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Abstract. This paper addresses the numerical solution of fractional pro-
grams with quadratic functions in the ratios. Instead of considering a
sum-of-ratios problem directly, we developed an efficient global search
algorithm, which is based on two approaches to the problem. The first
one adopts a reduction of the fractional minimization problem to the
solution of an equation with an optimal value of a parametric d.c. mini-
mization problem. The second approach reduces the original problem to
the optimization problem with nonconvex (d.c.) constraints. Hence, the
fractional programs can be solved by applying the Global Search Theory
of d.c. optimization.

The global search algorithm developed for sum-of-ratios problems
was tested on the examples with quadratic functions in the numera-
tors and denominators of the ratios. The numerical experiments demon-
strated that the algorithm performs well when solving rather complicated
quadratic sum-of-ratios problems with up to 100 variables or 1000 terms
in the sum.

Keywords: Fractional optimization · Nonconvex problem · Difference
of two convex functions · Quadratic functions · Global search
algorithm · Computational testing

1 Introduction

The global minimization of the sum of fractional functions has attracted the
interest of researchers and practitioners for a number of years, because these
problems have a large number of important real-life applications. From the the-
oretical viewpoint, the solution of these problems implies facing significant chal-
lenges, because, in general, fractional programs are nonconvex problems, i.e.,
they generally have several (often a huge number of) local optimal solutions
that are not globally optimal [18]. It was proven that the sum-of-ratios program
is NP-complete [6]. Various specialized methods and algorithms have been pro-
posed for solving these problems globally (see, for example, surveys in [3,18]),
but the development of new efficient methods for the following sum-of-ratios
problem [3,7,18]

(FP) : f(x) :=
m∑

i=1

ψi(x)
ϕi(x)

↓ min
x

, x ∈ S,
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where S ⊂ IRn is a closed convex set and ψi, ϕi : IRn → IR, are continuous
function such that

(H0) : ψi(x) > 0, ϕi(x) > 0 ∀x ∈ S, i = 1, . . . , m;

still remains an important field of research in the mathematical optimization.
If functions ψi(·), ϕi(·), i = 1, . . . , m are quadratic functions, then we classify
Problem (FP) as a quadratic fractional program.

On the other hand, the following general problem of d.c. optimization

(P) :

{
f0(x) := g0(x) − h0(x) ↓ min

x
, x ∈ S,

fj(x) := gj(x) − hj(x) ≤ 0, j = 1, . . . , m,

where the functions gj(·), hj(·), j = 1, . . . , m, are convex on IRn, S is a closed
and convex set, and S ⊂ IRn, remained over recent years one of the attractive
objects in nonconvex optimization [13–15,19,27,28].

It is worth noting that any continuous optimization problem can be approx-
imated by a d.c. problem with any prescribed accuracy [13,14,28]. In addition,
the space of d.c. functions, being a linear space, is then closed under most of oper-
ations usually considered in optimization (see, e.g., [19,28]). Moreover, any twice
differentiable function belong to the space of d.c. functions [13–15,19,27,28]. The
convexity of the two convex components g and h of the d.c. function f is widely
used to develop appropriate theoretical and algorithmic tools.

We develop a new efficient global search method for the fractional optimiza-
tion problems, which is based on the two following ideas [9,11,12]. First, gen-
eralizing the Dinkelbach’s approach [4], we propose to reduce the sum-of-ratios
problem with d.c. functions to solving an equation with the optimal value func-
tion of an auxiliary parametric problem with the vector parameter that satisfies
the nonnegativity assumption. Secondly, we also use the reduction of the frac-
tional program to a problem of type (P), where f0(x) is a linear function, i.e.
an optimization problem over nonconvex feasible set given by d.c. inequality
constraints.

Furthermore, based on the Global Search Theory for d.c. optimization [19,22]
and on the solution of these two particular cases of the general d.c. optimization
problem (P), we develop a two-method technology for solving a sum-of-ratios
problem and verify it on test problems with nonconvex quadratic functions in
the numerators and denominators of the ratios.

Most of the approaches and techniques for solving fractional programs are
designed for problems with affine functions in the numerators and denominators
of the ratios [1,5,16,17]. Problems with nonconvex quadratic (d.c.) functions are
more complex problems since it concerns a finding a global solution.

The outlines of the paper are as follows. In Sect. 2 and 3, we recall two
approaches to solving Problem (FP) using auxiliary d.c. minimization problems
and problems with d.c. inequality constraints, respectively. In Sect. 4, we show
how to represent explicitly the nonconvex functions, describing the goal function
and the constraints of the auxiliary d.c. problems as differences of two convex
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functions (the d.c. representation). Further, in Sect. 5, we propose the algorithm
which combines the two approaches to solving the fractional program via d.c.
optimization. The final section offers computational testing of the developed
algorithm on fractional program instances with up to 100 variables or 1000 terms
in the sum generated by the approach from [2].

2 Reduction to the D.C. Minimization Problem

Consider the following auxiliary problem

(Pα) : Φα(x) :=
m∑

i=1

[ψi(x) − αiϕi(x)] ↓ min
x

, x ∈ S,

where α = (α1, . . . , αm)� ∈ IRm
+ is the vector parameter and the set S ⊂ IRn is,

as above closed and convex.
First, let us recall some results from [9] about the relations between Problems

(FP) and (Pα). Further introduce the function V(α) of the optimal value to
Problem (Pα):

V(α) := inf
x

{Φα(x) | x ∈ S} = inf
x

{
m∑

i=1

[ψi(x) − αiϕi(x)] : x ∈ S

}
. (1)

In addition, suppose that the following assumptions are fulfilled:

(H1) :
{

(a) V(α) > −∞ ∀α ∈ K,where K is a convex set from IRm;
(b) ∀α ∈ K ⊂ IRm there exists a solution z = z(α) to Problem (Pα).

In what follows, we say that a given parameter vector α = (α1, . . . , αm)� ∈
IRm satisfies “the nonnegativity condition” in Problem (FP), if the following
inequalities hold

(H(α)) : ψi(x) − αiϕi(x) ≥ 0 ∀x ∈ S, i = 1, . . . , m.

Theorem 1. [9] Suppose that in Problem (FP) the assumptions (H0), (H1) are
satisfied. In addition, let there exist a vector α0 = (α01, . . . , α0m)� ∈ K ⊂ IRm

at which “the nonnegativity condition” (H(α0)) holds.
Finally, suppose that in Problem (Pα0) the following equality takes place:

V(α0)
�
= min

x

{
m∑

i=1

[ψi(x) − α0iϕi(x)] : x ∈ S

}
= 0. (2)

Then, any solution z = z(α0) to Problem (Pα0) is a solution to Problem (FP),
so that z ∈ Sol(Pα0) ⊂ Sol(FP).

Hence, in order to check up the equality (2), we should be able to solve
globally Problem (Pα) at a current α ∈ IRm

+ . Since ψi(·), ϕi(·), i = 1, . . . , m,
are convex or d.c. functions it can be readily seen that Problem (Pα) turns
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out to be a parametric d.c. minimization problem. As a consequence, in order to
solve the auxiliary Problem (Pα), we can apply the global search strategy for d.c.
minimization problems [19,22]. Its theoretical foundation can be provided by the
following Global Optimality Condition written here in the terms of Problem (Pα)
under the assumption that ψi(·), ϕi(·), i = 1, . . . , m, are convex functions and

therefore g(x) =
m∑

i=1

ψi(x), hα(x) =
m∑

i=1

αiϕi(x),

Φα(x) =
m∑

i=1

(ψi(x) − αiϕi(x)) = g(x) − hα(x).

If ψi(·), ϕi(·), i = 1, . . . , m, are d.c. functions, it is easy to see that the goal
function of (Pα) is d.c., as well, but having another d.c. decomposition.

Theorem 2. [19,22] Suppose, z(α) is a global solution to (Pα), ζ := Φα(z(α)).
Then,

(E) :
{

(a) ∀(y, β) ∈ IRn × IR : hα(y) = β − ζ,
(b) g(x) − β ≥ 〈∇hα(y), x − y〉 ∀x ∈ S.

(3)

The meaning of Theorem 2 lies in the fact that by selecting the “perturbation
parameters” (y, β) (satisfying (3a)) and solving the linearized problem

(PαL) : g(x) − 〈∇hα(y), x〉 ↓ min
x

, x ∈ S,

we try to violate the principal inequality (3b) (where y ∈ IRn is not obligatory
feasible).

Furthermore, according to the Theorem 1, we are able to avoid the direct
solution of Problem (FP) and address the parametrized problem (Pα) with
α ∈ IRm

+ . Hence, we propose to combine a solution of Problem (Pα) with a
search of the parameter α ∈ IRm

+ in order to find α0 ∈ IRm
+ such that V(α0) = 0.

This idea can be implemented by the following algorithm. Let [α0
−, α0

+] be an
initial segment for varying α, and x0 ∈ S stands for the starting point.

Algorithm 1 for solving the fractional problem via d.c. minimization

Stage 0. (Initialization) k := 0. Set xk := x0, αk
− := 0, αk

+ := α0
+, αk := α0

+
2 ∈

[α0
−, α0

+].
Stage I. (Local search) Starting at xk find a critical point to Problem (Pk) :=

(Pαk) using the special local search method for d.c. minimization [19].
Stage II. (Global search) Find a global solution z(αk) to Problem (Pk) using

the global search scheme for the parametric d.c. minimization [19,22]
Problem (Pk).

Stage III. (Stopping criterion) If V(αk) = 0 and min
i

{
ψi(z(αk)) − αk

i ϕi

(z(αk))
} ≥ 0, then STOP: z(αk) ∈ Sol(FP).

Stage IV. (Parameter variation) Find new parameters αk+1, αk+1
− and αk+1

+ ;
k := k + 1 and go to Stage I.
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Remark 1. The algorithm for solving the fractional program (FP) consists of
three basic stages: (a) a local and (b) a global searches in Problem (Pα) with a
fixed vector parameter α (Stages I, II) and (c) the method for finding the vector
α (Stage IV).

Let [α−, α+] be a segment for varying α. In addition, assume that we are
able to compute the value V := V(α) and let a solution z(α) to Problem (Pα)
be given.

In order to calculate a new parameter αnew and new boundaries αnew
− and

αnew
+ at the current iteration k for a segment for varying α on Stage IV of Algo-

rithm 1 one can use the following procedure, where α := αk from Stage III of
Algorithm 1.

Stage IV. Parameter variation algorithm

Step 1. If V > 0, then set αnew
− := α, αnew := 1

2 (α+ + α), αnew
+ := α+.

Step 2. If V < 0, then set αnew
+ := α, αnew := 1

2 (α− + α), αnew
− := α−.

Step 3. If V = 0 and min
i

Φi(z(α), α) < 0, then set

αnew
i :=

ψi(z(α))
ϕi(z(α))

∀i : ψi(z(α)) − αiϕi(z(α)) < 0;

αnew
i := αi ∀i : ψi(z(α)) − αiϕi(z(α)) ≥ 0.

In addition, set αnew
− := 0, αnew

+ := tαnew, where t =
max{α0

+1; . . . ;α
0
+m}

max{α1; . . . ;αm} .

Step 4. αk+1 := αnew, αk+1
− := αnew

− and αk+1
+ := αnew

+ ; k := k + 1 and go to
Stage I of Algorithm 1.

Remark 2. To choose an initial segment [α0
−, α0

+] for varying α, we should take
into account the following considerations. According to “the nonnegativity con-
dition” (H(α)) and the assumption (H0), we have

αi ≤ ψi(x)
ϕi(x)

≤
m∑

i=1

ψi(x)
ϕi(x)

∀x ∈ S, ∀i = 1, . . . , m,

therefore one can choose α0
+ i :=

ψi(x0)
ϕi(x0)

, α0
− i = 0, i = 1, . . . , m.

The performed computational experiment [8,9,11] showed that solving frac-
tional problem via d.c. minimization takes a large number of iterations, gener-
ated by an ineffective work of Stage IV. Therefore, it is very important to choose
a suitable parameter α in order to reduce the total number of iterations and,
therefore, the corresponding run-time of Algorithm 1.

Using the reduction of the sum-of-ratios problem to the optimization problem
with nonconvex constraints, we will look not only for a starting value of the
parameter α for Problem (Pα), but also for a better vector for Problem (FP).
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3 Reduction to the Problem with D.C. Constraints

In this section we consider the following optimization problem

(DCC) :

⎧
⎨

⎩

m∑
i=1

αi ↓ min
(x,α)

, x ∈ S,

ψi(x) − αiϕi(x) ≤ 0, i ∈ I = {1, . . . , m}.

The relations between Problems (FP) and (DCC) are as follows.

Proposition 1. [10] For any global solution (x∗, α∗) ∈ IRn × IRm to Prob-
lem (DCC), the point x∗ will be a global solution to Problem (FP) and

α∗i =
ψi(x∗)
ϕi(x∗)

, i ∈ I.

Remark 3. It is clear that, in contrast to Theorem 1 from Sect. 2, the vector
α∗ = (α∗1, . . . , α∗m)� ∈ IRm must be found simultaneously with the solution
vector x∗.

It is easy to see that Problem (DCC) is a nonconvex optimization problem
with the linear goal function and the nonconvex feasible set (see, e.g., [14,25]).
So, we can solve Problem (DCC) using the exact penalization approach for d.c.
optimization developed in [20,23,24]

However, the computational experiments showed [11,12] that solving frac-
tional program via problem with d.c. constraints (DCC) took more run-time
than using the parametric d.c. minimization, i.e. Problem (Pα).

Notwithstanding, in low-dimensional test problems of fractional program-
ming the known global solutions were found just by the local search method
(LSM) [21] for Problem (DCC) (see [10]). Therefore, we apply here only the
LSM, based on the classical idea of linearization with respect to the basic non-
convexity of the problem [19,21,26].

The LSM for Problem (DCC) is based on the consecutive solutions of the
following partially linearized (at the point (xs, αs)) problem [10,21,26]:

(DCCLs) :

⎧
⎨

⎩

m∑

i=1

αi ↓ min
(x,α)

, x ∈ S,

gi(x, αi) − 〈∇hi(x
s, αs

i ), (x, αi) − (xs, αs
i )〉 − hi(x

s, αs
i ) ≤ 0, i ∈ I,

where the functions gi(·) and hi(·), i ∈ I, are the convex functions obtained
by the d.c. representation of the constraint functions ψi(x) − αiϕi(x), i ∈ I
(see, for example, Sect. 4 for quadratic ψi(·) and ϕi(·)) and where ∇hi(x, αi) =
(∇x1hi(x, αi), . . . ,∇xn

hi(x, αi),∇αi
hi(x, αi))� ∈ IRn+1.

Due to the consecutive solutions of linearized convex problems (DCCLs) start-
ing at the point (x0, α0) we generate the sequence {(xs, αs)}: (xs+1, αs+1) ∈
Sol(DCCLs). As it was proven in [21], the cluster point (x∗, α∗) ∈ {x ∈ S |
gi(x, αi) − 〈∇hi(x∗, α∗i), (x, αi) − (x∗, α∗i)〉 − hi(x∗, α∗i) ≤ 0, i ∈ I} of the
sequence {(xs, αs)} generated by the LSM, is a solution to the linearized Prob-
lem (DCCL∗) (which is Problem (DCCLs) with (x∗, α∗) instead of (xs, αs)), and
a critical point of Problem (DCC): (x∗, α∗) ∈ Sol(DCCL∗).
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In order to implement the LSM [21,26] and the global search scheme for d.c.
minimization [19,22] (Stage II of Algorithm 1), we need an explicit d.c. represen-
tation of functions ψi(x) − αiϕi(x), i ∈ I. As well-know the d.c. decomposition
of function is not unique. The next section presents several possible d.c. repre-
sentations for the goal function of Problem (Pα) and constraint’s functions of
Problem (DCC) (in the case of quadratic ψi(·) and ϕi(·)).

4 D.C. Representations of the Goal Function
and Constraint’s Functions

Consider the following quadratic functions ψi(x) > 0, ϕi(x) > 0 ∀x ∈ S):

ψi(x) = 〈x,Aix〉 + 〈ai, x〉 + ξi, ϕi(x) = 〈x,Bix〉 + 〈bi, x〉 + γi,

where the matrices Ai and Bi are (n×n) positive definite, ai, bi ∈ IRn, ξi, γi ∈ IR,
i ∈ I. Therefore, the functions ψi(·) and ϕi(·) are convex functions, i ∈ I.

In this case, the d.c. representation of the goal function Φα(x) of Prob-
lem (Pα) (where α = (α1, . . . , αm) ∈ IRm

+ is the vector parameter) can be rather

simple: Φα(x) = g(x) − hα(x), where g(x) =
m∑

i=1

ψi(x), hα(x) :=
m∑

i=1

αiϕi(x),

or, in another way, g1α(x) =
m∑

i=1

[〈x,Aix〉 + 〈(ai − αib
i), x〉] +

m∑
i=1

(ξi − αiγi),

h1
α(x) =

m∑
i=1

αi〈x,Bix〉.

Remark 4. If the symmetric matrices Ai or/and Bi are indefinite, then they
can be represented as the difference of two symmetric positive definite matrices
Ai = Ai

1 − Ai
2, Ai

1, A
i
2 > 0, Bi = Bi

1 − Bi
2, Bi

1, B
i
2 > 0, using, for example, the

method from [19]. After this it is possible to construct functions g(·) and h(·) by
adding for all i ∈ I a convex part with the matrix Ai

1 or/and Bi
1 into g(·) and a

nonconvex part with the matrix Ai
2 or/and Bi

2 into h(·), i.e.

g2α(x) =
m∑

i=1

[〈x,Ai
1x〉 + αi〈x,Bi

2x〉 + 〈(ai − αib
i), x〉] +

m∑

i=1

(ξi − αiγi),

h2
α(x) =

m∑

i=1

[〈x,Ai
2x〉 + αi〈x,Bi

1x〉] .

A more complicated d.c. representation of functions appears in Problem
(DCC), because α = (α1, . . . , αm) ∈ IRm

+ is a variable and the problem has
the following nonconvex term

αiϕi(x) = αi〈x,Bix〉 + αi〈bi, x〉 + αiγi, (4)

which generates the bilinearity, and as a consequence, the nonconvexity in every
constraint (i ∈ I).
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The term αi〈bi, x〉 in (4) can be represented in the d.c. form as follows

〈αib
i, x〉 =

1
4

‖ αib
i + x ‖2 −1

4
‖ αib

i − x ‖2, i ∈ I. (5)

Further, the product αi〈x,Bix〉 can be expressed by formula (5):

αi〈x,Bix〉 =
1
4

(
αi + 〈x,Bix〉)2 − 1

4
(
αi − 〈x,Bix〉)2 , i ∈ I,

if Bi, i ∈ I, are positive definite matrices and the following conditions hold

αi + 〈x,Bix〉 ≥ 0, αi − 〈x,Bix〉 ≥ 0 ∀x ∈ S, i ∈ I. (6)

Then gi(x, αi) = ψi(x) +
1
4

(
αi − 〈x,Bix〉)2 +

1
4

‖ αib
i − x ‖2 −αiγi,

hi(x, αi) =
1
4

(
αi + 〈x,Bix〉)2 +

1
4

‖ αic
i + x ‖2

are convex functions and their difference present the constraints in Problem
(DCC) in the following d.c. form:

ψi(x) − αiϕi(x) = gi(x, αi) − hi(x, αi) ≤ 0, i ∈ I. (7)

5 Global Search Scheme for Solving the Sum-of-Ratios
Problems

The previous computational experiments [9,11,12] have demonstrated that Algo-
rithm 1 developed for solving fractional programs via d.c. minimization (see
Sect. 2) is quite efficient when applied to problems with affine functions in the
ratios. The algorithm has also shown its effectiveness for problems with quadratic
numerators and linear denominators [9,11,12]. However, the algorithm wastes a
lot of run-time on finding the vector parameter α at which the optimal value of
Problem (Pα) is equal to zero. The shortcoming of the approach of the reduction
of the sum-of-ratios problems (FP) to problems with d.c. constraints (DCC) is
a lot of run-times spent on solving Problem (DCC).

The results of computational experiments suggest a combination of the two
approaches for solving the fractional programs. So, we propose to use the local
search for Problem (DCC) to find a starting value α0 of the parameter α, which
takes less time to reduce the optimal value function of Problem (Pα) to zero. This
idea could be implemented by the method which consists of 3 basic parts: the
local search in Problem (DCC) with d.c. inequality constraints, the global search
in d.c. minimization Problem (Pα) with a fixed vector parameter α (found by
the LSM for Problem (DCC)) and the method for finding the vector α at which
the optimal value of Problem (Pα) is equal to zero.

We denote gk(·) = gαk(·), hk(·) = hαk(·), Φk(·) = Φαk(·).
Let an initial point x0 ∈ S, a vector α0 = (α01, . . . , α0m) ∈ IRm

+ and
an initial segment [α0

−, α0
+] for varying α be given. In addition, let there
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be given the number sequences {τs}, {δs}, {εs}, such that τs, δs, εs > 0,
s = 0, 1, 2, . . . , τs ↓ 0, δs ↓ 0 εs ↓ 0 (s → ∞).

Global search scheme for fractional program (F-GSS)

Stage 0. (Initialization) k := 0, ϑk := (x0, α0), αk
− := 0, αk

+ := α0
+.

Stage I. (Local search) Starting from the point ϑk, find by the LSM from [21]
a critical point (x(αk), αk) in the d.c. constrained Problem (DCC).

Stage II. (Global search) Starting from the point x(αk) find a solution z(αk)
to Problem (Pk) with the help of the global search scheme for d.c.
minimization [19,22], which consists of the following steps:

Step 0. s := 0, zs := x(αk), ζs := Φk(zs).
Step 1. Choose a number β ∈ [β−, β+], where the numbers β− = inf(gk,

S), β+ = sup(gk, S) can be approximated by rather rough esti-
mates. Set β0 := gk(z0).

Step 2. Construct an approximation A(β) = {y1, . . . , yN | hk(yj) = β−ζs,
j = 1, . . . , N = N(β)} of the level surface {y ∈ IRn | hk(y) =
β − ζs} of the function hk(·) and, according to Theorem 2, form
a collection of indices Js defined as follows Js = Js(β) = {j ∈
{1, . . . , Ns} | gk(yj) ≤ β}.

Step 3. If Js = ∅, then set β := β + Δβ ∈ [β−, β+], and loop to Step 2.
Step 4. For every j ∈ Js find a global 2δs-solution uj ∈ S to the following

linearized convex problem
gk(x) − 〈∇hk(yj), x〉 ↓ min

x
, x ∈ S.

and after that, starting at uj ∈ S, apply the LSM from [19] to pro-
duce a 2τs-critical vector uj ∈ S, so that gk(uj) − 〈∇hk(uj), uj〉 −
2τs ≤ inf

x
{gk(x) − 〈∇hk(uj), x〉 | x ∈ S}.

Step 5. For every j ∈ Js find a global 2δs-solution vj : hk(vj) = β − ζs, to
the following level problem (see Global Optimality Condition (E))

〈∇hk(v), uj − v〉 ↑ max
v

, hk(v) = β − ζs.

Note that for a quadratic function hk(·), this problem can be solved
manually.

Step 6. Compute the number ηs(β) := η0
s(β)−β, where η0

s(β) := gk(up)−
〈∇hk(vp), up − vp〉 := min

j∈Js

{gk(uj) − 〈∇hk(vj), uj − vj〉}.

Step 7. If ηs(β) < 0, then set s := s + 1, zs := up and loop to Step 2.
Step 8. (Else) set β := β + Δβ ∈ [β−, β+] and go to Step 2.

If ηs(β) ≥ 0 ∀β ∈ [β−, β+] (i.e. the one-dimensional search on β is
terminated) and δs ≤ δ∗, τs ≤ τ∗, εs ≤ ε∗, where δ∗ > 0, τ∗ > 0,
ε∗ > 0 are the fixed accuracies of corresponding computations,
then the global search (Stage II) has been terminated: z(αk) := zs.

Stage III. (Stopping criterion) If V(αk) = 0 and min
i

{
ψi(z(αk)) − αk

i ϕi

(z(αk))
} ≥ 0, then STOP: z(αk) ∈ Sol(FP).
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Stage IV. (Parameter variation) Implement the parameter variation algo-
rithm to find new parameters αk+1, αk+1

− and αk+1
+ . Set ϑk+1 =

(z(αk), αk+1), k = k + 1 and go to Stage I.

6 Computational Simulations

The algorithm developed on the basis of Global search scheme F-GSS from
Sect. 5 combining two approaches for solving the fractional programs (FP) via
d.c. optimization problems was coded in C++ language and applied to solve
sum-of-ratios problems with quadratic functions in the ratios.

The set of test examples was generated by the technique from [2]. The method
of generation was based on the Calamai’s and Vicente’s idea [29] to construct a
nonconvex quadratic problem with known local and global solutions and on the
reduction Theorem 1 to obtain fractional problem with quadratic functions in
the numerators and denominators of the ratios.

All computational experiments were performed on the Intel Core i7-4790K
CPU 4.0 GHz. All auxiliary convex (linearized) problems arising not only during
the implementation of the LSM for a d.c. constrained problem (Stage I of the
F-GSS) but also during the global search procedures for a d.c. minimization
problem (Stage II of the F-GSS) were solved by the software package IBM ILOG
CPLEX 12.6.2.

Table 1 shows the results of computational testing of the F-GSS and employs
the following denotations: n is the number of variables (problem’s dimension);
m is the number of terms in the sum; f(x0) is the value of the goal function of
Problem (FP) at the starting point x0; fglob stands for the value of the function
at the solution provided by the F-GSS; St is the number of critical points passed
by the algorithm; it-α is the number of variation of the parameter α in the F-
GSS; PL is the number of solved auxiliary (linearized) problems; T stands for
the CPU time; fM is the value of the goal function of Problem (FP) provided
by the fmincon solver of MATLAB.

The test problems (with known global solution) constructed with up to 100
variables and 1000 terms in the sum were successfully solved (see Table 1). We
got the global solution in all tests. At the same time, the fmincon solver of
MATLAB fails to find the global solution in all test problems (the starting point
was the same for both algorithms) and the gap was from 1% (n = 100, m = 70)
to 4.3% (n = 10, m = 10), and 1.8% on average.

Thus, we conclude that new computational results on solving of the sum-
of-ratios problems with quadratic functions in the ratios are rather promising.
The computational experiment showed that the algorithm developed for solving
fractional programs is quite efficient.
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Table 1. Results of computational testing of the F-GSS

n m f(x0) fglob St it -α PL T(hh:mm:ss) fM

10 10 12.412 10 3 62 742 00:00:00.96 10.444

10 20 24.184 20 4 87 984 00:00:01.27 20.747

10 30 36.600 30 3 135 1241 00:00:01.68 31.185

10 40 45.905 40 6 160 1967 00:00:02.68 41.055

10 50 59.338 50 5 163 1961 00:00:02.38 51.579

10 100 117.097 100 5 125 2171 00:00:03.00 102.925

20 10 10.985 10 7 73 2850 00:00:07.11 10.163

20 50 53.140 50 8 175 6853 00:00:17.13 50.923

20 100 109.900 100 7 216 6070 00:00:14.86 101.779

20 200 217.532 200 8 231 12648 00:00:33.45 203.212

20 300 331.148 300 8 437 18183 00:00:52.05 305.493

30 300 317.672 300 6 256 41390 00:02:58.92 303.219

30 400 429.763 400 8 501 36858 00:02:22.43 405.392

30 500 540.361 500 3 405 27851 00:02:48.37 507.485

30 600 648.150 600 7 477 134532 00:12:01.93 609.279

30 700 760.107 700 5 307 444514 00:59:51.79 711.176

30 800 843.491 800 4 498 674305 01:39:07.62 808.296

30 900 912.228 900 6 495 3691396 09:21:47.13 912.228

30 1000 1089.367 1000 3 500 2165762 06:25:22.73 1016.486

50 100 106.017 100 5 181 71973 00:11:37.92 101.043

50 200 213.638 200 7 276 56980 00:12:06.29 203.447

50 300 320.066 300 8 324 133878 00:25:20.29 303.882

50 400 429.090 400 6 298 85923 00:17:37.12 405.265

50 500 532.842 500 9 308 189331 00:42:18.27 506.385

50 1000 1059.655 1000 53 104 369255 01:38:07.78 1013.276

70 100 105.464 100 8 214 65055 00:22:52.85 102.133

70 200 210.726 200 8 226 188620 01:08:06.39 203.113

70 300 316.092 300 6 214 233466 01:32:50.30 303.042

70 400 425.458 400 6 214 115923 00:51:24.14 404.868

100 70 73.042 70 110 150 281305 03:26:19.46 70.693

100 90 95.764 90 6 181 139464 01:42:55.57 92.530

100 100 105.456 100 8 253 248367 04:47:31.88 101.156

7 Conclusions

In this paper, we showed how fractional programs with nonconvex quadratic
functions can be solved by applying the Global Search Theory for d.c.



126 T. V. Gruzdeva and A. S. Strekalovsky

optimization problems. Instead of considering a sum-of-ratios problem directly,
we developed an efficient global search algorithm, which is based on two
approaches. The first one adopts a reduction of the fractional minimization prob-
lem to the solution of an equation with an optimal value of the d.c. minimization
problem with a vector parameter. The second method is based on the reduc-
tion of the sum-of-ratios problem to the optimization problem with nonconvex
constraints.

The global search algorithm developed for fractional program was tested on
examples with nonconvex quadratic functions in the numerators and denomina-
tors of the ratios. The numerical experiments demonstrated that the algorithm
performs well when solving rather complicated sum-of-ratios problems with up to
100 variables or 1000 terms in the sum.
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