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Abstract. Non-volatile memory (NVM), aka persistent memory, is a
new paradigm for memory that preserves its contents even after power
loss. The expected ubiquity of NVM has stimulated interest in the
design of novel concepts ensuring correctness of concurrent programming
abstractions in the face of persistency. So far, this has lead to the design
of a number of persistent concurrent data structures, built to satisfy an
associated notion of correctness: durable linearizability.

In this paper, we transfer the principle of durable concurrent cor-
rectness to the area of software transactional memory (STM). Software
transactional memory algorithms allow for concurrent access to shared
state. Like linearizability for concurrent data structures, opacity is the
established notion of correctness for STMs. First, we provide a novel
definition of durable opacity extending opacity to handle crashes and
recovery in the context of NVM. Second, we develop a durably opaque
version of an existing STM algorithm, namely the Transactional Mutex
Lock (TML). Third, we design a proof technique for durable opacity
based on refinement between TML and an operational characterisation
of durable opacity by adapting the TMS2 specification. Finally, we apply
this proof technique to show that the durable version of TML is indeed
durably opaque. The correctness proof is mechanized within Isabelle.

1 Introduction

Recent technological advances indicate that future architectures will employ
some form of non-volatile memory (NVM) that retains its contents after a sys-
tem crash (e.g., power outage). NVM is intended to be used as an intermediate
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layer between traditional volatile memory (VM) and secondary storage, and
has the potential to vastly improve system speed and stability. Software that
uses NVM has the potential to be more robust; in case of a crash, a system
state before the crash may be recovered using contents from NVM, as opposed
to being restarted from secondary storage. However, because the same data is
stored in both a volatile and non-volatile manner, and because NVM is updated
at a slower rate than VM, recovery to a consistent state may not always be pos-
sible. This is particularly true for concurrent systems, where coping with NVM
requires introduction of additional synchronisation instructions into a program.

This observation has led to the design of the first persistent concurrent pro-
gramming abstractions, so far mainly concurrent data structures. Together with
these, the associated notion of correctness, i.e., linearizability [21], has been
transferred to NVM. This resulted in the novel concept of durable linearizabil-
ity [22]. A first proof technique for showing durable linearizability of concurrent
data structures has been proposed by Derrick et al. [11].

Besides concurrent data structures, software transactional memory (STM)
is the most important synchronization mechanism supporting concurrent access
to shared state. STMs provide an illusion of atomicity in concurrent programs.
The analogy of STM is with database transactions, which perform a series of
accesses/updates to shared data (via read and write operations) atomically in
an all-or-nothing manner. Similarly with an STM, if a transaction commits, all
its operations succeed, and in the aborting case, all its operations fail. The now
(mainly) agreed upon correctness criterion for STMs is opacity [20]. Opacity
requires all transactions (including aborting ones) to agree on a single sequen-
tial history of committed transactions and the outcome of transactions has to
coincide with this history.

In this paper, we transfer STM and opacity to the novel field of non-volatile
memory. This entails a number of steps. First, the correctness criterion of opacity
has to be adapted to cope with crashes in system executions. Second, STM
algorithms have to be extended to deal with the coexistence of volatile and
non-volatile memory during execution and need to be equipped with recovery
operations. Third, proof techniques for opacity need to be re-investigated to
make them usable for durable opacity. In this paper, we provide contributions
to all three steps.

– For the first step, we define durable opacity out of opacity in the same way that
durable linearizability has been defined based on linearizability. Durable opac-
ity requires the executions of STMs to be opaque even if they are interspersed
with crashes. This guarantees that the shared state remains consistent.

– We exemplify the second step by extending the Transactional Mutex Lock
(TML) of Dalessandro et al. [8] to durable TML (dTML). To this end, TML
needs to be equipped with a recovery operation and special statements to
guarantee consistency in case of crashes. We do so by extending TML with a
logging mechanism which allows to flush written, but volatile values to NVM
during recovery.
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– For the third step, we build on a proof technique for opacity based on refine-
ment between IO-automata. This technique uses the automaton TMS2 [15]
which has been shown to implement opacity [26] using the PVS interactive
theorem prover. This automaton gives us a formal specification, which can
be used as the abstract level in a proof of refinement. Furthermore, the IO-
automaton framework is part of the standard Isabelle distribution. For use as
a proof technique for durable opacity, TMS2 is extended with a crash opera-
tion (mimicing system crashes and their effect on memory) to yield dTMS2.
The automaton dTMS2 is then proven to only have durably opaque execu-
tions. Thereby we obtain an operational characterisation of durable opacity.

Table 1. Events appearing in the histories of TML, where t ∈ T is a transaction
identifier, x ∈ L is a location, and v ∈ V a value

Invocations Possible matching responses

invt(TMBegin) rest(TMBegin(ok))

invt(TMCommit) rest(TMCommit(ok)), rest(TMCommit(abort))
invt(TMRd(x )) rest(TMRd(v)), rest(TMRd(abort))
invt(TMWr(x , v)) rest(TMWr(ok)), rest(TMWr(abort))

Finally, we bring all three steps together and apply our proof technique to
show that durable TML is indeed durably opaque. This proof has been mech-
anized in the interactive prover Isabelle [32]. Our mechanized proof proceeds
by encoding dTMS2 and dTML as IO-automata within Isabelle, then proving
the existence of a forward simulation, which in turn has been shown to ensure
trace refinement of IO-automata [28], and hence guarantees durable opacity of
dTML.

2 Transactional Memory and Opacity

Software Transactional Memory (STM) provides programmers with an easy-to-
use synchronisation mechanism for concurrent access to shared data, whereby
blocks of code may be treated as transactions that execute with an illusion of
atomicity. STMs usually provide a number of operations to programmers: oper-
ations to start (TMBegin) and commit a transaction (TMCommit), and operations
to read and write shared data (TMRd, TMWr). These operations can be called
(invoked) from within a client program (possibly with some arguments, e.g.,
the variable to be read) and then will return with a response. Except for opera-
tions that start transactions, all other operations might potentially respond with
abort, thereby aborting the whole transaction.

A widely accepted correctness condition for STMs that encapsulates trans-
actional phenomena is opacity [19,20], which requires all transactions, including
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aborting transactions to agree on a single sequential global ordering of transac-
tions. Moreover, no transactional read returns a value that is inconsistent with
the global ordering.

2.1 Histories

As standard in the literature, opacity is defined on the histories of an imple-
mentation. Histories are sequences of events that record all interactions between
the implementation and its clients. An event is either an invocation (inv) or a
response (res) of a transactional operation. For the TML implementation, pos-
sible invocation and matching response events are given in Table 1, where we
assume T is a set of transaction identifiers, L a set of addresses (or locations)
mapped to values from a set V .

The type Mem =̂ L → V describes the possible states of the shared memory.
We assume that initially all addresses hold the value 0 ∈ V .

We use the following notation on histories: for a history h, h � t is the projec-
tion onto the events of transaction t only and h[i ..j ] the subsequence of h from
h(i) to h(j ) inclusive. For a response event e, we let rval(e) denote the value
returned by e; for instance rval(TMBegin(ok)) = ok. If e is not a response event,
then we let rval(e) = ⊥.

We are interested in three different types of histories [2]. At the concrete level
the TML implementation produces histories where the events are interleaved. At
the abstract level we are interested in sequential histories, which are ones where
there is no interleaving at any level - transactions are atomic: a transaction com-
pletes before the next transaction starts. As part of the proof of opacity we use an
intermediate specification which has alternating histories, in which transactions
may be interleaved but operations (e.g., reads, writes) are not interleaved.

A history h is alternating if h = ε or is an alternating sequence of invocation
and matching response events starting with an invocation. For the rest of this
paper, we assume each process invokes at most one operation at a time, and
hence, assume that h � t is alternating for any history h and transaction t . Note
that this does not necessarily mean h is alternating itself. Opacity is defined
for well-formed histories, which formalises the allowable interaction between an
STM implementation and its clients. For every t , h � t = 〈s0, . . . , sm〉 of a well-
formed history is an alternating history such that s0 = invt(TMBegin), for all
0 < i < m, event si �= invt(TMBegin) and rval(si) �∈ {commit, abort}. Note that
by definition, well-formedness disallows transaction identifiers from being reused.
We say t is committed if rval(sm) = commit and aborted if rval(sm) = abort. In
these cases, the transaction t is completed, otherwise t is live. A history is well-
formed if it consists of transactions only and there is at most one live transaction
per process.

2.2 Opacity

Opacity [19,20] compares concurrent histories generated by an STM implemen-
tation to sequential histories and can be seen as a strengthening of serializability
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to accommodate aborted transactions. Below, we first formalise the sequential
history semantics, then consider opaque histories.

Sequential History Semantics. A sequential history has to ensure that
the behaviour is meaningful with respect to the reads and writes of the
transactions.

Definition 1 (Valid history). Let h = ev0, . . . , ev2n−1 be a sequence of alter-
nating invocation and matching response events starting with an invocation and
ending with a response.

We say h is valid if there exists a sequence of states σ0, . . . , σn such that
σ0(l) = 0 for all l ∈ L, and for all i such that 0 ≤ i < n and t ∈ T :

1. if ev2i = invt(TMWr(l , v)) and ev2i+1 = rest(TMWr(ok)) then σi+1 = σi [l := v ],
2. if ev2i = invt(TMRd(l)) and ev2i+1 = rest(TMRd(v)) then σi(l) = v and σi+1 =

σi ,
3. for all other pairs of events (reads and writes with an abort response, as well

as begin and commit events) we require σi+1 = σi .

We write �h�(σ) if σ is a sequence of states that makes h valid (since the sequence
is unique, if it exists, it can be viewed as the semantics of h).

The point of TM is that the effect of the writes only takes place if the trans-
action commits. Writes in a transaction that abort do not affect the memory.
However, all reads, including those executed by aborted transactions, must be
consistent with previously committed writes. Therefore, only some histories of
an object reflect ones that could be produced by a TM. We call these the legal
histories, and they are defined as follows.

Definition 2 (Legal histories). Let hs be a non-interleaved history and i an
index of hs. Let hs ′ be the projection of hs[0..(i−1)] onto all events of committed
transactions plus the events of the transaction to which hs(i) belongs. Then we
say hs is legal at i whenever hs ′ is valid. We say hs is legal iff it is legal at each
index i .

This allows us to define sequentiality for a single history, which we lift to the
level of specifications.

Definition 3 (Sequential history). A well-formed history hs is sequential if
it is non-interleaved and legal. We denote by S the set of all possible well-formed
sequential histories.

Opaque Histories. Opacity is defined by matching a concurrent history to a
sequential history such that (a) both histories consist of the same events, and
(b) the real-time order of transactions is preserved. For (b), the real-time order
on transactions t1 and t2 in a history h is defined as t1 ≺h t2 if t1 is a completed
transaction and the last event of t1 in h occurs before the first event of t2.
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A given concrete history may be incomplete, i.e., it may contain pending
operations, represented by invocations that do not have matching responses.
Some of these pending operations may have taken effect, and others may not.
The corresponding sequential history however must decide: either by adding
a suitable matching response event for the pending invocation (the effect has
taken place), or by removing the pending invocation (no effect yet). Therefore,
we define a function complete(h) that constructs all possible completions of h by
appending matching responses for some pending invocations and removing all
the other pending invocations. This is similar to the treatment of completions in
the formalisation of linearizability [21]. The sequential history then must have
the same events as those of one of the results returned by complete(h).

Definition 4 (Opaque history). A history h is end-to-end opaque iff for
some hc ∈ complete(h), there exists a sequential history hs ∈ S such that for all
t ∈ T , hc � t = hs � t and ≺hc⊆≺hs . A history h is opaque iff each prefix h ′ of
h is end-to-end opaque; a set of histories H is opaque iff each h ∈ H is opaque;
and an STM implementation is opaque iff its set of histories is opaque.

3 STMs over Persistent Memory

We now consider STMs over a non-volatile memory model comprising two layers:
a volatile store, whose contents are wiped clean when a system crashes (e.g., due
to power loss), and a persistent store, whose state is preserved after a crash and
available for use upon reboot. During normal program execution, contents of the
volatile store may be transferred to the persistent store by the system. The main
idea behind programs for this memory model is to include a recovery procedure
that executes over the persistent store and resets the system into a consistent
(safe) state. To achieve this, a programmer can control transfer of information
from volatile to persistent store using a FLUSH(a) operation, ensuring that the
information in address a is saved in the persistent store.

For STMs, we introduce a new notion of consistency: durable opacity which
we define in Sect. 3.1. Durable opacity extends opacity [19,20] in exactly the same
way that durable linearizability [22] extends linearizability [21], namely a history
that contains crashes is durably opaque precisely when the same history with
crashes removed is opaque. We present an example STM implementation that
satisfies durable opacity in Sect. 3.2, extending Dalessandro et al.’s Transactional
Mutex Lock [9].

3.1 Durable Opacity

Durable opacity is a correctness condition that is defined over histories that
record the invocation and response events of operations executed on the trans-
actional memory like opacity. Unlike opacity, durably opaque histories record
system crash events, thus may take the form: H = h0c1h1c2...hn−1cnhn , where
each hi is a history (containing no crash events) and ci is the ith crash event.



Defining and Verifying Durable Opacity 45

Following Izraelevitz et al. [22], for a history h, we let ops(h) denote h restricted
to non-crash events, thus for H above, ops(H ) = h0h1 . . . hn−1hn , which contains
no crash events. We call the subhistory hi the i-th era of h.

The definition of a well-formed history is now updated to include crash events.
A history is durably well-formed iff ops(h) is well formed and every transaction
identifier appears in at most one era. Thus, we assume that when a crash occurs,
all running transactions are aborted.

Definition 5 (Durably opaque history). A history h is durably opaque iff
it is durably well-formed and ops(h) is opaque.

3.2 Example: Durable Transactional Mutex Lock

We now develop a durably opaque STM: a persistent memory version of the
Transactional Mutex Lock (TML) [8], as given in Fig. 1. TML adopts a strict
policy for transactional synchronisation: as soon as one transaction has success-
fully written to a variable, all other transactions running concurrently will be
aborted when they invoke another read or write operation. To enforce this pol-
icy, TML uses a global counter glb (initially 0) and local variable loc, which is
used to store a copy of glb. Variable glb records whether there is a live writing
transaction, i.e., a transaction that has started, has not yet ended nor aborted,
and has executed (or is executing) a write operation. More precisely, glb is odd
if there is a live writing transaction, and even otherwise. Initially, we have no
live writing transaction and thus glb is 0 (and hence even).

A second distinguishing feature of TML is that it performs writes in an eager
manner, i.e., it updates shared memory during the write operation1. This is
potentially problematic in a persistent memory context since writes that have
completed may not be committed if a crash occurs prior to executing the commit
operation. That is, writes of uncommitted transactions should not be seen by
any transactions that start after a crash occurs. Our implementation makes use
of an undo log mapping addresses to their persistent memory values prior to
executing the first write operation for that address. Logged values are made
persistent before the address is overwritten. Thus, if a crash occurs prior to a
transaction committing, it is possible to recover the transaction to a safe state
by undoing uncommitted transactional writes.

Operation TMBegin copies the value of glb into its local variable loc and
checks whether glb is even. If so, the transaction is started, and otherwise, the
process attempts to start again by rereading glb. A TMRead operation succeeds
as long as glb equals loc (meaning no writes have occurred since the trans-
action began), otherwise it aborts the current transaction. The first execution
of TMWrite attempts to increment glb using a cas (compare-and-swap), which
atomically compares the first and second parameters, and sets the first param-
eter to the third if the comparison succeeds. If the cas attempt fails, a write

1 This is in contrast to lazy implementations that defer transactional writes until the
commit operation is executed (e.g., [9,13]).
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by another transaction must have occured, and hence, the current transaction
aborts. Otherwise loc is incremented (making its value odd) and the write is
performed. Note that because loc becomes odd after the first successful write,
all successive writes that are part of the same transaction will perform the write
directly after testing loc at line W 1. Further note that if the cas succeeds, glb
becomes odd, which prevents other transactions from starting, and causes all
concurrent live transactions still wanting to read or write to abort. Thus a writ-
ing transaction that successfully updates glb effectively locks shared memory.
Operation TMEnd checks to see if a write has occurred by testing whether loc is
odd. If the test succeeds, glb is set to loc+1. At line E2, loc is guaranteed to
be equal to glb, and therefore this update has the effect of incrementing glb to
an even value, allowing other transactions to begin.

Our implementation uses a durably linearizable [11,22] set or map data struc-
ture log, such as the one described by Zuriel et al. [38]. A durably linearizable
operation is guaranteed to take effect in persistent memory prior to the operation
returning. In Fig. 1, we use operations pinsert(), pempty() and pdelete() to
stress that these operations are durably linearizable.

Our durable TML algorithm (dTML) makes the following adaptations to
TML. Note the operations build on a model of a crash that resets volatile memory
to persistent memory.

– Within a write operation writing to address addr, prior to modifying the value
at addr, we record the existing address-value pair in log, provided that addr
does not already appear in the undo log (lines W4 and W5). After updating
the value (which updates the value of addr in the volatile store), the update
is flushed to persistent memory prior to the write operation returning (line
W7).

– We introduce a recovery operation that checks for a non-empty log and trans-
fers the logged values to persistent memory, undoing any writes that have
completed (but not committed) before the crash occurred. Since a crash could
occur during recovery, we transfer values from the undo log to persistent mem-
ory one at a time.

– In the commit operation, we note that we distinguish a committing transac-
tion as one with an odd value for loc. For a writing transaction, the log must
be cleared by setting it to the empty log (line E2). Note that this is the point
at which a writing transaction has definitely committed since any subsequent
crash and recovery would no longer undo the writes of this transaction.
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Fig. 1. A durable Transactional Mutex Lock (dTML). Initially: glb = 0, log =
emptyLog(). Line numbers for return statements are omitted and we use *addr for
the value of addr

4 Proving Durable Opacity

Previous works [1,2,14,17] have considered proofs of opacity using the opera-
tional TMS2 specification [15], which has been shown to guarantee opacity [26].
The proofs show refinement of the implementation against the TMS2 specifica-
tion using either forward or backward simulation. For durable opacity, we use
a similar proof strategy. In Sect. 4.3, we develop the dTMS2 operational spec-
ification, a durable version of the TMS2 specification, that we prove satisfies
durable opacity. Then, in Sect. 5, we establish a simulation between dTML and
dTMS2.

4.1 Background: IOA, Refinement and Simulation

We use Input/Output Automata (IOA) [29] to model both the implementation,
dTML, and the specification, dTMS2.

Definition 6. An Input/Output Automaton (IOA) is a labeled transition sys-
tem A with a set of states states(A), a set of actions acts(A), a set of start
states start(A) ⊆ states(A), and a transition relation trans(A) ⊆ states(A) ×
acts(A) × states(A) (so that the actions label the transitions).

The set acts(A) is partitioned into input actions input(A), output actions
output(A) and internal actions internal(A). The internal actions represent
events of the system that are not visible to the external environment.
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The input and output actions are externally visible, representing the automaton’s
interactions with its environment. Thus, we define the set of external actions,
external(A) = input(A)∪output(A). We write s a−→A s ′ iff (s, a, s ′) ∈ trans(A).

An execution of an IOA A is a sequence σ = s0a0s1a1s2 . . . snansn+1 of
alternating states and actions, such that s0 ∈ start(A) and for all states si ,
si

ai−→A si+1. A reachable state of A is a state appearing in an execution of A.
An invariant of A is any superset of the reachable states of A (equivalently, any
predicate satisfied by all reachable states of A). A trace of A is any sequence of
(external) actions obtained by projecting the external actions of any execution
of A. The set of traces of A, denoted traces(A), represents A’s externally visible
behaviour.

For automata C and A, we say that C is a refinement of A iff traces(C ) ⊆
traces(A). We show that C is a refinement of A by proving the existence of a
forward simulation, which enables one to check step correspondence between the
transitions of C and those of A. The definition of forward simulation we use is
adapted from that of Lynch and Vaandrager [28].

Definition 7. A forward simulation from a concrete IOA C to an abstract IOA
A is a relation R ⊆ states(C )× states(A) such that each of the following holds.
Initialisation. ∀ cs ∈ start(C ). ∃as ∈ start(A). R(cs, as)
External Step Correspondence.
∀ cs ∈ reach(C ), as ∈ reach(A), a ∈ external(C ), cs ′ ∈ states(C ).

R(cs, as) ∧ cs a−→C cs ′ ⇒ ∃as ′ ∈ states(A). R(cs ′, as ′) ∧ as a−→A as ′
Internal Step Correspondence.
∀ cs ∈ reach(C ), as ∈ reach(A), a ∈ internal(C ), cs ′ ∈ states(C ).

R(cs, as) ∧ cs a−→C cs ′ ⇒
R(cs ′, as) ∨ ∃a ′ ∈ internal(A), as ′ ∈ states(A). R(cs ′, as ′) ∧ as a′

−→A as ′

Forward simulation is sound in the sense that if there is a forward simulation
between A and C , then C refines A [28,30].

4.2 IOA for dTML

We now provide the IOA model of dTML. The state of dTML (Fig. 1) comprises
global (shared) variables glb ∈ IN (modelling glb in volatile memory); log ∈ L �→
V , where �→ denotes a partial function (modelling log in persistent memory);
the volatile memory store vstore ∈ L → V ; and the persistent memory store
pstore ∈ L → V . We also use the following transaction-local variables: the
program counter pc ∈ T → PC , loc ∈ T → IN, the input address addr ∈ T →
V , the input value val ∈ T → V . We also make use of an auxiliary variable
writer whose value is either the transaction id of the current writing transaction
(if one exists), or None (if no writing transaction is currently running).

Execution of the program is modelled by defining an IOA transition for each
atomic step of Fig. 1, using the values of pct (for transaction t) to model control
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flow. Each action that starts a new operation or returns from a completed oper-
ation is an external action. The crash action is also external. All other actions
(including flush and recovery) are internal actions.

To model system behaviours (crash, system flush and recovery), we reserve
a special transaction id syst . A crash and system flush is always enabled, and
hence can always be selected for execution. Recovery steps are enabled after a
crash has taken place and are only executed by syst . The effect of a flush is to
copy the value of the address being flushed from vstore to pstore. Note that a
flush can also be executed at specific program locations. In dTML, a flush of
addr occurs at lines W7 and C5. The effect of a crash is to perform the following:

– set the volatile store to the persistent store (since the volatile store is lost),
– set the program counters of all in-flight transactions (i.e., transactions that

have started but not yet completed) to aborted to ensure that these transac-
tion identifiers are not reused after the system is rebooted, and

– set the status of syst to C1 to model that a recovery is now in progress.

In our model, it is possible for a system to crash during recovery. However, no
new transaction may start until after the recovery process has completed.

4.3 IOA for dTMS2

In this section, we describe the dTMS2 specification, an operational model that
ensures durable opacity, which is based on TMS2 [15]. TMS2 itself has been
shown to strictly imply opacity [26], and hence has been widely used as an
intermediate specification in the verification of transactional memory implemen-
tations [1,2,12,14].

We let f ⊕ g denote functional override of f by g , e.g., f ⊕{x �→ u, y �→ v} =
λ k . if k = x then u elseif k = y then v else f (k).

Formally, dTMS2 is specified by the IOA in Fig. 2, which describes the
required ordering constraints, memory semantics and prefix properties. We
assume a set L of locations and a set V of values. Thus, a memory is mod-
elled by a function of type L → V . A key feature of dTMS2 (like TMS2) is that
it keeps track of a sequence of memory states, one for each committed writing
transaction. This makes it simpler to determine whether reads are consistent
with previously committed write operations. Each committing transaction con-
taining at least one write adds a new memory version to the end of the memory
sequence. However, unlike TMS2, following [11], the memory state is considered
to be the persistent memory state. Interestingly, the volatile memory state need
not be modelled.

The state space of dTMS2 has several components. The first, mems is the
sequence of memory states. For each transaction t there is a program counter
variable pct , which ranges over a set of program counter values, which are used to
ensure that each transaction is well-formed, and to ensure that each transactional
operation takes effect between its invocation and response. There is also a begin
index variable beginIdxt , that is set to the index of the most recent memory
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version when the transaction begins. This variable is critical to ensuring the
real-time ordering property between transactions. Finally, there is a read set,
rdSett , and a write set, wrSett , which record the values that the transaction has
read and written during its execution, respectively.

Fig. 2. The state space and transition relation of dTMS2, which extends TMS2 with
a crash event
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The read set is used to determine whether the values that have been read by
the transaction are consistent with the same version of memory (using validIdx ).
The write set, on the other hand, is required because writes in dTMS2 are
modelled using deferred update semantics: writes are recorded in the transac-
tion’s write set, but are not published to any shared state until the transaction
commits.

The crash action models both a crash and a recovery. We require that it is
executed by the system thread syst . It sets the program counter of every in-
flight transaction to aborted , which prevents these transactions from performing
any further actions in the era following the crash (for the generated history).
Note that since transaction identifiers are not reused, the program counters of
completed transactions need not be set to any special value (e.g., crashed) as with
durable linearizability [11]. Moreover, after restarting, it must not be possible
for any new transaction to interact with memory states prior to the crash. We
therefore reset the memory sequence to be a singleton sequence containing the
last memory state prior to the crash.

The following theorem ensures that dTMS2 can be used as an intermediate
specification in our proof method. We provide a proof sketch below. The full
proof may be found in the appendix of [5].

Theorem 1. Each trace of dTMS2 is durably opaque.

Proof (Sketch). First we recall that TMS2 is exactly the same as the automaton
in Fig. 2, but without a crash operation. The proof proceeds by showing that for
any history h ∈ traces(dTMS2), we have that ops(h) ∈ traces(TMS2). Then
since ops(h) is opaque, we have that h is durably opaque. We establish a formal
relationship between h and ops(h) by establishing a weak simulation between
dTMS2 and TMS2 such that {ops(h) | h ∈ traces(dTMS2)} ⊆ traces(TMS2).
The simulation is weak since the external crash action in dTMS2 has no match-
ing counterpart in TMS2.

The simulation relation we use captures the following. Any transaction t of
dTMS2 that is aborted due to a crash will set pct to aborted without executing
respt(abort). This difference can easily be compensated by the simulation rela-
tion. A second difference is that mems is reset to last(mems) in dTMS2 when
a crash occurs, and hence there is a mismatch between mems in dTMS2 and
in TMS2. Let ds be a state of dTMS2 and as a state of TMS2. To compen-
sate for the difference between ds.mems and as.mems, we introduce an auxiliary
variable “allMems” to ds that records memories corresponding to all committed
writing transactions in dTMS2. We have the property that ds.mems of dTMS2
is a suffix of ds.allMems and that ds.allMems = as.mems.

5 Durable Opacity of dTML

We now describe the simulation relation used in the Isabelle proof.2

2 All Isabelle theory files related to this proof may be downloaded from [5].
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Our simulation relation is divided into two relations: a global relation
globalRel , and a transactional relation txnRel . The global relation describes how
the shared states of the two automata are related, and the transaction relation
specifies the relationship between the state of each transaction in the concrete
automaton, and that of the transaction in the abstract automaton. The simula-
tion relation itself is then given by:

simRel(cs, as) = globalRel(cs, as) ∧ ∀ t ∈ T • txnRel(cs, as, t)

We first describe globalRel , which assumes the following auxiliary defini-
tions where cs is the concrete state (of dTML) and as is the abstract state (of
dTMS2). These definitions are used to compensate for the fact that the commit
of a writing transaction in the dTML algorithm takes effect (i.e., linearizes) at
line E2 when the log is set to empty.

writes(cs, as) = if cs.writer = t ∧ pct �= E3 then as.wrSett else ∅

logical glb(cs) = if cs.writer = t ∧ pct = E3 then cs.glb + 1 else cs.glb

write count(cs) =
⌊

logical glb(cs)
2

⌋

Function writes(cs, as) returns the (abstract) write set of the writing transac-
tion. This is the write set of the writing transaction, t , in the abstract state as
provided t hasn’t already linearized its commit operation, and is the empty set
otherwise. Function logical glb(cs) compensates for a lagging value of glb after a
writing transaction’s commit operation is linearized. Namely, it returns the glb
incremented by 1 if a writer is already at E3. Finally, write count(cs) is used
to determine the number of committed writing transactions in cs since the most
recent crash since cs.glb is initially 0 and reset to 0 by the recovery operation,
and moreover, cs.glb is incremented twice by each writing transaction: once at
line W2 and again at line E2 when the writing transaction commits.

Relation globalRel comprises three main parts. We assume a program counter
value RecIdle which is true for pcsyst iff syst is not executing the recovery
procedure.

globalRel(cs, as)
= (pcsyst = RecIdle ⇒ cs.vstore = (last(as.mems) ⊕ writes(cs, as)) ∧ (1)

write count(cs) + 1 = length(as.mems))) ∧ (2)

(cs.vstore ⊕ cs.log) = last(mems(as)) ∧ (3)

∀ t .t �= syst ∧ cs.pct = NotStarted ⇒ as.pct = NotStarted (4)

Conditions (1) and (2) assume that a recovery procedure is not in progress.
By (1), the concrete volatile store is the last memory in as.mems overwritten
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with the write set of an in-flight writing transaction that has not linearized its
commit operation. By (2), the number of memories recorded in the abstract
state (since the last crash) is equal to write count(cs) + 1. By (3), the last
abstract (persistent) store can by calculated from cs.vstore by overriding it with
the mappings in log. Note that this is equivalent to undoing all uncommitted
transactional writes. Finally, (4) ensures that every identifier for a transaction
that has not started at the concrete level also has not started at the abstract
level.

We turn now to txnRel . Its specification is very similar to the specification of
txnRel in the proof of TML [10]. Therefore, we only provide a brief sketch below;
an interested reader may consult [10] for further details. Part of txnRel maps con-
crete program counters to their abstract counterparts, which enables steps of the
concrete program to be matched with abstract steps. For example, concrete pc
values W1, W2, . . . , W6 correspond to abstract pc value doWrite(cs.addrt , cs.valt),
whereas W7 corresponds to writeResp, indicating that, in our proof, execution of
line W6 corresponds to the execution of an abstract DoWritet(cs.addrt , cs.valt)
operation. Moreover, as in the proof of TML [10], a set of assertions are intro-
duced to establish as.validIdx (t ,write count(cs)) for all in-flight transactions t ,
which ensures that each transactional read and write is valid with respect to
some memory snapshot.

Relation txnRel must also provide enough information to enable linearization
of a commit operation against the correct abstract step. Note that dTMS2
distinguishes between read-only and writing transactions by checking emptiness
of the write set of the committing transaction. To handle this, we exploit the fact
that in dTML, writing transactions have an odd loc value if the cas at line W2
is successful and loc is incremented at W3, indicating that a writing transaction
is in progress.

Finally, txnRel must ensure that the recovery operation is such that the
volatile store matches the last abstract store in mems prior to the crash. To
achieve this, we require that length(as.mems) = 1 when syst is executing
the recovery procedure, and the volatile store for the address being flushed
at C3 matches the abstract state before the crash, i.e., cs.vstore(cs.addrt) =
((as.mems)(0))(cs.addrt ). Since the recovery loop only terminates after the log
is emptied, this ensures that the concrete memory state is consistent with the
abstract memory prior to executing any transactions after a crash has occurred.

In order to prove that our simulation relation is maintained by each step of the
algorithm, we must use certain invariants of the dTML model. These invariants
are similar to the corresponding invariants used in a proof of the original TML
algorithm for the conventional volatile RAM model (see [10] for details). For
example, our invariants imply that there is at most one writing transaction, and
there is no such transaction when glb is even. The main additional invariant
that we use for dTML constrains the possible differences between volatile and
persistent memory: volatile and persistent memory are identical except for any
location that has been written by a writer or by the recovery procedure but not
yet flushed. This simple invariant combined with the global relation is enough to
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prove that the memory state after each crash is correct. Our dTML invariants
have been verified in Isabelle, and can be found in the Isabelle files.

6 Related Work

Although there is existing research on extending the definition of linearizability
to durable systems, there is comparatively less work on extending other notions of
transactional memory correctness such as, but not limited to, opacity to durable
systems. Various systems attempt to achieve atomic durability, transform general
objects to persistent objects and provide a secure interface of persistent memory.
The above goals usually require the use of logging which can be software or
hardware based. Raad et al have proposed a notion of durable serialisability
under relaxed memory [34], but this model does not handle aborted transactions.

ATLAS [6] is a software system that provides durability semantics for
NVRAM with lock-base multithreaded code. The system ensures that the outer-
most critical sections, which are protected by one or more mutexes, are failure-
atomic by identifying Failure Atomic Sections (FASEs). These sections ensure
that, if at least one update that occurs to a persistent location inside a FASE
is durable, then all the updates inside the session are durable. Furthermore, like
dTML, ATLAS keeps an persistent undo log, that tracks the synchronisation
operations and persistent stores, and allows the recovery of rollback FASEs that
were interrupted by crashes.

Koburn et al. [7] integrate persistent objects into conventional programs, and
furthermore seek to prevent safety bugs that occur in predominantly persistent
memory models, such as multiple frees, pointer errors, and locking errors. This
is done by implementing NV-heaps, an interface to the NVRAM based on ACID
transactions that guarantees safety and provides reasoning about the order in
which changes to the data structures should become permanent. NV-heaps only
handle updates to persistent memory inside transactions and critical sections.
Other systems based on persistent ACID transactions include Mnemosyne [37],
Stasis [36] and BerkeleyDB [33].

Ben-David et al. [4] developed a system that can transform programs that
consist of read, write and CAS operations in shared memory, to persistent mem-
ory. The system aims to create concurrent algorithms that guarantee consistency
after a fault. This is done by introducing checkpoints, which record the current
state of the execution and from which the execution can be continued after a
crash. Two consecutive checkpoints form a capsule, and if a crash occurs inside a
capsule, program execution is continued from the previous capsule boundary. We
have not applied this technique to develop dTML, but it would be interesting
to develop and optimise capsules in an STM context.

Mnemosyne [37] provides a low-level interface to persistent memory with
high-level transactions based on TinySTM [18] and a redo log that is purposely
chosen to reduce ordering constraints. The log is flushed at the commit of each
transaction. As a result, the memory locations that are written to by the trans-
action remain unmodified until commit. Each read operation checks whether
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data has been modified and if so, returns the buffered value instead of the value
from the memory. The size of the log increases proportionally to the size of the
transaction, potentially making the checking time consuming.

Hardware based durable transactional memory has also been proposed [24]
with hardware support for redo logging [25]. Other indicative hardware systems
help implement atomic durability either by performing accelerated ordering or
by performing the logging operation are [27,31].

7 Conclusions

In this paper we have defined durable opacity, a new correctness condition for
STMs, inspired by durable linearizability [22] for concurrent objects. The condi-
tion assumes a history with crashes such that in-flight transactions are aborted
(i.e., do not continue) after a crash takes place, and simply requires that the
history satisfies opacity [19,20] after the crashes are removed. This is a strong
notion of correctness but ensures safety for STMs in the same way that durable
linearizability [22] ensures safety for concurrent objects. It is already known
that TMS1 [15], which is a weaker condition than opacity [26] is sufficient for
contextual refinement [3]; therefore we conjecture that durable opacity can pro-
vide similar guarantees in a non-volatile context. For concurrent objects, more
relaxed notions such as buffered durable linearizability [22] have also been pro-
posed, which requires causally related operations to be committed in order, but
real-time order need not be maintained. Such notions could also be considered
in a transactional memory setting [16], but the precise specification of such a
condition lies outside the scope of this paper.

To verify durable opacity, we have developed dTMS2, an operational char-
acterisation that extends the TMS2 specification with a crash operation. We
establish that all traces of dTMS2 are durably opaque, which makes it possible
to prove durable opacity by showing refinement between an implementation and
dTMS2. We develop a durably opaque example implementation, dTML, which
extends TML [8] with a persistent undo log, and associated modifications such
as the introduction of a recovery operation. Finally, we prove durable opacity
of dTML by establishing a refinement between it and dTMS2. This proof has
been fully mechanised in Isabelle.

Our focus has been on the formalisation of durable opacity and the devel-
opment of an example algorithm and verification technique. Future work will
consider alternative implementations of the algorithm, e.g., using a persistent
set [38], or thread-local undo logs [23]. Develop and implement a logging mech-
anism based on undo and redo log properties named JUSTDO logging. This
mechanism aims to reduce the memory size of log entries while preserving data
integrity after crash occurrences. Unlike optimistic transactions [6], JUSTDO
logging resumes the execution of interrupted FASEs to their last store instruc-
tion, and then executes them until completion. A small log is maintained for
each thread, that records its most recent store within a FASE, simplifying the
log management and reduce the memory requirements. Future work will also
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consider weakly consistent memory models building on existing works integrat-
ing persistency semantics with hardware memory models [34,35].
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