
Henning Fernau (Ed.)
LN

CS
 1

21
59

15th International Computer Science Symposium in Russia, CSR 2020
Yekaterinburg, Russia, June 29 – July 3, 2020
Proceedings

Computer Science – 
Theory and Applications



Lecture Notes in Computer Science 12159

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Henning Fernau (Ed.)

Computer Science –

Theory and Applications
15th International Computer Science Symposium in Russia, CSR 2020
Yekaterinburg, Russia, June 29 – July 3, 2020
Proceedings

123



Editor
Henning Fernau
University of Trier
Trier, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-50025-2 ISBN 978-3-030-50026-9 (eBook)
https://doi.org/10.1007/978-3-030-50026-9

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-4444-3220
https://doi.org/10.1007/978-3-030-50026-9


Preface

The 15th International Computer Science Symposium in Russia (CSR 2020) was
supposed to be held in Ekaterinburg, Russia. It was organized by the Ural Federal
University, Russia. This was the 15th edition of the annual series of meetings, previous
editions were held in St. Petersburg (2006), Ekaterinburg (2007), Moscow (2008),
Novosibirsk (2009), Kazan (2010), St. Petersburg (2011), Nizhny Novgorod (2012),
Ekaterinburg (2013), Moscow (2014), Listvyanka (2015), St. Petersburg (2016), Kazan
(2017), Moscow (2018), and Novosibirsk (2019). The symposium covers a broad range
of topics in Theoretical Computer Science, ranging from fundamental to
application-related.

This year, CSR was planned to be organized as a part of the centennial celebrations
of the Ural Federal University. Unfortunately, the corona crisis made it impossible to
organize this event in a usual format. At the time of writing this preface, we were
investigating the different ways of hosting the conference online.

The distinguished CSR keynote lecture was supposed to be given by Béla Bollobás.
The six other CSR invited plenary speakers were, in alphabetical order, Farid Ablaev
(Kazan Federal University, Russia), Ulrik Brandes (ETH Zürich, Switzerland), Piotr
Faliszewski (AGH University of Science and Technology, Poland), Mateus de Oliveira
Oliveira (University of Bergen, Norway), Meirav Zehavi (Ben-Gurion University,
Israel), and Binhai Zhu (Montana State University, USA). The Program Committee
(PC) included 30 scientists from 14 countries and was chaired by Henning Fernau
(University of Trier, Germany). These 30 names included Jérôme Monnot from
Dauphine University in Paris, France, who sadly enough passed away in December,
2019.

This volume contains extended abstracts both of the invited lectures and of the
accepted papers. We received 49 submissions in total. Each paper was reviewed by at
least three PC members on average. As a result, the PC selected 25 papers for pre-
sentation on the symposium and publication in these proceedings. The reviewing
process was smoothly run using the EasyChair conference system.

The PC also selected two papers to receive awards sponsored by Springer. The
awardees are:

– Best Paper Award: Fedor V. Fomin and Vijayaragunathan Ramamoorthi: “On the
Parameterized Complexity of the Expected Coverage Problem”

– Best Student Paper Award: Onur Çağırıcı: “On Embeddability of Unit Disk Graphs
onto Straight Lines”

We would like to thank all invited speakers for accepting to give a talk at the
conference, PC members for giving their time and energy, 19 external reviewers for
their expertise, and the publishers Springer and MDPI who provided financial support



for this event. We also acknowledge support by the Ural Mathematical Center under
agreement No. 075-02-2020-1537/1 with the Ministry of Science and Higher Education
of the Russian Federation.

April 2020 Henning Fernau

vi Preface



Organization

Program Committee

Eric Allender Rutgers University, USA
Sergey Bereg The University of Texas at Dallas, USA
Davide Bilò University of Sassari, Italy
Karl Bringmann Max Planck Institute for Informatics, Germany
Tin-Chih Toly Chen National Chiao Tung University, Taiwan
Henning Fernau Universität Trier, Germany
Alexander Grigoriev Maastricht University, The Netherlands
Yo-Sub Han Yonsei University, South Korea
Kun He Huazhong University of Science and Technology,

China
Dominik Kempa University of California, Berkeley, USA
Michael Khachay Krasovsky Institute of Mathematics and Mechanics,

Russia
Margarita Korovina A. P. Ershov Institute of Informatics Systems, Russia
Dmitry Kosolobov Ural Federal University, Russia
Andrei Krokhin University of Durham, UK
Giuseppe Lancia University of Udine, Italy
Meena Mahajan The Institute of Mathematical Sciences, HBNI, India
David Manlove University of Glasgow, UK
Neeldhara Misra Indian Institute of Science, India
Jerome Monnot CNRS-LAMSADE, Université Paris-Dauphine, France
Sergio Rajsbaum UNAM, Mexico
Jörg Rothe Heinrich-Heine-Universität Düsseldorf, Germany
Markus L. Schmid Humboldt Universität Berlin, Germany
Vladimir Shenmaier Sobolev Institute of Mathematics, Russia
Arseny Shur Ural Federal University, Russia
Ulrike Stege University of Victoria, Canada
Sergey Verlan LACL, Université Paris-Est Créteil, France
Mikhail Volkov Ural Federal University, Russia
Yaokun Wu Shanghai Jiao Tong University, China
Tomoyuki Yamakami University of Fukui, Japan
Ryo Yoshinaka Tohoku University, Japan



Additional Reviewers

Bevern, René Van
de Rezende, Susanna F.
Haghpanah, Mohammadreza
Kerkmann, Anna Maria
Klein, Shmuel Tomi
Kobylkin, Konstantin
Li, Sizhe
Liu, Guodong
Melnikov, Alexander
Mittal, Harshil

Neveling, Marc
Ogorodnikov, Yuri
Puppis, Gabriele
Scheder, Dominik
Sethia, Aditi
Shapira, Dana
Villagra, Marcos
Wang, Xinmao
Weishaupt, Robin

viii Organization



Contents

Invited Papers

Quantum Hashing and Fingerprinting for Quantum Cryptography
and Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Farid Ablayev, Marat Ablayev, and Alexander Vasiliev

Parameterized Analysis of Art Gallery and Terrain Guarding . . . . . . . . . . . . 16
Akanksha Agrawal and Meirav Zehavi

Central Positions in Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Ulrik Brandes

Second-Order Finite Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Alexsander Andrade de Melo and Mateus de Oliveira Oliveira

Isomorphic Distances Among Elections . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Piotr Faliszewski, Piotr Skowron, Arkadii Slinko, Stanisław Szufa,
and Nimrod Talmon

Tandem Duplications, Segmental Duplications and Deletions,
and Their Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Binhai Zhu

Contributed Papers

Faster 2-Disjoint-Shortest-Paths Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 103
Maxim Akhmedov

An Improvement to Chvátal and Thomassen’s Upper Bound
for Oriented Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Jasine Babu, Deepu Benson, Deepak Rajendraprasad,
and Sai Nishant Vaka

The Normalized Algorithmic Information Distance Can
Not Be Approximated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Bruno Bauwens and Ilya Blinnikov

Definable Subsets of Polynomial-Time Algebraic Structures . . . . . . . . . . . . . 142
Nikolay Bazhenov

Families of Monotonic Trees: Combinatorial Enumeration
and Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Olivier Bodini, Antoine Genitrini, Mehdi Naima, and Alexandros Singh



Nested Regular Expressions Can Be Compiled to Small Deterministic
Nested Word Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Iovka Boneva, Joachim Niehren, and Momar Sakho

On Embeddability of Unit Disk Graphs onto Straight Lines . . . . . . . . . . . . . 184
Onur Çağırıcı

On the Decision Tree Complexity of Threshold Functions . . . . . . . . . . . . . . 198
Anastasiya Chistopolskaya and Vladimir V. Podolskii

Randomized and Symmetric Catalytic Computation. . . . . . . . . . . . . . . . . . . 211
Samir Datta, Chetan Gupta, Rahul Jain, Vimal Raj Sharma,
and Raghunath Tewari

On the Parameterized Complexity of the Expected Coverage Problem . . . . . . 224
Fedor V. Fomin and Vijayaragunathan Ramamoorthi

Computational Hardness of Multidimensional Subtraction Games . . . . . . . . . 237
Vladimir Gurvich and Mikhail Vyalyi

Parameterized Complexity of Fair Feedback Vertex Set Problem. . . . . . . . . . 250
Lawqueen Kanesh, Soumen Maity, Komal Muluk, and Saket Saurabh

The Power of Leibniz-Like Functions as Oracles. . . . . . . . . . . . . . . . . . . . . 263
Jaeyoon Kim, Ilya Volkovich, and Nelson Xuzhi Zhang

Optimal Skeleton Huffman Trees Revisited . . . . . . . . . . . . . . . . . . . . . . . . 276
Dmitry Kosolobov and Oleg Merkurev

The Subtrace Order and Counting First-Order Logic . . . . . . . . . . . . . . . . . . 289
Dietrich Kuske

Speedable Left-c.e. Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Wolfgang Merkle and Ivan Titov

The Complexity of Controlling Condorcet, Fallback, and k-Veto Elections
by Replacing Candidates or Voters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Marc Neveling, Jörg Rothe, and Roman Zorn

On the Transformation of LL(k)-linear Grammars to LL(1)-linear . . . . . . . . . 328
Alexander Okhotin and Ilya Olkhovsky

On Computing the Hamiltonian Index of Graphs. . . . . . . . . . . . . . . . . . . . . 341
Geevarghese Philip, M. R. Rani, and R. Subashini

A Lower Bound for the Query Phase of Contraction Hierarchies
and Hub Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

Tobias Rupp and Stefan Funke

x Contents



Kernelization of ARC DISJOINT CYCLE PACKING in a-Bounded Digraphs . . . . . . 367
Abhishek Sahu and Saket Saurabh

On Subquadratic Derivational Complexity of Semi-Thue Systems . . . . . . . . . 379
Alexey Talambutsa

The Untold Story of SBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Ilya Volkovich

Weighted Rooted Trees: Fat or Tall? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
Yaokun Wu and Yinfeng Zhu

Groupoid Action and Rearrangement Problem of Bicolor Arrays
by Prefix Reversals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Akihiro Yamamura, Riki Kase, and Tatiana B. Jajcayová

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Contents xi



Quantum Hashing and Fingerprinting
for Quantum Cryptography

and Computations

Farid Ablayev1(B) , Marat Ablayev1,2 , and Alexander Vasiliev1,2

1 Kazan Federal University, Kazan 420008, Russian Federation
fablayev@gmail.com, mablayev@gmail.com, vav.kpfu@gmail.com

2 Kazan Scientific Center of the Russian Academy of Sciences,

Kazan 420029, Russian Federation

Abstract. Fingerprinting and cryptographic hashing have quite differ-
ent usages in computer science, but have similar properties. Interpreta-
tion of their properties is determined by the area of their usage: finger-
printing methods are methods for constructing efficient randomized and
quantum algorithms for computational problems, while hashing methods
are one of the central cryptographic primitives.

Fingerprinting and hashing methods are being developed from the
mid of the previous century, while quantum fingerprinting and quantum
hashing have a short history.

In the paper we present computational aspects of quantum fingerprint-
ing, discuss cryptographic properties of quantum hashing. We investigate
the pre-image resistance of this function and show that it reveals only
O(1) bits of information about the input.

Keywords: Quantum computations · Quantum cryptography ·
Fingerprinting · Hashing

1 Introduction

Fingerprinting in complexity theory is a procedure that maps a large data item
to a much shorter string, its fingerprint, that identifies the original data (with
high probability). The key properties of classical fingerprinting methods are: i)
they allow to build efficient randomized computational algorithms and ii) the
resulting algorithms have bounded error [22].

Rusins Freivalds was one of the first researchers who introduced methods
(later called fingerprinting) for constructing efficient randomized algorithms
(that are more efficient than any deterministic algorithm) [15,16].

In the quantum case, fingerprinting is a procedure that maps classical data to
a quantum state that identifies the original data (with high probability). One of
the first applications of the quantum fingerprinting method is due to Ambainis
and Freivalds [9]: for a specific language they have constructed a quantum finite

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 1–15, 2020.
https://doi.org/10.1007/978-3-030-50026-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_1&domain=pdf
http://orcid.org/0000-0002-5592-3211
http://orcid.org/0000-0003-3164-2850
http://orcid.org/0000-0003-3024-4236
https://doi.org/10.1007/978-3-030-50026-9_1


2 F. Ablayev et al.

automaton with an exponentially smaller size than any classical randomized
automaton. An explicit definition of the quantum fingerprinting was introduced
by Buhrman et al. in [13] for constructing an efficient quantum communication
protocol for equality testing.

Cryptographic hashing is a more formalized procedure and it has a lot of
fruitful applications in cryptography. Note that in cryptography, functions sat-
isfying (i) one-way property and (ii) collision resistance property (in different
specific meanings) are called hash functions and we propose to do so when we
are considering cryptographic aspects of quantum functions with the above prop-
erties. So we suggest to call a quantum function that satisfies properties (i) and
(ii) (in the quantum setting) a cryptographic quantum hash function or just
quantum hash function. Note however, that there is only a thin line between
the notions of quantum fingerprinting and quantum hashing. One of the first
considerations of a quantum function (that maps classical words into quantum
states) as a cryptographic primitive, having both the one-way property and the
collision resistance property is due to [18], where the quantum fingerprinting
function from [13] was used. Another approach to constructing quantum hash
functions from quantum walks was considered in [20,21,28], and it resulted in
privacy amplification in quantum key distribution and other useful applications.

In Sect. 3, we consider quantum fingerprinting as a mapping of classical inputs
to quantum states that allows to construct efficient quantum algorithms for
computing Boolean functions. We consider the quantum fingerprinting function
from [13] as well as the quantum fingerprinting technique from [4]. The latter
was motivated by the paper [9] and its generalization [10].

Section 4 is based on the results on quantum hashing developed in our
research group. We define a notion of quantum hash function which is a quan-
tum one-way function and a quantumly collision resistant function. We show that
one-way property and collision resistance property are correlated for a quantum
hash function. The more the function is one-way the less it is collision resistant
and vice versa. We show that such a correlation can be balanced.

We present an approach for quantum hash function constructions by estab-
lishing a connection with small biased sets [23] and quantum hash function
constructions: we prove that small sized ε-biased sets allow to generate balanced
quantum hash functions. Such a connection adds to the long list of small-biased
sets’ applications.

In particular it was observed in [12,23] that the ε-bias property is closely
related to the error-correcting properties of linear codes. Note that the quantum
fingerprinting function from [13] is based on a binary error-correcting code and
so it solves the problem of constructing quantum hash functions for the binary
case. For the general case ε-bias does not correspond to Hamming distance. Thus,
in contrast to the binary case, an arbitrary linear error correcting code cannot
be used directly for quantum hash functions.

For the general case of quantum hashing on arbitrary finite abelian groups,
we investigate the pre-image resistance of this function. Previously, we have
proved the bound on the amount of accessible information about the input using



Quantum Hashing and Fingerprinting 3

the well-known Holevo theorem [19]. Since no more than O(s) classical bits of
information can be extracted from s qubits and the original message contains
n � s bits, it is impossible to restore the input from the quantum hash. However,
using the results of [17] and the properties of ε-biased sets, here we show that the
quantum hash function reveals only O(1) bits of information about the input.

2 Preliminaries

Recall that mathematically a qubit is described as a unit vector in the two-
dimensional Hilbert complex space H2. Let s ≥ 1. Let Hd be the d = 2s-
dimensional Hilbert space, describing the states of s qubits. Another notation
for Hd is (H2)⊗s, i.e., Hd is made up of s copies of a single qubit space H2

(H2)⊗s = H2 ⊗ · · · ⊗ H2 = H2s

.

Conventionally, we use notation |j〉 for the vector from Hd, which has a 1 on
the j-th position and 0 elsewhere. The orthonormal basis |1〉,. . . ,|d〉 is usually
referred to as the standard computational basis. For an integer j ∈ {0, . . . , 2s−1},
let σ1 . . . σs be a binary presentation of j. We use the notation |j〉 to denote the
quantum state |σ1〉 · · · |σs〉 = |σ1〉 ⊗ · · · ⊗ |σs〉.

We let Zq to be the finite additive group of Z/qZ, the integers modulo q.
Let Σk be a set of words of length k over a finite alphabet Σ. Let X be a finite
set. In the paper we let X = Σk, or X = Zq. For K = |X| and integer s ≥ 1
we define a (K; s) classical-quantum function (or just quantum function) to be
a unitary transformation (determined by an element w ∈ X) of the initial state
|ψ0〉 ∈ (H2)⊗s to a quantum state |ψ(w)〉 ∈ (H2)⊗s

ψ : {|ψ0〉} × X → (H2)⊗s |ψ(w)〉 = U(w)|ψ0〉,
where U(w) is a unitary matrix. We let |ψ0〉 = |0〉 in the paper and use (for
short) the following notation (instead of the one above)

ψ : X → (H2)⊗s or ψ : w �→ |ψ(w)〉.

3 Quantum Fingerprinting

The ideas of the fingerprinting technique in the quantum setting appeared in [9]
for the first time. The authors used a succinct presentation of the classical input
by a quantum automaton state, which resulted in an exponential improvement
over classical algorithms. Later in [10] the ideas were developed further to give an
arbitrarily small probability of error. This was the basis for the general quantum
fingerprinting framework proposed in [4].

However, the term “quantum fingerprinting” is mostly used in the scientific
literature to address a seminal paper by Buhrman et al. [13], where this notion
first appeared explicitly. To distinguish between different versions of the quan-
tum fingerprinting techniques, here we call the fingerprinting function from [13]
“binary” (since it uses some binary error-correcting code in its construction),
while the fingerprinting from [4] is called “q-ary” as it uses presentation of the
input in Zq.



4 F. Ablayev et al.

3.1 Binary Quantum Fingerprinting Function

The quantum fingerprinting function was formally defined in [13], where it was
used for quantum equality testing in a quantum communication model. It is
based on the notion of a binary error-correcting code.

An (n, k, d) error-correcting code is a map C : Σk → Σn such that, for any
two distinct words w,w′ ∈ Σk, the Hamming distance d(C(w), C(w′)) between
code words C(w) and C(w′) is at least d. The code is binary if Σ = {0, 1}.

The construction of the quantum fingerprinting function is as follows.

– Let c > 2 and ε < 1. Let k be a positive integer and n = ck. Let E : {0, 1}k →
{0, 1}n be an (n, k, d) binary error-correcting code with Hamming distance
d ≥ (1 − ε)n.

– Define a family of functions FE = {E1, . . . , En}, where Ei : {0, 1}k → F2 is
defined by the rule: Ei(w) is the i-th bit of the codeword E(w).

– Let s = log n + 1. Define the quantum function ψFE
: {0, 1}k → (H2)⊗s,

determined by a word w as

|ψFE
(w)〉 =

1√
n

n∑

i=1

|i〉|Ei(w)〉.

Originally, paper [13] used this function to construct a quantum communi-
cation protocol that tests equality.

In the same paper it was shown that this result can be improved by choosing
an error-correcting code with Hamming distance between any two distinct code-
words between (1− ε)n/2 and (1+ ε)n/2 for any ε > 0 (however, the existence of
such codes can only be proved nonconstructively via a probabilistic argument).

But even with such a code, the quantum fingerprinting function above would
give

|〈ψFE
(x) |ψFE

(y)〉| < (1 + ε)/2 ,

which resulted in the following change of construction [13].
Define the classical-quantum function ψ : {0, 1}k → (H2)⊗s, determined by

a word w as

ψ(w) =
1√
n

n∑

i=1

(−1)Ei(w)|i〉.

This function gives the following bound for the fingerprints of distinct inputs:

|〈ψFE
(x) |ψFE

(y)〉| < ε.

The further research on this topic mostly used this version of quantum finger-
printing.



Quantum Hashing and Fingerprinting 5

3.2 q-ary Quantum Fingerprinting

In this section we show the basic idea of the quantum fingerprinting from [4,6].
Let σ = σ1 . . . σn be an input string and g be the mapping of {0, 1}n onto Zq

that “encodes” some property of the input we are about to test. We consider g
to be the polynomial over Zq such that g(σ) = 0 mod q iff σ has the prop-
erty encoded by g. For example, if we test the equality of two n-bit binary
strings x1 . . . xn and y1 . . . yn, we can choose g equal to the following polynomial
over Z2n :

n∑

i=1

xi2i−1 −
n∑

i=1

yi2i−1.

To test the property encoded by g, we rotate the initial state |0〉 of a single
qubit by an angle of θ = πg(σ)/q:

|0〉 → cos θ|0〉 + sin θ|1〉.

Then this state is measured and the input σ is accepted iff the result of the
measurement is |0〉.

Obviously, this quantum state is ±|0〉 iff g(σ) = 0 mod q. In the worst case
this algorithm gives the one-sided error of cos2 π(q − 1)/q, which can be arbi-
trarily close to 1.

The above description can be presented as follows using log d + 1 =
(log log q) + 1 qubits:

|0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
log d

⊗|0〉 −→ 1√
d

d∑

i=1

|i〉
(

cos θi|0〉 + sin θi|1〉
)
,

where θi = 2πsig(σ)
q and the set S = {s1, . . . , sd} ⊆ Zq is chosen in order to guar-

antee a small probability of error [4,6]. That is, the last qubit is simultaneously
rotated in d different subspaces by corresponding angles.

3.3 Quantum Fingerprinting for Computations

The quantum fingerprinting method may be applied for computations in the
following manner:

– The initial state of the quantum register is |0〉⊗ log d|0〉.
– The Hadamard transform creates the equal superposition of the basis states

1√
d

d∑

j=1

|j〉|0〉 .

– Based on the input σ, its fingerprint |ψ(σ)〉 is created.



6 F. Ablayev et al.

Such a presentation is used in various computational scenarios, depending on
the problem we need to solve and depending on computational model we use.

For example, in [13] this technique was used to construct a quantum com-
munication protocol that tests equality in the simultaneous message passing
(SMP) model with no shared resources. This protocol requires O(log n) qubits
to compare n-bit binary strings, which is exponentially smaller than any classical
deterministic or even randomized protocol in the SMP setting with no shared
randomness.

The proposed quantum protocol has a one-sided error of

1/2(1 + 〈ψFE
(σ) |ψFE

(σ′)〉2) ,

where |ψFE
(σ)〉 and |ψFE

(σ′)〉 are two different quantum fingerprints. Their inner
product

|〈ψFE
(σ) |ψFE

(σ′)〉|
is bounded by ε if the Hamming distance of the underlying code is (1 − ε)n. For
instance, Justesen codes mentioned in the paper give ε < 9/10+ 1/(15c) for any
chosen c > 2.

In [4–6], we have applied this technique to construct efficient quantum algo-
rithms for a certain class of Boolean functions in the model of read-once quantum
branching programs as follows [3].

After creating fingerprint |ψS(σ)〉 with

|ψS(σ)〉 =
1√
d

d∑

j=1

|j〉
(

cos
2πsjg(σ)

q
|0〉 + sin

2πsjg(σ)
q

|1〉
)

,

the quantum branching program works as follows.

– The Hadamard transform turns the fingerprint |ψS(σ)〉 into the superposition(
1
d

d∑
l=1

cos 2πslg(σ)
q

)
|0〉⊗ log d|0〉 + . . .

– The quantum register is measured and the input is accepted iff the result is
|0〉⊗ log d|0〉.
This results into space-efficient quantum algorithms with a small one-sided

error for a family of Boolean functions that have linear or quasi-linear polynomial
presentations [4–6].

4 Quantum Hashing

In this section we present recent results on quantum hashing developed in our
research group.



Quantum Hashing and Fingerprinting 7

4.1 One-way δ-Resistance

We present the following definition of a quantum δ-resistant one-way function.
Let “information extracting” mechanism M be a function M : (H2)⊗s → X.
Informally speaking, mechanism M makes some measurement to state |ψ〉 ∈
(H2)⊗s and decodes the result of measurement to X.

Definition 1. Let X be a random variable distributed over X like {Pr[X = w] :
w ∈ X}. Let ψ : X → (H2)⊗s be a quantum function. Let Y be any random
variable over X obtained by some mechanism M making measurement to the
encoding ψ of X and decoding the result of the measurement to X. Let δ > 0.
We call a quantum function ψ a one-way δ-resistant function if

1. if it is easy to compute, i.e., a quantum state |ψ(w)〉 for a particular w ∈ X

can be determined using a polynomial-time algorithm;
2. for any mechanism M, the probability Pr[Y = X] that M successfully decodes

Y is bounded by δ
Pr[Y = X] ≤ δ.

For the cryptographic purposes , it is natural to expect (and we do this in the
rest of the paper) that the random variable X is uniformly distributed.

A quantum state of s ≥ 1 qubits can “carry” an infinite amount of informa-
tion. On the other hand, the fundamental result of quantum informatics known
as Holevo’s Theorem [19] states that a quantum measurement can only give O(s)
bits of information about the state. Here we use the result of [24] motivated by
Holevo’s Theorem.

Property 1. Let X be a random variable uniformly distributed over {0, 1}k. Let
ψ : {0, 1}k → (H2)⊗s be a (2k; s) quantum function. Let Y be a random variable
over {0, 1}k obtained by some mechanism M making some measurement of the
encoding ψ of X and decoding the result of measurement to {0, 1}k. Then the
probability of correct decoding is given by

Pr[Y = X] ≤ 2s

2k
.

4.2 Collision ε-Resistance

The following definition was presented in [2].

Definition 2. Let ε > 0. We call a quantum function ψ : X → (H2)⊗s a
collision ε-resistant function if for any pair w,w′ of different inputs,

|〈ψ(w) |ψ(w′)〉| ≤ ε.

Testing Equality. The crucial procedure for quantum hashing is an equality test
for |ψ(v)〉 and |ψ(w)〉 that can be used to compare encoded classical messages v
and w; see for example [18]. This procedure can be a well-known SWAP-test [13]
or something that is adapted for specific hashing functions, like the REVERSE-
test; see [7].



8 F. Ablayev et al.

4.3 Balanced Quantum (δ, ε)-Resistance

The above two definitions and considerations lead to the following formalization
of the quantum cryptographic (one-way and collision resistant) function.

Definition 3. Let K = |X| and s ≥ 1. Let δ > 0 and ε > 0. We call a function
ψ : X → (H2)⊗s a quantum (δ, ε)-resistant (K; s)-hash function (or just quantum
(δ, ε)-hash function) iff ψ is a one-way δ-resistant and a collision ε-resistant
function.

We present below the following two examples to demonstrate how one-way
δ-resistance and collision ε-resistance are correlated. The first example was pre-
sented in [9] in terms of quantum automata.

Example 1. Let us encode numbers v from {0, . . . , 2k − 1} by a single qubit as
follows:

ψ : v �→ cos
(

2πv

2k

)
|0〉 + sin

(
2πv

2k

)
|1〉.

Extracting information from |ψ〉 by measuring |ψ〉 with respect to the basis
{|0〉, |1〉} gives the following result. The function ψ is one-way 2

2k -resistant (see
Property 1) and collision cos

(
π/2k−1

)
-resistant. Thus, the function ψ has a good

one-way property, but has a bad collision resistance property for large k.

Example 2. Let v = σ1 . . . σk ∈ {0, 1}k. We encode v by k qubits: ψ : v �→ |v〉 =
|σ1〉 · · · |σk〉.
Extracting information from |ψ〉 by measuring |ψ〉 with respect to the basis
{|0 . . . 0〉, . . . , |1 . . . 1〉} gives the following result. The function ψ is one-way 1-
resistant and collision 0-resistant. So, in contrast to Example 1 the encoding ψ
from Example 2 is collision free, that is, for different words v and w, the quantum
states |ψ(v)〉 and |ψ(v)〉 are orthogonal and therefore reliably distinguished; but
we lose the one-way property: ψ is easily invertible.

The following result [2] shows that a quantum collision ε-resistant (K; s)
function needs at least log log K − c(ε) qubits.

Property 2. Let s ≥ 1 and K = |X| ≥ 4. Let ψ : X → (H2)⊗s be a collision
ε-resistant quantum hash function. Then

s ≥ log log K − log log
(
1 +

√
2/(1 − ε)

)
− 1.

Proof. See [2] for the proof. �
Properties 1 and 2 provide a basis for building a “balanced” one-way δ-

resistance and collision ε-resistance properties. That is, roughly speaking, if we
need to hash elements w from the domain X with |X| = K and if one can build
for an ε > 0 a collision ε-resistant (K; s) hash function ψ with s ≈ log log K−c(ε)
qubits, then the function f is one-way δ-resistant with δ ≈ (log K/K). Such a
function is balanced with respect to Property 2.



Quantum Hashing and Fingerprinting 9

To summarize the above considerations we can state the following. A quan-
tum (δ, ε)-hash function is a function that satisfies all of the properties that a
“classical” hash function should satisfy. Pre-image resistance follows from Prop-
erty 1. Second pre-image and collision resistance follow, because all inputs are
mapped to states that are nearly orthogonal. Therefore, we see that quantum
hash functions can satisfy the three properties of a classical cryptographic hash
function.

4.4 Quantum (δ, ε)-Hash Functions Construction Via Small-Biased
Sets

This section is based on the paper [26]. We present here a brief background on
ε-biased sets as defined in [14] and discuss their connection to quantum hashing.
Note that ε-biased sets are generally defined for arbitrary finite groups, but here
we restrict ourselves to Zq.

For an a ∈ Zq a character χa of Zq is a homomorphism χa : Zq → μq,
where μq is the (multiplicative) group of complex q-th roots of unity. That is,
χa(x) = ωax, where ω = e

2πi
q is a primitive q-th root of unity. The character

χ0 ≡ 1 is called a trivial character.

Definition 4. A set S ⊆ Zq is called ε-biased, if for any nontrivial character
χ ∈ {χa : a ∈ Zq}

1
|S|

∣∣∣∣∣
∑

x∈S

χ(x)

∣∣∣∣∣ ≤ ε.

These sets are interesting when |S| � |Zq| (as S = Zq is 0-biased). In their
seminal paper Naor and Naor [23] defined these small-biased sets, gave the first
explicit constructions of such sets, and demonstrated the power of small-biased
sets for several applications.

Remark 1. Note that a set S of O(log q/ε2) elements selected uniformly at ran-
dom from Zq is ε-biased with positive probability [8].

Many other constructions of small-biased sets followed during the last decades.
Vasiliev [26] showed that ε-biased sets generate (δ,ε)-resistant hash functions.

We present the result of [26] in the following form.

Property 3. Let S ⊆ Zq be an ε-biased set. Let

HS = {ha(x) = ax (mod q), a ∈ S, ha : Zq → Zq}
be a set of functions determined by S. Then a quantum function ψS : Zq →
(H2)⊗ log |S|

|ψS(x)〉 =
1√|S|

∑

a∈S

ωha(x)|a〉

is a (δ, ε)-resistant quantum hash function, where δ ≤ |S|/q.



10 F. Ablayev et al.

Proof. The one-way δ-resistance property of ψS follows from Property 1: the
probability of correct decoding an x from a quantum state |ψS(x)〉 is bounded
by |S|/q. The efficient computability of such a function follows from the fact
that any quantum transformation on s qubits (including the one that creates a
quantum hash) can be performed with O(s24s) elementary quantum gates [25].
Whenever s = O(log |S|) = O(log log q−log ε), this number of steps is polynomial
in log q (the binary representation of group elements) and 1/ε.

The collision ε-resistance property of ψS follows directly from the correspond-
ing property of [26]. Note that

|ψS(x)〉 =
1√|S|

∑

a∈S

ωha(x)|a〉 =
1√|S|

∑

a∈S

χx(a)|a〉.

The remainder of this proof coincides with the proof of the paper [26]. �
Remark 2. It is natural to call the set HS of functions a uniform ε-biased quan-
tum hash generator in the context of the definition of quantum hash generator
from [1] and the above considerations.

As a corollary of the Property 3 and the above considerations, we can state the
following.

Property 4. For a small sized ε-biased set S = {s1, . . . , sd} ⊂ Zq with d =
O(log q/ε2), for δ ≤ O( log q

ε2q ) a quantum hash generator HS generates the bal-
anced (δ, ε)-resistant quantum hash function ψS given by

|ψS(a)〉 =
1√
d

d∑

j=1

ωasj |j〉 .

5 Quantum Hashing for Finite Abelian Groups

In [26] we have proposed the notion of a quantum hash function, which is defined
for arbitrary finite abelian groups.

Let G be a finite abelian group with characters χa, indexed by a ∈ G. Let
S ⊆ G be an ε-biased set for some ε ∈ (0, 1).

Definition 5. We define a quantum hash function ψS : G → (H2)⊗ log |S| as
follows:

|ψS(a)〉 =
1√|S|

|S|∑

j=1

χa(sj)|j〉. (1)

We have shown that ψS has all the properties of a cryptographic quantum
hash function (i.e., it is quantum one-way and collision resistant), which are
entirely determined by the ε-biased set S ⊆ G.

There are two known special cases of quantum hashing for specific finite
abelian groups, which turn out to be the known quantum fingerprinting schemes.
In particular, we are interested in hashing binary strings and thus it is natural
to consider G = Zn

2 and G = Z2n (or, more generally, any cyclic group Zq).



Quantum Hashing and Fingerprinting 11

Hashing the Elements of the Boolean Cube. For G = Z
n
2 , its characters can be

written in the form χa(x) = (−1)(a,x), and the corresponding quantum hash
function is the following one:

|ψS(a)〉 =
1√|S|

|S|∑

j=1

(−1)(a,sj)|j〉 .

The resulting hash function is exactly the quantum fingerprinting by
Buhrman et al. [13], once we consider an error-correcting code, whose matrix
is built from the elements of S. Indeed, as stated in [11] an ε-balanced error-
correcting code can be constructed out of an ε-biased set. Thus, the inner product
(a, x) in the exponent is equivalent to the corresponding bit of the codeword,
and altogether this gives the quantum fingerprinting function, that stores infor-
mation in the phase of quantum states [27].

Hashing the Elements of the Cyclic Group. For G = Zq, its characters can be
written as χa(x) = exp (2πiax/q), and the corresponding quantum hash function
is given by

|ψS(a)〉 =
1√|S|

|S|∑

j=1

ωasj |j〉 .

The above quantum hash function is essentially equivalent to the one we have
defined earlier in [7], which is in turn based on the quantum fingerprinting func-
tion from [4].

6 Pre-image Resistance of Quantum Hashing

In this section we analyze the quantum hash function defined above and prove
it has a strong pre-image resistance.

In [17], the authors defined a quantum scheme which is based on quasi-linear
codes and maps binary strings to a quantum state. If a scheme uses pure states,
accessible information does not exceed O(1) bits. We prove similar properties of
a general quantum hash function ψS for an arbitrary finite abelian group G and
its ε-biased subset S ⊂ G.

For a ∈ G, let ρa = |ψS(a)〉〈ψS(a)| and ρ′
a = 2d

|G|ρa be the density operators
of a normalized and non-normalized state respectively. Furthermore, for any
|ν〉 ∈ H2d

we define a probability distribution μν(a) = 〈ν|ρ′
a|ν〉 that corresponds

to a measurement with outcome |ν〉〈ν|.
The following lemma allows us to estimate the relative entropy between

μν(a) = 〈ν|ρ′
a|ν〉 and uniform probability distribution over G.

Lemma 1. Let |ν〉 ∈ H2d

be a unit vector and a ∈ G is randomly chosen
according to the uniform distribution. Then

E[max{0, μν(a) ln(|G|μν(a))}] <
23
|G| . (2)



12 F. Ablayev et al.

Proof. For all s ∈ S, we define random variables

Xs = χa(s)νs (3)

Then μν(a) = 1
|G| (

∑
s∈S Xs)2. E[χa(s)] = 0 and |χa(s)| ≤ 1 follows from the

properties of finite abelian group characters. Then for all t > 0,

Pr
[
μν(a) ≥ t

|G|
]

= Pr

[∣∣∣∣∣
∑

s∈S

Xs

∣∣∣∣∣ ≥
∣∣∣
√

t
∣∣∣

]
≤ 4 exp

(
− t

4

)
, (4)

where the last inequality follows from Lemma 2.2 from [17] and from ‖ν‖ = 1.
Define g(x) = max{0, x ln(x)} and let μ̃ be a random variable whose proba-

bility distribution is Pr[μ̃ ≥ t] = 4 exp(− t
4 ) = f(t) for t > 8 ln 2. Then

E[max{0, μν(a) ln(|G|μν(a))}] ≥ 1
|G|E[g(|G|μν(a))] ≥ 1

|G|E[g(μ̃)] , (5)

where the first inequality follows from the definition of g(x) and the second one
is true by Lemma 2.3 [17].

Therefore,

E[g(μ̃)] =
∫ ∞

8 ln 2

x ln(x)
(

− df

dx

)
dx =

∫ ∞

8 ln 2

exp
(
ln(x) + ln(ln(x)) − x

4

)
dx < 23

(6)
as required. �
Definition 6. For random variables P and Q having a discrete probability dis-
tribution, the Kullback-Leibler divergence is given as follows:

DKL(P ‖ Q) =
∑

i

P (i) ln
P (i)
Q(i)

. (7)

The following lemma shows that if we use ε-biased sets in our scheme, diver-
gence between μν(a) and a random variable x uniformly distributed over G is
given by DKL(μν ||x) and takes small values.

Lemma 2. Let |ν〉 ∈ H2d

be a unit vector. Then
∑

a∈G

μν(a) ln(|G|μν(a)) < 23. (8)

Proof. We define a random variable

μ̃(a) = max{0, μν(a) ln(|G|μν(a))}. (9)

By Lemma 1, E[μ̃(a)] < 23
|G| . Therefore,

∑

a∈G

μν(a) ln(|G|μν(a)) <
∑

a∈G

μ̃(a) = |G|E[μ̃(a)] < 23. (10)

�



Quantum Hashing and Fingerprinting 13

In [17], the accessible information Iacc about the input was considered based
on the measurement of the quantum state representing this input. It was defined
as Iacc = H(J) − H(J |A), where A is a random variable describing the choice
of input data, J is a random variable that describes the result of measuring the
quantum state.

Lemma 3. Let a be chosen randomly according to uniform distribution over G,
then the accessible information Iacc of ensemble (ρa) does not exceed

max
|ν〉

∑

a∈G

μν(a) ln (|G|μν(a)) < 23 . (11)

This lemma rephrases Lemma 3.12 from [17] by using ε-biased sets over finite
abelian groups and is given without proof.

Thus, the statements above prove the following theorem.

Theorem 1. Let S ⊂ G be an ε-biased set and let ψS be a quantum hash func-
tion based on S. Then the amount of accessible information about the pre-image
of ψS is of order O(1).

Acknowledgments. The research was supported by the government assignment for
FRC Kazan Scientific Center of the Russian Academy of Sciences.

References

1. Ablayev, F., Ablayev, M.: On the concept of cryptographic quantum hashing.
Laser Phys. Lett. 12(12), 125204 (2015). http://stacks.iop.org/1612-202X/12/
i=12/a=125204

2. Ablayev, F., Ablayev, M.: Quantum hashing via ε-universal hashing constructions
and classical fingerprinting. Lobachevskii J. Math. 36(2), 89–96 (2015). https://
doi.org/10.1134/S199508021502002X

3. Ablayev, F., Gainutdinova, A., Karpinski, M.: On computational power of
quantum branching programs. In: Freivalds, R. (ed.) FCT, vol. 2138, pp. 59–
70. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44669-9 8, http://
arxiv.org/abs/quant-ph/0302022

4. Ablayev, F., Vasiliev, A.: Algorithms for quantum branching programs based on
fingerprinting. Electron. Proc. Theoret. Comput. Sci. 9, 1–11 (2009). https://doi.
org/10.4204/EPTCS.9.1, http://arxiv.org/abs/0911.2317

5. Ablayev, F., Vasiliev, A.: Classical and quantum parallelism in the quantum finger-
printing method. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 1–12.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23178-0 1

6. Ablayev, F., Vasiliev, A.: On computational power of quantum read-once branching
programs. Electron. Proc. Theoret. Comput. Sci. 52, 1–12 (2011). https://doi.org/
10.4204/EPTCS.52.1

7. Ablayev, F., Vasiliev, A.: Cryptographic quantum hashing. Laser Phys. Lett. 11(2),
025202 (2014). http://stacks.iop.org/1612-202X/11/i=2/a=025202

8. Alon, N., Roichman, Y.: Random Cayley graphs and expanders. Random Struct.
Algorithms 5(2), 271–284 (1994). https://doi.org/10.1002/rsa.3240050203

http://stacks.iop.org/1612-202X/12/i=12/a=125204
http://stacks.iop.org/1612-202X/12/i=12/a=125204
https://doi.org/10.1134/S199508021502002X
https://doi.org/10.1134/S199508021502002X
https://doi.org/10.1007/3-540-44669-9_8
http://arxiv.org/abs/quant-ph/0302022
http://arxiv.org/abs/quant-ph/0302022
https://doi.org/10.4204/EPTCS.9.1
https://doi.org/10.4204/EPTCS.9.1
http://arxiv.org/abs/0911.2317
https://doi.org/10.1007/978-3-642-23178-0_1
https://doi.org/10.4204/EPTCS.52.1
https://doi.org/10.4204/EPTCS.52.1
http://stacks.iop.org/1612-202X/11/i=2/a=025202
https://doi.org/10.1002/rsa.3240050203


14 F. Ablayev et al.

9. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses
and generalizations. In: Proceeding of the 39th IEEE Conference on Foundation
of Computer Science, FOCS 1998, pp. 332–342. IEEE Computer Society, Wash-
ington, DC (1998). https://doi.org/10.1109/SFCS.1998.743469, http://arxiv.org/
abs/quant-ph/9802062

10. Ambainis, A., Nahimovs, N.: Improved constructions of quantum automata. In:
Kawano, Y., Mosca, M. (eds.) Theory of Quantum Computation, Communica-
tion, and Cryptography. LNCS, vol. 5106, pp. 47–56. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89304-2 5, http://arxiv.org/abs/0805.1686

11. Ben-Aroya, A., Ta-Shma, A.: Constructing small-bias sets from algebraic-geometric
codes. In: 50th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2009, pp. 191–197, October 2009. https://doi.org/10.1109/FOCS.2009.44

12. Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Randomness-efficient low
degree tests and short PCPs via epsilon-biased sets. In: Proceedings of the Thirty-
fifth Annual ACM Symposium on Theory of Computing, STOC 2003, pp. 612–621.
ACM, New York (2003). https://doi.org/10.1145/780542.780631

13. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting.
Phys. Rev. Lett. 87(16), 167902 (2001). https://doi.org/10.1103/PhysRevLett.87.
167902, www.arXiv.org/quant-ph/0102001v1

14. Chen, S., Moore, C., Russell, A.: Small-bias sets for nonabelian groups. In:
Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D. (eds.) Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques. LNCS, vol. 8096, pp. 436–451. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40328-6 31

15. Freivalds, R.: Probabilistic machines can use less running time. In: IFIP Congress,
vol. 839, p. 842 (1977)

16. Freivalds, R.: Fast probabilistic algorithms. In: Becvar, J. (ed.) Mathematical
Foundations of Computer Science. LNCS, vol. 74, pp. 57–69. Springer, Heidelberg
(1979). https://doi.org/10.1007/3-540-09526-8 5

17. Gavinsky, D., Ito, T.: Quantum fingerprints that keep secrets. Technical report.
Cornell University Library arXiv:quant-ph/1010.5342 (2010)

18. Gottesman, D., Chuang, I.: Quantum digital signatures. Technical report. Cornell
University Library arXiv:quant-ph/0105032 (2001)

19. Holevo, A.S.: Some estimates of the information transmitted by quantum commu-
nication channel (Russian). Probl. Pered. Inform. [Probl. Inf. Transm.] 9(3), 3–11
(1973)

20. Li, D., Zhang, J., Guo, F.Z., Huang, W., Wen, Q.Y., Chen, H.: Discrete-time
interacting quantum walks and quantum hash schemes. Quantum Inf. Process.
12(3), 1501–1513 (2013). https://doi.org/10.1007/s11128-012-0421-8

21. Li, D., Zhang, J., Ma, X.W., Zhang, W.W., Wen, Q.Y.: Analysis of the two-particle
controlled interacting quantum walks. Quantum Inf. Process. 12(6), 2167–2176
(2013). https://doi.org/10.1007/s11128-012-0516-2

22. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

23. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and appli-
cations. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory
of Computing, STOC 1990, pp. 213–223. ACM, New York (1990). https://doi.org/
10.1145/100216.100244

24. Nayak, A.: Optimal lower bounds for quantum automata and random access codes.
In: 40th Annual Symposium on Foundations of Computer Science, pp. 369–376
(1999). https://doi.org/10.1109/SFFCS.1999.814608

https://doi.org/10.1109/SFCS.1998.743469
http://arxiv.org/abs/quant-ph/9802062
http://arxiv.org/abs/quant-ph/9802062
https://doi.org/10.1007/978-3-540-89304-2_5
http://arxiv.org/abs/0805.1686
https://doi.org/10.1109/FOCS.2009.44
https://doi.org/10.1145/780542.780631
https://doi.org/10.1103/PhysRevLett.87.167902
https://doi.org/10.1103/PhysRevLett.87.167902
www.arXiv.org/quant-ph/0102001v1
https://doi.org/10.1007/978-3-642-40328-6_31
https://doi.org/10.1007/978-3-642-40328-6_31
https://doi.org/10.1007/3-540-09526-8_5
http://arxiv.org/abs/quant-ph/1010.5342
http://arxiv.org/abs/quant-ph/0105032
https://doi.org/10.1007/s11128-012-0421-8
https://doi.org/10.1007/s11128-012-0516-2
https://doi.org/10.1145/100216.100244
https://doi.org/10.1145/100216.100244
https://doi.org/10.1109/SFFCS.1999.814608


Quantum Hashing and Fingerprinting 15

25. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information,
1 edn. Cambridge University Press, Cambridge (2000). https://doi.org/10.2277/
0521635039

26. Vasiliev, A.: Quantum hashing for finite abelian groups. Lobachevskii J. Math.
37(6), 753–757 (2016). https://doi.org/10.1134/S1995080216060184

27. de Wolf, R.: Quantum computing and communication complexity. Ph.D. thesis,
University of Amsterdam (2001)

28. Yang, Y.G., Xu, P., Yang, R., Zhou, Y.H., Shi, W.M.: Quantum hash function
and its application to privacy amplification in quantum key distribution, pseudo-
random number generation and image encryption. Sci. Rep. 6, 19788 (2016).
https://doi.org/10.1038/srep19788

https://doi.org/10.2277/0521635039
https://doi.org/10.2277/0521635039
https://doi.org/10.1134/S1995080216060184
https://doi.org/10.1038/srep19788


Parameterized Analysis of Art Gallery
and Terrain Guarding

Akanksha Agrawal and Meirav Zehavi(B)

Ben-Gurion University of the Negev, Beersheba, Israel
agrawal@post.bgu.ac.il, meiravz@bgu.ac.il

Abstract. The purpose of this invited talk is threefold: provide a brief
introduction to both Parameterized Analysis and algorithmic research of
visibility problems, and to address a few known results in the intersection.
In the first part of the talk, we will discuss basic concepts and definitions
in Parameterized Analysis as well as the philosophy behind the field. In
the second and third parts of the talk, we will survey some results about
the Art Gallery and Terrain Guarding problems, which have, so
far, received only little attention from the viewpoint of Parameterized
Analysis. Moreover, we will briefly overview a few of the known positive
results on the parameterized complexity of these problems.

Keywords: Parameterized algorithms · Parameterized complexity ·
Art gallery · Terrain guarding

1 Background on Parameterized Analysis

Design and analysis of algorithms lie at the heart of computer science. Unfor-
tunately, today we know of numerous problems that are NP-hard, which are
believed not to admit worst-case efficient (polynomial-time) exact algorithms.
However, if we will make a deeper look, we will observe that in many cases the
nutshell of hardness lies in either a particular property of the instance, or even
just in a small part of it. Parameterized Analysis leads both to deeper under-
standing of intractability results and to practical solutions for many NP-hard
problems. Informally speaking, Parameterized Analysis is a deep mathematical
paradigm to answer the following fundamental question:

What makes an NP-hard problem hard?

Specifically, how do different parameters (being formal quantifications of
structure) of an NP-hard problem relate to its inherent difficulty? Can we exploit
these relations algorithmically, and to which extent? Over the past three decades,

Supported by Israel Science Foundation grant no. 1176/18, and United States – Israel
Binational Science Foundation grant no. 2018302.

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 16–29, 2020.
https://doi.org/10.1007/978-3-030-50026-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_2&domain=pdf
https://doi.org/10.1007/978-3-030-50026-9_2


Parameterized Analysis of Art Gallery and Terrain Guarding 17

Parameterized Analysis has grown to be a mature field of outstandingly broad
scope with significant impact from both theoretical and practical perspectives
on computation.

Parameterized Algorithms and Complexity. For many NP-hard problems,
it possible to find exact (optimal) solutions efficiently. How can this blatant dis-
crepancy between theory and practice be explained? An intuitive explanation is
that most real-world instances are not worst-case instances, but share structural
properties that are (explicitly or implicitly) being utilized in practice. Since the
early days of computer science, extensive efforts have been directed at system-
atic research of tractability results for various problems on specific classes of
instances. However, in real-world situations, it is often not possible to define a
clear-cut class of instances that we wish to solve; instead of being black and
white (belonging to a specific class or not), instances come in various shades of
grey (having certain degrees of internal structure). The paradigm of Parameter-
ized Analysis (algorithms and complexity) offers the perfect tools to understand
the rich and deep theory that underlies this spectrum, and to deal with it algo-
rithmically across a wide and growing number of areas of computer science. This
paradigm was introduced in the late 1980s by Downey and Fellows, and it has
quickly become a central, ubiquitous and vibrant area of research (see, e.g., the
textbooks [23,25,26,35,60,65] dedicate do Parameterized Analysis).

In a nutshell, Parameterized Analysis deals with parameterized problems:
a parameterization of a problem Π is simply the association of a parameter k
with every instance of Π, which captures how “structured” the instance is. A
parameter can be any measure that captures “behavior” of inputs or outputs,
such as the treewidth of a given graph (“how close is the graph to a tree?”) or
the size of the solution. In particular, parameterization gives rise to the devel-
opment of algorithms whose performance mainly depends on the value of the
parameter—instead of the classical setting, where we often associate tractability
with polynomial running times and intractability with superpolynomial ones,
parameterized algorithms naturally “scale” with the amount of structure that
implicitly underlies the instance! Further, understanding the dependency of the
complexity of the problem on parameters of it leads to true understanding of its
core of hardness.

More concretely, the main objective of Parameterized Analysis is to confine
the combinatorial explosion in the running time of an algorithm for Π to the
parameter k rather than to let it depend on the entire input size. Formally,
a problem is fixed-parameter tractable (FPT) with respect to a parameter k
if it can be solved by an algorithm, called a parameterized algorithm, whose
running time is bounded by f(k) · nO(1) for some computable function f of k,
where n is the input size. In particular, f is independent of the input size n. By
examination of real datasets, one may choose a parameter k that will often be
significantly smaller than the input size n. Over the past thirty years, research
in Parameterized Analysis yielded an outstandingly rich and deep theory, with
powerful toolkits to classify problems as FPT, W[1]-complete (unlikely to be
FPT) or worse (in the so called W-hierarchy of hardness in Parameterized Anal-



18 A. Agrawal and M. Zehavi

ysis), and, in particular, for those problems that are FPT, develop fast, or even
the fastest possible (with tight conditional lower bounds on their time complex-
ity), parameterized algorithms. Nowadays, as it was phrased by Niedermeier in
2010 [61], “problem parameterization is a pervasive and ubiquitous tool in attack-
ing intractable problems”, and “multivariate algorithmics helps to significantly
increase the impact of theoretical computer science on practical computing.”
Indeed, parameterized problems arise in a variety of areas of computer science
and mathematics, including Graph Theory, Computational Geometry, Robotics,
Computational Social Choice and Voting, Bioinformatics, Artificial Intelligence,
Graph Drawing, Psychology and Cognitive Science, and Database Theory.

Kernelization. Preprocessing is an integral part of almost any application,
ranging from lossless data compression and navigation systems to microarray
data analysis for the classification of cancer types. In fact, in our everyday lives,
we often rely on preprocessing, sometimes without even noticing it. The “gold
standard” successes in software development for hard problems, such as CPLEX
for integer linear programming, depend heavily on sophisticated preprocessing
routines. In fact, the idea of preprocessing information to speed up computation
can be traced much before the invention of the first computers. The book Mirifci
Logarithmorum Canonis Descriptio (A Description of the Admirable Table of
Logarithm) authored by Napier (1550–1617), who is credited with the invention
of logarithms, was published in 1614. A quote attributed to Laplace states that
this table “by shortening the labours, doubled the life of the astronomer.” A
natural question in this regard is how to measure the quality of data reductions
proposed for a specific problem. Yet, for a long time the mathematical analysis
of polynomial-time preprocessing algorithms was neglected. One central reason
for this anomaly is that unless P = NP, no NP-complete problem Π admits any
polynomial-time procedure that, given an instance of Π, is guaranteed to reduce
the size of the instance by even a single bit! Indeed, if such a procedure existed,
then we could have utilized it to solve Π by repeatedly reducing the input size
until it becomes a single bit, solvable in polynomial time.

The situation has changed drastically with the advent of Parameterized Anal-
ysis. Specifically, the subfield of Parameterized Analysis called Kernelization is
precisely the area of rigorous research of polynomial-time preprocessing algo-
rithms. Roughly speaking, we say that a problem admits a kernel if there exists
a polynomial-time algorithm (called a kernelization algorithm) that, given an
instance of the problem, translates it into an equivalent instance of the same
problem of size f(k) for some computable function f depending only on k. In
particular, f is independent of the input size n. It is known that a problem
admits a kernel if and only if it is FPT. The central question in the field of Ker-
nelization is which parameterized problems admit kernels of size f(k) where f is
polynomial in k. Such kernels are called polynomial kernels. Here, we note that a
problem that is FPT might provably (under plausible assumptions in complexity
theory) not admit a polynomial kernel. In case a problem is shown to admit a
polynomial kernel, the second question that naturally arises is how small can
this kernel be. Due to the profound impact of polynomial-time preprocessing



Parameterized Analysis of Art Gallery and Terrain Guarding 19

on every aspect of computation, Kernelization has been termed “the lost con-
tinent of polynomial time” [33]. Combining tools from Parameterized Analysis
and classic (univariate) Computational Complexity, it has become possible to
derive both upper and lower bounds on sizes of reduced instances, or so called
kernels. As noted by Marx [58], it has become clear that “the existence of poly-
nomial kernels is a mathematically deep and very fruitful research direction.”
For more information, see the textbook [36] on kernelization.

2 The Art Gallery Problem

Given a simple polygon P on n vertices, two points x and y within P are visible
to each other if the line segment between x and y is contained in P . Accordingly,
a set S of points within P is said to guard another set Q of points within P if,
for every point q ∈ Q, there is some point s ∈ S such that q and s are visible to
each other. The computational problem that arises from this notion is loosely
termed the Art Gallery problem. In its general formulation, the input consists
of a simple polygon P , possibly infinite sets G and C of points within P , and a
non-negative integer k. The task is to decide whether at most k guards can be
placed on points in G so that every point in C is visible to at least one guard.
The most well-known cases of Art Gallery are identified as follows: the X-Y

Art Gallery problem is the Art Gallery problem where G is the set of all
points within P (if X=Point), all boundary points of P (if X=Boundary),
or all vertices of P (if X=Vertex), and C is defined analogously with respect
to Y. The classic variant of Art Gallery is the Point-Point Art Gallery

problem. Moreover, Vertex-Vertex Art Gallery is equivalent to the classic
Dominating Set problem in the visibility graph of a polygon.

The Art Gallery problem is a fundamental visibility problem in Discrete
and Computational Geometry, which was extensively studied from both combi-
natorial and algorithmic viewpoints. The problem was first proposed by Victor
Klee in 1973, which prompted a flurry of results [62, page 1]. The main com-
binatorial question posed by Klee was how many guards are sufficient to see
every point of the interior of an n-vertex simple polygon? Chvátal [19] showed
in 1975 that �n

3 � guards are always sufficient and sometimes necessary for any
n-vertex simple polygon (see [34] for a simpler proof by Fisk). After this, many
variants of the Art Gallery problem, based on different definitions of visi-
bility, restricted classes of polygons, different shapes of guards, and mobility of
guards, have been defined and analyzed. Several books and extensive surveys
were dedicated to Art Gallery and its variants (see, e.g., [39,62,64,67,68]).

2.1 Known Algorithmic Works

In what follows, we focus only on algorithmic works on X-Y Art Gallery for
X,Y∈{Point,Boundary,Vertex}.

Hardness. In 1983, O’Rourke and Supowit [63] proved that Point-Point Art

Gallery is NP-hard if the polygon can contain holes. The requirement to allow



20 A. Agrawal and M. Zehavi

holes was lifted shortly afterwards [4]. In 1986, Lee and Lin [56] showed that
Vertex-Point Art Gallery is NP-hard. This result extends to Vertex-

Vertex Art Gallery and Vertex-Boundary Art Gallery. Later, numer-
ous other restricted cases were shown to be NP-hard as well. For example, NP-
hardness was established for orthogonal polygons by Katz and Roisman [47] and
Schuchardt and Hecker [66]. We remark that the reductions that show that X-

Y Art Gallery (for X,Y ∈{Point, Boundary, Vertex}) is NP-hard also
imply that these cases cannot be solved in time 2o(n) under the Exponential-
Time Hypothesis (ETH).

While it is long known that even very restricted cases of Art Gallery are
NP-hard, the inclusion of X-Y Art Gallery, for X,Y ∈{Point, Boundary},
in NP remained open. (When X=Vertex, the problem is clearly in NP.) In
2017, Abrahamsen et al. [2] began to reveal the reasons behind this discrep-
ancy for the Point-Point Art Gallery problem: they showed that exact
solutions to this problem sometimes require placement of guards on points with
irrational coordinates. Shortly afterwards, they extended this discovery to prove
that Point-Point Art Gallery and Boundary-Point Art Gallery are
∃R-complete [3]. Roughly speaking, this result means that (i) any system of
polynomial equations over the real numbers can be encoded as an instance of
Point/Boundary-Point Art Gallery, and (ii) these problems are not in
the complexity class NP unless NP = ∃R.

Approximation Algorithms. The Art Gallery problem has been exten-
sively studied from the viewpoint of approximation algorithms [11,12,15,24,28,
40,46,51–53,55] (this list is not comprehensive). Most of these approximation
algorithms are based on the fact that the range space defined by the visibility
regions has bounded VC-dimension for simple polygons [44,45,69], which facili-
tates the usage of the algorithmic ideas of Clarkson [17,21]. The current state of
the art is as follows. For the Boundary-Point Art Gallery problem, King
and Kirkpatrick [52] gave a factor O(log logOPT) approximation algorithm. For
the Point-Point Art Gallery problem, Bonnet and Miltzow [15] gave a
factor O(logOPT) approximation algorithm. For X-Y Art Gallery, where
X,Y∈{Point,Boundary,Vertex}, the existence of a constant-factor approx-
imation algorithm is a longstanding open problem [38,40,41]. On the negative
side, all of these variants are known to be APX-hard [29,30]. Yet, restricted
classes of polygons, such as weakly-visible polygons [46], give rise to a PTAS.

Exact Algorithms. For an n-vertex polygon P , one can efficiently find a
set of �n

3 � vertices that guard all points within P , matching Chvátal’s upper
bound [19]. Specifically, Avis and Toussaint [8] presented an O(n log n)-time
divide-and-conquer algorithm for this task. Later, Kooshesh and Moret [54] gave
a linear-time algorithm based on Fisk’s short proof [34]. However, when we seek
an optimal solution, the situation is much more complicated. The first exact
algorithm for Point-Point Art Gallery was published in 2002 in the con-
ference version of a paper by Efrat and Har-Peled [28]. They attribute the result
to Micha Sharir. Before that time, the problem was not even known to be decid-
able. The algorithm computes a formula in the first order theory of the reals



Parameterized Analysis of Art Gallery and Terrain Guarding 21

Fig. 1. The solution size k = 1, yet the number of reflex vertices r is arbitrarily large.

corresponding to the art gallery instance (with both existential and universal
quantifiers), and employs algebraic methods such as the techniques provided by
Basu et al. [9], to decide if the formula is true. Given that Point-Point Art

Gallery is ∃R-complete [3], it might not be possible to avoid the use of this
powerful machinery. However, even for the cases where X=Vertex, the situation
is quite grim; we are not aware of exact algorithms that achieve substantially
better time complexity bounds than brute-force. Nevertheless, over the years,
exact algorithms that perform well in practice were developed. For example, see
[16,22,64].

Parameterized Complexity. Two years ago, Bonnet and Miltzow [14] showed
that Vertex-Point Art Gallery and Point-Point Art Gallery are W[1]-
hard with respect to the solution size, k. With straightforward adaptations, their
results extend to most of the known variants of the problem, including Vertex-

Vertex Art Gallery. Thus, the classic parameterization by solution size leads
to a dead-end. However, this does not rule out the existence of FPT algorithms
for non-trivial structural parametrizations.

2.2 Giannopoulos’s Parameterization and Our Contribution

In light of the W[1]-hardness result by Bonnet and Miltzow [14], Giannopou-
los [42] proposed to parameterize the Art Gallery problem by the number r
of reflex vertices of the input polygon P . Specifically, Giannopoulos [42] posed
the following open problem: “Guarding simple polygons has been recently shown
to be W[1]-hard w.r.t. the number of (vertex or edge) guards. Is the problem
FPT w.r.t. the number of reflex vertices of the polygon?” The motivation behind
this proposal is encapsulated by the following well-known proposition, see [62,
Sections 2.5-2.6].

Proposition 1 (Folklore). For any polygon P , the set of reflex vertices of P
guards the set of all points within P .

That is, the minimum number k of guards needed (for any of the cases of
Art Gallery) is upper bounded by the number of reflex vertices r. Clearly,
k can be arbitrarily smaller than r (see Fig. 1). Our main result in [5] is that
the Vertex-Vertex Art Gallery problem is FPT parameterized by r. This



22 A. Agrawal and M. Zehavi

Fig. 2. The four components of our proof.

implies that guarding the vertex set of “almost convex polygons” is easy. In par-
ticular, whenever r2 log r = O(log n), the problem is solvable in polynomial time.

Theorem 1. Vertex-Vertex Art Gallery is FPT parameterized by r, the
number of reflex vertices. In particular, it admits an algorithm with running time
rO(r2)nO(1).

Along the way to establish our main result, we prove that a constraint sat-
isfaction problem called Monotone 2-CSP is solvable in polynomial time.
This result might be of independent interest. Informally, in Monotone 2-

CSP, we are given k variables and m constraints. Each constraint is of the form
[x sign f(x′)] where x and x′ are variables, sign ∈ {≤,≥}, and f is a monotone
function. The objective is to assign an integer from {0, 1, . . . , N} to each variable
so that all of the constraints will be satisfied. For this problem, we develop a
surprisingly simple algorithm based on a reduction to 2-CNF-SAT.

Theorem 2. Monotone 2-CSP is solvable in polynomial time.

Essentially, the main technical component of our work is an exponential-time
reduction that creates an exponential (in r) number of instances of Monotone

2-CSP so that the original instance is a Yes-instance if and only if at least one
of the instances of Monotone 2-CSP is a Yes-instance. Our reduction is done
in two stages due to its structural complexity (see Fig. 2). In the first stage of
the reduction, we aim to make “guesses” that determine the relations between
the “elements” of the problem (that are the “critical” visibility relations in our
case) and thereby elucidate and further binarize them (which, in our case, is
required to impose order on guards). This part requires exponential time (given
that there are exponentially many guesses) and captures the “NP-hardness” of



Parameterized Analysis of Art Gallery and Terrain Guarding 23

the problem. Then, the second stage of the reduction is to translate each guess
into an instance of Monotone 2-CSP. This part, while requiring polynomial
time, relies on a highly non-trivial problem-specific insight—specifically, here we
need to assert that the relations considered earlier can be encoded by constraints
that are not only binary, but that the functions they involve are monotone.

3 The Terrain Guarding Problem

The study of terrains, also known as x-monotone polygonal chains, has attracted
widespread and growing interest over the last two decades, partly due to its
resemblance to the Art Gallery problem. A terrain is a graph T = (V,E)
where each vertex vi ∈ V , 1 ≤ i ≤ n, is associated with a point (xi, yi) on the
two-dimensional Euclidean plane such that x1 ≤ x2 ≤ . . . ≤ xn, and the edge-set
is E = {{vi, vi+1} : 1 ≤ i ≤ n − 1}. The set of points on the terrain includes
its vertices, and the points that lie on its edges. In the Continuous Terrain

Guarding problem, the input is a terrain T = (V,E) and a positive integer k,
and the task is to decide whether one can place guards on at most k points
on a given terrain such that each point on the terrain is seen by at least one
guard. Here, we say that a point p sees a point q if no point of the line segment
pq is strictly below T . This problem is also known as Terrain Guarding in
a continuous domain, since we are allowed to place guards on the continuous
domain of the given terrain, and we want to cover all points lying on the terrain.
Another variant of this problem is the Discrete Terrain Guarding problem
(or Terrain Gurading in a discrete domain), where the input is the same as
before, and the objective is to determine whether there is a subset S ⊆ V of size
at most k that sees V .

3.1 Known Algorithmic Works

The visibility graphs of terrains exhibit unique properties which render the com-
plexity of the Terrain Guarding problem difficult to elucidate. Some of these
properties have already been observed in 1995 by Abello et al. [1], and some of
them remain unknown despite recent advances to identify them [32]. Indeed, the
Terrain Guarding problem has been extensively studied since 1995, when an
NP-hardness proof was claimed but never completed by Chen et al. [18]. Almost
15 years later King and Krohn [50] have finally proved that it is NP-hard. Fur-
ther, this proof led to the establishment of a 2Ω(n1/3) lower bound on the time
complexity of any algorithm for this problem under the ETH [13].

Particular attention has been given to the Terrain Guarding problem
from the viewpoint of approximation algorithms. In 2005, Ben-Moshe et al. [10]
obtained the first constant-factor approximation algorithm for Discrete Ter-

rain Guarding. Afterward, the approximation factor was gradually improved
in [20,31,49], until a PTAS was proposed by Gibson et al. [43] for Discrete

Terrain Guarding. Recently, Friedrichs et al. [37] showed that even the Con-

tinuous Terrain Guarding problem admits a PTAS. From the perspective



24 A. Agrawal and M. Zehavi

of Parameterized Analysis, besides our work that will be described ahead, we are
only aware of the work of Khodakarami et al. [48], who introduced the param-
eter “the depth of the onion peeling of a terrain” and showed that Terrain

Guarding is FPT with respect to this parameter. While by now we have quite
satisfactory understanding of the approximability of Terrain Guarding, the
parameterized hardness of this problem (with respect to k) is unknown. Indeed,
King and Krohn [50] state that “the biggest remaining question regarding the
complexity of Terrain Guarding is whether or not it is FPT”.

The Orthogonal Terrain Guarding problem is a well-known special
case of Terrain Guarding, also known to be NP-hard [13]. In this problem,
the terrain is orthogonal: for each vertex vi, 2 ≤ i ≤ n−1, either both xi−1 = xi

and yi = yi+1 or both yi−1 = yi and xi = xi+1. In other words, each edge
is either a horizontal line segment or a vertical line segment, and each vertex
is incident to at most one horizontal edge and at most one vertical edge. The
Orthogonal Terrain Guarding problem has already been studied from the
perspective of algorithmic theory [27,47,57,59]. Although the PTASes designed
in [43] or [37] work for the Orthogonal Terrain Guarding problem as
well, there are a few studies on this particular variant of Terrain Guarding,
that bring out interesting structural properties specific to this variant. A prime
example is the work of Katz and Roisman [47], where they gave a relatively
simple 2-approximation algorithm for the problem of guarding all vertices of
an orthogonal terrain by vertices. Recently, Lyu and Üngör improved upon this
result by developing a linear-time 2-approximation algorithm for Orthogonal

Terrain Guarding. The papers [59] and [27] studied restrictions under which
Orthogonal Terrain Guarding can be solved in polynomial time.

3.2 Subexponential-Time Parameterized Algorithm for Terrain
Guarding and FPT Algorithm for Orthogonal Terrain Guarding

We considered the parameterized complexity of Terrain Guarding in [7].
Although we have not resolved the question of whether or not it is FPT, we
achieved two related results that are of independent interest. First, we designed
a subexponential-time algorithm for Terrain Guarding in both discrete and
continuous domains. For this purpose, we developed an nO(

√
k)-time algorithm

for Terrain Guarding in discrete domains. Friedrichs et al. [37] proved that
given an instance of Terrain Guarding in a continuous domain, one can
construct (in polynomial time) an equivalent instance of Terrain Guarding

in a discrete domain. That is, given an instance (T = (V,E), k) of Terrain

Guarding in a continuous domain, Friedrichs et al. [37] designed a discretiza-
tion procedure that outputs an instance (T ′ = (V ′, E′), k) of Terrain Guard-

ing in a discrete domain such that (T = (V,E), k) is a yes-instance if and
only if (T ′ = (V ′, E′), k) is a yes-instance (more precisely, the output refers to
an annotated version of the problem). Unfortunately, this reduction blows up
the number of vertices of the terrain to O(n3), and therefore the existence of
a subexponential-time algorithm for Terrain Guarding in discrete domains
does not imply that there exists such an algorithm for Terrain Guarding in



Parameterized Analysis of Art Gallery and Terrain Guarding 25

continuous domains. However, observe that the reduction does not change the
value of the parameter k. Thus, since we solve Terrain Guarding in discrete
domains in time nO(

√
k) rather than nO(

√
n), we are able to deduce that Terrain

Guarding in continuous domains is solvable in time nO(
√

k). Observe that, in
both discrete and continuous domains, it can be assumed that k ≤ n: to guard
all of the points that lie on a terrain, it is sufficient to place guards only on the
vertices of the terrain. Hence, when we solve Terrain Guarding in continuous
domains, we assume that k ≤ n where n is the number of vertices of the input
continuous terrain and not of the discrete terrain output by the reduction. The
next theorem summarizes our algorithmic contribution.

Theorem 3. Terrain Guarding in both discrete and continuous domains is
solvable in time nO(

√
k). Thus, it is also solvable in time nO(

√
n).

Observe that our result, Theorem 3, demonstrates an interesting dichotomy
in the complexities of Terrain Guarding and the Art Gallery problem: the
Art Gallery problem does not admit an algorithm with running time 2o(n)

under the ETH, while Terrain Guarding in both discrete and continuous
domains is solvable in time 2O(

√
n log n). When we measure the running time in

terms of both n and k, the Art Gallery problem does not admit an algo-
rithm with running time f(k) ·no(k/ log k) for any function f [14], while Terrain

Guarding in both discrete and continuous domains is solvable in time nO(
√

k).
Our algorithm is based on a suitable definition of a planar graph. A simi-

lar notion of a planar graph, which inspired our work, was previously used in
designing a local search based PTAS for the Terrain Guarding problem [43].
In particular, we aim to define a planar graph that has a small domination num-
ber and which captures both the manner in which a hypothetical solution guards
the terrain and some information on the layout of the terrain itself (see Fig. 3).
Having this planar graph, we are able to “guess” separators whose exploitation,
which involves additional guesses guided by the structure of the graph, essentially
results in a divide-and-conquer algorithm. The design of the divide-and-conquer
algorithm is non-trivial since given our guesses, it is not possible to divide the
problem into two simpler subproblems in the obvious way—that is, we cannot
divide the terrain into two disjoint subterrains that can be handled separately.
We overcome this difficulty by dividing not the terrain itself, but a set of points
of interest on the terrain.

Our second result is the proof that Orthogonal Terrain Guarding of
vertices of the orthogonal terrain with vertices is FPT with respect to the param-
eter k. More precisely, we obtain the following result.

Theorem 4. Orthogonal Terrain Guarding is solvable in time
kO(k)nO(1).

Our algorithm is based on new insights into the relations between the left
and right reflex and convex vertices. We integrate these insights in the design of
an algorithm that is based on the proof that one can ignore “exposed vertices”,
which are vertices seen by too many vertices of a specific type, and a non-trivial
branching strategy.



26 A. Agrawal and M. Zehavi

T = (V,E)

a

b
c

d
e

f

g
h

i

j

k

l

m

n

a

b

c

d

e f g h i j k l m n

PS

Fig. 3. An instance of Terrain Guarding where only designated vertices must be
guarded (in grey), and a hypothetical solution S (in black). Then, a planar graph PS is
defined by taking the edges of the terrain, and an edge between every vertex that must
be guarded and the furthest vertices in the solution to the left and right that see it.

We remark that in a recent manuscript [6], we have proved that Terrain

Guarding admits a polynomial kernel when parameterized by r.

References

1. Abello, J., Egecioglu, O., Kumar, K.: Visibility graphs of staircase polygons and the
weak bruhat order I: from visibility graphs to maximal chains. Discrete Comput.
Geom. 14(3), 331–358 (1995)

2. Abrahamsen, M., Adamaszek, A., Miltzow, T.: Irrational guards are sometimes
needed. In: 33rd International Symposium on Computational Geometry (SoCG),
pp. 3:1–3:15 (2017)

3. Abrahamsen, M., Adamaszek, A., Miltzow, T.: The art gallery problem is ∃R-
complete. In: Proceedings of the 50th Annual ACM SIGACT Symposium on The-
ory of Computing (STOC), pp. 65–73 (2018)

4. Aggarwal, A.: The art gallery theorem: its variations, applications and algorithmic
aspects. Ph.D. thesis, The Johns Hopkins University, Baltimore, Maryland (1986)

5. Agrawal, A., Knudsen, K., Daniel Lokshtanov, S.S., Zehavi, M.: The parameterized
complexity of guarding almost convex polygons. In: 36rd International Symposium
on Computational Geometry (SoCG) (2020, to appear)

6. Agrawal, A., Kolay, S., Zehavi, M.: Multivariate analysis for guarding terrains. In:
Manuscript. p. TBA (2020)

7. Ashok, P., Fomin, F.V., Kolay, S., Saurabh, S., Zehavi, M.: Exact algorithms for
terrain guarding. ACM Trans. Algorithms 14(2), 25:1–25:20 (2018)



Parameterized Analysis of Art Gallery and Terrain Guarding 27

8. Avis, D., Toussaint, G.T.: An efficient algorithm for decomposing a polygon into
star-shaped polygons. Pattern Recogn. 13(6), 395–398 (1981)

9. Basu, S., Pollack, R., Roy, M.: On the combinatorial and algebraic complexity of
quantifier elimination. J. ACM 43(6), 1002–1045 (1996)

10. Ben-Moshe, B., Katz, M.J., Mitchell, J.S.B.: A constant-factor approximation algo-
rithm for optimal 1.5d terrain guarding. SICOMP 36(6), 1631–1647 (2007)

11. Bhattacharya, P., Ghosh, S.K., Pal, S.P.: Constant approximation algorithms for
guarding simple polygons using vertex guards. CoRR/arXiv abs/1712.05492 (2017)

12. Bhattacharya, P., Ghosh, S.K., Roy, B.: Approximability of guarding weak visibility
polygons. Discrete Appl. Math. 228, 109–129 (2017)

13. Bonnet, É., Giannopoulos, P.: Orthogonal terrain guarding is NP-complete. J.
Comput. Geom. 10(2), 21–44 (2019)

14. Bonnet, É., Miltzow, T.: Parameterized hardness of art gallery problems. In: Pro-
ceedings of the 24th Annual European Symposium on Algorithms (ESA), pp. 19:1–
19:17 (2016)

15. Bonnet, É., Miltzow, T.: An approximation algorithm for the art gallery problem.
In: Proceedings of the 33rd International Symposium on Computational Geometry
(SoCG), pp. 20:1–20:15 (2017)

16. Borrmann, D., et al.: Point guards and point clouds: solving general art gallery
problems. In: Symposium on Computational Geometry (SoCG), pp. 347–348 (2013)

17. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-
dimension. Discrete Comput. Geom. 14(4), 463–479 (1995)

18. Chen, D.Z., Estivill-Castro, V., Urrutia, J.: Optimal guarding of polygons and
monotone chains. In: CCCG, pp. 133–138 (1995)

19. Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory Ser. B
18(1), 39–741 (1975)

20. Clarkson, K.L., Varadarajan, K.R.: Improved approximation algorithms for geo-
metric set cover. Discrete Comput. Geom. 37(1), 43–58 (2007)

21. Clarkson, K.L.: Algorithms for polytope covering and approximation. In: Dehne,
F., Sack, J.-R., Santoro, N., Whitesides, S. (eds.) WADS 1993. LNCS, vol. 709, pp.
246–252. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57155-8 252

22. Couto, M.C., de Rezende, P.J., de Souza, C.C.: An exact algorithm for minimizing
vertex guards on art galleries. Int. Trans. Oper. Res. 18(4), 425–448 (2011)

23. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-319-21275-3

24. Deshpande, A., Kim, T., Demaine, E.D., Sarma, S.E.: A pseudopolynomial time
O(logn)-approximation algorithm for art gallery problems. In: Dehne, F., Sack, J.-
R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 163–174. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73951-7 15

25. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999). https://doi.org/10.1007/978-1-4612-0515-9

26. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-
4471-5559-1

27. Durocher, S., Li, P.C., Mehrabi, S.: Guarding orthogonal terrains. In: Proceedings
of the 27th Canadian Conference on Computational Geometry, CCCG (2015)

28. Efrat, A., Har-Peled, S.: Guarding galleries and terrains. Inf. Process. Lett. 100(6),
238–245 (2006)

29. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability of some art gallery
problems. In: Proceedings of the 10th Canadian Conference on Computational
Geometry (CCCG) (1998)

https://doi.org/10.1007/3-540-57155-8_252
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-540-73951-7_15
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1


28 A. Agrawal and M. Zehavi

30. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding
polygons and terrains. Algorithmica 31(1), 79–113 (2001)

31. Elbassioni, M.K., Krohn, E., Matijevic, D., Mestre, J., Severdija, D.: Improved
approximations for guarding 1.5-dimensional terrains. Algorithmica 60(2), 451–
463 (2011)

32. Evans, W., Saeedi, N.: On characterizing terrain visibility graphs. J. Comput.
Geom. 6(1), 108–141 (2015)

33. Fellows, M.R.: The lost continent of polynomial time: preprocessing and kerneliza-
tion. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169,
pp. 276–277. Springer, Heidelberg (2006). https://doi.org/10.1007/11847250 25

34. Fisk, S.: A short proof of Chvátal’s watchman theorem. J. Comb. Theory Ser. B
24(3), 374 (1978)

35. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series, Springer, Heidelberg (2006). https://doi.org/10.
1007/3-540-29953-X

36. Fomin, F., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of
Parameterized Preprocessing. Cambridge University Press, Cambridge (2018)

37. Friedrichs, S., Hemmer, M., King, J., Schmidt, C.: The continuous 1.5D terrain
guarding problem: discretization, optimal solutions, and PTAS. J. Comput. Geom.
7(1), 256–284 (2016)

38. Ghosh, S.K.: Approximation algorithms for art gallery problems. In: Canadian
Information Processing Society Congress, pp. 429–434 (1987)

39. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, Cam-
bridge (2007)

40. Ghosh, S.K.: Approximation algorithms for art gallery problems in polygons. Dis-
crete Appl. Math. 158(6), 718–722 (2010)

41. Ghosh, S.K., Goswami, P.P.: Unsolved problems in visibility graphs of points, seg-
ments, and polygons. ACM Comput. Surv. 46(2), 22:1–22:29 (2013)

42. Giannopoulos, P.: Open problems: guarding problems. In: Lorentz Workshop on
Fixed-Parameter Computational Geometry, Leiden, the Netherlands, p. 12 (2016)

43. Gibson, M., Kanade, G., Krohn, E., Varadarajan, K.: Guarding terrains via local
search. J. Comput. Geom. 5(1), 168–178 (2014)

44. Gilbers, A., Klein, R.: A new upper bound for the VC-dimension of visibility
regions. Comput. Geom. 47(1), 61–74 (2014)

45. Kalai, G., Matoušek, J.: Guarding galleries where every point sees a large area.
Israel J. Math. 101(1), 125–139 (1997)

46. Katz, M.J.: A PTAS for vertex guarding weakly-visible polygons - an extended
abstract. CoRR abs/1803.02160 (2018)

47. Katz, M.J., Roisman, G.S.: On guarding the vertices of rectilinear domains. Com-
put. Geom. 39(3), 219–228 (2008)

48. Khodakarami, F., Didehvar, F., Mohades, A.: A fixed-parameter algorithm for
guarding 1.5D terrains. Theor. Comput. Sci. 595, 130–142 (2015)

49. King, J.: A 4-approximation algorithm for guarding 1.5-dimensional terrains. In:
Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 629–
640. Springer, Heidelberg (2006). https://doi.org/10.1007/11682462 58

50. King, J., Krohn, E.: Terrain guarding is NP-hard. SICOMP 40(5), 1316–1339
(2011)

51. King, J.: Fast vertex guarding for polygons with and without holes. Comput. Geom.
46(3), 219–231 (2013)

52. King, J., Kirkpatrick, D.G.: Improved approximation for guarding simple galleries
from the perimeter. Discrete Comput. Geom. 46(2), 252–269 (2011)

https://doi.org/10.1007/11847250_25
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/11682462_58


Parameterized Analysis of Art Gallery and Terrain Guarding 29

53. Kirkpatrick, D.G.: An O(log log OPT)-approximation algorithm for multi-guarding
galleries. Discrete Comput. Geom. 53(2), 327–343 (2015)

54. Kooshesh, A.A., Moret, B.M.E.: Three-coloring the vertices of a triangulated sim-
ple polygon. Pattern Recogn. 25(4), 443 (1992)

55. Krohn, E., Nilsson, B.J.: Approximate guarding of monotone and rectilinear poly-
gons. Algorithmica 66(3), 564–594 (2013)

56. Lee, D., Lin, A.: Computational complexity of art gallery problems. IEEE Trans.
Inf. Theory 32(2), 276–282 (1986)

57. Lyu, Y., Üngör, A.: A fast 2-approximation algorithm for guarding orthogonal ter-
rains. In: Proceedings of the 28th Canadian Conference on Computational Geom-
etry, CCCG. pp. 161–167 (2016)

58. Marx, D.: What’s next? Future directions in parameterized complexity. In: Bod-
laender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) The Multivariate Algorith-
mic Revolution and Beyond. LNCS, vol. 7370, pp. 469–496. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30891-8 20

59. Mehrabi, S.: Guarding the vertices of an orthogonal terrain using vertex guards.
arXiv:1512.08292 (2015)

60. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms, Oxford Lecture Series
in Mathematics and its Applications, vol. 31. Oxford University Press, Oxford
(2006)

61. Niedermeier, R.: Reflections on multivariate algorithmics and problem parame-
terization. In: Proceedings of the 27th International Symposium on Theoretical
Aspects of Computer Science (STACS), pp. 17–32 (2010)

62. O’Rourke, J.: Art Gallery Theorems and Algorithms, vol. 57. Oxford University
Press, Oxford (1987)

63. O’Rourke, J., Supowit, K.J.: Some NP-hard polygon decomposition problems.
IEEE Trans. Inf. Theory 29(2), 181–189 (1983)

64. de Rezende, P.J., de Souza, C.C., Friedrichs, S., Hemmer, M., Kröller, A., Tozoni,
D.C.: Engineering art galleries. In: Kliemann, L., Sanders, P. (eds.) Algorithm
Engineering. LNCS, vol. 9220, pp. 379–417. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49487-6 12

65. van Rooij, I., Blokpoel, M., Kwisthout, J., Wareham, T.: Cognition and Intractabil-
ity: A Guide to Classical and Parameterized Complexity Analysis. Cambridge Uni-
versity Press, Cambridge (2019)

66. Schuchardt, D., Hecker, H.D.: Two NP-hard art-gallery problems for ortho-
polygons. Math. Logic Q. 41(2), 261–267 (1995)

67. Shermer, T.C.: Recent results in art galleries (geometry). Proc. IEEE 80(9), 1384–
1399 (1992)

68. Urrutia, J.: Art gallery and illumination problems. Handb. Comput. Geom. 1(1),
973–1027 (2000)

69. Valtr, P.: Guarding galleries where no point sees a small area. Israel J. Math.
104(1), 1–16 (1998)

https://doi.org/10.1007/978-3-642-30891-8_20
http://arxiv.org/abs/1512.08292
https://doi.org/10.1007/978-3-319-49487-6_12
https://doi.org/10.1007/978-3-319-49487-6_12


Central Positions in Social Networks

Ulrik Brandes(B)

Social Networks Lab, ETH Zürich, Zürich, Switzerland
ubrandes@ethz.ch

Abstract. This contribution is an overview of our recent work on the
concept of centrality in networks. Instead of proposing new centrality
indices, providing faster algorithms, or presenting new rules for when an
index can be classified as a centrality, this research shifts the focus to
the more elementary question whether a node is in a more central posi-
tion than another. Viewing networks as data on overlapping dyads, and
defining the position of a node as the whole of its relationships to the
rest of the network, we obtain a very general procedure for doing cen-
trality analysis; not only on social networks but networks from all kinds
of domains. Our framework further suggests a variety of computational
challenges.

Keywords: Data science · Social networks · Centrality · Algorithmics

1 Introduction

Today, the study of social networks [7,22,29] is a major application domain
of network science [12,26]. It has a long tradition, though, and developed into
an established field decades before network science itself [18]. Unsurprisingly,
many methods now characteristic of network science have at least one strand of
development in the context of social networks.

The strand I will focus on for this contribution is “[o]ne of the primary uses
of graph theory in social network analysis,” [34] namely the identification of
the “most important” actors. Almost exclusively the tool used for this task are
centrality indices [17,24], i.e., graph invariants mapping each vertex to a (usually
non-negative) real number.

Consider, for instance, closeness centrality, which for a connected simple
undirected graph G = (V,E) and any i ∈ V may be defined as

cC(i) =
1

∑
t∈V dist(i, t)

,

where n is the number of vertices and dist : V × V → N0 denotes the shortest-
path distances in the graph. A vertex is thus central to the extent that it is close
to the others.

Closeness and maybe a half-dozen other centrality indices are routinely
applied to graphs representing networks from diverse application domains, but
with little regard for the specific type of relation defining them.
c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 30–45, 2020.
https://doi.org/10.1007/978-3-030-50026-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_3&domain=pdf
http://orcid.org/0000-0002-1520-0430
https://doi.org/10.1007/978-3-030-50026-9_3


Central Positions in Social Networks 31

Justifications for the use of a particular centrality index grounded in theory
are difficult to come by. Indices are selected based on precedence or ascribed
high-level features, and rarely is it demonstrated that they actually operational-
ize the intended concept. To see why such justifications may be called for, con-
sider the following assumptions that are made implicitly when applying closeness
centrality:

– indirect relation: The focal vertex i is related to other vertices t by shortest-
path distance. The assumption that this notion of distance is more appropri-
ate than, say, the expected hitting time of a simple random walk, is rarely
stated, let alone tested. Does each additional edge that is needed for reacha-
bility reduce the quality of a relationship, and to what degree?

– homogeneity: Closeness is a graph invariant because all targets t contribute in
the same way. No distinction is made with respect to the actors represented
by target vertices, and those involved in shortest paths. Does it not matter
that specific vertices are closer or farther away?

– additivity: Not only is distance the sole structural criterion determining cen-
trality, but distances are aggregated by summation. This suggests that they
are interpreted as being measured on at least an interval scale. Is there a
trade-off between the number of targets at a certain distance and the value
of said distance?

– transfer function: The total distance is inverted to let high centrality scores be
associated with short distances. The choice of this non-linear order-reversing
transformation has implications for the subsequent use of closeness central-
ity scores in correlations and other statistics. Is there a decreasing marginal
influence of distant vertices, and what is its shape?

In addition to these issues inherent in the definition, it is tempting to treat close-
ness as a quantitative variable for which statistics involving differences and ratios
are meaningful. Pearson correlation and size normalization are but the most
straightforward examples of subsequent uses that would benefit from increased
justifiability.

The lack of theoretical grounding may ostensibly be a problem of the social
sciences. For a computer science audience it is rather convenient to have a given
list of indices to focus on. It certainly removes the burden of arguing for the rele-
vance of a computational problem associated with any such index. On the other
hand, it also limits the scope of problems that can be identified as potentially
interesting. The usual challenges such as efficient algorithms, approximations,
bounds, and top-k queries, and the variations obtained by considering restric-
tions to graph classes, dynamics, or computing environments, are considered
largely in association with only a few well-known indices that are based on
shortest paths, random walks, and matrix expressions [19].

The aim for this contribution is to promote a more principled view of cen-
trality that nevertheless opens up a wider and more diverse range of compu-
tational challenges to address. Moving beyond network analysis as an applied
form of graph theory, we position network science within data science. In the next
section it is argued that the fundamental distinction between network science



32 U. Brandes

and other forms of data science lies in the type of variables considered rather
than an underlying theory or application domain. A formal notion of positions
in networks is introduced in Sect. 3 and serves as the basis for a novel conceptu-
alization of centrality in Sect. 4. As a result, many new computational challenges
arise, some of which are sketched in Sect. 5. We conclude with a summary and
some broader implications in Sect. 6.

2 Network Data

In the literature, the notion of a network is often conflated with that of a graph.
Sometimes networks are defined as graphs with vertex and/or edge attributes,
other times a distinction is made between a network as the empirical phenomenon
and the graph as its mathematical representation.

For the purpose of this paper, the distinction between empirical networks
and mathematical models is secondary. We do, however, find it important to
distinguish formally between networks and graphs, not least because it facilitates
a broader view of the problems relevant in network analysis.

2.1 Variables

Network science can be viewed as a particular kind of data science. In this
perspective, network data are the values of special types of variables. We consider
a variable x : S → X to be a mapping that associates to entities from a (usually
finite) domain S with values from an (often numerical) range X . Depending on
the application area, variables may be referred to as attributes or features, and
we often write variables in vector notation x ∈ X S , so that xi = x(i) for i ∈ S.

The range, in general, is an algebraic structure corresponding to the level
of measurement. Common ranges include X = {0, 1} for binary data, a set of
labels for categorical data, ranks for ordinal data, and real values X = R for
quantitative data. While matrices, time intervals, distributions, and other more
complicated data are possible, we are going to assume quantitative data for
simplicity.

The domain, on the other hand, is usually a set of atomic entities that are
comparable with respect to the characteristics expressed in the variables. The
data most commonly encountered in empirical research can be organized in s ×
r-tables, were rows are indexed by the entities i = 1, . . . , s that make up a
domain S, and the columns j = 1, . . . , r contain values of r variables x(j) : S →
X (j) defined on the shared domain S, but with potentially different ranges X (j).

2.2 Network Variables

A special situation occurs when the ranges do not differ because the entries of
multiple variables defined on the same domain represent different but comparable
properties of the entities. Examples include discrete time series (the same prop-
erty at different points in time), characteristic vectors (the presence or absence



Central Positions in Social Networks 33

of different features), and co-occurrences (the number of joint observations with
different other entities). Note that especially in the last case, rows and columns
may even be indexed by the same entities.

The comparability of associations can be made explicit by combining a num-
ber of related variables into a single one defined on pairs of entities, or dyads,
N × A. A variable x : (N × A) → X thus represents relational data in which
entities i ∈ N have a number of attributes j ∈ A measured on a common scale X .

To allow for the exclusion of ill-defined combinations and unavailable entries,
we define networks to be variables x : D → X in which dyads D ⊆ (N × A). We
refer to N as the set of nodes and A as the set of affiliations but note that they
need not be disjoint. The only distinction between networks and the standard
variables is therefore the incidence structure on their domain.

As examples, consider two straightfoward kinds of binary network variables
common in social network analysis. In affiliation networks, nodes N represent
individuals, affiliations A represent organizations; because N ∩A = ∅, affiliation
networks are two-mode networks. In friendship networks, nodes and affiliations
N = A represent the same set of individuals, and the domain of dyads D ⊆
(N × A) \ diag(N ) does not include the diagonal diag(N ) = {(i, i) : i ∈ N},
because friendship of an individual with itself is not defined. Because the same
entities are represented both by nodes and affiliations, friendship networks are
one-mode networks.

2.3 Graph Representations

Techniques for the analysis of networks are often formulated more conveniently
in terms of matrices or graphs. A binary network variable x : D → {0, 1} can
be represented as a simple undirected graph G(x) in the obvious way if it is
symmetric, i.e., xij = xji for all (i, j) ∈ D, and D = (N × A) \ diag(N ). Other
representations are more involved and may require the introduction of special
values to distinguish absent relationships (say, of value zero) from unobserved
or impossible ones (when a pair is not in the domain).

For ease of exposition, we generally assume networks of type x : D → R≥0

to be (almost) totally defined with D = (N ×N ) \ diag(N ) or D = (N ×N ), so
that there is a one-to-one mapping to weighted directed graphs G(x) = (V,E;w),
where V = N , E = {(i, j) ∈ D : xij > 0}, and w : E → R>0) with w(i, j) = xij .

3 Positions

As outlined in the previous section, the dyad is the unit of observation in network
science. The unit of analysis is more commonly the node, at least for social
networks and, by definition, for centrality. Since nodes are involved in multiple
dyads, network analysis can be viewed as a form of multilevel analysis, in which
nodes are aggregations of dyads.

Borgatti, Everett, and Johnson [7] state that “[c]entrality is a property of a
nodes’ position in a network.” While the notion of position is often used rather



34 U. Brandes

Fig. 1. A network x (gray) and the position (black) of vertex i in the transformed
network dist(x) based on shortest-path distances.

metaphorically, a formal definition may serve as a pivotal abstraction for most
of network analysis [8].

3.1 Derived Relations

We want to define a node’s position so that it characterizes how that node
relates to all the other nodes in the network. It would be straightforward to
conceive of a network position as the data associated with the dyads containing
that node. Analytic concepts such centrality indices, however, generally consider
more than just the dyads a node is involved in directly. Fortunately, it turns
out that they can be reformulated such that, after explicitly establishing a new,
derived, relation, only the dyads involving the focal node are used.

Take, for example, closeness centrality from above. After determining a new
network variable dist(x) from shortest-path distances, the closeness of a node i

Table 1. Centrality indices with derived relations they can be based on. While σ(s, t)
denotes the number of shortest (s, t)-paths, σ(s, t|i) is restricted to those that use i

as an intermediary, and δ(s, i) =
∑

t∈V
σ(s,t|i)
σ(s,t)

. Scalar λ is the principal eigenvalue of

the graph’s adjacency matrix, and ω(s, t) is the limit, for k → ∞, of the fraction of
(s, t)-walks among all walks of length k.

Centrality Definition Derived relation

Outdegree cD(i) =
∑

t∈V xit Identity transform

Closeness cC(i) =
(∑

t∈V dist(i, t)
)−1

Shortest-path distances

Betweenness cB(i) =
∑

s,t∈V
σ(s,t|i)
σ(s,t)

=
∑

s∈V δ(s, i) Dependency of s on i

Eigenvector cE(i) = λ−1 ∑
t∈V cE(t) =

∑
t∈V ω(i, t) Limit share of walks



Central Positions in Social Networks 35

is a function only of those dyads that are incident to i. This is illustrated in
Fig. 1 and does not only hold for closeness but in fact for all commonly used
centrality indices. Table 1 gives a few examples of centrality indices and derived
dyadic relations they can be expressed in.

We posit that centrality should be considered separately from the derived
relations that, as of today, are baked into the calculations of indices. Studying
derived relations independently from how their values are aggregated not only
suggests many more notions of centrality such as closeness-type centralities based
on various properties of random walks [10] but also opens up ways of testing their
appropriateness in specific application contexts.

3.2 Network Positions

Definition 1. Given a network x : D → X with D ⊆ (N × A), the position of
i ∈ N in x, denoted pos(i|x), is defined as the restriction of x to D(i) = {(s, t) ∈
D : s = i or t = i}.

In the simplest case, positions correspond to neighborhoods in the graph re-
presentation of a network. Since centralities typically depend on network struc-
ture more globally, we will be interested more generally in positions pos(i|y)
in transformed networks y = τ(x) that result from a derived relations such as
various notions of distance, walk counts, connectivity, dependency, and so on.
Other examples include transformations that normalize dyad values or evalu-
ate the prevalence of relationships in substructures such as triads [27]. Positions
generalize to multiple relations pos(i|y1, . . . , yr) and may be augmented further
with attributes of nodes and affiliations.

Network positions thus integrate the features that characterize how a node
relates to the rest of the network. Since the specific set of relations, attributes,
and selections may vary, we will use i to denote the position of a node i when
the defining features are clear from context, or irrelevant. Being reminiscent of
a conventional node drawing, it symbolizes the fact that we consider a node i in
the context of the network it is located in.

The concept of position just presented is novel only in as much as it unifies
and extends many previous ones from the literature [35]. For instance, it detaches
Burt’s notion of position [13] from what he calls individual distances and equiv-
alence of positions, and it is more fine-grained than notions defining positions as
sets of nodes that relate to others in similar ways [4,14,16]; with corresponding
comparison operators the latter are retained as equivalence classes of individual
node positions.

Finally, it is worth pointing out that, being feature vectors in a possibly trans-
formed network, positions also bridge between network analysis and machine
learning [21].

4 Centrality

In the words of the late Lin Freeman, “[t]here is certainly no unanimity on exactly
what centrality is or its conceptual foundations, and there is very little agreement



36 U. Brandes

Fig. 2. Neigborhood inclusion: the closed neighborhood of j contains the (open) neigh-
borhood of i, N(i) ⊆ N [j]. Gray edges may or may not be present.

on the proper procedure for its measurement.” [17] Despite the decades since he
wrote this sentence, it still rings true today.

Attempts to bring order to the field range from the conceptual, where the
focus is on the relation between indices and the mechanisms they model [3,6],
to the axiomatic, where classes of indices are characterized by formal properties
they exhibit [1,2,30].

We here follow a different approach to operationalize the notion of centrality.
It is based on the observation that indices traditionally considered as some form
of centrality have a non-trivial common ground in neighborhood-inclusion [32]
and that the generalization from neighborhoods to positions offers more control
over properties of centrality concepts than any family of indices can provide.

In the following, we will motivate this approach from first principles.

4.1 Neighborhood Inclusion

Networks are said to exhibit a core-periphery structure, if their nodes can be
partitioned into a densely connected core and a loosely connected periphery [5].

The ideal form of a core-periphery structure is encountered in a simple undi-
rected graph G = (V,E), if there exists a bipartition V = C � P such that the
vertex-induced subgraphs G[C] and G[P ] are a clique and an independent set,
respectively. In other words, when G is a split graph. Note that the bipartition
V = C � P discriminates between central and peripheral vertices but can not
differentiate vertices in the same group.

Denote by N(i) the neighbors of a vertex i ∈ V , and let N [i] = N(i)∪{i} be
its closed neighborhood. Then, vertices j ∈ C satisfy N(i) ⊆ N [j] for all i ∈ P ,
i.e., the neighborhood of a central vertex includes all neighbors of a peripheral
vertex except for itself, if applicable. This is illustrated in Fig. 2. Since it is
the idealized expression of the sentiment that a node should be more central
if it is better connected, and therefore commonly implied by axiomatizations
of centrality indices, we use the neighborhood-inclusion property to refine the
distinction between more or less central vertices beyond those in the core and
those in the periphery.

Neighborhood-inclusion yields a preorder (a binary relation that is reflexive
and transitive but not necessarily total or antisymmetric) on the vertices of a
graph, sometimes referred to as the vicinal preorder. We here prefer the term



Central Positions in Social Networks 37

N+(i) ⊇ N+(j) N+(i) ⊆ N+(j) N+(i) ⊆ N+(j) N+(i) ⊆ N+(j)
N−(i) ⊆ N−(j) N−(i) ⊆ N−(j) N−(i) ⊆ N−(j) N−(i) ⊇ N−(j)
hierarchical radial medial radial hierarchical
(upwards) (inwards) (outwards) (downwards)

Fig. 3. Neighborhood-inclusion criteria for directed graphs.

partial ranking over preorder. A total preorder, or simply ranking, is also called
a weak order.

Threshold graphs are a subclass of split graphs also known as nested split
graphs [25]. One of the many equivalent definitions requires that their neighbor-
hood-inclusion preorder is total, i.e., the vertices can be fully ranked.

In the same way that split graphs represent ideal core-periphery structures,
their specialization to threshold graphs thus yields ideal centrality rankings.
These rankings are not only consistent with the idea of centrality but indeed
preserved by all common centrality indices [32]. The proof is based on the obser-
vation that neighborhood inclusion is preserved for a very general class of indirect
relations as discussed in the previous section.

Threshold graphs generalize star graphs K1,n−1, the only class of graphs for
which there has previously been a unanimous interpretation of centrality: “A
person located in the center of a star is universally assumed to be structurally
more central than any other person in any other position in any other network
of similar size.” [17]

Proposition 1. If a network can be represented as a simple undirected graph,
every centrality ranking preserves the neighborhood-inclusion preorder.

Extension of this requirement to networks represented by directed graphs
is not canonical and therefore suggests a distinction between different kinds of
centrality. Let G = (V,E) be a simple directed graph and denote by N−(i) and
N+(i) the in- and out-neighborhood of i ∈ V . The question is how to generalize
neighborhood inclusion when there are two types of neighborhoods?

Borgatti and Everett [6] propose a conceptual distinction of radial and medial
centralities based on how the indices are defined. We use combinations of in- and
out-neighborhood inclusion to formalize their idea using only structure, which
in turn leads naturally to a third category that we term hierarchical. The labels
are assigned based on the following combinations of criteria:

– radial: nodes are more connected in a chosen direction, and the other direction
is ignored

– medial: nodes are more connected with respect to both incoming and outgoing
relationships



38 U. Brandes

– hierarchical: nodes are more connected in a chosen direction and less con-
strained in the opposite

The formalizations in terms of neighborhoods are given and illustrated in Fig. 3.
Note that, for conceptual reasons beyond the scope of this paper, the conditions
are stated in terms of open neighborhoods only. By definition, hierarchical cen-
tralities are restrictions of radial centralities, and centralities that are both in-
and out-radial are also medial. Medial centralities, however, need not be in- or
out-radial.

4.2 Positional Dominance

Any centrality index c : N → R≥0 implies a ranking of the nodes via i ≤ j ⇐⇒
c(i) ≤ c(j) for all i, j ∈ N . Each of the neighborhood-inclusion conditions from
the previous subsection implies a partial ranking of positions, and we propose
to consider an index a centrality only if its induced node ranking preserves the
partial ranking of their positions.

For a binary network x, let G(x) = (V,E) be its graph representation and
let i denote the positions of all nodes i ∈ N in x with respect to the adjacency
relation only, i.e., their neighborhoods. If ≤ is a partial ranking of positions
defined by neighborhood inclusion or one of its extensions to directed graphs
from Fig. 3, then the above requirement for c : N → R≥0 to be a centrality
index translates to

i ≤ j =⇒ c(i) ≤ c(j) for all i, j ∈ N .

We refer to such partial rankings of positions as positional dominance [8,11].
It formalizes the idea that, in some specific sense, the position of one node is
no better than that of another node. Instantiations of positional dominance for
different positions and notions of “better” are the key instrument to construct
interpretable centrality rankings.

Generalization of positional dominance to non-binary networks is immedi-
ate when expressing neighborhood inclusion as one would for the characteristic
vectors of the vertex sets N(i). The radial centrality condition for outgoing rela-
tionships reads

i ≤ j if xit ≤ xjt for all (i, t) ∈ D with xit �= 0

where, in particular, the required dyads (j, t) ∈ D. It does not make a difference
what values make up the range X , so long as there is an ordering ≤ on X and
an element 0 ∈ X signifying the absence of a relationship.

It is important to realize that further generalizations are obtained from
replacing the observed network x with a transformed network τ(x). This way, any
assumptions about derived relations that may be implicit in a centrality index
are made explicit and can be questioned separately from other assumptions.



Central Positions in Social Networks 39

Positional dominance serves to formulate restrictions on centrality rankings.
By allowing for arbitrary ordered value ranges and for moving between different
kinds of relations derived from an observed network it provides many degrees
of freedom that can be used to adapt the formulation to specific domains and
theories.

Positional domiance turns the question which centrality index to use around.
Instead of selecting an index, and thus jumping to a conclusion, analysts hypoth-
esize which features make a node central and test consistency of the partial
rankings obtained with whatever the centrality was supposed to represent.

4.3 Homogeneity

The main limitation of positional dominance as defined above is the strictness of
its requirements. Even with the possibility of defining positions in transformed
networks it is still too close to the idealized situation of neighborhood inclu-
sion. In any given network, observed or transformed, few neighborhoods will
actually be comparable, so that the resulting partial rankings of positions are
sparse. Therefore, they most often contain too little information about relative
centrality.

This happens because, to occupy a superior position, a node j has to match
every relationship xit of i by an equally strong relationship with that very same
third node t.

All standard centrality indices are invariant under automorphisms. Vertices
receive higher scores if their relationships as a whole are superior, independent of
the particular target vertices. This suggest to generalize positional dominance by
allowing to match a relationship to one node with an equally strong relationship
to another node.

As an example, we define the dominance relation

i � j if
{

there exists a permutation π : A → A such that
xit ≤ xjπ(t) for all (i, t) ∈ D with xit �= 0

so that any neighbor of i can be substituted by some neighbor of j. The level
of homogeneity introduced can be controlled, for instance, by restricting the
permutations that are allowed, or by generalizing them to arbitrary substitution
mappings.

Allowing substitutions in the comparison of neighborhoods provides expres-
sive means to generalize positional dominance and take into account domain-
specific information and additional data. For instance, substitutions could be
allowed only with neighbors that carry similar attributes or rank higher in some
property.

4.4 Application

Centrality indices are often used as descriptives, where the centrality of actors
is defined by the index, not uncovered. In other cases, centrality indices are



40 U. Brandes

(a) Marriage network among families
in 15th century Florence [28]. Node and
label size indicate family wealth.

(b) Positional dominance based on ad-
jacency (same as neighborhood inclu-
sion). Edges points from the dominated
to the dominating node.

(c) Hasse diagram of
positional dominance
w.r.t. to adjacency and
substitutable neighbors
(hence same as degree
equivalence). Vertical
placement according to
degree.

(d) Hasse diagram of posi-
tional dominance w.r.t. to
adjacency and neighbors
substitutable for wealthier
ones. Vertical placement
only to ensure upward edges.

(e) Hasse diagram of posi-
tional dominance w.r.t. to
shortest-path distances and
homogeneity. Vertical place-
ment according to closeness
centrality, which preserves
the partial ranking since no
edge points downward.

Fig. 4. Different positional dominance relations on the same network. One argument
for the rise of the Medici family is that their marriage and business relationships put
them in a superior position compared to the richer Strozzi family.

considered as a variable that, for instance, is entered in a regression or is corre-
lated with another variable.



Central Positions in Social Networks 41

In the absence of theoretical reasons for choosing a specific index, it is difficult
to know whether other (existing or even unknown) indices would yield preferable
outcomes.

With positional dominance, the approach changes from the ground up. Start-
ing with the most exclusive definition, and thus the sparsest ranking, require-
ments for dominance are relaxed by explicitly introducing further assumptions
until the ranking is sufficiently dense to draw a conclusion, or no further assump-
tions creating additional dominance relationships are granted.

Figure 4 shows a small example in which a given network is represented by
a simple undirected graph with an additional vertex attribute. Positional dom-
inance with respect to adjacency yields few relationships, and by introducing
homogeneity (full substitutability) we are overshooting: distinguishing between
a marital tie or not (adjacency) and not distinguishing who it is with (homogene-
ity) leads to a coarse ranked partition. When we distinguish marriage partners
by wealth so that neighbors may be substituted only for richer ones, we find,
for example, that every family the Strozzi have a marriage relationship with
can still be matched by an equally wealthy family married to the Medici. If,
instead, we distinguish non-neighbors by their network distance, i.e., positions
in a transformed network, the assumption of homogeneity does not lead to large
indifference classes, because the relative position of two families where, say, one
has more direct ties and the other has more at distance two remains undecided.
Additional assumptions such as additivity and the inverse transfer function can
resolve the remaining incomparabilities, but only if needed.

The number and combination of assumptions for which there is a theoretical
justification can thus be controlled, unlike in a centrality index where adaptation
is generally difficult because of side effects. Moreover, it becomes possible to
prove statements such as bounds or impossibility results that apply not to one
index but more generally to all indices that respect a given dominance relation
on positions.

5 Computational Challenges

Replacing centrality indices by notions of positional dominance creates compu-
tational challenges in a broad range of topics.

It is worth noting upfront that the range X of network variables is not
restricted to any particular type of values. The data associated with dyads may
well consist of life-time intervals (e.g., in phone-call data), time-dependent func-
tions (e.g., in traffic networks), differential equations (e.g., in biological net-
works), or various kinds of multivariate data (e.g., in economic networks). In
many cases, the increase in complexity also necessitates different algorithmic
techniques.

The following is just a selection of problem domains, many different and more
detailed ones are readily found.



42 U. Brandes

5.1 Transformations

If the network is transformed – which is rather the rule than the excep-
tion because relations of interest are often unobservable – the network usually
becomes more dense. Transitive derived relations such as reachability, distance,
connectivity, and so on are prone to create memory problems. Challenges such
as vertex labeling and sketches are commonly studied for relations based on
reachability or distance [33]. For many other derived relations, much less seems
to be known about oracles, implicit representations, lazy evaluation, and other
density mitigation strategies.

Each network transformation represents its own underlying mechanism, yet
little is known about the actual differences between the outcomes, especially
when determined on restricted graph classes. The dyadic dependency relation of
betweenness centrality, for instance, also underlies a form of closeness and thus
suggests an alternative generalization to weighted graphs [9].

In which generalizations of threshold graphs do certain families of derived
relations yield the same ranking? What are the minimum conditions under which
they start to differ?

5.2 Dominance

Determining the partial rankings of positional dominance is a computational
challenge in itself. There are straightforward algorithms for positions based on
adjacency [11] but can properties of derived relations and different degrees of
homogeneity be exploited to obtain faster algorithms? What if only the transitive
skeleton is sought?

As a form of sensitivity analysis, it would be interesting to study graph
modification problems in which the utility of, say, an edge deletion or addition
lies in the number of additional dominance relationships created. How far is a
network from an ideal, fully ranked structure? Edit distance to a threshold graph
is already intractable [15] but what about other distances such as edge rotation
distance?

Our examples in Sect. 3, even under homogeneity assumptions, were focused
on element-wise dominance. Alternatives include partial aggregations [23] and
stochastic dominance. If the inequalities used to define dominance are violated
only just so, approximate notions of dominance with tolerance thresholds may
be useful, especially for uncertain data.

5.3 Rankings

Since partial rankings tend to be sparse at least initially, the space of possi-
ble completions (weak order extensions) is large. Which assumptions lead to a
maximum size reduction? What are appropriate probability models and what is
the significance of any particular ranking in that space? For a uniform random
model, expected ranks of nodes [31] can be determined by enumeration [20], but
are there also more efficient ways?



Central Positions in Social Networks 43

Problems of ranking similarity and rank aggregation are relevant for the
comparison of partial rankings with centrality indices and other variables, as are
bounds on the number of inversions when extending a partial ranking.

6 Conclusions

The unifying idea underlying centrality indices is that a node is more central if it
has more, better relationships. This is evidenced in verbal descriptions [17] but
also in typical axioms [2,30] and, most importantly, the property of neighborhood
inclusion shared by all standard centrality indices [32].

Our novel approach based on positional dominance takes the ideal but rare
case of neighborhood inclusion as a starting point to systematically develop more
and more general pairwise ranking criteria.

The study of centrality thus shifts from an index-based, one-shot approach
to a sequence of smaller, more controllable steps: network transformation, posi-
tions, homogeneity, dominance, and, possibly, quantification. Since these steps
are conceptually distinct, they allow for modular theorizing and testing.

Positions are a concept of independent interest because they encapsulate
the relationships of nodes to the rest of the network, and may therefore enable
generalization and restructuring of more forms of analysis such as roles (similar
positions) and community structures (close positions).

The consequences for mathematical and computational researchers are two-
fold. Firstly, relations between positions suggest the formal study of novel vari-
ants of network-analytic concepts without requiring familiarity with potential
application domains. Secondly, they involve a more diverse selection of mathe-
matical concepts and may therefore appeal to a broader audience.

References

1. Bloch, F., Jackson, M.O., Tebaldi, P.: Centrality measures in networks. SSRN
Electron. J. (2019). https://doi.org/10.2139/ssrn.2749124

2. Boldi, P., Vigna, S.: Axioms for centrality. Internet Math. 10(3–4), 222–262 (2014).
https://doi.org/10.1080/15427951.2013.865686

3. Borgatti, S.P.: Centrality and network flow. Soc. Netw. 27(1), 55–71 (2005).
https://doi.org/10.1016/j.socnet.2004.11.008

4. Borgatti, S.P., Everett, M.G.: Notions of position in social network analysis. Sociol.
Methodol. 22, 1–35 (1992). https://doi.org/10.2307/270991

5. Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. Soc. Netw.
21(4), 375–395 (1999). https://doi.org/10.1016/S0378-8733(99)00019-2

6. Borgatti, S.P., Everett, M.G.: A graph-theoretic perspective on centrality. Soc.
Netw. 28(4), 466–484 (2006). https://doi.org/10.1016/j.socnet.2005.11.005

7. Borgatti, S.P., Everett, M.G., Johnson, J.C.: Analyzing Social Networks. Sage,
Thousand Oaks (2013)

8. Brandes, U.: Network positions. Methodol. Innov. 9, 1–19 (2016). https://doi.org/
10.1177/2059799116630650

https://doi.org/10.2139/ssrn.2749124
https://doi.org/10.1080/15427951.2013.865686
https://doi.org/10.1016/j.socnet.2004.11.008
https://doi.org/10.2307/270991
https://doi.org/10.1016/S0378-8733(99)00019-2
https://doi.org/10.1016/j.socnet.2005.11.005
https://doi.org/10.1177/2059799116630650
https://doi.org/10.1177/2059799116630650


44 U. Brandes

9. Brandes, U., Borgatti, S.P., Freeman, L.C.: Maintaining the duality of closeness
and betweenness centrality. Soc. Netw. 44, 153–159 (2016). https://doi.org/10.
1016/j.socnet.2015.08.003

10. Brandes, U., Fleischer, D.: Centrality measures based on current flow. In: Diek-
ert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 533–544. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31856-9 44

11. Brandes, U., Heine, M., Müller, J., Ortmann, M.: Positional dominance: concepts
and algorithms. In: Gaur, D., Narayanaswamy, N.S. (eds.) CALDAM 2017. LNCS,
vol. 10156, pp. 60–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
53007-9 6

12. Brandes, U., Robins, G., McCranie, A., Wasserman, S.: What is network science?
Netw. Sci. 1(1), 1–15 (2013). https://doi.org/10.1017/nws.2013.2

13. Burt, R.S.: Positions in networks. Soc. Forces 55, 93–122 (1976)
14. Doreian, P., Batagelj, V., Ferligoj, A.: Positional analysis of sociometric data. In:

Carrington, P.J., Scott, J., Wasserman, S. (eds.) Models and Methods in Social
Network Analysis, pp. 77–97. Cambridge University Press (2005)

15. Drange, P.G., Dregi, M.S., Lokshtanov, D., Sullivan, B.D.: On the threshold of
intractability. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp.
411–423. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-
3 35

16. Faust, K.: Comparison of methods for positional analysis: structural and general
equivalences. Soc. Netw. 10(4), 313–341 (1988)

17. Freeman, L.C.: Centrality in social networks: conceptual clarification. Soc. Netw.
1(3), 215–239 (1979)

18. Freeman, L.C.: The development of social network analysis-with an emphasis on
recent events. In: The SAGE Handbook of Social Network Analysis, pp. 26–54
(2011)

19. van der Grinten, A., Angriman, E., Meyerhenke, H.: Scaling up network centrality
computations: a brief overview. it - Information Technology (2020). https://doi.
org/10.1515/itit-2019-0032

20. Habib, M., Medina, R., Nourine, L., Steiner, G.: Efficient algorithms on distributive
lattices. Discrete Appl. Math. 110(2), 169–187 (2001). https://doi.org/10.1016/
S0166-218X(00)00258-4

21. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: meth-
ods and applications. Bull. IEEE Comput. Soc. Tech. Committee Data Eng. 40(3),
52–74 (2017)

22. Hennig, M., Brandes, U., Pfeffer, J., Mergel, I.: Studying Social Networks - A Guide
to Empirical Research. Campus, Frankfurt/New York (2012)

23. Kostreva, M.M., Ogryczak, W., Wierzbicki, A.: Equitable aggregations and multi-
ple criteria analysis. Eur. J. Oper. Res. 158(2), 362–377 (2004). https://doi.org/
10.1016/j.ejor.2003.06.010

24. Lü, L., Chen, D., Ren, X.L., Zhang, Q.M., Zhang, Y.C., Zhou, T.: Vital nodes
identification in complex networks. Phys. Rep. 650, 1–6 (2016)

25. Mariani, M.S., Ren, Z.M., Bascompte, J., Tessone, C.J.: Nestedness in complex
networks: observation, emergence, and implications. Phys. Rep. 813, 1–90 (2019).
https://doi.org/10.1016/j.physrep.2019.04.001

26. Menczer, F., Fortunato, S., Davis, C.A.: A First Course in Network Science. Cam-
bridge University Press, Cambridge (2020)

27. Ortmann, M., Brandes, U.: Efficient orbit-aware triad and quad census in directed
and undirected graphs. Appl. Netw. Sci. 2(1), 1–17 (2017). https://doi.org/10.
1007/s41109-017-0027-2

https://doi.org/10.1016/j.socnet.2015.08.003
https://doi.org/10.1016/j.socnet.2015.08.003
https://doi.org/10.1007/978-3-540-31856-9_44
https://doi.org/10.1007/978-3-319-53007-9_6
https://doi.org/10.1007/978-3-319-53007-9_6
https://doi.org/10.1017/nws.2013.2
https://doi.org/10.1007/978-3-662-48350-3_35
https://doi.org/10.1007/978-3-662-48350-3_35
https://doi.org/10.1515/itit-2019-0032
https://doi.org/10.1515/itit-2019-0032
https://doi.org/10.1016/S0166-218X(00)00258-4
https://doi.org/10.1016/S0166-218X(00)00258-4
https://doi.org/10.1016/j.ejor.2003.06.010
https://doi.org/10.1016/j.ejor.2003.06.010
https://doi.org/10.1016/j.physrep.2019.04.001
https://doi.org/10.1007/s41109-017-0027-2
https://doi.org/10.1007/s41109-017-0027-2


Central Positions in Social Networks 45

28. Padgett, J.F., Ansell, C.K.: Robust action and the rise of the Medici, 1400–1434.
Am. J. Sociol. 98(6), 1259–1319 (1993)

29. Robins, G.: Doing Social Network Research. Sage, Thousand Oaks (2015)
30. Sabidussi, G.: The centrality index of a graph. Psychometrika 31(4), 581–603

(1966). https://doi.org/10.1007/BF02289527
31. Schoch, D.: Centrality without indices: partial rankings and rank probabilities in

networks. Soc. Netw. 54, 50–60 (2018). https://doi.org/10.1016/j.socnet.2017.12.
003

32. Schoch, D., Brandes, U.: Re-conceptualizing centrality in social networks. Eur. J.
Appl. Math. 27(6), 971–985 (2016). https://doi.org/10.1017/S0956792516000401

33. Sommer, C.: Shortest-path queries in static networks. ACM Comput. Surv. 46(4),
45:1–45:31 (2014). https://doi.org/10.1145/2530531

34. Wasserman, S., Faust, K.: Social Network Analysis. Methods and Applications.
Cambridge University Press, Cambridge (1994)

35. White, H.C., Boorman, S.A., Breiger, R.L.: Social structure from multiple net-
works: I. Blockmodels of roles and positions. Am. J. Sociol. 81(4), 730–780 (1976)

https://doi.org/10.1007/BF02289527
https://doi.org/10.1016/j.socnet.2017.12.003
https://doi.org/10.1016/j.socnet.2017.12.003
https://doi.org/10.1017/S0956792516000401
https://doi.org/10.1145/2530531


Second-Order Finite Automata

Alexsander Andrade de Melo1 and Mateus de Oliveira Oliveira2(B)

1 Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
aamelo@cos.ufrj.br

2 University of Bergen, Bergen, Norway
mateus.oliveira@uib.no

Abstract. Traditionally, finite automata theory has been used as a
framework for the representation of possibly infinite sets of strings. In
this work, we introduce the notion of second-order finite automata, a for-
malism that combines finite automata with ordered decision diagrams,
with the aim of representing possibly infinite sets of sets of strings. Our
main result states that second-order finite automata can be canonized
with respect to the second-order language they represent. Using this
canonization result, we show that sets of sets of strings represented by
second-order finite automata are closed under the usual Boolean oper-
ations, such as union, intersection, difference and even under a suitable
notion of complementation. Additionally, emptiness of intersection and
inclusion are decidable.

We provide two algorithmic applications for second-order automata.
First, we show that they can be used to show that several width and
size minimization problems for deterministic and nondeterministic ODDs
are solvable in fixed-parameter tractable time when parameterized by the
width of the input ODD. In particular, our results imply FPT algorithms
for corresponding width and size minimization problems for ordered
binary decision diagrams with a fixed variable ordering. The previous
best algorithms for these problems were exponential on the size of the
input ODD even for ODDs of constant width. Second, we show that for
each k and w one can count the number of distinct functions accepted
by ODDs of width w and length k in time hΣ(w) · kO(1). This improves
exponentially on the time necessary to explicitly enumerate all distinct
functions, which take time exponential in both the width parameter w
and in the length k of the ODDs.

1 Introduction

In its most traditional setting, automata theory has been used as a framework
for the representation and manipulation of (possibly infinite) sets of strings.

Alexsander Andrade de Melo acknowledges support from the Brazilian agencies
CNPq/GD 140399/2017-8 and CAPES/PDSE 88881.187636/2018-01. Mateus de
Oliveira Oliveira acknowledges support from the Bergen Research Foundation and from
the Research Council of Norway (Grant Nr. 288761).

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 46–63, 2020.
https://doi.org/10.1007/978-3-030-50026-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-50026-9_4


Second-Order Finite Automata 47

This framework has been generalized in many ways to allow the representa-
tion of sets of more elaborate combinatorial objects, such as trees [5], partial
orders [15], graphs [4], pictures [11], etc. Such notions of automata have encoun-
tered innumerous applications in fields such as formal verification [3,12], finite
model theory [8], concurrency theory [14], parameterized complexity [6,7], etc.
Still, these generalized notions of automata share in common the fact that they
are designed to represent (possibly infinite) sets of isolated objects.

In this work, we combine traditional finite automata with ordered decision
diagrams (ODDs) to introduce a formalism that can be used to represent and
manipulate sets of sets of strings. We call this combined formalism second-order
automata. Intuitively, a (Σ,w)-ODD is a sequence D = B1B2 . . . Bk of (Σ,w)-
layers. Each such layer Bi has a set of left-states (a subset of {1, . . . , w}), a
set of right-states (also a subset of {1, . . . , w}), and a set of transitions, labeled
with letters in Σ, connecting left states to right states. We require that for each
i ∈ {1, . . . , k − 1}, the set of right-states of the layer Bi is equal to the set of left
states of the layer Bi+1. The language of such an ODD D is the set of strings
labeling paths from its set of initial states (a subset of the left states of B1) to
its final states (a subset of the right states of Bk). Since the number of distinct
(Σ,w)-layers is finite, the set B(Σ,w) of all such layers can itself be regarded
as an alphabet. A finite automaton F over the alphabet B(Σ,w) is said to be a
second-order finite automaton if each string D = B1 . . . Bk in the language L(F)
of F is a valid ODD. In this case, the second language of F is the set of all sets
of strings accepted by ODDs in L(F). We denote the second language of F by
L2(F).

Our main result (Theorem 3) states second-order finite automata can be effec-
tively canonized with respect to their second-language. In other words, there is
a computable function that sends each second-order finite automaton F to a
second-order automaton C2(F) in such a way that they have identical second
languages (L2(C2(F)) = L2(F)) and in such a way that any two second-order
finite automata F and F ′ with the same second language are sent to the same
canonical form (L2(F) = L2(F ′) ⇒ C2(F) = C2(F ′)). The difficulty in proving
this canonization result stems from the fact that many ODDs in the language
L(F) of F may correspond to the same set of strings in the second language
L2(F). Therefore, obtaining a canonical form for F with respect to the language
L2(F) is not equivalent to the problem of obtaining a canonical form for F with
respect to the language L(F). Indeed, there exist pairs of second-order finite
automata F and F ′ with distinct (first) languages (L(F) �= L(F ′)) but with
identical second languages (L2(F) = L2(F)). We will circumvent this issue by
showing that the function can[Σ,w] that sends each (Σ,w)-ODD D to its canon-
ical form C(D) can be cast as a regularity-preserving transduction. In particu-
lar, when applying this transduction to a (Σ,w)-second-order finite automaton
F , we obtain a (Σ, 2w)-second-order automaton which accepts precisely those
canonical forms of ODDs in L(F). Once this intermediate automaton has been
constructed, we can safely use standard determinization and minimization tech-



48 A. Andrade de Melo and M. de Oliveira Oliveira

niques to construct an automaton C2(F) which is a canonical form for F with
respect to its second-language.

As a consequence of our canonization result, we have that second-order finite
automata have several nice closure properties. In particular, the class of sets of
sets of strings that can be represented by second-order finite automata is closed
under union, intersection, set difference, and even under a suitable notion of
complementation. Furthermore, emptiness of intersection and inclusion for the
second language of second-order finite automata are decidable.

We provide two algorithmic applications for second-order finite automata.
First, we show that several width and size minimization problems for deter-
ministic and non-deterministic ODDs are solvable in fixed parameter tractable
time when parameterized by the width of the input ODD. Although ODDs of
constant width constitute a simple computational model, they can already be
used to represent many interesting functions. It is worth noting that for each
width w ≥ 3, the class of functions that can be represented by ODDs of constant
width is at least as difficult to learn in the PAC-learning model as the problem
of learning DNFs [9]. Additionally, the study of ODDs of constant width is still
very active in the theory of pseudo-random generators [10]. We also note that
our FPT algorithm for ODD width minimization parameterized by the width of
the input ODD implies that analogous minimization problems can be solved in
FPT time on ordered binary decision diagrams (OBDDs) with a fixed variable
ordering when parameterized by the width of the input OBDD. Such problems
have been shown to be NP-hard for OBDDs of unrestricted width [1,2], but no
fixed parameter tractable algorithm was known.

As a second application, we show that the problem of counting the num-
ber of distinct functions computable by ODDs of a given width w and a given
length k can be solved in time hΣ(w) ·kO(1), for a suitable function hΣ(w). This
improves exponentially on the time necessary to explicitly enumerate all distinct
functions computable by such ODDs, since this enumeration process takes time
exponential in both the width parameter w and in the length k of the ODDs.

The reminder of this paper is organized as follows. Next, in Sect. 2, we state
basic definitions and results concerning finite automata and ordered decision
diagrams. Subsequently, in Sect. 3, we formally define the notion of second-order
finite automata and state our main result. In Sect. 4, we recall some basic defi-
nitions about transductions. In Sect. 5, we show that the process of canonizing
ODDs can be cast as regular transductions, and subsequently prove our main
result. In Sect. 6, we show how second-order finite automata can be used to pro-
vide fixed parameter tractable algorithms for several variants of width and size
minimization problems involving ODDs, and show how to count the number of
functions computable by ODDs of a given width in FPT time. Finally, in Sect. 7,
we conclude the paper with some final considerations.



Second-Order Finite Automata 49

2 Preliminaries

2.1 Basics

We denote by N
.= {0, 1, . . .} the set of natural numbers (including zero), and

by N+
.= N \ {0} the set of positive natural numbers. For each c ∈ N+, we let

[c] .= {1, 2, . . . , c} and �c�
.= {0, 1, . . . , c−1}. Let X be a finite set. We denote by

P(X) .= {X ′ : X ′ ⊆ X} the power set of X. A permutation of X is a bijection
π : X → X from X onto itself. We denote by SX the set of all permutations
of X.

Alphabets and Strings. An alphabet is any finite, non-empty set Σ. A string
over an alphabet Σ is any finite sequence of symbols from Σ. The empty string,
denoted by λ, is the unique string of length zero. We denote by Σ∗ the set of
all strings over Σ, including the empty string λ, and by Σ+ .= Σ∗ \ {λ} the set
of all non-empty strings over Σ. A language over Σ is any subset L of Σ∗. In
particular, for each k ∈ N+, we let Σk be the language of all strings of length k
over Σ. We say that an alphabet Σ is ordered if it is endowed with a total order
<Σ : Σ × Σ. Unless stated otherwise, we assume that each alphabet considered
in this paper is endowed with a fixed ordering. Such an ordering is extended
naturally to a lexicographical ordering ≺Σ⊆ Σ∗ × Σ∗ on the set Σ∗.

Finite Automata. A finite automaton (FA) over an alphabet Σ is a tuple
F = (Q,T, I, F ), where Q is a finite set of states, T ⊆ Q × Σ × Q is a set of
transitions, I ⊆ Q is a set of initial states and F ⊆ Q is a set of final states. The
size of F is defined as |F| .= |Q| + |T | · log |Σ|. We denote the number of states
of F by nSt(F), and the number of transitions by nTr(F).

Let s ∈ Σ∗, and q, q′ ∈ Q. We say that s reaches q′ from q if either s = λ
and q = q′, or if s = σ1 . . . σk for some k ∈ N+ and there is a sequence

〈(q0, σ1, q1), (q1, σ2, q2), . . . , (qk−1, σk, qk)〉,

of transitions such that q0 = q and qk = q′. We say that F accepts s if there
exist states q ∈ I and q′ ∈ F such that s reaches q′ from q.

The language of F is defined as the set

L(F) .= {s ∈ Σ∗ : s is accepted by F}

of all finite strings over Σ accepted by F . For α ∈ N, we say that a language
L ⊆ Σ∗ is α-regular if there exists a (possibly nondeterministic) finite automaton
with at most α states such that L(F) = L.

We say that F is deterministic if F contains exactly one initial state, i.e.
|I| = 1, and for each q ∈ Q and each σ ∈ Σ, there exists at most one state
q′ ∈ Q such that (q, σ, q′) is a transition in T . We say that F is complete if
for each q ∈ Q and each σ ∈ Σ, there exists at least one state q′ ∈ Q such
that (q, σ, q′) is a transition in T . For each state q ∈ Q, we let lex(q) be the



50 A. Andrade de Melo and M. de Oliveira Oliveira

lexicographically first string which reaches q from some initial state, according
to the order ≺Σ . We say that F is normalized if Q = {1, . . . , r} for some r ∈ N,
and for each q, q′ ∈ Q, q < q′ if and only if lex(q) ≺Σ lex(q′). In what follows,
we may write Q(F), T (F), I(F) and F (F) to refer to the sets Q, T , I and F ,
respectively.

The following theorem, stating the existence of canonical forms for finite
automata, is one of the most fundamental results in automata theory.

Theorem 1. Let Σ be an alphabet. For each finite automaton F over Σ, there is
a unique finite automaton C(F) with minimum number of states with the property
that C(F) is deterministic, complete, normalized, and satisfies L(C(F)) = L(F).

We note that given a (possibly non-deterministic) finite automaton F over
an alphabet Σ, the canonical form C(F) of F can be obtained by the following
process. First, one applies Rabin’s power-set construction to F in order to obtain
a deterministic, complete finite automaton F ′ accepting the same language as F .
Subsequently, one minimizes F ′, using for instance Hopcroft’s algorithm [13], in
order to obtain a deterministic finite automaton F ′′ with minimum number
of states accepting the same language as F . At this point the automaton F ′′ is
unique up to renaming of states. Finally, as a last step, one obtains the canonical
form C(F) by renaming the states of F ′′ in such a way that the normalization
property is satisfied. Note that at this point, the automaton C(F) is syntactically
unique. In particular, for each two finite automata F and F ′, L(F) = L(F ′) if
and only if C(F) = C(F ′).

2.2 Ordered Decision Diagrams

Layers. Let Σ be an alphabet and w ∈ N+. A (Σ,w)-layer is a tuple B
.=

(�, r, T, I, F, ι, φ), where � ⊆ �w� is a set of left states, r ⊆ �w� is a set of right
states, T ⊆ � × Σ × r is a set of transitions, I ⊆ � is a set of initial states, F ⊆ r
is a set of final states and ι, φ ∈ {0, 1} are Boolean flags satisfying the following
two conditions:

1. if ι = 0 then I = ∅;
2. if φ = 0 then F = ∅.

In what follows, we may write �(B), r(B), T (B), I(B), F (B), ι(B) and φ(B)
to refer to the sets �, r, T , I and F and to the Boolean flags ι and φ, respectively.

We let B(Σ,w) denote the set of all (Σ,w)-layers. Note that, B(Σ,w) is non-
empty and has at most 2O(|Σ|·w2) elements. Therefore, B(Σ,w) may be regarded
as an alphabet.

Ordered Decision Diagrams. Let k ∈ N+. A (Σ,w) ordered decision diagram
(or simply, (Σ,w)-ODD) of length k is a string D

.= B1 · · · Bk ∈ B(Σ,w)k of
length k over the alphabet B(Σ,w) satisfying the following conditions:

1. for each i ∈ [k − 1], �(Bi+1) = r(Bi);



Second-Order Finite Automata 51

2. ι(B1) = 1 and, for each i ∈ {2, . . . , k}, ι(Bi) = 0;
3. φ(Bk) = 1 and, for each i ∈ [k − 1], φ(Bi) = 0.

Intuitively, Condition 1 expresses that the set of right states of Bi can be
identified with the set of left states of Bi+1. Condition 2 guarantees that only the
first layer of an ODD is allowed to have initial states. Analogously, Condition 3
guarantees that only the last layer of an ODD is allowed to have final states.

For each k ∈ N+, we denote by B(Σ,w)◦k the set of all (Σ,w)-ODDs of
length k. We denote by

B(Σ,w)� .=
⋃

k∈N+

B(Σ,w)◦k

the set of all (Σ,w)-ODDs. Given an ODD D ∈ B(Σ,w)�, we let len(D) denote
the length of D.

The width of an ODD D = B1 · · · Bk ∈ B(Σ,w)◦k is defined as

w(D) .= max{|�(B1)|, . . . , |�(Bk)|, |r(Bk)|}.

We remark that w(D) ≤ w.

Length Typed Subsets of Σk . Let Σ be an alphabet, and k ∈ N+. In this
work, it will be convenient assume that subsets of Σk are typed with their length.
This can be achieved by viewing a subset L ⊆ Σk as a pair of the form (k, L).
We let Pk(Σk) = {(k, L) : L ⊆ Σk}.

Language Accepted by an ODD. Let k ∈ N+, D = B1 · · · Bk be an ODD in
B(Σ,w)◦k and s = σ1 · · · σk be a string in Σk. A valid sequence for s in D is a
sequence of transitions 〈(p1, σ1, q1), . . . , (pk, σk, qk)〉 such that pi+1 = qi for each
i ∈ [k−1], and (pi, σi, qi) ∈ T (Bi) for each i ∈ [k]. Such a valid sequence is called
accepting for s if, additionally, p1 is an initial state in I(B1) and qk is a final
state in F (Bk). We say that D accepts s if there exists an accepting sequence
for s in D. The language of D, denoted by L(D), is defined as the (length-typed)
set of strings accepted by D, i.e., L(D) .= (k,

{
s ∈ Σk : s is accepted by D

}
).

Deterministic and Complete ODDs. A (Σ,w)-layer B is called determin-
istic if the following conditions are satisfied:

1. for each p ∈ �(B) and each σ ∈ Σ, there exists at most one right state
q ∈ r(B) such that (p, σ, q) ∈ T (B);

2. if ι(B) = 1, then I(B) = �(B) and |�(B)| = 1.

A (Σ,w)-layer B is called complete if, for each p ∈ �(B) and each σ ∈ Σ, there
exists at least one right state q ∈ r(B) such that (p, σ, q) ∈ T (B). We let B̂(Σ,w)
be the subset of B(Σ,w) comprising all deterministic, complete (Σ,w)-layers.



52 A. Andrade de Melo and M. de Oliveira Oliveira

An ODD D = B1 · · · Bk ∈ B(Σ,w)◦k is called deterministic (complete, resp.)
if, for each i ∈ [k], Bi is deterministic (complete, resp.). We remark that if D is
deterministic, then there exists at most one valid sequence in D for each string
in Σk. On the other hand, if D is complete, then there exists at least one valid
sequence in D for each string in Σk. For each k ∈ N+, we let B̂(Σ,w)◦k be
the subset of B(Σ,w)◦k comprising all deterministic, complete (Σ,w)-ODDs of
length k.

Isomorphism of ODDs. Let D = B1 · · · Bk and D′ = B′
1 · · · B′

k be two ODDs
in B(Σ,w)◦k. An isomorphism from D to D′ is a sequence π

.= 〈π0, . . . , πk〉 of
functions that satisfy the following conditions:

1. π0 : �(B0) → �(B′
0) is a bijection from �(B0) to �(B′

0);
2. π0|I(B0) is a bijection from I(B0) to I(B′

0);
3. for each i ∈ [k], πi : r(Bi) → r(B′

i) is a bijection from r(Bi) to r(B′
i);

4. πk|F (Bk) is a bijection from F (Bk) to F (B′
k);

5. for each i ∈ [k], each left state p ∈ �(Bi), each symbol σ ∈ Σ and each right
state q ∈ r(Bi), (p, σ, q) ∈ T (Bi) if and only if (πi−1(p), σ, πi(q)) ∈ T (B′

i).

We note that if π = 〈π0, . . . , πk〉 is an isomorphism from D to D′, then
π−1 .= 〈π−1

0 , . . . , π−1
k 〉 is an isomorphism from D′ to D, where π−1

i denotes the
inverse of πi for each i ∈ �k + 1�. We say that D and D′ are isomorphic if
there exists an isomorphism π between D and D′. The following proposition is
immediate.

Proposition 1. If D and D′ are isomorphic ODDs, then L(D) = L(D′).

Normalized ODDs. Let B be a (Σ,w)-layer. We say that B is reachable if, for
each q ∈ r(B), there exist σ ∈ Σ and p ∈ �(B) such that (pσ, q) is a transition in
T (B). If B is reachable, then we let χB : r(B) → �(B)×Σ be the map such that,
for each q ∈ r(B), χB(q) .= min{(p, σ) : (p, σ, q) ∈ T (B)}, where the minimum
is taken lexicographically, i.e., for each p, p′ ∈ �(B) and each σ, τ ∈ Σ, we have
that (p, σ) < (p′, τ) if and only if p < p′, or p = p′ and σ <Σ τ . (Recall we are
assuming that the alphabet Σ is associated with a fixed total order <Σ⊆ Σ×Σ.)
We say that B is well-ordered if it is a reachable, deterministic layer and, for each
q, q′ ∈ r(B), q < q′ if and only if χB(q) < χB(q′). We say that B is contiguous if
�(B) = �w1� and r(B) = �w2� for some w1, w2 ∈ [w]. (Σ,w)-layer. We say that
B is normalized if it is both well-ordered and contiguous.

We say that an ODD D = B1 · · · Bk ∈ B(Σ,w)◦k is well-ordered/contiguous/
normalized for each i ∈ [k], Bi is a well-ordered/contiguous/normalized layer.
Note that an ODD D is normalized if and only if it is both well-ordered and
contiguous. The following theorem is the analog of Theorem 1 in the realm of
the theory of ordered decision diagrams.

Theorem 2 (Folklore). Let D be an ODD in B(Σ,w)◦k. There exists a unique
ODD C(D) ∈ B(Σ, 2w)◦k with minimum number of states with the property that
C(D) is deterministic, complete, normalized and satisfies L(C(D)) = L(D).



Second-Order Finite Automata 53

For each ODD D ∈ B(Σ,w)�, we say that the ODD C(D) specified in The-
orem 2 is the canonical form of D.

3 Second-Order Finite Automata

In this section, we formally define the main object of study of this work, namely,
the notion of second-order finite automata.

Definition 1 (Second-Order Finite Automata). Let Σ be an alphabet and
w ∈ N+. A finite automaton F over the alphabet B(Σ,w) is called a (Σ,w)-
second-order finite automaton if

L(F) ⊆
⋃

k∈N+

B(Σ,w)◦k.

In words, a (Σ,w)-second-order finite automaton F is a finite automaton over
the alphabet B(Σ,w) where each string D = B1 . . . Bk in L(F) is a (Σ,w)-ODD.
From now on we may refer to L(F) as the first language of F . Since each string
D ∈ L(F) is a (Σ,w)-ODD, we can also associated with F a second language,
L2(F), which is the set of sets of strings over Σ accepted by ODDs in L(F).

L2(F) .= {L(D) : D ∈ L(F)}.

Note that L2(F) is a (possibly infinite) subset of
⋃

k∈N+
Pk(Σk).

The main result of this work (Theorem 3) states that (Σ,w)-second-order
automata can be canonized with respect to their second languages.

Theorem 3. Let Σ be an alphabet (endowed with a total ordering <Σ ⊂ Σ×Σ),
w ∈ N+ and F be a (Σ,w)-second-order finite automaton. One can construct

in time 2nSt(F)·22O(|Σ|·w)

a complete, deterministic, normalized (Σ, 2w)-second-
order finite automaton C2(F) satisfying the following properties.

1. L(C2(F)) = {C(D) : D ∈ L(F)};
2. L2(C2(F)) = L2(F);
3. For each w′ ∈ N+ and each (Σ,w′)-second-order finite automaton F ′, if

L2(F ′) = L2(F), then C2(F ′) = C2(F).

Recall that for each ODD D ∈ B(Σ,w)◦k, C(D) ∈ B(Σ, 2w)◦k denotes the
unique ODD in with minimum number of states with the property that C(D)
is deterministic, complete, normalized and satisfies L(C(D)) = L(D). Therefore,
Property 1 states that the language of the second-order automaton C2(F) is
formed precisely by the canonical forms of ODDs in L(F). Property 2 states
that F and C2(F) have the same second language. In other words, these two
finite automata represent the same set of sets of strings over Σ. This property
is a direct consequence of Property 1, since each ODD D and its canonical form
C(D) have the same language L(D) = L(C(D)). Finally, Condition 3 states that



54 A. Andrade de Melo and M. de Oliveira Oliveira

any two second-order automata with identical second languages are mapped to
the same canonical form. This is also a direct consequence of Property 1, since
any two ODDs D and D′ with the same language L(D) = L(D′) are mapped to
the same canonical form C(D) = C(D′).

It is worth calling attention to the fact that even though F and C2(F) have
the same second language, i.e., L2(C2(F)) = L2(F), the first languages of F
and C2(F) may be distinct, i.e., it may be the case that L(C2(F)) �= L(F).
Additionally, given a subset S ⊆ ⋃

k∈N+
Pk(Σk), there may exist infinitely many

second-order finite automata with distinct first languages, but whose second
language is equal to S. Therefore, canonization of a finite automaton F with
respect to its second language L2(F) cannot be achieved by simply canonizing F
with respect to its first language L(F) according to Theorem 1. To circumvent
this issue, we will proceed in two steps. First, we will show that for each second-
order finite automaton F one can construct a finite automaton F ′ such that
L(F ′) = {C(D) : D ∈ L(F)}. The automaton C2(F) can then be defined
as C(F ′). The next two sections will be dedicated to the construction of the
intermediate finite automaton F ′. First, in Sect. 4 we will define a very well-
behaved notion of regularity-preserving transduction. Subsequently, in Sect. 5 we
will show that the process of constructing a canonical form for an ODD D can be
simulated by the application of a sequence of regularity-preserving transductions.

Theorem 3 implies that subsets of
⋃

k∈N+
Pk(Σ,w) that can be represented

by second-order automata are closed under Boolean operations and even under
a suitable notion of complementation. Let Σ be an alphabet and w ∈ N+. We
let Det(Σ,w) = {L(D) : D ∈ B̂(Σ,w)�} be the set of all languages accepted
by some deterministic, complete ODD of width w over the alphabet Σ. Given a
subset S ⊆ ⋃

k∈N+
Pk(Σk) we let Sw .= Det(Σ,w)\S be the width-w complement

of S.

Theorem 4. Let Σ be an alphabet and w ∈ N. Let F , F1 and F2 be (Σ,w)-
second-order finite automata.

1. There is a (Σ, 2w)-second-order automaton F1 ∩ F2 such that

L2(F1 ∩ F2) = L2(F1) ∩ L2(F1).

2. There is a (Σ, 2w)-second-order automaton F1 ∪ F2 such that

L2(F1 ∩ F2) = L2(F1) ∪ L2(F1).

3. There is a (Σ, 2w)-second-order automaton F1\F2 such that

L2(F1\F2) = L2(F1)\L2(F1).

4. There is a (Σ,w)-second-order automaton F(Σ,w) such that

L2(F(Σ,w)) = Det(Σ,w).

5. For each w′ ∈ N+, there is a (Σ, 2max{w,w′})-second-order finite automaton

Fw′
such that L2(Fw′

) = L2(F)
w′

.



Second-Order Finite Automata 55

6. It is decidable whether L2(F1) ∩ L2(F2) = ∅.
7. It is decidable whether L2(F1) ⊆ L2(F2).

We note that all binary operations above are defined when F1 is a (Σ,w)-
second-order finite automaton and F2 is a (Σ,w′)-second-order finite automaton
for distinct w and w′. Just view both finite automata as (Σ,max{w,w′})-second-
order finite automata.

4 Transductions

Tensor Product. Given a set X and a number a ∈ N+, we let X×a denote
the set of all a-tuples of elements from X. Let Σ be an alphabet and k ∈ N.
If s1, . . . , sa are strings in Σk, where si = σi,1 . . . σi,k for each i ∈ [a], then the
tensor product of s1, . . . , sa is defined as the string

s1 ⊗ · · · ⊗ sa
.= (σ1,1, . . . , σa,1) · · · (σk,1, . . . , σk,a)

of length k over the alphabet Σ×a. If L1, . . . , La are subsets of Σ∗, then the
tensor product of L1, . . . , La is defined as follows:

L1 ⊗ · · · ⊗ La
.= {s1 ⊗ · · · ⊗ sa : si ∈ Li for each i ∈ [a], |si| = |sj | for i �= j}.

Transductions. Let Σ1 and Σ2 be two alphabets. A (Σ1, Σ2)-transduction is
a binary relation t ⊆ Σ∗

1 × Σ∗
2 . We let

Im(t) = {u ∈ Σ∗
2 : ∃s ∈ Σ∗

1 , (s, u) ∈ t}
be the image of t, and

Dom(t) = {s ∈ Σ∗
1 : ∃u ∈ Σ∗

2 , (s, u) ∈ t}
be the domain of t. If t is a (Σ1, Σ2)-transduction and t′ is a (Σ2, Σ3)-
transduction, then the composition of t with t′ is defined as the (Σ1, Σ3)-
transduction

t ◦ t′ .= {(s, v) ∈ Σ∗
1 × Σ∗

3 : ∃u ∈ Σ∗
2 , (s, u) ∈ t and (u, v) ∈ t′}.

We say that a (Σ1, Σ2)-transduction t is injective if for each string s ∈ Σ∗
1 ,

there exists at most one string u ∈ Σ∗
2 such that (s, u) ∈ t.

For each language L ⊆ Σ∗
1 we let d(L) = {(s, s) : s ∈ Σ∗

1} be the (Σ1, Σ1)-
transduction derived from L. Given a (Σ1, Σ2)-transduction t, we let

t(L) .= Im(d(L) ◦ t) = {u ∈ Σ∗
2 : ∃s ∈ L, (s, u) ∈ t}

be the image of L under t.
For α ∈ N, we say that a (Σ1, Σ2)-transduction t is α-regular if the language

L(t) = {s ⊗ u : (s, u) ∈ t} ⊆ (Σ1 × Σ2)∗

is α-regular. We let F [t] be the unique deterministic, complete, normalized finite
automaton with minimum number of states accepting L(t). Note that if t is
α-regular, then the automaton F [t] has at most 2α states.



56 A. Andrade de Melo and M. de Oliveira Oliveira

Proposition 2. Let Σ1, Σ2 and Σ3 be alphabets, t be an α-regular (Σ1, Σ2)-
transduction, and t′ be a β-regular (Σ2, Σ3)-transduction. Let L ⊆ Σ∗

1 be a γ-
regular language.

1. t ◦ t′ is (α · β)-regular.
2. rev(t) is α-regular.
3. The languages Im(t) and Dom(t) are α-regular.
4. The transduction d(L) is γ-regular.
5. The language t(L) is (α · γ)-regular.

Basic Transductions. Let Σ be an alphabet, and R ⊆ Σ × Σ be a binary
relation over Σ. We say that a string s ∈ Σ∗ is R-compatible if (si, si+1) ∈ R for
each i ∈ [|s| − 1]. We let

cp[R] = {(s, s) : s ∈ Σ+ is R-compatible.}
be the transduction that sends each R-compatible string s ∈ Σ+ to itself. Let
Σ1 and Σ2 be alphabets and R ⊆ Σ1 × Σ2 be a relation. We let

mm[R] = {(s, u) : s ∈ Σ+
1 , u ∈ Σ+

2 , (si, ui) ∈ R for each i ∈ [|s|]}
be the R-multimap transduction. If g : Σ1 → Σ2 is a map then we write mm[g]
to denote the transduction mm[Rg] where Rg = {(σ, g(σ)) : σ ∈ Σ1}.

Proposition 3. Let Σ,Σ1 and Σ2 be alphabets, R ⊆ Σ × Σ and R′ ⊆ Σ1 × Σ2

be relations.

1. cp[R] is |Σ|-regular.
2. mm[R′] is 1-regular.

5 Canonization of ODDs Using Transductions

In this section, we show that for each alphabet Σ and each w ∈ N+, the
(B(Σ,w), B̂(Σ,w))-transduction {(D, C(D)) : D ∈ B(Σ,w)�} is a regular
transduction. We will show that this transduction can be cast as the compo-
sition of three transductions: a transduction det[Σ,w] which sends ODDs to
deterministic, complete ODDs representing the same language; a transduction
mer[Σ,w] that sends a deterministic, complete ODD to an ODD with minimum
number of states representing the same language, and finally, a transduction
nor[Σ,w] that sends a deterministic, complete ODD to its normalized version.

Determinization Transduction. We start by considering, for each w ∈ N+,
the bijection Ω : P(�w�)) → �2w� that sends each subset X ⊆ �w� to the natural
number Ω(X) .=

∑
i∈X 2i. In particular, we note that Ω(∅) = 0 and Ω({i}) = 2i

for each i ∈ X.
For each alphabet Σ and number w ∈ N+, we let pw[Σ,w] : B(Σ,w) →

B̂(Σ, 2w) be the map that sends each layer B ∈ B(Σ,w) to the deterministic,
complete layer pw(B) in B̂(Σ, 2w) defined as follows:



Second-Order Finite Automata 57

– �(pw(B)) .=

{
{Ω(I(B))} if ι(B) = 1
{Ω(X) : X ⊆ �(B)} otherwise;

– r(pw(B)) .= {Ω(X) : X ⊆ r(B)};

– T (pw(B)) .=
{{(Ω(I(B)), σ, Ω(N(B, I(B), {σ})), σ ∈ Σ} if ι(B) = 1

{(Ω(X), σ, Ω(N(B, X, {σ})) : X ⊆ �(B), σ ∈ Σ} otherwise;

– I(pw(B)) .=

{
{Ω(I(B))} if ι(B) = 1
∅ otherwise;

– F (pw(B)) .= {Ω(X) : X ⊆ r(B),X ∩ F (B) �= ∅};

– ι(pw(B)) .= ι(B);

– φ(pw(B)) .= φ(B).

It follows from the fact that Ω is a bijection, that for each subset X ⊆ �w�
with Ω(X) ∈ �(pw(B)), and each symbol σ ∈ Σ, there exists precisely one
right state q∗ ∈ r(pw(B)), namely Ω(N(B,X, {σ})), such that (Ω(X), σ, q∗) ∈
T (pw(B)). Furthermore, if ι(pw(B)) = 1, then ι(B) = 1 and, consequently,
I(pw(B)) = �(pw(B)) = {Ω(I(B))}. As a result, we obtain that pw(B) is indeed
a deterministic, complete layer in B̂(Σ, 2w).

Now, for each Σ and each w ∈ N+, we define the (B(Σ,w), B̂(Σ,w))-
transduction det[Σ,w] .= mm[pw[Σ,w]]. The next lemma states that the trans-
duction det[Σ,w] sends each ODD D in B(Σ,w)� to a deterministic, complete
ODD in B̂(Σ,w)� representing the same language as D.

Lemma 1 (Determinization Transduction). For each alphabet Σ and each
w ∈ N, the (B(Σ,w), B̂(Σ, 2w))-transduction det[Σ,w] satisfies the following
properties.

1. det[Σ,w] is injective.
2. Im(det[Σ,w]) = B(Σ,w)�.
3. For each (D,D′) ∈ det[Σ,w], L(D) = L(D′).

Merging Transduction. Let Σ be an alphabet, w ∈ N+, B be a complete,
deterministic layer in B̂(Σ,w) and ν be a partition of r(B). Two (not necessarily
distinct) left states p, p′ ∈ �(B) are said ν-equivalent if for each σ ∈ Σ and each
q ∈ r(B), (p, σ, q) is a transition in T (B) if and only if there exists q′ ∈ r(B)
such that q and q′ belong to the same cell of ν and (p′, σ, q′) is a transition in
T (B). We note that each left state p is trivially ν-equivalent to itself.

A merging annotation for B is a pair (μ, ν), where μ is a partition of �(B),
ν is a partition of r(B), and the following conditions are satisfied.

1. If φ(B) = 1, then ν = {F (B), r(B) \ F (B)} whenever F (B) �= ∅, and ν =
{r(B)} whenever F (B) = ∅;

2. For each p, p′ ∈ �(B), p and p′ belong to the same cell of μ if and only if p
and p′ are ν-equivalent.



58 A. Andrade de Melo and M. de Oliveira Oliveira

Let D = B1 · · · Bk be a deterministic, complete ODD in B̂(Σ,w). A merging
annotation for D is a sequence

〈(μ1, ν1) · · · (μk, νk)〉
satisfying the following conditions.

1. For each i ∈ [k], (μi, νi) is a merging annotation for Bi;
2. For each i ∈ [k − 1], νi = μi+1.

Lemma 2. Let Σ be an alphabet, w ∈ N+ and D = B1 · · · Bk be an ODD in
B̂(Σ,w)k. Then, D admits a unique merging annotation 〈(μ1, ν1) · · · (μk, νk)〉.

For each alphabet Σ, and each w ∈ N, we let M(Σ,w) be the set of triples
(B,μ, ν) such that B is a deterministic, complete layer in B̂(Σ,w) and (μ, ν) is
a merging annotation for B.

For each triple (B,μ, ν) ∈ M(Σ,w), we let ζ : M(Σ,w) → B̂(Σ,w) be
the map that sends each triple (B,μ, ν) ∈ M(Σ,w) to the layer ζ(B,μ, ν)
obtained from B by identifying all states in each cell of μ and in each cell
of ν with the smallest state in the respective cell. More formally, for each
(B,μ, ν) ∈ M(Σ,w), we let ζ(B,μ, ν) be the deterministic, complete layer
in B̂(Σ,w) with left states set �(ζ(B,μ, ν)) .=

⋃
X∈μ{min X}, right states set

r(ζ(B,μ, ν)) .=
⋃

X′∈ν{min X ′}, initial state set I(ζ(B,μ, ν)) .= I(B), final state
set F (ζ(B,μ, ν)) .= �(ζ(B,μ, ν)) ∩ F (B), initial flag ι(ζ(B,μ, ν)) .= ι(B), final
flag φ(ζ(B,μ, ν)) .= φ(B), and transition set

T (ζ(B,μ, ν)) .=
⋃

X∈μ,X′∈ν{(min X,σ, min X ′) : ∃ p ∈ X,∃ q ∈ X ′,
(p, σ, q) ∈ T (B), σ ∈ Σ}.

For each alphabet Σ, and each w ∈ N+, we consider the following binary
relations over B̂(Σ,w).

MR[Σ,w] = {(B, ζ(B,μ, ν)) : (B,μ, ν) ∈ M(Σ,w)}
and

MC[Σ,w] = {(ζ(B,μ, ν), ζ(B′, μ′, ν′)) : (B,μ, ν), (B′, μ′, ν′) ∈ M(Σ,w),
r(B) = �(B′), ν = μ′}

Now, for each alphabet Σ and each w ∈ N+, we define the transduction

mer[Σ,w] = mm[MR[Σ,w]] ◦ cp[MC[Σ,w]].

Lemma 3 (Merging Transduction). For each alphabet Σ, and each w ∈ N,
the (B̂(Σ,w), B̂(Σ,w))-transduction mer[Σ,w] satisfies the following properties.

1. mer[Σ,w] is injective.
2. Im(mer[Σ,w]) = B̂(Σ,w)�.
3. For each (D,D′) ∈ mer[Σ,w], L(D) = L(D′), and D′ is minimized.



Second-Order Finite Automata 59

Normalization Transduction. Let Σ be an alphabet, w ∈ N+ and B ∈
B(Σ,w). Given two bijections π : �(B) → �|�(B)|� and π′ : r(B) → �|r(B)|�, we
let 〈πBπ′〉 be the layer in B(Σ,w) with left state set �(〈πBπ′〉) .= {π(p) : p ∈
�(B)}, initial state set I(〈πBπ′〉) .= {π(p) : p ∈ I(B)}, right state set r(〈πBπ′〉) .=
{π(q) : q ∈ r(B)}, final state set F (〈πBπ′〉) .= {π′(q) : q ∈ F (B)}, transition set
T (〈πBπ′〉) .= {(π(p), σ, π′(q)) : (p, σ, q) ∈ T (B)}, initial flag ι(〈πBπ′〉) .= ι(B)
and final flag φ(〈πBπ′〉) .= φ(B). We note that if B is deterministic (complete,
resp.), then the layer 〈πBπ′〉 is also deterministic (complete, resp.).

Proposition 4. Let Σ be an alphabet, w, k ∈ N+ and D = B1 · · · Bk be a
reachable, deterministic ODD in B(Σ,w)◦k. There exists a unique sequence π =
〈π0, π1, . . . , πk〉 such that

1. π0 : �(B1) → �|�(B1)|� is a bijection from �(B1) to �|�(B1)|�;
2. for each i ∈ [k], πi : r(Bi) → �|r(Bi)|� is a bijection from r(Bi) to �|r(Bi)|�;
3. for each i ∈ [k], 〈πi−1Biπi〉 is normalized.

For each finite set X, we let SX = {π : X → �|X|� : π is a bijection} be
the set of bijections from X to �|X|�. For each alphabet Σ and each w ∈ N+ we
define the following binary relations over B̂(Σ,w).

N[Σ,w] = {(B, 〈πBπ′〉) : B ∈ B̂(Σ,w), π ∈ S�(B), π′ ∈ Sr(B)}

and

C[Σ,w] = {(〈πBπ′〉, 〈π′B′π′′〉) : B,B′ ∈ B̂(Σ,w), r(B) = �(B′),
π ∈ S�(B), π′ ∈ Sr(B), π′′ ∈ Sr(B′)}

Now, let nor[Σ,w] .= mm[N[Σ,w]] ◦ cp[C[Σ,w]]. The next lemma states that
nor is a transduction that sends reachable, complete, deterministic ODDs to
normalized ODDs accepting the same language.

Lemma 4 (Normalization Transduction). For each alphabet Σ, and each
w ∈ N, the (B̂(Σ,w), B̂(Σ,w))-transduction nor[Σ,w] satisfies the following
properties.

1. nor[Σ,w] is injective.
2. Im(nor[Σ,w]) = B̂(Σ,w)�.
3. For each (D,D′) ∈ nor[Σ,w], if D is reachable, then L(D) = L(D′) and D′

is normalized.

ODD-Canonization Transduction. Now, we combine the three transduc-
tions defined in this section in order to define a transduction that can simu-
late the canonization of ODDs. More precisely, for each alphabet Σ, and each
w ∈ N+, let can[Σ,w] be the (B(Σ,w), B̂(Σ, 2w))-transduction defined as follows

can[Σ,w] = det[Σ,w] ◦ mer[Σ, 2w] ◦ nor[Σ, 2w].



60 A. Andrade de Melo and M. de Oliveira Oliveira

Theorem 5. For each alphabet Σ, and each w ∈ N+,

can[Σ,w] = {(D, C(D)) : D ∈ B(Σ,w)�}.

In other words, Theorem 5 states that the transduction can[Σ,w] sends each
ODD D ∈ B(Σ,w)� to its canonical form C(D) specified in Theorem 2.

Proof of Theorem 3. Now, we are in a position to prove Theorem 3. First,
we note that the transduction det[Σ,w] is 1-regular, and that the transductions
mer[Σ,w] and nor[Σ,w] are both 22

O(|Σ|·w)
-regular. This implies that can[Σ,w] is

22
O(|Σ|·w)

-regular. We also have that the transduction d(L(F)) is nSt(F)-regular.
Therefore, the language

can[Σ,w] ◦ d(L(F)) = {C(D) : D ∈ L(F)} (1)

is nSt(F) · 22
O(|Σ|·w)

-regular. Additionally a (possibly non-deterministic) finite
automaton F ′ over B̂(Σ, 2w) with nSt(F) · 22

O(|Σ|·w)
states accepting the lan-

guage (1) can be constructed within the same time upper bounds. Finally, we
let C2(F) be the unique deterministic, complete, normalized, finite automaton
over B̂(Σ, 2w) accepting the same language as F ′. This automaton can be con-

structed in time 2nSt(F)·22O(|Σ|·w)

. �

6 Applications

The main technical tool used in the proof of our main result, (Theorem 3) was
the fact that for each alphabet Σ, and each width w ∈ N, the (B(Σ,w), B̂(Σ,w))-
transduction can[Σ,w] = {(D, C(D)) : D ∈ B(Σ,w)} is f(Σ,w)-regular for
f(Σ,w) = 22

O(|Σ|·w)
. In this section, we show that this technical result has also

other interesting algorithmic applications.

Width-Minimization of Nondeterministic ODDs. It is well known that
given a deterministic ODD D ∈ B(Σ,w)◦k, one can construct in time polynomial
both in w and in k the unique ODD C(D) with minimum number of states with
the property that C(D) is deterministic, complete, normalized, and L(D) =
L(CD). Nevertheless, size minimization in the space of non-deterministic ODDs
and width minimization for both non-deterministic and for deterministic ODDs
are computationally hard problems. Next, we show that several width and size
minimization problems for ODDs can be solved in FPT time when parameterized
by the width of the input ODD.

Let D = B1 . . . Bk be an ODD in B(Σ,w)◦k. We let nSt(D) = |�(B1)| +∑
i∈[k] |r(Bi)| be the number of states in D, nTr(D) = |T (B1)| +

∑
i∈[k] |T (Bi)|

be the number of transitions in D, and w(D) = min{|�(B1)|, |r(B1)|, . . . |r(Bk)|}
be the width of D.

Let Σ be an alphabet, w ∈ N+, and S ⊆ B(Σ,w). We let S� = S+∩B(Σ,w)�

be the set of all (Σ,w)-ODDs whose layers are chosen from the set S.



Second-Order Finite Automata 61

Theorem 6. Let Σ be an alphabet, w,w′ ∈ N+, D be an ODD in B(Σ,w)◦k,
and S ⊆ B(Σ,w′). For some computable function hΣ(w,w′), one can determine
in time hΣ(w,w′) · k whether there exists an ODD D′ ∈ S◦k such that L1(D′) =
L1(D). Additionally, if such an ODD D′ exists, the following can be done in
time hΣ(w,w′) · kO(1).

1. One can compute an ODD D′ ∈ S◦k of minimum width such that L1(D′) =
L1(D).

2. One can compute an ODD D′ ∈ S◦k with minimum number of states width
such that L1(D′) = L1(D).

3. One can compute an ODD D′ ∈ S◦k with minimum number of transitions
such that L1(D′) = L1(D).

Theorem 6 can be used to solve several types of minimization problems for
ODDs in FPT time, when parameterized by the width of the input ODD. For
instance, given an ODD D ∈ B(Σ,w)◦k, if we want to find a (potentially non-
deterministic) ODD D′ of minimum width with L(D′) = L(D), then we set
w′ = w and S = B(Σ,w). On the other hand, if we want to enforce width
minimization among deterministic ODDs, we set w′ = 2w and S as the set of
all deterministic (Σ, 2w)-layers. Analogously, if we want to enforce minimization
over deterministic, complete ODDs, then we set w′ = w and S = B̂(Σ,w).

Counting Functions Computable by ODDs of a Given Width. Each
ODD D ∈ B(Σ,w)◦k can be regarded as a representation of a function fD :
Σk → {0, 1}. More precisely, for each s ∈ Σk, fD(s) = 1 if and only if s ∈ L(D).
The problem of counting functions from Σk to {0, 1} computable by ODDs of a
given width w however is very different from the problem of counting the number
of ODDs of width w and length k. This is due to the fact that several ODDs may
represent the same function. Nevertheless, our main theorem (Theorem 3) can
be used to show that the problem of counting the number of functions of type
Σk → {0, 1} which can be computed by some ODDs of width w, can be solved
in time hΣ(w) · kO(1) for some suitable function hΣ(w). More generally, given
any subset S ⊆ B(Σ,w), we can count the number of functions computable by
ODDs in S◦k in time hΣ(w).

Theorem 7. Let Σ be an alphabet, w ∈ N and S ⊆ B(Σ,w). For each k ∈ N,
one can count in time hΣ(w) · kO(1) the number of functions from Σk to {0, 1}
that can be computed by some ODD in S◦k, where hΣ(w) is a suitable computable
function depending only on the size of Σ and on w.

7 Conclusion

In this work, we have introduced the notion of second-order finite automata, a
formalism that combines traditional finite automata with ODDs of fixed width
in order to represent set of sets of strings. Our main result states that second-
order finite automata can be canonized with respect to their second languages. In



62 A. Andrade de Melo and M. de Oliveira Oliveira

particular, this implies that languages that can be represented by such automata
are closed union, intersection, bounded width complementation, and that tests
such as emptiness of intersection and inclusion are decidable.

We also provided two algorithmic applications of second order automata. In
particular, we have shown that several width and size minimization problems
for ODDs can be solved in fixed-parameter tractable time when parameterized
by the width of the input ODD. This implies corresponding FPT algorithms
for width and size minimization of ordered binary decision diagrams (OBDDs)
with a fixed ordering. Finally, we have shown that second-order finite automata
can be used to count exactly the number of distinct functions computable by
(Σ,w)-ODDs of a given width w and a given length k in time hΣ(w) · kO(1), for
some suitable function hΣ(w) while the naive algorithm for this task takes time
exponential in both w and in k.

References

1. Bollig, B.: On the width of ordered binary decision diagrams. In: Zhang, Z., Wu, L.,
Xu, W., Du, D.-Z. (eds.) COCOA 2014. LNCS, vol. 8881, pp. 444–458. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-12691-3 33

2. Bollig, B.: On the minimization of (complete) ordered binary decision diagrams.
Theory Comput. Syst. 59(3), 532–559 (2016)

3. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree
model checking. Electron. Notes Theoret. Comput. Sci. 149(1), 37–48 (2006)

4. Bozapalidis, S., Kalampakas, A.: Graph automata. Theoret. Comput. Sci. 393(1–
3), 147–165 (2008)

5. Courcelle, B.: On recognizable sets and tree automata. In: Algebraic Techniques,
pp. 93–126. Elsevier (1989)

6. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

7. Courcelle, B., Durand, I.: Verifying monadic second order graph properties with
tree automata. In: Rhodes, C. (ed.) 3rd European Lisp Symposium, ELS, pp. 7–21.
ELSAA (2010)

8. Ebbinghaus, H.D., Flum, J.: Finite automata and logic: a microcosm of finite model
theory. In: Finite Model Theory, pp. 107–118. Springer, Heidelberg (1995). https://
doi.org/10.1007/978-3-662-03182-7 6

9. Ergün, F., Kumar, R., Rubinfeld, R.: On learning bounded-width branching pro-
grams. In: Maass, W. (ed.) Proceedings of the Eighth Annual Conference on Com-
putational Learning Theory, COLT, pp. 361–368. ACM (1995)

10. Forbes, M.A., Kelley, Z.: Pseudorandom generators for read-once branching pro-
grams, in any order. In: Thorup, M. (ed.) 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 946–955. IEEE (2018)

11. Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. J. Pattern
Recogn. Artif. Intell. 6(02n03), 241–256 (1992)

12. Godefroid, P.: Using partial orders to improve automatic verification methods.
In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176–185.
Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0023731

13. Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton. In:
Theory of Machines and Computations, pp. 189–196. Elsevier (1971)

https://doi.org/10.1007/978-3-319-12691-3_33
https://doi.org/10.1007/978-3-662-03182-7_6
https://doi.org/10.1007/978-3-662-03182-7_6
https://doi.org/10.1007/BFb0023731


Second-Order Finite Automata 63

14. Priese, L.: Automata and concurrency. Theoret. Comput. Sci. 25(3), 221–265
(1983)

15. Thomas, W.: Automata theory on trees and partial orders. In: Bidoit, M., Dauchet,
M. (eds.) CAAP 1997. LNCS, vol. 1214, pp. 20–38. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0030586

https://doi.org/10.1007/BFb0030586


Isomorphic Distances Among Elections

Piotr Faliszewski1(B), Piotr Skowron2, Arkadii Slinko3, Stanis�law Szufa4,
and Nimrod Talmon5

1 AGH University, Kraków, Poland
faliszew@agh.edu.pl

2 University of Warsaw, Warsaw, Poland
p.skowron@mimuw.edu.pl

3 University of Auckland, Auckland, New Zealand
a.slinko@auckland.ac.nz

4 Jagiellonian Univeristy, Kraków, Poland
stanislaw.szufa@doctoral.uj.edu.pl

5 Ben-Gurion University, Be’er Sheva, Israel
talmonn@bgu.ac.il

Abstract. This paper is an invitation to study the problem of measur-
ing distances between elections, for the case where both the particular
names of the candidates and the voters are irrelevant. In other words, we
say that two elections are at distance zero (or, that they are isomorphic)
if it is possible to make them identical by renaming their candidates and
voters, and we are interested in measuring how far are two given elections
from being isomorphic. The study of such distances has just begun and
in this paper we outline why we believe that it is interesting and what
are the natural research directions.

Keywords: Elections · Distances · Isomorphism · Complexity

1 Introduction

An election consists of a set of candidates and a collecton of voters who express
preferences regarding these candidates (for example, in the ordinal model the
voters rank the candidates from the most to the least appreciated ones). The
goal is to choose a candidate or a group of candidates (a committee) in a way
that both reflects the preferences of the voters and suits a given application.
While elections are most commonly associated with making political decisions
(such as choosing countries’ presidents or parliaments), they are also used in

Piotr Faliszewski was supported by the funds of the Polish Ministry of Science and
Higher Education assigned to AGH University. Piotr Skowron was supported by the
Foundation for Polish Science (Homing programme). Arkadii Slinko was supported by
Marsden Fund grant 3706352 of The Royal Society of New Zealand. Stanis�law Szufa was
supported by NCN project 2018/29/N/- ST6/01303. Nimrod Talmon was supported
by the Israel Science Foundation (grant No. 630/19).

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 64–78, 2020.
https://doi.org/10.1007/978-3-030-50026-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_5&domain=pdf
https://doi.org/10.1007/978-3-030-50026-9_5


Isomorphic Distances Among Elections 65

numerous other contexts. For example, we can use the theory of elections to
model various competitions (e.g., we can view the participants as the candidates
and the judges as the voters), to model business decision-making scenarios (e.g.,
a company may choose its product portfolio based on an opinion poll), or even
to model everyday interactions (e.g., a group of friends may vote on a restaurant
for a dinner). Thus it is not surprising that elections are widely studied within
such areas as economics, political science, mathematics, operations research, and
computer science (mostly within the area of computational social choice [6]). In
particular, computer scientists seek efficient algorithms for computing election
winners (perhaps somewhat surprisingly, for many voting rules the problem of
deciding who won an election is NP-hard [4,24,33]), study the complexity of
manipulating election results (e.g., via strategic voting [3,9,22], controlling the
election structure [5,15,25], or bribing voters [12,18,28]), provide algorithms for
verifying election integrity (e.g., via computing candidates’ margins of victory [8,
35,41], or through game-theoretic analysis [14,42]), and consider numerous other
problems.1 In particular, researchers also considered various problems related
to measuring distances between elections, e.g., in the distance rationalization
framework [13,31,32]. In this framework, the focus is on comparing the distances
of a given election to a set of consensus elections in order to find the closest one.
For this reason the identities of candidates and the identities of voters are kept
fixed. On the contrary, we are more interested in comparing the structure of the
given elections and, thus, we view the exact names of candidates and voters as
irrelevant. We intend this paper to be an invitation and encouragement to study
problems that arise due to this view.

1.1 Distances, Election Isomorphism, and Motivation

Suppose we are given two elections over possibly different candidate sets and with
possibly different collections of voters, except that in both elections the numbers
of candidates and the numbers of voters match (i.e., the elections are of the same
size). These elections may represent real-life preferences over some issues, or may
have been generated using some statistical model, or may have come from any
other source. The particular names of the candidates and identities of voters are
irrelevant for us since we would like to compare the internal structure of these
elections. For example, if it is possible to rename the candidates and reorder
the voters so that the two elections become identical, then we say that they
are isomorphic and we insist that the distance between them should be zero.
Otherwise, we would like to measure how far they are from being isomorphic
(sometimes we will relax this requirement and we will agree that some non-
isomorphic elections are also at distance zero).2 There is a number of reasons
why such distances are useful and below we outline a few possible applications:

1 The references here are just examples giving pointers to both classic and new works.
2 Thus we are effectively interested in pseudodistances over elections. We will, however,

typically omit the “pseudo” prefix to maintain simplicity of our writing.



66 P. Faliszewski et al.

Choosing Elections for Numerical Experiments. There is a growing body
of work in computational social choice that is focused on numerical experi-
ments regarding elections. For example, researchers evaluate running times of
algorithms [20,39,40], test practically achievable approximation ratios [27,36],
or evaluate how frequently a given phenomenon occurs (e.g., how frequently a
voting rule is manipulable [16,22,39], or how frequently a certain paradoxical
situation occurs [7,29,38]). However, it is not at all clear what data to use for
such experiments. One possible approach is to generate elections from various
statistical models, but it is useful to know if the generated set of elections is
truly representative, or if they all happen to be similar. Thus it is important
to be able to measure the distances between the generated elections. Indeed,
in our recent work we have taken this distance-based approach to forming a
testbed of election instances [37].

Matching Real-Life Elections to Statistical Models. There are two main
sources of election data that researchers working on computational social
choice use in their experiments: the PrefLib library [30], which collects real-
life elections; and various statistical models (referred to as statistical cultures),
which provide means of sampling from the space of elections. Both of these
sources, however, have some issues specific to them. One problem with real-
life election data is that it typically involves just a handful of candidates and,
thus, it is insufficient for many experiments. Randomly generated elections
can be of any size, but it is not clear which statistical model best reflects the
reality for a given application. Thus it would be interesting to match real-
life elections with those models that capture their most essential features.
Computing distances between various elections is crucial for obtaining such
a matching.

Machine Learning Over Preference Data. Many machine-learning algo-
rithms need to be able to evaluate how similar are particular objects to each
other. For example, we can imagine a system which learns to recognize elec-
tions on which particular algorithms work well (e.g., the system could learn
to match elections with the fastest winner-determination algorithms), or a
system that recognizes elections with particular features (such as, perhaps,
instances of bribery or strategic voting, or types of elections that typically
arise in various application domains). In each of these cases a good algorithm
for computing distances among elections may be useful.

With the above applications in mind, we are interested in finding distances
that are both (1) efficiently computable; and (2) provide meaningful, easy to
interpret results. Regarding the former issue, the reader may be already con-
cerned that prior to even considering distances, we need to be able to test if
two elections are isomorphic. Yet, even though many problems of this kind—
with the Graph Isomorphism problem being the most notable example [2]—
are not known to have polynomial-time algorithms, this is not the case for
Election Isomorphism. Unfortunately, this is where the good news end. So
far, all the distances that we have analyzed are either unappealing, computa-
tionally intractable [19], or assign distance zero also to elections that are not



Isomorphic Distances Among Elections 67

isomorphic [37] (this latter drawback is less of a problem but, ideally, we would
prefer to avoid it). As a consequence, further studies regarding both the algo-
rithmic and normative properties of distances are needed.

1.2 Organization

The paper is organized as follows. First, in Sect. 2, we provide preliminary def-
initions and the necessary notation to discuss elections. Then, in Sect. 3, we
briefly describe the Election Isomorphism problem and discuss several dis-
tances among elections, focusing mostly on their computational complexity. In
Sect. 4 we outline a few directions for future research, and we conclude in Sect. 5.

2 Preliminaries

We model an election as a pair E = (C, V ), where C = {c1, . . . , cm} is a set
of candidates and V = (v1, . . . , vn) is an (ordered) collection of voters. In the
ordinal model, each voter vi has a preference order �vi

in which he or she ranks
the candidates from the most to the least preferred one. In the approval model
each voter vi has a set Ai ⊆ C of candidates that he or she finds acceptable.
Throughout this paper we focus on the ordinal model, but occasionally we will
make references to the approval one.

Let v be a voter with a preference order over candidate set C. We will write
v to refer both to the voter v and to his or her preference order (and we will
sometimes refer to preference orders as votes); the exact meaning will always be
clear from the context. For two candidates a and b, we write a �v b or v : a � b
to indicate that v prefers a over b (we extend this notation to more candidates in
a natural way). For a candidate c ∈ C, we write posv(c) to denote the position
of c in �v (so if v ranks c on the first position then posv(c) = 1, and if v ranks
c on the last position then posv(c) = |C|).
Example 1. Consider an election E = (C, V ), where C = {a, b, c, d} and V =
(v1, v2, v3) with voters having the following preference orders:

v1 : a � b � c � d, v2 : a � c � b � d, v3 : d � a � c � b.

Voter v1 considers candidate a to be the most desirable, then b, then c, and
finally d. If the same voters were to cast approval votes, their approval sets might
be, e.g., A1 = {a, b, c}, A2 = {a}, and A3 = {a, d}. In this case v1 approves his
or her top three candidates, v2 approves his or her top candidate only, and v3
approves his or her top two candidates; we note that the preference orders of
these candidates do not define the approval sets uniquely.

For nonnegative integers m and n, we write E(m,n) to denote the space of
all elections with m candidates and n voters.



68 P. Faliszewski et al.

Bijections and Permutations. Let n be a positive integer. We write [n] to mean
the set {1, . . . , n} and Sn to mean the set of all permutations of [n]. For an
election E = (C, V ), with V = (v1, . . . , vn), and permutation ν ∈ Sn, by ν(E)
we mean the election (C, (vν(1), . . . , vν(n))).

Let C and D be two candidate sets of the same cardinality and let σ : C → D
be a bijection. If v is a vote over the candidates in C, then by σ(v) we mean a
vote obtained by renaming the candidates according to σ. Formally, for each two
candidate a, b ∈ C it holds that σ(v) : σ(a) � σ(b) if and only if v : a � b. For
an election E = (C, V ), where V = (v1, . . . , vn), by σ(E) we mean an election
(D, (σ(v1), . . . , σ(vn)). For two sets C and D, |C| = |D|, we write Π(C,D) to
denote the set of all bijections between them.

Distances. Let X be a set. We say that a function d : X × X → R is a distance
over X if for every x, y, z ∈ X all of the following hold:

(1) d(x, y) ≥ 0 (non-negativity),
(2) d(x, y) = 0 if and only if x = y (identity of indiscernibles),
(3) d(x, y) = d(y, x) (symmetry),
(4) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

We will often consider pseudodistances, i.e., functions that satisfy all the prop-
erties of a distance except for the identity of indiscernibles.

Let x = (x1, . . . , xm) and y = (y1, . . . , ym) be two vectors from R
m. The �1

and �2 distances between x and y are defined, respectively, as:

�1(x, y) =
∑

i∈[m] |xi − yi| and �2(x, y) =
√∑

i∈[m](xi − yi)2.

For the case where x and y are elements of an (m − 1)-dimensional simplex
(i.e., all xi and yi are nonnegative and

∑
i∈[m] xi =

∑
i∈[m] yi = 1), we are also

interested in the earth mover’s distance between x and y, denoted EMD(x, y).
EMD(x, y) is defined as the lowest cost of transforming x into y, where the
allowed operations are of the form “move value z from coordinate i to coordinate
j at cost z · |i − j|” (the costs of the operations sum up). It is well-known that
EMD(x, y) can be computed in polynomial-time using a simple greedy algorithm.

Let C be a set of candidates. The following three distances over the space
of preference orders are particularly useful (by u and v we mean two arbitrary
preference orders over C):

1. The discrete distance, ddisc(u, v), is 0 if u = v and is 1 otherwise.
2. The swap distance, dswap(u, v), is the number of swaps of adjacent candidates

that one has to perform (one after the other) to transform u into v.
3. The Spearman distance, dSpear(u, v), is equal to

∑
c∈C |posv(c) − posu(c)|.

The swap and Spearman distances are closely related and, in particular, for
each two preference orders u and v (over the same candidate set) they satisfy
the Diaconis-Graham inequality [10]:

dswap(u, v) ≤ dSpear(u, v) ≤ 2dswap(u, v).



Isomorphic Distances Among Elections 69

There are numerous other distances (such as the Cayley distance, a variant of
the swap distance where we can swap arbitrary candidates and not only the
adjacent ones), but these three will suffice for our discussion.

3 Distances Among Elections

In this section we will consider several types of distances over the space of elec-
tions E(m,n) and we will discuss their computational complexity. As we have
argued, we are interested in (pseudo)distances that view isomorphic elections as
identical. Formally, we have the following definition (this notion was introduced
by Faliszewski et al. [19], but the exact terminology is due to this paper):

Definition 1. Let DIS be a distance over election space E(m,n). We say
that DIS is symmetric (i.e., neutral and anonymous) if for every two elections
E1 = (C, V ), E2 = (D,U) ∈ E(m,n), each permutation ν ∈ Sn, and each bijec-
tion σ : C → D it holds that DIS(E1, E2) = DIS(σ(E1), ν(E2)).

In social choice, neutrality refers to invariance with respect to renaming candi-
dates, whereas anonymity refers to invariance with respect to permuting voters.
Szufa et al. [37] referred to symmetric distances as neutral/anonymous.

3.1 Election Isomorphism Problem

Before we discuss specific symmetric distances, let us first consider the issue of
election isomorphism.

Definition 2 (Faliszewski et al. [19]). Let E1 = (C, V ) and E2 = (D,U) be
two elections from E(m,n). We say that E1 and E2 are isomorphic if there is a
bijection σ : C → D and permutation ν ∈ Sn such that σ(E1) = ν(E2).

Example 2. Consider elections E1 = (C, V ) and E2 = (D,U) such that C =
{a, b, c, d}, D = {x, y, z, w}, V = (v1, v2, v3), and U = (u1, u2, u3), with the
following preference orders:

v1 : a � b � c � d, u1 : x � y � z � w,

v2 : b � a � d � c, u2 : z � w � y � x,

v3 : c � d � b � a, u3 : y � x � w � z.

E1 and E2 are isomorphic, as witnessed by the bijection σ(a) = x, σ(b) = y,
σ(c) = z, and σ(d) = w, and permutation ν(1) = 1, ν(2) = 3, and ν(3) = 2.
On the other hand, neither E1 nor E2 is isomorphic to the election E from
Example 1. To see this, it suffices to note that in elections E1 and E2 each voter
ranks a different candidate last, whereas this is not the case for E.



70 P. Faliszewski et al.

In the Election Isomorphism problem we ask if two given elections are
isomorphic. While many isomorphism problems are notoriously difficult to clas-
sify in terms of their computational complexity (as is the case for Graph Iso-

morphism), Election Isomorphism is easily seen to be polynomial-time solv-
able [19]: Let E1 = (C, V ) and E2 = (D,U) be our two input elections, where
C = {c1, . . . cm}, D = {d1, . . . , dm}, V = (v1, . . . , vn), and U = (u1, . . . , un).
Suppose that E1 and E2 are isomorphic and that this is witnessed by bijection
σ : C → D and permutation ν ∈ Sn. Then we know that votes σ(v1) and uν(1)

are identical. Our algorithm simply guesses the value ν(1) (there are n choices),
reads off the bijection σ by comparing the votes v1 and uν(1), and computes the
remaining part of ν by finding a matching in the following bipartite graph: On
the left side we put votes v1, . . . , vn, on the right side we put votes u1, . . . , un,
and each two votes vi and uj are connected by an edge if σ(vi) = uj . Every
perfect matching of such a graph defines a permutation that witnesses that the
elections are isomorphic. On the other hand, if we cannot find a perfect matching
for any initial value of ν(1), then the elections are not isomorphic.

Proposition 1 (Faliszewski et al. [19]). Election Isomorphism is in P.

This is good news as it means that there are no fundamental obstacles to
finding appealing, polynomial-time computable distances, at least for the case of
ordinal elections. On the other hand, the situation regarding approval elections
is, unfortunately, more challenging. Since in approval elections each voter simply
indicates which candidates he or she finds acceptable, the problem of deciding
if two approval elections are isomorphic is equivalent to the problem of deciding
if two multi-hypergraphs are isomorphic. Since even the complexity status of
Graph Isomorphism is not resolved [2], we will not discuss approval elections
further (however, we mention the works of Arvind et al. [1] and Grohe et al. [23]
regarding Approximate Graph Isomorphism and related problems).

3.2 Isomorphic Distances

We say that a symmetric distance is isomorphism-respecting (or, isomorphic, for
short) if it guarantees that two elections are at distance zero if and only if they
are isomorphic. One of the most natural ways of defining such distances is by
extending distances over votes. In particular, Faliszewski et al. [19] proposed the
following approach.

Definition 3 (Faliszewski et al. [19]). Let d be a distance over preference
orders. Let E1 = (C, V ) and E2 = (D,U) be two elections, where |C| = |D|,
V = (v1, . . . , vn), and U = (u1, . . . , un). For a bijection σ ∈ Π(C,D), we define:

dσ-ID(E1, E2) = minν∈Sn

∑
i∈[n] d(σ(vi), uν(i)).

We define the d-isomorphic distance between E1 and E2 to be d-ID(E1, E2) =
minσ∈Π(C,D) dσ-ID(E1, E2).



Isomorphic Distances Among Elections 71

In particular, we have isomorphic distances ddisc-ID, dswap-ID, and
dSpear-ID.3 Unfortunately, it seems that all of them suffer from some prob-
lems. The first distance, ddisc-ID, is polynomial-time computable (by a sim-
ple extension of the algorithm for Election Isomorphism), but seems to
be too coarse. Indeed, given two elections E1, E2 ∈ E(m,n), it holds that
ddisc-ID(E1, E2) ∈ {0, . . . , n − 1}. This is so, because each pair of matched votes
can either contribute distance 0 or 1 and it is always possible to ensure that at
least one pair contributes distance 0. While coarseness does not seem to be an
issue for dswap-ID and dSpear-ID, these two distances seem to be quite hard to
compute.

Theorem 1 (Faliszewski et al. [19]). Given an integer δ and two elections
E1, E2 ∈ E(m,n), the problems of deciding if dswap-ID(E1, E2) ≤ δ and if
dSpear-ID(E1, E2) ≤ δ are both NP-complete.

Worse yet, it seems that standard ways of dealing with NP-hard problems
are not effective here. In particular, the ability to compute dswap-ID or dSpear-ID
approximately implies the ability to solve the Graph Isomorphism problem in
polynomial time.

Theorem 2 (Faliszewski et al. [19]). For each α < 1, there are neither
polynomial-time mα-approximation nor nα-approximation algorithms (where m
is the number of candidates and n is the number of voters) for dswap-ID and
dSpear-ID unless the Graph Isomorphism problem is in P.

Since, in spite of considerable effort, the exact complexity of Graph Isomor-

phism remains elusive, the above theorem indicates that even if there were good
approximation algorithms for our distances, finding them would be a major
break-through in theoretical computer science. Thus, instead of seeking such
algorithms, we rather ask if the conclusion of Thoerem 2 can be strengthened to
P = NP (perhaps at the price of a weaker approximation guarantee).4

More importantly, instead of seeking approximation algorithms it may be
worthwhile to consider parameterized complexity of computing our distances.

Theorem 3 (Faliszewski et al. [19]). There are FPT algorithms for comput-
ing dswap-ID and dSpear-ID for the parameterizations by the number of candidates
and by the value of the distance. There is also an FPT algorithm for comput-
ing dSpear-ID parameterized by the number of voters, whereas for dswap-ID the
corresponding problem is para-NP-hard.5

3 One can verify that, indeed, Definition 3 provides functions d-ID that satisfy the
requirements of (pseudo)distances. Further, one can also verify that the Diaconis-
Graham inequality also holds for dswap-ID and dSpear-ID.

4 We thank Gerhard Woeginger for suggesting this idea.
5 This follows from the fact that being able to compute dswap-ID implies the ability to

compute Kemeny rankings, and this problem is NP-hard already for four voters [11];
see also the results of Bartholdi et al. [4] and Hemaspaandra et al. [26].



72 P. Faliszewski et al.

Unfortunately, the FPT algorithms from the above theorem are quite inefficient
and finding faster ones would be desirable. It may also be interesting to consider
other parameterizations (e.g., by the largest distance between matched voters).

Faliszewski et al. [19] also proposed formulations of dswap-ID and dSpear-ID as
integer linear programs (ILPs). Unfortunately, it turned out that solving these
programs is very challenging even for very small elections (for dSpear-ID they
computed distances for elections with 6 candidates and 16 voters; for dswap-ID
even such tiny elections were too demanding). However, perhaps, the approach
of Redko et al. [34] can lead to a practically fast heuristic algorithm.

3.3 Positionwise and Pairwise Distances

As, at least so far, isomorphism-respecting distances are either unappealing or
are too difficult computationally, it may be necessary to drop this requirement.
To this end, Szufa et al. [37] suggested the positionwise distance, which focuses
on the positions of the candidates in the votes (and which was inspired by the
family of positional scoring rules), and the pairwise distance, which focuses on
relative orderings of pairs of candidates (and which was inspired by the class of
C2 rules in Fishburn’s classification [21]).

We discuss the positionwise distance first. Let E = (C, V ) be an election. For
each candidate c ∈ C and each possible position in a vote i ∈ [|C|], we define
ψE(c, i) to be the fraction of the votes in which c is ranked on the i-th position.
We let ψE(c) be the vector (ψE(c, 1), . . . , ψE(c, |C|)).
Definition 4 (Szufa et al. [37]). Let E1 = (C, V ) and E2 = (D,U) be two
elections from E(m,n). We define their positionwise distance as POS(E1, E2) =
minσ∈Π(C,D)

∑
c∈C EMD(ΨE1(c), ΨE2(σ(c))).

The positionwise distance is, indeed, symmetric, but is not isomorphic.

Example 3. Consider elections E1 = (C, V ) and E2 = (D,U), where C =
{a, b, c, d}, D = {x, y, z, w}, V = (v1, . . . , v4), and U = (u1, . . . , u4):

v1 : a � b � c � d, u1 : x � z � w � y

v2 : b � c � d � a, u2 : y � w � z � x

v3 : c � d � a � b, u3 : z � x � y � w

v4 : d � a � b � c, u4 : w � y � x � z.

These two elections are at positionwise distance zero because in both of them
each voter is ranked exactly once at each position. However, they are not isomor-
phic because in E2 candidates x and z (as well as y and w) are always ranked
next to each other, whereas there is no such pair of candidates in E1.

On the positive side, it is possible to compute the value POS(E1, E2) in
polynomial time as it reduces to finding the lowest cost in the following bipartite
graph: The candidates from E1 are on one side, the candidates from E2 are on
the other side, and for each candidate c from E1 and each candidate d from E2

there is a connecting edge with cost EMD(ΨE1(c), ΨE2(d)).



Isomorphic Distances Among Elections 73

Proposition 2 (Szufa et al. [37]). There is a polynomial-time algorithm for
computing the positionwise distance between elections.

Remark 1. Computing the positionwise distance implicitly provides a mapping σ
between the candidates from the given elections. Then, for this σ we can compute
in polynomial time dσ

swap-ID or dσ
Spear-ID and use them as a proxy for the distance

between the given elections. However, doing so does not seem to be a good idea.
Indeed, two bijections may provide the same positionwise distance, but different
dσ
swap-ID or dσ

Spear-ID distances.

The pairwise distance is defined similarly to the positionwise one, but on top
of the notion of a weighted majority relation. For an election E = (C, V ), its
weighted majority relation is a function ME such that for each two candidates
a, b ∈ C, ME(a, b) is the fraction of the voters who prefer a over b.

Definition 5 (Szufa et al. [37]). Let E1 = (C, V ) and E2 = (D,U) be two
elections from E(m,n). We define their pairwise distance as PAIR(E1, E2) =
minσ∈Π(C,D)

∑
(a,b)∈C×C |ME1(a, b) − ME2(σ(a), σ(b))|.

The reader can verify that the pairwise distance also is symmetric, but not
isomorphic. Further, computing PAIR(E1, E2) is NP-hard (see the work of Szufa
et al. [37]; Grohe et al. [23] also provide a very relevant discussion and a set of
strong, if negative, results for a very closely related distance over graphs).

Szufa et al. [37] used the positionwise distance to argue about a number of
elections generated from several statistical cultures and to provide their visual-
ization. While their results seem appealing, it is not clear how meaningful this
distance is (or, how meaningful is the pairwise distance, which they did not
use due to its computational complexity). For example, why should we use the
EMD distance in the definition of the positionwise distance instead of �1 or �2 dis-
tances? Intuitively, the EMD distance captures the fact that being ranked on two
nearby positions is more similar than being ranked on far-apart positions (indeed,
according to EMD, vector x = (1, 0, 0, 0) is closer to vector y = (0, 1, 0, 0) than
to vector z = (0, 0, 0, 1), whereas both �1(x, y) = �1(x, z) and �2(x, y) = �2(x, z)).
However, it would be better to have formal arguments rather than intuitions.
Similarly, the pairwise distance is (implicitly) defined based on the �1 distance,
but why not use �2 or EMD (intuitively, in this case EMD does not seem to be
justified, but, again, a formal argument would be better than an intuition).

4 Research Directions

In this section we discuss a few research directions that we believe are important
to pursue in order to (1) obtain better understanding of symmetric distances,
and (2) to be able to use them for the applications from Sect. 1.



74 P. Faliszewski et al.

4.1 New Distances

So far, we have considered five different symmetric distances, namely ddisc-ID,
dswap-ID, dSpear-ID, POS, and PAIR. The first three are natural extensions of dis-
tances over preference orders, whereas the other two measure distances between
aggregated features of elections. It would be very interesting to provide more
approaches to defining symmetric distances, or to exploit these two further. It
would be particularly interesting to seek polynomial-time computable distances,
but it is not strictly necessary if one can either provide effective approximation6

or FPT algorithms (or other means of computing them effectively, e.g., using
ILP formulations or other such formalisms).

For example, we may try to extend the ddisc-ID distance. One interpretation
of ddisc-ID is that it counts the number of votes that need to be removed from the
given elections for them to become isomorphic. Instead, we may allow removing
both candidates and voters. While, likely, this would not make the distance much
less coarse, perhaps there would be applications where such a distance would be
useful. Alternatively, we may consider replacing the discrete distance with some
related, but more fine-grained one.

Another idea might be to try to merge the principles behind the position-
wise and pairwise distances, while maintaining the polynomial running time. For
example, it may be possible to consider relative orderings of pairs of candidates
identified by some feature (such as their score under some voting rule) rather
than their names.

Finally, in this paper we have considered distances between elections with the
same numbers of candidates and voters, but it would be very useful to relax this
restriction. In fact, positionwise and pairwise distances can meaningfully com-
pare elections with different numbers of voters, but, dealing with different sizes
of candidate sets may be more challenging. We mention that Redko et al. [34]
suggest how this can be done for dSpear-ID.

4.2 Effective Algorithms

Currently, we can efficiently compute the ddisc-ID and positionwise distances,
for which there are polynomial-time algorithms. Our (not so many) attempts to
efficiently compute the other distances were not successful. However, as we are
only at the beginning of the study of symmetric distances, it is quite possible
that there are much better approaches than those considered to date. In cases
where there are no polynomial-time algorithms, it is important to seek ones that
are superpolynomial in the worst case, but which, nonetheless, usually provide
exact solutions quickly. Approximation algorithms are interesting as well, but
possibly are more difficult to come by. Indeed, Theorem 2 suggests that seeking
approximation algorithms is likely too demanding for some isomorphic distances.

One possible new approach was suggested by Redko et al. [34], who consider
a certain new optimal transport problem and show its relations to computing the
6 These approximation algorithms, however, would have to have approximation ratios

very close to 1 if the computed distances were to be meaningful.



Isomorphic Distances Among Elections 75

dSpear-ID distance. Another possibility would be either to seek a different ILP
formulations than those used by Faliszewski et al. [19], or to find ways to guide
the ILP solvers in computing the solutions based on the current formulations.7

4.3 Properties of the Distances

We have briefly argued that ddisc-ID may not be a particularly useful symmetric
distance because it is too coarse. Similarly, we have also considered the notion
of isomorphism-respecting distances. However, in general, we do not yet have
a comprehensive theory that would explain which distances are good for which
applications and why. One way to start building such a theory is to define a num-
ber of desirable properties that the distances may have and test which distances,
indeed, have them. We are interested both in quantitative properties (such as
the coarseness of ddisc-ID) and in normative properties that either hold or not
(such as the property of being isomorphism-respecting).

Let DIS be a distance over E(m,n). It is interesting to consider, e.g., the
following quantitative properties:

1. The distance DIS defines an equivalence relation =DIS so that for E1, E2 ∈
E(m,n) we have E1 =DIS E2 if and only if DIS(E1, E2) = 0. The more equiv-
alence classes this relation generates (i.e., the larger is its quotient space),
the more appealing DIS seems to be (although this certainly is not the only
parameter that one should look at). For isomorphic distances, the number of
equivalence classes was provided by Eğecioğlu and Giritligil [17], who consid-
ered the problem of generating non-isomorphic elections uniformly at random.
For the positionwise and pairwise distances computing this value remains
open.

2. We are also interested in the cardinality of the set {DIS(E1, E2) | E1, E2 ∈
E(m,n)}. Intuitively, the larger it is, the more fine-grained the distance is.
Clearly, for dswap-ID and dSpear-ID this value is O(nm2) as there are n pairs of
votes and two matched votes can be at most at distance O(m2). For ddisc-ID
it is n.

Other properties may be interesting too. For example, we may ask what hap-
pens if given an election E we form a new election E′ by swapping two adjacent
candidates in a single vote. Is it the case that D(E,E′) is the smallest non-
zero distance possible between two elections? Or is there some E′′ such that
DIS(E,E′′) < DIS(E,E′)? We believe that building a normative theory of sym-
metric distances is an important task that deserves attention.

4.4 Evaluating Distances in Practice

In Sect. 1 we highlighted several scenarios in which symmetric distances between
elections are useful. Assuming we have enough symmetric distances at our dis-
posal, it is an important task to evaluate their suitability for each of our moti-
vating examples.
7 We thank Tuomas W. Sandholm for suggesting this idea.



76 P. Faliszewski et al.

In particular, we have recently used the positionwise distance to form a
testbed of elections and to visualize it [37]. However, it would be interesting
to compare how useful other distances would be for this task. For example, we
suspect that ddisc-ID would lead to uninteresting results, but it would be good
to verify this in practice. It would be even more interesting to find distances that
lead to further insights into the nature of elections than those provided by the
positionwise distance.

5 Summary

This paper presents the idea of symmetric distances over elections and consti-
tutes an invitation for further researchers to work on this topic. So far, there are
only few results and we hope and believe that significant progress is possible. We
are interested both in seeking theoretical results (e.g., regarding computational
complexity and properties of the distances) and empirical ones (e.g., evaluations
of heuristics, applications of the distances to solve various problems).

Acknowledgments. Some of the discussions related to the ideas presented in this
paper happened during Dagstuhl Seminar 19381.

References

1. Arvind, V., Köbler, J., Kuhnert, S., Vasudev, Y.: Approximate graph isomorphism.
In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp.
100–111. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-
2 12

2. Babai, L., Dawar, A., Schweitzer, P., Torán, J.: The graph isomorphism problem
(Dagstuhl seminar 15511). Dagstuhl Rep. 5(12), 1–17 (2015)

3. Bartholdi III, J., Tovey, C., Trick, M.: The computational difficulty of manipulating
an election. Soc. Choice Welfare 6(3), 227–241 (1989)

4. Bartholdi III, J., Tovey, C., Trick, M.: Voting schemes for which it can be difficult
to tell who won the election. Soc. Choice Welfare 6(2), 157–165 (1989)

5. Bartholdi III, J., Tovey, C., Trick, M.: How hard is it to control an election? Math.
Comput. Modeling 16(8/9), 27–40 (1992)

6. Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A. (eds.): Handbook of
Computational Social Choice. Cambridge University Press, Cambridge (2016)

7. Brandt, F., Geist, C., Strobel, M.: Analyzing the practical relevance of voting para-
doxes via Ehrhart theory, computer simulations, and empirical data. In: Proceed-
ings of the 15th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS-2016), pp. 385–393 (2016)

8. Bredereck, R., Faliszewski, P., Kaczmarczyk, A., Niedermeier, R., Skowron, P.,
Talmon, N.: Robustness among multiwinner voting rules. In: Bilò, V., Flammini, M.
(eds.) SAGT 2017. LNCS, vol. 10504, pp. 80–92. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66700-3 7

9. Conitzer, V., Sandholm, T., Lang, J.: When are elections with few candidates hard
to manipulate? J. ACM 54(3), Article 14 (2007)

https://doi.org/10.1007/978-3-642-32589-2_12
https://doi.org/10.1007/978-3-642-32589-2_12
https://doi.org/10.1007/978-3-319-66700-3_7
https://doi.org/10.1007/978-3-319-66700-3_7


Isomorphic Distances Among Elections 77

10. Diaconis, P., Graham, R.: Spearman’s footrule as a measure of disarray. J. Roy.
Stat. Soc. Ser. B 39(2), 262–268 (1977)

11. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for
the web. In: Proceedings of the 10th International World Wide Web Conference
(WWW-2001), pp. 613–622. ACM Press, March 2001

12. Elkind, E., Faliszewski, P., Slinko, A.: Swap bribery. In: Mavronicolas, M.,
Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 299–310. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04645-2 27

13. Elkind, E., Faliszewski, P., Slinko, A.: Distance rationalization of voting rules. Soc.
Choice Welfare 45(2), 345–377 (2015). https://doi.org/10.1007/s00355-015-0892-
5

14. Elkind, E., Gan, J., Obraztsova, S., Rabinovich, Z., Voudouris, A.: Protecting
elections by recounting ballots. In: Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI-2019), pp. 259–265 (2019)

15. Erdélyi, G., Fellows, M., Rothe, J., Schend, L.: Control complexity in Bucklin and
fallback voting: a theoretical analysis. J. Comput. Syst. Sci. 81(4), 632–660 (2015)

16. Erdélyi, G., Fellows, M., Rothe, J., Schend, L.: Control complexity in Bucklin and
fallback voting: an experimental analysis. J. Comput. Syst. Sci. 81(4), 661–670
(2015)

17. Eğecioğlu, Ö., Giritligil, A.: The impartial, anonymous, and neutral culture model:
a probability model for sampling public preference structures. J. Math. Sociol.
37(4), 203–222 (2013)

18. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: How hard is bribery in
elections? J. Artif. Intell. Res. 35, 485–532 (2009)

19. Faliszewski, P., Skowron, P., Slinko, A., Szufa, S., Talmon, N.: How similar are two
elections? In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence
(AAAI-2019), pp. 1909–1916 (2019)

20. Faliszewski, P., Slinko, A., Stahl, K., Talmon, N.: Achieving fully proportional
representation by clustering voters. J. Heurist. 24(5), 725–756 (2018). https://doi.
org/10.1007/s10732-018-9376-y

21. Fishburn, P.: Condorcet social choice functions. SIAM J. Appl. Math. 33(3), 469–
489 (1977)

22. Goldsmith, J., Lang, J., Mattei, N., Perny, P.: Voting with rank dependent scor-
ing rules. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence
(AAAI-2014), pp. 698–704 (2014)

23. Grohe, M., Rattan, G., Woeginger, G.: Graph similarity and approximate iso-
morphism. In: Proceedings of the 43rd International Symposium on Mathematical
Foundations of Computer Science (MFCS-2018), pp. 20:1–20:16 (2018)

24. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Exact analysis of Dodgson elec-
tions: Lewis Carroll’s 1876 voting system is complete for parallel access to NP. J.
ACM 44(6), 806–825 (1997)

25. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Anyone but him: the complexity
of precluding an alternative. Artif. Intell. 171(5–6), 255–285 (2007)

26. Hemaspaandra, E., Spakowski, H., Vogel, J.: The complexity of Kemeny elections.
Theoret. Comput. Sci. 349(3), 382–391 (2005)

27. Keller, O., Hassidim, A., Hazon, N.: New approximations for coalitional manipu-
lation in scoring rules. J. Artif. Intell. Res. 64, 109–145 (2019)

28. Konicki, C., Vassilevska Williams, V.: Bribery in balanced knockout tournaments.
In: Proceedings of the 18th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS-2019), pp. 2066–2068 (2019)

https://doi.org/10.1007/978-3-642-04645-2_27
https://doi.org/10.1007/s00355-015-0892-5
https://doi.org/10.1007/s00355-015-0892-5
https://doi.org/10.1007/s10732-018-9376-y
https://doi.org/10.1007/s10732-018-9376-y


78 P. Faliszewski et al.

29. Mattei, N., Forshee, J., Goldsmith, J.: An empirical study of voting rules and
manipulation with large datasets. In: Proceedings of the 4th International Work-
shop on Computational Social Choice (COMSOC-2012) (2012)

30. Mattei, N., Walsh, T.: Preflib: a library for preferences. In: Proceedings of the
3nd International Conference on Algorithmic Decision Theory (ADT-2013), pp.
259–270 (2013)

31. Meskanen, T., Nurmi, H.: Closeness counts in social choice. In: Braham, M., Steffen,
F. (eds.) Power, Freedom, and Voting. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-73382-9 15

32. Nitzan, S.: Some measures of closeness to unanimity and their implications. Theory
Decis. 13(2), 129–138 (1981)

33. Procaccia, A., Rosenschein, J., Zohar, A.: On the complexity of achieving propor-
tional representation. Soc. Choice Welfare 30(3), 353–362 (2008)

34. Redko, I., Vayer, T., Flamary, R., Courty, N.: Co-optimal transport. Technical
report arXiv:2002.03731 [stat.ML], February 2020

35. Shiryaev, D., Yu, L., Elkind, E.: On elections with robust winners. In: Proceed-
ings of the 12th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS-2013), pp. 415–422 (2013)

36. Skowron, P., Faliszewski, P., Slinko, A.: Achieving fully proportional representa-
tion: approximability result. Artif. Intell. 222, 67–103 (2015)

37. Szufa, S., Faliszewski, P., Skowron, P., Slinko, A., Talmon, N.: Drawing a map of
elections in the space of statistical cultures. In: Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS-2020)
(2020, to appear)

38. Tideman, T., Plassmann, F.: Modeling the outcomes of vote-casting in actual
elections. In: Felsenthal, D., Machover, M. (eds.) Electoral Systems: Paradoxes,
Assumptions, and Procedures, pp. 217–251. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-20441-8 9

39. Walsh, T.: Where are the hard manipulation problems. J. Artif. Intell. Res. 42(1),
1–29 (2011)

40. Wang, J., Sikdar, S., Shepherd, T., Zhao, Z., Jiang, C., Xia, L.: Practical algorithms
for multi-stage voting rules with parallel universes tiebreaking. In: Proceedings of
the 33rd AAAI Conference on Artificial Intelligence (AAAI-2019), pp. 2189–2196
(2019)

41. Xia, L.: Computing the margin of victory for various voting rules. In: Proceedings
of the 13th ACM Conference on Electronic Commerce (EC-2012), pp. 982–999.
ACM Press, June 2012

42. Yin, Y., Vorobeychik, Y., An, B., Hazon, N.: Optimally protecting elections. In:
Proceedings of the 25th International Joint Conference on Artificial Intelligence
(IJCAI-2016), pp. 538–545 (2016)

https://doi.org/10.1007/978-3-540-73382-9_15
https://doi.org/10.1007/978-3-540-73382-9_15
http://arxiv.org/abs/2002.03731
https://doi.org/10.1007/978-3-642-20441-8_9
https://doi.org/10.1007/978-3-642-20441-8_9


Tandem Duplications, Segmental
Duplications and Deletions, and Their

Applications

Binhai Zhu(B)

Gianforte School of Computing, Montana State University,
Bozeman, MT 59717-3880, USA

bhz@montana.edu

Abstract. We review two streams of recent research results in this
paper. The first is on converting a sequence A to another sequence B
using the minimum number of tandem duplications. This research orig-
inates from the copying systems in computer science in the early 1980s,
and also from biology more than 40 years ago. We review our recent
NP-hardness result on this paper, together with several open problems
along the line. Segmental duplications and deletions are more discussed
recently on cancer research where besides genomes (sequences), the so-
called copy number profile (a vector where the ith component represents
the number of the ith segment appearing in the genome, regardless of
their orders) are also used. We again review some of our recent hard-
ness results and preliminary positive results, together with some open
problems. This paper is mostly self-contained.

1 Introduction

We review the background and results on tandem duplications and on copy
number profiles separately, even though they are related.

1.1 Tandem Duplications

In biology, a tandem duplication is an event which creates two consecutive copies
of a segment on a genome during DNA replication. Take a genome as a string,
this process converts a string AXB into another string AXXB. This process
is known to occur either at small scale at the nucleotide level, or at large scale
at the genome level [7–9,38,52]. For instance, it is known that the Huntington
disease is associated with the duplication of 3 nucleotides CAG [43], whereas at
genome level, tandem duplications are known to involve multiple genes during
cancer progression [47]. Furthermore, as first pointed by Szostak and Wu in
1980, gene duplication is believed to be the main driving force behind evolution,
and the majority of duplications affecting organisms are believed to be of the

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 79–102, 2020.
https://doi.org/10.1007/978-3-030-50026-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_6&domain=pdf
https://doi.org/10.1007/978-3-030-50026-9_6


80 B. Zhu

tandem type [53]. As a result, when the human genomes are sequenced, it is
not surprising that around 3% of the human genome are in the form of tandem
repeats [33].

In the formal languages community, the natural question arose as early as in
1984 in the context of so-called copying systems [19]: given a string S, what is
the language that can be obtained starting from S and applying (any number of)
tandem duplications, i.e., rules of the form AXB → AXXB, where X can be any
substring of S? (One such operation will generate a square, i.e., a substring XX,
in the new S.) Combined with results from [4], it was shown that this language
is regular if S is on a binary alphabet, but not regular if the alphabet has size
three. These results were rediscovered 15 years later in [17,57], coincidentally,
motivated by biological applications. In fact, this is related to a celebrated result
by Thue in 1906 [54]; namely, to generate a binary sequence T with tandem
duplications, it suffices to start with a sequence in the (square-free) ancestor set
{0, 1, 01, 10, 010, 101}. However, if the alphabet size is at least three, then this
ancestor set is of infinite size.

Due to these reasons, tandem duplications have received significant attention
in the last decades, both in practice and theory. The combinatorial aspects of
tandem duplications have been studied extensively by computational biologists
[3,24,26,32,55], one question of interest being to reconstruct the evolution of
a cluster of tandem repeats by duplications that could have given rise to the
observed sequences. In parallel, various formal language communities [17,39,57]
have investigated the expressive power of tandem duplications on strings.

In [39], it was shown that the membership, inclusion and regularity testing
problems on the language defined by S can all be decided in linear time (still for
binary alphabets). In [29,39,40], similar problems are also considered on non-
binary alphabets, when the length |X| of duplicated strings is bounded by a
constant. More recently, Cho et al. [10] introduced a tandem duplication system
where the depth of a character, i.e., the number of “generations” it took to
generate it, is considered. In [28,30], the authors studied the expressive power of
tandem duplications, a notion based on the subsequences that can be obtained
from various types of copying mechanisms.

How to compute the minimum number of duplications required to transform
a string S into another string T , which we call the Tandem Duplication (TD)
distance, was first posed in [39] (pp. 306, Open Problem 3) by Leupold et al.
and has remained open ever since 2004. In 2017, Alon et al. [1] investigated
the TD distance problem for binary strings and proved that the maximum TD
distance between a square-free string S and a string T of length n is Θ(n). They
also raised the algorithmic question of computing the TD distance between S
and T over a larger alphabet again. In 2019, Lafond, Zhu and Zou proved that
this problem is in fact NP-hard, settling this 16-year old open problem for an
unbounded alphabet [34,35]. We give a brief sketch of this NP-hardness proof
in Sect. 3.

On the other hand, we comment that the TD distance is one of the many
ways of comparing two genomes represented as strings in computational biology



Tandem Duplications, Segmental Duplications and Deletions 81

which is beyond this paper. (Other notable examples include reversal [27] and
transpositions distances, etc, the latter having recently been shown NP-hard
as well in a celebrated paper of Bulteau et al. [5]. The TD distance has itself
received special attention very recently from a slightly different perspective in
cancer evolution involving Copy Number Profiles [48], which we will review next.

1.2 Copy Number Profiles

Copy number variations (CNVs) are gain and loss of DNA contents in a genome.
These are caused by duplications and deletions of segments of the corresponding
DNA sequence [52]. (On the other hand, CNV detection is beyond this review
and interested readers are referred to [42] for a survey and [41] for the most
recent development on CNV detection.)

In cancer genomics, a central problem is to investigate the intra-tumor genetic
heterogeneity [45,46,50], which has a potential to help cancer prognostic [13,44]
and explain drug resistance [14,15]. In some cancers, for instance, high-grade
serous ovarian cancer (HGSOC), the heterogeneity is mainly reflected in genome
rearrangement and endoreduplications, which result in aberrant copy number
profiles (CNP) [6]. This was also found in some other cancer types more recently
[12]. (We will define CNP formally in the next section, loosely speaking, it is a
vector representing the number of each segment among some specified segments.)
In 2014, Schwarz et al. proposed a method to infer phylogenetic trees in cancer
genomes from unsigned integer copy number profiles [49]. In this method the fun-
damental problem is to compute the minimum number of segment duplications
and deletions to convert some CNP to another CNP. While the latter problem
was solved in linear time (with a complex dynamic programming) [51], we noted
that sometimes a single duplication or deletion on CNP cannot be implemented
with the same number of duplication or deletion operations directly on the cor-
responding DNA sequence [48].

This interesting phenomenon triggers our algorithmic research on CNV-
related research, with only duplication and deletion operations and with a poten-
tial application in cancer genomics. Surprisingly, a lot of fundamental questions
are unanswered, even taking into account that some related research has been
done on sorting genomes with duplication and deletion operations (and usually
with some other rearrangement operations like reversals or DCJs). We note that
in [20], a more complex distance computation was used as a subroutine to com-
pute an ancestor profile given a set of k profiles. The problem was shown to
be NP-hard, though an ILP formulation was given. In fact, Chowdhury et al.
considered copy number changes at different levels, from single gene, single chro-
mosome to whole genome, to enhance the tumor phylogeny reconstruction [11].

In [48], we initiated the fundamental algorithmic research on converting a
genome/sequence G into another sequence H such that the copy number profile
of H is equal to a given profile. We showed that this problem, called Minimum
Copy Number Generation (MCNG) henceforth, is NP-hard if the objective is
to use the minimum number of tandem duplications and deletions, and some
greedy method was implemented with decent performance when the sequence



82 B. Zhu

length is relatively small. More recently, we prove that the general problem, i.e.,
when duplications are arbitrary, is also NP-hard; in fact, NP-hard to approxi-
mate within a constant factor [36,37]. Moreover, the problem is W[1]-hard when
parameterized by the size of the solution. These proofs will involve some variants
of the famous Set Cover problem, which will be briefly reviewed in Sect. 4.

At this point, it looks like all these results are negative. One would prob-
ably feel pessimistic about the outcome of these research. Wait! We do have
some preliminary positive result! In [36,37], the Copy Number Profile Conform-
ing (CNPC for short) was studied. The problem is defined as follows: given
two CNP’s C1 and C2, compute two genomes/sequences S1 and S2 such that
cnp(S1) = cnp(S2) and d(S1, S2) is minimized, where d(−,−) could be any
genomic distance between two genomes. We made the first progress by showing
that if d(−,−) is the breakpoint distance and C1 and C2 are both polynomially
bounded, then the problem is polynomially solvable. (If only the breakpoint dis-
tance is to be computed, then the condition that C1 and C2 are polynomially
bounded can be withdrawn.)

The paper is organized as follows. In Sect. 2, we give formal definitions for
our problems and all other necessary definitions. In Sect. 3, we briefly sketch our
NP-hardness proof for the Tandem Duplication Distance problem. In Sect. 4, we
review our results for the Minimum Copy Number Generation (MCNG) problem
and the Copy Number Profile Conforming (CNPC) problem. We list several open
problems in Sect. 5 to conclude the paper.

2 Preliminaries

2.1 Strings and Tandem Duplications

We review the string terminology and notation from [25]. Let [n] denote the set
of integers {1, 2, . . . , n}. Unless stated otherwise, all the strings in the paper are
on an alphabet denoted Σ. If S1 and S2 are two strings, we usually denote their
concatenation by S1S2. For a string S, we write Σ(S) for the subset of characters
of Σ that have at least one occurrence in S. A string S is called exemplar if
|S| = |Σ(S)|, i.e., each character in S occurs exactly once. A substring of S is
a contiguous sequence of characters within S. A prefix (resp. suffix ) of S is a
substring that occurs at the beginning (resp. end) of S, i.e., if S = S1S2 for some
strings S1 and S2, then S1 is a prefix of S and S2 a suffix of S. A subsequence
of S is a string that can be obtained by successively deleting characters from S.

A tandem duplication (TD) is an operation on a string S that copies a
substring X of S and inserts the copy after the occurrence of X in S. In
other words, a TD transforms S = AXB into AXXB. Given another string
T , we write S ⇒ T if there exist strings A,B,X such that S = AXB and
T = AXXB. More generally, we write S ⇒k T if there exist S1, . . . , Sk−1 such
that S ⇒ S1 ⇒ . . . ⇒ Sk−1 ⇒ T . We also write S ⇒∗ T if there exists some k
such that S ⇒k T .



Tandem Duplications, Segmental Duplications and Deletions 83

Definition 1. The TD distance distTD(S, T ) between two strings S and T is
the minimum value of k satisfying S ⇒k T . If S ⇒∗ T does not hold, then
distTD(S, T ) = ∞.

We use the term distance here to refer to the number of TD operations from
a string S to another string T , but one should be reminded that TD is not
formally a metric. For instance, distTD is not symmetric since duplications can
only increase the length of a string.

A square string is a string of the form XX, i.e., a concatenation of two
identical substrings. Given a string S, a contraction is the reverse of a tandem
duplication. That is, it takes a square string XX contained in S and deletes
one of the two copies of X. We write T � S if there exist strings A,B,X
such that T = AXXB and S = AXB. We also define T �k S and T �∗
S for contractions analogously as for TDs. Observe that by the symmetry of
duplications and contractions, T �k S if and only if S ⇒k T and T �∗ S if
and only if S ⇒∗ T . When there is no possible confusion, we will sometimes
write T � S instead T �∗ S.

We have the following problem.

The Tandem Duplication (TD) problem:
Input: Two strings S and T over the same alphabet Σ and an integer k.
Question: Is distTD(S, T ) ≤ k?

In the Exemplar-TD version of this problem, S is given exemplar. In general,
we may call S the source string and T the target string. We will often use the
fact that S and T form a YES instance if and only if T can be transformed
into S by a sequence of at most k contractions. See Fig. 1 for a simple example.

Sequence Operations

Sequence T = 〈a, c, g, g, t, a, c, g, t〉 contraction on 〈g, g〉
〈a, c, g, t, a, c, g, t〉 contraction on 〈a, c, g, t, a, c, g, t〉

Sequence S = 〈a, c, g, t〉

Fig. 1. An example to transform sequence T to S with two contractions. The cor-
responding sequence of TDs to convert S to T would duplicate a, c, g, t first, then
duplicate the first g.

2.2 Copy Number Profiles, Segmental Duplications and Deletions

A genome G is a string, i.e. a sequence of characters, all of which belong to
some alphabet Σ (the characters of G can be interpreted as genes or segments—
in the CNP-related context, a genome is composed of segments as duplications
and deletions could across the middle of a gene). We use genome and string



84 B. Zhu

interchangeably, when the context is clear. We write G[p] to denote the character
at position p of G (the first position being 1), and we write G[i..j] for the
substring of G from positions i to j, inclusively. For s ∈ Σ, we write G − s to
denote the subsequence of G obtained by removing all occurrences of s.

When copy number profile is used, we represent an alphabet as an ordered
list Σ = (s1, s2, . . . , sm) of distinct characters. Slightly abusing notation, we may
write s ∈ Σ if s is a member of this list. We write ns(G) to denote the number
of occurrences of s ∈ Σ in a genome G. A Copy-Number Profile (or CNP) on Σ
is a vector c = 〈c1, . . . , c|Σ|〉 that associates each character si of the alphabet
with a non-negative integer ci ∈ N. We may write c(s) to denote the number
associated with s ∈ Σ in c. We write c − s to denote the CNP obtained from c
by setting c(s) = 0.

The Copy Number Profile (CNP) of genome G, denoted cnp(G), is the vector
of occurrences of all characters of Σ. (Note that in the theory of formal languages,
the CNP of a string is also called the Parikh vector.) Formally,

cnp(G) = 〈ns1(G), ns2(G), . . . , nsm
(G)〉.

For example, if Σ = (a, b, c) and G = bbcbbcaca, then cnp(G) = 〈2, 4, 3〉 and
c(b) = 4.

Deletions and Duplications on Strings
We now describe the two string events of deletion and duplication. Both are
illustrated in Fig. 2.

Sequence Operations

G1 = abbc · bcab · cab del(5, 8)

G2 = a · bbcc · ab dup(2, 5, 6)

G3 = abbcca · bbcc · b

Fig. 2. Three strings (or toy genomes), G1, G2 and G3. From G1 to G2, a deletion is
applied to G1[5..8]. From G2 to G3, a duplication is applied to G2[2..5], with the copy
inserted after position 6.

Given a genome G, a (segmental) deletion on G takes a substring of G and
removes it. Deletions are denoted by a pair (i, j) of the positions of the substring
to remove. Applying deletion (i, j) to G transforms G into G[1..i− 1]G[j +1..n].

A duplication on G takes a substring of G, copies it and inserts the copy
anywhere in G, except inside the copied substring. A duplication is defined by
a triple (i, j, p) where G[i..j] is the string to duplicate and p ∈ {0, 1, . . . , i −
1, j, . . . n} is the position after which we insert (inserting after 0 prepends the
copied substring to G). Applying duplication (i, j, p) to G transforms G into
G[1..p]G[i..j]G[p + 1..n].

An event is either a deletion or a duplication. If G is a genome and e is an
event, we write G〈e〉 to denote the genome obtained by applying e on G. Given



Tandem Duplications, Segmental Duplications and Deletions 85

a sequence E = (e1, . . . , ek) of events, we define G〈E〉 = G〈e1〉〈e2〉 . . . 〈ek〉 as the
genome obtained by successively applying the events of E to G. We may also
write G〈e1, . . . , ek〉 instead of G〈(e1, . . . , ek)〉.

The most natural application of the above events is to compare genomes.

Definition 2. Let G and G′ be two strings over alphabet Σ. The Genome-to-
Genome distance between G and G′, denoted dGG(G,G′), is the size of the small-
est sequence of events E satisfying G〈E〉 = G′.

We also define a distance between a genome G and a CNP c, which is the
minimum number of events to apply to G to obtain a genome with CNP c.

Definition 3. Let G be a genome and c be a CNP, both over alphabet Σ. The
Genome-to-CNP distance between G and c, denoted dGCNP (G, c), is the size of
the smallest sequence of events E satisfying cnp(G〈E〉) = c.

The above definition leads to the following problem, which was first studied
in [48].

The Minimum Copy Number Generation (MCNG) problem:
Instance: a genome G and a CNP c over alphabet Σ.
Task: compute dGCNP (G, c).

Qingge et al. proved that the MCNG problem is NP-hard when all the duplica-
tions are restricted to be tandem [48]. They also posed several open questions: Is
the problem NP-hard when duplications are arbitrary? Does the problem admit a
constant-factor approximation? Is the problem FPT (fixed-parameter tractable)?
We answered all these questions recently [36,37], and we will review the results
in Sect. 4.

Finally, readers are referred to [16,23] for more details regarding the def-
initions related to (approximation) algorithms and NP-completeness. We refer
readers for further details on FPT and W[1]-hardness to the corresponding books
[18,22].

3 Results on Tandem Duplications

3.1 Exemplar-TD Is NP-hard

The first difficulty for proving the NP-hardness for Exemplar-TD would be
choosing a suitable problem to reduce from. This minimization problem should
be of the property that when the optimal cost is obtained, the optimal number of
contractions is obtained. This problem is the Cost-Effective Subgraph problem,
to be defined and discussed next.

The second difficulty in the reduction is that the sequences should be properly
designed such that they clearly form a promise version for the Exemplar-TD
problem; moreover, the contractions look to be ad hoc but they are related to



86 B. Zhu

a solution for the Cost-Effective Subgraph problem. (We believe this is one of
the reasons why the problem was open for 16 years, as the TDs can in general
happen anywhere and it is hard to trace some properties without any proper
control.)

The Cost-Effective Subgraph Problem

Let G = (V,E) be a simple graph and c a positive integer. For a subset X ⊆ V ,
let E(X) = {(u, v) ∈ E|u, v ∈ X} denote the edges inside of X. The cost of X
is defined as

cost(X) = c · (|E(G)| − |E(X)|) + |X| · |E(X)|.

The Cost-Effective Subgraph problem is to find a subset X of minimum cost.
In the decision version of the problem, we are given an integer r and we need
to decide if there is a subset X whose cost is at most r. Notice that X = ∅ or
X = V are possible solutions.

The idea is that each edge “outside” of X costs c and each edge “inside”
costs |X|. Therefore, we pay for each edge not included in X, but if X gets too
large, we pay more for edges in X. Hence, we need to find a balance between
the size of X and its number of edges. The connection with the TD problem
can be roughly described as follows: in our reduction, we will have many sub-
strings which need to be deleted through contractions. We will have to choose
an initial set of contractions X and then, each substring will have two ways to
be contracted: one way requires c contractions, and the other requires |X|.

Clearly, an obvious solution for a Cost-Effective Subgraph is to take X = ∅,
which is of cost c|E(G)|. Then, another formulation of the problem could be
whether there is a subset X of cost at most c|E(G)| − p, where p can be seen as
a “profit” to maximize. Treating c and p as parameters, we show the NP-hardness
and W[1]-hardness in parameters c + p of the Cost-Effective Subgraph problem
(the parameter r is not studied here). Our reduction to the TD problem does not
preserve W[1]-hardness and we only use its NP-hardness, but the W[1]-hardness
might be of independent interest.

Theorem 1. The Cost-Effective Subgraph problem is NP-hard and W[1]-hard
for parameter c + p.

Proof. The reduction is from CLIQUE. Let (G, k) be the input for the CLIQUE
problem with G = (V,E), let n = |V | and m = |E|. Without loss of generality,
let k be even (the proof could be easily adapted for odd k). By setting

r = cm − p,

with c = 3k
2 and p = k

2

(
k
2

)
, we can show that (G, k) is a YES instance for CLIQUE

if and only if G contains a set X ⊆ V of cost at most r. We leave out the details
for the arguments, which can be found in [34,35]. ��



Tandem Duplications, Segmental Duplications and Deletions 87

Note that the W[1]-hardness follows as the parameter c + p = 3k
2 + k

2

(
k
2

)
, which

is a function of k. On the other hand, r involves both k and m hence is not just
a function of k. Therefore, the proof does not imply W[1]-hardness when r is
used as the parameter.

The Reduction Ideas

As the reduction is quite involved, we first start with an overview. Let (G, c, r)
be a Cost-Effective Subgraph instance where c is the parameter and r the optimal
cost, and with vertices V (G) = {v1, . . . , vn}. We construct strings S and T and
compute the number of contractions to convert T to S. The source string is
S = x1x2 . . . xn, where each xi is a distinct character corresponding to vertex vi.
Let S′ be constructed by doubling every xi, i.e., S′ = x1x1x2x2 . . . xnxn. Our goal
is to put T = S′E1E2 . . . Em, where each Ei is a substring gadget corresponding
to edge ei ∈ E(G) that we must remove to go from T to S. Assuming that there
is a sequence of contractions that transforms T into S, we make it so that we first
want to contract some, but not necessarily all, of the doubled xi’s of S′, resulting
in another string S′′. Let t be the number of xi’s contracted from S′ to S′′. For
instance, we could have S′′ = x1x1x2x3x3x4x5x5, where only x2 and x4 were
contracted, and thus t = 2. The idea is that these contracted xi’s correspond to
the vertices of a cost-effective subgraph. After T is contracted to S′′E1 . . . Em,
we then force each Ei to use S′′ to further contract. For m = 3, a contraction
sequence that we would like to enforce would take the form

S′E1E2E3 � S′′E1E2E3 � S′′E2E3 � S′′E3 � S′′ � S,

where the underlined substrings are affected by contractions at each step. More-
over, we make it so that when contracting S′′EiEi+1 . . . Em into S′′Ei+1 . . . Em,
we have two options. Suppose that vj and vk are the vertices of edge ei. If, in S′′,
we had chosen to contract xj and xk, we could contract Ei using a sequence of t
moves. Otherwise, we must contract Ei using another more costly sequence of c
moves. The total cost to eliminate the Ei gadgets will be c(m−e)+te, where e is
the number of edges that can be contracted using the first choice, i.e., for which
both endpoints were chosen in S′′.

Intuitively, the main difficulty in the above idea is in forcing an optimal solu-
tion to behave as we describe, i.e., enforcing going from S′ to S′′ first, enforc-
ing the Ei’s to use S′′, and enforcing the two options to contract Ei with the
desired costs. Specifically, we must replace the xi’s by carefully constructed sub-
strings Xi. We must also repeat the sequence of Ei’s a certain number p times.
We illustrate more technical details next.

The Reduction Details

We first construct an exemplar string X = x1 . . . xl (i.e., a string in which no
character occurs twice). We can double its characters and obtain a string X ′ =



88 B. Zhu

x1x1 . . . xlxl. The length of X ′ is only twice that of X and distTD(X,X ′) = l,
i.e., going from X ′ to X requires l contractions.

Now we show how to construct S and T . First let d = m + 1 and p =
m(n+m)10. The exact values of p is not crucial and it is enough to think of p as
“large enough”, though it should be noted that p is a multiple of m. The optimal
number of contractions from T to S, k, is defined as k = p/m ·d(r+nm)+4cdn.

Instead of doubling xi’s as in the intuition paragraph above, we duplicate
some characters d times. Moreover, we cannot create a T string that behaves
exactly as described above, but we will show that we can append p copies of
carefully crafted substring to obtain the desired result. We need d and p to be
large enough so that “enough” copies behave as we desire.

For each i ∈ [n], construct an exemplar string Xi of length d. In this case,
enough characters are used so that no two Xi strings contain a common charac-
ter. Let Xd

i be a string satisfying distTD(Xi,X
d
i ) = d.

Then for each j ∈ {0, 1, . . . , 2p}, construct an exemplar string Bj . Again,
we ensure that no Bj contains a character from an Xi string, and no two Bj ’s
contain a common character. Except for B0 and B1, the Bj strings can consist
of a single character. Assume that for B0 and B1, we have strings B∗

0 and B∗
1

such that

distTD(B0, B
∗
0) = dc + 2d − 2,

distTD(B1, B
∗
1) = dn + 2d − 1,

which can be done using the doubling trick on exemplar strings.
Note that the Bj ’s are the building blocks of larger strings. For each q ∈ [2p],

define

Bq = BqBq−1 . . . B2B1B0, B0
q = BqBq−1 . . . B2B1B

∗
0 ,

B1
q = BqBq−1 . . . B2B

∗
1B0, B01

q = BqBq−1 . . . B2B
∗
1B∗

0 .

These strings serve as “blockers” and prevent certain contractions from happen-
ing. Note that B0

q and B1
q can be turned into Bq using dc + 2d − 2 contractions

and dn + 2d − 1 contractions, respectively. Moreover, B01
q can be turned into B0

q

using dn + 2d − 1 contractions and into B1
q using dc + 2d − 2 contractions.

Also define the strings

X = X1X2 . . . Xn, X d = Xd
1Xd

2 . . . Xd
n,

and for edge eq = vivj with q ∈ [p] whose vertices are vi and vj , define

Xeq
= Xd

1 . . . Xd
i−1XiX

d
i+1 . . . Xd

j−1XjX
d
j+1 . . . Xd

n.

Therefore in Xeq
, all Xk substrings are turned into Xd

k , except Xi and Xj .
Finally, construct a new additional character Δ, which will be used to sep-

arate some of the components of our string. We can then define S and T . We
have

S = B2pXΔ = B2pB2p−1 . . . B2B1B0X1X2 . . . XnΔ.



Tandem Duplications, Segmental Duplications and Deletions 89

It follows from the definitions of B2p,X and Δ that S is exemplar. Now for
i ∈ [p], define

Ei := B01
i Xei

ΔB1
2pXΔ,

which we will call the edge gadget. Define T as

T = B0
2pX dΔB1

2pXΔE1E2. . .Ep

= B0
2pX dΔB1

2pXΔ
[B01

1 Xe1ΔB1
2pXΔ

] [B01
2 Xe2ΔB1

2pXΔ
]
. . .

[B01
p Xep

ΔB1
2pXΔ

]
.

Note that the brackets are used as separators for clarity purpose, and they are
not the characters in T . We summarize the theorem as follows.

Theorem 2. The Exemplar-TD problem is NP-complete, even if for the given
string S and T , S ⇒∗ T is guaranteed to hold.

Proof. The problem is obviously in NP. Note that distTD(S, T ) ≤ |T | since each
contraction from T to S removes at least one character. Thus it is easy to verify
whether a sequence of contractions serves as a valid certificate in polynomial
time.

For hardness, we reduce from the Cost-Effective Subgraph problem, which has
been shown NP-hard in Theorem 1. Let (G, c, r) be an instance of Cost-Effective
Subgraph, letting n := |V (G)| and m := |E(G)|. Here c is the “outsider edge”
cost and we ask whether there is a subset X ⊆ V (G) such that c(m− |E(X)|)+
|X||E(X)| ≤ r. We denote V (G) = {v1, . . . , vn} and E(G) = {e1, . . . , em}. The
ordering of vertices and edges is arbitrary but remains fixed for the remainder
of the proof. For convenience, we allow the edge indices to loop through 1 to m,
and so we put ei = ei+lm for any integer l ≥ 0. Thus we may sometimes refer
to an edge eh with an index h > m, meaning that eh is actually the edge
e((h−1) mod m)+1.

From the above construction, S and T can be constructed in polynomial time.
It can be shown that G admits a subset of vertices W of cost at most r if and only
if T can be contracted to S using at most k = p/m ·d(r+nm)+4cdn contraction
operations. Due to space constraints, we leave out the detailed arguments which
can be found in [34,35]. ��

3.2 Exemplar-TD Is FPT

Recall that the Exemplar-k-TD instance is (S, T ) with k being the solution size.
It is obvious that with a trivial bounded-degree search method, Exemplar-k-TD
can be solved in O(n2k) time, where n is the input size. To obtain an FPT
algorithm, we need more properties to avoid such a brute-force kind of search.

Let x and y be two consecutive characters in S (i.e., xy is a substring of S).
We say that xy is (S, T )-stable if in T , every occurrence of x in T is followed
by y and every occurrence of y is preceded by x. That is, the direct successor
of every x character is y, and the direct predecessor of every y character is x.
An (S, T )-stable substring X = x1 . . . xl, where l ≥ 2, is a substring of S such



90 B. Zhu

that xixi+1 is (S, T )-stable for every i ∈ [l − 1]. We also define a string with a
single character xi to be a (S, T )-stable substring (provided that xi appears in
S and T ). If any substring of S that strictly contains X is not an (S, T )-stable
substring, then X is called a maximal (S, T )-stable substring. Note that these
definitions are independent of S and T , hence so the same definitions apply for
(X,Y )-stability, for any strings X and Y .

It can be shown that every maximal (S, T )-stable substring can be replaced by
a single character, and that if T can be obtained from S using at most k tandem
duplications, then this leaves strings of bounded size. First of all, it can be shown
that, roughly speaking, stability is maintained by all tandem duplications when
going from S to T . We leave the detailed proofs to [34,35].

Lemma 1. Suppose that distTD(S, T ) = k and let X be an (S, T )-stable sub-
string. Let S = S0, S1, . . . , Sk = T be any minimum sequence of strings trans-
forming S to T by tandem duplications. Then X is (S, Si)-stable for every i ∈ [k].

The next lemma shows that we can assume that maximal stable substrings
never get cut, and thus always get duplicated together. The idea is that any
duplication that cuts an Xj can be replaced by an equivalent duplication that
does not.

Lemma 2. Suppose that distTD(S, T ) = k, and let X1, . . . , Xl be the set of
maximal (S, T )-stable substrings. Then there exists a sequence of tandem dupli-
cations D1, . . . , Dk transforming S into T such that no occurrence of an Xj gets
cut by a Di. In other words, for all i ∈ [k] and all j ∈ [l], the tandem dupli-
cation Di does not cut any occurrence of Xj in the string obtained by applying
D1, . . . , Di−1 to S.

The above lemma implies that we may replace each maximal (S, T )-stable
substring X of S and T by a single character, since we may assume that charac-
ters of X are always duplicated together (assuming, of course, that S is exem-
plar). It only remains to show that the resulting strings are small enough. The
proof of the following lemma has a very simple intuition. First, S has exactly 1
maximal (S, S)-stable substring. Each time we apply a duplication, we “break”
at most 2 stable substrings, which creates 2 new ones. So if we apply k duplica-
tions, there are at most 2k + 1 such substrings in the end.

Lemma 3. If distTD(S, T ) ≤ k, then there are at most 2k + 1 maximal (S, T )-
stable substrings.

Consequently, we have the following theorem and corollary,

Theorem 3. An instance (S, T ) of Exemplar-k-TD admits a kernel (S′, T ′) in
which |S′| ≤ 2k + 1 and |T ′| ≤ (2k + 1)2k.

The kernelization can be done in polynomial time, as one only needs to
identify maximal (S, T )-stable substrings and contract them. Now running the
brute-force algorithm on the kernel, we have the following corollary.



Tandem Duplications, Segmental Duplications and Deletions 91

Corollary 1. The exemplar k-tandem duplication problem can be solved in time
O(((2k + 1)2k)2k + poly(n)) = 2O(k2) + poly(n), where n is the size of the input.

There are still many open questions on the TD-distance problems. We will
go over them in Sect. 5. We now shift our attention to problems related to Copy
Number Profiles.

4 Results on Copy Number Profiles

4.1 Hardness of Approximation for MCNG

We first show that the dGCNP distance is hard to approximate within any con-
stant factor. At a first step, we show this result when only deletions on G are
allowed. In fact, this restriction makes the proof significantly simpler. We then
extend this result to deletions and duplications.

Both proofs are based on a reduction from SET-COVER. Recall that in SET-
COVER, we are given a collection of sets S = {S1, S2, . . . , Sn} over universe
U = {u1, u2, . . . , um} =

⋃
Si∈S Si, and we need to find a set cover of S having

minimum cardinality (a set cover of S is a subset S∗ ⊆ S such that
⋃

S∈S∗ S =
U). If S ′ is a set cover in which no two sets intersect, then S ′ is called an exact
cover.

There is one interesting feature (or constraint) of our reduction g, which
transforms a SET-COVER instance S into a MCNG instance g(S). A set
cover S∗ only works on g(S) if S∗ is actually an exact cover, and a solution
for g(S) can be turned into a set cover for S∗ that is not necessarily exact.
Hence it would be hard to reduce directly from either (the general version of)
SET-COVER nor its exact version. We provide a general-purpose lemma for
such situations, and our reductions serve as an example of its usefulness.

The proof is based on a result on t-SET-COVER, the special case of SET-
COVER in which every given set contains at most t elements. It is known that for
any constant t ≥ 3, the t-SET-COVER problem is hard to approximate within
a factor ln t − c ln ln t for some constant c not depending on t [56].

Lemma 4. Let B be a minimization problem, and let g be a function that trans-
forms any SET-COVER instance S into an instance g(S) of B in polynomial
time. Assume that both the following statements hold:

– any exact cover S∗ of S of cardinality at most k can be transformed in poly-
nomial time into a solution of value at most k for g(S);

– any solution of value at most k for g(S) can be transformed in polynomial
time into a set cover of S of cardinality at most k.

Then unless P = NP, there is no constant factor approximation algorithm
for B.

Proof. Using contradiction, suppose that B admits a factor b approximation for
some constant b. Choose any constant t such that t-SET-COVER is hard to



92 B. Zhu

approximate within factor ln t − c ln ln t, and such that b < ln t − c ln ln t. Note
that t might be exponentially larger than b, but is still a constant.

Now, let S be an instance of t-SET-COVER with universe U = {u1, . . . , um}.
Consider the intermediate reduction g′ that transforms S into another t-SET-
COVER instance g′(S) = {S′ ⊆ S : S ∈ S}. Since t is a constant, g(S) has
O(|S|) sets and this can be carried out in polynomial time.

Now define S ′ = g′(S) and consider the instance B = g(S ′) = g(g′(S)). By
the assumptions of the lemma, a solution for B of value k yields a set cover S∗

for S ′. Clearly, S∗ can be transformed into a set cover for instance S: for each
S′ ∈ S∗, there exists S ∈ S such that S′ ⊆ S, so we get a set cover for S by
adding this corresponding superset for each S ∈ S∗. Thus B yields a set cover
of S with at most k sets.

In the other direction, consider a set cover S∗ = {S1, . . . , Sk} of S with k
sets. This easily translates into an exact cover of S ′ with k sets by taking the
collection

{S1, S2 \ S1, S3 \ (S1 ∪ S2), . . . , Sk \
k−1⋃

i=1

Si}}.

By the assumptions of the lemma, this exact cover can then be transformed
into a solution of value at most k for instance B.

Therefore, S has a set cover of cardinality at most k if and only if B has a
solution of value at most k. Since there is a correspondence between the solution
values of the two problems, a factor b approximation for B would provide a factor
b < ln t−c ln ln t approximation for t-SET-COVER, which incurs a contradiction
to the result by Trevisan [56]. ��

Constructing Genomes and CNPs from SET-COVER Instances

All of our inapproximability results rely on Lemma 4. We need to provide a
reduction from SET-COVER to MCNG and prove that both assumptions of the
lemma are satisfied.

S1 = {1, 2, 3} S2 = {1, 2, 4} S3 = {1, 3, 5}
G = 〈βS1〉α1α2α3〈βS2〉α1α2α4〈βS3〉α1α3α5

c(α1) = 2 c(α2) = c(α3) = 1 c(α4) = c(α5) = 0

Fig. 3. An example of our construction, with S = {S1, S2, S3} and U = {1, 2, 3, 4, 5}.

The reduction is in fact the same for deletions-only as well as the case with
both deletions and duplications. Given S and U , we construct a genome G
and a CNP c as follows (an example is illustrated in Fig. 3). The alphabet is
Σ = ΣS ∪ ΣU , where ΣS := {〈βSi

〉 : Si ∈ S} and ΣU := {αui
: ui ∈ U}. Thus,



Tandem Duplications, Segmental Duplications and Deletions 93

there is one character for each set of S and each element of U . Here, each 〈βSi
〉

is a character that will serve as a separator between characters to delete. For a
set Si ∈ S, define the string q(Si) as any string that contains each character of
{αu : u ∈ Si} exactly once. We put

G = 〈βS1〉q(S1)〈βS2〉q(S2) . . . 〈βSn
〉q(Sn),

i.e., G is the concatenation of the strings 〈βSi
〉q(Si). As for the CNP c, put

– c(〈βSi
〉) = 1 for each Si ∈ S;

– c(αu) = f(u) − 1 for each u ∈ U , where f(u) = |{Si ∈ S : u ∈ Si}| is the
number of sets from S that contain u.

Note that in G, each 〈βS〉 already has the correct copy-number, whereas each
αu needs exactly one less copy. Our goal is thus to reduce the number of each
αu by 1. This concludes the construction of MCNG instances from SET-COVER
instances. We now focus on the hardness of the deletions-only case.

The Deletions-Only Case

Suppose that we are given a set cover instance S and U , and let G and c be the
genome and CNP, respectively, as constructed above.

Lemma 5. Given an exact cover S∗ for S of cardinality k, one can obtain a
sequence of k deletions transforming G into a genome with CNP c.

Lemma 6. Given a sequence of k deletions transforming G into a genome with
CNP c, one can obtain a set cover for S of cardinality at most k.

Proof. Suppose that the deletion events E = (e1, . . . , ek) transform G into a
genome G∗ with CNP c. Note that no ei deletion is allowed to delete a set-
character 〈βSi

〉 ∈ ΣS , as there is only one occurrence of 〈βSi
〉 in G and c(〈βSi

〉) =
1. Thus all deletions remove only αu characters. In other words, each ej in E
either deletes a substring of G between some 〈βSi

〉 and 〈βSi+1〉 with 1 ≤ i < n, or
ej deletes a substring after 〈βSn

〉. Moreover, exactly one of each αu occurrences
gets deleted from G.

Call 〈βSi
〉 ∈ ΣS affected if there is some event of E that deletes at least

one character between 〈βSi
〉 and 〈βSi+1〉 with 1 ≤ i < n, and call 〈βSn

〉
affected if some event of E deletes characters after 〈βSn

〉. Let S∗ := {Si ∈
S : 〈βSi

〉 is affected}. Then |S∗| ≤ k, since each deletion affects at most one
〈βSi

〉 and there are k deletion events. Moreover, S∗ must be a set cover, because
each αu ∈ ΣU has at least one occurrence that gets deleted and thus at least
one set containing u that is included in S∗. This concludes the proof. ��

We have shown that both the assumptions required by Lemma 4 are satisfied.
Hence the inapproximability follows.

Theorem 4. Assuming P �= NP , there is no polynomial-time constant factor
approximation algorithm for MCNG when only deletions are allowed.

We comment that the reduction should be adaptable to the duplication-only
case, by putting c(αu) = f(u) + 1 for each u ∈ U .



94 B. Zhu

The Case with Both Deletions and Duplications

We now consider both deletions and duplications. The reduction uses the same
construction as at the beginning of Sect. 4.1. Thus we assume that we have a
SET-COVER instance S over U , and a corresponding instance of MCNG with
genome G and CNP c.

In that case, we observe the following: Lemma 5 still holds whether we allow
deletion only, or both deletions and duplications. Thus we only need to show
that the second assumption of Lemma 4 holds.

On the other hand, this is not as simple as in the deletions-only case. The
problem is that some duplications may copy some αu and 〈βSi

〉 occurrences, and
we lose control over what gets deleted, and over what 〈βSi

〉 each αu corresponds
to (in particular, some 〈βSi

〉 might now get deleted, which did not occur in the
deletions-only case). Nonetheless, the analogous result can be shown to hold.

Lemma 7. Given a sequence of k events (deletions and duplications) transform-
ing G into a genome with CNP c, one can obtain a set cover for S of cardinality
at most k.

Due to space constraints, we redirect the reader to [36] for the detailed proof.
In a nutshell, given a sequence of events from G to a genome with CNP c, the
idea is to find, for each u ∈ U , one occurrence of αu in G that we have control
over. More precisely, even though that occurrence of αu might spawn duplicates,
all its copies (and copies of copies, and so on) will eventually get deleted. The
〈βSi

〉 character preceding this αu character indicates that Si can be added to a
set cover. The crux of the proof is to show that this αu character exists for each
u ∈ U , and that their corresponding 〈βSi

〉 form a set cover of size at most k.
We summarize our main inapproximability result, which again follows from

Lemma 4.

Theorem 5. Unless P = NP, there is no polynomial-time constant factor
approximation algorithm for MCNG.

In the next section, we prove that the MCNG problem, parameterized by the
solution size, is W[1]-hard. This answers another open question in [48].

4.2 W[1]-Hardness for MCNG

Since SET-COVER is W[2]-hard, naturally we would like to use the ideas from
the above reduction to prove the W[2]-hardness of MCNG. However, the fact
that we use t-SET-COVER with constant t in the proof of Lemma 4 is crucial,
and t-SET-COVER is in FPT (as the universe would have at most tk elements
if such an instance admits a size-k solution). On the other hand, the property
that is really needed in the instance of this proof, and in our MCNGreduction,
is that we can transform any set cover instance into an exact cover. We capture
this intuition in the following, and show that SET-COVER instances that have
this property are W[1]-hard to solve.



Tandem Duplications, Segmental Duplications and Deletions 95

An instance of SET-COVER-with-EXACT-COVER (SET-COVER-EC for
short) is a pair I = (S, k) where k is an integer and S is a collection of sets
forming a universe U . In this problem, we require that S satisfies the property
that any set cover for S of size at most k is also an exact cover. We are asked
whether there exists a set cover for S of size at most k (in which case this set
cover is also an exact cover). Therefore, SET-COVER-EC is a promise problem.

Lemma 8. The SET-COVER-EC problem is W[1]-hard for parameter k.

Proof. We show W[1]-hardness using the MULTICOLORED-CLIQUE technique
introduced by Fellows et al. [21]. In the MULTICOLORED-CLIQUE problem,
we are given a graph G, an integer k and a coloring c : V (G) → [k] such that no
two vertices of the same color share an edge. We are asked whether G contains
a clique of k vertices (note that such a clique must have a vertex of each color).
This problem is W[1]-hard with respect to k.

Given an instance (G, k, c) of MULTICOLORED-CLIQUE, we construct an
instance I = (S, k′) of SET-COVER-EC. We put k′ = k +

(
k
2

)
. For i ∈ [k], let

Vi = {v ∈ V (G) : c(v) = i} and for each pair i < j ∈ [k], let Eij = {uv ∈
E(G) : u ∈ Vi, v ∈ Vj}. The universe U of the SET-COVER-EC instance has
one element for each color i, one element for each pair {i, j} of distinct colors,
and two elements for each edge, one for each direction of the edge. That is,

U = [k] ∪
(

[k]
2

)
∪ {(u, v) ∈ V (G) × V (G) : uv ∈ E(G)}

Thus |U | = k +
(
k
2

)
+ 2|E(G)|. For two colors i < j ∈ [k], we will denote

Uij = {(u, v), (v, u) : u ∈ Vi, v ∈ Vj , uv ∈ Eij}, i.e. we include in Uij both
elements corresponding to each uv ∈ Eij . Now, for each color class i ∈ [k] and
each vertex u ∈ Vi, add to S the set

Su = {i} ∪ {(u, v) : v ∈ N(u)},

where N(u) is the set of neighbors of u in G. Then for each i < j ∈ [k], and for
each edge uv ∈ Eij , add to S the set

Suv = {{i, j}} ∪ {(x, y) ∈ Uij : x /∈ {u, v}}.

The idea is that Suv can cover every element of Uij , except those ordered
pairs whose first element is u or v. Then if we do decide to include Suv in a set
cover, it turns out that we will need to include Su and Sv to cover these missing
ordered pairs. See Fig. 4 for an example. For instance if we include Su2,v3 in a
cover, the uncovered (u2, v3) and (v3, u2) can be covered with Su2 and Sv3 . We
could show that G has a multicolored clique of size k if and only if S admits
a set cover of size k′. We could also prove that (S, k′) is an instance of SET-
COVER-EC, i.e. that any set cover of size at most k′ is also an exact cover. We
refer the detailed arguments to [36]. ��



96 B. Zhu

(u1, v1) (v1, u1)

(u1, v2) (v2, u1)

(u2, v3) (v3, u2)
Su1,v1

Su1,v2

Su2,v3

Su1

Su2

Sv1

Sv2

Sv3

i j

{i, j}

Fig. 4. A graphical example of the constructed sets for the Uij elements of a graph
(not shown) with Eij = {u1v1, u1v2, u2v3}, where the ul’s are in Vi and the vl’s in Vj

(sets have a gray background, edges represent containment, the {i, j} lines are dotted
only for better visualization).

It is now almost immediate that MCNG is W[1]-hard with respect to the
natural parameter, namely the number of events to transform a genome G into
a genome with a given profile c. We hence have the following theorem.

Theorem 6. The MCNG problem is W[1]-hard.

Now that we have finished presenting the negative results on MCNG. An
immediate question is whether we could obtain some positive result on a related
problem. In the next subsection, we present some positive result for an interesting
variation of MCNG.

4.3 The Copy Number Profile Conforming Problem

We define the more general Copy Number Profile Conforming (CNPC) problem
as follows:

Definition 4. Given two CNP’s c1 = 〈u1, u2, ..., un〉 and v2 = 〈v1, v2, ..., vn〉,
with ui, vi ≥ 0 and ui, vi ∈ N, the CNPC problem asks to compute two strings
S1 and S2 with cnp(S1) = c1 and cnp(S2) = c2 such that the distance between
S1 and S2, d(S1, S2), is minimized.

Let
∑

i ui = m1,
∑

i vi = m2, we assume that m1 and m2 are bounded
by a polynomial of n. (This assumption is needed as the solution of our algo-
rithm could be of size max{m1, n2}.) We simply say c1, c2 are polynomially
bounded. Note that d(S1, S2) is a very general distance measure, i.e., it could
be any genome rearrangement distance (like reversal, transposition, and tandem
duplication, etc, or their combinations, e.g., tandem duplication + deletion). In
this paper, we use the breakpoint distance (and the adjacency number), which
is defined as follows. (These definitions are adapted from Angibaud et al. [2]
and Jiang et al. [31], which generalize the corresponding concepts on permuta-
tions [58]. See [59] for a recent survey along this line.)



Tandem Duplications, Segmental Duplications and Deletions 97

Given two sequences A = a1a2 · · · an and B = b1b2 · · · bm over the sam
alphabet, if the multisets {ai, ai+1} = {bj , bj+1} we say that aiai+1 and bjbj+1

are matched to each other. In a maximum matching of 2-substrings in A and
B, a matched pair is called an adjacency, and an unmatched pair is called
a breakpoint in A and B respectively. Then, the number of breakpoints in A
(resp. B) is denoted as db(A,B) (resp. db(B,A)), and the number of (com-
mon) adjacencies between A and B is denoted as a(A,B). For example, if
A = acbdcb,B = abcdabcd, then a(A,B) = 3 and there are 2 and 4 breakpoints
in A and B respectively.

Coming back to our problem, we define d(S1, S2) = db(S1, S2) + db(S2, S1).
From the definitions, we have

db(S1, S2) + db(S2, S1) + 2 · a(S1, S2) = (m1 − 1) + (m2 − 1),

or,
db(S1, S2) + db(S2, S1) = m1 + m2 − 2 · a(S1, S2) − 2.

Hence, the problem is really to maximize a(S1, S2).

Definition 5. Given n-dimensional vectors u = 〈u1, u2, ..., un〉 and w =
〈w1, w2, ..., wn〉, with ui, wi ≥ 0, and ui, wi ∈ N, we say w is a sub-vector
of u if wi ≤ ui for i = 1, ..., n, also denote this relation as w ≤ u.

Henceforth, we simply call u,w integer vectors (with the understanding that no
item in a vector is negative).

Definition 6. Given two n-dimensional integer vectors u = 〈u1, u2, ..., un〉 and
v = 〈v1, v2, ..., vn〉, with ui, vi ≥ 0, and ui, vi ∈ N, we say w is a common sub-
vector of u and v if w is a sub-vector of u and w is also a sub-vector of v (i.e.,
w ≤ u and w ≤ v). Finally, w is the maximum common sub-vector of u and v
if there is no common sub-vector w′ �= w of u and v which satisfies w ≤ w′ ≤ u
or w ≤ w′ ≤ v.

An example is illustrated as follows. Take u = 〈3, 2, 1, 0, 5〉, v = 〈2, 1, 3, 1, 4〉,
w′ = 〈2, 1, 0, 0, 3〉 and w = 〈2, 1, 1, 0, 4〉. Both w and w′ are common sub-
vectors for u and v, w′ is not the maximum common sub-vector of u and v
(since w′ ≤ w) while w is.

Given a CNP u = 〈u1, u2, ..., un〉 and alphabet Σ = (x1, x2, ..., xn), for i ∈
{1, 2}, we use S(u) to denote the multiset of letters (genes) corresponding to u;
more precisely, ui denotes the number of xi’s in S(u). Similarly, given a multiset
of letters Z, we use s(Z) to denote a string where all the letters in Z appear
exactly once (counting multiplicity; i.e., |Z| = |s(Z)|). s(Z) is similarly defined
when Z is a CNP. We present Algorithm 1 as follows.

1. Compute the maximum common sub-vector v of c1 and c2.
2. Given the gene alphabet Σ, compute S(v), S(c1) and S(c2). Let X = S(c1)−

S(v) and Y = S(v2) − S(v).
3. If S(v) = ∅, then return two arbitrary strings s(c1) and s(c2) as S1 and S2,

exit; otherwise, continue.



98 B. Zhu

4. Find {x, y}, x, y ∈ Σ and x �= y, such that x ∈ S(v) and y ∈ S(v), and exactly
one of x, y is in X (say x ∈ X), and the other is in Y (say y ∈ Y ). If such an
{x, y} cannot be found then return two strings S1 and S2 by concatenating
letters in X and Y arbitrarily at the ends of s(v) respectively, exit; otherwise,
continue.

5. Compute an arbitrary sequence s(v) with the constraint that the first letter
is x and the last letter is y. Then obtain s1 = s(v) ◦ x and s2 = y ◦ s(v) (◦ is
the concatenation operator).

6. Finally, insert all the elements in X −{x} arbitrarily at the two ends of s1 to
obtain S1, and insert all the elements in Y − {y} arbitrarily at the two ends
of s2 to obtain S2.

7. Return S1 and S2.

Let Σ = {a, b, c, d, e}. Also let c1 = 〈2, 2, 2, 4, 1〉 and c2 = 〈4, 4, 1, 1, 1〉. We
walk through the algorithm using this input as follows.

1. The maximum common sub-vector v of c1 and c2 is v = 〈2, 2, 1, 1, 1〉.
2. Compute S(v) = {a, a, b, b, c, d, e}, S(c1) = {a, a, b, b, c, c, d, d, d, d, e} and

S(c2) = {a, a, a, a, b, b, b, b, c, d, e}. Compute X = {c, d, d, d} and Y = {a, a,
b, b}.

3. Identify d and a such that d ∈ S(v) and a ∈ S(v), and d ∈ X while a ∈ Y .
4. Compute s(v) = dabbcea, s1 = dabbcea · d and s2 = a · dabbcea.
5. Insert elements in X − {d} = {c, d, d} arbitrarily at the right end of s1 to

obtain S1, and insert all the elements in Y − {a} = {a, b, b} at the right end
of s2 to obtain S2.

6. Return S1 = dabbcea · d · cdd and S2 = a · dabbcea · abb.

Theorem 7. Let c1, c2 be polynomially bounded. The number of common adja-
cencies generated by Algorithm 1 is optimal with a value either n∗ or n∗ − 1,
where n∗ =

∑n
i=1 vi with the maximum common sub-vector of c1 and c2 being

v = 〈v1, v2, ..., vn〉.
Note that if we only want the breakpoint distance between S1 and S2, then

the polynomial boundness condition of c1 and c2 can be withdrawn as we can
decide whether {x, y} exists by searching directly in the CNPs (vectors).

5 Concluding Remarks and Open Problems

We conclude this paper with a list of open problems.

1. Is the k-TD-distance problem FPT? Note that in Exemplar-k-TD we have
some useful property since the source string S is exemplar.

2. Let |Σ| = O(1), is the TD-distance problem still NP-hard? It would be espe-
cially interesting to know the answer when |Σ| = 2. In our construction, |Σ|
is a polynomial function of the input size. A natural way is to encode each
character into a sequence on a bounded alphabet (e.g., 2), but how to do it
so that the contractions still behave in our way is not trivial.



Tandem Duplications, Segmental Duplications and Deletions 99

3. If |Σ| ≥ 3, is the problem of deciding whether sequence S can be converted
to T using tandem duplications (regardless of the number) NP-hard?

4. For the Copy Number Profile Conforming problem, if the distance d(S1, S2)
is any genomic distance except the breakpoint distance, is the problem still
polynomially solvable?

5. While untouched in this paper, what is the complexity of the following prob-
lem: given genomes G1, G2 and an integer k, is dGG(G1, G2) ≤ k? Note that
in this case, if we do not care about the minimum number of (duplication
and deletion) events, then it is always possible to convert G1 to G2 as long
as they are over the same alphabet.

Acknowledgments. I would like to thank my collaborators for these research: Manuel
Lafond, Letu Qingge and Peng Zou. I also thank Prof. Henning Fernau and the orga-
nizers of CSR’2020 to give me the chance to survey these research.

References

1. Alon, N., Bruck, J., Hassanzadeh, F.F., Jain, S.: Duplication distance to the root
for binary sequences. IEEE Trans. Inf. Theory 63(12), 7793–7803 (2017)

2. Angibaud, S., Fertin, G., Rusu, I., Thevenin, A., Vialette, S.: On the approxima-
bility of comparing genomes with duplicates. J. Graph Algorithms Appl. 13(1),
19–53 (2009)

3. Benson, G., Dong, L.: Reconstructing the duplication history of a tandem repeat.
In: Proceedings of ISMB 1999, pp. 44–53 (1999)

4. Bovet, D.P., Varricchio, S.: On the regularity of languages on a binary alphabet
generated by copying systems. Inf. Process. Lett. 44(3), 119–123 (1992)

5. Bulteau, L., Fertin, G., Rusu, I.: Sorting by transposition is difficult. SIAM J.
Discrete Math. 26(3), 1148–1180 (2012)

6. The Cancer Genome Atlas Research Network: Integrated genomic analyses of ovar-
ian carcinoma. Nature 474, 609–615 (2011)

7. Charlesworth, B., Sniegowski, P., Stephan, W.: The evolutionary dynamics of
repetitive DNA in eukaryotes. Nature 371(6494), 215–220 (1994)

8. Chaudhuri, K., Chen, K., Mihaescu, R., Rao, S.: On the tandem duplication-
random loss model of genome rearrangement. In: Proceedings of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), pp. 564–570 (2006)

9. Chen, Z., Wang, L., Wang, Z.: Approximation algorithms for reconstructing the
duplication history of tandem repeats. Algorithmica 54(4), 501–529 (2009)

10. Cho, D.-J., Han, Y.-S., Kim, H.: Bound-decreasing duplication system. Theoret.
Comput. Sci. 793, 152–168 (2019)

11. Chowdhury, S., Shackney, S., Heselmeyer-Haddad, K., Ried, T., Schaeffer, A.,
Schwartz, R.: Algorithms to model single gene, single chromosome, and whole
genome copy number changes jointly in tumor phylogenetics. Plos Comput. Biol.
10(7), e1003740 (2014)

12. Ciriello, G., Killer, M., Aksoy, B., Senbabaoglu, Y., Schultz, N., Sanders, C.:
Emerging landscape of oncogenic signatures across human cancers. Nat. Genet.
45, 1127–1133 (2013)

13. Cooke, S., et al.: Intra-tumour genetic heterogeneity and poor chemoradiotherapy
response in cervical cancer. Br. J. Cancer 104(2), 361–368 (2011)



100 B. Zhu

14. Cooke, S., Brenton, J.: Evolution of platinum resistance in high-grade serous ovar-
ian cancer. Lancet Oncol. 12(12), 1169–1174 (2011)

15. Cowin, P., et al.: LRP1B deletion in high-grade serous ovarian cancers is associ-
ated with acquired chemotherapy resistance to liposomal doxorubicin. Cancer Res.
72(16), 4060–4073 (2012)

16. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, Second
edn. MIT Press, Cambridge (2001)

17. Dassow, J., Mitrana, V., Paun, G.: On the regularity of the duplication closure.
Bull. EATCS 69, 133–136 (1999)

18. Downey, R., Fellows, M.: Parameterized Complexity. Springer, Heidelberg (1999).
https://doi.org/10.1007/978-1-4612-0515-9

19. Ehrenfeucht, A., Rozenberg, G.: On regularity of languages generated by copying
systems. Discrete Appl. Math. 8(3), 313–317 (1984)

20. El-Kebir, M., et al.: Copy-number evolution problems: complexity and algorithms.
In: Frith, M., Storm Pedersen, C.N. (eds.) WABI 2016. LNCS, vol. 9838, pp. 137–
149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43681-4 11

21. Fellows, M., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized com-
plexity of multiple-interval graph problems. Theoret. Comput. Sci. 410(1), 53–61
(2009)

22. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-29953-X

23. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman W. H., New York (1979)

24. Gascuel, O., Hendy, M.D., Jean-Marie, A., McLachlan, R.: The combinatorics of
tandem duplication trees. Syst. Biol. 52(1), 110–118 (2003)

25. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

26. Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all the
tandem repeats in a string. J. Comput. Syst. Sci. 69(4), 525–546 (2004)

27. Hannenhalli, S., Pevzner, P.: Transforming men into mice (polynomial algorithm
for genomic distance problem). In: Proceedings of FOCS 1995, pp. 581–592 (1995)

28. Hassanzadeh, F., Schwartz, M., Bruck, J.: The capacity of string-duplication sys-
tems. IEEE Trans. Inf. Theory 62(2), 811–824 (2016)

29. Ito, M., Leupold, P., Shikishima-Tsuji, K.: Closure of language classes under
bounded duplication. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036,
pp. 238–247. Springer, Heidelberg (2006). https://doi.org/10.1007/11779148 22

30. Jain, S., Hassanzadeh, F., Bruck, J.: Capacity and expressiveness of genomic tan-
dem duplication. IEEE Trans. Inf. Theory 63(10), 6129–6138 (2017)

31. Jiang, H., Zheng, C., Sankoff, D., Zhu, B.: Scaffold filling under the breakpoint and
related distances. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(4), 1220–1229
(2012)

32. Landau, G., Schmidt, J., Sokol, D.: An algorithm for approximate tandem repeats.
J. Comput. Biol. 8(1), 1–18 (2001)

33. Lander, E.S., et al.: Initial sequencing and analysis of the human genome. Nature
409(6822), 860–921 (2001)

34. Lafond, M., Zhu, B., Zou, P.: The tandem duplication distance is NP-hard. CoRR
abs/1906.05266, June 2019

35. Lafond, M., Zhu, B., Zou, P.: The tandem duplication distance is NP-hard. In:
Proceedings of STACS 2020. LiPIcs, vol. 154, pp. 15:1–15:15 (2020)

36. Lafond, M., Zhu, B., Zou, P.: Genomic problems involving copy number profiles:
complexity and algorithms. CoRR abs/2002.04778, February 2020

https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-3-319-43681-4_11
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/11779148_22


Tandem Duplications, Segmental Duplications and Deletions 101

37. Lafond, M., Zhu, B., Zou, P.: Genomic problems involving copy number profiles:
complexity and algorithms. In: Proceedings of CPM 2020. LiPIcs, vol. 161, pp.
22:1–22:25 (2020)

38. Letunic, I., Copley, R., Bork, P.: Common exon duplication in animals and its role
in alternative splicing. Hum. Mol. Genet. 11(13), 1561–1567 (2002)

39. Leupold, P., Mitrana, V., Sempere, J.M.: Formal languages arising from gene
repeated duplication. In: Jonoska, N., Paun, G., Rozenberg, G. (eds.) Aspects of
Molecular Computing. LNCS, vol. 2950, pp. 297–308. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-24635-0 22

40. Leupold, P., Carlos, M.V., Mitrana, V.: Uniformly bounded duplication languages.
Discrete Appl. Math. 146(3), 301–310 (2005)

41. Li, S., Dou, X., Ge, R., Qian, M., Wan, L.: A remark on copy number variation
detection. Plos One 13(4), e0196226 (2018)

42. Li, W., Olivier, M.: Current analysis platforms and methods for detecting copy
number variation. Physiol. Genomics 45(1), 1–16 (2013)

43. Macdonald, M., et al.: A novel gene containing a trinucleotide repeat that is
expanded and unstable on Huntington’s disease. Cell 72(6), 971–983 (1993)

44. Maley, C., et al.: Genetic clonal diversity predicts progression to esophageal ade-
nocarcinoma. Nat. Genet. 38(4), 468–473 (2006)

45. Marusyk, A., Almendro, V., Polyak, K.: Intra-tumour heterogeneity: a looking
glass for cancer. Nat. Rev. 13, 323–334 (2012)

46. Navin, N., et al.: Inferring tumor progression from genomic heterogeneity. Genome
Res. 20, 68–80 (2010)

47. Oesper, L., Ritz, A., Aerni, S., Drebin, R., Raphael, B.: Reconstructing cancer
genomes from paired-end sequencing data. BMC Bioinform. 13(Suppl 6), S10
(2012)

48. Qingge, L., He, X., Liu, Z., Zhu, B.: On the minimum copy number generation
problem in cancer genomics. In: Proceedings of ACM BCB 2018, pp. 260–269.
ACM (2018)

49. Schwarz, R., Trinh, A., Sipos, B., Brenton, J., Goldman, N., Markowetz, F.: Phy-
logenetic quantification of intra-tumour heterogeneity. Plos Comput. Biol. 10(4),
e1003535 (2014)

50. Shah, S., et al.: Mutational evolution in a lobular breast tumor profiled at single
nucleotide resolution. Nature 461(7265), 809–813 (2009)

51. Shamir, R., Zehavi, M., Zeira, R.: A linear-time algorithm for the copy number
transformation problem. In: Proceedings of CPM 2016. LiPIcs, vol. 54, pp. 16:1–
16:13 (2016)

52. Sharp, A., et al.: Segmental duplications and copy-number variation in the human
genome. Am. J. Hum. Genet. 77(1), 78–88 (2005)

53. Szostak, J.W., Wu, R.: Unequal crossing over in the ribosomal DNA of Saccha-
romyces cerevisiae. Nature 284(5755), 426–430 (1980)

54. Thue, A.: Über unendliche Zeichenreihen (Mathematisk-Naturvidenskabelig
Klasse). Videnskabsselskabet, Freetown Christiania, Denmark (1906)

55. Tremblay-Savard, O., Bertrand, D., El-Mabrouk, N.: Evolution of orthologous
tandemly arrayed gene clusters. BMC Bioinform. 12(S-9), S2 (2011)

56. Trevisan, L.: Non-approximability results for optimization problems on bounded
degree instances. In: Proceedings of 33rd ACM Symposium on Theory of Comput-
ing (STOC 2001), pp. 453–461. ACM (2001)

57. Wang, M.W.: On the irregularity of the duplication closure. Bull. EATCS 70,
162–163 (2000)

https://doi.org/10.1007/978-3-540-24635-0_22


102 B. Zhu

58. Watterson, G.A., Ewens, W.J., Hall, T.E., Morgan, A.: The chromosome inversion
problem. J. Theoret. Biol. 99(1), 1–7 (1982)

59. Zhu, B.: A retrospective on genomic preprocessing for comparative genomics. In:
Chauve, C., El-Mabrouk, N., Tannier, E. (eds.) Models and Algorithms for Genome
Evolution, vol. 19, pp. 183–206. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-1-4471-5298-9 9

https://doi.org/10.1007/978-1-4471-5298-9_9
https://doi.org/10.1007/978-1-4471-5298-9_9


Faster 2-Disjoint-Shortest-Paths
Algorithm

Maxim Akhmedov1,2(B)

1 Department of Mathematical Logic and Algorithms, Moscow State University,
Moscow, Russia

akhmedov@lpcs.math.msu.su
2 Yandex LLC, Moscow, Russia

max42@yandex-team.ru

Abstract. Consider the following kDSP problem: given a graph G and k
pairs of terminal vertices (s1, t1), (s2, t2), . . . , (sk, tk), check if there exists
a k-tuple of pairwise disjoint shortest si–ti paths between these k pairs of
terminal vertices. Algorithmically, the case of two vertex-disjoint paths
turns out to be the most interesting one. For this setting, Eilam-Tzoreff
established an algorithm running in O(|V |8) time, which uses dynamic
programming (DP) and applies to both directed and undirected graphs
and arbitrary positive edge weights (lengths). In this paper, we examine
the DP relations arising in this problem and reduce the time complexity
to O(|V |6) for the unit-length case and to O(|V |7) for the case of general
weights.

Keywords: Dynamic programming · Shortest paths · Graph theory ·
Linear algebra

1 Introduction

We consider the following three settings of combinatorial problems. In all prob-
lems, given a graph G = (V,E) and k pairs of vertices (si, ti) (si, ti ∈ V ,
1 ≤ i ≤ k), we should find out if there exists a k-tuple of paths Pi such that
certain conditions hold. Possible conditions are listed below.

kDP problem:

1. path Pi goes from si to ti;
2. all paths are pairwise disjoint.

kDSP problem:

1. path Pi goes from si to ti;
2. all paths are pairwise disjoint;
3. each Pi is one of the shortest paths from si to ti.

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 103–116, 2020.
https://doi.org/10.1007/978-3-030-50026-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_7&domain=pdf
http://orcid.org/0000-0002-7947-1416
https://doi.org/10.1007/978-3-030-50026-9_7


104 M. Akhmedov

min-sum kDSP problem:

1. path Pi goes from si to ti;
2. all paths are pairwise disjoint;
3. the total length of all Pi is smallest possible.

This description still leaves some degrees of freedom: graph G above may
either be directed or undirected; the disjointness property may require paths to
be either node-disjoint or edge-disjoint; finally the graph may be either weighted
(with positive integer lengths assigned to edges) or unweighted (having only
unit-length edges). Clearly, there are 8 problem versions for kDSP and min-sum
kDSP and 4 problem versions for kDP (as the presence of weights does not
matter). For example, one may consider the undirected weighted vertex-disjoint
version of kDSP.

The three problem settings are closely related to each other. One may verify
that an algorithm solving min-sum kDSP may be reduced to be an algorithm
for each of kDP and kDSP. The first reduction is trivial, while the second one
can be done by checking if the total length of paths in the algorithm output is
equal to the sum of shortest path lengths over all pairs (si, ti). Thus kDP and
kDSP are easier than min-sum kDSP. There is no direct reduction between kDP
and kDSP, but questions arising in these problems tend to be connected.

The kDP problem is well-studied. The directed kDP problem is NP-complete
for k ≥ 2 due to Fortune, Hopcroft and Wyllie [5]. The undirected kDP is known
to have a polynomial-time algorithm for any fixed k [10]. For k = 2, there exists
an algorithm by Gustedt [7] with O(|E| log |V |) running time. If k is a part of
problem input, undirected kDP problem is NP-complete even for planar graphs
due to Lynch [9].

The min-sum kDSP problem has been recently studied by different authors;
there is a 2014 result of Björklund and Husfeldt [1] providing a Monte Carlo
algorithm for the unweighted case running in time O(|V |11), using an algebraic
approach with permanents over quotient rings. There is another approach by
Hirai and Namba [8] for the same problem based on hafnians modulo 2k and a
classic reduction from T -paths to matchings due to Gallai [6] yielding another
polynomial bound for min-sum kDSP for fixed k. For the planar case, there is a
result by Datta et al. [3] yielding an O(nω) randomized sequential algorithm with
the restriction that all terminals lie on a single face of a pair of faces. There is
also a result for cubic planar graphs due to Björklund and Husfeldt [2], providing
a deterministic algorithm with sequential time complexity of O(|V |ω/2+2L2),
where edge weights are bounded by L.

As well as kDP, kDSP immediately becomes NP-complete if k is a part of the
input. This is even true in the planar unit-length case, irrespectively of whether
the graph is directed or undirected, or of whether we choose vertex-disjoint paths
or edge-disjoint paths [4].

In this article we will concentrate on the 2DSP problem. For the weighted
undirected vertex-disjoint case, Eilam-Tzoreff provided a polynomial-time algo-
rithm based on a dynamic programming approach. He also provided a linear-time
reduction from the edge-disjoint case to the vertex-disjoint case. The algorithm



Faster 2-Disjoint-Shortest-Paths Algorithm 105

of Eilam-Tzoreff has a running time of O(|V |8). Suchm a running time bound
motivates a natural question — is it possible to solve the problem faster?

We obtain an algorithm with running time of O(|V |6) for the unit-length case
of 2DSP and an algorithm with running time of O(|V |7) for the weighted case of
2DSP (in both cases we consider the vertex-disjoint undirected formulation). Our
algorithms may be viewed as modifications of the Eilam-Tzoreff algorithm with
two improvements. The first one is somewhat standard to dynamic programming
and consists of choosing the appropriate computation order enabling us to factor
the problem into two independent subproblems with better running time.

The second improvement is novel and works as follows: we interpret the
computationally hardest subroutine of the algorithm as taking the value xT βy of
a certain bilinear form β at some pair of vectors x, y, and then analyze the triples
β, x, y arising during the computation. It turns out that by pre-evaluating the
partial products xT β, we may reduce the running time complexity even further.

As a proof of concept, the obtained algorithms were implemented in C++.
With their use, the correctness of the algorithm was checked for all possible
unweighted graphs of small size (|V | ≤ 8) and for a significant number of con-
nected graphs of larger size (|V | = 10, 20, 30).

The source code of our implementations and the LATEX sources of this article
(both in English and in Russian) are available at https://github.com/zlobober/
thesis.

2 Definitions and the DP Formululation

Let us introduce some definitions and notation that we employ. From now on,
let G = (V,E) be an undirected loopless graph, w : E → R>0 be an edge weight
function.

The length of a path formed by edges e1, e2, . . . , ek is w(e1) + w(e2) + . . . +
w(ek).

Let x, y ∈ V be two vertices belonging to the same connected component of
G. Define l(x, y) to be the length of the shortest path between x and y. For x
and y belonging to distinct connected components, define l(x, y) := +∞.

In particular, for any x ∈ V it is true that l(x, x) = 0.
Fix x, y ∈ V . Define L(x, y) ⊆ V to be the set of all v ∈ V belonging to at

least one shortest path between x and y.
Clearly, v ∈ L(x, y) iff l(x, v)+ l(v, y) = l(x, y). Also for x and y from distinct

connected components, L(x, y) = ∅. Finally, L(v, v) = {v} for all v ∈ V .
We also introduce a few special definitions that will significantly simplify the

DP formulae.
Fix x, y ∈ V . Let F (x, y) = {v ∈ L(x, y) | (x, v) ∈ E}, i.e., F (x, y) is formed

by all of the vertices that are successors of x in at least one shortest path from
x to y.
For the sake of convenience, we also introduce a 3-argument variant of F :

Fix x, y, z ∈ V . Let F (x, y, z) = F (x, y) ∩ F (x, z), i.e., F (x, y, z) is formed
by all of the vertices that are successors of x in at least one shortest path from
x to y and at least one shortest path from x to z.

https://github.com/zlobober/thesis
https://github.com/zlobober/thesis


106 M. Akhmedov

Fix s1, t1, s2, t2 ∈ V . Define 2DSP (s1, t1, s2, t2) to be equal to 1 if there exist
two vertex-disjoint shortest paths P1 and P2 from s1 to t1 and P2 from s2 to t2,
respectively; and let it be 0, otherwise.

The quadruple (s1, t1, s2, t2) ∈ V 4 is called rigid iff s1, t1 ∈ L(s2, t2) and
s2, t2 ∈ L(s1, t1).

Example. Consider the graph G from Fig. 1.

x

a b

c d

y

z

e

Fig. 1. Graph G

s1 t1

s2

t2

v0

v1 v2

v3

v4

v5

v6

v7

v8
v9

Fig. 2. Graph H

For this graph it is true that L(x, y) = {x, a, b, c, d, y}, L(x, z) = {x, b, e, z},
F (x, y) = {a, b}, F (x, z) = {b, e}, F (x, y, z) = {b}. The quadruple (x, y, b, c) is
rigid as b, c ∈ L(x, y) and x, y ∈ L(b, c). 2DSP (x, y, b, c) = 0, as a and d form a
cut between x and y. At the same time, 2DSP (x, z, b, c) = 1, as there are paths
(x, e, z) and (b, d, a, c) which are vertex-disjoint.

We will also introduce the following notation simplifying formulae involving
predicates. We allow some of the arguments of 2DSP to be vertex sets instead
of single vertices. In this case, we consider the resulting expression to be the
logical disjunction of 2DSP over all quadruples, where each component belongs
to the corresponding argument set. For example,

2DSP (F (s1, t1), t1, s2, t2) =
∨

x∈F (s1,t1)

2DSP (x, t1, s2, t2). (1)

We rely on the following structural result from [4]:

Theorem 1. For any s1, t1, s2, t2 ∈ V one of the following cases applies:

1. If s1 = t1, s2 = t2, then 2DSP (s1, t1, s2, t2) is 1 iff s1 	= s2.
2. Otherwise, assume (s1, t1, s2, t2) is not rigid; consider a vertex of a quadru-

ple for which the rigidness condition does not hold. Without loss of general-
ity, suppose that s1 is such a vertex, i.e., s1 /∈ L(s2, t2) and s1 	= t1. Then
2DSP (s1, t1, s2, t2) = 2DSP (F (s1, t1), s2, t2).

3. Otherwise, define C = L(s1, s2) ∪ L(s2, t1) ∪ L(t1, t2) ∪ L(t2, s1). Then
2DSP (s1, t1, s2, t2) = Q2(s1, t1, s2, t2) ∨ Q4(s1, t1, s2, t2) where Q2 and Q4

are defined as follows:



Faster 2-Disjoint-Shortest-Paths Algorithm 107

Q2(s1, t1, s2, t2) =

2DSP ( s1, F (t1, s1, s2), s2, F (t2, s2, s1)) ∨
2DSP ( F (s1, t1, s2), t1, s2, F (t2, s2, t1)) ∨
2DSP ( s1, F (t1, s1, t2), F (s2, t2, s1), t2) ∨
2DSP ( F (s1, t1, t2), t1, F (s2, t2, t1), t2) ∨

2DSP ( F (s1, t1) \ C, t1, F (s2, t2) \ C, t2) ∨
2DSP ( F (s1, t1) \ C, t1, s2, F (t2, s2) \ C) ∨
2DSP ( s1, F (t1, s1) \ C, F (s2, t2) \ C, t2) ∨
2DSP ( s1, F (t1, s1) \ C, s2, F (t2, s2) \ C) ∨

2DSP ( s1, F (t1, s1, s2), s2, F (t2, s2) \ C) ∨
2DSP ( s1, F (t1, s1, t2), F (s2, t2) \ C, t2) ∨
2DSP ( F (t1, s1, s2), t1, s2, F (t2, s2) \ C) ∨
2DSP ( F (t1, s1, t2), t1, F (s2, t2) \ C, t2) ∨
2DSP ( s1, F (t1, s1) \ C, s2, F (t2, s2, s1)) ∨
2DSP ( F (s1, t1) \ C, t1, s2, F (t2, s2, t1)) ∨
2DSP ( s1, F (t1, s1) \ C, F (s2, t2, s1), t2) ∨
2DSP ( F (s1, t1) \ C, t1, F (s2, t2, t1), t2) (2)

Q4(s1, t1, s2, t2) =
∨

x∈F (s1,s2)
y∈F (t1,t2)
u∈F (s2,t1)
v∈F (t2,s1)

l(s1,x)+l(x,y)+l(y,t1)=l(s1,t1)
l(s1,u)+l(u,v)+l(v,t2)=l(s2,t2)

2DSP (x, y, u, v) ∨
∨

x∈F (s1,t2)
y∈F (t1,s2)
u∈F (s2,s1)
v∈F (t2,t1)

l(s1,x)+l(x,y)+l(y,t1)=l(s1,t1)
l(s2,u)+l(u,v)+l(v,t2)=l(s2,t2)

2DSP (x, y, u, v) (3)

We will formulate (without proof) two important results following from the
original article here.

Proposition 1. For a rigid quadruple (s1, t1, s2, t2), it is true that l(s1, t1) =
l(s2, t2).

Theorem 2. Algorithm4 calculates 2DSP (s1, t1, s2, t2) for all quadruples
(s1, t1, s2, t2) in O(|V |8) time using Θ(|V |4) memory.

3 Reducing the Running Time to O(|V |7)
In the following two sections we assume edges to have unit length, i.e., the graph
to be unweighted.

We start by optimizing the DP transitions given by (3) as all the remaining
transitions require O(|V |6) time. Denote the first and the second expression in
(3) by A4(s1, t1, s2, t2) and B4(s1, t1, s2, t2):



108 M. Akhmedov

A(s1, t1, s2, t2) =
∨

x∈F (s1,s2)
y∈F (t1,t2)
u∈F (s2,t1)
v∈F (t2,s1)

l(x,y)+2=l(s1,t1)
l(u,v)+2=l(s2,t2)

2DSP (x, y, u, v)

(4)

B(s1, t1, s2, t2) =
∨

x∈F (s1,t2)
y∈F (t1,s2)
u∈F (s2,s1)
v∈F (t2,t1)

l(x,y)+2=l(s1,t1)
l(u,v)+2=l(s2,t2)

2DSP (x, y, u, v)

(5)

Proposition 2. The following equation holds:

B(s1, t1, s2, t2) = A(s2, t2, s1, t1). (6)

Proof. The equation immediately follows from the existence of a bijection
between quadruples (x, y, u, v) s.t. x ∈ F (s2, s1), y ∈ F (t2, t1), u ∈ F (s1, t2),
v ∈ F (t1, s2), l(x, y) + 2 = l(s2, t2), l(u, v) + 2 = l(s1, t1) (that form the disjunc-
tion domain in the expression for A(s2, t2, s1, t1)) and quadruples (x′, y′, u′, v′)
s.t. x′ ∈ F (s1, t2), y′ ∈ F (t1, s2), u′ ∈ F (s2, s1), v′ ∈ F (t2, t1), l(x′, y′) + 2 =
l(s1, t1), l(u′, v′)+2 = l(s2, t2). The sought bijection is defined by x′ = u, y′ = v,
u′ = x, v′ = y. �

Thus, Q4(s1, t1, s2, t2) may be expressed using just predicate A:

Q4(s1, t1, s2, t2) = A(s1, t1, s2, t2) ∨ A(s2, t2, s1, t1) (7)

We rewrite the conditions on (x, y, u, v) in (4) in the following equivalent
form:

Proposition 3.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ F (s1, s2)
y ∈ F (t1, t2)
u ∈ F (s2, t1)
v ∈ F (t2, s1)
l(x, y) + 2 = l(s1, t1)
l(u, v) + 2 = l(s2, t2)

⇐⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ F (s1, t1, s2)
y ∈ F (t1, s1, t2)
u ∈ F (s2, t2, t1)
v ∈ F (t2, s2, s1)
l(x, y) + 2 = l(s1, t1)
l(u, v) + 2 = l(s2, t2)

⇐⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x ∈ F (s1, t1, s2)
y ∈ F (t1, x, t2)
u ∈ F (s2, t2, t1)
v ∈ F (t2, u, s1)

(8)

Proof. First, note that l(x, y)+2 = l(s1, t1) and l(u, v)+2 = l(s2, t2) immediately
implies that x, y ∈ L(s1, t1) and u, v ∈ L(s2, t2), so we may replace F (s1, s2) with
F (s1, t1, s2) as a domain for x, and perform the similar action for y, u and v.
This proves the first equivalence.

The second equivalence may be proven by exploiting the fact that l(x, y)+2 =
l(s1, t1) (which means that x and y belong to the same shortest path between
s1 and t1) is equivalent to x ∈ F (s1, t1) ∧ y ∈ F (t1, x), and similarly for s2, t2,
u and v. �



Faster 2-Disjoint-Shortest-Paths Algorithm 109

Now we can rewrite (4) as follows:

A(s1, t1, s2, t2) =
∨

x∈F (s1,t1,s2)
u∈F (s2,t2,t1)

∨

y∈F (t1,x,t2)
v∈F (t2,u,s1)

2DSP (x, y, u, v)

Note the important property of the equation above: the expression inside the
first disjunction does not depend on s2. Let us denote it by ExY V (x, u, s1, t1, t2)
(an acronym for “there exist y and v”):

A(s1, t1, s2, t2) =
∨

x∈F (s1,t1,s2)
u∈F (s2,t2,t1)

ExY V (x, u, s1, t1, t2) = ExY V (F (s1, t1, s2), F (s2, t2, t1), s1, t1, t2)

ExY V (x, u, s1, t1, t2) =
∨

y∈F (t1,x,t2)
v∈F (t2,u,s1)

2DSP (x, y, u, v) = 2DSP (x, F (t1, x, t2), u, F (t2, u, s1)) (9)

The formulae above suggest the following optimization: A(s1, t1, s2, t2) only
depends on O(|V |2) values of ExY V (x, u, s1, t1, t2). So, if we have all the nec-
essary values of ExY V (x, u, s1, t1, t2) ready by the moment we calculate the
value of A(s1, t1, s2, t2), then the total running time needed for calculating all
A(s1, t1, s2, t2) becomes O(|V |6).

Finally, note that by (9) we may calculate each value of ExY V (x, u, s1, t1, t2)
in O(|V |2) time. This means that ExY V (x, u, s1, t1, t2) is a suitable auxiliary
predicate that, on the one hand, may be calculated efficiently (in O(|V |7) time),
and on the other hand, is reused multiple times while calculating values of pred-
icate A(s1, t1, s2, t2), providing the sought running time optimization.

The only remaining step is to verify that we can organize the calculations
in an appropriate order; i.e., by the moment we use each of the values in the
right-hand sides of (7) and (9), it is already known. To show this, we provide a
pseudocode of Algorithm 1 implementing this approach.

Due to the restriction on paper size, the proof of the following theorem (which
is quite technical and straightforward) is omitted.

So, the final result of this section is the following

Theorem 3. Algorithm1 calculates the predicate 2DSP (s1, t1, s2, t2) for all
quadruples (s1, t1, s2, t2) in time O(|V |7) using Θ(|V |5) memory.

4 Reducing Running Time to O(|V |6)
It is easy to see that the most inefficient part of Algorithm 1 is the procedure
CalculateAllExYVValues whose total running time is O(|V |7). In this
section we optimize the running time of calculating ExY V for all arguments
to O(|V |6).

Let us rephrase (9) by rewriting it in terms of bilinear forms. In this section
we fix some basis and identify bilinear forms with their matrices; also vectors
are assumed to be written as columns.



110 M. Akhmedov

Algorithm 1. Calculation of 2DSP (s1, t1, s2, t2) in O(|V |7)
1: procedure CalculateAll2DSPValues(V , E)

2: l ← matrix of pairwise distances in G

� Group pairs of vertices according to the distance between them.

3: Pi ← empty list for all i = 0, . . . , |V | − 1

4: for s, t ∈ V do

5: Append (s, t) to Pl(s,t)

� Calculate values of the predicate in lexicographical order of pairs

� (dmin, dmax), where dmin is for the smallest of the distances

� between terminal pairs and dmax is for the largest of them.

6: for dmin ← 0, . . . , |V | − 1 do

7: CalculateAllExYVValues(dmin)

8: for dmax ← dmin, . . . , |V | − 1 do

9: for (s1, t1) ∈ Pdmin do

10: for (s2, t2) ∈ Pdmax do

11: 2DSP (s1, t1, s2, t2) ← CalculateSingle2DSPValue(s1, t1, s2, t2)

� Finally use the symmetric nature of our predicate.

12: 2DSP (s2, t2, s1, t1) ← 2DSP (s1, t1, s2, t2)

13: procedure CalculateAllExYVValues(d)

14: for (s1, t1 ∈ Pd) do

15: for x ∈ F (s1, t1) do

16: for u, t2 ∈ V do

17: ExY V (x, u, s1, t1, t2) ← 2DSP (x, F (t1, x, t2), u, F (t2, u, s1))

18: procedure CalculateSingle2DSPValue(s1, t1, s2, t2)

19: if s1 = t1 ∧ s2 = t2 then

20: return s1 = s2

21: else if (s1, t1, s2, t2) is not rigid then

22: Calculate and return the value according to case (2) of Th 1

23: else

24: Calculate Q2(s1, t1, s2, t2) using (2)

25: Q4(s1, t1, s2, t2) = ExY V (F (s1, t1, s2), F (s2, t2, t1), s1, t1, t2) ∨
ExY V (F (s2, t2, s1), F (s1, t1, t2), s2, t2, t1)

26: return Q2(s1, t1, s2, t2) ∨ Q4(s1, t1, s2, t2)

Definition 1. Let V = {v0, v1, . . . , vn−1} be a certain fixed numbering of ver-
tices and S ⊆ V . Then the characteristic vector χ[S] of set S is the column
vector with 1 at the i-th place if vi ∈ S and 0 otherwise.

We claim (9) amounts in computing the value of a certain bilinear form at
vectors χ[F (t1, x, t2)] and χ[F (t2, u, s1)] and checking if the result is zero. A large
caveat here is not to rely on any of yet-to-be-calculated values while constructing
the matrix of this bilinear form.

Suppose the values of 2DSP (x, y, u, v) for all (x, y, u, v) s.t. min{l(x, y),
l(u, v)} < d are already calculated. Define the matrix 2DSP (d, x, u) =
(2DSP (d, x, u)i,j)i,j=0,...,n−1 as follows:

2DSP (d, x, u)i,j =

{
2DSP (x, vi, u, vj) if l(x, vi) < d and l(u, vj) < d

0 otherwise
(10)

Now we can rewrite (9).



Faster 2-Disjoint-Shortest-Paths Algorithm 111

Proposition 4. Suppose the values of 2DSP (x, y, u, v) for all (x, y, u, v) s.t.
min{l(x, y), l(u, v)} < d are already calculated. Suppose that l(x, t1) = l(u, t2) =
d − 1. Then the following equation holds:

ExY V (x, u, s1, t1, t2) =

{
1 if χ[F (t1, x, t2)]

T 2DSP (d, x, u) χ[F (t2, u, s1)] > 0

0 otherwise

(11)

Proof. Suppose there exist y and v producing a positive value of (9), namely
y = vi and v = vj . Note that χ[F (t1, x, t2)]i = χ[F (t2, u, s1)]j = 1 as y ∈
F (t1, x, t2) and v ∈ F (t2, u, s1) due to variable domain in (9). Also note that
2DSP (d, x, u)i,j = 2DSP (x, y, u, v) = 1 (as l(x, y) = l(u, v) = d−2 < d). Hence,
the value of the bilinear form at our pair of characteristic vectors is at least 1.

By using exactly the same argument in the reverse direction we show that
the right-hand side being at least 1 implies that there exist the desired y and v,
finishing the proof. �

We have not achieved any significant speedup yet as we have only rewritten
the same formulae in a different way. The key idea is to carefully estimate the
number of pairs of bilinear forms and its right-hand vector argument.

Proposition 5. There are O(|V |3) bilinear forms that we consider during our
algorithm.

Proof. The claim immediately follows from the fact that each form corresponds
to a triple of (d, x, u), each of whose component takes |V | possible values. �
Proposition 6. There are O(|V |4) pairs of bilinear forms and its right-hand
vector arguments that we consider during our algorithm.

Proof. A pair of the above type is (2DSP (d, x, u), χ[F (t2, u, s1)]) with the extra
condition of l(u, t2) = d − 1. So, the desired number of pairs is bounded by the
number of quadruples (x, u, t2, s1), which is |V |4. �
Define the value of ψ(x, u, t2, s1) as follows:

ψ(x, u, t2, s1) = 2DSP (l(u, t2) + 1, x, u) χ[F (t2, u, s1)] (12)

The formula above provides an upper time bound of O(|V |6) for calculating
all ψ(x, u, t2, s1), as each single value may be calculated in O(|V |2) by multiply-
ing a matrix by a vector in a straightforward manner.

Formula (11) takes the following form:

ExY V (x, u, s1, t1, t2) = χ[F (t1, x, t2)]T ψ(x, u, t2, s1) (13)

Using the new formula, we may calculate ExY V (x, u, s1, t1, t2) in time
O(|V |), so the total time of calculating all ExY V (x, u, s1, t1, t2) becomes
O(|V |6).

As in the previous section, we provide the pseudocode for our approach (Algo-
rithm2) and analyze its running time and space complexity.



112 M. Akhmedov

Algorithm 2. Calculation of all ExY V (x, u, s1, t1, t2) in O(|V |6)
1: procedure CalculateAllExYVValues(d)
2: for (u, t2) ∈ Pd−1 do
3: for x, s1 ∈ V do
4: ψ(x, u, t2, s1) ← 2DSP (l(u, t2) + 1, x, u) χ[F (t2, u, s1)]

5: for (s1, t1 ∈ Pd) do
6: for x ∈ F (s1, t1) do
7: for u, t2 ∈ V do
8: ExY V (x, u, s1, t1, t2) ← χ[F (t1, x, t2)]

Tψ(x, u, t2, s1)

Proposition 7. The total running time of CalculateAllExYVValues for
all d = 0, . . . , |V | − 1 is O(|V |6).
Proposition 8. The total memory usage of Algorithm2 is O(|V |5).
Hence, the final result of this section is the following theorem:

Theorem 4. Algorithm2 calculates predicate 2DSP (s1, t1, s2, t2) for all
quadruples (s1, t1, s2, t2) in time O(|V |6) using Θ(|V |5) memory.

Let us also note an interesting feature of the obtained algorithm. In line 4
we repeatedly multiply the same matrix by a large number of column vectors.
For each matrix, if we group O(|V |) possible vectors into a separate matrix, the
desired procedure becomes expressible in terms of matrix multiplication, which
may be done more efficiently in time O(|V |ω) with ω < 2.3727 [11]. But even if
we use this observation and reduce the running time of this part of the algorithm
to O(|V |3+ω), computing the values of Q2 (which takes O(|V |6) time in total)
becomes the bottleneck.

5 Experimental Evaluation

First of all, we would like to make a disclaimer. We do not claim that our algo-
rithm runs significantly faster on any graph of reasonable size (tens of vertices)
as on small inputs the running time depends more on hidden constant, rather
than on the power of complexity polynomial. Still, we believe that experimental
evaluation is an important part of presenting the algorithm since it allows to
test theoretical results on lots of small cases and sometimes shows mistakes that
may be hard to found by checking the formal proof.

We implemented four algorithms:

– Original Algorithm4 working in O(|V |8);
– Algorithm 1 working in O(|V |7);
– Algorithm 2 working in O(|V |6);
– Brute-force Algorithm 3 working in exponential running time O(2|V | · |V |),

not relying on Theorem1.



Faster 2-Disjoint-Shortest-Paths Algorithm 113

Algorithm 3. Calculation of all 2DSP (s1, t1, s2, t2) in O(2|V | · |V |)
1: procedure CalculateAll2DSPValues(V , E)
2: l ← matrix of pairwise distances in G;
3: for s1, t1, s2, t2, ∈ V do
4: 2DSP (s1, t1, s2, t2) = CalculateSingle2DSPValue(s1, t1, s2, t2);

5: procedure CalculateSingle2DSPValue(s1, t1, s2, t2)
6: 2DSP (s1, t1, s2, t2) ← 0;
7: for shortest path P between s1 and t1 do
8: if distance between s2 and t2 in G \ P = l(s2, t2) then
9: 2DSP (s1, t1, s2, t2) ← 1;

All mentioned algorithms were implemented as the routines in a single pro-
gram, allowing their simulateneous evaluation on the same graph G (either pro-
vided or randomly generated from some probability distribution). The program
was run on all enumerated connected graphs consisting of no more than 8 ver-
tices that helped find an enormous number of mistakes in the implementation of
formula (2). The number of enumerated connected graphs on 9 vertices exceeds
6 · 1010, so the experimental evaluation of the algorithms on all 9 vertex graphs
with only one execution thread is not practically possible.

As a next step, we ran 104 instances of a program at the computational
cluster of the company Yandex, each of which evaluated 105 random 10-vertex
graphs and assered that all implemented algorithms produce the same result.
Such stress test discovered a few more mistakes in the implementation of the
original Algorithm4 and its optimized versions. One interesting detail was that
all the mistakes were located exactly in the hardest case of rigid quadruple
(s1, t1, s2, t2) (formula (3)). Hence, we can conclude that the minimum size of
the graph that triggers the hardest case of the approach of Eilam-Tzoreff is either
9 or 10. An example of a “complex” graph H consisting of 10 vertices, for which
the transitions defined by the formula (3) are important, is provided in Fig. 2.

After fixing all mistakes, we evaluated the algorithms using 104 program
instances processing 1000 random graphs with 20 vertices (without using the
Algorithm 3) and then processing 100 graphs with 30 vertices (without using
Algorithms 3, 2). The final evaluation did not show any discrepancy between the
implemented algorithm results.

6 Extension to the Weighted Case

Algorithm 1 can be easily generalized to the case of a graph G = (V,E) endowed
with positive edge weigths w : E → R+ by exploiting the fact that the algorithm
only compares the distances between the pairs of vertices and performs arith-
metic operations on them (in contrast to Algorithm2 where distances become
the parameter of a bilinear form).



114 M. Akhmedov

We provide the following theorem without proof:

Theorem 5. Given a graph G = (V,E) with positive edge weights w, There
exists an algorithm which computes the values of predicate 2DSP (s1, t1, s2, t2)
for all quadruples (s1, t1, s2, t2) in O(|V |7) time and O(|V |5) space.

7 Conclusion and Further Work

We originated from the algorithm of Eilam-Tzoreff and significantly improved
its running time to O(|V |6) for unweighted graphs and to O(|V |7) for weighted
graphs.

We have also performed an extensive experimental evaluation of the original
algorithm as well as its optimized versions. Taking into account the fact that
the main Theorem 1 (that forms the basis for all of the algorithms considered
here) is rather complex both in sense of its statement and the proof (cf. [4]), its
experimental validation is of certain importance.

Let us also note a wide spectrum of possible further work in this area. First
of all, one may improve the running time for unweighted or weighted undirected
2DSP even further, for example, by extending the linear algebra ideas presented
in this work (which seems to be a perspective direction, considering the fact that
what seems to be hardest part of the algorithm may indeed be optimized to the
running time of O(|V |3+ω)). Next, there are open questions regarding the exis-
tence of a polynomial algorithm for the directed case of 2DSP (weighted or
unit-length) and for the undirected version of kDSP for k ≥ 3 (in any formula-
tion).

As a final remark, note that all the given complexity upper bounds are
expressed in terms of number of vertices. It is possible that, by performing a
more rigorous analysis, one may obtain a better upper bound in terms of the
number of vertices as well as the number of edges in the graph, which will yield
tighter bounds for sparse graphs.

8 Algorithm Pseudocodes

This section contains pseudocode of the original algorithm by Eilam-Tzoref [4].



Faster 2-Disjoint-Shortest-Paths Algorithm 115

Algorithm 4. Calculation of all values of 2DSP (s1, t1, s2, t2) in O(|V |8)
1: procedure CalculateAll2DSPValues(V , E)

2: l ← matrix of pairwise distances in G

� Group pairs of vertices according to the distance between them.

3: Pi ← empty list for all i = 0, . . . , |V | − 1

4: for s, t ∈ V do

5: Append (s, t) to Pl(s,t)

6: for dmin ← 0, . . . , |V | − 1 do

7: for dmax ← dmin, . . . , |V | − 1 do

8: for (s1, t1) ∈ Pdmin do

9: for (s2, t2) ∈ Pdmax do

10: 2DSP (s1, t1, s2, t2) ← CalculateSingle2DSPValue(s1, t1, s2, t2)

� Finally use the symmetric nature of our predicate.

11: 2DSP (s2, t2, s1, t1) ← 2DSP (s1, t1, s2, t2)

12: procedure CalculateSingle2DSPValue(s1, t1, s2, t2)

13: if s1 = t1 ∧ s2 = t2 then

14: return s1 = s2
15: else if (s1, t1, s2, t2) is not rigid then

16: Calculate and return the value according to case (2) of Th 1

17: else

18: Calculate Q2(s1, t1, s2, t2) using formula (2)

19: Calculate Q4(s1, t1, s2, t2) using formula (3)

20: return Q2(s1, t1, s2, t2) ∨ Q4(s1, t1, s2, t2)

Acknowledgements. I would like to express gratitude to Maxim Babenko for point-
ing me to the original article [4] and suggesting to investigate the possibility of opti-
mization, for a lot of helpful discussions and for helping me with the preparation of
the paper text.

References

1. Björklund, A., Husfeldt, T.: Shortest two disjoint paths in polynomial time. In:
Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014.
LNCS, vol. 8572, pp. 211–222. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43948-7 18

2. Björklund, A., Husfeldt, T.: Counting shortest two disjoint paths in cubic planar
graphs with an NC algorithm. ArXiv abs/arXiv:1806.07586 (2018)

3. Datta, S., Iyer, S., Kulkarni, R., Mukherjee, A.: Shortest k-disjoint paths via
determinants. In: Ganguly, S., Pandya, P. (eds.) 38th IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), vol.
122, pp. 19:1–19:21. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl
(2018). https://doi.org/10.4230/LIPIcs.FSTTCS.2018.19. http://drops.dagstuhl.
de/opus/volltexte/2018/9918

4. Eilam-Tzoreff, T.: The disjoint shortest paths problem. Discrete Appl.
Math. 85(2), 113–138 (1998). https://doi.org/10.1016/S0166-218X(97)00121-2.
http://www.sciencedirect.com/science/article/pii/S0166218X97001212

https://doi.org/10.1007/978-3-662-43948-7_18
https://doi.org/10.1007/978-3-662-43948-7_18
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.19
http://drops.dagstuhl.de/opus/volltexte/2018/9918
http://drops.dagstuhl.de/opus/volltexte/2018/9918
https://doi.org/10.1016/S0166-218X(97)00121-2
http://www.sciencedirect.com/science/article/pii/S0166218X97001212


116 M. Akhmedov

5. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphismprob-
lem. Theor. Comput. Sci. 10(2), 111–121 (1980). https://doi.org/10.1016/0304-
3975(80)90009-2. http://www.sciencedirect.com/science/article/pii/030439758090
0092

6. Gallai, T.: Maximum-minimum Sätze und verallgemeinerte Faktoren vonGraphen.
Acta Math. Acad. Scientiarum Hung. 12(1), 131–173 (1964). https://doi.org/10.
1007/BF02066678

7. Gustedt, J.: The general two-path problem in time O(m log n). Technical report
394, TU Berlin (1994)

8. Hirai, H., Namba, H.: Shortest (a + b)-path packing via Hafnian. Algorithmica
80(8), 2478–2491 (2018). https://doi.org/10.1007/s00453-017-0334-0

9. Lynch, J.F.: The equivalence of theorem proving and the interconnection problem.
SIGDA Newsl. 5(3), 31–36 (1975). https://doi.org/10.1145/1061425.1061430

10. Robertson, N., Seymour, P.D.: Disjoint paths–a survey. SIAM J. Algebraic Discrete
Methods 6(2), 300–305 (1985). https://doi.org/10.1137/0606030

11. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Pro-
ceedings of the Forty-Fourth Annual ACM Symposium on Theory of Comput-
ing, STOC 2012, pp. 887–898. ACM, New York (2012). https://doi.org/10.1145/
2213977.2214056

https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1016/0304-3975(80)90009-2
http://www.sciencedirect.com/science/article/pii/0304397580900092
http://www.sciencedirect.com/science/article/pii/0304397580900092
https://doi.org/10.1007/BF02066678
https://doi.org/10.1007/BF02066678
https://doi.org/10.1007/s00453-017-0334-0
https://doi.org/10.1145/1061425.1061430
https://doi.org/10.1137/0606030
https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1145/2213977.2214056


An Improvement to Chvátal
and Thomassen’s Upper Bound

for Oriented Diameter

Jasine Babu, Deepu Benson(B), Deepak Rajendraprasad, and Sai Nishant Vaka

Indian Institute of Technology Palakkad, Palakkad, India
{jasine,deepak}@iitpkd.ac.in, bensondeepu@gmail.com

Abstract. An orientation of an undirected graph G is an assignment
of exactly one direction to each edge of G. The oriented diameter of a
graph G is the smallest diameter among all the orientations of G. The
maximum oriented diameter of a family of graphs F is the maximum
oriented diameter among all the graphs in F . Chvátal and Thomassen
[JCTB, 1978] gave a lower bound of 1

2
d2 + d and an upper bound

of 2d2 + 2d for the maximum oriented diameter of the family of 2-
edge connected graphs of diameter d. We improve this upper bound to
1.373d2 + 6.971d − 1, which outperforms the former upper bound for
all values of d greater than or equal to 8. For the family of 2-edge con-
nected graphs of diameter 3, Kwok, Liu and West [JCTB, 2010] obtained
improved lower and upper bounds of 9 and 11 respectively. For the fam-
ily of 2-edge connected graphs of diameter 4, the bounds provided by
Chvátal and Thomassen are 12 and 40 and no better bounds were known.
By extending the method we used for diameter d graphs, along with an
asymmetric extension of a technique used by Chvátal and Thomassen,
we have improved this upper bound to 21.

Keywords: Oriented diameter · Strong orientation · One-way traffic
problem

1 Introduction

An orientation of an undirected graph G is an assignment of exactly one direction
to each of the edges of G. A given undirected graph can be oriented in many
different ways (2m, to be precise, where m is the number of edges). One of the
earliest studies regarding graph orientations were carried out by H.E. Robbins in
1939. He was trying to answer a question posed by Stanislaw Ulam. “When may
the arcs of a graph be so oriented that one may pass from any vertex to any other,
traversing arcs in the positive sense only?”. This led to the seminal work [1] of
Robbins in which he proved the following theorem, “A graph is orientable if and
only if it remains connected after the removal of any arc”.

A directed graph �G is called strongly connected if it is possible to reach
any vertex starting from any other vertex using a directed path. An undirected
c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 117–129, 2020.
https://doi.org/10.1007/978-3-030-50026-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-50026-9_8


118 J. Babu et al.

graph G is called strongly orientable if it has a strongly connected orientation.
A bridge in a connected graph is an edge whose removal will disconnect the
graph. A 2-edge connected graph is a connected graph which does not contain
any bridges. The theorem of Robbins stated earlier says that it is possible for
a graph G to be strongly oriented if and only if G is 2-edge connected. Though
Robbins stated the necessary and sufficient conditions for a graph to have a
strong orientation, no comparison between the diameter of a graph and the
diameter of an orientation of this graph was given in this study. This was taken
up by Chvátal and Thomassen in 1978 [2].

In order to discuss these quantitative results, we introduce some notation.
Let G be an undirected graph. The distance between two vertices u and v of G,
dG(u, v) is the number of edges in a shortest path between u and v. For any
two subsets A, B of V (G), let dG(A,B) = min{dG(u, v) : u ∈ A, v ∈ B}. The
eccentricity of a vertex v of G is the maximum distance between v and any
other vertex u of G. The diameter of G is the maximum of the eccentricities of
its vertices. The radius of G is the minimum of the eccentricities of its vertices.
Let �G be a directed graph and u, v ∈ V (�G). Then the distance from a vertex u
to v, d�G(u, v), is defined as the length of a shortest directed path from u to v.
For any two subsets A, B of V (�G), let d�G(A,B) = min{d�G(u, v) : u ∈ A, v ∈ B}.
The out-eccentricity of a vertex v of �G is the greatest distance from v to a vertex
u ∈ V (�G). The in-eccentricity of a vertex v of �G is the greatest distance from a
vertex u ∈ V (�G) to v. The eccentricity of a vertex v of �G is the maximum of its
out-eccentricity and in-eccentricity. The diameter of �G, denoted by d(�G), is the
maximum of the eccentricities of its vertices. The radius of �G is the minimum of
the eccentricities of its vertices. The oriented diameter of an undirected graph G,
denoted by �d(G), is the smallest diameter among all strong orientations of G.
That is, �d(G) := min{d(�G) : �G is an orientation of G}. The oriented radius of
an undirected graph G is the smallest radius among all strong orientations of G.
The maximum oriented diameter of the family F of graphs is the maximum
oriented diameter among all the graphs in F . Let f(d) denote the maximum
oriented diameter of the family of 2-edge connected diameter d graphs. That is,
f(d) := max{�d(G) : G ∈ F}, where F is the family of 2-edge connected graphs
with diameter d.

The following theorem by Chvátal and Thomassen [2] gives an upper bound
for the oriented radius of a graph.

Theorem 1 [2]. Every 2-edge connected graph of radius r admits a strong ori-
entation of radius at most r2 + r.

The above bound was also shown to be tight. In the same paper, they also proved
that the problem of deciding whether an undirected graph admits an orientation
of diameter 2 is NP-hard. Motivated by the work of Chvátal and Thomassen [2],
Chung, Garey and Tarjan [3] proposed a linear-time algorithm to check whether
a mixed multigraph has a strong orientation or not. They have also proposed
a polynomial time algorithm which provides a strong orientation (if it exists)
for a mixed multigraph with oriented radius at most 4r2 + 4r. Studies have also



An Improved Upper Bound for Oriented Diameter 119

been carried out regarding the oriented diameter of specific subclasses of graphs
like AT-free graphs, interval graphs, chordal graphs and planar graphs [4–6].
Bounds on oriented diameter in terms of minimum degree is also available in the
literature [7,8].

The following bounds for f(d) were given by Chvátal and Thomassen [2].

Theorem 2 [2]. 1
2d2 + d ≤ f(d) ≤ 2d2 + 2d.

Chvátal and Thomassen [2] has also proved that f(2) = 6. By Theorem 2,
8 ≤ f(3) ≤ 24. In 2010, Kwok, Liu and West [9] improved these bounds to
9 ≤ f(3) ≤ 11. To prove the upper bound of 11, Kwok, Liu and West partitioned
the vertices of G into a number of sets based on the distances from the endpoints
of an edge which is not part of any 3-cycle. Our study on the oriented diameter
of 2-edge connected graphs with diameter d uses this idea of partitioning the
vertex set into a number of sets based on their distances from a specific edge.

Our Results

In this paper we establish two improved upper bounds. Firstly in Sect. 2, we show
that f(d) ≤ 1.373d2 + 6.971d − 1 (Theorem 4). This is the first general improve-
ment to Chvátal and Thomassen’s upper bound f(d) ≤ 2d2 + 2d from 1978.
For all d ≥ 8, our upper bound outperforms that of Chvátal and Thomassen.
Their lower bound f(d) ≥ 1

2d2 + d still remains unimproved. We do not believe
that our upper bound is tight. Secondly in Sect. 3, for the case of d = 4, we
further sharpen our analysis and show that f(4) ≤ 21 (Theorem 5). This is a
considerable improvement from 40, which follows from Chvátal and Thomassen’s
general upper bound. Here too, our upper bound is not yet close to the lower
bound of 12 given by Chvátal and Thomassen and we believe that there is room
for improvement in the upper bound.

2 Oriented Diameter of Diameter d Graphs

A subset D of the vertex set of G is called a k-step dominating set of G if every
vertex not in D is at a distance of at most k from at least one vertex of D.
An oriented subgraph �H of G is called a k-step dominating oriented subgraph
if V ( �H) is a k-step dominating set of V (G). To obtain upper bounds for the
oriented diameter of a graph G with n vertices and minimum degree δ ≥ 2,
Bau and Dankelmann [7] and Surmacs [8] first constructed a 2-step dominating
oriented subgraph �H of G. They used this together with the idea in the proof of
Theorem 1 on �H to obtain the upper bounds of 11n

δ+1 + 9 and 7n
δ+1 , respectively,

for the oriented diameter of graphs with minimum degree δ ≥ 2. We are using
the algorithm OrientedCore described below to produce a 2-edge connected
oriented subgraph �H of G with some distance guarantees between the vertices
in �H (Lemma 1) and some domination properties (Lemma 2).



120 J. Babu et al.

2.1 Algorithm OrientedCore

Input: A 2-edge connected graph G and a specified edge pq in G.

Output: A 2-edge connected oriented subgraph �H of G.

Terminology: Let d be the diameter of G, let k be the length of a smallest cycle
containing pq in G and let h = �k/2�. Notice that k ≤ 2d + 1 and h ≤ d. Define
Si,j = {v ∈ V (G) : dG(v, p) = i, dG(v, q) = j}. Since Si,j is non-empty only
if 0 ≤ i, j ≤ d and |i − j| ≤ 1, we implicitly assume these restrictions on the
subscripts of Si,j wherever we use it. For a vertex v ∈ Si,j , its level L(v) is
(j − i) and its width W (v) is max(i, j). We will always refer to an edge {u, v}
between two different Si,j ’s as uv when either L(u) > L(v) or L(u) = L(v) and
W (u) < W (v) (downward or rightward in Fig. 1). Moreover the edge uv is called
vertical in the first case and horizontal in the second.

Observations based on the first edge of shortest paths from a vertex v to p or v
to q: Every vertex v ∈ Si,i+1, 1 ≤ i ≤ d − 1, is incident to a horizontal edge uv
with u ∈ Si−1,i. Every vertex v ∈ Si+1,i, 1 ≤ i ≤ d−1, is incident to a horizontal
edge uv with u ∈ Si,i−1. Every vertex v ∈ Si,i, 1 ≤ i ≤ d, is incident either to
a horizontal edge uv with u ∈ Si−1,i−1 or two vertical edges uv and vx with
u ∈ Si−1,i and x ∈ Si,i−1. Consequently for any v in Level 1, all the shortest p–v
path consists of Level 1 horizontal edges only and for any vertex v in Level −1,
all the shortest v–q path consists of Level −1 horizontal edges alone. For any
vertex v in Level 0, all the shortest p–v path consists of horizontal edges in levels
1 and 0 and exactly one vertical edge; while all the shortest v–q path consists of
horizontal edges in levels 0 and −1 and exactly one vertical edge.

Stage 1. Initialise �H to be empty. For each vertical edge uv with L(u) = 1 and
L(v) ∈ {0,−1}, and for each shortest p–u path Pu and shortest v–q path Pv,
do the following: Let P be the p–q path formed by joining Pu, the edge uv and
Pv. Orient the path P as a directed path �P from p to q and add it to �H. Notice
that even though two such paths can share edges, there is no conflict in the
above orientation since, in Stage 1, every vertical edge is oriented downward,
every horizontal edge in Level 1 is oriented rightward and every horizontal edge
in levels 0 and −1 is oriented leftward.

Stage 2. For each vertical edge uv with L(u) = 0 and L(v) = −1 not already
oriented in Stage 1, and for each shortest p–u path Pu and shortest v–q path Pv

do the following: Let x be the last vertex in Pu (nearest to u) that is already in
V ( �H) and let P ′

u be the subpath of Pu from x to u. Similarly let y be the first
vertex in Pv (nearest to v) that is already in V ( �H) and let P ′

v be the subpath of
Pv from v to y. Let P be the x–y path formed by joining P ′

u, the edge uv and P ′
v.

Orient the path P as a directed path �P from x to y and add it to �H. Notice that
P does not share any edge with a path added to �H in Stage 1, but it can share
edges with paths added in earlier steps of Stage 2. However there is no conflict
in the orientation since, in Stage 2, every vertical edge is oriented downward,



An Improved Upper Bound for Oriented Diameter 121

every horizontal edge in Level 0 is oriented rightward, every horizontal edge in
Level −1 is oriented leftward, and no horizontal edges in Level 1 is added.

Stage 3. Finally orient the edge pq from q to p and add it to �H. This completes
the construction of �H, the output of the algorithm.

Distances in �H. First we analyse the (directed) distance from p and to q of
vertices added to �H in Stage 1. The following bounds on distances in �H follow
from the construction of each path P in Stage 1. Let w be any vertex that is
added to �H in Stage 1. Then

d �H(p,w) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i, w ∈ Si,i+1,

h, w ∈ Sh,h,

2d − i, w ∈ Si,i, i > h, and
2d − i, w ∈ Si+1,i.

(1)

d �H(w, q) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2d − i, w ∈ Si,i+1,

h, w ∈ Sh,h,

2d − i, w ∈ Si,i, i > h, and
i, w ∈ Si+1,i.

(2)

It is easy to verify the above equations using the facts that w is part of a
directed p–q path of length at most 2d (at most 2h if w ∈ Sh,h) in �H.

No new vertices from Level 1 or Sh,h are added to �H in Stage 2. Still the
distance bounds for vertices added in Stage 2 are slightly more complicated since
a path P added in this stage will start from a vertex x in Level 0 and end in
a vertex y in Level −1, which are added to �H in Stage 1. But we can complete
the analysis since we already know that d �H(p, x) ≤ 2d − h − 1 and d �H(y, q) ≤ i
where i is such that y ∈ Si+1,i from the analysis of Stage 1. Let w be any vertex
that is added to �H in Stage 2. Then

d �H(p,w) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(2d − h − 1) + (i − h − 1)
= 2d − 2h − 2 + i, w ∈ Si,i, i > h, and

(2d − h − 1) + (d − h − 1) + (d − i)
= 4d − 2h − 2 − i, w ∈ Si+1,i.

(3)

The distance from w to q in �H is not affected even though we trim the path
Pv at y since y already has a directed shortest path to q from Stage 1. Hence

d �H(w, q) ≤
{

2d − i, w ∈ Si,i, i > h, and
i, w ∈ Si+1,i.

(4)

The first part of the next lemma follows from taking the worst case among
(1) and (3). Notice that ∀i > h, (2h + 2 − i ≤ i) and (4d − 2h − 2 ≥ 2d) when
h < d. New vertices are added to �H in Stage 2 only if h < d. The second part
follows from (2) and (4). The subsequent two claims are easy observations.



122 J. Babu et al.

Lemma 1. Let G be a 2-edge connected graph, pq be any edge of G and let �H
be the oriented subgraph of G returned by the algorithm OrientedCore. Then
for every vertex w ∈ V ( �H) we have

d �H(p,w) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i, w ∈ Si,i+1,

h, w ∈ Sh,h,

2d − 2h − 2 + i, w ∈ Si,i, i > h, and
4d − 2h − 2 − i, w ∈ Si+1,i.

(5)

d �H(w, q) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2d − i, w ∈ Si,i+1,

h, w ∈ Sh,h,

2d − i, w ∈ Si,i, i > h, and
i, w ∈ Si+1,i.

(6)

Moreover, d �H(q, p) = 1 and d �H(p, q) ≤ k − 1.

We can see that if Sh,h is non-empty, then all the vertices in Sh,h are captured
into �H.

Notice that when k ≥ 4, S1,2 and S2,1 are non empty. Thus the bound on the
diameter of �H follows by the triangle inequality d �H(x, y) ≤ d �H(x, q)+d �H(q, p)+
d �H(p, y) and the fact that ∀k ≥ 4 the worst bounds for d �H(x, q) and d �H(p, y)
from Lemma 1 are when x ∈ S1,2 and y ∈ S2,1. Hence the following corollary.

Corollary 1. Let G be a 2-edge connected graph, pq be any edge of G and let
�H be the oriented subgraph of G returned by the algorithm OrientedCore. If
the length of the smallest cycle containing pq is greater than or equal to 4, then
the diameter of �H is at most 6d − 2h − 3.

Domination by �H. Let us call the vertices in V ( �H) as captured and those
in V (G)\V ( �H) as uncaptured. For each i ∈ {1, 0,−1} let Lc

i and Lu
i denote the

captured and uncaptured vertices in level i, respectively. Since Lc
i contains every

level i vertex incident with a vertical edge, Lc
i separates Lu

i from rest of G.
Let di denote the maximum distance between a vertex in Lu

i and the set Lc
i . If

ui ∈ Lu
i and uj ∈ Lu

j such that dG(ui, L
c
i ) = di and dG(uj , L

c
j) = dj for distinct

i, j ∈ {1, 0,−1}, the distance dG(ui, uj) is bounded above by d, the diameter
of G, and bounded below by di +1+ dj . Hence di + dj ≤ d− 1 for every distinct
i, j ∈ {1, 0,−1}.

For any vertex u ∈ Lu
0 , the last Level 0 vertex in a shortest (undirected) u–q

path is in Lc
0. Hence if Level 0 is non-empty then d0 ≤ (d−h). In order to bound

d1 and d−1, we take a close look at a shortest cycle C containing the edge pq. Let
C = (v1, . . . , vk, v1) with v1 = q and vk = p. Each vi is in Si,i−1 when 2i < k+1,
Si−1,i−1 if 2i = k + 1 and Sk−i,k−i+1 when 2i > k + 1. Let t = �k/4	. The Level
−1 vertex vt is special since it is at a distance t from Level 1 and thus Lc

1. If u1

is a vertex in Lu
1 such that dG(u1, L

c
1) = d1, the distance dG(u1, vt) is bounded



An Improved Upper Bound for Oriented Diameter 123

above by d and below by d1 + t. Hence d1 ≤ d − t. Similarly we can see that
d−1 ≤ (d − t).

Putting all these distance bounds on domination together, we get the next
lemma.

Lemma 2. Let G be a 2-edge connected graph, pq be any edge of G and let �H be
the oriented subgraph of G returned by the algorithm OrientedCore. For each
i ∈ {1, 0,−1}, let di denote the maximum distance of a level i vertex not in V ( �H)
to the set of level i vertices in V ( �H). Then d0 ≤ d − �k/2�, d1, d−1 ≤ d − �k/4	
and for any distinct i, j ∈ {1, 0,−1}, di + dj ≤ d − 1.

2.2 The Upper Bound

Consider a 2-edge connected graph G with diameter d. Let η(G) denote the
smallest integer such that every edge of a graph G belongs to a cycle of length
at most η(G). Huang, Li, Li and Sun [10] proved the following theorem.

Theorem 3 [10]. �d(G) ≤ 2r(η − 1) where r is the radius of G and η = η(G).

We know that r ≤ d and hence we have �d(G) ≤ 2d(η − 1) as our first bound.
Let pq be an edge in G such that the length of a smallest cycle containing pq is η.
If η ≤ 3, then �d(G) ≤ 4d which is smaller than the bound claimed in Theorem 4.
So we assume η ≥ 4. By Corollary 1, G has an oriented subgraph �H with diameter
at most 6d−2

⌊
η
2

⌋−3. Moreover by Lemma 2, �H is a (d− ⌈
η
4

⌉
)-step dominating

subgraph of G. Let G0 be a graph obtained by contracting the vertices in V ( �H)
into a single vertex vH . We can see that G0 has radius at most (d−⌈

η
4

⌉
). Thus by

Theorem 1, G0 has a strong orientation �G0 with radius at most (d−⌈
η
4

⌉
)2+(d−

⌈
η
4

⌉
). Since d ≤ 2r, we have d( �G0) ≤ 2(d−⌈

η
4

⌉
)2+2(d−⌈

η
4

⌉
). Notice that �G0 and

�H do not have any common edges. Hence G has an orientation with diameter at
most 2(d − ⌈

η
4

⌉
)2 + 2(d − ⌈

η
4

⌉
) + (6d − 2

⌊
η
2

⌋ − 3) by combining the orientations
in �H and �G0. Let η = 4αd. Hence we get �d(G) ≤ min{f1(α, d), f2(α, d)} where
f1(α, d) = 8αd2 − 2d and f2(α, d) = 2(1 − α)2d2 + 8d − 6αd − 1. Notice that
0 < 3

4d ≤ α < 1 and for α = 3 − 2
√

2, 8αd2 = 2(1 − α)2d2. Further notice
that, for each fixed value of d, f1 is an increasing function of α and f2 is a
decreasing function of α in the interval (0, 1). Hence, if α ∈ [3− 2

√
2, 1), �d(G) ≤

f2(α, d) ≤ f2(3 − 2
√

2, d) ≤ 1.373d2 + 6.971d − 1 and if α ∈ (0, 3 − 2
√

2],
�d(G) ≤ f1(α, d) ≤ f1(3 − 2

√
2, d) ≤ 1.373d2 − 2d. Since α ∈ (0, 1), we obtain the

following theorem.

Theorem 4. f(d) ≤ 1.373d2 + 6.971d − 1.

For any d ≥ 8, the above upper bound is an improvement over the upper
bound of 2d2 + 2d provided by Chvátal and Thomassen.



124 J. Babu et al.

3 Oriented Diameter of Diameter 4 Graphs

Throughout this section, we consider G to be an arbitrary 2-edge connected
diameter 4 graph. We will show that the oriented diameter of G is at most 21
and hence f(4) ≤ 21. The following lemma by Chvátal and Thomassen [2] is
used when η(G) ≤ 4.

Lemma 3 [2]. Let Γ be a 2-edge connected graph. If every edge of Γ lies in a
cycle of length at most k, then it has an orientation �Γ such that

d�Γ (u, v) ≤ ((k − 2)2�(k−1)/2� + 1)dΓ (u, v) ∀u, v ∈ V (�Γ )

Hence if all edges of the graph G lie in a 3-cycle or a 4-cycle, the oriented
diameter of G will be at most 20. Hence we can assume the existence of an edge
pq which is not part of any 3-cycle or 4-cycle as long as we are trying to prove
an upper bound of 20 or more for f(4). We apply algorithm OrientdCore on
G with the edge pq to obtain an oriented subgraph �H1 of G. Figure 1 shows a
coarse representation of �H1.

Su
1,2 Su

2,3 Su
3,4

Su
2,1 Su

3,2 Su
4,3

p Sc
1,2 Sc

2,3 Sc
3,4

q Sc
2,1 Sc

3,2 Sc
4,3

S2,2 S3,3 S4,4

S2,1 S3,2 S4,3

S1,2 S2,3 S3,4

Fig. 1. A coarse representation of �H1 which shows the orientation of edges between
various subsets of V (G). A single arrow from one part to another indicates that all
the edges between these parts are oriented from the former to latter. A double arrow
between two parts indicates that the edges between the two parts are oriented in either
direction or unoriented. An unoriented edge between two parts indicate that no edge
between these two parts are oriented.



An Improved Upper Bound for Oriented Diameter 125

3.1 Oriented Diameter and 2-Step Domination Property of �H1

Let �H1 be the oriented subgraph of G returned by the algorithm Oriented-
Core. Since the smallest cycle containing pq is of length greater than or equal
to 5, by Corollary 1, we can see that the diameter of �H1 is at most 17. Moreover,
from Eqs. 5 and 6 of Lemma 1, we get the upper bounds on the distances of �H1

in Table 1. Hence, the following corollary.

Corollary 2. d( �H1) ≤ 17. Moreover ∀w ∈ V ( �H1), d �H1
(p,w) and d �H1

(w, q) obey
the bounds in Table 1.

Remark 1. If k > 5 (h > 2), then S2,2 is empty. Moreover if S2,2 is non-empty,
then all the vertices in S2,2 are captured into �H1.

Table 1. Upper bounds on the distances of �H1

For w in Sc
12 Sc

23 Sc
34 S22 Sc

33 Sc
44 Sc

21 Sc
32 Sc

43

d �H1
(p, w) ≤ 1 2 3 2 5 6 9 8 7

d �H1
(w, q) ≤ 7 6 5 2 5 4 1 2 3

Furthermore, applying Lemma 2 on �H1 shows that �H1 is a 2-step dominating
subgraph of G. Let G0 be a graph obtained by contracting the vertices in V ( �H1)
into a single vertex vH . We can see that G0 has radius at most 2. Thus by
Theorem 1, G0 has a strong orientation �G0 with radius at most 6. Since d ≤ 2r,
we have d(�G0) ≤ 12. Since �G0 and �H1 do not have any common edges we can see
that G has an orientation with diameter at most 29 by combining the orientations
in �H1 and �G0. But we further improve this bound to 21 by constructing a 1-step
dominating oriented subgraph �H2 of G. We propose the following asymmetric
variant of a technique by Chvátal and Thomassen [2] for the construction and
analysis of �H2.

3.2 Asymmetric Chvátal-Thomassen Lemma

For any subset A of V (G), let N(A) denote the set of all vertices with an edge
incident on some vertex in A. Let H be a subgraph of G. An ear of H in G is
a sequence of edges uv1, v1v2, . . . , vk−1vk, vkv such that u, v ∈ V (H), k ≥ 1 and
none of the vertices v1, . . . , vk and none of the edges in this sequence are in H.
In particular we allow u = v.

Lemma 4 (Asymmetric Chvátal-Thomassen Lemma). Let G be an undi-
rected graph and let A ⊆ B ⊆ V (G) such that

(i) B is a k-step dominating set in G,
(ii) G/B is 2-edge connected, and



126 J. Babu et al.

(iii) N(A) ∪ B is a (k − 1)-step dominating set of G.

Then there exists an oriented subgraph �H of G\G[B] such that

(i) N(A)\B ⊆ V ( �H) and hence V ( �H) ∪ B is a (k − 1)-step dominating set of
G, and

(ii) ∀v ∈ V ( �H), we have d �H(A, v) ≤ 2k and either d �H(v,A) ≤ 2k or
d �H(v,B\A) ≤ 2k − 1.

Proof. We construct a sequence �H0, �H1, . . . of oriented subgraphs of G\G[B] as
follows. We start with �H0 = ∅ and add an oriented ear �Qi that starts in A
and ends in B in each step. Let i ≥ 0. If N(A)\B ⊆ V ( �Hi), then we stop the
construction and set �H = �Hi. Since N(A)∪B is a (k−1)-step dominating set of
G, the first conclusion of the lemma is satisfied when the construction ends with
N(A)\B ⊆ V ( �H). If N(A)\B �⊆ V ( �Hi), then let v ∈ (N(A)\B)\V ( �Hi) and let u
be a neighbour of v in A. Since G/B is 2-edge connected, there exists a path in
G′ = (G/B)\{uv} from v to B. Let Pi be a shortest v–B path in G′. If multiple
such shortest paths are available, we will choose one that ends in A if available.
We further ensure that once Pi hits a vertex in an oriented ear �Qj that was
added in a previous step, Pi continues further to B along the shorter arm of Qj .
It can be verified that Pi is still a shortest v–B path in G′. The ear Qi is the
union of the edge uv and the path Pi. If Pi hits B without hitting any previous
ear, then we orient Qi as a directed path �Qi from u to B. If Qi ∩Qj �= ∅, then we
orient Qi as a directed path �Qi by extending the orientation of Qi ∩ Qj . Notice
that, in both these cases, the source vertex of �Qi is in A. We add �Qi to �Hi to
obtain �Hi+1.

Let Qi = (v0, . . . , vq) with v0 ∈ A and vq ∈ B be the ear added in the i-th
stage above. Since (v1, . . . , vq) is a shortest v1–B path in G′ = (G/B)\{v0v1}
and since B is a k-step dominating set, q ≤ 2k + 1. Moreover, if vq ∈ B\A, then
by our choice of path, vertices v2 to vq−1 are not in N(A) ∪ B. Hence q ≤ 2k,
since N(A) ∪ B is a (k − 1)-step dominating set. These bounds on the length of
Qi along with the observation that the source vertex of �Qi is in A, verifies the
second conclusion of the lemma. ��
Remark 2. If we flip the orientation of �H we get the bounds d �H(v,A) ≤ 2k and
either d �H(A, v) ≤ 2k or d �H(B\A, v) ≤ 2k − 1, ∀v ∈ V ( �H) in place of Conclusion
(ii) of Lemma 4.

Setting A = B in Lemma 4 gives the key idea which is recursively employed
by Chvátal and Thomassen to prove Theorem 1 [2].

3.3 A 1-Step Dominating Oriented Subgraph �H2 of G

Let �H1 be the oriented subgraph of G returned by the algorithm Oriented-
Core. We will add further oriented ears to �H1 to obtain a 1-step dominating
oriented subgraph �H2 of G. We have already seen that �H1 is a 2-step dominating



An Improved Upper Bound for Oriented Diameter 127

oriented subgraph of G. By Lemma 2, we also have di + dj ≤ 3 for any distinct
i, j ∈ {1, 0,−1}.

Now consider the first case where we have vertices in Level 0 which are at a
distance 2 from S2,2. Notice that in this case, d0 = 2 and hence d1, d−1 ≤ 1. Let
B = Lc

0, A = S2,2 and G0 = G[L0]. By Remark 1, A ⊆ B. Notice that B = Lc
0 is

a cut-set separating Lu
0 from the rest of G and hence the graph G0/B is 2-edge

connected. Since Su
3,3 ⊆ N(S2,2), we can see that N(A)∪B = N(S2,2)∪Lc

0 is a 1-
step dominating subgraph of G0. Therefore we can apply Lemma 4 on G0. Every
edge of the oriented subgraph of G0\G0[B] obtained by applying Lemma 4 is
reversed to obtain the subgraph �H0

2 . Now consider the vertices captured into �H0
2 .

From Lemma 4 and Remark 2, we get the following bounds d �H0
2
(v,A) ≤ 4 and

either d �H0
2
(A, v) ≤ 4 or d �H0

2
(B\A, v) ≤ 3, ∀v ∈ V ( �H0

2 ). Here B\A = Sc
3,3 ∪ Sc

4,4

and from Table 1, we have the bounds d �H1
(p, x) ≤ 5, ∀x ∈ Sc

3,3, d �H1
(p, y) ≤ 6,

∀y ∈ Sc
4,4 and d �H1

(p, z) = 2, ∀z ∈ S2,2. Hence d �H1∪ �H0
2
(p, v) ≤ 9, ∀v ∈ V ( �H0

2 ).
Since d �H0

2
(v,A) ≤ 4 and d �H1

(x, q) = 2, ∀x ∈ A, we also have d �H1∪ �H0
2
(v, q) ≤ 6,

∀v ∈ V ( �H0
2 ). Let �H2 = �H1 ∪ �H0

2 . By the above discussion, in combination with
the distances in Table 1 and Corollary 2, we get d( �H2) ≤ 17.

Now consider the second case where d1 = 2 or d−1 = 2. Since d1 + d−1 ≤ 3,
uncaptured vertices at a distance 2 from �H1 can exist either in Level 1 or in
Level −1 but not both. By flipping the role of the vertices p and q in Algorithm
OrientedCore if necessary, without loss of generality, we can assume vertices
which are at a distance 2 from �H1 exists only in Level −1 and not in Level 1.
Recall that Lc

−1 = {q} ∪ Sc
2,1 ∪ Sc

3,2 ∪ Sc
4,3. Let G−1 = G[L−1] and B = Lc

−1.
Further let r be any vertex in Sc

1,2 and A = {v ∈ B : dG(r, v) = 2}. Since
q ∈ A, A is never empty. Note that A ⊆ B ⊆ V (G−1). Also G−1/B is 2-
edge connected since B = Lc

−1 is a cut-set which separates Lu
−1 from the rest

of G. Now consider a vertex z in Level −1 which is exactly at a distance 2
from B. Since the graph G is of diameter 4, there exists a 4-length path P
from z to r. Since B separates Lu

−1 from r, P intersects B, say at a vertex b.
Further, we have dG(b, r) = 2 and thus b ∈ A. Hence z has a 2-length path
to a vertex b ∈ A. Thus N(A) ∪ B is a 1-step dominating subgraph of G−1.
Hence we can apply Lemma 4 on G−1 to obtain �H−1

2 , an oriented subgraph of
G−1\G−1[B]. Now consider the vertices captured into �H−1

2 . From Lemma 4, we
get the following bounds ∀v ∈ V ( �H−1

2 ), d �H−1
2

(A, v) ≤ 4 and d �H−1
2

(v,B) ≤ 4.

Since d �H1
(x, q) ≤ 3, ∀x ∈ B, we have d �H1∪ �H−1

2
(v, q) ≤ 7, ∀v ∈ V ( �H−1

2 ). Vertices
in A can be from Sc

2,1, Sc
3,2 or {q}. By the definition of A there is an undirected

path in G of length 3 from p to any vertex va in (A\{q}), going through r. It
can be verified that this undirected path is oriented from p to va by Algorithm
OrientedCore. Hence d �H1

(p, va) ≤ 3, ∀va ∈ (A\{q}) and hence ∀v ∈ V ( �H−1
2 )

with d �H−1
2

(A\{q}, v) ≤ 4, d �H1∪ �H−1
2

(p, v) ≤ 7. But if a vertex v ∈ V ( �H−1
2 ) has

d �H−1
2

(A\{q}, v) > 4, then d �H−1
2

(q, v) ≤ 4. In this case, since d �H1
(p, q) ≤ 8, we get



128 J. Babu et al.

d �H1∪ �H−1
2

(p, v) ≤ 12. Notice that this is the only situation where d �H1∪ �H−1
2

(p, v) >

9 and in this particular case d �H−1
2

(q, v) ≤ 4.

Now consider two vertices x, y ∈ V ( �H1 ∪ �H−1
2 ). We can see that

d �H1∪ �H−1
2

(x, y) ≤ d �H1∪ �H−1
2

(x, q) + d �H1∪ �H−1
2

(q, y). We have already proved that

d �H1∪ �H−1
2

(x, q) ≤ 7. Now let us consider the q − y path. If y ∈ V ( �H1), from
Table 1, we can see that d �H1

(p, y) ≤ 9 and therefore d �H1∪ �H−1
2

(x, y) ≤ 17. Now

suppose if y ∈ (V ( �H−1
2 )\V ( �H1)). In this case we have already shown that

d �H−1
2

(p, y) ≤ 9 or d �H−1
2

(q, y) ≤ 4. So, we either have a directed path of length
10 from q to y through p or a directed path of length 4 to y directly from q.
Hence, d �H1∪ �H−1

2
(x, y) ≤ 17. Let �H2 = �H1 ∪ �H−1

2 . By the above discussion, we

get d( �H2) ≤ 17.
In both the cases we get an oriented subgraph �H2 of G with d( �H2) ≤ 17.

Moreover, it is clear from Conclusion (i) of Lemma 4 that �H2 is a 1-step domi-
nating subgraph of G. Hence the following Lemma.

Lemma 5. For every 2-edge connected graph G with diameter 4 and η(G) ≥ 5,
there exists a 1-step dominating oriented subgraph �H2 of G with d( �H2) ≤ 17.

3.4 The Upper Bound

Now the main theorem of the section follows.

Theorem 5. f(4) ≤ 21.

Proof. By Lemma 5, we get a 1-step dominating oriented subgraph �H2 of G with
d( �H2) ≤ 17. Let G0 be a graph obtained by contracting the vertices in V ( �H2)
into a single vertex vH . We can see that G0 has radius at most 1. Thus by
Theorem 1, G0 has a strong orientation �G0 with radius at most 2. Since d ≤ 2r,
we have d(�G0) ≤ 4. Notice that �G0 and �H2 do not have any common edges. Now
we can see that G has an orientation with diameter at most 21 by combining
the orientations in �H2 and �G0. ��

References

1. Robbins, H.E.: A theorem on graphs, with an application to a problem of traffic
control. Am. Math. Monthly 46(5), 281–283 (1939)

2. Chvátal, V., Thomassen, C.: Distances in orientations of graphs. J. Comb. Theory
Ser. B 24(1), 61–75 (1978)

3. Chung, F.R.K., Garey, M.R., Tarjan, R.E.: Strongly connected orientations of
mixed multigraphs. Networks 15(4), 477–484 (1985)

4. Fomin, F.V., Matamala, M., Prisner, E., Rapaport, I.: AT-free graphs: linear
bounds for the oriented diameter. Discrete Appl. Math. 141(1–3), 135–148 (2004)

5. Fomin, F.V., Matamala, M., Rapaport, I.: Complexity of approximating the ori-
ented diameter of chordal graphs. J. Graph Theory 45(4), 255–269 (2004)



An Improved Upper Bound for Oriented Diameter 129

6. Eggemann, N., Noble, S.D.: Minimizing the oriented diameter of a planar graph.
Electron. Notes Discrete Math. 34, 267–271 (2009)

7. Bau, S., Dankelmann, P.: Diameter of orientations of graphs with given minimum
degree. Eur. J. Comb. 49, 126–133 (2015)

8. Surmacs, M.: Improved bound on the oriented diameter of graphs with given min-
imum degree. Eur. J. Comb. 59, 187–191 (2017)

9. Kwok, P.K., Liu, Q., West, D.B.: Oriented diameter of graphs with diameter 3. J.
Comb. Theory Ser. B 100(3), 265–274 (2010)

10. Huang, X., Li, H., Li, X., Sun, Y.: Oriented diameter and rainbow connection
number of a graph. Discret. Math. Theor. Comput. Sci. 16(3), 51–60 (2014)



The Normalized Algorithmic Information
Distance Can Not Be Approximated

Bruno Bauwens(B) and Ilya Blinnikov

National Research University Higher School of Economics, 11, Pokrovsky Boulevard,
109028 Moscow, Russia
brbauwens@gmail.com

Abstract. It is known that the normalized algorithmic information dis-
tance is not computable and not semicomputable. We show that for
all ε < 1/2, there exist no semicomputable functions that differ from
N by at most ε. Moreover, for any computable function f such that
| limt f(x, y, t) − N(x, y)| ≤ ε and for all n, there exist strings x, y of
length n such that

∑
t |f(x, y, t + 1) − f(x, y, t)| ≥ Ω(log n). This is opti-

mal up to constant factors.
We also show that the maximal number of oscillations of a limit

approximation of N is Ω(n/ log n). This strengthens the ω(1) lower bound
from [K. Ambos-Spies, W. Merkle, and S.A. Terwijn, 2019, Normalized
information distance and the oscillation hierarchy].

Keywords: Algorithmic information distance · Kolmogorov
complexity · Computability theory · Oscillation hierarchy

1 Introduction

The information distance defines a metric on bit strings that in some sense takes
all “algorithmic regularities” into account. This distance was defined in [4] as
E(x, y) = max{K(x | y),K(y | x)}, where K(·|·) denotes conditional prefix Kol-
mogorov complexity relative to some fixed optimal prefix-free Turing machine;
we refer to appendix of the ArXiv version of this paper for the definition and basic
properties, and to the books [6,8] for more background. After minor modifica-
tions, this distance satisfies the axioms of a metric, as explained in the appendix
of the ArXiv version. We refer to [2] for an overview of many equivalent charac-
terizations.

The distance is not computable. However, conditional Kolmogorov complex-
ity is upper semicomputable, which means that there exists a computable function
f : {0, 1}∗ × {0, 1}∗ × N → Q for which K(x | y) = limt f(x, y, t), and that is
non-increasing in its last argument t. Hence, also E is upper semicomputable.

The distance E is useful to compare strings of similar complexity. However,
for strings of different complexity, a normalized variant is often preferable.

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 130–141, 2020.
https://doi.org/10.1007/978-3-030-50026-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_9&domain=pdf
http://orcid.org/0000-0002-6138-0591
https://doi.org/10.1007/978-3-030-50026-9_9


The Normalized Algorithmic Information Distance 131

Definition 1. The normalized algorithmic information distance of strings x
and y is1

N(x, y) =
max{K(x | y),K(y | x)}

max{K(x),K(y)} .

This normalized distance has inspired many applications in machine learning,
where complexities are heuristically estimated using popular practical compres-
sion algorithms such as gzip, bzip2 and PPMZ, see [6, section 8.4]. Within small
additive terms, the function N has values in the real interval [0, 1] and satisfies
the axioms of a metric:

– 0 ≤ N(x, y) ≤ 1 + O(1/K(x, y)),
– N(x, y) = N(y, x),
– N(x, x) ≤ O(1/K(x)),
– N(x, y) + N(y, z) ≥ N(x, z) − O((log K(y))/K(y)).

See [6, Theorem 8.4.1].2

In this paper, we study the computability of N. Note that if Kolmogorov
complexity were computable, then also N would be computable. But this is not
the case, and in [9] it is proven that N is not upper semicomputable and not lower
semicomputable, (i.e. −N is not upper semicomputable). Below in Lemmas 2 and
4 we present simple proofs. In fact, in [9] it is proven that (i) there exists no
lower semicomputable function that differs from N by at most some constant
ε < 1/2, and (ii) there exists no upper semicomputable function that differs at
most ε = (log n)/n from N on n-bit strings. Theorem 1 below implies that (ii)
is also true for all ε < 1/2.

By definition, N is the ratio of two upper semicomputable functions, and
hence it is limit computable, which means that there exists a computable function
f such that N(x, y) = limt f(x, y, t). A function f that satisfies this property is
called a limit approximation of N.

We define a trivial limit approximation ftr of N where ftr(x, y, t) is obtained
by replacing all appearances of K(·) and K(·|·) in Definition 1 by upper approx-
imations Kt(·) and Kt(·|·), where (x, t) �→ Kt(x) is a computable function sat-
isfying lim Kt(x) = K(x) and K1(x) ≥ K2(x) ≥ . . .; and similar for Kt(·|·). We
assume that K1(x | y) and K1(x) are bounded by O(n) for all x of length n.

1 The numerator is nonzero, even if x = y. KU (x) ≥ 1 holds for every choice of the
optimal prefix-free Turing machine U , because such machines never halt on input
the empty string. Indeed, if it halted, then it would be the only halting program by
the prefix property, and hence, the machine can not be optimal.

2 In [6, Exercise 8.4.3] it is claimed that for the prefix variant of the normalized infor-
mation distance, one can improve the precision of the last item to O(1/K(x, y, z)).
However, we do not know a proof of this. If this were true, then with minor modi-
fications of N similar to those in the appendix of the ArXiv version, all axioms of a
metric can be satisfied precisely.



132 B. Bauwens and I. Blinnikov

Lemma 1. For all n and strings x, y of length at most n:
∞∑

t=1

|ftr(x, y, t + 1) − ftr(x, y, t)| ≤ 2 ln n + O(1).

Definition 2. An ε-approximation of a function g is a limit approximation of
a function g′ with g − ε ≤ g′ ≤ g + ε.

For a suitable choice of U , we have 0 ≤ N ≤ 1, and the function defined by
f(x, y, t) = 1/2 is a (1/2)-approximation.3 We show that for ε < 1/2 and every
ε-approximation, the sum in the above lemma is at least logarithmic.

Theorem 1. Let f be an ε-approximation of N with ε < 1/2. For large n:

max
x,y∈{0,1}n

∞∑

t=1

|f(x, y, t + 1) − f(x, y, t)| ≥ 1
100 · (1 − 2ε)2 · log n.

This result implies that for each ε < 1/2, there exists no upper semicomputable
function that differs from N by at most ε.

We now state the main result of [1].

Definition 3. Let k ≥ 1. A sequence a1, a2, . . . of real numbers has at most
k oscillations if the sequence can be written as a concatenation of k sequences
(k −1 finite and 1 infinite) such that each sequence is either monotonically non-
increasing or non-decreasing. The sequence has 0 oscillations if a1 = a2 = . . .

The main result of [1] states that no 0-approximation f of N has at most a
constant number of oscillations. More precisely, for each k, there exists a pair
(x, y) such that f(x, y, 1), f(x, y, 2), . . . does not have at most k oscillations.

Let k : N → N. We say that f has at least k(n) oscillations, if for all n there
exists a pair (x, y) of strings of length at most n, such that f(x, y, 1), f(x, y, 2), . . .
does not have at most k(n)−1 oscillations. (The proof of) Theorem 1 implies that
if ε < 1/2, then any ε-approximation has at least Ω((1 − 2ε)2 log n) oscillations.

The trivial 0-approximation ftr has at most O(n) oscillations, because each
upper-approximation of Kolmogorov complexity in its definition is bounded by
O(n) on n-bit strings, and hence, there can be at most this many updates. Can
it be significantly less than n, for example at most n/100 for large n?

The answer is positive. For all constants c, there exist optimal machines U in
the definition of complexity K for which the number of updates of Kt is at most
n/c+O(log n). For example, one may select an optimal U whose halting programs
all have length 0 modulo c. If N is defined relative to such a machine, than the
total number of updates is 2n/c + O(log n). Hence, for every constant e there
exists a version of N and a 0-approximation that has at most n/e oscillations
for large input sizes n. Our second main result provides an almost linear lower
bound on the number of oscillations.
3 For general optimal U , and for ε > 1/2, we can obtain an ε-approximation that is

constant in t by choosing f(x, y, t) = N(x, y) for some finite set of pairs (x, y), and
by choosing f(x, y, t) = 1/2 otherwise.



The Normalized Algorithmic Information Distance 133

Theorem 2. Every 0-approximation of N has at least Ω(n/ log n) oscillations.

In an extended version of this article, we plan to improve the Ω(n/ log n) lower
bound to an Ω(n) bound. This requires a more involved variant of our proof.

Theorems 1 and 2 both imply that N and hence Kolmogorov complexity is not
computable. In fact, they imply something stronger: K(K(x | y) | x, y) can not
be bounded by a constant.4 It has been shown that K(K(x) | x) ≥ log n − O(1),
see [3,5], and our proofs are related. Like the proof in [3], we also use the game
technique. This means that we present a game, present a winning strategy, and
show that this implies the result. Using games one often obtains tight results
with more intuitive proofs. (Moreover, the technique allows to easily involve
students in research, because after the game is formulated, typically no specific
background is needed to find a winning strategy.) For more examples of the game
technique in computability theory and algorithmic information theory, we refer
to [7].

N is Not Upper Nor Lower Semicomputable

For the sake of completeness, we present short proofs of the results in [9],
obtained from Theorem 3.4 and Proposition 3.6 from [1] (presented in a form
that is easily accessible to people with little background in the field). A function
g is lower semicomputable if −g is upper semicomputable.

Lemma 2. N is not lower semicomputable.

Proof. Note that for large n, there exist n-bit x and y such that

N(x, y) ≥ 1/2 .

Indeed, for any y, there exists an n-bit x such that K(x | y) ≥ n. The denomi-
nator of N is at most n + O(log n), and the inequality follows for large n.

Assume N was lower semicomputable. On input n, one could search for such
a pair (x, y), and we denote the first such pair that appears by (xn, yn). We
have K(xn) = K(n) + O(1) and max{K(xn | yn),K(yn | xn)} ≤ O(1). Hence
N(xn, yn) ≤ O(1/K(n)). For large n this approaches 0, contradicting the equa-
tion above. ��
Remark. With the same argument, it follows that for any ε < 1/2, there exists
no lower semicomputable function that differs from N by at most ε. Indeed,
instead of N(x, y) ≥ 1/2 we could as well use N(x, y) ≥ 1/2 + ε, and search for
(xn, yn) for which the estimate is at least 1/2.
4 Indeed, if this were bounded by c, there would exist an upper approximation f

of K(· | ·) such that for each pair (x, y), the function f(x, y, ·) has only finitely
many values. (We modify any upper approximation of complexity by only outputting
values k on input x, y, for which K(k | x, y) ≤ c. There are at most 2c such k.) Hence,
there would exist an approximation f ′ of N such that for all x, y, the function
f ′(x, y, ·) has only finitely many values. Such functions would have only finitely
many oscillations, contradicting Theorem 2, and a finite total update, contradicting
Theorem 1.



134 B. Bauwens and I. Blinnikov

To prove that N is not upper semicomputable, we use the following well-known
lemma.

Lemma 3. The complexity function K(·) has no unbounded lower semicom-
putable lower bound.

Proof. This is proven by the same argument as for the uncomputability of K
(see appendix the appendix of the ArXiv version). Suppose such a bound B(x) ≤
K(x) exists. Then on input n, one can search for a string xn with n ≤ B(xn) and
hence n ≤ K(xn). But since there exists an algorithm to compute xn given n,
we have K(xn) ≤ O(log n). This is a contradiction for large n. Hence, no such
B exists. ��
Lemma 4. N is not upper semicomputable.

Proof. By optimality of the prefix-free machine in the definition of K, we have
that K(x | y) ≥ 1 for all x and y. Thus 1 ≤ K(x | x) ≤ O(1), and hence,

1/K(x) ≤ N(x, x) ≤ O(1/K(x)).

If N were upper semicomputable, we would obtain an unbounded lower semi-
computable lower bound of K, which contradicts Lemma 3. ��

2 Trivial Approximations Have at Most Logarithmic
Total Update

Lemma 1 follows from the following lemma for c ≤ O(1) and the upper bound
m ≤ O(n) on the upper approximations of Kolmogorov complexity.

Lemma 5. Assume 1 ≤ a1 ≤ a2 ≤ · · · ≤ am ≤ m, 1 ≤ b1 ≤ b2 ≤ · · · ≤ bm ≤ m
and ai ≤ bi + c. Then,

∑

i≤m

∣∣∣∣
ai

bi
− ai+1

bi+1

∣∣∣∣ ≤ 2 ln m + O(c2).

Proof. We first assume c = 0. We prove a continuous variant. Let α, β : [0,m] →
[1,m] be non-decreasing real functions with α(t) ≤ β(t) and 1 ≤ α(0) ≤ β(m) ≤
m. The sum in the lemma can be seen as a special case of

∫ t=m

t=0

∣∣∣∣d
α(t)
β(t)

∣∣∣∣ =
∫ t=m

t=0

dα(t)
β(t)

+
∫ t=m

t=0

α(t)
β2(t)

dβ(t).

The left integral in the sum is maximized by setting β(t) equal to its minimal
possible value, which is α(t). The right one is maximized for the maximal value
of α(t), which is β(t). Thus,

≤
∫ u=α(m)

u=α(0)

du

u
+

∫ u=β(m)

u=β(0)

du

u
≤ 2 ln m.

For c ≥ 0, the minimal value of β is max{1, α − c} and the maximal value of α
is min{m,β + c}. The result follows after some calculation. ��



The Normalized Algorithmic Information Distance 135

3 Oscillations of 0-Approximations, the Game

For technical reasons, we first consider the plain length conditional variant of the
normalized information distance N′. For notational convenience, we restrict the
definition to pairs of strings of equal length.

Definition 4. For all n and strings x and y of length n, let

N′(x, y) =
max {C(x | y),C(y | x)}
max{C(x | n),C(y | n)} .

If C(x | n) = 0, let N′(x, x) = 0.

Remarks

– For x �= y, the denominator is at least 1, since at most 1 string can have
complexity zero relative to n.

– The choice of the value of N′(x, x) if C(x | n) = 0 is arbitrary, and does not
affect Proposition 1 below.

– In the numerator, the length n is already included in the condition, since it
equals the length of the strings.

– There exists a trivial approximation of N′ with at most 2n+O(1) oscillations.
Indeed, consider an approximation obtained by defining Ct(·|·) with brute
force searches among programs of length at most n + O(1).

– Again, for every constant e, we can construct an optimal machine and a 0-
approximation of N ′ for which the number of oscillations is at most n/e. We
now present a matching lower bound.

Proposition 1. Every 0-approximation of N′ has at least Ω(n) oscillations.

In this section, we show that the proposition is equivalent to the existence of a
winning strategy for a player in a combinatorial (full information) game. In the
last section of the paper, we present such a winning strategy.

Description of Game Gn,c,k. The game has 3 integer parameters: n ≥ 1, c ≥ 1
and k ≥ 0. It is played on two 2-dimensional grids X and Z. Grid X has size
n × 2n. Its rows are indexed by integers {0, 1, . . . , n − 1}, and its columns are
indexed by n-bit strings. Let Xu be the column indexed by the string u. See Fig. 1
for an example with n = 3. Grid Z has size n × (

2n+1
2

)
. The rows are indexed by

integers {0, . . . , n − 1}, and its columns are indexed by unordered pairs {u, v},
where u and v are n-bit strings, (that may be equal).5 We sometimes denote
unordered pairs {u, v} of n-bit strings as uv, and write Z{u,v} = Zuv. Note
that Zuv = Zvu. Let u ∈ {0, 1}n. The slice Zu of Z is the 2-dimensional grid
of size n × 2n containing all columns Zuv with v ∈ {0, 1}n. Additionally, Bob
must generate a function f mapping unordered pairs of n-bit strings and natural
numbers to real numbers.
5 Formally, we associate sets {u, v} with 2 elements to an unordered pair (u, v), and

singleton sets {u} to the pair (u, u).



136 B. Bauwens and I. Blinnikov

n− 1

0

2n
000 001 010 011 . . .

Fig. 1. Example of board X with n = 3. Alice has placed 2 tokens in row 2 (white),
and Bob has placed 1 token in row 0 and 1 in row 2 (black). The row restrictions for
both players are satisfied, since max{1, 3} ≤ 22 and 1 ≤ 20. X000 = X011 = 2, X001 = 0
and X010 = 3.

Two players, Alice and Bob, alternate turns. The rounds are numbered as
t = 1, 2, . . . At each round, Alice plays first. At her turn, she places tokens on
cells of the grids. She must place at least 1 token. Afterwards, Bob places zero
or more tokens on the grids, and he declares all values f(uv, t) for all unordered
pairs {u, v}, where t is the number of the current round. This terminates round t,
and the players start with round t + 1.

For each player, for each i ∈ {1, . . . , n}, and for all grids G ∈ {X} ∪ {Zu :
u ∈ {0, 1}n}, the following row restriction should be satisfied: The total number
of tokens that the player has placed during the whole game in the i-th row of G,
is at most 2i. If a player does not satisfy this restriction, the game terminates
and the other player wins. See Fig. 1. Bob’s moves should satisfy two additional
requirements. If after his turn these requirements are not satisfied, the game
terminates and Alice wins.

– Let Xu be the value of column Xu given by the minimal row-index of a cell
in Xu containing a token. If Xu contains no tokens, then Xu = n. Similar for
the value Zuv of column Zuv. For all u and v:

Zuv−1
max{Xu,Xv}+c < f(uv, t) < Zuv+c

max{Xu,Xv} . (c)

– For all u and v: f(uv, 1), f(uv, 2), . . . has at most k oscillations. (k)

Note that for decreasing c and k, it becomes easier for Alice to win.

Discussion. If Alice places a token in a row with small index, Bob has a dilemma:
either he can change the function f , or he can place tokens on the other board
to restore the ratios in (c). In the first case, he might increase the number of
oscillations in (k), while in the second case, he exhausts his limited capacity to
place tokens on rows of small indices, (by the row restriction, at most 1 + 21 +
. . . + 2i−1 = 2i − 1 tokens can be placed below row i in each grid G).

Remark. The game has at most O(n22n) rounds, because in each round, Alice
must place at least 1 token, and by the row restriction, Alice can place at most
O(n22n) tokens on all grids. Hence, the game above is finite and has full infor-
mation. This implies that either Alice or Bob has a winning strategy.



The Normalized Algorithmic Information Distance 137

Lemma 6. Let k : N × N → Z be such that Alice has a winning strategy in the
game Gn,c,k(n,c). Then for every 0-approximation of N′ there exists a constant c
such that for large n, the 0-approximation has more than k(n, c) oscillations on
n-bit inputs.

Proof. The idea of the proof is to use any limit approximation f ′ to construct
a strategy for Bob. By assumption there exists some winning strategy for Alice,
and we let it play against this strategy for Bob. Then we show that Bob satisfies
the row restrictions and requirement (c). Since Alice’s strategy is winning, we
conclude that requirement (k) must be violated. Our construction implies that
f has fewer oscillations than f ′, thus also f ′ has more than k(n, c) oscillations.

It suffices to prove the lemma for the largest function k(n, c) for which Alice
wins the game Gn,c,k(n,c). This function k is computable, since the game is finite,
and for each value we can determine whether Alice has a winning strategy by
brute force searching all strategies.

– Let Cs(·|·) represent an upper approximation of C(· | ·).
– Let C(u↔v) = max{C(u | v),C(v | u)} and similar for Cs(u↔v).
– Let f ′ be a 0-approximation of N′. Without loss of generality, we assume

f ′(u, v, t) = f ′(v, u, t).

For all c and n, we present a run of the game Gn,c,k(n,c). The mapping from
c and n to a (transcript of) this run is computable. First, we fix a winning
strategy of Alice in the game Gn,c,k(n,c) in a computable way. For example, we
may brute force search all strategies and select the first winning strategy that
appears. Let r0 = 1. Consider the game in which Alice plays this strategy, and
Bob replies as follows.

Bob’s Strategy. At round t, Bob searches for a value s with s > rt−1 such that
for all u and v:

(i) Cs(u | n) < Xu + c and Cs(u↔v) < Zuv + c,
(ii) f ′(u, v, s) = Cs(u↔v)

max{Cs(u|n),Cs(v|n)} .

If such an s is found, he sets rt = s and f(uv, t) = f ′(u, v, s) for all u and v.
For all u he places a token in column Xu at row Cs(u | n). For all unordered
pairs {u, v}, he places a token in column Zuv at row Cs(u↔v) + 1. End of Bob’s
strategy.

We first show that if Bob does reply, he satisfies the row restriction. For G = X
this holds because there are at most 2i programs of length i, and hence, at
most 2i strings u with Cs(u) = i for some s. For G = Zu, this holds because
Cs(u↔v) = i implies C(v | u) ≤ i, and there are less than 2i+1 such v.

Assuming that Bob plays in round t, requirement (c) holds. Indeed, after
Bob’s move and for s = rt, condition (i) implies:

Xu ≤ Cs(u | n) < Xu + c and Zuv − 1 ≤ Cs(u↔v) < Zuv + c.

Together with (ii) and f(t, u, v) = f ′(s, u, v), this implies requirement (c).



138 B. Bauwens and I. Blinnikov

We show that for large c, there always exists an s such that (i) and (ii) are
satisfied, and hence, Bob plays in each round. Since f ′ is a 0-approximation,
requirement (ii) is true for large s, and this does not depend on c. We show
that (i) is also satisfied. To prove the left inequality, we first construct a Turing
machine M . The idea is that the machine plays the game above, and each time
Alice places a token in a cell of column Xu with row index i, it selects an
unassigned i-bit string, and assigns to it the output u. Thus on input of a string p
and integers c, n, it plays the game, waits until the p-th token is placed in the
row with index equal to the length of p, and it outputs the column’s index,
(which is an n-bit string). The row restriction implies that enough programs
are available for all tokens. Hence, CM (u | n, c) ≤ i, whenever Alice places a
token in Xu at height i. By optimality of the Turing machine in C(· | ·), we have
C(u | n, c) ≤ Xu + O(1) for all u, and hence,

C(u | n) ≤ Xu + O(log c).

For large c, this is less than Xu + c. By a similar reasoning, we have C(u↔v) <
Zuv + c, because each time Alice places a token in row i of column Zuv, we
assign two programs of length i: one that outputs u on input v, n, c, and one
that outputs v on input u, n, c. Thus, for large s, also requirement (i) is satisfied,
and Bob indeed plays at any given round, assuming he played in all previous
rounds.

Recall that Alice plays a winning strategy, and that Bob satisfies the row
restriction and requirement (c). Hence, requirement (k) must be violated, i.e.,
for some pair (u, v), the sequence f(uv, 1), f(uv, 2), . . . has more than k(n)
oscillations. Since rt is increasing in t, this sequence is a subsequence of f ′(u, v, 1),
f ′(u, v, 2), . . ., and the latter must also have more than k(n) oscillations. This
implies the lemma. ��
To prove Theorem 2 we need a version of the previous lemma for the prefix
distance.

Lemma 7. Under the assumption of Lemma 6, every 0-approximation of N has
more than k(n, 5 log n) oscillations on n-bit inputs for large n.

Proof. As a warm up, we observe that

K(x) ≤ C(x | n) + 4 log n + O(1).

Indeed, we can convert a program on a plain machine that has access to n, to a
program on some prefix-free machine without access to n, by prepending prefix-
free codes of the integers n and C(x | n). Each such code requires 2 log n + O(1)
bits, and hence the inequality follows.

We modify the proof above by replacing all appearances of C(x | n) by K(x),
of C(x | y) by K(x | y), and similarly for the approximations Cs(· | ·). We also
set c = 5 log n and assume that f ′ is a 0-approximation of N. In Bob’s strategy,
no further changes are needed.



The Normalized Algorithmic Information Distance 139

The row restriction for Bob is still satisfied, because the maximal number
of halting programs of length i on a prefix-free machine is still at most 2i.
Requirement (c) follows in the same way from items (i) and (ii) in Bob’s strategy.
It remains to prove that for large c and s, these conditions (i) and (ii) are satisfied.
Item (ii) follows directly, since f ′ is a 0-approximation of N.

For item (i), we need to construct a prefix-free machine M ′. This is done in
a similar way as above, by associating tokens in row i to programs of length i,
but we also need to prepend 3 prefix-free codes: for the row index, for n, and
for c. This implies

K(u) ≤ Xu + 4 log n + O(log c).

Recall that c = 5 log n. Hence, this is at most Xu + c for large n. The lemma
follows from the violation of requirement (k) in the same way as before. ��

4 Total Update of ε-Approximations, the Game

We adapt the game for the proof of Theorem 1.

Description of game Hn,ε,a, where ε > 0 and a ≥ 0 are real numbers. The game
is the same as the game of the previous section, except that requirements (c)
and (k) are replaced by:

– For all u and v with max{Xu,Xv} ≥ √
n:

∣∣∣f(u, v, t) − Zuv

max{Xu,Xv}
∣∣∣ ≤ ε. (ε)

– For all u and v with max{Xu,Xv} ≥ √
n:

∑t−1
s=1 |f(u, v, s) − f(u, v, s + 1)| ≤ a. (a)

Remarks

– We call the sum in (a), the total update of f . Similar for the total update of
an ε-approximation.

– The threshold
√

n is chosen for convenience. Our proof also works with any
computable threshold function that is at least super-logarithmic and at most
nα for some α < 1.

Lemma 8. Let a : N → R. Suppose that for large n, Alice has a winning strat-
egy in the game Hn,ε,a(n). Fix ε′ < ε, and an ε′-approximation f ′ of either N′

or N. Then, for large n, there exist n-bit inputs for which the total update of f ′

exceeds a(n).

Proof. We first consider an ε′-approximation f ′ of N′, and at the end of the proof
we explain the modifications for N. The proof has the same high-level structure
as the proof of Lemma 6: from f ′ we obtain a strategy for Bob that is played
against Alice’s winning strategy. Then, from the violation of (a) we conclude
that the total update of f ′ exceeds a(n).



140 B. Bauwens and I. Blinnikov

Let n be large such that Alice has a winning strategy in the game Hn,ε,a(n).
We consider a run of the game where Alice plays a computably generated winning
strategy and Bob’s replies are as follows.

Bob’s Strategy. He searches for an s > rt−1 such that for all u and v with
max{Cs(u),Cs(v)} ≥ √

n:

(i) Cs(u | n) ≤ Xu + c and Cs(u↔v) ≤ Zuv + c,
(ii)

∣∣∣f ′(u, v, s) − Cs(u↔v)
max{Cs(u|n),Cs(v|n)}

∣∣∣ ≤ ε′,

If such an s is found, let rt = s. Bob chooses f(uv, t) = f ′(u, v, s) for all u and
v. For all u he places a token in column Xu at row Cs(u | n). For all unordered
pairs {u, v}, he places a token in column Zuv at row Cs(u↔v) + 1. End of Bob’s
strategy.

For similar reasons as above, we have that for some c and for large s, requirements
(i) and (ii) are satisfied. This implies that for some c, Bob always reacts.

We now verify that for large n, requirement (ε) holds. Recall that we need
to check the inequality when the denominator is at least

√
n. After Bob’s move

we have again that

Xu ≤ Cs(u | n) < Xu + c and Zuv − 1 ≤ Cs(u↔v) < Zuv + c. (∗)

Since N′ ≤ e for some constant e, we may also assume that f ′ ≤ e, because
truncating f ′ can only decrease the number of oscillations. This and item (ii)
imply that if n is large enough such that

(c + 1) e+1√
n

≤ ε − ε′, (∗∗)

inequality (ε) is indeed satisfied.
Because Bob loses, requirement (a) must be violated. Since the total update

of f is at least the total update of f ′ as long as the
√

n-threshold is not reached,
this implies that every ε′-approximation has total update more than a(n). The
statement for N′ is proven.

The modifications for N are similar as in the previous section. Instead of
choosing c to be a constant, we again choose it to be 5 log n, and for the same
reasons as above, this makes (*) true if we replace conditional plain complexity
by (conditional) prefix complexity. This increase from constant to logarithmic c
increases the minimal value of n in (**) only by a factor O(log2 n). Otherwise,
nothing changes in the above argument. The lemma is proven. ��

5 Conclusion

We have proven that statements about the incomputability of the normalized
information distance are equivalent to the existence of winning strategies in a
game. To prove the main results, we need to present these winning strategies.
This is done in an extended version of the paper that is available on ArXiv.



The Normalized Algorithmic Information Distance 141

References

1. Ambos-Spies, K., Merkle, W., Terwijn, S.A.: Normalized information distance and
the oscillation hierarchy. arXiv preprint arXiv:1708.03583 (2017)

2. Bauwens, B.: Information distance revisited. In: Paul, C., Bläser, M. (eds.) 37th
International Symposium on Theoretical Aspects of Computer Science (STACS
2020). Leibniz International Proceedings in Informatics (LIPIcs), vol. 154, pp. 46:1–
46:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2020). https://
doi.org/10.4230/LIPIcs.STACS.2020.46. https://drops.dagstuhl.de/opus/volltexte/
2020/11907

3. Bauwens, B., Shen, A.: Complexity of complexity and maximal plain versus prefix-
free Kolmogorov complexity. J. Symb. Log. 79(2), 620–632 (2013)

4. Bennett, C.H., Gács, P., Li, M., Vitányi, P.M., Zurek, W.H.: Information distance.
IEEE Trans. Inf. Theory 44(4), 1407–1423 (1998)

5. Gács, P.: On the symmetry of algorithmic information. Soviet Math. Dokl. 15,
1477–1480 (1974)

6. Li, M., Vitányi, P.M.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 4th edn. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11298-
1

7. Muchnik, A.A., Mezhirov, I., Shen, A., Vereshchagin, N.: Game interpretation of
Kolmogorov complexity, March 2010. Unpublished

8. Shen, A., Uspensky, V.A., Vereshchagin, N.: Kolmogorov Complexity and Algorith-
mic Randomness, vol. 220. American Mathematical Society, Providence (2017)

9. Terwijn, S., Torenvliet, L., Vitányi, P.M.: Nonapproximability of the normalized
information distance. J. Comput. Syst. Sci. 77, 738–742 (2011)

http://arxiv.org/abs/1708.03583
https://doi.org/10.4230/LIPIcs.STACS.2020.46
https://doi.org/10.4230/LIPIcs.STACS.2020.46
https://drops.dagstuhl.de/opus/volltexte/2020/11907
https://drops.dagstuhl.de/opus/volltexte/2020/11907
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-030-11298-1


Definable Subsets of Polynomial-Time
Algebraic Structures

Nikolay Bazhenov1,2(B)

1 Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue,
Novosibirsk 630090, Russia

2 Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
bazhenov@math.nsc.ru

Abstract. A structure S in a finite signature σ is polynomial-time if the
domain of S, and the basic operations and relations of S are polynomial-
time computable. Following the approach of semantic programming, for
a given polynomial-time structure S, we consider the family B(S) con-
taining all subsets of dom(S), which are definable by a Δ0 formula with
parameters. It is known that each of these sets is polynomial-time com-
putable; hence, B(S), endowed with the standard set-theoretic opera-
tions, forms a natural Boolean algebra of polynomial-time languages,
associated with S. We prove that up to isomorphism, the algebras B(S),
where S is a polynomial-time structure, are precisely computable atomic
Boolean algebras.

Keywords: Polynomial-time structure · Δ0 formula · Σ-definability ·
Hereditarily finite superstructure · Computable structure theory · List
structure · Boolean algebra

1 Introduction

A common approach to effective presentations of infinite algebraic structures
is provided by computable structure theory. The basic computation model of
this theory is Turing machine: informally speaking, an effective presentation of a
structure S is provided by Turing machines which compute the basic information
about an isomorphic copy of S.

More formally, one gives the notion of computable presentation. Let τ be a
finite signature. A τ -structure A is computable (or constructive) if the domain
of A is a (Turing) computable subset of the set of natural numbers N, and
the basic operations and relations of A are (Turing) computable. A computable

The work is supported by Mathematical Center in Akademgorodok under agreement
No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian
Federation.

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 142–154, 2020.
https://doi.org/10.1007/978-3-030-50026-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_10&domain=pdf
http://orcid.org/0000-0002-5834-2770
https://doi.org/10.1007/978-3-030-50026-9_10


Definable Subsets of Polynomial-Time Algebraic Structures 143

presentation of a countable τ -structure S is a computable structure A, which is
isomorphic to S.

The foundations of computable structure theory were developed in 1950s
and early 1960s by Fröhlich and Shepherdson [17], Mal’tsev [29], and Rabin [36].
Nowadays, computable structure theory has become a flourishing area of math-
ematical logic. The reader is referred to, e.g., monographs [7,15,32] for a more
detailed discussion.

From the computational point of view, a computable presentation A can
be highly inefficient (in general, the basic A-operations are not even primitive
recursive). Hence, it is natural to ask when a given computable structure admits a
presentation such that all its computations are resource bounded in a reasonable
way. In order to attack this question, Nerode and Remmel [33] initiated the
systematic studies of polynomial-time structures.

Let Σ be a finite alphabet. A τ -structure S is polynomial-time if the domain
of S is a polynomial-time computable subset of Σ∗, and the basic operations and
relations of S are computable in polynomial time (see Sect. 2.1 for more formal
details).

It turned out that for many familiar classes of structures, the properties
“being computably presentable” and “being polynomial-time presentable” coin-
cide. Grigorieff [25] proved that every computable linear order has a polynomial-
time isomorphic copy. Similar results hold for arbitrary relational structures [11],
Boolean algebras [11], torsion abelian groups [13], etc. On the other hand, it is
not difficult to build a computable structure in the signature {f1;R1; c}, which
does not admit polynomial-time presentations (see Example 1.1 in [12]).

The reader is referred to [12] for a comprehensive survey of results that
were obtained by the end of 1990s. In recent years, the interest in the field of
polynomial-time structures has been rekindled: see, e.g., the papers [1–4,10]. We
also note that the closely connected area of fully primitive recursive (or punctual)
structures (see, e.g., [9,26,30,31]) has witnessed remarkable advances.

This paper is inspired by the recent applications of complexity theory in
semantic programming: the articles [18,20,23,24,35] study various modifica-
tions of Δ0 formulas (to be explained in Sect. 2) and their expressiveness over
polynomial-time structures.

We give a brief overview of our paper’s setting. Let S be a polynomial-time
τ -structure, and let b̄ := b1, . . . , bn be a tuple from S. It is not hard to show that
for any quantifier-free τ -formula ψ(x; y1, . . . , yn), the set

ψ[S; b̄] := {a : S |= ψ(a; b̄)}

is computable in polynomial time. Furthermore, a similar fact is true for an
arbitrary Δ0 formula ψ [35].

Therefore, one can associate with the structure S a natural class of
polynomial-time languages: The family P[S] contains all sets A ⊆ Σ∗ such that
there are a Δ0 formula ψ(x; ȳ) and a tuple b̄ ∈ S with ψ[S; b̄] = A.

Clearly, the definition of P[S] is not invariant under isomorphisms of S—it
is easy to build two polynomial-time structures S ∼= T such that P[S] �= P[T ]



144 N. Bazhenov

(e.g., for a given S, construct T by replacing a fixed element w ∈ S with another
element v not belonging to the domain of S).

On the other hand, note that the set P[S] forms a Boolean algebra under the
standard set-theoretic operations:

B[S] := (P[S];∪,∩, · ; ∅,dom(S)).

And this Boolean algebra can be treated as invariant : if S ∼= T , then it is not
hard to show that B[S] ∼= B[T ], see Sect. 2 for details.

Recall that Selivanov and Konovalov gave a complete characterization for the
isomorphism types of Boolean algebras induced by various families of languages:
regular languages [37], regular ω-languages [38], piecewise testable languages [27],
etc. In our setting, it is natural to follow their approach, and to consider the
following question.

Problem (�). What are the isomorphism types of Boolean algebras B[S] for
polynomial-time structures S?

The structure of the paper is as follows. Section 2 contains the necessary
preliminaries. In particular, we give a detailed discussion of Δ0 formulas. In the
section, our working framework is based on the hereditarily finite list superstruc-
ture HW(S): the choice of this structure is motivated by the works [21,22,24] on
the semantic programming paradigm, and the article [28] of Korovina, who stud-
ied various notions of computability over the ordered field of reals R (including
Σ-definability over HW(R)).

In Sect. 3, we give a solution of Problem (�): We prove that the isomorphism
types of B[S] for polynomial-time S are precisely the isomorphism types of com-
putable atomic Boolean algebras (Theorem 3.1). The proof of the result is not
difficult, but it uses some subtle techniques from computable structure theory
and admissible set theory—hence, we aimed to make our paper as self-contained
as possible, and added a lot of details to Sect. 2. Section 4 briefly discusses further
directions.

2 Preliminaries

We mainly follow [21,22] and introduce our working framework for Δ0 and Σ
formulas. Note that starting from this point, the symbol Σ is always reserved for
the term “Σ formula”. A finite alphabet will be typically denoted by the letter
Γ . By ω we denote the set of natural numbers.

The informal idea behind the framework is as follows. Given an arbitrary
structure S, one introduces a two-sorted structure HW(S): the first sort (called
atoms) is the domain of S, and the second sort (called lists) consists of finite lists
of atoms, lists of lists of atoms, lists of lists of lists of atoms, etc. The structure
HW(S) is endowed with standard list operations—informally, a list is treated as
a “last in, first out” stack.

Now one can talk about formulas related to the structure HW(S). Roughly
speaking, a Δ0 formula is constructed as follows: our basic building blocks are



Definable Subsets of Polynomial-Time Algebraic Structures 145

Boolean combinations of (standard) atomic formulas, but we are also allowed to
use bounded quantifiers ∃x ∈ t and ∀x ∈ t in the construction (for now, one can
think that “∃x ∈ t” means “there is an atom x belonging to the list t,” where t
equals, say, 〈y, z, w〉). Starting with Δ0 formulas as basic elements, a Σ formula
is obtained by adding unbounded existential quantifiers ∃x to the mix.

We emphasize that the discussion above is very informal—the formal details
are given below. For a reader familiar with admissible set theory [8,14], we give
another explanation: Essentially, HW(S) is a version of the hereditarily finite
superstructure HF(S), where finite sets are replaced with finite lists. In this
version, the classes of Δ0 and Σ formulas are introduced in a standard way, see,
e.g., [8, Chapter I].

Given a non-empty set A, by S0(A) we denote the set of all finite lists over A,
i.e.,

S0(A) := {nil} ∪ {〈a0, a1, . . . , an〉 : n ∈ ω, a0, a1, . . . , an ∈ A},

where nil is the empty list.
We consider a two-sorted structure (A;S0(A)), where the first sort atom is A,

and the second sort list is S0(A). For convenience, we will slightly abuse our
notations and treat the empty list as an element simultaneously belonging to
both sorts.

Let τ be a finite signature. For simplicity, we assume that τ is purely rela-
tional. We introduce new symbols nil, cons, head, tail, conc, ∈, , which do not
belong to τ .

The new symbols admit a natural interpretation in the structure (A;S0(A)):

1. nil is a constant, which is interpreted as the empty list.
2. cons is a binary function of sort list×atom→list. It is interpreted as

appending an atom a to a list x: e.g., if x = 〈0, 2〉 and a = 1, then
cons(〈0, 2〉, 1) = 〈0, 2, 1〉.

3. head is a unary function of sort list→atom. The function produces the last
element of a given list: e.g., head(〈0, 2〉) = 2. We assume that head(nil) = nil.

4. tail is a unary function of sort list→list. It outputs the list, which is
obtained by deleting the head of a given list x: e.g., tail(〈0, 2〉) = 〈0〉. Again,
we set tail(nil) = nil.

5. conc is a binary function of sort list×list→list. It is interpreted as the
concatenation of two given lists: e.g., conc(〈0, 2〉, 〈1, 3〉) = 〈0, 2, 1, 3〉.

6. ∈ is a binary predicate of sort atom×list. We have a ∈ x if and only if the
atom a occurs in the list x: e.g., 0 ∈ 〈0, 2〉 and 1 �∈ 〈0, 2〉.

7.  is a binary predicate of sort list×list. We have x  y iff x is an initial
segment of y: e.g., 〈0, 2〉  〈0, 2, 1〉 and 〈2, 1〉 � 〈0, 2, 1〉.

Let M be a τ -structure. Note that all the definitions below are given for
arbitrary M, but this paper is focused on polynomial-time M.

Consider a new signature

τ+ := τ ∪ {U} ∪ {nil, cons, head, tail, conc,∈,},



146 N. Bazhenov

where U is a unary predicate. Then the hereditarily finite list superstructure
(or hfl superstructure for short) HW(M) is a τ+-structure, which is defined as
follows.

The domain of HW(M) is given by:

HW0(M) := S0(dom(M)), HWn+1(M) := S0(dom(M) ∪ HWn(M));

dom(HW(M)) = dom(M) ∪
⋃

n∈ω

HWn(M).

The unary predicate U distinguishes the set dom(M). If R is an n-ary relation
from τ , then HW(M) |= R(a1, . . . , an) if and only if a1, . . . , an ∈ dom(M) and
M |= R(a1, . . . , an).

The interpretations of the remaining τ+-symbols are essentially the same as
those given above for (A;S0(A)): For example, HW(M) |= (x ∈ y) if and only
if x occurs as an element of the list y. Note that x itself can also be a list—e.g.,
x = 〈0, 1〉 occurs in y = 〈nil, 〈0, 1〉, 2, 〈2〉〉.

Terms in the signature τ+ are defined in a standard way. The notion of Δ0

formula is introduced according to the following rules:

– If ψ is an atomic formula in the signature τ+, then ψ is a Δ0 formula.
– If ψ and ξ are Δ0 formulas, then (ψ&ξ), (ψ ∨ ξ), (ψ → ξ), and ¬ψ are also

Δ0 formulas.
– If ψ is a Δ0 formula, x is a variable, and t is a term, then (∃x ∈ t)ψ, (∀x ∈ t)ψ,

(∃x  t)ψ, and (∀x  t)ψ are Δ0 formulas.

The corresponding HW-semantics (i.e. evaluation of truth values in the struc-
ture HW(M)) is pretty straightforward—the only non-trivial detail is the fol-
lowing: The formula (∃x ∈ t)ψ is treated as an abbreviation for ∃x(x ∈ t &ψ);
the formula (∀x ∈ t)ψ abbreviates ∀x(x ∈ t → ψ). The formulas (∃x  t)ψ and
(∀x  t)ψ are interpreted in a similar way.

The class of Σ formulas is defined as follows:

– Every Δ0 formula is a Σ formula.
– If ψ and ξ are Σ formulas, then (ψ&ξ) and (ψ ∨ ξ) are also Σ formulas.
– If ψ is a Σ formula, x is a variable, and t is a term, then (∃x ∈ t)ψ, (∀x ∈ t)ψ,

(∃x  t)ψ, and (∀x  t)ψ are Σ formulas.
– If ψ is a Σ formula and x is a variable, then (∃x)ψ is a Σ formula.

Let n ≥ 1. We say that a set A ⊆ (dom(M))n is Δ0-definable (with parame-
ters) if there are a Δ0 formula ψ(x1, . . . , xn; y1, . . . , yk) and a tuple p̄ = p1, . . . , pk

from HW(M) such that for all ā = a1, . . . , an from HW(M), the following holds:

ā ∈ A ⇔ HW(M) |= ψ(ā; p̄).

The notion of a Σ-definable set is introduced in a similar way.
We will heavily exploit the key property of Σ-definable sets given below

(Theorem 2.1). We note that Theorem 2.1 is essentially a modification of the
result of Vajtsenavichyus [39] obtained for hereditarily finite superstructures (the
proof of this result can be found, e.g., in Proposition 6.12 of [16]). A proof sketch
for Theorem 2.1 is given in Proposition 2.1 of [5].



Definable Subsets of Polynomial-Time Algebraic Structures 147

Theorem 2.1. Let M be a τ -structure. Suppose that A ⊆ dom(M)n is a Σ-
definable set. Then there are a tuple p̄ ∈ dom(M)k, for some k ∈ ω, and a com-
putable sequence {ψ�(x1, . . . , xn; y1, . . . , yk)}�∈ω of existential τ -formulas such
that for any tuple ā = a1, . . . , an from dom(M),

ā ∈ A ⇔ M |=
∨

�∈ω

ψ�(ā; p̄).

In other words, for a Σ-definable set A ⊆ dom(M)n, there is the following
trade-off: One can omit all the HW-semantic details—and just work with truth
values inside the structure M itself; but in order to do this, we have to go beyond
the first-order logic, and consider computable infinite disjunctions of ∃-formulas.

Δ0- and Σ-definable sets satisfy the following simple properties:

– The set ∅ ⊂ dom(M) is definable by a Δ0 formula (x �= x).
– The set dom(M) is definable by a Δ0 formula U(x).
– Δ0-definable subsets of dom(M)n are closed under set-theoretic operations:

union, intersection, and complement (i.e. A := dom(M)n\A).
– Σ-definable subsets of dom(M)n are closed under ∪ and ∩.

Therefore, the following notions are well-defined:

Definition 2.1. By P[M] we denote the family of all Δ0-definable subsets of
dom(M). Let PΣ [M] denote the family of all Σ-definable subsets of dom(M).
Then:

(a) B[M] := (P[M];∪,∩, · ; ∅,dom(M)) is a Boolean algebra (under standard
set-theoretic operations).

(b) DΣ [M] := (PΣ [M];∪,∩) is a distributive lattice.

Clearly, if M is isomorphic to N , then B[M] ∼= B[N ] and DΣ [M] ∼= DΣ [N ].

2.1 Polynomial-Time Structures

Let Γ be a finite alphabet. In this subsection, we consider strings from Γ ∗.
Following [12], our basic computational model is multitape Turing machine.

Let t(n) be a function acting from ω to ω. A Turing machine M is t(n)-time
bounded if each computation of M on inputs of length n, where n ≥ 2, requires
at most t(n) steps. A function f(x) on strings belongs to DTIME(t) if there is
a t(n)-bounded deterministic Turing machine M , which computes f(x). If f is
a function of several variables, then the length of a tuple (x1, x2, . . . , xn) can be
defined as the sum of lengths of x1, x2, . . . , xn. A set of strings or a relation on
strings is in DTIME(t) if its characteristic function is in DTIME(t).

Let P =
⋃

1≤i<ω DTIME(ni). For a finite signature τ , a τ -structure S is
polynomial-time if:

– the domain of S is a subset of Γ ∗, which belongs to P;
– if R is a k-ary predicate from τ , then RS is a subset of dom(S)k, which

belongs to P;



148 N. Bazhenov

– if f is an 
-ary function from τ , then fS : dom(S)� → dom(S) can be com-
puted in P-time.

We recall the following fact, which was already mentioned in the introduction:

Proposition 2.1 (Lemma 2 of [35]; see also [24]). If a τ -structure M is
polynomial-time, then every Δ0-definable subset of dom(M)n is also polynomial-
time.

2.2 Boolean Algebras

The reader is referred to the monograph [19] for the background on Boolean
algebras. We treat Boolean algebras as structures in the signature τBA =
{∨,∧, · ; 0, 1}.

Let B be a Boolean algebra. An element a ∈ B is an atom if a is a minimal
non-zero element. The algebra B is atomic if for every non-zero b ∈ B, there is
an atom a with a ≤B b. The Fréchet ideal of B is the set F (B) = {b ∈ B : b is a
finite sum of atoms}. The binary relation ∼F , which is defined as (x ∼F y) ⇔
(x ∧ y) ∨ (x ∧ y) ∈ F (B), is a congruence of the structure B.

Proposition 2.2 (see, e.g., Proposition 1.5.2 of [19]). Let A and B be
countable atomic Boolean algebras. If the quotients A/∼F and B/∼F are iso-
morphic, then the structures A and B are isomorphic.

Let L be a linear order. The interval Boolean algebra Int(L) is defined as
follows. The domain of Int(L) contains all finite unions of the intervals:

– (−∞; a) = {x : x <L a}, where a ∈ L;
– [b; c) = {x : b ≤L x <L c}, where b <L c; and
– [d; +∞) = {x : d ≤L x}, where d ∈ L.

The τBA-operations are interpreted as standard set-theoretic operations on ele-
ments from Int(L). The following fact is well-known (see, e.g., Chap. 3.2 of [19]):

Proposition 2.3. (a) If L is a computable linear order, then the Boolean alge-
bra Int(L) has a computable presentation.

(b) If B is a computable Boolean algebra, then there is a computable linear order
L such that Int(L) ∼= B.

3 Main Result

Theorem 3.1. Let B be a countable Boolean algebra. Then the following con-
ditions are equivalent:

(i) There is a polynomial-time structure S such that the algebra B[S] is isomor-
phic to B.

(ii) B is atomic, and B has a computable presentation.

The proof of Theorem 3.1 is given in the next two subsections.



Definable Subsets of Polynomial-Time Algebraic Structures 149

3.1 From (i) To (ii)

Let S be a polynomial-time structure. First, we show that the Boolean algebra
B[S] is atomic. Let A be a non-empty Δ0-definable subset of dom(S). Choose
an element a ∈ A. Then it is clear that the set {a} is definable by a Δ0 formula
(x = a), and {a} is a minimal non-empty subset of dom(S). Therefore, we deduce
that {a} is an atom inside B[S], and B[S] is an atomic algebra.

Recall that a Boolean algebra A is Π0
1 if there are a computable τBA-structure

C and a co-c.e. equivalence relation E such that E is a congruence of the struc-
ture C, and the quotient C/E is isomorphic to A. Odintsov and Selivanov [34,
Theorem 1] proved that every Π0

1 Boolean algebra is isomorphic to a computable
one.

For our structure S, one can define a natural computable τBA-structure C
associated with S:

– The domain of C contains (Gödel numbers of) all Δ0 formulas ψ(x; p̄), where
p̄ is a finite tuple of parameters from S.

– The τBA-operations on these formulas are interpreted as disjunction, conjunc-
tion and negation. The least element 0 is interpreted as the formula (x �= x).
The greatest element 1 is interpreted as U(x).

Consider an equivalence relation E on dom(C):

E := {(ψ(x; p̄), ξ(x; q̄)) : ψ[S; p̄] = ξ[S; q̄]}.

Clearly, E is a congruence of C, and the quotient C/E is isomorphic to the
Boolean algebra B[S].

Hence, by the result of Odintsov and Selivanov, it is sufficient to show that
the relation E is Π0

1 . But this fact is obvious, since

ψ[S; p̄] = ξ[S; q̄] ⇔ (∀w ∈ dom(S))S |= ψ(w; p̄) ↔ ξ(w; q̄),

and the truth-checking of ψ(·; p̄) is realized by a computable procedure, which is
uniform in ψ and p̄. Therefore, we deduce that B[S] is isomorphic to a computable
Boolean algebra.

3.2 From (ii) To (i)

Let B be a computable atomic Boolean algebra. First, assume that B is
finite, and B contains precisely n atoms, where n ≥ 1. Then the structure
T := ({1, 2, . . . , n}; f1), where f(x) = x for all x, is polynomial-time. Each
of the subsets of dom(T ) is Δ0-definable, and this fact easily implies B[T ] ∼= B.

Hence, without loss of generality, we may assume that B is infinite. By ζ we
denote the order type of the integers. We prove the following auxiliary result:

Lemma 3.1 (folklore). Let B be a computable atomic infinite Boolean algebra.
Then there is a computable linear order L such that:

1. L is isomorphic to ζ · L1 for some Δ0
3-computable linear order L1, and



150 N. Bazhenov

2. the interval algebra Int(L) is isomorphic to B.

Proof (sketch). Consider the quotient algebra B1 := B/∼F . Since the structure
B is computable, the ideal F (B) is Σ0

2 , and hence B1 has a Δ0
3-computable pre-

sentation. Furthermore, since the algebra B is infinite, the structure B1 contains
at least two elements.

By a relativized version of Proposition 2.3, there is a Δ0
3-computable linear

order L1 such that Int(L1) ∼= B1. By Theorem 2a of [6], the order L := ζ · L1

has a computable presentation.
It is not hard to show that the algebra Int(L) is atomic, and the quotient

Int(L)/∼F is isomorphic to Int(L1). Since Int(L1) ∼= B/∼F , by Proposition 2.2,
we deduce that Int(L) is isomorphic to B. ��

Fix a computable linear order L from Lemma 3.1. By the result of Grigori-
eff [25], L has a polynomial-time presentation. Without loss of generality, we
may assume that L itself is polynomial-time.

We will show that the Boolean algebra B[L] is isomorphic to our structure B.
In order to obtain this, we prove the following:

Lemma 3.2. Let ψ(x; y1, . . . , yk) be a Σ formula, and let b̄ := b1, . . . , bk be a
tuple from L. Then the set ψ[L; b̄] is a finite union of intervals in L. In other
words, every Σ-definable subset of dom(L) is an element of the interval Boolean
algebra Int(L).

Proof. Let A := ψ[L; b̄]. Without loss of generality, we may assume that b1 <L
b2 <L · · · <L bk. For the sake of simplicity, we consider the case when k = 2.

It is sufficient to establish the following three facts:

(a) If A ∩ (−∞; b1) is non-empty, then there is an element c0 such that A ∩
(−∞; b1) is equal to “(−∞; c0) plus finitely many elements,” i.e. there is a
finite set F such that F ∩ (−∞; c0) = ∅ and A ∩ (−∞; b1) = (−∞; c0) ∪ F .

(b) If A ∩ [b1; b2) �= ∅, then there are c1 <L d1 such that A ∩ [b1; b2) equals
“[c1; d1) plus finitely many elements”.

(c) If A∩ [b2; +∞) �= ∅, then there is c2 such that A∩ [b2; +∞) equals “[c2; +∞)
plus finitely many elements”.

We give a detailed proof only for (b), since the other two claims can be obtained
in a similar way.

Suppose that the set A ∩ [b1; b2) is non-empty. Choose an arbitrary element
d ∈ A ∩ [b1; b2).

Recall that by Theorem 2.1, there is a computable sequence {ψ�(x; y1, y2)}�∈ω

of ∃-formulas in the signature {≤} such that inside L, the original Σ formula
ψ(x; y1, y2) is equivalent to the infinite disjunction

∨
�∈ω ψ�(x; y1, y2).

Without loss of generality, we may assume that L |= ψ0(d; b1, b2), and
ψ0 = ∃z1 . . . ∃ztξ(x; y1, y2; z̄), where the formula ξ is quantifier-free. Fix the
elements e1, . . . , et from L with ξ(d; b1, b2; e1, . . . , et).

In order to avoid bulky technicalities, we consider a particular case, which is
illustrative enough to recover all formal details: Suppose that t = 6 and e1 <L
b1 <L e2 <L e3 <L d <L e4 <L e5 <L b2 <L e6.



Definable Subsets of Polynomial-Time Algebraic Structures 151

Consider two sequences of ≤L-successive elements b1 <L f2 <L f3 <L f+
3

and f4 <L f5 <L b2. Since the formula ξ is quantifier-free, it is clear that every
element d′ satisfies the following:

f+
3 ≤L d′ <L f4 ⇒ L |= ξ(d′; b1, b2; e1, f2, f3, f4, f5, e6).

Therefore, we deduce that [f+
3 ; f4) ⊆ A and A ∩ [b1; b2) equals [f+

3 ; f4) plus
finitely many elements—these elements can be taken only from the finite set
{b1, f2, f3, f4, f5}.

It is not hard to see that the proof extends to the case of arbitrary t and
e1, . . . , et. Lemma 3.2 is proved. ��

Lemma 3.2 shows that every Σ-definable subset of dom(L) is an element of
Int(L). On the other hand, it is easy to see that every set A ∈ Int(L) is defin-
able by a quantifier-free formula (with parameters) inside L. Hence, we deduce
that dom(Int(L)) = P[L] = PΣ(L), and both structures B[L] and DΣ(L) are
isomorphic to the interval algebra Int(L). Recall that this algebra is isomorphic
to our B. Theorem 3.1 is proved. ��

4 Further Discussion

We leave open the following questions:

Problem 4.1. What are the isomorphism types of lattices PΣ [S] for polynomial-
time structures S? Note that the proof of Theorem 3.1 shows that all computable
atomic Boolean algebras can be realized as PΣ [S] for appropriate S.

One can modify the setting of Sect. 2, and consider only sets A ⊆ dom(S),
which are Δ0-definable without parameters (i.e. we explicitly forbid to use param-
eter tuples p̄ ∈ S in our Δ0 definitions). Again, these sets form a “parameter-free”
Boolean algebra Bpf [S] under usual set-theoretic operations.

Problem 4.2. What are the isomorphism types of Boolean algebras Bpf [S] for
polynomial-time structures S?

In general, the algebras Bpf [S] can be non-atomic. Indeed, consider a struc-
ture M which is defined as follows.

The signature of M contains a unary functional symbol f and a unary rela-
tional symbol R. The domain of M is equal to {aσ,k : σ ∈ {0, 1}<ω, σ �= Λ, k ∈
ω}. We put f(aσ,k) := aσ,k+1, and

M |= R(aσ,k) ⇔ k < length(σ) and σ(k) = 1.

It is not hard to build a polynomial-time presentation of M.

Proposition 4.1. The structure Bpf [M] is a countable atomless Boolean alge-
bra.



152 N. Bazhenov

Proof (sketch). In order to obtain the desired result, it is sufficient to establish
the following: Suppose that ψ(x) is a Σ formula without parameters such that
ψ[M] �= ∅. Then there is a parameter-free Δ0 formula ξ(x) such that both sets
ψ[M] ∩ ξ[M] and ψ[M]\ξ[M] are not empty.

By Theorem 2.1, there is a sequence {ψ�(x)}�∈ω of ∃-formulas in the signature
{f,R} such that inside M, our Σ formula ψ(x) is equivalent to the disjunction∨

�∈ω ψ�(x). Without loss of generality, we assume that ψ0[M] �= ∅.
Suppose that ψ0(x) = ∃y1 . . . ∃ynθ(x, y1, . . . , yn), where θ is quantifier-free.

Let p be the greatest natural number such that θ contains term fp(z) for some
z ∈ {x, y1, . . . , yn}.

Choose a tuple aσ,k, aτ1,m1 , . . . , aτn,mn
satisfying the formula θ(x, ȳ). Set q =

p + max{k,m1, . . . ,mn}. Then it is not difficult to show that the tuples

aσ 0̂q1,k, aτ1 0̂q1,m1 , . . . , aτn 0̂q1,mn
and aσ 0̂q+11,k, aτ1 0̂q+11,m1 , . . . , aτn 0̂q+11,mn

both satisfy θ. On the other hand, consider N = length(σ) + q − k. Then we
have

M |= R(fN (aσ̂0q1,k)) & ¬R(fN (aσ 0̂q+11,k)).

Therefore, the formula ξ(x) := R(fN (x)) has the desired properties. ��

Acknowledgements. The author is grateful to the anonymous reviewers for their
helpful suggestions.

References

1. Alaev, P., Selivanov, V.: Polynomial-time presentations of algebraic number fields.
In: Manea, F., Miller, R.G., Nowotka, D. (eds.) CiE 2018. LNCS, vol. 10936, pp.
20–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94418-0 2

2. Alaev, P.E.: Structures computable in polynomial time. I. Algebra Log. 55(6),
421–435 (2017). https://doi.org/10.1007/s10469-017-9416-y

3. Alaev, P.E.: Structures computable in polynomial time. II. Algebra Log. 56(6),
429–442 (2018). https://doi.org/10.1007/s10469-018-9465-x

4. Alaev, P.E., Selivanov, V.L.: Polynomial computability of fields of alge-
braic numbers. Dokl. Math. 98(1), 341–343 (2018). https://doi.org/10.1134/
S1064562418050137

5. Aleksandrova, S.A.: The uniformization problem for Σ-predicates in a hereditarily
finite list superstructure over the real exponential field. Algebra and Logic 53(1),
1–8 (2014). https://doi.org/10.1007/s10469-014-9266-9

6. Ash, C.J.: A construction for recursive linear orderings. J. Symb. Log. 56(2), 673–
683 (1991). https://doi.org/10.2307/2274709

7. Ash, C.J., Knight, J.F.: Computable Structures and the Hyperarithmetical Hier-
archy, Studies in Logic and the Foundations of Mathematics, vol. 144. Elsevier
Science B.V, Amsterdam (2000)

8. Barwise, J.: Admissible Sets And Structures. Springer, Berlin (1975)
9. Bazhenov, N., Downey, R., Kalimullin, I., Melnikov, A.: Foundations of online

structure theory. Bull. Symb. Log. 25(2), 141–181 (2019). https://doi.org/10.1017/
bsl.2019.20

https://doi.org/10.1007/978-3-319-94418-0_2
https://doi.org/10.1007/s10469-017-9416-y
https://doi.org/10.1007/s10469-018-9465-x
https://doi.org/10.1134/S1064562418050137
https://doi.org/10.1134/S1064562418050137
https://doi.org/10.1007/s10469-014-9266-9
https://doi.org/10.2307/2274709
https://doi.org/10.1017/bsl.2019.20
https://doi.org/10.1017/bsl.2019.20


Definable Subsets of Polynomial-Time Algebraic Structures 153

10. Bazhenov, N., Harrison-Trainor, M., Kalimullin, I., Melnikov, A., Ng, K.M.: Auto-
matic and polynomial-time algebraic structures. J. Symb. Log. 84(4), 1630–1669
(2019). https://doi.org/10.1017/jsl.2019.26

11. Cenzer, D., Remmel, J.: Polynomial-time versus recursive models. Ann. Pure Appl.
Log. 54(1), 17–58 (1991). https://doi.org/10.1016/0168-0072(91)90008-A

12. Cenzer, D., Remmel, J.B.: Complexity theoretic model theory and algebra. In:
Ershov, Y.L., Goncharov, S.S., Nerode, A., Remmel, J.B. (eds.) Handbook of
Recursive Mathematics: Volume 1: Studies in Logic and the Foundations of Mathe-
matics, vol. 138, pp. 381–513. North-Holland, Amsterdam (1998). https://doi.org/
10.1016/S0049-237X(98)80011-6

13. Cenzer, D.A., Remmel, J.B.: Polynomial-time Abelian groups. Ann. Pure Appl.
Log. 56(1–3), 313–363 (1992). https://doi.org/10.1016/0168-0072(92)90076-C

14. Ershov, Y.L.: Definability and Computability. Consultants Bureau, New York
(1996)

15. Ershov, Y.L., Goncharov, S.S.: Constructive Models. Kluwer Academic/Plenum
Publishers, New York (2000)

16. Ershov, Y.L., Puzarenko, V.G., Stukachev, A.I.: HF -computability. In: Cooper,
S.B., Sorbi, A. (eds.) Computability in Context, pp. 169–242. Imperial College
Press, London (2011). https://doi.org/10.1142/9781848162778 0006

17. Fröhlich, A., Shepherdson, J.C.: Effective procedures in field theory. Philos. Trans.
Roy. Soc. Lond. Ser. A 248(950), 407–432 (1956). https://doi.org/10.1098/rsta.
1956.0003

18. Goncharov, S., Ospichev, S., Ponomaryov, D., Sviridenko, D.: The expressiveness of
looping terms in the semantic programming. Sib. Elektron. Mat. Izv. 17, 380–394
(2020). https://doi.org/10.33048/semi.2020.17.024

19. Goncharov, S.S.: Countable Boolean Algebras and Decidability. Consultants
Bureau, New York (1997)

20. Goncharov, S.S.: Conditional terms in semantic programming. Sib. Math. J. 58(5),
794–800 (2017). https://doi.org/10.1134/S0037446617050068

21. Goncharov, S.S., Sviridenko, D.I.: Theoretical aspects of Σ-programming. In: Bibel,
W., Jantke, K.P. (eds.) MMSSS 1985. LNCS, vol. 215, pp. 169–179. Springer,
Heidelberg (1986). https://doi.org/10.1007/3-540-16444-8 13

22. Goncharov, S.S., Sviridenko, D.I.: Σ-programming. Am. Math. Soc. Transl. Ser. 2
142, 101–121 (1989). https://doi.org/10.1090/trans2/142/10

23. Goncharov, S.S., Sviridenko, D.I.: Recursive terms in semantic programming. Sib.
Math. J. 59(6), 1014–1023 (2018). https://doi.org/10.1134/S0037446618060058

24. Goncharov, S.S., Sviridenko, D.I.: Logical language of description of polyno-
mial computing. Dokl. Math. 99(2), 121–124 (2019). https://doi.org/10.1134/
S1064562419020030

25. Grigorieff, S.: Every recursive linear ordering has a copy in DTIME-
SPACE(n, log(n)). J. Symb. Log. 55(1), 260–276 (1990). https://doi.org/10.2307/
2274966

26. Kalimullin, I., Melnikov, A., Ng, K.M.: Algebraic structures computable without
delay. Theor. Comput. Sci. 674, 73–98 (2017). https://doi.org/10.1016/j.tcs.2017.
01.029

27. Konovalov, A., Selivanov, V.: The Boolean algebra of piecewise testable languages.
In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds.) CiE 2016. LNCS, vol. 9709, pp.
292–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40189-8 30

28. Korovina, M.V.: Generalized computability of real functions. Sib. Adv. Math. 2(4),
85–103 (1992)

https://doi.org/10.1017/jsl.2019.26
https://doi.org/10.1016/0168-0072(91)90008-A
https://doi.org/10.1016/S0049-237X(98)80011-6
https://doi.org/10.1016/S0049-237X(98)80011-6
https://doi.org/10.1016/0168-0072(92)90076-C
https://doi.org/10.1142/9781848162778_0006
https://doi.org/10.1098/rsta.1956.0003
https://doi.org/10.1098/rsta.1956.0003
https://doi.org/10.33048/semi.2020.17.024
https://doi.org/10.1134/S0037446617050068
https://doi.org/10.1007/3-540-16444-8_13
https://doi.org/10.1090/trans2/142/10
https://doi.org/10.1134/S0037446618060058
https://doi.org/10.1134/S1064562419020030
https://doi.org/10.1134/S1064562419020030
https://doi.org/10.2307/2274966
https://doi.org/10.2307/2274966
https://doi.org/10.1016/j.tcs.2017.01.029
https://doi.org/10.1016/j.tcs.2017.01.029
https://doi.org/10.1007/978-3-319-40189-8_30


154 N. Bazhenov

29. Mal’tsev, A.I.: Constructive algebras. I. Russ. Math. Surv. 16(3), 77–129 (1961).
https://doi.org/10.1070/RM1961v016n03ABEH001120

30. Melnikov, A.G.: Eliminating unbounded search in computable algebra. In: Kari,
J., Manea, F., Petre, I. (eds.) CiE 2017. LNCS, vol. 10307, pp. 77–87. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-58741-7 8

31. Melnikov, A.G., Ng, K.M.: The back-and-forth method and computability without
delay. Isr. J. Math. 234(2), 959–1000 (2019). https://doi.org/10.1007/s11856-019-
1948-5

32. Montalbán, A.: Computable structure theory: within the arithmetic. https://math.
berkeley.edu/∼antonio/CSTpart1.pdf

33. Nerode, A., Remmel, J.B.: Polynomial time equivalence types. In: Sieg, W. (ed.)
Logic and Computation, Contemporary Mathematics, vol. 106, pp. 221–249. Amer-
ican Mathematical Society, Providence (1990). https://doi.org/10.1090/conm/
106/1057825

34. Odintsov, S.P., Selivanov, V.L.: Arithmetic hierarchy and ideals of enumerated
Boolean algebras. Sib. Math. J. 30(6), 952–960 (1989). https://doi.org/10.1007/
BF00970918

35. Ospichev, S., Ponomarev, D.: On the complexity of formulas in semantic program-
ming. Sib. Elektron. Mat. Izv. 15, 987–995 (2018). https://doi.org/10.17377/semi.
2018.15.083

36. Rabin, M.O.: Computable algebra, general theory and theory of computable fields.
Trans. Am. Math. Soc. 95(2), 341–360 (1960). https://doi.org/10.2307/1993295

37. Selivanov, V., Konovalov, A.: Boolean algebras of regular languages. In: Mauri, G.,
Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 386–396. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22321-1 33

38. Selivanov, V., Konovalov, A.: Boolean algebras of regular ω-languages. In: Dediu,
A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 504–
515. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37064-9 44

39. Vajtsenavichyus, R.: On necessary conditions for the existence of a universal func-
tion on an admissible set. Mat. Logika Primen. 6, 21–37 (1989). in Russian

https://doi.org/10.1070/RM1961v016n03ABEH001120
https://doi.org/10.1007/978-3-319-58741-7_8
https://doi.org/10.1007/s11856-019-1948-5
https://doi.org/10.1007/s11856-019-1948-5
https://math.berkeley.edu/~antonio/CSTpart1.pdf
https://math.berkeley.edu/~antonio/CSTpart1.pdf
https://doi.org/10.1090/conm/106/1057825
https://doi.org/10.1090/conm/106/1057825
https://doi.org/10.1007/BF00970918
https://doi.org/10.1007/BF00970918
https://doi.org/10.17377/semi.2018.15.083
https://doi.org/10.17377/semi.2018.15.083
https://doi.org/10.2307/1993295
https://doi.org/10.1007/978-3-642-22321-1_33
https://doi.org/10.1007/978-3-642-37064-9_44


Families of Monotonic Trees:
Combinatorial Enumeration

and Asymptotics

Olivier Bodini1, Antoine Genitrini2(B), Mehdi Naima1(B),
and Alexandros Singh1

1 Université Sorbonne Paris Nord, Laboratoire d’Informatique de Paris Nord,
CNRS, UMR 7030, 93430 Villetaneuse, France

{Olivier.Bodini,Mehdi.Naima,Alexandros.Singh}@lipn.univ-paris13.fr
2 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6 -LIP6- UMR

7606, 75005 Paris, France
Antoine.Genitrini@lip6.fr

Abstract. There exists a wealth of literature concerning families of
increasing trees, particularly suitable for representing the evolution of
either data structures in computer science, or probabilistic urns in math-
ematics, but are also adapted to model evolutionary trees in biology. The
classical notion of increasing trees corresponds to labeled trees such that,
along paths from the root to any leaf, node labels are strictly increasing;
in addition nodes have distinct labels. In this paper we introduce new
families of increasingly labeled trees relaxing the constraint of unicity of
each label. Such models are especially useful to characterize processes
evolving in discrete time whose nodes evolve simultaneously. In particu-
lar, we obtain growth processes for biology much more adequate than the
previous increasing models. The families of monotonic trees we introduce
are much more delicate to deal with, since they are not decomposable in
the sense of Analytic Combinatorics. New tools are required to study the
quantitative statistics of such families. In this paper, we first present a
way to combinatorially specify such families through evolution processes,
then, we study the tree enumerations.

Keywords: Analytic Combinatorics · Asymptotic enumeration ·
Increasing trees · Monotonic trees · Borel transform · Evolution process

1 Introduction

An increasing tree is a rooted tree whose nodes are labeled by integers in
{1, . . . , n}, n being the number of nodes in the tree. Furthermore, each label
appears exactly once and, along each branch, the sequence of labels is strictly
increasing. Families of such increasing trees have been the subject of many

This work was also supported by the anr projects Metaconc ANR-15-CE40-0014.
c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 155–168, 2020.
https://doi.org/10.1007/978-3-030-50026-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_11&domain=pdf
https://doi.org/10.1007/978-3-030-50026-9_11


156 O. Bodini et al.

studies, owing to their wide applicability to representing data structures in com-
puter science, probabilistic urn models in mathematics, and evolutionary trees
in biology.

For example, in the analysis of algorithms and data structures, the study
of increasing trees is useful in understanding the typical behavior of heaps and
search trees (see [7]). In the study of permutations, increasing trees found usage
in illuminating the behavior of local order patterns in permutations (see, for
example, [6]). In biology, increasing trees find application as models of phy-
logenetic trees which, apart from encoding the relations between species, also
encode temporal information in a way such that it encodes the history of some
evolutionary process (see [5]). For a detailed and generic analysis of families of
increasing trees, see [1]. A study of combinatorial differential equations related
to various enumerative aspects of increasing trees, including path length enumer-
ation for general increasing trees and enumeration of enriched increasing trees
with respect to node height is presented in [11].

Increasingly labeled tree structures have also been studied in [15] under the
guise of monotone functions of tree structures. These are mappings f from the
nodes of a tree t to the set {1, . . . , k} such that if ai is the child of aj , then
f(ai) ≥ f(aj). The authors studied this labelling on t-ary, plane and non-plane
trees. Other authors studied this scheme on different tree models like Motzkin
trees in [2]. The typical shapes of these trees have been studied in [10,12]. A
good summary can be found in the thesis presented in [13]. Note that, unlike
the case of increasing trees, this model allows labels of {1, . . . , k} to appear any
number of times, including zero times.

A related model, rooted increasing m-ary trees with label repetitions, also
allowing multiple nodes to have the same label, appeared in [4] and can be seen
as the foundations of our following new study that widely extends the latter
model. These models of increasing trees are related to evolution processes in
discrete time: starting from a single leaf, a tree is grown by selecting at each
time-step a leaf and replacing it by an internal node to which new leaves are
attached. By allowing at each step multiple leaves to be expanded in parallel,
the authors thus obtain trees with label repetitions. Interpreting the evolution
process they establish functional equations satisfied by the enumerating series
of their model. But these series are purely formal: their radius of convergence
is 0, thus the use of direct analytic methods to solve the equations is non-viable.
For the analysis of the series, an approximate Borel transform is used and then
arguments based on the asymptotics of certain differential equations give the
asymptotic behavior for the tree enumeration.

In our work we extend the study of [4], presenting a generic framework for an
even more general class of combinatorial structures; in particular by relaxing the
restrictions on node degrees (more precisely node out-degree in graph theory)
and by allowing also for weakly increasing labeling sequences along branches of
the trees. We study the following broad classes:

– Strictly monotonic trees: rooted trees T whose internal nodes are labeled with
integers such that the root is labeled by 1 and along each branch the sequence



Families of Monotonic Trees 157

of labels is strictly increasing. We also require that if � is the greatest label in
T , then all integers from 1 to � also appear as labels of some internal nodes.
Finally, we take the size of a tree to be its number of leaves.

– Monotonic trees: these are as above, except that in this case we allow for
weakly increasing sequences of labels along each branch.

The plan of the paper is as follows. We conclude this section with the for-
malization of our problem and the exact statement of the results of the paper.
Section 2 is then dedicated to the presentation of a number of applications in
our framework. In Sect. 3 we present a detailed discussion of the combinatorial
and asymptotic properties of the model we have quickly described above. This
includes the derivation of a recurrence relation for such families of trees and
a general asymptotic analysis of the recurrence relation. We then conclude the
paper with a discussion of open problems and potential future directions.

To formalize the previous description, we recall the notion of a degree func-
tion, (following [1]), which in our case describes the tree evolution.

Degree Function. We define a degree function to be a power series of the form1

φ(z) =
∑

i≥1 φiz
i. Combinatorially they are interpreted in one of two following

ways, depending on how we see the integer non-negative values φi. Firstly, we
can interpret φi, i ≥ 2, as the number of possible colors of a node of degree
i. In this context the objects of study will correspond to the aforementioned
strictly monotonic trees (these also include the so-called weakly increasing trees
of [4,5]). Alternatively, the coefficients φi, i ≥ 2, can be seen as the number of
trees with i leaves belonging to some class of plane rooted unlabeled trees (in
the sequel, we will refer to elements of such classes as tree-shapes). In this second
context the objects that we will construct are monotonic trees as defined above.
In both contexts, φ1 must be interpreted carefully, owing to the definition of the
evolutionary process below: (φ1 − 1) corresponds either to the number of colors
for unary nodes or to the number of unlabeled trees of size 1 in the corresponding
plane rooted unlabeled tree class. Using this notion of a degree function we can
now define the following evolution process.

Evolution Process. Given some degree function φ with φ1 = 1, the following
evolution process generates a strictly monotonic tree. The process starts at time-
step 0 with a single leaf and at each time-step i ≥ 1 is as follows:

1. Choose a non-empty subset L of leaves of the so-far built tree.
2. For each leaf � ∈ L choose an admissible degree and color (r, c), r > 1, φr > 0

and one of its colors 1 ≤ c ≤ φr.
3. Replace each leaf � with an internal node labeled by i with color c and having

r new leaves attached to it.

In order to generate monotonic trees, in which case the coefficients of φ(z) are
alternatively interpreted as enumerating tree-shapes rather than node colors, a
slight modification of the above process is required: at each iteration step i, each
1 We take φ0 = 0 in anticipation of our model.



158 O. Bodini et al.

1

1 1

2 1

2 3

62 4

4

5 7

8

9

9

1

2

7 3

4 6

5

8

3

3

2

1
1

1 1

2

2

3 3

3

3

Fig. 1. (first) A monotonic binary tree of size 17; (second) a strictly monotonic binary
tree of size 9; (third) a strictly monotonic tree of size 6, with φ(z) = z + 2z2 + 2z3;
(fourth) a monotonic 2-3 tree of size 11: highlighted sub-trees shapes are the substitu-
tion of some step in the evolution process

selected leaf is replaced by a tree-shape, rather than a colored internal node, and
all internal nodes of this tree-shape are labeled by i.

Remark 1. If unary nodes are allowed, i.e., if we have φ1 > 1, at the end of each
iteration step we can choose any subset of the unselected leaves (the ones that
were present at the previous step and not newly-added during the current step)
and expand each into a unary node with the desired color/shape.

Translating the above process using the framework of the symbolic method
(see [7]), we obtain the following functional relation for the ordinary generating
function B enumerating trees built via the evolution process based on a degree
function φ:

B(z) = z + B (φ(z)) − B (φ1z) . (1)

Alternatively, the aforementioned evolution process may be expressed in
terms of a function equation for B(z) as

B(z) = z +
∞∑

n=1

zn

n!
B(n)(z) (φ(z) − z)n .

where B(k)(z) is the k-th derivative of B(z). The n-th term of the sum represents
the process of pointing at n leaves and substituting each by an element of the
class represented by φ. Note that the order in which we choose the leaves is
irrelevant and so we divide by n!.

Remark 2. This last formulation with a sum works when φ1 = 1 (i.e there are
no unary nodes allowed).

The process is defined for φ1 ≥ 1, but it is worth noting that when φ1 = 0 we
get families of balanced trees (all the leaves are at the same level). Meanwhile
when φ1 = 1 we have trees with no unary nodes. Finally when φ1 > 1 we



Families of Monotonic Trees 159

have (φ1 − 1) colors for unary nodes. More details will be given in Sect. 3. The
generating series solution of the above functional relation are invariably purely
formal, having radius of convergence equal to zero.

See Fig. 1 (first) and (second) for examples of, respectively a monotonic and
a strictly monotonic binary tree.

We partition our analysis in two parts according to the value φ1 of the degree
function. Let Bφ

n be the number of trees of size n built via the evolution process.

Theorem 1. Let φ(z) be such that φ1 = 1, φ2 ≥ 1 and ∀i ≥ 3, φi ≤ iφi−1. Then

Bφ
n ∼ κφ (n − 1)!

(
φ2

ln 2

)n

n

(
−1+

φ3
φ22

)
ln 2

.

Theorem 2. Let φ(z) be such that φ1 > 1, φ2 ≥ 1 and ∀i ≥ 3, φi ≤ iφi−1. Then

Bφ
n ∼ κφ φ

(n−1)(n−2)
2

1 (n − 1)! φ2
n.

In both cases κφ is a positive constant defined through an implicit equation.
It is of interest to note that the presence (or not) of unary nodes radically

affects the asymptotic regime and that the first-order behavior of the asymptotics
depends only on the first few terms of the degree function φ(z) (φ2 and φ3 for the
first case and φ1, φ2 for the second). Finally the technical conditions φi ≤ i! φ2

are not sharp but they are good enough for all practical applications.
As mentioned above, our scheme encompasses some classical tree models.

For instance the models of balanced 2-3 trees and their generalization, the 2-3-4
trees, are obtained with φ(z) = z2 + z3 and φ(z) = z2 + z3 + z4 respectively.
Note in both cases we have φ1 = 0. The model of 2-3 trees has been introduced
by Hopcroft as an efficient data structure and their asymptotics enumeration
was given by Odlyzko [14]. In fact when φ1 = 0 it is possible to obtain the
exponential growth of these structures by computing the fixed point of φ(z),
after which the asymptotic enumeration can usually be obtained by means of
singularity analysis. In this paper we are interested in the cases where φ1 > 0,
which leads to different asymptotic regimes, see Fig. 2.

Fig. 2. Some known combinatorial classes specifiable via Eq. (1), with different φ1

which results in different asymptotic scales. The function Ω is a periodic function with
mean (φ ln(4− φ))−1 and φ = 1+

√
5

2
. Here “S. M.” stands for “Strictly Monotonic”.



160 O. Bodini et al.

2 Applications

We now exhibit examples of asymptotic enumeration for a number of interesting
combinatorial structures. These are a direct application of the results presented
in this paper.

Strictly Monotonic Trees

Example 1. Consider the class T with φ(z) = z + z2 + z3. The first few values
of Tn are:

0, 1, 1, 3, 12, 68, 482, 4122, 41253, 472795, . . .

Asymptotically by Theorem 1, we have Tn ∼ κ (n − 1)!
(

2
ln 2

)n

with κ ≈ 0.41.

Fig. 3. An example of the change in behavior of the asymptotics for different classes
of our model. Here “S. M.” stands for “Strictly Monotonic”.

This example is of interest as it indicates where the change of asymptotic
behavior occurs when one varies the allowed node arities, going from binary
trees with label repetitions (see [4]) to weakly increasing Schröder trees (see [5])
(with arbitrary arity of nodes).

The above example shows that the addition of just z3 to φ(z) = z+z2 already
results in a vanishing of the polynomial factor. Therefore adding higher powers
of z to φ(z) only affects the constant term. See also Fig. 3. As a further example,
consider the class of such trees having binary nodes of two colors and ternary
nodes again of two colors (see Fig. 1 (third)). By straightforward application of
Theorem 2 we obtain the following.

Example 2. Consider the class T with φ = z +2z2 +2z3. The first few values of
Tn are:

0, 1, 2, 10, 76, 804, 10800, 176240, 3384176, 74744016, 1866432032 . . .

Asymptotically, we have that, Tφ,n ∼ κ (n − 1)!
(

2
ln 2

)n

n
− ln 2

2 with κ ≈ 0.27.

Monotonic Trees
Let T be some family of unlabeled rooted plane trees. We will denoted by

MT the corresponding family of monotonic trees, i.e trees in T that have been
labeled according to the rules for monotonic trees.

For example, consider the class of monotonic binary-ternary trees (see Fig. 1
(fourth)).



Families of Monotonic Trees 161

Example 3. Consider the class BT of rooted plane binary-ternary unlabeled trees
(whose size is their number of leaves). The specification of this class is

BT = Z + Seq{2,3}BT ,

where the first terms are BT (z) = z+z2+3z3+10z4+38z5+154z6+ . . . . Then
the first few values of MBT n, i.e., the number of monotonic binary-ternary trees
with n leaves, are

0, 1, 1, 5, 32, 252, 2340, 25048, 303862, 4121730, . . .

By applying Theorem 1, MBT n ∼ κ (n − 1)!
(

1
ln 2

)n

n2 ln 2 with κ ≈ 0.17

(Fig. 4).

Example 4. Let S be the class of Schröder trees (all arities except unary are
allowed) which has the following specification,

S = Z + Seq≥2S.

By solving the above equation, we have S(z) = 1
4 (1 + z −

√
1 − 6z + z2). The

first terms of S(z) are z + z2 +3z3 +11z4 +45z5 +197z6 + . . . . Hence, the first
values of MSn, i.e., the number of monotonic Schröder trees with n leaves, are

0, 1, 1, 5, 33, 265, 2497, 27017, 330409, 4510065, . . .

By Theorem 1 we have MSn ∼ κ (n − 1)!
(

1
ln 2

)n

n2 ln 2 with κ ≈ 0.19.

Fig. 4. Comparison of the asymptotic behavior of increasing Schröder trees (where
strongly increasing Schröder trees are increasing Schröder without label repetitions).

Monotonic M-ary Trees
It is a fact that our specification, by construction, enumerates families of

trees by number of leaves. However there exists a special case, that of monotonic
m-ary trees (MT where T is a variety of rooted plane m-ary trees), where our
specification also allows for enumeration by number of internal nodes. In this
specific case then, we are also able to enumerate by number of internal nodes
since any m-ary tree with k leaves has (k − 1)/(m − 1) internal nodes.

As an example, we consider the case of monotonic binary trees (see for exam-
ple Fig. 1). In this case we obtain the following.



162 O. Bodini et al.

Example 5. Let C be the class of plane binary trees with size equal to the number
of leaves, given by C = Z + C2. These are counted by shifted Catalan numbers.
By solving the above equation we find that C(z) = 1−√

1−4z
2 . Then the first few

values of MCn, i.e the number of monotonic binary trees with (n − 1) internal
nodes and n leaves, are

0, 1, 1, 4, 22, 152, 1264, 12304, 137332, 1729584, . . .

By Theorem 1, we have that MSn ∼ κ (n − 1)!
(

1
ln 2

)n

nln 2 with κ ≈ 0.34

(Fig. 5).

Fig. 5. Comparison of the asymptotic behavior between 3 classes of increasing binary
trees.

3 Combinatorial Model and Asymptotic Analysis

Using the above functional equation we can directly obtain the following recur-
rence:

B1 = 1,
Bn =

∑n−1
k=1

(∑n−k
i=1 φn−k−i

1

(
n−k

i

)
[zk+i] (φ(z) − φ1z)

i
)

Bn−k.
(2)

Let us define Tn(n − k) =
∑n−k

i=1 φn−k−i
1

(
n−k

i

)
[zk+i] (φ(z) − φ1z)

i. We can then
rewrite Bn =

∑n−1
k=1 Tn(n − k)Bn−k. In essence the coefficients of Tn(n − k)

represent the number of different combinations for a tree of size n − k to be
made into a tree of size n by a subset of leaves into internal nodes that contains
new leaves. The recurrence in Eq. (2) can be used to iterate on the specification
and get the first few coefficients for a combinatorial class. It is also possible to
write another recurrence for Bn which involves sums over integer partitions.

Proof Sketch of Theorem 1

The evolution process, cf. Eq. (1), that we study translates to generating func-
tions which has a null convergence radius. Therefore its study needs a more
elaborate approach. We present here a summary of our approach for the proof
in 6 points:

1. Performing a Borel transform by rescaling coefficients by n!.
2. Exhibit the dominant coefficients in the rescaled recurrence.



Families of Monotonic Trees 163

3. Find two new recurrences for the upper bound and the lower bound of bn.
4. Write a new recurrence for the rescaled coefficients with a remainder term.
5. Deduce from it a linear differential equation.
6. Deduce the asymptotic behavior of the differential equation and determine

the growth conditions on φ(z) necessary for the asymptotic to hold.

Let us carry on with the aforementioned plan, by first defining the following
rescaled version of Bn:

bn =
Bn

n!
From this we see that Bn = n!bn. Formally, this gives the following,

bn =
n−1∑

k=1

tn(n − k)bn−k (3)

where tn(i) is a sum of terms representing the different ways for a tree of size i
to be made into a tree of size n by expanding some leaves into internal nodes
with new leaves which all get the same label. These terms are each multiplied by
k!
n! due to the transform we have just performed. We notice also that the result
are of power j ≤ 0 in terms of n. To wit, the first few terms Tn(n−1), Tn(n−2)
transform (under Borel transforms) to tn(n − 1), tn(n − 2), as follows:

Tn(n − 1)Bn−1 =φ2(n − 1)Bn−1
Borel−→ φ2(n − 1)

(n − 1)!
n!

bn−1 = tn(n − 1)bn−1

Tn(n − 2)Bn−2 =
[
φ2
2(n − 2) (n − 3)

2
+ φ3 (n − 2)

]

Bn−2

Borel−→
[
φ2
2(n − 2)(n − 3)
2n(n − 1)

+
φ3(n − 2)
n(n − 1)

]

bn−2 = tn(n − 2)bn−2

The coefficients tn(n − k) are sums whose terms look like fn(φ, k) pk(n)
n(n−1)...(k+1)

where p is a polynomial in n of order at most k and f is a function which includes
a ratio between the product of of elements of φ(z) divided by some factorial of k.

The highest order polynomial is of order k and appears in the case where all
leaves were replaced with binary nodes. In this case the corresponding term of
tn−k is φk

2 (n−k)...(n−2k+1)
k! n(n−1)...(n−k+1) which is of power 0 in n, as can be seen in the above

example.
Our method of determining the dominant coefficients is based on a combi-

natorial argument. Nodes of lowest degree are the ones that count most, as the
tree will have many permutations to create a lot of other trees of the same size.

Proposition 1. For k ∈ {1, . . . , n − 1} the terms in tn(n − k) of order 0 in
n are

φk
2(n − k)

k! n
.



164 O. Bodini et al.

Proof. From the discussion above, the term of highest order in n is tn(n − k) is
(for k ∈ {
n

2 �, . . . , n − 1}):

φk
2(n − k) . . . (n − 2k + 1)

k! n(n − 1) . . . (n − k + 1)
.

It is then possible to factor out the desired term by making a polynomial division
with two polynomials having the same order. The quotient is equal to 1 and we
have a remainder term. �

Proposition 2. For k ∈ {2, . . . , n − 1} the terms in tn(n − k) of order n−1 are
the following

φk−2
2 φ3

(k − 1)!(n − k + 1)
− φk

2

(k − 2)! (n − k + 1)
.

Proof. The term of second highest order in n is tn(n − k) is:

φk−1
2 φ3(n − k) . . . (n − 2k + 2)

(k − 2)! n(n − 1) . . . (n − k + 1)
(for k ∈ {�n

2
�, . . . , n − 2} ).

We should also take the second order term of φk
2 (n−k)...(n−2k+1)

k! n(n−1)...(n−k+1) into account,
since it involves a term of order −1 in n. �

From here by reasoning on the recurrence relation it is possible to conclude:

Proposition 3. Under the conditions of Theorem 1 on φ(z), the following holds:

bn = Θ

((
φ2

ln 2

)n

n

(
−1+

φ3
φ22

)
ln 2

)

.

Proof. The proof can be made upon finding upper and lower bounds on the
coefficients tn(k) and translating the results to linear differential equations from
which asymptotic behavior can be determined. �

The last result does not give the asymptotic equivalent of the first order. For now
we do not know if the function oscillates or not. We can write a new recurrence
for bn

bn =
n−1∑

k=2

(
φk
2

k!
+

φk−2
2 φ3

(k − 1)!(n − k + 1)
− φk

2

(k − 2)!(n − k + 1)

)

bn−k

+ φ2bn−1 + an.

where an groups all omitted terms.
We can now determine the linear differential equation satisfied by b(z), using

the above recurrence, in which the coefficients transform into corresponding
terms of the differential equation by simple manipulations as follows



Families of Monotonic Trees 165

φk
2 (n − k)

k! n
bn → φk

2

k!

∫ z

0

zkb′(z) dz;

φk−2
2 φ3

(k − 1)!(n − k + 1)
bn → φk−2

2 φ3 zk−1

(k − 2)!

∫ z

0

b(z) dz;

−φk
2

(k − 2)!(n − k + 1)
bn → −φk

2 zk−1

(k − 2)!

∫ z

0

b(z) dz; and an translates into a(z).

From the above we can derive the following integral form for b(z)

b(z) =

z∫

0

(
eφ2z − 1

)
b′(z) dz + (zφ3 − φ2

2z)eφ2z

z∫

0

b(z) dz + a(z).

By differentiating the latter equation once we obtain
(
eφ2z − 2

)
b′(z) + (zφ3 − φ2

2z)eφ2zb(z) + ã(z) (4)

where ã(z) = a′(z) +
(
(zφ3 − φ2

2z)eφ2z
)′ ∫ z

0
b(z) dz. Note that the second term

in ã(z) is of smaller order than the first two terms of Eq. (4).
Our problem has been transformed now into a more classical one where we

have a linear differential equation with a regular singularity. The asymptotic
behavior can be found by applying some classical theorems with some additional
computations. The generic solution to the related homogeneous differential equa-
tion (

eφ2z − 2
)
y′(z) + (zφ3 − φ2

2z)eφ2zy(z) = 0

is y(z) = Cg(z) with g(z) as follows

g(z) = C ·
(
2 − eφ2z

)ln 2(
φ2
2−φ3
φ2
2

)
e
−

(
φ2
2−φ3
φ2
2

)(
(ln 2)2+Li2

(
exp(φ2z)

2

))
,

where the function Li2(z) stands for the dilogarithm function. Then, by variation
of constants we obtain C ′(z) · exp(φ2z − 2)g(z) = ã(z) and hence, as b0 is 0,

b(z) = g(z)

z∫

0

ã(t)
(eφ2t − 2)g(t)

dt.

In the following all the constants are positive. By the theory of complex
linear differential equations studied in [9] and [16] and a good summary of the
theorems in [7] we can deduce that y(z) has a regular singular point at z = ln 2

a ,
around it can be expanded as

y(z) ∼
z→ ln 2

φ2

κ′
(

z − ln 2
φ2

)
(
1− φ3

φ22

)
ln 2

, for some constant κ′.



166 O. Bodini et al.

Therefore the expansion of g(z) satisfies

g(z) ∼
z→ ln 2

φ2

κ

(

z − ln 2
φ2

)
(
1− φ3

φ22

)
ln 2

, for some constant κ.

Now that we have the singular expansion of g(z). We need to understand how

the integral
z∫

0

ã(t)
(eφ2t−2)g(t)

dt affects the main order asymptotic. And it will turn

out that these integral is bounded depending on the growth of the coefficients
of φ(z) as stated in the Theorem 1.

Proposition 4. If the integral
z∫

0

ã(t)
(eφ2t−2)g(t)

dt is bounded as z → ln(2)
φ2

, then

bn ∼ α

(
φ2

ln 2

)n

n
−1+

(
−1+

φ3
φ22

)
ln 2 with α = κ

∫ ln 2
φ2

0

ã(t)
(eφ2t − 2)g(t)

dt.

The proof is based on the coefficients of the Cauchy product of g(z) and the
integral. We end the proof with a lemma that shows under which conditions on
φ(z) the integral is bounded.

Lemma 1. If φ(z) fulfills the conditions of Theorem 1, then ãn = O
(

gn

nε

)
, which

in turn implies that the integral

ln 2
φ2∫

0

ã(t)
(eat−2)g(t)dt is bounded.

Proof. For the first implication, the result follows from Proposition 3 and a
subsequent estimate on an. For the second implication we use the following
argument. Let us denote β =

(
−1 + φ3

φ2
2

)
ln 2. We notice that

1
(eat − 2)g(t)

∼
z→ ln 2

a

c

(

z − ln 2
a

)−β

,

for some constant c. Furthermore, the coefficients of ã(z) are bounded above by
some an = [zn]c′ (z − ln 2

a

)β−ε
, with some constant c′. Finally, we get

[zn]
ã(t)

(eφ2t − 2)g(t)
∼

z→ ln 2
a

O
(
n−ε

)

and therefore

[zn]

ln 2
φ2∫

0

ã(t)
(eφ2t − 2)g(t)

∼
z→ ln 2

a

O
(
n−ε−1

)
.

�

From Lemma 1, if φ(z) fulfills the conditions, then the integral is bounded and
the result holds.



Families of Monotonic Trees 167

4 Conclusion

We have presented an evolution-process-based framework for specifying and
counting families of increasing trees allowing for label repetitions and weakly-
increasing sequences of labels along branches. Specifically, we have shown that
under most interesting cases only binary and ternary do count in the main order
asymptotic (unary and binary if unary nodes are allowed).

In this paper we discuss the case, where the coefficients of the degree function
grow less rapidly than the process itself. Therefore, an interesting direction to
pursue would be to have a full characterization of the asymptotic behavior of
these processes depending on φ(z) for the other two cases. This analysis naturally
follows from further applying the notions we have presented in this work.

Furthermore, the tools developed in this work may provide a novel way to
approach the study of other structures of interest, such as linear λ-terms (see [3]),
whose specifications also make critical use of the composition operation.

Acknowledgment. We thank Stephan Wagner for a fruitful discussion about the
relationship of an involved proof of this paper and the article [8]. Furthermore we
are grateful for the anonymous reviewers whose comments and suggestions helped
improving and clarifying this manuscript.

References

1. Bergeron, F., Flajolet, P., Salvy, B.: Varieties of increasing trees. In: Raoult, J.-C.
(ed.) CAAP 1992. LNCS, vol. 581, pp. 24–48. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-55251-0_2

2. Blieberger, J.: Monotonically labelled Motzkin trees. Discrete Appl. Math. 18(1),
9–24 (1987)

3. Bodini, O., Gardy, D., Gittenberger, B., Jacquot, A.: Enumeration of generalized
BCI lambda-terms. Electr. J. Comb. 20(4), P30 (2013)

4. Bodini, O., Genitrini, A., Gittenberger, B., Wagner, S.: On the number of increas-
ing trees with label repetitions. Discrete Math. (2019, in press). https://doi.org/
10.1016/j.disc.2019.111722

5. Bodini, O., Genitrini, A., Naima, M.: Ranked Schröder trees. In: 2019 Proceed-
ings of the Sixteenth Workshop on Analytic Algorithmics and Combinatorics
(ANALCO), pp. 13–26. SIAM (2019)

6. Flajolet, P., Gourdon, X., Martínez, C.: Patterns in random binary search trees.
Random Struct. Algorithms 11(3), 223–244 (1997)

7. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
Cambridge (2009)

8. Genitrini, A., Gittenberger, B., Kauers, M., Wallner, M.: Asymptotic enumeration
of compacted binary trees of bounded right height. J. Comb. Theory Ser. A 172
(2020). https://doi.org/10.1016/j.jcta.2019.105177

9. Henrici, P.: Applied and Computational Complex Analysis, Volume 2. Pure and
Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and
Tracts. Wiley, Hoboken (1974)

10. Kirschenhofer, P.: On the average shape of monotonically labelled tree structures.
Discrete Appl. Math. 7(2), 161–181 (1984)

https://doi.org/10.1007/3-540-55251-0_2
https://doi.org/10.1007/3-540-55251-0_2
https://doi.org/10.1016/j.disc.2019.111722
https://doi.org/10.1016/j.disc.2019.111722
https://doi.org/10.1016/j.jcta.2019.105177


168 O. Bodini et al.

11. Mendez, M.A.: Combinatorial differential operators in: Faa di Bruno formula, enu-
meration of ballot paths, enriched rooted trees and increasing rooted trees. Tech-
nical report. arXiv:1610.03602 [math.CO], Cornell University (2016)

12. Morris, K.: On parameters in monotonically labelled trees. In: Drmota, M., Flajo-
let, P., Gardy, D., Gittenberger, B. (eds.) Mathematics and Computer Science III,
pp. 261–263. Birkhäuser Basel (2004)

13. Morris, K.: Contributions to the analysis of increasing trees and other families of
trees. Ph.D. thesis, University of the Witwatersrand, Johannesburg, South Africa
(2005)

14. Odlyzko, A.M.: Periodic oscillations of coefficients of power series that satisfy func-
tional equations. Adv. Math. 44(2), 180–205 (1982)

15. Prodinger, H., Urbanek, F.J.: On monotone functions of tree structures. Discrete
Appl. Math. 5(2), 223–239 (1983)

16. Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Pure and
Applied Mathematics, Vol. XIV, Interscience Publishers Wiley, New York (1965)

http://arxiv.org/abs/1610.03602


Nested Regular Expressions Can Be
Compiled to Small Deterministic Nested

Word Automata

Iovka Boneva1 , Joachim Niehren2 , and Momar Sakho1,2(B)

1 Université de Lille, Lille, France
momar.sakho@univ-lille.fr
2 Inria Lille, Lille, France

Abstract. We study the problem of whether regular expressions for
nested words can be compiled to small deterministic nested word
automata (NWAs). In theory, we obtain a positive answer for small
deterministic regular expressions for nested words. In practice of nav-
igational path queries, nondeterministic NWAs are obtained for which
NWA determinization explodes. We show that practical good solutions
can be obtained by using stepwise hedge automata as intermediates.

Keywords: Automata · Regular expressions · Nested words · XPath

1 Introduction

Nested words are nested structures omnipresent in computer science. They were
used in particular to represent data trees or Xml documents, or to analyze the
call structure of recursive programs. The idea of nested words is to generalize
words and unranked trees at the same time. Nested words can be obtained by
enriching Dyck words with internal letters, besides opening and closing paren-
theses. Nested words can also be defined recursively as the elements of the least
set that contains internal letters from a given alphabet, triples consisting of an
opening parenthesis, a nested word, and a closing parenthesis, and all sequences
of nested words. Alternatively, nested words can be specified as finite sequences
of internal letters, opening parentheses and closing parentheses. Only well-nested
sequences are permitted in which every opening parenthesis is properly closed
and every closing parenthesis is properly opened. Or else, nested words can be
identified with sequences of unranked trees, which are often called hedges.

From the viewpoint of formal language theory, the natural question is how to
lift and relate the notions of finite automata and regular expressions for words
and trees to the case of nested words. Automata for nested words (NWAs)
are well studied [1,3,23] and also known as visibly pushdown automata. While
having the same expressiveness as hedge automata [10,26], which generalize tree
automata from ranked to unranked trees, they are often defined as pushdown
automata with visible stacks, meaning that exactly one symbol is pushed when
c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 169–183, 2020.
https://doi.org/10.1007/978-3-030-50026-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_12&domain=pdf
http://orcid.org/0000-0002-2696-7303
http://orcid.org/0000-0002-2611-8950
http://orcid.org/0000-0001-6802-5480
https://doi.org/10.1007/978-3-030-50026-9_12


170 I. Boneva et al.

reading an opening parenthesis, and exactly one symbol is popped when reading
a closing parenthesis, while the stack is not used otherwise. Their main advantage
is a powerful notion of determinism, generalizing both over bottom-up and top-
down determinism of tree automata for ranked trees [1]. In contrast to more
general pushdown automata, NWAs permit determinization, basically since they
are so closely related to tree automata.

Regular expressions for nested words were first introduced under the name
of regular expression types by Hosoya et al. in the context of the Xml pro-
gramming language XDuce [19]. We will call them nested regular expressions
(NREs) instead. Independently, more complex notions of regular expressions
were proposed [21,25] that can also deal to some extent with generalizations of
nested words, in which dangling opening and closing parentheses are permitted.
It was already claimed in [19], that NREs have the same expressiveness as hedge
automata [10,26], which in turn have the same expressiveness as NWAs [1]. How-
ever, the question under which conditions nested words can be compiled to small
deterministic NWAs has not been studied. Whenever possible, one can decide
language inclusion or equivalence in P. Otherwise, these problems may not be
feasible since EXP-complete for general NWAs or NREs.

Our concrete interest in the universality of deterministic NWAs is moti-
vated by Xml stream processing: we want to compute the certain answers of
a CoreXPath query on an Xml stream [15,24], i.e., those elements that are
selected in all possible futures of the stream. Whether an answer is certain is
computationally hard for tiny syntactic fragments of CoreXPath [4,15], but can
be done in polynomial time for queries defined by deterministic NWAs [16].
A natural question is therefore, whether it is possible to compile CoreXPath
queries as in the usual benchmark [14] to deterministic NWAs of reasonable
size. Unfortunately, the existing compilers fail to do so [12], since they are based
on NWA determinization for dealing with disjunction, negation, and recursive
steps. Thereby they produce huge deterministic automata even for very simple
CoreXPath queries from the benchmark, or do not terminate after some hours.

In this paper, we consider NREs for defining queries on nested words, since
there exist compilers that can map the CoreXPath queries from the usual bench-
mark to NREs of reasonable size, under the condition that the path query
contains only forwards steps. We then distinguish a subclass of “deterministic”
NREs that can be complied in polynomial time to deterministic NWAs by gener-
alizing on Glushkov’s construction of deterministic finite-state automata (Dfas)
from “deterministic” regular expressions [6,7]. However, the NREs obtained by
compilation from CoreXPath queries are rarely deterministic, so neither are the
NWAs obtained from them by direct compilation. Neither can we apply NWA

determinization to them as argued above. We show that deterministic NWAs
can be obtained nevertheless based on stepwise hedge automata (SHAs), that
we introduce. SHAs combine stepwise tree automata [8] for unranked trees with
finite state automata on words (Nfas). They can be determinized in a bottom-up
and left-to-right manner, simply by combining the determinization procedures
for tree automata and for Nfas. Furthermore, we can compile deterministic SHAs



Small dNWAs for Nested Regular Expressions 171

to deterministic NWAs in polynomial time. Conversely, NWAs can be compiled
to SHAs in polynomial time too, but at the cost of introducing nondeterminism.

By composing these compilers and determinization algorithms, NREs can
be compiled to deterministic NWAs in the following two manners. The first
method is to compile the NRE to an SHA, from there to an NWA, which is
then determinized. The second way consists of compiling the NRE to an SHA,
determinize it, and convert the result to a deterministic NWA. In an experimen-
tal study, we consider a collection of NREs that we constructed automatically
from CoreXPath queries in the XMark benchmark [14]. It turns out a little sur-
prisingly that both above algorithms yield a satisfactory solution: they produce
small deterministic NWAs for all NREs in our collection. The sizes of the deter-
ministic may differ, sometimes in favor of the one or the other algorithm. We
also discuss, why the NWA determinization behaves reasonably for the NWAs
obtained from SHAs, while it behaved so badly for NWAs obtained directly from
NREs. The reason seems to be that the former NWAs in contrast to the latter
have the single entry property, which basically states that the NWA performs
all its work in a bottom-up and left-to-right manner, and none when moving
top-down. This conjecture is supported by practical evidence rather than some
formal statement.

Related Work. CoreXPath [17] is a fragment of nested regular path queries
on data trees, in which recursion is restricted to basic steps up, down, left and
right. Nested regular path queries were introduced in the seventies [13] under
the name of the propositional dynamic logic (PDL). There they were applied to
general labeled graphs, rather than being restricted to data trees.

Since certain query answering for CoreXPath was considered as difficult, the
currently existing approaches to CoreXPath evaluation on Xml streams [12,24]
either approximate certain query answers based on nondeterministic machines
or restrict the queries so that answers certainty can be decided without latency
[4,22]. This also holds for recent streaming algorithms on words without nesting
in the context of complex event processing [18].

2 Nested Words

Nested words are words with parentheses that are well-nested. They can be
identified with hedges, that is sequences of internal symbols and unranked trees.

Nested words are constructed with an opening and a closing parentheses,
respectively 〈and〉. An unranked alphabet Σ is a possibly infinite set of so called
“internal” symbols, that does not contain the two parentheses. Nested words
over Σ then have the following abstract syntax:

h, h′ ::= ε | a | 〈h〉 | h · h′ where a ∈ Σ



172 I. Boneva et al.

〈〉

a 〈〉

b

c 〈〉

d 〈〉

The empty word is denoted by ε and assumed to satisfy
ε·h = h = h·ε. Nested words can be identified with hedges,
i.e., words of trees and internal symbols. Seen as a graph,
the inner nodes are labeled by the tree constructor 〈〉 and
the leaves by symbols in Σ or the tree constructor. For
instance 〈a · 〈b〉 · ε〉 · c · 〈d · 〈ε〉〉 corresponds to the hedge
on the right. A nested word of type tree has the form 〈h〉.
Variants. Our notion of nested words accepts only well-nested words without
dangling opening or closing parentheses in contrast to others [1,3]. This will lead
to simpler notion of regular expressions, avoiding the more complex operators
as with visibly rational expressions [5,25]. A less important difference is that we
do not support labeled parentheses.

Labeled Trees. Labeled parentheses can be simulated by using internal letters.
For instance, the labeled tree a(b(), c()) can be represented by the nested word
of type tree 〈a · 〈b〉 · 〈c〉〉. In this way, the labeled tree a() is represented by the
nested word 〈a〉 which is of type tree (while the internal letter a alone is not).
Xml documents are particular labeled trees, such as for instance: 〈a name =
“uff”〉〈b〉isgaga〈d/〉〈/b〉〈c/〉〈/a〉. Labeled trees satisfying the Xml data model
can be represented as nested words over a signature that contains the Xml node-
types (elem, attr, text, . . .), the Xml names of the document (a, . . . , d, name),
and the characters of the data values, say UTF8. For the above example, we get
the nested word 〈elem · a · 〈attr · name · u · f · f〉〈elem · b · 〈text · i · s · g · a · g ·
a〉〈elem · d〉〉〈elem · c〉〉.

3 Nested Regular Expressions

We present nested regular expressions (NREs), that were introduced under the
name regular expression types in the context of XDuce [19] up to minor details.
A NRE over alphabet Σ has the following abstract syntax:

E,E′ ::= ε | a | ¬Σ′ | ∅ | E · E′ | E + E′ | E&E′ | E∗ | 〈E〉 | μa.E

where a ∈ Σ and Σ′ ⊆ Σ is finite. We restrict the recursive expressions μa.E
such that all occurrences of a in E are nested below parentheses. The sets of
free and bound symbols fn(E) and bn(E) are defined as usual where μa.E binds
symbol a with scope E and there is no other binder.

There are two differences with the regular expression types from [19]. First,
our NREs treat labels as internal symbols instead of labels of parentheses. Sec-
ond, they provide recursion through the μ-operator instead of using recursive
equation systems. Even though not needed from the view point of expressive-
ness, we allow conjunctions E&E′ to simplify the compilation of CoreXPath
expressions with filters to NREs. NREs having no subexpressions E&E′ are
called conjunction-free (CF-NREs). Any NRE describes a language of nested



Small dNWAs for Nested Regular Expressions 173

words that is defined by structural induction as follows:

L(ε) = {ε} L(a) = {a} L(¬Σ′) = Σ\Σ′ L(∅) = ∅
L(E · E′) = L(E) · L(E′) L(E∗) = L(E)∗

L(E + E′) = L(E) ∪ L(E′) L(E&E′) = L(E) ∩ L(E′)
L(〈E〉) = {〈h〉 | h ∈ L(E)} L(μa.E) = ∪n≥0L(μna.E)

A negation ¬Σ′ stands for Σ\Σ′. This is useful for dealing with infinite alphabets
and with large finite alphabets. For all expressions E,E1 and E2, the notation
E[E1/E2] stands for the expression E where all the occurrences of E1 have
been replaced by E2. The semantics of a μ-operator is then defined using the
shortcuts μ0a.E = E[a/∅] and μna.E = E[a/μn−1a.E] for all n ≥ 1. Note that
μa. b · a · c + ε would define the string language {bn · cn | n ≥ 0} which is not
regular. But this expression is ruled out since the μ-bound name a is not nested
below parentheses.

In the context of Xml queries, we can express the child and descendant-or-
self axes of XPath expressions by using the following NREs:

ch(E) =df T · 〈E〉 · T T =df μx. (〈x〉 + ¬∅)∗

ch∗(E) =df μx. (E + ch(x)) where x �∈ fn(E)
ch+(E) =df μx. (ch(E) + ch(x)) where x �∈ fn(E)

Thereby, the XPath expression a[following-sibling ::b]/descendant::c can be
expressed as a NRE, in which x ∈ Σ serves as the selection variable, while
the negation ¬{x} expresses nonselection.

〈elem · a · ¬{x} · ch+(〈elem · c · x · T 〉)〉 · T · 〈elem · b · ¬{x} · T 〉 · T

Our next objective is to distinguish NREs that can be evaluated determinis-
tically in polynomial time, for instance by compilation to deterministic NWAs.
For this, we consider the language of NREs nregexp(ch, T ) extended by the
constant T and the unary constructor ch.

Definition 1. An expression of nregexp(ch, T ) is deterministic if it does not
contain a subexpression of any of the forms: E1 + E2, E∗, T · E, μa.E.

Note in particular that ch(a) is a deterministic expression of nregexp(ch, T ).
In contrast, the semantically equivalent expression T.〈a〉.T is not deterministic.
Similarly, T is deterministic while the equivalent expression μx.(〈x〉 + ¬∅)∗ is
not. The expression ch∗(E) is not deterministic since its definition relies on the
μ-operator.

4 Nested Word Automata

Nested word automata (NWAs) are pushdown automata reading nested words,
whose stacks are visible: they push a single stack symbol when reading an open-
ing parenthesis, pop a single stack symbol when reading a closing parenthesis,
and do not alter or inspect the stack otherwise.



174 I. Boneva et al.

Fig. 1. Nested word automaton nwa(ch∗(a + b)).

Definition 2. An NWA is a tuple A = (Qh, Qt, Σ, Γ,Δ, I, F ) consisting of a
possibly infinite set Σ of internal symbols, finite sets Qh and Qt of states of type
hedge and tree respectively, sets of initial and final states I, F ⊆ Qh, a finite
set Γ of stack symbols, and a finite set Δ of transition rules of the forms:

hedge rules aΔ, Δ, εΔ ⊆ Qh × Qh where a ∈ Σ

opening rules 〈Δ
γ ⊆ Qh × Qh where γ ∈ Γ

hedge ending rules treeΔ ⊆ Qh × Qt

closing rules 〉Δ
γ ⊆ Qt × Qh

Our NWAs are symbolic, in that they come with else rules, i.e., elements
of (q, q′) ∈ Δ that we will denote by q −→ q′, for dealing with large or infinite
alphabets. An example for an NWA is given in a graphical syntax in Figurefig1.
Tree states are drawn in circles that are filled in light gray q , while hedge
states are in unfilled circles q . Initial states are drawn as → q and final states

as q . Hedge rules that have the form (q1, q2) ∈ oΔ′
where o ∈ Σ∪{ , ε, tree} are

denoted by q1
o−→ q2. They are either label, else, epsilon, or tree rules depending

of the type of letter o. Opening rules (q1, q2) ∈ 〈Δ
γ are represented as q1

〈↓γ−−→ q2

and closing rules (q1, q2) ∈ 〉Δ
γ as q1

〉↑γ−−→ q2.
Our notion of NWAs supports factorization in the spirit of [9]. It is obtained

by distinguishing two types of states q ∈ Qh and p ∈ Qt, and adding explicit
type coercion rules q

tree−−→ p. Semantically, both kinds of states could be merged
when replacing type the coercion rules by the epsilon rule q

ε−→ p, but at the cost
of introducing additional nondeterminism. This may lead to quadratically larger
deterministic automata, as we will illustrate at the NWA in Fig. 5.

The language of nested words between two states q1, q2 ∈ Qh is defined as
the least language such that:

Lq1,q2(Δ) = {ε | if q1 = q2 or q1
ε−→ q2 wrt.Δ} ∪ ⋃

q3∈Qh
Lq1,q3(Δ) · Lq3,q2(Δ)

∪ {a | if q1
a−→ q2 ∈ Δ or (q1 −→ q2 ∈ Δ′ and ¬∃q′

2. q1
a−→ q′

2 ∈ Δ)}
∪ {〈h〉 | ∃q′

1, q
′
2 ∈ Qh.∃q3 ∈ Qt.∃γ ∈ Γ. q1

〈↓γ−−→ q′
1, h ∈ Lq′

1,q′
2
(Δ),

q′
2

tree−−→ q3 ∈ Δ and q3
〉↑γ−−→ q2 ∈ Δ}.



Small dNWAs for Nested Regular Expressions 175

The language of the NWA then is L(A) =
⋃

q1∈I,q2∈F Lq1,q2(Δ). NWAs can be
determinized by adapting the usual determinization procedure for NWAs [1,12]
so that it can account for hedge ending and else rules.

As argued earlier, NREs have the same expressiveness as NWAs and thus
as deterministic NWAs. But in practice, the sizes may blow-up surprisingly
by determinization [12]. We next discuss on a compiler from expression an E of
nregexp(T, ch) to an NWA nwa(E) that preserves determinism. For instance, the
NWA for the expression ch∗(a + b) is shown in Fig. 1. For regular expressions
without nesting, the compiler is based on Glushkov’s construction recursively
on the structure of the expression while eliminating ε-edges on the fly. Such
construction is known to preserve determinism [7]. For deterministic expressions
ch(E), we adapt ideas from [12]. As for conjunctions, product of automata are
used. Special care has to be given to μa.E expressions in order to preserve the
recognized language and also have the following complexity result:

Theorem 1. For any CF-NRE E, we can construct in time O(|E|2) an
NWA A while preserving determinism such that L(A) = L(E).

This quadratic time result generalizes on a previous result for the Glushkov
construction [6]. Because of automata products used to build them, NREs having
conjunctions may in the worst case yield NWAs with an exponential size. As
a consequence of Theorem 1, small deterministic CF-NREs can be compiled to
small deterministic NWAs. This gives a first positive answer to the motivating
question of the present paper.

As for nondeterministic expressions, the NWA determinization procedure is
not a solution to the problem at hand, due to huge size increase. For instance,
the NWA det(nwa(ch∗(a + b))) obtained by determinization of the NWA in
Fig. 1 has size 271, which may seem way too large. Even worse cases can be
found in the experimental section. The problem is not solved by factorization,
and actually confirms a size increase reported earlier for NWAs obtained from
XPath by a different compiler [12]. So the question is, whether there do not
exist better methods to obtain smaller deterministic NWAs for nested regular
expressions.

5 Stepwise Hedge Automata

We propose SHAs as an extension of stepwise tree automata [8] to recognize not
only unranked trees but also hedges. The problematic notion of determinism of
the hedge automata from [10,20,26] is avoided.

Our notion of SHAs will be symbolic in using else rules, and factorized in the
sense of [9]: there are two types of states for hedges and trees and an operator
for explicit type coercion. We also propose a novel treatment of internal letters
inspired by nested word automata, so that SHAs generalize both on stepwise
tree automata and on Nfas.



176 I. Boneva et al.

Fig. 2. Stepwise hedge automaton sha(ch∗(a + b)): the part with the stepwise tree
automaton is on the left and middle, and the Nfa part on the right.

Definition 3. A SHA is a tuple S = (Qh, Qt, Σ,Δ, I, F ) such that Qt and Qh

are finite set of states of two types t for tree and respectively h for hedge, Σ an
alphabet of internal letters (that may be infinite), I, F ⊆ Qh subsets of initial
and final states respectively, and Δ a finite set of transition rules such that for
all q ∈ Qt and a ∈ Σ:

hedge rules qΔ, aΔ, Δ, εΔ ⊆ Qh × Qh

tree final rules treeΔ ⊆ Qh × Qt

tree initial states 〈〉Δ ⊆ Qh

An example for a SHA is given in graphical syntax in Fig. 2. It recognizes
all hedges which are either just a or b or contain some tree node that contains
either just a or b. In the graphical syntax, the states of type tree q ∈ Qt are
drawn in circles filled in light gray q , while the states of type hedge q′ ∈ Qh

are drawn in unfilled circles q′ . The right part of the graph is an Nfa which
uses tree states as additional edge labels, while the left part is a stepwise tree
automaton, that defines the tree languages of these tree states.

Let Δh be the restriction of Δ to the hedge rules. Then, (Qh, Σ�Qt,Δh, I, F )
is a standard Nfa with ε-rules, which is symbolic [11] in providing else rules for
dealing with large or infinite alphabets in addition. Therefore, we denote the
initial states q ∈ I by → q and the final states q ∈ F by q . A rule with an

internal letter (q1, q2) ∈ aΔ is denoted by q1
a−→ q2 wrt. Δ stating that a hedge in

state q1 can be extended by the internal letter a leading to a hedge in state q2.
Similarly, an epsilon rule (q1, q2) ∈ εΔ is denoted by q1

ε−→ q2, and an else rule
(q1, q2) ∈ Δ is denoted by q1 −→ q2. In the same spirit, a hedge rule (q1, q2) ∈ qΔ

is denoted by q1
q−→ q2 wrt. Δ, stating that a hedge in state q1 can be extended

by a tree in state q leading to a hedge in state q2.

A tree initial state q ∈ 〈〉Δ is graphically denoted by
〈〉−→ q and a tree final rule

(q1, q2) ∈ treeΔ by q1
tree−−→ q2. Intuitively, a tree 〈h〉 can be evaluated to state q

if h can be evaluated starting with some tree initial state
〈〉−→ q1 to some state q2

such that q2
tree−−→ q. More formally, the hedge languages Lq1,q2(S) between any

two hedge states q1, q2 ∈ Qh are defined as follows:



Small dNWAs for Nested Regular Expressions 177

0 = {1, 3, 5, 6}
1 = {8, 10, 14, 16, 18, 19}
2 = {2, 5, 6}
3 = {4, 5, 6}
4 = {5, 6}
5 = {9, 10, 15, 18, 19}
6 = {9, 10, 17, 18, 19}
7 = {10, 18, 19}
8 = {〈T〉}
9 = {〈T〉, 〈x〉}
10 = {9, 10, 18, 19, 20}
11 = {5, 6, 12}

Fig. 3. The determinized SHA det(sha(ch∗(a + b))).

Lq1,q2(S) = {ε | if q1 = q2 or q1
ε−→ q2 wrt. Δ} ∪ ⋃

q3∈Qh
Lq1,q3(S) · Lq3,q2(S)

∪ {a | if q1
a−→ q2 ∈ Δ or (q1 −→ q2 ∈ Δ and ¬∃q′

2. q1
a−→ q′

2 ∈ Δ)}
∪ ⋃

q1
q−→q2∈Δ

Lq(S)

This definition is mutually recursive with the definition of the tree languages
Lq(S) of all tree states q ∈ Qt:

Lq(S) = {〈h〉 | 〈〉−→ q1, h ∈ Lq1,q2(S), q2
tree−−→ q}

The hedge language L(S) that is recognized by automaton
is

⋃
q1∈I,q2∈F Lq1,q2(S). The rules of standard bottom-up tree automata have

the form a(q1, . . . , qn) → q where a is a symbol of arity n. With SHAs, this rule

can be encoded by the sequence
〈〉−→ p0

a−→ p1
q1−→ . . .

qn−→ pn
tree−−→ q where the

states q1, . . . , qn, q are all tree states, and p0, . . . , pn fresh hedge states. Step-
wise hedge automata have a natural notion of determinism, generalizing both
on that of stepwise tree automata and on Nfas, in contrast to the earlier notion
of hedge automata in [10,26]. For instance, the SHA in Fig. 3 is obtained by
determinization of the automaton in Fig. 2. It consists of a Dfa on the right and
a deterministic stepwise tree automaton on the left. We show that

Proposition 1. Any SHA can be made deterministic in at most exponential
time such that the hedge language is preserved.

Any expression E can be compiled to a SHA sha(E) = (Qh, Qt, Σ,Δ, I, F )
such that Qt = {E′ | E′ = 〈E′′〉 subexpression of E} and Lt(E′) = L(E′)
for all tree states E′ ∈ Qt. The SHA sha(E) can be partitioned into disjoint
SHAs sha(E) = Atop ∪ ⋃

E′∈Qt
AE′

such that Atop = (Qtop
h , Qt, Σ,Δtop, I, F )

and AE′
= (QE′

h , Qt, Σ,ΔE′
, ∅, ∅) for all E′ ∈ Qt and 〈Δtop

= ∅. Note that
the transitions relation Δ is decomposed thereby into independent connected
components.

Proposition 2. For any CF-NRE E we can construct in time O(|E|2) a SHA
sha(E) such that L(sha(E)) = L(E).



178 I. Boneva et al.

Fig. 4. The NWA from the SHA nwa(sha(ch∗(a + b))).

However, the construction does not preserve determinism. For the determin-
istic NRE 〈a1 · 〈a2 · . . . · 〈an〉 . . . 〉〉, one would have an SHA having a tree initial
state for each of the 〈ai . . . 〉 subtree, implying nondeterminism. This is in con-
trast to the compiler to NWAs, which can rely on top-down determinism that
is unavailable for SHAs though. Furthermore, as for NWAs, conjunctions may
cause an exponential blow-up of the produced SHA.

6 NWAs Versus SHAs

We next show how to compile SHAs to NWAs such that determinism is pre-
served, and back while introducing nondeterminism. Thereby we can obtain
small NWAs for NREs such as E = ch∗(a + b) for which det(nwa(E)) blows up
in size in a surprising manner.

SHAs to NWAs. Any SHA S = (Qh, Qt, Σ,Δ, I, F ) can be compiled to an
NWA nwa(S) = (Qh, Qt, Σ, Γ,Δ′, I, F ) such that Lq1,q2(S) = Lq1,q2(nwa(S)).
We set Γ = Qh, Δ′

= Δ, aΔ′
= aΔ for all a ∈ Σ, εΔ′

= εΔ, treeΔ′
= treeΔ:

q1
q−→ q2 ∈ Δ p ∈ 〈〉Δ

q1
〈↓q1−−−→ p ∈ Δ′ and q

〉↑q1−−−→ q2 ∈ Δ′

Clearly, if S is deterministic then so is nwa(S), since p is unique in this case.
Furthermore, one might be tempted to restrict the above construction rule to
states p such that Lq(S[〈〉Δ

/{p}]) �= ∅ where the set of tree initial states 〈〉Δ

is replaced by {p}. However, this would lead to huge blow-up when determiniz-
ing these NWAs, basically since this change spoils the single-entry property
discussed in Definition 4.

The conversion of sha(ch∗(a + b)) in Fig. 2 yields the NWA in Fig. 4. Note
that the opening rules are deterministic (but not the whole NWA), since for all
tree states q there is at most one hedge state p ∈ 〈〉Δ such that q is accessible
from p. The NWA has size 64, while its determinization has size 159, which
yields a size increase of 95 = 159 − 64. The size increase for determinization



Small dNWAs for Nested Regular Expressions 179

<↓1

>↑1
>↑5

>↑8
>↑6
>↑10

tree

<↓2

>↑2
>↑3

>↑4

>↑7
>↑9

<↓3

b

<↓4

tree
-

- >↑3

>↑7

>↑9
>↑4

-
-

<↓5

>↑2

<↓6

>↑6
>↑5
>↑1
>↑8

<↓7 -

tree

<↓8

<↓9

-

-

tree

-

tree

<↓10

>↑10

-
a

b

-

a

2

4

6

8

10

12

14 16

18
20

22

24

Fig. 5. Deterministic NWA: nwa(det(sha(ch∗(a + b)))).

o ∈ Σ ∪ {tree, , ε} q1
o−→ q2 ∈ Δ q ∈ Qh

(q, q1)
o−→ (q, q2) ∈ Δs

q1
〈↓γ−−→ q2 ∈ Δ

〈〉−→ (q2, q2) ∈ Δs

q1
〈↓γ−−→ q2 ∈ Δ q3 ∈ Qt q3

〉↑γ−−→ q4 ∈ Δ q ∈ Qh

(q, q1)
(q2,q3)−−−−→ (q, q4) ∈ Δs

Fig. 6. NWA to SHA conversion.

is considerably smaller for the NWA obtained from the regular expressions by
indirection via a SHA, than for the NWA obtained by direct compilation. Indeed,
the determinization of nwa(ch∗(a + b)) blows the size from 39 to 271. The size
increase for the determinization of nwa(ch∗(a + b)) is thus 242 = 271 − 39 and
while for nwa(sha(ch∗(a + b))) is only 95 = 159 − 64.

The experiments will show that this is not an exception but the general rule.
Intuitively, the reason is that NWAs obtained from stepwise hedge automata do
all work bottom-up, where NWAs obtained directly from the regular expression
do a considerable amount of work top-down. In terms of [2] this restriction can
be characterized syntactically by the single-entry property:

Definition 4. An NWA A has the single-entry property, if there exists a single

state qentry ∈ Qh such that all opening rules of A have the form q
〈↓q−−→ qentry.

It can be shown that nwa(S) has the single-entry property for all SHAs S for
which the p’s are unique in the above construction rule, i.e., such that 〈〉 −→ p.
Note that this was not the case for sha(ch∗ (a+b)) in Fig. 2 but could have been
imposed w.l.o.g., leading to a slightly different NWA than in Fig. 4.

The conversion of the determinization det(sha(ch∗(a+b))) in Fig. 3 yields the
deterministic NWA in Fig. 5. The size goes up slightly from 53 to 73. It should
be noticed, that factorization avoids a quadratic blow up in this case. This
can be observed at state 14, which has 3 incoming tree-edges and 10 outgoing



180 I. Boneva et al.

det(nwa(.)) nwa(det( det(nwa( nwa(det( det(nwa(
sha(.))) sha(.))) sha(nwa(.)))) sha(nwa(.))))

A1 398 (37) 302 (62) 398 (37) 398 (37)
A2 362600 (6782) 668 (57) 4889 (221) 1648 (127) 4105 (148)
A3 318704 (8216) 469 (44) 542 (66) 625 (56) 907 (62)
A4 487 (42) 335 (67) 487 (42) 487 (42)
A5 676 (55) 1054 (110) 856 (67) 1192 (73)
A6 548 (45) 332 (62) 548 (45) 548 (45)
A7 468 (41) 285 (54) 468 (41) 468 (41)
A8 2520 (124) 1236 (137) 1804 (118)

Fig. 7. Deterministic NWAs for XPath benchmark: size (#states).

det(nwa(.)) nwa(det( det(nwa( nwa(det( det(nwa(
sha(.))) sha(.))) sha(nwa(.))) sha(nwa(.))))

ch3[a] 19828 (1281) 85 (13) 157 (30) 192 (24) 352 (32)
ch4[a] 177 (21) 206 (39) 664 (56) 2200 (88)
ch5[a] 457 (37) 255 (48) 3336 (168)
ch7[a] 4825 (133) 353 (66)
ch9[a] 451 (84)

Fig. 8. Deterministic NWAs queries chn[a] for n = 3, 4, 5, 7, 9: size (#states).

closing edges. Without factorization, the 3 tree edges could be replaced by 3
ε-edges whose elimination would produce 30 closing edges. This would increase
the number 3 + 10 edges to 3 ∗ 10 edges.

NWAs to SHAs. Conversely, NWAs can be compiled to stepwise hedge
automata, but at the cost of introducing nondeterminism, since an NWA may
traverse the branches of a tree top-down, while a stepwise must traverse them
bottom-up. For this, the stepwise guesses the state in which the NWA will arrive
from above and then evaluates the subtree starting with this state, while veri-
fying the correctness of the guess later on. Let A = (Qh, Qt, Σ,Δ′, I, F ) be an
NWA. We build a SHA sha(A) = (Qs

h, Qs
t , Σ,Δs, Is, F s) where Qs

h = Qh × Qh,
Qs

t = Qh ×Qt, Is = {(q, q) | q ∈ I}, F s = I ×F and Δs is the smallest satisfying
the rule schemas in Fig. 6. The construction is such that L(A) = L(sha(A)).

7 Experimental Results and Discussion

We now compare the sizes of deterministic NWAs that we can obtain by com-
posing the various compilers in different orders.

We test the A1, . . . , A8 XPath queries in the usual XPath benchmark [14],
which contain not only forward child, descendant and following-sibling axes, but
also filters and path compositions. Note that the queries A4 until A8 contain
filters, which are mapped to NREs with conjunctions. We compiled these queries
automatically to nested regular expressions, then compiled these expressions to



Small dNWAs for Nested Regular Expressions 181

deterministic NWAs, by composing the various compilers presented earlier in all
reasonable manners. A1 is the only query for which we obtain a deterministic
regular expression. But since we replaced ch(E) systematically by T · 〈E〉 · T in
our experiments, all nested regular expression become nondeterministic.

The overall size of the resulting automata and the number of their rules
are given in Fig. 7. We can see that determinization applied to the NWAs for
these expressions fails. Only 2 out of 8 automata have a size less than 400000,
and for the others, the determinization ran out of time. In contrast, 3 of the 4
other methods – that use stepwise hedge automaton intermediately – produce
reasonable small deterministic NWAs. For the fourth method in the last col-
umn, NWA-determinization did not terminate on nwa(sha(nwa(A8))) after a
few hours (Fig. 8).

We also tested our algorithms on collections of XPath queries with a scalable
parameter, such as the queries chn(a) for increasing n. This series is known to
require many states for deterministic bottom-up evaluation. Indeed, the deter-
minization for stepwise hedge automata nwa(det(sha)) leads to a size explosion.
The method det(nwa(sha(.))), however, still yields small deterministic automata!
Generally this method produced satisfactory results in all our experiments. In
quite some cases, however, nwa(det(sha(.))) still behaves better.

We conjecture that these differences are related to the lack of minimization
in our current implementation. The main problem here is that minimal deter-
ministic NWAs do not exist for all regular languages of nested words [2]. This
is in strict contrast to the cases of word automata, tree automata, and SHAs.

We point out that SHAs are determinized in bottom-up and left-to-right
manner by combining the usual bottom-up determinization algorithms for tree
automata and the usual left-to-right determinization algorithm for Nfas. In
contrast to deterministic NWAs, they cannot support top-down determinism in
combination with bottom-up and left-to-right determinism though. The NWAs
obtained by compilation from SHAs are special in that they perform all their
work in a bottom-up and left-to-right manner, and nothing top-down. Such
NWAs were characterized syntactically as single-entry NWAs, and determin-
istic single-entry NWAs are shown to admit a unique minimization in [2]. Our
experiments show that NWA determinization often works nicely for single-entry
NWAs, while it explodes quickly without the single-entry restriction. The intu-
ition is that single-entry NWAs behave like SHAs.

References

1. Alur, R.: Marrying words and trees. In: 26th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pp. 233–242. ACM Press (2007).
https://doi.org/10.1145/1265530.1265564

2. Alur, R., Kumar, V., Madhusudan, P., Viswanathan, M.: Congruences for visibly
pushdown languages. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1102–1114. Springer, Heidelberg
(2005). https://doi.org/10.1007/11523468 89

https://doi.org/10.1145/1265530.1265564
https://doi.org/10.1007/11523468_89


182 I. Boneva et al.

3. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: 36th ACM Symposium
on Theory of Computing, pp. 202–211. ACM Press (2004). http://portal.acm.org/
citation.cfm?coll=GUIDE&dl=GUIDE&id=1007390

4. Benedikt, M., Jeffrey, A., Ley-Wild, R.: Stream firewalling of XML constraints. In:
ACM SIGMOD International Conference on Management of Data, pp. 487–498.
ACM Press (2008)

5. Bozzelli, L., Sánchez, C.: Visibly rational expressions. Acta Inf. 51(1), 25–49
(2014). https://doi.org/10.1007/s00236-013-0190-6

6. Brüggemann-Klein, A.: Regular expressions into finite automata. Theor. Comput.
Sci. 120(2), 197–213 (1993). https://doi.org/10.1016/0304-3975(93)90287-4

7. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inf. Com-
put. 142(2), 182–206 (1998)

8. Carme, J., Niehren, J., Tommasi, M.: Querying unranked trees with stepwise
tree automata. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 105–
118. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25979-4 8.
http://www.ps.uni-sb.de/Papers/abstracts/stepwise.html

9. Champavère, J., Gilleron, R., Lemay, A., Niehren, J.: Efficient inclusion checking
for deterministic tree automata and XML schemas. Inf. Comput. 207(11), 1181–
1208 (2009). https://doi.org/10.1016/j.ic.2009.03.003

10. Comon, H., et al.: Tree automata techniques and applications, October 2007.
http://tata.gforge.inria.fr. Accessed 1997

11. D’Antoni, L., Alur, R.: Symbolic visibly pushdown automata. In: Biere, A., Bloem,
R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 209–225. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 14

12. Debarbieux, D., Gauwin, O., Niehren, J., Sebastian, T., Zergaoui, M.: Early nested
word automata for XPath query answering on XML streams. Theor. Comput. Sci.
578, 100–125 (2015). https://doi.org/10.1016/j.tcs.2015.01.017

13. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs.
J. Comput. Syst. Sci. 18(2), 194–211 (1979). https://doi.org/10.1016/0022-
0000(79)90046-1

14. Franceschet, M.: XPathMark performance test. https://users.dimi.uniud.it/
∼massimo.franceschet/xpathmark/PTbench.html. Accessed 30 Mar 2020

15. Gauwin, O., Niehren, J.: Streamable fragments of forward XPath. In: Bouchou-
Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2011.
LNCS, vol. 6807, pp. 3–15. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-22256-6 2

16. Gauwin, O., Niehren, J., Tison, S.: Earliest query answering for deterministic
nested word automata. In: Kuty�lowski, M., Charatonik, W., G ↪ebala, M. (eds.)
FCT 2009. LNCS, vol. 5699, pp. 121–132. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03409-1 12. http://hal.inria.fr/inria-00390236/en

17. Gottlob, G., Koch, C., Pichler, R.: The complexity of XPath query evaluation.
In: 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, pp. 179–190 (2003)

18. Grez, A., Riveros, C., Ugarte, M.: A formal framework for complex event process-
ing. In: Barceló, P., Calautti, M. (eds.) 22nd International Conference on Database
Theory, ICDT 2019. LIPIcs, Lisbon, Portugal, 26–28 March 2019, vol. 127, pp. 5:1–
5:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019). https://doi.org/
10.4230/LIPIcs.ICDT.2019.5

19. Hosoya, H., Pierce, B.C.: XDuce: a statically typed XML processing language.
ACM Trans. Internet Technol. 3(2), 117–148 (2003). https://doi.org/10.1145/
767193.767195

http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=1007390
http://portal.acm.org/citation.cfm?coll=GUIDE&dl=GUIDE&id=1007390
https://doi.org/10.1007/s00236-013-0190-6
https://doi.org/10.1016/0304-3975(93)90287-4
https://doi.org/10.1007/978-3-540-25979-4_8
http://www.ps.uni-sb.de/Papers/abstracts/stepwise.html
https://doi.org/10.1016/j.ic.2009.03.003
http://tata.gforge.inria.fr
https://doi.org/10.1007/978-3-319-08867-9_14
https://doi.org/10.1007/978-3-319-08867-9_14
https://doi.org/10.1016/j.tcs.2015.01.017
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1
https://users.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html
https://users.dimi.uniud.it/~massimo.franceschet/xpathmark/PTbench.html
https://doi.org/10.1007/978-3-642-22256-6_2
https://doi.org/10.1007/978-3-642-22256-6_2
https://doi.org/10.1007/978-3-642-03409-1_12
https://doi.org/10.1007/978-3-642-03409-1_12
http://hal.inria.fr/inria-00390236/en
https://doi.org/10.4230/LIPIcs.ICDT.2019.5
https://doi.org/10.4230/LIPIcs.ICDT.2019.5
https://doi.org/10.1145/767193.767195
https://doi.org/10.1145/767193.767195


Small dNWAs for Nested Regular Expressions 183

20. Martens, W., Niehren, J.: On the minimization of XML-schemas and tree automata
for unranked trees. J. Comput. Syst. Sci. 73(4), 550–583 (2007). https://doi.
org/10.1016/j.jcss.2006.10.021. https://hal.inria.fr/inria-00088406. Special issue of
DBPL 05

21. Mozafari, B., Zeng, K., Zaniolo, C.: From regular expressions to nested words: uni-
fying languages and query execution for relational and XML sequences. PVLDB
3(1), 150–161 (2010). https://doi.org/10.14778/1920841.1920865. http://www.
vldb.org/pvldb/vldb2010/pvldb vol3/R13.pdf

22. Mozafari, B., Zeng, K., Zaniolo, C.: High-performance complex event processing
over XML streams. In: Candan, K.S., et al. (eds.) SIGMOD Conference, pp. 253–
264. ACM (2012). https://doi.org/10.1145/2213836.2213866

23. Neumann, A., Seidl, H.: Locating matches of tree patterns in forests. In: Arvind,
V., Ramanujam, S. (eds.) FSTTCS 1998. LNCS, vol. 1530, pp. 134–145. Springer,
Heidelberg (1998). https://doi.org/10.1007/978-3-540-49382-2 12

24. Olteanu, D.: SPEX: streamed and progressive evaluation of XPath. IEEE Trans.
Know. Data Eng. 19(7), 934–949 (2007). https://doi.org/10.1109/TKDE.2007.
1063

25. Pitcher, C.: Visibly pushdown expression effects for XML stream processing. In:
PlanX (2005)

26. Thatcher, J.W.: Characterizing derivation trees of context-free grammars through
a generalization of automata theory. J. Comput. Syst. Sci. 1, 317–322 (1967)

https://doi.org/10.1016/j.jcss.2006.10.021
https://doi.org/10.1016/j.jcss.2006.10.021
https://hal.inria.fr/inria-00088406
https://doi.org/10.14778/1920841.1920865
http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R13.pdf
http://www.vldb.org/pvldb/vldb2010/pvldb_vol3/R13.pdf
https://doi.org/10.1145/2213836.2213866
https://doi.org/10.1007/978-3-540-49382-2_12
https://doi.org/10.1109/TKDE.2007.1063
https://doi.org/10.1109/TKDE.2007.1063


On Embeddability of Unit Disk Graphs
onto Straight Lines

Onur Çağırıcı(B)

Masaryk University, Brno, Czech Republic
onur@mail.muni.cz

Abstract. Unit disk graphs are the intersection graphs of unit radius
disks in the Euclidean plane. Deciding whether there exists an embedding
of a given unit disk graph, i.e., unit disk graph recognition, is an impor-
tant geometric problem, and has many application areas. In general, this
problem is known to be ∃R-complete. In some applications, the objects
that correspond to unit disks have predefined (geometrical) structures to
be placed on. Hence, many researchers attacked this problem by restrict-
ing the domain of the disk centers. One example to such applications is
wireless sensor networks, where each disk corresponds to a wireless sen-
sor node, and a pair of intersecting disks corresponds to a pair of sensors
being able to communicate with one another. It is usually assumed that
the nodes have identical sensing ranges, and thus a unit disk graph model
is used to model problems concerning wireless sensor networks. We con-
sider the unit disk graph realization problem on a restricted domain, by
assuming a scenario where the wireless sensor nodes are deployed on the
corridors of a building. Based on this scenario, we impose a geometric
constraint such that the unit disks must be centered onto given straight
lines. In this paper, we first describe a polynomial-time reduction which
shows that deciding whether a graph can be realized as unit disks onto
given straight lines is NP-hard, when the given lines are parallel to either
the x-axis or y-axis. Using the reduction we described, we also show that
this problem is NP-complete when the given lines are only parallel to the
x-axis (and one another). We obtain these results using the idea of the
logic engine introduced by Bhatt and Cosmadakis in 1987.

1 Introduction

An intersection graph is a graph that models the intersections among geomet-
ric objects. In an intersection graph, each vertex corresponds to a geometric
object, and each edge corresponds to a pair of intersecting geometric objects. A
unit disk graph is the intersection graph of a set of unit disks in the Euclidean
plane. Some well-known NP-hard problems, such as chromatic number, indepen-
dent set, and dominating set, remain hard on unit disk graphs [4,6,11]. We are
particularly interested in the unit disk recognition problem, i.e., given a simple

This work is supported by the Czech Science Foundation, project no. 20-04567S.
c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 184–197, 2020.
https://doi.org/10.1007/978-3-030-50026-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_13&domain=pdf
http://orcid.org/0000-0002-4785-7496
https://doi.org/10.1007/978-3-030-50026-9_13


Axes-Parallel Unit Disk Graphs 185

graph, deciding whether there exists an embedding of disks onto the plane which
corresponds to the given graph. This problem is known to be NP-hard [9], and
even ∃R-complete [16] in general.

A major application area of unit disk graphs is wireless sensor networks, since
it is an accurate model (in an ideal setting) of communicating wireless sensor
nodes with identical range [3,12]. In a wireless sensor network, the sensor nodes
are deployed on bounded areas [2,10,19]. Thus, it becomes more interesting to
observe the behavior of the unit disk graph recognition problem when the domain
is restricted [1,8,13,15].

We assume that the sensor nodes are deployed onto the corridors in a build-
ing, and the floor plans are available. We model the corridors on a floor as
straight lines, and consider the recognition problem where the unit disks are
centered on the given lines. We show that this problem is NP-hard, even when
the given straight lines are either vertical or horizontal, i.e., any pair of lines is
either parallel, or perpendicular to each other. In addition, we show that if there
are no pairs of perpendicular lines i.e., all lines are parallel to x-axis, then the
recognition problem is NP-complete.

Due to space restrictions, the proofs of some statements are omitted, and
those statements are marked with (*). The full version of this paper is available
online at http://arxiv.org/abs/1811.09881.

Related Work

Breu and Kirkpatrick showed that the unit disk graph recognition problem is
NP-hard in general [9]. Later on, this result was extended, and it was proved
that the problem is also ∃R-complete [16,18]. Kuhn et al. showed that finding a
“good” embedding is not approximable when the problem is parameterized by
the maximum distance between any pair of disk centers [17]. In the very same
paper, they also give a short reduction that the realization problem and the
recognition problem on unit disk graphs are polynomially equivalent [17].

Intuitively, the most restricted domain for unit disk graphs is when the disks
are centered on a single straight line in the Euclidean plane. In this case, the
unit disks become unit intervals on the line, and they yield a unit interval graph
[14]. To recognize or realize whether a given graph is a unit interval graph is a
linear-time task [7]. Our domain is restricted to not only one straight line, but
to a set of straight lines given by their equations. Given a simple graph, and a
set of straight lines, we ask the question “can this graph be realized as unit disks
on the given set of straight lines?” We show that even though these lines are
restricted to be parallel to either the x-axis or y-axis, it is NP-hard to determine
whether the given graph can be embedded onto the given lines (Theorem 1).
We, however, do not know whether this variant belongs to the class NP, or is
possibly ∃R-complete. If, on the other hand, the lines are restricted to be parallel
only to the x-axis, then we show that the problem belongs to NP and thus is
NP-complete.

http://arxiv.org/abs/1811.09881


186 O. Çağırıcı

2 Basic Terminology and Notations

A unit disk around a point p is the set of points in the plane whose distance from
p is one unit. Two unit disks, centered at two points p and q, intersect when the
Euclidean distance between p and q is less than or equal to two units. A graph
G = (V, E) is called a unit disk graph when every vertex v ∈ V corresponds to
a disk Dv in the Euclidean plane, and an edge uv ∈ E exists when Du and Dv

intersect.
The unit disk recognition problem is deciding whether a given graph G =

(V, E) is a unit disk graph. That is, determining whether there exists a mapping
Σ : V → (R × R), such that each vertex is the center of a unit disk without
violating the intersection property. The mapping Σ is also called the embedding
of G by unit disks. We use the domain of axes-parallel straight lines which
is a set of lines in 2D, where the angle between a pair of lines is either 0 or
π/2. This implies that the equation of a straight line is either y = a if it is a
horizontal line, or x = b if it is a vertical line, where a, b ∈ R. The input for axes-
parallel straight lines recognition problem contains two sets, H, V ⊂ R, where
H contains the Euclidean distance of each horizontal line from the x-axis, and
V contains the Euclidean distance of each vertical line from the y-axis. Thereby
in the domain that we use, each vertex is mapped either onto a vertical line, or
onto a horizontal line. We denote the class of axes-parallel unit disk graphs as
APUD(k, m) where k is the number of horizontal lines, and m is the number of
vertical lines. Formally, we define the problem as follows.

Definition 1 (Axes-parallel unit disk graph recognition on k hori-
zontal and m vertical lines). The input is a graph G = (V, E), where
V = {1, 2, . . . , n}, and two sets H, V ⊂ Q of rational numbers with |H| = k
and |V| = m. The task is to determine whether there exists a mapping Σ : V →
(R×H)∪(V ×R) such that there is a unit disk realization of G in which u ∈ �Σ(u)
for each u ∈ V .

3 APUD(k,m) Recognition Is NP-Hard

We prove that axes-parallel unit disk recognition (APUD(k, m) recognition with
k and m given as input) is NP-hard by giving a reduction from the Monotone
not-all-equal 3-satisfiability (NAE3SAT) problem1. NAE3SAT is a variation of
3SAT where three values in each clause are not all equal to each other, and due to
Schaefer’s dichotomy theory, the problem remains NP-complete when all clauses
are monotone (i.e., none of the literals are negated) [20]. Our main theorem is
as follows.

Theorem 1. There is a polynomial-time reduction of any instance Φ of Mono-
tone NAE3SAT to some instance Ψ of APUD(k, m) such that Φ is a YES-
instance if, and only if Ψ is a YES-instance.
1 This problem is equivalent to the 2-coloring of 3-uniform hypergraphs. We choose

to give the reduction from Monotone NAE3SAT as it is more intuitive to construct
for our problem.



Axes-Parallel Unit Disk Graphs 187

We construct our hardness proof using the scheme called a logic engine,
which is used to prove the hardness of several geometric problems [5]. For a
given instance Φ of Monotone NAE3SAT, there are two main components in
our reduction. First, we construct a backbone for our gadget. The backbone
models only the number of clauses and the number of literals. Next, we model
the relationship between the clauses and literals, i.e., which literal appears in
which clause.

Let us begin by describing the input graph. For the sake of simplicity, we
assume that the given formula has 3 clauses, A, B, C, and 4 literals, q, r, s, t for
the moment. In general, we denote the clauses by C1, . . . , Ck, and the literals by
x1, . . . , xm. Later on, we explain how to generalize the input graph according to
any given instance of Monotone NAE3SAT formula. For the following part, we
describe the input graph given in Fig. 1a. Throughout the manuscript, we index
the vertices from left to right, and from bottom to top, in ascending order.

Three essential components of the input graph are the following induced
paths Pα = (α1, α2, . . . , α11), PL = (L1, L2, . . . , L15), and PR =
(R1, R2, . . . , R15). The length of Pα is 2m + 3 for m literals. In our case,
(2 × 4) + 3 = 11. The lengths of PL and PR are the same, equal to 3 + 4k
for k clauses. In our case, 3 + (4 × 3) = 15.

The middle vertices of PL and PR are the end vertices of Pα. That is, α1 = L8,
and α11 = R8. The paths PL and PR define the left and the right boundary for
our gadget, respectively.

For i = q, r, s, t, there is an induced path Pi = (i1, . . . , i15) for each literal,
with 15 vertices. In general, we denote those paths by P 1, P 2, . . . , P m for m
literals. The vertices of these paths are denoted by blue circles in Fig. 1a, they
are mutually disjoint, but each of them shares one vertex with Pα. The shared
vertices are precisely the middle vertices, which are indicated by green rectangles
in the figure. That is, α3 = q8, α5 = r8, α7 = s8, and α9 = t8. Moreover, i1 is a
vertex of an induced 4-cycle, and i15 is a vertex of another induced 4-cycle for
i = q, r, s, t. The three vertices in a 4-cycle, except the one in one of the induced
paths, are indicated by the red color in the figure. Precisely two of them, that
are adjacent to a blue vertex (either i1 or i15) are indicated by squares, and the
remaining is indicated by a triangle.

Starting from the second edge of PL (respectively PR), every second edge is
a chord of a 4-cycle (C4). Throughout the paper, we refer to such 4-cycles with
a chord as a diamond. Two vertices of these diamonds are of PL (respectively
PR), and remaining two are denoted by red triangles in Fig. 1a.

Remember that the problem takes two inputs: a graph, and a set of lines
determined by their equations (or rather by two sets of rational numbers, since
every line is parallel to either the x- or y- axis). For a Monotone NAE3SAT
formula with 3 clauses and 4 literals, we have described the input graph above.
Now, let us discuss the input lines of our gadget. The input graph is given in
Fig. 1a, and the corresponding lines are given in Fig. 1b. We claim that the given
graph can be embedded onto the given lines with ε flexibility, and the resulting
realization looks like the set of unit disks given in Fig. 1c.



188 O. Çağırıcı

Fig. 1. (a) Skeleton of the input graph for Φ. The consecutive induced paths, labeled as
Pq, Pr, Ps, Pt, are to be embedded on the literal lines �q, �r, �s, �t in Fig. 1b, respectively.
The vertices in the long induced paths PL and PR in 1a (indicated by rectangles) must
be embedded on the lines �L and �R given in 1b. Similarly, the vertices in Pα (indicated
by blue and green rectangles) must be embedded on the line �α given in 1b.
(b) The line set of the configuration for a Monotone NAE3SAT formula Φ with 4 literals
(q, r, s, t) and 3 clauses (A, B, C).
(c) Realization of the graph given in 1a onto the lines given in 1b. (Color figure online)



Axes-Parallel Unit Disk Graphs 189

In order to force such an embedding, we adjust the Euclidean distance
between each pair of parallel lines carefully. We start by defining the horizontal
line �α. This line is the axis of horizontal symmetry for our line configuration.
Thus, it is safe to assume that �α is the x-axis. On the positive side of the y-axis,
for each clause A, B, and C, there is a straight line parallel to �α, and another
horizontal line acting as the top boundary of the configuration. These lines are
denoted by �A, �B , �C , and �Δ, and their equations are y = a, y = b, y = c,
and y = Δ, respectively, where a < b < c < Δ. For every pair of consecutive
horizontal lines, the Euclidean distance between them is precisely 2.01 units.
That is, a = 2.01, b = 4.02 and c = 6.03, and Δ = 8.04. For every horizontal
line described above, there is another horizontal line symmetric to it about the
x-axis. These lines are �′

A, �′
B , �′

C , and �∇ (see Fig. 1b).
The leftmost vertical line is �L, which is the left boundary of our configura-

tion. We can safely assume that �L is the y-axis for the sake of simplicity. For
each literal q, r, s and t, there exists a vertical line parallel to �L, and another
vertical line that defines the right boundary of our configuration. These lines are
denoted by �q, �r, �s, �t, and �R, and their equations are x = q, x = r, x = s,
x = t and x = R, respectively, where q < r < s < t < R. The Euclidean dis-
tance between each pair of consecutive vertical lines is precisely 3.8 units. That
is q = 3.8, r = 7.6, s = 11.4, t = 15.2, and R = 19.

Up to this point, we have described the input graph, and the input lines for
a given Monotone NAE3SAT formula with 3 clauses and 4 literals. In general,
for a given Monotone NAE3SAT formula Φ with k clauses C1, C2, . . . , Ck, and
m literals x1, x2, . . . , xm, our gadget has the following components.

1. An induced path Pα = (α1, α2, . . . , α2m+3) with 2m + 3 vertices.
2. m induced paths P 1 = (P 1

1 , P 1
2 , . . . , P 1

4k+3), . . . , P m = (P m
1 , P m

2 , . . . , P m
4k+3),

each with 4k+3 vertices, where α3 = P 1
2k+2, α5 = P 2

2k+2, . . . , α2k+1 = P m
2k+2,

and induced 4-cycles containing the first and the last vertices of each of these
paths.

3. Two induced paths PL = (L1, . . . , L4k+3) and PR = (R1, . . . , R4k+3), each
with 4k+3 vertices, where the edges L2L3, L4L5, . . . , L2kL2k+1, L2k+3L2k+4,
. . . , L4k+1L4k+2, and R2R3, R4R5, . . . , R2kR2k+1, R2k+3R2k+4, . . . ,
R4k+1R4k+2 are chords of disjoint 4-cycles.

4. 2k + 3 horizontal lines �∇, �′C
k , �′C

k−1, . . . , �α, �C
1 , �C

2 , . . . , �C
k , �Δ, with equations

�∇ : y = −2.01(k + 1), �Δ : −�∇, �α : y = 0, �′C
i = −2.01i, and �C

i = 2.01i for
i = 1, 2, . . . , k.

5. m + 2 vertical lines �L, �x
1 , �x

2 , . . . , �x
m, �R, with equations �L : x = 0, �R : x =

3.8(m + 1), and �x
i : 3.8i for i = 1, 2, . . . , m.

In total, for the given formula Φ with k clauses and m literals, our gadget is an
instance of APUD(2k + 3, m + 2). Here, we conclude the proof of Theorem 1.

Now, let us show that the given graph has a unique embedding onto the given
lines, up to ε flexibility.

Claim. The vertices indicated by rectangles in Fig. 1a can only be embedded on
the bold lines in Fig. 1b.



190 O. Çağırıcı

Let us start by discussing the embedding of PL onto �L (and respectively PR

onto �R). We give the following two trivial lemmas as preliminaries for the proof
of our claim.

Lemma 1 (*). Consider two disks A and B, centered on (a, 0) and (b, 0) with
0 < |a| < |b|. Another disk, C that is centered on (0, c) cannot intersect B
without intersecting A.

Lemma 2 (*). An induced 4-star (K1,4) can be realized as a unit disk graph
on two perpendicular lines, but not on two parallel lines.

Now, with the help of Lemmas 1 and 2, we state the following lemmas, and
prove our claim.

Lemma 3. The induced paths PL, PR and Pα in the input graph (Fig. 1a) can
only be embedded onto �L, �R, and �α, respectively (Fig. 1b).

Proof (Sketch). The diamonds on the left and the right side of the figure should
be embedded around an intersection. There are a total of six diamonds, and thus
six intersections are required.

Pα has induced 4-stars, and those 4-stars are vertices of long induced paths,
Pα cannot be embedded on multiple lines (via bending etc.). The middle vertices
of PL and PR are the two ends of Pα. Since Pα is realized on a single line, another
intersection is required to realize K1,3 consists of L8; L7, L9, α2.

In total, PL requires seven intersections. Those seven intersections are
between a vertical line and seven horizontal lines, excluding �Δ and �∇. The
same argument applies to PR up to symmetry. ��
Claim. For the given input graph for 3 clauses and 4 literals, the following hold:

i) The induced paths Pq = (q1, . . . , q15), Pr = (r1, . . . , r15), Ps = (s1, . . . , s15)
and Pt = (t1, . . . , t15) in the input graph given in Fig. 1a can only be embed-
ded onto �q, �r, �s, and �t, respectively.

ii) The center of each disk that correspond to a vertex of those induced paths
must be between �Δ and �∇.

iii) A pair of non-intersecting disks that are included in an induced 4-cycle,
but not included in any of Pq, Pr, Ps, Pt, must lie on either �Δ or �∇ (red
rectangles in Fig. 1a).

Proof (Sketch). Due to Lemma 3, we know that Pα is realized on �α, thus (i)
holds. 4-cycles require at least two lines, and those two lines cannot be two
parallel lines, as the Euclidean distance between each pair of consecutive parallel
lines is larger than 2. Thus, (ii) holds. The induced paths Pq, Pr, Ps, Pt can be
squeezed enough to be realized between �α and �C because �C : y = 6.03, but
then the 4-cycles cannot be realized. Therefore, the disks that correspond to two
vertices of these 4-cycles must be centered on �Δ (and symmetrically on �∇).
Thus, (iii) holds. ��



Axes-Parallel Unit Disk Graphs 191

Lemma 4 (*). For the given input graph for k clauses and m literals, the
following hold:

i) The induced paths P1 = (P 1
1 , . . . , P 1

4k+3), P 2 = (P 2
1 , . . . , P 2

4k+3), . . . , P n =
(P n

1 , . . . , P n
4k+3) in the input graph can only be embedded onto �x

1 , �x
2 , . . .

�x
m, respectively.

ii) The center of each disk that correspond to a vertex of those induced paths
must be between �Δ and �∇.

iii) A pair of non-intersecting disks that are included in an induced 4-cycle, but
not included in any of P 1, P 2, . . . , P n, must lie on either �Δ or �∇ (red
rectangles in Fig. 1a).

With Lemmas 3 and 4, we have shown that the vertices denoted by rectangles
in Fig. 1a must be embedded onto the bold lines in Fig. 1b.

Using the backbone we have described, we now show how to model the rela-
tionship between the clauses and the literals. To make it easier to follow, we
also refer to Fig. 1a in parentheses in the following description. Consider a sub-
path (P i

2k+3, P i
2k+4, . . . , P i

4k+3) of the induced path P i. This part corresponds
to the literal xi of the given Monotone NAE3SAT formula (corresponding to
(q9, . . . , q15) of Pq in our example). The edges P i

2k+3P i
2k+4, P i

2k+5P i
2k+6, . . . ,

P i
4k+1P i

4k+2 (corresponding to q9q10, q11q12, and q13q14 in Pq in our example)
are used to model membership of xi in the clauses C1, C2, . . . , Ck (corresponding
to the clauses A, B, and C in our example), respectively.

If xi appears in a clause Cj , then we do nothing for the edges correspond do
those clauses. Otherwise, if xi does not appear in Cj , then we introduce a flag
vertex in the graph, which is adjacent to P i

2(k+j)+1 and P i
2(k+j)+2. Due to the

rigidity of the backbone (up to ε flexibility), this flag vertex lies on �C
j . Similarly,

in our example, if q appears in B, then q11q12 stays as is, but otherwise, a flag
vertex is introduced, adjacent to both q11 and q12.

Every clause has 3 literals. Thus, on each horizontal line, 3 out of m possible
flag vertices will be missing. That sums up to a total of k(m−3) flag vertices for
this part of the graph. For the remaining sub-path (P i

1, . . . , P i
2k+2) of P i (corre-

sponding to (q1, . . . , q8) of Pq in our example), we introduce the flag vertices for
the pairs (P i

2, P i
3), (P i

4, P i
5), . . . , P i

2k, P i
2k+1 (corresponding to (q6, q7) (q2, q3),

(q4, q5), (q6, q7) in our example). That is a total number of km flag vertices for
this part of the graph. In the whole graph, there are precisely 2 km–3 km flag
vertices.

Realize that the embeddings on some vertical lines must be flipped upside-
down to create space for the flag vertices. This operation corresponds to the truth
assignment of the literal that corresponds to that vertical line. The configuration
forces at least one literal to have a different truth assignment, because for a pair
of symmetrical horizontal lines, say �A and �′

A, there must be at least one missing
flag, and at most two missing flags for the disks to fit between �L and �R.

The input graph, a YES-instance, and the realization of the YES-instance of
the Monotone NAE3SAT formula Φ = (q ∨ s ∨ t) ∧ (q ∨ r ∨ t) ∧ (q ∨ r ∨ s) is given
in Fig. 2.



192 O. Çağırıcı

Fig. 2. (a) The input graph for the Monotone NAE3SAT formula Φ with literals
q, r, s, t, and clauses A, B, C.Φ = A ∧ B ∧ C where A = (q ∨ s ∨ t), B = (q ∨ r ∨ t), and
C = (q ∨ r ∨ s). The flag vertices, indicated by orange diamonds, are adjacent to the
vertices that correspond to a clause on an induced path, if the literal does not appear
in that clause.
(b) A truth assignment that satisfies the formula given in 2a: q = true, r = false,
s = false, and t = true.
(c) Realization of the graph given in 2b. (Color figure online)



Axes-Parallel Unit Disk Graphs 193

Corollary 1. Given a graph G = (V, E), deciding whether G is a unit disk
graph is an NP-hard problem when the size of the largest induced cycle in G is
of length 4.

4 APUD(k, 0) Recognition Is NP-Complete

In this section, we show that the recognition of axes-parallel unit disk graphs is
NP-complete when all the given lines are parallel to each other. This version of
the problem is referred to as APUD(k, 0), as there are k horizontal lines given
as input, but no vertical lines. We use the reduction given in Sect. 3.

Theorem 2. APUD(k, 0) recognition is NP-hard.

Proof. Consider the realization given in Fig. 1c. Notice that the length of the
paths P 1, P 2, . . . , P m (Pq, Pr, Ps, Pt in our example), and thus the number of
disks on vertical lines, is equal. Lemma 3 (ii) implies that those disks must be
centered between �∇ and �Δ. Thus, for the disks that correspond to the vertices
on these paths, we do not need any vertical line. We can simply remove the
vertical lines, and add an extra horizontal line for each clause. For the disks that
are adjacent to, but not on PL and PR, we can simply add another horizontal
line. That is an extra horizontal line for each clause. As a result, for a given
instance Φ of Monotone NAE3SAT formula with k clauses and m literals, we
have an instance Ψ of APUD(2k + 3, m + 2) to prove NP-hardness with vertical
lines, and an instance Ψ ′ of APUD(4k + 3, 0) to prove NP-completeness without
vertical lines. For each clause, we have 3 horizontal lines.

In Ψ ′, only disks that can “jump” from one horizontal line to another are the
ones that are on the top line of �C

1 and bottom line of �′C
1 . And those jumps do

not change the overall configuration. ��
To show that APUD(k, 0) recognition is in NP, we need to prove that a given

solution can be verified in polynomial time and additionally that any feasible
input will have a solution that takes up polynomial space, with respect to the
input size. Thus, we show that for any graph G ∈ APUD(0, k), there exists
an embedding where the disk centers are represented using polynomially many
decimals with respect to the input size.

Below, we describe a procedure to show the existence of an embedding with
polynomially many digits for every feasible output. Let h0, h1, h2 . . . , hk denote
the rational numbers that correspond to the horizontal lines given as input.

1. Let G0, G1, . . . , Gk denote the disjoint induced subgraphs of G, such that the
vertices of Gi correspond to the disks centered on line y = hi.

2. Embed G0 on x-axis with small perturbations which results in all disks on
y = 0 having polynomially many decimals.

3. For each 1 ≤ i ≤ k, find an embedding of Gi onto the y = hi line by only
considering neighbors from

⋃
j<i Gj .

Therefore, APUD(k, 0) recognition is NP-complete.



194 O. Çağırıcı

5 APUD(1, 1) Recognition Is Open

In this section, we discuss a natural basis for the APUD(k, m) recognition prob-
lem, that is, k = 1 and m = 1. For the sake of simplicity, we can assume that
our given two lines are the x-axis and the y-axis. First, we give some forbid-
den induced subgraphs for APUD(1, 1). Namely, those subgraphs are the 5-cycle
(C5), the 4-sun (S4), and the 5-star (K1,5).

C5 S4 K1,5

Lemma 5 (*). C5, S4, K1,5 �∈ APUD(1, 1).

Lemma 6. A given graph G can be embedded on x-axis and y-axis as a unit
disk intersection graph, without using negative coordinates for the disk centers
if, and only if, G is a unit interval graph.

Proof. In this proof, let us denote the class of graphs that can be embedded on
the x- and y- axes as unit disks, using positive coordinates only by (xy)+. We
show that the disks on the y-axis can be rotated by π/2 degrees counterclockwise,
and the intersection relationships can be preserved as given in G.

G ∈ (xy)+ ⇒ G ∈ UIG: Consider two disks, A and B, whose centers are
(a, 0) and (0, b), respectively, where a and b are both positive numbers. If A
and B do not intersect, then

√
a2 + b2 > 2. After the rotation, the center of

B will be on (−b, 0). The new distance between the centers is a + b. Since
(a + b)2 > a2 + b2 > 4, the inequality a + b > 2 holds.

If A and B intersect, then
√

a2 + b2 ≤ 2. After the rotation, it might still be
the case that a+b > 2. However, now we can safely move the center of B and the
other centers that have negative coordinates closer to the center of A, recovering
the intersection. Note that if a disk C is centered in between the centers of A
and B after the rotation, then both A and B must intersect C by Lemma 1.

G ∈ UIG ⇒ G ∈ (xy)+: Since G is a unit interval graph, we can assume
that every interval is a unit disk, and the graph is embedded on x-axis. Consider
two disks, A and B, whose centers are (−a, 0) and (b, 0), respectively, where a
and b are both positive numbers. If A and B are intersecting, then a + b ≤ 2
Then, after the rotation, since a + b ≤ 2 holds, then

√
a2 + b2 ≤ 2 also holds.

If A and B are not intersecting, then a+b > 2. After the rotation
√

a2 + b2 ≤
2 might hold, creating an intersection between A and B. However, we can simply
shift the center of A (along with the other centers that are on y-axis) far away
from the center of B, separating A and B. ��

Lemma 6 shows APUD+(1, 1) = APUD+(1, 0) = UIG if we use only non-
negative coordinates. This also applies if we use only non-positive coordinates.
Thus, a given APUD(1, 1) can always be partitioned into two unit interval
graphs. Considering the embedding, one of these two partitions contains the
disks that are centered on the positive sides of x- and y-axes, and the other
partition contains the disks centered on the negative sides of x- and y-axes.



Axes-Parallel Unit Disk Graphs 195

Lemma 7. A graph G ∈ APUD(1, 1) can be vertex-partitioned into four parts,
such that any two form a unit interval graph.

Proof. Let Σ(G) be an embedding of G onto x- and y- axes as unit disks. Denote
the set of unit disks in Σ(G) that are centered on the positive side of the x-axis,
and the positive side of the y-axis by Σ+(G). Similarly, by Σ−(G) denote the
set of unit disks that are centered on the negative side of the x-axis, and the
negative side of the y-axis. By Lemma 6, both Σ+(G) and Σ−(G) yield separate
interval graphs. The vertices corresponding to the disks in Σ+(G) yield a unit
interval graph, as do the vertices corresponding to the disks in Σ−(G). If there
exists a disk centered at (0, 0), then it can be included in one of the partitions
arbitrarily. Hence, we can vertex-partition G into two unit interval graphs. ��

Up to this point, we showed that if a unit disk graph can be embedded
onto two orthogonal lines, then it can be partitioned into two interval graphs.
However, this implication obviously does not hold the other way around. Thus,
we now identify some structural properties of APUD(1, 1).

Remark 1. Consider four unit disks A, B, C, D, embedded onto x-axis and y-
axis. If they induce a 4-cycle, then the centers of those disks will be at (a, 0),
(0, b), (−c, 0), (0, −d), respectively, where a, b, c, d are non-negative numbers.

For the upcoming lemma, we will utilize Remark 1. The lemma is an impor-
tant step towards describing a characterization of APUD(1, 1).

Lemma 8 (*). Consider eight unit disks embedded onto x-axis and y-axis,
around the origin, whose intersection graph contains two induced 4-cycles. Then,
this intersection contains at least four 4-cycles, each with a chord, not necessarily
as induced subgraphs. Moreover, those 4-cycles are formed by pairs of disks on
the same direction (+x, +y, −x, −y) with respect to the origin.

The lemmas imply that for a connected graph G ∈ APUD(1, 1), we can deduce:

(i) G does not contain either of the 4-sun (S4) or the 5-star(K1,5) as an induced
subgraph, and the largest induced cycle in G is of length 4 (by Lemma 5).

(ii) G can be vertex partitioned into into four parts, such that any two form a
unit interval graph (by Lemma 7).

(iii) Given two 4-cycles, (a, b, c, d) and (u, v, w, x) in G, each one of the quadru-
plets {a, b, u, v}, {b, c, v, w}, {c, d, w, x}, and {d, a, x, u} is either a diamond
or a K4 (by Lemma 8).

Although this characterization gives a rough idea regarding the structure
of a graph G ∈ APUD(1, 1), it is not clear if the recognition can be done in
polynomial time. Our characterization is a necessary step through recognition,
but it is not yet known whether it is sufficient. Hence, we conjecture that given
a graph G, it can be determined whether G ∈ APUD(1, 1) in polynomial time.

Acknowledgments. The author wants to thank Petr Hliněný for his insight on the
hardness proof. In addition, he thanks Deniz Ağaoğlu and Michał Dębski for their
extensive comments and generous help during the preparation of this manuscript.



196 O. Çağırıcı

References
1. Alber, J., Fiala, J.: Geometric separation and exact solutions for the parameterized

independent set problem on disk graphs. J. Algorithms 52(2), 134–151 (2004)
2. Alomari, A., Aslam, N., Phillips, W., Comeau, F.: Three-dimensional path plan-

ning model for mobile anchor-assisted localization in Wireless Sensor Networks.
In: 30th IEEE Canadian Conference on Electrical and Computer Engineering,
CCECE, pp. 1–5 (2017)

3. Aspnes, J., et al.: A theory of network localization. IEEE Trans. Mob. Comput.
5(12), 1663–1678 (2006)

4. Balasundaram, B., Butenko, S.: Optimization problems in unit-disk graphs. In:
Floudas, C., Pardalos, P. (eds.) Encyclopedia of Optimization, pp. 2832–2844.
Springer, Boston (2009). https://doi.org/10.1007/978-0-387-74759-0

5. Bhatt, S.N., Cosmadakis, S.S.: The complexity of minimizing wire lengths in VLSI
layouts. Inf. Process. Lett. 25(4), 263–267 (1987)

6. Bonnet, É., Giannopoulos, P., Kim, E.J., Rzążewski, P., Sikora, F.: QPTAS and
subexponential algorithm for maximum clique on disk graphs. In: Speckmann,
B., Tóth, C.D. (eds.) 34th International Symposium on Computational Geometry,
SoCG. LIPIcs, vol. 99, pp. 12:1–12:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2018)

7. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3),
335–379 (1976)

8. Breu, H.: Algorithmic aspects of constrained unit disk graphs. Ph.D. thesis, Uni-
versity of British Columbia (1996)

9. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput.
Geom. 9(1–2), 3–24 (1998)

10. Çağırıcı, O.: Exploiting coplanar clusters to enhance 3D localization in wireless
sensor networks. Master’s thesis, Izmir University of Economics (2015). http://
arxiv.org/abs/1502.07790

11. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1–
3), 165–177 (1990)

12. Dil, B., Dulman, S., Havinga, P.: Range-based localization in mobile sensor net-
works. In: Römer, K., Karl, H., Mattern, F. (eds.) EWSN 2006. LNCS, vol. 3868,
pp. 164–179. Springer, Heidelberg (2006). https://doi.org/10.1007/11669463_14

13. Evans, W., van Garderen, M., Löffler, M., Polishchuk, V.: Recognizing a DOG is
hard, but not when it is thin and unit. In: Demaine, E.D., Grandoni, F. (eds.)
8th International Conference on Fun with Algorithms, FUN. LIPIcs, vol. 49, pp.
16:1–16:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

14. Fishburn, P.C.: Interval Orders and Interval Graphs – A Study on Partially
Ordered Sets. Wiley, Hoboken (1985)

15. Ito, H., Kadoshita, M.: Tractability and intractability of problems on unit disk
graphs parameterized by domain area. In: Zhang, X.S., Liu, D.G., Wu, L.Y., Wang,
Y. (eds.) Operations Research and Its Applications, 9th International Symposium,
ISORA. Lecture Notes in Operations Research, vol. 12, pp. 120–127 (2010)

16. Kang, R.J., Müller, T.: Sphere and dot product representations of graphs. Discrete
Comput. Geom. 47(3), 548–568 (2012). https://doi.org/10.1007/s00454-012-9394-
8

17. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Unit disk graph approximation. In:
Basagni, S., Phillips, C.A. (eds.) Proceedings of the DIALM-POMC Joint Work-
shop on Foundations of Mobile Computing, pp. 17–23. ACM (2004)

https://doi.org/10.1007/978-0-387-74759-0
http://arxiv.org/abs/1502.07790
http://arxiv.org/abs/1502.07790
https://doi.org/10.1007/11669463_14
https://doi.org/10.1007/s00454-012-9394-8
https://doi.org/10.1007/s00454-012-9394-8


Axes-Parallel Unit Disk Graphs 197

18. McDiarmid, C., Müller, T.: Integer realizations of disk and segment graphs. J.
Comb. Theory Ser. B 103(1), 114–143 (2013)

19. Neto, M.F., Goussevskaia, O., dos Santos, V.F.: Connectivity with backbone struc-
tures in obstructed wireless networks. Comput. Netw. 127, 266–281 (2017)

20. Schaefer, T.J.: The complexity of satisfiability problems. In: Lipton, R.J.,
Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.) Proceedings of
the 10th Annual ACM Symposium on Theory of Computing, STOC, pp. 216–226.
ACM (1978)



On the Decision Tree Complexity
of Threshold Functions

Anastasiya Chistopolskaya1 and Vladimir V. Podolskii1,2(B)

1 National Research University Higher School of Economics, Moscow, Russia
achistopolskaya@hse.ru

2 Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
podolskii@mi-ras.ru

Abstract. In this paper we study decision tree models with various
types of queries. For a given function it is usually not hard to determine
the complexity in the standard decision tree model (each query evaluates
a variable). However in more general settings showing tight lower bounds
is substantially harder. Threshold functions often have non-trivial com-
plexity in such models and can be used to provide interesting examples.

Standard decision trees can be viewed as a computational model in
which each query depends on only one input bit. In the first part of the
paper we consider natural generalization of standard decision tree model:
we address decision trees that are allowed to query any function depend-
ing on two input bits. We show the first lower bound of the form n−o(n)
for an explicit function (namely, the majority function) in this model.
We also show that in the decision tree model with AND and OR queries
of arbitrary fan-in the complexity of the majority function is n− 1.

In the second part of the paper we address parity decision trees that
are allowed to query arbitrary parities of input bits. There are various
lower bound techniques for parity decision trees complexity including
analytical techniques (degree over F2, Fourier sparsity, granularity) and
combinatorial techniques (generalizations of block sensitivity and cer-
tificate complexity). These techniques give tight lower bounds for many
natural functions. We give a new inductive argument tailored specifically
for threshold functions. A combination of this argument with granular-
ity lower bound allows us to provide a simple example of a function for
which all previously known lower bounds are not tight.

Keywords: Decision tree · Parity decision tree · Granularity ·
Threshold function · Lower bound

1 Introduction

Decision trees are a computational model in which we compute a known Boolean
function f : {0, 1}n → {0, 1} on an unknown input x ∈ {0, 1}n and in one step we

The paper is partially supported by RFBR Grant 18-01-00822 and by HSE University
Basic Research Program.

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 198–210, 2020.
https://doi.org/10.1007/978-3-030-50026-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_14&domain=pdf
http://orcid.org/0000-0001-7154-138X
https://doi.org/10.1007/978-3-030-50026-9_14


On the Decision Tree Complexity of Threshold Functions 199

can query q(x) for q : {0, 1}n → {0, 1} from a fixed set of queries. In the standard
and the most studied decision tree model we can query only individual variables
of the input x [2,8] (the complexity of f is denoted by D(f)). The studies of this
model among other things are related to the well-known sensitivity conjecture
[6] that was recently resolved [7]. Among other cases studied in the literature are
parity decision trees that can query any parity of input bits [14], linear decision
trees in which the queries are linear threshold functions [4,8] and decision trees
with AND and OR queries [1].

In this paper we will mainly deal with threshold functions. The threshold
function THRk

n on n bits outputs 1 iff there are at least k ones in the input. The
majority function MAJn is simply THR�n/2�

n .
The main goal of the first part of the paper is to study a natural generalization

of standard decision tree model: we address decision trees that are allowed to
query any function depending on two input bits. We denote the complexity in
this model by DB2(f). More generally, we can consider decision trees that can
query arbitrary functions depending on at most r inputs, where r is a parameter.
The standard decision tree model corresponds to the case r = 1.

This model can be viewed as a uniform version of multi-party Communi-
cation Complexity (see the book by Kushilevitz and Nisan [10] for details on
Communication Complexity). In this model k players are trying to compute
the function f : {0, 1}nk → {0, 1} and the input is shared by the players. Each
player is associated with a piece of input of size n. In the Number in Hand
model (NIH) players see only the input bits associated with them. In the Num-
ber on the Forehead model (NOF) players see all input bits except those that
are associated with them (thus the inputs visible to players have large overlaps).
Decision tree model with r = n for the computation of f can be viewed as a
version of communication model where for each n bits there is a player seeing
exactly these n bits. The decision tree model with r = (k − 1)n can be viewed
as a generalization of NOF communication model.

A special case of this model was considered by Posobin [13], where the com-
putation of MAJn with MAJk-queries was studied for k < n. There are results
on a related model with non-Boolean counting queries [3,9]. Related settings
with non-Boolean domain also arise in algebraic decision tree models (see, e. g.,
[8, Section 14.8]).

We initiate (to the best of our knowledge) the study of strong lower bounds
for decision trees with queries of bounded fan-in considering the case of queries
of fan-in 2. It is easy to see that the complexity DB2(f) in this model is lower
bounded by D(f)/2 (each binary query can be simulated by two unary queries).
However, in the view of generalization to larger r it is interesting to obtain lower
bounds greater than n/2. We show that

DB2(MAJn) ≥ n − o(n).

We also show that if we allow additionally to query parities of three bits, the
complexity of majority (as well as any symmetric function) drops to at most
2n/3. Thus to obtain strong lower bounds for r = 3 more complicated functions
need to be considered.



200 A. Chistopolskaya and V. V. Podolskii

Also in this part of the paper we address the complexity of majority function
MAJ in decision tree model with AND and OR queries (of arbitrary fan-in). We
denote the complexity of a function f in this model by D∧,∨(f). The complexity
of threshold functions in this model was studied by Ben-Asher and Newman [1]
with the relation to a certain PRAM model. It was shown there that THRk

n

functions have complexity Θ(k/ log(n/k)). In this paper we are interested in the
precise complexity of functions in this model. We show that D∧,∨(MAJ) = n−1.

In the second part of the paper we turn to parity decision tree model D⊕(f).
Apart from being natural and interesting on its own parity decision tree model
was studied mainly in connection with Communication Complexity and more
specifically, with Log-rank Conjecture. It is known that the two-party determin-
istic communication complexity Dcc(F ) of the function F : {0, 1}n × {0, 1}n →
{−1, 1} is lower bounded by log rank(MF ), where MF is a communication matrix
of F [10]. It is a long standing conjecture and one of the key open problems
in Communication Complexity, called Log-rank Conjecture [11], to prove that
Dcc(F ) is upper bounded by a polynomial of log rank(MF ).

An important special case of Log-rank Conjecture addresses the case of XOR-
functions F (x, y) = f(x ⊕ y) for some f , where x ⊕ y is a bit-wise XOR of
Boolean vectors x and y. On one hand, this class of functions is wide and captures
many important functions (including equality and Hamming distance), and on
the other hand the structure of XOR-functions allows to use analytic tools. For
such functions rank(MF ) is equal to the Fourier sparsity sparf , the number
of non-zero Fourier coefficients of f . Thus, the Log-rank Conjecture for XOR-
functions can be restated: is it true that Dcc(F ) is bounded by a polynomial of
log sparf?

In a recent paper [5] it was shown that actually Dcc(F ) and D⊕(f) are poly-
nomially related. This reduces the Log-rank Conjecture for XOR-functions to
studies of parity decision trees.

Known techniques for lower bounds for parity decision trees fall into one of
the two categories: of analytical and combinatorial flavor. Analytical techniques
include lower bounds on D⊕(f) through sparsity spar(f), granularity gran(f)
and degree deg2(f) over F2. The strongest lower bound among these is D⊕(f) ≥
gran(f) + 1.

Regarding combinatorial techniques, for standard decision trees there are
several combinatorial measures known that lower bound decision tree complexity.
Among them the most common are certificate complexity and block sensitivity.
Zhang and Shi [14] generalized these measures to the setting of parity decision
tree complexity.

Parity decision tree complexity versions of combinatorial measures are actu-
ally known to be polynomially related to parity decision tree complexity [14]. For
analytical techniques it is known that existence of polynomial relation between
D⊕(f) and gran(f) (or spar(f)) is equivalent to Log-rank Conjecture for XOR-
functions [5].

In view of this it is interesting to further study lower bounds for parity
decision trees.



On the Decision Tree Complexity of Threshold Functions 201

In this paper we prove a new lower bound for parity decision tree complexity
of threshold functions. We show that

D⊕(THRk+1
n+2) ≥ D⊕(THRk

n) + 1

for any k, n.
The combination of this result with granularity lower bound allows to show

that for n = 8k + 2, k > 0 we have D⊕(THR3
n) = n − 1, whereas all previous

techniques give at most n − 2 lower bound. Thus, we give an example of a
function, for which all known general techniques are not tight.

The rest of the paper is organized as follows. In Sect. 2 we provide necessary
definitions, preliminary information and review lower bounds for parity decision
trees. In Sect. 3 we study decision trees with binary queries as well as decision
trees with AND and OR queries. In Sect. 4 we study parity decision tree com-
plexity of threshold functions. Due to the space constraints many of the technical
proofs are omitted.

2 Preliminaries

In many parts of the paper we assume that Boolean functions are functions of the
form f : {0, 1}n → {−1, 1}, for n ∈ N. That is, input bits are treated as 0 and 1
and to them we will usually apply operations over F2. Output bits are treated as
−1 and 1 and the arithmetic will be over R. The value −1 corresponds to ‘true’
and 1 corresponds to ‘false’. In other parts of the paper it is more convenient
to consider Boolean functions in the form f : {−1, 1}n → {−1, 1} with the same
semantics of −1 and 1.

We denote the variables of functions by x = (x1, . . . , xn). We use the notation
[n] = {1, . . . , n}.

We briefly review the notation and needed facts from Boolean Fourier anal-
ysis. For extensive introduction see [12].

For functions f, g : {0, 1}n → R consider an inner product

〈f, g〉 = E
x

f(x)g(x),

where the expectation is taken over uniform distribution of x on {0, 1}n.
For a subset S ⊆ [n] we denote by χS(x) =

∏
i∈S(−1)xi the Fourier character

corresponding to S. We denote by f̂(S) = 〈f, χS〉 the corresponding Fourier
coefficient of f .

It is well-known that for any x ∈ {0, 1}n we have f(x) =
∑

S⊆[n] f̂(S)χS(x).
Consider a binary fraction α, that is α is a rational number that can be

written in a form that its denominator is a power of 2. By the granularity gran(α)
of α we denote the minimal integer k ≥ 0 such that α · 2k is an integer.

Note that for Boolean f the Fourier coefficients of f are binary fractions. By
the granularity of f : {0, 1}n → Z we call the following value

gran(f) = max
S⊆[n]

gran(f̂(S)).



202 A. Chistopolskaya and V. V. Podolskii

It is easy to see that for any f : {0, 1}n → {−1, 1} it is true that 0 ≤ gran(f) ≤
n − 1 and both of these bounds are achievable (for example, for f(x) =

⊕
i xi

and f(x) =
∧

i xi respectively).

2.1 Decision Trees

A decision tree T is a rooted directed binary tree. Each of its leaves is labeled by
−1 or 1, each internal vertex v is labeled by some function qv : {0, 1}n → {−1, 1}.
Each internal node has two outgoing edges, one labeled by −1 and another by 1.
A computation of T on input x ∈ {0, 1}n is the path from the root to one of the
leaves that in each of the internal vertices v follows the edge, that has label equal
to the value of qv(x). Label of the leaf that is reached by the path is the output
of the computation. The tree T computes the function f : {0, 1}n → {−1, 1} iff
on each input x ∈ {0, 1}n the output of T is equal to f(x).

Decision tree models differ by the types of functions qv that are allowed in
the vertices of the tree. For any set Q of functions the decision tree complexity
of the function f is the minimal depth of a tree (that is, the number of edges in
the longest path from the root to a leaf) using functions from Q and computing
f . We denote this value by DQ(f).

The standard decision tree model allows to query individual variables in the
vertices of the tree. The complexity in this model is denoted simply by D(f).
In the paper we also consider D⊕(f), D∧,∨(f), DB2(f) standing for Q equal to
the set of all parities, the set of all AND and OR functions and the set B2 of all
binary functions respectively.

2.2 Parity Decision Trees

There are various techniques known for parity decision trees (that is, decision
trees with parity queries). Here we list only the most relevant ones. A detailed
exposition will be provided in the full version of the paper.

The strongest known analytical lower bound is through granularity.

Lemma 1. For any non-constant function f : {0, 1}n → {−1, 1} we find that
D⊕(f) ≥ gran(f) + 1.

It is not hard to deduce this lemma from [12, Exercise 3.26]. We omit the
proof here.

Another more combinatorial approach goes through analogs of certificate
complexity and block sensitivity for parity decision trees [14]. Since parity block
sensitivity is always less or equal than parity certificate complexity and we are
interested in lower bounds, we will introduce only certificate complexity here.

For a function f : {0, 1}n → {−1, 1} and x ∈ {0, 1}n denote by C⊕(f, x) the
minimal co-dimension of an affine subspace in {0, 1}n containing x, on which f
is constant. The parity certificate complexity of f is C⊕(f) = maxx C⊕(f, x).

Lemma 2. ([14]) For any function f : {0, 1}n → {−1, 1} we have D⊕(f) ≥
C⊕(f).



On the Decision Tree Complexity of Threshold Functions 203

3 Decision Trees with B2-Queries

In this section we show a n−o(n) lower bound for the complexity of MAJn func-
tion for B2-queries. As a warm-up we start with the analysis of the complexity
of MAJn in decision tree model with AND and OR queries of arbitrary fan-in.
This model was studied in [1] with the relation to certain PRAM model.

In this section it will be convenient to switch to {−1, 1} variables, that is we
will consider MAJn : {−1, 1}n → {−1, 1} that is equal to 1 iff

∑n
i=1 xi ≥ 0.

First we observe that the complexity of all monotone functions cannot be
maximal.

Lemma 3. For any monotone function f : {−1, 1}n → {−1, 1} we find that
D∧,∨(f) ≤ n − 1.

Proof. We can query all variables one by one until two variables are left. Now,
observe that a monotone function of two remaining variables is either a constant,
or a variable, or AND2, or OR2. We can compute this function in at most one
query. 
�

This upper bound is tight for MAJn.

Theorem 4. D∧,∨(MAJn) = n − 1.

Proof. The upper bound follows from Lemma3.
For the lower bound we will argue by adversary argument, that is we will

describe the strategy of query answering forcing the decision tree to make at
least n − 1 queries.

During the computation we will fix the values of some of the variables. We
will maintain an undirected graph G on the variables that are not yet fixed.
Each vertex in this graph will have degree either 0 or 1 (that is, our graph is a
matching). Each edge in the graph is labeled by either 1 or −1. The intuition
behind the edges is the following. We connect xi and xj by an edge labeled by
a iff we add the restriction that at least one of the variables xi and xj is equal
to a. That is, we are not allowed to fix both variables to −a in the future.

In the beginning the set of vertices of G consists of all variables and there
are no edges. In one query the number of connected components will reduce by
at most 1, with only one exception (when we remove one connected component
without making queries). We will answer the queries in such a way that to know
the value of the function the decision tree should reduce our graph to an empty
graph. From this it follows that at least n − 1 queries are needed.

Along with the graph we maintain the parameter t that is equal to the sum
of the values of already fixed variables. During most of the process we will have
that t ∈ {−1, 0}.

Next we describe how to answer the queries. If the query asks the value of
one of the variables xi, there are two cases. If this variable is isolated in G, we
fix the value of the variable in such a way that the new value of t still lies in



204 A. Chistopolskaya and V. V. Podolskii

{−1, 0} . If xi was connected by an edge to xj , we fix xi = 1 and xj = −1. The
value of t does not change. In both cases we remove one connected component
from G.

Next suppose the query asks AND or OR of several variables. Without loss
of generality consider a query

∧
i∈S xi for some S ⊆ [n] with |S| ≥ 2. The case

of OR-query is symmetric. We can assume that none of the variables in S are
already fixed, since otherwise we can either answer the query without fixing new
variables, or simplify the query. Suppose there is an edge {xi, xj} in G, such that
i ∈ S. In this case we fix xi = 1 and xj = −1. The answer to the query is 1 (that
is, ‘false’). The number of connected components has reduced by 1 and t does not
change. Next suppose that all vertices xi with i ∈ S are isolated. Since |S| ≥ 2
we can consider two distinct variables xi and xj with i, j ∈ S. We connect these
vertices by an edge with the label 1. Thus, we promise that at least one of the
variables is 1 and the answer to the query is 1. Since we introduce one edge, the
number of connected components reduces by 1. The value of t does not change
since we do not fix any variables.

We might need to interrupt this process at one point of the computation.
At an arbitrary point of computation denote by A the number of −1-edges, by
B the number of 1-edges and by C the number of isolated vertices. Note that
A + B + C is the number of connected components in G. Suppose that at some
point we have A+C = 1 or B +C = 1. These cases are symmetric, without loss
of generality suppose we have A + C = 1. If at this point of the computation
we have t = 0 this might be a potential problem: note that none of 1-edges can
change the balance to the negative side. If after fixing the last isolated vertex or
the last −1-edge the balance does not decrease, it must be non-negative for all
assignments of variables consistent with the current restrictions. So, to keep the
function non-constant we will fix the last isolated vertex or −1-edge as soon as
A + C = 1. If C = 1, we set the isolated vertex to −1 and we have t = −1 or
t = −2. If A = 1 and t = 0, we set both of the variables connected by the edge
to −1 and we have t = −2. If A = 1 and t = −1 we set one of the variables to 1
and the other to −1 and we have t = −1.

In the rest of the process we have that all the remaining vertices are connected
by 1-edges. Answering the queries as before we keep t the same. Thus, there is
an input consistent with our answers such that MAJn is −1 on this input. On
the other hand, if at least one of 1-edges is still present in the graph we can
set both of its vertices to 1 and make the balance t non-negative. Thus, in this
case there is also an assignment on which the value of the function is equal to
1. Thus, to make the function to be constant we should remove all connected
components from G. 
�
We now proceed to the proof of the lower bound for binary queries.

Theorem 5. DB2(MAJn) ≥ n − O(
√

n).

Proof. Let us first consider what type of queries can be made by functions in
B2. First note, that the queries q and −q are equivalent. Then note that there
are queries of the form of one variable, (xa

i ∨ xb
j) for a, b ∈ {0, 1}, where x1

i = xi



On the Decision Tree Complexity of Threshold Functions 205

and x0
i = −xi, and xi ⊕ xj . Note that the last query basically asks whether

variables xi and xj are equal.
The proof strategy is similar to the one in the previous proof. During the

computation we will maintain the graph G. But now the vertices of G are new
fresh variables that we denote by y1, . . . , yk (here k is the number of vertices
in G). To each of the vertices yi we assign some integer weight ci. Some of the
vertices are connected by edges, labeled by 1 or −1. The edges form a match-
ing. We will maintain that the weights of connected vertices are equal. We will
maintain that 1 ≤ ci ≤ √

n.
The intuition behind the graph is the following. Each original input variable

xi at each point of the computation is fixed either to a constant or to some
variable yj , or to its negation −yj . We will maintain the following relation

∑

i : xi is unfixed

xi =
k∑

j=1

cjyj .

Initially k = n, for all i we set xi = yi, ci = 1 and there are no edges in the
graph.

We will answer queries in such a way that the number of connected compo-
nents of G will reduce as slowly as possible. We will show how to answer queries
in such a way that to know the value of the function the decision tree must
reduce the number of connected components to a small number.

We also maintain a parameter t that is equal to the sum of the values of
already fixed variables xi.

The computation will proceed in two phases. In the first phase we will main-
tain that −√

n ≤ t ≤ √
n.

We now explain how to answer the queries in the first phase. Note that each
query to variables of x can be restated as a query to variables of y (since each xi

is fixed either to a constant or to some variable yj). First we consider the case
that the query addresses the variables of y that are isolated.

Queries to Isolated Vertices. Suppose the query asks the value of one of the
variables yi. We then fix the value of the variable in such a way that ciyi and t
have opposite signs. We remove the variable yi from the graph. Since ci ≤ √

n
the balance t is still at most

√
n in absolute value.

Suppose the query asks whether yi = yj . Suppose first that ci �= cj , suppose
without loss of generality that ci > cj . Then the adversary reply with yi �= yj ,
so we identify yj = −yi, remove the vertex yj from G and subtract cj from ci.
It is easy to see that all properties are maintained. The number of connected
components reduces by 1.

If on the other hand ci = cj , then if ci >
√

n/2, we fix yi = 1 and yj = −1,
and remove both vertices from G. The number of connected components in this
case reduces by 2. If on the other hand ci ≤ √

n/2, we set yj = yi, remove yj
from G and add cj to ci. The number of connected components reduces by 1.

Suppose next that the query asks the function yi ∨ ¬yj . In this case if t ≥ 0
we set yi = −1, otherwise we fix yj = 1. In both cases we remove yi from G. The



206 A. Chistopolskaya and V. V. Podolskii

answer to the query in both cases is −1. The number of connected components
reduces by 1 and since ci, cj ≤ √

n the balance t is still at most
√

n in absolute
value.

Finally, suppose the query asks yi ∨ yj or yi ∧ yj . Suppose first that ci �= cj ,
suppose without loss of generality that ci > cj . Then again we set yj = −yi,
remove the vertex yj from G and subtract cj from ci. It is easy to see that all
properties are maintained. The number of connected components reduces by 1.

If on the other hand ci = cj we connect yi and yj by an edge. We label the
edge by −1 for the case of yi ∨ yj query and by 1 for the case of yi ∧ yj query.
The number of connected components reduces by 1.

Next we proceed to queries to non-isolated vertices.

Queries to Non-isolated Vertices. First consider arbitrary queries of the form yi,
yi ∨ ¬yj , yi ∨ yj or yi ∧ yj and suppose yi is connected by an edge to some other
vertex yl (possibly l = j). For all these types of queries we can fix the answer to
the query by fixing yi to some constant. We also fix yl to the opposite constant
and remove both vertices from G. Since ci = cl the balance t does not change.
The number of connected components reduces by 1.

The only remaining case is the query of the form yi = yj for the case when
yi is connected to some other vertex yl by an edge. If l = j we simply set yi = 1,
yj = −1 and remove both vertices from G. The balance t does not change and
the number of connected components reduces by 1. If l �= j we let yi = yj and
yl = −yj . We remove vertices yi and yl from the graph. Since ci and cl are equal
the weight of yj does not change. The number of connected components reduce
by 1.

We have described how to answer queries in the first phase. Next we describe
at which point this phase ends. For this denote by A the sum of weights of
vertices connected by −1-edges, by B the sum of weights of vertices connected
by 1-edges and by C the sum of weights of isolated vertices. The first phase ends
once either A + C ≤ 3

√
n or B + C ≤ 3

√
n. Without loss of generality assume

that A + C ≤ 3
√

n (the other case is symmetric). Note that we can claim that
A+C >

√
n. Indeed, note that in one step of the first phase at most two vertices

are removed and the weight of each vertex is at most
√

n, so if A + C ≤ √
n,

then on the previous step we already had A + C ≤ 3
√

n.
At this step of the computation we fix all isolated vertices and all vertices

connected by −1-edges to −1. Before that we had −√
n ≤ t ≤ √

n. Thus, since√
n < A + C ≤ 3

√
n, after this step we have −4

√
n ≤ t < 0 (we could be more

careful here, but this only results in a multiplicative constant factor in O(
√

n) in
the theorem). After this the second phase of the computation starts. There are
only vertices connected by 1-edges remained. We answer the queries as in the
first phase. Note that the balance t does not change anymore. Thus if the sum
of the weights of the remaining variables is at least 4

√
n, then the function is

non-constant: on one hand setting one vertex in each pair to 1 and the other to
−1 we set function to −1 and setting all variables to 1 we set the function to 1.
Thus the function becomes constant only once the total weight of the remaining
vertices is below 4

√
n, that is there are less than 2

√
n connected components.



On the Decision Tree Complexity of Threshold Functions 207

Let us now calculate how many queries the decision tree needs to make to set
the function to a constant. In the beginning G has n connected components and
in the end it has at most 2

√
n connected components. On each step the number

of connected components reduces by 1 with some exceptions that we consider
below.

On the first phase there is the case when the number of connected components
reduces by 2. Note that in this case the total weight of all vertices reduces by
at least

√
n. Since originally the total weight is n and the total weight never

increases, this step can occur at most
√

n times.
Between the two phases we fix a lot of variables without answering any

queries. Note that their total weight is at most 3
√

n, thus the number of con-
nected components reduces by at most 3

√
n.

Thus, in total the tree needs to make at least n−2
√

n−√
n−3

√
n = n−O(

√
n)

queries to fix the function to a constant. 
�
We observe that the complexity of MAJn drops substantially if we allow to

query parities of three variables.

Lemma 6. Suppose f : {−1, 1}n → {−1, 1} is symmetric function. Then there
is a decision tree of depth � 2n

3 � making queries only of the form AND2, OR2

and XOR3 and computing f .

Proof. Split the variables in blocks of size 3. In each block query the parity of
its variables. If the answer is −1, query AND2 of any two variables in the block.
If the answer to the first query is 1, query OR2 of any two variables in the block.
It is easy to see that after these two queries we know the number of −1 variables
in the block. In the case when n is not divisible by 3, if there is a small block of
size 1, it requires one query to handle. If there is block of size 2 we will handle
it with two queries. Knowing the number of −1 variables in all blocks is enough
to output the value of the symmetric function. 
�

4 Parity Decision Tree Complexity of Threshold
Functions

In this section we show a new lower bound for parity decision tree complexity
of threshold functions.

To show that all previous techniques are not tight for some threshold func-
tions we need an approach to prove even better lower bounds. We will do this
via the following theorem.

Theorem 7. For any s, k, n if D⊕(THRk
n) ≥ s, then D⊕(THRk+1

n+2) ≥ s + 1.

Proof. We argue by a contradiction. Assume that D⊕(THRk+1
n+2) ≤ s. We will

construct a parity decision tree for THRk
n making no more than s − 1 queries.

Denote the input variables to THRk
n by x = (x1, . . . , xn) ∈ {0, 1}n. We intro-

duce one more variable y (which we will fix later) and consider x1, . . . , xn, y,¬y as



208 A. Chistopolskaya and V. V. Podolskii

inputs to the algorithm for THRk+1
n+2. Note that THRk

n(x) = THRk+1
n+2(x, y,¬y).

Our plan is to simulate the algorithm for THRk+1
n+2 on (x, y,¬y) (possibly

reordered) and save one query on our way.
Consider the first query that the algorithm for THRk+1

n+2 makes. Suppose first
that the query does not ask the parity of all input variables (we will deal with
the other case later). Since the function THRk+1

n+2 is symmetric we can reorder
the inputs in such a way that the query contains input y and does not contain
¬y, that is the query asks the parity (

⊕
i∈S xi) ⊕ y for some S ⊆ [n]. Now it is

time for us to fix the value of y. We let y =
⊕

i∈S xi. Then the answer to the
first query is 0, we can skip it and proceed to the second query. For each next
query of the algorithm for THRk+1

n+2 if it contains y or ¬y (or both) we substitute
them by

⊕
i∈S xi and (

⊕
i∈S xi) ⊕ 1 respectively. The result is the parity of

some variables among x1, . . . , xn and we make this query to our original input
x. Clearly the answer to the query to x is the same as the answer to the original
query to (x, y,¬y). Thus, making at most s − 1 queries we reach the leaf of the
tree for THRk+1

n+2 and thus compute THRk+1
n+2(x, y,¬y) = THRk

n(x).
It remains to consider the case when the first query to THRk+1

n+2 is (
⊕n

i=1 xi) ⊕
y ⊕ ¬y. This parity is equal to

⊕n
i=1 xi and we make this query to x. Now we

proceed to the second query in the computation of THRk+1
n+2 and this query

does not query the parity of all input variables. We perform the same analysis as
above for this query: rename the inputs, fix y to the parity of subset of x to make
the answer to the query to be equal to 0, simulate further queries to (x, y,¬y).
Again we save one query in this case and compute THRk

n(x) in at most s − 1
queries. 
�

Next we analyze the decision tree complexity of THR2
n functions. For them

the lower bound through granularity is tight. We need this analysis to use in
combination with Theorem 7 to prove lower bound for THR3

n.

Lemma 8. For even n, we have D⊕(THR2
n) = n, and for odd n, we have

D⊕(THR2
n) = n − 1.

The proof of this lemma is omitted.
Next we compute the granularity for threshold functions with threshold three.

Lemma 9. For n = 8m + 2 for any integer m, we have gran(THR3
n) = n − 3.

To prove this lemma we need to analyse Fourier coefficients of THR2
n. It turns

out that the maximal granularity is achieved on one of the Fourier coefficients

T̂HR
3

n(∅) and T̂HR
3

n([n]). We omit the details of the proof.
We now show that for functions in Lemma9 their decision tree complexity is

greater than their granularity plus one. Note, that since granularity lower bound
is not worse than the lower bounds through the sparsity and the degree, they
also do not give tight lower bounds. Also it is easy to see that the certificate
complexity does not give optimal lower bound as well (note that each input x
lies in an affine subspace of dimension 2 on which the function is constant).



On the Decision Tree Complexity of Threshold Functions 209

Theorem 10. For n = 8m + 2 for integer m > 0 we have D⊕(THR3
n) = n − 1.

Proof. For the lower bound we note that n − 2 is even and thus by Lemma 8 we
have D⊕(THR2

n−2) ≥ n − 2. Then by Theorem 7 we have D⊕(THR3
n) ≥ n − 1.

For the upper bound we construct an algorithm. Our algorithm will maintain
splitting of input variables into blocks of two types with the following properties:

– all variables in each block of type 1 are equal;
– blocks of type 2 are balanced, that is they have equal number of ones and

zeros.

In the beginning of the computation each variable forms a separate block of size
one.

During each step the algorithm will merge two blocks into a new one. Thus,
after k steps the number of blocks is n − k.

More specifically, on each step we pick two blocks of type 1 of equal size. We
pick one variable from each block and query the parity of these two variables. If
the variables are equal, we merge the blocks into a new block of type 1. If the
variables are not equal, the new block is of type 2.

The algorithm works as follows. We first combine input variables into blocks
of size 2 and then combine all unbalanced blocks, except possibly one, into blocks
of size 4. If in the end we have at least one balanced block we just query one
variable from all other blocks thus learning the number of ones in the input in at
most n−1 queries. If all blocks are of type 1, then there is one block of size 2. We
observe that two variables in this block do not affect the value of the function.
Indeed, THR3

n(x) = 1 iff
∑

i xi ≥ 3 iff there is a block of size 4 containing
variables equal to 1. Again, we can query one variable from each block except
one to compute the output. 
�

Thus, we have shown that previously known lower bounds are not tight for
THR3

8m+2. However, the gap between the lower bound and the actual complexity
is 1.

Remark 11. We note that from our analysis it is straightforward to determine
the complexity of THR3

n for all n. If n = 4m or 4m + 3 for some m, then
D⊕(THR3

n) = n and if n = 4m + 1 or n = 4m + 2, then D⊕(THR3
n) = n − 1.

The lower bounds (apart from the case covered by Theorem10) follows from the

consideration of T̂HR
3

n(∅) and T̂HR
3

n([n]) as in the proof of Lemma9. The upper
bound follows the same analysis as in the proof of Theorem10.

Acknowledgments. We would like to thank Alexander Kulikov for useful discussions
on parity decision tree complexity.

References

1. Ben-Asher, Y., Newman, I.: Decision trees with Boolean threshold queries. J. Com-
put. Syst. Sci. 51(3), 495–502 (1995). https://doi.org/10.1006/jcss.1995.1085

https://doi.org/10.1006/jcss.1995.1085


210 A. Chistopolskaya and V. V. Podolskii

2. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a
survey. Theor. Comput. Sci. 288(1), 21–43 (2002). https://doi.org/10.1016/S0304-
3975(01)00144-X

3. Eppstein, D., Hirschberg, D.S.: From discrepancy to majority. Algorithmica 80(4),
1278–1297 (2018). https://doi.org/10.1007/s00453-017-0303-7

4. Gröger, H.D., Turán, G.: On linear decision trees computing Boolean functions. In:
Albert, J.L., Monien, B., Artalejo, M.R. (eds.) ICALP 1991. LNCS, vol. 510, pp.
707–718. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54233-7 176

5. Hatami, H., Hosseini, K., Lovett, S.: Structure of protocols for XOR functions.
In: IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, Hyatt Regency, New Brunswick, New Jersey, USA, 9–11 October 2016, pp.
282–288 (2016). https://doi.org/10.1109/FOCS.2016.38

6. Hatami, P., Kulkarni, R., Pankratov, D.: Variations on the sensitivity conjecture.
Theory Comput. Grad. Surv. 4, 1–27 (2011). https://doi.org/10.4086/toc.gs.2011.
004

7. Huang, H.: Induced subgraphs of hypercubes and a proof of the sensitivity conjec-
ture. CoRR abs/1907.00847 (2019). http://arxiv.org/abs/1907.00847

8. Jukna, S.: Boolean Function Complexity - Advances and Frontiers. Algorithms and
Combinatorics, vol. 27. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-24508-4

9. Knop, D., Pilipczuk, M., Wrochna, M.: Tight complexity lower bounds for integer
linear programming with few constraints. In: 36th International Symposium on
Theoretical Aspects of Computer Science, STACS 2019, Berlin, Germany, 13–16
March 2019, pp. 44:1–44:15 (2019). https://doi.org/10.4230/LIPIcs.STACS.2019.
44

10. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

11. Lovász, L., Saks, M.E.: Lattices, Möbius functions and communication complexity.
In: 29th Annual Symposium on Foundations of Computer Science, White Plains,
New York, USA, 24–26 October 1988, pp. 81–90 (1988). https://doi.org/10.1109/
SFCS.1988.21924

12. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press
(2014). http://www.cambridge.org/de/academic/subjects/computer-science/
algorithmics-complexity-computer-algebra-and-computational-g/analysis-
boolean-functions

13. Posobin, G.: Computing majority with low-fan-in majority queries. CoRR
abs/1711.10176 (2017). http://arxiv.org/abs/1711.10176

14. Zhang, Z., Shi, Y.: On the parity complexity measures of Boolean functions. Theor.
Comput. Sci. 411(26–28), 2612–2618 (2010). https://doi.org/10.1016/j.tcs.2010.
03.027

https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1007/s00453-017-0303-7
https://doi.org/10.1007/3-540-54233-7_176
https://doi.org/10.1109/FOCS.2016.38
https://doi.org/10.4086/toc.gs.2011.004
https://doi.org/10.4086/toc.gs.2011.004
http://arxiv.org/abs/1907.00847
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.4230/LIPIcs.STACS.2019.44
https://doi.org/10.4230/LIPIcs.STACS.2019.44
https://doi.org/10.1109/SFCS.1988.21924
https://doi.org/10.1109/SFCS.1988.21924
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://arxiv.org/abs/1711.10176
https://doi.org/10.1016/j.tcs.2010.03.027
https://doi.org/10.1016/j.tcs.2010.03.027


Randomized and Symmetric Catalytic
Computation

Samir Datta1(B), Chetan Gupta2, Rahul Jain2 , Vimal Raj Sharma2,
and Raghunath Tewari2

1 Chennai Mathematical Institute and UMI ReLaX, Chennai, India
sdatta@cmi.ac.in

2 Indian Institute of Technology Kanpur, Kanpur, India
{gchetan,jain,vimalraj,rtewari}@cse.iitk.ac.in

Abstract. A catalytic Turing machine is a model of computation that
is created by equipping a Turing machine with an additional auxiliary
tape which is initially filled with arbitrary content; the machine can read
or write on auxiliary tape during the computation but when it halts aux-
iliary tape’s initial content must be restored. In this paper, we study the
power of catalytic Turing machines with O(log n)-sized clean tape and a
polynomial-sized auxiliary tape.

We introduce the notion of randomized catalytic Turing machine and
show that the resulting complexity class CBPL is contained in the class
ZPP. We also introduce the notion of symmetricity in the context of
catalytic computation and prove that, under a widely believed assump-
tion, in the logspace setting the power of a randomized catalytic Turing
machine and a symmetric catalytic Turing machine is equal to a deter-
ministic catalytic Turing machine which runs in polynomial time.

Keywords: Catalytic computation · Logspace · Randomized
computation

1 Introduction

Buhrman et al. [1] first introduced the catalytic computational model. This
model of computation has an auxiliary tape filled with arbitrary content in
addition to the clean tape of a standard Turing machine. The machine during
the computation can use this auxiliary tape to read or write, but at the end
of the computation, it is constrained to have the same content in the auxiliary
tape as initial. The central question here is, whether catalytic computational
model is more powerful than the traditional Turing machine model or not. It
seems intuitive that the content of auxiliary tape must be stored in one form
or another at each step of the computation, making the auxiliary tape useless

The first author was partially funded by a grant from Infosys foundation and SERB-
MATRICS grant MTR/2017/000480. The second and fourth author were supported
by Visvesvaraya PhD Scheme.

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 211–223, 2020.
https://doi.org/10.1007/978-3-030-50026-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_15&domain=pdf
http://orcid.org/0000-0002-8567-9475
https://doi.org/10.1007/978-3-030-50026-9_15


212 S. Datta et al.

if the original auxiliary tape content is incompressible. However, Buhrman et
al. [1] showed that problems that are not known to be solvable by a standard
Turing machine using O(log n) space (Logspace, L) can be solved by a catalytic
Turing machine with O(log n) clean space and nO(1) auxiliary space (Catalytic
logspace, CL). Specifically, they showed that the circuit class uniform TC1, which
contains L is contained in CL. This result gives evidence that the auxiliary tape
might not be useless.

Since its introduction, researchers have tried to understand the power and
limitation of catalytic Turing machine. Buhrman et al. [2] also introduced a
nondeterministic version of the catalytic Turing machine and proved that non-
deterministic catalytic logspace class CNL is closed under complement. They
also showed that CNL is contained in ZPP. Girard et al. [3] studied catalytic
computation in a nonuniform setting. More recently, Gupta et al. [4] studied
the notion of unambiguity in catalytic logspace and proved that unambiguous
catalytic Turing machines are as powerful as nondeterministic catalytic Turing
machines in the logspace setting.

In this paper, we study the notion of randomized computation and symmetric
computation in the context of catalytic Turing machines. Following the earlier
results in the field of catalytic computation, we define the classes of problems
by limiting the catalytic Turing machine to O(log n)-size clean tape and nO(1)-
sized auxiliary tape. We thus get the classes CBPL and CSL for randomized
and symmetric logspace catalytic Turing machine respectively (see Sect. 2 for
complete definitions). We show that CBPL ⊆ ZPP. We also prove that under a
widely believed assumption, not only CBPL is equal to CSL, but they are also
equal to the class of problems that can be solved by a deterministic catalytic
Turing machine running in polynomial time with O(log n)-size clean (or work)
tape and nO(1)-sized auxiliary tape (CSC1). Formally, we prove the following.

Theorem 1 (Main Theorem). If there exists a constant ε > 0 such that we
have DSPACE(n) �⊆ SIZE(2εn), then CBPL = CL = CSL = CSC1.

Our result requires (i) a pseudorandom generator to get a small size con-
figuration graph of a catalytic machine, and (ii) universal exploration sequence
to traverse those small size configuration graphs. The required pseudorandom
generator was used in [2] and [4] as well. Universal exploration sequence was first
introduced by Koucky [7]. Reingold [9] presented a logspace algorithm to con-
struct a polynomially-long universal exploration sequence for undirected graphs.
Since the catalytic Turing machines we study have O(log n) size clean space, we
can use Reingold’s algorithm to construct those sequences in catalytic machines
as well.

1.1 Outline of the Paper

In Sect. 2, we give preliminary definitions of various catalytic classes and state
the lemmas on the pseudorandom generator and universal exploration sequences
used by us. In Sect. 3, we prove CBPL ⊆ ZPP. In Sect. 4, we prove our main result



Randomized and Symmetric Catalytic Computation 213

Theorem 1. Finally, in Sect. 5, without using the class CSL we give an alternative
proof of CL = CSC1 under the same assumption as in Theorem 1.

2 Preliminaries

We start with the brief definitions of a few well-known complexity classes.
ZPP, DSPACE(n), SIZE(k): ZPP denotes the set of the languages which are

decidable in expected polynomial time. DSPACE(n) denotes the set of the lan-
guages which are decidable in linear space. SIZE(k) denotes the set of the lan-
guages which are decidable by circuits of size k.

The deterministic catalytic Turing machine was formally defined by Buhrman
et al. [2] in the following way.

Definition 2. Let M be a deterministic Turing machine with four tapes: one
input and one output tape, one work-tape, and one auxiliary tape (or aux-tape).

M is said to be a deterministic catalytic Turing machine using workspace
s(n) and auxiliary space sa(n) if for all inputs x ∈ {0, 1}n and auxiliary tape
contents w ∈ {0, 1}sa(n), the following three properties hold.

1. Space bound. The machine M uses space s(n) on its work tape and space
sa(n) on its auxiliary tape.

2. Catalytic condition. M halts with w on its auxiliary tape.
3. Consistency. M either accepts x for all choices of w or it rejects for all

choices of w.

Definition 3. CSPACE(s(n)) is the set of languages that can be solved by a
deterministic catalytic Turing machine that uses at most s(n) size workspace
and 2s(n) size auxiliary space on all inputs x ∈ {0, 1}n. CL denotes the class
CSPACE(O(log n)).

Definition 4. CTISP(t(n), s(n)) is the set of languages that can be solved by
a deterministic catalytic Turing machine that halts in at most t(n) steps and
uses at most s(n) size workspace and 2s(n) size auxiliary space on all inputs
x ∈ {0, 1}n. CSCi denotes the class CTISP(poly(n), O((log n)i)).

A configuration of a catalytic machine M with s(n) workspace and sa(n)
auxiliary space consists of the state, at most s(n) size work tape content, at most
sa(n) size auxiliary tape content, and the head positions of all the three tapes.
We will use the notion of configuration graph in our results, which is often used
in proving space-bounded computation results for traditional Turing machines.
In the context of catalytic Turing machines, the configuration graph was defined
in [1,2] in a slightly different manner than traditional Turing machines.

Definition 5. For a deterministic catalytic Turing machine M, input x, and ini-
tial auxiliary content w, the configuration graph denoted by GM,x,w is a directed
acyclic graph in which every vertex is a configuration which is reachable when
M runs on (x, w). GM,x,w has a directed edge from a vertex u to a vertex v if
M in one step can move to v from u.



214 S. Datta et al.

|GM,x,w| denotes the number of the vertices in GM,x,w. We call a configu-
ration in which a machine accepts (rejects) the input an accepting (rejecting)
configuration. We note that the configuration graph of a deterministic catalytic
Turing machine is a line graph.

Motivated by the symmetric Turing machines defined in [8], we study the
notion of symmetricity in catalytic computation. We define the symmetric cat-
alytic Turing machine below.

Definition 6. A symmetric catalytic Turing machine is a catalytic Turing
machine with two sets of transitions δ0 and δ1. At each step, the machine uses
either δ0 or δ1 arbitrarily. δ0 and δ1 are the finite set of transitions of the follow-
ing form. (For simplicity, we have described these transitions for a single tape
machine.)

– (p, a, 0, b, q): If machine’s current state is p, the head is on a cell containing
a, then in one step machine changes the state to q, a is changed to b, and the
head doesn’t move.

– (p, ab, L, cd, q): If machine’s current state is p, the head is on a cell containing
b and the cell left to it contains a, then in one step machine changes the state
to q, the head moves to the left, and both a and b are changed to c and d
respectively.

– (p, ab,R, cd, q): If machine’s current state is p, the head is on a cell containing
a and the cell right to it contains b, then in one step machine changes the
state to q, the head moves to the right, and both a and b are changed to c
and d respectively.

Additionally, the following two properties hold:

– Every transition has its inverse, i.e. each of δ0 and δ1 has (p, ab, L, cd, q) if and
only if it has (q, cd,R, ab, p) and (p, a, 0, b, q) if and only if it has (q, b, 0, a, p).

– The machine has two special states qstart and qaccept. The machine in the
beginning is in the state qstart. During the run, at every configuration where
the state is qstart or qaccept, the machine is constrained to have the same
auxiliary content as initial.

The notion of the configuration graph extends to symmetric catalytic
machines as well. Due to inverse transitions, configuration graphs of a symmetric
catalytic machine are bidirectional, i.e. for any two vertices in a configuration
graph, say u and v, an edge goes from u to v if and only if an edge goes from v
to u.

We say a symmetric catalytic Turing machine M decides or solves a language
L if on every input x and every initial auxiliary content w, an accepting config-
uration (i.e., configuration with qaccept) is reachable when M runs on (x, w) if
and only if x ∈ L.

Definition 7. CSSPACE(s(n)) is the set of languages that can be solved by
a symmetric catalytic Turing machine that uses at most s(n) size workspace
and 2s(n) size auxiliary space on all inputs x ∈ {0, 1}n. CSL denotes the class
CSSPACE(O(log n)).



Randomized and Symmetric Catalytic Computation 215

The following lemma follows from Theorem 1 of [8].

Lemma 8. CL ⊆ CSL.

In this paper, we also study randomized catalytic computation. We define
the randomized catalytic Turing machine as follows.

Definition 9. A randomized catalytic Turing machine is a catalytic Turing
machine with two transition functions δ0 and δ1. At each step the machine
applies δ0 with 1

2 probability and δ1 with 1
2 probability, independent of the

previous choices. On all possible choices of transition functions δ0 and δ1, the
machine is constrained to have the same auxiliary content as initial when it
halts.

We say a randomized catalytic Turing machine M decides or solves a lan-
guage L if for every input x and initial auxiliary content w, M accepts x with
probability at least 2

3 if x ∈ L and rejects x with probability at least 2
3 if x /∈ L.

Definition 10. CBPSPACE(s(n)) is the set of languages that can be solved by
a randomized catalytic Turing machine that uses at most s(n) size workspace
and 2s(n) size auxiliary space on all inputs x ∈ {0, 1}n. CBPL denotes the class
CBPSPACE(O(log n)).

The class CBPL is the catalytic equivalent of the well-known complexity class
BPL. Configuration graph for a randomized catalytic Turing machine is defined
in the same way it was defined for a deterministic catalytic Turing machine.
Although note here that non-halting configurations have out-degree two in a
configuration graph of a randomized catalytic machine.

For a deterministic catalytic machine M with c log n size workspace and
nc size auxiliary space, an input x and initial auxiliary content w, |GM,x,w|
can be as large as exponential in |x|. But in [1,2], authors showed that the
average size of the configuration graphs over all possible initial auxiliary contents
for a particular x and M is only polynomial in |x|. This observation holds for
symmetric and randomized catalytic Turing machines as well. The following
lemma is a direct adaption of Lemma 8 from [2] for symmetric and randomized
catalytic machines.

Lemma 11. Let M be a symmetric or randomized catalytic Turing machine
with c log n size workspace and nc size auxiliary space. Then for all x,

E
w∈R{0,1}nc

[|GM,x,w|] ≤ O(n2c+2),

where E is the expectation symbol.

In Sect. 4, we will prove CBPL = CL = CSL = CSC1 under the same assump-
tion the following standard derandomization result holds.



216 S. Datta et al.

Lemma 12. [5,6] If there exists a constant ε > 0 such that DSPACE(n) �

SIZE(2εn) then for all constants c there exists a constant c′ and a function G :
{0, 1}c′ log n → {0, 1}n computable in O(log n) space, such that for any circuit C
of size nc

∣
∣
∣ Pr
r∈{0,1}n

[C(r) = 1] − Pr
s∈{0,1}c′ log n

[C(G(s)) = 1]
∣
∣
∣ <

1
n

.

We will use a pseudorandom generator to produce small size configuration
graphs of symmetric and randomized catalytic machines. From [2] we know
that such a pseudorandom generator exists for nondeterministic catalytic Turing
machines under the same assumption as that of Lemma 12. Their result trivially
implies the following lemma.

Lemma 13. Let M be a symmetric or randomized catalytic Turing machine
using c log n size workspace and nc size auxiliary space. If there exists a con-
stant ε > 0 such that DSPACE(n) � SIZE(2εn), then there exists a function
G : {0, 1}O(log n) → {0, 1}nc

, such that on every input x and initial auxiliary con-
tent w, for more than half of the seeds s ∈ {0, 1}O(log n), |GM,x,w⊕G(s)| ≤ n2c+3.
Moreover, G is logspace computable. (w ⊕ G(s) denotes the bitwise XOR of w
and G(s).)

We will also need universal exploration sequences. Let G be an undirected
graph, then labelling is a function where every edge uv leaving a vertex u is
mapped to an integer {0, 1, . . . , degree(u)−1} in such a way that any two distinct
edges leaving a common vertex get different labels. Note that, in such a labelling
an undirected edge, say uv, gets two labels, one with respect to u and another
with respect to v.

An (n, d)-universal exploration sequence of length m is a sequence of integers
(s1, s2, . . . , sm) where each si ∈ {0, 1, . . . , d − 1}, which can be used to visit all
the vertices of any connected undirected graph G of n vertices and maximum
degree d in the following way. Let G has a labelling l, in the first step we pick
a vertex u and take an edge e leaving u labeled by s1 mod degree(u) to move
to the next vertex, after this, in the ith step if we arrived at a vertex, say v,
through an edge labeled with p with respect to v then we take an edge with label
(p + si) mod degree(v) with respect to v to move to the next vertex. Reingold
[9] proved that an (n, d)-universal exploration sequence can be constructed in
O(log n) space.

An essential property of universal exploration sequences that we will use in
our result is that at any point during the traversal using a universal exploration
sequence we can stop and traverse back the vertices visited so far in the exact
reverse order that they were visited.

3 CBPL ⊆ ZPP

In this section, we will prove that CBPL is contained in ZPP. Our proof, sim-
ilar to the proof of CNL ⊆ ZPP, uses the observation that the average size of



Randomized and Symmetric Catalytic Computation 217

the configuration graphs over all possible auxiliary content is polynomial in the
length of the input.

Theorem 14. CBPL ⊆ ZPP.

Proof. Let M be a CBPL machine with c log n size workspace and nc size aux-
iliary space. We construct a ZPP machine M′ such that L(M) = L(M′). On
input x, M′ first randomly generates a string w of size |x|c and constructs the
configuration graph GM,x,w.

For every v ∈ GM,x,w, let prob(v) denote the probability of reaching an
accepting configuration from v. M′ computes the prob(v) for every vertex in the
following way.

1. Set prob(v) = 1 if v is an accepting configuration and prob(v) = 0 if v is a
rejecting configuration.

2. For every vertex v whose prob(v) is still not computed, if prob(v1) and prob(v2)
are already computed and there is an edge from v to both v1 and v2, set
prob(v) = 1

2 · prob(v1) + 1
2 · prob(v2).

3. Repeat 2 until prob(v) is computed for all v ∈ GM,x,w.

In the end, M′ accepts x if and only if prob(vinit) ≥ 2
3 , where vinit is

the initial configuration. The procedure to compute prob(v) can easily be done
by M′ in time polynomial in |GM,x,w|. Since from Lemma 11 we know that
Ew∈R{0,1}nc [|GM,x,w|] ≤ O(n2c+2), the machine runs in expected polytime. 	


4 Proof of Main Theorem

Since we know CL ⊆ CSL from Lemma 8 and CSC1 ⊆ CBPL follows from the
definition, it is enough to prove CBPL ⊆ CL and CSL ⊆ CSC1.

Proof of CBPL ⊆ CL:

Let M be a CBPL machine with c log n size workspace and nc size auxiliary
space. We will construct a CL machine M′ such that L(M) = L(M′).

From Lemma 13, we know that there exists a logspace computable function
G : {0, 1}O(log n) → {0, 1}nc

, such that on every input x and initial auxiliary
content w, for more than half of the seeds s ∈ {0, 1}O(log n), |GM,x,w⊕G(s)| ≤
n2c+3. We call a seed s good, if |GM,x,w⊕G(s)| ≤ n2c+3.

We first prove the existence of another pseudorandom generator which M′

will use to deterministically find M’s output in case of a good seed. Let s̃ be a
good seed and Cx,w⊕G(s̃) be a polynomial size boolean circuit which on input
r ∈ {0, 1}n2c+3

traverses GM,x,w⊕G(s̃) using r in the following way. Assume a
label on every edge of GM,x,w⊕G(s̃), such that an edge uv is labeled by 0 if u
changes to v using δ0 or 1 if u changes to v using δ1. Cx,w⊕G(s̃) starts from the
initial vertex and in the ith step moves to the next vertex using the outgoing
edge with label same as the ith bit of r. Cx,w⊕G(s̃) outputs 1 if it reaches an
accepting vertex while traversing GM,x,w⊕G(s̃), else it outputs 0.



218 S. Datta et al.

From Lemma 12, we know that there exists a logspace computable function
F : {0, 1}(O log n) → {0, 1}n2c+3

such that,
∣
∣
∣ Pr
r∈{0,1}n2c+3

[Cx,w⊕G(s̃)(r) = 0] − Pr
s′∈{0,1}O(log n)

[Cx,w⊕G(s̃)(F (s′)) = 0]
∣
∣
∣ <

1
n

.

For sufficiently large n, if x ∈ L(M), then

Pr
s′∈{0,1}O(log n)

[Cx,w⊕G(s̃)(F (s′)) = 0]
∣
∣
∣ <

1
3

+
1
n

<
1
2

(1)

Similarly, we can prove that, if x /∈ L(M), then

Pr
s′∈{0,1}O(log n)

[Cx,w⊕G(s̃)(F (s′)) = 1]
∣
∣
∣ <

1
3

+
1
n

<
1
2

(2)

Equations (1) and (2) together prove that on less than half of the seeds s′ ∈
{0, 1}O(log n), the simulation of M on (x, w⊕G(s̃)) by picking δ0 or δ1 according
to F (s′) gives the wrong answer.

We now present the algorithm of M′.

Algorithm 1. Algorithm of M′

G and F are the above described pseudorandom generators. S and S′ are the set of
seeds for G and F respectively.

1: procedure deterministicSimulation(Input x, Auxiliary Content w)
2: cntfinal = 0
3: for s ∈ S do
4: w ← w ⊕ G(s)
5: cntacc = 0
6: for s′ ∈ S′ do
7: Simulate M on (x,w) by picking δ0 and δ1 according to F (s′).
8: if M halts with an accepting state during the simulation then
9: cntacc = cntacc + 1

10: end if
11: if M doesn’t halt during the simulation using F (s′) then
12: Continue the simulation using either δ0 or δ1 until M halts
13: end if
14: end for
15: if cntacc > |S′|

2
then

16: cntfinal = cntfinal + 1
17: end if
18: w ← w ⊕ G(s)
19: end for
20: if cntfinal > |S|

2
then

21: Accept
22: else
23: Reject
24: end if
25: end procedure



Randomized and Symmetric Catalytic Computation 219

If x ∈ L(M), then on every good seed s of G, cntacc > |S′|
2 . Since more than

half of G’s seeds are good, cntfinal is incremented in line 16 more than |S|
2 times.

Hence, in line 21 M′ will Accept after checking cntfinal > |S|
2 . On the other

hand, if x /∈ L(M), then on every good seed s, cntacc < |S′|
2 . So cntfinal is not

incremented in line 16 more than |S|
2 times. Hence, M′ will Reject in line 23.

Proof of CSL ⊆ CSC1:

Let M be a CSL machine with c log n size workspace and nc size auxiliary
space. We will construct a CSC1 machine M′ such that L(M) = L(M′).

We will again use the pseudorandom generator G of Lemma 13 with the
property that on every input x and initial auxiliary content w, for more than
half of the seeds s ∈ {0, 1}O(log n), |GM,x,w⊕G(s)| ≤ n2c+3.

We will also use universal exploration sequence to traverse all the vertices
of GM,x,w⊕G(s) on good seeds s. Let seq denote a

(

n2c+3, d
)

-universal explo-
ration sequence, where d is a constant upper bound on the maximum degree of
GM,x,w⊕G(s). We now present the algorithm of M′.

Algorithm 2. Algorithm of M′

seq is a
(
n2c+3, d

)
-universal exploration sequence. G is the above described pseudoran-

dom generator and S is the set of seeds for G.

1: procedure polytime-deterministicSimulation(Input x, Auxiliary Content w)
2: accept = FALSE
3: for s ∈ S do
4: w ← w ⊕ G(s)
5: Traverse GM,x,w by simulating M on (x,w) using seq.
6: Set accept = TRUE if an accepting config. is reached during the simulation.
7: Reverse simulate M on (x,w) using seq. � Restoring the aux. content.
8: w ← w ⊕ G(s)
9: if accept = TRUE then

10: Accept
11: end if
12: end for
13: Reject
14: end procedure

M′ uses a flag variable accept which it sets to TRUE when it finds an accept-
ing configuration while traversing GM,x,w using seq. If x ∈ L(M), then M′ on
a good seed s must visit all the vertices of GM,x,w in the simulation of line 5,
and hence also visit an accepting configuration. In which case, it sets accept =
TRUE in line 6 and later Accepts in line 10. If x /∈ L(M), then clearly M′ can
never reach an accepting configuration during any simulation. Therefore, M′

never sets accept to TRUE and finally, Rejects in line 13.



220 S. Datta et al.

M′ takes polynomial time because there are only polynomially many seeds
of G, and for every seed of G, it runs two simulations using polynomially-long
seq.

We note here that our proof works even for a relaxed definition of CSL, in
which a CSL machine is constrained to have the original auxiliary content only
when it enters a configuration with qstart, not qaccept.

5 An Alternative Proof of CL = CSC1

Under the assumption that DSPACE(n) �⊆ SIZE(2εn), we provide an alternative
proof of CL = CSC1, without using the class CSL. For this we need to define the
notion of undirected configuration graph for the deterministic catalytic machines.

Definition 15. For a deterministic catalytic Turing machine M, input x, and
initial auxiliary content w, the undirected configuration graph denoted by G̃M,x,w

contains the two types of vertices.

– Type 1: A vertex for every configuration which is reachable when M runs
on (x,w).

– Type 2: A vertex for every configuration which is not reachable when M
runs on (x,w) but which can reach some configuration which is reachable
when M runs on (x,w) by applying the transition function of M.

G̃M,x,w has an undirected edge between a vertex v1 and a vertex v2 if M in
one step can move to v2 from v1 or to v1 from v2.

In the following lemma, we prove a result similar to Lemma 11 for undirected
configuration graphs of a CL machine.

Lemma 16. Let M be a deterministic catalytic Turing machine with c log n size
workspace and nc size auxiliary space. Then for all x,

E
w∈R{0,1}nc

[|G̃M,x,w|] ≤ O(n2c+2).

Proof. We first show that for an input x and any two different initial auxiliary
contents w and w′, G̃M,x,w and G̃M,x,w′ cannot have a common vertex (or con-
figuration). Let’s assume for the sake of contradiction that G̃M,x,w and G̃M,x,w′

have a common vertex v. Then, the following two cases are possible for v:

Case 1: v is a Type 1 vertex in both G̃M,x,w and G̃M,x,w′ .
First note that if v is a Type 1 vertex in both G̃M,x,w and G̃M,x,w, then v

is also a common vertex of GM,x,w and GM,x,w′ . Buhrman et al. [1] proved that
two different configuration graphs GM,x,w and GM,x,w′ cannot have a common
vertex. We present their argument here for the sake of completion.

If v is a common vertex of GM,x,w and GM,x,w′ , then v is reachable both
the times when M runs on (x,w) and when M runs on (x,w′). Since M is a
deterministic machine, its run on (x,w) and (x,w′) must go through the same



Randomized and Symmetric Catalytic Computation 221

sequence of configurations after reaching v. This implies that M on (x,w) has
the same halting configuration as M on (x,w′), which is not possible because
in such a halting configuration auxiliary content can either be w or w′ violating
the property that M restores the initial auxiliary content when it halts. This
proves that v cannot be a common vertex of GM,x,w and GM,x,w′ , hence, v can
also not be a Type 1 vertex in both G̃M,x,w and G̃M,x,w′ .

Case 2: v is either a Type 2 vertex in G̃M,x,w or a Type 2 vertex in G̃M,x,w′ .
For simplicity we only consider the case where v is a Type 2 vertex in both

G̃M,x,w and G̃M,x,w′ , the other cases can be analysed similarly.
If v is a Type 2 vertex in G̃M,x,w, then there must be a sequence of config-

urations, say S1 = v → C1 → C2 · · · → Ck1 , where every configuration in the
sequence yields the next configuration in the sequence, and Ck1 is reachable when
M runs on (x, w). Similarly, since v is also a Type 2 vertex in G̃M,x,w′ , there
must also be a sequence of configurations, say S2 = v → C ′

1 → C ′
2 · · · → Ck2 ,

where every configuration in the sequence yields the next configuration in the
sequence, and Ck2 is reachable when M runs on (x, w′). Existence of S1 and S2

follows from Definition 15.
Without loss of generality, assume that k1 < k2. Since M is a deterministic

machine where a configuration can yield at most one configuration, Ci = C ′
i for

i = 1 to k1. This implies that Ck1 is present in S2, and therefore, Ck2 is also
reachable when M runs on (x,w). Therefore, Ck2 must be a common Type 1
vertex of GM,x,w and GM,x,w′ , which is not possible as we proved in Case 1.

A configuration of M can be described with at most c log n + nc + log n +
log(c log n) + log nc + O(1) bits, where we need c log n + nc bits for work and
auxiliary tape content, log n + log(c log n) + log nc bits for the tape heads, and
O(1) bits for the state. Since no two different undirected configuration graphs for
M and x can have a common vertex, the total number of possible configurations
bounds the sum of the size of all the undirected configuration graphs for M
and x.

∑

w∈{0,1}nc

|G̃M,x,w| ≤ O(2c log n.2nc

.n.c log n.nc).

This implies:

E
w∈R{0,1}nc

[|G̃M,x,w|] ≤ O(n2c+2).

.
	


Here again, we will use a pseudorandom generator to create an auxiliary
content on which a CL machine produces a small size undirected configuration
graph. Lemma 16 and the assumption of Lemma 12 gives us such a pseudorandom
generator. We are omitting the proof here as it is similar to the proof of Lemma
10 of [2].



222 S. Datta et al.

Lemma 17. Let M be a deterministic catalytic Turing machine using c log n
size workspace and nc size auxiliary space. If there exists a constant ε > 0 such
that DSPACE(n) � SIZE(2εn), then there exists a function G : {0, 1}O(log n) →
{0, 1}nc

, such that on every input x and initial auxiliary content w, for more
than half of the seeds s ∈ {0, 1}O(log n), |G̃M,x,w⊕G(s)| ≤ n2c+3. Moreover, G is
logspace computable. (w ⊕ G(s) represents the bitwise XOR of w and G(s)).

Now to complete the proof we will construct a CSC1 machine M′ for a deter-
ministic catalytic machine M with c log n size workspace and nc size auxiliary
space, such that L(M) = L(M′).

On an input x and initial auxiliary content w, M′ uses the pseudorandom
generator G of Lemma 17 and a universal exploration sequence to traverse
the vertices of G̃M,x,w⊕G(s). Let seq denote a logspace computable

(

n2c+3, d
)

-
universal exploration sequence, where d is a constant upper bound on the degree
of every vertex in G̃M,x,w⊕G(s).

The algorithm of M′ is same as Algorithm 2, except in line 5 instead of
traversing GM,x,w⊕G(s) it traverses the vertices of G̃M,x,w⊕G(s) using seq.

If x ∈ L(M), then M′ on a good seed s must reach an accepting configuration
while simulating M using seq. In this case it will set accept = TRUE in line 6
and finally Accept in line 10.

If x /∈ L(M), then clearly a Type 1 vertex of G̃M,x,w⊕G(s) cannot be an
accepting configuration for any seed s of G. Observe that a Type 2 vertex of
G̃M,x,w⊕G(s) can also not be an accepting configuration because configurations
corresponding to Type 2 vertices are non-halting by definition. Therefore, M′

cannot reach an accepting configuration during any simulation if x /∈ L(M), due
to which M′ never sets accept to TRUE and finally Rejects in line 13.

References

1. Buhrman, H., Cleve, R., Koucký, M., Loff, B., Speelman, F.: Computing with a full
memory: catalytic space. In: Proceedings of the Forty-Sixth Annual ACM Sympo-
sium on Theory of Computing, STOC 2014, pp. 857–866. ACM, New York (2014).
https://doi.org/10.1145/2591796.2591874

2. Buhrman, H., Koucký, M., Loff, B., Speelman, F.: Catalytic space: non-determinism
and hierarchy. Theory Comput. Syst. 62(1), 116–135 (2018). https://doi.org/10.
1007/s00224-017-9784-7

3. Girard, V., Koucký, M., McKenzie, P.: Nonuniform catalytic space and the direct
sum for space. Electron. Colloq. Comput. Complex. (ECCC) 22, 138 (2015). http://
eccc.hpi-web.de/report/2015/138

4. Gupta, C., Jain, R., Sharma, V.R., Tewari, R.: Unambiguous catalytic computa-
tion. In: FSTTCS 2019. Leibniz International Proceedings in Informatics (LIPIcs),
vol. 150, pp. 16:1–16:13 (2019). https://doi.org/10.4230/LIPIcs.FSTTCS.2019.16.
https://drops.dagstuhl.de/opus/volltexte/2019/11578

5. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: deran-
domizing the XOR lemma. In: Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on Theory of Computing, STOC 1997, pp. 220–229. ACM, New York (1997).
https://doi.org/10.1145/258533.258590

https://doi.org/10.1145/2591796.2591874
https://doi.org/10.1007/s00224-017-9784-7
https://doi.org/10.1007/s00224-017-9784-7
http://eccc.hpi-web.de/report/2015/138
http://eccc.hpi-web.de/report/2015/138
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.16
https://drops.dagstuhl.de/opus/volltexte/2019/11578
https://doi.org/10.1145/258533.258590


Randomized and Symmetric Catalytic Computation 223

6. Klivans, A.R., van Melkebeek, D.: Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput. 31(5),
1501–1526 (2002). https://doi.org/10.1137/S0097539700389652

7. Koucký, M.: Universal traversal sequences with backtracking. J. Com-
put. Syst. Sci. 65(4), 717–726 (2002). http://www.sciencedirect.com/science/
article/pii/S0022000002000235

8. Lewis, H.R., Papadimitriou, C.H.: Symmetric space-bounded computation. The-
oret. Comput. Sci. 19(2), 161–187 (1982). http://www.sciencedirect.com/science/
article/pii/0304397582900585

9. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4) (2008). https://
doi.org/10.1145/1391289.1391291

https://doi.org/10.1137/S0097539700389652
http://www.sciencedirect.com/science/article/pii/S0022000002000235
http://www.sciencedirect.com/science/article/pii/S0022000002000235
http://www.sciencedirect.com/science/article/pii/0304397582900585
http://www.sciencedirect.com/science/article/pii/0304397582900585
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1145/1391289.1391291


On the Parameterized Complexity
of the Expected Coverage Problem

Fedor V. Fomin1 and Vijayaragunathan Ramamoorthi2(B)

1 Department of Informatics, University of Bergen, 5020 Bergen, Norway
fedor.fomin@ii.uib.no

2 Department of Computer Science and Engineering, IIT Madras, Chennai, India
vijayr@cse.iitm.ac.in

Abstract. The Maximum covering location problem (MCLP) is a well-
studied problem in the field of operations research. Given a network with
demands (demands can be positive or negative) on the nodes, an integer
budget k, the MCLP seeks to find k potential facility centers in the net-
work such that the neighborhood coverage is maximized. We study the
variant of MCLP where edges of the network are subject to random fail-
ures due to some disruptive events. One of the popular models capturing
the unreliable nature of the facility location is the linear reliable order-
ing (LRO) model. In this model, with every edge e of the network, we
associate its survival probability 0 ≤ pe ≤ 1, or equivalently, its failure
probability 1 − pe. The failure correlation in LRO is the following: If an
edge e fails then every edge e′ with pe′ ≤ pe surely fails. The task is to
identify the positions of k facilities that maximize the expected coverage.
We refer to this problem as Expected Coverage problem. We study
the Expected Coverage problem from the parameterized complexity
perspective and obtain the following results.
1. For the parameter treewidth, we show that the Expected Cov-

erage problem is W[1]-hard. We find this result a bit surprising,
because the variant of the problem with non-negative demands is
fixed-parameter tractable (FPT) parameterized by the treewidth of
a graph.

2. We complement the lower bound by the proof that Expected Cov-

erage is FPT being parameterized by the treewidth and the maxi-
mum vertex degree. We give an algorithm that solves the problem in
time 2O(tw log Δ)nO(1), where tw is the treewidth, Δ is the maximum
vertex degree, and n the number of vertices of the input graph. In
particular, since Δ ≤ n, it means the problem is solvable in time
nO(tw), that is, is in XP parameterized by treewidth.

Keywords: Facility location · Treewidth · W[1]-hard · Subexponential
parameterized algorithm · Apex-minor-free graph

This work was done while the second author was visiting University of Bergen, Bergen,
Norway supported by the Norwegian Research Council (NFR) MULTIVAL project.

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 224–236, 2020.
https://doi.org/10.1007/978-3-030-50026-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_16&domain=pdf
http://orcid.org/0000-0003-1955-4612
http://orcid.org/0000-0001-8554-6392
https://doi.org/10.1007/978-3-030-50026-9_16


On the Parameterized Complexity of the Expected Coverage Problem 225

1 Introduction

Maximum covering location problem (MCLP) is a well-studied problem in the
field of operations research [8]. Given a network with demands on the nodes,
an integer budget k, the MCLP asks to find k potential facility centers in the
network such that the neighborhood coverage is maximized.

We are interested in investigating the unreliable nature of the MCLP. Unre-
liability is introduced by associating survival probabilities on the edges of the
input network. The notion of unreliability is used in disaster management, sur-
viving network design and influence maximization. Assume that the network
is subjected to a disaster event. During the course of disaster, some link may
become non-functional. This yield a structural change in the underlying graph
of the network. The resulting graph is an edge-induced subgraph of the original
graph. In certain case, the resulting graph can have multiple connected compo-
nents. The real challenge is to place a limited number of potential facility centers
a priori such that the expected coverage after an event of disaster is maximized.
See [9,13–15,19,32] for further references on unreliable MCLP.

In this paper, we study the following model of the MCLP with edge failures.
Let G = (V,E,w) be a vertex weighted underlying graph of the MCLP. On each
edge e ∈ E, let pe be the survival probability associated with e such that the
edge e can survive in the network with probability pe. Under the assumption
that edges fail independently, the input graph can be rendered into one of 2m

edge subgraphs called realization, where m is number of edges in the graph. Each
realization can have a non-zero probability of occurrence. Since the number of
realizations is exponential and many of them occur with close to zero probability,
Hassin, Ravi and Salman [26,27] formulated a dependency model for edge failure
in unreliable facility networks called linear reliable ordering (LRO). In LRO
model, for each pair of edges e �= e′ ∈ E, p(e) �= p(e′), and for any pair of edges
ei and ej with pei

> pej
, the Pr[ej fails | ei fails ] = 1. More precisely, if an

edge e fails then every edge e′ with pe′ < pe surely fails. It is clear that, in this
model, we have exactly m + 1 edge subgraphs that can be rendered and they
can be linearly ordered by the subgraph relationship.

While in most articles dealing with maximum coverage problems the weights
assumed to be positive, there are situations when the weights can be negative.
Such mixed-weight coverage problems are useful for modeling situations when
some of the demand nodes are obnoxious and their inclusion in the coverage area
may be detrimental [4,5]. Nodes with a negative demand are nodes we do not
wish to cover. If a node has negative demand, then we wish to cover as little
as possible. For example, opening a new facility (grocery store) close to many
positive weighted modes (customers) seems as an excellent opportunity but the
proximity of a big supermarket (a neighbor with negative weight) could decrease
the expected profit.

Problem Statement. Let G = (V,E,w, p) be a vertex-weighted undirected
graph where w : V → R and p : E → [0, 1], and k be an integer. In the LRO
model, let G0 � G1 � · · · � G� be the linear ordering of the realizations of G,



226 F. V. Fomin and V. Ramamoorthi

that occur with probability P (Gi) for 0 ≤ i ≤ m. The Expected-Coverage

problem asks to find a k sized vertex set S such that the expected coverage by
S on the distribution {Gi | 0 ≤ i ≤ m} is maximized. We use the expected
coverage function C defined by Narayanaswamy et al. [33]. Given a pair of sets
S, T ⊆ V , the expected coverage of T by S is

C(T, S) =
m∑

i=0

(
P (Gi)

∑

v∈NGi
[S]∩T

w(v)
)
.

The decision version of the problem is defined as follows.

Expected Coverage

Instance: A graph G = (V,E), w : V → R, p : E → [0, 1], an integer k
and value of coverage t ∈ R

Decide: Is there a set F ⊆ V of size at most k such that C(V, F ) ≥ t.

Related Works. The facility location problems can take many forms, depending
on the objective function. In the most facility location problems, the objective
function focuses on comforting the clients. For example, in the k-center problem,
the goal is minimizing the maximum distance of each client from its nearest
facility center [7]. The facility location problem has received a good deal of
attention in the parameterized perspective [1,6,20,21].

The MCLP with edge failure has been studied with various constraints. Eiselt
et al. [19] considered the problem with a single edge failure. In this case, exactly
one edge would have failed after a disaster and the objective is to place k facility
centers such that the expected weight of non-covered vertices is minimized. If
the number of facility centers is k = 1, and the facility center can cover all the
vertices in the connected component, then the problem is studied as most reliable
source (MRS) problem. In this problem, the edges are failed independently. The
MRS problem has received a good deal of attention in the literature [9,13,15,32].
Hassin et al. [26] studied the problem with edge failure follows LRO failure model.
The problem is referred to as the Max-Exp-cover-R problem. An additional
input radius of coverage R is also given such that any facility center can cover
a vertex at distance at most R. The Max-Exp-Cover-R problem is shown to
be NP-hard even when R = 1. When R = ∞, the problem is polynomial time
solvable [26].

In budgeted dominating set problem, we are given a graph G and an integer k,
and asked to find a set of at most k vertices S maximizing the value w(N [S])
in G. Set theoretic version of the BDS problem is studied as budgeted maximum
coverage in [28,29]. The Expected Coverage problem can be viewed as a
generalization of the BDS problem. When we have probability 1 on all the edges,
then both these problems are the same. The BDS problem generalizes partial
dominating set (PDS) problem, where one seeks a set of size at most k vertices
dominating at least t vertices [31]. Of course, all these problems also generalize
the fundamental dominating set problem, where the task is to find a set of at
most k vertices dominating all remaining vertices of the graph.



On the Parameterized Complexity of the Expected Coverage Problem 227

The dominating set problem on general graphs is W[2]-hard [16]. However,
on planar graphs it is FPT [25]. Moreover, on planar, and more generally on
H-minor-free graphs it is solvable in subexponential time [3,11]. It also admits
a linear kernel on planar graphs, H-minor-free graphs and graphs of bounded
expansion [2,18,23,24,34]. Subexponential parameterized algorithm for PDS on
planar, and more generally, apex-minor-free graphs, was given in [22].

On graphs of bounded treewidth, the classical dynamic programming, see,
e.g., [10], shows that Dominating Set is FPT parameterized by the treewidth
of an input graph. The FPT algorithm for dominating set can be adapted to solve
the BDS problem in FPT time. Further, when we have mixed vertex weights on
the BDS problem, it remains FPT parameterized by the treewidth of the input
graph. Narayanaswamy et al. [33] gave an FPT algorithm to solve the Expected
Coverage problem with non-negative weights.1

Our Results. Since the Expected Coverage problem (with mixed-weights)
generalizes both the BDS problem and the Expected Coverage problem with
non-negative weights, it is also natural to ask what algorithmic results for these
problems can be extended to the Expected Coverage problem. We obtain
the following results.

1. For the parameter treewidth, we show that the Expected Coverage prob-
lem is W[1]-hard. Moreover, the problem remains W[1]-hard for any combina-
tion of parameters treewidth, budget and value of coverage. This is interesting
because as it was shown by Narayanaswamy et al. [33], the variant of the prob-
lem with only non-negative weight is FPT parameterized by the treewidth.
Thus the results for non-negative weights cannot be (unless FPT= W[1])
extended to the mixed-weight model.

2. We complement the lower bound by the proof that Expected Coverage is
FPT being parameterized by the treewidth and the maximum vertex degree.
We give an algorithm that solves the problem in time 2O(tw log Δ)nO(1), where
tw is the treewidth, Δ is the maximum vertex degree, and n the number of
vertices of the input graph. In particular, since Δ ≤ n, it means the problem
is solvable in time nO(tw), that is, is in XP parameterized by treewidth.

We refer to the recent books of Cygan et al. [10] and Downey and Fellows [17]
for detailed introductions to parameterized complexity. We use standard graph
theoretic notations based on Diestel [12].

2 Parameterized Intractability: The Expected Coverage

Problem is W[1]-hard for the Parameter Treewidth

In this section, we show that the Expected Coverage problem is W[1]-hard
parameterized by the treewidth. We reduce from the MultiColor Clique

problem which is defined as follows. Given a k-partite graph G = (V,E) where
V = V1 ∪ V2 ∪ · · · ∪ Vk, and an integer k, is there a k-clique with exactly one
1 Narayanaswamy et al. [33] called this problem Max-Exp-Cover-1-LRO.



228 F. V. Fomin and V. Ramamoorthi

vertex from each partition. By the classical work of Downey and Fellows [16],
MultiColor Clique problem is W[1]-complete.

Theorem 1 ([16] ). MultiColor Clique is W[1]-complete for the parameter
k.

For each 1 ≤ i �= j ≤ k, let Ei,j ⊆ E be the set of all edges where one end
vertex is in Vi and another one is in Vj . That is, Ei,j = {uv ∈ E | u ∈ Vi∧v ∈ Vj}.
Then, E =

⋃

1≤i<j≤k

Ei,j is a
(
k
2

)
partition of the edge set.

2.1 Construction

We will show how given an instance (G, k) of MultiColor Clique problem, we
can construct an instance (H,w, p, k′, t′) of the Expected Coverage problem
where k′ = k+

(
k
2

)
and t′ = k4+k3−k2+k such that both instances are equivalent

and treewidth of the graph H is O(k2). Now we describe the construction of the
graph H, and the functions w : V (H) → R and p : E(H) → [0, 1].

For each 1 ≤ i ≤ k, we construct a vertex-partition gadget Hi corresponding
to the vertex partition Vi as follows. For each vertex v ∈ Vi, we add a vertex av

with w(av) = 0 in the gadget Hi. We add two more vertices ti with w(ti) = k2,
and qi with w(qi) = k2 to the gadget Hi. For each vertex v ∈ Vi, the vertex av

is made adjacent to the vertices ti and qi. For each edge e ∈ E(Hi), we define
the survival probability p(e) = 1. Thus, the gadget Hi has |Vi| + 2 vertices and
2|Vi| edges.

For each 1 ≤ i < j ≤ k, we construct an edge-partition gadget Hi,j corre-
sponding to the edge partition Ei,j . For each edge e ∈ Ei,j , we add a vertex
ae with w(ae) = 0 in the gadget Hi,j . We add two more vertices ti,j and qi,j

with w(ti,j) = k2 = w(qi,j) = k2 to the gadget Hi,j . For each edge e ∈ Ei,j , the
vertex av is made adjacent to the vertices ti,j and qi,j . For each edge e ∈ E(Hi,j ,
we define the survival probability p(e) = 1. Thus, the gadget Hi has |Ei,j | + 2
vertices and 2|Ei,j | edges.

Finally, we introduce the connector vertices between the edge-partition gad-
gets and vertex-partition gadgets. Let R = {si

i,j , s
j
i,j , r

i
i,j , r

j
i,j | 1 ≤ i < j ≤ k} be

the connector vertices. For each vertex x ∈ R, we define w(x) = −1. To establish
the edges between the gadgets and the connector vertices, we define a probability
function z : V → [0, 1] such that for any two vertices u �= v, z(v) �= z(v). For
1 ≤ i ≤ k, the gadget Hi is connected to the set R as follows. For each vertex
v ∈ Vi, the vertex av ∈ Hi is made adjacent to the vertices si

i,j and ri
i,j with

survival probabilities z(v) and 1− z(v), respectively. For 1 ≤ i < j ≤ k, the gad-
get Hi,j is connected to the set R as follows. For each edge e = uv ∈ Ei,j with
u ∈ Vi and v ∈ Vj , the vertex ae is made adjacent to the vertices si

i,j , r
i
i,j , s

j
i,j

and rj
i,j with survival probabilities z(u), 1 − z(u), z(v) and 1 − z(v), respec-

tively. An illustration of a vertex-partition gadget and an edge-partition gadget
connected to the connector vertices is given in Fig. 1. For clarity, we denote the
vertices av and ae in V (H) for each v ∈ V and e ∈ E, as real vertices, and the



On the Parameterized Complexity of the Expected Coverage Problem 229

remaining vertices in V (H) are denoted by non-real vertices. Thus, the graph
H is constructed with N = n + m + 3k3 − 3k vertices and M = (2k + 2)n + 6m
edges.

z(v)

z(v)

1− z(v)

1− z(v)

av

ti

qi

.

.

sii,1

sii,k

.

.

rii,1

rii,k

Vi

1− z(x)

z(y)

z(x)

1− z(y)

ae

ti,j

qi,j

.

.

rii,j

sji,j

.

.

sii,j

rji,j

Ei,j

Fig. 1. Gadgets for a partition Vi and Ei,j for some i �= j are given. Star shaped
vertices are connector vertices. Real vertices are represented by circle shape. Square
shaped vertices are part of gadgets. Let ae ∈ V (Hi,j) be the vertex illustrated for some
edge e = xy ∈ Ei,j such that x ∈ Vi and y ∈ Vj .

For each vertex v ∈ V , C(V (H), av) ≤ 2k2 since av has some neighbors with
negative weight. Similarly, for each edge e ∈ E, C(V (H), ae) ≤ 2k2. For each 1 ≤
i ≤ k, C(V (H), ti) = C(V (H), qi) = k2 since all neighbors of ti are vertices with
weight 0. Similarly, for each 1 ≤ i < j ≤ k, C(V (H), ti,j) = C(V (H), qi,j) = k2.

Lemma 1. For each 1 ≤ i < j ≤ k, let av and axy be a pair of vertices for some
v, x ∈ Vi and y ∈ Vj. Then, the expected coverage of the vertices si

i,j and ri
i,j by

av and axy is given as follows.

1. C(si
i,j , {av, axy}) = −(max(z(v), z(x))).

2. C(ri
i,j , {av, axy}) = −(max(1 − z(v), 1 − z(x))).

Proof. The weights of the vertices si,ji and ri
i,j are −1. The probabilities

of the edges avsi
i,j , avri

i,j , axysi
i,j and axyri

i,j are z(v), 1 − z(v), z(x) and
1−z(x), respectively. Then we have C(si

i,j , {av, axy}) = −1×(max(z(v), z(x))) =
−(max(z(v), z(x))). Similarly, we have C(ri

i,j , {av, axy}) = −(max(1 − z(v), 1 −
z(x))). Hence the lemma is proved. �



230 F. V. Fomin and V. Ramamoorthi

Any solution that contains either si
i,j , ri

i,j or both, we can switch the selection
of these vertices by one of their neighbor such that the expected coverage value
is not decreased. To maximize the expected coverage, we need the coverage of
ri
i,j and si

i,j by the pair of vertices av and axy is as minimum as possible. This
implies the following corollary from Lemma1.

Corollary 1. The expected coverage of vertices si
i,j and ri

i,j by av and axy is
maximum when v = x. That is, we have C({si

i,j , r
i
i,j}, {av, axy}) = −1. Otherwise

(v �= x), the expected coverage value is less than −1.

We bound the treewidth of the graph H using the following lemma.

Lemma 2. Treewidth of the graph H is at most 5
(
k
2

)
+ k + 1. Moreover, the

vertex cover number and feedback vertex set number of the graph H is 3k2 − k
and 5

(
k
2

)
+ k, respectively.

Proof. Consider the following two sets T =
k⋃

i=1

{ti} ∪
⋃

1≤i<j≤k

{ti,j} and Q =

k⋃

i=1

{qi} ∪
⋃

1≤i<j≤k

{qi,j}. If we remove the vertices in R ∪ T from H, then we

obtain a forest. Treewidth of a graph can decrease at most one when we remove
a vertex. Then, treewidth of H is at most |R ∪ T | + 1. Thus, treewidth of H is
at most 5

(
k
2

)
+ k + 1 = O(k2). Observe that the sets T ∪ Q ∪ R and T ∪ R are

the vertex cover and feedback vertex set of the graph H. �

2.2 Equivalence

Now we show the equivalence of both the problems. More precisely, the graph G
has a k-clique if and only if H has k′ vertices that achieve the expected coverage
of value at least t′.

Lemma 3. If (G, k) is an yes instance of the MultiColor Clique problem,
then (H, k′, t′) is also an yes instance the Expected Coverage problem.

Proof. Let K = {v1, v2, . . . vk} be a k-clique in G such that for 1 ≤ i ≤ k, vi ∈ Vi.
Now we construct a feasible solution S ⊆ V (H) for the instance (H, k′, t′) of the
Expected Coverage problem. Let S = {avi

| 1 ≤ i ≤ k} ∪ {avivj
| 1 ≤ i <

j ≤ k}. Clearly, the size of S is exactly the budget k′. The expected coverage by
the set S is given as:

C(V (H), S) =
∑

1≤i≤k

(
C({ti, avi

, qi}, avi
)
)

+
∑

1≤i<j≤k

(
C({ti,j , avivj

, qi,j}, avivj
)
)

+
∑

1≤i<j≤k,l∈{i,j}

(
C(sl

i,j , {avi
, avivj

}) + C(rl
i,j , {avi

, avivj
})

)

=
∑

1≤i≤k

2k2 +
∑

1≤i<j≤k

2k2 +
∑

1≤i<j≤k

−2 =
(
k +

(
k

2

))
(2k2) − 2

(
k

2

)

= (k2 + k)k2 − (k2 − k) = k4 + k3 − k2 + k = t′.



On the Parameterized Complexity of the Expected Coverage Problem 231

We apply Lemma 1 in the second step to replace the exact value of expected
coverage. Thus, we showed that C(V (H), S) = k4 + k3 − k2 + k = t′. �

Now we prove the other direction of equivalence. Let S ⊆ V (H) be a feasible
solution that achieves an expected coverage of at least t′ = k4 + k3 − k2 + k.
Observe that any vertex can achieve an expected coverage of value at most 2k2.
Specifically, any vertex av or ae for some v ∈ V or e ∈ E can achieve an expected
coverage of value at most 2k2, whereas, other vertices can achieve at most k2.

Lemma 4. Any set S ⊆ V (H) that contains a non-real vertex is infeasible.

Proof. Assume that the set S contains a non-real vertex. The maximum value of
the expected coverage by the set S is achieved when S has exactly on non-real
vertex. That is, other vertices in the set S are real vertices. A non-real vertex
can cover at most a value of k2. Then the expected coverage of S is given as
follows:

C(V (H), S) ≤ (k′ − 1)(2k2) + k2 = (k2 + k − 2)(k2) + k2

≤ k4 + k3 − 2k2 + k2 = k4 + k3 − k2 < t′.

Thus, the solution S is not a feasible solution. �

Lemma 4 states that every feasible solution is a set of k′ real vertices from V (H).
Further, we claim that a feasible solution must intersect with every gadget.

Lemma 5. Every feasible solution S ⊆ V (H) must have

– for each 1 ≤ i ≤ k, S ∩ {av | v ∈ Vi} �= ∅, and
– for each 1 ≤ i < j ≤ k, S ∩ {ae | e ∈ Ei,j} �= ∅.

Proof. As we stated early in the construction, the gadgets for the vertex-partition
and edge-partition are disjoint and connected through vertices with negative
weights. By contradiction, assume that there exists solution S ⊆ V (H) such
that there exists a gadget with no vertex from the gadget is in S. Without loss
of generality assume that a vertex-partition gadget corresponding to a partition
Vi is having no intersection with the set S. Since there are

(
k
2

)
+ k gadgets,

exactly one of the gadget will have two vertices in S and all other gadgets will
have one vertex from S. For any gadget, the expected coverage contribution by
the vertices in the gadget is at most 2k2 even the gadget has more than one
vertex from S. Then we have the following:

C(V (H) \ R,S) ≤ (k′ − 1)(2k2)
= (k2 + k)(k2) − 2k2 = k4 + k3 − 2k2 < t′.

Then we have, C(V (H), S) ≤ C(V (H) \ RE , S) ≤ (k4 + k3 − 2k2) < t′. Thus, the
solution S is infeasible. �

Lemmas 4 and 5 together state that every feasible solution S must be a subset
of real vertices and for each 1 ≤ i ≤ k, there exists a vertex v ∈ Vi such that
av ∈ S, and for each 1 ≤ i < j ≤ k, there exists an edge e ∈ Ei,j such that
ae ∈ S. Now we prove the other direction of the equivalence.



232 F. V. Fomin and V. Ramamoorthi

Lemma 6. If (H, k′, t′) is an yes instance of the Expected Coverage prob-
lem then (G, k) is also an yes instance of the MultiColor Clique problem.

Proof. Let S be a feasible solution for the instance (H, k′, t′) of the Expected

Coverage problem. The feasibility of S ensures that every gadget has non-zero
coverage. More specifically, each gadget contributes an expected coverage of 2k2.
Then C(V (H) \ R,S) = k′(2k2) = k4 + k3. Since we claim that S is a feasible
solution, we have to show that C(R,S) = k − k2.

There are 2
(
k
2

)
pairs of si

i,j and ri
i,j connector vertices in H. By Lemma 1,

each pair can contribute at most −1. Then, the value k − k2 can be achieved
only when each pair is contributing exactly −1. From Corollary 1, for each
1 ≤ i < j ≤ k, the pair ri

i,j and si
i,j together can contribute exactly −1 when

av ∈ S and avx ∈ S for some v ∈ Vi and x ∈ Vj .
Let K = {v ∈ Vi | av ∈ S} be a k sized vertex set from V of G, and form a

k-clique because there is an edge between every pair of vertices in K. �

Thus, we state the following theorem using the Lemmas 2, 3 and 6.

Theorem 2. The Expected Coverage problem is W[1]-hard for the param-
eter treewidth.

Moreover, the parameterized reduction preserves the parameters k′, t′ and the
treewidth of the constructed graph as a functions of k. That is, k′ = k +

(
k
2

)
,

t′ = k4 + k3 − k2 + k and treewidth of the graph H is O(k2). We conclude the
section with the following corollary.

Corollary 2. The Expected Coverage problem is W[1]-hard for any com-
bination of parameters, budget k, treewidth tw, feedback vertex set number and
vertex cover number.

3 FPT Algorithm for the Expected Coverage Problem
Parameterized by Treewidth on Bounded Degree
Graphs

While, as we have seen, the Expected Coverage problem is W[1]-hard for
the parameter treewidth, we give an FPT algorithm for the combined treewidth
and maximum vertex degree parameter.

To describe the algorithm, we first define the tree decomposition of a graph.
A tree decomposition of an undirected graph G = (V,E) is a pair (X, T ) where
T is a tree whose vertices are called nodes and X = {Xi ⊆ V | i ∈ V (T )} such
that

1. for each vertex u ∈ E, there is a node i ∈ V (T ) such that u ∈ Xi,
2. for each edge uv ∈ E, there is a node i ∈ V (T ) such that u, v ∈ Xi, and
3. for each vertex v ∈ V , the set {i ∈ V (T ) | v ∈ Xi} forms a subtree of T .



On the Parameterized Complexity of the Expected Coverage Problem 233

The width of a tree decomposition (X, T ) equals maxi∈V (T )|Xi| − 1. The
treewidth of a graph G is the minimum width over all tree decompositions of
G. We give a dynamic programming algorithm working on a so-called nice tree
decomposition of the input graph G. A tree decomposition (X, T ) is a nice tree
decomposition if T is rooted by a node r with Xr = ∅ and every node in T
is either an insert node, forget node, join node or leaf node. Thereby, a node
i ∈ V (T ) is an insert node if i has exactly one child j such that Xi = Xj ∪ {v}
for some v /∈ Xj ; it is a forget node if i has exactly one child j such that
Xi = Xj \ {v} for some v ∈ Xj ; it is a join node if i has exactly two children
j and k such that Xi = Xj = Xk; and it is a leaf node if Xi = ∅. Given a
tree decomposition of width tw, a nice tree decomposition of width tw can be
obtained in linear time [30]. For a node i ∈ V (T ), let Ti be a subtree rooted at
i and X+

i = ∪j∈V (Ti){Xj}.

3.1 Solution Structure

Let 〈G,w, p, k〉 be an input to the optimization version of the Expected Cov-

erage problem. Let (X , T ) be a nice tree decomposition of G with treewidth
tw. Narayanaswamy et al. [33] introduced the notion of best neighbor to solve
the Expected Coverage problem with non-negative weights on bounded
treewidth graphs. Consider any feasible solution S ⊆ V of size k with expected
coverage value t. Since the failure model follows the LRO distribution, then for
each vertex u (with u ∈ N(S)) that contributes to t, there exists a unique vertex
in S called best neighbor of u in S, denoted by bn(u, S). We use the fact that the
graph G has bounded degree. We define a structural ordering called neighborhood
indexing on the neighborhood of each vertex. This LRO specific intuitions “best
neighbor” and “neighborhood indexing”, help us to solve the problem efficiently
in tree decomposition.

Neighborhood Indexing - We define an ordered indexing on the neighborhood
of each vertex v of G. Let v ∈ V be a vertex. Let D = N(v) be the open
neighborhood of v. We order the vertices in D based on the survival probability
of the edge connected to v in non-increasing order. Let Dv = {u1, u2, . . . , ul}
with l = deg(v) ≤ Δ be the ordering of the vertices described above. For each
vertex v, let Nv : {1, 2, . . . , deg(v)} → N(v) be a function on input an integer
r ≤ deg(v) outputs the rth-vertex u from the ordered set Dv.

Now we show the structure of a solution in the tree decomposition. Let i be
a node in T . We define two labels c and d as follows. Let c : Xi → {0, 1} be
a function decides for each vertex v ∈ Xi whether v is covered at the current
stage. Let d : Xi → {−1, 0, 1, . . . ,Δ} be a function that assigns Δ + 2 different
values to the vertices in Xi as follows.

– If d(v) = −1, then the vertex v has no neighbor from the solution at current
stage.

– If d(v) = 0, then the vertex v is part of the solution at current stage.
– If d(v) > 0, then the vertex Nv(d(v)) be the best neighbor of v in the solution

at current stage.



234 F. V. Fomin and V. Ramamoorthi

Intuitively, the label d determines the index of best neighbor in the solution at
current stage. Let � be an integer with � ≤ k. A triple (�, c, d) is said to be valid
if it satisfies the following conditions.

1. d−1(0) ∩ c−1(0) = ∅.
2. d−1(−1) ∩ c−1(1) = ∅.
3. For any vertex v ∈ Xi with d(v) > 0, Nv(d(v)) ∈ X+

i .
4. Let A = d−1(0) ∪

⋃

v∈Xi|d(v)>0

{Nv(d(v))}. Then, |A| ≤ � and for each vertex

v ∈ Xi with d(v) > 0, bn(v,A) = Nv(d(v)).

Otherwise, the triple (�, c, d) is invalid.

3.2 Dynamic Programming

We present a dynamic programming formulation for the Expected Coverage

problem on bounded degree graphs parameterized by treewidth. Our dynamic
programming maintains a table Ti for every node i ∈ T that has three dimen-
sions, an integer � with � ≤ k and a pair of labels c : Xi → {0, 1} and
d : Xi → {−1, 0, 1, . . . ,Δ}. For every valid triple (�, c, d), the table entry Ti[�, c, d]
is a pair (Solution,Value) that consists of a set of size � and a value of expected
coverage. Let A = d−1(0) ∪

⋃

v∈Xi|d(v)>0

{Nv(d(v))}. Let Si = Ti[�, c, d].Solution.

Then the set Si is the optimal solution for the instance (G[X+
i \ c−1(0)], �) of

the Expected Coverage problem conditioned on

1. A ⊆ Si and |Si| ≤ �,
2. for each vertex v ∈ Xi \ (d−1(0) ∪ d−1(−1)), N−1

v (bn(v, Si)) = d(v),
3. C(X+

i \ c−1(0), Si) is maximized, and
4. Ti[�, c, d].Value = C(X+

i \ c−1(0), Si)

For each invalid entry (�, c, d), Ti[�, c, d].Solution = ∅ and Ti[�, c, d].Value =
−∞. Clearly, the table contained in the root node r has the solution for the
Expected Coverage problem. Note that the root node r has Xr = ∅. For
c : ∅ → {0, 1}, d : ∅ → {−1, 0, 1, . . . ,Δ} and � = k, the table entry Tr[�, c, d]
gives an optimal solution for the Expected Coverage problem.

Due to lack of space, the update operation of the dynamic programming are
deferred to the full version of this paper.

Theorem 3. The Expected Coverage problem can be solved optimally in
time 2O(tw log Δ)nO(1) where tw and Δ are the treewidth and max-degree of the
input graph.

Proof. We have shown that every feasible solution follows the labeling c and d
as described in solution structure. We enumerate all such labeling on the bags of
tree decomposition and output the optimal one on the root of tree decomposition.
Note that every node has a table of size (k +1)(2Δ+4)tw and each entry can be
updated in time O(2Δ + 4)tw. Since the nice tree decomposition with O(n · tw)
nodes can be computed in polynomial time [30], the Expected Coverage

problem can be solved in time 2O(tw log Δ)nO(1). �



On the Parameterized Complexity of the Expected Coverage Problem 235

References

1. Ageev, A.A.: A criterion of polynomial-time solvability for the network location
problem. In: Proceedings of the 2nd Integer Programming and Combinatorial Opti-
mization Conference, Pittsburgh, PA, USA, May 1992, pp. 237–245 (1992)

2. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dom-
inating set. J. ACM 51(3), 363–384 (2004)

3. Alber, J., Fernau, H., Niedermeier, R.: Parameterized complexity: exponential
speed-up for planar graph problems. J. Algorithms 52(1), 26–56 (2004)

4. Berman, O., Drezner, Z., Krass, D.: Generalized coverage: new developments in
covering location models. Comput. Oper. Res 37(10), 1675–1687 (2010)

5. Berman, O., Drezner, Z., Wesolowsky, G.O.: The maximal covering problem with
some negative weights. Geograph. Anal. 41(1), 30–42 (2009)

6. van Bevern, R., Tsidulko, O.Y., Zschoche, P.: Fixed-parameter algorithms for
maximum-profit facility location under matroid constraints. In: Heggernes, P. (ed.)
CIAC 2019. LNCS, vol. 11485, pp. 62–74. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-17402-6 6

7. Charikar, M., Guha, S.: Improved combinatorial algorithms for the facility location
and k-median problems. In: 40th Annual Symposium on Foundations of Computer
Science, FOCS 1999, New York, NY, USA, 17–18 October 1999, pp. 378–388 (1999)

8. Church, R., Velle, C.R.: The maximal covering location problem. Pap. Reg. Sci.
32(1), 101–118 (1974)

9. Colbourn, C.J., Xue, G.: A linear time algorithm for computing the most reliable
source on a series-parallel graph with unreliable edges. Theor. Comput. Sci. 209(1),
331–345 (1998)

10. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

11. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential
parameterized algorithms on graphs of bounded genus and H-minor-free graphs.
J. ACM 52(6), 866–893 (2005)

12. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-53622-3

13. Ding, W.: Computing the most reliable source on stochastic ring networks. In: 2009
WRI World Congress on Software Engineering, vol. 1, pp. 345–347, May 2009

14. Ding, W.: Extended most reliable source on an unreliable general network. In:
2011 International Conference on Internet Computing and Information Services,
pp. 529–533, September 2011

15. Ding, W., Xue, G.: A linear time algorithm for computing a most reliable source
on a tree network with faulty nodes. Theor. Comput. Sci. 412(3), 225–232 (2011).
Combinatorial Optimization and Applications

16. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. In:
Complexity Theory: Current Research, Dagstuhl Workshop, 2–8 February 1992,
pp. 191–225 (1992)

17. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, London (2013). https://doi.org/10.1007/978-1-4471-
5559-1

18. Drange, P.G., et al.: Kernelization and sparseness: the case of dominating set.
In: Proceedings of the 33rd International Symposium on Theoretical Aspects of
Computer Science (STACS). LIPIcs, vol. 47, pp. 31:1–31:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2016)

https://doi.org/10.1007/978-3-030-17402-6_6
https://doi.org/10.1007/978-3-030-17402-6_6
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1


236 F. V. Fomin and V. Ramamoorthi

19. Eiselt, H.A., Gendreau, M., Laporte, G.: Location of facilities on a network subject
to a single-edge failure. Networks 22(3), 231–246 (1992)

20. Feldmann, A.E., Marx, D.: The parameterized hardness of the k-center problem
in transportation networks. In: 16th Scandinavian Symposium and Workshops on
Algorithm Theory, SWAT 2018, Malmö, Sweden, 18–20 June 2018, vol. 101, pp.
19:1–19:13 (2018)

21. Fellows, M.R., Fernau, H.: Facility location problems: a parameterized view. Dis-
crete Appl. Math. 159(11), 1118–1130 (2011)

22. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Subexponential algorithms
for partial cover problems. Inf. Process. Lett. 111(16), 814–818 (2011)

23. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and
kernels. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 503–510. SIAM (2010)

24. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Kernels for (connected)
dominating set on graphs with excluded topological minors. ACM Trans. Algo-
rithms 14(1), 6:1–6:31 (2018)

25. Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable
graphs. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999.
LNCS, vol. 1644, pp. 331–340. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48523-6 30

26. Hassin, R., Ravi, R., Salman, F.S.: Tractable cases of facility location on a network
with a linear reliability order of links. In: Fiat, A., Sanders, P. (eds.) ESA 2009.
LNCS, vol. 5757, pp. 275–276. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04128-0 24

27. Hassin, R., Ravi, R., Salman, F.S.: Multiple facility location on a network with
linear reliability order of edges. J. Comb. Optim. 34, 931–955 (2017). https://doi.
org/10.1007/s10878-017-0121-5

28. Hochbaum, D.S. (ed.): Approximation Algorithms for NP-Hard Problems. PWS
Publishing Co., Boston (1997)

29. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Inf.
Process. Lett. 70(1), 39–45 (1999)

30. Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994). https://
doi.org/10.1007/BFb0045375

31. Kneis, J., Mölle, D., Rossmanith, P.: Partial vs. complete domination: t-dominating
set. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H.,
Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 367–376. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-69507-3 31

32. Melachrinoudis, E., Helander, M.E.: A single facility location problem on a tree
with unreliable edges. Networks 27(4), 219–237 (1996)

33. Narayanaswamy, N.S., Nasre, M., Vijayaragunathan, R.: Facility location on planar
graphs with unreliable links. In: Fomin, F.V., Podolskii, V.V. (eds.) CSR 2018.
LNCS, vol. 10846, pp. 269–281. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-90530-3 23

34. Philip, G., Raman, V., Sikdar, S.: Polynomial kernels for dominating set in graphs
of bounded degeneracy and beyond. ACM Trans. Algorithms 9(1), 11 (2012)

https://doi.org/10.1007/3-540-48523-6_30
https://doi.org/10.1007/3-540-48523-6_30
https://doi.org/10.1007/978-3-642-04128-0_24
https://doi.org/10.1007/978-3-642-04128-0_24
https://doi.org/10.1007/s10878-017-0121-5
https://doi.org/10.1007/s10878-017-0121-5
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/978-3-540-69507-3_31
https://doi.org/10.1007/978-3-319-90530-3_23
https://doi.org/10.1007/978-3-319-90530-3_23


Computational Hardness
of Multidimensional Subtraction Games

Vladimir Gurvich1,4 and Mikhail Vyalyi1,2,3(B)

1 National Research University Higher School of Economics, Moscow, Russia
vladimir.gurvich@gmail.com, vyalyi@gmail.com

2 Moscow Institute of Physics and Technology, Moscow, Russia
3 Dorodnicyn Computing Centre, FRC CSC RAS, Moscow, Russia

4 Rutgers University, New Brunswick, NJ 08901-8554, USA

Abstract. We study the algorithmic complexity of solving subtraction
games in a fixed dimension with a finite difference set. We prove that
there exists a game in this class such that solving the game is EXP-
complete and requires time 2Ω(n), where n is the input size. This bound
is optimal up to a polynomial speed-up.

The results are based on the construction introduced by Larsson and
Wästlund. It relates subtraction games and cellular automata.

Keywords: Subtraction games · Cellular automata · Computational
hardness

1 Introduction

The algorithmic complexity of solving combinatorial games is an important
area of research. Some famous games can be solved efficiently. For example,
the ancient game of nim was solved by Bouton in [8].

A position of nim is determined by n heaps of pebbles. By one move it is
allowed to reduce (strictly) exactly one heap. Two players move alternately. One
who is out of moves loses. In fact, in his paper Bouton obtained an explicit
formula for the Sprague-Grundy (SG) function of the disjunctive compound (or,
for brevity, the sum) of impartial games (see [2,9,15] and Sect. 2.1 for definitions.)

Later efficient algorithms were developed for several versions and/or general-
izations of nim: Wythoff’s nim [13,25], Fraenkel’s nim [12,13], nim(a, b) game [3],
Moore’s (n, k)-nim with k = n − 1 [7,19,21], and the exact (n, k)-nim with
2k � n [5,7].

In all these versions it is allowed to reduce by one move several heaps, not
necessarily only one. These versions differ in rules of choosing heaps and the
numbers of pebbles that can be taken. For example, in the exact (n, k)-nim

The article was prepared within the framework of the HSE University Basic Research
Program. The second author was supported in part by RFBR grant 20-01-00645 and
the state assignment topic no. 0063-2016-0003.

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 237–249, 2020.
https://doi.org/10.1007/978-3-030-50026-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_17&domain=pdf
http://orcid.org/0000-0001-9822-1060
https://doi.org/10.1007/978-3-030-50026-9_17


238 V. Gurvich and M. Vyalyi

a player by one move reduces exactly k from n heaps, strictly but otherwise
arbitrarily.

A move is called slow if at most one pebble is taken from each heap. The so-
called slow versions of the Moore and exact (n, k)-nim were introduced in [16,17],
respectively. In these games the players are restricted to their slow moves.

An explicit formula for the SG function of the exact slow (n, k)-nim was
obtained for (n, k) = (3, 2) in [17] and then extended to (n, k) = (4, 2) in [16].
However, for many values of parameters n and k, no explicit formula for the SG
function of the exact slow (n, k)-nim is known and even the set of the P-positions
looks rather chaotic.

Is it possible that there are no efficient algorithms solving these variants of
nim? Right now we have no answer to this question and even no clue.

Looking for hardness results in solving combinatorial games, we see numerous
examples of PSPACE-complete games; see e.g. [10,23]. As for generalizations
of nim, there are hardness results for the hypergraph nim.

Given an arbitrary hypergraph H ⊆ 2[n] \ {∅} on the ground set [n] =
{1, . . . , n}, the game hypergraph nim, NIMH, is played as follows. By one move
a player chooses an edge H ∈ H and reduces (strictly) all heaps of H. The
games of standard (not slow) exact and Moore’s nim considered above provide
examples of the hypergraph nim. For a position x = (x1, . . . , xn) of NIMH its
height h(x) = hH(x) is defined as the maximum number of successive moves that
players can make beginning in x. (Clearly, they can restrict themselves by their
slow moves.) A hypergraph H is called intersecting if H ′ ∩ H ′′ �= ∅ for any two
edges H ′,H ′′ ∈ H. The following two statements were proven in [4,6]. For any
intersecting hypergraph H, its height and SG functions are equal. Computing
the height hH(x) is NP-hard already for the intersecting hypergraphs with edges
of size at most 4 (see [4]). It follows from these two statements that, already for
the above family of hypergraphs, computing the SG function is NP-hard.

For the case of fixed number of heaps Larsson and Wästlund [20] obtained an
important result. Actually, they studied a wider class of games, so-called vector
subtraction games introduced by Golomb [14]. Later they were studied under the
name of invariant games [11]. The subtraction games include all versions of nim
mentioned above. In these games, the positions are d-dimensional vectors with
nonnegative integer coordinates. The game is specified by a set of d-dimensional
integer vectors (the difference set), and a move is subtraction of any vector from
the difference set. Larsson and Wästlund considered subtraction games of finite
dimension with a finite difference set (FDG for brevity: fixed dimension and
fixed difference set).

The P-positions of a 1-dimensional FDG form a periodic structure [1]. This
provides an efficient algorithm of solving such games.

Yet, the FDG of higher dimensions may behave in a very complicated way.
Larsson and Wästlund proved in [20] that in some fixed dimension the equiva-
lence problem for FDG is undecidable.

Nevertheless, this remarkable result does not answer the main question;
whether efficient algorithms solving FDG exist. For example, there are poly-



Computational Hardness of Multidimensional Subtraction Games 239

nomial algorithms solving the membership problem for context-free languages
(CFLs) but the equivalence problem for CFLs is undecidable [18].

In this paper we extend arguments of Larsson and Wästlund and prove the
existence of a FDG such that solving the game is EXP-complete and requires
time 2Ω(n), where n is the input size. Furthermore, this bound is optimal up to
a polynomial speed-up.

The rest of the paper is organized as follows. In Sect. 2 we introduce the
concepts that we will need and outline our contribution. In Sect. 3 we sketch the
proof of the main theorem. The following sections contain some more detailed
exposition of main steps of the proof: in Sect. 4 we describe a simulation of a
binary cellular automaton by a subtraction game; in Sect. 5 we discuss converting
a Turing machine to a binary cellular automaton; in Sect. 6 we present a way to
launch a Turing machine on all inputs simultaneously. Finally, Sect. 7 contains
the proof itself. Due to space limitation, we skip several technical proofs.

2 Concepts and Results

2.1 Impartial Games

An impartial game is defined by a directed acyclic graph (DAG), which vertices
and arcs are interpreted as positions and moves. Such DAG may be infinite, but
the set of positions reachable (by one or several moves) from any given position
is finite. An initial position is fixed. Two players move alternately. One who has
to move but is out of moves loses.

Recall the standard classification of positions of an impartial game. If a player
who moves at a position x has a winning strategy then x is called an N-position
and it is called a P-position otherwise (from words Next and Previous). In graph
theory, the set of P-positions of a DAG is called its kernel; it can be found in
time linear in the size of the DAG [22].

A refinement of this concept is given by the so-called Sprague-Grundy (SG)
function. For a set S of nonnegative integers the minimum excluded value of S
is defined as the smallest nonnegative integer that is not in S and denoted by
mex(S). In particular, mex(∅) = 0. The SG value of a position x is defined
recursively as

G(x) = mex{G(y) : (x, y) ∈ E(G)}, (1)

where G is the corresponding DAG. A position of SG value t is called a t-position.
Then, P-positions are exactly 0-positions, while N-positions have positive SG
values.

Taking in mind the relation with the Sprague-Grundy function, we assign to
P- and N-positions the (Boolean) values 0 and 1, respectively. The basic relation
between values of positions is

p(v) = [p(v1), . . . , p(vk)] = ¬
k∧

i=1

p(vi) =
k∨

i=1

¬p(vi), (2)



240 V. Gurvich and M. Vyalyi

where all the possible moves from the position v are to the positions v1, . . . , vk.
If v is a sink then p(v) = 0. We will use notation [. . . ] introduced in [20] for
Boolean functions in Eq. (2).

Yet, we will assume that a game is given by the succinct description, in size
of which its DAG, as well as the above algorithm, become exponential.

2.2 Subtraction Games and Modular Games

Now we introduce the class FDG of subtraction games. Subtraction games gener-
alize naturally all versions of nim mentioned above. Note that a position in a ver-
sion of nim with d heaps is specified by a d-dimensional vector x = (x1, . . . , xd)
with nonnegative integer coordinates which are just the numbers of pebbles in
a heap. A move in the game decreases some coordinates of this vector. Thus
possible moves are specified by a set D(x) ⊆ N

d of d-dimensional vectors with
nonnegative integer coordinates (the difference set). A move from x to y is pos-
sible if x − y ∈ D(x).

The set D is defined by rules of a game.

Example 1. The exact slow (n, k)-nim (see Sect. 1 and [17] for more details) is
an n-dimensional FDG with the difference set consisting of all (0, 1)-vectors with
exactly k coordinates equal 1.

A subtraction game is defined by the same rules. The requirements of the
difference set are changes In a subtraction game the difference set D is the same
for all positions but may contain integer vectors with negative coordinates. In
other words, a player is allowed to add pebbles to heaps. To guarantee that each
play terminates after finite number of moves, we put a restriction on coordinates
of difference vectors: if a ∈ D then

d∑

i=1

ai > 0. (3)

This restriction implies that the total number of pebbles is strictly reduced by
each move.

Finally, a game from the class FDG is defined by a finite difference set D of
d-dimensional vectors satisfying (3).

Example 2. Let D = {(2,−1), (−1, 2)}. Then possible moves from position (3, 3)
are to positions (1, 4) and (4, 1). It is an easy exercise to compute the value of
the position: p(3, 3) = 0, i.e. it is a P-position.

In a FDG starting at a position (x1, . . . , xd), the total number of positions
is O((M + 1)d), where M = maxi xi. Therefore, due to the kernel construction
algorithm mentioned above, solving FDG belongs to the class EXP if xi are
binary.

If the difference set is a part of the input, then clearly solving FDG is
PSPACE-hard. To show this, we reduce solving of the game called NODE



Computational Hardness of Multidimensional Subtraction Games 241

KAYLES to solving a FDG. Recall the rules of NODE KAYLES. It is played
on a graph G. At each move a player puts a pebble on an unoccupied vertex
of G that is non-adjacent to any occupied vertex. As usual, the player unable
to make a move loses. It is known that solving NODE KAYLES is PSPACE-
complete [23]. So, PSPACE-hardness of solving FDG is an immediate corollary
of the following claim.

Proposition 1. Solving NODE KAYLES is polynomially reducible to solving
FDG.

In the sequel we will solve a particular FDG (the difference set is fixed). In
other words, we are going to determine algorithmic complexity of the language
P(D) that consists of the binary representations of all P-positions (x1, . . . , xd)
of the FDG with the difference set D.

Our main result is unconditional hardness of this problem.

Theorem 1. There exist a constant d and a finite set D ⊂ N
d such that the

language P(D) is EXP-complete and P(D) /∈ DTIME(2n/11), where n is the
input size.

Note that Theorem 1 implies that for some languages P(D) the kernel con-
struction algorithm is optimal up to polynomial speed-up.

In the proofs we will need a generalization of FDG—the so-called k-modular
FDG introduced in [20]. A k-modular d-dimensional FDG is determined by k
finite sets D0, . . . , Dk−1 of vectors from Z

d. The rules are similar to those of
FDG, but the set of possible moves at a position x is Dr, where r is the residue
of

∑
i xi modulo k.

Example 3. Let D0 = {(1, 0), (0, 1)}, D1 = {(2,−1), (−1, 2)}. Then possible
moves from position (3, 3) in 2-modular game D0,D1 are to positions (3, 2) and
(2, 3) (since 3 + 3 = 6 is even). Possible moves from (2, 3) are to (0, 4) and (3, 1)
(since 2 + 3 is odd).

2.3 Turing Machines and Cellular Automata

The notion of a Turing machine is well-known. We will use the definition from
Sipser’s book [24].

Although the cellular automata are also well-known, for reader’s convenience
we provide the definition. Formally, a cellular automaton (CA) C is a pair (A, δ),
where A is a finite set (called the alphabet), and δ : A2r+1 → A is the transition
function. The number r is called the size of a neighborhood. The automaton
operates on an infinite tape consisting of cells. Each cell carries a symbol from
the alphabet. Thus, a configuration of C is a function c : Z → A.

At each step a CA changes the content of the tape using the transition
function. If a configuration before the step is c, then the configuration after the
step is c′, where

c′(u) = δ
(
c(u − r), c(u − r + 1), . . . , c(u), . . . , c(u + r − 1), c(u + r)

)
.



242 V. Gurvich and M. Vyalyi

Note that the changes are local: the content of a cell depends only on the content
of 2r + 1 neighbor cells.

We assume that there exists a blank symbol Λ in the alphabet and the
transition function satisfies the condition δ(Λ, . . . , Λ) = Λ (“nothing generates
nothing”). This convention guarantees that the configurations containing only
a finite number of non-blank symbols produce configurations with the same
property.

A 2CA (a binary CA) is a CA with the binary alphabet {0, 1}. It will be
convenient to assume that 1 is the blank symbol in 2CAs, because of their
connections with games.

It is well-known that Turing machines can be simulated by CA with r = 1
and any CA can be simulated by a 2CA (with a neighborhood of a larger size).

We will need some specific requirements on these simulations; see Sect. 5 for
more details.

3 Sketch of the Proof

The proof of Theorem1 consists of the following steps.

1. Choose an EXP-complete language L such that L /∈ DTIME(2n/2) and fix
a Turing machine M recognizing it.

2. Construct another machine U that simulates an operation of M on all inputs
in parallel (see Sect. 6 fore more details).

3. Machine U is simulated by a CA CU . The cellular automaton CU is simulated
in its turn by a 2CA C

(2)
U (see Sect. 5 for more details) and C

(2)
U is simulated

by a d-dimensional FDG DU (see Sect. 4), where d depends on C
(2)
U .

4. It is important to note that the result of operating M on an input w is
completely determined by the value of a specific position of DU that is
computed in polynomial time. Thus, we obtain a polynomial reduction of L
to P(DU ).

5. Now Theorem follows from the assumption of hardness of language L.

4 From Cellular Automata to Subtraction Games

We will follow Larsson and Wästlund’s [20] construction with minor modifica-
tions.

4.1 First Step: Simulation of a 2CA by a 2-Dimensional Modular
Game

Let C = ({0, 1}, δ) be a 2CA. Symbol 1 is assumed to be blank: δ(1, . . . , 1) = 1.
We will relate the evolution of C beginning with the configuration c0 =
(. . . 11011 . . . ) with the values p(x1, x2) of positions of a 2-dimensional 2N -
modular FDG D′

C . The value of N depends on C and we will choose it greater
than r.



Computational Hardness of Multidimensional Subtraction Games 243

The exact form of the relation is as follows. The time arrow is a direction
(1, 1) in the space of positions, while the coordinate along the automaton tape
is in the direction (1,−1).

The configuration ct of C at moment t corresponds to the positions on a
line x1 + x2 = 2Nt. The cell coordinate is u = (x1 − x2)/2, as shown in Fig. 1
(N = 1). For the configuration (. . . 11011 . . . ) we assume that 0 has coordinate 0
on the automaton tape.

Fig. 1. Encoding configurations of 2CA by positions of a modular FDG

The content of an automaton tape and the values of positions of game D′
C

are related as follows:

ct(u) = p(Nt + u,Nt − u) for |u| � Nt. (4)

By the choice of the initial configuration, the following implication holds: if
|u| > Nt > rt then ct(u) = 1. To extend the relation to this area, we extend the
value function p(x1, x2) by setting p(x1, x2) = 1 if either x1 < 0 or x2 < 0. In
other words, we introduce dummy positions with negative values of coordinates;
we regard them as terminals of value 1. Note that for the game evaluation func-
tions [. . . ] the equality [p1, . . . , pk, 1, . . . , 1] = [p1, . . . , pk] holds, that is, extra
arguments with the value 1 do not affect the function value. So, the dummy
positions do not change the values of real positions of a game.

The initial configuration c0 = (. . . 11011 . . . ) satisfies this relation for any
game: position (0, 0) is a P-position.

To maintain the relation (4), we should choose an appropriate modulus and
difference sets.

Note that the Boolean functions [p1, . . . , pn] defined by Eq. (2) form a com-
plete basis: any Boolean function is represented by a circuit with gates [. . . ].



244 V. Gurvich and M. Vyalyi

Thus, it remains to check that the functions from the standard complete basis
can be expressed in the basis [. . . ]:

¬x = [x], x ∨ y = [[x], [y]], x ∧ y = [[x, y]].

Now take a circuit in the basis [. . . ] computing the transition function of
2CA C. The circuit is a sequence of assignments s1, . . . , sN of the form

sj := [list of arguments],

where arguments of the jth assignment may be the input variables or the values
of previous assignments si, i < j. The value of the last assignment sN is equal
to the value of the transition function δ(u−r, . . . , u−1, u0, u1, . . . , ur).

For technical reasons we require that the last assignment sN does not contain
the input variables ui. This is easy to satisfy: just start a circuit with assignments
in the form si+r+1 = [ui]; si+3r+2 = [si+r+1], where −r � i � r, and replace
variable ui in the following assignments by si+3r+2. The size of the modified
circuit is obviously greater than r.

We extend the relation (4) to intermediate positions as follows:

p(Nt + i,Nt − i) = ct(i),
p(Nt + i + j,Nt − i + j) = sj , 1 � j < N,

(5)

where sj is the value of jth assignment of the circuit for values ct(i−r), . . . , ct(i),
. . . , ct(i + r) of the input variables.

Proposition 2. There exist sets Dj such that relation (5) holds for the values
of modular game D′

C with the difference sets Dj.

The choice of Dj depends on the arguments of assignments sj . If an input
variable uk is an argument of sj then we include in D2j vector (j − k, j + k). If
the value of an intermediate assignment sk is an argument of sj then we include
in D2j vector (j − k, j − k). Sets D2j+1 are irrelevant and may be arbitrary.

Relation (5) can be verified for Dj by induction on the sum of coordinates.
Note that game D′

C has the following property: if there is a legal move from
(x1, x2) to (y1, y2) then either x1 + x2 ≡ 0 (mod 2N) or the residue of y1 + y2
modulo 2N is less than the residue of x1 + x2. (Standardly, we assume that the
residues take values 0, 1, . . . , 2N −1). Note also that x1+x2 �≡ y1+y2 (mod 2N),
since the input variables are not arguments of the final assignment.

4.2 Second Step: Simulation of a 2CA by a (2N + 2)-Dimensional
Subtraction Game

To exclude modular conditions we use the trick suggested in [20].
Using the 2-dimensional modular game D′

C defined above we construct a
(2N + 2)-dimensional FDG DC with the difference set

D =
{
(a1, a2, 02N

)
+ e(j) − e(k) : (a1, a2) ∈ Dj , k = j − a1 − a2 (mod 2N)

}
.

Here e(i) is the (i + 2)th coordinate vector: e
(i)
i+2 = 1, e

(i)
s = 0 for s �= i + 2.



Computational Hardness of Multidimensional Subtraction Games 245

Proposition 3. The value of a position (x1, x2, 02N ) + e(2r) of the game DC is
equal to the value of a position (x1, x2) of the modular game D′

C if 2r ≡ x1 + x2

(mod 2N).

Proof. We proceed by induction on t = x1 + x2. The base case t = 0 holds, by
the convention on the values of dummy positions (with negative coordinates).

The induction step. A legal move at a position (Nt+i+j,Nt−i+j, 02N )+e(2j)

is to a position (Nt + i + j,Nt − i + j, 02N ) − (a1, a2, 02N ) + e(2s), where 2s ≡
2j − a1 − a2 (mod 2N) and (a1, a2) ∈ D2j . It corresponds to a move from
(Nt + i + j,Nt − i + j) to (Nt + i + j − a1, Nt − i + j − a2) in the modular
game. ��

From Propositions 2 and 3 we derive:

Corollary 1. For any 2CA C there exist an integer N and a (2+2N)-dimensio-
nal FDG DC such that the relation

ct(u) = p(Nt + u,Nt − u, 0, 0, . . . , 0, 1) holds for |u| � Nt.

5 From Turing Machines to Cellular Automata

In this section we outline a way to simulate a Turing machine by a binary cellular
automaton. It is standard, except some specific requirements.

Let M = (Q, {0, 1}, Γ, Λ, δM , 1, 2, 3) be a Turing machine, where the input
alphabet is binary, Q = {1, . . . , q}, q � 3 is the set of states, Γ = {0, 1, . . . , �} is
the tape alphabet, � > 1 is the blank symbol, δM : Q × Γ → Q × Γ × {+1,−1}
is the transition function, and 1, 2, 3 are the start, accept, and reject states,
respectively.

We encode a configuration of M by a doubly infinite string c : Z → A, where
A = {0, . . . , q}×{0, . . . , �}. The head position is indicated by a pair (q, a), q > 0,
a ∈ Γ ; the content of any other cell is encoded as (0, a), a ∈ Γ .

Let c0, . . . , ct, . . . be a sequence of encoded configurations produced by M
from the start configuration c0. It is easy to see that ct+1(u) is determined by
ct(u − 1), ct(u), ct(u + 1). In this way we obtain CA CM = (A, δC) over the
alphabet A with the transition function δC : A3 → A thus simulating operation
of M in encoded configurations. It is easy to see that ΛC = (0, �) is the blank
symbol: δC(ΛC , ΛC , ΛC) = ΛC .

The next step is to simulate CM by a 2CA C
(2)
M . To do so, we use an

automaton C ′
M = (A′, δ′

C) isomorphic to CM , where A′ = {0, . . . , L − 1} and
L = (|Q| + 1) · |Γ |. The transition function δ′

C is defined as follows

δ′
C(i, j, k) = π(δC(π−1(i), π−1(j), π−1(k))),

where π : A → A′ is a bijection. To keep the relation between the start configu-
rations, we require that π(ΛC) = 0, π((1, �)) = 1. Recall that 1 is the start state
of M and � is the blank symbol of M .



246 V. Gurvich and M. Vyalyi

To construct the transition function of C
(2)
M , we encode symbols of A′ by

binary words of length L + 2 as follows

ϕ(a) = 11+L−a0a1.

In particular, ϕ(0) = ϕ(π(ΛC)) = 1L+2 and ϕ(1) = ϕ(π(1, �)) = 1L01. The
encoding ϕ is naturally extended to words in the alphabet A′ (finite or infinite).

Thus, the start configuration of M with the empty tape corresponds to the
configuration . . . 1110111 . . . of C

(2)
M . Recall that 1 is the blank symbol of C

(2)
M .

Slightly abusing notation, we will denote by ϕ the extended encoding of
configurations in alphabet A′ by doubly infinite binary words.

We align configurations in the following way: if i = q(L+2)+k, 0 � k < L+2
then ϕ(c)(i) is the kth bit of ϕ(c(q)).

The size of a neighborhood of C
(2)
M is r = 2(L + 2). To define the transition

function δ
(2)
M , we use a local inversion property of the encoding ϕ: looking at the

r-neighborhood of an ith bit of ϕ(c), where i = q(L + 2) + k, 0 � k < L + 2, one
can restore symbols c(q−1), c(q), c(q+1), and position k of the bit provided the
neighborhood contains zeroes (0 is the non-blank symbol of C

(2)
M ). Note that if the

neighborhood of a bit does not contain zeroes then the bit is a part of encoding
of the blank symbol 0 of C ′

M and, moreover, c(q − 1) = c(q) = c(q + 1) = 0.

Lemma 1. There exists a function δ
(2)
C : {0, 1}2r+1 → {0, 1} such that a 2CA

C
(2)
M = ({0, 1}, δ

(2)
C ) simulates C ′

M : starting from b0 = . . . 1110111 . . . , it produces
the sequence of configurations b0, b1, . . . such that bt = ϕ(ct) for any t, where (ct)
is the sequence of configurations produced by C ′

M starting from the configuration
c0 = . . . 0001000 . . .

We skip the proof because of the space limitation.

6 Parallel Execution of a Turing Machine

The last construction needed in the main proof is a Turing machine U simulating
an operation of a Turing machine M on all inputs. The idea of simulation is well-
known, but again we need to specify some details of the construction.

We assume that on each input of length n the machine M makes at most
T (n) > n steps. The alphabet of U includes the set A = {0, . . . , q} × {0, . . . , �}
(we use notation from the previous section) and additional symbols.

Machine U operates in stages while its tape is divided into zones. The zones
are surrounded by the delimiters, say, � and 	. We assume that � is placed in
the cell 0. Also the zones are separated by a delimiter, say, . An operation of
M on a particular input w is simulated inside a separate zone.

Each zone consists of three blocks. The first one is of size 1. It carries (0, 1)
iff M accepts the input written in the second block. Otherwise it carries (0, 0).
(Note that it does not distinguish an unfinished computation and the negative
result.) The last block contains a configuration of M represented by a word over



Computational Hardness of Multidimensional Subtraction Games 247

the alphabet A, as described in Sect. 5. The blocks in a zone are separated by a
delimiter, say #.

At the start of a stage k there are k − 1 zones corresponding to the inputs
w1, w2, . . . , wk−1 of M . We order binary words by their lengths and words of
equal length are ordered lexicographically. The last block of a zone i contains
the configuration of M after running k − 1 − i steps on input wi.

During the stage k, machine U moves along the tape from � to 	 and in
each zone simulates the next step of operation of M . At the end of the stage
machine U writes a fresh zone with the input wk and the initial configuration
of M on this input. The initial configuration is extended in both directions by
white space of size T (n).

When the operation of M on an input wk is finished, machine U updates the
resulting block if necessary and it does not change the zone on the subsequent
stages.

In the arguments below we need U to satisfy specific properties.

Proposition 4. If T (n) = C ·n2 ·2n for some integer constant C � 1 then there
exists U operating as it described above such that

1. For all sufficiently large n machine U produces the result of operation of M
on the input w of length n in time < 24n.

2. The head of U visits the first blocks of zones only on steps t that are divisible
by 3.

The proof of this proposition is quite technical but not difficult.

7 Proof of the Main Theorem

As a hard language, we use the language of the bounded halting problem

L = {(〈M〉, x, 0k) : M accepts x after at most 2k steps},

which is obviously EXP-complete. The following proposition is an easy corollary
of the time hierarchy theorem [24].

Proposition 5. L /∈ DTIME(2n/2), where n is the input size.

On the other hand, by standard techniques (universal Turing machine and
counter) we achieve the following upper bound.

Proposition 6. L ∈ DTIME(n2 · 2n), where n is the input size.

Thus, for some constant C there exists a Turing machine M recognizing L
such that M makes at most T (n) = C · n2 · 2n steps on inputs of size n.

For machine M apply the construction from Sect. 6 and Proposition 4 to
construct the machine U . Then convert U into 2CA C

(2)
U as described in Sect. 5.

We put an additional requirement on bijection π, namely, π(0, (0, 1)) = L − 1.
It locates the result of computation of M in the third bit of the encoding of the



248 V. Gurvich and M. Vyalyi

resulting block. Finally, construct O(1)-dimensional FDG DC as it described in
Sect. 4. The dimension 2N + 2 of the game is determined by machine M . By
Corollary 1, the symbol c(t, u) on the tape of C

(2)
U equals the value of position

(Nt + u,Nt − u, 0, 0, . . . , 0, 1) of the game.
Define the function ρ : w �→ (Nt + u,Nt − u, 0, 0, . . . , 0, 1) as follows. Set

t = 24n, where n is the size of w. Set u be the position of the bit carrying the
result of computation of M on input w in the image of the resulting block of the
zone k corresponding to the input w.

Proposition 7. (i) There exists a polynomial reduction of the language L to
the language P(D) based on the function ρ; (ii) u = O(23n).

The reduction by the function ρ is correct for sufficiently large n, by the
previous constructions and by Proposition 4. (The remaining finite set of inputs
causes no problem.) The property 2 of Proposition 4 guarantees that at the
moment t = 24n the head of U is not on the resulting block. Thus the third bit
of the encoding of the block is 1 iff M accepts w.

Part (i) of Proposition 7 implies the first part of Theorem 1. To prove the
second part, we use the part (ii) of Proposition 7. It guarantees that the reduction
transforms a word of size n to a vector of size at most 5n. So if an algorithm A
solves the game DC in time TA(m), then the composition of the reduction and
A recognizes L in time poly(n)+TA(5n). By Proposition 5 this value is Ω(2n/2).
We conclude that TA(m) = Ω(2m/11).

Acknowledgment. The authors are grateful to the anonymous referee for several
helpful remarks improving both, the results and their presentation.

References

1. Albert, M., Nowakowski, R., Wolfe, D.: Lessons in Play: An Introduction to Com-
binatorial Game Theory. Taylor & Francis, Abington (2007)

2. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical
Plays, vol. 1–4. A.K. Peters, Natick (2001–2004)

3. Boros, E., Gurvich, V., Oudalov, V.: A polynomial algorithm for a two parameter
extension of Wythoff NIM based on the Perron-Frobenius theory. Int J. Game
Theory 42(4), 891–915 (2013). https://doi.org/10.1007/s00182-012-0338-6

4. Boros, E., Gurvich, V., Ho, N.B., Makino, K., Mursic, P.: Tetris hypergraphs and
combinations of impartial games. CoRR abs/1701.02819 (2017). http://arxiv.org/
abs/1701.02819

5. Boros, E., Gurvich, V., Ho, N.B., Makino, K., Mursic, P.: On the Sprague-Grundy
function of exact k-nim. Discrete Appl. Math. 239, 1–14 (2018)

6. Boros, E., Gurvich, V., Ho, N.B., Makino, K., Mursic, P.: Sprague-Grundy function
of matroids and related hypergraphs. Theor. Comput. Sci. 799, 40–58 (2019)

7. Boros, E., Gurvich, V., Ho, N.B., Makino, K., Mursic, P.: Sprague-Grundy function
of symmetric hypergraphs. J. Comb. Theory Ser. A 165, 176–186 (2019)

8. Bouton, C.L.: Nim, a game with a complete mathematical theory. Ann. Math. 2nd
Ser. 3, 35–39 (1901–1902)

https://doi.org/10.1007/s00182-012-0338-6
http://arxiv.org/abs/1701.02819
http://arxiv.org/abs/1701.02819


Computational Hardness of Multidimensional Subtraction Games 249

9. Conway, J.H.: On Numbers and Games. Academic Press, London, New York, San
Francisco (1976)

10. Demaine, E.D., Hearn, R.A.: Playing games with algorithms: algorithmic combi-
natorial game theory. CoRR abs/cs/0106019v2 (2008). http://arxiv.org/abs/cs/
0106019v2

11. Duchêne, E., Rigo, M.: Invariant games. Theor. Comput. Sci. 411, 3169–3180
(2010)

12. Fraenkel, A.: How to beat your Wythoff games’ opponent on three fronts. Am.
Math. Mon. 89, 353–361 (1982)

13. Fraenkel, A.: Wythoff games, continued fractions, cedar trees and Fibonacci
searches. Theor. Comput. Sci. 29, 49–73 (1984)

14. Golomb, S.W.: A mathematical investigation of games of “take-away”. J. Comb.
Theory 1(4), 443–458 (1966)

15. Grundy, P.M., Smith, C.: Disjunctive games with the last player losing. Proc.
Camb. Philos. Soc. 52, 527–533 (1956)

16. Gurvich, V., Heubach, S., Ho, N.B., Chikin, N.: Slow k-nim integers. Electron. J.
Comb. Number Theory 20, 1–19 (2020)

17. Gurvich, V., Ho, N.B.: Slow k-nim. RUTCOR Research Report RRR-03-2015
(2015)

18. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory,
Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing Co.,
Inc., Boston (2006)

19. Jenkyns, T.A., Mayberry, J.P.: The skeletion of an impartial game and the Nim-
function of Moore’s Nimk. Int J. Game Theory 9, 51–63 (1980). https://doi.org/
10.1007/BF01784796

20. Larsson, U., Wästlund, W.: From heaps of matches to the limits of computability.
Electron. J. Comb. 20(3), #P41 (2013)

21. Moore, E.: A generalization of the game called Nim. Ann. Math. Second Ser. 11(3),
93–94 (1910)

22. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behaviour.
Princeton University Press, Princeton (1944)

23. Shaefer, T.J.: On the complexity of some two-person perfect-information games.
J. Comput. Syst. Sci. 16, 185–225 (1978)

24. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston
(2013)

25. Wythoff, W.: A modification of the game of Nim. Nieuw Archief voor Wiskunde
7, 199–202 (1907)

http://arxiv.org/abs/cs/0106019v2
http://arxiv.org/abs/cs/0106019v2
https://doi.org/10.1007/BF01784796
https://doi.org/10.1007/BF01784796


Parameterized Complexity of Fair
Feedback Vertex Set Problem

Lawqueen Kanesh2(B), Soumen Maity1, Komal Muluk1(B),
and Saket Saurabh2,3

1 Indian Institute of Science Education and Research, Pune, India
soumen@iiserpune.ac.in, komalmuluk15@gmail.com

2 The Institute of Mathematical Sciences, Chennai, India
lawqueenkanesh091@gmail.com, saket@imsc.res.in

3 University of Bergen, Bergen, Norway

Abstract. Given a graph G = (V, E), a subset S ⊆ V (G) is said to be
a feedback vertex set of G if G−S is a forest. In the Feedback Vertex
Set (FVS) problem, we are given an undirected graph G, and a positive
integer k, the question is whether there exists a feedback vertex set of
size at most k. This problem is extremely well studied in the realm of
parameterized complexity. In this paper, we study three variants of the
FVS problem: Unrestricted Fair FVS, Restricted Fair FVS, and
Relax Fair FVS. In Unrestricted Fair FVS problem, we are given
a graph G and a positive integer �, the question is does there exists a
feedback vertex set S ⊆ V (G) (of any size) such that for every vertex v ∈
V (G), v has at most � neighbours in S. First, we study Unrestricted
Fair FVS from different parameterizations such as treewidth, treedepth
and neighbourhood diversity and obtain several results (both tractability
and intractability). Next, we study Restricted Fair FVS problem,
where we are also given an integer k in the input and we demand the
size of S to be at most k. This problem is trivially NP-complete; we
show that Restricted Fair FVS problem when parameterized by the
solution size k and the maximum degree Δ of the graph G, admits a
kernel of size O((k+Δ)2). Finally, we study Relax Fair FVS problem,
where we want that the size of S is at most k and for every vertex
outside S, that is, for all v ∈ V (G) \ S, v has at most � neighbours in S.
We give an FPT algorithm for Relax Fair FVS problem running in
time cknO(1), for a fixed constant c.

Keywords: Feedback vertex set · Parameterized complexity · FPT ·
W[1]-hard

This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant no.
819416), and the Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-18.

S. Maity—The author’s research was supported in part by the Science and Engineering
Research Board (SERB), Govt. of India, under Sanction Order No. MTR/2018/001025.
c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 250–262, 2020.
https://doi.org/10.1007/978-3-030-50026-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_18&domain=pdf
https://doi.org/10.1007/978-3-030-50026-9_18


Parameterized Complexity of Fair Feedback Vertex Set Problem 251

1 Introduction

Feedback Vertex Set (FVS) problem is one of Karp’s 21 NP-complete prob-
lems [8]. This problem has been studied extensively in computational complexity
theory, as it is one of the fundamental problems in the theory. The FVS prob-
lem has applications in operating systems, database systems, and VLSI design.
It is used for resource allocation in operating systems. In the system resource
allocation graph, the FVS problem is used for deadlock recovery [14].

FVS is a vertex deletion problem which demands to find a set S ⊆ V (G)
of size at most k such that the remaining graph G − S is a forest. The set
S ⊆ V (G) is called a feedback vertex set of G. For a vertex deletion problem,
given a graph G = (V,E) and a property Π; we are asked to find a set S ⊆ V (G)
such that the subgraph obtained after the deletion of vertices in S, that is, the
graph G − S satisfies the desired property Π. In the optimization version of
deletion problems (vertex deletion/edge deletion), we focus on minimizing the
total number of elements required to remove to achieve the desired property on
the remaining graph. Modified versions of deletion problems, called fair deletion
problems were introduced by Lin and Sahni in 1989 [12]. Unlike usual deletion
problems, fair deletion problems aim to minimize the maximum number of neigh-
bours contributed to the solution set by a single vertex in the graph. Given a
set S ⊆ V (G), the fair cost of S is maxv∈V {|N(v) ∩ S|}.

In this paper, we study the parameterized complexity of three variants of
FVS, namely, Unrestricted Fair Feedback Vertex Set (Unrestricted Fair
FVS), Restricted Fair Feedback Vertex Set (Restricted Fair FVS), and
Relax Fair Feedback Vertex Set (Relax Fair FVS). We define these vari-
ants as follows:

Unrestricted Fair Feedback Vertex Set (Unrestricted Fair FVS)
Input: An undirected graph G and a positive integer �.
Question: Does there exist a feedback vertex set S ⊆ V (G) such that |N(v)∩
S| ≤ � for all v ∈ V (G)?

Restricted Fair Feedback Vertex Set (Restricted Fair FVS)
Input: An undirected graph G and positive integers k and �.
Question: Does there exist a feedback vertex set S ⊆ V (G) with |S| ≤ k such
that |N(v) ∩ S| ≤ � for all v ∈ V (G)?

Relax Fair Feedback Vertex Set (Relax Fair FVS)
Input: An undirected graph G and positive integers k and �.
Question: Does there exist a feedback vertex set S ⊆ V (G) with |S| ≤ k such
that |N(v) ∩ S| ≤ � for all v ∈ V (G) \ S?

A problem with input size n and parameter k is said to be ‘fixed-parameter
tractable (FPT)’ if it has an algorithm that runs in time O(f(k)nc), where



252 L. Kanesh et al.

f is some (usually computable) function, and c is a constant that does not
depend on k or n. What makes the theory more interesting is a hierarchy of
intractable parameterized problem classes above FPT which helps in distin-
guishing those problems that are not fixed-parameter tractable. Closely related
to fixed-parameter tractability is the notion of preprocessing. A reduction to a
problem kernel, or equivalently, problem kernelization means to apply a data
reduction process in polynomial time to an instance (x, k) such that for the
reduced instance (x′, k′) it holds that (x′, k′) is equivalent to (x, k), |x′| ≤ g(k)
and k′ ≤ g(k) for some function g only depending on k. Such a reduced instance
is called a problem kernel. We refer to [4] for further details on parameterized
complexity.

In this paper, we consider Unrestricted Fair FVS, Restricted Fair
FVS and Relax Fair FVS problems under structural parameters and solution
size. Our results are as follows:

– Unrestricted Fair FVS problem is W[1]-hard when parameterized by the
treewidth or treedepth of the input graph.

– Unrestricted Fair FVS admits an algorithm with running time O∗(3k),1
where k is the neighbourhood diversity of the input graph.

– Restricted Fair FVS admits a kernel of size O((Δ + k)2). Here, Δ is the
maximum degree of the graph, and k is the solution size.

– Relax Fair FVS admits an algorithm with running time O∗(82k), where k
is the solution size. This is our main technical result.

Related Work. FVS is extremely well studied in the realms of parameter-
ized complexity. Downey and Fellows [5], Bodlaender [2] proposed the first FPT
algorithm with the running time O∗(17(k4)!). After a series of improvements,
in 2010, Cao et al. gave an FPT algorithm running in time O∗(3.83k) [3]. The
fastest known randomized algorithm is given by Li and Nederlof [11] and runs in
time O∗(2.7k). Recently, Iwata and Kobayashi [6] announced the fastest known
deterministic algorithm for FVS running in time O∗(3.460k).

The study of fair deletion problems in the realm of parameterized complex-
ity was initiated by Masařík and Toufar [13] and Knop et al. [9]. Among sev-
eral results, they showed that Unrestricted Fair Vertex Cover problem is
W[1]-hard when parameterized by a combined parameter of the treedepth and
the feedback vertex set number of the graph. Jacob et al. [7] studied Restricted
d-Hitting Set and Restricted Fair FVS parameterized by solution size. For
Unrestricted Fair FVS they designed an FPT algorithm parameterized by
solution size and the treewidth of the input graph and using this designed an
FPT algorithm for Restricted Fair FVS running in time O∗(kO(k)).

2 Preliminaries

Throughout the paper, we adopt the following notations. Let G be a graph, V (G)
and E(G) denote the vertex set and the edge set of graph G, respectively. Let n

1 We use the O∗ notation to hide polynomial factors (in the input size) in the running
time.



Parameterized Complexity of Fair Feedback Vertex Set Problem 253

and m denote the number of vertices and the number of edges of G, respectively.
For a graph G and a set X ⊆ V (G), by G − X we denote the graph G induced
on V (G) \ X. By NG(v), we denote the neighbourhood of v in G and by NG[v]
we denote the closed neighbourhood of v in G. Degree of a vertex v in graph G
is denoted by dG(v). A path P = {v1, . . . , vn} is an ordered collection of vertices
such that there is an edge between every consecutive vertices in P . A cycle
C = {v1, . . . , vn} is a path P = {v1, . . . , vn} with an extra edge v1vn. The
subscript in the notations will be omitted if it is clear from the context.

For standard notations and definitions in graph theory and parameterized
complexity, we refer to West [15] and Cygan et al. [4], respectively. We now
define several graph parameters being used throughout the paper.

Definition 1. For a graph G = (V,E), the parameter feedback vertex set is the
cardinality of the smallest set S ⊆ V (G) such that the graph G − S is a forest
and it is denoted by fvs(G).

Treewidth is a well-known graph parameter introduced by Bertelè and Brioshi [1].

Definition 2. A tree decomposition of a graph G is a pair (T,X), where T is
a rooted tree and X = {Xt | t ∈ V (T )}. Every node t of T is assigned a subset
Xt ⊆ V (G), called a bag, such that following properties are satisfied:

–
⋃

t∈V (T )

Xt = V (G), that is, each vertex in G is in at least one bag;

– For every edge uv ∈ E(G), there is t ∈ V (T ) such that u, v ∈ Xt;
– For every vertex v ∈ V (G) the graph T [{t ∈ V (T ) | v ∈ Xt}] is a connected

subtree of T .

The width of a tree decomposition is the size of its largest bag Xi minus one.
The treewidth tw(G) of a graph G is the smallest width of a tree decomposition
among all possible tree decompositions of G.

Given a rooted forest F , its transitive closure is a graph H in which V (H)
contains all the nodes of the rooted forest and E(H) contain an edge between
two vertices only if those two vertices form an ancestor-descendant pair in the
forest F .

Definition 3. The treedepth of a graph G is the minimum height of a rooted
forest F whose transitive closure contains the graph G. It is denoted by td(G).

Neighbourhood diversity is another graph parameter introduced by Lampis [10].

Definition 4. The neighbourhood diversity of a graph, denoted by nd(G), is
the least integer k for which we can partition the set of vertices of the graph
into k classes, where two vertices u and v belong to the same class if and only if
N(u) \ {v} = N(v) \ {u}. For a vertex v, N(v) = {u : (u, v) ∈ E}.

Two vertices u, v ∈ V (G) are said to be twin vertices if they satisfy the criteria
N(u) \ {v} = N(v) \ {u}.



254 L. Kanesh et al.

3 Unrestricted Fair Feedback Vertex Set

It is clear that if we do not put any restriction on the size of feedback vertex set S
of a graph, then any graph has a trivial feedback vertex set S = V (G). However,
observe that, in Unrestricted Fair FVS problem, though we dropped the
constraint on the size of S, the problem does not become easy. In this section,
we present a parameterized reduction from Fair Vertex Cover (Fair VC)
problem to the Unrestricted Fair FVS problem. In the Fair VC problem, we
are given a graph G = (V,E) and a positive integer �. The objective is to decide
whether there exists a set S ⊆ V (G) such that S covers all edges in the graph G
and maxv∈V (G){|N(v)∩S|} ≤ �. It is known that the Fair VC problem is W [1]-
hard when parameterized by fvs(G) and td(G) [9]. We study Unrestricted
Fair FVS problem with respect to parameters such as treewidth, treedepth,
and neighbourhood diversity. And we obtain the following hardness results.

Theorem 1 (�2). Unrestricted Fair FVS is W [1]-hard when parameterized
by the treedepth of the input graph.

Theorem 2 (�). Unrestricted Fair FVS is W[1]-hard when parameterized
by treewidth of the input graph.

Next, we give an FPT algorithm for Unrestricted Fair FVS problem
with respect to neighbourhood diversity, denoted by nd(G). The idea behind
the algorithm is based on the following observations:

Observation 1. Consider a graph G and a feedback vertex set X of G. If u
and v are twin vertices, where u ∈ X and v /∈ X, then we can replace u by v in
X and the resultant set X ′ = (X \{u})∪{v} is another feedback vertex set of G.

Two feedback vertex sets X and X ′ are said to be of the ‘same type’ if one set
can be obtained from other by replacing twin vertices, otherwise they are said
to be of the ‘different type’.

Observation 2. If X and X ′ are two feedback vertex sets of the same type of
a graph G, then

max
v∈V (G)

{|N(v) ∩ X|} = max
v∈V (G)

{|N(v) ∩ X ′|}.

If any two feedback vertex sets X and X ′ are of the same type, they have
the same fair cost.

Theorem 3. There exists an FPT algorithm running in time 3kk2nO(1) for
Unrestricted Fair FVS problem, where k is the neighbourhood diversity of
the graph.

2 Due to paucity of space, the proofs of statements marked with a � have been omitted.



Parameterized Complexity of Fair Feedback Vertex Set Problem 255

Proof. If the neighbourhood diversity of a graph is bounded by an integer k,
that is, nd(G) ≤ k, then there exists a partition P = {V1, V2, V3, ..., Vk} of V (G)
into k classes, such that all vertices in one class have the same neighbourhood,
that is, N(u) \ {v} = N(v) \ {u}, if u, v ∈ Vi.

We observe a few facts about the partition P . Each class Vi could either be a
clique or an independent set. Given a partition P of V (G), the partition graph
Q of G is defined as follows. The vertex set V (Q) is {V1, V2, V3, ..., Vk}. There is
an edge (Vi, Vj) ∈ E(Q) if (u, v) ∈ E(G) for each u ∈ Vi and v ∈ Vj . Let A be
the k × k adjacency matrix of the partition graph Q, where

A(i, j) =

{
1, if ViVj ∈ E(Q)
0 otherwise

From observations 1 and 2, since two feedback vertex sets of the same type
have the same fair cost, it suffices to check the fair cost of feedback vertex sets
which are of different types. Given a partition P = {V1, V2, V3, ..., Vk} of V (G),
where k is neighbourhood diversity of G, we construct feedback vertex sets of
different types as follows:

– (a) If class Vi is a clique and X is a feedback vertex set of graph G, then X
contains either
1) all vertices of class Vi,
2) any |Vi| − 1 vertices from class Vi, or
3) any |Vi| − 2 vertices from class Vi.

Clearly, there is no other case possible for cliques apart from those mentioned
in (a). If we consider only |Vi| − 3 vertices from the clique Vi in X, then the
remaining 3 vertices will form a triangle in G − X.

– (b) If class Vi is an independent set and X is a feedback vertex set of graph
G, then X contains either
1) all vertices of class Vi,
2) any |Vi| − 1 vertices from class Vi, or
3) no vertex from class Vi.

Now, when Vi is an independent set, we will show that it is sufficient to
consider the three cases given in (b). Apart from the cases mentioned in (b),
suppose X is a feedback vertex set such that X �= ∅ and X contains at most
|Vi| − 2 vertices of Vi. Then let {u, v} ⊆ Vi \ X. Since X is a feedback vertex
set, u and v have at most one common neighbour in G − X. If they have two
common neighbours then they form a cycle. Since u, v have at most one common
neighbour, all the vertices of Vi have the same common neighbour. Therefore,
even if X does not contain any vertex from Vi, G−X will not contain any cycle.
Thus, in this case, if there exists a solution X containing at most |Vi|−2 vertices
from Vi, then there also exists a solution containing no vertex from Vi, and this
case is covered in (b) − 3.

Given a partition of the vertex set V (G) into k classes according to the
neighbourhood diversity, 3k possible subsets X ⊆ V (G) can be built as per the



256 L. Kanesh et al.

criteria mentioned in (a) and (b) above. According to Observation 2, it does not
matter which vertices are being chosen from a class as all vertices in a class are
twin vertices. Note that, not each of 3k choices produces a feedback vertex set.
If X is a feedback vertex set, we check whether X satisfies the cost criteria, that
is, maxv∈V (G){|N(v) ∩ X|} ≤ �. Let ni be the number of vertices selected from
class Vi in X. For a vertex v ∈ Vi, where Vi is an independent set, verify if

|N(v) ∩ X| =
k∑

j=1,j �=i

A(i, j)nj ≤ �.

For a vertex v ∈ Vi, where Vi is a clique, verify if

|N(v) ∩ X| = ni − 1 +
k∑

j=1,j �=i

A(i, j)nj ≤ �.

If for at least one X, the above conditions are true for all k classes, then the
given instance is a yes-instance of Unrestricted Fair FVS problem. Other-
wise, it is a no-instance.

Since |V (Q)| = k, computation of the adjacency matrix A requires O(k2)
time. We have total 3k possible subsets X to verify. We can check if a subset
X ⊆ V (G) is a feedback vertex set of graph G in time O(n2). For a given X,
computation of (n1, n2, . . . , nk) requires O(k) time. Verification of the cost con-
ditions corresponding to k classes takes O(k) time. Hence, the time complexity
of this algorithm is 3kk2nO(1). 	


4 Restricted Fair Feedback Vertex Set

In this section, we give a kernel for Restricted Fair FVS with respect to
parameter Δ + k, where Δ is the maximum degree in the graph and k is the
size of restricted fair feedback vertex set. We first give a couple of reductions to
reduce an instance (G, k, �) of Restricted Fair FVS problem.

Reduction Rule 1. If G contains a vertex v of degree at most 1, delete v. The
new instance is (G − {v}, k, �).

Reduction Rule 1 is safe because for a given instance (G, k, �) of Restricted
Fair FVS, if the graph G has a vertex of degree at most one, then this vertex
is not part of any cycle. Thus, its removal does not change the solution.

Reduction Rule 2. If there exists a sequence {v1, v2, . . . , vp} with p > 3, vi �=
vj, d(vi) = 2 and (vi, vi+1) ∈ E for all i = 1, 2, . . . , p − 1, then delete vertices
v3, v4, . . . , vp−1 and introduce an edge between v2 and vp. In other words, we
replace the sequence {v1, . . . , vp} by {v1, v2, vp}. The reduced instance is (G −
{v3, v4, . . . , vp−1}, k, �).



Parameterized Complexity of Fair Feedback Vertex Set Problem 257

Reduction Rule 2 is safe because every minimum FVS of a graph contains at
most one vertex from a sequence of degree-2 vertices. If (G, k, �) is a yes-instance,
there is a fair FVS S of size at most k. If S contains a vertex from a long degree-
2 sequence, then we replace it by the middle vertex v2 from reduced degree-2
sequence of length three in the graph G−{v3, v4, . . . , vp−1} and obtain a solution
of reduced instance. Observe that, for every vertex in the reduced instance, the
number of neighbours in the solution does not exceed �. Conversely, if (G −
{v3, v4, . . . , vp−1}, k, �) is a yes-instance of Restricted Fair FVS problem,
then the solution S′ of (G − {v3, v4, . . . , vp−1}, k, �) also satisfies the instance
(G, k, �).

Lemma 1 (�). If (G, k, �) is a yes-instance of Restricted Fair FVS problem
and none of the above reductions is applicable, then |V (G)| ≤ k + 8Δk − 3.

Reduction Rule 3. If the total number of vertices in the reduced graph is more
than (k + 8Δk − 3), then conclude that we are dealing with a no-instance.

Reduction 3 is safe because of Lemma 1. This gives us the following theorem.

Theorem 4. Restricted Fair FVS problem admits a kernel with O((Δ+k)2)
vertices when parameterized by Δ + k.

5 Relax Fair Feedback Vertex Set

In this section, we give an FPT algorithm for Relax Fair FVS problem with
respect to the solution size. An instance (G, k) of FVS can be trivially reduced
to an instance (G, k, k) of Relax Fair FVS problem. It is easy to see that
(G, k) is a yes-instance of FVS if and only if (G, k, k) is a yes-instance of Relax
Fair FVS problem. This shows that Relax Fair FVS problem is NP-hard.
We give an FPT algorithm for Relax Fair FVS problem using solution size as
a parameter. Towards designing an algorithm for Relax Fair FVS, we define
another problem, which we call as Disjoint-Relax Fair Feedback Ver-
tex Set (Disjoint-Relax FFVS) (to be defined shortly). Firstly, we design
an FPT algorithm for Relax Fair FVS using assumed FPT algorithm for
Disjoint-Relax FFVS. Then, we design an FPT algorithm for Disjoint-
Relax FFVS. Disjoint-Relax FFVS is defined as follows.

Disjoint-Relax Fair Feedback Vertex Set (Disjoint-Relax FFVS)
Input: An undirected graph G, a feedback vertex set Y of G, two vectors
w,n ∈ N

n, two integers k, �.
Question: Does there exist a feedback vertex set X of G with

∑
v∈X w(v) ≤ k

such that X ∩ Y = ∅, and |N(v) ∩ X| ≤ � − n(v) for all v ∈ V (G) \ X?

We note that in the definition of Disjoint-Relax FFVS, there are two vectors
w,n in the input, which we use to store the cost (weight) of taking a vertex into
a solution and the number of neighbours of a vertex which have been already
taken in a partial solution, respectively. This will become clear when we describe
the algorithm. In Sect. 5.1 we obtain the following result.



258 L. Kanesh et al.

Theorem 5. Disjoint-Relax FFVS problem is solvable in time O∗(81k),
where k is the solution size.

Next, we give FPT algorithm for Relax Fair FVS assuming an FPT algo-
rithm for Disjoint-Relax FFVS. Before we proceed with the algorithm, notice
that, if a graph does not have a feedback vertex set of size at most k, it does not
have a relax fair feedback vertex set (a solution to Relax Fair FVS problem)
of size at most k. We first find a feedback vertex set S′ of G of size at most k
and then we use S′ to obtain a relax fair feedback vertex set S of G. We try all
possible ways an optimal solution S can intersect S′. Let X ′ = S′ ∩ S be one
such guess. For each guess of X ′, we set Y = S′ \ X ′, n(v) = |N(v) ∩ X ′| and
w(v) = 1 for all v ∈ G − X ′, and solve the Disjoint-Relax FFVS problem
on the instance (G − X ′, Y,w,n, k − |X ′|, �). Here, n denotes the vector of n(v)
values and w denotes the vector of w(v) values; w(v) is the weight of vertex v.
If for some set X ′, we find a relax fair feedback vertex set X of G − X ′ of size
k − |X ′| that is disjoint from Y , we can output S = X ∪ X ′. Otherwise, we con-
clude that the given instance is no-instance. The number of all such guesses is∑k

i=0

(
k
i

)
. Thus, to obtain an FPT algorithm for the Relax Fair FVS problem,

it is sufficient to solve the Disjoint-Relax FFVS problem in FPT time.

Theorem 6 (�). Relax Fair FVS problem is solvable in time O∗(82k), where
k is the solution size.

5.1 Algorithm for Disjoint-Relax FFVS Problem

Let (G,Y,w,n, k, �) be an instance of Disjoint-Relax FFVS problem and let
H = G − Y . We proceed only if G[Y ] is acyclic. If G[Y ] contains a cycle then
we conclude that it is a no-instance. We define an update operation of vector n
for all the vertices in the neighbourhood of v as follows:

update(n, v) =

{
n(x) + 1 for x ∈ N(v)
n(x) otherwise

We give a few reduction rules that simplify the input instance.

Reduction Relax-FFVS 1. If there is a vertex v ∈ V (H) such that n(v) > �,
that is, v has more than � neighbours in the solution, then delete v, decrease k
by w(v), and update the n vector for all the vertices in N(v). The new instance
is (G − v, Y,w, update(n, v), k − w(v), �).

Reduction Relax-FFVS 2. If there is a vertex v ∈ V (H) such that G[Y ∪{v}]
contains a cycle, then delete v, decrease k by w(v), and update n vector for all
the vertices in N(v). The new instance is (G−v, Y,w, update(n, v), k −w(v), �).

Reduction Relax-FFVS 3. If there exists a vertex v ∈ V (H) such that
dG(v) = 0, then delete v. The new instance is (G − v, Y,w,n, k, �).

Reduction Relax-FFVS 4. If there exists a vertex v ∈ V (H) such that
dG(v) = 1 and n(v) < �, then delete v. The new instance is (G − v, Y,w,n, k, �).



Parameterized Complexity of Fair Feedback Vertex Set Problem 259

It is easy to see that Reduction Relax-FFVS 1, 2, 3 and 4 are safe.

Reduction Relax-FFVS 5. If there exists a vertex v ∈ V (H) such that
dG(v) = 1 and n(v) = �, then delete v and update w(u) = w(u) + w(v) where u
is the neighbour of v in G; the weights remain the same for other vertices. The
new instance is (G − v, Y,w′,n, k, �) where w′ is the updated w vector.

It can be proved that Reduction Relax-FFVS 5 is safe. Although due to page
constraint we omit the safeness proof here. All the Reduction rules Relax-FFVS
1, 2, 3, 4 and 5 can be applied in polynomial time.

Let (G,Y,w,n, k, �) be an instance of Disjoint-Relax FFVS problem. The
algorithm first applies Reduction Relax-FFVS 1, 2, 3, 4 and 5 exhaustively. We
denote the reduced instance by (G,Y,w,n, k, �). If G[Y ] is cyclic or if there exists
a vertex v ∈ Y with n(v) > �, then it is a no-instance. So from now onwards we
assume that G[Y ] is indeed a forest and n(v) ≤ � for all v ∈ Y . For the reduced
instance if k < 0, then return that it is a no-instance. Thus, from now onwards
we assume that k ≥ 0. Below we give a branching strategy with a non-trivial
measure function.

Branching Relax-FFVS 1. If there is a vertex v ∈ V (H) such that it has at
least two neighbours in Y , then either v goes to the solution or v goes to Y . That
is, we call the algorithm on instances (G− v, Y,w, update(n, v), k −w(v), �) and
(G,Y ∪ {v},w,n, k, �).

After the application of Branching Relax-FFVS 1 exhaustively, every vertex in
V (H) has at most one neighbour in Y . When Reduction Relax-FFVS 3, 4, 5 and
Branching Relax-FFVS 1 cannot be applied further, we get that every leaf node
in H has exactly one neighbour in Y .

Branching Relax-FFVS 2. Consider a leaf node u and a vertex v from the
same connected component of H such that both of them have only one neighbour
in G[Y ] and the neighbours belong to different components of G[Y ]. Let P =
ux1x2 . . . xmv be the path in H which joins vertices u and v. If all of the vertices
x1x2 . . . xm are of degree two in G, that is, they do not have any neighbour
in Y , then we branch by moving vertex u to the solution in the first branch;
vertex v to the solution in the second branch; vertex x1 to the solution in the
third branch; vertex xm to the solution in the fourth branch; by moving the
path P to Y in the fifth branch; by taking a set S in the solution in the sixth
branch where S = {xi, xi+1, . . . , xj−1, xj} is a set of consecutive vertices in P
with the minimum value of

∑
x∈S w(x) such that 1 < i, j < m, n(xi−1) < �,

n(xj+1) < �.

Thus we call the algorithm on the instances (G − u, Y,w, update(n, u), k −
w(u), �) in first branch; (G − v, Y,w, update(n, v), k − w(v), �) in second branch;
(G − x1, Y,w, update(n, x1), k − w(x1), �) in third branch; (G − xm, Y,w,
update(n, xm), k − w(xm), �) in fourth branch; (G,Y ∪ V (P ), w,n, k, �) in fifth



260 L. Kanesh et al.

branch; (G−S, Y,w, new(n, S), k−∑
x∈S w(x), �) in sixth branch where new oper-

ation updates vector n for all vertices in N(S) as follows:

new(n, S) =

{
n(x) + |N(x) ∩ S| for x ∈ N(S)
n(x) otherwise

Branching Relax-FFVS 3. Consider a leaf node u and a vertex v from the
same connected component of H such that both of them have exactly one neigh-
bour in G[Y ] and the neighbours belong to the same connected component of
G[Y ]. Let P = ux1x2 . . . xmv be the path in H which joins vertices u and v. If all
of the vertices x1x2 . . . xm are of degree two in G, then we branch by considering
all branches of Branching Relax-FFVS 2, except the fifth branch.

Branching Relax-FFVS 4. Consider two leaf nodes u and v from the same
connected component of H; both of them have exactly one neighbour in Y . We
perform Branching Relax-FFVS 4 if the neighbours of u and v are in different
components of G[Y ]. Let P be the path in H joining vertices u and v. If no
intermediate vertex of P has a neighbour in Y and there is exactly one vertex
z with dH(z) ≥ 3 on path P = ux1x2 . . . xmzy1y2 . . . yrv, then we branch by
moving vertex u to the solution in the first branch; vertex v to the solution in
the second branch; vertex z to the solution in the third branch; vertex x1 to
the solution in the fourth branch; vertex xm to the solution in the fifth branch;
vertex y1 to the solution in the sixth branch; vertex yr to the solution in the
seventh branch; by moving the path P in Y in the eighth branch; by taking a set
of consecutive vertices S from P in the solution in the ninth branch where S =
{xi, xi+1, . . . , xj−1, xj} or {yi′ , yi′+1, . . . , yj′−1, yj′} with the minimum value of∑

x∈S w(x) such that 1 < i, j < m and n(xi−1) < �, n(xj+1) < �, or 1 < i′, j′ < r
and n(yi′−1) < �, n(yj′+1) < �.

Thus we call the algorithm on the instances (G − u, Y,w, update(n, u), k −
w(u), �) in the first branch; (G − v, Y,w, update(n, v), k − w(v), �) in the sec-
ond branch; (G − z, Y,w, update(n, z), k − w(z), �) in the third branch; (G −
x1, Y,w, update(n, x1), k−w(x1), �) in the fourth branch; (G−xm, Y,w, update
(n, xm), k − w(xm), �) in the fifth branch; (G − y1, Y,w, update(n, y1), k −
w(y1), �) in the sixth branch; (G − yr, Y,w, update(n, yr), k − w(yr), �) in
the seventh branch; (G,Y ∪ V (P ),w,n, k, �) in the eighth branch; and (G −
S, Y,w, new(n, S), k − ∑

x∈S w(x), �) in the ninth branch.

Branching Relax-FFVS 5. Consider two leaf nodes u and v from the same
connected component of H; both of them have exactly one neighbour in Y . Let
P be the path in H joining vertices u and v. If no intermediate vertex of P has
a neighbour in Y and there is exactly one vertex z with dH(z) ≥ 3 on path
P = ux1x2 . . . xmzy1y2 . . . yrv, then we branch by considering all branches of
Branching Relax-FFVS 4, except the eighth branch.

Analysis of the Branching Algorithm: We apply all the Reduction Relax-
FFVS 1, 2, 3, 4, and 5 in the order in which they are stated. When none of



Parameterized Complexity of Fair Feedback Vertex Set Problem 261

the Reduction Relax-FFVS 1, 2, 3, 4, and 5 is applicable, we apply Branching
Relax-FFVS 1. After the application of Branching Relax-FFVS 1 exhaustively,
we apply Branching Relax-FFVS 2 or 3 depending on the neighbours of u and
v in G[Y ]. When Branching Relax-FFVS 1, 2, and 3 are not applicable, we seek
two leaf nodes u and v in H and apply Branching Relax-FFVS 4 or 5 depending
on the position of neighbours of u and v in G[Y ]. Observe that, there always
exist two leaf nodes in a forest such that we can apply Branching Relax-FFVS
2, 3, 4, or 5 unless the forest is an empty graph. Thus we can branch until H
becomes an empty graph.

The correctness of this algorithm follows from the safeness of our reduction
rules and the fact that branching rules Branching Relax-FFVS 1, 2, 3, 4, and 5
are exhaustive. Thus if I = (G,Y,w,n, k, �) is a yes-instance of Disjoint-Relax
FFVS problem, we get a yes-instance at one of the leaf nodes of the branching
tree. If all the leaves of the branching tree contain no-instances, we conclude
that the instance I is a no-instance of Disjoint-Relax FFVS problem.

To estimate the running time of the algorithm for an instance I =
(G,Y,w,n, k, �), we define its measure μ(I) = k + γ(I), where γ(I) is the num-
ber of connected components of G[Y ]. The maximum value that μ(I) can take is
2k. Observe that Reduction Relax-FFVS 1 to 5 do not increase the measure. In
Branching Relax-FFVS 1, when v goes to the solution, k decreases by w(v) and
γ(I) remains the same. Thus μ(I) decreases by at least 1. In the other branch,
v goes into Y , then k remains the same and γ(I) decreases by at least 1. Thus
μ(I) decreases by at least 1. Thus we have a branching vector (1,1) for Branching
Relax-FFVS 1. For Branching Relax-FFVS 2, clearly μ(I) decreases by at least
1 in the first, second, third, fourth and sixth branch as k value decreases by at
least 1. In the fifth branch, when we include V (P ) in Y , γ(I) drops by 1 and k
remains the same, therefore μ(I) decreases by 1. Thus, we have a branching vec-
tor (1,1,1,1,1,1). Similarly, we have a branching vector (1, 1, 1, 1, 1) for Branching
Relax-FFVS 3. In Branching Relax-FFVS 4, clearly, μ(I) decreases by at least
one in the first, second, third, fourth, fifth, sixth, seventh and ninth branch as k
decreases by at least 1. In the eighth branch, μ(I) drops by 1 as γ(I) drops by 1.
Thus the branching vector is (1,1,1,1,1,1,1,1,1). Similarly, we have a branching
vector (1, 1, 1, 1, 1, 1, 1, 1) for Branching Relax-FFVS 5. As the maximum num-
ber of branches is 9, the running time of our algorithm is 9µ(I)nO(1). Since, we
have μ(I) ≤ 2k, the running time of our algorithm is 81knO(1).

References

1. Bertelè, U., Brioschi, F.: Nonserial Dynamic Programming. Academic Press Inc.,
New York (1972)

2. Bodlaender, H.L.: On disjoint cycles. Int. J. Found. Comput. Sci. 5, 59–68 (1994)
3. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set: new measure and new structures.

Algorithmica 73(1), 63–86 (2015)
4. Cygan, M., et al.: Lower bounds for kernelization. Parameterized Algorithms, pp.

523–555. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3_15

https://doi.org/10.1007/978-3-319-21275-3_15


262 L. Kanesh et al.

5. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I:
basic results. SIAM J. Comput. 24, 873–921 (1995)

6. Iwata, Y., Kobayashi, Y.: Improved analysis of highest-degree branching for feed-
back vertex set. In: 14th International Symposium on Parameterized and Exact
Computation, IPEC 2019, 11–13 September, 2019, Munich, Germany, LIPIcs, vol.
148, pp. 22:1–22:11 (2019)

7. Jacob, A., Raman, V., Sahlot, V.: Deconstructing parameterized hardness of fair
vertex deletion problems. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019.
LNCS, vol. 11653, pp. 325–337. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-26176-4_27

8. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103. Plenum Press (1972)

9. Knop, D., Masarík, T., Toufar, T.: Parameterized complexity of fair vertex evalu-
ation problems. In: 44th International Symposium on Mathematical Foundations
of Computer Science, MFCS 2019, 26–30 August 2019, Aachen, Germany, LIPIcs,
vol. 138, pp. 33:1–33:16 (2019)

10. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64(1), 19–37 (2012)

11. Li, J., Nederlof, J.: Detecting feedback vertex sets of size k in O∗(2.7k) time.
In: Proceedings of the Thirty First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pp. 971–981 (2020)

12. Lin, L., Sahni, S.: Fair edge deletion problems. IEEE Trans. Comput. 38(5), 756–
761 (1989)

13. Masařík, T., Toufar, T.: Parameterized complexity of fair deletion problems. Dis-
crete Appl. Math. 278, 51–61 (2020)

14. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts. Wiley Pub-
lishing, New York (2008)

15. West, D.B.: Introduction to Graph Theory. Prentice Hall, Upper Saddle River
(2000)

https://doi.org/10.1007/978-3-030-26176-4_27
https://doi.org/10.1007/978-3-030-26176-4_27


The Power of Leibniz-Like Functions
as Oracles

Jaeyoon Kim, Ilya Volkovich(B) , and Nelson Xuzhi Zhang

CSE Division, University of Michigan, Ann Arbor, MI, USA
{jaeykim,ilyavol,xuzhizh}@umich.edu

Abstract. A Leibniz-like function χ is an arithmetic function (i.e.,
χ : N → N) satisfying the product rule (which is also known as “Leibniz’s
rule”): χ(MN) = χ(M)·N+M ·χ(N). In this paper we study the compu-
tational power of efficient algorithms that are given oracle access to such
functions. Among the results, we show that certain families of Leibniz-
like functions can be use to factor integers, while many other families
can used to compute the radicals of integers and other number-theoretic
functions which are believed to be as hard as integer factorization [1,2].

Keywords: Integer factorization · Number-theoretic functions ·
Square-free integers · Möbius function · Oracles

1 Introduction

The domains of univariate polynomials and integer numbers share many prop-
erties. Nevertheless, the corresponding factorization problems differ significantly
in their computational complexity. While numerous efficient algorithms for poly-
nomial factorization have been devised (see, e.g., the surveys [6,7]), integer fac-
torization keeps resisting nearly four decades of attempts. Indeed, the security
of the RSA cryptosystem is based on this presumed hardness.

A key difference between the domains is the absence of a standard notion of a
derivative in the context of integers. Observe that if ai is a root of a polynomial
f(x) of multiplicity at least 2 then x−ai is a factor of f ′(x) (the derivative of f).

More generally, if f(x) =
k∏

i=1

(x−ai)ei then1 f(x)
gcd(f,f ′) =

k∏

i=1

(x−ai). This observa-

tion allows us to compute the so-called “square-free” part of f , efficiently. Indeed,
this procedure is carried out as the first step in many polynomial factorization
algorithms. By contrast, there is no known efficient algorithm for computing
the “square-free” part of an integer2. Indeed, this problem is believed to be as
hard as (complete) factorization (see, e.g., [1,2,13]). The above motivates an
introduction of a derivative-like notion to the domain of integers.

1 For sufficiently large fields.

2 If N =
k∏

i=1

pαi
i then its “square-free” part (or “radical”) is defined as

k∏

i=1

pi.

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 263–275, 2020.
https://doi.org/10.1007/978-3-030-50026-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_19&domain=pdf
http://orcid.org/0000-0002-7616-0751
https://doi.org/10.1007/978-3-030-50026-9_19


264 J. Kim et al.

A Leibniz-like function χ is an arithmetic function (i.e., χ : N → N) satisfying
the product rule (which is also known as “Leibniz’s rule”): χ(MN) = χ(M) ·
N + M · χ(N). Following the standard approach, to get a clear view on the role
of such functions, we will assume that they are given via oracle access. That is,
we can efficiently query χ on any input N ∈ N.

The introduction of oracles allows us to separate the “hard” elements of
the problem from the “easy” ones. In addition, in the context of integer fac-
torization, oracles can model extra information on N obtained by means of
side-channel attacks. Indeed, in the past decades we have seen several relations
between the complexity of various number-theoretic problems, including integer
factorization [4,8,10–13]. These relations were typically expressed in terms of
oracle access (i.e., via Turing reductions). In particular, Miller [10] and some
subsequent works have shown that using randomness one can efficiently factor
integers, given Euler’s Totient function Φ as an oracle. Woll [13] and Landau [8],
independently, have shown that under the same premises one can compute the
square-free part of an integer, deterministically. It is, though, remains an open
question whether one can extend these results to obtain a complete factorization.
A progress in this direction was recently made in [11].

1.1 Results

We outline our main results that identify properties of families of Leibniz-like
functions. Our first observation is that a Leibniz-like function χ is uniquely
determined by its value on the set of primes P (for more details see Lemma 8).
Therefore, we identify the families in terms of their restrictions to P. More
technical versions are available in further sections. Our first result affirms our
initial motivation given rise to efficient algorithms for computing the square-
free part of an integer. We are also able to extend this to compute the Möbius
function under additional technical condition. This function play an important
role in analytic number theory. See Sect. 2.1 for the exact definition.

Theorem 1. Let χ : N → N ∪ {0} be a Leibniz-like function such that for every
prime p ∈ P it holds that gcd(p, χ(p)) = 1. Then there exists an algorithm that
given N ∈ N, as an input, and any χ as above via oracle access, runs in time
polylog(N) and outputs the radical of N . If, in addition, for every prime p, χ(p)
is an odd number, then the algorithm can be extended to also compute μ(N),
where μ(N) is the Möbius function.

This theorem yields to the following:

Corollary 1. There exists an algorithm that, given N ∈ N as an input, and χ
satisfying one of the following conditions for all primes p ∈ P, via oracle access,
runs in time polylog(N) and outputs the radical of N .

1. χq−1(p) Δ= p − 1. Motivation - resembles Euler’s Totient function.



The Power of Leibniz-Like Functions as Oracles 265

2. χπ(p) Δ= π(p). Here π(x) is the prime counting function. That is, π(p) returns
the rank of the prime p in P.

3. χ1(p) Δ= 1.

In addition, the function that satisfies χ(p) = 1 can also be used to com-
pute μ(N).

We remark (again) that the problems of computing μ(N) or merely decid-
ing if a number is square-free are believed to be as hard as (complete) integer
factorization [1,2]. Next, show that if a family of Leibniz-like functions can be
“parametrized” efficiently, then it can be used to obtain complete factorization,
under some technical conditions.

Definition 1. A family of Leibniz-like functions {χa(·)}a∈I is called an efficient
filter if it there exists an algorithm A that given N ∈ N, as an input, runs in
time polylog(N) and outputs a set S such that for any distinct primes p, q ≤ √

N
there exists a ∈ S such that: p | χa(p) or q | χa(q) but not both.

Theorem 2. There exists an algorithm that, given an integer N and oracle
access to an efficient filter, runs in time polylog(N) and outputs the complete
factorization of N .

From this theorem, we can draw the following conclusion:

Corollary 2. There exists an algorithm that, given N ∈ N as an input, and χ
satisfying one of the following conditions for all p ∈ P, via oracle access, runs
in time polylog(N) and outputs the factorization of N .

1. χT (p) =

{
1 p ≤ T

0 otherwise

2. χ(a,q)(p) =

{
1 p ≡ a (mod q)
0 otherwise

Remark: A more general definition of an efficient filter is given in Definition 11.

Finally, we exhibit a different family of Leibniz-like functions that can be
used to compute Ω(N) - the number of prime factors of N with multiplicity as
well as to completely factor N .

Theorem 3. For � ∈ N, let χq� denote the Leibniz-like function satisfying

χq�(p) = p�, for all p ∈ P.

Then there exists an algorithm that given N ∈ N, as an input, and the function
χq via oracle access, runs in time polylog(N) and outputs Ω(N). In addition,
there exists an algorithm that given the functions {χq�}log N+1

�=2 via oracle access,
runs in time polylog(N) and outputs the prime factorization of N .



266 J. Kim et al.

2 Preliminaries

Let P denote the set of all primes and P∗ the set of prime powers. By the
fundamental theorem of arithmetic, each integer N ∈ N has a unique prime
factorization. That is, N can be uniquely written as N =

∏k
i=1 pαi

i such that for
all i: pi ∈ P and αi ∈ N. We require the following technical result. Similar ideas
and techniques were previously used in [12].

Lemma 1. Let N1 > N2 ∈ N. Then there exists a prime q ≤ 1.2 ln(N1 − N2)
such that N1 �≡ N2 (mod q).

The following result is inspired by Newton’s Identities.

Definition 2. For i ≥ 0, we denote by Pi(N1, . . . , Nk) Δ=
∑k

j=1 N i
j - the sum

of i-th powers of integers and by Qi(N1, . . . , Nk) the i-th elementary symmet-
ric polynomial. That is, the sum of all distinct products of i distinct variables
amongst N1, . . . , Nk.

Newton’s Identities establish a relation between the two stating that

kQk(N1, . . . , Nk) =
k∑

i=1

Qk−i(N1, . . . , Nk)Pi(N1, . . . , Nk)

The above gives rise to the following:

Observation 1. There exists a polynomial-time algorithm Newton that, given
{Pi(N1, . . . , Nk)}i∈[k] as inputs, outputs {Qi(N1, . . . , Nk)}i∈[k].

Finally, we recall Vieta’s Theorem.

Lemma 2. Let Qi(N1, . . . , Nk) = di. Then
∑

i(−1)idj−ix
i =

∏k
i (x − N1).

Putting all together, we obtain the following:

Lemma 3. Let N1, . . . , Nk ∈ N (not necessarily distinct integers). There exists
an algorithm that, given the values {Pi(N1, . . . , Nk)}i∈[k] as inputs, runs in time
polylog(N1 + N2 + . . . + Nk) and outputs N1, . . . , Nk.

Let us first sketch out the idea of the proof. Given {Pi(N1, . . . , Nk)}i∈[k], we first
apply the Algorithm of Observation 1 to obtain {Qi(N1, . . . , Nk)}i∈[k]. We then
use the univariate polynomial factorization algorithm of [9] to obtain N1, . . . , Nk.
The correctness follows from Lemma 2. Due to space constraints, the complete
proof is given in the full version of the paper.



The Power of Leibniz-Like Functions as Oracles 267

2.1 Arithmetic Functions

In this paper we study the computational power of certain kind of arithmetic
functions given as oracles.

Definition 3. We call a function f : N → C an arithmetic function. Unless
explicitly stated otherwise, we will assume that the range of our arithmetic func-
tions is N or Z, and |f(N)| ≤ 2polylog(N).

Example 1. Below are examples of common arithmetic functions.

1. Ω(N) Δ=
k∑

i=1

αi - the number of prime factors of N with multiplicity.

2. ω(N) Δ= k - the number of prime factors of N without multiplicity.
3. Φ(N) - Euler’s totient function
4. μ : N → {−1, 0, 1} - Möbius Function:

μ(N) =
{

0 if N is not square-free
(−1)k if N is a product of k (distinct) primes

5. νp(N) - p-adic valuation of an integer N : for a prime p ∈ P, νp(N) is the
largest integer m such that pm | N while pm+1

� N .

While several relations between these (and other) function have been estab-
lished [4,8,10–13], there is no known polynomial-time algorithm for any of above
functions, expect νp(N). Indeed, these function are believed to be as hard as
(complete) integer factorization [1,2]. We will use the following notation through-
out the paper.

Definition 4. Df (N) Δ= gcd(N, f(N)). We say that Df (N) is non-trivial if
1 < Df (N) < N .

2.2 Square-Free Numbers

Definition 5. Consider N ∈ N and its unique factorization N =
k∏

i=1

pαi
i .

We define the radical of N as rad(N) Δ=
k∏

i=1

pi. N is called square-free or radical

iff ∀i : αi = 1. In other words, N is radical iff N = rad(N).
We define the set SQF ⊆ N as the set of all square-free integers.
We define the set SQF

∗ ⊆ N as set of powers of all square-free integers.

The following is immediate from the definition:

Observation 2. For all M,N ∈ N : rad(N · M) = lcm (rad(N), rad(M)).



268 J. Kim et al.

While computing the radical (i.e., square-free part) of a polynomial can be
carried out easily (see, e.g., [14]). There is no known polynomial-time algorithm
for computing the radical of a given integer number N . Moreover, even testing
if a given N is square-free (i.e., membership in SQF) is considered a hard com-
putational problem (see [1,2]). Indeed, this is equivalent to computing |μ(N)|.
We complete this section with the following result.

Lemma 4 ([5]). There exists an algorithm that given N = mk for some square-
free integer m as an input, runs in time log(N) and outputs m and k.

2.3 Rough Numbers

Definition 6 (Roughness). Let r ∈ N. A number N ∈ N is called r-rough if
all its prime factors are greater than or equal to r. In other words, for all i: pi ≥
r. We will call a number N rough (without the parameter r) if it is (log N + 1)-
rough.

The following statements are immediate from the definition and the fact that
every positive integer is 2-rough.

Lemma 5. For all N ∈ N : 1 ≤ Ω(N) ≤ log N .

Corollary 3. Let N be a rough number. Then for all primes p ∈ P : νp(N) < p.

For the purposes of factorization and related tasks, we will assume w.l.o.g
that each N given as an input is rough, since we can simply brute-force all the
primes smaller than log N + 1.

2.4 Partial Factorization Algorithms

Definition 7 (The set of irreducibles). The set of irreducibles of an arith-
metic function f : N → N is defined as follows:

IS(f) = {N ∈ N | Df (N) = N or Df (N) = 1}.

In other words, the set of irreducibles of an arithmetic function f corresponds
to set of integers for which the function f “fails” to produce a non-trivial factor.
This could be thought of as an extension of the set of primes P (which constitutes
the set of the irreducible elements of N) to a specific function. Indeed, for every
such f we have that P ⊆ IS(f). This allows us to relax the notion of factorization.

Definition 8 (f-factorization). Let f : N → N be an arithmetic function and

let N ∈ N. A product N =
k∏

i=1

Ni is called an f -factorization of N if for each

i ∈ [k] : Ni ∈ IS(f).



The Power of Leibniz-Like Functions as Oracles 269

We remark that unlike the standard factorization (into prime factors) an f -
factorization may be not unique. Furthermore, in [3,5] efficient algorithms have
been shown to “refine” a given computation into a “gcd-free” one.

Given N ∈ N as an input, many factorization algorithms proceed by first
finding a non-trivial factor M of N and then recursing on both M and N/M , until
these become irreducible. Given an oracle access to an arithmetic function f , we
can extend this idea by using f(N) as a candidate for a non-trivial factor of N
and then recurse until f(N) fails to produce such a factor. Observe that this
procedure will result in an f -factorization. The following lemma summarizes
this discussion.

Lemma 6. There exists an algorithm that given N ∈ N, as an input, and an
arithmetic function f : N → N as an oracle, runs in time polylog(N) and outputs
an f-factorization of N .

The above framework can used to compute the radical of an integer and
even complete factorization, given the “right” f . In particular, recall that P∗

and SQF
∗ denote the sets of all natural powers of all the primes and square-free

numbers, respectively. Then the following is immediate given Lemmas 4 and 6.

Corollary 4. Suppose that f : N → N is an arithmetic function such that
IS(f) ⊆ P∗. Then there exists an algorithm that given N ∈ N, as an input,
and f as an oracle, runs in time polylog(N) and outputs the factorization of N .

Proof. Apply Lemma 6 to obtain an f -factorization N1, . . . , Nk of N . By assump-
tion Ni, for each i ∈ [k] : Ni ∈ IS(f) ⊆ P∗. The primes and their powers can be
then recovered by Lemma 4. �

Similarly, by further incorporating Observation 2, we obtain the following
corollary.

Corollary 5. Suppose that f : N → N is an arithmetic function such that
IS(f) ⊆ SQF

∗. Then there exists an algorithm that given N ∈ N, as an input,
and f as an oracle, runs in time polylog(N) and outputs rad(N).

Indeed, we can now easily re-establish the results of Woll [13] and Landau [8]
(computing rad(N), given Φ(N)) by observing that IS(Φ) ⊆ SQF.

2.5 Leibniz-Like Functions and Their Properties

In this paper we will consider the computational power of a special type of
arithmetic functions. This is our main conceptual contribution. We begin with
a formal definition.

Definition 9 (Leibniz-like Function). An arithmetic function χ : N → C is
said to be Leibniz-like if for all M,N ∈ N it holds that χ(M · N) = M · χ(N) +
χ(M) · N .

The following is immediate from the definition.



270 J. Kim et al.

Lemma 7. Let χ be a Leibniz-like function and let N =
k∏

i=1

Nei
i (not necessarily

irreducible). Then χ(N) =
∑k

i=1
ei·χ(Ni)·N

Ni
.

Given the above, we observe that a Leibniz-like function is uniquely determined
by its values on the set of all primes P.

Lemma 8 (Uniqueness of Extension). Let f : P → C be an arbitrary
function. Then there exists a unique Leibniz-like function χ : N → C such that
χ(p) = f(p) for all p ∈ P.

Proof. Let N ∈ N and let N =
k∏

i=1

pαi
i be N ’s (unique) prime factorization.

We define χ(N) Δ=
∑k

i=1
αi·f(pi)·N

pi
. One could verify that χ(·) is indeed a

Leibniz-like function consistent with f(·) on P. The uniqueness follows from
Lemma 7. �
Based on the above, given f : P → C we will denote by χf its unique extension.
Furthermore, we observe that a sum of two Leibniz-like functions is itself a
Leibniz-like function. This implies that the set of all Leibniz-like functions forms
a linear space.

Lemma 9. Let χf and χf ′ be two Leibniz-like functions that are the extensions

of f and f ′, respectively. Then (χf +χf ′)(N) Δ= χf (N)+χf ′(N) is a Leibniz-like
function and constitutes the extension of f + f ′.

For the rest of the paper we will focus on functions χ : N → N ∪ 0. We will
now explore some useful properties of Dχ(N) (recall Definition 4).

Lemma 10. Let χ be a differential multiplicative function and let N =
∏

s∈S

pαs
s ·

∏

t∈T

pαt
t be N ’s (unique) prime factorization where:

– for each s ∈ S : ps � αs · χ(ps).
– for each t ∈ T : pt | αt · χ(pt).

Then Dχ(N) =
∏

s∈S

pαs−1
s · ∏

t∈T

pαt
t and, in particular, N/Dχ(N) is square-free.

Proof. For a prime p ∈ P, let us denote by νp(N) the largest integer m such
that pm | N while pm+1

� N . Fix s ∈ S. By definition, νps
(N) = αs. Now

let us consider νps
(χ(N)). By Lemma 7, χ(N) =

∑k
i=1

αi·χ(pi)·N
pi

. Therefore,
νps

(χ(N)) ≥ αs − 1 since pαs−1
s divides every term in the summation. Yet,

pαs
s � χ(N) since pαs

s divides every term in the summation except αsχ(ps)N
ps

as
ps � αs · χ(ps). This implies that νps

(Dχ(N)) = νps
(χ(N)) = αs − 1. Now let us

fix t ∈ T . As pt | αt ·χ(pt), we have that pαt
t divides every term in the summation

above. Therefore, νpt
(Dχ(N)) = νpt

(χ(N)) = αt. �



The Power of Leibniz-Like Functions as Oracles 271

Corollary 6. Suppose that χ is a Leibniz-like function and let N be rough then:

– If there exists pi such that pi � χ(pi) then Dχ(N) < N .
– If there exists pj such that pj | χ(pj) then Dχ(N) > 1.
– If N �∈ SQF then Dχ(N) > 1.

Proof. By Corollary 3, each αi < pi. Consequently, αi � pi. Therefore, pi | αi ·
χ(pi) iff pi | χ(pi) and the claim follows from Lemma 10. �

As a subsequent corollary we obtain the following statements, which imply
Theorem 1.

Corollary 7. Let χ be such that ∀p ∈ P : Dχ(p) = 1. Then for all rough N we
have N/Dχ(N) = rad(N).

Observation 3. Let N ∈ N be a product of k distinct odd primes and let χ be
such that ∀p ∈ P : χ(p) is odd. Then χ(N) ≡ k (mod 2).

A particular instance satisfying the premises of the observation is the func-
tion χ1. That is, a Leibniz-like function satisfying χ1(p) = 1 for all p ∈ P.
We conclude this section by observing that when N is a product of two prime
powers, the algorithm can be extended to obtain a complete factorization of N .

Lemma 11. Let p, q ∈ P and α, β ∈ N. Then there exists an algorithm that
given N of the form N = pαqβ, as an input, and χ1 via oracle access, runs in
time polylog(N) and outputs the factorization of N . Namely, outputs p, q and
α, β.

Proof. By Corollary 7, N/Dχ(N) = pq. On the other hand, χ1(pq) = p + q.
Consequently, p and q are the solutions of the quadratic equation x2−χ1(pq)x+
pq = 0, which could be found efficiently. Given p and q, we can recover α and β
by repeated division, since α, β < log N . �

3 Families of Oracles

In this section we prove a relaxed version of Theorem 1 as a motivation for
the proof of Theorem 2. Rather than considering a single oracle function we
will assume that we have an access to a family of functions that could be
“parametrized” efficiently.

Definition 10. A family of Leibniz-like functions {χa(·)}a∈I is called an effi-
cient cover if it there exists an algorithm A that given N ∈ N, as an input, runs
in time polylog(N) and outputs a set S such that there exists a ∈ S and a prime
p | N satisfying: p � χa(p).

We now show that an efficient cover can be used to construct an arithmetic
function with IS(f) ⊆ SQF. This, in turn, can be combined with Corollary 5 to
obtain an efficient algorithm that computes rad(N) of a given N ∈ N.



272 J. Kim et al.

Lemma 12. There exists an arithmetic function f : N → N with IS(f) ⊆ SQF

that is efficiently computable given an efficient cover {χa(·)}a∈I via oracle access.
Algorithm 1 provides the outline.

Input: N ∈ N, A, {χa(·)}a∈I via oracle access
Output: f(N)

1: for M = 2 . . . log N do
2: if M | N then
3: return M

// N is rough

4: for a ∈ A(N) do
5: if Dχa(N) < N then
6: return Dχa(N)

Algorithm 1: Computing f(N)

Proof. Let N �∈ SQF. If there exist M ≤ log N such that M | N then we are
done. Otherwise, N is rough. Let a ∈ A(N) be as guaranteed by the definition
of a cover. Then by Corollary 6, Dχa

(N) is non-trivial. �
In order to extend the algorithm to yield a complete factorization, we require

a family that satisfies additional technical conditions.

Definition 11. A family of Leibniz-like functions {χa(·)}a∈I is an efficient filter
if there exists an algorithm A that given N ∈ N \ P∗, as an input, runs in time
polylog(N) and outputs a set S such that there exists a ∈ S and two distinct
primes p, q | N satisfying: p | χa(p) and q � χa(q).

Lemma 13. There exists an arithmetic function f : N → N with IS(f) ⊆ P∗

that is efficiently computable given an efficient filter {χa(·)}a∈I via oracle access.
Algorithm 1 provides the outline.

Theorem 2 following by combining Lemma 13 with Corollary 4. In the fol-
lowing sections we give two examples of families of Leibniz-like functions that
constitute efficient filters.

3.1 Special Case: χT

Let {χT }T∈N
be a family of “threshold” Leibniz-like functions that is defined as

follows for all p ∈ P:

χT (p) =

{
1 p ≤ T

0 otherwise

Let us now describe A:
On input N ∈ N, A outputs the set

{
N,

⌊
N1/2

⌋
,
⌊
N1/3

⌋
, . . . ,

⌊
N1/ log N

⌋}
.

Analysis: Let N =
∏k

i=1 pαi
i with k ≥ 2. Let M = N1/Ω(N) (see Example 1

for reference). By the properties of the geometric mean, there exists i, j such
that pi < M < pj . Therefore, pj | χM (pj) = 0 and pi � χM (pi) = 1. Lemma 5
completes the analysis. �



The Power of Leibniz-Like Functions as Oracles 273

3.2 Special Case: χ(a,Q)

Let
{
χ(a,q)

}
q∈P , 0≤a<q

be a family of Leibniz-like functions s.t. for all p ∈ P :

χ(a,q)(p) =

{
1 p ≡ a (mod q)
0 otherwise

The function χ(a,q) is motivated by the following intuition: χ(a,q) extracts infor-
mation about prime factors of congruent to a (mod q). Then using Chinese
Remainder Theorem to combine all information from small prime moduli, we
should be able to reconstruct the prime factorization.

As a first step for intuition purposes, we observe the following, which in
particular implies that χ(a,q) constitutes an efficient cover.

Observation 4. For all p, q ∈ P :
q∑

a=0
χ(a,q)(p) = 1.

Next, we show that χ(a,q) is also an efficient filter by describing and analyzing
an appropriate A. On input N ∈ N, set y = 1.2 ln(N1 − N2) and output the set
{(a, q) | q ∈ P ≤ y , 0 ≤ a < q }. Since y is “small”, we can simply brute-force
all the primes.

Analysis: Let N =
∏k

i=1 pαi
i with k ≥ 2. Suppose p1 > pk. Then p1−pk < N . By

Lemma 1, there exists q ∈ P ≤ y such that p1 �≡ pk (mod q). Let a
Δ= pk mod q.

Then p1 | χ(a,q)(p1) = 0 and pk � χ(a,q)(pk) = 1. �

4 Non-coprime Case

So far we have studied several families of Leibniz-like function χ where Dχ(p) = 1
for every p ∈ P. In this section, we are going to change the gear a little and
explore families of oracles that do not satisfy this property. First of all, observe
that by definition if Dχ(p) �= 1 for a prime p ∈ P, it must be the case that
Dχ(p) = p. Applying Lemma 7 provides the following (natural) extension.

Observation 5. Suppose that χ is a Leibniz-like function such that for all p ∈
P : Dχ(p) �= 1. Then for all N ∈ N : Dχ(N) = N .

Given the above, it is natural to consider the “normalized” function.

Definition 12. For χ as above, we consider χ̄(N) Δ= χ(N)/N .

Our first observation is that the normalized function exhibits a “log-like”
behavior. Indeed, for any x, y : log(x · y) = log(x) + log(y).

Observation 6. For any M,N ∈ N : χ̄(M · N) = χ̄(M) + χ̄(N).

For the rest of the section, we will focus on a particular family of functions.



274 J. Kim et al.

Definition 13. For � ∈ N, let χq� denote the Leibniz-like function satisfying
∀p ∈ P : χq�(p) = p�.

The next main property of this family of function follows from Lemma 7.

Lemma 14. Let N =
∏k

i=1 pαi
i and � ≥ 1. Then χ̄q�(N) =

∑k
i=1 αip

�−1
i .

In particular, given χq via oracle access, one can efficiently compute Ω(N).

Corollary 8. χ̄p(N) = Ω(N).

We remind that while 1 ≤ Ω(N) ≤ log N (see Lemma 5), there is no known
polynomial-time algorithm for computing the exact value of Ω(N). Indeed, com-
puting Ω(N) is believed to be as hard computing the complete factorization (see,
e.g., [1]). Likewise, it unlikely to have a polynomial-time algorithm that com-
putes the factorization of N even if given in addition the value of χq(N), since
we could just “guess” that value. In order to elaborate on the discussion and
provide more intuition, we provide a “baby step” towards the proof of Theo-
rem 3, by showing that one can efficiently factor N of the form N = pαrβ , given
in addition χq(N), χq2(N), χq3(N).

Observation 7. Let N = pαrβ. Then χ̄q(N)·χ̄q3(N)−(χ̄q3(N))2 = αβ ·(p−r)2.

In order to obtain p and r, the algorithm will “guess” α, β such that α+β ≤ log N
and then mimic the argument of Lemma 11. We leave the details as an exercise
for the reader. The next result follows from Lemma 3. The proof is given in the
full version of the paper. Theorem 3 follows from Lemma 15 and Corollary 8.

Lemma 15. There exists an algorithm that, given N ∈ N as an input, computes
the functions {χq�}log N+1

�=2 via oracle access, runs in time polylog(N) and outputs
the complete factorization of N .

5 Discussion and Open Questions

In this paper we have introduced the concept of Leibniz-like functions and dis-
cussed its computational power when given via an oracle access. In particular,
we have shown that certain families of Leibniz-like functions can be used to
compute number-theoretic functions for which no polynomial-time algorithms
are known. We conclude with a few open questions.

1. Can one extend Theorem 1 to obtain a complete factorization?
2. A simpler version: Can we prove Theorem 2 using a single oracle?
3. One important conclusion of the results in this paper pertain to the com-

plexity of computing an extension of a given Leibniz-like function χ from P
to N. In particular, χ1 is trivial to compute on P whereas Corollary 1 and
Lemma 11 suggest that there is no polynomial-time algorithm for computing
its extension to N. Is there any “interesting” Leibniz-like function χ for which
computing the extension to N is “easy”? A trivial example of such a function
would be χ that satisfies χ(p) = 0 for all p ∈ P. We note that this example
can be easily generalized to the case when χ(p) = 0 for all, but finitely many
p ∈ P.



The Power of Leibniz-Like Functions as Oracles 275

4. Finally, can we compute other “interesting” number-theoretic function given
oracle access to another (family of) Leibniz-like function(s)?

Acknowledgements. The authors would also like to thank the anonymous referees
for their detailed comments and suggestions.

References

1. Adleman, L.M., McCurley, K.S.: Open problems in number theoretic complexity,
II. In: Adleman, L.M., Huang, M.-D. (eds.) ANTS 1994. LNCS, vol. 877, pp. 291–
322. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58691-1 70

2. Bach, E.: Intractable problems in number theory. In: Goldwasser, S. (ed.) CRYPTO
1988. LNCS, vol. 403, pp. 77–93. Springer, New York (1990). https://doi.org/10.
1007/0-387-34799-2 7

3. Bach, E., Driscoll, J.R., Shallit, J.: Factor refinement. J. Algorithms 15(2), 199–222
(1993). https://doi.org/10.1006/jagm.1993.1038

4. Bach, E., Miller, G.L., Shallit, J.: Sums of divisors, perfect numbers and factoring.
SIAM J. Comput. 15(4), 1143–1154 (1986). https://doi.org/10.1137/0215083

5. Bernstein, D.: Factoring into coprimes in essentially linear time. J. Algorithms
54(1), 1–30 (2005). https://doi.org/10.1016/j.jalgor.2004.04.009

6. Gathen, J.V.Z.: Who was who in polynomial factorization. In: Trager, B.M. (ed.)
Symbolic and Algebraic Computation, International Symposium, ISSAC. p. 2.
ACM (2006). https://doi.org/10.1145/1145768.1145770

7. Kaltofen, E.: Polynomial factorization: a success story. In: Sendra, J.R. (ed.) Sym-
bolic and Algebraic Computation, International Symposium, ISSAC. pp. 3–4. ACM
(2003). https://doi.org/10.1145/860854.860857

8. Landau, S.: Some remarks on computing the square parts of integers. Inf. Comput.
78(3), 246–253 (1988). https://doi.org/10.1016/0890-5401(88)90028-4

9. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 515–534 (1982)

10. Miller, G.L.: Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci.
13(3), 300–317 (1976). https://doi.org/10.1016/S0022-0000(76)80043-8

11. Morain, F., Renault, G., Smith, B.: Deterministic factoring with oracles. CoRR
abs/1802.08444 (2018). http://arxiv.org/abs/1802.08444

12. Shallit, J., Shamir, A.: Number-theoretic functions which are equivalent to num-
ber of divisors. Inf. Process. Lett. 20(3), 151–153 (1985). https://doi.org/10.1016/
0020-0190(85)90084-5

13. Woll, H.: Reductions among number theoretic problems. Inf. Comput. 72(3), 167–
179 (1987). https://doi.org/10.1016/0890-5401(87)90030-7

14. Yun, D.Y.Y.: On square-free decomposition algorithms. In: SYMSAC 1976, Pro-
ceedings of the third ACM Symposium on Symbolic and Algebraic Manipulation,
Yorktown Heights, New York, USA, 10–12 August 1976, pp. 26–35. ACM (1976).
https://doi.org/10.1145/800205.806320

https://doi.org/10.1007/3-540-58691-1_70
https://doi.org/10.1007/0-387-34799-2_7
https://doi.org/10.1007/0-387-34799-2_7
https://doi.org/10.1006/jagm.1993.1038
https://doi.org/10.1137/0215083
https://doi.org/10.1016/j.jalgor.2004.04.009
https://doi.org/10.1145/1145768.1145770
https://doi.org/10.1145/860854.860857
https://doi.org/10.1016/0890-5401(88)90028-4
https://doi.org/10.1016/S0022-0000(76)80043-8
http://arxiv.org/abs/1802.08444
https://doi.org/10.1016/0020-0190(85)90084-5
https://doi.org/10.1016/0020-0190(85)90084-5
https://doi.org/10.1016/0890-5401(87)90030-7
https://doi.org/10.1145/800205.806320


Optimal Skeleton Huffman Trees
Revisited

Dmitry Kosolobov(B) and Oleg Merkurev

Ural Federal University, Ekaterinburg, Russia
dkosolobov@mail.ru, o.merkuryev@gmail.com

Abstract. A skeleton Huffman tree is a Huffman tree in which all dis-
joint maximal perfect subtrees are shrunk into leaves. Skeleton Huffman
trees, besides saving storage space, are also used for faster decoding and
for speeding up Huffman-shaped wavelet trees. In 2017 Klein et al. intro-
duced an optimal skeleton tree: for given symbol frequencies, it has the
least number of nodes among all optimal prefix-free code trees (not nec-
essarily Huffman’s) with shrunk perfect subtrees. Klein et al. described
a simple algorithm that, for fixed codeword lengths, finds a skeleton tree
with the least number of nodes; with this algorithm one can process
each set of optimal codeword lengths to find an optimal skeleton tree.
However, there are exponentially many such sets in the worst case. We
describe an O(n2 log n)-time algorithm that, given n symbol frequencies,
constructs an optimal skeleton tree and its corresponding optimal code.

Keywords: Huffman tree · Skeleton tree · Dynamic programming

1 Introduction

The Huffman code [10] is one of the most fundamental primitives of data com-
pression. Numerous papers are devoted to Huffman codes and their variations;
see the surveys [1] and [16]. In this paper we investigate the skeleton Huffman
trees, introduced by Klein [11], which are code trees with all (disjoint) maximal
perfect subtrees shrunk into leaves (precise definitions follow). We describe the
first polynomial algorithm that, for code weights w1, w2, . . . , wn, constructs the
smallest in the number of nodes skeleton tree among all trees formed by optimal
prefix-free codes. Klein et al. [12] called such trees optimal skeleton trees.

The idea of the skeleton tree is simple: to determine the length of a given code-
word in the input bit stream, the standard decoding algorithm for Huffman codes
descends in the tree from the root to a leaf; instead, one can descend to a leaf
of the skeleton tree, where the remaining length is uniquely determined by the
height of the corresponding shrunk perfect subtree. While presently the decoding
is performed by faster table methods [16] and, in general, the entropy encoding
is implemented using superior methods like ANS [3], there are still important

Supported by the Russian Science Foundation (RSF), project 18-71-00002.

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 276–288, 2020.
https://doi.org/10.1007/978-3-030-50026-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-50026-9_20


Optimal Skeleton Huffman Trees Revisited 277

applications for the trees of optimal codes in compressed data structures, where
one has to perform the tree descending. For instance, two such applications are in
compressed pattern matching [17] and in the so-called Huffman-shaped wavelet
trees [9,15], the basis of FM-indexes [5]: the access time to the FM-index might
be decreased by skeleton trees in exchange to slower search operations [2].

The skeleton trees were initially introduced only for canonical trees (in which
the depths of leaves do not decrease when listed from left to right), as they showed
good performance in practice [11]. However, as it was noticed in [12], the smallest
skeleton trees might be induced by neither Huffman nor canonical trees. In order
to find optimal skeleton trees, Klein et al. [12] described a simple algorithm that,
for fixed codeword lengths, builds a skeleton tree with the least number of nodes.
As a consequence, to find an optimal skeleton tree, one can process each set of
optimal codeword lengths using this algorithm. However, there are exponentially
many such sets in the worst case [8] and, hence, such algorithm is not polynomial.

To develop a polynomial algorithm, we first prove that it suffices to consider
only Huffman codes, not all optimal codes. Then, we investigate properties of
Huffman trees resembling the known sibling property [7]. It turns out that all
Huffman trees, for fixed code weights w1, w2, . . . , wn, share a similar layered
structure and our dynamic programming O(n2 log n)-time algorithm is based
on it. Since normally in practice there are few choices of optimal codeword
lengths for given weights, our result is mostly of theoretical value but the found
properties, we believe, might be interesting by themselves.

The paper is organized as follows. In Sect. 2 we define all basic concepts
and overview some known results. In Sect. 3 we explore the layered structure of
Huffman trees that underlies our construction. Section 4 begins with a simpler
cubic algorithm and, then, proceeds to improve its time to O(n2 log n).

2 Huffman and Skeleton Trees

Throughout the paper, all trees are rooted and binary. A tree is full if all its
nodes have either two or zero children. The depth of a node is the length of the
path from the root to the node. A subtree rooted at a node is the tree consisting
of the node and all its descendants. A perfect tree is a full tree in which all
leaves have the same depth. A perfect subtree is maximal if it is not a subtree of
another perfect subtree. Two subtrees are disjoint if they do not share common
nodes. To shrink a subtree is to remove all nodes of the subtree except its root.

Fix n symbols with positive weights w1, w2, . . . , wn (typically, symbol fre-
quencies). Their prefix-free code is a sequence of n binary codewords such that
no codeword is a prefix of another codeword. Denote by �1, �2, . . . , �n the code-
word lengths. The quantized source or q-source, as defined in [4], is a sequence
q1, q2, . . . , qm such that, for each �, q� is the number of codewords of length �
and all lengths are at most m. Note that

∑m
�=1 q� = n. It is well known that the

lengths and the q-source of any prefix-free code satisfy Kraft’s inequality [13]:
n∑

i=1

1
2�i

=
m∑

�=1

q�

2�
≤ 1. (1)



278 D. Kosolobov and O. Merkurev

Conversely, every set of lengths and every q-source satisfying (1) correspond to
a (non-unique) prefix-free code. The code is optimal if the sum

∑n
i=1 �iwi is

minimal among all possible prefix-free codes. In particular, when w1, w2, . . . , wn

are symbol frequencies in a message, optimal prefix-free codes minimize the total
length of the encoded message obtained by the codeword substitution.

We assume that the reader is familiar with Huffman’s algorithm [10] (either
its version with heap or queue [14]): given positive weights w1, w2, . . . , wn, it
builds a full tree whose n leaves are labelled with w1, w2, . . . , wn and each internal
node is labelled with the sum of weights of its children. This tree represents an
optimal prefix-free code for the weights: all left edges of the tree are marked with
zero, all right edges with one, and each wi is associated with the codeword written
on the corresponding root-leaf path. The obtained tree is not necessarily unique:
swapping siblings and arbitrarily breaking ties during the construction (some
weights or sums of weights might be equal), one can build many different trees,
even exponentially many in some cases as shown by Golomb [8]; see Fig. 1. We
call all such trees for w1, w2, . . . , wn Huffman trees and they represent Huffman
codes. The order of siblings and the choice among equal-weighted nodes are the
only ties emerging in Huffman’s algorithm and leading to different trees. In view
of this, the following lemma is straightforward.

27

18

9

6

3

2

1

0

1

1

0

1

1

0

3

1

0

3

1

0

9

1

0

9

1 27

18

9

0

9

1

0

9

6

3

0

3

1

0

3

2

1

0

1

1

0

1

1

1

1

Fig. 1. Two Huffman trees for the weights 1, 1, 1, 3, 3, 9, 9.

Lemma 1. By swapping subtrees rooted at equal-weighted nodes or swapping
siblings in a Huffman tree for w1, w2, . . . , wn, one obtains another Huffman tree
and all Huffman trees for w1, w2, . . . , wn can be reached by these operations.

By analogy to Huffman trees, each prefix-free code forms a tree with n leaves
labelled with w1, w2, . . . , wn (and internal nodes labelled with sums of weights
of their children). For a given tree, its skeleton tree [11] is obtained by choosing
all (disjoint) maximal perfect subtrees and then shrinking them. An optimal
skeleton tree [12] is a skeleton tree with the least number of nodes among all
skeleton trees for the trees formed by optimal prefix-free codes. Figure 2 gives
an example from [12] showing that optimal skeleton trees are not necessarily
obtained from Huffman trees: only the left tree is Huffman’s, the skeleton trees
are drawn in gray, and both codes are optimal (note also that not every optimal
code can be obtained by Huffman’s algorithm).



Optimal Skeleton Huffman Trees Revisited 279

19

8

4
0

4

2
0

2
1

1

0

11

5
0

6

3
0

3
1

1

1

(a) The Huffman tree.

19

9

4
0

5
1

0

10

4

2
0

2
1

0

6

3
0

3
1

1

1

(b) The tree inducing optimal skeleton tree.

Fig. 2. Trees for the weights 2, 2, 3, 3, 4, 5; the gray nodes form skeleton trees.

To find an optimal skeleton tree for w1, w2, . . . , wn, Klein et al. [12] addressed
the following problem: given a q-source q1, q2, . . . , qn of an optimal prefix-free
code of size n, find a prefix-free code having this q-source whose tree induces a
skeleton tree with the least number of nodes. Since q� in optimal codes can be
non-zero only for � < n, we ignore qn+1, qn+2, . . . in the q-source specifying only
q1, q2, . . . , qn (though qn can be omitted too). Let us sketch the solution of [12].

Denote by pop(x) the number of ones in the binary representation of inte-
ger x. Since q1, q2, . . . , qn is the q-source of an optimal code, (1) is an equality
rather than inequality:

∑n
�=1

q�

2� = 1. Hence, any resulting code tree is full and
so is its skeleton tree. Consider such skeleton tree. As it is full, the smallest
such tree has the least number of leaves. Each of its leaves is a shrunk perfect
subtree (possibly, one-node subtree). Split all q� depth-� leaves of the corre-
sponding code tree into r subsets, each of which is a power of two in size and
consists of all leaves of a shrunk subtree. Then, r ≥ k if q� =

∑k
i=1 2mi for some

m1 > m2 > · · · > mk, i.e., r ≥ pop(q�). Therefore, the skeleton tree has at least∑n
�=1 pop(q�) leaves.
The bound is attainable. Shrinking a perfect subtree with 2m depth-� leaves,

we decrease q� by 2m and increment q�−m by 1, which does not affect the sum (1)
since 1

2�−m = 2m

2� . Based on this, we initialize with zeros some q′
1, q

′
2, . . . , q

′
n and,

for � ∈ {1, 2, . . . , n}, increment q′
�−m1

, . . . , q′
�−mk

, where q� =
∑k

i=1 2mi is the
binary representation of q�. In the end, q′

1, q
′
2, . . . , q

′
n satisfy (1) and

∑n
�=1 q′

� =∑n
�=1 pop(q�). By a standard method, we build a full tree having, for each �,

q′
� depth-� leaves and it is precisely the sought skeleton tree. By appropriately

“expanding” its leaves into perfect subtrees, one can construct the corresponding
code tree (see details in [12]). Thus, Klein et al. proved the following lemma.

Lemma 2. Let q1, q2, . . . , qn be a q-source of a size-n code such that
∑n

�=1
q�

2� =1.
The smallest skeleton tree in the number of nodes for a tree of a prefix-free code
having this q-source has

∑n
�=1 pop(q�) leaves and, thus, 2

∑n
�=1 pop(q�)−1 nodes.

Lemma 2 implies that, for weights admitting a Huffman tree of height h, any
optimal skeleton tree has at most 2h log2 n nodes. In particular, as noted in [11],
the skeleton tree has O(log2 n) nodes if a Huffman tree is of height O(log n).



280 D. Kosolobov and O. Merkurev

By Lemma 2, one can find an optimal skeleton tree for weights w1, w2, . . . , wn

by searching the minimum of
∑n

�=1 pop(q�) among all q-sources q1, q2, . . . , qn

yielding optimal codes. Such algorithm is exponential in the worst case as it
follows from [8]. We are to develop a polynomial-time algorithm for this problem.

3 Layered Structure of Huffman Trees

The following property of monotonicity in trees of optimal codes is well known.

Lemma 3. If the weights of nodes u and u′ in the tree of an optimal prefix-free
code are w and w′, and w > w′, then the depth of u is at most that of u′.

Due to Lemma 2, our goal is to find a q-source q1, q2, . . . , qn yielding an opti-
mal prefix-free code for w1, w2, . . . , wn that minimizes

∑n
�=1 pop(q�). Huffman

trees represent optimal codes; are there other optimal codes whose q-sources we
have to consider? The following lemma answers this question in negative.

Lemma 4. Let q1, q2, . . . , qn be a q-source of an optimal prefix-free code for
weights w1, w2, . . . , wn. Then, there is a Huffman code having the same q-source.

Proof. The proof is by induction on n. The case n ≤ 2 is trivial, so assume
n > 2. Let w1 ≥ w2 ≥ · · · ≥ wn. Consider an optimal prefix-free code for
w1, w2, . . . , wn with the q-source q1, q2, . . . , qn and lengths �1, �2, . . . , �n. Let � =
max{�1, �2, . . . , �n}. The tree for the code is full and, due to Lemma 3, has depth-�
leaves with weights wn−1 and wn. By swapping depth-� leaves, we can make wn−1

and wn siblings. Shrinking these siblings into one leaf of weight w′ = wn−1 +wn,
we obtain the tree for a code with the q-source q1, q2, . . . , q�−2, q�−1+1, q�−2. The
tree represents an optimal prefix-free code for the weights w1, w2, . . . , wn−2, w

′:
its total cost is

∑n
i=1 �iwi − w′ and any prefix-free code with a smaller cost

would induce a code of cost smaller than
∑n

i=1 �iwi for w1, w2, . . . , wn (which
is impossible) by expanding a leaf of weight w′ in its tree into two leaves of
weights wn−1 and wn. Since the code is optimal, by Lemma 3, the smallest
q� − 2 weights in the set {w1, w2, . . . , wn−2, w

′} mark all depth-� leaves in the
tree and the next smallest q�−1 + 1 weights mark all depth-(�−1) leaves; the
weight w′ is in depth � − 1 and, so, is in the second group. By the inductive
hypothesis, there is a Huffman tree for the weights w1, w2, . . . , wn−2, w

′ with
the q-source q1, q2, . . . , q�−2, q�−1 + 1, q� − 2. Again by Lemma 3, the smallest
q� − 2 weights in the set {w1, w2, . . . , wn−2, w

′} mark all depth-� leaves in the
Huffman tree and the next smallest q�−1 + 1 (w′ among them) mark depth
� − 1. The leaf of weight w′ can be expanded into two leaves of weights wn−1

and wn, thus producing a Huffman tree for the weights w1, w2, . . . , wn (since
Huffman’s algorithm by its first step unites wn−1 and wn into w′) with the
q-source q1, q2, . . . , qn. ��

By Lemma 4, it suffices to consider only q-sources of Huffman codes. Instead
of processing them all, we develop a different approach. Consider a Huffman
tree and all its nodes with a given depth �. Denote by v1, v2, . . . , vi all distinct



Optimal Skeleton Huffman Trees Revisited 281

weights of these nodes such that v1 > v2 > · · · > vi. For 1 ≤ j ≤ i, let hj

be the number of depth-� nodes of weight vj , and kj be the number of depth-�
leaves of weight vj (so that kj ≤ hj). Lemma 3 implies that all nodes of weight v
such that v1 > v > vi (if any) have depth �, i.e., are entirely inside the depth-�
“layer”. Based on this observation, one can try to tackle the problem using the
dynamic programming that, given parameters �, v1, h1, k1, vi, hi, ki, computes
the minimal sum

∑
�′≥� pop(q�′) among all q-sources induced by Huffman trees

in which the depth-� “layer” is compatible with v1, h1, k1, vi, hi, ki. The main
challenge in this approach is to figure out somehow all possible configurations of
the depth-(�+1) layer compatible with the depth-� parameters. In what follows,
we prove a number of structural lemmas that resolve such issues and simplify the
method; in particular, it turns out, the parameters �, vi, hi, ki can be omitted.

Lemma 5. The depths of equal-weight nodes in Huffman tree differ by at most 1.

Proof. Since all weights are positive and the tree is full, the parent of any node
of weight w has weight larger than w. Then, by Lemma 3, the depths of all nodes
of weight w are at least the depth of that parent. Hence, the result follows. ��

depth �−1:

depth �:

depth �+1:

w

v v

w w

v v

w u

v ...

u x x

...

x v

w w

v v

w w

v v

Fig. 3. A “layer”: all nodes whose weights appear on depth � (w > u > x > v).

Due to Lemmas 3 and 5, for each �, the depth-� nodes with the largest and
smallest weights (among all depth-� nodes) can have equal-weighted nodes with
depths � − 1 and � + 1, respectively, but all other depth-� nodes cannot have
equal-weighted nodes of different depths. See Fig. 3. We are to show that this
layout is quite stable: in all Huffman trees the nodes of a given weight are the
same in number and have the same children, and the heaviest nodes in each
layer, in a sense, determine the lightest nodes.

Since all node weights appear in the queue of Huffman’s algorithm in non-
decreasing order, the following claim is immediate.

Lemma 6. In a Huffman tree, for any v ≤ v′ and w ≤ w′, if a pair of siblings
has weights v and v′, and a different pair of siblings has weights w and w′, then
we have either w′ ≤ v or v′ ≤ w.

Lemma 7. One of the following (mutually exclusive) alternatives holds for the
set of all nodes of a given weight w in any Huffman tree for w1, w2, . . . , wn:

1. all the nodes are leaves;



282 D. Kosolobov and O. Merkurev

2. all the nodes except one are leaves and this one node has two children with
weights w′ and w′′ such that w′ < w′′ and w′ + w′′ = w;

3. all the nodes except m of them, for some m > 0, are leaves and each of these
m nodes has two children with weights w/2.

In different Huffman trees the sets of all nodes of weight w have the same size and
the same alternative holds for them with the same w′, w′′, and m, respectively.

Proof. It suffices to prove that if two nodes of weight w are not leaves, then
their children have weights w/2. Suppose, to the contrary, that the children
have weights, respectively, w′, w′′, and v′, v′′ such that w′ < w′′ and v′ ≤ v′′.
But then v′ < w′′ and w′ < v′′, which is impossible by Lemma 6.

As the swapping operations of Lemma 1 do not change the number of nodes
of weight w and the weights of their children, the last part of the lemma (the
preservation of the alternative with given w′, w′′ or m) is straightforward. ��

The heaviest layer nodes determine the lightest ones as follows.

Lemma 8. In a Huffman tree, for � ≥ 0, choose (if any) the largest w among
all weights of depth-� nodes such that there is a non-leaf node of weight w (maybe
not of depth �). Let t be a node of weight w with children of weights w′ and w′′

such that w′ ≤ w′′. Then, the weights of depth-� nodes are at least w′, the weights
of depth-(�+1) nodes are at most w′′, and the next alternatives are possible:

1. w′ < w′′, the depth of t is �, and only one node of depth � + 1 has weight w′′;
2. w′ < w′′, the depth of t is � − 1, and only one node of depth � has weight w′;
3. w′ = w′′ = w/2, for some m, exactly m non-leaf nodes of depth � have weight

w, and exactly 2m + δ nodes of depth � + 1 have weight w/2, where δ = 1 if
some node of weight w/2 has a sibling of smaller weight, and δ = 0 otherwise.

Proof. Due to Lemma 6, any node of depth �+1 with weight larger than w′′ has
a sibling of weight at least w′′. Hence, their parent, whose depth is �, has weight
larger than 2w′′ ≥ w, which contradicts the choice of w. Analogously, any node
of depth � with weight less than w′ has a sibling of weight at most w′ and, hence,
their parent, whose depth is � − 1, has weight smaller than 2w′ ≤ w, which is
impossible by Lemma 3 since there is a node of depth � with weight w. Thus,
the first part of the lemma is proved. Let us consider t and its alternatives.

Let w′ < w′′. By Lemma 5, the depth of t differs from � by at most one. Since
the weight of t is larger than w′′, t cannot have depth � + 1. Suppose the depth
of t is �. By Lemma 6, any node v of depth � + 1 and weight w′′ whose parent
is not t has a sibling of weight at least w′′. Hence, its parent, whose depth is �,
is of weight at least 2w′′ > w, which contradicts the choice of w. Thus, there is
no such v. Suppose the depth of t is � − 1. By Lemma 6, any node v of depth �
and weight w′ whose parent is not t has a sibling of weight at most w′ and their
parent, whose depth is � − 1, has weight at most 2w′ < w, which contradicts
Lemma 3 since we have a depth-� node of weight w. Thus, there is no such v.

Let w′ = w′′ = w/2. Lemma 6 implies that at most one node of weight w/2
can have a sibling of smaller weight. Suppose such node v exists. The weight of



Optimal Skeleton Huffman Trees Revisited 283

its parent is less than w but larger than w/2. Since all nodes of depth � have
weights at most w/2, the depth of the parent is at most � and, by Lemma 3, at
least �. Hence, v has depth � + 1 and, therefore, the total number of nodes of
depth � + 1 with weights w/2 is 2m + 1. The remaining details are obvious. ��

The layout described in Lemmas 7 and 8 can be seen as a more detailed view
on the well-known sibling property [7]: listing all node weights layer by layer
upwards, one can obtain a non-decreasing list in which all siblings are adjacent.

4 Algorithm

Our scheme is as follows. Knowing the heaviest nodes in a given depth-� layer of
a Huffman tree and which of them are leaves, one can deduce from Lemma 8 the
lightest layer nodes. Then, by Lemma 3, the heaviest nodes of the depth-(�+1)
layer either immediately precede the lightest nodes of depth � in the weight-
sorted order or have the same weight; in any case they can be determined and
the depth-(�+1) layer can be recursively processed. Let us elaborate details.

In the beginning, the algorithm constructs a Huffman tree for w1, w2, . . . , wn

and splits all nodes into classes c1, c2, . . . , cr according to their weights: all nodes
of class cu are of the same weight denoted ŵu and ŵ1 > ŵ2 > · · · > ŵr. In
addition to ŵu, the algorithm calculates for each class cu the following attributes:

– the total number of nodes in cu, denoted |cu|;
– the number of leaves in cu, denoted λu;
– provided λu �= |cu| (i.e., not all class nodes are leaves), the weights of two

children of an internal node with weight ŵu (by Lemma 7, the choice of the
node is not important), denoted w′

u and w′′
u and such that w′

u ≤ w′′
u;

– the number δu such that δu = 1 if λu �= |cu| and a node of weight w′
u has a

sibling of weight <w′
u, and δu = 0 otherwise (δu serves as δ from Lemma 8);

– the number tu such that tu = 0 if λt = |ct| for all t ≥ u, and tu = min{t ≥
u : λt �= |ct|} otherwise (tu is used to identify a node t as in Lemma 8).

It is straightforward that the attributes, for all classes, can be computed in
O(n log n) overall time. By Lemma 7, the class information (i.e., class weights
and attributes) is the same in all possible Huffman trees for w1, w2, . . . , wn.

We use a dynamic programming with parameters cu, h, k: cu is the class to
which the heaviest nodes in a depth-� layer of a Huffman tree belong, h ≤ |cu| is
the number of nodes from cu with depth �, and k ≤ h is the number of leaves from
cu with depth � (note that � is not known). Informally, the algorithm recursively
computes from cu, h, k the minimal sum

∑
�′≥� pop(q�′), where q�′ is the number

of leaves with depth �′, among all Huffman trees that, for some �, have a depth-�
layer compatible with the parameters cu, h, k. Using the class information, one
can deduce from cu, h, k the weight ŵu′ of the heaviest nodes of the lower depth-
(�+1) layer, and the number h′ of the nodes of weight ŵu′ with depth � + 1: if
tu = 0, our layer is lowest and we simply return pop(k +

∑r
i=u+1 λi); otherwise,

we denote t = tu and consider several cases according to Lemma 8:



284 D. Kosolobov and O. Merkurev

1. w′
t < w′′

t and either t �= u or k �= h; then ŵu′ = w′′
t and h′ = 1;

2. w′
t < w′′

t , t = u, and k = h (i.e., as Lemmas 7 and 8 imply, the only non-leaf
node of weight ŵt has depth � − 1); then either ŵu′ = w′

t and h′ = |cu′ | − 1
if there are at least two nodes of weight w′

t, or, otherwise, ŵu′ is the weight
immediately preceding w′

t in the sorted set of all weights and h′ = |cu′ |;
3.1 w′

t = w′′
t , t = u, and 2(h − k) + δu �= 0; then ŵu′ = ŵu/2 and h′ =

2(h − k) + δu;
3.2 w′

t = w′′
t , t = u, and 2(h − k) + δu = 0; then ŵu′ is the weight immediately

preceding ŵu/2 in the sorted set of all weights and h′ = |cu′ |;
3.3 w′

t = w′′
t and t �= u; then ŵu′ = ŵt/2 (= w′

t) and h′ = 2(|ct| − λt) + δt.

Thus, the parameters cu, h, k uniquely determine the weight ŵu′ (and, hence,
the class cu′) of the heaviest nodes of the subsequent depth-(�+1) layer and the
number h′ of nodes of weight ŵu′ with depth �+1 (recall that � denotes the depth
of the “(cu, h, k)-layer” and is unknown). The number of leaves of weight ŵu′

with depth � + 1, denoted k′, is a “free” parameter of the recursion. We loop
through all possible k′ and, thus, compute the minimum of the sums

∑
�′≥� q�′ .

The parameter k′ is not arbitrary: it cannot exceed neither h′ nor λu′ , and
cannot make λu′ − k′ (the number of leaves from cu′ with depth �) larger than
|cu′ | − h′ (the total number of nodes from cu′ with depth �). Processing all k′

subject to these restrictions, we compute the answer, f(cu, h, k), as follows:

f(cu, h, k)= min
0≤k′≤min{h′,λu′ }

and
λu′ −|cu′ |+h′≤k′

⎧
⎨

⎩
f(cu′ , h′, k′) + pop

⎛

⎝k+λu′−k′+
u′−1∑

i=u+1

λi

⎞

⎠

⎫
⎬

⎭
. (2)

Thus, if (2) is indeed a solution, f(c1, 1, 0) gives the answer for the problem: the
minimal

∑n
�=1 pop(q�) for all q-sources q1, q2, . . . , qn of optimal prefix-free codes;

the restriction to Huffman trees in the design of the recursion is justified by
Lemma 4. Using memoization instead of the mere recursion in (2), one obtains
a polynomial time algorithm. The optimal skeleton tree itself is constructed by
applying the algorithm of Klein et al. [12] to a q-source q1, q2, . . . , qn achieving
the minimum, which can be found by the standard backtracking technique.

It is not immediate, however, that every choice of the parameter k′ in (2)
yields a “layered structure” (designated by recursive calls) corresponding to a
valid Huffman tree for w1, w2, . . . , wn; in principle, one could imagine a situa-
tion when the assignments of cu′ , h′, k′ leading to the minimum in (2) do not
correspond to any Huffman tree at all. Fortunately, this is not the case. Let us
prove that whenever a triple (cu, h, k) is reached on an (�+1)st level of the recur-
sion (2) starting from f(c1, 1, 0) (so that the triple (c1, 1, 0) is on the first level),
it is guaranteed that there exists a Huffman tree for w1, w2, . . . , wn in which
the heaviest nodes of the depth-� layer are from the class cu, exactly h nodes of
weight ŵu have depth �, exactly k nodes of these h nodes are leaves, and every
(higher) depth-�′ layer, for �′ < �, in the tree is analogously compatible with a
corresponding triple (cu′ , h′, k′) on level �′ leading to (cu, h, k) in the recursion.

Obviously, the only node of depth zero (the root) is from the class c1 with
|c1| = 1 in all possible Huffman trees. Suppose that a triple (cu, h, k) is reached



Optimal Skeleton Huffman Trees Revisited 285

in (2) on level � + 1 starting from f(c1, 1, 0) and there is a Huffman tree T
in which the heaviest nodes with depth � are from cu, exactly h of the class cu

nodes have depth �, k of these h nodes are leaves, and all (higher) depth-�′ layers,
for �′ < �, are compatible with their corresponding triples from the call stack
of the recursion. The argument above shows that the triple (cu, h, k) uniquely
determines analogous parameters cu′ and h′ (but not k′) for the layer of depth
� + 1 in T . Fix an arbitrary integer k′ satisfying the conditions imposed by
the minimum in (2). It is straightforward that by swapping subtrees rooted at
weight-ŵu′ nodes of depths � and � + 1, one can transform T into a tree having
exactly k′ leaves from cu′ of depth � + 1. By Lemma 1, the obtained tree is a
Huffman tree too and the transformations do not affect the nodes of class cu and
nodes with depths less than �. Therefore, the claim is proved and the correctness
of the algorithm immediately follows from it.

Let us estimate the running time. The sum
∑u′−1

i=u+1 λi in (2) can be calculated
in O(1) time if one has precomputed sums

∑v
i=1 λi, for all v ≤ r. All other

parameters in (2), except k′, are precomputed and accessible in O(1) time. Since
h ≤ |cu| and

∑r
i=1 |ci| = 2n − 1 (the number of nodes in any full tree with n

leaves is 2n−1), the number of different pairs (cu, h) is O(n). Hence, the number
of triples (cu, h, k) is O(n2). For each of the triples, the algorithm runs through
at most O(n) appropriate k′s in (2). Therefore, the overall running time is O(n3)
and we have proved the following theorem.

Theorem 1. An optimal skeleton tree for positive weights w1, w2, . . . , wn can
be constructed in O(n3) time.

The table used by the algorithm of Theorem 1 is of size O(n2). The main
slowdown making the running time cubic is in the processing of O(n) possible
parameters k′ in (2). We are to optimize this aspect of the algorithm.

For i, j ∈ Z, denote [i..j] = {i, i + 1, . . . , j}. Given parameters cu, h, k, the
conditions under the minimum in (2) determine a range [k′

min..k′
max] of k′ that

should be processed. As a first attempt for optimization, one might try to pass
in the function f not one k′ but the whole range [k′

min..k′
max], as if the function

looked like f(cu′ , h′, [k′
min..k′

max]). However, in this case it is not clear how to
take into account the effects of the choice of k′ ∈ [k′

min..k′
max] on higher (with

smaller depth) layers, namely, on the following summand from (2):

pop

⎛

⎝k + λu′ − k′ +
u′−1∑

i=u+1

λi

⎞

⎠ . (3)

It turns out that the range [k′
min..k′

max] can be split into O(log n) disjoint sub-
ranges so that, for each subrange, the effect of the choice of k′ on higher layers
is well determined. The splitting is based on the following lemma.

Lemma 9. In O(log b) time one can split any range [a..b−1] into subranges
[i0..i1−1], [i1..i2−1], . . . , [im−1..im−1] such that a = i0 < i1 < · · · < im = b,
m ≤ 2 log2 b, and for each j ∈ [0..m−1], the length of the subrange [ij ..ij+1−1]
is a power of two and pop(ij +x) = pop(ij)+pop(x) whenever 0 ≤ x < ij+1− ij.



286 D. Kosolobov and O. Merkurev

Proof. We use the operation ctz(x) counting trailing zeros in the binary represen-
tation of x.1 The subranges are generated iteratively: given ij (initially i0 = a),
we compute dj = max{d ≤ ctz(ij) : ij + 2d ≤ b} decrementing d = ctz(ij) until
ij +2d ≤ b, and put ij+1 = ij +2dj ; we stop when ij+1 = b. Since ctz(x+2d) > d
for d = ctz(x), the numbers dj first increase on each iteration (d0 < d1 < · · · ),
then decrease (· · · > dm−2 > dm−1), but always dj ≤ log2 b. Therefore, at most
2 log2 b subranges are created. Finally, since each ij , by construction, has at least
dj trailing zeros, we have pop(ij + x) = pop(ij) + pop(x) for 0 ≤ x < 2dj . ��

Suppose that we compute f(cu, h, k) using the recursion (2). The range
[k′

min..k′
max] for k′ determined by the conditions under the minimum in (2) is

bijectively mapped onto a contiguous range of arguments for pop in (3), namely,
onto [Δ−k′

max..Δ−k′
min], where Δ = k+λu′+

∑u′−1
i=u+1 λi. According to Lemma 9,

in O(log n) time one can split the range [k′
min..k′

max] into O(log n) disjoint sub-
ranges [i0+1..i1], [i1+1..i2], . . . , [im−1+1..im], for some i1 < i2 < · · · < im,
such that, for any j ∈ [1..m], the length of [ij−1+1..ij ] is a power of two,
denoted by 2dj , and one has pop(Δ − k′) = pop(Δ − ij) + pop(ij − k′) whenever
ij −2dj < k′ ≤ ij . Therefore, the minimum in (2) restricted to any such subrange
[ij−1+1..ij ] can be transformed as follows:

min{f(cu′ , h′, k′) + pop(Δ − k′) : ij−1 < k′ ≤ ij} =
pop(Δ − ij) + min{f(cu′ , h′, ij − s) + pop(s) : 0 ≤ s < 2dj }. (4)

In order to compute the minimum of the values f(cu′ , h′, ij − s) + pop(s), we
devise a new function g(cu, h, kmax, d) that is similar to f but, instead of simply
computing f(cu, h, kmax), it finds the minimum of f(cu, h, kmax − s) + pop(s)
for all s ∈ [0..2d−1]. In other words, the function g computes the minimum of
f(cu, h, k) in the range kmax−2d < k ≤ kmax taking into account the effect on the
higher layer (something that f does not care). Using (4), one can calculate (2) by
finding the following minimum: min{pop(Δ − ij) + g(cu′ , h′, ij , dj) : j ∈ [1..m]},
which contains O(log n) invocations of g since m = O(log n) due to Lemma 9.
The implementation of the function g itself is rather straightforward:

g(cu, h, kmax, 0) = f(cu, h, kmax),

g(cu, h, kmax, d) = min
{

g(cu, h, kmax, d − 1),
g(cu, h, kmax − 2d−1, d − 1) + 1.

(5)

While computing g(cu, h, kmax, d) with d > 0, we choose whether to set the dth
bit of s in order to minimize f(cu, h, kmax− s) + pop(s): if set, it affects pop(s)
increasing it by one and we still can choose d−1 lower bits, hence, the answer is
the same as for g(cu, h, kmax− 2d−1, d− 1)+1; if not set, the answer is the same
as for g(cu, h, kmax, d − 1). Thus, g(cu, h, kmax, d) implemented as in (5) indeed
computes the required min{f(cu, h, kmax− s) + pop(s) : 0 ≤ s < 2d}.

The correctness of the algorithm should be clear by this point. Let us esti-
mate the running time. The splitting process in the described implementation
1 If not supported, it can be implemented using a precomputed table of size O(n) [6].



Optimal Skeleton Huffman Trees Revisited 287

of f(cu, h, k) takes O(log n) time, by Lemma 9, which is a significant improve-
ment over the previous O(n) time. Since the number of tripes (cu, h, k) is O(n2)
in total, there are at most O(n2 log n) quadruples (cu, h, kmax, d) that can serve
as parameters for g (note that 0 ≤ d ≤ log2 n). Every such quadruple is pro-
cessed in constant time according to (5). Therefore, the overall running time of
such algorithm with the use of memoization is O(n2 log n).

Theorem 2. An optimal skeleton tree for positive weights w1, w2, . . . , wn can
be constructed in O(n2 log n) time.

References

1. Abrahams, J.: Code and parse trees for lossless source encoding. In: Proceedings of
the Compression and Complexity of Sequences, pp. 145–171. IEEE (1997). https://
doi.org/10.1109/SEQUEN.1997.666911

2. Baruch, G., Klein, S.T., Shapira, D.: A space efficient direct access data structure.
J. Discrete Algorithms 43, 26–37 (2017). https://doi.org/10.1016/j.jda.2016.12.001

3. Duda, J.: Asymmetric numeral systems. arXiv preprint arXiv:0902.0271 (2009)
4. Ferguson, T.J., Rabinowitz, J.H.: Self-synchronizing Huffman codes. IEEE Trans.

Inf. Theory 30(4), 687–693 (1984). https://doi.org/10.1109/TIT.1984.1056931
5. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:

Proceedings of the Symposium on Foundations of Computer Science (FOCS), pp.
390–398. IEEE (2000). https://doi.org/10.1109/SFCS.2000.892127

6. Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci. 47(3), 424–436 (1993). https://doi.org/10.1016/
0022-0000(93)90040-4

7. Gallager, R.G.: Variations on a theme by Huffman. IEEE Trans. Inf. Theory 24(6),
168–174 (1978). https://doi.org/10.1109/TIT.1978.1055959

8. Golomb, S.W.: Sources which maximize the choice of a Huffman coding tree. Inf.
Control 45(3), 263–272 (1980). https://doi.org/10.1016/S0019-9958(80)90648-8

9. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proceedings of the Symposium on Discrete Algorithms (SODA), pp. 841–850.
SIAM (2003)

10. Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proc. Inst. Radio Eng. (IRE) 40(9), 1098–1101 (1952). https://doi.org/10.1109/
JRPROC.1952.273898

11. Klein, S.T.: Skeleton trees for the efficient decoding of Huffman encoded texts. Inf.
Retrieval 3(1), 7–23 (2000). https://doi.org/10.1023/A:1009910017828

12. Klein, S.T., Serebro, T.C., Shapira, D.: Optimal skeleton Huffman trees. In: Fici,
G., Sciortino, M., Venturini, R. (eds.) SPIRE 2017. LNCS, vol. 10508, pp. 241–253.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67428-5 21

13. Kraft, L.G.: A device for quantizing, grouping, and coding amplitude modulated
pulses. Master’s thesis, MIT, Cambridge, Massachusetts (1949)

14. van Leeuwen, J.: On the construction of Huffman trees. In: Proceedings of the
International Colloquium on Automata, Languages and Programming (ICALP),
pp. 382–410. Edinburgh University Press (1976)

15. Mäkinen, V., Navarro, G.: New search algorithms and time/space tradeoffs for
succinct suffix arrays. Technical report C-2004-20, University of Helsinki, Finland,
April 2004

https://doi.org/10.1109/SEQUEN.1997.666911
https://doi.org/10.1109/SEQUEN.1997.666911
https://doi.org/10.1016/j.jda.2016.12.001
http://arxiv.org/abs/0902.0271
https://doi.org/10.1109/TIT.1984.1056931
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1016/0022-0000(93)90040-4
https://doi.org/10.1016/0022-0000(93)90040-4
https://doi.org/10.1109/TIT.1978.1055959
https://doi.org/10.1016/S0019-9958(80)90648-8
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1023/A:1009910017828
https://doi.org/10.1007/978-3-319-67428-5_21


288 D. Kosolobov and O. Merkurev

16. Moffat, A.: Huffman coding. ACM Comput. Surv. 52(4), 1–35 (2019). https://doi.
org/10.1145/3342555

17. Shapira, D., Daptardar, A.: Adapting the Knuth-Morris-Pratt algorithm for pat-
tern matching in Huffman encoded texts. Inf. Process. Manag. 42(2), 429–439
(2006). https://doi.org/10.1016/j.ipm.2005.02.003

https://doi.org/10.1145/3342555
https://doi.org/10.1145/3342555
https://doi.org/10.1016/j.ipm.2005.02.003


The Subtrace Order and Counting
First-Order Logic

Dietrich Kuske(B)

Technische Universität Ilmenau, Ilmenau, Germany
dietrich.kuske@tu-ilmenau.de

Abstract. We study the subtrace relation among Mazurkiewicz traces
which generalizes the much-studied subword order. Here, we consider
the 2-variable fragment of a counting extension of first-order logic with
regular predicates. It is shown that all definable trace languages are
effectively recognizable implying that validity of a sentence of this logic
is decidable (this problem is known to be undecidable for virtually all
stronger logics already for the subword relation).

Keywords: Mazurkiewicz traces · Counting logic · Subword relation

1 Introduction

The subword relation is one of the simplest nontrivial examples of a well-quasi
ordering [7] and can be used in the verification of infinite state systems [4]. It
can be understood as embeddability of one word into another. This embeddabil-
ity relation has been considered for other classes of structures like trees, posets,
semilattices, lattices, graphs etc. [8,11,19,21]; this paper initiates its considera-
tion for the class of Mazurkiewicz traces. (The prefix order on the set of traces
has been studied extensively before, both order-theoretically (cf. [5]) and under
logical aspects (e.g., [15]).)

These traces were first investigated by Cartier and Foata [2] to study the com-
binatorics of free partially commutative or, equivalently, trace monoids. Later,
Mazurkiewicz [16] used them to relate the interleaving and the partial-order
semantics of a distributed system (see [3] for surveys on the many results on
trace monoids).

Many of the above mentioned papers on the embeddability relation study
its logical aspects. Regarding the subword relation, they provide a rather sharp
description of the border between decidable and undecidable fragments of first-
order logic: For the subword order alone, the ∃∗-theory is decidable [12] and
the ∃∗∀∗-theory is undecidable [9]. For the subword order together with regular
predicates, the two-variable theory is decidable [9] (this holds even for the two-
variable fragment of a counting extension of first-order logic [14]) and the three-
variable theory [9] as well as the ∃∗-theory are undecidable [6] (even if we only
consider singleton predicates, i.e., constants). If one restricts the universe from
all words to a particular language, an even more diverse picture appears [14].
c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 289–302, 2020.
https://doi.org/10.1007/978-3-030-50026-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-50026-9_21


290 D. Kuske

All the undecidability results hold for the subtrace relation since it generalizes
the subword relation. The strongest decidability result for the subword relation
is the decidability of the 2-variable fragment of a counting extension of first-order
logic [14]. The proof shows that every definable unary relation is an effectively
regular language. It proceeds by quantifier elimination and relies crucially on the
fact that the downwards closure, the upwards closure, and the “incomparability
language” (i.e., the set of words that are incomparable to some element of the
language) of a regular language are effectively regular. These three preserva-
tion results hold since the subword relation and the incomparability relation are
unambiguous rational transductions [9].

Considering the subtrace relation, the main result of this paper shows the
decidability of the 2-variable fragment of the extension of first-order logic by
threshold-counting quantifiers. This extends results by Karandikar and Schnoe-
belen [9] and by Kuske and Zetzsche [14] from words to traces. As their proofs for
words, we proceed by quantifier elimination and rely on the preservation prop-
erties mentioned above, but this time for trace languages. Differently from the
study of subwords, here we cannot use rational relations for traces since they do
not preserve recognizability (and are not available for other classes of structures
at all).

To substitute the use of rational relations, we consider the internal structure
of a trace, i.e., we consider a trace not as an element of a monoid, but as a labeled
directed graph. Now monadic second order (abbreviated MSO) logic can be used
to make statements about such a graph. Generalizing Büchi’s result, Thomas [20]
showed that a set of traces is recognizable if, and only if, it is the set of models of
some MSO-sentence. With this shift of view, we have to prove the preservation
results not for recognizable, but for MSO-definable sets of traces. This is rather
straightforward for the upwards closure since a trace has a subtrace satisfying
some MSO-sentence σ if, and only if, some induced subgraph satisfies σ which
is easily expressible in MSO logic. Since we consider also threshold counting
quantifiers, we have to express, e.g., that there are two non-isomorphic induced
subgraphs satisfying σ. Since isomorphism is not expressible in MSO logic, the
solution relies on “leftmost” or “canonical” subgraphs. When talking about the
incomparability relation, we are interested in traces (i.e., graphs) that are neither
a sub- nor a supergraph. We base the solution on the largest prefix of one trace
that is a subtrace of the other trace as well as on the combinatorics of traces
and, in particular, on MSO logic.

Methodwise, we derive the decidability without the use of rational relations.
Instead, our arguments are based on the rich theory of traces and in particular
on the relation between recognizability and MSO-definability in this setting. It
remains to be explored whether these ideas can be transfered to other settings
where rational relations are not available.



The Subtrace Order and Counting First-Order Logic 291

2 Definitions and Main Result

2.1 Traces and Subtraces

A dependence alphabet is a pair (Σ,D) where Σ is a finite alphabet and the
dependence relation D ⊆ Σ2 is symmetric and reflexive.

A trace over (Σ,D) is (an isomorphism class of) a directed acyclic graph
t = (V,E, λ) with node-labels from Σ (i.e., λ : V → Σ) such that, for all x, y ∈ V ,

– (x, y) ∈ E =⇒ (λ(x), λ(y)) ∈ D and
– (λ(x), λ(y)) ∈ D =⇒ (x, y) ∈ E or x = y or (y, x) ∈ E.

The set of all traces is denoted M(Σ,D), 1 is the unique trace with empty set
of nodes. For two traces s = (Vs, Es, λs) and t = (Vt, Et, λt), we define their
product s · t = u = (Vu, Eu, λu) setting Vu = Vs � Vt, λu = λs ∪ λt, and
Eu = Es ∪ Et ∪ {(x, y) ∈ Vs × Vt | (λs(x), λt(y)) ∈ D}.

This operation is easily seen to be associative with neutral element 1, i.e.,
M(Σ,D) forms a monoid that we call trace monoid (induced by (Σ,D)).

Let a ∈ Σ. Abusing notation, we denote the singleton trace ({x}, ∅, {(x, a)})
by a. Then the monoid M(Σ,D) is generated by the set Σ of singleton traces.

Note that M(Σ, {(a, a) | a ∈ Σ}) ∼= (N,+)|Σ| and M(Σ,Σ × Σ) ∼= Σ∗. Fur-
ther, the direct and the free product of two trace monoids is a trace monoid,
again. But there are also trace monoids not arising by free and direct prod-
ucts from free monoids (consider, e.g., the dependence alphabet with Σ =
{a1, a2, a3, a4} and (ai, aj) ∈ D ⇐⇒ |i − j| ≤ 1). See [3] for a collection of
surveys on the many results known for traces.

Let t = (V,E, λ) be a trace. To simplify notation, we write X ⊆ t for “X is
a set of nodes of t”, i.e., for X ⊆ V .

Now let X ⊆ t. Then t�X denotes the subgraph of t induced by X, i.e.,
(X,E∩X2, λ�X). Note that s = t�X is a trace that we call subtrace of t (induced
by X). We denote this fact by s �sub t and call t a supertrace of s.

It can be observed that s �sub t if, and only if, there are a natural number
n ≥ 0 and traces s1, s2, . . . , sn and t0, t1, . . . , tn such that s = s1s2 · · · sn and
t = t0s1t1s2t2 · · · sntn.

2.2 Recognizable Sets

Let (M, ·, 1) be some monoid. A set S ⊆ M is recognizable if there exists a
monoid homomorphism η : (M, ·, 1) → M ′ into some finite monoid M ′ such that
η(s) = η(t) and s ∈ S imply t ∈ S for all s, t ∈ M . We call the triple (M ′, η, η(S))
an automaton accepting S.

2.3 The Logic C2 and the Main Result

Let (Σ,D) be some dependence alphabet and let R denote the class of recog-
nizable subsets of M(Σ,D). We consider the structure

S = (M(Σ,D),�sub,R)



292 D. Kuske

whose universe is the set of traces, whose only binary relation is the subtrace
relation and that has a unary relation for each recognizable subset of M(Σ,D).
We will make statements about this structure using some variant of classical
first-order logic. More precisely, the formulas of C2 are defined by the following
syntax:

ϕ := x1 �sub x2 | x1 = x2 | x1 ∈ S | ϕ ∨ ϕ | ¬ϕ | ∃≥kx1 ϕ

where x1, x2 are variables from {x, y}, S ∈ R is some recognizable set, and
k ∈ N. Note that we allow only two variables, namely x and y. The semantics of
these formulas is as expected with the understanding that ∃≥kx1 ϕ holds if there
are at least k mutually distinct traces t1, t2, · · · , tk ∈ M(Σ,D) that all make the
formula ϕ true. Note that ∃≥1 is the usual existential quantifier and that ∃≥0x ϕ
is always true. Now we can formulate the main result of this paper and sketch
its proof from results to be demonstrated in later sections:

Theorem 2.1. If ϕ(x) is a formula from C2 with a single free variable, then
the set of traces S(ϕ) = {t ∈ M(Σ,D) | S |= ϕ(t)} is recognizable.

Even more, from the dependence alphabet (Σ,D) and the formula ϕ, one
can compute an automaton accepting this set. Consequently, the C2-theory of
(M(Σ,D),�sub,R) is decidable uniformly in (Σ,D).

Proof. The proof proceeds by induction on the construction of the formula ϕ, the
most interesting case being ϕ = ∃≥kx ψ(x, y). Using arguments like de Morgan’s
laws and basic arithmetic, one can reduce this to the case that ψ(x, y) is a
conjunction of possibly negated formulas of the following form:

(a) x �sub y, x �sub x, y �sub x, y �sub y
(b) x ∈ S and y ∈ S for S ∈ R
(c) ∃≥�x : α(x, y) and ∃≥�y : α(x, y)

Since formulas of the form (c) have at most one free variable, we can apply the
induction hypothesis, i.e., replace them by formulas of the form (b). Since R is
closed under Boolean operations, there are Si, Ti ∈ R such that the formula ψ
is equivalent to the formula

y ∈ T1∨(x �sub y ∧ y ��sub x ∧ x ∈ S2 ∧ y ∈ T2)
∨(x ��sub y ∧ y �sub x ∧ x ∈ S3 ∧ y ∈ T3)
∨(x ��sub y ∧ y ��sub x ∧ x ∈ S4 ∧ y ∈ T4) .

Since the order relations between x and y in this formula are mutually exclusive,
the formule ϕ is equivalent to a Boolean combination of formulas of the form
y ∈ T and

∃≥�x : (x θ1 y ∧ y θ2 x ∧ x ∈ S ∧ y ∈ T )

with θ1, θ2 ∈ {�sub, ��sub}, 
 ≤ k and S, T ∈ R. Depending on θ1 and θ2, this
last formula defines a Boolean combination of T and sets of traces t satisfying



The Subtrace Order and Counting First-Order Logic 293

S contains ≥ 
 traces s that are a proper subtrace of (a proper
supertrace of, are incomparable with, resp.) t.

Theorems 3.4, 4.5, and 5.13 demonstrate that these sets are effectively recogniz-
able which completes this proof. ��

The proofs of the three results on recognizable trace languages (Theorems 3.4,
4.5, and 5.13) are the content of the remaining paper. But before, we formulate
a simple consequence that describes the expressive power of the logic C2.

Corollary 2.2. Let R ⊆ M(Σ,D)2. Then the following are equivalent:

1. There is some ϕ(x, y) ∈ C2 such that R = {(s, t) ∈ M(Σ,D)2 | S |= ϕ(s, t)}.
2. R is a finite union of relations of the form {(s, t) ∈ S × T | s θ1 t θ2 s} where

S and T are recognizable subsets of M(Σ,D) and θ1, θ2 ∈ {�sub, ��sub}.
By Mezei’s theorem (cf. [1]), this can be reformulated as “R is a Boolean

combination of recognizable subsets of the monoid M(Σ,D)2 and the subtrace
relation.”

2.4 Auxiliary Definitions

Let E ⊆ V 2 be a binary relation (e.g., a partial order or an acyclic relation).
Then vE = {w ∈ V | (v, w) ∈ E} and Ev = {w ∈ V | (w, v) ∈ E} for v ∈ V . A
set X ⊆ V is downwards closed wrt. E if Ex ⊆ X for all x ∈ X. By X↓E , we
denote the least downwards closed subset of V containing X. A node v ∈ V is
maximal in V if vE = ∅, max(V,E) denotes the set of maximal elements of V .
Dually, we define upwards closed sets, X↑E , and minimal elments of V .

Let t = (V,E, λ) ∈ M(Σ,D) be a trace. Then |t| = |V | denotes the size of t,
i.e., its number of nodes. We write |t|a for the number of nodes of t that are
labeled by a (for a ∈ Σ). By alphmin(t), we denote the set of letters λ(v) for
v ∈ min(t).

Let s, t ∈ M(Σ,D) be traces. We call s a prefix of t (denoted s �pref t) if
there exists a trace s′ with s · s′ = t. The set of all prefixes of t forms a finite
lattice under the relation �pref . Even more, any set L of traces that all are
prefixes of some trace t have a least upper bound that we denote sup(L) and
call the supremum of L.

Let, again, t = (V,E, λ) ∈ M(Σ,D) be a trace and A ⊆ Σ. Then X =
λ−1(A)↓E ⊆ V is the set of nodes of t that are dominated by some node whose
label belongs to A. We denote t�X by ∂A(t). This is the smallest prefix s of t
such that |s|a = |t|a for all letters a ∈ A. We write ∂b(t) for ∂{b}(t) for b ∈ Σ. In
this context, we also need the definition D(B) =

⋃
b∈B Db for B ⊆ Σ of letters

that are dependent from some letter in B.

3 Downward Closure

Definition 3.1. Let S be a set of traces and k ∈ N. Then S↓≥k is the set of
traces t such that there are ≥ k traces s ∈ S with t �sub s.



294 D. Kuske

Note that S↓≥1 is the usual downward closure S↓�sub
of S as defined above. It

is our aim to prove that S↓≥k is effectively recognizable if S is recognizable.

Lemma 3.2. Let S ⊆ M(Σ,D) be a recognizable trace language. Then the trace
language S↓≥1 is effectively recognizable.

Proof. The set S is effectively rational [17, Theorem 2]. By induction on the
rational expression denoting S, one can construct a starfree expression denot-
ing S↓≥1. Since R is effectively closed under Boolean operations and concatena-
tion (cf. [3]), the result follows. ��
Lemma 3.3. Let S ⊆ M(Σ,D) be a recognizable set of traces and k ≥ 1. Then
the trace language S↓≥1 \ S↓≥k is effectively recognizable.

Proof. Let n be the size of some automaton accepting S. A pumping argument
shows that all traces from S↓≥1 of length ≥ n also belong to S↓≥k. Consequently,
the difference of these two sets is finite and therefore recognizable. ��

Now S↓≥k is effectively recognizable since it is the difference of the two sets
from the two lemmas above. Note that a trace t has ≥ k proper supertraces in
S if, and only if, it belongs to (S ∩ S↓≥k+1) ∪ (S↓≥k \ S). Thus, we showed the
following result:

Theorem 3.4. Let S ⊆ M(Σ,D) be recognizable and k ∈ N with k ≥ 1. Then
the set of traces t with at least k distinct proper supertraces from S is effectively
recognizable.

4 Upward Closure

Definition 4.1. Let S be a set of traces and k ∈ N. Then S↑≥k is the set of
traces t such that there are ≥ k traces s ∈ S with s �sub t.

It is our aim to prove that S↑≥k is effectively recognizable if S is recognizable.
The main tool in this section (and also in the following one) is a logic that talks
about the internal structure of a trace t = (V,E, λ).

The logic C2 considers traces as elements of the structure (M(Σ,D),�sub,R)
such that it allows to describe “external” properties of traces (e.g., the existence
of at least two subtraces in a recognizable set S). We now shift our point of view
and look at traces as relational structures. Then logical formulas describe their
“internal” properties (e.g., the existence of two a-labeled nodes).

To define the set of MSO-formulas, we fix a set of first-order and a (disjoint)
set of monadic second-order variables (the former are usually denoted by small
letters, the latter by capital letters). Then MSO-formulas are defined by the
following syntax (where x and y are first-order variables, X is a second-order
variable, and a ∈ Σ):

ϕ := (x = y) | λ(x) = a | (x, y) ∈ E | x ∈ X | ϕ ∨ ϕ | ¬ϕ | ∃x ϕ | ∃X ϕ .



The Subtrace Order and Counting First-Order Logic 295

Henceforth, we will speak of “formulas” when we actually mean “MSO-
formulas”.

The satisfaction relation |= between a trace t = (V,E, λ) and a formula ϕ
is defined in the obvious way with the understanding that first-order variables
denote single nodes and second-order variables denote sets of nodes of the trace.

Definition 4.2. Let S be a set of traces. Then S is definable if there exists a
sentence ϕ with S = {s ∈ M(Σ,D) | s |= ϕ}.

Since the notions “definable” and “recognizable” are effectively equivalent for
sets of traces [20], we can reformulate the aim of this section as “if S ⊆ M(Σ,D)
is definable, then so is S↑≥k”.

Consequently, we have to write down a formula that holds in a trace t if, and
only if, it has at least k subtraces from S. The idea is to express that there are
k distinct subsets of t that all induce traces from S. The problem we face here
is that distinct subsets can induce the same subtrace. This problem is solved by
choosing the “minimal”, “leftmost” or, as we call it, “canonical” set X.

Definition 4.3. Let t be some trace and Z ⊆ t. Then Z is canonical in t if
t |= canon(Z), where canon(Z) is the formula

∀x, z :
((

λ(x) = λ(z) ∧ x /∈ Z ∧ z ∈ Z ∧ (x, z) ∈ E
)

→ ∃y ∈ Z :
(
(x, y) ∈ E ∧ (y, z) ∈ E

)
)

.

Then we can show that every subtrace of t is induced by precisely one set
canonical in t:

Theorem 4.4. Let s �sub t be traces. Then there is a unique canonical set
X ⊆ t with s ∼= t�X .

Theorem 4.4 allows us to obtain the main result of this section:

Theorem 4.5. Let S ⊆ M(Σ,D) be definable and k ∈ N with k ≥ 1. Then
the set S↑≥k is effectively definable. Similarly, the set of traces with ≥ k proper
subtraces from S is effectively definable.

Proof. Let σ be a sentence defining S and consider the sentence

∃X1,X2, . . . , Xk

⎛

⎝
∧

1≤i≤k

(
σ�Xi

∧ canon(Xi)
) ∧

∧

1≤i<j≤k

Xi �= Xj

⎞

⎠

where σ�X arises from σ by restricting all quantifications to elements and subsets
of X. By Theorem 4.4, it defines the set S(σ)↓≥k. To show the claim about proper
subtraces, we require the sets Xi to be different from the set of all nodes. ��



296 D. Kuske

5 Incomparable Traces

For two traces s and t, we write s ‖ t as abbreviation for t ��sub s ��sub t.

Definition 5.1. Let S be a set of traces and k ∈ N. Then S
‖
≥k is the set of

traces t such that there are ≥ k traces s ∈ S satisfying t ‖ s.

It is our aim to prove that S
‖
≥k is effectively definable if S is definable.

Two traces s and t are incomparable if, and only if, either |s| ≤ |t| and
s ��sub t, or |s| > |t| and t ��sub s. In the following two subsections, we will
consider these two cases separately.

5.1 Short Non-subtraces

Definition 5.2. Let S be a set of traces and k ∈ N. Then Sshort
≥k is the set of

traces t such that there are ≥ k traces s ∈ S with |s| ≤ |t| and s ��sub t.

Let S be defined by the sentence σ. We have to formulate, as a property of
the labeled directed graph t = (V,E, λ), the existence of k models s of σ that
all are incomparable with t and have length at most |t|. The idea is to split a
trace s into its largest prefix s1 that is a subtrace of t and the complementary
suffix (using Theorem 4.4, one first shows that s1 is uniquely defined for any pair
of traces (s, t)). Since s1 is a subtrace of t, Theorem 4.4 ensures that t ∈ Sshort

≥k

if, and only if, there are k pairs (X, s2) such that

(1) X ⊆ t is canonical and s2 ∈ M(Σ,D),
(2) (t�X) · s2 |= σ,
(3) t�X = sup{s1 �pref (t�X) · s2 | s1 �sub t}, and
(4) 1 ≤ |s2| ≤ |t| − |X|.
From Shelah’s decomposition theorem [18, Theorem 2.4], we obtain a finite fam-
ily (τj , νj)j∈J of sentences such that Condition (2) is equivalent to

(2’) there exists j ∈ J with t�X |= τj (equivalently, (t,X) |= τj�X) and s2 |=
νj .

Thus, we express Condition (2) as a Boolean combination of properties of
(t,X) and of s2. Our next aim is to also express Condition (3) in such a manner.

To this end, let t, s2 ∈ M(Σ,D) and X ⊆ t. One first shows that Condition (3)
holds if, and only if, for all a ∈ alphmin(s2), the trace (t�X) · a is not a subtrace
ot t. Let U(t,X) denote the set of letters a ∈ Σ that violate this last condition,
i.e., that satisfy (t�X) · a �sub t. If X is canonical, we can express the statement
a ∈ U(t,X) by a formula:

Lemma 5.3. Let t = (V,E, λ) ∈ M(Σ,D) be a trace, X ⊆ t be canonical, and
a ∈ Σ. Then a ∈ U(t,X) if, and only if, there exists y ∈ V with λ(y) = a and
yE ∩ X = ∅.

Hence, for A ⊆ Σ, there are formulas αA(X) and sentences βA such that



The Subtrace Order and Counting First-Order Logic 297

– (t,X) |= αA if, and only if, A ∩ U(t,X) = ∅ for all t ∈ M(Σ,D) and X ⊆ t
canonical and

– s2 |= βA if, and only if, A = alphmin(s2).

In summary, we found a family of formulas (αA(X), βA)A⊆Σ such that Con-
dition (3) is equivalent to

(3’) there exists A ⊆ Σ with (t,X) |= αA and s2 |= βA.

Thus, t ∈ Sshort
≥k if, and only if, there are k pairs (X, s2) all satisfying the

conditions (1), (2’), (3’), and (4). We group these pairs according to their first
component. Then t ∈ Sshort

≥k if, and only if, there exist 
 ≤ k, a function
f : {1, . . . , 
} → {0, 1, . . . , k} with

∑
1≤i≤� f(i) = k, and sets A1, A2, . . . , A� ⊆ Σ

such that there are mutually distinct canonical sets Xi ⊆ t satisfying, for all
i ∈ [
], the existence of some j ∈ J with

– (t,Xi) |= τj ∧ αAi
,

– there are f(i) many traces s2 of length 1 ≤ |s2| ≤ |t| − |Xi| satisfying s2 |=
νj ∧ βAi

.
From νj ∧βAi

, one can compute a number N such that this holds if, and only
if, |t| − |Xi| ≥ N . Hence this is a property of (t,Xi) that can be expressed by
a formula.

All this can be translated into a sentence that only talks about the trace t.
Consequently, we obtain

Proposition 5.4. Let S ⊆ M(Σ,D) be definable and k ∈ N with k ≥ 1. Then
Sshort

≥k is effectively definable.

5.2 Long Non-supertraces

Definition 5.5. Let T be a set of traces and k ∈ N. Then T long
≥k is the set of

traces s such that there are ≥ k traces t ∈ T with |s| < |t| and s ��sub t.

We have to formulate, as a property of the labeled directed graph s =
(V,E, λ), the existence of k traces t ∈ T that all are incomparable with s and
have length at least |s| + 1. The first idea is, again, to split the trace s into
its largest prefix s1 that is a subtrace of t and the complementary suffix. Since
this time, we have to formulate properties of s, we would then have to “fill” the
prefix s1 with arbitrarily many nodes to obtain the trace t (more precisely: the
minimal prefix of t that contains s1 as a subtrace). Since this cannot be done
with logical formulas, we have to bound this number of “missing pieces”. The
central notion here is the following:

Definition 5.6. Let t = (V,E, λ) be a trace and X ⊆ t. The number of holes
of X in t equals nh(X, t) = |X↓E \ X|.

Now let s be a trace. If s �sub t, then nh(s, t) = nh(X, t) where X ⊆ t is
canonical with s = t�X . If s is not a subtrace of t, then nh(s, t) = ∞.



298 D. Kuske

The following lemma describes, in terms of the number of holes and the
length difference, when a trace is a subtrace of a longer trace:

Lemma 5.7. Let s, t be traces with |s| < |t|. Then s ‖ t if, and only if, s �=
sup{s′ �pref s | nh(s′, t) ≤ |t| − |s|}.

Recall that we have to express, as a property of the labeled directed graph s =
(V,E, λ), the existence of k properly longer traces t ∈ T with s ��sub t. In doing
so, the previous characterisation is particularly useful if the length difference of t
and s is fixed. The following lemma, whose proof uses a straightforward pumping
argument, allows to do precisely this:

Lemma 5.8. One can compute a number n ∈ N such that the following holds
for all k ∈ N and s ∈ T long

≥k : There exist k traces t ∈ T such that |s| < |t|,
s ��sub t, and |t| ≤ |s| + k · (n + 1).

Thus, it suffices to characterize, for all k ≥ 0 and all length differences N > 0,
those traces s that allow ≥ k traces t ∈ T with |t| = |s|+N and s �= sup{s′ �pref

s | nh(s′, t) ≤ N}.
Grouping these traces t according to sup{s′ �pref s | nh(s′, t) ≤ N}, it

suffices to characterize those pairs (s1, s2) with s2 �= 1 (where we think of s1s2
as a factorisation of s) that allow ≥ k pairs (t1, t2) of traces such that

(a) t1t2 ∈ T and t1 is the minimal prefix of t1t2 with s1 �sub t1,
(b) |s1s2| + N = |t1t2|, and
(c) s1 = sup{s′ �pref s1s2 | nh(s′, t1t2) ≤ N}.

Note that t1 is the minimal prefix of t1t2 with s1 �sub t1 if, and only if,
s1 �sub t1 and, for all prefixes t′ �pref t1 with s1 �sub t′, we have t′ = t1. This
allows to reformulate the second half of Condition (a) as a condition on the pair
(s1, t1), only. Since T is definable, Shelah’s decomposition theorem allows us to
compute a finite family (μj , νj)j∈J of pairs of sentences such that t1t2 ∈ T if,
and only if, there exists j ∈ J with t1 |= μj and t2 |= νj .

Consequently, for k ≥ 0, N > 1, and a fixed index j ∈ J , it suffices to
characterize those pairs (s1, s2) with s2 �= 1 that allow ≥ k pairs (t1, t2) of traces
such that, besides Conditions (b) and (c), also the following holds:

(aj) t1 |= μj , s1 �sub t1, and s1 �sub t′ ⇒ t′ = t1 for all t′ �pref t1 and
s2 |= νj .

Let (t1, t2) be a pair of traces with these properties. At this point, it comes in
handy that nh(s1, t1t2) ≤ N ·|Σ| (this holds for any traces s1, t1, and t2). Further,
since t1 is the smallest prefix of t1t2 with s1 �sub t1, we get nh(s1, t1t2) =
nh(s1, t1) = |t1| − |s1|.

Consequently, we can group these pairs (t1, t2) according to the length differ-
ence |t1|−|s1| (which can be bounded by N · |Σ| by the above). Hence, it suffices
to characterize, for k ≥ 0, N > 0, j ∈ J and for a fixed length difference 
, those
pairs (s1, s2) of traces with s2 �= 1 that allow ≥ k pairs (t1, t2) of traces such
that, besides (aj) and (c), the following holds:



The Subtrace Order and Counting First-Order Logic 299

(b�) |s1| + 
 = |t1| and |t2| = |s2| + N − 
.

Note that Conditions (aj) and (b�) form a Boolean combination of properties
of the pairs (s1, t1) and (s2, t2), respectively. Our next aim is to ensure that this
also holds for Condition (c) which forms the main work in this section.

Lemma 5.9. Let s1, s2, t1, and t2 be traces such that t1 is the minimal prefix
of t1t2 with s1 �sub t1. Then Condition (c) is equivalent to

(c1) For all a ∈ Σ, there exists a trace s′ with ∂a(s1) �pref s′s1 and nh(s′, t1) ≤
N and

(c2) For all b ∈ alphmin(s2) and all s′ with ∂D(b)(s1) �pref s′s1, we have
nh(s′b, t1t2) > N .

Condition (c1) only depends on the pair (s1, t1). Since Σ is finite, Condi-
tion (c2) is a Boolean combination of properties of s2 and of properties of the
triple (s1, t1, t2). We now reformulate this last condition using the following
lemma.

Lemma 5.10. Let b ∈ Σ, let s1, t1, t2, and s′ be traces such that t1 is the
minimal prefix of t1t2 with s1 �sub t1 and ∂b(s1) �pref s′s1. Then nh(s′b, t1t2) >
N if, and only if, one of the following holds:

– N < nh(s′b, t1) < ∞ or
– nh(s′b, t1) = nh(b, t2) = ∞ or
– nh(s′b, t1) = ∞, b �sub t2, and nh

(
sup(s′, ∂D(B)(s1), t1)

)
+ nh(b, t2) > N

where B ⊆ Σ is the set of letters appearing before the first b in t2.

Replacing nh(s′b, t1t2) > N in Condition (c2) by the properties from the above
lemma, it turns into a Boolean combination (c′

2) of statements

(i) nh(b, t2) < h for h ∈ N ∪ {∞},
(ii) “A is the set of letters appearing in t2 before the first b” for A ⊆ Σ,
(iii) “for all traces s′ with ∂b(s1) �pref s′s1” followed by a Boolean combination

of statements of the form
– N ≥ nh(s′b, t1) and nh(s′b, t1) = ∞ for b ∈ Σ, and
– nh(sup

(
sup(s′, ∂D(B)(s1)), t1)

)
< N1 for B ⊆ Σ and N1 ∈ N.

To finish, let k ∈ N, N > 0, j ∈ J , and 
 ∈ N. Further, let H denote the
set of pairs (s1, s2) of traces such that conditions (aj), (b�), (c1), and (c′

2) hold
for at least k pairs of traces (t1, t2). The conjunction of these four properties,
that talks about the quadruple (s1, s2, t1, t2), forms a Boolean combination of
properties that talk about the pairs (s1, t1) and (s2, t2), respectively.

Now we can transform the statement “(s1, s2) ∈ H” into a Boolean combi-
nation of statements of the following form:

(A) there are ≥ k1 traces t1 satisfying a Boolean combination of statements of
the form
– t1 |= μj ,



300 D. Kuske

– s1 �sub t1 and s1 �sub t′ ⇒ t′ = t1 for all t′ �pref t1,
– |s1| + 
 = |t1|,
– ∃s′ : ∂a(s1) �pref s′s1 ∧ nh(s′, t1) ≤ N , and
– statements of the form (iii).

(B) there are ≥ k2 traces t2 satisfying a Boolean combination of statements of
the following forms:

– t2 |= νj ,
– |t2| = |s2| + N − 
,
– b ∈ alphmin(s2),

– b �sub t2,
– nh(b, t2) < h,
– “A is the set of letters in t2 before the first b”

Regarding (B), we can formulate all the properties that do not mention s2
as a formula. This turns all of (B) into a condition on the minimal letters in s2
and the length of s2 which both can be expressed by a formula.

It remains to also express (A) as a property of the trace s1. As a first step,
we replace, in the Boolean combination, all references to s1 by t�X and add that
X is canonical. This gives a formula ϕ(X) talking about (t1,X) and we have to
express that there are ≥ k1 models (t1,X) of ϕ(X) all satisfying s1 = t1�X . This
is achieved by the following result:

Lemma 5.11. Let ϕ(X) be a formula and k1, n ∈ N such that (t1,X) |= ϕ
implies |t| − |X| = n. Then one can construct (from ϕ, k1, and n) a sentence ψ
such that, for all traces s1 we have s1 |= ψ if, and only if, there are ≥ k1 pairs
(t1,X) with (t1,X) |= ϕ and s1 = t1�X .

In summary, we obtained the following:

Proposition 5.12. Let T ⊆ M(Σ,D) be definable and k ∈ N with k ≥ 1. Then
the set T long

≥k is effectively definable.

Now the following result follows easily from Propositions 5.4 and 5.12:

Theorem 5.13. Let S ⊆ M(Σ,D) be definable and k ∈ N with k ≥ 1. Then the
set S

‖
≥k of traces t with at least k distinct traces s ∈ S with s ��sub t and t ��sub s

is effectively definable.

Thus, we demonstrated how to prove Theorems 3.4, 4.5, and 5.13. This closes
the gaps left open in our proof of the main result (Theorem2.1).

6 Concluding Remarks

The C+MOD2-theory of (Σ∗,�sub,R) is decidable [14]. This logic has, in addi-
tion to the logic C2, modulo-counting quantifiers ∃q,r. It seems that the only
obstacle in proving the analogous result for the subtrace order is the use of
Lemma 5.8 in the proof of Proposition 5.12. Whether this lemma has an ana-
logue in the modulo-counting setting is not clear.

The decision algorithms in this paper (as well as those in [9,14] for the
subword order) are nonelementary. Karandikar and Schnoebelen [10] prove that



The Subtrace Order and Counting First-Order Logic 301

the FO2-theory of the subword order can be decided in triply exponential space if
we only allow unary languages (instead of all languages from R), current research
improves the upper bound to doubly exponential space and extends the result
to the C2-theory [13]. It is not clear whether such an elementary upper bound
also holds for the subtrace relation.

Finally, it remains to be explored whether the methods developed in this
paper can be applied in other settings where rational relations are not available.

References

1. Berstel, J.: Transductions and Context-Free Languages. Teubner Studienbücher,
Stuttgart (1979)

2. Cartier, P., Foata, D.: Problemes combinatoires de commutation et rearrange-
ments. Lecture Notes in Mathematics, vol. 85. Springer, Heidelberg (1969). https://
doi.org/10.1007/BFb0079468

3. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific Publ. Co., London
(1995)

4. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. The-
oret. Comput. Sci. 256, 63–92 (2001)

5. Gastin, P., Petit, A.: Infinite traces. In: [3], pp. 393–486 (1995)
6. Halfon, S., Schnoebelen, Ph., Zetzsche, G.: Decidability, complexity, and expres-

siveness of first-order logic over the subword ordering. In: LICS 2017, pp. 1–12.
IEEE Computer Society (2017)

7. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc.
2, 326–336 (1952)

8. Ježek, J., McKenzie, R.: Definability in substructure orderings. I: finite semilattices.
Algebra Univers. 61(1), 59–75 (2009)

9. Karandikar, P., Schnoebelen, Ph.: Decidability in the logic of subsequences and
supersequences. In: FSTTCS 2015, Leibniz International Proceedings in Informat-
ics, vol. 45, pp. 84–97. Leibniz-Zentrum für Informatik (2015)

10. Karandikar, P., Schnoebelen, P.: The height of piecewise-testable languages and the
complexity of the logic of subwords. Log. Methods Comput. Sci. 15(2), 6:1–6:27
(2019)

11. Kudinov, O.V., Selivanov, V.L., Yartseva, L.V.: Definability in the subword order.
In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010.
LNCS, vol. 6158, pp. 246–255. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13962-8 28

12. Kuske, D.: Theories of orders on the set of words. Theoret. Inf. Appl. 40, 53–74
(2006)

13. Kuske, D., Schwarz, Ch.: Complexity of counting first-order logic for the subword
order (2020, in preparation)

14. Kuske, D., Zetzsche, G.: Languages ordered by the subword order. In: Bojańczyk,
M., Simpson, A. (eds.) FoSSaCS 2019. LNCS, vol. 11425, pp. 348–364. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17127-8 20

15. Madhusudan, P.: Model-checking trace event structures. In: LICS 2003, pp. 371–
380. IEEE Computer Society Press (2003)

16. Mazurkiewicz, A.: Concurrent program schemes and their interpretation. Technical
report, DAIMI Report PB-78, Aarhus University (1977)

https://doi.org/10.1007/BFb0079468
https://doi.org/10.1007/BFb0079468
https://doi.org/10.1007/978-3-642-13962-8_28
https://doi.org/10.1007/978-3-642-13962-8_28
https://doi.org/10.1007/978-3-030-17127-8_20


302 D. Kuske

17. McKnight, J.: Kleene’s quotient theorems. Pac. J. Math. XIV, 1343–1352 (1964)
18. Shelah, S.: The monadic theory of order. Ann. Math. 102, 379–419 (1975)
19. Thinniyam, R.S.: Defining recursive predicates in graph orders. Log. Methods Com-

put. Sci. 14(3), 1–38 (2018)
20. Thomas, W.: On logical definability of trace languages. In: Diekert, V. (ed.) Pro-

ceedings of a workshop of the ESPRIT BRA No 3166: Algebraic and Syntactic
Methods in Computer Science (ASMICS) 1989, Report TUM-I9002, Technical Uni-
versity of Munich, pp. 172–182 (1990)

21. Wires, A.: Definability in the substructure ordering of simple graphs. Ann. Comb.
20(1), 139–176 (2016). https://doi.org/10.1007/s00026-015-0295-4

https://doi.org/10.1007/s00026-015-0295-4


Speedable Left-c.e. Numbers

Wolfgang Merkle(B) and Ivan Titov

Institute of Computer Science, Heidelberg University, Heidelberg, Germany
merkle@math.uni-heidelberg.de, titov@stud.uni-heidelberg.de

Abstract. A left-c.e. real number α is ρ-speedable if there is a com-
putable left approximation a0, a1, . . . of α and a nondecreasing com-
putable function f such that we have f(n) ≥ n and

lim inf
n→∞

α − af(n)

α − an
≤ ρ,

and α is speedable if it is ρ-speedable for some ρ < 1. Barmpalias and
Lewis-Pye [JCSS 89:349–360, 2016] have implicitly shown that Martin-
Löf random left-c.e. real numbers are never speedable. We give a straight-
forward direct proof of this fact and state as open problem whether this
implication can be reversed, i.e., whether all nonspeedable left c.e. real
numbers are Martin-Löf random. In direction of solving the latter prob-
lem, we demonstrate that speedability is a degree property for Solovay
degrees in the sense that either all or no real numbers in such a degree are
speedable, and that left-c.e. real numbers of nonhigh Turing degree are
always speedable. In this connection, we observe that every c.e. Turing
degree contains a speedable left-c.e. real number. Furthermore, we obtain
a dichotomy result: by definition, left-approximations of nonspeedable
real numbers are never speedable, while for any speedable real number
all of its left approximations are ρ-speedable for all ρ > 0.

Keywords: Left-c.e. real numbers · Speedable ·
Martin-Löf-randomness · Solovay reducibility

1 Speedable Left-c.e Numbers

In the field of algorithmic randomness, left-c.e. real numbers and the struc-
ture induced on them by Solovay reducibility have been intensively studied. In
what follows, we investigate into the question to what extent computable left-
approximations of left-c.e. real numbers can be accelerated. Here Omega numbers
are of particular interest, i.e., left-c.e. real numbers that are Martin-Löf random.
By a well-known result due to various groups of authors, Omega numbers can
be equivalently characterised as the halting probabilities of universal prefix-free
Turing machines and by being Solovay complete [2, Section 9.2].

The second author was supported by Landesgraduiertenförderung Baden-
Württemberg.

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 303–313, 2020.
https://doi.org/10.1007/978-3-030-50026-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_22&domain=pdf
https://doi.org/10.1007/978-3-030-50026-9_22


304 W. Merkle and I. Titov

Definition 1. A left approximation is a converging sequence a0, a1, . . . of
dyadic rational numbers such that ai < ai+1. A real number α is left-c.e. if
there is a computable left approximation with limit α [2].

As usual and if not explicitly specified otherwise, we restrict attention to left-
c.e. numbers in the unit interval and identify such numbers with infinite binary
sequences where a sequence A(0)A(1) . . . corresponds to the real number with
binary expansion 0.A(0)A(1) . . ..

Definition 2. A function f : N → N is a speed-up function if it is non-
decreasing and n ≤ f(n) holds for all n. A left approximation a0, a1, . . . with
limit α is ρ-speedable for some real number ρ if there is a computable speed-up
function f such that we have

lim inf
n→∞

α − af(n)

α − an
≤ ρ, (1)

and the left approximation is speedable if it is ρ-speedable for some ρ < 1.
A real number α is ρ-speedable with respect to a given left approx-

imation if the left approximation converges to α and is computable and ρ-
speedable. A real number is ρ-speedable if it is ρ-speedable with respect to
some left-approximation. A real number is speedable if it is ρ-speedable for
some ρ < 1, and the notion of speedable with respect to a given left

approximation is defined in the same manner. A left approximation is non-

speedable if it is not speedable, and nonspeedable real numbers are defined
likewise.

Apparently, the notions of speedable just introduced have not been considered
in the literature before and, in particular, have no obvious connections to a
notion by the same name introduced by Soare [4]. Barmpalias and Lewis have
been shown implicitly that Martin-Löf random real numbers are nonspeedable [1,
Theorem 1.7]. In what follows, we will give a straightforward direct proof of their
result. In general, we investigate into the question which left-c.e. real numbers
are speedable. For any left approximation a0, a1, . . . of some real number α and
any speed-up function f , the values of the fraction in (1) and thus also their
limit inferior and limit superior are confined to the half-open real interval (0, 1].

Remark 3. By definition, every left-c.e real is ρ-speedable for every ρ ≥ 1 via
any computable speed-up function. Consequently, a left-c.e. real number is ρ-
speedable for all ρ in (0, 1] if and only if it is ρ-speedable for every ρ > 0. In
what follows, we will use the latter condition in order to express that a left-c.e.
real is ρ-speedable for arbitrarily small strictly positive values of ρ.

Remark 4. By definition, for a nonspeedable left-c.e. real number α all limits
inferior as in (1) are equal to 1, hence coincide with the corresponding limits
superior, which can be at most 1 by the discussion in Remark 3. I.e., for non-
speedable left-c.e. α, the values of the fractions in (1) always converge to 1.



Speedable Left-c.e. Numbers 305

By the next proposition, the limit superior of the fractions in (1) is always equal
to 1 unless the real number α is computable.

Proposition 5. Let a0, a1, . . . be a computable left approximation with limit α.
Then α is computable if and only if there is a computable speed-up function f
and some ρ < 1 where

lim sup
n→∞

α − af(n)

α − an
≤ ρ. (2)

Furthermore, in case α is computable, for every ρ > 0 there is a computable
speed-up function f that satisfies (2).

Proof. First assume that (2) holds for some computable speed-up function f .
Choose some dyadic rational number γ < 1 and some large enough m such
that α − am is at most 1 and for all n > m it holds that

α − af(n)

α − an
≤ γ, where then α − afk(m) ≤ γk

follows for all natural numbers k by a straightforward induction argument. Con-
sequently, the real number α is computable.

Next assume that α is computable and for given ρ > 0, fix some natural
number k where 1/k < ρ. Then the required speed-up function f is obtained as
follows. For given argument n, compute a dyadic rational number a′ such that

|α − a′| ≤ δ

3
where δ =

an+1 − an

k
, and let a = a′ − δ

2
.

Then we have α−δ < a < α, hence if we let f(n) be equal to the minimum m ≥ n
such that a < am, it holds that

α − af(n)

α − an
<

α − a

an+1 − an
<

δ

kδ
=

1
k

< ρ.

��

2 A Dichotomy for Speedability

For the notion of a speedable left-c.e. real number, we obtain the following
dichotomy. By definition, no left approximation of a nonspeedable left-c.e. real
number can be speedable. On the other hand, all left approximations of speedable
left-c.e. real numbers are ρ-speedable for all ρ > 0.

Theorem 6. Every speedable left-c.e. real number is ρ-speedable for any ρ > 0
with respect to any of its left approximations.

Theorem 6 is immediate from Lemmas 7 and 8.

Lemma 7. Let a0, a1, . . . be a computable left approximation that is ρ-speedable
for some ρ < 1. Then all computable left approximations with the same limit are
also ρ-speedable.



306 W. Merkle and I. Titov

Proof. Let b0, b1, . . . be any computable left-approximation that has the same
limit α as a0, a1, . . .. We show that the former left approximation is ρ-speedable
via some computable speed-up function g. In fact, it suffices to show the latter
for some computable subsequence of b0, b1, . . .. Thus we can assume that the sets

Di = {n : bi ≤ an < bi+1}

are all nonempty, hence the functions defined by

m(i) = max{f(n) : n ∈ Di} and g(i) = min{j : i ≤ j and am(i) < bj}

are total and computable. By construction, for every n there is a unique i such
that n is in Di, and for such n and i we have

α − bg(i)

α − bi
≤ α − af(n)

α − an
.

Since the limit inferior of the terms on the right-hand side is at most ρ, a sim-
ilar remark holds for the terms on the left-hand side, thus the left approxima-
tion b0, b1, . . . is ρ-speedable via g. ��
Lemma 8. Let α be a speedable left-c.e. real number and let ρ > 0 be a real
number. Then α is ρ-speedable.

Proof. Let ρinf be the infimum of the set of all real numbers γ such that α
is γ-speedable. By definition, the latter set is closed upwards, hence contains
all γ > ρinf but no γ < ρinf . Furthermore, we have ρinf < 1 since α is speedable,
and we can assume ρ < ρinf because otherwise, we are done. By choosing ρ1
and ρ2 close enough together, we can fix dyadic rational numbers ρ1, ρ2, and ρ3
that satisfy

0 < ρ1 < ρinf < ρ3 < ρ2 < 1 and
ρ2

1 − ρ2
− ρ1

1 − ρ1
<

ρ

1 − ρ
. (3)

Then α is ρ3-speedable, so we can fix a left approximation a0, a1, . . . with limit α
that is ρ3-speedable via some computable speed-up function f . Note that for any
real number x �= 1, we have

α − af(n)

α − an
< x if and only if α − af(n) <

x

1 − x
(af(n) − an), (4)

which is immediate by writing α−an as the sum of α−af(n) and af(n)−an. Note
further, that the equivalence (4) does not depend on the choice of the speed-up
function f and remains valid if we replace both occurrences of < by >. As a
consequence we have

ρ1 <
α − af(n)

α − an
< ρ2 if and only if

ρ1(af(n) − an)

1 − ρ1
< α − af(n) <

ρ2(af(n) − an)

1 − ρ2
.

(5)



Speedable Left-c.e. Numbers 307

By the choice of ρ1, ρ2, and f , in (5) the first and thus also the third inequality,
from left to right, hold for almost all n, while the second and fourth one hold
for infinitely many n. Fix n0 such that the third strict inequality in (5) holds for
all n ≥ n0. Let g(n) = f(n) for all n < n0 and for all other n choose g(n) to be
minimum such that we have

g(n) > max{g(n − 1), f(n)} and ag(n) > af(n) +
ρ1

1 − ρ1

(
af(n) − an

)
.

Then g is total by the choice of n0 and is actually a computable speed-up func-
tion. Furthermore, for the infinitely many n for which the third strict inequality
in (5) holds, we have

α − ag(n) < α − af(n) − ρ1
1 − ρ1

(
af(n) − an

)

<
ρ2

1 − ρ2

(
af(n) − an

) − ρ1
1 − ρ1

(
af(n) − an

)

<
ρ

1 − ρ

(
af(n) − an

)
<

ρ

1 − ρ

(
ag(n) − an

)
.

The relations hold for these n, from left to right and top to bottom, by definition
of g, by (5), by choice of ρ1 and ρ2, and finally by definition of g. For all such n,
by (4) we have

α − ag(n)

α − an
< ρ,

hence α is ρ-speedable. ��
Lemma 9. Let the left-c.e. real number α be speedable and let ρ > 0. Then α is
ρ-speedable with respect to some computable left approximation via the speed-up
function n 	→ n + 1.

Proof. By Theorem 6, we can fix a computable left-approximation a0, a1, . . .
of α that is ρ-speedable via some computable speed-up function f that can be
assumed to be strictly monotonic. Inductively, let g(0) = 0 and let g(i + 1) =
f(g(i)), which can also be written as g(i) = f (i)(0). Let i(n) be the maximum
index i such that g(i) ≤ n. By choice of f and by definition of the functions g
and i, we then have for all n and for i = i(n)

g(i) ≤ n < g(i + 1) = f(g(i)) ≤ f(n) < f(g(i + 1)) = g(i + 2).

In particular, for all n the interval [n, f(n)] is contained in the “double inter-
val” [g(n(i)), g(n(i) + 2)], hence

α − ag(i(n)+2)

α − ag(i(n))
≤ α − af(n)

α − an
.

This inequality remains valid if we apply the lim inf operator on both sides, hence
the limit inferior of the terms on the left-hand side is at most ρ. As a conse-
quence, at least one of the left approximations ag(0), ag(2), . . . and ag(1), ag(3), . . .
witnesses the conclusion of the lemma. ��



308 W. Merkle and I. Titov

3 Martin-Löf Random and Nonhigh Left-c.e. Real
Numbers

Recall that a Solovay test is a computable sequence I0, I1, . . . of subintervals
of the unit interval that are bounded by dyadic rational numbers such that the
sum of the interval lengths is finite. Recall further that a real number is not
Martin-Löf random if and only if it is covered by such a Solovay test in the sense
of being contained in infinitely many of the intervals In.

Theorem 10 (Barmpalias, Lewis-Pye [1]). Martin-Löf random left-c.e. real
numbers are never speedable

Proof. We show that speedable left-c.e. real numbers are never Martin-Löf ran-
dom. Fix some speedable real number α and by Lemma 9 fix a computable left
approximation a0, a1, . . . of α such that for some dyadic rational number γ < 1
and for infinitely many n it holds that

α − an+1

α − an
< γ, hence α < an +

an+1 − an

1 − γ
.

by (4). Consequently, because of an < an+1 < α, for all such n the real number α
is contained in the interval

In = [an+1, an+1 +
1

1 − γ
(an+1 − an)], where

∞∑

n=0

|In| =
1

1 − γ
(α − a0).

Since the an are computable, the intervals In form a Solovay test, which by
construction covers α. As a consequence, α is not Martin-Löf random. ��
Recall that a left-c.e. real number α is high if the jump of α and of the halting
problem are Turing equivalent, and that the latter holds if and only if there is a
function computable with oracle α that dominates all computable functions.

Theorem 11. All nonhigh left-c.e. real numbers are speedable.

Proof. Let α be a nonhigh left-c.e. real number and let a0, a1, . . . be any com-
putable left approximation with limit α. Similar to the case of computable α,
there is a function f computable in α such that

lim inf
n→∞

α − af(n)

α − an
< 1, hence

α − af(n)

α − an
≤ γ for some γ < 1 (6)

and almost all n. Since α is nonhigh, there is a computable function g that is
not dominated by f where we can assume that g is strictly monotonic and thus
is a speed-up function. So f(n) < g(n) for infinitely many n. Since (6) holds
for almost all of these n, the left approximation a0, a1, . . . and thus also the real
number α is speedable via g. ��



Speedable Left-c.e. Numbers 309

Theorems 10 and 11 leave open whether high left-c.e. real numbers that are
not Martin-Löf random are speedable or nonspeedable. In particular, we do not
know whether all nonspeedable left-c.e. real numbers are Martin-Löf random.
As a partial result in the direction of theses questions, by the following remark
every computably enumerable Turing degree contains a speedable left-c.e. real
number.

Remark 12. Let A be an infinite recursively enumerable set with computable
enumeration z0, z1, . . . and let α = 0.A(0)A(1) . . .. If we let

ai =
∑

n∈{z0,...,zi}
2−(n+1),

then a0, a1, . . . is a computable left-approximation of α which is 1/2-speedable
via the speed-up function n 	→ n+1. For a proof, let i+1 be any of the infinitely
many true stage of the given enumeration, i.e., z = zi+1 differs from z0 through zi

and all numbers in the intersection of A with {0, . . . , z} occur already among
the numbers z0, . . . , zi+1. Then we have

α − an+1 ≤ 2−z, hence
α − an+1

α − an
=

α − an+1

α − an+1 + 2−z
≤ 1

2
.

Next we derive further examples of speedable left-c.e. real numbers that are non-
high where in addition these numbers have initial segments of high Kolmogorov
complexity. Recall that all left-c.e. Martin-Löf random real numbers are equal
to the halting probability of an additively optimal prefix-free machine and that
Chaitin’s Ω is such a real number. We write 0 and 1 for the infinite sequence
of zeroes and ones, respectively. Furthermore, for a set of natural numbers H
and two infinite binary sequences A = A(0)A(1) . . . and B = B(0)B(1) . . ., we
write A ⊕H B for the infinite binary sequence where

A ⊕H B(n) =

{
A(i) in case n ∈ H and |{j < n : j ∈ H}| = i,

B(i) in case n ∈ H and |{j < n : j ∈ H}| = i.

E.g., if H = {0, 3, 6, . . .}, then 0 ⊕H 1 is equal to the sequence 011011 . . ..

Proposition 13. For every infinite and co-infinite c.e. set H, the real num-
ber 1 ⊕H Ω is a speedable left-c.e. real number

Proof. First we fix (ωi)i∈ω as the canonical approximation of Ω from below
and h0, h1, ... as an enumeration of H and define a computable sequence (an)n∈ω

in the following way:
a0 := ω0,

a1 := ω1,

a2i := 1 ⊕{h0,...,hi−1} ωi,

a2i+1 := 1 ⊕{h0,...,hi−1} ωi+1.



310 W. Merkle and I. Titov

For α := 1 ⊕H Ω, we obtain lim
n→∞ an = α.

To show the monotony of (an)n∈ω, we need some additional preparation
steps.

Given a real number a ∈ [0, 1), define for every i a rational number xa,i :=
a � hi, and binary sequence ya,i via ya,i(j) := a(hi + j) ∀j ∈ ω.

Now we can obtain the monotony of (ai)i∈ω immediately from the following
observations:

for every i, a2i < a2i+1 since ωi < ωi+1, and a2i+1 < a2i+2 since

a2i+1 = xa2i+1,i +
1

2hi
· 0, ya2i+1,i < xa2i+1,i +

1
2hi+1

+
1

2hi+1
· 0, ya2i+1,i = a2i+2.

Thus, the sequence (an)n∈ω is a computable left approximation of α.
Now we consider the set I of true stages of H

I := {i ∈ ω : ∀j > i(hj > hi)}.

In our case, I contains the indexes of all hi corresponding to the last changes in
the 1-part of prefixes of 1 ⊕H Ω.

I is infinite, since H is, thus, for every subset I ′ ⊆ I, at least one of the
sets I ′ and I\I ′ should be infinite.

We define I ′ as a subset of I containing all the final stages of H which are
at the same time the final stages of α

I ′ := {i ∈ I : (a2i+2 � hi) = (α � hi)}.

Note that (a2i+2 � hi) = (a2i+1 � hi) for every i ∈ ω. As we know from the
previous observation, at least one of sets I ′ and I ′\I is infinite. It remains to
consider both cases separately and obtain in each case the speedability of α.

Case 1: I ′ is infinite.
If I ′ is still infinite, then for every i ∈ I ′ we consider the value α−a2i+1

α−a2i+2
:

a2i+1 = (α � hi) + 1
2hi

ya2i+1,i,

a2i+2 = (α � hi) + 1
2hi

ya2i+2,i.
These two observations easily imply

α − a2i+2

α − a2i+1
=

0, yα,i − 0, ya2i+2,i

0, yα,i − 0, ya2i+1,i
.

We can represent ya2i+1,i in the following way:

ya2i+1,i = 1 . . . 1︸ ︷︷ ︸
ki

0 1 . . . 1︸ ︷︷ ︸
li

. . .

where the block 1 . . . 1︸ ︷︷ ︸
li

is defined as the (possibly empty) block of ones already

enumerated into the 1-part of α after the first “0” appearing in a2i+1 after α � hi

on the position hi + ki + 1 for ki ≥ 0.



Speedable Left-c.e. Numbers 311

Noting that “0” on the position ki + 1 in ya2i+1,i is, in fact, “0” on the
position hi + ki + 1 in a2i+1, which belongs obviously to the Ω-part of a2i+1, we
can easily see that ya2i+2,i has the following form:

ya2i+2,i = 11 . . . 1︸ ︷︷ ︸
ki

1 . . . 1︸ ︷︷ ︸
li

0 . . .

The appearance of the first “1” above is implied by a2i+2(hi) = a2(i+1)(hi) = 1.
One remains to consider two possibilities for the next bit of ya2i+1,i:

1. If ya2i+1,i = 0, 1 . . . 1︸ ︷︷ ︸
ki

0 1 . . . 1︸ ︷︷ ︸
li

0 . . . , then:

0, ya2i+1,i < 0, 1 . . . 1︸ ︷︷ ︸
ki

0 1 . . . 1︸ ︷︷ ︸
li

1,

0, ya2i+2,i ≥ 0, 1 1 . . . 1︸ ︷︷ ︸
ki

1 . . . 1︸ ︷︷ ︸
li

,

0, yα,i < 1.

Replacing left sides by the right ones from the inequalities above, we can get
an upper bound for α−a2i+2

α−a2i+1
:

0, yα,i − 0, ya2i+2,i

0, yα,i − 0, ya2i+1,i
<

2−(ki+li+1)

2−(ki+1) + 2−(ki+1+li+1)
≤ 2

3
.

2. If ya2i+1,i = 1 . . . 1︸ ︷︷ ︸
ki

0 1 . . . 1︸ ︷︷ ︸
li

1 . . . , then ya2i+2,i = 11 . . . 1︸ ︷︷ ︸
ki

1 . . . 1︸ ︷︷ ︸
li

01 . . .

The last “1” appears since ya2i+2,i(ki + li + 1) = a2i+2(hi + 1 + ki + li + 1)
and either a2i+2(hi +1+ki + li +1) = a2i+1(hi +1+ki + li) = 1, if it belongs
to the Ω-part of a2i+2, or a2i+2(hi + 1 + ki + li + 1) = 1 directly, if it belongs
to the 1-part of a2i+2. Thus:

0, ya2i+1,i < 0, 1 . . . 1︸ ︷︷ ︸
ki

1,

0, ya2i+2,i ≥ 0, 1 1 . . . 1︸ ︷︷ ︸
ki

1 . . . 1︸ ︷︷ ︸
li

01,

0, yα,i < 1.

In the similar way as in the first case, we get an upper bound for α−a2i+2
α−a2i+1

:

0, yα,i − 0, ya2i+2,i

0, yα,i − 0, ya2i+1,i
<

2−(ki+li+2) + 2−(ki+li+3)

2−(ki+1)
≤ 3

4
.



312 W. Merkle and I. Titov

Thus, assuming I ′ to be infinite, α is at least 3
4 -speedable via the speed-up

function f(n) := n + 1.
Case 2: I\I ′ is infinite.
In this case, there exists infinitely many true stages i of H such that at least

one change of the Ω-part of αhi+1 will happen after the stage i.
Now we can show the 1

2 -speedability of α via the same speed-up function as
in the first case.

For every i ∈ I\I ′, we consider an index of the last change in the Ω-part
of α � (hi + 1), that is, such j > 2i + 2 that

aj−1 � (hi + 1) �= aj � (hi + 1) = Ω � (hi + 1).

From the definition of I ′, we know that j is also the index of the last change
happened in a whole α � (hi + 1), so

aj−1 � (hi + 1) �= aj � (hi + 1) = α � (hi + 1).

Due to aj−1(hi) = aj(hi) = α(hi) = 1, since i ∈ I and j > 2i + 2, one obtains
the following relations

α − aj−1 < 2−(hi+1) and aj − aj−1 > 2−(hi+1),

which obviously imply the sought-for estimation

α − aj

α − aj−1
<

1
2
.

In both cases α is at least 3
4 -speedable, thus, due to Theorem 6, speedable. ��

Note that for any H as in the proposition, it holds that Ω ⊕H 1 is a left-c.e.
real number, which in the case that H is computable is not Martin-Löf random
and has the same Turing degree as the halting problem, in particular, is high.

4 Solovay Degrees

A real number α is Solovay reducible to a real number β, for short α ≤S β, if there
is a constant c and a partial computable function g from dyadic rational numbers
to dyadic rational numbers such that for every dyadic rational number q < β, we
have g(q) < α and α− g(q) < c(β − q). As usual, we restrict Solovay reducibility
to the set of left-c.e. real numbers and consider the degree structure induced by
Solovay reducibility on this set. It is known that the Martin-Löf random left-
c.e. real numbers form a Solovay degree and, since Solovay reducibility implies
Turing reducibility, that the set of nonhigh left-c.e. real numbers is equal to a
union of Solovay degrees. By Theorems 11 and 10, all degrees just mentioned
contain either only nonspeedable or only speedable left-c.e. real numbers. By the
next theorem, this is no coincidence.



Speedable Left-c.e. Numbers 313

Theorem 14. Speedability is a degree property with respect to Solovay reducibil-
ity in the sense that either every or no left-c.e. real number in a Solovay degree
is speedable.

Proof. Fix any pair of left-c.e. real numbers α and β such that α ≡S β and β
is speedable. Let a0, a1, .. and b0, b1, .. be computable left approximations of α
and β, respectively. It can be shown [2, Proposition 9.1.2] that β ≤S α implies
the existence of a constant c and a computable function g such that for all n we
have

β − bg(n) < c(α − an).

Similarly, β ≤S α implies the existence of a constant d and a strictly monotonic
computable function h such that for all n we have

α − bh(n) < d(β − bn).

The function g can be assumed to be strictly monotonic, hence bg(0), bg(1), . . .
is a computable left-approximation of β. Since the real number β is speedable,
its left approximation bg(0), bg(1), . . . is ρ-speedable for every ρ > 0 according to
Theorem 6. As a consequence, there is a computable function fβ such that

lim inf
n→∞

β − bfβ(g(n))

β − bg(n)
≤ 1

2cd + 1
, hence

β − bfβ(g(n))

β − bg(n)
<

1
2cd

(7)

holds for infinitely many n. Define the function fα inductively by fα(0) = 0 and
for all n > 0 by

fα(n) := 1 + max{n, fα(n − 1), h(fβ(g(n)))}.

Then for each of the infinitely many n for which (7) holds, we have

α − afα(n) < d(β − bfβ(g(n))) <
1
2c

(β − bg(n)) <
1
2
(α − an).

So, the real number α is 1
2 -speedable via the computable speed-up function fα,

hence is speedable. ��

References

1. Barmpalias, G., Lewis-Pye, A.: Differences of halting probabilities. J. Comput. Syst.
Sci. 89, 349–360 (2017)

2. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer,
Berlin (2010). https://doi.org/10.1007/978-0-387-68441-3

3. Nies, A.: Computability and Randomness. Oxford University Press, Oxford (2009)
4. Soare, R.I.: Computational complexity, speedable and levelable sets. J. Symb. Log.

42, 545–563 (1977)

https://doi.org/10.1007/978-0-387-68441-3


The Complexity of Controlling
Condorcet, Fallback, and k-Veto Elections

by Replacing Candidates or Voters

Marc Neveling, Jörg Rothe(B), and Roman Zorn

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
{marc.neveling,rothe,roman.zorn}@hhu.de

Abstract. Electoral control models malicious ways of tampering with
the outcome of elections via structural changes and has turned out
to be one of the central themes in computational social choice. While
the standard control types—adding/deleting/partitioning either voters
or candidates—have been studied quite comprehensively, much less is
known for the control actions of replacing voters or candidates. Continu-
ing the work of Loreggia et al. [18,19] and Erdélyi, Reger, and Yang [10],
we study the computational complexity of control by replacing candi-
dates or voters in Condorcet, fallback, and k-veto elections.

1 Introduction

Bartholdi, Tovey, and Trick [1] were the first to propose control of elections as
a malicious way of tampering with their outcome via changing their structure,
e.g., by adding or deleting voters or candidates. They introduced the construc-
tive variant where the goal of an election chair is to make a favorite candidate
win. Focusing on plurality and Condorcet elections, they studied the complex-
ity of the associated control problems, showing either resistance (NP-hardness)
or vulnerability (membership in P). Complementing their work, Hemaspaandra,
Hemaspaandra, and Rothe [15] introduced the destructive variant of control
where the chair’s goal is to prevent a despised candidate’s victory. Pinpoint-
ing the complexity of destructive control in plurality and Condorcet, they also
studied the constructive and destructive control complexity of approval voting.
Since then, plenty of voting rules have been analyzed in terms of their con-
trol complexity, as surveyed by Faliszewski and Rothe [13] and Baumeister and
Rothe [3].

The computational complexity of replacing voters or candidates was first
studied by Loreggia et al. [18,19] and later on by Erdélyi, Reger, and Yang [10].
Replacement control models voting situations in which the number of candidates
or voters are predefined and cannot be changed by the chair. For instance a
parliament often consists of a fixed number of seats whose occupants must be
replaced if they are removed from their seat. From another viewpoint, the chair
might try to veil its election tampering by replacement control actions such that

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 314–327, 2020.
https://doi.org/10.1007/978-3-030-50026-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_23&domain=pdf
https://doi.org/10.1007/978-3-030-50026-9_23


Complexity of Controlling Elections by Replacing Candidates or Voters 315

the number of participating candidates and voters is the same as before. Then,
the election might seem to be unchanged at first glance.

Compared with the standard control types (adding/deleting/partitioning
voters or candidates), much less is known for the control action of replacing
voters or candidates. It can be seen as a combination of adding and deleting
them, with the additional constraint that the same number of voters/candidates
must be added as have been deleted. Other types of combining control attacks,
namely multimode control, have been investigated by Faliszewski, Hemaspaan-
dra, and Hemaspaandra [12]. Although some types of multimode control seem
to be similar to replacement control the key difference lies in the tightly coupled
control types of replacement control while in multimode control the combined
types of standard election control can often times be handled separately. This
leads to the interesting situation that resistances of voting rules against certain
types of standard control do not transfer trivially to related types of replacement
control, whereas this indeed can happen for multimode control.

Our contribution is to study the complexity of control by replacing either
voters or candidates in Condorcet, fallback, and k-veto elections. The complexity
of control under the standard types has been studied and completely settled for
Condorcet voting, as pointed out above, by Bartholdi, Tovey, and Trick [1] and
Hemaspaandra, Hemaspaandra, and Rothe [15]; for fallback voting by Erdélyi
et al. [7–9,11]; and for veto (i.e., 1-veto) elections by Lin [16,17] (who also
settled some cases of standard control in k-veto for k ≥ 2), Chen et al. [6],
and Maushagen and Rothe [20–22]. Among these rules, fallback voting (a hybrid
system due to Brams and Sanver [5] that combines Bucklin with approval voting)
is special in that it is one of the two natural voting rules with a polynomial-time
winner problem that are currently known to have the most resistances against
standard control attacks, the other one being normalized range voting [23].

In the related area of judgment aggregation, control by replacing judges has
been introduced by Baumeister et al. [2] and further studied by Baumeister,
Rothe, and Selker [4].

2 Preliminaries

An election is a pair (C, V ) with C being a set of m candidates and V a set of n
voters. Voters express their preferences over the candidates by, e.g., linear orders
over C, such as c b a d for C = {a, b, c, d}, where the leftmost candidate is the
most preferred one by this voter and preference (strictly) decreases from left to
right. A voting rule R then maps each election (C, V ) to a subset W ⊆ C of the
candidates, called the R winners (or simply the winners if R is clear from the
context) of election (C, V ). For candidates a, b ∈ C, denote the number of votes
in (C, V ) preferring a to b by N(C,V )(a, b). We will study the following voting
rules:

– k-veto: A candidate gains a point from each vote in which she is ranked higher
than in the last k positions (i.e., the candidates in the last k positions are



316 M. Neveling et al.

vetoed). The candidate(s) with the most points (i.e., with the fewest vetoes)
win(s) the election.

– Condorcet : A Condorcet winner is a candidate a who beats all other can-
didates in pairwise contests, i.e., for each other candidate b, it holds that
N(C,V )(a, b) > N(C,V )(b, a). Note that a Condorcet winner does not always
exist, but if there is one, he or she is unique.

– Fallback : In a fallback election (C, V ), each voter v submits her preferences
as a subset of candidates Sv ⊆ C that she approves of and, in addition, a
strict linear ordering of those candidates (e.g., if a voter v approves of the
candidates Sv = {c1, ..., ck} and orders them lexicographically, her vote would
be denoted as c1 · · · ck | C \ Sv). Let score(C,V )(c) = |{v ∈ V | c ∈ Sv}|
be the number of approvals of c and scorei

(C,V )(c) be the number of level i

approvals of c (i.e., the number of voters who approve of c and rank c in their
top i positions). The fallback winner(s) will then be determined as follows:
(1) A candidate c is a level � winner if score�

(C,V )(c) > |V |/2. Letting i be the
smallest integer such that there is a level i winner, the candidate(s) with the
most level i approvals win(s). (2) If there is no fallback winner on any level,
the candidate(s) with the most approvals win(s).

Unlike the original papers on electoral control that in particular investigated
the control actions of adding and deleting either candidates or voters [1,15], we
will consider control by replacing either candidates or voters, which combines
adding and deleting them and was introduced by Loreggia et al. [18,19] and later
on also studied by Erdélyi, Reger, and Yang [10].

For a given voting rule R, define the following problems:

R-Constructive-Control-by-Replacing-Candidates

Given: An election (C ∪ D,V ), where D with C ∩ D = ∅ is a set of spoiler
candidates, a distinguished candidate c ∈ C, and an integer r ∈ N.

Question: Are there subsets C′ ⊆ C \ {c} and D′ ⊆ D of equal size (at most r) such
that c is an R winner of the election ((C \ C′) ∪ D′, V )?

We are given an election (C∪D,V ) in this problem, i.e., all votes in V express
preferences over all the candidates in C ∪D. But only the candidates from C are
taken into account before the control action, and some of those have then been
replaced by the same number of candidates from D. In any case, we implicitly
assume that missing candidates do not show up in the votes, i.e., all votes from
V are restricted to those candidates actually occurring in the election at hand.

R-Constructive-Control-by-Replacing-Voters

Given: An election (C, V ∪W ) with registered voters V , as yet unregistered vot-
ers W , a distinguished candidate c ∈ C, and an integer r ∈ N.

Question: Are there subsets V ′ ⊆ V and W ′ ⊆ W of equal size (at most r) such
that c is an R winner of the election (C, (V \ V ′) ∪ W ′)?



Complexity of Controlling Elections by Replacing Candidates or Voters 317

In short, we denote the former problem as R-CCRC and the latter as R-
CCRV. We will also consider the destructive variants of these problems, denoted
by R-DCRC and R-DCRV, in which the goal is to prevent the distinguished
candidate from being an R winner. We focus on the so-called nonunique-winner
model in which we do not care if the distinguished candidate is the only winner
as long as he or she is a winner (respectively, not even a winner in the destructive
variants). By contrast, in the unique-winner model a control action is considered
successful only if the distinguished candidate is the unique winner (respectively,
not a unique winner). We note in passing that, with slight modifications, our
proofs work for the unique-winner model as well.

We assume the reader to be familiar with the basic notions from complexity
theory; in particular, with the complexity classes P and NP and the notions
of NP-hardness and NP-completeness. For our proofs, we define the following
well-known NP-complete problems [14]:

Exact-Cover-by-Three-Sets (X3C)

Given: A set B = {b1, b2, ..., b3s} with s ≥ 1 and a family S = {S1, S2, ..., St} of
subsets Si ⊆ B with |Si| = 3 for each i, 1 ≤ i ≤ t.

Question: Is there a subfamily S ′ ⊆ S such that every element of B appears in
exactly one subset of S ′?

Hitting-Set

Given: A set B = {b1, b2, ..., bs} with s ≥ 1, a family S = {S1, S2, ..., St} of
subsets Si ⊆ B, and an integer q with 1 ≤ q ≤ s.

Question: Is there a subset B′ ⊆ B, |B′| ≤ q, such that each Si ∈ S is hit by B′

(i.e., Si ∩ B′ 	= ∅ for all Si ∈ S)?

We call a voting rule immune to a type of control if it is never possible for
the chair to reach her goal by this control action; otherwise, the voting rule is
said to be susceptible to this control type. A susceptible voting rule is said to be
vulnerable to this control type if the associated control problem is in P, and it is
said to be resistant to it if the associated control problem is NP-hard. Note that
all considered control problems are in NP, so resistance implies NP-completeness.

3 Overview of Results

Table 1 gives an overview of our complexity results for control by replacing can-
didates or voters in Condorcet, fallback, and k-veto. Let us compare them with
the results for control by adding/deleting candidates or voters in the same vot-
ing systems. For fallback voting (which is vulnerable only to destructive control
by replacing, adding, and deleting voters and is resistant in all other cases),
we have the same results for replacement control as Erdélyi et al. [7] obtained
for control by adding/deleting candidates or voters. Also, for k-veto, the results
for replacement control are very similar to those by Lin [16,17] for control by



318 M. Neveling et al.

adding/deleting candidates or voters.1 For Condorcet voting, however, while
we again have the same results for replacing voters as Bartholdi et al. [1] and
Hemaspaandra et al. [15] obtained for control by adding/deleting voters, our
results differ from theirs for candidate control: We show vulnerability for both the
constructive and destructive cases of replacement control, whereas Bartholdi et
al. [1] show that Condorcet voting is vulnerable to constructive control by delet-
ing candidates and Hemaspaandra et al. [15] show it is vulnerable to destructive
control by adding candidates, yet they show immunity for constructive control
by adding candidates [1] and destructive control by deleting candidates [15].

Table 1. Overview of complexity results. “R” stands for resistant and “V” for vulner-
able. Results marked by “†” are due to Erdélyi et al. [10] and “‡” means that the case
of k = 1 is due to Loreggia et al. [19] while we show resistance for the cases k > 1.

Problem Condorcet Fallback k-Veto

CCRV R R V (k ≤ 2)†/R(k ≥ 3)†

DCRV V V V (k ≥ 1)†

CCRC V R R (k ≥ 1)‡

DCRC V R R (k ≥ 1)‡

4 Condorcet Voting

We will start with Condorcet and show that it is vulnerable to three types of
control, yet resistant to the fourth one, starting with the resistance proof.

Theorem 1. Condorcet is resistant to constructive control by replacing voters.

Proof. We prove NP-hardness by reducing X3C to Condorcet-CCRV. A similar
reduction was used by Bartholdi, Tovey, and Trick [1] to prove that Condorcet-
CCAV (where CCAV stands for “constructive control by adding voters”) is NP-
hard.

Let (B,S) be an X3C instance with B = {b1, . . . , b3s}, s ≥ 2 (which may be
assumed, as X3C is trivially solvable when s = 1), and S = {S1, . . . , St}, t ≥ 1.
The set of candidates is C = B ∪ {c} with c being the distinguished candidate.
The list V of votes is constructed as follows:

– There are 2s − 3 registered votes of the form b1 · · · b3s c in V and
– for each j, 1 ≤ j ≤ t, there is one unregistered vote of the form Sj c B \ Sj

in W .

The ordering of candidates in Sj and B\Sj does not matter in any of those votes.
Finally, set r = s.
1 One minor difference is that while Erdélyi et al. [10] show that k-veto is resistant

to constructive control by replacing voters for k ≥ 3 (with vulnerability holding
for k ≤ 2), Lin [16,17] shows that it is resistant to constructive control by deleting
voters for k ≥ 4 (with vulnerability holding for k ≤ 3).



Complexity of Controlling Elections by Replacing Candidates or Voters 319

Analyzing the election (C, V ), b1 is the Condorcet winner; in particular, c
loses against every bi ∈ B with a deficit of 2s − 3 votes, i.e.,

N(C,V )(bi, c) − N(C,V )(c, bi) = 2s − 3.

We will now show that (B,S) is a yes-instance of X3C if and only if c can
be made the Condorcet winner of the election by replacing s votes from V with
votes from W .

From left to right, assume there is an exact cover S ′ ⊆ S of B. We remove s
votes of the form b1 · · · b3s c from the election and replace them by the votes of
the form Sj c B \ Sj for all Sj ∈ S ′. Let (C, V ′) be the resulting election. Since
S ′ is an exact cover of B, for each bi ∈ B,

N(C,V ′)(bi, c) − N(C,V ′)(c, bi) = (2s − 3 − s + 1) − (s − 1) = −1 < 0.

Thus c now defeats each bi ∈ B in pairwise comparison and, therefore, has been
made the Condorcet winner of (C, V ′).

From right to left, assume that c can be made a Condorcet winner of the
election by replacing at most s votes. Recall that c has a deficit of

N(C,V )(bi, c) − N(C,V )(c, bi) = 2s − 3

to every bi ∈ B in the original election. Thus exactly s votes need to be removed
from the election, for otherwise c’s deficit of at least s−2 to every other candidate
cannot be caught up on, since at least one other candidate is in front of c in every
unregistered vote. With s removed votes, c’s deficit to every other candidate is
now decreased to s − 3. However, none of the s votes from W replacing the
removed votes can rank some bi ∈ B in front of c more than once, as otherwise
we would have

N(C,V ′)(bi, c) ≥ s − 1 and N(C,V ′)(c, bi) ≤ s − 2

for at least one bi ∈ B in the resulting election (C, V ′), and c would not win. Let
S ′ ⊆ S be the set such that each Sj ∈ S ′ corresponds to the vote Sj c B\Sj from
W that is added to the election to replace a removed vote. Every unregistered
voter ranks three candidates of B in front of c. By the pigeonhole principle, in
order for the s new votes to rank each of the 3s candidates of B in front of c
only once, S ′ needs to be an exact cover of B. ��

By contrast, we show vulnerability to destructive control by replacing voters
for Condorcet via a simple algorithm.

Theorem 2. Condorcet is vulnerable to destructive control by replacing voters.

Proof. To prove membership in P, we will provide an algorithm that solves
the problem in polynomial time and outputs, if possible, which of the registered
voters must be replaced by which unregistered voters for c to not win.

The input to our algorithm is an election (C, V ∪ W ), the distinguished
candidate c ∈ C, and an integer r. The algorithm will output either a pair



320 M. Neveling et al.

(V ′,W ′) with V ′ ⊆ V , W ′ ⊆ W and |V ′| = |W ′| ≤ r (i.e., in V ′ are voters
that must be removed and in W ′ are voters that must be added to the election
instead for c to not win), or that control is impossible.

First, the algorithm checks whether c is already not winning the election
(C, V ) and outputs (∅, ∅) if this is the case, and we are done.

Otherwise, c currently wins, and the algorithm iterates over all candidates
d ∈ C \ {c} and first checks whether N(C,V )(c, d) − N(C,V )(d, c) + 1 ≤ 2r (if this
is not the case, d loses to c in any case and we can skip this candidate.)

Let V ′ ⊆ V contain at most r votes from V preferring c to d and let W ′ ⊆ W
contain at most r votes from W preferring d to c. If one of them is smaller than
the other, remove votes from the larger one until they are equal in size.

Then we check whether

NE(C, (V ∪ W ′) \ V ′)(c, d) ≤ NE(d, c)

in the election E = (C, (V ∪ W ′) \ V ′). If this is the case, c does not beat d
in direct comparison, so c cannot win the election. The algorithm then outputs
(V ′,W ′).

Otherwise, d cannot beat c and the algorithm proceeds to the next candidate.
If, after all iterations, no candidate was found that beats or ties c, the algorithm
outputs “control impossible.” Obviously, this algorithm runs in polynomial-time
and solves the problem. ��

Bartholdi, Tovey, and Trick [1] observed that, due to the Weak Axiom of
Revealed Preference, Condorcet voting is immune to constructive control by
adding candidates, and Hemaspaandra, Hemaspaandra, and Rothe [15] made
the same observation regarding destructive control by deleting candidates. For
control by replacing candidates, however, Condorcet is susceptible both in the
constructive and in the destructive case.

In the constructive case, for instance, if C = {b, c} and there is one spoiler
candidate in D = {d} and only one vote b c d over C ∪ D, we can turn c (who
does not win according to b c) into a Condorcet winner by replacing b with d
(so we now have c d).

For susceptibility in the destructive case, just consider C ′ = {c, d} and D′ =
{b}, and replace d with b, all else being equal.

Moreover, since in Condorcet elections the direct comparison between two
candidates cannot be influenced by deleting or adding other candidates to the
election, Condorcet-CCRC and Condorcet-DCRC are both easy to solve.

Theorem 3. Condorcet is vulnerable to constructive control by replacing can-
didates.

Proof. To prove membership in P, we will provide an algorithm that solves
the problem in polynomial time and outputs, if possible, which of the original
candidates must be replaced by which spoiler candidates for c to win.

The input to our algorithm is an election (C ∪ D,V ), the distinguished can-
didate c ∈ C, and a positive integer r. The algorithm will output either a pair



Complexity of Controlling Elections by Replacing Candidates or Voters 321

(C ′,D′) with C ′ ⊆ C \ {c}, D′ ⊆ D and |C ′| = |D′| ≤ r (i.e., in C ′ are candi-
dates that must be removed and in D′ are candidates that must be added to the
election for c to win), or that control is impossible.

First, we check whether c already wins the election (C, V ) and output (∅, ∅)
if this is the case, and we are done.

Otherwise, let C ′ ⊆ C \ {c} be the set of candidates from C \ {c} that beat
or tie c in direct comparison and let D′ ⊆ D be a set of at most |C ′| candidates
from D that c beats in direct comparison.

If |C ′| ≤ r and |C ′| = |D′|, we output (C ′,D′), and otherwise we output
“control impossible.”

Obviously, the algorithm solves the problem and runs in polynomial time. ��
Theorem 4. Condorcet is vulnerable to destructive control by replacing candi-
dates.

Proof. An algorithm that solves the problem works as follows: Given an election
(C ∪D,V ), a distinguished candidate c ∈ C, and an integer r, it checks whether
c is not winning the election (C, V ) and outputs (∅, ∅) if this is the case.

Otherwise, it checks whether there is a candidate d ∈ D who beats or ties
c in direct comparison, whether there is another candidate b ∈ C with b 
= c
and whether r ≥ 1. If these conditions are satisfied, it outputs ({b}, {d}), and
otherwise “control impossible”.

This algorithm outputs either a successful pair (C ′,D′) with C ′ ⊆ C \ {c},
D′ ∈ D, and |C ′| = |D′| ≤ r if c can be prevented from winning by replacing
at most r candidates, or else “control impossible.” Obviously, the algorithm is
correct and runs in polynomial time. ��

5 Fallback Voting

We will now consider fallback voting and show that it is vulnerable to one type
of control and resistant to the others.

Theorem 5. Fallback is resistant to constructive control by replacing voters.

Proof. To prove NP-hardness, we will modify the reduction from X3C that
Erdélyi and Rothe [11] (and Erdélyi et al. [7]) used to show NP-hardness of
fallback-CCAV.

Let (B,S) be an X3C instance with B = {b1, . . . , b3s}, s ≥ 2, and S =
{S1, . . . , St}, t ≥ 1. The set of candidates is C = B ∪ D ∪ {c} with c being the
distinguished candidate and D = {d1, . . . , dt(3s−4)} a set of t(3s − 4) dummy
candidates. In V (corresponding to the registered voters), there are the 3s − 1
votes:

– 2s − 1 votes of the form B | D ∪ {c} and
– for each i, 1 ≤ i ≤ s, one vote di | B ∪ (D \ {di}) ∪ {c}.

In W (corresponding to the unregistered voters), there are the following t votes:



322 M. Neveling et al.

– For each j, 1 ≤ j ≤ t, let

Dj = {d(j−1)(3s−4)+1, . . . , dj(3s−4)}
and include in W the vote

Dj Sj c | (B \ Sj) ∪ (D \ Dj).

Finally, set r = s.
Having no approvals in (C, V ), c does not win. We will show that (B,S) is

a yes-instance of X3C if and only if c can be made a fallback winner of the
constructed election by replacing at most s votes from V with as many votes
from W .

From left to right, suppose there is an exact cover S ′ ⊆ S of B. Remove
s votes B | D ∪ {c} from the election and add, for each Sj ∈ S ′, the vote
Dj Sj c | (B \ Sj) ∪ (D \ Dj) instead. Let (C, ̂V ) be the resulting election. It
follows that

– score(C,̂V )(di) ≤ 2 for every di ∈ D,
– score(C,̂V )(bi) = s for every bi ∈ B (s − 1 approvals from the remaining

registered voters and one approval from the added voters since S ′ is an exact
cover of B), and

– score(C,̂V )(c) = s.

Thus no candidate has a majority on any level and c is one of the winners
since she ties all candidates of B for the most approvals overall.

From right to left, suppose c can be made a fallback winner of the election
by replacing at most s votes from V with as many votes from W . Since c has
no approvals in (C, V ) and we can only add at most s approvals for c, the
only chance for c to win is to have the most approvals in the last stage of
the election. Regardless of which votes we remove or add to the election, every
dummy candidate can have at most two approvals, which will at least be tied
by c if we add s ≥ 2 unregistered votes to the election. We need to remove s
votes B | D∪{c} from the election; otherwise, some bi ∈ B would have at least
s approvals, whereas c could gain no more than s − 1 approvals from adding
unregistered votes. Each bi ∈ B receives s − 1 approvals from the remaining
registered votes of the original election and c reveices s approvals from the added
votes. Additionally, every added voter approves of three candidates from B.
Hence, in order for c to at least tie every candidate from B, each bi ∈ B can
only be approved by at most one of the added votes. Since there are s added
votes, there must be an exact cover of B. ��

By contrast, we establish vulnerability of the destructive case of control
by replacing voters for fallback voting. The proof employs a rather involved
polynomial-time algorithm solving this problem and is omitted here due to space
limitations.

Theorem 6. Fallback is vulnerable to destructive control by replacing voters.



Complexity of Controlling Elections by Replacing Candidates or Voters 323

Turning to control by replacing candidates, fallback is resistant in both the
constructive and the destructive case.

Theorem 7. Fallback is resistant to constructive and destructive control by
replacing candidates.

Proof. Erdélyi and Rothe [11] (see also the subsequent journal version by
Erdélyi et al. [7]) showed that fallback is resistant to constructive and destruc-
tive control by deleting candidates. In the former problem (denoted by fallback-
CCDC), we are given a fallback election (C, V ), a distinguished candidate c ∈ C,
and an integer r, and we ask whether c can be made a fallback winner by deleting
at most r votes. In the destructive variant (denoted by fallback-DCDC), for the
same input we ask whether we can prevent c from winning by deleting at most
r votes. To prove the theorem, we will reduce

– fallback-CCDC to fallback-CCRC and
– fallback-DCDC to fallback-DCRC, respectively.

Let ((C, V ), c, r) be an instance of fallback-CCDC (or fallback-DCDC). We
construct from (C, V ) a fallback election (C ∪D,V ′) with (dummy) spoiler can-
didates D = {d1, . . . , dr}, D ∩ C = ∅, where we extend the votes of V to the set
of candidates C ∪ D by letting all voters disapprove of all candidates in D, thus
obtaining V ′. Our distinguished candidate remains c, and r remains the limit on
the number of candidates that may be replaced.

Since all candidates from D are irrelevant to the election and can be added
to the election without changing the winner(s), it is clear that c can be made a
fallback winner of (C, V ) by deleting up to r candidates from C if and only if
c can be made a fallback winner of (C ∪ D,V ′) by deleting up to r candidates
from C and adding the same number of dummy spoiler candidates from D. This
gives the desired reduction in both the constructive and the destructive case. ��

6 k-Veto

Erdélyi, Reger, and Yang [10] solved the two cases of control by replacing voters
for k-veto (recall Table 1 in Sect. 3), while Loreggia et al. [19] solved the two cases
of control by replacing candidates for veto only (i.e., for k-veto with k = 1). We
solve these cases for k-veto with k ≥ 2.

Theorem 8. For k ≥ 2, k-veto is resistant to constructive control by replacing
candidates.

Proof. To prove NP-hardness of k-veto-CCRC for k ≥ 2, we will modify the
reduction provided by Lin [16] to prove that k-veto-CCAC and k-veto-CCDC

are NP-hard. Since his reduction was designed so as to prove both cases at once
but we only need the “adding candidates” part, we will simplify the reduction.

Let (B,S, q) be an instance of Hitting-Set with B = {b1, . . . , bs}, s ≥ 1,
S = {S1, . . . , St}, t ≥ 1, and integer q, 1 ≤ q < s (without loss of generality, we
may assume that q < s since (B,S, q) is trivially a yes-instance if q ≥ s).



324 M. Neveling et al.

We construct an instance ((C ∪B, V ), c, q) of k-veto-CCRC with candidates
C = {c, d} ∪ C ′ ∪ X ∪ Y , where

C ′ = {c′
1, . . . , c

′
k−1},

X = {x1, . . . , xk−1}, and
Y = {y1, . . . , yq},

and spoiler candidates B. Let V contain the following votes:

– (t + 2s)(s − q + 1) votes Y · · · c C ′;
– (t + 2s)(s − q + 1) − s + q votes Y · · · d X;
– for each i, 1 ≤ i ≤ t, one vote Y · · · c X Si;
– for each i, 1 ≤ i ≤ s, one vote Y · · · d X bi; and
– for each i, 1 ≤ i ≤ s, (t + 2s)(s − q + 1) + q votes

Y · · · c B \ {bi} X bi.

Let M = (t + 2s)(s − q + 1). Without the spoiler candidates, vetoes are
assigned to the other candidates as follows:

c d c′ ∈ C′ y ∈ Y x ∈ X

M(s + 1) + sq + t M + q M 0 M(s + 1) + q(s + 1) + t

We show that (B,S, q) is a yes-instance of Hitting-Set if and only if c can
be made a k-veto winner of the election by replacing q candidates from C with
candidates from B.

From left to right, assume there is a hitting set B′ ⊆ B of S of size q
(since q < s, if B′ is a hitting set of size less than q, we fill B′ up by adding
arbitrary candidates from B \ B′ to B′ until |B′| = q). We then replace the
candidates from Y with the candidates from B′. Since c, d, and candidates from
C ′ have (t + 2s)(s − q + 1) vetoes and candidates from X and B′ have at least
(t + 2s)(s − q + 1) + q vetoes, c is a k-veto winner.

From right to left, assume c can be made a k-veto winner of the election
by replacing q candidates. Since the q candidates from Y have zero vetoes but
c has at least one veto, we need to remove each candidate of Y (and no other
candidate), and in turn we need to add q candidates from B. Note that c cannot
have more than (t + 2s)(s − q + 1) vetoes, for otherwise c would lose to the
candidates from C ′. Let B′ ⊆ B be the set of q candidates from B that are
added to the election. Since |B′| = q > 0, c will lose all s((t + 2s)(s − q + 1) + q)
vetoes from the last group of voters. Furthermore, in order to tie the candidates
in C ′, c cannot gain any vetoes from the third group of voters. Thus the q added
candidates from B need to be a hitting set of S. Also note that with the q added
candidates from B, c also ties d (who lost q vetoes from the fourth group of
voters) and beats the candidates from X and the added candidates from B. ��



Complexity of Controlling Elections by Replacing Candidates or Voters 325

The same result can be shown for destructive control by replacing candidates
in k-veto elections via a similar proof, which is again omitted here due to space
limitations.

Theorem 9. For k ≥ 2, k-veto is resistant to destructive control by replacing
candidates.

7 Conclusions and Open Problems

We have extended to Condorcet, fallback, and k-veto elections the study of
control by replacing voters or candidates initiated by Loreggia et al. [18,19] and
pursued later on by Erdélyi, Reger, and Yang [10]. Our complexity results for
the associated control problems are summarized in Table 1.

We can observe that our results follow the results for the standard con-
trol types, i.e., if one of these voting rules is vulnerable to control by adding
or to control by deleting voters or candidates then this voting rule is vulner-
able to control by replacing candidates or voters as well (respectively, if it is
resistant to a type of standard control then it is also resistant to the correspond-
ing type of replacement control). As Loreggia et al. [18,19] have shown, this is
not necessarily the case and there even exist voting rules (albeit artificial ones)
that are resistant (respectively, vulnerable) to a type of replacement control, yet
vulnerable (respectively, resistant) to both of the corresponding types of stan-
dard control. We therefore propose to continue the study of electoral control by
replacing voters or candidates for other natural voting rules and it would be
especially interesting to find a natural voting rule for which the complexity of
the standard controls types—in particular, control by adding or deleting voters
or candidates—differs from the complexity of control by replacing them.

Another interesting and suprisingly still open problem is the complexity of
CCRV for 2-approval (in which the voters assign one point each to the two
top-ranked candidates in their preferences). Pinpointing the complexity of this
problem would complete the dichotomy of k-approval-CCRV with regards to k,
since 1-approval-CCRV (i.e., plurality-CCRV) is polynomial-time solvable and
k-approval-CCRV is NP-hard for k ≥ 3, as shown by Loreggia et al. [19].

Admittedly, resistance in terms of NP-hardness—being a worst-case measure
of complexity only—may not be the last word in wisdom. Indeed, Walsh [25,26]
and Rothe and Schend [24] address this issue in electoral control and other
manipulative attacks and survey approaches of how to circumvent it. As an
ambitious long-term goal, we therefore propose to complement our worst-case
complexity analysis by a typical-case analysis of the problems considered here.

Acknowledgments. We thank the anonymous reviewers for their helpful comments.
This work was supported in part by DFG grants RO-1202/14-2 and RO-1202/21-1.

References

1. Bartholdi III, J., Tovey, C., Trick, M.: How hard is it to control an election? Math.
Comput. Modell. 16(8/9), 27–40 (1992)



326 M. Neveling et al.

2. Baumeister, D., Erdélyi, G., Erdélyi, O., Rothe, J.: Control in judgment aggrega-
tion. In: Proceedings of the 6th European Starting AI Researcher Symposium, pp.
23–34. IOS Press, August 2012

3. Baumeister, D., Rothe, J.: Preference aggregation by voting. In: Rothe, J. (ed.)
Economics and Computation. STBE, pp. 197–325. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-47904-9 4

4. Baumeister, D., Rothe, J., Selker, A.-K.: Complexity of bribery and control for
uniform premise-based quota rules under various preference types. In: Walsh, T.
(ed.) ADT 2015. LNCS (LNAI), vol. 9346, pp. 432–448. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23114-3 26

5. Brams, S., Sanver, R.: Voting systems that combine approval and preference. In:
Brams, S., Gehrlein, W., Roberts, F. (eds.) The Mathematics of Preference, Choice,
and Order: Essays in Honor of Peter C. Fishburn. Studies in Choice and Wel-
fare, pp. 215–237. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-
79128-7 12

6. Chen, J., Faliszewski, P., Niedermeier, R., Talmon, N.: Elections with few voters:
candidate control can be easy. In: Proceedings of the 29th AAAI Conference on
Artificial Intelligence, pp. 2045–2051. AAAI Press (Jan 2015)

7. Erdélyi, G., Fellows, M., Rothe, J., Schend, L.: Control complexity in Bucklin and
fallback voting: a theoretical analysis. J. Comput. Syst. Sci. 81(4), 632–660 (2015)

8. Erdélyi, G., Fellows, M., Rothe, J., Schend, L.: Control complexity in Bucklin and
fallback voting: an experimental analysis. J. Comput. Syst. Sci. 81(4), 661–670
(2015)

9. Erdélyi, G., Piras, L., Rothe, J.: The complexity of voter partition in Bucklin and
fallback voting: solving three open problems. In: Proceedings of the 10th Inter-
national Conference on Autonomous Agents and Multiagent Systems, IFAAMAS,
pp. 837–844, May 2011

10. Erdélyi, G., Reger, C., Yang, Y.: Towards completing the puzzle: solving open
problems for control in elections. In: Proceedings of the 18th International Con-
ference on Autonomous Agents and Multiagent Systems, IFAAMAS, pp. 846–854,
May 2019

11. Erdélyi, G., Rothe, J.: Control complexity in fallback voting. In: Proceedings of
Computing: the 16th Australasian Theory Symposium, Australian Computer Soci-
ety Conferences in Research and Practice in Information Technology Series, vol.
32, no. 8, pp. 39–48, January 2010

12. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: Multimode control attacks
on elections. J. Artif. Intell. Res. 40, 305–351 (2011)

13. Faliszewski, P., Rothe, J.: Control and bribery in voting. In: Brandt, F., Conitzer,
V., Endriss, U., Lang, J., Procaccia, A. (eds.) Handbook of Computational Social
Choice, chap. 7, pp. 146–168. Cambridge University Press (2016)

14. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H Freeman and Company, New York (1979)

15. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Anyone but him: the complexity
of precluding an alternative. Artif. Intell. 171(5–6), 255–285 (2007)

16. Lin, A.: The complexity of manipulating k-approval elections. In: Proceedings of
the 3rd International Conference on Agents and Artificial Intelligence, pp. 212–218.
SciTePress, January 2011

17. Lin, A.: Solving hard problems in election systems. Ph.D. thesis, Rochester Insti-
tute of Technology, Rochester, NY, USA, March 2012

18. Loreggia, A.: Iterative voting and multi-mode control in preference aggregation.
Intelligenza Artificiale 8(1), 39–51 (2014)

https://doi.org/10.1007/978-3-662-47904-9_4
https://doi.org/10.1007/978-3-319-23114-3_26
https://doi.org/10.1007/978-3-540-79128-7_12
https://doi.org/10.1007/978-3-540-79128-7_12


Complexity of Controlling Elections by Replacing Candidates or Voters 327

19. Loreggia, A., Narodytska, N., Rossi, F., Venable, B., Walsh, T.: Controlling elec-
tions by replacing candidates or votes (extended abstract). In: Proceedings of the
14th International Conference on Autonomous Agents and Multiagent Systems,
IFAAMAS, pp. 1737–1738, May 2015

20. Maushagen, C., Rothe, J.: Complexity of control by partitioning veto and maximin
elections and of control by adding candidates to plurality elections. In: Proceedings
of the 22nd European Conference on Artificial Intelligence, pp. 277–285. IOS Press,
August/September 2016

21. Maushagen, C., Rothe, J.: Complexity of control by partition of voters and of voter
groups in veto and other scoring protocols. In: Proceedings of the 16th International
Conference on Autonomous Agents and Multiagent Systems, IFAAMAS, pp. 615–
623, May 2017

22. Maushagen, C., Rothe, J.: Complexity of control by partitioning veto elections and
of control by adding candidates to plurality elections. Ann. Math. Artif. Intell.
82(4), 219–244 (2017). https://doi.org/10.1007/s10472-017-9565-7

23. Menton, C.: Normalized range voting broadly resists control. Theory Comput. Syst.
53(4), 507–531 (2013). https://doi.org/10.1007/s00224-012-9441-0

24. Rothe, J., Schend, L.: Challenges to complexity shields that are supposed to protect
elections against manipulation and control: a survey. Ann. Math. Artif. Intell.
68(1–3), 161–193 (2013). https://doi.org/10.1007/s10472-013-9359-5

25. Walsh, T.: Is computational complexity a barrier to manipulation? Ann. Math.
Artif. Intell. 62(1–2), 7–26 (2011). https://doi.org/10.1007/s10472-011-9255-9

26. Walsh, T.: Where are the hard manipulation problems? J. Artif. Intell. Res. 42,
1–29 (2011)

https://doi.org/10.1007/s10472-017-9565-7
https://doi.org/10.1007/s00224-012-9441-0
https://doi.org/10.1007/s10472-013-9359-5
https://doi.org/10.1007/s10472-011-9255-9


On the Transformation of LL(k)-linear
Grammars to LL(1)-linear

Alexander Okhotin and Ilya Olkhovsky(B)

St. Petersburg State University, 7/9 Universitetskaya nab.,
Saint Petersburg 199034, Russia

alexander.okhotin@spbu.ru, ilianolhin@gmail.com

Abstract. It is proved that every LL(k)-linear grammar can be trans-
formed to an equivalent LL(1)-linear grammar. The transformation
incurs a blow-up in the number of nonterminal symbols by a factor of
m2k−O(1), where m is the size of the alphabet. A close lower bound
is established: for certain LL(k)-linear grammars with n nonterminal
symbols, every equivalent LL(1)-linear grammar must have at least
n · (m − 1)2k−O(log k) nonterminal symbols.

1 Introduction

The LL(k) parsing is one of the most well-known linear-time parsing techniques.
In this method, a parse tree of an input string is constructed top-down, along
with reading the string from left to right. A parser selects each rule by looking
ahead by at most k symbols. The family of LL(k) grammars, to which this algo-
rithm is applicable, was introduced and systematically studied in the papers by
Knuth [5], Lewis and Stearns [7] and Rozenkrantz and Stearns [10]. In particular,
Kurki-Suonio [6] and, independently, Rozenkrantz and Stearns [10] proved that
LL(k + 1) grammars are more powerful than LL(k) grammars, and thus there is
a strict hierarchy of languages defined by LL(k) grammars, for different k.

An important subclass of LL(k) grammars, the LL( k)-linear grammars, was
first studied by Ibarra et al. [3] and by Holzer and Lange [2], who proved that all
languages defined by these grammars belong to the complexity class NC1. Learn-
ing algorithms for LL(1)-linear grammars and related subclasses were studied by
de la Higuera and Oncina [1], and language-theoretic properties of these gram-
mars have recently been investigated by Jirásková and Kĺıma [4]. LL(k)-linear
grammars are weaker in power than both LL(k) non-linear grammars and linear
non-LL grammars, since the language { anbnc | n � 0 } · {a, b} can be defined
by a linear grammar and by an LL(1) grammar, but not by any LL(k)-linear
grammar [8].

Whether LL(k)-linear grammars form a hierarchy with respect to the length
of the look-ahead k, remains unexplored. The first contribution of this paper
is a proof that every language defined by an LL(k)-linear grammar, for some

Research supported by RFBR grant 18-31-00118.

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 328–340, 2020.
https://doi.org/10.1007/978-3-030-50026-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_24&domain=pdf
http://orcid.org/0000-0002-1615-2725
https://doi.org/10.1007/978-3-030-50026-9_24


On the Transformation of LL(k)-linear Grammars to LL(1)-linear 329

k, is defined by an LL(1)-linear grammar; therefore, in the case of LL(k)-linear
grammars, the hierarchy with respect to k collapses. The proof is constructive:
it is shown how to transform any given LL(k)-linear grammar to an LL(1)-linear
grammar that defines the same language.

Next, it is shown that the proposed tranformation is close to being optimal in
terms of the number of nonterminal symbols. The transformation of an LL(k)-
linear grammar to an LL(1)-linear grammar increases the number of nonterminal
symbols by a factor of m2k−O(1), where m is the size of the alphabet. A lower
bound of (m − 1)2k−O(log k) on this factor is established.

2 Definitions

Definition 1. A (formal) grammar is a quadruple G = (Σ,N,R, S), where
Σ is the alphabet of the language being defined, N is the set of nonterminal
symbols (that is, syntactic categories defined in the grammar), R is a finite set
of rules, each of the form A → α, with A ∈ N and α ∈ (Σ ∪ N)∗, and S ∈ N
is a nonterminal symbol representing all well-formed sentences in the language,
known as the initial symbol.

Each rule A → X1 . . . X� in R states that every string representable as a
concatenation of � substrings of the form X1, . . . , X�, has the property A. This
is formalized as follows.

Definition 2. Let G = (Σ,N,R, S) be a grammar. A parse tree is a rooted
tree with leaves labelled with symbols from Σ, and with internal nodes labelled
with nonterminal symbols from N . For each node labelled with A ∈ N , with its
successors labelled with X1, . . . , X�, there must be a rule A → X1 . . . X� in the
grammar. All successors are ordered, and if w is the string of symbols in the
leaves, and A is the nonterminal symbol in the root, this is said to be a parse
tree of w from A.

The language defined by a nonterminal symbol A, denoted by LG(A), is the
set of all strings w ∈ Σ∗, for which there exists a parse tree from A. The language
defined by the grammar is L(G) = LG(S).

A grammar is called linear, if each rule in R is of the form A → uBv, with
u, v ∈ Σ∗ and B ∈ N , or of the form A → w, with w ∈ Σ∗. A parse tree for a
linear grammar consists of a path labelled with nonterminal symbols, with each
rule A → uBv spawning off the leaves u to the left and v to the right.

A top-down parser attempts to construct a parse tree of an input string,
while reading it from left to right. At every point of its computation, the parser’s
memory configuration is a pair (X1 . . . X�, v), with � � 0 and X1, . . . , X� ∈ Σ∪N ,
where v is the unread portion of the input string uv. The parser tries to parse
v as a concatenation X1 · . . . · X�. This sequence of symbols is stored in a stack,
with X1 as the top of the stack.

The initial configuration is (S,w), where w is the entire input string. At each
point of the computation, the parser sees the top symbol of the stack and the



330 A. Okhotin and I. Olkhovsky

k

S

A

u

α

v

S

A

v

Fig. 1. (left) v follows A; (right) Tk(A, F irstk(uv)) = A → α.

first k symbols of the unread input—the look-ahead string—where k � 1 is a
constant. If there is a nonterminal symbol A ∈ N at the top of the stack, the
parser determines a rule A → α for this symbol, pops this symbol, and pushes
the right-hand side of the rule onto the stack.

(Aβ, v) A→α−−−→ (αβ, v)

If the top symbol of the stack is a symbol a ∈ Σ, the parser checks that the
unread portion of the input begins with the same symbol, and then pops this
symbol from the stack and reads it from the input.

(aβ, av) read a−−−−→ (β, v)

The parser accepts in a configuration (ε, ε), which indicates that the whole input
string has been parsed as S.

It remains to explain how the parser chooses a rule to apply to a nonterminal
symbol A. Denote by Σ�k the set of strings of length at most k. Let x ∈ Σ�k be
the first k unread input symbols; if this string is shorter than k, this indicates
the end of the input approaching. The rule is chosen by accessing a look-up table
Tk : N × Σ�k → R ∪ {−}, which contains either a rule to apply, or a marker
indicating a syntax error.

For a string w ∈ Σ∗, denote its first k symbols, by Firstk(w); if the length
of w is less than k, then Firstk(w) = w. This definition is extended to languages
as Firstk(L) = {Firstk(w) | w ∈ L }.

Definition 3. Let G = (Σ,N,R, S) be a grammar. A string v ∈ Σ∗ is said to
follow A ∈ N , if there exists a parse tree containing a subtree with a root A, so
that the leaves to the right of this subtree form the string v, as in Fig. 1 (left).
Denote:

Follow(A) = { v | v follows A }
Followk(A) = Firstk({ v | v follows A })

The LL(k) parsing algorithm requires the grammar to satisfy the condition
in the following definition.



On the Transformation of LL(k)-linear Grammars to LL(1)-linear 331

Definition 4. Let k � 1 and let G = (Σ,N,R, S) be a grammar. An LL(k)
table for G is a partial function Tk : N × Σ�k → R that satisfies the following
condition, illusrated in Fig. 1 (right): Tk(A, x) = A → α if and only if there
exists a parse tree containing a subtree with a root A and with leaves u, with
further leaves v to the right of this subtree, where Firstk(uv) = x and the rule
applied to A is A → α.

If such a function exists, then G is said to be LL(k).

This property ensures that the parser can always determine the rule to apply
uniquely, by looking at the next k symbols of the input string.

3 General Plan of the Transformation

The goal is to transform an arbitrary LL(k)-linear grammar G to an LL(1)-linear
grammar G′ that defines the same language. Choosing a rule for a nonterminal
symbol A in the original grammar requires the next k symbols of the input. In
the new grammar, the general plan is to use a buffer for up to k − 1 next input
symbols, so that the parser reads them before having to choose a rule for A. In
the new grammar, this buffer shall be attached to every nonterminal symbol, so
that they are of the form uA, with A ∈ N and u ∈ Σ�k−1. The goal is to have
LG′(uA) = {w | uw ∈ LG(A) }.

Upon a closer inspection, there is a certain problem with this plan. If there
is a rule A → s in the original grammar, with s ∈ Σ∗ and |s| < k − 1, then,
in order to choose a rule for A, an LL(1) parser needs to know more symbols
than there are in s and in its own 1-symbol lookahead. Assuming that all these
symbols are buffered, if the parser has to apply a “short” rule A → s, it would
not be able to match the entire buffer against input symbols, and the remaining
buffered symbols could not be placed anywhere.

Example 1. The following grammar is linear LL(3).

S → aabSaa

S → a (short rule)

In order to distinguish between these two rules, a hypothetical LL(1) parser
buffers up to two first symbols using the following rules.

εS → a aS

aS → a aaS

Once the parser has aa in the buffer and sees that the next symbol is b, it knows
that the correct rule is S → aabSaa, and simulates it by the following rule.

aaS → b εSaa

However, the rule S → a in the original grammar cannot be similarly adapted
for the nonterminal aaS in the new grammar, and the construction fails.

The cause of this problem is a short rule that defines a substring of length
less than k − 1 in the middle of the input. Accordingly, the first step of the
proposed transformation is to eliminate such rules.



332 A. Okhotin and I. Olkhovsky

4 Elimination of “Short” Rules

The first step in the transformation of an LL(k)-linear grammar to an LL(1)-
linear grammar is the elimination of the so-called short rules, that is, rules of
the form A → w, with w ∈ Σ∗, |w| < k − 1 and Follow(A) �= {ε}.

Lemma 1. For every LL(k)-linear grammar G = (Σ,N,R, S) there exists an
LL(k)-linear grammar G′ without short rules that defines the same language.
The number of nonterminal symbols in G′ is at most |Σ�k−1| · |N |.
Proof. In the new grammar G′ = (Σ,N ′, R′, Sε), nonterminals are of the form
Au, with A ∈ N and u ∈ Followk−1(A). The goal is that every nonterminal Au

defines all strings defined by A in G, with a suffix u appended: LG′(Au) = {wu |
w ∈ LG(A) }.

For every nonterminal symbol Au and for every rule A → w1Bw2 ∈ R, the
new grammar has a rule defined as follows. Let s denote the first k−1 symbols of
w2u and t denote the rest of w2u, so that st = w2u and |s| = min(|w2u|, k − 1).

The corresponding rule in G′ defers the string s to the nonterminal B, and
appends the rest of the symbols in the end; these include all the remaining
symbols of u.

Au → w1Bst

This is illustrated in Fig. 2.
For rules of the form A → s with s ∈ Σ∗, the corresponding rule in the new

grammar appends the suffix to s.

Au → su

The correctness proof is comprised of several assertions: namely, that G′

defines the desired language, has no short rules and is LL(k).

Claim. If a string w is defined by Au in the new grammar, then w = xu and A
defines x in the original grammar.

Claim. If a string x is defined by A in the original grammar, then Au defines xu
in the new grammar.

Both claims are established by induction on the height of the respective parse
trees. Together, the above two claims establish that LG′(Au) = LG(A)u for each
nonterminal symbol Au.

Separate proofs are needed to show that the new grammar has no short rules
and the construction preserves the LL(k) property. All proofs are omitted due
to space constraints. ��
Example 2 (continued from Example 1). The linear LL(3) grammar in Example 1
is transformed as follows.

Sε → a | aabSaa

Saa → aaa | aabSaaaa

The rule Sε → a is not short, because Follow(Sε) = {ε}.



On the Transformation of LL(k)-linear Grammars to LL(1)-linear 333

S

A

B

w2 uw1

S

B

w2 u

Bs

Au

s t

w1

A

Fig. 2. Simulating a rule A → w1Bw2 in G by the rule Au → w1Bst in G′.

5 Reduction to One-Symbol Look-Ahead

Once all short rules are eliminated, the following second construction is applied
to reduce the length of the look-ahead strings to 1.

Lemma 2. For every LL(k)-linear grammar G = (Σ,N,R, S) without short
rules, there exists an LL(1)-linear grammar G′ that describes the same language.

Proof. In the new grammar G′, nonterminal symbols are of the form uA, with
A ∈ N and u ∈ Σ�k. The left subscript u of a nonterminal uA is a buffer for
up to k − 1 last symbols read by a parser. The goal is to have LG′(uA) = {w |
uw ∈ LG(A) }.

While the buffer is underfull, the parser reads extra symbols one by one and
appends them to the buffer. As soon as the buffer is filled, the parser sees a
nonterminal symbol uA with u ∈ Σk−1, as well as a one-symbol look-ahead a.
Altogether, the parser has all k symbols needed to determine a rule to apply
to A, which is given in the entry T (A, ua) in the LL(k) table for G.

The initial symbol of the new grammar, εS, is S with an empty buffer.
There are three types of rules in the grammar G′. First, there are rules for

filling the buffer. For each nonterminal uA with |u| < k −1, and for each symbol
a ∈ Σ, there is a rule that appends this symbol to the buffer.

uA → a uaA

Second, there are rules obtained from the corresponding rules in G. For each
uA ∈ N ′ and a ∈ Σ with |u| = k − 1 and with T (A, ua) defined, the new
grammar contains one rule defined as follows. If T (A, ua) = A → sBt, then one
of u, s is a prefix of the other; there are two cases, depending on which string is
longer. If s is not shorter than u, then s = us′ for some s′ ∈ Σ∗, and the new
rule is obtained by removing the prefix u from s.

uA → s′
εBt



334 A. Okhotin and I. Olkhovsky

S

A

B

u t
s v

S

u t
s v

vB
uA

Fig. 3. Simulating a rule A → sBt in G by the rule uA → vBt in G′, where u = sv.

If u is longer than s then u = sv for some v ∈ Σ+ and the new rule is obtained
by removing s and passing the remaining buffer contents v to B, as illustrated
in Fig. 3.

uA → vBt

If T (A, ua) = A → s, then s = ux because this is not a short rule, and a is the
first symbol of x if x �= ε. Then the new grammar contains the following rule.

uA → x

At last, there are rules for the case when the end of the string has been reached.
Namely, for each uA ∈ N ′ with |u| � k −1 and with T (A, u) defined, since there
are no short rules in G, it is known that u ∈ LG(A). Then the grammar G′

contains a null rule.

uA → ε

The resulting grammar G′ is linear. The proof that G′ is LL(1) and defines the
same language as G is given in a series of claims.

Claim. x ∈ LG′(uA) if and only if ux ∈ LG(A).

In each direction, the proof is by induction on the height of the respective
parse trees.

Claim. For each u ∈ Σ�k−1, if y ∈ Follow(uA), then y ∈ Follow(A).

Here the proof considers a parse tree and a subtree followed by y, and is
carried out by induction on the depth of that subtree in the tree.

Claim. The grammar G′ is LL(1).

The proof naturally relies on the LL(k) property of G. ��



On the Transformation of LL(k)-linear Grammars to LL(1)-linear 335

Example 3 (continued from Example 2). The linear LL(3) without short rules
constructed in Example 2, is transformed to LL(1) as follows.

Sε → a | aabSaa

Saa → aaa | aabSaaaa

The rule Sε → a is not short, because Follow(Sε) = {ε}.

Both constructions in Lemma 1 and Lemma 2 entail a blow-up in the number
of nonterminal symbols by the factor of |Σ�k−1| each. Hence, combining these
Lemmata, the desired result can be obtained.

Theorem 1. For every LL(k)-linear grammar G = (Σ,N,R, S) there exists an
LL(1)-linear grammar with |N | · |Σ�k−1|2 nonterminal symbols that describes
the same language.

6 Lower Bound

The above construction, applied to an LL(k)-linear grammar with a set of non-
terminal symbols N , produces a new LL(1)-linear grammar with as many as
|N | · |Σ�k−1|2 nonterminal symbols. The next result is that almost as many
nonterminal symbols are in the worst case necessary.

Theorem 2. For every m � 3, k � 4 and n � 1, there exists a language
described by an LL(k)-linear grammar G over an m-symbol alphabet, with n
nonterminal symbols, so that every LL(1)-linear grammar for the same language
has at least n · (m − 1)2k−3−�logm−1 k� nonterminal symbols.

The grammar witnessing the lower bound is defined over an m-symbol alpha-
bet Σ ∪ {#}, where # is a special symbol not in Σ.

This grammar shall have rules of the form A → xAf(x), with x ∈ Σk−1#,
for some function f : Σk−1# → Σ, as well as a rule A → ε. The function shall
be defined in a way that in order to detect where the rule A → ε should be
applied, an LL(1)-linear parser would have to buffer almost 2k symbols. Since
the arguments to f are strings of a fixed length k, this function can be equally
regarded as a function of k arguments.

For every integer C � 1, consider the last C arguments of f . Once the parser
reads the first k − C symbols c1 . . . ck−C of a presumed block x ∈ Σk−1#,
and has C further symbols to read, dk−C+1 . . . dk−1#, in order to compute f
on this block, it needs to remember its projection to the last C − 1 arguments,
g : ΣC−1 → Σ, defined by g(dk−C+1 . . . dk−1) = f(c1 . . . ck−Cdk−C+1 . . . dk−1#).
The goal is to choose C and f , so that the number of these functions g is as
large as possible.

Lemma 3. For C = �log|Σ| k	 + 1, there exists a surjective function
f : Σk−1# → Σ, for which all projections gw obtained by substituting the first
k − C arguments of f with w (gw(w′) = f(ww′)), for w ∈ Σk−C , are pairwise
distinct.



336 A. Okhotin and I. Olkhovsky

Proof. There are |Σ||Σ|C−1
possible projections g : ΣC−1# → Σ. In order to

map distinct strings w ∈ |Σ|k−C to distinct functions gw, the number of strings
should not exceed the number of possible projections.

|Σ|k−C � |Σ||Σ|C−1

This inequality holds true, because C = log|Σ| k + 1 implies k − C � |Σ|C−1.
Then, strings w ∈ Σk−C can be injectively mapped to functions

gw : ΣC−1# → Σ, so that the desired function f is defined as f(ww′) = gw(w′),
for all w ∈ Σk−C and w′ ∈ ΣC−1#. In order to ensure that f is surjective, it is
sufficient to choose the functions gw so that every symbol a ∈ Σ is in the image
of some function gw, which does not cause any problems. ��

With f fixed, the grammar G = (Σ ∪ {#}, N,R, S) is defined to have N =
{A1, . . . , An} and S = A1, with the following rules. Each nonterminal symbol
has the rules for reproducing itself surrounded by x on the left, and f(x) on the
right, for all possible strings x ∈ Σk−1#.

Ai → xAif(x) (1 � i � n, x ∈ Σk−1#)

In the middle of the string, there are two possibilities. First, there can be nothing,
which shall be detected only k symbols later, when the marker (#) is not found
at the end of a k-symbol block.

Ai → ε (1 � i � n)

The other possibility is that the number of the nonterminal symbol is explicitly
written in the middle. This is detected immediately; the reason for having this
case is that it forces a parser to remember this number.

Ai → b#i (1 � i � n)

Finally, the number of the nonterminal symbol can be changed by applying a
rule

Ai → #Ai+1 (1 � i < n)

This is the LL(k)-linear grammar promised in Theorem 2. It remains to prove
that every LL(1)-linear grammar G′ = (Σ ∪ {#}, N ′, R′, S′) for the same lan-
guage must have at least as many nonterminal symbols as stated in the theorem.

The proof uses the following strings in L(G) (the grammar also defines other
strings besides these).

#i−1x1 . . . x�f(x�) . . . f(x1), with i, � � 1, x1, . . . , x� ∈ Σk−1#

#i−1x1 . . . x�b#if(x�) . . . f(x1), with i, � � 1, x1, . . . , x� ∈ Σk−1#

Each string is obtained by first using the rules A1 → #A2, . . . , Ai−1 → #Ai,
and then applying rules of the form Ai → xAif(x). For the first string, this is



On the Transformation of LL(k)-linear Grammars to LL(1)-linear 337

followed by the rule Ai → ε, whereas the second string uses the rule Ai → b#i

instead.
Consider the stack contents of an LL(1) parser for G′ after reading a string

of the following form, for some i ∈ {1, . . . , n}, x1, . . . , xk ∈ Σk−1#, and
a1, . . . , ak−C ∈ Σ.

u = #i−1x1 . . . xka1 . . . ak−C

Since there exist strings in L(G) that begin with u followed by any symbol
from Σ, the stack contents begin with a nonterminal symbol. Since the grammar
is linear, the stack contents are Av, where A ∈ N ′ and v ∈ (Σ ∪ {#})∗. The
general plan of the proof is to show that, for a certain large set of strings u
of the above form, the corresponding nonterminal symbols A must be pairwise
distinct.

The first claim is that most of the information the parser stores at this point
is encoded in the nonterminal symbol.

Lemma 4. Let G′ = (Σ ∪ {#}, N ′, R′, S′) be any LL(1)-linear grammar that
describes the language L(G), and let Av be the stack contents after reading a
string of the form u = #i−1x1 . . . xka1 . . . ak−C , with i ∈ {1, . . . , n}, x1, . . . , xk ∈
Σk−1#, and a1, . . . , ak−C ∈ Σ. Then, |v| � 2.

Proof. Let ak−C+1, . . . , ak−1 ∈ Σ be any symbols following u, and consider the
following two blocks from Σk−1#.

xk+1 = a1 . . . ak−1#
xk+2 = f(xk+1)f(xk) . . . f(x3)#

Consider the following two strings, one obtained by extending u with the
block xk+1, and the other by extending u with both blocks, along with filling in
the matching symbols in the rest of the string.

w1 = #i−1x1 . . . xkxk+1f(xk+1)f(xk) . . . f(x3)f(x2)f(x1)

w2 = #i−1x1 . . . xkxk+1xk+2f(xk+2)f(xk+1)f(xk) . . . f(x3)f(x2)f(x1)

Both strings begin with u and are in L(G), and have the following prefix.

w = #i−1x1 . . . xkxk+1f(xk+1)f(xk) . . . f(x4)

The longest common prefix of w1 and w2 is wf(x3). There exist strings in L(G)
with prefix w followed by any symbol, so the stack contents after reading w again
begin with a nonterminal symbol. Let A′v′ be the contents of the stack after w
is read. At this point, the parser sees the symbol f(x3). There are at least two
strings in L(G) that begin with wf(x3)—namely, w1 and w2—and therefore the
right-hand side of the rule in the LL(1)-table for (A′, f(x3)) contains a nonter-
minal symbol. For the same reason, there must be a nonterminal symbol in the
stack at least until f(x3) is finally read. Until that moment, the parser can push
further symbols onto the stack, whereas the string v lies at the bottom of the



338 A. Okhotin and I. Olkhovsky

stack and remains untouched. The resulting stack contents after reading wf(x3)
are γv′′, where γ ∈ (Σ ∪ {#})∗N , v′′ ∈ (Σ ∪ {#})∗, and v is a suffix of v′′.

To accept the string w1 = wf(x3)f(x2)f(x1), the parser, after reading
wf(x3), must have at most two symbols on the stack: that is, |v′′| � 2. Since v
is a suffix of v′′, this proves the lemma. ��

Now consider any two distinct strings of the same general form as in Lemma 4.
It is claimed that the parser must have different nonterminal symbols in the stack
after reading these strings.

Lemma 5. Let G′ = (Σ ∪{#}, N ′, R′, S′) be any LL(1)-linear grammar for the
language L(G), and consider two strings of the following form.

u1 = #i−1x1 . . . xka1 . . . ak−C (Ai ∈ N, x1, . . . , xk ∈ Σk−1#, a1, . . . , ak−C ∈ Σ)
u2 = #j−1y1 . . . ykb1 . . . bk−C (Aj ∈ N, y1, . . . , yk ∈ Σk−1#, b1, . . . , bk−C ∈ Σ)

Assume that either i �= j, or f(x3) . . . f(xk) �= f(y3) . . . f(yk), or a1 . . . ak−C �=
b1 . . . bk−C . Let Av and Bv′ be the parser’s stack contents after reading these
strings. Then, A �= B.

Proof. Suppose, for the sake of a contradiction, that A = B, and accordingly
the stack contents after reading u1 and u2 are Av and Av′, respectively.

Denote ã = a1 . . . ak−C and˜b = b1 . . . bk−C . If ã �= ˜b, then, by the construction
of f , there is a string z = dk−C+1 . . . dk−1# of length C, with dk−C+1, . . . , dk−1 ∈
Σ, that satisfies f(ãz) �= f(˜bz); if ã = ˜b, then let z = dk−C+1 . . . dk−1# be any
string with dk−C+1, . . . , dk−1 ∈ Σ.

The following two strings are in L(G).

u1zf(ãz)f(xk) . . . f(x1)

u1zb#if(ãz)f(xk) . . . f(x1)

Since the stack contains Av after reading their common prefix u1, both remaining
suffixes must be in LG′(Av). The prefixes of these strings containing all but the
last |v| symbols are in LG′(A). Denote them by w1 and w2, respectively.

w1 = zf(ãz)f(xk) . . . f(x|v|+1)

w2 = zb#if(ãz)f(xk) . . . f(x|v|+1)

(note that |v| � 2 by Lemma 4)
By the assumption, u1 and u2 must differ either in the number of sharp signs

in the beginning (i �= j), or in one of the images of the last k − 2 complete
blocks (f(x3) . . . f(xk) �= f(y3) . . . f(yk)), or in one of the symbols in the last
incomplete block (ã �= ˜b). There are accordingly three cases to consider.

– Let i �= j. The parser’s stack contents after reading u2 is Av′, and therefore
the string u2w2v

′ must be accepted.

u2w2v
′ = #j−1y1 . . . ykb1 . . . bk−Czb#if(ãz)f(xk) . . . f(x|v|+1)v′

However, the mismatch between the prefix #j−1 and the substring b#i in the
middle means that the string is not in L(G). This is a contradiction.



On the Transformation of LL(k)-linear Grammars to LL(1)-linear 339

– In the case when f(x3) . . . f(xk) �= f(y3) . . . f(yk), after reading u2, the parser
has Av′ in its stack, and thus must accept u2w1v

′.

u2w1v
′ = #j−1y1 . . . ykb1 . . . bk−Czf(ãz)f(xk) . . . f(x|v|+1)v′

However, since f(x3) . . . f(xk) �= f(y3) . . . f(yk), this string is not in L(G) and
should not be accepted, contradiction.

– Assume that ã �= ˜b. Then, f(ãz) �= f(˜bz) by the choice of z. As in the previous
case, the parser accepts u2w1v

′, which is not in L(G). ��
Proof (of Theorem 2). For all i ∈ {1, . . . , n}, d3, . . . , dk ∈ Σ and a1, . . . , ak−C ∈
Σ, let x1, . . . , xk ∈ Σk−1#, with f(xj) = dj for all j ∈ {3, . . . , n}. Then the
corresponding string ui;d3,...,dk;a1,...,ak−C

is defined as follows.

ui;d3,...,dk;a1,...,ak−C
= #i−1x1 . . . xka1 . . . ak−C

By Lemma 5, upon reading different strings of this form, the LL(1)-linear parser
must have pairwise distinct nonterminal symbols in its stack. Therefore, there
must be at least as many nonterminal symbols as there are such strings, that is,
n · (m − 1)2k−C−2, as claimed. ��

7 Conclusion

The collapse of the hierarchy of LL(k)-linear languages establishes the LL-linear
languages as a robust language family that deserves future investigation.

In particular, the succinctness tradeoff between LL(k)-linear grammars with
different k has been determined only with respect to the number of nonterminal
symbols. It would be interesting to know whether the elimination of look-ahead
similarly affects the total length of description (the number of symbols needed
to describe the grammar). The witness languages constructed in this paper do
not establish any lower bounds on that, and more research is accordingly needed
to settle this question.

Another suggested line of research concerns LL subfamilies of other families
of grammars [9]. For instance, is there a similar lookahead hierarchy for LL(k)-
linear conjunctive grammars and LL(k)-linear Boolean grammars? [8]

References

1. de la Higuera, C., Oncina, J.: Inferring deterministic linear languages. In: Kivinen,
J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, pp. 185–200. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45435-7 13

2. Holzer, M., Lange, K.-J.: On the complexities of linear LL(1) and LR(1) grammars.
In: Ésik, Z. (ed.) FCT 1993. LNCS, vol. 710, pp. 299–308. Springer, Heidelberg
(1993). https://doi.org/10.1007/3-540-57163-9 25

3. Ibarra, O.H., Jiang, T., Ravikumar, B.: Some subclasses of context-free languages
in NC1. Inf. Process. Lett. 29(3), 111–117 (1988). https://doi.org/10.1016/0020-
0190(88)90047-6

https://doi.org/10.1007/3-540-45435-7_13
https://doi.org/10.1007/3-540-57163-9_25
https://doi.org/10.1016/0020-0190(88)90047-6
https://doi.org/10.1016/0020-0190(88)90047-6


340 A. Okhotin and I. Olkhovsky

4. Jirásková, G., Kĺıma, O.: Deterministic biautomata and subclasses of deterministic
linear languages. In: Mart́ın-Vide, C., Okhotin, A., Shapira, D. (eds.) LATA 2019.
LNCS, vol. 11417, pp. 315–327. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-13435-8 23

5. Knuth, D.E.: Top-down syntax analysis. Acta Informatica 1, 79–110 (1971).
https://doi.org/10.1007/BF00289517

6. Kurki-Suonio, R.: Notes on top-down languages. BIT Numer. Math. 9(3), 225–238
(1969). https://doi.org/10.1007/BF01946814

7. Lewis II, P.M., Stearns, R.E.: Syntax-directed transduction. J. ACM 15(3), 465–
488 (1968). https://doi.org/10.1145/321466.321477

8. Okhotin, A.: Expressive power of LL(k) Boolean grammars. Theor. Comput. Sci.
412(39), 5132–5155 (2011). https://doi.org/10.1016/j.tcs.2011.05.013

9. Okhotin, A.: Underlying principles and recurring ideas of formal grammars. In:
Klein, S.T., Mart́ın-Vide, C., Shapira, D. (eds.) LATA 2018. LNCS, vol. 10792,
pp. 36–59. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77313-1 3

10. Rosenkrantz, D.J., Stearns, R.E.: Properties of deterministic top-down grammars.
Inf. Control 17, 226–256 (1970). https://doi.org/10.1016/S0019-9958(70)90446-8

https://doi.org/10.1007/978-3-030-13435-8_23
https://doi.org/10.1007/978-3-030-13435-8_23
https://doi.org/10.1007/BF00289517
https://doi.org/10.1007/BF01946814
https://doi.org/10.1145/321466.321477
https://doi.org/10.1016/j.tcs.2011.05.013
https://doi.org/10.1007/978-3-319-77313-1_3
https://doi.org/10.1016/S0019-9958(70)90446-8


On Computing the Hamiltonian Index
of Graphs

Geevarghese Philip1,3(B) , M. R. Rani2 , and R. Subashini2

1 Chennai Mathematical Institute, Chennai, India
gphilip@cmi.ac.in

2 National Institute of Technology Calicut, Calicut, India
{rani_p150067cs,suba}@nitc.ac.in

3 UMI ReLaX, Chennai, India

Abstract. For an integer r ≥ 0 the r-th iterated line graph Lr(G) of a
graph G is defined by: (i) L0(G) = G and (ii) Lr(G) = L(L(r−1)(G)) for
r > 0, where L(G) denotes the line graph of G. The Hamiltonian Index
h(G) of G is the smallest r such that Lr(G) has a Hamiltonian cycle
[Chartrand, 1968]. Checking if h(G) = k is NP-hard for any fixed integer
k ≥ 0 even for subcubic graphs G [Ryjáček et al., 2011]. We study the
parameterized complexity of this problem with the parameter treewidth,
tw(G), and show that we can find h(G) in time O�((1 + 2(ω+3))tw(G))
where ω is the matrix multiplication exponent. This generalizes various
prior results on computing h(G) including an O�((1+2(ω+3))tw(G))-time
algorithm for checking if h(G) = 1 holds [Misra et al., CSR 2019].

The NP-hard Eulerian Steiner Subgraph problem takes as input
a graph G and a specified subset K of terminal vertices of G and asks
if G has an Eulerian subgraph H containing all the terminals. A key
ingredient of our algorithm for finding h(G) is an algorithm which solves
Eulerian Steiner Subgraph in O�((1+2(ω+3))tw(G)) time. To the best
of our knowledge this is the first FPT algorithm for Eulerian Steiner
Subgraph, and generalizes previous results on various special cases.

1 Introduction

All graphs in this article are finite and undirected, and are without self-loops or
multiple edges unless explicitly stated. We use N to denote the set of non-negative
integers, and V (G), E(G), respectively, to denote the vertex and edge sets of
graph G. A graph is Eulerian if it has a closed Eulerian trail, and Hamiltonian
if it has a Hamiltonian cycle. The vertex set of the line graph of a graph G—
denoted L(G)—is the edge set E(G) of G, and two vertices e, f are adjacent in
L(G) if and only if the edges e and f share a vertex in G. Let r be a non-negative
integer. The r-th iterated line graph Lr(G) of G is defined by: (i) L0(G) = G,
and (ii) Lr(G) = L(L(r−1)(G)) for r > 0. If G = P� for a non-negative integer �
then L�(G) is K1, the graph with one vertex and no edges, and Lr(G) is the
empty graph for all r > �. If G is a connected graph which is not a path then
Lr(G) is nonempty for all r ≥ 0 [5].

Full version on arXiv: https://arxiv.org/abs/1912.01990.
c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 341–353, 2020.
https://doi.org/10.1007/978-3-030-50026-9_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_25&domain=pdf
http://orcid.org/0000-0003-0717-7303
http://orcid.org/0000-0002-4918-8150
http://orcid.org/0000-0002-9724-3484
https://arxiv.org/abs/1912.01990
https://doi.org/10.1007/978-3-030-50026-9_25


342 G. Philip et al.

An edge Hamiltonian path of a graph G is any permutation Π of the edge
set E(G) of G such that every pair of consecutive edges in Π has a vertex in
common, and an edge Hamiltonian cycle of G is an edge Hamiltonian path of G
in which the first and last edges also have a vertex in common.
Theorem 1. The following are equivalent for a graph G:
– Its line graph L(G) is Hamiltonian
– G has an edge Hamiltonian cycle [6]
– G contains a closed trail T such that every edge in G has at least one end-point

in T [13]

Chartrand showed that for essentially all connected graphs G, Lr(G) becomes
Hamiltonian for some integer r ≥ 0.
Theorem 2. [6] If G is a connected graph on n vertices which is not a path,
then Lr(G) is Hamiltonian for all integers r ≥ (n − 3).

This led Chartrand to define the Hamiltonian Index h(G) of a connected
graph G which is not a path, to be the smallest non-negative integer r such that
Lr(G) is Hamiltonian [6]. The main focus of the current work is the algorithmic
question of computing h(G). Checking if h(G) = 0 holds is the same as checking
if graph G is Hamiltonian. This is long known to be NP-complete, even when
the input graph is planar and subcubic (has maximum degree at most 3) [12].
Checking if h(G) = 1 holds is the same as checking if (i) G is not Hamiltonian,
and (ii) the line graph L(G) is Hamiltonian. Bertossi [1] showed that the latter
problem is NP-complete, and Ryjáček et al. proved that this holds even if graph
G is subcubic [24]. Indeed they showed that checking whether h(G) = t is NP-
complete for any fixed integer t ≥ 0, even when the input graph G is subcubic.

Our Problems and Results. In this work we take up the parameterized com-
plexity analysis of the problem of computing the Hamiltonian Index. Briefly put,
an instance of a parameterized problem is a pair (x, k) where x is an instance
of a classical problem and k is a (usually numerical) parameter which captures
some aspect of x. A primary goal is to find a fixed-parameter tractable (or FPT)
algorithm for the problem, one which solves the instance in time O(f(k) · |x|c)
where f() is a function of the parameter k alone, and c is a constant indepen-
dent of x and k; this running time is abbreviated as O�(f(k)). The design of
FPT algorithms is a vibrant field of research; we refer the interested reader to
standard textbooks [7,9].

Since checking whether h(G) = t is NP-complete for any fixed t ≥ 0 for
subcubic graphs, neither the value h(G) nor the maximum or average degree of
G is a sensible parameter for this problem. We choose the treewidth of the input
graph G as our parameter. This is motivated by prior related work as well, as
we describe below. Thus the main problem which we take up in this work is
Hamiltonian Index (HI) Parameter: tw
Input: A connected undirected graph G = (V,E) which is not a path, a tree
decomposition T = (T, {Xt}t∈V (T )) of G of width tw, and r ∈ N.
Question: Is h(G) ≤ r?



On Computing the Hamiltonian Index of Graphs 343

Our first main result is that this problem is fixed-parameter tractable. ω denotes
the matrix multiplication exponent; it is known that ω < 2.3729 holds [26].

Theorem 3. There is an algorithm which solves an instance (G, T , tw, r) of
Hamiltonian Index in O�((1 + 2(ω+3))tw) time.

From this and from Theorem 2 we get the next result.

Corollary 4. There is an algorithm which takes as input a graph G and a tree
decomposition T of width tw of G as input, and outputs the Hamiltonian Index
h(G) of G in O�((1 + 2(ω+3))tw) time.

The input to a Steiner subgraph problem consists of a graph G and a specified
set K of terminal vertices of G, and the objective is to find a subgraph of G which
(i) contains all the terminals, and (ii) satisfies some other specified set of con-
straints, usually including connectivity constraints on the set K. The archetypal
example is the Steiner Tree problem where the goal is to find a connected sub-
graph of G of the smallest size (number of edges) which contains all the terminals.
Steiner Tree and a number of its variants have been the subject of extensive
research [14]. A key part of our algorithm for computing h(G) consists of solving:
Eulerian Steiner Subgraph (ESS) Parameter: tw
Input: An undirected graph G = (V,E), a set of “terminal” vertices K ⊆ V ,
and a tree decomposition T = (T, {Xt}t∈V (T )) of G, of width tw.
Question: Does there exist an Eulerian subgraph G′ = (V ′, E′) of G such
that K ⊆ V ′?

G′ is an Eulerian Steiner subgraph of G for the terminal set K. The second
main result of this work is

Theorem 5. There is an algorithm which solves an instance (G,K, T , tw) of
Eulerian Steiner Subgraph in O�((1 + 2(ω+3))tw) time.

Related Work. The parameterized complexity of computing h(G) per se has
not, to the best of our knowledge, been previously explored. The two special
cases of checking if h(G) ∈ {0, 1} have been studied with the treewidth tw of the
input graph G as the parameter; we now summarize the main existing results.
Checking whether h(G) = 0 holds—that is, whether G is Hamiltonian—was
long known to be solvable in O�(twO(tw)) time (See, e.g., [10, Exercise 11.36]).
This was suspected to be the best possible till, in a breakthrough result in 2011,
Cygan et al. [8] showed that this can be done in randomized O�(4tw) time. More
recently, Bodlaender et al. [3] and Fomin et al. [11] showed, independently and
using different techniques, that this can be done in deterministic O�(2O(tw))
time.

Recall that a vertex cover of graph G is any subset S ⊆ V (G) such that every
edge in E(G) has at least one of its two endpoints in the set S. A subgraph G′

of a graph G is said to be a dominating Eulerian subgraph of G if (i) G′ is
Eulerian, and (ii) V (G′) is a vertex cover of G. Note that—in conformance with



344 G. Philip et al.

the literature (e.g. [19]) on this subject—the word “dominating” here denotes
the existence of a vertex cover, and not of a dominating set. The input to the
Dominating Eulerian Subgraph (DES) problem consists of a graph G and
a tree decomposition T of G of width tw, and the question is whether G has
a dominating Eulerian subgraph; the parameter is tw. The input to the Edge
Hamiltonian Path (EHP) (respectively, Edge Hamiltonian Cycle (EHC))
problem consists of a graph G and a tree decomposition T of G of width tw,
and the question is whether G has an edge Hamiltonian path (resp. cycle); the
parameter is tw. Observe that a closed trail in graph G is an Eulerian subgraph
of G. So Theorem 1 tells us that EHC is equivalent to DES.

The parameterized complexity of checking whether h(G) = 1 holds was first
taken up by Lampis et al. in 2014 [18,19], albeit indirectly: they addressed EHC
and EHP. They showed that EHP is in FPT if and only if EHC is in FPT,
and that these problems (and hence DES) can be solved in O�(twO(tw)) time.
Very recently Misra et al. [20] investigated an optimization variant of Edge
Hamiltonian Path which they called Longest Edge-Linked Path (LELP).
An edge-linked path is a sequence of edges in which every consecutive pair has a
vertex in common. Given a graph G, k ∈ N, and a tree decomposition T of G of
width tw as input the LELP problem asks whether G has an edge-linked path
of length at least k. Note that setting k = |E(G)| yields EHP as a special case.
Misra et al. [20] gave an algorithm which solves LELP (and hence, EHP, EHC
and DES) in O�((1 + 2(ω+3))tw) time. This gives the current best algorithm for
checking if h(G) = 1 holds. In the full version of this paper [21] we derive an
alternative algorithm for these problems, with the same running time.

Theorem 6. [20,21] There is an algorithm which solves an instance (G, T , tw)
of Edge Hamiltonian Path (respectively, Edge Hamiltonian Cycle or
Dominating Eulerian Subgraph) in O�((1 + 2(ω+3))tw) time.

To the best of our knowledge, ours is the first FPT algorithm for Eule-
rian Steiner Subgraph. A subgraph H of a graph G is a spanning subgraph
of G if H contains every vertex of G. A graph G is supereulerian if it has a
spanning subgraph H which is Eulerian. To the best of our knowledge, Eule-
rian Steiner Subgraph problem is not mentioned in the literature, but we
did find quite a bit of existing work on the special case—obtained by setting
K = V (G)—of checking if an input graph G is supereulerian [4,17]. Pulley-
blank observed already in 1979 that this latter problem is NP-complete even
on subcubic graphs [22]. This implies that Eulerian Steiner Subgraph is
NP-complete as well. Richey et al. [23] showed in 1985 that the problem can
be solved in polynomial time on series-parallel graphs. More recently, Sau and
Thilikos showed in 2010 that the problem can be solved in O�(2O(

√
n)) time on

planar graphs with n vertices [25]. Now consider the following parameterization:
Spanning Eulerian Subgraph (SES) Parameter: tw
Input: An undirected graph G = (V,E) and a tree decomposition T =
(T, {Xt}t∈V (T )) of G, of width tw.
Question: Does G have a spanning Eulerian subgraph?



On Computing the Hamiltonian Index of Graphs 345

Setting K = V (G) in Theorem 5 we get the following conclusion.

Corollary 7. There is an algorithm which solves an instance (G, T , tw) of
Spanning Eulerian Subgraph in O�((1 + 2(ω+3))tw) time.

It is known that series-parallel graphs have treewidth at most 2 and are
planar, and that planar graphs on n vertices have treewidth O(

√
n) [2]. Further,

given a planar graph G of treewidth t we can, in polynomial time, output a tree
decomposition of G of width O(t) [16]. These facts together with Corollary 7
subsume the results of Richey et al. and Sau and Thilikos, respectively.

Organization of the Rest of the Paper. We outline the proof of Theorem 5
in Sect. 2 and the proof of our main result Theorem 3 in Sect. 3. We conclude in
Sect. 4. We have omitted the proofs of most statements (those marked with a (†))
in this Extended Abstract, for want of space. The full version of this Extended
Abstract is available online on arXiv [21] and contains all the proofs as well as
a more complete discussion of our problems, results, and techniques.

2 An FPT Algorithm for Eulerian Steiner Subgraph

In this section we describe an algorithm which takes an instance (G,K, T , tw)
of Eulerian Steiner Subgraph as input and tells in O�((1+2(ω+3))tw) time
whether graph G has a subgraph which is (i) Eulerian, and (ii) contains every
vertex in the terminal set K. We assume, without loss of generality, that T
is itself a nice tree decomposition of width tw. The rest of our algorithm for
Eulerian Steiner Subgraph consists of dynamic programming (DP) over
the bags of this nice tree decomposition, and is modelled after the algorithm of
Bodlaender et al. [3] for Steiner Tree. We pick an arbitrary terminal v� ∈ K
and add it to every bag of T ; from now on we use T to refer to the resulting
“nearly-nice” tree decomposition in which the bags at all the leaves and the root
are equal to {v�}. The next definition captures how an Eulerian subgraph G′ =
(V ′, E′) of G which contains all the terminals K interacts with the structures
defined by node t.

Definition 8 (Valid partitions, witness for validity). For a bag Xt and
subsets X ⊆ Xt, O ⊆ X, we say that a partition P = {X1,X2, . . . Xp} of X is
valid for the combination (t,X,O) if there exists a subgraph G′

t = (V ′
t , E′

t) of Gt

such that

1. Xt ∩ V (G′
t) = X.

2. G′
t has exactly p connected components C1, C2, . . . , Cp and for each i ∈

{1, 2, . . . , p}, Xi ⊆ V (Ci). That is, the vertex set of each connected com-
ponent of G′

t has a non-empty intersection with set X, and P is the partition
of X defined by the subgraph G′

t.
3. Every terminal vertex from K ∩ Vt is in V (G′

t).
4. The set of odd-degree vertices in G′

t is exactly the set O.

Such a subgraph G′
t of Gt is a witness for partition P being valid for the combi-

nation (t,X,O) or, in short: G′
t is a witness for ((t,X,O), P ).



346 G. Philip et al.

Definition 9 (Completion). For a bag Xt and subsets X ⊆ Xt, O ⊆ X let
P be a partition of X which is valid for the combination (t,X,O). Let H be
a residual subgraph with respect to t such that V (H) ∩ Xt = X. We say that
((t,X,O), P ) completes H if there exists a subgraph G′

t of Gt which is a witness
for ((t,X,O), P ), such that the graph G′

t ∪ H is an Eulerian Steiner subgraph
of G for the terminal set K. We say that G′

t is a certificate for ((t,X,O), P )
completing H.

Lemma 10 (†). Let (G,K, T , tw) be an instance of Eulerian Steiner Sub-
graph, and let t be an arbitrary node of T . Let X ⊆ Xt, O ⊆ X, and let A be a
collection of partitions of X, each of which is valid for the combination (t,X,O).
Let B be a representative subset of A, and let H be an arbitrary residual subgraph
of G with respect to t such that V (H) ∩ Xt = X holds. If there is a partition
P ∈ A such that ((t,X,O), P ) completes H then there is a partition Q ∈ B such
that ((t,X,O), Q) completes H.

Lemma 11 (†). Let (G,K, T , tw) be an instance of Eulerian Steiner Sub-
graph, let r be the root node of T , and let v� be the terminal vertex which is
present in every bag of T . Then (G,K, T , tw) is a yes instance of Eulerian
Steiner Subgraph if and only if the partition P = {{v�}} is valid for the
combination (r,X = {v�}, O = ∅).

Lemma 12 (†). Let (G,K, T , tw) be an instance of Eulerian Steiner Sub-
graph, let r be the root node of T , and let v� be the terminal vertex which is
present in every bag of T . Let H = ({v�}, ∅), X = {v�}, O = ∅, and P = {{v�}}.
Then (G,K, T , tw) is a yes instance if and only if ((r,X,O), P ) completes H.

A naïve implementation of our algorithm would consist of computing, for
each node t of the tree decomposition T —starting at the leaves and working
up towards the root—and subsets O ⊆ X ⊆ Xt, the set of all partitions P
which are valid for the combination (t,X,O). At the root node r the algorithm
would apply Lemma 11 to decide the instance (G,K, T , tw). Since a bag Xt

can have up to tw + 2 elements (including the special terminal v�) the running
time of this algorithm could have a factor of twtw in it, since Xt can have
these many partitions. To avoid this we turn to the completion-based alternate
characterization of yes instances—Lemma 12—and the fact—Lemma 10—that
representative subset computations do not “forget” completion properties. After
computing a set A of valid partitions for each combination (t,X,O) we compute
a representative subset B ⊆ A and throw away the remaining partitions A \ B.
Thus the number of partitions which we need to remember for any combination
(t,X,O) never exceeds 2tw. We now describe the steps of the DP algorithm for
each type of node in T . We use V P [t,X,O] to denote the set of valid partitions
for the combination (t,X,O) which we store in the DP table for node t.

Leaf Node t: In this case Xt = {v�}. Set V P [t, {v�}, {v�}] = ∅, V P [t, {v�}, ∅] =
{{{v�}}}, and V P [t, ∅, ∅] = {∅}.



On Computing the Hamiltonian Index of Graphs 347

Introduce Vertex Node t: Let t′ be the child node of t, and let v be the vertex
introduced at t. Then v /∈ Xt′ and Xt = Xt′ ∪ {v}. For each X ⊆ Xt and
O ⊆ X,
1. If v is a terminal vertex, then

– if v /∈ X or if v ∈ O then set V P [t,X,O] = ∅
– if v ∈ (X \ O) then for each partition P ′ in V P [t′,X \ {v}, O], add

the partition P = (P ′ ∪ {{v}}) to the set V P [t,X,O]
2. If v is not a terminal vertex, then

– if v ∈ O then set V P [t,X,O] = ∅
– if v ∈ (X \ O) then for each partition P ′ in V P [t′,X \ {v}, O], add

the partition P = P ′ ∪ {{v}} to the set V P [t,X,O]
– if v /∈ X then set V P [t,X,O] = V P [t′,X,O]

3. Set A = V P [t,X,O]. Compute a representative subset B ⊆ A and set
V P [t,X,O] = B.

Introduce Edge Node t: Let t′ be the child node of t, and let uv be the edge
introduced at t. Then Xt = Xt′ and uv ∈ (E(Gt) \E(Gt′)). For each X ⊆ Xt

and O ⊆ X,
1. Set V P [t,X,O] = V P [t′,X,O].
2. If {u, v} ⊆ X then:

(a) Construct a set of candidate partitions P as follows. Initialize P = ∅.
– if {u, v} ⊆ O then add all of V P [t′,X,O \ {u, v}] to P.
– if {u, v} ∩ O = {u} then add all of V P [t′,X, (O \ {u}) ∪ {v}] to

P.
– if {u, v} ∩ O = {v} then add all of V P [t′,X, (O \ {v}) ∪ {u}] to

P.
– if {u, v} ∩ O = ∅ then add all of V P [t′,X,O ∪ {u, v}] to P.

(b) For each candidate partition P ′ ∈ P, if vertices u, v are in different
blocks of P ′—say u ∈ P ′

u, v ∈ P ′
v ; P ′

u 
= P ′
v—then merge these two

blocks of P ′ to obtain P . That is, set P = (P ′ \{P ′
u, P ′

v})∪ (P ′
u ∪P ′

v).
Now set P = (P \ {P ′}) ∪ P .

(c) Add all of P to the list V P [t,X,O].
3. Set A = V P [t,X,O]. Compute a representative subset B ⊆ A and set

V P [t,X,O] = B.
Forget Node t: Let t′ be the child node of t, and let v be the vertex forgotten at

t. Then v ∈ Xt′ and Xt = Xt′ \{v}. Recall that P (v) is the block of partition
P which contains element v, and that P − v is the partition obtained by
eliding v from P . For each X ⊆ Xt and O ⊆ X,
1. Set V P [t,X,O] = {P ′ − v ; P ′ ∈ V P [t′,X ∪ {v}, O], |P ′(v)| > 1}.
2. If v is not a terminal vertex then set V P [t,X,O] = V P [t,X,O] ∪

V P [t′,X,O].
3. Set A = V P [t,X,O]. Compute a representative subset B ⊆ A and set

V P [t,X,O] = B.
Join Node t: Let t1, t2 be the children of t. Then Xt = Xt1 = Xt2 . For each

X ⊆ Xt, O ⊆ X:
1. Set V P [t,X,O] = ∅
2. For each O1 ⊆ O and Ô ⊆ (X \ O):



348 G. Philip et al.

(a) Let O2 = O \ O1.
(b) For each pair of partitions P1 ∈ V P [t1,X,O1∪Ô], P2 ∈ V P [t2,X,O2∪

Ô], add their join P1 � P2 to the set V P [t,X,O].
3. Set A = V P [t,X,O]. Compute a representative subset B ⊆ A and set

V P [t,X,O] = B.

The key insight in the proof of correctness of our DP is that the processing
at every node in T preserves the following Correctness Criteria. Let t be a node
of T , let X ⊆ Xt, O ⊆ X, and let V P [t,X,O] be the set of partitions computed
by the DP for the combination (t,X,O).

1. Soundness: Every partition P ∈ V P [t,X,O] is valid for the combination
(t,X,O).

2. Completeness: For any residual subgraph H with respect to t with V (H)∩
Xt = X, if there exists a partition P of X such that ((t,X,O), P ) completes
H then the set V P [t,X,O] contains a partition Q of X such that ((t,X,O), Q)
completes H. Note that

– the two partitions P,Q must both be valid for the combination (t,X,O);
and

– Q can potentially be the same partition as P .

The processing at each of the non-leaf nodes computes a representative subset
as a final step. This step does not negate the correctness criteria.

Observation 13 (†). Let t be a node of T , let X ⊆ Xt, O ⊆ X, and let A
be a set of partitions which satisfies the correctness criteria for the combination
(t,X,O). Let B be a representative subset of A. Then B satisfies the correctness
criteria for the combination (t,X,O).

Lemma 14 (†). Let t be a node of the tree decomposition T and let X ⊆ Xt, O ⊆
X be arbitrary subsets of Xt,X respectively. The collection A of partitions com-
puted by the DP for the combination (t,X,O) satisfies the correctness criteria.

Theorem 5. There is an algorithm which solves an instance (G,K, T , tw) of
Eulerian Steiner Subgraph in O�((1 + 2(ω+3))tw) time.

Proof. We first modify T to make it a “nearly-nice” tree decomposition rooted at
r as described at the start of this section. We then execute the dynamic program-
ming steps described above on T . We return yes if the element {{v�}} is present
in the set V P [r,X = {v�}, O = ∅] computed by the DP, and no otherwise. From
Lemma 12 we know that (G,K, T , tw) is a yes instance of Eulerian Steiner
Subgraph if and only if the combination ((r,X = {v�}, O = ∅), P = {{v�}})
completes the residual graph H = ({v�}, ∅). By induction on the structure of the
tree decomposition T and using Observation 13 and Lemma 14 we get that the
set V P [r,X = {v�}, O = ∅] computed by the algorithm satisfies the correctness
criteria. And since {{v�}} is the unique partition of set {v�} we get that the
set V P [r,X = {v�}, O = ∅] computed by the algorithm will contain the parti-
tion {{v�}} if and only if (G,K, T , tw) is a yes instance of Eulerian Steiner
Subgraph.



On Computing the Hamiltonian Index of Graphs 349

Note that we compute representative subsets as the last step in the compu-
tation at each bag. So we get, while performing computations at an intermediate
node t, that the number of partitions in any set V P [t′,X ′, ·] for any child node t′

of t and subset X ′ of Xt′ is at most 2(|X
′|−1).

The computation at each leaf node of T can be done in constant time. For
an introduce vertex node or an introduce edge node or a forget node t
and a fixed pair of subsets X ⊆ Xt, O ⊆ X, the computation of set A involves—
in the worst case—spending polynomial time for each partition P ′ in some set
V P [t′,X ′ ⊆ X, ·]. Since the number of partitions in this latter set is at most
2(|X

′|−1) ≤ 2(|X|−1) we get that the set A can be computed in O�(2(|X|−1)) time,
and that the set B can be computed in O�(2(|X|−1) · 2(ω−1)·|X|) = O�(2ω·|X|)
time. Since the number of ways of choosing the subset O ⊆ X is 2|X| the entire
computation at an introduce vertex, introduce edge, or forget node t can be done
in time

|Xt|∑

|X|=0

(
|Xt|
|X|

)
2|X|O�(2ω·|X|) = O�((1 + 2 · 2ω)tw).

For a join node t and a fixed subset X ⊆ Xt we guess three pairwise disjoint
subsets Ô, O1, O2 of X in time 4|X|. For each guess we go over all partitions
P1 ∈ V P [t1,X,O1 ∪ Ô], P2 ∈ V P [t2,X,O2 ∪ Ô] and add their join P1 � P2 to
the set A. Since the number of partitions in each of the two sets V P [t1,X,O1 ∪
Ô], V P [t2,X,O2 ∪ Ô] is at most 2(|X|−1), the size of set A is at most 2(2|X|−2).
The entire computation at the join node can be done in time

|Xt|∑

|X|=0

(
|Xt|
|X|

)
4|X|(2(2|X|−2) + O�(2(2|X|−2) · 2(ω−1)·|X|)) = O�((1 + 2(ω+3))tw).

The entire DP over T can thus be done in O�((1 + 2(ω+3))tw) time. ��

3 Finding the Hamiltonian Index

In this section we prove Theorem 3: we describe an algorithm which takes an
instance (G, T , tw, r) of Hamiltonian Index as input and outputs in O�((1 +
2(ω+3))tw) time whether graph G has Hamiltonian Index at most r. If r ≥
(|V (G)| − 3) holds, then our algorithm returns yes. If r < (|V (G)| − 3) holds,
then it checks, for each i = 0, 1, . . . , r in increasing order, whether h(G) = i holds.
From Theorem 2, we know that this procedure correctly solves Hamiltonian
Index. We now describe how we check if h(G) = i holds for increasing values
of i. For i = 0 we apply an algorithm of Bodlaender et al., and for i = 1 we
leverage a classical result of Harary and Nash-Williams.

Theorem 15 [3]. There is an algorithm which takes a graph G and a tree decom-
position of G of width tw as input, runs in O�((5 + 2(ω+2)/2)tw) time, and tells
whether G is Hamiltonian.



350 G. Philip et al.

Theorem 16 [13]. Let G be a connected graph with at least three edges. Then
L(G) is Hamiltonian if and only if G has a dominating Eulerian subgraph.

For checking if h(G) ∈ {2, 3} holds we make use of a structural result of
Hong et al. [15]. For a connected subgraph H of graph G the contraction G/H
is the graph obtained from G by replacing all of V (H) with a single vertex vH

and adding edges between vH and V (G) \ V (H) such that the number of edges
in G/H between vH and any vertex v ∈ V (G) \ V (H) is equal to the number of
edges in G with one end point at v and the other in V (H). Note that the graph
G/H is, in general, a multigraph with multiedges incident on vH . Let V2 be the
set of all vertices of G of degree two, and let V̂ = V (G)\V2. A lane of G is either
(i) a path whose end-vertices are in V̂ and internal vertices (if any) are in V2,
or (ii) a cycle which contains exactly one vertex from V̂ . The length of a lane is
the number of edges in the lane. An end-lane is a lane which has a degree-one
vertex of G as an end-vertex.

For i ∈ {2, 3}, let Ui be the union of lanes of length less than i. Let
Ci

1, C
i
2, . . . ,[3] Ci

pi
be the connected components of G[V̂ ] ∪ Ui. Then each Ci

j

consists of components of G[V̂ ] connected by lanes of length less than i. Let H(i)

be the graph obtained from G by contracting each of the connected subgraphs
Ci

1, C
i
2, . . . , C

i
pi

to a distinct vertex. Let Di
j denote the vertex of H(i) obtained

by contracting subgraph Ci
j of G. Let H̃(i) be the graph obtained from H(i) by

these steps:

1. Delete all lanes beginning and ending at the same vertex Di
j .

2. If there are two vertices Di
j ,D

i
k in H(i) which are connected by �1 lanes of

length at least i + 2 and �2 lanes of length i or i + 1 such that �1 + �2 ≥ 3
holds, then delete an arbitrary subset of these lanes such that there remain
�3 lanes with length at least i + 2 and �4 lanes of length i or i + 1, where

(�3, �4) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(2, 0) if �1 is even and �2 = 0;
(1, 0) if �1 is odd and �2 = 0;
(1, 1) if �2 = 1;
(0, 2) if �2 ≥ 2.

3. Delete all end-lanes of length i, and replace each lane of length i or i + 1 by
a single edge.

Theorem 17 [15, See Theorem 3]. Let G be a connected graph with h(G) ≥ 2
and with at least one vertex of degree at least three, and let H̃(2), H̃(3) be graphs
constructed from G as described above. Then

– h(G) = 2 if and only if H̃(2) has a spanning Eulerian subgraph; and
– h(G) = 3 if and only if h(G) 
= 2 and H̃(3) has a spanning Eulerian subgraph.

For checking if h(G) = i holds for i ∈ {4, 5, . . . } we appeal to a reduction due
to Xiong and Liu [27]. Let L = {L1, L2, . . . , Lt} be a set of lanes (called branches
in [27]) in G, each of length at least 2. A contraction of G by L, denoted G//L,



On Computing the Hamiltonian Index of Graphs 351

is a graph obtained from G by contracting one edge of each lane in L. Note that
G//L is not, in general, unique.
Theorem 18 [27, Theorem 20]. Let G be a connected graph with h(G) ≥ 4 and
let L be the set of all lanes of length at least 2 in G. Then h(G) = h(G//L) + 1.

We can now prove

Theorem 3. There is an algorithm which solves an instance (G, T , tw, r) of
Hamiltonian Index in O�((1 + 2(ω+3))tw) time.

Proof. We first apply Theorem 15 to check if G is Hamiltonian. If G is Hamilto-
nian then we return yes. If G is not Hamiltonian and r = 0 holds then we return
no. Otherwise we apply Theorem 6 and Theorem 16 to check if L(G) is Hamil-
tonian. If L(G) is Hamiltonian then we return yes. If L(G) is not Hamiltonian
and r = 1 holds then we return no.

At this point we know—since G is connected, is not a path, and is not
Hamiltonian—that G has at least one vertex of degree at least three, and that
h(G) ≥ 2 holds. We construct the graph H̃(2) of Theorem 17 and use Corollary 7
to check if H̃(2) has a spanning Eulerian subgraph. If it does then we return yes.
If it does not and r = 2 holds then we return no. Otherwise we construct the
graph H̃(3) of Theorem 17 and use Corollary 7 to check if H̃(3) has a spanning
Eulerian subgraph. If it does then we return yes. If it does not and r = 3 holds
then we return no.

At this point we know that h(G) ≥ 4 holds. We compute the set L of all
lanes of G of length at least 2, and a contraction G′ = G//L. We construct a
tree decomposition T ′ of G′ from T as follows: For each edge xy of G which
is contracted to get G′, we introduce a new vertex vxy to each bag of T which
contains at least one of {x, y}. We now delete vertices x and y from all bags. It
is easy to verify that the resulting structure T ′ is a tree decomposition of G′,
of width tw′ ≤ tw. We now recursively invoke the algorithm on the instance
(G′, T ′, tw′, (r − 1)) and return its return value (yes or no).

The correctness of this algorithm follows from Theorem 15, Theorem 6, The-
orem 16, Theorem 17, Corollary 7, and Theorem 18. As for the running time,
checking Hamiltonicity takes O�((5 + 2(ω+2)/2)tw) time (Theorem 15). Check-
ing if L(G) is Hamiltonian takes O�((1 + 2(ω+3))tw) time (Theorem 6, Theo-
rem 16). The graphs H̃(2) and H̃(3) of Theorem 17 can each be constructed
in polynomial time, and checking if each has a spanning Eulerian subgraph
takes O�((1 + 2(ω+3))tw) time (Corollary 7). The graph G′ and its tree decom-
position T ′ of width tw′ can be constructed in polynomial time. Given that
5+2(ω+2)/2 < 1+2(ω+3) and tw′ ≤ tw hold, we get that the running time of the
algorithm satisfies the recurrence T (r) = O�((1 + 2(ω+3))tw) + T (r − 1). Since
we recurse only if r < |V (G)| − 3 holds we get that the recurrence resolves to
T (r) = O�((1 + 2(ω+3))tw). ��

4 Conclusion

The Hamiltonian Index h(G) of a graph G is a generalization of the notion of
Hamiltonicity. It was introduced by Chartrand in 1968, and has received a lot of



352 G. Philip et al.

attention from graph theorists over the years. It is known to be NP-hard to check
if h(G) = t holds for any fixed integer t ≥ 0, even for subcubic graphs G. We
initiate the parameterized complexity analysis of the problem of finding h(G)
with the treewidth tw(G) of G as the parameter. We show that this problem
is in FPT and can be solved in O�((1 + 2(ω+3))tw(G)) time. This running time
matches that of the current fastest algorithm, due to Misra et al. [20], for checking
if h(G) = 1 holds. We also derive an algorithm—described in the full version—
of our own, with the same running time, for checking if h(G) = 1 holds. A
key ingredient of our solution for finding h(G) is an algorithm which solves the
Eulerian Steiner Subgraph problem in O�((1 + 2(ω+3))tw(G)) time. This
is—to the best of our knowledge—the first FPT algorithm for this problem,
and it subsumes known algorithms for the special case of Spanning Eulerian
Subgraph in series-parallel graphs and planar graphs. We note in passing that
it is not clear that the algorithm of Misra et al. for solving LELP can be adapted
to check for larger values of h(G). We believe that our FPT result on Eulerian
Steiner Subgraph could turn out to be useful for solving other problems as
well.

Two different approaches to checking if h(G) = 1 holds—Misra et al.’s app-
roach via LELP and our solution using Dominating Eulerian Subgraph—
both run in O�((1 + 2(ω+3))tw(G)) time. Does this suggest the existence of a
matching lower bound, or can this be improved? More generally, can h(G)
be found in the same FPT running time as it takes to check if G is Hamil-
tonian (currently: O�((5 + 2(ω+2)/2)tw(G)) due to Bodlaender et al.)? Since
tw(G) ≤ |V (G)| − 1, our algorithm implies an O�((1+ 2(ω+3))|V (G)|)-time exact
exponential algorithm for finding h(G). We ask if this can be improved, as a first
step, to the classical O�(2|V (G)|) bound for Hamiltonicity.

References

1. Bertossi, A.A.: The edge Hamiltonian path problem is NP-complete. Inform. Pro-
cess. Lett. 13(4–5), 157–159 (1981). https://doi.org/10.1016/0020-0190(81)90048-
X

2. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor.
Comput. Sci. 209(1), 1–45 (1998)

3. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth.
Inform. Comput. 243, 86–111 (2015)

4. Catlin, P.A.: Supereulerian graphs: a survey. J. Graph Theor. 16, 177–196 (1992)
5. Catlin, P.A., Janakiraman, I.T.N., Srinivasan, N.: Hamilton cycles and closed trails

in iterated line graphs. J. Graph Theor. 14(3), 347–364 (1990)
6. Chartrand, G.: On Hamiltonian line-graphs. Trans. Am. Math. Soc. 134(3), 559–

566 (1968)
7. Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://

doi.org/10.1007/978-3-319-21275-3
8. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M., Woj-

taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. In: FOCS 2011, pp. 150–159. IEEE (2011)

https://doi.org/10.1016/0020-0190(81)90048-X
https://doi.org/10.1016/0020-0190(81)90048-X
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3


On Computing the Hamiltonian Index of Graphs 353

9. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4471-5559-1

10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-29953-X

11. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of
representative families with applications in parameterized and exact algorithms. J.
ACM 63(4), 29:1–29:60 (2016)

12. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem
is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)

13. Harary, F., Nash-Williams, C.S.J.: On Eulerian and Hamiltonian graphs and line
graphs. Can. Math. Bull. 8(6), 701–709 (1965)

14. Hauptmann, M., Karpiński, M.: A compendium on Steiner tree problems. Inst.
für Informatik (2013). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
392.7444

15. Hong, Y., Lin, J.L., Tao, Z.S., Chen, Z.H.: The Hamiltonian index of graphs.
Discrete Math. 309(1), 288–292 (2009)

16. Kammer, F., Tholey, T.: Approximate tree decompositions of planar graphs in
linear time. Theor. Comput. Sci. 645, 60–90 (2016)

17. Lai, H.J., Shao, Y., Yan, H.: An update on supereulerian graphs. WSEAS Trans.
Math. 12(9), 926–940 (2013)

18. Lampis, M., Makino, K., Mitsou, V., Uno, Y.: Parameterized edge hamiltonicity. In:
Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 348–359. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-12340-0_29

19. Lampis, M., Makino, K., Mitsou, V., Uno, Y.: Parameterized edge hamiltonicity.
Discrete Appl. Math. (2017). https://doi.org/10.1016/j.dam.2017.04.045

20. Misra, N., Panolan, F., Saurabh, S.: On the parameterized complexity of edge-
linked paths. In: van Bevern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol.
11532, pp. 286–298. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
19955-5_25

21. Philip, G., Rani, M.R., Subashini, R.: On computing the Hamiltonian index of
graphs. CoRR abs/1912.01990 (2019). http://arxiv.org/abs/1912.01990

22. Pulleyblank, W.R.: A note on graphs spanned by Eulerian graphs. J. Graph Theory
3(3), 309–310 (1979). https://doi.org/10.1002/jgt.3190030316

23. Richey, M., Parker, R.G., Rardin, R.: On finding spanning Eulerian subgraphs.
Naval Res. Logistics Q. 32(3), 443–455 (1985)

24. Ryjáček, Z., Woeginger, G.J., Xiong, L.: Hamiltonian index is NP-complete. Dis-
crete Appl. Math. 159(4), 246–250 (2011). https://doi.org/10.1016/j.dam.2010.08.
027

25. Sau, I., Thilikos, D.M.: Subexponential parameterized algorithms for degree-
constrained subgraph problems on planar graphs. J. Discrete Algorithms 8(3),
330–338 (2010)

26. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In: Pro-
ceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing,
pp. 887–898. ACM (2012)

27. Xiong, L., Liu, Z.: Hamiltonian iterated line graphs. Discrete Math. 256(1–2),
407–422 (2002)

https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/3-540-29953-X
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.392.7444
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.392.7444
https://doi.org/10.1007/978-3-319-12340-0_29
https://doi.org/10.1016/j.dam.2017.04.045
https://doi.org/10.1007/978-3-030-19955-5_25
https://doi.org/10.1007/978-3-030-19955-5_25
http://arxiv.org/abs/1912.01990
https://doi.org/10.1002/jgt.3190030316
https://doi.org/10.1016/j.dam.2010.08.027
https://doi.org/10.1016/j.dam.2010.08.027


A Lower Bound for the Query Phase of
Contraction Hierarchies and Hub Labels

Tobias Rupp(B) and Stefan Funke

Institut für Formale Methoden der Informatik, Universität Stuttgart,
Stuttgart, Germany

rupp@fmi.uni-stuttgart.de

Abstract. We prove a Ω(
√

n) lower bound on the query time for con-
traction hierarchies (CH) as well as hub labels, two popular speed-up
techniques for shortest path routing. Our construction is based on a
graph family not too far from subgraphs that occur in real-world road
networks, in particular it is planar and has bounded degree. Additionally,
we borrow ideas from our lower bound proof to come up with instance-
based lower bounds for concrete road network instances of moderate size,
reaching up to 83% of an upper bound given by a constructed CH.

Keywords: Route planning · Contraction hierarchies · Hub labelling

1 Introduction

While the problem of computing shortest paths in general graphs with non-
negative edge weights seems to have been well understood already decades ago,
the last 10–15 years have seen tremendous progress when it comes to the specific
problem of efficiently computing shortest paths in real-world road networks. Here
the idea is to spend some time for preprocessing where auxiliary information
about the network is computed and stored, such that subsequent queries can
be answered much faster than standard Dijkstra’s algorithm. One might classify
most of the employed techniques into two classes: ones that are based on pruned
graph search and others that are based on distance lookups. Most approaches fall
into the former class, e.g., reach-based methods [11,12], highway hierarchies [16],
arc-flags-based methods [6], or contraction hierarchies (CH) [10]. Here, Dijkstra’s
algorithm is given a hand to ignore some vertices or edges during the graph
search. The speed-up for road networks compared to plain Dijkstra’s algorithm
ranges from one up to three orders of magnitudes [10,12]. In practice, this means
that a query on a country-sized network like that of Germany (around 20 million
nodes) can be answered in less than a millisecond compared to few seconds
of Dijkstra’s algorithm. While these methods directly yield the actual shortest
path, the latter class is primarily concerned with the computation of the (exact)
distance between given source and target – recovering the actual path often
requires some additional effort. Examples of such distance-lookup-based methods

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 354–366, 2020.
https://doi.org/10.1007/978-3-030-50026-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_26&domain=pdf
https://doi.org/10.1007/978-3-030-50026-9_26


A Lower Bound for CH and HL 355

are transit nodes [3,4] and hub labels (HL) [1]. They allow for the answering of
distance queries another one or two orders of magnitudes faster.

There have also been attempts at theoretically explaining the impressive
practical performance of these speed-up schemes. These approaches first identify
certain properties of a graph, which supposedly characterize ‘typical’ inputs in
the real world and then show that for graphs satisfying these properties, certain
speed-up schemes have guaranteed query/construction time or space consump-
tion. Examples of such graph characterizations are given via highway dimen-
sion [2], skeleton dimension [13], or bounded growth [7]. It is important to note
that these approaches are all concerned with upper bounds. For example, in [2] it
is shown that for graphs with highway dimension h, after a preprocessing step,
the number of considered nodes during a CH query is O(h log n), which for poly-
logarithmic h is polylogarithmic in the network size. While small (i.e., constant
or polylogarithmic) highway dimension is often assumed for real-world networks,
it is important to note that even a simple

√
n × √

n grid has highway dimension
h = Θ(

√
n), so the upper bound guaranteed by [2] is O(

√
n log n). Similarly, an

analysis based on the bounded growth property [7] shows an upper bound of
O(

√
n log n). In this work are concerned with two specific speed-up techniques,

namely contraction hierarchies [10], and hub labels [1] and provide lower bounds.

Fig. 1. Grid-like substructures in real networks (Manhattan on the left, Urbana-
Champaign on the right) (by OpenStreetMap).

As grid-like substructures are quite common in real-world road networks,
see Fig. 1, one might ask whether better upper bounds for such networks are
impossible in general or whether a polylogarithmic upper bound could be shown
via more refined proof or CH construction techniques. Our work settles this
question for contraction hierarchies as well as hub labels up to a logarithmic
factor. We show that for CH, no matter what contraction order is chosen, and
for HL, no matter how the hub labels are generated, there are grid networks for
which the average number of nodes to be considered during a query is Ω(

√
n).

The insights of our theoretical lower bound analysis also allow us to devise
a scheme to compute instance-based lower bounds, that is, for a given concrete
road network, we algorithmically compute a lower bound on the average search



356 T. Rupp and S. Funke

space size. Note that such an instance-specific lower bound is typically much
stronger than an analytical lower bound.

1.1 Related Work

In [2], a graph property called highway dimension is proposed to analyze short-
est path speed-up schemes. Intuitively, the highway dimension h of a graph is
small if there exist sparse local hitting sets for shortest paths of a certain length.
For contraction hierarchies and hub labels, a search space size of O(h log n) was
proven (using a NP-hard preprocessing phase; polynomial time preprocessing
increases this by a log h factor). While one might hope that real road networks
exhibit a ‘small’ highway dimension, e.g., constant or polylogarithmic, it is known
that h ∈ Ω(

√
n) holds for grids. For hub labels, the so-called skeleton dimen-

sion k of [13] has been instrumented to prove a search space size of O(k log n).
Still, for grids, we have k ∈ Ω(

√
n). In [5], CH were analyzed for graphs with

treewidth t, and a query time of O(t log n) was shown. Yet, for grids we again
have t ∈ Ω(

√
n). Finally, the bounded growth model was introduced in [9], which

also led to a search space size of O(
√

n log n) for realistic graphs including grids.
Specifically for planar graphs, the search space is O(

√
n) by combining the pla-

nar separator theorem [14] with nested dissection [5]. Therefore, our lower bound
for the presented grid graph will be tight. In [17], White constructs for any given
highway dimension h a family of graphs Gt,k,q (as introduced in [15]) of highway
dimension h, such that hub labelling requires a label size of Ω(h log n) and CH
a query time of O((h log n)2). Unfortunately, the graphs Gt,k,q according to the
author himself “are not representative of real-world graphs. For instance, the
graphs do not have small separators and are not planar”. In fact this could be
more an indication of the unsuitability of the notion of highway dimension to
characterize real-world road networks rather than a weakness of [17]. For transit
nodes [3], instance-based lower bounds based on an LP formulation and its dual
were derived in [8]. We are not aware of results regarding instance-based lower
bound constructions for HL or CH.

Our Contribution and Outline
In this paper we prove a lower bound on the search space (and hence the pro-
cessing time) of the query phase of contraction hierarchies as well as hub labels.
More concretely, we define so-called lightheaded grids for which we show that
the average search space size is Ω(

√
n), irrespectively of what contraction order

or whatever hub labelling scheme was employed. Based on a
√

n × √
n grid, our

graph is planar and has bounded degree. Our lower bound applies to CH [10] and
HL [1] schemes. Based on our insights from the lower bound proof, we also show
how to construct instance-based lower bounds algorithmically. Our experiments
indicate, that current CH constructions yield search space sizes close to optimal.

We first introduce basic properties of contraction hierarchies and hub labels
and then present our main theoretical result. After showing how to algorithmi-
cally construct instance-based lower bounds, we conclude with some experimen-
tal results and open problems.



A Lower Bound for CH and HL 357

2 Preliminaries

Contraction Hierarchies. The contraction hierarchies approach [10] computes
an overlay graph in which so-called shortcut edges span large sections of shortest
paths. This reduces the hop length of shortest paths and therefore allows a
variant of Dijkstra’s algorithm to answer queries more efficiently.

The preprocessing is based on the so-called node contraction operation. Here,
a node v as well as its adjacent edges are removed from the graph. In order not to
affect shortest path distances between the remaining nodes, shortcut edges are
inserted between two neighbors u and w of v, if and only if uvw was a shortest
path (which can easily be checked via a Dijkstra run). The cost of the new
shortcut edge (u,w) is the sum of costs of (u, v) and (v, w). In the preprocessing
phase, all nodes are contracted one-by-one in some order. The rank of the node
in this contraction order is also called the level of the node.

Having contracted all nodes, the new graph G+(V,E+) contains all original
edges of G as well as all shortcuts that were inserted in the contraction process.
An edge e = (v, w) – original or shortcut – is called upwards, if the level of
v is smaller than the level of w, and downwards otherwise. By construction,
the following property holds: For every pair of nodes s, t ∈ V , there exists a
shortest path in G+ that consists of a sequence of upward edges followed by a
sequence of downward edges. This property allows us to search for the optimal
path with a bidirectional Dijkstra only considering upwards edges in the search
starting at s, and only downwards edges in the reverse search starting in t. This
reduces the search space significantly and allows for answering of shortest path
queries within the milliseconds range compared to seconds on a country-sized
road network. We call this algorithm the CH-Dijkstra.

For our lower bound later on, the notion of direct search space (DSS) (as
defined in [9]) is useful. A node w is in DSS(v), if on the shortest path from
v to w all nodes have level at most level(w). Hence, w will be settled with the
correct distance d(v, w) in the CH-Dijkstra run. As a remark, the set of nodes
considered during a CH-Dijkstra is usually a superset of DSS(v) as also nodes
on monotonously increasing (w.r.t. level) but non-shortest paths are considered.
Our construction will lower bound the size of DSS(v) which obviously also lower
bounds the number of nodes that have to be considered during CH-Dijkstra.

Hub Labels. Hub labelling is a scheme to answer shortest path distance queries
which differs fundamentally from graph search based methods. Here the idea is
to compute for every v ∈ V a label L(v) such that for given s, t ∈ V the distance
between s and t can be determined by just inspecting the labels L(s) and L(t). All
the labels are determined in a preprocessing step (based on the graph G), later
on, the graph G can even be discarded. There have been different approaches to
compute such labels (even in theory); we will be concerned with hub labels that
work well for road networks, following the ideas in [1]. To be more concrete, the
labels we are interested in have the following form:

L(v) = {(w, d(v, w)) : w ∈ H(v)}



358 T. Rupp and S. Funke

Here we call H(v) a set of hubs – important nodes – for v. The hubs must be
chosen such that for any s, t, the shortest path from s to t intersects H(s)∩H(t).

If such label sets are computed, the computation of the shortest path distance
between s and t boils down to determining the node w ∈ H(s)∩H(t) minimizing
the summed distance. If the labels L(.) are stored lexicographically sorted, this
can be done in a cache-efficient manner in time O(|L(s)| + |L(t)|).

There is a very efficient method to generate hub labels based on CH as
proposed in [1], but this is not the only method. Our lower bound applies to any
hub labelling scheme. While hub labels are amongst the to-date fastest distance
lookup schemes for shortest paths (query times in the microseconds range), their
main drawback is the quite huge space requirement (up to 100 node-distance
pairs have to be stored for each node as label in a country-sized network).

3 Theory: A Lower Bound Construction

In this section of the paper we first provide a simple graph construction, which is
essentially a slightly modified

√
n×√

n grid graph with some desirable properties.
Then we provide a lower bound on the direct search space size of any contraction
order via an amortized analysis. A slight variation of the analysis also yields a
lower bound for any hub labelling scheme. For the sake of simplicity, we assume
without loss of generality that n is always a square number and a multiple of 4
for our analysis. Furthermore, our construction assumes an undirected graph,
yet generalization to the directed case is quite straightforward.

3.1 The Lightheaded
√
n × √

n-grid Glh

The basis of our construction is a regular
√

n × √
n grid with uniform edge

costs. We then modify only costs of the horizontal edges such that they become
‘lighter towards the head’, hence the name lightheaded grid. More precisely, the
horizontal edges in row i (i = 0, 1, . . . ,

√
n−1, counted from top to bottom) have

cost 1 + iε for some small enough ε < 1. See Fig. 2, for an example.

Shortest Path Trees in Lightheaded Grids. For small enough choice of ε,
the following Lemma holds:

Lemma 1. For ε < 1/n, the shortest path between some s and t in a lightheaded
grid Glh is unique and always consists of a horizontal and a vertical part, where
the horizontal part is on the height of the higher of the nodes s and t.

Proof. If a shortest path between s and t in the unweighted grid has cost d,
the modified edge costs add a cost of less than 1 for the same path, hence all
shortest paths in Glh have (unweighted) Manhattan distance d. Let d = dv + dh
where dv is the vertical, dh the horizontal distance. Any shortest Manhattan path
must be composed of dh horizontal and dv vertical segments. In Glh, horizontal
edges towards the top have lower cost, hence the shortest path must have all its
horizontal edges on the height of the higher of the nodes s and t. ��



A Lower Bound for CH and HL 359

1 + 3
16 1 + 3

16 1 + 3
16

1 + 2
16 1 + 2

16 1 + 2
16

1 + 1
16 1 + 1

16 1 + 1
16

1 1 1
1

1
1

1
1

1

1
1

1

1
1

1

Fig. 2. Lightheaded grid for
n = 16, ε = 1/16.

Fig. 3. Shortest path tree from red
source. (Color figure online)

See Fig. 3 for an illustration of a shortest path tree in the lightheaded grid.
Observe that for all targets in the lower left and the upper right parts, the
shortest path has an upper left corner, whereas for all targets in the upper left
and lower right part, it has an upper right corner.

3.2 Lower Bounding the Direct Search Space

Let us now assume that the contraction hierarchy has been created with an
arbitrary contraction order. We will show that no matter what this contraction
order is, the average size of the direct search space is Ω(

√
n).

In our analysis we only consider shortest path trees rooted in the top right
quarter of the grid (there are n/4 of them). For these shortest path trees, their
lower left part always contains a subtree like Fig. 5 of size Θ(n).

The idea of the analysis is to identify pairs (x, v) such that v ∈ DSS(x). We
will consider each of the shortest path trees rooted at s in the top right quarter
as depicted in Fig. 4 and for each identify Θ(

√
n) such pairs (not necessarily with

x = s). The main challenge will be to make sure that no double counting of pairs
occurs when considering all these shortest path trees.

Let us focus on one shortest path tree rooted at s and the subtree of the lower
left part as shown in Fig. 5. By construction, we have Θ(

√
n) vertical branches in

this subtree. Consider one branch, spawning at its corner node c. Furthermore,
let s′ be the node in the branch which has the same distance to c as c to s. One
can think of s being mirrored at c, see Fig. 5. Let w be the highest-level node
on the shortest path from s to s′. There are two cases: (a) w lies on the vertical
branch including c (this is depicted as w1 in Fig. 5). (b) w lies on the horizontal
part of the shortest path from s to s′ excluding c (this is depicted as w2 in the
Figure). In case (a) we generate (s, w1) since obviously w1 ∈ DSS(s). In case



360 T. Rupp and S. Funke

Fig. 4. Relevant lower left parts of
shortest path trees rooted in top right
quarter.

Fig. 5. Subtree in the lower left of a
shortest path tree and charging argu-
ment.

(b), we cannot simply generate (s, w2) since the same pair might be identified
when considering other branches in the shortest path tree from s leading to
double counting. But we also know that w2 lies in the direct search space of s′

2.
Intuitively, we charge s′

2 by generating the pair (s′
2, w2).

So when considering the shortest path tree of a node s we generate exactly
one pair (x, v) for each of the Θ(

√
n) vertical branches to the lower left. Let us

first show that we did not double count in this process.

Lemma 2. No pair (x, v) is generated more than once.

Proof. Consider a pair (s, v) that was generated according to case (a), i.e., s lies
to the upper right or the right of v. Clearly, the same pair cannot be generated
according to case (a) again, since the vertical branch in which v resides is only
considered once from source s. But it also cannot be generated according to case
(b), since these pairs have always s to the lower left of v.

A pair (s, v) generated according to case (b) has s to the lower left of v,
hence cannot be generated by case (a) as these pairs have s to the upper right or
right of v. As (s, v) was generated according to case (b), it was generated when
inspecting the shortest path tree from a source s′ which is the node s mirrored at
the corner vertex of the shortest path from s to v. But this source s′ is uniquely
determined, so (s, v) can only be generated when the shortest path tree rooted
at s′ with the vertical branch containing v was considered. ��
Now we are ready to prove the first main result of this paper.

Theorem 1. The average direct search space of Glh is Ω(
√

n).



A Lower Bound for CH and HL 361

Proof. In our process we considered n/4 shortest path trees, in each of which
we identified Ω(

√
n) pairs (x, v) where v ∈ DSS(x) and no pair appears

twice. Hence we have identified Ω(n
√

n) such pairs, which on average yields
Ω(

√
n). ��

3.3 Lower Bounding of Hub Label Sizes

Note that the above argument and proof can be modified to also cover label sizes
in a hub labelling scheme. Assume hub labels according to an arbitrary hub
labelling scheme have been constructed. Then, when considering the shortest
path tree rooted at s and the node s′ in a vertical branch, we define w to be a
node in H(s) ∩ H(s′). A pair (x, v) corresponds to v ∈ H(x). Exactly the same
arguments as above apply and we obtain the following second main result:

Theorem 2. The average hub label size of Glh is Ω(
√

n).

4 Practice: Instance-Based Lower Bounds

Our theoretical lower bound as just proven only applies to the lightheaded grid
Glh as defined before. Yet, even though similar substructures appear in real-
world road networks, see Fig. 1, the typical road network is certainly not a light-
headed grid and hence our lower bound proof does not apply.

Still, we can use the insights from the lower bound proof to construct
instance-based lower bounds algorithmically. Concretely, for a given road net-
work instance, we aim at computing a certificate which for this instance proves
that the average search space size of a CH query, or the average hub label size
cannot be below some lower bound, no matter what CH or HL construction was
used.

Note that while for the previous lower bound proof we assumed an undirected
graph for sake of a simpler exposition, we will now also include the more general
case of a directed graph. To address the bidirectional nature of the CH-Dijkstra
here we do now also have to differentiate between forward and backward search
space. In the same vein we refer to the forward and backward shortest path tree
as SPT→(v) and SPT←(v), respectively. Both the CH as well as the HL scheme
can be easily generalized to directed graphs; in case of HL, compute for each node
two labels, an outlabel Lout(v) storing distances from v to hubs and an inlabel
Lin(v) storing distances from hubs to v. A query from s to t is then answered
by scanning the outlabel Lout(s) and the inlabel Lin(t). CH also generalizes in
a straightforward manner to the directed case, see [10].

4.1 Witness Triples

In our lower bound proof for the lightheaded grid we identified pairs (x, v) such
that v ∈ DSS(x), making use of a concrete (but arbitrary) CH (or HL) for
the lightheaded grid to actually identify those pairs (x, v). We cannot do this



362 T. Rupp and S. Funke

for a given instance of a road network, since we would have to consider all
possible CH/HL constructions. So instead of pairs (x, v) let us now try to identify
witness triples (x, c, v) where c is again a node on the (directed) shortest path
from x to v. The intuition for (x, c, v) is the following: On the shortest path
π(x, v) = x . . . c . . . v, some node of the suffix c . . . v of π must be in the forward
search space of x, or some node on the prefix x . . . c must be in the backward
search space of v. This intuition mimics the proof idea in the previous section
but also allowing for directed graphs and leaving the choice c open.

In the following, we sometimes treat paths just as sets of nodes to simplify
presentation. Let us first define the notion of a conflict between two triples.

Definition 1 (conflict between triples). We say two triples (x, c, v) and
(x′, c′, v′) are in conflict if at least one of the following conditions holds true:

1. x = x′ and π(c, v) ∩ π(c′, v′) �= ∅
2. v = v′ and π(x, c) ∩ π(x′, c′) �= ∅

x

c′

v′′v′

c

v

(a) Forward shortest path tree
SPT→(x): The witness triple (x, c, v)

where the relevant nodes for the
conflict check are in the green bubble.
There is no conflict with (x, c, v′′) and
its relevant nodes in the red bubble.

v

c

x′ x

(b) SPT←(v): The green
witness triple (x, c, v) of the left
Figure shown in the backward
tree of v. It is in conflict with
the blue triple (x′, c, v) because

they share the node c.

Fig. 6. Examples for witness triples in shortest path trees.

See Fig. 6a for a non-conflicting and Fig. 6b for a conflicting example. Our
goal will be to identify an as large as possible set W of conflict-free witness
triples. The following Lemma proves that the size of such a set W lower bounds
the average search space and label size.

Lemma 3. If W is a set of conflict-free witness triples, then |W | lower bounds
the sum of (backward and forward) search spaces of all nodes in the network.

Proof. Consider a triple (x, c, v) and the following two cases:



A Lower Bound for CH and HL 363

1. it accounts for a node in π(c, v) in the forward search space of x. Nodes in the
forward search space of x can only be accounted for by triples (x, c′, v′). But
since π(c, v) ∩ π(c′, v′) = ∅ due to W being conflict-free, we have not doubly
accounted for it.

2. it accounts for a node in π(x, c) in the backward search space of v. Nodes in the
backwards search space of v can only be accounted for by triples (x′, c′, v).
But since π(x, c) ∩ π(x′, c′) = ∅ due to W being conflict-free, we have not
doubly accounted for it. ��
For any witness set W , |W |/(2n) yields a lower bound on the average size of

an in- or outlabel in case of the HL scheme, and on the average size of the direct
search space from a single node in case of the CH scheme.

So it remains to compute a large conflict-free witness set W . Enumerating
all potential triples in V × V × V seems somewhat inefficient (having to inspect
Θ(n3) such triples), and still leaves the problem of identifying a large conflict-
free subset amongst them unsolved. Hence, in the following we propose a simple
greedy heuristic. Again, let us emphasize that the resulting lower bound holds
for any CH/HL construction for the given road network.

4.2 Generation of Witness Triples

The high-level idea is as follows: We first compute and store all 2n shortest path
trees within the network (both forward and reverse). We then enumerate candi-
date shortest paths in increasing hop length 1 � = 1, 3, 7, 15, . . . (always doubling
and adding 1) from the shortest path trees, greedily adding corresponding triples
to W in case no conflict is created. As center node c, we always choose the center
node of a candidate path (in terms of hops), see, e.g., Fig. 6a.

This specific choice for c as well as the decision to always roughly double the
lengths of the considered candidate paths was motivated by the observation in
practice that when considering a candidate triple (x, c, v), checking for conflict
all triples (., ., v) and (x, ., .) already present in W becomes quite expensive for
large W . Intuitively, the latter decision ensures that triples with different hop
lengths can never be in conflict at all, the former that not too many triples with
the same source or target are generated.

Our actual greedy algorithm is stated in Algorithm1. Since we made sure
that conflicts can only occur between triples with identical hop length, we can
restrict the check for conflicts to the candidate set of triples of identical hop
length. For an example of our greedy heuristic execution, look at the shortest
path trees in Fig. 6: Let us assume we collected the set of candidates for length 3
which contains (x, c, v), (x, c, v′), (x, c′, v′′) and (x′, c, v) beside other triples. We
now pick the candidate (x, c, v) and add it to W . Clearly, we remove this from
our candidate set but we also have to remove (x, c, v′) because it would lead to
a conflict in the forward shortest path tree SPT→(x) and also remove (x′, c, v)
because of the conflict in the backward tree SPT←(v).

1 We define hop length as the number of nodes here.



364 T. Rupp and S. Funke

Algorithm 1. The algorithm to find a set of non-conflicting witness triples.
1: procedure findWitnesses(G)
2: SPTs ← ComputeShortestPathTrees(G)
3: W ← ∅
4: � ← 1
5: while � ≤ Diameter(G) do
6: WC ← collectCandidatesOfLength(SPTs, �)
7: while WC �= ∅ do
8: (x, c, v) ← WC[0]
9: W ← W ∪ (x, c, v)

10: WC ← WC\(x, c, v)
11: pruneConflictingTriples(WC, (x, c, v))

12: � ← 2� + 1

13: return W

Storing and computing the shortest path trees require Θ(n2) space and
Ω(n(n log n+m)) time when using Dijkstra’s algorithm (here, m = |E|). Gener-
ation and pruning of candidate triples can be bounded by O(n3), yet in practice
the computation of the shortest path trees clearly dominates the running time.

4.3 Experimental Results

We implemented our witness search heuristic in C++ and evaluated it on several
graphs. Besides a very small test graph for sanity checking, we extracted real-
world networks graphs based on Open Street Map (OSM) data. We picked lower
manhattan to get a grid-like graph. For the street network of the german federal
city-state Bremen, we created a large version car which includes all streets pass-
able by car, as well as the versions fast car and highway only containing streets
allowing at least a speed of 50 km/h and 130 km/h respectively. The code was
run on a 24-core Xeon(R) CPU E5-2650v4, 768 GB RAM machine.

To assess the quality of our lower bounds, we constructed a CH where the
contraction order was defined by the so called edge-difference heuristic, that is,
nodes that introduce few additional shortcuts are contracted first. This is one of
the most popular contraction order heuristics. From this CH, we calculated the
average |DSS| and compared it with the lower bound.

In Table 1 we list our results. Our biggest graph has over a quarter of a million
edges and almost 120k nodes. As expected, the space consumption is quadratic
which makes our current algorithm infeasible for continental-sized networks. For
the large bremen graph, our 24-core machine took 32.5 h to complete the lower
bound construction via our greedy heuristic and used 354 GB of RAM. Most
important is the quotient LB

|DSS| which gives us a hint about the quality of our
computed lower bound: For the highway version of bremen, we achieve even
83%, that is, the average search spaces in the computed CH are guaranteed to
be less than a factor of 1.25 above the optimum. Note however, that this graph is
atypical for road networks in the sense that it is far from being fully connected.



A Lower Bound for CH and HL 365

Table 1. Experimental results.

test graph lower bremen bremen bremen

manhattan (fast car) (car) (highway)

# nodes 22 2, 828 40, 426 119, 989 1, 781

# edges (org) 52 4, 020 64, 663 227, 567 1, 766

# edges (CH) 77 7, 752 126, 055 400, 038 3, 340

LB-construction space 5.5 KB 233 MB 40 GB 354 GB 84 MB

LB-construction time <1 s 36 s 100 m 32.5 h <1 s

LB 6.18 12.43 19.11 22.75 6.31

|DSS|(avg.) 10.27 29.85 61.99 78.34 7.58
LB

|DSS| 0.602 0.417 0.308 0.290 0.832

The value of LB
|DSS| decreases for our bigger graphs down to around 30%. The

decrease can have several reasons: On one hand, our CH is based on a heuristic
and is not necessarily optimal (no optimal algorithm is known), so even if we
had brute-forced a maximum sized triple-set we would most certainly not achieve
100%. Indeed, our contribution is to show that the gap between the heuristic
and the perfect CH is at most 1− LB

DSS . On the other hand, the results strongly
indicate that the missing of some long triples which do not have a length of 2i

becomes more relevant in bigger graphs. Note that it could also mean that the
edge-difference heuristic performs worse on bigger graphs.

It has been shown that constructing the optimal CH (even though according
to a different optimality criterion) is NP-hard, see [15], so we actually conjecture
that finding the largest conflict-free set of triples would also turn out to be
NP-hard if investigated further.

5 Conclusions and Future Work

In this paper we have proven a strong theoretical lower bound on the number of
nodes that have to be considered during a CH search or HL lookup. Our lower
bound instance is not too far from road network structures that occur in the
real world. Our theoretical results imply that existing CH or HL construction
schemes are essentially optimal (up to a logarithmic factor) for such grid-like
networks. More on the practical side, we instrumented the insights from our
lower bound proof to come up with a construction scheme for instance-based
lower bounds for CH and HL, if a concrete road network instance is given. For
moderately sized networks, we could show that current CH and HL construction
schemes indeed yield average search spaces not too far away from the optimum
(less than a factor of 4). In future work, we aim at making the respective algo-
rithms constructing the instance-based lower bounds more scalable to allow the
lower bound construction even for country- or continent-sized networks. Further-



366 T. Rupp and S. Funke

more, it might be worth investigating for which graph classes our lower bounding
technique has the potential to compute tight lower bounds.

References

1. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Hierarchical hub label-
ings for shortest paths. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol.
7501, pp. 24–35. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
33090-2 4

2. Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, shortest
paths, and provably efficient algorithms. In: Proceedings of 21st Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 782–793. SIAM (2010)

3. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant
time shortest-path queries in road networks. In: ALENEX. SIAM (2007)

4. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with
transit nodes. Science 316(5824), 566–566 (2007)

5. Bauer, R., Columbus, T., Rutter, I., Wagner, D.: Search-space size in contrac-
tion hierarchies. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013. LNCS, vol. 7965, pp. 93–104. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39206-1 9

6. Bauer, R., Delling, D.: SHARC: fast and robust unidirectional routing. In:
ALENEX, pp. 13–26. SIAM (2008)

7. Blum, J., Funke, S., Storandt, S.: Sublinear search spaces for shortest path plan-
ning in grid and road networks. In: Proceedings of the 32nd AAAI Conference on
Artificial Intelligence (AAAI), pp. 6119–6126. AAAI Press (2018)

8. Eisner, J., Funke, S.: Transit nodes - lower bounds and refined construction. In:
Proceedings of the 14th Workshop on Algorithm Engineering and Experiments
(ALENEX), pp. 141–149. SIAM/Omnipress (2012)

9. Funke, S., Storandt, S.: Provable efficiency of contraction hierarchies with ran-
domized preprocessing. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS,
vol. 9472, pp. 479–490. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48971-0 41

10. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road
networks using contraction hierarchies. Transp. Sci. 46(3), 388–404 (2012)

11. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for A∗: efficient point-to-point
shortest path algorithms. In: ALENEX, pp. 129–143. SIAM (2006)

12. Gutman, R.J.: Reach-based routing: a new approach to shortest path algorithms
optimized for road networks. In: ALENEX, pp. 100–111. SIAM (2004)

13. Kosowski, A., Viennot, L.: Beyond highway dimension: small distance labels using
tree skeletons. In: Proceedings of the 28th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 1462–1478. SIAM (2017)

14. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl.
Math. 36(2), 177–189 (1979)

15. Milosavljević, N.: On optimal preprocessing for contraction hierarchies. In: Pro-
ceedings of the 5th ACM SIGSPATIAL IWCTS, pp. 33–38. ACM (2012)

16. Sanders, P., Schultes, D.: Engineering highway hierarchies. ACM J. Exp. Algorith-
mics 17(1) (2012)

17. White, C.: Lower bounds in the preprocessing and query phases of routing algo-
rithms. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 1013–
1024. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3 84

https://doi.org/10.1007/978-3-642-33090-2_4
https://doi.org/10.1007/978-3-642-33090-2_4
https://doi.org/10.1007/978-3-642-39206-1_9
https://doi.org/10.1007/978-3-642-39206-1_9
https://doi.org/10.1007/978-3-662-48971-0_41
https://doi.org/10.1007/978-3-662-48971-0_41
https://doi.org/10.1007/978-3-662-48350-3_84


Kernelization of Arc Disjoint Cycle

Packing in α-Bounded Digraphs

Abhishek Sahu1(B) and Saket Saurabh1,2(B)

1 The Institute of Mathematical Sciences, HBNI, Chennai, India
{asahu,saket}@imsc.res.in

2 Department of Informatics, University of Bergen, Bergen, Norway

Abstract. In the Arc Disjoint Cycle Packing problem, we are given
a directed graph (digraph) G, a positive integer k, and the task is to
decide whether there exist k arc disjoint cycles. The problem is known
to be W[1]-hard on general digraphs. In this paper we show that the prob-
lem admits a polynomial kernel on α-bounded digraphs. That is, we give
a polynomial time algorithm, that given an instance (D, k) of Arc Dis-

joint Cycle Packing, outputs an equivalent instance (D′, k′)of Arc

Disjoint Cycle Packing, such that k′ ≤ k and the size of D′ is upper
bounded by a polynomial function of k. For any integer α ≥ 1, the class
of α-bounded digraphs, denoted by Dα, contains a digraph D such that
the maximum size of an independent set in D is at most α. That is, in D,
any set of α + 1 vertices has an arc with both end-points in the set. For
α = 1, this corresponds to the well-studied class of tournaments. Our
results generalizes the recent result by Bessy et al. [MFCS 2019] about
Arc Disjoint Cycle Packing on tournaments.

1 Introduction

In this paper we study the Arc Disjoint Cycle Packing problem in the realm
of parameterized complexity and in particular from the view-point of kerneliza-
tion. A problem instance I of size n with a parameter k is fixed-parameter-
tractable (FPT) if it has an algorithm with running time f(k)nO(1) for some
computable function f . A kernelization algorithm is a polynomial time algo-
rithm that takes an instance I of size n along with parameter k as inputs and
returns an equivalent instance I ′ of size f(k) with parameter g(k). If f and g are
both polynomial functions, then instance I is said to have a polynomial kernel.
For convenience, the running time f(k)nO(1) where f grows super-polynomially
with k is denoted by O∗(f(k)). For further details on parameterized complexity,
we refer to [7,10,13].

The history of packing cycles in undirected and directed graphs is very old.
We first brief about cycle packing in undirected graphs (Cycle Packing). Since

This project has received funding from the European Research Council (ERC) under
the European Unions Horizon 2020 research and innovation programme (grant no.
819416), and the Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-18.

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 367–378, 2020.
https://doi.org/10.1007/978-3-030-50026-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_27&domain=pdf
https://doi.org/10.1007/978-3-030-50026-9_27


368 A. Sahu and S. Saurabh

the publication of the well known Erdős-Pósa theorem in 1965 [11], Cycle

Packing problems have been studied with great attention. The fixed-parameter-
tractability of Cycle Packing follows from the Robertson-Seymour theorem
[20], a fact observed by Fellows and Langston in the 1980s [12]. In 1994, Bod-
laender showed that Cycle Packing can be solved in O∗(2O(k2)) time [4]. A
feedback vertex set is a set of vertices whose deletion results in a forest. The
Erdős-Pósa theorem states that there exists a function f(r) = O(r log r) such
that for each non-negative integer r, every undirected graph either contains r
vertex disjoint cycles or has a feedback vertex set consisting of f(r) vertices [11].
It is well known that the treewidth (tw) of a graph is not larger than the size of
its feedback vertex set, and a naive dynamic programming scheme solves Cycle

Packing in time O∗(2O(tw log tw)) [7]. Thus, the existence of an O∗(2O(k log2 k))
time algorithm can be viewed as a direct consequence of the Erdős-Pósa theorem.
Only recently, Lokshtanov et al. [18] designed an algorithm for Cycle Packing

running in time O∗(2O( k log2 k
log log k )). Finally, let us remark about the kernelization

complexity of these problems. While the Vertex Disjoint Cycle Packing

does not admit a polynomial kernel unless coNP ⊆ NP/poly, the Edge Disjoint

Cycle Packing has a polynomial kernel of size O(k log k) [5].
In 1996, Reed et al. [19] showed that there exists a function f(r) such that

for each non-negative integer r, every undirected graph either contains r vertex
disjoint directed cycles or has a directed feedback vertex set consisting of f(r)
vertices. However, the similarity with undirected graphs stops here. The param-
eterized complexity of packing directed cycles is different than that on undi-
rected graphs. On directed graphs both these problems (Arc Disjoint Cycle

Packing and Vertex Disjoint Cycle Packing) are W[1]-hard [6,9]. On the
very well known digraph class of tournaments (orientation of complete graphs),
Vertex Disjoint Cycle Packing is same as Vertex Disjoint Triangle

Packing which has a O(k2) kernel [1]. Recently Arc Disjoint Cycle Pack-

ing was studied on tournaments and bipartite tournaments from a parameter-
ized perspective. The problem was shown to have a linear kernel in tournaments
[2,3,16] and a quadratic kernel in bipartite tournaments [15]. Independence num-
ber played a crucial role in solving the problem on tournaments. So a natural
question one can ask is there a relationship between the independence number
and a polynomial size kernel? Can we extend the polynomial kernel on tourna-
ments to the class of α-bounded digraphs that contains tournaments? Formally,
for any integer α ≥ 1, the class of α-bounded digraphs, denoted by Dα, is defined
as follows [14].

Dα = {D : D is a digraph and the maximum size of an
independent set in D is at most α }.

Interested in this question we study the Arc Disjoint Cycle Packing prob-
lem on Dα. Notice that an α-bounded digraph is a directed graph where the
graph induced on any α + 1 vertices has at least one arc. First, in Sect. 3 of our
paper we prove a theorem analogous to the Erdős-Pósa theorem to bound the
feedback vertex set size. In Sect. 4 we find an approximate feedback vertex set



Kernelization of Arc Disjoint Cycle Packing in α-Bounded Digraphs 369

as well as state the notions and results of a cut-preserving set [17]. Working
with the feedback vertex set, in Sect. 5 we give an algorithm to find the desired
polynomial kernel.

2 Preliminaries

For a directed graph G, V (G) and E(G) denote the set of vertices and arcs. uv
is a directed arc if there is an arc going from u to v. We also denote such an
arc with the ordered pair (u, v). For a set S ⊆ V (G), G − S denotes the graph
obtained by deleting S from G and G[S] denotes the subgraph of G induced
on S. A path P = (v1, . . . vi, . . . vj , . . . , vp) is a sequence of distinct vertices
where every vertex has an arc to the next vertex in the sequence. We say that P
starts at v1 and ends at vp. The vertices (or vertex set) of P , denoted by V (P ),
is the set {v1, . . . , vp}. The endpoints of P is the set {v1, vp} and the internal
vertices of P is the set V (P ) \ {v1, vp}. The arcs of P , denoted by E(P ) is the
arc set {(v1, v2), . . . (v(p−1), vp)}. The length of P is defined as |V (P )|. We also
denote such a path with (v1 . . . → vi . . . → vj . . . → vp). Any (vi → . . . → vj)
is a subpath of P . In a path P = (v1 . . . → vi → vi+1 . . . vj−1 → vj . . . vp),
the subpath S between vi and vj is the path (vi+1 → . . . → vj−1). Path P is
contained inside a vertex set V ′ iff {v1, . . . vp} ⊆ V ′. P is vertex disjoint from V ′

iff V (P ) ∩ V ′ = ∅. A cycle C is a sequence (v1, . . . , vc, v1) of vertices such that
(v1, . . . , vc) is a path and vcv1 is an arc. The same cycle is also denoted as
(v1 → . . . vc → v1). The vertex set V (C) is {v1, . . . vc} and the arc set E(C)
is {(v1, v2), . . . (v(c−1), vc), (vc, v1)}. Subpaths of a cycle are defined in a similar
fashion to those of a path. For a collection P of paths (or cycles), V (P) denotes
the set

⋃
Pi∈P V (Pi). E(P), V (C), E(C) are defined in a similar manner.

In this paper we interchangeably use modulator and feedback vertex set. We
use × for cross product and � for disjoint union. For a set A and an ordered
set B, by i elements of A that appear first in B, we mean the first i elements
of B that are present in A. For graph theoretic terms and definitions not stated
explicitly here, we refer to [8].

3 An Erdős-Pósa Type Theorem for α-Bounded Digraphs

In this section we show that there exists a function f(r) = O(2α2r2) such that
for each non-negative integer r, every digraph G ∈ Dα either contains r vertex
disjoint cycles or has a directed feedback vertex set consisting of f(r) vertices.
We start by showing a density lemma about digraphs in Dα and then use it to
obtain the desired result.

Lemma 1. Any α-bounded digraph G on n vertices has at least n2/2α2 arcs.

Proof. Let S ⊆ V (G) be any set of size α+1. Then by definition all the vertices
in S can not be independent in G, i.e., there must be at least one arc between
some two vertices in S. Let us call this arc a witness for S (if there are more



370 A. Sahu and S. Saurabh

than one arcs, pick any arbitrary arc as a witness). G has a total of
(

n
α+1

)
many

vertex sets of size α+1. And each of them must have a witness arc. Hence there
are at least

(
n

α+1

)
witness arcs (not necessarily different arcs). But any arc xy

can witness at most
(

n−2
α−1

)
sets of size α + 1, since x and y are forced to be

present in the set. This implies

|E(G)|
(

n − 2
α − 1

)

≥ no. of witnesses ≥
(

n

α + 1

)

=⇒ |E(G)| ≥
(

n
α+1

)

(
n−2
α−1

) ≥ (n2/2α2)
(1)

Hence G has at least n2

2α2 many arcs. 
�

arcs used in cycle1
arcs used in cycle2

unused arcs

Fig. 1. Replacement procedure to get a nice collection of cycles

Now we are ready to present our main result of this section (Fig. 1).

Theorem 1. Any α-bounded digraph G that does not have k arc disjoint cycles,
has a feedback vertex set (FVS) of size at most 2α2k2. Furthermore, there exists
a family of k arc disjoint cycles, where each cycle has length at most 2α2k.

Proof. Suppose the graph G has a maximum of k′ many arc disjoint cycles where
k′ < k. Let C = {C1, . . . , Ck′} be a nice collection of k′ arc disjoint cycles, i.e.,
there is no other set of k′ arc disjoint cycles, which has less arcs than C. Suppose
Ci is the longest cycle in C with length l. We know that any induced subgraph of
an α-bounded digraph is also α-bounded. Hence from Lemma 1, it follows that
G[V (Ci)] has at least l2

2α2 edges. So cycle Ci has ( l2

2α2 − l) many internal chords
as the only arcs that are not chords are the l edges used by the cycle.



Kernelization of Arc Disjoint Cycle Packing in α-Bounded Digraphs 371

Let the cycle be Ci = (v1 → v2 → v3 . . . → vl → v1). We try to find a
replacement cycle C∗ in the following manner. Let vivj be any internal chord
of Ci. If i < j, then C∗ = (v1 → . . . → vi → vj → vj+1, . . . → vl → v1),
otherwise C∗ = (vj → vj+1 . . . → vi → vj). Now clearly C∗ has length strictly
smaller than the length of Ci. But C was a nice solution. The only reason we
can not replace the cycle Ci in C with C∗ is because there must be some other
cycle Cj such that {(vi, vj)} ∈ E(Cj). Since the longest cycle in C has size l, the
total number of edges used by all other cycles in C is at most l(k′ − 1). But all
the internal chords inside cycle Ci must be used by other cycles (otherwise C is
not a nice collection of cycles). This implies

l2

2α2
− l ≤ l(k′ − 1)

=⇒ l ≤ 2α2k′ ≤ 2α2k

(2)

So there is a feedback vertex set F ′ =
k′
⋃

i=1

V (Ci) of size at most 2α2k2 and in

the nice collection C each cycle has length at most 2α2k. In Sect. 4, in fact we
improve the bound on size of FVS to α2k2 when the graph does not have k arc
disjoint cycles. 
�

4 Algorithm to Find an FVS

In this section we make the proof of Theorem 1 algorithmic. We will use this
directed feedback vertex set to design our kernel. We first state the algorithm in
the box.

Algorithm 1(G ∈ Dα, k)

1. Initialize F = ∅, G′ = G, i = 0.
2. Run Breadth First Search on each vertex of G′. Find the shortest cycle

Ci. If G′ is acyclic goto Step 5.
3. If the shortest cycle Ci has length more than 2α2(k − i), return G has

k arc disjoint cycles.
4. F = F ∪ V (Ci), G′ = G[V (G′) \ V (Ci)], i = i + 1.
5. If i = k, return G has k arc disjoint cycles.
6. If G′ is acyclic, return FVS F , otherwise goto Step 2.

From Theorem 1, any α-bounded digraph H which does not have k arc
disjoint cycles, has a cycle of size at most 2α2k. In other words any α-bounded
digraph H, where the smallest cycle has length more than 2α2k, has at least k
arc disjoint cycles. In the ith iteration of Step 2 of the above algorithm, we
have already found i arc disjoint cycles {C1, . . . Ci}. If the shortest cycle in

G[V (G) \
i⋃

j=1

V (Cj)] has length more than 2α2(k − i), then it has at least k − i



372 A. Sahu and S. Saurabh

arc disjoint cycles. But then the original graph G definitely has k arc disjoint
cycles. This proves the correctness of the 3rd Step of the algorithm. In Step 5, if
we can get k vertex disjoint cycles then of course G also has k arc disjoint cycles.
If the graph G does not have k arc disjoint cycles, then in any ith iteration, the
graph G′ does not have more than k−i arc disjoint cycles. So it also has a cycle of
length at most 2α2(k − i) from Theorem 1. This, together with the fact that the
algorithm runs at most k many iterations implies the FVS F that we get at the
end of the algorithm has a maximum size of 2α2((k−1)+(k−2)+. . .+1) ≤ α2k2.
Since each step of the algorithm takes poly(n) time and each step is also executed
at most poly(n) times, the entire algorithm runs in poly(n) time.

4.1 A Cut-Preserving Set

Definition 1 ([17]). For any digraph G, a positive integer k and x, y ∈ V (G),
we say that Z ⊆ V (G) is a k-cut-preserving set for (x, y) in G, if the following
properties hold. Let L = V (G) \ Z. For any path P from x to y in G, there
exist paths P1, P2, ..., Pe and a set of lists of k path L1, ..., Le with the following
properties:

– For every i ∈ [e], Pi is a subpath of P from si to ti.
– The Pis are internally disjoint and contain all vertices in P ∩ L as inner

vertices.
– for every i ∈ [e], Li is a set of k vertex disjoint paths from si to ti using only

vertices of Z.
– Replacing in P each Pi by one of the paths in Li yields a path of Z from x

to y.

x y

a cb d

Z

Pi Pj

Li Lj

Fig. 2. A cut-preserving set Z for (x, y)

Figure 2 gives an easy depiction of a cut-preserving set. Lochet et al. [17]
have recently shown that in an α-bounded digraph G, from any x to y a k-cut-
preserving set of size f(k, α) can be found in polynomial time where f(k, α) =
(22k5)4

α

.



Kernelization of Arc Disjoint Cycle Packing in α-Bounded Digraphs 373

Theorem 2 ([17]). Let D be an α-bounded acyclic digraph and x, y ∈ V (D)
such that any (x, y)-vertex- cut in D has size at least k + 1. Then one can, in
polynomial time, compute a k-cut-preserving (x, y) in D of size at most (22k5)4

α

.
Moreover in polynomial time one can obtain k + 1 vertex disjoint paths from u
to v where each path has length at most 2α + 1.

5 Algorithm to Compute the Kernel

In this section we gather everything and design our kernel. We start with the
description and then prove its correctness and finally give the size bound.

Algorithm 2

1. Initialize TCL (total cycle length)=2α2k2, i = 1, Kernel = F , � (max
cycle length)= 2α2k.

2. Let σ′ be an ordered set on F × F such that σ′ =
((u1, u1)(u1, u2), (u1, u3), . . . (u|F |, u|F |)). Now fix an ordered set σ
of size k|F |2 such that, ∀j ∈ [k|F |2], σ(j) = σ′(�j/k�). In
σ each element from σ′ is repeated k consecutive times, i.e.,
σ=((u1, u1), (u1, u1), . . . (u1, u2), (u1, u2), . . . (u|F |, u|F |), (u|F |, u|F |)).

3. Initialize i = 1.
4. Let σ(i) = (x, y). Get a (K = TCL + �(2α + 1))-cut-preserving set Z

from x to y of size f(K, α). Kernel = Kernel ∪ Z, TCL = K.
5. if i=k|F |2 (all elements of σ are exhausted) stop, else i = i + 1, go to

Step 4.
6. Return Kernel.

5.1 Running Time and Kernel Size Analysis

Step 1 and Step 2 takes nO(1) time. Step 4 and 5 of the algorithm are executed
k|F |2 many times and in each iteration, we spend at most nO(1) time to get the
cut-preserving set Z [17]. Hence our algorithm runs in polynomial time.

Next we determine the final size of Kernel set. Let g(i) and TCL(i) denote
the size of Kernel and TCL in the ith iteration. We get the following recurrence
equations from the above algorithm and solve them to get a bound on the Kernel
size:

1. g(i) = g(i − 1) + f(TCL(i − 1) + �(2α + 1)), α).
2. TCL(i) = TCL(i − 1) + �(2α + 1).
3. g(0) = α2k2, TCL(0) = 2α2k2.

Notice that TCL and g are strictly increasing functions. We compute their max-
imum values below.

TCL(i) = 2α2k2 + i(�(2α + 1))

= 2α2k2 + i(2α2k(2α + 1))
(3)



374 A. Sahu and S. Saurabh

TCL(k|F |2) = TCL(α4k5)

= 2α2k2 + α4k5(2α2k(2α + 1))

≤ 5α7k6.

(4)

Since g and f both are increasing functions, g(k|F |2) has the maximum value.

g(k|F |2) ≤ g(0) + k|F |2.f(TCL(k|F |2), α)

≤ α2k2 + α4k5f(5α7k6, α)

≤ 2α4k5f(5α7k6, α)

≤ 2α4k5(110α35k30)
4α

= P1(k, α)

(5)

Hence g admits a maximum value (Kernel size) of P1(k, α). Now if we can
show that G[Kernel] has k arc disjoint cycles iff G has k arc disjoint cycles, then
the problem indeed admits a kernel of size P1(k, α).

5.2 Correctness of the Algorithm

In the forward direction, if G[Kernel] has k arc disjoint cycles, then the graph G
also has the same k arc disjoint cycles. We will use induction to prove the reverse
direction. Suppose G has k arc disjoint cycles. Using the arguments in Theorem 1,
we know there is a nice set of k arc disjoint cycles C = {Ci}k

i=1, where the total
number of arcs in C is at most 2α2k2 and any cycle Ci has length li(≤ 2α2k).
Let us define the notions of segment and subsegment for our proof. Segments
for C are the paths from x to y (where x, y ∈ F ) and there is no other vertices
of F in between. Subsegments are the maximal subpaths of segments that lie
outside the Kernel. Refer to Fig. 3.

F = {x, y, z}
k = 3

σ = {(x, x), (x, x), (x, x), (x, y), (x, y), (x, y), ..., (z, z)}

x x

x

z z

y

yseg1

seg7

seg6
seg5

seg4

seg3

seg2

x
y

Kernel

Subseg Ss1t1

Zoom In

s1 t2s2t1

A nice
Cycle packing

Fig. 3. Segments and subsegments



Kernelization of Arc Disjoint Cycle Packing in α-Bounded Digraphs 375

Let Ci = (ui1 → Si12 → ui2 → Si23 → ui3 . . . uiki
→ Siki(ki+1) → ui(ki+1)),

where uij
vertices are from the modulator F and ui1 = ui(ki+1) . Sij(j+1) denotes

the segment of cycle Ci from the vertex uij
to ui(j+1) . In each induction step

we will replace a segment between two modulator vertices with another segment
that is completely contained inside Kernel, while maintaining the property that
even after the replacement, the cycles in C are still arc disjoint. Notice each cycle
in a nice collection can have at most |F | many segments and hence there are
at most α2k3 many segments in C. If we are able to replace all the segments (a
maximum of α2k3 many), then Kernel actually will have k arc disjoint cycles
contained in it.

Let Si =
ki⋃

j=1

(uij
, ui(j+1)) and S = �k

i=1Si. Observe that a pair (x, y) can

appear at most k many times in S (If any vertex appears more than once in a
cycle, we can get another cycle that uses a strict subset of the arcs used by the
original cycle). We use induction below to prove the correctness. Our induction
properties will be as follows:

1. In qth step, we are able to replace the segments between the first q pairs of
vertices of σ that appear in S, with segments that are completely contained
inside Kernel.

2. There exists a collection of arc disjoint cycles with the replaced segments
whose total length is not more than TCL(q).

Induction Step 1 (First Segment Replacement from Kernel)
Let C be a nice collection of arc disjoint cycles and (x = uij

, y = ui(j+1)) be
the pair of vertices in S that appears first in σ. We will replace the segment
from x to y with a segment completely contained inside Kernel if it already
isn’t, while still keeping it arc disjoint from all other segments. If the segment
Sij(j+1) is completely inside the computed Z in round 1, then it satisfies both the
induction properties from Theorem 1. Otherwise for the pair (x, y), in Kernel
we have stored enough vertices (Z) to get a (TCL(0)+�(2α+1))-cut-preserving
set.

From the cut-preserving set properties we have segment Sij(j+1) = P = (x =
s0 → Ss0s1 → s1 → Ss1t1 → t1 → St1s2 . . . sl → Ssltl

→ tl → Stltf
→ tf = y),

where V (P ) \ Z = ∪l
j=1V (Ssjtj

) is the set of vertices from P that are not in
Kernel. Notice that l ≤ ki ≤ �. And Z is a (TCL(0)+ �(2α+1))-cut-preserving
set. Then from Theorem 2 we can get (TCL(0)+(�(2α+1)) many vertex disjoint
paths each with length at most 2α+1 from sj to tj for any j that are completely
inside Kernel.

First Subsegment Replacement
Hence from s1 to t1 there is a path that is vertex disjoint from V (C), since
|V (C)| = 2α2k2 = TCL(0). Let this path be L1 that has length at most 2α+1 and
is completely inside Z. Now replace the subsegment Ss1t1 with L1 in P to get a
new segment from s0 to tf , P ′ = (s0 → Ss0s1 → s1 → L1 → t1 → St1s2 . . . → tf )
and get a new set of arc disjoint cycles by replacing the segment Sij(j+1) with P ′,



376 A. Sahu and S. Saurabh

i.e., C = C \ {Ci} ∪ {Ci = (ui1 → Si12 . . . uij
→ P ′ → ui(j+1) . . . → Siki(ki+1) →

ui(ki+1))}. Now the updated C has at most 2α2k2+2α+1 many vertices (or arcs)
and L1 is completely contained inside Kernel.

Second Subsegment Replacement
Similarly from s2 to t2 there are at least (TCL(0) + �(2α + 1)) vertex disjoint
paths in Z, each with length at most 2α+1. In the updated C, there are at most
(TCL(0)+2α+1) vertices, hence there is a path L2 from s2 to t2 that is vertex
disjoint from V (C) and is completely inside Z. We replace the subsegment Ss2t2

with L2 and get a new path P ′ = (s0 → Ss0s1 → s1 → L1 → t1 → St1s2 →
s2 → L2 → t2 . . . → tf ). We also get a new set of arc disjoint cycles C =
C \ {Ci} ∪ {Ci = (ui1 → Si12 . . . uij

→ P ′ → ui(j+1) . . . → Siki(ki+1) → ui(ki+1))}.
The new C has at most 2α2k2 + 2(2α + 1) many arcs. Moreover L1 and L2 are
completely contained inside Kernel.

All l Subsegments Replacement
But l ≤ �, as every cycle in the beginning had length at most 2α2k. Hence
we will be able to apply the above replacement procedure for all Ssiti

, where
i ≤ l. And get a new segment P ′ = (s0 → Ss0s1 → s1 → L1 → t1 . . . → sl →
Ll → tl → Stltf

→ tf ) which is completely contained inside Kernel. Now in
Ci replacing the segment from uij

to ui(j+1) by P ′ and updating the C , we get
a set of arc disjoint cycles where the segment from uij

to ui(j+1) is completely
contained inside Kernel. The updated set of arc disjoint cycles C uses at most
2α2k2 + �(2α+1) many arcs. This proves the correctness for the first step of the
induction.

Let the induction properties hold true for all j < q. So we are able to suc-
cessfully replace(or keep) the segments between the first q − 1 pairs of vertices
in S that appear in σ with segments completely inside Kernel, such that the
new collection of arc disjoint cycles with the replaced segments uses at most
TCL(q − 1) number of arcs.

Induction Step q (qth Segment Replacement from Kernel)
Let (x′ = ui′

j′ , y
′ = ui′

(j′+1)
) be the qth pair of vertices of σ that appear in S.

The (q − 1) other pairs from S that appear in σ before (x′, y′), their segments
have already been replaced in C in the first (q − 1) steps of induction. Let Z be
a K(= TCL(q − 1) + �(2α + 1))-cut-preserving set from x′ to y′ of size f(K, α).
Let the collection of cycles after the (q − 1) replacements be C = {Ci}k

i=1. Let
Ci′ = (ui′1 → S ′

i′12 → ui′2 . . . → ui′
k

i′ → S ′
i′

k
i′ (k

i′+1) → ui′
(k

i′+1)), where ui′
j′

and ui′
(j′+1)

vertices are from the modulator F and ui′1 = ui′
(k

i′+1) . The segment
of cycle Ci from the vertex ui′

j′ to u′i(j′+1)
is denoted by S ′

i′
j′(j′+1)

. For the pair
(x′, y′), in Kernel we have stored enough vertices (Z) to get a K-cut-preserving
set.

If the segment S ′
i′

j′(j′+1)
is completely inside Z, we do not need to replace

the segment at all and we can move onto the next segments. All the q segments
are completely contained in Kernel and the total length of all cycles in C is at
most TCL(q −1) ≤ TCL(q). This satisfies the induction properties for qth step.



Kernelization of Arc Disjoint Cycle Packing in α-Bounded Digraphs 377

If it is not completely contained in Z then from Theorem 2, we get the
segment of the form S ′

i′
j′(j′+1)

= P = (x′ = s′
0 → S ′

s′
0s′

1
→ s′

1 → S ′
s′
1t′

1
. . . →

S ′
s′

rt′
r

→ t′r → S ′
t′
rt′

f
→ t′f = y′), where S ′

s′
it

′
i

are the subsegments that are not
in Z, i.e., V (P ) \ A = ∪r

i=1V (S ′
s′

it
′
i
). Notice that r ≤ ki′ ≤ �. But since Z is a

K-cut-preserving set, we can get K many vertex disjoint paths each with length
at most 2α + 1 from s′

j to t′j for all j.

First Subsegment Replacement
Hence from s′

1 to t′1 there is a path that is vertex disjoint from V (C) since
|V (C)| = TCL(q − 1). Let this path be L′

1 that has length at most 2α + 1 and
is completely inside Z. Now replace the subsegment S ′

s′
1t′

1
with L′

1 in P to get
a new path from s′

0 to t′f . Let P ′ = (s′
0 → S ′

s′
0s′

1
→ s′

1 → L′
1 → t′1 . . . → t′f ). We

get a new set of arc disjoint cycles by replacing the segment Si′
j′(j′+1)

with P ′,
i.e., C = C\Ci∪{Ci = (ui′1 → S ′

i′12 . . . ui′
j′ → P ′ → ui′

j′+1
. . . → S ′

i′
k

i′ (k
i′+1) →

ui′
(k

i′+1))}. The updated C has at most (TCL(q − 1) + 2α + 1) many arcs and
L′
1 is completely contained inside Kernel.

Second Subsegment Replacement
Similarly from s′

2 to t′2, there are at least K vertex disjoint paths in Z each with
length (2α + 1). In the updated C, there are at most TCL(q − 1) + (2α + 1)
arcs. Hence there is a subsegment(path) L′

2 from s′
2 to t′2 that is vertex disjoint

from V (C) and completely contained inside Z. We replace the subsegment S ′
s′
2t′

2

with L′
2 and get a new path from s′

0 to t′f , P ′ = (s′
0 → S ′

s′
0s′

1
→ s′

1 → L′
1 →

t′1 → S ′
t′
1s′

2
→ s′

2 → L′
2 → t′2 . . . → t′f ). We get a new set of arc disjoint cycles

by replacing the segment C = C \ {Ci} ∪ {Ci = (ui′1 → S ′
i′12 . . . ui′

j′ → P ′ →
ui′

(j′+1)
. . . → ui′

(k
i′+1))

}. The new C has at most TCL(q − 1) + 2(2α + 1) many

arcs. Moreover L′
1 and L′

2 are completely contained inside Kernel.

All r Subsegments Replacement
But r ≤ �, as every cycle in the beginning had length at most 2α2k. Hence
we will be able to apply the above replacement procedure for all S ′

s′
it

′
i
, where

i ≤ r. And get a new segment P ′ = (s′
0 → S ′

s′
0s′

1
→ s′

1 → L′
1 → t′1 . . . →

s′
r → L′

r → t′r → S ′
t′
rt′

f
→ t′f ) which is entirely contained inside Kernel. Now

in Ci′ replacing the segment from x′ to y′ by P ′ and updating C, we get the
set of arc disjoint cycles where the segment from ui′

j′ to ui′
(j′+1)

is completely
contained inside Kernel. The updated set of arc disjoint cycles C uses at most
TCL(q − 1)+ �(2α+1) = TCL(q) many arcs. This proves the correctness of the
induction.

Theorem 3. Arc disjoint cycle packing in α-bounded digraphs, when
parameterized by the number of cycles k, admits a kernel of size P1(k, α) where
P1(k, α) = 2α4k5(110α35k30)4

α

.

Acknowledgments. We are grateful to William Lochet for the invaluable suggestions
and discussions.



378 A. Sahu and S. Saurabh

References

1. Abu-Khzam, F.N.: An improved kernelization algorithm for r-set packing. Inf.
Process. Lett. 110(16), 621–624 (2010)

2. Bessy, S., et al.: Packing arc-disjoint cycles in tournaments. In: 44th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2019, 26–
30 August 2019, Aachen, Germany. LIPIcs, vol. 138, pp. 27:1–27:14 (2019)

3. Bessy, S., Bougeret, M., Thiebaut, J.: (Arc-disjoint) cycle packing in tourna-
ment: classical and parameterized complexity. Technical report ArXive CoRR
1802.06669v1 [cs.DM], Cornell University, February 2018

4. Bodlaender, H.L.: On disjoint cycles. Int. J. Found. Comput. Sci. 5(1), 59–68 (1994)
5. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and

disjoint paths. Theoret. Comput. Sci. 412(35), 4570–4578 (2011)
6. Caprara, A., Panconesi, A., Rizzi, R.: Packing cycles in undirected graphs. J. Algo-

rithms 48(1), 239–256 (2003)
7. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.

org/10.1007/978-3-319-21275-3 15
8. Diestel, R.: Graph Theory. Springer, Heidelberg (2006)
9. Dorninger, D.: Hamiltonian circuits determining the order of chromosomes. Dis-

crete Appl. Math. 50(2), 159–168 (1994)
10. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS.

Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1
11. Erdős, P., Pósa, L.: On independent circuits contained in a graph. Can. J. Math.

17, 347–352 (1965)
12. Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time

decidability. J. ACM 35(3), 727–739 (1988)
13. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg

(2006). https://doi.org/10.1007/3-540-29953-X
14. Fradkin, A.O., Seymour, P.D.: Edge-disjoint paths in digraphs with bounded inde-

pendence number. J. Comb. Theory Ser. B 110, 19–46 (2015). https://doi.org/10.
1016/j.jctb.2014.07.002

15. Jacob, A.S., Krithika, R.: Packing arc-disjoint cycles in bipartite tournaments. In:
Rahman, M.S., Sadakane, K., Sung, W.-K. (eds.) WALCOM 2020. LNCS, vol.
12049, pp. 249–260. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
39881-1 21

16. Krithika, R., Sahu, A., Saurabh, S., Zehavi, M.: The parameterized complex-
ity of packing arc-disjoint cycles in tournaments. Technical report ArXive CoRR
1802.07090, Cornell University (2018). http://arxiv.org/abs/1802.07090

17. Lochet, W., Lokshtanov, D., Misra, P., Saurabh, S., Sharma, R., Zehavi, M.: Fault
tolerant subgraphs with applications in kernelization. In: Vidick, T. (ed.) 11th Inno-
vations in Theoretical Computer Science Conference, ITCS 2020, 12–14 January
2020, Seattle, Washington, USA. LIPIcs, vol. 151, pp. 47:1–47:22. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ITCS.
2020.47

18. Lokshtanov, D., Mouawad, A.E., Saurabh, S., Zehavi, M.: Packing cycles faster
than Erdős-Pósa. SIAM J. Discrete Math. 33(3), 1194–1215 (2019)

19. Reed, B.A., Robertson, N., Seymour, P.D., Thomas, R.: Packing directed circuits.
Combinatorica 16(4), 535–554 (1996)

20. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J.
Comb. Theory Ser. B 63(1), 65–110 (1995)

https://doi.org/10.1007/978-3-319-21275-3_15
https://doi.org/10.1007/978-3-319-21275-3_15
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1016/j.jctb.2014.07.002
https://doi.org/10.1016/j.jctb.2014.07.002
https://doi.org/10.1007/978-3-030-39881-1_21
https://doi.org/10.1007/978-3-030-39881-1_21
http://arxiv.org/abs/1802.07090
https://doi.org/10.4230/LIPIcs.ITCS.2020.47
https://doi.org/10.4230/LIPIcs.ITCS.2020.47


On Subquadratic Derivational
Complexity of Semi-Thue Systems

Alexey Talambutsa(B)

Steklov Mathematical Institute of RAS, 8 Gubkina St., Moscow 119991, Russia
altal@mi-ras.ru

Abstract. We prove that for any rational number α > 1 there exists
a semi-Thue system with derivational complexity function belonging
to the asymptotic class Θ(nα). In particular, we answer a question of
Y. Kobayashi, whether there exists a semi-Thue system whose deriva-
tional complexity function is in the class Θ(nα) with α ∈ (1, 2).

Keywords: Semi-Thue system · Rewriting system · Derivational
complexity

1 Introduction

Let A = {a1, . . . , an} be a finite alphabet and denote by A∗ the set of all finite
words in this alphabet. If W is a word then we denote its length by �(W ). A semi-
Thue system (A,R) is given by the alphabet A and a set of rules R ⊂ A∗ × A∗.
For two words U, V ∈ A∗ we say that U → V is a rewrite step in the semi-Thue
system (A,R) if for some words P,Q ∈ A∗ and a rule (X,Y ) ∈ R we have that
U = PXQ and V = PY Q.

A finite sequence W1 → W2 → . . . → Wn is called a derivation sequence if
for each i ∈ {1, 2, . . . , n − 1} there exists a rewrite step Wi → Wi+1. In this case
we will also use a shorthand notation W1 � Wn. Following the paper [5], the
derivational depth is defined as a function δ : A∗ → N ∪ {∞} as follows:

δ(W ) = max{L | W = W0 → W1 → . . . → WL }.

The derivational complexity of the system (A,R) is a function Δ : N → N∪{+∞}
which is defined as

Δ(A,R)(t) = max{δ(W ) | �(W ) = t}.

If Δ(t) < ∞ for all t ∈ N, then the system is terminating.
It can be quite complicated to obtain an estimate from above for the deriva-

tional complexity, even for a semi-Thue system that looks simple. For example,

This work was supported by a research grant from Russian Science Foundation, project
no. 16-11-10252.

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 379–392, 2020.
https://doi.org/10.1007/978-3-030-50026-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_28&domain=pdf
http://orcid.org/0000-0002-1237-9682
https://doi.org/10.1007/978-3-030-50026-9_28


380 A. Talambutsa

H. Zantema suggested a system over a 3-letter alphabet {a, b, c} with 3 rules
{aa → bc, bb → ac, cc → ab}, which became notorious for impeding the auto-
mated tools in proving its termination. Eventually, it was shown to be terminat-
ing in the work [6] of D. Hofbauer and J. Waldmann, but proving a polynomial
upper bound (in fact, quadratic) needs an elaborate combinatorial analysis of
all possible sequences of derivation (see paper [1] by S. I. Adian).

In general, it was shown by Y. Kobayashi in [7, Theorem 2] that given a
finite semi-Thue system, it is undecidable whether its derivational complexity
is in the class O(n2). Another result of Kobayashi [8, Theorem 4.3] shows that
for many computable functions f(n) belonging to the class Ω(n2), one may
construct a semi-Thue system with the derivational complexity belonging to the
class Θ(f(n)). It follows, then, that for any algebraic number α ≥ 2, there exists
a semi-Thue system such that its derivational complexity is equivalent to nα.
However, the general method of this paper does not produce functions that are in
the asymptotic class o(n2). For this reason, Kobayashi asks [8, page 12] whether
one can find a finite semi-Thue system whose derivational complexity function
belongs to the class Θ(nα), when α ∈ (1, 2), in particular for α = 3/2.

The main result of this paper is the positive answer to this question. The-
orem 2 shows that, given a fraction a/b with a, b > 0, one can find an explicit
example of a semi-Thue system in an alphabet of b + 14 letters with 2b + 14
rules, whose derivational complexity belongs to the class Θ(n1+ a

b ).
Quite related, yet much more complicated, are the questions about possi-

ble asymptotics for Dehn functions of groups, which in some sense measure the
derivational complexity of proving a relation in a group. Notably, A. Yu. Olshan-
skii proved in [9] that there is an (1, 2)-interval gap for the asymptotic classes
Θ(nα), and there are no other interval gaps, due to N. Brady and M. Bridson
(see [2]). M. Sapir, J.-C. Birget and E. Rips [4] constructed a huge class of com-
putable Dehn functions, that are in class Ω(n4), and this result was significantly
strengthened to the functions of the class Ω(n2) by Olshanskii in the recent
paper [10].

2 System S0 with Derivational Complexity in Θ(n logn)

In this section we present an explicit example of a length-preserving semi-Thue
system S0 = (A0,R0) which has derivational complexity of Θ(n log n). This
system is an essential part of the main construction from Sect. 3 and can be
considered as its baby case. We provide detailed proofs of the lemmas for the
system S0 so that the reader will be prepared to deal with more complicated
systems Sa,b later.

Our goal is to emulate a “unary logarithm computation” performed on a
Turing machine by the semi-Thue system S0. First, we describe the process
that we need and then formally describe the system S0. We start with a word
W0 = h1n = h1 . . . 1 where h is a working head. The head starts moving to the
right border of this word and replaces each second letter 1 it meets by 0. In the
end of this passage, one obtains the word 0101 . . . h. Then the head in n steps



On Subquadratic Derivational Complexity of Semi-Thue Systems 381

moves to the left border of the word and we obtain the word W1 = h0101 . . ..
In such shuttling the head does 2n moves and “thins out” the word, namely
it reduced the number of letters 1 nearly twice. Then the head performs the
thinning out again and after 2n moves returns with the resulting word W2 =
h00010001 . . .. The head continues this shuttling until there are no more letters 1
in the considered word. Since the shuttle does Θ(log n) passages then, and each
of them consists of 2n moves, altogether it will be Θ(n log n) moves, which is
our goal.

The alphabet A0 of the system S0 consists of 9 letters. First, consider its
subsets D0 = {0, 1, 0̄, 1̄} and H0 = {h0, h1, h2, c} and then A0 = D0 ∪ H0 ∪ {w}.

We briefly describe the relation of these letters to the process described above.
The letters 0,1 represent the digits, and 0̄, 1̄ are their marked versions. The letters
h0, h1, h2, c ∈ H0 represent different states of the working head in our process,
and we call them as heads of system S0. The initial state is h0 and then the state
of the head changes according to the sequence h0 → h1 → h2 → h1 → h2 → · · ·
with each letter 1 met on its way. Once the head hi reaches the right border, it
turns into the head c which moves to the left. The remaining letter w ∈ A0 is a
separator for the working zone of the head.

Now we formally describe the set of rules R0. It consists of 4 parts, which
we describe along explaining what these parts actually mean.

h01 → 0̄h1 h11 → 1̄h2 h21 → 0̄h1

h00 → 0̄h0 h10 → 0̄h1 h20 → 0̄h2

(1)

These rules are used to execute a transformation h0B → B′hi, where B is a
binary word in the alphabet {0, 1} and B′ is a word in the alphabet {0̄, 1̄}. The
word B′ is obtained from the word B by replacing the odd (from the left) digits 1
by the digits 0 and also putting bars over all digits.

The next subset has 2 rules, which describe how the right-moving heads h1, h2

change to the cleaning head c in the right end of the working zone:

h1w → cw h2w → cw (2)

Note that the head h0 does not transform into the cleaning head c, since we stop
the transformations if the head has not met a letter 1 on its the way.

After the cleaning head gets created, it starts moving to the left and removes
all bars over digits 0̄, 1̄ on its way. This is done by the following two commands:

0̄c → c 0 1̄c → c 1 (3)

Once the cleaning head arrives to the left border of the zone, it is transformed
into initial head h0, which we describe by the command

wc → wh0. (4)

Theorem 1. Let S0 = (A0,R0) be a semi-Thue system with the alphabet A0

and the set of rules R0 that is given by the union of sets (1), (2), (3), (4). Then
the derivational complexity function ΔS0(n) belongs to the class Θ(n log n).



382 A. Talambutsa

A remarkable property of the system S0 = (A,R0) is that this system is
length-preserving, i.e., for each rule (X,Y ) ∈ R0 one has �(X) = �(Y ). Hence,
for any derivation sequence X = X1 → X2 → . . . → Xk = Y also �(X) = �(Y ).

We will be using a particular notion of a determined derivation. Usually, for
a semi-Thue system there are many different sequences that start from a given
word. However, there could be cases where there are no rules applicable to a word
or when there is a single rule (X,Y ) ∈ R and a single position where the change
Z1 = PXQ → PY Q = Z2 can happen. In this case we say that the derivation
is determined for the word Z1. If the word Z2 and all subsequent words in the
possible continuation of the derivation sequence Z1 → Z2 → Z3 → . . . have this
property then we say that the derivation sequence is determined for the word Z1.
Obviously, in this case the derivational depth δ(Z1) can be easily computed by
the applications of rules to the word Z1 and next results until possible.

Lemma 1. If U, V ∈ D∗
0 then the derivational depth of the word Z = UhiV

(i ∈ {0, 1, 2}) is subject to the inequality δ(Z) ≤ �(V ).

Proof. One can see that initially there is only one rule that can be applied to the
word Z, and this is a rule from the set (1). In each of these rules, the letter hi

moves to the right (possibly changing its index), and there is only one way to
apply a rule of the system S0. The resulting word Z ′ can also be written as
Z ′ = U ′hi′V ′, which is of the same form as in the statement of the Lemma.
Hence, the derivation sequence is determined for the word Z. In this sequence
the head hi moves to the right (if possible), reaches the right side of the word
and no continuation to the derivation sequence is possible then, as the marker
w is absent. All these moves sum up to at most �(V ) operations, so the lemma
is proved. 	

In complete analogy (arguing about the rules (3)), one proves the next lemma.

Lemma 2. If U, V ∈ D∗
0 then δ(UcV ) ≤ �(U).

The next words, which we want to consider, are similar to those above, but
have a letter w on the left or right side. These words also determine the sequence
of derivations, which may though use the rules of the form (2) and (4). Tracing
the moves of the letters hi and c, one can easily obtain the following statement.

Lemma 3. If U, V ∈ D∗
0 and Z is a word having the form UxV w or the form

wUxV , where x ∈ H0 then δ(Z) ≤ 2�(Z).

The next step is to consider a similar word which has w on both ends.

Lemma 4. If Z is a word having the form w UxV w, where x ∈ H0 and U, V ∈
D∗

0 then δ(Z) ≤ 2�(Z)(�log2(�(Z))� + 5/2).

Proof. For the word Z of the described type, the derivation sequence is again
determined. After at most 2�(Z) steps either the derivation sequence terminates
or it has a word of the form Z1 = w h0T1(0, 1)w, where �(T1) = �(U) + �(V ). If
the sequence terminates, the Lemma is proved, so we consider the other case.



On Subquadratic Derivational Complexity of Semi-Thue Systems 383

After applying the rules to the word Z1 at most 2�(Z) times, either the
derivation sequence terminates, or we obtain a word Z2 = w h0T2(0, 1)w, so
that T2 is a word with at least twice less letters 1 than the word T1. Then
in general, arguing as before, we see that after at most 2�(Z)k operations to
the word Z1, the derivation sequence either terminates or brings us to the word
w h0Tk+1(0, 1)w with at least 2k times less letters 1 than the word T1. Eventually,
after 2�(Z)(�log2(�(Z))� + 1) steps (starting from Z1) there are no letters 1 left,
hence after not more than 2�(Z)(�log2(�(Z))� + 5/2) total steps the derivation
sequence terminates. 	


The same observations as in the previous paragraph provide a lower bound
for the derivational complexity of the system S0. We state this in the following
lemma.

Lemma 5. If Z = w h01kw then δ(Z) = k(2(log2 k� + 1) + 1).

As an immediate consequence, we obtain:

Corollary 1. Δ0(n) belongs to the class Ω(n log n)

Now we will prove the most important lemma for obtaining the upper bounds.

Lemma 6. If Z is a word having the form w T w, such that T ∈ (A0 \ {w})∗

and the word T has at least 2 letters from the set H0, then δ(Z) ≤ 2�(Z) + 2.

Proof. First, we mark all letters from the set H0 in the word T by xi, so that the
word T is written uniquely as T = T1x1T2x2 . . . xkTk+1 with k ≥ 2 and Ti ∈ D∗

0 .
In the contrary to the previous lemmata, the word wTw does not necessarily

determine the derivation sequence, because now there are several occurrences of
heads c, hi. Still, in each of the rules, we have only one head letter in the left and
right side, so again we may speak of the position of the head and of its image.
In the following, for a word W we denote its i-th letter from the left as W [i].

Consider the longest possible derivation sequence

Z = Z1 → Z2 → . . . → Zm. (5)

Let pi(s) be the positions of the image of xi in the word Zs. One can see that

p1(s) < p2(s) < . . . < pk(s) for each s ∈ {1, . . . , m}. (6)

This inequality is straightforward for s = 0 and follows for other s by induction.
One just needs to look through all the rules R0 and check the property.

Now we consider how the position p1(s) is changing along the course of the
sequence (5), i.e., with the increase of s. There are two cases.

Case 1. x1 = hi, where i ∈ {0, 1, 2}. In this case p1(s) can not decrease, and it
can increase only up to p2(1) − 1. Indeed, otherwise consider the smallest s for
which p1(s) = p2(1). Since from (6) we have p2(s) > p1(s), then by induction
on s one can show Zs−1[p2(1)] ∈ {0̄, 1̄}. It follows that the move of x1 to the
position p2(1) is impossible.



384 A. Talambutsa

Case 2. x1 = c. Here p1(s) can decrease (it takes exactly p1(s) − 1 step), then
change to h0 due to the rule wc → wh0 and then continue as in the Case 1.

Summing up, we see that altogether all applications of rules to x1 make at
most p1(s) + p2(s) − 1 transformations. We remark that we can rearrange the
sequence (5) so that all moves of the head x1 happen in its beginning.

Analyzing in a manner similar as in the two cases above, we can see that
one can apply to the head xk at most (�(T ) − pk(1)) + (�(T ) − pk−1(1) − 2)
transformations. The moves of xk are happening either to the left (finishing at
the position pk−1(1) + 1); or to the right (up to the position �(T ) − 1), then
applying the rule (2) and then to the left, stopping at the position pk−1(1) + 1.

All the heads xi (where 1 < i < k) never reach positions 2 and �(V ) − 1
due to the inequalities (6), so they are never subject to the rules (2) and (4).
Hence, each head xi can move one direction, stopping at the position of pi−1(1)
or pi+1(1) (depending on the direction of its moving). Then, the head xi and its
images can be moving for at most pi+1(1) − pi−1(1) steps.

Summing up the described amounts of possible derivations for x1, x2, . . . , xk

we obtain the following cumulative upper bound:

p1(1) + p2(1) +
k−1∑

i=2

(pi+1(1) − pi−1(1)) + (2�(T ) + 2 − pk(1) − pk−1(1)).

Splitting the sum in the center for odd and even i we see that most summands
cancel except for the first and the last, so the whole bound can be rewritten as

p1(1) + p2(1) + (pm(1) − p1(1)) + (pm′(1) − p2(1)) + (2�(T ) + 2 − pk(1) − pk−1(1)),

where m and m′ are the biggest odd and even number not exceeding k. Then
the sum above is actually equal to 2�(T ) + 2, and the inequality of the lemma
follows. 	


Now we are ready to make the final step in proving Theorem1.

Lemma 7. If Z ∈ A∗
0 then δ(Z) ≤ 2(�(Z) + 2)(log �(Z) + 6).

Proof. Write out Z with all the letters w marked, then it has a form

Z = T1w T2 w . . . w Tk for some k ≥ 1,

and T1, . . . , Tk are some words in the alphabet A0\{w} = {0, 1, 0̄, 1̄, c, h0, h1, h2}.
Consider any derivation sequence Z = Z1 → Z2 → . . . → Zm.
Observing the set of rules, we see that the letters w never disappear and

never appear, if they were not present; also we see that these letters keep their
positions. Hence, in each word Zi all the letters w have the same positions as in
the word Z. Since there are no rules of length larger than 2, we can deduce that
all derivations of the word Z in the sequence above can be seen independently
in k words T1w,wT2w, . . . , wTk and therefore

δ(Z) = δ(T1w) + δ(wT2w) + . . . + δ(wTk−1w) + δ(wTk).



On Subquadratic Derivational Complexity of Semi-Thue Systems 385

From this, using obvious inequalities δ(wT1) ≤ δ(wT1w) and δ(Tkw) ≤ δ(wTkw),
we obtain that

δ(Z) �
k∑

i=1

δ(wTiw). (7)

For each word Ti we have that δ(wTiw) ≤ 2(�(Ti) + 2)(log(�(Ti) + 2)� + 3)
due to Lemma 4 and Lemma 6 (depending on the number of the head letters).
Summing over all i we obtain an upper bound for the sum of derivational depths

k∑

i=1

δ(wTiw) ≤
k∑

i=1

2(�(Ti) + 2)(log(�(Ti) + 2)� + 3) ≤

2
k∑

i=1

(�(Ti) + 2)(log(�(Ti) + 2)) + 8
k∑

i=1

(�(Ti) + 2).

(8)

First, note that
∑k+1

i=1 (�(Ti)+2) = �(Z)+2. Since the function f(n) = n log n
is convex and f(0) = 0, then f is super-additive for two positive arguments, i.e.,
f(a1 + a2) ≥ f(a1) + f(a2), which implies that f(

∑k
i=1 ai) ≥ ∑k

i=1 f(ai) for
ai ≥ 0. Hence, the left part in the last line of (8) can be estimated as

2
k+1∑

i=1

(�(Ti) + 2)(log(�(Ti) + 2)) ≤ 2(�(Z) + 2)(log(�(Z) + 2)),

whilst the right part 8
∑k

i=1(�(Ti) + 2) is just equal to 8(�(Z) + 2).
Putting these two things together we obtain that

k+1∑

i=1

δ(wTiw) ≤ 2(�(Z) + 2)(log(�(Z) + 6)).

Then, using the inequality (7), we deduce that the lemma holds true. 	

An obvious consequence of this lemma is

Corollary 2. Δ0(n) belongs to the asymptotic class Ω(n log n).

Finally, we sum up that Corollaries 1 and 2 give us Theorem 1.

3 A System with Derivational Complexity in Θ(n1+ a
b )

The semi-Thue system Sa,b which has the demanded derivational complexity
from the class Θ(n1+ a

b ) is obtained by an elaboration of the system S0, presented
in the previous section. The system Sa,b emulates a certain process, which we
explain alongside its formal description. Throughout all section, we suppose that
a and b are some fixed natural numbers greater than or equal to 1.



386 A. Talambutsa

The alphabet Ab of the system Sa,b is a union Ab = A0 ∪Bb, where A0 is the
alphabet of the system S0 and Bb is an alphabet of 5 + b letters. To define Bb

first we consider two subsets: Hb = {d, p0, p1, . . . , pb} and Dq = {q, q̄}, and then
set Bb := Dq ∪ Hb ∪ {v}.

The process which we emulate (with a derivation sequence of longest length)
deals with split words of the form wXvY w, where X is a word in the alphabet
S0 \{w} and Y is a word in the alphabet Bb \{v}. The subword wXv in essence
works as the system S0 and serves as the “timer” which emits signals for the
second part of the machine. The second part is emulated with a subword vY w
that receives the signals from the first part “through the splitter” v, counts them
and after each b signals performs an elongation of an auxiliary word 2a times.

The meaning of the letters from the alphabet Bb is following: v is a splitter,
q and q̄ serve as the letters of the auxiliary word; and the letters of Hb serve as
working heads, where p0 moves to the right and elongates the auxiliary word,
d moves to the left and erases the marks, whilst the heads p1, p2, . . . , pb cannot
move and they are used to count signals from the timer. We call the letters from
the set H0 ∪ Hb as heads of the system Sa,b.

To describe the due set of rules Ra,b we modify the set R0 as follows:
First we substitute the set of rules (2) by a new set consisting of 2b rules:

hivpj → cvpj+1 (i = 1, 2; j = 1, 2, . . . , b − 1),
hivpb → cvp0 (i = 1, 2).

(9)

Here, instead of just bouncing at the left border w (as done in system S0), the
head hi transmits a signal through the “splitter” v, which performs the counting
1 → 2 → . . . → b → 0 of the machine state.

Second, we introduce the rule which is elongating the words:

p0q → (q̄)2
a

p0, (10)

The idea of this rule is similar to the rules of (1). The head p0 moves to the right
and transforms all letters q, which it passes, by blocks of marked letters (q̄)2

a

.
Once the head p0 reaches the letter w on the right side of the word, it

“bounces”, meaning that it transforms to the head d, which moves to the left
and removes the bars over the letters q. We realize this part by the two rules:

p0w → dw, q̄d → dq. (11)

Once the cleaning head d reaches the splitter v, it turns into the head p1.

vd → vp1 (12)

Actually, this rule can be seen as a supplemental command to the series (9).

The main result of the paper is then given by the following statement.



On Subquadratic Derivational Complexity of Semi-Thue Systems 387

Theorem 2. Let Sa,b be a semi-Thue system with the alphabet Ab and the set
of rules Ra,b that is the union of rules (1), (3), (4), (9), (10), (11). Then the
derivational complexity function Δa,b(n) of this system is in the class Θ(n1+ a

b ).

First we show, that the function Δa,b(n) can be estimated from below with
the desired asymptotic behaviour. This we do by proving the following statement.

Lemma 8. If k ≥ 1 then for the word Uk = wh01kvp0q
kw of length 2k + 5 the

derivational depth δ(Uk) is at least k1+ a
b .

Proof. Similarly to Lemma 5, the exact computation of the derivation length
can be done by a direct application of the rules. However, here the derivation
sequence is not necessarily determined for the word Uk. Indeed, the word Uk

possesses two options: to apply the rule (1) in the left part wh01kv and to apply
the rule (10) in the right part vp0q

kw. However, the transformations of the left
and the right part can be studied independently until both heads arrive to the
splitter v, and we obtain a word which has a form

wY hivp1q
Lw, where Y ∈ {0̄, 1̄}∗. (13)

For the left head it takes k operations and for the right head it takes (k+2+k2a)
operations. After this arrival, one can only apply the rule hivp1 → cvp2 and then
the sequence is determined for some time again: the left head should shuttle to
the left border and back (b − 2) times until we again face the ambiguity of rule
application in the word of the form wXcvp0q

Lw, where X ∈ {0̄, 1̄}∗.
After this, again the steps of the left head and the right head can be counted

independently until again we face a word of the form (13), and then the derivation
continues uniquely for some time as before.

Observing the moves of the left head the right head independently, we can
count them as follows. The left head (similarly to the shuttling of S0) can make
�log2 k�+1 travels from the left to the splitter and one less travel back. Altogether
it sums up to k(2�log2 k� + 1) operations, where the applications of type (9) are
also counted. Hence, the right head can make

R = R(k) = 1 + �(�log2 k� + 1)/b�
travels to the right border and back. This can be counted with geometric series
since after each travel the auxiliary word qL is elongated 2a times. Hence, all
travels of p0 to the right border (i.e., operations of type (10)) take

k(1 + 2a + . . . + (2a)R) = k(2a(R+1) − 1)/(2a − 1)).

steps, and the travels back (operations q̄d → dq) take 2a times more. To obtain
the exact number we would also need to add precisely R transform operations
p0w → dw, but in this lemma we care only about some lower bound. Therefore,
we can roughly estimate from below the number of steps that the right header
can make as k2aR and also use an obvious estimation R(k) ≥ (log2 k�+1)/b� ≥
(log2 k)/b to conclude that δ(Uk) ≥ k2(a log2 k)/b = k1+ a

b , as required. 	




388 A. Talambutsa

As in Sect. 2, we also need to show upper bounds, namely that for any word
W one can obtain the derivation sequence of length at most O(�(W )1+

a
b ).

Similarly to Lemma 4, we start our analysis by considering split words which
have exactly one head l in the left and one head r in the right part.

Lemma 9. Let words X1,X2 ∈ D∗
0 and Y1, Y2 ∈ D∗

q and let letters l ∈ H0 and
r ∈ Hb. Then there exists C > 0 such that the word

Z = wX1lX2vY1rY2w (14)

has derivational depth δ(Z) ≤ C�(Z)1+
a
b .

Proof. The two heads l and r give two positions in the word Z where the rules of
Sa,b can be (possibly) applied. After any application of the rules, the result has
the form (14), so this form is preserved in the derivation sequence. Therefore, as
in Lemma 8 we can count the rules applied in the left and in the right part.

Since the left head after the first return to the left border can perform at
most S := 1+log2(�(X1)+�(X2))� runs to the right and one less back, the total
number of its steps is at most N := (�(X1)+�(X2))(3+2log2(�(X1)+�(X2)�)).

The right head can shuttle to the right border and back and then the length
of the word in the right part increases at most 2a times, hence it becomes at
most equal to Q := 1 + 2a(�(Y1) + �(Y2)). After the first shuttling, each next
shuttle of the right head needs b “signals” from the left head, hence it will be
able to make at most �S/b� such shuttles.

Counting the geometric series as in Lemma 8, we obtain that the right head
performs at most T := (Q + 2aQ)(1 + 2a + . . . + 2a�S/b�) travelling steps and
1+�S/b� transform steps of type p0w → dw. Obviously, T = 2a+1

2a−1Q(2a(�S/b�+1)).
The number N , which counts the transform steps and the moves of the left

head, can be estimated by (�(X1) + �(X2))(4 + log2(�(X1) + �(X2)�)), which is
O((�(X1) + �(X2)) log((�(X1) + �(X2))), hence also O((�(X1) + �(X2))1+

a
b ).

We are left to estimate T . Obviously, the product Q(2a + 1)/(2a − 1) is just
O(�(Y1) + �(Y2)). The remaining factor 2a(�S/b�+1) is at most 2(a/b)S+a, and
since S < (2 + log2(�(Y1) + �(Y2)), we obtain that this factor can be estimated
as O((�(X1) + �(X2))a/b). Then T = O((�(Y1) + �(Y2))(�(X1) + �(X2))a/b) =
O(�(Z)�(Za/b)) = O(Z1+ a

b ).
Putting together the estimates of N and T obtained in two paragraphs above,

we get the inequality for δ(Z) as claimed in the lemma. 	


The next lemma is the main tool to estimate the length of derivation sequences.

Lemma 10. If the word Z is a word having form wXw, where X ∈ (Ab \{w})∗

then δ(Z) < C1�(Z)1+
a
b for some C1 > 0 that is independent of the word Z.

Proof. Consider all occurrences of letters v in the word Z. There are three cases.

Case I. There are no letters v in the word Z. As usual, we call letters from the
alphabet H0 ∪Ha heads. If there are no heads in X, then no rule can be applied
to the word Z, and the lemma trivially follows.



On Subquadratic Derivational Complexity of Semi-Thue Systems 389

If there is a single head x, then the derivation sequence is determined, and
we consider two subcases.

Case I.1.a. x ∈ Hb. The head can only bounce on the right border, hence it
bounces at most once. Then the longest derivation sequence has at most (1 +
2a)�(X) steps, where the factor 1 + 2a comes from a possible elongation of the
word, if the head x initially moves to the right, bounces and moves back.

Case I.1.b. x ∈ H0. The head is not changing the length of the word, and it can
travel freely along the word X only if all letters of X (except for the head) are
from D0, and in this case δ(Z) = O(�(Z) log2(�(Z))). If there are other letters
on the tape, they should be digits from Dq as the rest is excluded; then the head
stops after at most 2�(Z) steps, once it meets a letter from Dq on its way.

Now, we turn to the case when there are at least 2 heads in the word x.

Case I.2. Let x1, x2, . . . , xk be all heads in the word Z, and k ≥ 2. Then X =
wZ1x1Z2x2 . . . ZkxkZk+1 for some words Zi ∈ (D0 ∪Dq)∗, where i = 1, 2, . . . , k.

We will use an argument similar to the one of Lemma 6. One can observe
that for 1 < i < k each head xi can move inside the part Zi or Zi+1, depending
on its initial direction, and cannot change the direction as xi never reaches w or
v. It follows that xi can make at most max(Zi, Zi+1) ≤ �(Zi) + �(Zi+1) steps.

The leftmost head x1 can bounce in the left border, but it happens at most
once, and only in the case x1 = d. In this particular case x1 makes at most
2�(Z1)+ �(Z2) steps, and in other cases at most �(Z1)+ �(Z2) steps are possible.

The rightmost head xk can bounce from the right border also at most once,
and only in the case xk = h0. In this case xk makes at most (1+2a)�(Zk)+�(Zk−1)
steps, and in all other cases not more than �(Zk) + �(Zk−1) steps are possible.

Summing up the number of possible steps of all heads xi for i = 1, 2, . . . , k,
we obtain a total bound for the number of steps

�(Z1) +
k−1∑

i=1

(�(Zi) + �(Zi+1)) + (1 + 2a)�(Zk) ≤ (1 + 2a)
k∑

i=1

�(Zi) ≤ (1 + 2a)�(Z),

which finishes the consideration of the Case I.

Now, we consider the case when there is a single letter v in X.

Case II. The word Z can be written as wXvY w, where X,Y ∈ Ab \ {v, w}.
Similarly to Lemma 8 and Lemma 9, we separately count the number of steps
made on the left of the splitter v and on the right of it. Let λ be the number of
heads in the left part wXv and μ be the number of heads in the right part vY w.

If λ = 0 or μ = 0, no rule of the series (9) can ever be used, so only one
left bounce in the left part and one right bounce in the right part is possible. In
both situations one considers the part with heads and count steps similarly to
Case I.2, obtaining at most 2�(X) steps, when the heads are in the left part and
(1 + 2a)�(Y ) when the heads are in the right part.

If λ ≥ 2, then by a similar argument to the Case I.2, we see that at most one
right bounce in wXv is possible. Indeed, the leftmost and rightmost heads can



390 A. Talambutsa

bounce at most once, and the remaining heads never change their direction and
work in a restricted space. It follows that in the right part at most one left bounce
in vY w, as it happens only with a right bounce in the left part. Also similarly
to the Case I.2. the number of steps in the left part can be bound linearly by
2�(X), and in the right part the number of steps is at most (1 + 2a)�(Y ).

If μ ≥ 2, then similarly to the above, at most one right bounce is possible for
the left part, henceforth for the right part we have at most one bounce, so we
obtain the same bounds (1 + 2a)�(Y ) for the number of steps in the right part
and 2�(X) for the number of steps in the left.

The remaining case is λ = 1 and μ = 1. The only case, when the rule (9) can
be used more than once in the derivation is very much restricted. This happens
when X = X1lX2 with l ∈ H0 and X1,X2 ∈ D∗

0 and simultaneously Y = Y1rY2

with r ∈ Ha and Y1, Y2 ∈ D∗
q . Then we can use Lemma 9 to obtain the inequality

we need. In all other cases either left or right head will get blocked during the
first shuttling, so that at most one bounce at the splitter is possible, and in this
case we obtain a linear bound 2�(X)+(1+2a)�(Y ) for the total number of steps.

Finally, we study the case, when the word Z has two or more letters v.

Case III. Z = wXvY1v . . . vYkw, k ≥ 2 and X,Y1, . . . , Yk ∈ (Ab \ {v, w})∗.
In this case at each splitter v we cannot have more than one use of the rule

(9). Indeed, in each part vYiv either we have more than one head, and then this
follows from the argument of Case I.2. If the head is sole, it either belongs to
H0 or to Hb. In the first case it can only bounce with v on the right side, and in
the second case it bounces with v only on the left side.

For the reason described above, in each part vYiv, where 1 ≤ i < k, we can
estimate the number of steps by 2�(Yi). The part wXv also gives at most 2�(X)
steps, and the part vYkw gives at most (1 + 2a)�(Yk). In total, the number of
steps in the derivation can be estimated by (1 + 2a)�(Z). 	

Now, we generalize the previous lemma to the case of all possible words in Sa,b.

Lemma 11. For any word Z ∈ A∗
b one has inequality δ(Z) < C1�(Z)1+

a
b for

some C1 > 0 that is independent of the word Z.

Proof. Consider all occurrences of letters w in the word Z and write it out as
Z = A1wA2w . . . wAk, where k ≥ 1 and Ai ∈ A∗

b \ {w}. Note that the words Ai

can be empty. In any derivation sequence Z = Z1 → Z2 → . . . → Zm the rules
are applied independently in the parts A1w, wA2w, . . . , wAk−1w, wAk, hence
δ(wZw) = δ(A1w) + δ(wAk) +

∑k−1
i=2 δ(wAiw). Obviously, δ(A1w) ≤ δ(wA1w)

and also δ(Akw) ≤ δ(wAkw), therefore we have δ(wZw) ≤ ∑k
i=1 δ(wAiw), and

applying Lemma 10 to each word wAiw we obtain

δ(Z) ≤
k∑

i=1

C1�(Ai)1+
a
b . (15)

Eventually, super-additivity of the convex function f(x) = x1+a/b shows that
the sum in (15) is at most equal to C1(

∑k
i=1 �(Ai))1+

a
b ≤ �(Z)1+

a
b , as

required. 	




On Subquadratic Derivational Complexity of Semi-Thue Systems 391

Now we can see that Theorem 2 follows from Lemma 11 and Lemma 8, with a
note that the words of odd length having long derivational depth can be obtained
by adding any final letter to the words of even length considered in Lemma8.

4 Further Questions

In connection to the results of this paper, it seems interesting to put forward the
following two problems:

Problem 1. Do there exist finite length-preserving semi-Thue systems, that
have derivational complexity functions ΔS(n) in the class o(n log n), but not
in the class Θ(n)?1

Problem 2. Does there exist a finitely presented monoid Π, whose Dehn func-
tion fΠ(n) belongs to the class o(n2), but is not in the class Θ(n)?

Acknowledgements. The author would like to thank Jean-Camille Birget (Rutgers
University at Camden) and Daria Smirnova (Université de Genève) for stimulating
discussions. The author is also indebted to several anonymous referees whose comments
significantly improved the quality of this paper.

References

1. Adian, S.I.: On a method for proving exact bounds on derivational complexity in
Thue systems. Math. Notes 92(1), 3–15 (2012)

2. Brady, N., Bridson, M.R.: There is only one gap in the isoperimetric spectrum.
Geom. Funct. Anal. GAFA 10(5), 1053–1070 (2000)

3. Birget, J.-C.: Time-complexity of the word problem for semigroups and the Higman
embedding theorem Internat. J. Algebra Comput. 8(2), 235–294 (1998)

4. Sapir, M., Birget, J.-C., Rips, E.: Isoperimetric and isodiametric functions of
groups. Ann. Math. 156(2), 345–466 (2002)

5. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In:
Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–177. Springer, Heidelberg
(1989). https://doi.org/10.1007/3-540-51081-8 107

6. Hofbauer, D., Waldmann, J.: Termination of aa → bc, bb → ac, cc → ab. Inform.
Process. Lett. 98, 156–158 (2006)

7. Kobayashi, Y.: Undecidability of the complexity of rewriting systems, Algebraic
system, Logic, Language and Computer Science, Kyoto University Research Infor-
mation Repository 2008, pp. 47–51 (2016). https://repository.kulib.kyoto-u.ac.jp/
dspace/handle/2433/231547

8. Kobayashi, Y.: The derivational complexity of string rewriting systems. Theoret.
Comput. Sci. 438, 1–12 (2012)

1 After the preliminary version of this paper became partly available to the public,
several examples of systems, which do not preserve length, have been constructed.
An anonymous referee suggested a construction of a system having complexity
Θ(n log∗ n) and recently Y. Kobayashi announced an example of a system with
derivational complexity function from the class Θ(n log log n).

https://doi.org/10.1007/3-540-51081-8_107
https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/231547
https://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/231547


392 A. Talambutsa

9. Olshanskii, A.Y.: Hyperbolicity of groups with subquadratic isoperimetric inequal-
ity. Int. J. Algebra Comput. 1(3), 281–289 (1991)

10. Yu Olshanskii, A.: Polynomially-bounded Dehn functions of groups. J. Comb. Alge-
bra 2(4), 311–433 (2018)



The Untold Story of SBP

Ilya Volkovich(B)

CSE Division, University of Michigan, Ann Arbor, MI, USA
ilyavol@umich.edu

Abstract. In the seminal work of [4], Babai has introduced Arthur-
Merlin Protocols and in particular the complexity classes MA and AM
as randomized extensions of the class NP. While it is easy to see that
NP ⊆ MA ⊆ AM, it has been a long standing open question whether
these classes are actually different. In [5], Böhler et al. introduced the
probabilistic class of SBP and showed that MA ⊆ SBP ⊆ AM. Indeed,
this is the only known natural complexity class that lies between MA and
AM. In this work we study the relations between these classes further,
partially answering some open questions posed in [5].

Keywords: Arthur-Merlin Protocols · Randomized complexity
theory · NP problems with bounded number of solutions · SZK

1 Introduction

For more than three decades, the question of whether the classes MA and AM
are different had remained open. While it was shown that under widely-believed
derandomization assumptions [14,15] MA = AM and, moreover, both to collapse
to NP, there has been only a mild advancement on this front. In particular,
Arvind et al. [3] showed that AM = MA if NP ⊆ P/poly. Yet, the same premises
imply a collapse of the Polynomial Hierarchy (see, e.g., [13]) and hence are not
believed to be true.

In [5], Böhler et al. introduced the class of SBP, which stands for small
bounded-error probability. They also showed that SBP lies between MA and AM.
To the best of our knowledge, SBP is the only natural class with this property.
However, the only known conditional collapse results of either AM to SBP or
SBP to MA are actually those that collapse AM all the way to MA.

SZK (Statistical Zero Knowledge) is the class of decision problems for which
a “yes” answer can be verified by a statistical zero-knowledge proof proto-
col. Rather than providing a formal definition, the class can be captured by
its complete (promise) problem known as Statistical Difference [19]: given two
polynomial-size circuits, C0 and C1 on n variables, decide if the statistical dis-
tance between the induced probability distributions is either at most 1/3 or at
least 2/3. This problem is denoted as SD(2/3,1/3). Similarly to SBP, SZK ⊆ AM
(see, e.g., [7]).

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 393–405, 2020.
https://doi.org/10.1007/978-3-030-50026-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_29&domain=pdf
http://orcid.org/0000-0002-7616-0751
https://doi.org/10.1007/978-3-030-50026-9_29


394 I. Volkovich

A different line of work [1,16,20] has been involved with the study of the
computational power of NP machines with bounded number of accepting paths
(or witnesses). In [20], Valiant introduced the complexity class UP that consists
of NP problems with unique solutions. For instance, UNIQUE-SAT stands for
a version of the SAT problem in which the given Boolean formula ϕ is either
unsatisfiable or contains exactly one satisfying assignment. Another natural
example of such class is FewP, introduced by Allender in [1], which consists
of NP problems with polynomially-many solutions. More generally, we consider
the class SOLUTIONS[f(n)] that consists of NP problems with at most f(n)
solutions, for inputs of size of n. For a formal definition, see Definition 10.

1.1 Our Results

Our first main result links the aforementioned lines of work:

Theorem 1. Suppose there exists ε > 0 such that 3-SAT ∈ SOLUTIONS[2n1−ε

].
Then AM = SBP.

In other words, if there exists an NP machine that decides 3-SAT with some-
what less than trivial number of accepting paths, then AM collapses to SBP.
In particular, the result holds if 3-SAT ∈ UP or even if 3-SAT ∈ FewP. To
put the result in the correct context, note that even a subexponential number
of accepting paths is not known to imply a (deterministic) subexponential-time
algorithm. In fact, such an implication is not even known for the case of a unique
path (i.e., SAT ∈ UP).

We now would like to elaborate on the premises. For a 3-CNF ϕ of size s, the
NP machine is required to have at most 2s1−ε

accepting paths for some ε > 0.
This requirement is trivially met when s = n1+δ, for δ > 0. Indeed, the main
challenge is to satisfy the requirement for formulas of linear and slightly super-
linear sizes (i.e., when s = O(n) or s = n · polylog(n)). Furthermore, we observe
that the requirement is met for formulas of size n iff it is met for formulas of
size n · polylog(n). This in turn allows us to define the size of a formula as the
number of clauses as opposed to the encoding size, as these two notions are
within poly-logarithmic factor from each other. For more details see Sect. 2.3

In terms of oracle separation, in [21], Vereshchagin has shown that while
MA ⊆ PP for every oracle, there exists an oracle that separates AM from PP.
In [5], Böhler et al. have extended this inclusion to MA ⊆ SBP ⊆ PP ∩ AM. As
a corollary, they have concluded that the same oracle also separates SBP from
PP. Furthermore, it is an easy exercise to see that AM is closed under union
and intersection. Yet, whether SBP is closed under intersection remains an open
question. In [11], Göös et al. have shown an oracle relative to which SBP is
not closed under intersection. In conclusion, the collapse of AM to SBP should
evade numerous relativization barriers. In [18], Rubinstein have shown an oracle
relative to which SAT is not in UP and FewP. Since the proof of Theorem1 is
relativizable, we obtain a further oracle separation as a corollary:



The Untold Story of SBP 395

Corollary 1. There exists an oracle relative to which for any ε > 0, SAT �∈
SOLUTIONS[2n1−ε

].

This result partially answers an open question posed in [5], whether one could
extend the oracle separations to collapse consequences.

Relations Between SBP and SZK. Our next result studies the relation
between SBP and SZK. To that end, we consider the general Statistical Differ-
ence problem: for functions α(n) > β(n), SD(α(n),β(n)) is the (promise) problem
of deciding whether the statistical distance is either at most β(n) or at least
α(n) (for a formal definition, see Definition 8). Our next main result exhibits a
non-trivial problem in the intersection of the promised versions of SZK and SBP.

Theorem 2. SD(1− 1
2n+3 , 1

2n+3 ) ∈ PromiseSBP.

First of all, it is to be noted that since PromiseSZK is closed under comple-

ment (see, e.g., [17]), SD(1− 1
2n+3 , 1

2n+3 ) ∈ PromiseSZK. Furthermore, the prob-
lem represents a somewhat more general version of SD

(1 , 0)
, which is complete

for the class of the so-called problems with “V-bit” perfect zero knowledge proto-
cols [12]. While SD

(1 , 0) ⊆ PromiseNP and hence is clearly in PromiseSBP, to the

best of our knowledge, SD(1− 1
2n+3 , 1

2n+3 ) is not known to lie in any subclass of
PromiseSBP (not even PromiseMA). In that sense, the proposed problem consti-
tutes the first known non-trivial problem in PromiseSZK ∩ PromiseSBP. Indeed,
this result partially answers another open question posed in [5], whether there
is a natural problem in SBP that is not contained in MA. It is to be noted that
Watson [22] has shown another natural problem complete for PromiseSBP.

Relation to Polarization. The polarization lemma, introduced by Sahai and
Vadhan in [19], is an efficient transformation that takes as input a pair of Boolean
circuits (C0, C1) and an integer k and coverts them into a new pair of circuits
(D0,D1) such that:

Δ(C1, C2) ≥ 2/3 =⇒ Δ(D1,D2) ≥ 1 − 2k

Δ(C1, C2) ≤ 1/3 =⇒ Δ(D1,D2) ≤ 2k

We would like to highlight one important aspect of this transformation: if the
input circuits C1 and C2 are defined on n variables, i.e., the distributions are
samplable using n random bits, the resulting circuits D1 and D2 are defined
on poly(k) · n variables, thus requiring more random bits. Similar phenomenon
occurs when one tries to naively amplify the success probability of a BPP algo-
rithm by a simple repetition. Indeed, if a given BPP algorithm achieves an error
probability of 1/3 using r random bits, one could drive down the error probabil-
ity to 2−t using O(t)·r random bits. More efficient amplification procedures (see,
e.g., [8,23]) allow us to achieve a similar probability bound using only O(t) + r
random bits. This raises a natural question: could we obtain a “randomness-
efficient” polarization procedure? Our Theorem2 suggests that in a very efficient
regime of parameters, the existence of such a procedure implies that SZK ⊆ SBP.



396 I. Volkovich

Corollary 2 (Informal). If there exists a randomness-efficient polarization,
then SZK ⊆ SBP.

Nonetheless, we believe that this result should be regarded as evidence that a
“randomness-efficient” polarization may not be possible. Since while polarization
is an inherently relativizable procedure, there exists an oracle that separates SZK
from SBP (and, in fact, from PP. See [6]).

1.2 Ideas and Techniques

We show the collapse of AM to SBP by identifying complete sets of AM and SBP1.
In [9], Goldwasser & Sipser considered the problem of determining whether a
set S is of size at least m or at most m/2, where membership of x in S can
be efficiently determined given a witness w. They show an AM protocol for
the problem. Our first observation is that this problem is, in fact, hard for the
class AM. In conclusion, we obtain a natural AM-complete problem, WSSE (see
Definition 5 for more details). Next, we observe that the class SBP corresponds
to a simpler version of the problem, SSE. As before, we would like to determine
whether a set S is of size at least m or at most m/2. Yet, in this version of the
problem, the membership of x can be efficiently determined given (just) x (see
Definition 6 for more details).

In what follows, we show a polynomial-time reduction from WSSE to SSE.
The natural approach would be to regard the set S as a set of tuples (x,w) such
that w is a witness for membership of x in S. By definition, each x ∈ S has at
least one witness w associated with it. Yet, the actual number of such witnesses
could be arbitrary. To illustrate this, consider the following two sets: S1 contains
only one element x1 with K 	 2 witnesses of membership; S2 contains two
elements e1, e2 with 1 witnesses of membership each. Suppose m = 2. Viewing
S1 and S2 as above introduces order inversion between S1 and S2 as we will
obtain sets with K and 2 elements, respectively. One approach to overcome this
issue could be to actually count the number of witnesses. However this task turns
out to be a #P-hard problem. We take a slightly different approach.

Rather than counting witnesses, we would like to ensure that each element x
has only a “small” number of witnesses. For the sake of intuition, let us assume
that SAT ∈ UP. Fix x and consider the set Wx of witnesses associated with x.
By definition, if x �∈ S then Wx = ∅; otherwise, if x ∈ S then |Wx| ≥ 1. More-
over, observe that the membership of w in Wx can be efficiently determined
given (just) w. Will now run the unique-solution NP machine A on the pred-
icate (formula) that corresponds to Wx. Observe that in the former case (i.e.,
Wx = ∅) A has zero accepting paths and in the latter case A has exactly one
accepting path. In other words, every x ∈ S will have a unique witness w of its
membership in S. To handle the more general case of SAT �∈ SOLUTIONS[2n1−ε

]
we “preprocess” the circuit by applying sequential repetition thus increasing the
gap between number of witnesses in the “yes” and the “no” cases. See Lemma 4
for the formal proof.
1 Technically, we are looking at the promise versions of AM and SBP.



The Untold Story of SBP 397

In order to related SZK and SBP we study the relation between Statistical
and the Collision Distances. See Lemma 2 for the formal proof.

1.3 Organization

We start by some basic definitions and notation in Sect. 2. In Sect. 3 we prove our
main results. In fact, we prove somewhat more general and technical statements.
Finally, we discuss some open questions in Sect. 4.

2 Preliminaries

For a unary relation R(x), we define #xR
Δ= |{x | x ∈ R}|. For a binary relation

R(x,w), we define #x∃wR
Δ= |{x | ∃w s.t. (x,w) ∈ R}| . For k ∈ N, we define

R⊗k, the tensor power of R, as

R⊗k Δ= R(x1, w1) ∧ R(x2, w2) ∧ . . . ∧ R(xk, wk)

where x1, . . . , xk and w1, . . . wk are k disjoint copies of x and w, respectively.

Observation 1. Let x̄ = (x1, . . . , xk) and w̄ = (w1, . . . , wk). Then #x̄∃w̄R⊗k =
(#x∃wR)k.

We will require the following technical lemma.

Lemma 1. For any s > 1 and 0 < ε < 1 it holds:

1. s−ε ≤ (s−1 − 1)ε + 1.
2. s

1
ε ≥ 1 + ln s · 1

ε .

2.1 Probability Distributions and Circuits

Let X and Y be two random variables taking values in some finite domain U .
We define the support of a random variable X as

Supp(X) Δ= {a ∈ U | Pr[X = a] > 0} .

Definition 1 (Distances Between Distributions). The Statistical Distance
between X and Y is defined as

Δ(X,Y ) = max
U ′⊆U

Pr[X ∈ U ′] − Pr[Y ∈ U ′].

The equality is attained for U ′ = UX
Δ= {a ∈ U | Pr[X = a] ≥ Pr[Y = a]}.

The Collision Distance between X and Y is defined as Col(X,Y ) Δ= Pr[X =
Y ].

We prove two properties relating the Statistical and the Collision Distances.



398 I. Volkovich

Lemma 2. Let k = |Supp(X) ∪ Supp(Y )|. Then 1
k ≤ Δ(X,Y )+Col(X,Y ) ≤ 1.

Proof. Let U ′ = Supp(X) ∪ Supp(Y ), UX = {a ∈ U | Pr[X = a] ≥ Pr[Y = a]}
and UY = U ′ \ UX . For the first inequality:

Col(X,Y ) =
∑

a∈U ′
Pr[X = a] Pr[Y = a]

=
∑

a∈U ′
(Pr[X = a])2 −

∑

a∈U ′
Pr[X = a](Pr[X = a] − Pr[Y = a])

≥

( ∑
a∈U ′

Pr[X = a]
)2

|U ′| −
∑

a∈UX

Pr[X = a](Pr[X = a] − Pr[Y = a])

≥ 1
|U ′| −

∑

a∈UX

(Pr[X = a] − Pr[Y = a]) =
1

|U ′| − Δ(X,Y ).

We now move to the second inequality.

Col(X,Y ) + Δ(X,Y ) − 1
=

∑
a∈U ′

Pr[X = a] Pr[Y = a] +
∑

a∈UX

(Pr[X = a] − Pr[Y = a]) − 1

Pr[X ∈ UX ] Pr[Y ∈ UX ] + Pr[X ∈ UY ] Pr[Y ∈ UY ]+
Pr[X ∈ UX ] − Pr[Y ∈ UX ] − 1

= (Pr[X ∈ UX ] − 1)(Pr[Y ∈ UX ] + 1) + (1 − Pr[X ∈ UX ])(1 − Pr[Y ∈ UX ])
= 2(Pr[X ∈ UX ] − 1)Pr[Y ∈ UX ] ≤ 0.

Observe that Pr[X ∈ UY ] = 1 − Pr[X ∈ UX ] and Pr[Y ∈ UY ] = 1 − Pr[Y ∈
UX ]. ��

We complement our result by observing that for a pair of variables X and Y
with disjoint supports it holds that: Δ(X,Y ) = 1 and Col(X,Y ) = 0, and hence
Δ(X,Y ) + Col(X,Y ) = 1. In addition, for any n ≥ 1 and ε ≥ 0, consider a
random variable X over {0, 1}n defined as follows: For ā ∈ {0, 1}n:

Pr[X = ā] =
1 + ε

2n
, if an = 0 and Pr[X = ā] =

1 − ε

2n
, otherwise.

Observe that k = 2n, Δ(X, 1̄ − X) = ε and Col(X, 1̄ − X) = 1−ε2

k .
A Boolean circuit C : {0, 1}n → {0, 1}m induces a probability distribution on

{0, 1}m by evaluating C on a uniformly chosen input in {0, 1}n. For two Boolean
circuits, C1 and C2, we will use the notations Δ(C1, C2) and Col(C1, C2) to
denote the corresponding distances between the induced distributions.

2.2 Complexity Classes and Promise Problems

We will be mostly concerned with the two following complexity classes. We refer
the reader to [2] for the definitions of other standard complexity classes.



The Untold Story of SBP 399

Definition 2 ([4]). A language L is in AM if there exists a polynomial-time
computable predicate A(x, r, w) such that:

x ∈ L =⇒ Prr[∃w : A(x, r, w) = 1] ≥ 2/3
x �∈ L =⇒ Prr[∃w : A(x, r, w) = 1] ≤ 1/3.

Definition 3 ([5]). A language L is in SBP if there exists ε > 0, k ∈ N and a
polynomial-time computable predicate B(x, r) such that:

x ∈ L =⇒ Prr[B(x, r)) = 1] ≥ (1 + ε) · 1

2nk

x �∈ L =⇒ Prr[B(x, r)) = 1] ≤ (1 − ε) · 1

2nk .

where n = |x|.
For technical reasons we will need to consider promise problems. A promise

problem is a relaxation of a language. Formally:

Definition 4 (Promise Problems). Π = (ΠY ES ,ΠNO) is a promise prob-
lem if ΠY ES ∩ ΠNO = ∅.

In [9], Goldwasser & Sipser consider the problem of determining whether
a set S is of size at least m or at most m/2, where membership of x can be
efficiently determined given x and witness w. Formally, we define the following
promise problem.

Definition 5 (Witnessed Set-Size Estimation).

WSSE Δ= (WSSEY ES ,WSSENO), where

WSSEY ES = {(C,m) | #x∃wC ≥ m}, WSSENO = {(C,m) | #x∃wC ≤ m/2}.

Here C(x,w) is a Boolean circuit and m is an integer given in binary represen-
tation.

In the same paper, an AM protocol for the problem was given. In other words, it
was shown that WSSE ∈ PromiseAM. We begin by observing that WSSE is also
hard for the class AM. Recall Definition 2. Let L ∈ AM and suppose r ∈ {0, 1}�.
Furthermore, set Ax(r, w) Δ= A(x, r, w) and m = 2�+1/3. We observe that:

x ∈ L =⇒ #r∃wAx ≥ m
x �∈ L =⇒ #r∃wAx ≤ m/2.

Corollary 3. WSSE is PromiseAM-complete.

In this paper, we also study a simpler version of the problem. As before, we would
like to determine whether a set S is of size at least m or at most m/2. Yet, in
this version of the problem, the membership of x can be efficiently determined
given (just) x. Formally, we define the following promise problem.



400 I. Volkovich

Definition 6 (Set-Size Estimation). SSE Δ= (SSEY ES ,SSENO), where
SSEY ES = {(C,m) | #xC ≥ m}, SSENO = {(C,m) | #xC ≤ m/2}.

Here C(x) is a Boolean circuit and m is an integer given in binary represen-
tation.

Lemma 3 (Implicit in [5]). SSE is PromiseSBP-complete.

Indeed, SSE and WSSE capture the complexity classes SBP and AM, respec-
tively. Indeed, AM corresponds to the class of all languages that reduce to WSSE.
Likewise, SBP is the class of all languages that reduce to SSE. We now define
the class SZK in a similar fashion.

Definition 7 (Statistical Difference, see [19]). Let α(n) : N → N and
β(n) : N → N be computable functions, such that α(n) > β(n).
Then SD(α(n) , β(n)) Δ= (SD(α(n) , β(n))

Y ES ,SD(α(n) , β(n))
NO ), where

SD(α(n) , β(n))
Y ES = {(C1, C2) | Δ(C1, C2) ≥ α(n)},

SD(α(n) , β(n))
NO = {(C1, C2) | Δ(C1, C2) ≤ β(n)}.

Here, C1 and C2 are Boolean circuits C1, C2 : {0, 1}n → {0, 1}m of size poly(n).

Definition 8 (Statistical Zero Knowledge). SZK is defined as class of all
languages that reduce to SD(2/3 , 1/3).

We remark that originally SZK was defined in by Goldwasser et al. in [10] as
the class of decision problems for which a “yes” answer can be verified by a
statistical zero-knowledge proof protocol. The alternate characterization via the
complete problem was given in [19].

In order the explore the relation between SZK and SBP further, we define a
sparse version of the Statistical Difference problem.

Definition 9 (Sparse Statistical Difference). For a computable function
t(n) : N → N, t(n)-SSD(α(n) , β(n)) is a specialization of SD to the case where the
support size of distributions induced by C1 and C2 is bounded by t(n). Formally:
|Supp(C1)| , |Supp(C2)| ≤ t(n).

2.3 SOLUTIONS[f(n)]

In this section we formally define the class SOLUTIONS[f(n)] and discuss some
of its properties. Indeed, SOLUTIONS[f(n)] constitutes a subclass of NP with a
bounded number of solutions.

Definition 10. Let f : N → N be a computable function. We say that a lan-
guage L is in the class SOLUTIONS[f(n)], if there exists a polynomial-time com-
putable predicate A(x, y) such that:

x ∈ L =⇒ 1 ≤ #yAx ≤ f(|x|)
x �∈ L =⇒ #yAx = 0.

where Ax(y) = A(x, y).



The Untold Story of SBP 401

In other words, SOLUTIONS[f(n)] is special case of NP where for each x ∈ L
there are at most f(n) witnesses. Observe that: UP = SOLUTIONS[1] ⊆ FewP =
SOLUTIONS[poly(n)] ⊆ NP.

Remark: We note the definition would not change if we relaxed the requirement
“to have of at most f(n) solutions” to hold only for sufficiently large values
of n. Next, we would like to point out a property of the SOLUTIONS[f(n)] in a
subexponential regime of parameters.

Observation 2. Suppose there exists ε > 0 such that L ∈ 2n1−ε

. Then there
exist ε′ > 0 and an NP machine that decides instances of size n1+ε of L with at
most 2n1−ε′

solutions.

Proof. For instances of size n1+ε, there are at most 2(n
1+ε)1−ε

= 2n1−ε2

solutions. ��
We conclude this section by presenting two facts about transforming Turing

machines into Boolean circuits and Boolean circuits into Boolean formulas.

Fact 3. There exists a polynomial-time algorithm that, given a Turing
machine M that computes a Boolean predicate A(z) in time t(|z|) and input
length n, outputs a Boolean circuit C of size poly(t(n)) on n inputs such that
C(z) = A(z) for every z ∈ {0, 1}n.

Fact 4. There exists a polynomial-time algorithm that, given a Boolean circuit C
of size s, transforms it into a 3-CNF formula ϕ of size O(s) such that ϕ is
satisfiable iff C is satisfiable.

Combined with Observation 2, we obtain that wlog we can use various notions
of size (i.e., number of gates in the circuit, number of clauses in a formula, bit-
size complexity, etc.) interchangeably as they are with poly-log factor from each
other and s · polylog(s) = o(s1+ε) for any ε > 0.

Corollary 4. There exists ε > 0 such that CKT-SAT ∈ SOLUTIONS[2n1−ε

] iff
there exists ε′ > 0 such that 3-SAT ∈ SOLUTIONS[2n1−ε′

].

3 Proofs of the Main Results

In this section we prove our main results Theorems 1 and 2. In fact, we prove
somewhat more general and technical results.

Lemma 4. Suppose there exists ε > 0 such that CKT-SAT ∈ SOLUTIONS
[2n1−ε

]. Then PromiseAM = PromiseSBP.

Proof. We show that PromiseAM ⊆ PromiseSBP by showing that WSSE ≤p SSE.
In particular, let C(x,w) be a circuit of size s. We map an instance (C(x,w),m)
of WSSE to

(
Ĉ(x̄, y),mk

)
, where Ĉ(x̄, y) is a circuit of size poly(sk), for k = s

1
ε .



402 I. Volkovich

Let A(C ′, y) be a polynomial-time computable predicate that given a Boolean
circuit C ′(z) of size s satisfies:

#zC
′ ≥ 1 =⇒ 1 ≤ #yAC′ ≤ 2s1−ε

#zC
′ = 0 =⇒ #yAC′ = 0.

where AC′(y) = A(C ′, y). Consider the following Boolean predicate Â(x̄, y),
where x̄ = (x1, . . . , xk):

1 C ′
x̄(w̄) ← C⊗k(x̄, w̄); /* Taking k-th tensor power of the circuit

C(x,w) and plugging in the value of x̄. Here
w̄ = (w1, . . . , wk). */

2 return A(C ′, y)

Let Ĉ(x̄, y) denote the circuit that results from converting Â(x̄, y) into a
Boolean circuit (applying Fact 3). The claim about the runtime is clear. We now
analyze the reduction.

– Suppose that #x∃wC ≥ m. By Observation 1: #x̄∃w̄C⊗k ≥ mk. In other
words, there exist at least mk different inputs x̄ for which #w̄C ′

x̄ ≥ 1. By
the properties of A, for each such x̄ there exists y such that Ĉ(x̄, y) = 1.
Therefore, #(x̄,y)Ĉ ≥ mk.

– Suppose that #x∃wC ≤ m/2. By Observation 1: #x̄∃w̄C⊗k ≤ (m/2)k. In
other words, there exist at most (m/2)k different inputs x̄ for which #w̄C ′

x̄ ≥
1. Since C ′

x̄ is a circuit of size at most sk, by the properties of A, for each such
x̄ there exist at most 2(sk)1−ε

witnesses y such that Ĉ(x̄, y) = 1. Therefore,
#(x̄,y)Ĉ ≤ (m/2)k · 2(sk)1−ε ≤ mk/2. To justify the last inequality, assume
wlog that s > 4 and recall Lemma 1:

(sk)1−ε − k = s(1+
1
ε )(1−ε) − s

1
ε = s

1
ε −ε − s

1
ε ≤ s

1
ε [(s−1 − 1)ε + 1 − 1]

= s
1
ε (s−1 − 1)ε ≤ (1 + ln s · 1

ε
)(s−1 − 1)ε ≤ (ε + ln s)(s−1 − 1) < −1

��
Theorem 1 follows from the lemma combined with Corollary 4.

Lemma 5. Let β(n) and t(n) be such that β(n) · t(n) ≤ 1/6. Then

t(n)-SSD
(1−β(n) , β(n)) ∈ PromiseSBP .

Proof. Given two circuits C1, C2 : {0, 1}n → {0, 1}m, the algorithm will try to
find a collision. Namely, pick x, x′ ∈ {0, 1}n uniformly at randomly and accept iff
C1(x) = C2(x′). Observe that the success probability of the algorithm is exactly
Col(C1, C2). We now analyze this probability.

– Suppose Δ(C1, C2) ≤ β(n). Observe that |Supp(C1) ∪ Supp(C2)| ≤ 2t(n).
Therefore, by Lemma 2, Col(C1, C2) ≥ 1

2t(n) − β(n) ≥ 3β(n) − β(n) = 2β(n).



The Untold Story of SBP 403

– Suppose Δ(C1, C2) ≥ 1 − β(n). By Lemma 2, Col(C1, C2) ≤ β(n).

��
Theorem 2 follows by observing that for circuits defined over n bits we have:

|Supp(C1)| , |Supp(C2)| ≤ 2n, and instantiating the lemma to t(n) = 2n and
β(n) = 1

2n+3 .

4 Discussion and Open Question

The major widely-believed derandomization assumption of [14] that implies the
collapse of AM and MA to NP is that some language in NE∩coNE requires SAT-
oracle circuits of size 2Ω(n). Later in [15], the assumption of SAT-oracle circuits
was relaxed to nondeterministic circuits. Can one prove that the premises of
Theorem 1 are implies by a weaker assumption? For example, the assumption of
[14,15] that some language in E requires SAT-oracle circuits of size 2Ω(n) implies
a deterministic version of the argument of [9]. Could one utilize this connection?

Another natural question is to identify a corresponding MA-complete problem
in the flavor of WSSE for AM and SSE for SBP. Could the presented collapse,
then, be extended to MA? Conversely, could one show that any collapse either
AM, SBP or MA to a subclass implies the premises of Theorem 1? Perhaps under
an even stronger assumption that NP ⊆ P/poly?

Finally, we note that setting β(n) = 0 in the statement of Lemma 5, will
recover the class SD

(1 , 0)
. Could we identify a natural problem that reduces to

t(n)-SSD
(1−β(n) , β(n))

that does not reduce to SD
(1 , 0)

(with β(n) · t(n) ≤ 1/6)?
Such a problem will attest the non-triviality of the SSD problem.

Acknowledgment. The author would like to extend his gratitude to Thomas Watson
and Ryan Williams for useful conversations. Finally, the author would like to thank
Henning Fernau and the anonymous referees for their detailed comments and sugges-
tions.

References

1. Allender, E.W.: The complexity of sparse sets in P. In: Selman, A.L. (ed.) Structure
in Complexity Theory. LNCS, vol. 223, pp. 1–11. Springer, Heidelberg (1986).
https://doi.org/10.1007/3-540-16486-3 85

2. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, Cambridge (2009)

3. Arvind, V., Köbler, J., Schöning, U., Schuler, R.: If NP haspolynomial-size circuits,
then MA = AM. Theor. Comput. Sci. 137(2), 279–282 (1995). https://doi.org/10.
1016/0304-3975(95)91133-B

4. Babai, L.: Trading group theory for randomness. In: Proceedings of the 17th
Annual ACM Symposium on Theory of Computing (STOC), pp. 421–429 (1985).
https://doi.org/10.1145/22145.22192

https://doi.org/10.1007/3-540-16486-3_85
https://doi.org/10.1016/0304-3975(95)91133-B
https://doi.org/10.1016/0304-3975(95)91133-B
https://doi.org/10.1145/22145.22192


404 I. Volkovich

5. Böhler, E., Glaßer, C., Meister, D.: Error-bounded probabilistic computations
between MA and AM. J. Comput. Syst. Sci. 72(6), 1043–1076 (2006). https://
doi.org/10.1016/j.jcss.2006.05.001

6. Bouland, A., Chen, L., Holden, D., Thaler, J., Vasudevan, P.: On the power of
statistical zero knowledge. In: 58th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2017, Berkeley, CA, USA, 15–17 October 2017, pp. 708–
719 (2017). https://doi.org/10.1109/FOCS.2017.71

7. Fortnow, L.: The complexity of perfect zero-knowledge. Adv. Comput. Res. 5,
327–343 (1989)

8. Goldreich, O.: A sample of samplers: a computational perspective on sampling. In:
Goldreich, O. (ed.) Studies in Complexity and Cryptography. Miscellanea on the
Interplay between Randomness and Computation. LNCS, vol. 6650, pp. 302–332.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22670-0 24

9. Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof
systems. In: Proceedings of the 18th Annual ACM Symposium on Theory of Com-
puting (STOC), pp. 59–68 (1986). https://doi.org/10.1145/12130.12137

10. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989). https://doi.org/10.1137/
0218012

11. Göös, M., Lovett, S., Meka, R., Watson, T., Zuckerman, D.: Rectangles are non-
negative juntas. SIAM J. Comput. 45(5), 1835–1869 (2016). https://doi.org/10.
1137/15M103145X

12. Kapron, B.M., Malka, L., Srinivasan, V.: A framework for non-interactive instance-
dependent commitment schemes (NIC). Theor. Comput. Sci. 593, 1–15 (2015).
https://doi.org/10.1016/j.tcs.2015.05.031

13. Karp, R.M., Lipton, R.J.: Some connections between nonuniform and uniform
complexity classes. In: Proceedings of the 12th Annual ACM Symposium on Theory
of Computing, Los Angeles, California, USA, 28–30 April 1980, pp. 302–309 (1980).
https://doi.org/10.1145/800141.804678

14. Klivans, A., van Melkebeek, D.: Graph nonisomorphism has subexponential
sizeproofs unless the polynomial-time hierarchy collapses. SIAM J. Comput. 31(5),
1501–1526 (2002). https://doi.org/10.1137/S0097539700389652

15. Miltersen, P.B., Vinodchandran, N.V.: Derandomizing Arthur-Merlin games using
hitting sets. Comput. Complex. 14(3), 256–279 (2005). https://doi.org/10.1007/
s00037-005-0197-7

16. Moran, S.: On the accepting density hierarchy in NP. SIAM J. Comput. 11(2),
344–349 (1982). https://doi.org/10.1137/0211026

17. Okamoto, T.: On relationships between statistical zero-knowledge proofs. J. Com-
put. Syst. Sci. 60(1), 47–108 (2000). https://doi.org/10.1006/jcss.1999.1664

18. Rubinstein, R.: Structural Complexity Classes of Sparse Sets: Intractability, Data
Compression, and Printability. Ph.D. thesis, Northeastern University, Department
of computer Science (1988)

19. Sahai, A., Vadhan, S.P.: A complete problem for statistical zero knowledge. J.
ACM 50(2), 196–249 (2003)

20. Valiant, L.G.: Relative complexity of checking and evaluating. Inf. Process. Lett.
5(1), 20–23 (1976). https://doi.org/10.1016/0020-0190(76)90097-1

https://doi.org/10.1016/j.jcss.2006.05.001
https://doi.org/10.1016/j.jcss.2006.05.001
https://doi.org/10.1109/FOCS.2017.71
https://doi.org/10.1007/978-3-642-22670-0_24
https://doi.org/10.1145/12130.12137
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://doi.org/10.1137/15M103145X
https://doi.org/10.1137/15M103145X
https://doi.org/10.1016/j.tcs.2015.05.031
https://doi.org/10.1145/800141.804678
https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1007/s00037-005-0197-7
https://doi.org/10.1007/s00037-005-0197-7
https://doi.org/10.1137/0211026
https://doi.org/10.1006/jcss.1999.1664
https://doi.org/10.1016/0020-0190(76)90097-1


The Untold Story of SBP 405

21. Vereshchagin, N.K.: On the power of PP. In: Proceedings of the Seventh Annual
Structure in Complexity Theory Conference, pp. 138–143 (1992). https://doi.org/
10.1109/SCT.1992.215389

22. Watson, T.: The complexity of estimating min-entropy. Comput. Complex. 25(1),
153–175 (2014). https://doi.org/10.1007/s00037-014-0091-2

23. Zuckerman, D.: Simulating BPP using a general weak random source. Algorithmica
16(4/5), 367–391 (1996). https://doi.org/10.1007/BF01940870

https://doi.org/10.1109/SCT.1992.215389
https://doi.org/10.1109/SCT.1992.215389
https://doi.org/10.1007/s00037-014-0091-2
https://doi.org/10.1007/BF01940870


Weighted Rooted Trees: Fat or Tall?

Yaokun Wu and Yinfeng Zhu(B)

School of Mathematical Sciences and MOE-LSC, Shanghai Jiao Tong University,
Shanghai 200240, China

{ykwu,fengzi}@sjtu.edu.cn

Abstract. Let V be a countable set, let T be a rooted tree on the vertex
set V , and let M = (V, 2V , µ) be a finite signed measure space. How can
we describe the “shape” of the weighted rooted tree (T,M)? Is there a
natural criterion for calling it “fat” or “tall”? We provide a series of such
criteria and show that every “heavy” weighted rooted tree is either fat or
tall, as we wish. This leads us to seek hypergraphs such that regardless of
how we assign a finite signed measure on their vertex sets, the resulting
weighted hypergraphs have either a “heavy” large matching or a “heavy”
vertex subset that induces a subhypergraph with small matching number.
Here we also must develop an appropriate definition of what it means
for a set to be heavy in a signed measure space.

Keywords: Dilworth’s Theorem · Down-set · Path

1 Background

Roughly speaking, Heisenberg’s uncertainty principle for position and momen-
tum says that, for a good function on the real line, either its variance is large
or the variance of its Fourier transform is large [15, Theorem 4.1]. This kind
of weak duality or orthogonality [7] also happens in combinatorics. The most
famous example may be the Erdös-Szekeres subsequence theorem [6], which says
that each sequence of rs+1 real terms contains an increasing subsequence of r+1
terms or a decreasing subsequence of s + 1 terms or both. Though the Erdös-
Szekeres subsequence theorem has a short self-contained proof, it also easily
follows from either Dilworth’s Theorem [3] or Mirsky’s Theorem [11]. The two
equalities results, Dilworth’s Theorem and Mirsky’s Theorem, are generalized
from posets to digraphs as two inequalities results, the Gallai–Milgram theorem
[9] and the Gallai-Roy Theorem [8,12]. As a consequence of the Gallai–Milgram
theorem or the Gallai-Roy Theorem, we know that λ(D)α(D) ≥ |V(D)| for any
finite digraph D, where we use V(D), λ(D) and α(D) for the vertex set of D,
the length of a longest path in D and the maximum size of an independent set
in D. This means that, we either have a ‘long’ path or a ‘large’ independent set
in D, provided we define ‘long’ and ‘large’ in an appropriate way. Note that λ(D)
measures the length of a path by giving each vertex of the path a weight 1 while

Supported by NSFC (11671258, 11971305) and STCSM (17690740800).

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 406–418, 2020.
https://doi.org/10.1007/978-3-030-50026-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_30&domain=pdf
http://orcid.org/0000-0002-6811-7067
http://orcid.org/0000-0003-1724-5250
https://doi.org/10.1007/978-3-030-50026-9_30


Weighted Rooted Trees: Fat or Tall? 407

α(D) measures the size of a stable set by giving each vertex in the stable set a
weight 1. Are there similar orthogonality results in which we assign weight to a
set by something other than the usual cardinality function? For Dilworth’s The-
orem, a weighted version is recently discovered by Hujdurović, Husić, Milanič,
Rizzi and Tomescu [10, Theorem 3.3]. Recall that a poset is just a transitive
acyclic digraph and a rooted tree poset is a poset in which there is a special root
vertex and a unique saturated path from the root vertex to any other vertex.
Among the very few such weighted results which we are aware of, another one
is a result of Song, Ward and York [14, Theorem 1.2], which improves a result
of Bonamy, Bousquet and Thomassé [2, Lemma 3]: for any weighted rooted tree
poset, either there is a long path or there are two heavy vertex subsets A and B
for which there are no arcs between A and B. In some sense, this conforms to the
above-mentioned result about the orthogonality of independent sets and paths:
we are now considering vertex subsets which are pairwise independent of each
other, instead of merely considering a set of pairwise nonadjacent vertices. We
will present a vast generalization of the result of Song et al. (see Corollary 1)
and discuss the possibility of going further along this line. Note that our proof
strategy is totally different with the approach of Song et al.

2 Fat or Tall?

A graph G consists of a pair (V(G),E(G)) where E(G) ⊆
(
V(G)

2

)
. We call V(G)

and E(G) the vertex set and edge set of G, respectively. A graph G is countable if
V(G) is a countable set and is finite if V(G) is finite. Recall that each countable
set is either finite or denumerable (infinite). Let V be a countable set and let
M = (V, 2V , μ) be a finite signed measure space, that is,

∑
v∈V |μ(v)| < ∞ and

μ(A) =
∑

a∈A μ(a) holds for all A ⊆ V . If G is a graph with V(G) = V , the
graph G together with the finite signed measure space M gives us a weighted
graph, in which we think of μ as the weighting function. If r ∈ V = V(G),
we call the triple G = (G, r, μ) a weighted rooted graph, where r is the root of
G and μ, as known to be the weighting function of (G,μ), is also referred to as
the weighting function of G. In the case that G is a tree, (G,μ) is called a
weighted tree and (G, r, μ) is called a weighted rooted tree.

For any integer k, we use [k] for the set of positive integers between 1 and k.
For any two vertices u and v of a tree T , the set of vertices on the unique path
connecting u and v in T is denoted by T [u, v]. A down-set of a rooted tree
(T, r) is a subset A of V(T ) such that, for each a ∈ A, the set A contains all
components of T −a to which r does not belong. A chain in a rooted tree (T, r)
is a subset A of V(T ) such that T [u, r] and T [v, r] are comparable elements in
the Boolean lattice 2V(T ) for every u, v ∈ A. A down-set of a rooted tree is a
union of geodesic rays to the ends of the tree; A chain in a rooted tree is a subset
of one geodesic ray.

Given a weighted rooted tree, when would you call it a “tall” tree and when
would you call it a “fat” tree? If you think of being tall and being fat as two
interesting properties, when do you expect to see an interesting weighted rooted



408 Y. Wu and Y. Zhu

tree? We suggest the following definitions so that you will not encounter any
boring tree.

Definition 1. Let T = (T, r, μ) be a weighted rooted tree and let d1, . . . , dk, c be
k + 1 reals. We call T (d1, . . . , dk)-fat provided we can find k disjoint down-sets
D1, . . . , Dk of (T, r) such that μ(Di) ≥ di for i ∈ [k]. We call T c-tall provided
we can find a chain C in (T, r) such that μ(C) ≥ c.

The next result says that as long as your weighted rooted tree is heavy
enough, it is inevitable for it to be either fat or tall. It illustrates the spirit
of Ramsey theory: You always find interesting structures when you are enter-
ing a large but otherwise arbitrary space. Note that Theorem1 just recalls [14,
Theorem 1.2] when μ is a probability measure, k = 2 and d1 = d2 = c = 1

3 .

Theorem 1. Let T = (T, r, μ) be a weighted rooted tree and let k be a positive
integer. If d1, . . . , dk, c are k + 1 positive reals such that

μ(V(T )) ≥
k∑

i=1

di + (k − 1)c, (1)

then T is either (d1, . . . , dk)-fat or c-tall or both.

Let k be a positive integer and let d1, . . . , dk, c be k + 1 positive reals. If
d1, . . . , dk take at least two different values, we are not aware of any general way
of constructing a weighted rooted tree T = (T, r, μ) with

μ(V(T )) <
k∑

i=1

di + (k − 1)c,

which is neither (d1, . . . , dk)-fat nor c-tall. However, if we assume that d1, . . . , dk

take a constant value, we can give one such construction below, demonstrating
the tightness of (1) in Theorem 1.

· · ·

0 r

ε
x1

ε
x2

ε
xm

Fig. 1. A weighted rooted tree with weights indicated on the left of each node.



Weighted Rooted Trees: Fat or Tall? 409

· · ·

· · · · · · · · ·· · ·

0 r

ε x1 ε x2 ε x�

ξ

x1
1

ξ

x1
2

ξ

x1
m

ξ

x2
1

ξ

x2
2

ξ

x2
m

ξ

x�
1

ξ

x�
2

ξ

x�
m

Fig. 2. A weighted rooted tree.

Example 1. Let k be a positive integer and let d1, . . . , dk, c and δ be k+2 positive
reals. Let K =

∑k
i=1 di and assume that K + (k − 1)c ≥ δ.

Case 1. k = 1.
Take a positive integer m such that mc > K − δ and let ε = K−δ

m . The
weighted rooted tree T = (T, r, μ) as shown in Fig. 1 satisfies

μ(V(T )) = mε = K − δ = K + (k − 1)c − δ

and is neither (d1, . . . , dk)-fat nor c-tall.

Case 2. k = � + 1 ≥ 2.
Pick a positive integer m such that (m + 1)δ > 2K. Let ε = c − δ

2� and
ξ = 2K−δ

2m� . We now consider the weighted rooted tree T = (T, r, μ) as displayed
in Fig. 2. Note that

μ(V(T )) = �(mξ + ε) = (K − δ

2
) + (�c − δ

2
) = K + (k − 1)c − δ.

Firstly, every chain C in (T, r) satisfies μ(C) ≤ ε + ξ = c − δ
2� + 2K−δ

2m� < c,
showing that T is not c-tall.

Secondly, we assume that D1, . . . Dk are k disjoint down-sets of (T, r). Under
the additional condition that di takes a constant value d for each i ∈ [k], let us
show that dj = d > μ(Dj) holds for at least one j ∈ [k], which says that T is
not (d1, . . . , dk)-fat.

For i ∈ [�], we denote the set {xi
j : j ∈ [m]} by Li. Note that, for all

i ∈ [�], a down-set of (T, r) containing xi must also contain Li. By the pigeonhole



410 Y. Wu and Y. Zhu

principle, without loss of generality, we assume that
⋃

j∈[t] Dj ⊆
⋃

i∈[t−1] Li holds
for some integer t satisfying 2 ≤ t ≤ k. This gives

dt

m(t − 1)
≥ d(� + 1)

m�
=

dk

m�
>

2dk − δ

2m�

=
2K − δ

2m�
= ξ =

μ(
⋃

i∈[t−1] Li)

m(t − 1)
≥

∑
j∈[t] μ(Dj)

m(t − 1)
,

yielding that, for at least one j ∈ [t], it happens dj = d > μ(Dj), as desired. ��
In Theorem 1, we can surely allow any one of d1, . . . , dk, c to be zero. This

does not make any real difference, as the empty set, which is both a chain and
a down-set, has measure zero. But Theorem 1 may not hold if we allow any of
d1, . . . , dk, c to take a negative value. This can be seen from the following easy
example.

Example 2. Let V = {r}, let T be the unique tree on V and let μ be the
measure on V such that μ(r) = 0. Let c = d1 = 1 and d2 = −2. Note that
μ(V(T )) = 0 ≥ 0 = (d1 + d2) + (2 − 1)c. For (T, r, μ), surely the μ-measure of
each chain is less than c = 1 and the μ-measure of each down-set is less than
d1 = 1.

Question 1. A function μ on 2V is submodular provided μ(A∪B)+μ(A∩B) ≤
μ(A) + μ(B). In Theorem 1, what will happen if μ is not a measure but only a
submodular function?

A hypergraph H is a pair (V(H),E(H)), where V(H) is the vertex set
of H and E(H) ⊆ 2V(H) is known as the edge set of H. To emphasize that
we are considering a hypergraph, we often call each edge of the hypergraph H
an hyperedge of H. For each positive integer k, a k-matching of H is a set
of k disjoint hyeredges of H, while a k-antimatching of H is a subset C of
V(H) which is disjoint from at least one member of any (k + 1)-matching of H.
Note that a k-antimatching is just a set which cannot be a transversal of any
(k + 1)-matching.

Let V be a countable set and let (V, 2V , μ) be a finite signed measure space.
Let H be a hypergraph with V(H) = V and E(H) ⊆ 2V . For real numbers
d1, . . . , dk, we say that (H,μ) is (d1, . . . , dk)-fat provided we can find a k-
matching of H, say {e1, . . . , ek}, such that μ(ei) ≥ di for i ∈ [k]. For any real
number c and positive integer t, we say that (H,μ) is (c, t)-tall provided we can
find a t-antimatching W of H such that μ(W ) ≥ c. These concepts allow us to
formulate the next conjecture, which coincides with Theorem 1 when t = 1.

Conjecture 1. Let T = (T, r, μ) be a weighted rooted tree and let k, t be two
positive integers. Let H be the hypergraph with V(H) = V(T ) and with the set
of all down-sets of (T, r) as E(H). If d1, . . . , dk, c are k + 1 positive reals such
that

μ(V(T )) ≥
k∑

i=1

di + �k − 1
t

�c,



Weighted Rooted Trees: Fat or Tall? 411

then (H,μ) is either (d1, . . . , dk)-fat or (c, t)-tall or both.

Let (X,μ) be a Borel measure space, namely X is a topological space and
μ a Borel measure on the Borel sets of X. For the rooted tree case, we are
indeed considering the topological space on its vertex set with all down-sets as
open sets. In general, you can consider an Alexandroff space, which is essentially
the same as a poset antimatroid1, and a corresponding Borel measure space.
Can we go further to talk about the hypergraph consisting of all open sets of
X and conclude under certain assumption that it is fat or tall or both as in
Conjecture 1?

Let P be a poset of countablely many elements. For any x ∈ P , we write x ↓P

for the set of elements which are less than or equal to x in P and we write x ↑P

for the set of elements which are greater than or equal to x in P . A down-set of
P is a subset A of P such that x ↓P ⊆ A for all x ∈ P , and an up-set of P is the
complement set of a down-set of P . When the poset is finite, sending a down-
set to its set of maximal elements yields a one-to-one correspondence between
down-sets and antichains of the poset. If (P, 2P , μ) is a finite signed measure
space, we call (P, μ) a weighted poset. Each rooted tree (T, r) naturally gives
rise to a poset (V(T ),≺), called its ancestral poset, in which x ≺ y if and only
if y ∈ T [x, r]\{x}. One natural question is to ask to what extent Theorem1 can
be extended to general weighted posets. A filter in a poset (Q,≺) is a nonempty
subset F such that

– if x ∈ F and x ≺ y, then y ∈ F ;
– if x, y ∈ F , then there exists z ∈ F with z ≺ x and z ≺ y.

Note that each filter in the ancestral poset of a rooted tree has to be a path.
The next example tells us that we cannot always expect to see either a heavy
antimatching/filter or a heavy matching in a general weighted poset.

Example 3. Take two positive integers k and n. Let V1 = [k]×[n] and V0 = [n][k].
You can think of V0 as the set of all vertices (atoms) of the n-ary k-dimensional
cube and think of V1 as the set of all facets (coatoms) of the n-ary k-dimensional
cube. Let P be the poset on V0 ∪V1 in which x > y if and only if x = (�, h) ∈ V1

and y ∈ V0 is a function satisfying y(�) = h. Let H be the hypergraph consisting
of all downsets of P . Choose any nonnegative real δ. We define a signed measure
μ on P such that

μ(x) =

{
1−nkδ

nk if x ∈ V1;
δ if x ∈ V0.

A subset of V0 ∪ V1 is a 1-antimatching of H if and only if it is a filter in P
if and only if it is of the form x ↑P for some x ∈ P . But for any x ∈ P , it holds
μ(x ↑P ) ≤ δ + 1−nkδ

n = 1
n + δ(1 − nk−1) ≤ 1

n .
Let {Q1, Q2} be a 2-matching in H. If one of them is contained in V0, then

min(μ(Q1), μ(Q2)) ≤ μ(V0) = nkδ. If both Q1 and Q2 are not contained in V0,
1 More precisely, an Alexandroff space is the set of down-sets of a preorder.



412 Y. Wu and Y. Zhu

then there exists � ∈ [k] such that Q1 ∪ Q2 ⊆ V0 ∪ ({�} × [n]). This means
that μ(Q1 ∪ Q2) ≤ n 1−nkδ

nk + nkδ = 1
k + (k−1)nkδ

k and so min(μ(Q1), μ(Q2)) ≤
1
2k + (k−1)nkδ

2k . To summarize, when δ is small enough, say δ = 0, we have
min(μ(Q1), μ(Q2)) ≤ 1

k . ��

One reason that we like to study trees is that they are really visible so that
we may easily say many simple facts on them and then there are many directions
to go for possible generalizations. For a rooted tree and a measure on its vertex
set, we can add a new root vertex and join it to the old root vertex and then
naturally produce a measure on the edge set of the new graph from the existing
measure on the old tree. This operation allows us view the claim in Theorem 1 as
a statement on an undirected branching greedoid [1,13]. We think that we should
be quite close to a proof of the following conjecture. Besides branching greedoid
addressed in Conjecture 2, one may even consider possible generalizations to
multiply-rooted graphs [4].

Conjecture 2. Let F be an undirected branching greedoid on a countable ground
set E. Let H be the hypergraph on E whose edge set is {E − X : X ∈ F}.
Let μ be a measure on the power set of E and let k be a positive integer. If
d1, . . . , dk, c are k + 1 positive reals such that

μ(E) ≥
k∑

i=1

di + (k − 1)c,

then (H,μ) is either (d1, . . . , dk)-fat or c-tall or both.

We mention that Theorem 1 is self-strengthening. The next two easy corol-
laries of Theorem 1 both have it as a special case.

Corollary 1. Let (P, μ) be a weighted poset and r ∈ P . Assume that, for each
y ∈ r ↓P , the number of saturated chains from r to y, denoted by ny, is a
finite number. For any k + 1 nonnegative reals c, d1, . . . , dk satisfying (k − 1)c +∑k

i=1 dk ≤ μ(r ↓P ), either there exists a saturated chain C of r ↓P starting from
its maximum element r such that

∑
u∈C

μ(u)
nu

≥ c, or there exist pairwise disjoint

down-sets D1, . . . , Dk of r ↓P such that
∑

u∈Di

μ(u)
nu

≥ di for all i ∈ [k].

Corollary 2. Let V be a countable set and let (V, 2V , μ) be a finite signed mea-
sure space. Let W be a subset of V and let T be a tree on V . Let d1, . . . , dk, c
be k + 1 positive reals such that Eq. (1) holds. Then there are either k disjoint
subsets D1, . . . , Dk such that μ(Di) ≥ di and T − Di is a tree containing W for
all i ∈ [k], or there is a vertex u such that μ(C) ≥ c where C is the the convex
hull of {u} ∪ W in T .

Erdős and Hajnal [5] conjectured that for every graph H, there exists a
constant cH such that every graph G on n vertices which does not contain an
induced copy of H has a clique or a stable set of size ncH . Since clique and stable



Weighted Rooted Trees: Fat or Tall? 413

set of a graph correspond to chain and antichain in a poset, this conjecture is
also in the spirit of Dilworth’s Theorem which we discuss in Sect. 1. The work
of Song et al. [14, Theorem 1.2] is to verify a conjecture posed by Bonamy et al.
in their study of the Erdös-Hajnal Conjecture [2]. We finally present a result,
Theorem 2, as an application of Theorem1. Note that the proof can be done by
following the proof of [2, Theorem 6] with our Theorem 1 playing the role of [2,
Lemma 3] there.

Let G be a graph. For any X ⊆ V(G), the neighborhood of X in G, denoted
by NG(X), is the set of vertices from V(G) \ X which are adjacent to at least
one element of X in G, and the closed neighborhood of X in G, denoted by
NG(X), is defined to be NG(X) ∪ X.

Theorem 2. Let k be a positive integer and let (G,μ) be a connected countable
weighted graph. If d1, . . . , dk, c are k + 1 positive integers such that

μ(V(G)) ≥
k∑

i=1

di + (k − 1)c,

then either there exists a subset A of V(G) such that G[A] is a path and
μ(NG(A)) ≥ c, or there are k disjoint subsets X1, . . . , Xk of V(G) such that
μ(Xi) ≥ di for all i ∈ [k] and that there are no edges between Xi and Xj for all
{i, j} ∈

(
[k]
2

)
.

3 Up and Down in a Rooted Tree

The purpose of this section is to prove Theorem 1.
For each poset P and each subset D of P , we write D ↑P for the minimum

up-set of P which contains D and we write D ↓P for the minimum down-set of
P which contains D. Let T = (T, r) be a rooted tree. We will naturally regard
T as a poset in which x > y if and only if x ∈ T [y, r] \ {y}. For any x ∈ V(T ),
let ST (x) be the set of neighbors y of x in T such that x ∈ T [y, r], which we call
the shadow of x in T . Surely, it holds x ↓T ⊇ ST (x) for all x ∈ V(T ).

Definition 2. Let (P, μ) be a weighted poset. For any two nonnegative real num-
bers α and β, we say that a down-set D of P is an (α, β) down-set of (P, μ)
provided μ(D) ≥ β and μ(D ↑P ) ≤ α + β.

An (α, β) down-set D is like a good watermelon, where D really stands for
the pulp of the watermelon and D ↑P represents its closure, namely the pulp
together with the peel.

Let us explore the condition under which we can find an (α, β) down-set
in a weighted rooted tree. We first do this for finite trees in Lemma 1. Then we
strengthen Lemma 1 to Lemma 3, which makes the same statement for countable
trees.



414 Y. Wu and Y. Zhu

Lemma 1. Let T = (T, r) be a finite rooted tree and let μ be a weighting function
on T . Let α and β be two nonnegative reals such that μ(V(T )) ≥ α + β and
μ(x ↑T ) ≤ α for all x ∈ V(T ). Then the weighted rooted tree T = (T , μ) has an
(α, β) down-set.

Proof. We intend to find a down-set D of T such that μ(D) ≥ β and μ(D ↑T ) ≤
α + β. We will demonstrate its existence by induction on |V(T )|.

If |V(T )| = 1, then β = 0 and we can set D = {r}.
Assume now |V(T )| > 1 and that the result holds when |V(T )| is smaller.

List the elements in ST (r) as x1, . . . , xs. Let Vi := xi ↓T for i ∈ [s] and put
ε := α − μ(r) ≥ 0. There are three cases to consider.

Case 1. β ≤ μ(V1) ≤ β + ε.
Take D = V1, which is a down-set of T . Then μ(D) = μ(V1) ≥ β and

μ(D ↑T ) = μ(V1) + μ(r) ≤ (β + ε) + (α − ε) = α + β.

Case 2. β + ε < μ(V1).
Define a signed measure space (V1, 2V1 , μ′) by requiring

μ′(A) =

{
μ(A) + μ(r) if x1 ∈ A ⊆ V1,

μ(A) if A ⊆ V1 \ {x1}.

Let T ′ be the subtree of T induced by V1. Note that

μ′(V(T ′)) = μ′(V1) = μ(V1) + μ(r) > (β + ε) + (α − ε) = α + β. (2)

By induction hypothesis for (T ′, x1, μ
′), we have a down-set D of (T ′, x1) such

that
μ′(D) ≥ β and μ′(D ↑T ′,x1) ≤ α + β. (3)

Comparing (3) with (2) yields D ↑T ′,x1� V1 = x1 ↓T,x and so x1 /∈ D follows.
We now see that D = D ↓T,r satisfies μ(D) = μ′(D) ≥ β and μ(D ↑T,r) =
μ′(D ↑T ′,x1) ≤ α + β.

Case 3. μ(V1) < β.
Let T ′ be the tree obtained from T by deleting V1 and let μ′ be the restriction

of μ on 2V(T )\V1 . Let α′ = α and β′ = β − μ(V1) > 0. Note that μ′(V(T ′)) =
μ(V(T ))−μ(V1) ≥ α′ +β′. Applying induction assumption on (T ′, r, μ′), we can
find a down-set D′ of (T ′, r) such that μ(D′) ≥ β′ = β−μ(V1) and μ(D′ ↑T ′,r) ≤
α′ + β′ = α + β − μ(V1). We thus see that D = D′ ∪ V1 is a down-set of T , as
required. ��

Lemma 2. Let T = (T, r) be a countable rooted tree and let μ be a weighting
function on T . Take x ∈ V(T ) and any positive real ε. Then ST (x) can be
partitioned into two sets A and B such that |B| < ∞ and |μ(A ↓T )| < ε.

Proof. If ST (x) is a finite set, we can choose A = ∅ and B = ST (x). Otherwise, we
can enumerate the elements of ST (x) as x1, x2, . . .. Note that

∑∞
i=1 |μ(xi ↓T )| <

∞ and so there exists a positive integer N such that
∑∞

i=N |μ(xi ↓T )| < ε. Now,
let A = {xi : i ≥ N} and B = {xi : i ∈ [N − 1]}. ��



Weighted Rooted Trees: Fat or Tall? 415

Lemma 3. Let T = (T, r) be a countable rooted tree. Let α and β be two non-
negative real numbers. Consider a weighted rooted tree T = (T , μ) satisfying
μ(V(T )) ≥ α + β while μ(x ↑T ) ≤ α for all x ∈ V(T ). Then T has an (α, β)
down-set.

Proof. If μ(V(T )) = α + β, clearly D = V(T ) itself is an (α, β) down-set of T.
In the sequel, we turn to the case that μ(V(T )) > α + β. Take any ε such

that 0 < ε ≤ μ(V(T )) − α − β. We claim that we can find an (α + ε, β) down-set
Dε of T. If this really holds, a compactness argument tells us that there exists
an (α, β) downset D of T, as wanted.

For any nonnegative integer i, let Li be the set of vertices of T which are of
distance i from r in T . By assumption,

∑

x∈V(T )

|μ(x)| < ∞.

Consequently, there exists a nonnegative integer N such that

∞∑

i=N

∑

x∈Li

|μ(x)| < ε. (4)

By Lemma 2, we can associate to each x ∈ V(T ) a partition of ST (x) into
two sets Ax and Bx such that |Bx| is finite and |μ(Ax ↓T ))| < ε. In view of (4),
we will require that Bx = ∅ for x ∈ LN−1. For all x ∈ V(T ), we denote the set
Ax ↓T by Λx. Let A be the set system

{Λx : x ∈
N−1⋃

i=0

Li}.

Observe that A forms a hierarchy, namely A ∩ A′ ∈ {∅, A,A′} for all A,A′ ∈ A.
Let A be the set of maximal elements of A, namely

A = {A ∈ A : �A′ ∈ A, A′
� A}

= {A ∈ A : A′ ∩ A ∈ {A′, ∅},∀A′ ∈ A}.

It is clear that the elements of A are pairwise disjoint and we write Σ for the
union of them. Let

W =

(
N−1⋃

i=0

Li

)

\ Σ

and let T ∗ be the subtree of T induced by W . For each element Λx ∈ A, we add
a new vertex λx and connect it to x ∈ W and thus obtain from (T ∗, r) a new
rooted tree (T ◦, r).

For i = 0, . . . , N −1, let Wi = W ∩Li. Of course, W0 = {r} is a finite set. For
each integer � satisfying 0 ≤ � ≤ N − 2, we have W�+1 =

⋃
x∈W�

Bx and so the
finiteness of W�+1 is guaranteed by the finiteness of W�. We can thus conclude
now that W is a finite set, and henceforth (T ◦, r) is a finite rooted tree.



416 Y. Wu and Y. Zhu

We let μ◦ be the weighting of T ◦ such that
{

μ◦(x) = μ(x) if x ∈ W,

μ◦(λx) = μ(Λx) if Λx ∈ A.

We can see that μ◦(V(T ◦)) = μ(V(T )) ≥ α+β+ε and that μ◦(x ↑T ◦) ≤ α+ε for
all x ∈ V(T ◦). Applying Lemma 1 yields the claim that we can find an (α+ ε, β)
down-set D◦ of (T ◦, μ◦). Finally, letting D be the subset of D◦ consisting of all
elements of the form λx, the required (α + ε, β) down-set Dε of T can be chosen
to be

Dε = (D◦ \ D) ∪
(

⋃

λx∈D
Λx

)

.

This is the end of the proof. ��

Proof (of Theorem 1). We prove the statement by induction on k. Let T = (T, r).
When k = 1, we can simply choose D1 to be the down-set V(T ). Since

μ(D1) ≥ d1, we see that (T, r, μ) is d1-fat, and so the base case holds true.
Assume now k > 1 and the result holds for smaller k. Let us suppose that

(T, r, μ) is not c-tall and try to find k disjoint down-sets D1, . . . , Dk of T such
that μ(Di) ≥ di for all i ∈ [k].

Taking α = c and β = dk, it follows from Lemma 3 that there exists a down-
set D of T such that μ(D) ≥ β = dk and μ(D ↑T ) ≤ α + β = c + dk. Consider
the finite measure space (V(T ), 2V(T ), μ′) where

μ′(x) :=

{
0 if x ∈ D ↑T ;
μ(x) if x ∈ V(T ) \ (D ↑T ).

Note that (k − 2)c +
∑k−1

i=1 di ≤ μ′(V(T ). By induction hypothesis, there exist
k − 1 down-sets of T , say D′

1, . . . , D
′
k−1, such that μ′(D′

i) ≥ di holds for all
i ∈ [k − 1]. For i ∈ [k], define

Di :=

{
D′

i \ (D ↑T ) if i ∈ [k − 1];
D if i = k.

Clearly, D1, . . . , Dk are pairwise disjoint sets with μ(Di) ≥ di for all i ∈ [k].
To verify that D1, . . . , Dk are what we need, it is sufficient to show that Di is a
down-set of T for every i ∈ [k−1]. Pick i ∈ [k−1] and x ∈ Di ↓T ⊆ D′

i. Then there
exists x′ ∈ Di such that x′ ∈ T [x, r]. Since Di = D′

i \ D ↑T , we have x′ /∈ D ↑T
and therefore x /∈ D ↑T . Consequently, we arrive at x ∈ D′

i \ (D ↑T ) = Di,
finishing the proof. ��

We have been playing up and down in a tree to deduce our main result. It
is interesting to see for which structure more general than trees we can play up
and down analogously. We conclude the paper by giving a couterexample for the
“poset version” of Lemma 1.



Weighted Rooted Trees: Fat or Tall? 417

0 r

1
4
− ε x1

1
4
− ε x2

1
4
− ε x3

1
4
− ε x4

ε

y1

ε

y2

ε

y3

Fig. 3. Hasse diagram of a poset in which x covers y when x is depicted higher than y
and xy is drawn as an edge. See Example 4.

Example 4. Let ε be a positive real such that ε < 1
12 , let α = 3

4 and let β be a
number inside the open interval (ε, 1

4 − 2ε). For the weighted poset depicted in
Fig. 3, μ(P ) = 1 − ε > α + β and μ(x ↑T ) ≤ 3

4 − 2ε ≤ α for all x ∈ V(T ). But
there is no (α, β) down-set in P . ��

References

1. Björner, A., Ziegler, G.M.: Introduction to greedoids. In: Matroid Applications,
Encyclopedia of Mathematics and its Applications, vol. 40, pp. 284–357. Cambridge
University Press, Cambridge (1992). https://doi.org/10.1017/CBO9780511662041.
009

2. Bonamy, M., Bousquet, N., Thomassé, S.: The Erdös-Hajnal conjecture for long
holes and antiholes. SIAM J. Discrete Math. 30(2), 1159–1164 (2016). https://doi.
org/10.1137/140981745

3. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math.
51(1), 161–166 (1950). https://doi.org/10.2307/1969503

4. Eaton, L., Tedford, S.J.: A branching greedoid for multiply-rooted graphs and
digraphs. Discrete Math. 310(17), 2380–2388 (2010). https://doi.org/10.1016/j.
disc.2010.05.007

5. Erdős, P., Hajnal, A.: Ramsey-type theorems. Discrete Appl. Math. 25(1–2), 37–52
(1989). https://doi.org/10.1016/0166-218X(89)90045-0

6. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2,
463–470 (1935). http://eudml.org/doc/88611

7. Felsner, S.: Orthogonal structures in directed graphs. J. Combin. Theory Ser. B
57(2), 309–321 (1993). https://doi.org/10.1006/jctb.1993.1023

8. Gallai, T.: On directed paths and circuits. In: Theory of Graphs (Proc. Colloq.,
Tihany, 1966), pp. 115–118. Academic Press, New York (1968)

https://doi.org/10.1017/CBO9780511662041.009
https://doi.org/10.1017/CBO9780511662041.009
https://doi.org/10.1137/140981745
https://doi.org/10.1137/140981745
https://doi.org/10.2307/1969503
https://doi.org/10.1016/j.disc.2010.05.007
https://doi.org/10.1016/j.disc.2010.05.007
https://doi.org/10.1016/0166-218X(89)90045-0
http://eudml.org/doc/88611
https://doi.org/10.1006/jctb.1993.1023


418 Y. Wu and Y. Zhu

9. Gallai, T., Milgram, A.N.: Verallgemeinerung eines graphentheoretischen Satzes
von Rédei. Acta Sci. Math. (Szeged) 21, 181–186 (1960)

10. Hujdurović, A., Husić, E., Milanič, M., Rizzi, R., Tomescu, A.I.: Perfect phylogenies
via branchings in acyclic digraphs and a generalization of Dilworth’s theorem. ACM
Trans. Algorithms 14(2), Art. 20, 26 (2018). https://doi.org/10.1145/3182178

11. Mirsky, L.: A dual of Dilworth’s decomposition theorem. Amer. Math. Mon. 78,
876–877 (1971). https://doi.org/10.2307/2316481

12. Roy, B.: Nombre chromatique et plus longs chemins d’un graphe. Rev. Française
Informat. Recherche Opérationnelle 1(5), 129–132 (1967)

13. Schmidt, W.: A characterization of undirected branching greedoids. J. Com-
bin. Theory Ser. B 45(2), 160–184 (1988). https://doi.org/10.1016/0095-
8956(88)90067-6

14. Song, Z.X., Ward, T., York, A.: A note on weighted rooted trees. Discrete Math.
338(12), 2492–2494 (2015). https://doi.org/10.1016/j.disc.2015.06.014

15. Stein, E.M., Shakarchi, R.: Fourier Analysis: An Introduction, Princeton Lectures
in Analysis, vol. 1. Princeton University Press, Princeton (2003)

https://doi.org/10.1145/3182178
https://doi.org/10.2307/2316481
https://doi.org/10.1016/0095-8956(88)90067-6
https://doi.org/10.1016/0095-8956(88)90067-6
https://doi.org/10.1016/j.disc.2015.06.014


Groupoid Action and Rearrangement Problem
of Bicolor Arrays by Prefix Reversals

Akihiro Yamamura1(B), Riki Kase1, and Tatiana B. Jajcayová2

1 Faculty of Engineering Science, Akita University, Akita, Japan
yamamura@ie.akita-u.ac.jp, m8018304@s.akita-u.ac.jp

2 Faculty of Mathematics, Physics and Informatics, Comenius University,
Bratislava, Slovak Republic
jajcayova@fmph.uniba.sk

Abstract. We consider a rearrangement problem of two-dimensional bicolor
arrays by prefix reversals as a generalization of the burnt pancake problem. An
equivalence relation on the set of bicolor arrays is induced by prefix reversals,
and the rearrangement problem is to characterize the equivalence classes. While
previously studied the rearrangement problem for unicolor arrays made use of the
classical group theoretic tools, the present problem is quite different. For bicolor
arrays a rearrangement can be described by partial injections, and thus we char-
acterize the equivalence classes in terms of a groupoid action. We also outline an
algorithm for rearrangement by prefix reversals and estimate a minimum number
of rearrangements needed to rearrange bicolor arrays by prefix reversals.

Keywords: Groupoids · Groupoid actions · Rearrangement problem · Burnt
pancake problem · Prefix reversals

1 Introduction

The problem of rearranging by prefix reversals, known as the pancake sorting problem,
is to sort randomly piled pancakes of different sizes. A prefix reversal is an operation
of reversing elements in a sublist including the first element. The minimum number of
prefix reversals to sort a given list of integers into an ascending order was asked by Gates
and Papadimitriou and an upper bound 5

3n for sorting a list of length n was given in [6].
They conjectured that 19

16n is required, however, it is disproved in [7]. A better bound
18
11n was given in [4]. On the other hand, the pancake sorting problem is shown to be NP-
hard in [3]. A similar problem of sorting a permutation by reversals is studied by many
authors (e.g., [1,2]). Another variant called the burnt pancake problem has been also
studied by many authors (e.g., [5,8]). Instead of just integers, signed integers are filled
in a list in the case of the burnt pancake sorting problem and signs of the corresponding
integers are inverted when a prefix reversal is performed. A two-dimensional variant of
the pancake sorting problem is introduced and studied in [11]. Unlike in the pancake
sorting problem, in the two-dimensional variant it is not always possible to rearrange
one array into another. A necessary and sufficient condition for two given arrays to

c© Springer Nature Switzerland AG 2020
H. Fernau (Ed.): CSR 2020, LNCS 12159, pp. 419–431, 2020.
https://doi.org/10.1007/978-3-030-50026-9_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50026-9_31&domain=pdf
https://doi.org/10.1007/978-3-030-50026-9_31


420 A. Yamamura et al.

be rearranged one to the other is given in terms of symmetric groups and alternating
groups.

In this paper we introduce a two-dimensional variant of the burnt pancake problem.
This is a natural and interesting generalization of the original problem. Given two n×m
arrays filled with letters colored by either blue or red, we examine whether given two
arrays can be rearranged by performing a sequence of prefix reversals. The concept
of groupoid action is introduced and applied to characterize bicolor arrays which can
be rearranged to each other. It establishes a connection with well-studied notions from
algebra. We argue that groupoids are the proper structure to work with here.

1.1 Rearrangement of Arrays

An n×m array A consists of n×m cells and the entry in the (i, j) position is denoted
by ai j. We employ the standard matrix representation (ai j) to denote the array A (Fig. 1),

and denote A= A1
A2

if A consists of an upper block A1 and a lower block A2, or A=A3|A4

if A consists of a left block A3 and a right block A4. For an n×m array A = (ai j), the
reversal of A is the n×m array (bi j) such that bi j = an−i+1,m− j+1 for every (i, j) and is

denoted by Rev(A) (Fig. 2). A transformation A1
A2

⇒ Rev(A1)
A2

or A3|A4 ⇒ Rev(A3)|A4

is called a prefix reversal.
Suppose that n and m are positive integers and X is a set of cardinality nm. Let A

be an n×m array in which a letter from X is placed on each (i, j) position so that no
letter appears more than once. Suppose that σ belongs to the symmetric group SX on X .
Sometimes we loosen our notation a bit and instead of SX we write Snm, where nm= |X |.
Similarly, the alternating group AX on X is sometimes denoted as Anm, where nm= |X |.
See [10] for the theory of groups. The n×m array obtained from A by performing σ
on each letter on A is called a rearrangement of A by σ , and denoted by σ(A) (Fig. 3).
The rearrangement problem for two-dimensional arrays is to ask whether a given n×m
array σ(A), where σ belongs to the symmetric group SX , can be rearranged to the
array A by performing sequence of prefix reversals. If so, we also ask what is the mini-
mum number of prefix reversals needed to rearrange. Recall that an orbit of an array A
under the action of the symmetric group SX is SX (A).

Fig. 1. n×m array A Fig. 2. Rev(A) Fig. 3. σ(A)

Theorem 1 ([11]). Let n and m be positive integers. For given n×m arrays A and B, A
can be transformed to B by a sequence of prefix reversals if and only if B ∈ G(A) under
action of a group G specified in the table below according to the parameter n and m.



Groupoid Action and Rearrangement Problem of Bicolor Arrays by Prefix Reversals 421

n(mod 4)\m(mod 4) 0 1 2 3

0 Anm Snm Snm Snm

1 Snm Snm Snm Snm

2 Snm Snm Snm Snm

3 Snm Snm Snm Snm

2 Rearrangement of Bicolor Arrays

2.1 Bicolor Arrays

Suppose n and m are positive integers. Let X be a set of cardinality nm. We call X an
alphabet of unicolor letters. Let XB and XR be disjoint sets such that |XB|= |XR|= |X |=
nm. We call XB and XR an alphabet of blue letters and an alphabet of red letters, respec-
tively. Suppose φ : XB → XR, b : X → XB, and r : X → XR are bijections, respectively,
making the diagram below commutative.

X
r

��
��

��
��

��
b

����
��
��
��

XB φ
�� XR

If x belongs to X , that is, x is a unicolor letter, then we regard b(x) as a blue letter and
r(x) as a red letter. We define a mapping π of XB∪XR onto X by π(z)= x if z= b(x)∈XB
and π(z) = y if z= r(y) ∈ XR, and it is called the color deleting operator. Suppose A is
an array with the alphabet XB ∪XR. Then we denote the set of all the letters appearing
on A by Char(A) and an array A is called bicolor if π(Char(A)) = X .

The mapping φ and its inverse mapping φ−1 play a role in changing colors of letters.
We extend φ to a bijection ψ of XB ∪XR onto XB ∪XR by ψ(x) = φ(x) if x ∈ XB and
ψ(y) = φ−1(y) if y ∈ XR and call ψ the color changing operator. Note that ψ inverts
color but does not change letters, that is, the image under π is unaltered. We extend
ψ on the set of bicolor arrays; for a bicolor array A = (ai j), ψ(A) is defined to be the
array A = (ψ(ai j)), that is, ψ(A) is obtained from A by inverting color of every letter
appearing in A. We should note that if π(Char(A)) = X then π(Char(ψ(A))) = X and
so ψ(A) is also a bicolor array.

2.2 Rearrangement Problem by Prefix Reversals

Suppose A is an n×m bicolor array and A = A1
A2

= A3|A4. The transformation A1
A2

⇒
ψ(Rev(A1))

A2
or A3|A4 ⇒ ψ(Rev(A3))|A4 is called a prefix reversal. Note that the result-

ing array is bicolor as well.

Example: A bicolor array

[
b(a) b(b) b(c)
b(d) b(e) b( f )

]
can be rearranged from

[
r(c) r( f ) r(e)
r(b) b(d) b(a)

]
:

[
r(c) r( f ) r(e)
r(b) b(d) b(a)

]
⇒

[
b(e) b( f ) b(c)
r(b) b(d) b(a)

]
⇒

[
r(d) b(b) b(c)
r( f ) r(e) b(a)

]
⇒

[
r(a) b(e) b( f )
r(c) r(b) b(d)

]



422 A. Yamamura et al.

⇒
[
r( f ) r(e) b(a)
r(c) r(b) b(d)

]
⇒

[
r(d) b(b) b(c)
r(a) b(e) b( f )

]
⇒

[
b(a) b(b) b(c)
b(d) b(e) b( f )

]

Let A be the set of n×m bicolor arrays with the alphabet XB ∪XR, where X is an
alphabet of cardinality nm. Suppose A,B∈A. We define A∼B if there exists a sequence
of prefix reversals that transforms A to B. Clearly, ∼ is an equivalence relation on A and
it gives a partition of A. For each A ∈ A, we denote the equivalence class containing A
by [A].

Rearrangement problem is to decide for two given n×m bicolor arrays whether one
can be rearranged into the other by applying a sequence of prefix reversals. Unlike in
the burnt pancake sorting problem, which can be regarded as a rearrangement problem
of 1×m bicolor arrays, it is not always possible to rearrange and so there may be more
than one ∼ equivalence class. Our objective is to characterize all the equivalence classes
and to estimate the minimum number of prefix reversals for rearrangement.

2.3 Groupoids and Groupoid Actions

A groupoid is a small category in which every morphism is invertible (see [9]). In other
words, it is an algebraic system G with partial multiplication satisfying the associative
law in which each element has an inverse: (1) a multiplication of G is defined only
partially, however, if a,b,c are in G and ab and bc are defined then (ab)c and a(bc) are
also defined and the associative law (ab)c= a(bc) holds. (2) there exists an inverse a−1

for each element a ∈ G, such that aa−1 and a−1a satisfy properties that baa−1 = b if ba
is defined and a−1ac= c if ac is defined.

Let X be a non-empty set. A partial injection σ of X is an injection such that
Dom(σ) ⊂ X and Ran(σ) ⊂ X . Let D(k) be the set of partial injections of X in which
the domain and range have the cardinality k, where 1 ≤ k ≤ |X |. Then D(k) has a
groupoid structure if we define a partial multiplication αβ for α,β ∈ D(k) by com-
position α ◦ β provided that Dom(α) = Ran(β ), otherwise αβ is undefined. We show
that D(k) has a groupoid structure. Evidently the associative law is satisfied because
composition of mappings does so. Suppose α belongs to D(k) and is expressed as(
a1 a2 · · · ak−1 ak
b1 b2 · · · bk−1 bk

)
in Cauchy’s two line notation. Then the inverse mapping α−1 is

expressed as

(
b1 b2 · · · bk−1 bk
a1 a2 · · · ak−1 ak

)
and also belongs to D(k). Note that α−1α is the iden-

tity mapping of {a1,a2, . . . ,ak−1,ak} and so α−1αβ = β for any β if αβ is defined, that
is, Ran(β ) = {a1,a2, . . . ,ak−1,ak}. Similarly βαα−1 = β for any β if βα is defined. It
follows that D(k) forms a groupoid. We remark that D(k) is a D-class of the symmetric
inverse semigroup on X (see [9]).

Let X be a nonempty set and G a groupoid. A groupoid action of G on X is a partial
mapping f : G×X → X satisfying the conditions: (1) If e ∈ G is an idempotent, that
is, e2 = e and f (e,x) are defined for e and x ∈ X, then f (e,x) = x and (2) If f (g,x) is
defined and hg is defined for h,g ∈ G and x ∈ X, then f (hg,x) and f (h, f (g,x)) are also
defined and f (hg,x) = f (h, f (g,x)) holds. A groupoid action f is partial in the sense
that f (g,x) is not necessarily defined for every pair (g,x) ∈ G×X.



Groupoid Action and Rearrangement Problem of Bicolor Arrays by Prefix Reversals 423

2.4 Groupoid Action on Bicolor Arrays

Suppose D(nm) is the groupoid of partial injections of XB ∪ XR in which both the
domain and range have the cardinality nm. Suppose A ∈ A and σ ∈ D(nm). Recall
that π(Char(A)) = X since A is a bicolor array. If Dom(σ) =Char(A), then we define
σ(A) to be the array obtained from A by replacing every entry a in A by σ(a), other-
wise σ(A) is undefined. In other words, if A= (ai j) then σ(A) = (σ(ai j)) provided that
Dom(σ) =Char(A).

Note that if σ(A) is defined then Dom(σ) = Char(A) and so π(Char(σ(A))) =
π(Ran(σ)). Since A is a bicolor array, we have π(Char(A)) = X . Thus, π(Dom(σ)) =
X . If σ also satisfies π(Dom(σ)) = π(Ran(σ)) then π(Ran(σ)) = π(Dom(σ)) = X . In
such a case, we have π(Char(σ(A))) = π(Ran(σ)) = X and so σ(A) is also a bicolor
array, that is, σ(A) ∈ A.

We define G1 to be {σ ∈D(nm) |π(Dom(σ))= π(Ran(σ))=X}. It is easy to check
that G1 is a proper subgroupoid of D(nm). A groupoid action f of G1 on A is naturally
defined; for σ ∈ G1 and A ∈ A, f (σ ,A) = σ(A) if Dom(σ) =Char(A), and otherwise
undefined. Note that if f (σ ,A) is defined then f (σ ,A) ∈ A. It is easy to check that f
satisfies (1) for σ ∈ G1 and A ∈ A, if σ is an idempotent and f (σ ,A) is defined then
f (σ ,A)=A, and (2) if σρ is defined and f (ρ,A) is defined for σ ,ρ ∈G1 and A∈A then
f (σρ,A) and f (σ , f (ρ,A)) are also defined and we have f (σρ,A) = f (σ , f (ρ,A)).
Hence, f is a groupoid action of G1 on A. An orbit of a bicolor array A under the action
of G1 is defined to be the set {σ(A) | σ ∈ G1, Dom(σ) =Char(A)} and is denoted by
G1(A).

3 Equivalence Classes of 2×2 Bicolor Arrays

We characterize ∼ equivalence classes of 2 × 2 bicolor arrays, where X is a set of
cardinality 4.

Theorem 2. Suppose {w,x,y,z} is any subset of XB ∪XR satisfying π({w,x,y,z}) = X.

(1) The equivalence class [A] of an array A=
[
w x
y z

]
consists of the following 12 arrays

and their (π
2 , π , 3π

2 ) rotations without inverting colors:

(i)

[
w x
y z

]
,

[
w x

ψ(z) ψ(y)

]
,

[
w y
x z

]
,

[
w y

ψ(z) ψ(x)

]
,

[
w ψ(z)
x ψ(y)

]
,

[
w ψ(z)
y ψ(x)

]
,

(ii)

[
ψ(w) ψ(x)
ψ(y) ψ(z)

]
,

[
ψ(w) ψ(x)
z y

]
,

[
ψ(w) ψ(y)
ψ(x) ψ(z)

]
,

[
ψ(w) ψ(y)
z x

]
,

[
ψ(w) z
ψ(x) y

]
,

[
ψ(w) z
ψ(y) x

]
.

(2) There are exactly eight ∼ equivalence classes whose representatives are given by[
w x
y z

]
,

[
ψ(w) x
y z

]
,

[
w ψ(x)
y z

]
,

[
w x

ψ(y) z

]
,[

w x
y ψ(z)

]
,

[
w x

ψ(y) ψ(z)

]
,

[
w ψ(x)
y ψ(z)

]
,

[
w ψ(x)

ψ(y) z

]
.



424 A. Yamamura et al.

Proof. (1) Clearly, 6 arrays in (i) belong to [A]. We can rotate an array π
2 degree without

inverting colors;

[
w x
y z

]
⇒

[
ψ(x) ψ(w)
y z

]
⇒

[
ψ(y) ψ(w)
x z

]
⇒

[
ψ(z) ψ(x)
w y

]
⇒

[
x z
w y

]

for each of six arrays. Therefore, the arrays obtained from an array in [A] by ( π
2 , π ,

3π
2 ) rotations without inverting colors also belong to [A]. We can also invert color of

each letter in an array by using π
2 degree rotations twice and prefix reversal;

[
w x
y z

]
⇒[

z y
x w

]
⇒

[
ψ(w) ψ(x)
ψ(y) ψ(z)

]
. Therefore, the arrays in (ii) also belong to [A] since these are

obtained from the arrays in (i) by inverting color of all letters. We shall show that no
other arrays belong to [A].

Since every prefix reversal preserves a parity of the number of letters in XB, A can
be rearranged only from an array with the same parity of the number of letters in XB
as has A. Therefore, we exclude the arrays in which odd number of letters in {w,x,y,z}
are inverted. We also note that every prefix reversal preserves color pattern of the array[

p ψ(q)
ψ(r) s

]
and

[
ψ(p) q
r ψ(s)

]
where {p,q,r,s} = {w,x,y,z}, that is the patterns with

the letters on one diagonal of original color and the letters on the other diagonal of
inverted color. It follows that A cannot be rearranged from any such array and thus [A]
does not contain this type of arrays.

Now, without loss of generality, we only have to check arrays with w in (1,1) posi-
tion, and letters on the first row of the original color and the letters on the second row

inverted. The only arrays to consider are

[
w x

ψ(y) ψ(z)

]
,

[
w y

ψ(x) ψ(z)

]
,

[
w z

ψ(x) ψ(y)

]
,[

w z
ψ(y) ψ(x)

]
, since

[
w x

ψ(z) ψ(y)

]
and

[
w y

ψ(z) ψ(x)

]
belong to [A]. We show that the

array

[
w x

ψ(y) ψ(z)

]
belongs to [A]. (All other cases are done similarly.)

This would mean that there exists a series of prefix reversals to obtain A from our

array

[
w x

ψ(y) ψ(z)

]
. Such operation would invert colors of the letters in the second row

of an array without changing arrangement of letters. But this, since

[
w ψ(x)
y ψ(z)

]
is from

[A] would force

[
w ψ(x)

ψ(y) z

]
, to belong to [A], which is contradiction.

(2) It is not difficult to see that no two arrays in the list are ∼ equivalent. For exam-

ple,

[
w x

ψ(y) ψ(z)

]
and

[
w ψ(x)
y ψ(z)

]
are not ∼ equivalent; if they were ∼ equivalent, then

it would be possible to invert colors of letters in the (2,1) and (1,2) entries of any array

by the same operation of prefix reversals, and then the array

[
w ψ(x)

ψ(y) z

]
would belong

to [A], which is a contradiction. 
�
We note that there are 4! × 24(= 384) bicolor arrays. Each equivalence class con-

tains 48 arrays. We can construct a graph whose vertices are 2 × 2 bicolor arrays and
edges correspond to a transform by a prefix reversal. The diameter of this graph gives



Groupoid Action and Rearrangement Problem of Bicolor Arrays by Prefix Reversals 425

the minimum number of prefix reversals to rearrange. Each connected component cor-
responds to a ∼ equivalence class and forms a regular graph of degree three with 48
vertices and the diameter is 7. All connected components are isomorphic.

4 Equivalence Classes of n×m Bicolor Arrays (n ≥ 3 or m ≥ 3)

We shall show ∼ equivalence classes of n×m bicolor arrays (n ≥ 3 or m ≥ 3) coincide
with the orbits of action under some subgroupoids of G1. Let us extend the color delet-
ing operation π on G1. Suppose σ ∈ G1. Recall that σ is a partial injection of XB ∪XR
such that π(Dom(σ)) = π(Ran(σ)) = X . We define π(σ) to be the permutation of X
obtained from σ by operating π to both the domain and range of σ , that is, if σ =(
a1 a2 · · · ak−1 ak
b1 b2 · · · bk−1 bk

)
, then π(σ) is the permutation

(
π(a1) π(a2) · · · π(ak−1) π(ak)
π(b1) π(b2) · · · π(bk−1) π(bk)

)

of X . Since π(Dom(σ)) = π(Ran(σ)) = X , π(σ) is a permutation on X .
We define G2 and G3 to be {σ ∈ G1 | |Dom(σ)∩XB| ≡ |Ran(σ)∩XB| (mod 2)}

and {σ ∈G2 |π(σ)∈AX}, where AX stands for the alternating group on X , respectively.
It is easy to see that G2 and G3 are subgroupoids of G1 and [A] ⊂ G1(A) for any n×m
bicolor array A.

Lemma 1. If both n and m are even, then the parity of the number of letters of XB on
an n×m bicolor array is unaltered by operating any prefix reversal.

Proof. Let A,B be an n×m bicolor array. We show that if B is rearranged from A by
a prefix reversal, then parity of the number of letters in XB is unaltered. Suppose B is

rearranged from A by a horizontal prefix reversal; A = A1
A2

⇒ B = ψ(Rev(A1))
A2

, where

A1 is an n1 ×m upper block (1 ≤ n1 ≤ n) of A. Suppose the number of letters in XB on
A1 and A2 are t1 and t2, respectively. The number of letters in XB on ψ(Rev(A1)) is equal
to n1m−t1 that is the number of letters in XR on A1. Thus, the number of letters in XB on
B is n1m− t1 + t2. Since m is even, the difference (t1 + t2)− (n1m− t1 + t2) = n1m−2t1
is even and so, parity of letters on XB is unaltered by a prefix reversal. Similarly, we can
show that a vertical prefix reversal does not change the parity of the number of letters
in XB.


�
Therefore, if both n and m are even we have [A] ⊂ G2(A) for any bicolor array A.

Further, if n ≡ m ≡ 0 (mod 4) and σ ∈ G2 then π(σ)(π(A)) can be rearranged to A
provided that π(σ) belongs to the alternating group AX by Theorem 1. It follows that
[A]⊂G3(A) in this case. In the next theorem we shall prove the opposite inclusion holds
in all the three cases.

Theorem 3. Let n and m be integers such that n ≥ 2, m ≥ 2 and at least one of them
is larger than 2. For any n×m bicolor array A, we have [A] = Gi(A), where Gi is a
groupoid specified in the table below according to the parameter n and m.



426 A. Yamamura et al.

n(mod 4)\m(mod 4) 0 1 2 3

0 G3 G1 G2 G1

1 G1 G1 G1 G1

2 G2 G1 G2 G1

3 G1 G1 G1 G1

Proof. We divide the proof in five cases: (1) (n,m) = (2,2k+ 1), (2) (n,m) = (2,2k),
(3) n,m ≥ 3 and either n or m is odd, (4) n,m ≥ 3, both n and m are even and either
n �≡ 0 (mod 4) or m �≡ 0 (mod 4), and (5) n ≡ m ≡ 0 (mod 4). We shall show that
[A] = G1(A) for (1) and (3), [A] = G2(A) for (2) and (4), and [A] = G3(A) for (5).
Note that [A] ⊂ Gi(A) always holds in each case, and so, we have to prove the opposite
inclusion.

In the case (1) and (3), we suppose A is a bicolor array and σ ∈ G1 such that
σ(A) is defined. We shall show σ(A) ∈ [A]. By Theorem 1, π(σ)(π(A)) can be rear-
ranged from π(A) by a certain sequence Γ1 of prefix reversals. Note that π(σ) ∈ Snm.
Let B be the bicolor array rearranged from A by operating the same sequence Γ1

of prefix reversals. Then we have π(B) = π(σ)(π(A)). On the other hand, we have
π(σ)(π(A)) = π(σ(A)). Therefore, π(B) = π(σ(A)). Hence, the arrangements of let-
ters on B and σ(A) are same if we ignore colors. See the diagram below.

A
Γ1 ��

π
��

B
Γ2 ��

π
��

σ(A)

π
��

π(A)
Γ1 �� π(σ)(π(A)) π(σ(A))

We shall prove there exists a sequence Γ2 of prefix reversals that rearranges B to σ(A),
and then it follows σ(A) ∈ [A]. We have only to show that any inversion of color of any
letter on an array can be realized by prefix reversals without changing anything else.

In the case (2) and (4), we suppose A is a bicolor array and σ ∈G2 such that σ(A) is
defined. A similar argument shows there exists an array B rearranged from A by prefix
reversals and π(B) = π(σ(A)). Since a prefix reversal does not change the parity of
the number of letters in XB and σ ∈ G2, the parity of the number of letters in XB is
same for B and σ(A). Under such an assumption we have only to show that inversion
of colors of a couple of any two letters on an array can be simultaneously realized by
prefix reversals without changing anything else.

In the case (5), we suppose A is a bicolor array and σ ∈G3 such that σ(A) is defined.
Since σ ∈ G3, we have π(σ) ∈ AX . Therefore, π(σ)(π(A)) can be obtained from π(A)
by a certain sequence of prefix reversals by Theorem 1. Then, as the case (4), we have
only to show that inversions of colors of a couple of any two letters on an array can be
simultaneously realized by prefix reversals without changing anything else.

(1) 2× (2k+1)Arrays: We consider a 2× (2k+1) bicolor array

[
A x B
C y D

]
, where A, B,

C, D are words on XB∪XR of length k, and x and y are letters in XB∪XR. We shall show



Groupoid Action and Rearrangement Problem of Bicolor Arrays by Prefix Reversals 427

that we can invert the color of x without affecting any other letters by prefix reversals.[
A x B
C y D

]
⇒

[
ψ(Rev(C)) x B
ψ(Rev(A)) y D

]
⇒

[
ψ(Rev(B)) ψ(x) C
ψ(Rev(A)) y D

]
⇒

[
A ψ(x) C
B y D

]

⇒
[

A ψ(x) C
ψ(Rev(D)) ψ(y) ψ(Rev(B))

]
⇒

[
A ψ(x) B

ψ(Rev(D)) ψ(y) ψ(Rev(C))

]
⇒

[
A ψ(x) B
C y D

]
,

where ψ(W ) represents the word obtained from a wordW by inverting the color of each
letter appearing in W . The color of x is inverted to ψ(x) and nothing else is changed.
We can invert color of a letter in any position by transposing the letter and the letter at
the (1,k+ 1) position and carry out the operation above, and then do the same prefix
reversals in the opposite direction. Note that it is possible to transpose a letter in any
position in an array and in the (1,k+1) position by prefix reversals. Consequently we
can invert color of a letter in any position. Therefore, [A] = G1(A).

(2) 2 × 2k Arrays (k > 2): Suppose σ ∈ G2. We have noted that [A] ⊂ G2(A) for a
2 × 2k array A. Conversely, we show that σ(A) can be rearranged from A by prefix
reversals for any σ ∈ G2, that is, σ(A) ∈ [A] provided that σ(A) is defined. By the
argument above, we have an array B that can be rearranged from A by prefix reversals
and π(B) = π(σ(A)). Then the arrangement of letters in B is same as that of σ(A) if we
ignore colors. Therefore, we have only to show that we can invert color of the letters on
B to obtain σ(A) by prefix reversals. On the other hand, σ ∈ G2 and so the parity of the
numbers of letters in XB in B and σ(A) are same since a prefix reversal does not change
the parity by Lemma 1. There are even number of differences of colors between B and
σ(A). It is sufficient to show that we can simultaneously invert colors of any pair of two
letters in any array B.
(2-1) The (1,1) and (1,2k) letters on B can be transposed with inverting colors by prefix
reversals (w is in the (1,1) position and x is in the (2,2k) position):[

w A x
y B z

]
⇒

[
w A ψ(z)
y B ψ(x)

]
⇒

[
w A ψ(z)
x ψ(Rev(B)) ψ(y)

]

⇒
[

ψ(x) A ψ(z)
ψ(w) ψ(Rev(B)) ψ(y)

]
⇒

[
ψ(x) A ψ(z)
y B w

]
⇒

[
ψ(x) A ψ(w)
y B z

]

First, we show that a pair of two letters can be transposed with inverting colors by
prefix reversals. There are four cases to be considered according to the positions of the
letters. Note that there exist at least 4 columns in the array.
(2-2) t and u lie on the first row:[

s A t B u C v
w D x E y F z

]
⇒

[
ψ(x) ψ(Rev(D)) ψ(w) B ψ(z) ψ(Rev(F)) ψ(y)
ψ(t) ψ(Rev(A)) ψ(s) E ψ(v) ψ(Rev(C)) ψ(u)

]

⇒
[
t ψ(Rev(D)) ψ(w) B ψ(z) ψ(Rev(F)) u
x ψ(Rev(A)) ψ(s) E ψ(v) ψ(Rev(C)) y

]

⇒
[

ψ(u) ψ(Rev(D)) ψ(w) B ψ(z) ψ(Rev(F)) ψ(t)
x ψ(Rev(A)) ψ(s) E ψ(v) ψ(Rev(C)) y

]

⇒
[

ψ(x) ψ(Rev(D)) ψ(w) B ψ(z) ψ(Rev(F)) ψ(y)
u ψ(Rev(A)) ψ(s) E ψ(v) ψ(Rev(C)) t

]
⇒

[
s A ψ(u) B ψ(t) C v
w D x E y F z

]



428 A. Yamamura et al.

We use (2-1) in the second transformation.
(2-3) x and y lie on the second row:

[
s A t B u C v
w D x E y F z

]
⇒

[
ψ(z) ψ(Rev(F)) ψ(y) ψ(Rev(E)) ψ(x) ψ(Rev(D)) ψ(w)
ψ(v) ψ(Rev(C)) ψ(u) ψ(Rev(B)) ψ(t) ψ(Rev(A)) ψ(s)

]

⇒
[

ψ(z) ψ(Rev(F)) x ψ(Rev(E)) y ψ(Rev(D)) ψ(w)
ψ(v) ψ(Rev(C)) ψ(u) ψ(Rev(B)) ψ(t) ψ(Rev(A)) ψ(s)

]

⇒
[
s A t B u C v
w D ψ(y) E ψ(x) F z

]

We use (2-2) in the second transformation.
(2-4) v and y lie on a same column:

[
u A v B w
x C y D z

]
⇒

[
ψ(y) ψ(Rev(C)) ψ(x) B w
ψ(v) ψ(Rev(A)) ψ(u) D z

]
⇒

[
v ψ(Rev(C)) ψ(x) B w
y ψ(Rev(A)) ψ(u) D z

]

⇒
[
u A ψ(y) B w
x C ψ(v) D z

]

(2-5) u and z lie on a different row and a different column:
Since k > 1, there are at least 4 columns in the array and so we can choose an extra
column except for the columns on which u and z lie. Suppose that w lies on the same
row as u and on the same column as z and that v lies on the same row as u and w but v
lies on a different column from u and z. We use (2-1) and (2-4).

[
A u B v C w D
E x F y G z H

]
⇒

[
A ψ(v) B ψ(u) C w D
E x F y G z H

]
⇒

[
A ψ(v) B ψ(w) C u D
E x F y G z H

]

⇒
[
A ψ(v) B ψ(w) C ψ(z) D
E x F y G ψ(u) H

]
⇒

[
A ψ(v) B z C w D
E x F y G ψ(u) H

]

⇒
[
A ψ(z) B v C w D
E x F y G ψ(u) H

]

Second, we show that the colors of any two letters can be inverted by prefix reversals
without affecting anything else. Since k > 1, there are at least 4 columns in the array
and so we can choose an extra column. Suppose that w lies on a column different from
that of u or y. The color of u and y can be reversed using (2-2) and (2-5) as follows.

[
A u B v C w D
E x F y G z H

]
⇒

[
A ψ(w) B v C ψ(u) D
E x F y G z H

]
⇒

[
A ψ(w) B v C ψ(y) D
E x F u G z H

]

⇒
[
A y B v C w D
E x F u G z H

]
⇒

[
A ψ(u) B v C w D
E x F ψ(y) G z H

]

Consequently, we can invert simultaneously colors of a pair of two letters in any
positions. It follows that [A] = G2(A). We remark that the operation (2-5) is impossible
for a 2 × 2 array since it does not have enough columns to perform the operation, and
so the case of 2×2 arrays is discussed separately in Sect. 3.



Groupoid Action and Rearrangement Problem of Bicolor Arrays by Prefix Reversals 429

(3) n,m ≥ 3 and Either n or m is Odd: We classify operations realized by operating
prefix reversals in order to invert color of letters. We assume the condition “either n
or m is odd” only in (3-6) but the condition is not assumed for the cases (3-1) through
(3-5). The proof is based on the technique in [11] and we omit the details due to lack of
space.
(3-1) Twin transpositions along diagonal with fixing colors: It is easy to check that the
twin transposition along diagonal fixes colors of the corresponding 4 letters on the same
two rows and two columns.⎡

⎢⎢⎢⎢⎣

· · · · · · · · · · · · · · ·
· · · w · · · x · · ·
· · · · · · · · · · · · · · ·
· · · y · · · z · · ·
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎢⎣

· · · · · · · · · · · · · · ·
· · · z · · · y · · ·
· · · · · · · · · · · · · · ·
· · · x · · · w · · ·
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦

(3-2) Twin transpositions along row and column with inverting colors: It is easy to
check that the twin transposition along diagonal changes colors of the corresponding
4 letters. ⎡

⎢⎢⎢⎢⎣

· · · · · · · · · · · · · · ·
· · · w · · · x · · ·
· · · · · · · · · · · · · · ·
· · · y · · · z · · ·
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎢⎣

· · · · · · · · · · · · · · ·
· · · ψ(y) · · · ψ(z) · · ·
· · · · · · · · · · · · · · ·
· · · ψ(w) · · · ψ(x) · · ·
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦

(3-3) Twin transpositions along row and column with fixing colors: Contrary to the twin
transposition along diagonal, a twin transpositions along row or column changes colors
of corresponding letters as is. Likewise, the twin transposition along row fixing colors
can be realized. ⎡

⎢⎢⎢⎢⎣

· · · · · · · · · · · · · · ·
· · · w · · · x · · ·
· · · · · · · · · · · · · · ·
· · · y · · · z · · ·
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎢⎣

· · · · · · · · · · · · · · ·
· · · y · · · z · · ·
· · · · · · · · · · · · · · ·
· · · w · · · x · · ·
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦

(3-4) Inverting colors of two letters on the same row: We can invert colors of two letters
on the same row and nothing else is changed. Likewise, we can change colors of two
letters on the same column.⎡

⎢⎢⎢⎢⎣

· · · · · · · · · · · · · · ·
· · · w · · · x · · ·
· · · · · · · · · · · · · · ·
· · · y · · · z · · ·
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎢⎣

· · · · · · · · · · · · · · ·
· · · ψ(w) · · · ψ(x) · · ·
· · · · · · · · · · · · · · ·
· · · y · · · z · · ·
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦

(3-5) Inverting colors of two letters in arbitrary locations: We can invert colors of two
letters in arbitrary positions and nothing else is changed.



430 A. Yamamura et al.

⎡
⎢⎢⎢⎢⎣

· · · · · · · · · · · · · · ·
· · · w · · · x · · ·
· · · · · · · · · · · · · · ·
· · · y · · · z · · ·
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦ →

⎡
⎢⎢⎢⎢⎣

· · · · · · · · · · · · · · ·
· · · ψ(w) · · · x · · ·
· · · · · · · · · · · · · · ·
· · · y · · · ψ(z) · · ·
· · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦

(3-6) Inverting a color of a letter in the center of a row: Suppose m is odd and m= 2k+1.
We can invert color of the letter in the center of a row and nothing else is changed.

⎡
⎣x1 x2 · · · xk xk+1 xk+2 · · · x2k x2k+1

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

⎤
⎦

→
⎡
⎣x1 x2 · · · xk ψ(xk+1) xk+2 · · · x2k x2k+1

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

⎤
⎦

We can invert color of any letter in an array using (3-6). It follows that [A] = G1(A).

(4) n,m ≥ 3, Both n and m Are Even, and either n �≡ 0 (mod 4) or m �≡ 0 (mod 4):
We can invert colors of any couple of two letters on an array using (3-5). It follows that
[A] = G2(A).

(5) n ≡ m ≡ 0 (mod 4): We can invert colors of any couple of two letters on an array
using (3-5). It follows that [A] = G3(A). 
�

5 Estimation of Minimum Number of Prefix Reversals

A theoretical estimate of an upper bound of the minimum number of prefix reversals
for n×m unicolor arrays is obtained in [11], see Table 1. Here we give an estimate
of an upper bound for the minimum number of prefix reversals to rearrange an n×m
bicolor array to another array from a ∼ equivalence class. Our estimate is based on
the algorithm for rearrangement given in the proof of Theorem 3. We make use of the
unicolor estimate from Table 1, since as it follows from Theorem 1 a bicolor array A is
rearranged to a certain array B such that π(σ(A)) coincides with π(B). Then we have to
rearrange B to σ(A). Recall that B and σ(A) differ only by color, that is, π(B) coincides
with π(σ(A)). Hence, we need to invert colors of at most nm letters to rearrange B

Table 1. Upper bound of the minimum number of prefix reversals for unicolor arrays

m> 2

m ≡ 0 (mod 4) m ≡ 2 (mod 4) m ≡ 1,3 (mod 4)

n ≥ 2 n= 2 34m−17

n> 2 n ≡ 0 (mod 4) 280(nm−1)
n ≡ 2 (mod 4) (38n+37)(nm−1)
n ≡ 1,3 (mod 4) (13n+100)(nm−1)



Groupoid Action and Rearrangement Problem of Bicolor Arrays by Prefix Reversals 431

Table 2. Upper bound of the minimum number of prefix reversals for bicolor arrays

m> 2

m ≡ 0 (mod 4) m ≡ 2 (mod 4) m ≡ 1,3 (mod 4)

n ≥ 2 n= 2 330m−17 70m−17

n> 2 n ≡ 0 (mod 4) 608nm−280

n ≡ 2 (mod 4) (38n+37)(nm−1)+328nm

n ≡ 1,3 (mod 4) (13n+100)(nm−1)+328nm+
n−1

2
(66(n−1)+1397)

into σ(A). Combining these two estimates gives us a theoretical upper bound for the
minimum number of prefix reversals needed. We summarize our results in Table 2.

These are very basic estimates that are not tight, which is evident also from com-
puter simulations. It is our plan for our future study to reduce these upper bounds of
number of prefix reversals. An improvement can be obtained by more detailed anal-
ysis of particular steps of our algorithm, or by switching to analysis of the graph of
transformation of bicolor arrays using best-first search algorithms.

References

1. Berman, P., Karpinski, M.: On some tighter inapproximability results (extended abstract). In:
Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp.
200–209. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6 17

2. Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-approximation algorithm for sorting by
reversals. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 200–210.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45749-6 21

3. Bulteau, L., Fertin, G., Rusu, I.: Pancake flipping is hard. In: Rovan, B., Sassone, V., Wid-
mayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 247–258. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32589-2 24

4. Chitturi, B., et al.: An (18/11)n upper bound for rearranging by prefix reversals. Theoret.
Comput. Sci. 410(36), 3372–3390 (2009)

5. Cohen, D.S., Blum, M.: On the problem of rearranging burnt pancakes. Discrete Appl. Math.
61(2), 105–120 (1995)

6. Gates, W., Papadimitriou, C.: Bounds for sorting by prefix reversal. Discrete Math. 79, 47–57
(1979)

7. Heydari, M.H., Sudborough, I.H.: On the diameter of the pancake network. J. Algorithms
25(1), 67–94 (1997)

8. Kaplan, H., Shamir, R., Tarjan, R.E.: Faster and simpler algorithm for sorting signed permu-
tations by reversals. In: ACM-SIAM SODA 1997, pp. 178–187 (1997)

9. Lawson, M.V.: Inverse Semigroups: The Theory of Partial Symmetries. World Scientific,
Singapore (1998)

10. Rotman, J.J.: An Introduction to the Theory of Groups, 4th edn. Springer, New York (1994).
https://doi.org/10.1007/978-1-4612-4176-8

11. Yamamura, A.: Rearranging two dimensional arrays by prefix reversals. In: Bojańczyk, M.,
Lasota, S., Potapov, I. (eds.) RP 2015. LNCS, vol. 9328, pp. 153–165. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24537-9 14

https://doi.org/10.1007/3-540-48523-6_17
https://doi.org/10.1007/3-540-45749-6_21
https://doi.org/10.1007/978-3-642-32589-2_24
https://doi.org/10.1007/978-1-4612-4176-8
https://doi.org/10.1007/978-3-319-24537-9_14


Author Index

Ablayev, Farid 1
Ablayev, Marat 1
Agrawal, Akanksha 16
Akhmedov, Maxim 103

Babu, Jasine 117
Bauwens, Bruno 130
Bazhenov, Nikolay 142
Benson, Deepu 117
Blinnikov, Ilya 130
Bodini, Olivier 155
Boneva, Iovka 169
Brandes, Ulrik 30

Çağırıcı, Onur 184
Chistopolskaya, Anastasiya 198

Datta, Samir 211
de Melo, Alexsander Andrade 46
de Oliveira Oliveira, Mateus 46

Faliszewski, Piotr 64
Fomin, Fedor V. 224
Funke, Stefan 354

Genitrini, Antoine 155
Gupta, Chetan 211
Gurvich, Vladimir 237

Jain, Rahul 211
Jajcayová, Tatiana B. 419

Kanesh, Lawqueen 250
Kase, Riki 419
Kim, Jaeyoon 263
Kosolobov, Dmitry 276
Kuske, Dietrich 289

Maity, Soumen 250
Merkle, Wolfgang 303
Merkurev, Oleg 276
Muluk, Komal 250

Naima, Mehdi 155
Neveling, Marc 314
Niehren, Joachim 169

Okhotin, Alexander 328
Olkhovsky, Ilya 328

Philip, Geevarghese 341
Podolskii, Vladimir V. 198

Rajendraprasad, Deepak 117
Ramamoorthi, Vijayaragunathan 224
Rani, M. R. 341
Rothe, Jörg 314
Rupp, Tobias 354

Sahu, Abhishek 367
Sakho, Momar 169
Saurabh, Saket 250, 367
Sharma, Vimal Raj 211
Singh, Alexandros 155
Skowron, Piotr 64
Slinko, Arkadii 64
Subashini, R. 341
Szufa, Stanisław 64

Talambutsa, Alexey 379
Talmon, Nimrod 64
Tewari, Raghunath 211
Titov, Ivan 303

Vaka, Sai Nishant 117
Vasiliev, Alexander 1
Volkovich, Ilya 263, 393
Vyalyi, Mikhail 237

Wu, Yaokun 406

Yamamura, Akihiro 419

Zehavi, Meirav 16
Zhang, Nelson Xuzhi 263
Zhu, Binhai 79
Zhu, Yinfeng 406
Zorn, Roman 314


	Preface
	Organization
	Contents
	Quantum Hashing and Fingerprinting for Quantum Cryptography and Computations
	1 Introduction
	2 Preliminaries
	3 Quantum Fingerprinting
	3.1 Binary Quantum Fingerprinting Function
	3.2 q-ary Quantum Fingerprinting
	3.3 Quantum Fingerprinting for Computations

	4 Quantum Hashing
	4.1 One-way -Resistance
	4.2 Collision -Resistance
	4.3 Balanced Quantum (,)-Resistance
	4.4 Quantum (,)-Hash Functions Construction Via Small-Biased Sets

	5 Quantum Hashing for Finite Abelian Groups
	6 Pre-image Resistance of Quantum Hashing
	References

	Parameterized Analysis of Art Gallery and Terrain Guarding
	1 Background on Parameterized Analysis
	2 The Art Gallery Problem
	2.1 Known Algorithmic Works
	2.2 Giannopoulos's Parameterization and Our Contribution

	3 The Terrain Guarding Problem
	3.1 Known Algorithmic Works
	3.2 Subexponential-Time Parameterized Algorithm for Terrain Guarding and FPT Algorithm for Orthogonal Terrain Guarding

	References

	Central Positions in Social Networks
	1 Introduction
	2 Network Data
	2.1 Variables
	2.2 Network Variables
	2.3 Graph Representations

	3 Positions
	3.1 Derived Relations
	3.2 Network Positions

	4 Centrality
	4.1 Neighborhood Inclusion
	4.2 Positional Dominance
	4.3 Homogeneity
	4.4 Application

	5 Computational Challenges
	5.1 Transformations
	5.2 Dominance
	5.3 Rankings

	6 Conclusions
	References

	Second-Order Finite Automata
	1 Introduction
	2 Preliminaries
	2.1 Basics
	2.2 Ordered Decision Diagrams

	3 Second-Order Finite Automata
	4 Transductions
	5 Canonization of ODDs Using Transductions
	6 Applications
	7 Conclusion
	References

	Isomorphic Distances Among Elections
	1 Introduction
	1.1 Distances, Election Isomorphism, and Motivation
	1.2 Organization

	2 Preliminaries
	3 Distances Among Elections
	3.1 Election Isomorphism Problem
	3.2 Isomorphic Distances
	3.3 Positionwise and Pairwise Distances

	4 Research Directions
	4.1 New Distances
	4.2 Effective Algorithms
	4.3 Properties of the Distances
	4.4 Evaluating Distances in Practice

	5 Summary
	References

	Tandem Duplications, Segmental Duplications and Deletions, and Their Applications
	1 Introduction
	1.1 Tandem Duplications
	1.2 Copy Number Profiles

	2 Preliminaries
	2.1 Strings and Tandem Duplications
	2.2 Copy Number Profiles, Segmental Duplications and Deletions

	3 Results on Tandem Duplications
	3.1 Exemplar-TD Is NP-hard
	3.2 Exemplar-TD Is FPT

	4 Results on Copy Number Profiles
	4.1 Hardness of Approximation for MCNG
	4.2 W[1]-Hardness for MCNG
	4.3 The Copy Number Profile Conforming Problem

	5 Concluding Remarks and Open Problems
	References

	Faster 2-Disjoint-Shortest-Paths Algorithm
	1 Introduction
	2 Definitions and the DP Formululation
	3 Reducing the Running Time to O(|V|7)
	4 Reducing Running Time to O(|V|6)
	5 Experimental Evaluation
	6 Extension to the Weighted Case
	7 Conclusion and Further Work
	8 Algorithm Pseudocodes
	References

	An Improvement to Chvátal and Thomassen's Upper Bound for Oriented Diameter
	1 Introduction
	2 Oriented Diameter of Diameter d Graphs
	2.1 Algorithm OrientedCore
	2.2 The Upper Bound

	3 Oriented Diameter of Diameter 4 Graphs
	3.1 Oriented Diameter and 2-Step Domination Property of "017E H1
	3.2 Asymmetric Chvátal-Thomassen Lemma
	3.3 A 1-Step Dominating Oriented Subgraph "017E H2 of G
	3.4 The Upper Bound

	References

	The Normalized Algorithmic Information Distance Can Not Be Approximated
	1 Introduction
	2 Trivial Approximations Have at Most Logarithmic Total Update
	3 Oscillations of 0-Approximations, the Game
	4 Total Update of -Approximations, the Game
	5 Conclusion
	References

	Definable Subsets of Polynomial-Time Algebraic Structures
	1 Introduction
	2 Preliminaries
	2.1 Polynomial-Time Structures
	2.2 Boolean Algebras

	3 Main Result
	3.1 From (i) To (ii)
	3.2 From (ii) To (i)

	4 Further Discussion
	References

	Families of Monotonic Trees: Combinatorial Enumeration and Asymptotics
	1 Introduction
	2 Applications
	3 Combinatorial Model and Asymptotic Analysis
	4 Conclusion
	References

	Nested Regular Expressions Can Be Compiled to Small Deterministic Nested Word Automata
	1 Introduction
	2 Nested Words
	3 Nested Regular Expressions
	4 Nested Word Automata
	5 Stepwise Hedge Automata
	6 NWAs Versus SHAs
	7 Experimental Results and Discussion
	References

	On Embeddability of Unit Disk Graphs onto Straight Lines
	1 Introduction
	2 Basic Terminology and Notations
	3 APUD(k,m) Recognition Is NP-Hard
	4 APUD(k,0) Recognition Is NP-Complete
	5 APUD(1,1) Recognition Is Open
	References

	On the Decision Tree Complexity of Threshold Functions
	1 Introduction
	2 Preliminaries
	2.1 Decision Trees
	2.2 Parity Decision Trees

	3 Decision Trees with B2-Queries
	4 Parity Decision Tree Complexity of Threshold Functions
	References

	Randomized and Symmetric Catalytic Computation
	1 Introduction
	1.1 Outline of the Paper

	2 Preliminaries
	3 CBPLZPP
	4 Proof of Main Theorem
	5 An Alternative Proof of CL= CSC1
	References

	On the Parameterized Complexity of the Expected Coverage Problem
	1 Introduction
	2 Parameterized Intractability: The Expected Coverage Problem is W[1]-hard for the Parameter Treewidth
	2.1 Construction
	2.2 Equivalence

	3 FPT Algorithm for the Expected Coverage Problem Parameterized by Treewidth on Bounded Degree Graphs
	3.1 Solution Structure
	3.2 Dynamic Programming

	References

	Computational Hardness of Multidimensional Subtraction Games
	1 Introduction
	2 Concepts and Results
	2.1 Impartial Games
	2.2 Subtraction Games and Modular Games
	2.3 Turing Machines and Cellular Automata

	3 Sketch of the Proof
	4 From Cellular Automata to Subtraction Games
	4.1 First Step: Simulation of a 2CA by a 2-Dimensional Modular Game
	4.2 Second Step: Simulation of a 2CA by a (2N+2)-Dimensional Subtraction Game

	5 From Turing Machines to Cellular Automata
	6 Parallel Execution of a Turing Machine
	7 Proof of the Main Theorem
	References

	Parameterized Complexity of Fair Feedback Vertex Set Problem
	1 Introduction
	2 Preliminaries
	3 Unrestricted Fair Feedback Vertex Set
	4 Restricted Fair Feedback Vertex Set
	5 Relax Fair Feedback Vertex Set
	5.1 Algorithm for Disjoint-Relax FFVS Problem

	References

	The Power of Leibniz-Like Functions as Oracles
	1 Introduction
	1.1 Results

	2 Preliminaries
	2.1 Arithmetic Functions
	2.2 Square-Free Numbers
	2.3 Rough Numbers
	2.4 Partial Factorization Algorithms
	2.5 Leibniz-Like Functions and Their Properties

	3 Families of Oracles
	3.1 Special Case: T
	3.2 Special Case: (a, Q)

	4 Non-coprime Case
	5 Discussion and Open Questions
	References

	Optimal Skeleton Huffman Trees Revisited
	1 Introduction
	2 Huffman and Skeleton Trees
	3 Layered Structure of Huffman Trees
	4 Algorithm
	References

	The Subtrace Order and Counting First-Order Logic
	1 Introduction
	2 Definitions and Main Result
	2.1 Traces and Subtraces
	2.2 Recognizable Sets
	2.3 The Logic C2 and the Main Result
	2.4 Auxiliary Definitions

	3 Downward Closure
	4 Upward Closure
	5 Incomparable Traces
	5.1 Short Non-subtraces
	5.2 Long Non-supertraces

	6 Concluding Remarks
	References

	Speedable Left-c.e. Numbers
	1 Speedable Left-c.e Numbers
	2 A Dichotomy for Speedability
	3 Martin-Löf Random and Nonhigh Left-c.e. Real Numbers
	4 Solovay Degrees
	References

	The Complexity of Controlling Condorcet, Fallback, and k-Veto Elections by Replacing Candidates or Voters
	1 Introduction
	2 Preliminaries
	3 Overview of Results
	4 Condorcet Voting
	5 Fallback Voting
	6 k-Veto
	7 Conclusions and Open Problems
	References

	On the Transformation of LL(k)-linear Grammars to LL(1)-linear
	1 Introduction
	2 Definitions
	3 General Plan of the Transformation
	4 Elimination of ``Short'' Rules
	5 Reduction to One-Symbol Look-Ahead
	6 Lower Bound
	7 Conclusion
	References

	On Computing the Hamiltonian Index of Graphs
	1 Introduction
	2 An FPT Algorithm for Eulerian Steiner Subgraph
	3 Finding the Hamiltonian Index
	4 Conclusion
	References

	A Lower Bound for the Query Phase of Contraction Hierarchies and Hub Labels
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Theory: A Lower Bound Construction
	3.1 The Lightheaded nn-grid Glh
	3.2 Lower Bounding the Direct Search Space
	3.3 Lower Bounding of Hub Label Sizes

	4 Practice: Instance-Based Lower Bounds
	4.1 Witness Triples
	4.2 Generation of Witness Triples
	4.3 Experimental Results

	5 Conclusions and Future Work
	References

	Kernelization of Arc Disjoint Cycle Packing in -Bounded Digraphs
	1 Introduction
	2 Preliminaries
	3 An Erdős-Pósa Type Theorem for -Bounded Digraphs
	4 Algorithm to Find an FVS
	4.1 A Cut-Preserving Set

	5 Algorithm to Compute the Kernel
	5.1 Running Time and Kernel Size Analysis
	5.2 Correctness of the Algorithm

	References

	On Subquadratic Derivational Complexity of Semi-Thue Systems
	1 Introduction
	2 System S0 with Derivational Complexity in (n logn)
	3 A System with Derivational Complexity in (n1+ab)
	4 Further Questions
	References

	The Untold Story of SBP
	1 Introduction
	1.1 Our Results
	1.2 Ideas and Techniques
	1.3 Organization

	2 Preliminaries
	2.1 Probability Distributions and Circuits
	2.2 Complexity Classes and Promise Problems
	2.3 SOLUTIONS[f(n)]

	3 Proofs of the Main Results
	4 Discussion and Open Question
	References

	Weighted Rooted Trees: Fat or Tall?
	1 Background
	2 Fat or Tall?
	3 Up and Down in a Rooted Tree
	References

	Groupoid Action and Rearrangement Problem of Bicolor Arrays by Prefix Reversals
	1 Introduction
	1.1 Rearrangement of Arrays

	2 Rearrangement of Bicolor Arrays
	2.1 Bicolor Arrays
	2.2 Rearrangement Problem by Prefix Reversals
	2.3 Groupoids and Groupoid Actions
	2.4 Groupoid Action on Bicolor Arrays

	3 Equivalence Classes of 22 Bicolor Arrays
	4 Equivalence Classes of nm Bicolor Arrays (n 3 or m 3)
	5 Estimation of Minimum Number of Prefix Reversals
	References

	Author Index



