlands. This prospective cohort focuses on the relationships between
periconceptional maternal and paternal health and fetal growth development,
and underlying (epi)genetics [15].

Scans collected at 9 weeks gestational age were used as proof of concept for
our method. The image chosen as atlas was put in standard orientation and
had sufficient quality to segment the embryo and brain semi-automatically using
Virtual Reality [12]. There were 170 3D ultrasound scans available with sufficient
quality, 140 are used for training and 30 for testing. All scans were padded with
zeros and re-scaled to 64 × 64 × 64 voxels to speed up training.

Since 140 scans is not sufficient for training, data augmentation was applied.
When considering a 2D slice, the embryo is either visible in the coronal, saggital,
or axial view. To keep this property during augmentation, first an axis was
selected at random and a rotation was applied of either 90, 180 or 270 degrees.
Subsequently a random rotation on this axis was applied between 0 and 30
degrees followed by a translation tx, ty, tz ∈ [−15, 15] and anisotropic zooming
zx, zy, zz ∈ [0.9, 1.3]. Each volume was augmented 30 times and this resulted in
4340 images for training.

4 Experiments

To validate our method three experiments are performed.

1. Comparison with Voxelmorph [2] on synthetic dataset 1 and Lsim = MSE.
Goal: evaluate influence of adding a dedicated part of the network for affine
registration on images where the object of interest has a wide variation in
position and orientation.

2. Evaluation of hyperparameters in loss function Eq. (2) on synthetic dataset
2 and Lsim = MSE. Goal: set λdiffusion and λscaling in the presence of objects
in the background.

3. Testing method on 3D ultrasound data acquired at 9 weeks gestational age
with Lsim = CC and different types of atlases as input for the network.
Lsim = CC is used, since it is well known that the cross-correlation is more
robust to intensity variations and noise.

The main difference between the synthetic data and ultrasound data is that for
the synthetic data the atlas is the only object with a clear structure, while the
ultrasound data is noisy and more structures similar to the embryonic brain are
present, for example the body of the embryo. The body of the embryo is also a
prominent round structured shape. To address this, in the third experiment the
influence of using an atlas containing the whole embryo versus only the brain
is evaluated. Using the atlas containing the whole embryo as input gives more
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information for alignment. However we aim at registering only the brain, since
this is our region of interest and registering the whole embryo introduces new
challenges due to movement and wide variation in position of the limbs. To focus
on registration of the brain, W (x) in Eq. 4 is adjusted by assigning twice as much
weight to the loss calculated in voxels that are part of the brain.

4.1 Evaluation

In the synthetic case the Target Registration Error (TRE) was calculated, which
was defined as the mean Euclidean distance between xi ∈ R

2 for i in the set of
evaluation points:

TRE
[
φ̄−1

a , φ̄−1
d , φa, φd

]
=

1
n

n∑

i=1

‖φ̄−1
a ◦ φ̄−1

d ◦ φa ◦ φd(xi) − xi‖, (8)

where the evaluation points mark the boundary of the shape and important
internal structures. The TRE is given in pixels.

In the case of real ultrasound data we visually asses the quality of alignment
in the 30 test images. The following scoring is used: 0: fail, 1: correct orthogonal
directions, 2: brain and atlas overlap, 3: alignment. Where score 1 indicates the
network was able to detect the correct plane, score 2 indicates the network was
able to map the brain to the atlas and 3 indicates successful alignment.

5 Results

In the first experiment we compared our method with Voxelmorph [2] on the first
synthetic dataset. The experiment was done for different values of λdiffusion with
λscaling = 0. Table 1 shows that with the architecture of Voxelmorph it was not
possible to capture the global transformation needed. This is also illustrated by
row one in Fig. 2. Using our method a small TRE was achieved for both the train
and validation set, see row 2 of Fig. 2 for an example. Setting λdiffusion = 0.8 gave
a TRE of 2.71± 1.67 pixels on the test set, which is comparable to the result on
the train and validation set.

Table 1. Performance on first synthetic dataset using Voxelmorph [2] and our method
for different values of λdiffusion. TRE is expressed in pixels, standard deviation between
brackets.

Voxelmorph Our method

λdiffusion Train Validation Train Validation Test

0.05 34.27 (12.10) 34.87 (11.35) 3.46 (6.86) 4.25 (8.35) -

0.2 34.15 (12.85) 35.23 (12.24) 2.71 (5.80) 3.63 (7.25) -

0.8 40.40 (12.67) 42.12 (11.80) 2.20 (0.77) 3.10 (1.78) 2.71 (1.67)

3.2 - - 32.61 (34.07) 35.60 (33.25) -
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Table 2. Target registration error for different hyperparameter settings of the loss
function. TRE is expressed in pixels. The standard deviation is given between brackets.

λdiffusion λscaling Train Validation Test

0.2 0 4.02 (8.26) 5.43 (11.17) -

0.8 0 2.17 (3.64) 2.74 (2.30) -

0.2 0.004 3.17 (3.08) 3.26 (1.46) -

0.8 0.004 2.36 (3.53) 2.45 (3.53) 2.90 (1.97)

0.2 0.008 6.99 (10.26) 6.25 (7.52) -

0.8 0.008 2.47 (3.35) 2.53 (1.10) -

In the second experiment we evaluated how to deal with objects in the
background by penalizing extreme zooming. In Table 2 one can find the results
for λdiffusion = 0.2 and λdiffusion = 0.8 and for different values of λscaling. Set-
ting λscaling too high restricts the network to much, setting this value too low
causes extreme scaling. The best result on the validation set was found for
λdiffusion = 0.8 and λscaling = 0.004, using this model to register the test set
gave a TRE of 2.90±1.97 pixels, which is again comparable to the result for the
training and validation set. An example can be found in row three of Fig. 2.

In the third experiment we evaluated our method on real ultrasound data,
for different combinations of atlases as input to the two parts of the network.
The results are shown in Table 3. Using the atlas of the whole embryo gives
the best results, since the network has more information for alignment. Figure 3
gives an impression of the resulting registrations. Note that the images that are
marked as aligned are not perfectly registered, this is caused by the fact that the

Fig. 2. Visual result for experiment 1 and 2, Y = I(φ(x)) in case of Voxelmorph
architecture, Y = I(φa ◦ φd(x)) for our method and A the atlas.
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Table 3. Performance on ultrasound data for different type of atlas. Scoring: 0: fail,
1: correct orthogonal directions, 2: brain and atlas overlap, 3: alignment.

Part 1 Part 2 0 1 2 3

Brain Brain 21 7 2 0

Embryo Brain 10 14 5 1

Embryo Embryo 8 14 5 3

Fig. 3. Same slice for: a) ultrasound atlas, b) example of image after alignment with
score 1, c) example of image after alignment with score 2, d, e): example of successfully
affine aligned images with score 3. Red line indicates correct boundaries of the brain
after alignment. (Color figure online)

network still roughly misaligned most images and therefore voxelwise alignment
is not learned.

6 Conclusion

In this work we extended existing deep learning methods for image registra-
tion to developed an atlas-based registration method to align and segment the
embryonic brain. Main extensions are the dedicated part of the network for affine
registration and the loss function (2). For validation, synthetic 2D datasets con-
taining a ground truth were used. These experiments showed that our method
can deal with the wide variation in position and orientation and with simple
objects in the background.

The final experiment using real 3D ultrasound data acquired during the first
trimester showed that our method is not robust enough to align and segment
the embryonic brain. The importance of the atlas was evaluated and it turns out
that using an atlas of the whole embryo improves results slightly, since it gives
more information. This information is needed since the images are noisy, have
artefacts and the embryonic brain is small (on average only 1% of the volume).
Another drawback is that the ultrasound images were rescaled to one-fourth
of the original size and during registration the image is resampled twice which
makes the deformed image blurry and this has influence on the calculated loss
function. The rescaling was done to speed up training.

Another way to speed up training, is to train in two stages. The second part
of the network learning the voxelwise registration, can only learn useful features
when the images are already roughly aligned. So training first the affine part of
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the network is more efficient, since from the start the second part can then learn
useful features for voxelwise alignment. This will be explored in the future.

Finally, we aim to extend our method to be applicable to the entire first
trimester, to enable spatio-temporal modeling of the embryonic brain. This
extension can be made by training different networks for each period. Another
natural extension is multi-atlas image segmentation [8], both for networks trained
within a certain period to get more robust results, or with a set of atlases covering
the whole first trimester.
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Abstract. Accurate registration of CT and CBCT images is key for
adaptive radiotherapy. A particular challenge is the alignment of flexible
organs, such as bladder or rectum, that often yield extreme deformations.
In this work we analyze the impact of so-called structure guidance for
learning based registration when additional segmentation information is
provided to a neural network. We present a novel weakly supervised deep
learning based method for multi-modal 3D deformable CT-CBCT reg-
istration with structure guidance constraints. Our method is not super-
vised by ground-truth deformations and we use the energy functional
of a variational registration approach as loss for training. Incorporating
structure guidance constraints in our learning based approach results in
an average Dice score of 0.91 ± 0.08 compared to a score of 0.76 ± 0.15
for the same method without constraints. An iterative registration app-
roach with structure guidance results in a comparable average Dice score
of 0.91±0.09. However, learning based registration requires only a single
pass through the network, yielding computation of a deformation fields
in less than 0.1 s which is more than 100 times faster than the runtime
of iterative registration.

Keywords: Image registration · Deep learning · Radiotherapy

1 Introduction

Deformable image registration (DIR) is an important tool in radiotherapy for
cancer treatment. It is used for the alignment of a baseline CT and daily low-
radiation cone beam CT (CBCT) images, allowing for motion correction, prop-
agation of Hounsfield units and applied doses. Furthermore, organ segmenta-
tions, that are typically created by clinical experts during planning phase from
the baseline CT, can be propagated to daily CBCT images. DIR has become a
method of choice in image-guided radiotherapy and treatment planning over the
last decades [2]. However, it is a demanding task that holds several challenges
such as meaningful measurement of multi-modal similarity of CT and CBCT
c© Springer Nature Switzerland AG 2020
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images, having low contrast and containing artifacts. Aside from that, flexible
organs, such as bladder or rectum, can introduce extreme deformations, compli-
cating an accurate registration. Conventional DIR algorithms such as [11] tend to
underestimate large deformations, which is why extended DIR approaches were
presented [9,14]. These so-called structure guided approaches include information
about corresponding anatomical delineations on the images in order to guide the
registration. While the required delineations are usually available on the plan-
ning CT due to the workflow of radiotherapy, they need to be generated on
CBCT scans before registration. As the advancements of machine learning algo-
rithms proceed, fast and accurate generation of organ segmentations becomes
easier, enabling structure guided DIR and making adaptive radiotherapy more
feasible. However, DIR in radiotherapy remains a challenging task.

In the last few years, novel deep learning based registration methods have
been proposed [12], showing potential of being superior to state-of-the-art iter-
ative algorithms both in terms of accuracy and execution time. However, in the
field of DIR in radiotherapy rather little work on deep learning based approaches
has been done. In [3] for example a patch-based learning method for mono-modal
CT-CT image registration has been proposed. Moreover, deep learning is used
to overcome multi-modality by estimation of synthetic CT images from other
modalities which then are used for registration [6]. As ground-truth deforma-
tions between images are hard to obtain, mostly unsupervised learning methods
for DIR have been proposed in the past. Therefore a deep network is trained by
minimization of a loss function inspired by the cost function of iterative registra-
tion methods [7,15]. To include additional available information, such as organ
delineations during training, so-called weakly supervised methods have been pro-
posed and showed improved registration accuracy [1,8]. Also in the context of
radiotherapy these methods show promising results [10].

In this work we aim to combine the strengths of learning DIR with weak
supervision and conventional registration using structure guidance. To this end
we present a novel weakly supervised deep learning based method for multi-
modal 3D deformable CT-CBCT registration with structure guidance con-
straints. Our method is not supervised by hard to obtain ground-truth defor-
mation vector fields. The minimized loss is inspired by variational structure
guided DIR algorithms, including an image similarity measure suitable for multi-
modal CT-CBCT alignment and an additional term rating the alignment of given
segmentation masks. Furthermore, we penalize deformation Jacobians to avoid
local changes of topology and foldings. In contrast to existing learning based
approaches, here we directly incorporate information on guidance structures as
additional input to the networks. We evaluate our method on follow-up image
pairs of the female pelvis and compare our results to conventional iterative reg-
istration algorithms.

2 Method

The goal of DIR is the generation of dense correspondences between a reference
image R and a template image T with R, T : R

3 → R. This is achieved by
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Fig. 1. Overview on our network training process. We train 3 different types of networks
which all require the input of a reference and a template image. Additionally they can
receive segmentations on the reference image or corresponding segmentations on both
images as input (indicated by red dotted lines). The output is a deformation vector
field that is applied to the template image and segmentations. The network parameters
are updated using backpropagation based on the loss function presented in Sect. 2.2.
(Color figure online)

estimating a reasonable deformation vector field y : Ω → R
3 on the field of view

Ω ⊆ R
3 of R, such that the warped template image T (y) and R are similar.

In a variational approach y is computed by minimizing a suitable cost function,
usually consisting of an image similarity measure and a regularization term.
In iterative registration this is typically done by a time-consuming gradient or
Newton-type optimization scheme. However, in a deep learning based registra-
tion, the deformation is modeled by a convolutional neural network (CNN), that
directly maps given input images to a vector field and that is parameterized
with learnable parameters θ, i.e. y ≡ yθ(R, T ). Due to the lack of ground-truth
deformations, we adapt the variational approach and minimize the variational
costs in average over all given training samples. In the context of learning, the
cost function is the so-called loss function. An overview on the training process
of our networks is given in Fig. 1.

2.1 Registration Types by Input

The networks require the input of a reference and a template image which need to
be registered. Furthermore, we allow that available segmentations are provided
as additional inputs. In this work, we distinguish between no additional input, a
set ΣR = {Σ�

R ⊂ R
3, � = 1, . . . , L} of segmentations Σ�

R on the reference image,
or two sets ΣR, ΣT with corresponding segmentations Σ�

R and Σ�
T on reference

and template image, respectively. On that account, we consider following three
types of CNNs that predict a deformation field y depending on the given inputs:

Type I: y ≡ yθ(R, T ) (images only)
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Type II: y ≡ yθ(R, T , ΣR) (images + reference segmentations)
Type III: y ≡ yθ(R, T , ΣR, ΣT ) (images + corresponding segmentations)

Note that all three CNN registration types use information about anatomical
structures during training for weak supervision. For inference, only the respective
network inputs are required. Once the training process is finished, only a single
pass though the network is needed for registration of unseen image pairs.

Above classification is clearly not limited to deep learning based registration
as the registration types just describe the given inputs. In our experiments we
will also refer to iterative registration of type I and III in analogues manner
indicating the provided inputs per registration.

2.2 Loss Function

The loss function our networks minimize is similar to cost functions in itera-
tive registration schemes [14]. It is composed of four parts, weighted by factors
α, β, γ > 0:

L(y) = NGF(R, T (y))+
α

2
‖MR−MT (y)‖2L2

+
β

2
‖Δy‖2L2

+γ

∫
Ω

ψ(det ∇y(x)) dx

(1)
with the edge-based normalized gradient fields (NGF) [5] distance measure

NGF(R, T ) =
1
2

∫
Ω

1 −
〈∇R(x),∇T (x)〉2εRεT

‖∇R(x)‖2εR‖∇T (x)‖2εT

dx, (2)

where 〈x, y〉ε := x�y + ε, ‖x‖ε :=
√

〈x, x〉ε2 . Additionally, a L2-penalty for
weakly supervised structure guidance constraints is applied to segmentation
masks hat are handled as multi-channel binary images MR,MT : R3 → {0, 1}L,
such that MR(x)� = 1 iff x ∈ Σ�

R and MT (x)� = 1 iff x ∈ Σ�
T . A spatial second

order curvature regularization [4], where Δy ≡ (Δy1,Δy2,Δy3) is the vector
Laplacian, i.e. the Laplacian is applied component-wise, and a change of volume
penalty with ψ(t) := (t − 1)2/t if t > 0 and ψ(t) = ∞ otherwise are utilized
to force physically reasonable deformations. The latter term penalizes Jacobians
that indicate high volume growth (det∇y > 1), shrinkage (0 < det ∇y < 1) and
especially unwanted grid foldings (det∇y ≤ 0).

2.3 Network Architecture

Our proposed CNN architecture is based on a U-Net [13] with four stages.
Inputs are two 3D images R and T and, depending on the registration type
(c.f. Sect. 2.1), additional reference segmentations ΣR or corresponding segmen-
tations ΣR and ΣT . Note that for each type a separate network has to be trained.
First, individual convolution kernels are applied to each input. The results are
combined by concatenation and afterwards convolution blocks and 2 × 2 × 2



48 S. Kuckertz et al.

max-pooling layers alternate. An convolution block consists of two convolutions
with a kernel size of 3 × 3 × 3, each followed by a ReLU and a batch normal-
ization layer. In each stage the number of feature channels gets doubled. In the
decoder path, we alternate between transposed convolutions, convolution blocks
and concatenating skip connections. Finally, we apply a 1 × 1 × 1 convolution,
yielding the 3-channel deformation field with the same resolution as the inputs.

3 Experiments

We evaluate our proposed deep learning based method on image data of 31 female
patients from multiple clinical sites. The dataset includes one planning CT and
up to 26 follow-up CBCT scans of the pelvis for each patient, yielding 256 intra-
patiental CT-CBCT image pairs in total. In order to focus on deformable parts
of the registration, the images were affinely registered beforehand. Additionally
the images were cropped to the same field of view and resampled to a size of
160× 160× 80 voxels, each with a size of approximately 3mm× 3mm× 2mm in
a preprocessing step. Available delineations of bladder, rectum and uterus were
generated by clinical experts.

We evaluate the performance of three network types, differing in their num-
ber of required inputs and guidance through delineated structures. First, we only
input two images that need to be registered. Second, we additionally include
available segmentations on the reference CT image that are usually available
after treatment planning phase. Third, we also include corresponding segmenta-
tions on the daily CBCT image for structure guidance. For comparison of our
method with classical variational approaches we perform an iterative registration
of all test image pairs, both with and without the guidance of given structures.
We therefore minimize the same loss function without a volume change control
term using an iterative L-BFGS optimizer. The weights in our loss and objective
function (1), respectively, have been chosen manually as α = 30, β = 3, γ = 0.3.

Each network type is evaluated performing a k−fold cross-validation with
k = 4, splitting the dataset patient-wise into four subsets, training on three of
them and testing on the left out subset. As evaluation measures we use the Dice
similarity coefficient and the average surface distance (ASD) for estimation of
segmentation overlap and registration accuracy. We check the plausibility of the
deformation fields using their Jacobians as an indicator of volume changes and
undesired grid foldings. The implementation of our deep learning framework is
done using PyTorch and processed on a NVIDIA GeForce RTX 2070 with 8 GB
memory and an Intel Core i7-9700K with 8 cores.

4 Results

The outcome of our experiments is summarized in Table 1. As expected, the
registration quality improves with providing further input. We found that solely
forwarding the reference and template image to our weakly supervised trained
CNN for registration of type I yields an average Dice score of 0.76 (Dice after
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Table 1. Quantitative results of our experiments (c.f. Sect. 3). Mean and standard
deviation of Dice scores and average surface distances (ASD) over all test images and
average runtime for a single registration are shown. Furthermore, Jacobians and average
percentage of voxels in which foldings occur (det(∇y) ≤ 0) are listed for the body region
and the union of the guiding structures (bladder, rectum, uterus).

Method Dice score ASD [mm] Body region Guiding structures Time

Jacobians Foldings Jacobians Foldings

Preregist. 0.64± 0.15 5.49± 2.87 – – – – –

Iterative I 0.72± 0.13 4.13± 2.50 1.02± 0.28 0.02% 0.96± 0.47 0.14% 15 s

Iterative III 0.91± 0.09 1.07± 0.96 1.02± 0.34 0.17% 1.00± 0.97 2.58% 20 s

Learning I 0.76± 0.15 3.34± 2.40 1.01± 0.24 0.00% 0.97± 0.68 0.06% <0.1 s

Learning II 0.80± 0.15 2.79± 2.42 1.01± 0.24 0.00% 0.95± 0.75 0.08% <0.1 s

Learning III 0.91± 0.08 1.28± 1.16 1.01± 0.18 0.01% 0.99± 0.69 0.16% <0.1 s

Iterative I Iterative III Learning I Learning II Learning III

Fig. 2. Histrogram visualizations of the Jacobians (det ∇y) representing the voxel-wise
volume change inside the body region on the x-axis for each registration type. The y-
axis shows the relative number of voxels. The values are based on all test images.

Dice score Average surface distance [mm]

Fig. 3. Comparison of Dice scores and average surface distances for all test images and
annotated labels (bladder, rectum and uterus). For each label the distributions after the
affine preregistration ( ), a conventional iterative ( ) and our proposed deep learning
based registration ( ) are illustrated (c.f. Sect. 3). (Color figure online)

affine preregistration was 0.64). The result is superior to iterative registration
of type I with an average Dice of 0.72. This is not surprising, as a particular
advantage of learning based DIR algorithms is to build in anatomical knowl-
edge and guidance, respectively, by weakly supervised training. Learning based
registration of type II with additionally passing reference segmentations to the
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R and (Dice 0.66) Iterative I (Dice 0.74) Iterative III (Dice 0.89)

)c()b()a(

Learning I (Dice 0.77) Learning II (Dice 0.86) Learning III (Dice 0.92)

)f()e()d(

Fig. 4. Qualitative comparison of registration results. (a) Reference and template with
initial Dice score (average of the three scores for bladder, rectum, uterus). (b)-(f)
Deformed template images T (y) and deformations y for iterative (type I+III) and
learning based DIR (type I-III). Additionally, we show segmentations of the blad-
der ( ), rectum ( ) and uterus ( ). (Color figure online)

network slightly improves the registration accuracy (Dice 0.80), while providing
corresponding segmentations on the CT and CBCT yields best results. In fact,
structure guided iterative and learning based registration of type III both lead
to an average Dice score of 0.91. Looking at the average surface distance shows
a comparable tendency, where the iterative and learning based structure guided
approaches both achieve values lower than the spatial resolution. The distribu-
tions of Dice scores and average surface distances are visualized in Fig. 3, showing
a systematic improvement of registration results from type I to III.

A visual comparison of registration results of all types for one case is given
in Fig. 4. Additionally, the results of structure guided iterative and learning
based registrations of type III for three different patients are shown in Fig. 5.
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Fig. 5. Results of structure guided iterative and learning based DIR for three different
cases. Additionally, Euclidean distances of the corresponding deformation vector fields
are shown together with color scales including a histogram of the respective distances.
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We observe that large deformations, especially of the bladder, are compensated
due to the guidance of these structures. The plausibility of the underlying defor-
mations can be checked with the help of the illustrated transformed grids. Fur-
thermore, Fig. 2 displays the distributions of Jacobians for all approaches. As
expected, Jacobians are centered around 1.0 with small standard deviations.

As specified in Table 1, the computational runtime of our deep learning based
registration is over 100 times faster than the (CPU based) iterative approaches
due to the fact that registration only needs a single pass through the CNN.

5 Conclusion

We presented a deep learning based method for multi-modal 3D deformable
image registration with structure guidance constraints for adaptive radiother-
apy. In our experiments we observed a significant improvement of learning based
DIR by incorporation of structure guidance constraints, realized by providing
organ segmentations as network input. More precisely, we showed that providing
segmentations at first on the reference CT image improves registration results.
These segmentations are typically generated and checked by clinical experts dur-
ing the treatment planning phase and therefore available for all subsequent CT-
CBCT registrations. Furthermore, corresponding segmentations on daily CBCT
scans become available more easily as learning based segmentation algorithms
advance. Incorporation of corresponding segmentations into our deep learning
based method yields best results which are comparable to the output of state-
of-the-art iterative approaches for structure guided image registration. However,
generating deformations over 100 times faster, our learning based approach is
capable of application nearly in real-time. Due to its short runtimes and accu-
rate results, our method for structure guided image registration makes adaptive
radiotherapy more feasible. It accelerates the clinical workflow and enables a
more precise application of radiation doses, so target volumes get irradiated
more effectively, while the harm of organs at risk is reduced.

Furthermore, we showed that the ability to build in anatomical knowledge
by weakly supervised training of our network improves registration results even
when this additional information is not provided during registration of unseen
image pairs. Our learning based method does not rely on supervision by hard to
obtain ground-truth deformations, but minimizes a suited loss function inspired
by variational structure guided registration approaches.

For each registration type, differing in their number of provided inputs,
we trained an independent neural network. In future work, we will investigate
the implementation of a more flexible approach, handling a variable number of
inputs. Additionally, we want to evaluate the integration of supplemental knowl-
edge, especially from segmentations of target volumes that typically do not follow
anatomical boundaries.



Learning Image Registration with Structure Guidance Constraints 53

References

1. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph:
a learning framework for deformable medical image registration. IEEE Trans. Med.
Imaging 38, 1788–1800 (2019)

2. Brock, K.K., Mutic, S., McNutt, T.R., Li, H., Kessler, M.L.: Use of image registra-
tion and fusion algorithms and techniques in radiotherapy: report of the AAPM
radiation therapy committee task group no. 132. Med. Phys. 44(7), e43–e76 (2017)

3. Elmahdy, M.S., Wolterink, J.M., Sokooti, H., Išgum, I., Staring, M.: Adversarial
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Abstract. 2D-3D image registration is an important task for computer-
aided minimally invasive vascular therapies. A crucial component for
practical image registration is the use of multilevel strategies to avoid
local optima and to speed-up runtime. However, due to the different
dimensionalities of the 2D fixed and 3D moving image, the setup of mul-
tilevel strategies is not straightforward.

In this work, we propose an intensity-driven 2D-3D multiresolution
registration approach using the normalized gradient fields (NGF) dis-
tance measure. We discuss and empirically analyze the impact on the
choice of 2D and 3D image resolutions. Furthermore, we show that our
approach produces results that are comparable or superior to other state-
of-the-art methods.

Keywords: 2D-3D registration · Multilevel · Multiresolution ·
Normalized gradient fields · Vascular images

1 Introduction

Minimally invasive endovascular therapies are nowadays part of standard routine
for many diseases of the vascular system. Before an intervention usually a plan-
ning CT with contrast agent is done. The navigation of the catheter through
the vascular system during the intervention can be quite challenging, even if
fluoroscopy images are obtained. Registration of 2D projection images to a 3D
planning CT image provides more information and allows to reduce intervention
time, radiation exposure and amount of contrast agent [1].

A nice overview about the topic of 2D-3D registration and classification of the
different strategies developed over the years can be found in [6]. The strategies
can roughly be divided into feature- and intensity-based methods. Intensity-
based approaches rely on synthetic projections from the 3D planning volume that
mimic the real projection process, so-called digitally reconstructed radiographs
(DRRs). The registration is then based on the comparison between the DRRs
and the measured projections. In contrast, feature-based methods attempt to
align features computed from, e.g. gradients [7,8], surface/contour points [12] or
directly from the images.
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An important component for any practical image registration scheme is the use
of multilevel strategies to avoid local optima and speed-up the registration [5]. The
general idea behind multilevel strategies is, that coarser resolution mainly carry
global image information and features, and local details gradually become present
with finer resolutions, i.e. more details are added. On that account, registration is
performed level-wise from coarse-to-fine and solutions from one level are used as
initial guess for finding the solution at the next finer level.

However, in 2D-3D registration the application of multilevel strategies is not
as straightforward as for the registration of images with same dimensionality.
Here we compare given 2D projection images with DRRs created from 3D volume
data. Clearly, coarsening and projecting do not commute, i.e. creating a coarse
resolution 2D image from a given 2D projection image, e.g., by downsampling,
is different from projecting a 3D coarse resolution image.

Nevertheless multilevel strategies are successfully employed in many 2D-3D
registration methods (see [6] for a list of publications). To best of our knowledge,
no work has been done on the relation of the resolutions between 2D images and
3D volumes. In [3] few experiments regarding the choice of resolutions are per-
formed and [9] presents a general discussion motivating the use of multilevel
strategies in 2D-3D registration. However, the relationship between the resolu-
tions of the volumes and projections is not discussed.

In this work we present a multilevel 2D-3D registration with the so-called
normalized gradient field distance measure (NGF) [2]. The focus of the paper is
on the relation and the choice of resolutions for 2D and 3D image data.

2 Methods

In the following we describe our multilevel 2D-3D registration method. We start
with the description of computing 2D projection images in Sect. 2.1. Subsequent
we present our intensity-based 2D-3D image registration with the NGF distance
measure in Sect. 2.2 and finally, we discuss our multilevel strategy in Sect. 2.3.

2.1 Digitally Reconstructed Radiographs (DRRs)

We consider X-ray imaging as the process of measuring the attenuation of radi-
ation, that is emitted from a radiation point source located at position q with
the initial energy I0. Mathematically, this can be modeled by a projection oper-
ator P that maps a 3D attenuation map μ : R3 → R to a 2D image. Therefore,
let x ∈ R

2 be a location in the 2D projection image and let d(x) ∈ R
3 be the

location of the corresponding detector element in 3D-space. Then the projection
is given by

P[μ](x) := I0 exp

(
−

∫
L(q,d(x))

μds

)
(1)

where L(q, d(x)) := {q + t(d(x) − q) | t ∈ [0, 1]} is the line from the radiation
source q to the detector element d(x). Theoretically, there exists an affine rela-
tionship between the attenuation map μ and the CT image, so we can estimate
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μ from the CT intensity values. Furthermore, to accelerate the computation-
ally expensive calculation of these synthetic projections, the so-called digitally
reconstructed radiographs (DRR), we have implemented a GPU version.

2.2 Intensity-Based 2D-3D Image Registration

A common approach is to model d-dimensional images as intensity mappings,
i.e. an image I : R

d → R that maps a position x ∈ R
d to an intensity I(x).

Image registration can then be described as the process of finding a plausible
spatial transformation y such that the transformation applied to a given template
image T (y) is similar to a given reference image R, i.e. T (y(x)) ≈ R(x). To
describe the similarity between the images, a suitable cost-function the so-called
distance measure D is used. Then, the registration problem can be defined as a
minimization problem D(R, T (y)) = min.

Unlike classical image registration, where reference and template image have
same dimensionality, in 2D-3D registration the reference image R : R2 → R is
a 2D measured projection image while the template image T : R

3 → R still
is a 3D image. Accordingly, the desired transformation is also a 3D mapping
y : R3 → R

3. The similarity is then measured between the 2D reference image
and a 2D DRR P[T (y)] of the deformed 3D template image T (y) := T ◦y and the
minimization problem for image registration becomes D(R,P[T (y)]) = min. In
this work we used the normalized gradient field (NGF) distance measure [2,10].
For two 2D images R, T̃ : R2 → R, it is given by

NGF(R, T̃ ) =
∫

Ω

1 −
(

〈∇R(x),∇T̃ (x)〉εRεT

‖∇R(x)‖εR
‖∇T̃ (x)‖εT

)2

dx (2)

with 〈x, y〉ε := x�y + ε , ‖x‖ε =
√

〈x, x〉ε2 , domain Ω ⊂ R
2, that models the 2D

field-of-view of the detector and so-called edge parameters εR, εT > 0.
In order to find plausible deformations, the search space of admissible trans-

formations can be restricted. Here, we only allow for translations and rotations,
i.e. rigid transformations y(x) = Qx + b with 3-by-3 rotation matrix Q ∈ SO(3)
and translation vector b ∈ R

3. As the rotation matrix can be parameterized by
three rotation angles, we obtain a six-parameter deformation model y ≡ yθ with
the parameters θ ∈ R

6. Summarizing, our intensity-based rigid 2D-3D registra-
tion approach is

min
θ ∈R6

NGF (R,P[T (yθ)]) (3)

To solve the optimization problem numerically, a Gauss-Newton optimization
scheme with backtracking Armijo linesearch and analytically computed gradients
is used. In the DRR computation a radial sampling with uniform step length is
used.

2.3 Multilevel Strategy

The idea of any multilevel strategy is to represent a given problem on coarse
resolutions with less detail, which allows for efficient solving and, above all,



60 A. Lange and S. Heldmann

adds to finding solutions close to a global optimum of the original problem.
Starting from a coarsest level, a solution for the coarse problem is computed
and subsequently prolongated to the next finer level, where it serves as an initial
guess for the optimization. The process is then continued until the finest level is
reached.

The common approach in intensity-based image registration to represent the
problem at coarse resolutions is to create low resolution versions of the given
input image data, e.g. by downsampling or averaging pixels. We also follow this
approach here. To this end, let R be the given 2D image, I2D� be an operator
that maps a 2D image to the resolution at �-th level and let R� := I2D� [R].
In the same way let T be the given 3D volume and T� := I3D� [T ] with an
operator I3D� which maps a 3D image to a 3D image with the resolution for
the � layer. Now, we have two generic options to setup the registration prob-
lem at the �-th level. First, we could search for a transformation y such that
NGF(R�, I

2D
� [P[T (y)]]) = min. Another option is to look for minimizers of

NGF(R�,P[T�(y)]). Clearly, projection and coarsening do not commute in gen-
eral, i.e. I2D�

[
P[T ]

]
�= P

[
I3D� [T ]

]
= P[T�(y)] and we cannot expect that solutions

for both problems coincide. Although the first approach seems more natural from
a conceptual point of view, it is computationally demanding as it requires the
computation of high quality projections at the original (finest) image resolution
regardless of the resolution of the problem. Furthermore, we need to incorporate
the projection operator I2D� into our numerics, e.g., for computing derivatives.
For this reason, we stick to the second approach.

Accordingly, we create image pyramids for the given input images by aver-
aging neighboring pixels and voxels, respectively, so that the resolutions double
from a coarse to the next finer level. Then, starting at coarsest level, we com-
pute solutions to (2.3) using the data of the current level and the solution from
the previous level as an initial guess. Our overall scheme can be summarized as
follows:

1. Create R�, T� for � = 1, . . . , L from coarsest (� = 1) to finest (� = L) level
2. Choose initial guess y0 for coarsest level
3. for level � = 1, .., L do

Use y�−1 as initial guess for finding y� such that

NGF (R�,P[T�(y�)])
!= min

end

An important point with substantial impact on registration results, is the
choice and alignment of the resolutions of 2D image and 3D projection data. The
issue is illustrated in Fig. 1 showing 2D-DSA reference images R� and DRRs, i.e.
projected 3D volumes P[T�], for different resolutions. There is no obvious answer
to the question what combination of resolutions to pick for optimal registration
results. Besides evaluating and comparing our method with others, we focus on
the analysis of this question with our experiments presented in the next section.
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(a) DSA 0.15 mm (b) DSA 2.5 mm (c) DSA 20 mm

(d) V 0.46 mm, P 0.15 mm (e) V 0.46 mm, P 2.5 mm (f) V 0.46 mm, P 20 mm

(g) V 3.7 mm, P 0.15 mm (h) V 3.7 mm, P 2.5 mm (i) V 3.7 mm, P 20 mm

(j) V 15 mm, P 0.15 mm (k) V 15 mm, P 2.5 mm (l) V 15 mm, P 20 mm

Fig. 1. Calculated DRRs from lateral view with different resolutions of the volume
(changing from fine to coarse from top to bottom) and the projections (changing from
fine to coarse from left to right). The 2D-DSAs with the same projection resolutions
are given for comparison.

3 Experiments and Evaluation

In the following we will experimentally analyze how image resolutions for our 2D-
3D multilevel registration can be selected and related. We will also investigate
the choice of the finest resolution. Furthermore, we will compare our proposed
2D-3D multilevel registration method using the NGF distance measure with
various state-of-the-art methods.
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3.1 Clinical Database

Our evaluation is based on the public available clinical data presented in [7].
The data consists of images from 10 patients with cerebral vascular diseases
such as aneurysms. Each data set contains a 3D digitally subtracted rotational
angiogram (3D-DSA) volume, 2D digitally subtracted angiograms (2D-DSA)
from lateral (LAT) and anterior-posterior (AP) views and a rigid gold stan-
dard transformation for the 3D volume. The gold standard transformations were
derived from fiducial markers and have predicted mean target registration errors
(mTRE) ranging from 0.033 to 0.056 mm [7]. In addition, landmarks and initial
transformations are provided for comparative evaluation. The original image size
of the 3D-DSA is 512 × 512× 391 voxel with an isotropic resolution of 0.4646 mm.
The image size for the 2D-DSA ranges from 1920 to 2480 pixel with an isotropic
resolution of 0.154 mm.

3.2 Evaluation Parameters

Error measures based on landmarks are often used to determine the quality
of a registration. Two measures commonly used in 2D-3D registration are the
mean Target Registration Error (mTRE) and the mean Re-Projection Distance
(mRPD) [4]. Given N landmarks x1, ..., xN ∈ R

3, the mTRE between transfor-
mation yreg and gold standard ygold is given by

mTRE =
1
N

N∑
i=1

‖yreg(xi) − ygold(xi)‖. (4)

The mRPD measures the distance of the ray passing through source q and trans-
formed landmark to gold standard. It is defined as

mRPD =
1
N

N∑
i=1

min
z ∈ L(q,yreg(xi))

‖z − ygold(xi)‖ (5)

where L(q, yreg(xi)) is the line passing through the source q and the registered
landmark yreg(xi).

3.3 Experiments

For almost all experiments we used the set of 400 initial displacements that was
specified for each dataset. The mTRE of the displacements ranges from 0 mm to
20 mm, so that each interval of 1 mm contains 20 displacements. The displace-
ments were generated by randomly translating about (−20 mm, 20 mm) and
rotating around (−10◦, 10◦) all three axes. Similar to [7] the validation criteria
are the percentage of successful registration (SR), the mean and standard devi-
ation of all successful registrations and the capture range (CR). A registration
is viewed as successful, if the mTRE is less then 2 mm, which is approximately
the radius of the larger cerebral vessels. The capture range is defined as the first
interval in which less than 95% of the registrations are successful.
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Registration with Original Resolution. Initially, we started our analysis
with an experiment in which we perturbed a given gold standard transforma-
tion with a shift of 5 mm each along the in-plane axes x and y, resulting in
an mTRE before registration of 7.1 mm. For this and the following experiments
results were best, if on the coarsest level the resolution of the volume was around
15 mm. Using coarser levels did not achieve improvements, whereas using less
levels led to a smaller capture range. The registration was then done for dif-
ferent combinations of finest resolutions. The number of levels depend on that
choice as the coarser resolutions are computed from there. If, for example, a fine
resolution of 0.93 mm for the volume and 0.31 mm for the projection is selected,
the registration is performed on five levels, starting with the coarsest volume
resolution of 15 mm and projection resolution of 5 mm (i.e. along the diagonal
in Fig. 2(a): (5, 15), (2.5, 7.5), (1.2, 3.7), (0.62, 1.86), (0.31, 0.93)).

Our results show, that we obtain best results when the resolution of the
projection is similar or slightly coarser than the resolution of the volume, see
Fig. 2(a). It is noticeable that the registration with finest available but also quite
different resolutions of 2D projection and 3D volume basically fails. In a next
step we reviewed the result based on the set of given initial displacements (cf.
Table 1). When using the original resolution of 2D-DSA and 3D-DSA as finest
level, the results are not convincing, especially the capture range of only 3 mm
is small. Much better results are obtained when not the finest resolution of the
projection but the second or even third finest was used. In this case the capture

(a) Original resolution

(b) Resampled projections

Fig. 2. mTRE (in mm) values for a registration of a 2D-DSA to a 3D-DSA aver-
aged over all 10 datasets with an initial translation along the in-plane axes (x, y) =
(5 mm, 5 mm) with different resolutions of the projection and the volume.
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range is 12 and 16 mm, respectively and the success rate is around 96% instead
of 68% with no loss of accuracy. The mTRE is in all three cases around 1.1 mm
and the mRPD is 0.17 mm.

Summarizing, the results of this experiment led to the assumption that the
best registration results are achieved when the resolution of the projection and
the volume are comparable, as it is more or less the case for the second and
third finest resolution of the projection compared to the finest resolution of the
volume.

Table 1. Results for the registration of a 3D-DSA to a 2D-DSA from LAT view
averaged over all 10 datasets for different finest resolutions of the 2D-DSA.

Resolution finest level SR (%) mTRE (mm) mRPD (mm) CR (mm) Time (s)

2D-DSA 3D-DSA

0.15 0.46 68.4 1.12 ± 0.12 0.17 ± 0.02 3 23.1

0.31 0.46 95.4 1.10 ± 0.12 0.17 ± 0.003 12 8.0

0.62 0.46 96.4 1.13 ± 0.15 0.17 ± 0.004 16 3.7

1.23 0.46 74.9 1.13 ± 0.14 0.17 ± 0.004 0 4.4

Registration with Same Resolution. Based on the previous results, we
resampled the 2D projection images to the original resolution of the 3D volume
data and repeated previous registration experiments. Both, the results for the
initial translation (Fig. 2(b)) and the results for the given initial displacements
(Table 2) confirm our assumption. For the latter, a success rate of 98.3% and
99.5% was achieved with the LAT and AP images, respectively, and a capture
range of 20 mm. In addition, a mean value and a standard deviation of the mRPD
of 0.17 mm ± 0.004 mm for the LAT images and 0.12 mm ± 0.003 mm for the
AP images as well as an mTRE of 1.06 mm ± 0.15 mm and 0.55 mm ± 0.14 mm
for the LAT and AP images were achieved. Since we use a publicly accessible
database, we can directly compare the results with other results found in the
literature for this database. The results achieved with our proposed method are
comparable to the results from [12] and much better than the reported results
in [7,11]. Except for the mean value and standard deviation of the mTRE for
the LAT images, our results are the best results for all compared methods. The
runtime for a single registration is not directly comparable as it is not always
reported and even if, different hardware is used. The extensive DRR generation
is done on a graphics card, but other than that no further runtime optimization
was done. Still, registration is fast on of-the-shelf hardware.

Experiment Finest Resolution. As Table 1 already indicates, the registration
on fine level is time consuming. This rises the question how the accuracy behaves
if fine levels are omitted. We have also looked into this. Table 3 shows the results
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Table 2. Results for the registration of a 3D-DSA to a 2D-DSA from LAT or AP
view averaged over all 10 datasets of the proposed DRR-NGF-ML method compared
to the results of other state-of-the-art methods reported in [7,11,12]. Given are the
Success Rate (SR), the mean and standard deviation of the mTRE and mRPD, the
capture range (CR) and the mean amount of time for one registration. Missing values
are marked with a “ - ”.

View Method SR (%) mTRE (mm) mRPD (mm) CR (mm) Time (s)

LAT MGP+BGB [7] 79.5 - 0.28 ± 0.21 6 15.3

PB-BGC [11] 82.2 - 0.51 ± 0.29 9 1.8

PPC-LADR [12] 95.6 0.91 ± 0.50 0.22 ± 0.08 16 -

PPC-MCCR [12] 98.3 0.64 ± 0.31 0.23 ± 0.08 18 -

DRR-NGF-ML 99.3 1.06 ± 0.15 0.17 ± 0.004 20 4.7

AP MGP+BGB [7] 95.5 - 0.28 ± 0.19 12 11.5

PPC-LADR [12] 97.3 0.57 ± 0.38 0.15 ± 0.08 16 -

PPC-MCCR [12] 99.4 0.59 ± 0.27 0.16 ± 0.08 20 -

DRR-NGF-ML 99.5 0.55 ± 0.14 0.12 ± 0.003 20 3.6

Table 3. Results for the registration of a 3D-DSA to a 2D-DSA from LAT view
averaged over all 10 datasets with different resolutions of the finest level of both volume
and projection.

Resolution finest
level (mm)

SR (%) mTRE (mm) mRPD (mm) CR (mm) Time (s)

0.46 99.3 1.06 ± 0.15 0.17 ± 0.004 20 4.7

0.93 99.2 0.96 ± 0.20 0.17 ± 0.005 20 3.2

1.9 95.1 0.74 ± 0.29 0.18 ± 0.006 14 2.6

for the case of adjusted resolutions and for omitting the first and second finest
levels. The success rate, accuracy and capture range are almost identical if the
finest level is omitted, only the average registration time decreases significantly.
If the two finest levels are omitted, the runtime further decreases, but also success
rate and the detection range decreases significantly, too. Thus omitting the finest
level seems to achieve the best trade-off between accuracy and speed.

4 Discussion

In this paper we discussed the relation between projection resolution and volume
resolution. The main conclusion is that the resolutions should be comparable.
One observation that may be surprising is that the use of finer resolutions does
not bring any advantage, and may even bring disadvantages if the resolutions
are not comparable. Another observation is that for reasons of acceleration, the
finest level can be omitted and the accuracy for this particular database is not
lost. Besides the investigations about the multilevel strategies, we proposed an
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efficient multilevel 2D-3D registration method using the NGF distance measure
yielding results that are comparable and even superior to the state-of-the-art.
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Abstract. Different pathologies of the vertebral column, such as scol-
iosis, require quantification of the mobility of individual vertebrae or of
curves of the spine for treatment planning. Without the necessary mobil-
ity, vertebrae can not be safely re-positioned and fused. The current clin-
ical workflow consists of radiologists or surgeons estimating angular dif-
ferences of neighbouring vertebrae from different x-ray images. This pro-
cedure is time consuming and prone to inaccuracy. The proposed method
automates this quantification by deforming a CT image in a physiologi-
cally reasonable way and matching it to the x-ray images of interest. We
propose a proof of concept evaluation on synthetic data. The automatic
and quantitative analysis enables reproducible results independent of the
investigator.

Keywords: Spine · Vertebra · Mobility quantification · 3D-2D
registration · Volume-projection registration

1 Introduction

Spine mobility quantification (SMQ) describes the measurement of angles
between vertebrae and their change between different positions, in order to eval-
uate the mobility of individual vertebrae. It is, for example, performed for sco-
liosis patients to determine whether vertebrae have the required mobility to be
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realigned and fused to improve the curvature of the spine. SMQ is typically
evaluated manually based on x-ray images. The clinician measures the angles
between neighbouring vertebrae in x-ray images acquired in two opposite and
extreme positions, for example flexion and extension. The change of the angular
difference from one position to the other informs about the mobility of those
vertebrae. Manual measurements are subjective and prone to errors, especially
when a 3D movement is assessed by rotations within one plane only.

In many clinical cases a CT image is available which could be used for 3D-2D
registration. This could help automating SMQ by aligning the CT image to the
X-ray target pose and deriving the SMQ values from the applied deformation.

Registration of CT volumetric images to x-ray projection images is a relevant
task also for several other clinical applications, such as the automated localisa-
tion of an interventional image with respect to the pre-operative CT data. Specif-
ically, this approach can be used in image-guided spine surgery where the target
vertebra has to be identified reliably [3]. According to Mody et al. more than
0.3% of spine surgery procedures have been affected by wrong-level errors which
can have a severe negative impact on the patient [5]. This demonstrates the
difficulty of vertebra identification even for experienced surgeons. After robust
identification, a precise registration further enables navigated surgery which typ-
ically makes use of intra-operative CT (iCT) imaging. A reliable and accurate
3D-2D registration for interventional x-ray images could thus decrease errors
in surgical procedures, improve accuracy of image-guided interventions or oth-
erwise maintain accuracy while decreasing radiation exposure to patients and
clinicians, compared to using iCT imaging.

Previous work in volume-projection registration (of the spine) predominantly
considers rigid registration frameworks [3,4,8,9,11]. This reduces the complexity
of this ill-posed problem but limits the potential accuracy and applications, as it
cannot capture local deformations of soft tissue related to different positions of
the subject. Non-rigid advances have been mostly focused on other body parts,
for example, on lung movement [12], and might be unrealistic in rigid anatomical
structures such as bones.

To overcome the limitations of existing methods used for spine applications,
we suggest a locally rigid registration framework based on the works of Arsigny et
al. [1]. The proposed framework extends the poly-rigid transformation model
to ensure the preservation of local rigidity during articulated movement and
relies on a novel regulariser to enforce physiologically reasonable transformations.
It enables better matching of images acquired with different patient position,
e.g. flexion and extension, or pre-operative supine and intra-operative prone.
Furthermore, the parametrisation of our model can be directly used to quantify
relative positions of the vertebrae, for example for SMQ.

We demonstrate a proof of concept for spine mobility quantification based
on simulated data using our registration framework. Rotation angles can be
determined with high precision which motivates further development of this
approach.
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2 Methods

The proposed registration framework enables the recovery of spine movement
via 3D-2D registration and the quantification of differential movement between
neighbouring vertebrae. The underlying transformation model uses the poly-
rigid approach which combines n local sets of rigid parameters l = {l1, .., ln)
into a single smooth deformation field [1]. It requires a set of non-overlapping
regions Ri which, in our case, are given by a binary mask for each vertebra i.
Based on the regions, individual weight maps wi are computed that define the
local influence of each rigid transformation Ti.

2.1 Registration Framework

The registration algorithm finds an optimal choice of parameters p = (g, l), with
global affine transformation parameters g and local rigid transformation param-
eters l, that describes the relationship between the reference x-ray image X and
the CT volume V via the transformation T . The transformation T combines the
poly-rigid transformation Tpr(x, l) with a global affine transformation A(x, g):

T (x,p) = A(x, g) ◦ Tpr(x, l). (1)

To enable the comparison of 3D and 2D images, a projection P is used:

P : R3 �→ R
2. (2)

The distance measure D describes the dissimilarity of the images and is combined
with a regulariser R to form the objective function F :

F [X ,V,p] = D
[
X ,P

[
T (V,p)

]]
+ α R(p). (3)

The parameter α controls the ratio between both terms and thus adjusts the
influence of the regularisation. Minimisation of D makes the appearance of the
images more similar while R promotes a anatomically realistic transformation.

The numerical optimisation of F is performed iteratively via a gradient
descent solver. In each step a subset of transformation parameters is evaluated,
global rigid followed by local rigid parameters for each region, one at a time.
Optimising only a subset of parameters reduces the complexity of the partial
derivatives and empirically leads to a more stable behaviour of the model.

For increased robustness to local minima and to increase the capture range, a
multi-resolution approach is applied that performs the optimisation on multiple
levels – from coarse to fine. The framework also enables 3D-3D registration of a
volume V to a reference volume Vref . In this case the projection step is omitted
and the objective function is therefore:

F3D−3D[Vref ,V,p] = D
[
Vref , T (V,p)

]
+ α R(p). (4)
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2.2 Poly-rigid Transformation Model

The poly-rigid transformation model is based on a set of local rigid transforma-
tion parameters li with associated weight maps wi defining its local influence
for each region i. To combine the different local rigid transformations Ti into a
single one, an ad hoc solution is the weighted average of the transformations’
displacement fields. This does not preserve local behaviours and can lead to fold-
ing, i.e. breaking of the topology, which is to be avoided in most medical image
processing.

Arsigny et al. proposed a method that provides a combined transformation
that is invertible and thus does not lead to folding [1]. The local rigid trans-
formations Ti are by definition homomorphisms, i.e. invertible. The average of
infinitesimal small downscaled homomorphisms is also invertible as the displace-
ment gets close to zero. The composition of homomorphisms is also a homo-
morphism so that the full scale transformation recovered by composition of the
infinitesimal transformations is a homomorphism as well. The transformation
T (t, x) is parametrised as a velocity field and integrated over time t ∈ [0, 1]. At
time t = 0 the transformation is the identity and at t = 1 it is Tpr.

The weighted average of the downscaled transformations is computed as

T

(
1
m

,x

)
=

n∑
i=1

wi(x)Ti(x)
1
m , (5)

where T
1
m describes the m-th matrix square root of the rigid transformation

matrix T . m has to be chosen such that the downscaled velocity field is close
enough to zero [1]. This average function needs to be upscaled to get the wanted
poly-rigid transformation Tpr:

Tpr(x) = T (1, x) = T

(
1
m

,x

)m

. (6)

Arsigny et al. use an efficient scaling-and-squaring scheme to integrate the
final transformation [1]. However, to maintain the desired rigid properties for
each region, the weights need to be updated after each integration step as sug-
gested by Porras et al. [6]. Therefore we use the following Euler integration
scheme:
For j = 2, ..,m

w
(j)
i (x) = wi

(
T (j−1)

(
1
m , x

))

T (j)
(

1
m , x

)
=

n∑
i=1

w
(j)
i (x)T

1
m
i (x)

T
(

j
m , x

)
= T

(
j−1
m , x

)
◦ T (j)

(
1
m , x

)
(7)

The superscript ·(j) indicates that the corresponding term is updated in step j.
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Fig. 1. Weight maps of the three lowest lumbar vertebrae. A vertebra in between other
vertebrae has mostly influence perpendicular to the spine. The bottom vertebra (in this
experiment the sacrum is not modelled as a rigid region) dominates the weights in the
lower part of the image as the other vertebrae are further away and affect it less.

2.3 Weight Map Computation

Poly-rigid transformation models require weight maps wi which define the spatial
influence of multiple transformations Ti. Our model’s weight computation is
based on non-overlapping regions Ri, that represent a spine segmentation.

In the region based weight computation of Porras et al. [6], each weight
w approximates the following values: w(x) = 1 if x is within the region,
0 < w(x) < 1 otherwise. This implies that each region has a global influence
and the rigid properties of a region are not preserved anywhere. To guaran-
tee the rigid transformation of a region, weights with following properties are
required.

wi(x) =

⎧
⎪⎨
⎪⎩

1, if x ∈ Ri

0, if x ∈ Rk, k ∈ {1, .., n} \ i

v, v ∈ R, 0 < v < 1, elsewhere
(8)

The computation of the weight map can be split into three steps. First,
creating a smooth weight map that is 1 within a region and decreases outside:

wa
i (x) =

1
exp (s ∗ EDTi(x))

, (9)

where EDT denotes the Euclidean Distance Transform of the binary mask of
region Ri in mm (i.e. the distance to the nearest voxel of this region). The slope
constant s controls how quickly the weight decays and is fixed for all regions
throughout the computations.

To set the influence of all other regions Rk to 0 within region Ri, we multiply
each region’s weight by the complementary weight of all other regions:

wb
i (x) = wa

i (x)
n∏

k=1
k �=i

(1 − wa
k(x)) . (10)
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Normalising the weights wb
i to recover the maximal value of 1 within each region

yields the final weight maps wi that fulfil Eq. (8):

wi(x) =
wb

i (x)
n∑

k=1

wb
k(x)

. (11)

Figure 1 shows example weight maps computed for a CT slice containing the
lowest lumbar vertebrae. This example visualises that within a region (i.e. a
vertebra) the weight is one, smoothly decaying when moving away from it, and
zero in each other region.

2.4 Regularisation

In order to guide the behaviour of the transformation model in a way that is
closer to anatomical spine movement, we introduce a set of regularisation terms.
These soft constraints penalise parameters that are in unexpected value ranges.
The regulariser must have little influence while the parameters are within the
expected value range and steeply increase when outside. Therefore the general
form of each soft constraint C used is:

C(q) = γ |q − b|c , (12)

where b is the absolute upper bound for the value q and the exponent c controls
how steep the penalty term increases.

Firstly, the parameters of the global affine registration g are limited as we
assume the general direction of x-ray acquisition is known and thus, the volume
should not translate or rotate too much away from the expected view.

Rg(g) = C(|gtrans|) + C(|grot|) (13)

Secondly, the local rigid parameters l are constrained via the parameter dif-
ference of pairs of neighbouring vertebrae, separate for rotation and translation:

Rl(l) =
n∑

i=2

C(|ltransi − ltransi−1 |) + C(|lroti − lroti−1|) (14)

This way neighbouring vertebrae cannot translate or rotate too far from their
initial relative position. This constraint guarantees that the spine moves consis-
tently and retains its integrity.

An unregularised optimisation step might lead to local rigid parameters that
would move regions into another. The overall poly-rigid transformation avoids
this kind of folding but compromises the rigidity of the underlying transforma-
tions to achieve this. The third regulariser Ro is used to discourage such opti-
misation steps by penalising transformations that cause voxel overlap in order
to achieve diffeomorphic transformations while preserving the local rigidity.

Ro(p) = C
(∣∣{x|x ∈ Ru ∩ Rv, u, v ∈ {1, .., n}, u �= v}

∣∣) (15)

The sum of all individual terms leads to the overall regulariser R as in Eq. (3):

R(p) = Rg(g) + Rl(l) + Ro(p) (16)
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3 Experiments

Data from the Spineweb database which consist of CT images and corresponding
vertebra segmentation have been used for the experiments described in this
work [13]. A CT image is cropped to the lumbar area including six vertebrae
above the sacrum and resampled to a 1 mm isotropic image of 162 × 162 × 312
voxel. The rigid parameters of the vertebrae are user-defined to simulate two
movements: flexion and extension. The original CT image is considered as the
starting position and angles are interpreted as differential angles to this position.
The image axes x, y, and z correspond to the lateral, anterior-posterior, and
superior-inferior patient axis, respectively. X-ray projections are simulated from
the deformed CT images in lateral direction (along the x-axis) and are used
as the reference images X while the initial CT volume is then used as moving
image V. The projection method P used for the synthetic experiments is a basic
averaging of intensity values along a given direction, which can be easily replaced
by other approaches to account for more clinically realistic scenarios, like those
presented by Unberath et al. [7].

Table 1 shows the rotation angles chosen for each vertebra in the flexion and
extension simulation. For this experiment only rotations around the x- and y-
axis are considered, as those are the angles clinically measured for SMQ and
rotations around z-axis are minor in the lumbar spine. The values are in the
typical range observed in clinical practice, for example as reported by Wilke et
al. [10]. Figure 2 shows the flexion, extension and initial position of the synthetic
data as 3D rendered visualisations. The vertebrae are deformed rigidly while the
surrounding soft tissue, like the arteries, are non-linearly deformable.

In our experiment, images in two different poses are target of the registra-
tion: flexion and extension. This resembles the application of SMQ where usually
two opposite extremal positions are compared. For each pose, two experiments
are evaluated: (1) 3D-3D registration—matching the original CT V to the syn-
thetic CT image Vref and (2) 3D-2D registration—matching the CT image V to
the synthetic x-ray image X . Two metrics are used to evaluate the registration
results: the error of the estimated angle difference and the average error of the
recovered displacement field at the location of the vertebrae. The displacement
field error gives information about whether the vertebrae are in the right posi-
tion while the angle errors describe how well the orientation of the vertebrae was
recovered, which is the focus of SMQ.

For performance reasons, the poly-rigid transformation computed by Eq. (7)
is used only as a post processing step and we use the direct weighted average
during the optimisation, as was suggested by Commowick et al. [2]. We used
the mean of squared difference as similarity measure D during our experiments.
The parameters are either motivated by clinical movement ranges or chosen
empirically: four levels of multi-resolution approach, with the finest resolution of
1 mm, the weight constant s = 0.05, the constraint scaling parameter α = 100.
Referring to Eqs. 12 and 16, the first two constraint functions have the exponent
c = 6, scaling γ = 1 and the boundaries b of 20 mm, 30◦ for the global rigid
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Fig. 2. 3D render of the original CT scan (centre), the synthetic CT scan in flexion
(left) and extension (right) (see Supplementary material for animated figure).

Table 1. Rotation angles in degree per vertebra used to generate the synthetic images.

flexion extension

vertebra x y z x y z

L1 − 11.00 −5.00 0.00 +10.00 +5.00 0.00
L2 − 8.50 −4.00 0.00 +7.50 +4.00 0.00
L3 − 5.00 −2.00 0.00 +4.00 +2.00 0.00
L4 0.00 0.00 0.00 0.00 0.00 0.00
L5 + 4.00 +1.00 0.00 −3.50 −1.00 0.00

parameters and 8 mm, 7◦ for the local differences, the overlap constraint has
b = c = 1 and γ = 0.001.

4 Results

Our experiments show that with both 3D-3D as well as 3D-2D registration, the
parameters of the synthetic images can be recovered. In Table 2 the quantita-
tive results of all experiments are summarised. Using the 3D-3D registration
higher accuracy was achieved compared to the 3D-2D cases which is due to the
higher information retained in a volume compared to its projection. In the 3D-
3D experiments, the average of the mean absolute angle error was reduced from
the initial 2.47◦ to 0.12◦ and from 2.70◦ to 0.16◦ for extension and flexion respec-
tively. In the 3D-2D case, the respective average errors are 0.59◦ and 0.42◦. The
deformation field error (DFE) is also reported as a measure of registration accu-
racy in Table 2. The DFE confirms the higher accuracy of the 3D-3D approach
compared to the 3D-2D registration.

For the spine mobility quantification the angular difference between the two
positions for each vertebra is of interest. This can be directly derived from the
individual registration results as the difference of the respective angles.
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Table 2. For each experiment, this table shows the mean absolute angle error [in
degrees] per rotation axis, averaged over all vertebrae, as well as combined into a single
average error, the mean and maximum displacement field errors (DFE) [in mm] before
and after registration. The DFEs are evaluated within the spine mask only.

flexion extension

initial 3D-3D 3D-2D initial 3D-3D 3D-2D

error x 5.70 0.11 0.45 5.00 0.06 0.37
error y 2.40 0.06 0.55 2.40 0.07 0.99
error z 0.00 0.31 0.30 0.00 0.23 0.41

average error 2.70 0.16 0.43 2.47 0.12 0.59

average DFE 4.37 0.05 0.52 3.11 0.10 1.71
max DFE 24.32 0.50 2.06 16.13 2.49 11.31

5 Discussion

The non-rigid alignment of a volumetric to a projection image is challenging
because several degrees of freedom affecting the 3D volume have to be recovered
by only comparing 2D images. We presented a framework based on a locally
rigid transformation model that enables 3D-3D and 3D-2D registration of spine
images. These synthetic experiments show that both 3D-3D and 3D-2D registra-
tion can be recovered, demonstrating that the registration with our transforma-
tion model can lead to clinically useful results for spine mobility quantification.

This framework offers the full processing pipeline needed for different appli-
cations and is flexible to adaptations required by the use of real clinical data. We
also introduced simple constraints to guide a consistent movement of the spine
while optimising individual vertebrae parameters iteratively. Our experiments
are limited by only considering synthetic x-ray images generated from deformed
CT scans. Clinical x-ray images are more challenging to register and thus need
specialised image similarity measures. Future work will thus focus on the identi-
fication of a measure suitable for clinical data, and on the benchmarking of the
proposed approach against the current clinical practice on real patient data. Fur-
thermore we will use a higher level parametrisation of the spine shape, e.g. using
principal components of a spine shape model, to optimise the position of multi-
ple vertebrae simultaneously in a consistent way. This will be helpful to capture
larger deformations especially in an extended field of view. Such a model could
also be used to extract population statistics like the principal modes of spine vari-
ability and movement patterns. As the proposed framework proved effective also
for 3D-3D registration, it will be tested on further clinical applications, such as
spine CT-MRI registration. Finally, as this pipeline requires vertebra segmenta-
tions, automated segmentation techniques (e.g. using deep learning approaches)
will be explored to complete the registration framework.
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Abstract. Re-identifying locations of interest in pre- and post-operative
images is a hard identification problem, as the anatomical landscape
changes dramatically due to tumor resection and tissue displacement.
Classical image registration techniques oftentimes fail in vicinity of the
tumor, where the enclosing structures are massively altered from one
scan to another. Still, locations nearby the tumor or the resection cav-
ity are the most relevant for evaluating tumor progression patterns and
for comparing pre- and post-operative radiomic signatures. We address
this issue by exploring a Reinforcement Learning (RL) approach. An
artificial agent is self-taught to find the optimal path towards a target
driven by a feedback signal from the environment. Incorporating anatom-
ical guidance, we restrict the agent’s search space to surgery-unaffected
structures only. By defining landmarks for each patient individually, we
aim to obtain a patient-specific representation of its differential radiomic
features across different time points for enhancing image alignment. Esti-
mated landmarks reach a remarkable mean distance error around 3mm.
In addition, they show a high agreement with expert annotations on a
challenging dataset of MR scans from the brain before and after tumor
resection.

Keywords: Reinforcement Learning · Image registration · Image
alignment · Differential radiomics · Brain tumor

1 Introduction

The most effective treatment for progression delay in aggressive primary brain
tumors is tumor resection, usually followed by radiation therapy or chemother-
apy [4]. When evaluating the post-operative scans, the areas that show signs of
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tumor re-growth are compared to the same areas in the pre-operative scans. As
there is almost always a shift in brain tissue as well as tumor- and resection-
induced intensity changes, conventional image registration techniques oftentimes
fail when it comes to map the differing structures, see Fig. 1. We aim to evaluate
local patterns with anatomical guidance for a better adaption in this task. We
perform re-identification of landmarks for making use of quantitative radiomic
approaches, since radiomics intend to improve image analysis by extracting large
amounts of quantitative features [8]. In order to detect reference points before
and after tumor resection, we use individual landmarks for each patient, repre-
senting locations prone to progression. Redetecting these landmarks automat-
ically in follow-up scans may simplify future image alignment for the same
patient. Therefore, we define multiple patient-specific landmarks around the
tumor and take a first step towards differential radiomic feature extraction and
therefore, a more precise alignment of the resection-affected regions.

(a) pre-operative (b) post-operative (c) registered

Fig. 1. 2D zoom into tumor-/resection-affected regions in (a) a pre-operative scan,
(b) the corresponding post-operative scan and (c) the result of a standard image
registration

Recent literature shows a variety of approaches towards localization of
anatomical landmarks in medical images. Li et al. [9] developed a patch-based
CNN for landmark localization combining regression and classification for the
detection of both single and multiple landmarks simultaneously by involving
Principle Component Analysis (PCA). Zheng et al. [19] evolved a two-step
approach combining a shallow network with a deep network for efficient land-
mark detection. Another two-stage approach was proposed by Zhang et al. [18]
comprising a patch-based CNN regression model followed by another CNN for
predicting landmarks in an end-to-end manner. For the first time, Ghesu et
al. [6] introduced Deep RL for localizing anatomical landmarks using Q-learning.
Their method is further developed by exploring multiple scales in [5,7]. In [11],
Maicas et al. adopt this method and extend it to the more complex detection
of breast lesions. There, adaptive bounding boxes are leveraged to train the
agent. Alansary et al. [2] presented a multi-scale strategy by iteratively training
their agent using action steps with different sizes on multiple scales. Addition-
ally, they evaluate several Q-Learning approaches as there are Double, Dueling
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and Dueling Double Q-Learning. A variant of their approach towards automatic
view planning is shown in [1] and an extension towards the detection of multiple
landmarks simultaneously in [15].

The recent success of RL in the field of landmark localization [2,5–7,15] in
combination with the ability of RL agents to adapt to a specific environment,
encouraged us to transfer this approach for landmark redetection to pre- and
post-operative brain images. Furthermore, RL has the benefit of being able to
perform on limited training data, which is crucial for our task. Based on the
approach in [2], we further develop the method to consider anatomical guid-
ance and propose the following contributions: First, we present two RL-based
agents. A baseline agent and an extended version of it under anatomical guid-
ance, improving the agent’s ability to adapt to the issue of altering tissue struc-
tures by integrating patient-specific anatomy into our model. Second, we evalu-
ate our approach on a challenging dataset of MR scans before and after tumor
resection, provided by the BraTS challenge [12] and TCIA [3], achieving results
comparable to an expert performance. Additionally, we provide annotations for
this data.

In the following, we present how we utilize Q-Learning in RL (Sect. 2) and
introduce our extension (Sect. 3), before demonstrating the performance of our
approach on a complex data set.

2 Deep Reinforcement Learning Using Q-Learning

In RL, an artificial agent is self-taught by interacting with an environment. In
every step, the agent retrieves a reward from its environment after executing an
action. The final goal of the agent is to find an optimal policy, guiding the agent
from any given state to the target by maximizing future rewards. This can be
formulated as a sequential decision process. RL then is modeled as a Markov
Decision Process (MDP), which defines the interaction between the agent and
its environment. The agent executes an action a ∈ A at state s ∈ S, returning a
reward signal r ∈ R at each time step t [14].

Finding the optimal policy is described by the action-value function Q(s, a),
which is optimized during training and gives the maximum expected discounted
future reward, where the accumulated discounted reward after τ time steps is
defined as

Rτ =
∞∑

τ=0

γτrt+τ+1, (1)

with the discount rate γ ∈ [0, 1] for weighting immediate and future rewards [17].
Using the Bellman optimality equation, the action-value function can be solved
recursively [14]:

Q(s, a) = E

[
r + γ max

a′
Q(s′, a′)

]
, (2)

where s′ and a′ are the possible subsequent state and action.



84 D. Waldmannstetter et al.

Mnih et al. [13] developed the Deep Q-Network (DQN), which approximates

Q(s, a) ≈ Q(s, a; θ), (3)

using a CNN with the network parameters θ. For stability reasons, a target
network Q(θ−) is introduced. It estimates the actual Q-network iteratively by
updating the parameters of the target network only every nth iteration with the
steadily updated Q-network parameters. The loss function reads:

Ln(θn) = Es,a,r,s′

[(
r + γ max

a′
Q(s′, a′; θ−

n ) − Q(s, a; θn)
)2

]
(4)

Experience replay technique [10] is added, training the network using randomly
sampled minibatches from experiences the agent has already gained. This is
stored in an experience replay memory.

The DQN was further improved by Wang et al. [16], separating the network
into two partitions. One handles the state-value function V (s) and the other one
deals with the advantage function A(s, a), see Fig. 2. Both are then combined by
an aggregation layer to provide a single Q-function

Q(s, a) = V (s) + A(s, a). (5)

Here, estimating the state-value function is essential in every time step, while
this is not necessary for the advantage function. Consequently, the dueling net-
work learns the state-value function more accurately, thus improving the network
performance with increasing number of actions.

3 Anatomically Guided RL Agent

Similar to [2], we make use of a Deep Q-Network with dueling architecture,
shown in Fig. 2. Each state in our image environment is modeled as a 3D patch
centered around the current location of the agent, see Fig. 3(a). Hence, the agent
sees a different part of its environment in every time step. Due to the experience
replay technique, we define an experience buffer storing the last four patches,
which the network can see in one iteration, enhancing the agent’s robustness.
We define the action space with the six actions right, left, forward, backward,
up, down. This results in two actions along each axis in positive and negative
direction, a ∈ A = {+x,−x,+y,−y,+z,−z}, thus moving the agent by one
voxel. The reward is defined similar to [6], calculating the relative change in the
distance to the position of the target landmark. Furthermore, we make use of
a search strategy operating on multiple scales [2,5,7] for more robustness and
efficiency.

A key feature of our approach is the anatomical guidance. We return a neg-
ative reward r = −1 when the agent steps inside the surgery-affected regions.
Therefore, we provide the segmentation mask to the agent, so the agent learns
to stay in unaffected structures only, see Fig. 3(b). Since this guides the agent
to move towards the target without touching the immense tissue changes inside
the most affected regions, this leads to a policy that is more generalizable to
altering brain tissue.
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4 Experimental Setup

We evaluate our approach on a challenging dataset provided by the BraTS chal-
lenge [12] and TCIA [3]. We use MR image data from 10 patients with brain
tumors, with one scan before and one scan after tumor resection, comprising 20
image volumes in total. All images are skull-stripped, rigidly co-registered and
interpolated to a common resolution of 1 mm3, while the initial resolution is in
the range of 3–8 mm for most sequences. The dataset includes the image volumes
and their corresponding segmentation masks of the tumor- and resection-affected
regions in the pre- and post-operative scans, respectively. For each patient, 3
landmarks in the post-operative scan are annotated by a clinical expert, in vary-
ing distances up to 4 cm around the resection-affected region. The same expert
redetected the landmarks in the corresponding pre-operative scan for generating
ground truth annotations.

Training and Testing. Before training, we crop an initialization box of size
50 × 50 × 50 voxels around the target in the training image, see Fig. 3(a). When
training under anatomical guidance, we exclude the resection mask, see Fig. 3(b).
Then, we randomly initialize the agent inside this region and sample a patch of
size 15 × 15 × 15 voxels, which follows the agent in every step. For every patient
and landmark individually, we train on the respective post-operative scan and
test on the corresponding pre-operative scan, generating patient-specific models.
Similar to [2], we define the terminal state in training as the point, when the
distance between the agent and the target landmark is less or equal to 1 mm.
During testing, the agent is stopped, when it is oscillating around the same
location.

Fig. 2. Our network architecture with a dueling DQN. A 3D patch is sampled around
the current position of the agent and fed to the network, consisting of convolutional
(conv) layers alternating with pooling (pool) layers, followed by a dueling DQN with
fully connected (fc) layers. The network outputs the Q-value for the six possible actions,
whereof the agent selects the one with the highest value.
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Fig. 3. (a) Patch generation. A box of size 50×50×50 is sampled around the target for
initialization reasons. Then, a patch of size 15×15×15 is extracted around the current
position of the agent, representing the current state. (b) Anatomical Guidance. We
provide the segmentation mask to the agent for excluding this region during training.
When stepping inside the masked region, a negative reward is returned, so that the
agent is guided to avoiding affected structures.

Experiments. We use two different agents for each experiment. One is trained
on the baseline method without anatomical guidance, whereas the other one is
anatomically guided. Due to the lack of a validation set, we tune the model on the
respective training image. For each experiment, we then choose the model that
is performing best on the corresponding test image. Although this might lead
to some underestimation regarding the distance error measurements, it makes
sure that we provide the same conditions for the two agents in the different
experiments, leading to comparable results. During evaluation, we define 20 fixed
starting points, typically converging to slightly different final endpoints. Since we
initialize the training agent inside the initialization box, we use the same box for
testing and select the starting points from there. For each of the 20 evaluation
runs per experiment, we calculate the Euclidean distance in mm between the
final location of the agent and the true landmark, which gives us the distance
error, and calculate the mean, for producing comparable results. Subsequently,
for the sake of simplicity, we refer to this mean distance error simply as distance
error.
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5 Results

Quantitative results can be observed from Fig. 4(a) and (b), showing the dis-
tance errors in mm for the baseline method (BM), the extended method using
anatomical guidance (AM), as well as another expert’s annotation for compar-
ison. Therefore, we take the landmark annotations of a second expert, when
performing the redetection task manually, and calculate the Euclidean distance
to the ground truth annotations, giving us the distance errors of an expert.
For further comparisons, we calculate additional measurements on the distance
errors, the mean and the median distance as well as the normalized mean and
median, respectively, see Table 1. All measurements are calculated on landmark
level. Qualitative results are presented in Fig. 5, showing a sample redetection
for two different landmarks, where both methods achieve high precision with a
distance error of 0 mm.

(a) distance error (b) variance

(c) initial displacement

Fig. 4. Results for the baseline method (BM, green), the extended method with
anatomical guidance (AM, dark blue) and an expert annotation for comparison (light
blue). (a) shows the distance mean errors in mm and (b) the variances in the dis-
tance errors due to the multiple starting points. (c) shows the relation between the
initial expert annotation displacements and the distance errors. The dots represent the
respective offsets of the initial expert annotation for the training and test images in
relation to the corresponding distance errors of BM and AM. (Color figure online)

RL vs Expert. The lowest distance errors for both methods are close to 0 mm,
representing a perfect redetection. The highest lie above 1 cm. Due to the 20
starting points, we achieve variances in the distance errors, tending to increase
with growing errors, see Fig. 4(a) and (b). High variances are caused by some
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Fig. 5. Sample redetection for two different landmarks (top, bottom) in the same
patient. The masked region is marked in red. The landmarks in blue and green, respec-
tively. (Color figure online)

outliers, where the agent gets lost in the environment. However, it is remarkable
that we achieve a variance of 0 in some experiments, which means that the agent
navigates towards the same target from every starting point, demonstrating
high robustness. As Fig. 4(c) shows, the distance errors from BM and AM both
scale with the initial displacements between the ground truth annotations in the
training and test images, when annotated by an expert. That means, a larger
offset between the initial expert landmark annotation in the training and the
test image results in larger distance errors. This makes sense, since larger initial
annotation displacements are linked to larger tissue changes. Nevertheless, the
majority ranges within smaller errors from 0–4 mm. From Table 1, we observe
that the mean of all distance errors is lowest for the comparison expert, while
both BM and AM show high agreement with it. Still, the median of all distance
errors is smaller for BM and AM. A normalization with the initial displacements
leads to similar mean errors of both RL methods and the comparison expert, see
Table 1.

Benefits of Anatomical Guidance. Figure 4(a) and (b) as well as Table 1
show that AM performs more robust than BM, since the outliers have slightly
smaller mean distance errors and variances. Hence, incorporating anatomi-
cal guidance outperforms the baseline agent in average, while showing high
agreement with the comparison expert’s annotations. Our approach achieves
noticeable performance with an average distance error below 3 mm. Moreover,
anatomical guidance provides potential to incorporate additional anatomical
information.
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Table 1. Calculations on the distance errors for BM, AM and an expert annotation.

Mean Median Normalized Normalized

distance [mm] distance [mm] mean median

BM 3.05 1.41 0.79 0.57

AM 2.82 1.53 0.74 0.64

Expert 2.18 2.0 0.75 0.72

6 Conclusion

In this work, we presented a RL framework for landmark redetection in a chal-
lenging dataset of pre- and post-operative brain scans. We evaluated two RL
agents: a basic one exploring the full environment and an extended one guided by
the resection anatomy for finding the optimal path towards the target landmark.
Overall, both approaches showed good results in terms of speed and accuracy,
while the agent under anatomical guidance performs better in average. Therefore,
this approach allows to further develop the guidance by anatomical structures,
especially in analyzing the connection between different time points before and
after tumor resection, for generating a more representative and efficient model
of the anatomical changes. For further automatization, the segmentation masks
can be produced using some segmentation framework, which would be of min-
imal additional effort here and would be needed to be done once for training
only. Additionally, we will invest in finetuning our approach towards a more
robust redetection for eliminating outliers. Moreover, we will further investigate
in generating a dense representation of patient-specific differential radiomics by
localizing multiple landmarks simultaneously, ideally incorporating the spatial
relationships between tumor structures, resection region and landmarks.
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Abstract. Deep learning research has demonstrated the effectiveness of
using pre-trained networks as feature encoders. The large majority of
these networks are trained on 2D datasets with millions of samples and
diverse classes of information. We demonstrate and evaluate approaches
to transferring deep 2D feature spaces to 3D in order to take advantage
of these and related resources in the biomedical domain. First, we show
how VGG-19 activations can be mapped to a 3D variant of the network
(VGG-19-3D). Second, using varied medical decathlon data, we provide
a technique for training 3D networks to predict the encodings induced
by 3D VGG-19. Lastly, we compare five different 3D networks (one of
which is trained only on 3D MRI and another of which is not trained
at all) across layers and patch sizes in terms of their ability to identify
hippocampal landmark points in 3D MRI data that was not included
in their training. We make observations about the performance, recom-
mend different networks and layers and make them publicly available for
further evaluation.

Keywords: Code: 3D VGG-19 · Landmarks · Key-point detection ·
Deep features

1 Introduction

Feature detection for pattern matching in images has a long history in computer
vision, dating at least to the 1950s [11]. Perhaps the most well-known of these
approaches is the scale invariant feature transform (SIFT) [5] which, as is typical
of many of these methods, uses engineered features to localize salient features
in images. These key-points are then filtered and matched in order to compute
a geometric correspondence between image sets with little computational over-
head. As such, SIFT is widely adopted as a core tool in industrial applications
of computer vision.

While SIFT and related methods are powerful, their extension to 3D biomed-
ical imaging has not, as yet, met with the same level of adoption and success.
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Rister, et al. [10] extended SIFT to 3D but found that, although it performed
well within-subject, it did not reach usability in inter-subject registration. This
finding suggests that more general approaches – or different feature sets – may
be of value.

New approaches to feature matching and registration of biomedical imaging
data are also needed to handle its ever increasing diversity and magnitude. Fur-
thermore, the desire to integrate imaging with other forms of data (e.g. genomics)
leads to additional motivation to develop fast, general purpose search and match-
ing based on biomedical (often volumetric) image features.

Feature-based matching, in this context, provides a powerful solution that, like
SIFT, may be less sensitive than dense registration methods to occlusion, noise,
resolution and modality. Furthermore, feature extraction methods may be more
memory efficient which is of tremendous value when full datasets (e.g. CLARITY
images) cannot be stored in memory without special handling [6].

Pre-trained convolutional networks, such as VGG-19 [14], have proven to be
powerful feature encoders with applications in a variety of areas [4,16]. Distances
between activation maps from intermediate layers of deep architectures (deep
features) are effective metrics in domains beyond the original application area
and have transformed practice in super-resolution, key point matching [8] and
semantic segmentation. The use of these resources is relatively limited in the
biomedical domain because these features are typically derived from 2D datasets.

The current paper is motivated by the desire to build a library of general
purpose, pre-trained deep networks for volumetric feature encoding that may be
used for transfer learning within the context of regression, classification, super-
resolution and matching problems. ModelsGenesis [17] (Generic Autodidactic
Models for 3D Medical Image Analysis) has similar goals to ours. However, in
contrast to our focus on regression, Models Genesis leverages encoding/decoding
(U-net like) architectures frequently used in segmentation tasks. Our contribu-
tions include: (1) an extension of the long-term proven 2D VGG-19 features to
3D, (2) approximation of these features with 3D regression networks and (3)
comparison of the derived feature spaces to intrinsically 3D regression networks,
including one that undergoes no training at all. The analysis contrasts the value
of these networks’ features at different layer depths – and with different input
patch sizes – in terms of landmark matching in 3D MRI of the hippocampus [1].

2 Methods

We develop five different 3D networks based on established approaches. Two of
these networks do not require additional training and extend 2D VGG 19 to
3D. Two others are based on regressing against VGG-19 activations. The final
network is trained to solve a completely separate regression and classification
problem and is treated as a fixed, intrinsically 3D pre-trained network space.
Later, we compare the features generated by these networks in terms of their
ability to perform a pure feature-based landmark matching problem. All of the
work below is implemented with R [7] and tensorflow within ANTsR.
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2.1 Network 1: 3D VGG-19 - No Training

There is a long line of research revolving around the use of randomly selected
features in machine learning. Such features are unbiased and, at large scale and
for general purpose application, provably good. Convolutional neural network
architectures may encode valuable feature representations even without train-
ing [12]. While evidence of this has existed for some time, recent work has put
the claims on more solid foundation [2]. Ramanujan et al., for instance, success-
fully “validate the unreasonable effectiveness of randomly weighted neural net-
works for image recognition” [9]. Following this work, we include an untrained
3D VGG-19 architecture among the networks we test. This network uses lay-
ers with randomly initialized weights for encoding. Its architecture is the same
as the following two networks and includes groups of two (in shallower parts
of the network) and four convolutional layers with filters of size 3 × 3 × 3 fol-
lowed by 3D max pooling. The number of filters increases dyadically with depth,
except in the last block. See [14] for details. Our 3D variant is identical to an
expanded 2D version with the exception that the input layer, for our 3D version,
is single-channel and, of course, has more parameters (60,058,688) in line with
its increased dimensionality.

2.2 Network 2: Transfer Learning from 2D VGG-19 to Pseudo-3D
VGG-19

Both work in segmentation [13] and video has demonstrated the ability to trans-
fer weights from multi-channel 2D convolutional filters into 3D. As in prior work,
we adapt the keras vgg19 imagenet weights from its canonical 2D implementation
into a 3D single channel variant with all filter sizes, filter counts and biases the
same. Two observations are key here. First, while acknowledging the limitations
of this assumption, we treat the x-y spatial orientation of the original VGG-19
filters as rotatable into y-z and x-z planes where channel information occupies
the orthogonal dimension. Second, this results in three variants of the network,
one for each orientation. When applied to perform inference on new data, the
outputs of each oriented network should be either concatenated or averaged.
In the evaluation study described below, we concatenate features before use in
landmark matching. See Fig. 1 for an overview of the approach to transferring
2D VGG to pseudo-3D space.

2.3 Network 3: Direct 3D VGG Learning of Pseudo-3D VGG-19
Activations

This network shares the same architecture as the prior two. Our task, here, is
to train a 3D VGG-19 to approximate the sum of the oriented pseudo-3D VGG-
19 outputs. By outputs, here, we mean the activations at the deepest layer of
the VGG-19 architectures which is known as conv5 4, where 5 and 4 indicate
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Fig. 1. Multi-channel VGG-19 (2D) to single-channel pseudo-3D VGG-19 filter trans-
fer. The transfer operation results in 3 variants, one for each orientation, x, y, z. See
the code for additional details.

its position is at the 4th convolutional layer of the 5th VGG block. The loss
function, then, is:

1
3

3∑

i=1

‖φ54(X) − φi
54(X)‖2

where φ is the 3D-VGG-19 network, φi is the oriented pseudo-3D VGG-19 net-
work, X denotes a tensor input and ‖·‖ is the Frobenius norm. The output layer
is denoted by the 54 subscript.
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Fig. 2. Two approaches to learning the 3D distance space induced by the 2D to 3D
VGG19. (a) 3D Resnet learning of 2D-to-3D VGG-19 activation maps. The loss function
averages over the oriented outputs from the 2D to 3D transferred features. (b) 3D VGG-
19 learning of 2D-to-3D VGG-19 activation maps. The loss function averages over the
oriented outputs.

We train this network using a V100 NVIDIA GPU on tasks 1 through 10 of
the medical decathlon dataset [15] which includes a variety of 3D CT and MRI
images from the brain, heart, liver, prostate, lung, pancreas, spleen and colon.
We use the tensorflow ADAM optimizer with learning rate 1e−4. Patch sizes
of 323 are extracted from datasets that permit this dimensionality. Otherwise,
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patches of size 163 are used. Each patch is scaled to [−127.5, 127.5]. Batch sizes
of 32 were employed. We trained on 64,000 patches and validated on patches
extracted from left out images. Note that validation was used to guide the point
at which we extracted the best weights from the training history. At conver-
gence (67 epochs), the overall correlation (in validation data) between the real
and predicted activation maps reached 0.792 with a training error reduction
(from initialization) of a factor of 2.2. See Fig. 2 for an overview of this training
paradigm.

2.4 Network 5: Direct 3D ResNet Learning of Pseudo-3D VGG-19
Activations

This comparison network is similar to the prior one but, here, we employ our
3D variant of the ResNet architecture [3]. ResNet is a classification or regression
network and its output dimensions do not match that of 3D VGG19. To overcome
this barrier – and still allow ResNet to predict pseudo-3D VGG encodings – we
add a global average pooling layer to the output of each φi

54. This leads to a
512 vector regression target for each oriented network. The ResNet can directly
learn this encoding using the loss function:

1
3

3∑

i=1

‖ψ(X) − φi
54g(X)‖2

where ψ is the ResNet and φi
54g is the φi

54 output followed by global average
pooling. The norm is Euclidean.

We train this ResNet (25,851,112 parameters) in the same manner as the
prior network. We use the same patches, optimizer parameters and convergence
criterion. At convergence (28 epochs), the overall correlation (in validation data)
between the real and predicted activation maps reached 0.881 with a training
error reduction (from initialization) of a factor of 1.7.

2.5 Network 5: Pre-trained ResNet Network

Our last comparison network is a ResNet with 25,851,112 parameters that pre-
dicts age, gender and data collection site based on T1-weighted neuroimaging
(also known as brainAge). This network was trained on a dataset of control
subjects where each image is bias corrected and affinely registered to a template
image. Training data include:

– Dallas Lifespan Brain Study (DLBS): n = 275 (lifespan);
– Human Connectome Project (HCP): n = 1245 (young control);
– Information eXtraction from Images (IXI): n = 563 (lifespan);
– Nathan Kline Institute Rockland (NKI): n = 1260 (lifespan);
– Open Access Series of Imaging Studies (Oasis-2): n = 433 (lifespan, 18–93);
– Southwest University Adult Lifespan Dataset (SALD): n = 494 (young

control).
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As this network is not a primary topic of this work, we leave further details
of training and performance to its online documentation (see ANTsR brain age
network documentation and application). Nevertheless, the network achieves –
in completely independent validation data from sites not included in training –
an age prediction absolute error of 3.4 years over the lifespan and 88% accu-
racy for gender classification. This suggests that the network is encoding “real”
information about shape and structure in human neuroimages and, as such, is
sufficient to use as the source of deep features.

2.6 Evaluation Strategy in Terms of Landmark Matching in 7T
Hippocampus Data

We obtained public 7T T2-weighted MRI of the human hippocampus (n = 34)
[1] as a resource for anatomical labels and point-wise landmarks. Each image
was labeled by a manual rater with two anatomically identified points at the
head and tail of the hippocampus. We selected these two points for their relative
saliency within the structure of these images. One subject (001) was arbitrarily
selected as the template image. All other subjects serve as testing data where
the task is for the underlying matching algorithm to use deep features to identify
the anatomically homologous landmark points in the target image.

Figure 3 shows example activation maps from this network demonstrating
that the ResNet layers capture shape variation associated with the example
input patch. Such activation maps are the source of the feature distances that
will drive the automated landmark matching. Similar maps are generated by
each of the candidate networks.

4 8 12 12

16 20 24 28

Fig. 3. 3D Activation maps for an example patch input for the brain-age network. The
patch is shown at left and activation is at right. Slices within the 3D patch are indexed
in the lower left of each image panel.

Each of the networks under study has five-dimensional weights per convo-
lutional layer. The first three dimensions are spatial. The fourth is the channel
dimension. The fifth is the number of filters. In general, the number of filters
increases with depth. The VGG-19 architectures start with 64 filters and end
with 512. The ResNet architectures range from 64 filters to 2048 at the deep-
est level. We select shallow, mid-range and deep layers for comparison of per-
formance on automated landmark identification. For VGG, we select conv2 2,
conv4 2 and conv5 4 layers. For ResNet architectures, we select layers 6, 140
and 1290 as the shallow, mid and deep feature layers to evaluate. For each of
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these variants, we also explore patch sizes of 12, 16, 20, 24, 28 and 32 voxels per
patch axis. In total, this results in 90 different performance comparisons on the
landmark matching task.

The evaluation metric is the mean Euclidean distance between the target
ground truth landmark locations (in physical space) and the estimated landmark
position. An overview of the paradigm is in Fig. 4. The features, for each run of
the matching algorithm, are constant for the template image and are simply the
deep features that arise from the patch centered at the landmark position. The
best match in the target image is then identified by taking the voxel position
in the target image whose feature map is closest under either the Frobenius
or Euclidean norm, depending on the network. This amounts to a landmark
matching process that evaluates the deep feature space as a strict similarity
metric without further regularization.

Template image and landmarks

Target image ( landmarks shown here are used 
for evaluation not during matching )

Sagittal slice Coronal slice               

3D Network
Template 
Features

3D Network
Target 

Features

Select best match based on feature distances

LM1

LM2

Unlabeled target image space ( p >> n )

LM1 LM1

LM2 LM2

LM2LM1

Fig. 4. Evaluation strategy for landmark localization accuracy based on deep feature
matching with five different networks. In brief, the deep feature spaces are employed
as similarity metrics. The matching is greedy and unconstrained. As such, this serves
as a pure test of deep features’ ability to match anatomy based on feature similarity.

3 Evaluation Results

Figure 5 provides an overview of results that visualizes the outcome of all 90
comparisons. Results are reported in the form of the t-statistic resulting from
a pairwise t-test between the initial landmark distances and the final landmark
distances after matching. We first provide general observations and then focus
on the best performers.

In general, patch sizes significantly impact performance. The ResNet and
brainAge networks, in particular, benefit from increasing patch sizes in the
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deeper and mid-range layers, respectively. This is verified by regressing patch
size against the improvement in landmark distance and – despite a small sample
of only 6 patch values against which to regress – p-values < 0.005 emerge. Con-
versely, the no Train, 3D VGG and pseudo 3D VGG networks show the opposite
effect at the deep layers: decreasing patch size significantly improves perfor-
mance. However, at shallow layers, the VGG architectures perform better with
larger patch sizes.

The best networks succeed, with some configurations, at performing substan-
tially better than chance with the lowest p-value being well below an aggressive
Bonferroni correction level of 0.05/90 = 0.00056 where we correct for all 90 test
comparisons (a t-statistic of 5 with 33 degrees of freedom results in a p-value
of 1.772e−05). The best result is gained by the brainAge ResNet with results
of patch size 32 and the middle and deep layer being nearly equivalent with
t-statistics of 5.86 and 5.85 respectively. The second best result is gained from
the brain age network shallow layer with patch size 20. Interestingly, the third
best result is gained by the no training 3D VGG19 network with a t-statistic
of 5.01 at the mid-layer and with patch size 32.
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Fig. 5. Landmark localization accuracy results relative to initial distances (pairwise
t-test, 33 degrees of freedom). The heatmap and entries in each panel correspond to
the t-statistic from the pairwise test.

4 Discussion

This effort evaluated several deep 3D networks as feature encoders and
their use and evaluation in landmark matching. These networks are pub-
licly available at https://figshare.com/articles/pretrained networks for deep
learning applications/7246985 and may serve purposes beyond those exhibited
here. Potential applications include disease classification, dimensionality reduc-
tion and use within loss functions for problems such as image translation or
super-resolution.

https://figshare.com/articles/pretrained_networks_for_deep_learning_applications/7246985
https://figshare.com/articles/pretrained_networks_for_deep_learning_applications/7246985
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Several interesting findings arose from the evaluation study. First, the per-
formance of the no training 3D VGG network validates, in 3D, prior claims
of the potentially good performance of 2D convolutional networks with random
weights [9]. Second, pre-trained ResNet architectures are able to provide valu-
able 3D feature encodings for landmark matching even if they are trained on
very different data and problem domains than which they are being applied.
Third, complex effects of patch size are apparent in these results. These may be
confounded by the way in which these networks were trained although further
investigation of that question will be left to future work.

The findings in this work are insufficient to determine the extent to which net-
work depth impacts performance in landmark matching. Additional tests across
many more layers – and concomitant statistical modeling of depth × filter num-
ber effects – would be needed to understand these likely complex interactions.
However, network depth (anecdotally speaking) does appear to impact perfor-
mance, as has been shown previously in 2D. This impact, like that of patch size,
will likely vary with network architecture and problem domain.

It is a substantial challenge to identify the optimal layers, patch sizes and
training paradigms for generating repurposable deep feature networks. The num-
ber of evaluation runs is inevitably large and computationally demanding when
exploring deep 3D networks. If we use the field of super-resolution as an example
(see [16]), we must rely on the community to employ these networks in creative
ways and arrive at consensus about their usefulness. Until we have larger 3D
datasets, we may not achieve the generality of VGG-19. More work is also needed
to establish a general similarity metric based on deep features.

In conclusion, we are releasing this work as public domain investigation into
the questions posed here that are at the interface of deep learning, image regis-
tration and biomedical applications. We must also acknowledge that this work
must continue with more sophisticated matching strategies that go beyond the
greedy method used here. Furthermore, we hope that more detailed, landmark-
based evaluations will be performed in the future. We believe that such studies
may (relative to evaluations that fixate on segmentation overlap) provide greater
insight and specificity during the evaluation of similarity metrics and transfor-
mation models for medical registration problems.
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Abstract. It is difficult to register the images involving large deformation and
intensity inhomogeneity. In this paper, a new multi-channel registration algo-
rithm using modified multi-feature mutual information (a-MI) based on minimal
spanning tree (MST) is presented. First, instead of relying on handcrafted fea-
tures, a convolutional encoder-decoder network is employed to learn the latent
feature representation from cardiac MR images. Second, forward computation
and backward propagation are performed in a supervised fashion to make the
learned features more discriminative. Finally, local features containing appear-
ance information is extracted and integrated into a-MI for achieving multi-
channel registration. The proposed method has been evaluated on cardiac cine-
MRI data from 100 patients. The experimental results show that features learned
from deep network are more effective than handcrafted features in guiding intra-
subject registration of cardiac MR images.

Keywords: Multi-channel image registration � Multi-feature mutual
information � Supervised feature learning � Convolutional encoder-decoder
network

1 Introduction

Image registration is an important technique in medical image analysis [1]. Many
clinical applications, such as multi-modal image fusion, radiotherapy, and computer-
assisted surgery, can benefit from this technique. However, large deformation and
intensity inhomogeneity bring great challenges into this procedure. To deal with these
problems, the standard metrics like sum of squared difference (SSD), correlation
coefficient (CC), and mutual information (MI) are not sufficient for intensity-based
registration.

Recently, some studies have focused on multi-channel image registration for these
issues. Legg et al. [2] extracted several feature images from the original images, and
subsequently incorporated these feature images into a dissimilarity measure based on
regional mutual information for multi-modal image registration. Staring et al. [3]
adopted k-nearest neighbors graph (KNNG) to implement multi-feature mutual
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information (a-MI) in order to register cervical MRI data. Rivaz et al. [4] introduced a
self-similarity weighted a-MI using local structural information to register multiple
feature images. Li et al. [5] developed an objective function that relies on the auto-
correlation of local structure (ALOST) into registration of intra-image with signal
fluctuations. Guyader et al. [6] proposed to formulate multi-channel registration as a
group-wise image registration problem, in which the modality independent neighbor-
hood descriptor (MIND) was used as the feature images.

It is critical for these methods to select discriminative features that can establish
accurate anatomical correspondences between two images. Most of multi-channel
image registrations utilized handcrafted features, such as multi-scale derivatives or
descriptor engineering, to achieve good performance. In general, handcrafted features
need manually intensive efforts to design the model for specific task. Learning-based
methods have been developed to select the best feature set from a large feature pool,
which can be adapted to the data at hand [7]. Moreover, deep learning can automati-
cally and hierarchically learn effective feature representation from the data. Shin et al.
[8] applied the stacked auto-encoders to organ identification in MR images. Chmelik
et al. [9] classified lytic and sclerotic metastatic lesions in spinal 3D CT images by deep
convolutional neural network (CNN). Wu et al. [10] employed a convolutional stacked
auto-encoder to identify intrinsic deep feature representations for multi-channel image
registration.

In contrast, we propose an end-to-end feature learning method to improve the
performance of a-MI based on minimal spanning tree (MST). The convolutional
encoder-decoder architecture that combines semantic information from a deep, coarse
layer with appearance information from a shallow, fine layer is trained in a supervised
fashion. Various latent features can be learned by forward computation and backward
propagation. The local feature representation of testing image extracted from the first
layer of encoder part is integrated into a-MI metric. The proposed method is evaluated
on intra-subject registration of cardiac MR images.

2 Method

2.1 a-MI Implementation Using MST

In the previous work [11], multi-channel registration of two images If xð Þ and Im xð Þ can
be formulated as l̂ ¼ argmin

l
aMI Tl; If xð Þ; Im xð Þ� �

, where Tl is the free-form defor-

mation (FFD) model based on B-spline. Assume that z xið Þ ¼ z1 xið Þ � � � zd xið Þ½ � denotes
a vector of dimension d containing all feature values at point xi. Let z f xið Þ be the
feature vector of the fixed image at point xi, and zm Tl xið Þ� �

be that of the moving
image at the transformed point Tl xið Þ. Let zfm xi; Tl xið Þ� �

be the concatenation of the
two feature vectors: z f xið Þ; zm Tl xið Þ� �� �

. Three MST graphs with N samples can be
constructed by:
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Lf ¼ min
XN�1

ij¼1
z f xið Þ � z f xj

� ��� ��c; ð1Þ

Lm ¼ min
XN�1

ij¼1
zm Tl xið Þ� �� zm Tl xj

� �� ��� ��c; ð2Þ

Lfm ¼ min
XN�1

ij¼1
zfm xi; Tl xið Þ� �� zfm xj; Tl xj

� �� ��� ��2c; ð3Þ

where �k k is the Euclidean distance, and c 2 0; dð Þ: So a-MI based on MST can be
expressed as:

aMI ¼ 1
1� a

log
Lf
Na

þ log
Lm
Na

� log
Lfm
Na

� �
; ð4Þ

where a ¼ d � cð Þ=d.

2.2 Network Architecture

The network architecture like 2D U-Net [12] for deep feature learning consists of
encoding and decoding branches connected with skip connections. The encoding stage
contains padded 3� 3 convolutions followed by rectified linear unit (ReLU) activation
functions. A 2� 2 maxpooling operation with stride 2 is applied after every two con-
volutional layers. After each downsampling, the number offeature channels is doubled. In
the decoding stage, a 2� 2 upsampling operation is applied after every two convolutional
layers. The resulting feature map is concatenated to the corresponding feature map from
the encoding part. After each upsampling, the number of feature channels is halved.

The input size of the encoder-decoder architecture should be divisible by 16, and
equal to the output size. At the final layer, a 1� 1 convolution is used to generate the
same depth of feature map as the desired number of classes.

2.3 Feature Representation with Supervised Learning

To train the encoder-decoder network, the input images and their labels are used to
optimize the weights of convolutional layers through the softmax classifier. For the
class imbalance between the foreground and background, we adopt weighted cross
entropy as the loss function:

L ¼ �
X

x2X x xð Þy xð Þlog ŷ xð Þð Þ; ð5Þ

where y xð Þ is the true label, ŷ xð Þ is the probability estimation by softmax, and x xð Þ is
the weight coefficient at the pixel x within domain X.

Due to supervised learning, global features containing semantic information are
prone to be biased. Here local features containing appearance information are extracted
from the first layer of our network for multi-channel registration. Figure 1 shows an
example of 64 features from a 2D slice of cardiac MR image. Finally, we embed 65
features (original intensity image, 64 deep features) into a-MI based on MST metric.
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Before performing registration, these features are normalized to have zero mean and
unit variance. Note that feature extraction is executed in 2D manner, while registration
is performed in 3D.

3 Experiment and Result

The multi-feature mutual information using MST was implemented in the registration
package elastix [13] with multi-threaded mode, which is mainly based on the Insight
Toolkit. The registration experiments were run on aWindows platformwith an Intel Dual
Core 3.40 GHz CPU and 32.0 GB memory. A Tensorflow implementation of convolu-
tional encoder-decoder network was trained on a Nvidia GeForce GTX 1070 GPU.

Fig. 1. An example of 64 local feature representations with supervised learning from a 2D slice
of cardiac MR image.
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3.1 Dataset and Evaluation Method

To evaluate the performance of the proposed method, our experiments were on cardiac
cine-MRI training data of the ACDC challenge [14], which consists of 100 patient
scans. The image spacing varies from 0:70� 0:70� 5 mm to 1:92� 1:92� 10 mm.
We resampled the data to an in-plane spacing of 1:37� 1:37 mm, and then cropped all
resampled images to an in-plane size of 224� 224 pixels. The manual delineation of
the left ventricle (LV), the left ventricle myocardium (LVM), and the right ventricle
(RV) at the end-diastolic (ED) and end-systolic (ES) phases of each patient is provided
as the ground truth for quantitative evaluation.

The data were divided into the training and validation set. The training set com-
prising 80 subjects was used to train the deep network in a slice-by-slice manner for
feature extraction. The validation set with the remaining 20 subjects was performed
registration between images at ED and ES. In total 40 different registration results were
available for evaluation. The propagated segmentations can be generated by trans-
forming the manual segmentation of the moving image to the fixed image domain, with
obtained deformation field.

The Dice Similarity Coefficient (DSC) as a measure of overlap was calculated
between propagated segmentation and ground truth of the fixed image. To compare two
methods, a value of p\0:05 in two-sided Wilcoxon tests is regarded as a statistically
significant difference. The Hausdorff distance (HD) between the surface of propagated
segmentation and the surface of ground truth was also used to measure the quality of
registration.

3.2 Parameter Settings

The proposed a-MI based on MST using the deep feature representation (in total 65
features, called aMI+SDF) was compared to localized MI (called LMI) [15] and a-MI
based on MST with the Cartesian feature set [3] (in total 15 features, called aMI+HCF).
Since cardiac MR images only show local deformations between the time phases,
initial rigid registration was not necessary.

For weighted cross entropy, we set a weight of 0.3 for the foreground class, and 0.1
for the background class. To train the encoder-decoder network, we used the Adam
optimizer, where learning rate 1:0� 10�3 and 60 epochs with batch size of 4 were set.

For all experiments on intra-subject registration, a multiresolution scheme using
Gaussian smoothing was applied. Scales r = 4.0, 2.0, and 1.0 voxels in the x and
y directions were used. For the z direction, r = 2.0, 1.0, and 0.5 voxel was used. As for
transformation model, the parameterized B-splines with grid spacing of 20, 10, and
5 mm was employed for three resolution levels respectively.

For LMI, a local region of 50� 50� 25 mm was randomly selected. About the
parameter optimization, A = 200, s = 0.6, a = 2000, and 2000 iterations were set. The
number of random samples was set to N = 2000. For aMI+HCF and aMI+SDF,
A = 50, s = 0.602, a = 2000, and 600 iterations were set. The number of random
samples was set to N = 5000.
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In multi-feature mutual information, the kD trees, a standard splitting rule, a bucket
size of 50, and an errorbound value of 10.0 were selected. The k = 20 nearest neighbors
were set. In addition, a value was set to 0.99.

3.3 Registration Accuracy

The boxplot of overlap scores using the three methods is shown in Fig. 2. It is clear that
registration quality of LMI is the worst. Compared to aMI+HCF, the median overlap of
aMI+SDF increases significantly from 0.898 to 0.921 (p ¼ 2:70� 10�3) for the LV,
from 0.781 to 0.822 (p ¼ 4:57� 10�6) for the LVM, and from 0.775 to 0.813
(p ¼ 1:92� 10�5). The overall mean and standard deviation of the measures are
summarized in Table 1. The same trend can be found in the HD measure. The median
HD of aMI+SDF for the LV is as low as 9.171 mm. Figure 3 displays a typical
example of registration results. It can be observed that aMI+SDF performs much better
than aMI+HCF for these anatomical structures.

Fig. 2. The boxplot of overlap scores using different methods at different anatomical structures.
A star indicates a statistical significant difference of the median overlap compared to the previous
column.
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4 Conclusion

In this paper, we present a multi-channel registration algorithm for cardiac MR images.
To make the feature representation more robust to large appearance variations of
cardiac substructures, we propose to extract the features with convolutional encoder-
decoder network. Afterwards, the learned features in a supervised fashion are

Table 1. The mean and standard deviation of quantitative measures using the three methods for
different anatomical structures.

Structures Methods DSC HD (mm)

LV LMI 0.797 ± 0.135 12.567 ± 4.111
aMI+HCF 0.868 ± 0.085 10.072 ± 3.412
aMI+SDF 0.888 – 0.080 9.614 – 3.348

LVM LMI 0.696 ± 0.104 12.243 ± 3.804
aMI+HCF 0.776 ± 0.069 10.481 ± 3.260
aMI+SDF 0.808 – 0.055 10.009 – 3.130

RV LMI 0.680 ± 0.168 19.065 ± 7.503
aMI+HCF 0.732 ± 0.162 17.745 ± 8.095
aMI+SDF 0.765 – 0.155 17.378 – 7.513

Fig. 3. (a) The fixed image. (b) The moving image. (c) The fusion result by aMI+HCF
registration. (d) The fusion result by aMI+SDF registration. The fixed image is combined with
the warped moving image, using a checkerboard pattern.
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incorporated into multi-feature mutual information framework. With experiments on
cardiac cine-MRI data, the proposed method demonstrates the superior performance
regarding to intra-subject registration accuracy.
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Abstract. In multi-channel (MC) registration, fusion of structural and
diffusion brain MRI provides information on both cortex and white
matter (WM) structures thus decreasing the uncertainty of deforma-
tion fields. However, the existing solutions employ only diffusion tensor
imaging (DTI) derived metrics which are limited by inconsistencies in
fiber-crossing regions. In this work, we extend the pipeline for registra-
tion of multi-shell high angular resolution diffusion imaging (HARDI)
[15] with a novel similarity metric based on angular correlation and an
option for multi-channel registration that allows incorporation of struc-
tural MRI. The contributions of channels to the displacement field are
weighted with spatially varying certainty maps. The implementation is
based on MRtrix3 (MRtrix3: https://www.mrtrix.org) toolbox. The app-
roach is quantitatively evaluated on intra-patient longitudinal registra-
tion of diffusion MRI datasets of 20 preterm neonates with 7–11 weeks
gap between the scans. In addition, we present an example of an MC
template generated using the proposed method.

Keywords: High angular resolution diffusion imaging · Multi-channel
registration · Fibre orientation distribution registration · Certainty
maps

1 Introduction

The combined analysis of diffusion and structural MRI is extensively used in
adult and neonatal [20] brain studies. Structural MRI has the highest contrast
for the cortex region, while dMRI primarily provides information about white
matter (WM) structures.

The uncertainty of deformation fields in the regions characterised by low con-
trast or homogeneous intensities (e.g., low WM fibre density regions in dMRI) is
one the primary challenges associated with both longitudinal and inter-subject
registration. Multi-channel registration that includes both anatomical and
c© Springer Nature Switzerland AG 2020
Ž. Špiclin et al. (Eds.): WBIR 2020, LNCS 12120, pp. 111–121, 2020.
https://doi.org/10.1007/978-3-030-50120-4_11
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diffusion channels has been shown to improve registration and label-propagation
results [2,7,19]. The reported MC registration solutions generally employ frac-
tional anisotropy (FA) [7,8,14,19] or DTI [2,9,13] as an additional channel.
However, DTI-extracted metrics are characterised by inconsistencies in fibre-
crossing regions. On the other hand, higher-order techniques such as constrained
spherical deconvolution (CSD) [21] alleviate some of the limitations of the DTI
model and allow extracting orientation-resolved microstructural information as
so-called orientation distribution functions (ODFs) from HARDI data.

The classical approach for the fusion of information from different channels is
based on simple averaging of individual channel updates [2]. More recently pro-
posed solutions include scalar weighs for ROIs defined by thresholded FA maps
[13] or local certainty maps based on normalised gradients correlated to struc-
tural content [7]. While the detailed overview of the choice of registration met-
rics is out-of-scope of this work, it can be summarised that the published works
on intensity-based multi-channel registration primarily use the sum of squared
differences (SSD) [2,7,8,14] or local normalised cross-correlation (LNCC) [4]
metrics. There is also a reported approach for T1-DTI atlas generation where
datasets are spatially normalized only according to the structural channel [9].

Contributions. In this work we present a framework for multi-channel brain
registration that allows local certainty-based fusion of dMRI-derived ODFs and
structural MRI and is based on a novel similarity metric for dMRI. The solution
is an extension of the multi-contrast ODF registration framework [15,17]. The
novel elements include implementation of local angular correlation (AC) as a
metric for ODF channels, LNCC for structural channels and weighted fusion
based on local certainty maps. The pipeline was implemented in MRtrix3 [22].

The method is evaluated on 20 longitudinal (intra-patient) neonatal MRI
datasets from the developing Human Connectome Project (dHCP)1 which con-
stitutes a particularly challenging task for registration due to the rapid changes
that occur in volume, structure and intensities during brain development. In
addition, we demonstrate an example of a MC template of neonatal brain gen-
erated from 10 datasets (40–43 weeks PMA) using the proposed registration
approach.

2 Method

2.1 Datasets, Acquisition and Pre-processing

The data used for evaluation of the proposed method include 20 longitudinal
datasets of neonates scanned as a part of the dHCP project at St. Thomas
Hospital, London. The gap between the scans is in the range of 7–11 weeks
which is associated with significant changes in volume, myelination and cortical
folding [16]. The postmenstrual age (PMA) at the first scan is within 30–35
weeks.
1 dHCP project: http://www.developingconnectome.org.

http://www.developingconnectome.org
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Each dataset includes two scans with diffusion and structural MRI volumes
acquired on a Philips 3T scanner. The multi-shell HARDI volumes were acquired
with four phase-encode directions on four shells with b-values of 0, 400, 1000 and
2600 s/mm2 with TE 90 ms, TR 3800 ms [10] with 1.5×1.5×3 mm resolution and
1.5 mm slice overlap and reconstructed to 1.5 mm isotropic resolution using the
SHARD pipeline [5]. The structural T2-weighted volumes were acquired using
a TSE sequence with TR = 12 s, TE = 156 ms. The T1-weighted volumes were
acquired using an IR TSE sequence with TR 4.8 s, TE 8.7 ms. The isotropic T2
and T1 volumes with 0.5 mm resolution were reconstructed using a combination
of motion correction [6] and super-resolution reconstruction [11]. All volumes
of the same modality were normalised to the same global intensity ranges. The
tissue segmentations were generated by the Draw-EM pipeline [12].

The preprocessing of the datasets was performed in MRtrix3 including: (i)
decomposition of WM ODF from HARDI data via constrained spherical decon-
volution (CSD) [21] followed by intensity normalisation; (ii) extraction of FA and
mean diffusivity (MD) DTI-metrics; (iii) alignment of the structural to dMRI
volumes based on affine registration of T2 to MD volumes using global NCC met-
ric; (iv) resampling of all channels to 1 mm isotropic resolution with B-Spline
interpolation. In addition, we manually segmented internal capsules (IC) in FA
volumes for all datasets.

2.2 Multi-channel Registration Pipeline

The proposed registration pipeline is an extension of the multi-contrast ODF
registration framework [15,17]. The original method is based on SyN Demons
[2] with an SSD metric and reorientation of ODF using apodized point spread
functions [18]. In order to decrease the sensitivity to acquisition or physiology
related changes in signal intensities, we replace SSD with a novel similarity metric
based on angular correlation [1] and add certainty-maps weighting for fusion of
structural and diffusion channels.

The input channels for each of the cases include: WM ODFs, structural MRI
(T2-weighted and T1-weighted) volumes and FA maps. At first, the cases are
globally aligned using affine registration of structural volumes using the global
NCC metric. Next, we employ symmetric diffeomorphic LNCC demons [3] for
structural and FA channels and local angular correlation metric [1] for ODF
channels. In comparison to the classical ODF registration approach based on
SSD metric in [15], using AC provides a more robust solution since it is less
susceptible to the local changes in signal intensities while preserving directional
information. However, unlike SSD, AC might be affected by the noise in the
directional information.

Angular correlation rA between two ODFs FODF and GODF represented
with real valued spherical harmonic (SH) orthonormal basis functions Ylm(θ, φ)

FODF (θ, φ) =
∝∑

l=0

l∑

m=−l

flmYlm(θ, φ), GODF (θ, φ) =
∝∑

l=0

l∑

m=−l

glmYlm(θ, φ)

(1)
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is computed as [1]:

rA =

∑L
l=2

∑l
m=−lflmglm

[
∑L

l=2

∑l
m=−l|flm|2] 1

2 [[
∑L

l=2

∑l
m=−l|glm|2] 1

2

, (2)

where glm and flm are the SH coefficients of GODF (θ, φ) and FODF (θ, φ) of
order L with even l = {2, 4, ..., L} harmonic degree terms, correspondingly. The
l = 0 term does not contribute to AC values.

Since this is a correlation metric, the corresponding symmetric updates to
the displacement fields ΛF and ΛG can be computed in a similar manner to
LNCC demons [3] but with respect to the 4D ODFs rather than only the 3D
local neighbourhood (Eq. 3).

ΛF =
2FG

F 2G2

(
G − FG

F 2
F

)
∇F, ΛG =

2FG

F 2G2

(
F − FG

G2
G

)
∇G, (3)

where G = {gnlm}l=2,...,lmax,m=−l,...,l and F = {fn
lm}l=2,...,lmax,m=−l,...,l are the

vectors of SH coefficients at a given location in the 3D volume space with local
neighbourhood n = 1, ..., N . We refer to this registration metric as local angular
cross-correlation (LAC).

The updates from the structural channels are computed similarly to [3]. We
also consider Y00(θ, φ) as a separate channel and use the LNCC metric for its
contributions since it is excluded from the AC metric formalisation (Eq. 2).

The contributions from each of the channels i to the global symmetric dis-
placement field update Λglobal are locally weighted with respect to the 3D cer-
tainty maps based on the approach proposed in [7]. At first, the certainty maps
αF
i and αG

i are computed from the original volumes F and G for each of the
channels (including structural and ODF volumes) and normalised as:

αF
i = ‖ ∇FT

i ∇Fi ‖, α̂i
F =

αF
i

max(αF
i )

(4)

Then, the global symmetric updates to the displacement fields are computed
by weighted averaging of the channel-specific update fields with respect to the
certainty maps:

ΛF
global =

∑
i α̂i

FΛF
i∑

i α̂i
F

, ΛG
global =

∑
i α̂i

GΛG
i∑

i α̂i
G

(5)

Figure 1 shows an example of the certainty gradient maps α̂i for structural,
FA and one of the ODF component channels and the

∑
i α̂i of all channels.

This approach ensures that the output deformation fields are defined by the
contribution of the local channel regions with the highest structural content. This
is relevant for the ROIs where one of the channels has low intensity contrast. In
comparison, the multi-variate SyN (MVSyN) approach [2] is based on averaging
of the individual channel updates.
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Fig. 1. An example of the certainty maps α̂i for T2, one of the ODF component
channels (lmax = 2), FA, and the sum of all channels (

∑

i α̂i).

2.3 Implementation Details

The method was implemented in MRtrix3 [22]. The new elements include: LAC
metric for ODF registration and certainty-based weighting of the channels. In
addition, we transferred ANTs2 implementation of LNCC Demons metric [3] to
MRtrix3 for registration of structural, Y00(θ, φ) ODF and FA channels.

It was experimentally identified that multi-resolution {0.5; 0.75; 1.0} and SH
order lmax = {0; 2; 4} schemes and 3 voxel radius for the local neighbourhood
for both structural and ODF channels are optimal for deformable registration of
the investigated datasets. We used the standard MRtrix3 regularisation of gra-
dient update and displacement fields based on Gaussian smoothing with 1 voxel
standard deviation. The MRtrix3 parameter settings employed for generation of
the multi-channel template are based on the pipeline formalised in [16].

3 Experiments and Results

3.1 Longitudinal Registration Study

For each of the investigated 20 cases, we performed a set of longitudinal (intra-
patient) registrations with different settings including different combinations
of channels {T2; FA; T2+FA; STR (structural: T1+T2); ODF; ODF+STR;
ODF+STR+FA} and similarity metrics {SSD; LNCC; LAC}. The channel
weighting options include average and weighted: {A-; W-}. The employed param-
eter settings are given in Sect. 2.3.

The MRtrix3-based implementation of LNCC Demons [3] is based on the
ANTs toolbox and provides similar performance for structural registration.
Therefore, we compare the proposed method directly to the existing MRtrix3
registration module. The main aim is an improvement of the combined quality of
label propagation and image similarity for the structural and diffusion channels.

Table 1 presents the results of the comparison study. The quantitative evalu-
ation is performed with respect to the quality of label propagation (Dice score)
and similarity of the registered ODF volumes. The labels include: cortical grey

2 ANTs: http://stnava.github.io/ANTs.

http://stnava.github.io/ANTs
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matter (C-GM), hippocampus (HIP) and internal capsule (IC). The intensity-
based similarity is assessed in terms of ODF AC (Eq. 2) for lmax = 4. The best
performance results are highlighted in blue.

Firstly we can observe that locally weighted fusion [7] of T2 and FA improves
the combined results while slightly lowering the dice score for cortex compared
to single channel T2.

Table 1. Quantitative evaluation of the proposed multi-channel registration approach
on longitudinal dMRI datasets of 20 neonates: Dice coefficient for brain tissue labels
and AC between ODF volumes.

Channels/metrics IC CGM HIP ODF AC

ANTs LNCC demons: single-channel registration [3]

T2:LNCC 0.676± 0.021 0.724 ± 0.034 0.794± 0.027 0.427± 0.035

FA:LNCC 0.686± 0.021 0.569± 0.031 0.770± 0.025 0.348± 0.040

ANTs LNCC demons: MC registration with certainty map weighting [7]

T2+FA:W-LNCC 0.686± 0.036 0.700± 0.034 0.800± 0.023 0.429± 0.037

MRtrix3 MC Syn demons (SSD): registration of ODFs [15,17]

ODF:SSD 0.710± 0.019 0.619± 0.045 0.784± 0.026 0.422± 0.045

ODF+STR:A-SSD 0.667± 0.116 0.628± 0.047 0.768± 0.072 0.413± 0.054

MRtrix3 LAC/LNCC demons: MC registration of ODFs and structural volumes with certainty

map weighting (proposed method)

ODF:LAC 0.709± 0.022 0.661± 0.041 0.788± 0.032 0.448± 0.039

ODF+STR: A-LAC/LNCC 0.709± 0.020 0.678± 0.039 0.799± 0.028 0.451± 0.039

ODF+STR:W-LAC/LNCC 0.713± 0.023 0.689± 0.038 0.803 ± 0.027 0.455 ± 0.038

ODF+STR+FA:W-LAC/LNCC 0.714 ± 0.022 0.677± 0.039 0.800± 0.028 0.454± 0.039

In general, myelination and cortical folding occurring during 7–11 weeks
period significantly change local intensities in both structural and diffusion MRI
data [16]. Therefore, even though all input volumes were normalised, using SSD
metric for ODF or structural MC registration leads to the lower quality results in
comparison to the proposed LAC metric which produced statistically significant
(p < 0.05) improvement for C-GM and HIP Dice scores and ODF AC, while
there was not a significant difference in Dice scores of IC.

Figure 2 demonstrates an example of the original and transformed WM ODF
SH coefficients (l = 2,m = 0) for longitudinal registration of 31 to 42 weeks
PMA datasets. There is a clear difference in the magnitude of SH coefficients
between the original scans. Using MC registration with LAC for ODF and LNCC
for structural channels produces visually sharper results for the IC region in
comparison to both classical SSD ODF registration [15,17] or fusion of T2 and
FA [7]. This is in agreement with the higher AC values reported in Table 1.

Furthermore, there is a clear indication that additional structural channels
(in this case T1+T2) and certainty-based weighting increase the quality of label
propagation and AC similarity of ODF volumes. Adding the FA channel did not
significantly affect the results since ODFs contain the WM structure information.
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Fig. 2. An example of longitudinal intra-patient registration for 31 =⇒ 42 weeks PMA
datasets. Difference between the original and transformed WM ODF SH coefficients
(l = 2, m = 0) for the classical ODF registration with SSD metric, weighted MC
registration of T2+FA channels with LNCC metric and weighted MC registration of
ODF+T1+T2 channels with LAC and LNCC metrics.

All ODF-based options resulted in approximately the same range for the IC
Dice score values due to its high contrast and showed significant improvement (p
< 0.05) in comparison to using the FA and T2 channels only. Apart from the IC
values for ODF registration, the improvement in performance of the proposed
method (ODF+STR: W-LAC/LNCC) in comparison to the baseline methods
(structural LNCC Demons, ODF MRtrix registration as well as fused T2+FA)
is statistically significant with p < 0.05.

An example of symmetric LAC+LNCC MC registration for 31 ←→ 42 weeks
PMA at scan case is presented in Fig. 3. The registration of the structural and
ODF channels was successful even though there are significant differences in
contrast of both structural and ODF volumes, cortex folding surface and the
global shape. Visualisation of the original and transformed normalised ODFs
over the same padded T1 volume (third row) confirms that the global shape and
features of the volumes are sufficiently well aligned. Label propagation for tissue
and IC segmentations also resulted in relatively similar results. This, however,
might also be affected by the quality of the original segmentations produced by
the automated Draw-EM method [12].

3.2 Multi-channel Template Example

Figure 4 shows and example of a multi-channel template generated using
MRtrix3 population template tool with the proposed MC registration pipeline
and LAC+LNCC metrics. The template with 1 mm resolution was generated
from 10 neonatal MRI datasets from 40–43 weeks PMA. It includes T2, T1,
normalised WM ODF and FA channels. The resulting volumes are characterised
by well defined features of both cortex and WM structures.
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Fig. 3. An example of longitudinal symmetric MC registration for 31 ⇐⇒ 42 weeks
PMA at scan case including: original and transformed T2 volumes, original and trans-
formed ODF over T2, original and transformed ODF over masked original T1 volume
(used as a template), original and transformed labels.

Fig. 4. An example of multi-channel template of neonatal brain generated from 40–43
PMA datasets including: WM ODF, FA, T1 and T2 channels.
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4 Discussion and Conclusions

This paper presents a solution for multi-channel registration combining multi-
shell HARDI and structural MRI data. It is based on a novel similarity metric for
diffusion MRI and certainty-based weighting of the channels. The method was
implemented in MRtrix3 and can be integrated into neuroimaging pipelines.

The quantitative evaluation was performed on 20 longitudinal neonatal
datasets from the dHCP project. The results showed that fusion of structural
and diffusion ODF channels improves overall results, compared to single-channel
registrations. The weighting of channels based on certainty maps also improves
the results thus potentially minimising the uncertainty of deformation fields.
Furthermore, the proposed LAC metric outperforms the state-of-the-art ODF
registration method for challenging cases.

An example of the generated multi-modal template shows that this tool has
a potential application for generation of spatio-temporal multi-modal brain MRI
templates that require robust similarity metrics. Simultaneous segmentation of
WM and cortex structures could also potentially improve the accuracy of mor-
phometry in structural MRI processing pipelines.

However, these results also emphasise the fact that accurate alignment of
diffusion and structural volumes is a critical step for multi-channel registration
since affine registration might not fully solve this due to distortions in dMRI
data. Future work will focus on further optimisation of the MC ODF registration
pipeline and extensive evaluation on adult and multi-site datasets.
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Abstract. Surprisingly, estimated voxel displacement maps (VDMs),
based on image registration, seem to work just as well to correct geomet-
rical distortion in functional MRI data (EPI) as VDMs based on actual
information about the magnetic field. In this article, we compare our
new image registration-based distortion correction method ‘COPE’ to an
implementation of the pixelshift method. Our approach builds on exist-
ing image registration-based techniques using opposite phase encoding,
extending these by local cost aggregation. Comparison of these meth-
ods with 3T and 7T spin-echo (SE) and gradient-echo (GE) data show
that the image registration-based method is a good alternative to the
fieldmap-based EPI distortion correction method.
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1 Introduction and Background

In this article we introduce an image registration-based method for EPI distor-
tion Correction based on Opposite Phase Encoding (COPE). To ensure its use-
fulness, we compare the new, image-registration-based approach with a fieldmap-
based approach for reducing geometric distortion in EPI data due to the suscep-
tibility artifact.

In the fieldmap-based geometric distortion correction method for EPI data
based on the ‘pixelshift method’ by Jezzard and Balaban [6], a pixelshift map,
also called voxel displacement map (VDM), is calculated from a T2-weighted
reference scan. The VDM indicates how far the voxels need to be translated
back to their original locations.

In image registration-based distortion correction methods, the VDM is esti-
mated by acquiring EPI data with two opposite phase encoding directions. In
EPI, the frequency and phase are modulated such that the original location of
each signal can be found; due to the susceptibility artifact, the field inhomogene-
ity ‘disrupts’ the phase encoding, but by acquiring data in the opposite phase
encoding direction, pixel shifts occur in the same amount in opposite directions
in the functional images. Image registration-based methods use a suitable cost
function to minimise, which is a function that measures the dissimilarity between
the opposite phase encoded images.

In the next section, we will explain our distortion correction method ‘COPE’
in more detail. In Sect. 3 we show the experiment we performed for testing the
performance of our method. In the final section we will discuss the results (Fig. 1).

Fig. 1. Setup of the EPI distortion correction comparison

2 Methods

In our image-registration based distortion correction method ‘COPE’, opposite
phase encoded echo planar images (EPI) are registered to each other. Acquiring
an opposite phase encoded EPI volume requires a few seconds. We use one
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model for the forward and backward transformation, which estimates a voxel
displacement map, so the forward and backward transformations are each others
inverse.

First, the optimal transformations (scaling and translation) in the y-direction
are estimated column-wise; for each iteration, the distance DSSD between the
images is established via sum of square differences (SSD) or normalised cross-
correlation (NCC). Let DSSD [I1, I2;p] be a function of parameters p using the
1D columns I1 (from image in one phase encoding direction) and I2 (from image
in the opposite phase encoding direction), and where f(p) =

∑
r is the sum of

the residuals, quantifying the difference between each voxel in one image and
the opposite phase encoded image:

DSSD(p) =
1
2
(f(p))2 with f(p) = I2 ◦ φp − I1 ◦ φ−1

p , (1)

φ : R2 → R
2 and x �→ psx+pt, where φ is the transformation for each coordinate,

composed of ps and pt, the scaling resp. translation parameters. Gauss-Newton
optimisation [7] involves approximating the function DSSD with a second-degree
Taylor expansion in order to iteratively minimise it. Like in Gauss-Newton opti-
misation methods, the Hessian H is approximated with the Jacobian J and the
parameter change s is obtained using both H and J and differences between
columns δ: s = −H JT δ. Instead of regularization, smoothing with a Gaussian
kernel is applied to the scaling and translation matrices and the EPI volumes
that are used to estimate the VDM. The algorithm is inspired by Andersson
et al. [1] and Ruthotto et al. [9].

If the “spin echo” (SE) option has been selected, intensity correction is
applied using the derivative of the inverse of the VDM; for “gradient echo”
(GE), this operation is omitted.

In the next step, a local search is performed to find the most plausible defor-
mation (measured via NCC or SSD); the local search is inspired by the local cost
aggregation method of Heinrich et al. [5]. The displacement values are fine-tuned
by locally finding the best displacement that minimizes the distance between the
images. Additional displacement values are added to the values in the VDM -
that was obtained via Gauss-Newton optimisation in the previous step - and the
similarity between the transformed opposite phase encoded images is recalcu-
lated. This is performed iteratively, from larger additional displacement values
from ±5.00 in the y-direction while simultaneously applying strong smoothing,
to smaller displacements until ±0.75 with lighter smoothing; the image similarity
is calculated accordingly and the displacement value for each voxel that results
in the highest image similarity is kept (see also Fig. 2). The voxel displacement
map can then be applied to distorted EPI data using cubic spline interpolation.



An Image Registration-Based Method for EPI Correction (COPE) 125

Fig. 2. Estimation of a voxel displacement map (VDM) via COPE

We compare fieldmap based-correction with image registration-based correc-
tion of SE-EPI and GE-EPI data on 3T and 7T. The distance of each EPI dataset
to the anatomical image of the same subject is compared before and after distor-
tion correction. To assess the generality of the performance of fieldmap-based vs
image registration-based distortion, we use EPI data sets acquired with different
field strengths (3T and 7T), multi-band factors and sequences (spin-echo (SE)-
EPI, gradient echo (GE)-EPI), modality (BOLD and diffusion weighted) and
different sites (Maastricht vs Carnegie-Mellon)(see Table 1) on Siemens scanners
(Siemens Medical Systems, Erlangen, Germany).

2.1 Data Pre-processing

All processing was performed in native scanner space. Pre-processing steps spe-
cific for each modality are described below.

Anatomical Data. Anatomical data were corrected for B1 inhomogeneity and
skull-stripped in BrainVoyager (v20.6, Maastricht, The Netherlands) [4].

Fieldmaps. For datasets 6–10, the combined 32-channel fieldmaps, differential
phase maps Δφ were calculated in Matlab (R2014a) via a custom script accord-
ing to − arctan (I(z1z∗

2)/R(z1z∗
2)), where z1 is the first echo, z2 the second echo,

I denotes the imaginary part, R the real part and ∗ the complex conjugate [2].
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All following processing steps were performed on the fieldmaps using anatabacus
plugin v1.1 for BrainVoyager. All phase maps were converted to radians using
a linear transformation [8]. Unwrapping of the phase maps was calculated using
3D multigrid, the deviation from B0 in Hz and pixel shifts calculated according
to [6]. Undistortion was applied using linear 1D interpolation.

EPI Data. The functional (BOLD) EPI data were slice scan time corrected
using cubic interpolation, corrected for motion using rigid body parameters esti-
mated using trilinear interpolation and resliced with SINC interpolation; finally,
a temporal high pass filter was applied in Fourier domain with 0.0078 Hz cutoff
in BrainVoyager v20.6.
Concerning diffusion weighted data, unprocessed b0 images were used for
fieldmap-based and opposite phase encoding correction.

Table 1. Acquisition parameters of data used to compare fieldmap-based with image
registration-based distortion correction. Sequence = sequence: field maps/EPI data,
SE = spin echo, GE = gradient echo, MB = multiband factor: fieldmap/EPI data,
Slices = number of slices in EPI data, iPAT = acceleration in EPI data, FOV =
field of view (mm), TR = repetition time (ms), TE = echo time (ms) of EPI data,
Echo sp = Echo spacing (ms), T = B0 field strength in Tesla. All EPI data were
scanned in anterior-posterior phase encoding direction. Sets 1–4 were acquired at a
Siemens scanner in Pittsburgh, USA, and sets 5–10 at the University of Maastricht,
The Netherlands. For the diffusion weighted data (set 5), opposite phase encoded
b = 0 images were used to estimate the VDM.

Dataset Sequence MB Slices iPAT Matrix
size (y)

TR (ms) TE (ms) Echo sp. T BWpe

1 SE/GE 1/3 72 1 212 2000 30.0 0.72 3 13.10

2 SE/GE 3/3 72 1 212 2000 30.0 0.72 3 13.10

3 SE/GE 1/3 72 1 212 2000 30.0 0.72 3 13.10

4 SE/GE 3/3 72 1 212 2000 30.0 0.72 3 13.10

5 SE b3000 1 52 1 220 6600 94.0 0.40 3 28.41

6 GE 3 99 3 160 2000 19.0 0.81 7 23.15

7 GE 2 82 3 220 2027 21.0 0.80 7 17.05

8 GE 2 58 2 136 2000 21.0 0.80 7 18.38

9 GE 3 99 3 182 2000 21.0 1.00 7 16.48

10 GE 2 64 2 100 2000 30.0 0.65 3 30.77

2.2 Data Comparison

The uncorrected, fieldmap-based corrected and image-registration-based cor-
rected EPI data are mapped to anatomical space using the fmr2vmrplugin
(v0.9.1) for BrainVoyager, after which the similarity is calculated via

D(I1, I2) =
∑n

i=1(I1i · I2i)2∑n
i=1(I1iI1i) · ∑n

i=1(I2iI2i)
(2)
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where I1 is the anatomical image of the subject, I2 the EPI image and n is the
number of voxels.

2.3 Computational Platform

The COPE plugin was implemented using C++ 11 code. The data were pro-
cessed on a MacBook Air with a 1.6 GHz Intel Core i5 processor and 4 GB
1600 MHz DDR3 memory with a macOS 10.13 (High Sierra) operating system.
We used COPE v1.1 and anatabacus v1.1. Typical processing time for estima-
tion of a VDM by COPE is 3 min (dataset 8).

3 Results

3.1 Distance Measure

The similarities between EPI data and anatomical images, calculated using the
fmr2vmrplugin v0.9.1 in BrainVoyager 20.6.2., are shown in Table 2. The ‘before’
column indicates the similarity between the EPI data and the anatomical image
without any EPI distortion correction. The ‘anatabacus’ column shows the sim-
ilarity after fieldmap-based EPI distortion correction via the anatabacus plugin.
In the ‘COPE’ column the similarity values are provided after image registration-
based EPI distortion correction via the COPE plugin.

Table 2. Similarity values between anatomical image and distorted EPI data (left),
between anatomical image and EPI data undistorted via fieldmap-based method
(anatabacus) (centre) and between anatomical image and EPI data undistorted via
image registration (COPE) (right).

Dataset Before anatabacus COPE

1 0.960059 0.967195 0.961707

2 0.960059 0.967195 0.964098

3 0.960059 0.967195 0.965260

4 0.960059 0.967195 0.963018

5 0.996122 0.997106 0.999763

6 0.884896 0.889236 0.890754

7 0.884390 0.900305 0.911093

8 0.475983 0.491037 0.593685

9 0.665548 0.680071 0.736336

10 0.838839 0.843269 0.915955

In Table 2 we see that in all ten cases, EPI distortion correction improves the
match between the shape of the EPI data and the shape of the anatomical data.



128 H. Breman et al.

Furthermore, in six of the ten cases, the new image registration-based EPI dis-
tortion correction method (as implemented in COPE) outperforms the fieldmap-
based EPI distortion correction method (as implemented in anatabacus), which
is shown in the graph in Fig. 3.
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Fig. 3. The graph shows that the image based registration (via COPE) relatively
increases similarity between anatomical and functional 7T data the most (datasets
6–10)

3.2 Comparison

We ran a non-parametric test, the Friedman Test, on the distance data. The
results showed a significant difference between the groups (p < 0.001). Processing
was performed via the SciPy library. Posthoc analysis with the Nemenyi test
using scikit-posthocs [10] did not provide any further specific significance. All
statistical analysis was performed in Python 3.

Figure 4 shows data set 6 after “fine alignment” (normalized gradient field
registration) of EPI data to anatomical data (z=135) in BrainVoyager 20.6,
where the overlay shows the contours of the EPI image in green. On the left the
distorted EPI image is shown; in the centre, the EPI image corrected via image
registration-based EPI distortion correction in COPE; on the right, the EPI
image corrected via fieldmap-based EPI distortion correction in anatabacus.
Improvements in the registration with respect to the distorted image on the left
are indicated with circles; we see for example an improved fit at the anterior
of the corpus callosum. Normalized gradient field registration is an affine image
registration method finding global scaling, translation and rotation parameters
for the EPI image via Gauss-Newton optimization.
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Fig. 4. Slice z = 135 of dataset 6 before EPI distortion correction (left), after EPI distor-
tion correction via COPE v1.1 (centre) and after distortion correction via anatabacus
v1.1 (right), where the green lines depict the contours of the EPI image overlaid on
the anatomical image in native space (Color figure online)

4 Conclusion

The comparison between fieldmap-based and our novel method of image registra-
tion-based distortion correction combined with local cost aggregation indicates
that this approach can be a viable alternative to fieldmap-based distortion cor-
rection (see also [3]), in particular for 7T data; this eliminates the need for phase
data unwrapping and masking. This image registration-based EPI distortion cor-
rection variant has been implemented in the COPE plugin for BrainVoyager and
can be freely downloaded from the BrainVoyager support website.

Acknowledgements. The authors thank Benedikt Poser and Dimo Ivanov for advice
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Abstract. Tracking microsctructural changes in the developing brain
relies on accurate inter-subject image registration. However, most meth-
ods rely on either structural or diffusion data to learn the spatial cor-
respondences between two or more images, without taking into account
the complementary information provided by using both. Here we pro-
pose a deep learning registration framework which combines the struc-
tural information provided by T2-weighted (T2w) images with the rich
microstructural information offered by diffusion tensor imaging (DTI)
scans. This allows our trained network to register pairs of images in a
single pass. We perform a leave-one-out cross-validation study where we
compare the performance of our multi-modality registration model with
a baseline model trained on structural data only, in terms of Dice scores
and differences in fractional anisotropy (FA) maps. Our results show that
in terms of average Dice scores our model performs better in subcortical
regions when compared to using structural data only. Moreover, average
sum-of-squared differences between warped and fixed FA maps show that
our proposed model performs better at aligning the diffusion data.

Keywords: Image registration · Diffusion tensor imaging

1 Introduction

Medical image registration is a vital component of a large number of clini-
cal applications. For example, image registration is used to track longitudinal
changes occurring in the brain. However, most applications in this field rely on
a single modality, without taking into account the rich information provided by
other modalities. Although T2w magnetic resonance imaging (MRI) scans pro-
vide good contrast between different brain tissues, they do not have knowledge
of the extent or location of white matter tracts. Moreover, during early life, the
brain undergoes dramatic changes, such as cortical folding and myelination, pro-
cesses which affect not only the brain’s shape, but also the MRI tissue contrast.
c© Springer Nature Switzerland AG 2020
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In order to establish correspondences between images acquired at different
gestational ages, we propose a deep learning image registration framework which
combines both T2w and DTI scans. More specifically, we build a neural network
starting from the popular diffeomorphic VoxelMorph framework [2], on which
we add layers capable of dealing with diffusion tensor (DT) images. The key
novelties in our proposed deep learning registration framework are:

• The network is capable of dealing with higher-order data, such as DT images,
by accounting for the change in orientation of diffusion tensors induced by
the predicted deformation field.

• During inference, our trained network can register pairs of T2w images with-
out the need to provide the extra microstructural information. This is helpful
when higher-order data is missing in the test dataset.

Throughout this work we use 3-D MRI brain scans acquired as part of the
developing Human Connectome Project1 (dHCP). We showcase the capabilities
of our proposed framework on images of infants born and scanned at different
gestational ages and we compare the results against the baseline network trained
on only T2w images. Our results show that by using both modalities to drive
the learning process we achieve superior alignment in subcortical regions and a
better alignment of the white matter tracts.

2 Method

Let F, M represent the fixed (target) and the moving (source) magnetic reso-
nance (MR) volumes, respectively, defined over the 3-D spatial domain Ω, and
let φ be the deformation field. In this paper we focus on T2w images (FT2w and
MT2w which are single channel data) and DT images (FDTI and MDTI which
are 6 channels data) acquired from the same subjects. Our aim is to align pairs
of T2w volumes using similarity metrics defined on both the T2w and DTI data,
while only using the structural data as input to the network.

In order to achieve this, we model a function gθ(FT2w,MT2w) = v a velocity
field (with learnable parameters θ) using a convolutional neural network (CNN)
architecture based on VoxelMorph [2]. In addition to the baseline architecture,
we construct layers capable of dealing with the higher-order data represented by
our DT images. Throughout this work we use T2w and DTI scans that have been
affinely aligned to a common 40 weeks gestational age atlas space [14], prior to
being used by the network.

Figure 1 shows the general architecture of the proposed network. During
training, our model uses pairs of T2w images to learn a velocity field v, while the
squaring and scaling layers [2] transform it into a topology-preserving deforma-
tion field φ. The moving images M are warped by the deformation field using
a SpatialTransform layer [5] which outputs the moved (linearly resampled) T2w
and DT images. The DT images are further processed to obtain the final moved
and reoriented image.
1 http://www.developingconnectome.org/.

http://www.developingconnectome.org/
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Fig. 1. The proposed network architecture at both training and inference time.

The model is trained using stochastic gradient descent to find the optimal
parameters θ̂ that minimize a sum of three loss functions, representing the tensor
similarity measure, the scalar-data similarity measure and a regulariser applied
on the predicted deformation field. The DTI data is not used as input to our
CNN, but only used to drive the learning process through calculating the sim-
ilarity measure. During inference, our model uses only T2w images to predict
the deformation field, without the need for a second modality. In the following
subsections, we describe our model in further detail.

Network Architecture. The baseline architecture of our network is a 3-D UNet
[12] based on VoxelMorph [2]. The encoding branch is made up of four 3D con-
volutions of 16, 32, 32, and 32 filters, respectively, with a kernel size of 3× 3× 3,
followed by Leaky ReLU (α = 0.2) activations [18]. The decoding branch con-
tains four transverse 3D convolutions of 32 filters each, with the same kernel size
and activation function. Skip connections are used to concatenate the encoding
branch’s information to the decoder branch. Two more convolutional layers, one
with 16 filters and a second one with 3 filters, are added at the end, both with
the same kernel size and activation function as before.
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A pair of T2w images are concatenated on the channel axis and become a
96 × 96 × 64 × 2 input for the CNN network. The output is a three channel
velocity field of the same size as the input images. The velocity field is smoothed
with a 3 × 3 × 3 Gaussian kernel (with σ = 1.2 mm), and passed onto seven
squaring and scaling layers [2], which transform it into a topology-preserving
deformation field. The SpatialTransform layer [5] receives as input the predicted
field φ and the moving scalar-valued T2w image, and outputs the warped and
resampled image. A similar process is necessary to warp the moving DT image,
with a few extra steps which are explained in the next subsection.

Tensor Reorientation. Registration of DT images is not as straightforward
to perform as scalar-valued data. When transforming the latter, the intensities
in the moving image are interpolated at the new locations determined by the
deformation field φ and copied to the corresponding location in the target image
space. However, after interpolating DT images, the diffusion tensors need to be
reoriented to remain anatomically correct [1]. In this work we use the finite strain
(FS) strategy [1].

When the transformation is non-linear, such as in our case, the reorientation
matrix can be computed at each point in the deformation field φ through a
polar decomposition of the local Jacobian matrix. This factorisation transforms
the non-singular matrix J into a unitary matrix R (the pure rotation) and a
positive-semidefinite Hermitian matrix P , such that J = RP [15]. The rotation
matrices R are then used to reorient the tensors without changing the local
microstructure.

Loss Function. We train our model using a loss function composed of three
parts. First, the structural loss Lstruct (applied on the T2w data only) is a popular
similarity measure used in medical image registration, called normalised cross
correlation (NCC). We define it as:

NCC(F,M(φ)) = −
∑

x∈ Ω(F (x) − F ) · (M(φ(x)) − M)
√∑

x∈ Ω(F (x) − F )2 · ∑x∈ Ω(M(φ(x)) − M)2

where F is the mean voxel value in the fixed image F and M is the mean voxel
value in the transformed moving image M(φ).

Second, to encourage a good alignment between the DT images, we set
Ltensor to be one of the most commonly used diffusion tensor similarity mea-
sures, known as the Euclidean distance squared. We define it as:

EDS(F,M(φ)) =
∑

x∈ Ω

||F (x) − M(φ(x))||2C

where the euclidean distance between two pairs of tensors D1 and D2 is defined
as ||D1 −D2||C =

√
Tr((D1 −D2)2) [19].
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Finally, to ensure a smooth deformation field φ we use a regularisation
penalty Lreg in the form of bending energy [13]:

BE(φ) =
∑

x∈ Ω

[(∂2φ(x)
∂x2

)2

+
(∂2φ(x)

∂y2

)2

+
(∂2φ(x)

∂z2

)2

+

2
(∂2φ(x)

∂xy

)2

+ 2
(∂2φ(x)

∂xz

)2

+ 2
(∂2φ(x)

∂yz

)2]

Thus, the final loss function is:

L(F,M(φ)) = α EDS(FDTI ,MDTI(φ)) + β NCC(FT2w,MT2w(φ)) + λBE(φ)

We compare our network with a baseline trained on T2w data only. For the
latter case the loss function becomes: L(F,M(φ)) = β NCC(FT2w,MT2w(φ))+
λBE(φ). In all of our experiments we set the weights to α = 1.0, β = 1.0 and
λ = 0.001 when using both DTI and T2w images, and to β = 1.0 and λ = 0.001
when using T2w data only. These hyper-parameters were found to be optimal on
our validation set.

3 Experiments

Dataset. The image dataset used in this work is part of the developing Human
Connectome Project. Both the T2w images and the diffusion weighted (DW)
images were acquired using a 3T Philips Achieva scanner and a 32-channels
neonatal head coil [6]. The structural data was acquired using a turbo spin
echo (TSE) sequence in two stacks of 2D slices (sagittal and axial planes), with
parameters: TR = 12 s, TE = 156 ms, and SENSE factors of 2.11 for the axial
plane and 2.58 for the sagittal plane. The data was subsequently corrected for
motion [4,8] and resampled to an isotropic voxel size of 0.5 mm.

The DW images were acquired using a monopolar spin echo echo-planar
imaging (SE-EPI) Stejksal-Tanner sequence [7]. A multiband factor of 4 and
a total of 64 interleaved overlapping slices (1.5 mm in-plane resolution, 3 mm
thickness, 1.5 mm overlap) were used to acquire a single volume, with parameters
TR = 3800 ms, TE = 90 ms. This data underwent outlier removal, motion
correction and it was subsequently super-resolved to a 1.5 mm isotropic voxel
resolution [3]. All resulting images were checked for abnormalities by a paediatric
neuroradiologist.

For this study, we use a total of 368 T2w and DT volumes of neonates born
between 23–42 weeks gestational age (GA) and scanned at term-equivalent age
(37–45 weeks GA). The age distribution in our dataset is found in Fig. 2, where
GA at birth is shown in blue, and post-menstrual age (PMA) at scan is shown
in orange. In order to use both the T2w and DT volumes in our registration
network, we first resampled the T2w data into the DW space of 1.5 mm voxel
resolution. Then, we affinely registered all of our data to a common 40 weeks
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Fig. 2. Distribution of gestational ages at birth (GA) and post-menstrual ages at scan
(PMA) in our dataset. (Color figure online)

gestational age atlas space [14] available in the MIRTK2 software toolbox [13]
and obtained the DT images using the dwi2tensor [17] command available in
the MRTRIX3 toolbox. Finally, we performed skull-stripping using the available
dHCP brain masks [3] and we cropped the resulting images to a 96 × 96 × 64
volume size.

Training. We trained our models using the rectified Adam (RAdam) optimiser
[9] with a cyclical learning rate [16] varying from 10−9 to 10−4, for 90, 000 iter-
ations. Out of the 368 subjects in our entire dataset, 318 were used for training,
25 for validation and 25 for test. The subjects in each category were chosen
such that their GA at birth and PMA at scan were distributed across the entire
range. The validation set was used to help us choose the best hyperparameters
for our network and the best performing models. The results reported in the
next section are on the test set.

Final Model Results. In both our T2w-only and T2w+DTI cases we performed
a leave-one-out cross-validation, where we aligned 24 of the test subjects to a
single subject, and repeated until all the subjects were used as target. Each of the
25 subjects had tissue label segmentations (obtained using the Draw-EM pipeline
for automatic brain MRI segmentation of the developing neonatal brain [10])
which were propagated using NiftyReg4 [11] and the predicted deformation
fields. The average resulting Dice scores are summarised in Fig. 3, where the
initial pre-alignment is shown in pink, the T2w-only results are shown in light
blue and the T2w+DTI are shown in purple. Our proposed model performs better
than the baseline model for all subcortical structures (cerebellum, deep gray
matter, brainstem and hippocampi and amygdala), while performing similarly
well in white matter structures. In contrast, cortical gray matter regions were
better aligned when using the T2w-only model, as structural data has higher
contrast than DTI in these areas.
2 https://mirtk.github.io/.
3 https://mrtrix.readthedocs.io/.
4 https://github.com/KCL-BMEIS/niftyreg/.

https://mirtk.github.io/
https://mrtrix.readthedocs.io/
https://github.com/KCL-BMEIS/niftyreg/
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We also computed the FA maps for all the initial affinely aligned and all
the warped subjects in the cross-validation study and calculated the sum-of-
squared differences (SSD) between the moved FA maps and the fixed FA maps.
The resulting average values are summarised in Table 1, which shows that our
proposed model achieved better alignment in terms of FA maps.

Fig. 3. Average Dice scores for our cross-validation study for 7 tissue types: corti-
cal gray matter (cGM), white matter (WM), ventricles, cerebellum, deep gray matter
(dGM), brainstem and the hippocampus. For both of our trained models the input
images, FT2w|DTI and MT2w|DTI , have been affinely aligned to a template, prior to
being used by the models. Our proposed model outperforms the T2w-only training in
terms of obtaining higher Dice scores for the cerebellum, dGM, brainstem and hip-
pocampus. (Color figure online)

Finally, Fig. 4 shows two example registrations. The target images are from
two term-born infants with GA = 40.86 weeks and PMA = 41.43 weeks, and
GA = 40.57w and PMA = 41w, respectively, while the moving images are from
infants with GA = 40.57 weeks and PMA = 41 weeks, and GA = 37.14w and
PMA = 37.28w, respectively. The figure shows both T2w and FA maps of axial
slices of the fixed (first column), the moving (second column) and the warped
images by our proposed method (third column) and the baseline method (fourth
column), respectively. The moved FA maps show that by using DTI data to drive
the learning process of a deep learning registration framework, we were able to
achieve good alignment not only on the structural data, but also on the diffusion
data as well.
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Fig. 4. First two rows show an example registration between a neonate with GA =
40.57w and PMA = 41w as moving, and one with GA = 40.86w and PMA = 41.43w
as fixed, last two rows show an example where the moving image is from a neonate
with GA = 37.14w and PMA = 37.28w, and fixed is a neonate with GA = 40.57w and
PMA = 41w. First column shows axial slices of the fixed T2w images and FA maps,
the second column shows axial slices of the moving T2w images and FA maps, and the
third and fourth columns show the moved images using our proposed network and the
baseline network, respectively. In the T2w maps the deep gray matter (dGM) labels
are shown for the fixed images in dark blue and for the moving and moved in cyan.
In both cases a higher dGM Dice score was obtained for the T2w+DTI model (0.88
and 0.88, respectively), than when using T2w-only (0.84 and 0.87, respectively). The
arrows point at areas where the underlying anatomy was better preserved when using
T2w+DTI, than when using T2w-only. (Color figure online)
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Table 1. Average sum-of-squared differences between warped and fixed FA maps in our
leave-one-out cross-validation study. The first line shows mean and standard deviation
SSD values for the initial affine alignment.

Method Mean (SSD) Std.Dev. (SSD) p-value

Affine 1087 174 Affine vs T2w p < 1e−5

T2w 1044 168 Affine vs T2w+DTI p < 1e−5

T2w+DTI 981 181 T2w vs T2w+DTI p < 1e−5

4 Discussion and Future Work

In this work we showed for the first time a deep learning registration framework
capable of aligning both structural (T2w) and microstructural (DTI) data, while
using only T2w data at inference time. A key result from our study is that our
proposed T2w+DTI model performed better in terms of aligning subcortical
structures, even though the labels for these regions were obtained from structural
data only. For future work we plan to focus on improving the registration in the
cortical regions, and to compare our deep learning model with classic registration
algorithms.
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Abstract. We present a multimodal registration algorithm for simulta-
neous alignment of datasets with both scalar and tensor MRI images.
We employ a volumetric, cubic B-spline parametrised transformation
model. Regularisation is based on the logarithm of the singular values of
the local Jacobian and ensures diffeomorphic warps. Tensor registration
takes reorientation into account during optimisation, through a finite-
strain approximation of rotation due to the warp. The combination of
scalar, tensor and regularisation cost functions allows us to optimise the
deformations in terms of tissue matching, orientation matching and dis-
tortion minimisation simultaneously. We apply our method to creating
multimodal T2 and DTI MRI brain templates of two small primates
(the ring-tailed lemur and rhesus macaque) from high-quality, ex vivo,
0.5/0.6 mm isotropic data. The resulting templates are of very high qual-
ity across both modalities and species. Tissue contrast in the T2 channel
is high indicating excellent tissue-boundary alignment. The DTI channel
displays strong anisotropy in white matter, as well as consistent left/right
orientation information even in relatively isotropic grey matter regions.
Finally, we demonstrate where the multimodal templating approach over-
comes anatomical inconsistencies introduced by unimodal only methods.
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1 Introduction

The most common approach to spatial normalisation of multimodal MRI
datasets is to register a single, scalar modality to a template and then transform
all modalities through the resulting warp. However, this approach is only valid
when the within-tissue information is comparable across modalities (e.g., T1 and
T2-weighted scans). When a modality contains additional within-tissue informa-
tion compared to the registered modality (e.g., orientation in DTI), then there
is no reason to believe that the resulting warps will modulate this information
in a consistent manner across subjects.

One method of overcoming this issue is to register each modality indepen-
dently. However, from a generative modelling perspective there is only a single
true warp which maps each subject to the template. This true warp cannot be
estimated by averaging the unimodal warps as the result would not guarantee
the preservation of desirable properties such as diffeomorphism. A preferable
approach is to simultaneously optimise over all modalities, thereby finding the
solution which jointly maximises the similarity across all modalities.

To our knowledge, there is currently only one method (DR-TAMAS) capable of
performing such joint optimisations [1]. This is an extension of the SyN method
[2] to include a similarity term sensitive to local rotations due to warping. One
limitation of DR-TAMAS’s plastic transformation model is that desirable measures
of deformation, such as the local Jacobian determinant, are prohibitively difficult
to regularise explicitly [1]. This necessitates using a simpler but less biologically
meaningful regularisation of the velocity field (e.g., Gaussian smoothing).

Our method overcomes this limitation by employing a cubic B-spline, elastic
transformation which allows for direct regularisation of the Jacobian field, whilst
simultaneously explicitly optimising for local rotations.

A prerequisite for making multimodal registration useful is the existence of
multimodal templates. This work aims to present how our method can be used
to generate such templates, and demonstrate some benefits they provide over
their unimodal counterparts.

2 Registration Method

2.1 Framework

Transformation Model. Our registration framework utilises a 3D cubic B-
spline parametrised transformation t(x). The finite spatial support of B-splines
results in predictable sparseness of the Hessian of the cost function, which we
leverage during optimisation. Additionally, this transformation has analytical
derivatives, which allows for the formulation of explicit relationships between the
transformation parameters and the local Jacobian field. We overcome historical
concerns regarding diffeomorphism of elastic transformations through explicit
regularisation of the Jacobian field as described in Sect. 2.4.
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Optimisation Strategy. We employ the Levenberg-Marquardt variant of
Gauss-Newton optimisation due to its robustness and rapid convergence proper-
ties [3]. Additionally, it does not require manually choosing a learning rate or per-
forming a line search as is necessary when employing gradient only methods. This
necessitates manipulating the cost function into the form C(w) = f2(w) and
iteratively updating the warp parameters w according to Δw = −H−1b, where
b is the gradient and H is the Hessian of C. The Gauss-Newton Hessian is then
HGN = 2 δf

δw

ᵀ δf
δw , and the Levenberg-Marquardt variant is HLM = HGN +λLMI.

Calculating HGN is, in general, computationally expensive. However, this is
aided by our choice of B-spline parametrisation as described in Sect. 2.1. At
higher resolutions HGN may become too large to store in memory (despite its
sparseness). At this point we transition to using a majorising approximation
HMM = diag(abs(HLM )1) [5], where 1 is a column vector of ones. HMM is
then a diagonal matrix where the diagonal entries are the sum of the absolute
values across each row of HLM . This has the property that HMM � HLM ,
and is therefore compatible with the Gauss-Newton family of algorithms. This
greatly reduces memory requirements whilst allowing for a consistent optimisa-
tion strategy across all warp resolutions.

Cost Function Weighting. The relative weighting of each modality and the
regularisation penalty can be set globally (i.e., the importance of each modality
to the overall cost function, controlled by a modality specific λ) as well as locally
(i.e., the importance of each area within a modality to that modality’s cost)
controlled by a spatially varying multiplicative mask.

2.2 Scalar Cost Function

The cost function for scalar modalities is the mean-squares dissimilarity, shown in
Eq. (1) for a reference image f and moving image g defined over Nx voxels, where
x ∈ R

3. This requires bias corrected images with the same nominal contrast.
Residual differences in tissue intensities are modelled using quartic-polynomial
intensity matching. This is re-evaluated at each iteration of the optimisation. The
weight applied to the scalar cost can be modulated by the voxel-wise variance
after each iteration to effectively up- or down-weight the regularisation prior.

CS = λS
1

Nx

∑

x∈R3

(
f
(
x
) − g

(
t(x)

))2

(1)

2.3 Tensor Cost Function

The tensor cost function can be chosen as either the Euclidean, equation (2),
or log-Euclidean, equation (3), distance between two tensor volumes F and G.
These metrics are sensitive to both scalar and vector characteristics of the tensor,
relatively insensitive to variations in tensor fitting, and efficient to implement
[4,6]. The transformation affects these cost functions in two ways: through dis-
placement of the tensor elements as if they were individual scalar modalities
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(tdis), and through the local rotation of tensors (trot). The method proposed
by Yeo [7] allows us to calculate analytical forms of the gradient and Hessian as
a function of the transformation parameters, facilitating efficient implementa-
tion within our optimisation framework. The results in this work were generated
using CE .

CE = λE
1

Nx

∑

x∈R3

tr
((

F
(
trot(x)

) − G
(
tdis(x)

))2
)

(2)

CLE = λLE
1

Nx

∑

x∈R3

tr
((

log
(
F

(
trot(x)

)) − log
(
G

(
tdis(x)

)))2
)

(3)

2.4 Regularisation

The regularisation cost in Eq. (4) is based on work by Ashburner [8], and
penalises the log singular values si of the local Jacobian J. This imposes a
log-normal prior on lineal, areal and volumetric changes, centred at a value of
1. Expansions and contractions are therefore penalised symmetrically. Addition-
ally, the penalty tends to ∞ as |J| approaches both 0 and ∞, ensuring the warps
remain diffeomorphic. By penalising si rather than simply |J| we ensure that
the shape as well as the volume of the transformed images is kept within reason-
able limits. Finally, the highly non-linear nature of the penalty allows for larger
deformations than traditional linear elastic models, bringing our method in line
with the capabilities of LDDMM-based transformation methods.

CR = λR
1

Nx

∑

x∈R

(
1 +

∣∣J
(
t(x)

)∣∣
) 3∑

i=1

log2 si

(
t(x)

)
(4)

3 Methods

3.1 Data Acquisition

Full extracted brains from three ring-tailed lemurs (Lemur catta) and three rhe-
sus macaques (Macaca mulatta) were obtained. Brains were perfusion fixed using
paraformaldehyde after euthanasia for causes unrelated to the current research.
Data were acquired on a 7T magnet with an Agilent DirectDrive console1. A 2D
diffusion-weighted spin-echo protocol with single line readout was used (DW-
SEMS; TE/TR: 25 ms/10 s; matrix size: 128 × 128; number of slices: 128; res-
olution: 0.5 mm (lemur) or 0.6 mm (macaque) isotropic. Sixteen non-diffusion-
weighted (b = 0 s/mm2) and 128 diffusion-weighted (b = 4000 s/mm2) volumes
were acquired with diffusion directions distributed over the whole sphere. The
brains were stored in PBS before scanning and placed in Fluorinert during the
scan.

1 Agilent Technologies, Santa Clara, CA, USA.



Multimodal MRI Templating in Lemurs and Macaques 145

3.2 Data Preprocessing

Diffusion tensors were fit to the data using the FSL FDT toolbox [9]. Additionally,
FDT was used to generate a “no-diffusion” b = 0 image with T2 contrast. The T2
images were then bias-field corrected using FSL FAST [10]. Note that T2 and
DTI images within each subject are already co-registered.

3.3 Template Creation

A combined T2 and DTI template was created for each species individually,
using three subjects per species. Template creation followed a multi-resolution
iterative approach. An initial template space was chosen by affine alignment of
the T2 images to one randomly chosen subject using FSL FLIRT [11]. T2 images
were intensity normalised before being resampled into this space, followed by
voxelwise averaging across subjects. DTI images were resampled with reorien-
tation using FSL vecreg, followed by log-tensor averaging. Each subject was
then non-linearly aligned to the initial template at a warp resolution of 16 mm
isotropic, and averaged in the same way to create a new template. This process
was repeated, doubling the warp resolution each time, to a final resolution of
0.5 mm isotropic. At each iteration all images were smoothed using an isotropic
Gaussian kernel, with a full width at half maximum equal to a quarter of the
current warp resolution. The amount of regularisation was empirically decreased
as warp resolution increased.

Spatial unbiasing of the template was carried out after each iteration, such
that the average displacement of every voxel in the template was approximately
0. The methodology followed is given in Eqs. (5) and (6), where Wm is the warp
from the template f̃ to mth subject.

W̄ (x) =
1
M

M∑

m=1

Wm(x) (5)

f̃unbiased(x) = f̃biased

(
W̄−1(x)

)
(6)

Although W̄−1(x) is not guaranteed to be diffeomorphic, we enforced diffeomor-
phism by projecting this field onto its closest diffeomorphic representation using
the method proposed by Karacali [12].

Relative modality weighting was determined in two steps. First, by setting
λS = 1, λE = 0 and varying λR until the T2 template appeared visually accept-
able. Second, by setting λS = 0, fixing λR to the final value from step 1, and
varying λE until the range of |J| for the warps was similar to that in step 1. In
this way, we aimed to weight the influence of the T2 and DTI modalities on the
warp approximately equally.

The template creation process was carried out three times using different
combinations of the modalities to drive the registration: T2 image only, DTI
image only, and multimodal using both T2 and DTI. We will refer to these meth-
ods and resulting templates as TT2, TDT and TMM respectively. The weighting
of individual modalities and the amount of regularisation was constant across
all methods.
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3.4 Template Quality Assessment

The quality of the T2 and DTI templates were visually evaluated, and exam-
ined for obvious inconsistencies. The T2 template quality was then quantified
using the average mutual information (MI) between each warped subject and
the template as calculated by FSL FLIRT. MI ranges between 0 (worst) and ∞.
The DTI template quality was evaluated using the average overlap of eigenvalue-
eigenvector pairs (OVL) metric between each warped subject and the template
[1,13]. OVL is defined in Eq. (7), where λi and ei are the ith eigenvalue and
eigenvector of the tensor respectively. This provides a voxelwise similarity mea-
sure of the complete eigenvalue-eigenvector tensor descriptor. It ranges between
0 and 1, with 0 representing complete dissimilarity and 1 representing identical
tensors. OVL was evaluated in 3 regions, namely the entire brain, the entire
brain weighted by FA, and within a mask where FA > 0.2.

OV L =
1

Nx

∑

x∈R3

∑3
i=1 λF

i (x)λG
i (x)

(
eF

i (x)ᵀeG
i (x)

)2
∑3

i=1 λF
i (x)λG

i (x)
(7)

4 Results and Discussion

4.1 Visual Evaluation

Figure 1 shows the DTI, FA and T2 volumes of the final TMM template for both
the lemur and macaque. We do not show the entire TT2 and TDT templates as
at this scale they are visually difficult to distinguish from one another. Instead,
we first describe the common appearance of the templates, and then focus on
select regions which demonstrate difference between the methods.

Visually the T2 volumes are sharp, showing good contrast between tissue
types, even within fairly complex structures such as the cerebellum. This is
particularly true for the lemur template where the relatively simpler gyrification
leads to smaller differences between subjects making spatial normalisation some-
what easier. The posterior of the macaque brain showed the highest variability
between subjects and thus is unsurprisingly the least sharp template region. In
general the T2 volume of the TMM and and TT2 templates did appear slightly
sharper than TDT . This is in line with what might be expected: the contrast
between signal from grey matter and from fluid in the sulci and ventricles in
the DTI volume may be insufficient to overcome regularisation. A clear example
of this in the lemur is shown in the bottom left of Fig. 1. Here, TDT has been
unable to correctly align one of the sulci, whereas both TMM and TT2 have had
no such difficulty.

The DTI volumes are of excellent quality. High FA within white matter indi-
cates that not only are the anisotropic regions of the individual subjects brought
to the correct positions, but that they arrive there with a consistent orientation.
Perhaps somewhat surprisingly, the TT2 DTI template is not clearly worse than
the other methods within these high FA regions. We suggest two possible reasons
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for this. Firstly, the regularisation method is primarily focussed on maintaining
plausible deformations. This means that the interior of the white matter is trans-
formed in a sensible manner as it follows the tissue boundaries during registration
of the T2 images. Secondly, the areas of anisotropy are always quite near tissue
boundaries due to the small size of the lemur and macaque brains. Therefore,
the possible deformations which correctly match tissue types are constrained
in terms of allowable rotational effects. However, within some comparatively
isotropic regions we do observed larger differences. In the macaque, the fluid
in the ventricle of one subject had a significantly different (darker) T2 contrast
than the others. The bottom right of Fig. 1 shows how this has led to ghosting
around the ventricle in TT2. In contrast, information in the DTI modality has
allowed both TMM and TDT to correctly align the structure.

From this we can see a clear benefit in terms of anatomical correctness that
the multimodal registration approach provides over its unimodal counterparts.

4.2 Quantitative Evaluation

Quantification of how well the subject data aligns to the templates is shown for
the lemur in Table 1 and for the macaque in Table 2. Both species show similar
trends between the methods indicating that these results generalise well.

Unsurprisingly, TT2 has the highest average MI, followed by TMM and finally
TDT . This is in line with the visual observations of the T2 image sharpness in the
respective templates. However, as shown by the ventricular ghosting above, the
higher MI value does not necessarily mean better global anatomical correctness.

Whole brain OVL is consistently highest for TMM indicating that both high
and low FA regions are being well aligned by this method. The lower perfor-
mance of unimodal methods can be attributed on the one hand to TT2 having
no knowledge of rotations introduced by the warps, and on the other hand to
poorer overlap of tissue types in TDT .

When the OVL calculation is restricted to high-FA regions, either though FA-
weighting or explicit FA masking, the results for all methods is higher than for
the brain as a whole. As might be expected, TDT performance is very similar to
TMM in these regions, and yet the multimodal approach still has an advantage.
Interestingly, the performance deficit between TT2 and the other methods is
greater for the macaque brain compared to the lemur. This may be due to
an increase in the amount of uncontrolled rotation induced by the TT2 warps
during alignment of the comparatively more complex cortical folding patterns in
the macaque.

4.3 Overall Evaluation

Using multimodal data to drive the registration successfully overcame short-
comings in both the scalar and tensor only methods, whilst preserving the best
aspects of each. DTI similarity measures improved across all areas of the tem-
plate brains, and we therefore believe that a multimodal approach to registration
can only be an advantage in the analysis of diffusion MRI data. Whilst scalar
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Table 1. Average MI and OVL measures in the lemur

MM template T2 template DTI template

T2 Mutual Information 1.357 1.407 1.268

OVL Whole Brain 0.859 0.854 0.850

OVL FA Weighted 0.968 0.966 0.967

OVL FA Masked 0.946 0.940 0.944

Table 2. Average MI and OVL measures in the macaque

MM template T2 template DTI template

T2 Mutual Information 1.151 1.210 1.072

OVL Whole Brain 0.784 0.769 0.774

OVL FA Weighted 0.964 0.949 0.960

OVL FA Masked 0.891 0.870 0.880

registration appears to have a slight advantage over multimodal in terms of MI
scores, the lower OVL scores and some clear anatomical inconsistencies in the
T2 driven template suggest that this might be attributable to over-fitting. As
the goal of registration in neuroimaging is anatomical consistency rather than
outright image similarity, this regularisation effect of the tensor data in the mul-
timodal method is in fact a desirable quality.

5 Conclusion and Future Work

We have shown that multimodal registration is a powerful tool for template cre-
ation, capable of leveraging complimentary imaging contrasts to find a common
space which is truly representative of the group data. Our combination of scalar,
tensor and regularisation cost functions allows us to optimise multiple aspects
of the deformations simultaneously such that the most anatomically plausible
mapping to this common space can be found. The multimodal-driven lemur and
macaque templates we created show improved consistency with individual sub-
ject scans compared to both unimodal scalar and tensor driven templates.

The data used to create these templates is quite unique, with the lemur
template in particular being the first of its kind for this species. We hope that
by having a multimodal template available, any future analysis done on this
species will be able to take advantage of increased anatomical consistency when
analysing and reporting results of both individual and group studies.

Future work will focus on applying these same techniques to large human
cohorts such as the Human Connectome Project and UK Biobank where we
hope the benefits of multimodal templating will be even more apparent.
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Abstract. Most traditional image registration algorithms aimed at
aligning a pair of images impose well-established regularizers to guar-
antee smoothness of unknown deformation fields. Since these methods
assume global smoothness within the image domain, they pose issues
for scenarios where local discontinuities are expected, such as the slid-
ing motion between the lungs and the chest wall during the respi-
ratory cycle. Furthermore, an objective function must be optimized
for each given pair of images, thus registering multiple sets of images
become very time-consuming and scale poorly to higher resolution image
volumes.

Using recent advances in deep learning, we propose an unsupervised
learning-based image registration model. The model is trained over a loss
function with a custom regularizer that preserves local discontinuities,
while simultaneously respecting the smoothness assumption in homoge-
neous regions of image volumes. Qualitative and quantitative validations
on 3D pairs of lung CT datasets will be presented.

1 Introduction

Image registration is an invaluable tool for medical image analysis and has
received vast attention in imaging research for the past several decades. Image
registration is used as a tool to find meaningful temporal transformations to
align images taken at different time frames. Traditionally, registration algorithms
assume smooth transformations. This assumption quickly falls apart for many
cases, since different organs move, to a certain degree, independently from one
another. Image misalignment becomes inevitable if smoothness is assumed at
regions where discontinuities are expected, such as organ boundaries [4]. In this
paper, we introduce an unsupervised learning model that learns the relation-
ship between image pairs and a corresponding displacement field. We propose
a regularizer that accounts for local image discontinuities while simultaneously
respecting local homogeneity. This approach drastically decreases registration
time, as the registration task is no longer an optimization task, but becomes a
simple function evaluation.
c© Springer Nature Switzerland AG 2020
Ž. Špiclin et al. (Eds.): WBIR 2020, LNCS 12120, pp. 153–162, 2020.
https://doi.org/10.1007/978-3-030-50120-4_15
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2 Related Work

In traditional image registration, the most common approach is to solve an opti-
mization problem, where the objective function is comprised of two terms, an
image dissimilarity term and a regularization term to restrict the solution space.
Common methods include elastic and diffusion models [16], free-form deforma-
tions using b-splines [3], and more recently, kernel methods [11–13]. Because all
of these methods optimize an energy function for every image pair, large-scale
or successive registration tasks becomes very time consuming. Specialized algo-
rithms such as Thirion’s Demons [5,17,22] allow significant reduction in com-
putational time by estimating force vectors that acts to drive the deformation
followed by Gaussian smoothing during the optimization process. Unfortunately,
this algorithm restricts models to be diffusion-based models only.

With the rise of deep learning over the past decade, learning-based
approaches have become extremely popular. Several models are trained in a
supervised manner which required ground truth transformations to be available
[6,15,18]. Although these methods showed promising results, the task of obtain-
ing ground truth transformation fields is cumbersome and highly prone to error.
Thus, recent methods have shifted to an unsupervised approach instead, where
models are trained based on how transformation fields act on images, rather
than strictly on the transformations [1,9,25]. For a survey of learning-based
image registration methods, refer to the article by Haskins et al. [10].

3 Method

Our model follows a framework popularized by Voxelmorph [2]. Let IF and IM

denote fixed and moving images. We find a function gθ(IF , IM ) that produces the
displacement field u, i.e. u = gθ(IF , IM ). The deformation φ can then expressed
as the mapping φ = Id + u where Id is the identity mapping. The deformation
field is applied to IM to produce the warped image IM ◦φ where IF (x) is similar
to [IM ◦ φ](x) for all voxel locations x ∈ Ω. Since φ may map the original
coordinate system to non-integer valued voxel locations, interpolation is required
to warp IM under φ. For our experiments, we use trilinear interpolation due to
its simplicity. An overview of the model is shown in Fig. 1.

3.1 Network Architecture

The function gθ is modeled using a convolutional neural network where θ
denotes the network parameters. The neural network follows a modified ver-
sion of U-Net [19], which contains an encoder and a decoder structure that
mirror each other and are connected by skip connections at each layer (Fig. 2).
The encoder/decoder architecture is motivated by image pyramid techniques
in many computer vision algorithms, where each encoding and decoding layer
operate from coarse to fine representations of the input.
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Fig. 1. Overview of the model. Fixed and moving images IF , IM are passed into a
convolutional neural network which produces the displacement field u(x). The spatial
transformer morphs IM based on the displacement field. The loss is measured over
the dissimilarity between the fixed and morphed moving images, as well as additional
penalty functions defined over u.

The encoder consists of three convolution layers by applying 3 × 3 × 3 con-
volutions with stride 2 for downsampling, followed by LeakyReLU with slope of
0.2 at each layer. Each convolution layer has 32 output channels except the first
layer which contains 16 output channels.

The decoder follows a similar structure as the encoder but in reverse order.
In the first decoding layer, we simply use the output of the final encoding layer
as the input. In subsequent decoding layers, we first upsample the output of
the previous decoding layer. Skip connections are constructed by concatenating
layer outputs with that of the mirroring encoding layer. This effectively uses
representations of the encoding layers to enforce more precise outputs in the
decoding layers. Similar to the encoder, each decoding layer applies 3 × 3 × 3
convolutions followed by LeakyReLU of slope 0.2, but with stride 1 to preserve
resolution at each layer. The output of the final decoding layer is passed into an
additional convolution layer with 3 output channels, where each output channel
contains the coordinate components of the displacement field u.

3.2 Loss Function

We train our model using a loss function in the form

L(IF , IM ,u) = λsimLsim(IF , IM ,u) + λdiscLdisc(u) + λmagLmag(u), (1)

where Lsim measures image dissimilarity, Ldisc is a discontinuity preserving reg-
ularizer, and Lmag is a second loss term that manages the (ir)regularities in the
magnitude of the displacement fields. λsim, λdisc, and λmag are corresponding
regularization constants.

Similarity Loss. To measure image similarity/dissimilarity, we use a local nor-
malized cross correlation which is defined as
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Fig. 2. Network architecture of gθ based on a modified version of U-Net. The network
receives IM and IF to produce the displacement field u. The input and output of the
network are of dimensions D × H × W × 2 and D × H × W × 3 respectively. The
architecture consists of a contractive path (encoder) and a mirroring expansive path
(decoder) connected by skip connections at each layer.

LNCC(IM , IF ) =
∑

x∈Ω

[∑
y∈N (x) (IM (y) − μM (x)) (IF (y) − μF (x))

]2

[∑
y∈N (x) (IM (y) − μM (x))2

] [∑
y∈N (x) (IF (y) − μF (x))2

]

(2)
where x is any voxel in the image domain Ω, and y ∈ N (x) are the neighborhood
points around voxel x, and μM (x) and μF (x) are the average local intensities
around x in the moving and fixed images, respectively. LNCC is maximized when
IF = IM which measures similarity, thus we define the dissimilarity measure as
Lsim = 1 − LNCC.

Discontinuous Loss. In designing the discontinuous loss, we first assume that
there are no topological changes, i.e. no new tissue is introduced nor destroyed.
We then consider the requirements based on these physical scenarios: 1. Homo-
geneous movement, 2. Movement along rigid structures, and 3. Sliding organs.

These scenarios help us define the requirements for our regularizer. Firstly,
the regularizer must preserve smooth local deformations that occur locally within
organ interiors. Secondly, the regularizer must not penalize large local changes
in deformation magnitude as long as the movement is in a similar direction. This
is to mimic the movement of soft tissues or organs against rigid structures such
as the rib cage or the spinal column. Finally, the regularizer must be able to
account for movements in the opposite directions along organ boundary. This
final requirement is perhaps the most significant as there are many scenarios
where sliding organs exist. Common examples include the sliding of the lungs
against the chest wall during the respiratory cycle, and the movement of organs
against one another in the abdominal region. Figure 3 visually summarizes pos-
sible desired behaviors of a discontinuous displacement field.
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Fig. 3. Desired behaviors of the discontinuous displacement field. Figure 4(a) demon-
strates local homogeneity which is expected within organs. Figure 4(b) allows displace-
ment vectors of different magnitudes as long as they are in a similar direction, which
represents soft tissue moving against rigid structures. (c) depicts sliding boundary con-
ditions as displacement vectors on opposite sides of the boundary travel in opposite
directions.

Let u be represented by a collection of displacement vectors {ui}i=1,...,N ,
where N is the number of voxels in the image. Now consider two arbitrary vectors
ui and uj , respectively corresponding to locations xi and xj in the image domain.
The area of the parallelogram spanned by ui and uj is maximized when ui and
uj is orthogonal to one another, and minimized when they are parallel. Thus the
three conditions are encouraged for any regularizer in the form

Ldisc =
N∑

i,j=1

g(P(ui, uj)) (3)

where P the unsigned area of the parallelogram spanned by ui and uj , and
g : R → R is a strictly increasing function satisfying g(0) = 0. P is computed as

P(ui, uj) = ‖ui × uj‖2 (4)

where × denotes the cross product. We propose the regularizer

Ldisc =
N∑

i,j=1

1
2

log
(
1 + P(ui, uj)2

)
k(xi, xj) (5)

where k(xi, xj) is a decreasing weight function that depends on the proximity
between the locations xi and xj . For our experiments, we choose the C4 Wend-
land kernel [26] for k(xi, xj).

Magnitude Loss. During preliminary stages of our experiments, we noticed
that deformations in large dark image regions (background of CT image, for
instance) behave erratically. We found that imposing an additional magnitude-
based regularizer is needed to suppress this unpredictable behavior. Thus we add
the following term to our loss function

Lmag(u) = max
i

(‖ui‖2). (6)
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This effectively discourages large magnitudes of u. Evidently, this additional
term may become problematic for coarse registration where large-scale move-
ment may be expected. However, since this is aimed towards addressing local
discontinuities, it is safe to assume that deformations remain relatively small.

4 Experiments

4.1 Setup

Our model is implemented using PyTorch 1.3.0 and trained using an NVIDIA
GeForce GTX 1080Ti with 11 GB of graphics memory. CPU tests are performed
on an Intel Xeon E5-1620 at 3.7 GHz. We trained our model using Adam opti-
mizer [14] with λsim = 100, λdisc = λmag = 1, and learning rate 10−4.

The model is evaluated over 4DCT datasets provided by DIR-Lab [7,8] and
the POPI-model [23]. The DIR-Lab Reference 4DCT datasets contain ten sets of
image volumes of sizes 256×256 and 512×512 with various number of axial slices
(average of 100 and 128 for the two respective resolutions). To account for these
variations, we only keep the middle 96 axial slices of the 256 × 256 volume, and
the middle 112 axial slices of the 512 × 512 volumes. Each set of image volumes
are taken over 10 time steps over the period of a single respiratory cycle. Since
the input is a pair of image volumes, IF is chosen as the image volume with a
randomly chosen case number and time step, and IM is selected based on the
same case number with a different time step. By choosing eight cases as training
data, this allows 8 × 10 × 9 = 720 training samples and 2 × 10 × 9 = 180 test
samples, despite only having ten available cases. The POPI-Model contains six
image volumes of sizes 512 × 512 with 140 to 190 axial slices. For consistency,
we only keep the middle 136 axial slices and use five of the six cases as training
data. We follow the same approach as DIR-Lab in choosing IF and IM .

4.2 Results

We first compare our discontinuity-preserving model with one that assumes
global smoothness. As a baseline, we trained a second model using the DIR-lab
dataset with an identical configuration, with the exception where the discontin-
uous loss Ldisc is replaced with a total variation loss LTV defined as

LTV =
∑

i

‖∇ui‖2 (7)

where the summation is over all voxels indexed by i. Figure 4 shows a compar-
ison between our model trained using LTV and Ldisc. One can quickly identify
sudden changes in the displacement field near the lung’s boundaries especially
near the lung/vertebrae interface. Additional registration results are shown in
Fig. 5. We compare our results (Table 1) quantitatively to the following methods:
Free-Form Deformations (FFD) [20], isotropic parametric Total Variation (pTV)
[24], and Sparse Kernel Machines (SKM) [12]. For comparison, we fixed frame
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Fig. 4. Results obtained using LTV (a) and Ldisc (b). Columns 1 and 4 show an overlay
of u over IM . Columns 2 and 5 show a magnified local region where transformation
discontinuities are expected. Columns 3 and 6 are heatmaps of the displacement field’s
local magnitudes.

Fig. 5. Qualitative results of proposed model. From left to right: fixed image IF , moving
image IM , registered image IM ◦φ, absolute error before registration |IF −IM |, absolute
error after registration |IF − IM ◦ φ|, heatmap of displacement field u.



160 E. Ng and M. Ebrahimi

Table 1. Target Registration Error (TRE) in millimeters (mm) against FFD [20], pTV
[24], and SKM [12] on the DIR-Lab and POPI 4DCT Model. Baseline model is the
same configuration but trained with LTV in place of Ldisc.

Frame DIR-Lab 256 DIR-Lab 512 POPI

FFD pTV SKM Base Ours FFD pTV SKM Base Ours FFD pTV SKM Base Ours

0 1.01 0.92 1.06 1.10 1.04 0.79 0.62 0.59 0.77 0.65 0.79 0.72 0.66 0.77 0.76

2 0.99 0.89 0.85 0.94 0.91 0.81 0.63 0.57 0.73 0.64 0.81 0.71 0.65 0.73 0.74

3 1.29 1.34 1.32 1.26 1.24 1.14 0.99 1.01 0.97 1.00 1.14 1.12 1.17 1.08 1.11

4 1.26 1.27 1.25 1.23 1.26 1.11 0.92 0.93 0.96 0.95 1.11 1.01 1.07 1.04 1.07

5 1.27 1.29 1.35 1.29 1.31 1.11 1.00 1.01 0.99 1.02 1.11 1.11 1.13 1.10 1.16

6 1.31 1.17 1.18 1.27 1.25 1.20 0.90 0.89 1.02 0.92 1.20 1.03 1.00 1.11 1.06

7 1.36 1.19 1.22 1.25 1.30 1.20 0.95 0.93 1.00 1.01 1.20 1.06 1.05 1.09 1.13

8 1.10 1.05 0.94 1.04 1.07 0.88 0.73 0.67 0.78 0.79 0.88 0.84 0.75 0.88 0.90

9 1.09 0.97 0.99 1.07 1.09 0.92 0.70 0.75 0.78 0.80 0.92 0.81 0.83 0.86 0.89

Table 2. Comparison of registration time between learning-based model and inverse
model. For the learning-based model, we used our proposed model for evaluation. For
the inverse model, we perform pairwise registration with diffusion regularizer over 1,000
iterations. The inverse model is evaluated using the AIRLab framework [21]. The CPU
time for the classical model over DIR-Lab 512 and POPI Model is not computed, as
they were much higher than the corresponding GPU time. Time is measured in seconds.

Learning-based Inverse Model

GPU CPU GPU CPU

DIR-lab 256 0.33 15.70 82.57 5724.36

DIR-lab 512 1.38 63.14 532.41 –

POPI Model 1.67 76.45 702.86 –

1 as the fixed image, and register all remaining frames to the reference. Finally,
we compare the time required to register a pair of images using our approach
versus a classical registration algorithm using minimization (Table 2). Classical
registration is applied using the AIRLab framework [21] via diffusion regularizer.

5 Conclusion and Future Work

We presented an unsupervised learning-based model for discontinuity preserv-
ing image registration. Although the training set was relatively small, our model
performed on par with existing methods while begin able to handle locations
where discontinuities may occur. Furthermore, our model significantly reduced
computation by several orders of magnitude, allowing successive registration to
be performed within a relatively short time frame. A drawback of the model
is its sensitivity to noise. In particular, since Ldisc is computed by comparing
local displacement vectors with neighboring displacement vectors individually,
there are no mechanisms to discourage local chaotic behaviors in the displace-
ment field. A possible remedy is to extend the current model to incorporate



Unsupervised Learning for Discontinuity-Preserving Image Registration 161

additional information, such as segmentation masks and edge information. This
allows image discontinuities to be defined rather than relying on only image
intensities to predict boundary regions.
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Abstract. A novel crack capable image registration framework is pro-
posed. The approach is designed for registration problems suffering from
cracks, gaps, or holes. The approach enables discontinuous transforma-
tion fields and also features an automatically computed crack indicator
function and therefore does not require a pre-segmentation. The new
approach is a generalization of the commonly used variational image reg-
istration approach. New contributions are an additional dissipation term
in the overall energy, a proper balancing of different ingredients, and a
joint optimization for both, the crack indicator function and the trans-
formation. Results for histological serial sectioning of marmoset brain
images demonstrate the potential of the approach and its superiority as
compared to a standard registration.

Keywords: Discontinuous deformations · Non-smooth deformations ·
Image registration · Cracks · Holes · Digital pathology · Histology

1 Introduction

Image registration for smooth displacements is a very well explored topic in
the literature; see, e.g. [9,13], and references therein. There also exists work on
discontinuous deformations for applications such as lung motion compensation
(sliding motion) or partially constrained registration (local rigidity); see, e.g. [12,
14] and [5,7]. However, to our best knowledge, the stage for images showing
cracks has not yet been set although cracks frequently appear in applications
with very thin and fragile objects such as histological serial sectioning [15].

Histological sections are still a very important foundation of the analysis of
organs and diseases and are often considered as ultimate ground truth. Tissue
is being sectioned into very thin (1–20µm), essentially 2D slices which are then
analyzed using high-resolution microscopes; see, e.g., [15] for the histological
background and Fig. 3 for an example. Our objective is to regain the 3D infor-
mation of the findings. This is achieved by registering the slices to compensate
non-linear tissue deformation introduced by the sectioning process; see also [15].
c© Springer Nature Switzerland AG 2020
Ž. Špiclin et al. (Eds.): WBIR 2020, LNCS 12120, pp. 163–173, 2020.
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With this fragile material, crack formation related to distortions, movements,
and in particular drying processes is common [15].

An example is an animal model for brain behavior. The interest in brain mod-
els for studying diseases such as degeneration is enormous. Typically, primate
species, such as marmoset monkey, are used to build these models [11]. These
models obtain mesoscale neuro-anatomical information through the study of his-
tological images. To this end, sliced brain tissue is stained with different chemical
dyes to highlight key biomarkers and digitized to an appropriate image format.
Afterward, the image stack has to be registered to correct for the deformations
introduced by the sectioning process and to gain 3D information. The align-
ment of these sections is difficult, as the tissue undergoes several deformations
steps during sectioning and preparation. The tissues may suffer from non-linear
deformations including cracking, tearing, or splitting; see Fig. 3 for an example.
The registration of histological serial section is hence an important task and well
explored in the literature; see, e.g., [13,15], and references therein.

The picture changes when cracks appear. One of the obstacles is that a solid
mathematical model is non-trivial and still missing. We consider a crack as an
interface along which material breaks apart. The formation of a crack is a non-
smooth process and the deformation map attains a jump discontinuity at the
crack interface [4]. This process develops a gap or a hole in the material. Note
that a crack might be viewed as an opening of the material and registration may
aim to mimic this formation process (opening) or its inverse (closing).

Borrowing ideas from damage mechanics [8], we present a mathematical
model for the registration with discontinuous deformations along cracks. A first
attempt is proposed in [6], where the global regularization parameter is made
spatially-dependent. This enables to relax the regularity along crack interfaces,
but it also requires a pre-segmentation of the crack. Spatially-dependent regu-
larization has also been used in several studies [12,14], mainly to handle discon-
tinuity due to sliding motion. However, these studies assume that a one-to-one
correspondence exists almost everywhere for the given images. But, this assump-
tion is not valid for the images with cracks.

Our work differs from the approach in [6]. First of all, we assume a crack to
be a set of measure zero. We find this a more natural assumption, but it also
provides challenges when dealing with integral measures. Next, our framework
estimates both the deformation map and the location of the cracks and holes.
Therefore, additional segmentation is not required. Note that the identification
of the crack and in particular, its origin is non-trivial; see also our estimated
crack interfaces in the result section. The new model utilizes the physical princi-
ples underlying crack propagation in material as studied in damage mechanics;
see, e.g., [8]. These principles provide insight into the deformation processes.
A damage mechanic model enables discontinuities in the deformation map by
varying the stiffness of a material. This approach is thus similar to the spatially-
varying regularization idea used in image registration. But the damage model
also assumes that the material dissipates energy during the formation of a crack.
This energy model the properties of a crack in terms of a crack indicator func-
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tion. Finally and similarly to [3], we also introduce an adaptive spatially-varying
dissimilarity weight to handle non-correspondences due to cracks and/or holes.

The proposed framework belongs to the class of joint segmentation and regis-
tration problems, where both an indicator function and the deformation map are
unknown. Such frameworks are also explored for image denoising and fracture
mechanics problems. In particular, the approach of Mumford and Shah [10] is
common. We use ideas similar to the Ambrosio and Tortorelli [1] approximation
of the Mumford Shah functional to avoid numerical difficulties arising from the
low dimensional cracks. More specifically, we follow a damage mechanics frame-
work [8], which is closely related to the Ambrosio and Tortorelli approximation.

In this paper, the focus is on the mathematical model and its properties
and less on a particular application and parameterization. Therefore, we show
results for 1D test case, where analytical solutions are known and can be used
for objective comparison and parameter estimation. We also show preliminary
results for marmoset brain images for which parameters are hand-tuned. The
results confirm our expectations: the new approach is much better suited for the
registration of images with cracks than a generic approach.

The paper is organized as follows. In Sect. 2, we outline the generic regis-
tration approach and describe our modifications to handle images with cracks.
We introduce the new model and its parameterization. Sect. 3 comments on the
numerical scheme to solve the new model. We demonstrate the superiority of our
model on the 1D and 2D datasets in Sect. 4 and conclude our findings in Sect. 5.

2 Problem Statement

We begin by briefly outlining a generic image registration approach, which is
based on a variational formulation of the correspondence problem; see [9] for
details. As our focus is on images with cracks, we state the framework in its
simplest form and even restrict to the 1D case. We stress that our concepts are
generic and cover the general setting.

We next describe our modifications that enable us to handle images with
cracks. The central idea is to decompose the image domain into a crack part Γ
and its complement Γ c. Following ideas from damage mechanic, we add a dis-
sipation energy with is essentially based on the (d − 1)-dimensional volume of
the crack. Using ideas similar to the Ambrosio and Tortorelli approximation, we
end up with our new model (3). Finally, we discuss our parameterization. We
propose a particular parameter setting, such that only two parameters (regular-
ization and crack weight) need to be specified.

We remark that the inverse mapping z may provide additional insight; see
Fig. 1. Due to page limitations, we do not explore this mapping further.

2.1 Generic Registration Problem

We only briefly outline the variational image registration approach; see e.g. [9]
for details. In our setting Ω ⊂ R is a bounded domain, say Ω =] − 1, 1[, and
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ŷ(x) = x + b · sign(x)

b Σ
Γ

Fig. 1. A 1D function R = χ[−a,a] (left) is mapped to T (center) by ŷ (right). Due to
the discontinuity at the crack Γ = {0} (in blue) a gap Σ (in red) has been introduced.
The forward mapping y with x′ = y(x) represents the opening of a gap, its inverse z
with x = z(x′) represents the closing. Note that z(Σ) = Γ but y(Γ ) is not well-defined.
(Color figure online)

two images T,R : Ω → R are to be registered; see Fig. 1 for an example. More
precisely, we want to determine a function y : R → R such that ideally T [y] ≈ R,
i.e. T [y](x) := T ◦ y(x) := T (y(x)) ≈ R(x) for almost all x ∈ Ω. For some
applications, y might be assumed to be diffeomorphic, but in the presence of
cracks this assumption does not hold.

The similarity of T [y] and R is enforced by minimizing a suitable distance D
of the images. As the minimization of D is ill-posed, regularization is required.
As examples serve an L2 distance and a hyperelastic potential for 2D and φ =
((v − 1)/v)2; see [2] for details:

D(y) := ‖T [y] − R‖2L2(Ω) =
∫

Ω
[T (y(x)) − R(x)]2 dx,

S(y) :=
∫

Ω
hp(y(x)) dx; hp(y(x)) :=

∑
i,j |∂iyj(x)|2 + φ(det ∇y(x));

Weighting the data fidelity and the regularization with parameters α and β,
the generic approach (G) is to minimize the total energy

JG
α,β(y) :=

∫
Ω

α [T (y(x)) − R(x)]2 + β hp(y(x)) dx; (1)

for details and generalizations see [9] and references therein. Note that the spe-
cific ingredients are irrelevant and the special choices are only for presentation
reasons; our framework is general.

The parameters α and β control the weights of the parts. Typical choices
are α = 1 and β = τ , τ being the smallest parameter for user-specific criterion
such as the deformation being one-to-one is still fulfilled. Spatially dependent
parameters may also be used [3,6]. In [3], it is even suggested to automatically
adjust the penalty for the handling of non-corresponding structures in images.

In [6], a spatially dependent regularization parameter β = β(x) is studied.
We remark that well-posedness requires β(x) ≥ ε > 0 for all x ∈ Ω, but it also
guarantees a minimizing element y for JG

α,β . Furthermore, we remark that the
minimizer y is globally smooth and has no discontinuities.

From a physical point of view, the parameter β(x) represents the elastic
stiffness of a material at a point x ∈ Ω, where stiffness reflects the rigidity of
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the material. The less stiff the material is, the easier to deform or stretch it
is. A close to zero stiffness allows extreme stretching of material, and due to
this, a crack may form, or a hole may close in the material. This interpretation
motivates us to define the function β depending on the crack indicator p.

2.2 Registration for Images with Cracks

As outlined above, the generic framework is incapable of registering images with
cracks. We, therefore, suggest extending the generic model as follows. The basic
idea is to partition the domain Ω into a crack Γ and its complement Γ c := Ω\Γ .
For the registration on Γ c, we essentially follow the generic approach, whereas
the crack deserves special treatment.

In material science, a crack is an interface along which material breaks apart.
The breaking may create a hole in the material. For illustration, we consider
the previous example; see also Fig. 1. Here, R is characteristic function of an
interval [−a, a] whereas T is the characteristic function of two intervals. With
the transformation ŷ in Fig. 1, it holds T (ŷ(x)) = R(x) on Γ c. Obviously, there
is no continuous one-to-one mapping y that creates the gap Σ between the two
parts in T . Paying the price for a discontinuous transformation and introducing
a crack at Γ = {0}, we see that ŷ is a perfect solution, as it is essentially a
translation on Γ c and thus does have minimal regularization energy.

We may describe a crack set Γ ⊂ Ω by its indicator or phase field function

p : Ω → [0, 1], p(x) = χΓ (x) (i.e. 1 on Γ , 0 on Γ c) (2)

The closed subset Γ has Lebesgue measure zero, defines the crack interface, and
is a set of jump discontinuities for y; see [4] for details. Since Γ has Lebesque
measure zero, information for y on Γ is not required.

If the crack and thus p is known a priori, we would simply pick the param-
eters α and β in (1) depending on p, such that α(p) = β(p) = 0 for p = 1,
and we end up with a generic registration problem on Γ c. However, in our new
approach, we aim to estimate the transformation and the crack simultaneously.
To this end, we add an additional dissipation energy for the cracks in (1). The
overall energy, which is now to be minimized with respect to (y, p) thus reads

JC
α,β,γ(y, p) :=

∫

Ω

α(p) [T (y(x)) − R(x)]2 + β(p) hp(y(x)) + γ e(p) dx. (3)

Ideally,
∫

Ω
e dx =

∫
Γ

ds would measure the (d − 1)-dimensional volume of the
crack. This is similar to the edge set in the approach of Mumford and Shah [10]
and known for its challenges. Ambrosio and Tortorelli [1] proposed to use a con-
verging sequence of approximations, where p is differentiable. Roughly speaking,

∫
Γ

ds ≈ limh→0

∫
Ω

1
4hp2 + h |∇p|2 dx.

In our approach, we modify this idea based on concepts from damage mechan-
ics [8]. In damage mechanics, it is assumed that a material dissipates energy
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during the formation of a crack. This energy is proportional to the area of the
crack region in the reference configuration of the domain. Generally, the dissi-
pation energy is expressed as

e(p) = p2 + 
2 |∇p|2, (4)

where 
 is the internal length and relates to material properties; see [8] for details.
We remark that the concept of Γ -convergence or dissipation energy can be

interpreted as a relaxation of the ideal setting. Rather than working with Dirac
measures of the crack, we now have a differentiable phase field p. As a conse-
quence, the proposed model (3) implicitly assumes that the deformation field is
continuous and differential everywhere. This is good news as the iterates in our
numerical schemes are smooth and differentiable. But it is also bad news, as the
discontinuity can only be reached in the limit. In our implementation, we work
with a fixed γ and accept an over-smoothed solution.

Our approach is similar to ideas discussed in damage mechanics [8] to handle
cracks and in image registration to handle sliding motion [14]. There, the non-
smoothness is generally achieved by decreasing the regularization parameter β
in the generic case. We remark that our approach is conceptually capable of
dealing with sets of measure zero, while the approaches [6,14] are not.

2.3 Parameter Selection Strategy

We now discuss options for the parameters α, β and γ in (3). The weights α
and β should ideally be related to indicator functions of the complement of the
gap. For our numerical studies, we restrict to the basic choices,

α(p) = (1 − p)2, β(p) = ε + λ(1 − p)n, n ∈ N, ε, λ > 0,

e(p) = p2, i.e. 
 = 0 in (4), and γ > 0 constant.

These choices are convex and monotonic functions for α and β. The similarity
parameter α is simply a smooth characteristic function for Γ c. The regularity
parameter β is along the same lines. However, we add a global and typically small
constant ε > 0, which ensures the existence of solutions for (3). Our parameter λ
plays a similar role as the constant parameter τ for the generic case (1) and in our
numerical studies, we use the same strategy for picking λ and τ . The power n
enables different distributions of the regularization weight. The higher n, the
more concentrated is the regularization on the crack complement. As common
in damage mechanics [8], we picked n = 2 in our experiments.

For the dissipation energy e we again follow [8] and use (4) with the non-
physical choice 
 = 0, simply to keep the number of tunable parameters small.
We remark that we, therefore, have no regularization on the first variation of p
on the crack. Physically, the parameter γ reflects the toughness of the material.
The less tough the material is, the easier it is to break it. If γ is very big, the
energy converges to the generic case, i.e., no cracks at all. On the other side,
if γ = 0, a solution will be p(x) = 1 (all is crack) and y is such that S(y) = 0.
The impact of the weight γ for the dissipation is discussed in our results part.



Discontinuous Deformations Along Cracks 169

We remark that for p ≡ 0 and proper choices of α and β, the new model
coincides with the generic model and is thus a generalization. With this setting,
the only degrees of freedom in parameterization is the choices of λ and γ.

3 Discretization and Numerical Optimization

The minimization problem (3) is solved numerically, using the “discretize-then-
optimize” paradigm as outlined in the FAIR toolbox [9]. More precisely, the
integrals are approximated by quadrature rules, where for the images a cell-
centered grid is used. Our discretization of the transformation y depends on
the regularization; see [9] for details. In our experiments, we use an elastic reg-
ularizer [9] for 1D problems and the hyperelastic regularizer in [2] for the 2D
problems, and therefore a nodal discretization for y. The crack indicator func-
tion p is discretized on a cell-centered grid.

As common for combined problems, we use an alternating minimization app-
roach. Starting with p ≡ 0, we solve for y. This is equivalent to solve the generic
problem (1). Using the latest y, we improve p and continue this iteration until our
stopping criteria are met. Each sub-problem is solved with the Gauss-Newton
scheme using an Armijo linesearch and typical stopping rules; see [9].

We remark that in contrast to the generic case, we do not take full advantage
of the FEM approach to compute the hyperelastic regularization energy. The
reason is that due to factor β, we do not have an analytic expression for the
integral. We use a midpoint quadrature rule for the FEM based hyperelastic
potential instead. We also remark that a joint optimization approach for (y, p)
may converge to local minima, as typical for combined problems.

Following [9], we use a generic multilevel strategy to smooth out local minima
for both 1D and 2D problems. We know that this simplistic strategy may not be
optimal in the crack scenario but do not have space to elaborate on the issue.

4 Results

We demonstrate the performance of our new model. The experiment on a 1D
example shows the convergence properties of our scheme and manifest that the
new model can resolve discontinuous transformations perfectly along the cracks.
This is further reaffirmed by our remarkable registration results on a pair of mar-
moset brain images; the data courtesy of Harald Möller, Max Planck Institute
for Human Cognitive and Brain Sciences, Leipzig, Germany.

In all experiments, we use the L2 or SSD based similarity measure [9]. We
choose the elastic regularizer for the 1D studies and the hyperelastic regularizer
in [2] for the 2D data. We compare results from the crack capable model (3)
with the generic model (1) (denote with subscript C and G, respectively).

In our first study, we demonstrate that our results converge to the solution
as the discretization error h reduces. To this end we use the pair of 1D functions
as shown in Fig. 1, where an analytic solution ŷ is known. Figure 2 shows the
displacement u(x) = y(x) − x for the solution ŷ (and its inverse z) as well as
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Fig. 2. Detailed results for the 1D performance study; cf. Fig. 1. All functions are
symmetric, thus we only show the non-negative parts. Results for the forward pair
(y, p) (top) and backward/inverse pair (z, q) (bottom) are displayed. On the left, we
show the displacement u(x) = y(x) − x of the solution ŷ (black dashed), the numerical
solutions yG and yC for the generic (red dashed) and new approach (solid) for various
discretization levels h ≈ 1/m; m = 16 (blue) m = 64 (green), and m = 256 (red). On
the right we show the corresponding crack indicator functions p and q, respectively.
Ideally, p = χ{0}, q = χ[−b,b], and z as in Fig. 1. In our computations, we choose optimal
parameter values, such that the estimates y and z have minimal error with respect to
analytical solutions, i.e. α = 1, β = 0.06 for the generic approach and α = (1 − p)2,
β = 0.06(1 − p)2 + 10−9, γ = 0.02 for the new approach. (Color figure online)

numerical results for the generic and the crack capable approach on different
discretization levels. It can be seen that the new approach converges to the
true solution: for m = 256, the gap is below the discretization error. Note that
already on the coarse discretization (m = 16), the new approach is superior to
the generic approach on finest discretization (m = 256).

Our second study demonstrates the superiority of the crack capable model
on a dataset of marmoset brain images; see Fig. 3 and its caption for our param-
eterization. Although the schemes seem to be similar when looking at the closing
of the crack induced gap in the transformed images T (y) and also in the differ-
ence images, in fact, they produce very different transformations. This is most
pronounced on the gap (see top row). For the generic approach, yG is globally
smooth and distributes the gap to a rather thick layer; cf. T (yG).

On the other side, the crack capable model yields a solution precisely as
expected. Its solution yC shows a discontinuity which is numerically resolved
within the discretization error. Moreover, yC is very smooth on the crack com-
plement. This is also manifested in the hyperelastic potential and the determi-
nant of the Jacobian, where the maximal values of them are 350 and 8 times
higher, respectively, with respect to the generic approach.

Also, the crack indicator function p matches our expectations and resolves
the crack as a very thin line. We remark that a number of additional areas
have automatically been indicated as cracks. In the absence of ground truth, we



Discontinuous Deformations Along Cracks 171

can neither confirm nor reject these findings. Note that it is generally not easy
to determine a crack manually. Therefore, pre-segmentation based registration
approaches such as the one in [6] may fail. We remark that the regularization
potential and the determinant of the Jacobian from the generic model may also
be used as a crack indicator; this is subject of ongoing investigations.
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Fig. 3. Results for marmoset brain images. The rows show the reference and the tem-
plate image (top), result for the generic (middle) and results for the new approach
(bottom). For the results, we show the transformed image T (y), the unweighted dis-
tance |T (y) − R|, the regularity hp(y), and the determinant of the Jacobian det ∇y
(from left to right). The top row also displays details of the transformations as well
as the crack indicator function p in the new model. As parameters, we use α = 1 and
β = 500 for the generic case and α = (1 − p)2, β = 500(1 − p)2 + 10−9, γ = 103 for the
crack model, respectively.

5 Conclusion

A novel crack capable image registration framework is proposed. The approach
is designed for registration problems suffering from cracks, gaps, or holes. The
approach enables discontinuous transformation fields and also features an auto-
matically computed crack indicator function and therefore does not require a
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pre-segmentation. The new approach is a generalization of the commonly used
variational image registration approach [9]. New contributions are an additional
dissipation term in the overall energy, a proper balancing of different ingredients,
and a joint optimization for both, the crack indicator function and the trans-
formation. The approach is very general and flexible and can be combined with
a huge variety of image similarity measures and regularization strategies. It is
also not limited to a particular class of applications. For a particular setting, we
also propose a parameterization strategy. Results for histological serial section-
ing of marmoset brain images demonstrate the potential of the approach and
its superiority as compared to a standard registration. Future work address a
deeper mathematical analysis of the framework and the exploration of potential
applications such as brain shift registration problem.
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