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Abstract. The Capacitated Vehicle Routing Problem (CVRP) is the
well-known combinatorial optimization problem having numerous prac-
tically important applications. CVRP is strongly NP-hard (even on the
Euclidean plane), hard to approximate in the general case and APX-
complete for an arbitrary metric. Meanwhile, for the geometric settings
of the problem, there are known a number of quasi-polynomial and even
polynomial time approximation schemes. Among these results, the well-
known QPTAS proposed by A. Das and C. Mathieu appears to be the
most general. In this paper, we propose the first extension of this scheme
to a more wide class of metric spaces. Actually, we show that the metric
CVRP has a QPTAS any time when the problem is set up in the metric
space of any fixed doubling dimension d > 1 and the capacity does not
exceed polylog (n).

1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) is one of the widely known
and actively studied combinatorial problems with numerous important appli-
cations in operations research [30]. To the best of our knowledge, the problem
was introduced by G. Dantzig and J. Ramser in their seminal paper [10], which
provided the first mathematical model of gasoline distribution over the network
of gas stations.

Since then, the field of the algorithmic design for the CVRP is developed in a
number of research directions. The first direction is based on a reduction of the
problem in question to some appropriate mixed-integer program and finding an
optimal solution of this program using some of the well-known branch-and-price
methods [12]. Recently, a significant success was achieved both in the develop-
ment of such algorithms and computational hardware [16,27]. Unfortunately,
due to the known strongly NP-hardness of the CVRP, instances of this problem
that are managed to be solved efficiently within this framework still remain quite
modest.
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A wide range of modern heuristic algorithms and metaheuristics makes up
the basis of the second research direction. To date, the most significant numeri-
cal results were obtained for local search algorithms [6], Tabu search [28], Vari-
able Neighborhood Search (VNS) [13], machine learning [24], evolutionary [31],
and bio-inspired algorithms [25], as well as their various combinations [9]. Often
heuristic algorithms demonstrate remarkable performance, yielding close to opti-
mal or even optimal solutions for CVRP instances of extremely large size. Nev-
ertheless, an absence of any theoretical guarantees implies additional computa-
tional expenses related to numerical performance evaluation and possible tuning
of their internal parameters during the transition to any novel class of instances.

The arguments above confirm the relevance of the third direction related
to the design of approximation algorithms with theoretical performance guar-
antees. It is known that CVRP is NP-hard in the strong sense, enclosing the
classic Traveling Salesman Problem (TSP), and remains intractable even on the
Euclidean plane [26]. The problem is hard to approximate in the general case
(provided P �= NP ), APX-complete for an arbitrary metric [5,15] even for an
arbitrary fixed capacity q ≥ 3.

Related Work. In the field of approximation algorithms with theoretical
bounds, the most significant results were achieved for the settings of CVRP in
finite-dimensional Euclidean spaces. All of them date back to the celebrated
papers by M. Haimovich and A. Rinnooy Kan [15] and S. Arora [4]. At the
moment, the most general result for the CVRP on the Euclidean plane is the
Quasi-Polynomial-Time Approximation Scheme (QPTAS) proposed by A. Das
and C. Mathieu [11]. For the planar CVRP with restricted capacity growth,
there are known a number of Polynomial-Time Approximation Schemes (PTAS),
among them, the algorithm [2] appears to be state-of-the-art. This PTAS allows
to find an (1 − ε)-approximate solution of the problem in polynomial time pro-
vided q ≤ 2logδ(ε)n. The approach proposed in [15] was extended to several
modifications of the problem including the CVRP settings in Euclidean spaces
of an arbitrary fixed dimension [17,22,23], additional time windows constraints
[19,20], and heterogeneity of demand [21].

Thus, until now, the class of metric CVRP instances approximable by PTAS
or QPTAS was exhausted by the Euclidean settings of the problem except maybe
some special cases investigated in [8,18]. For a long time, the similar theoretic gap
remained for a the very close Traveling Salesman Problem, until the pioneering
papers by K. Talwar [29], and Y. Bartal et al. [7] providing an opportunity for
the extension of famous Arora’s PTAS [3] to the universe of metric spaces of a
fixed doubling dimension. In this paper, we try to bridge a similar gap for the
metric Capacitated Vehicle Routing Problem.
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Our Contribution. The contribution of this paper is twofold.

(i) we show that the approach proposed by Das and Mathieu for the efficient
approximation of the Euclidean CVRP can be extended to a significantly
wider class of metric CVRP settings. We prove that this framework com-
bined with recent approximation results obtained for the metric TSP, for
any given ε > 0, provides a (1 + O(ε))-approximate solution for the CVRP
formulated in a metric space of an arbitrary fixed doubling dimension d > 1.

(ii) nevertheless, broadly speaking, the approximation scheme obtained by the
straightforward application of the Das and Mathieu framework is no longer
a QPTAS in general metric space of a fixed doubling dimension, even for
an arbitrary fixed capacity q > 2. Therefore, in this paper, we introduce
a refinement of their algorithm by replacing the stage of exhaustive search
with our internal dynamic program, such that the resulting scheme becomes
a QPTAS again, at least for q = polylog n.

The rest of the paper is structured as follows. In Sect. 2, we recall the state-
ment of the metric CVRP. Then, in Sect. 3 we overview some basic notation
regarding the metrics of a fixed doubling dimension. Main results of the paper
are presented in Sect. 4 and Sect. 5. In particular, Sect. 4 deals with approxima-
tion properties of the proposed scheme, whilst, in Sect. 5, we present an upper
bound of its running time. Finally, Sect. 6 summarizes the work and provides a
short overview of some questions that still remain open.

2 Problem Statement

The Capacitated Vehicle Routing Problem (CVRP) can be formulated informally
as follows. We are given by a set of customers X, each of them has a unit demand
on some homogeneous commodity. All the customer’s demand should be serviced
by identical vehicles of a fixed capacity q located initially at the given depot y.
The problem is to construct a minimum cost family of cyclic routes servicing
the total customer demand, each of them departs from and arrives at the depot
y and satisfies the capacity constraint.

For the sake of convenience, we give a mathematical statement of a slightly
more general problem, where each customer is free to have a non-unit integer
demand, which can be split between several routes. In the literature, this prob-
lem is referred to as the Capacitated Vehicle Routing Problem with Splittable
Demand (CVRP-SD).

An instance of the CVRP-SD is given by a complete weighted graph G =
(X ∪ {y}, E,D,w) and a natural number q. Here, X = {x1, . . . , xn} is a set
of customers, y is a depot, the non-negative weighting function D : X → Z+

specifies customer demand, the symmetric weighting function w : E → R+, to
any couple of nodes {u, v} ⊂ X ∪ {y}, assigns the transportation cost w(u, v)
related to the direct transition along the edge {u, v} ∈ E, and q is an upper
vehicle capacity bound.
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A route is an ordered pair R = (π, SR), such that π = y, xi1 , . . . , xit
, y is a

cycle in the graph G and the function SR : X → Z+ defines a distribution of the
serviced customer demand. For the route R, its cost w(R) is defined as follows

w(R) = w(y, xi1) + w(xi1 , xi2) + · · · + w(xit−1 , xit
) + w(xit

, y).

The route R is called feasible, if

SR(x)

{
≤ D(x) for any x ∈ {xi1 , . . . , xit

},

= 0, otherwise
and

∑
x∈X

SR(x) ≤ q.

The goal is to construct the cheapest family S of feasible routes, which
services the total customer demand

w(S) ≡
∑
R∈S

w(R) → min

s.t.
∑
R∈S

SR(x) = D(x) (x ∈ X).
(1)

Obviously, a statement of the classical CVRP can be obtained by restriction
of the above setting with the additional constraint D(x) ≡ 1.

If the function w satisfies the triangle inequality, i.e. w(v1, v2) ≤ w(v1, v3) +
w(v3, v2) holds for any subset {v1, v2, v3} ⊂ X ∪ {y}, the instance of CVRP is
called metric. In this case, nodes of the graph G are called points, w(u, v) is
referred to as a distance between the points u and v, and the cost w(R) of an
arbitrary route R is called its length.

In this paper, we consider the metric CVRP restricted as follows:

(i) the ordered pair (Z, ρ), where Z = X ∪ {y} and the metric ρ|E ≡ w, is a
finite metric space of some fixed doubling dimension d > 1;

(ii) the vehicle capacity bound q does not exceed polylog n.

Hereinafter, we do not distinguish the weight function w and the correspond-
ing metric ρ and use the notation CVRP(Z,w, q) and CVRP∗(Z,w, q) for the
instance specified by the graph G = (X ∪ {y}, E,w) and capacity q and its
optimum value, respectively1.

3 Metric Spaces of a Fixed Doubling Dimension

For the subsequent constructions, we need to recall some definitions and prelim-
inary technical results.

Suppose we are given by some metric space (Z, ρ). For any z0 ∈ Z and a
number R ≥ 0, the set B(z0, R) = {z ∈ Z : ρ(z0, z) ≤ R} is called a metric ball
of a radius R centered at the point z0 ∈ Z.
1 And the notation CVRP-SD(Z, D, w, q) and CVRP-SD∗(Z, D, w, q) for the case of

CVRP-SD as well.
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Definition 1 (see, e.g [1]). For a number d > 1, the space (Z, ρ) is referred
to as a metric space of the fixed dimension d, if, for an arbitrary z0 ∈ Z and
R > 0, there exist points z1, . . . , zM ∈ Z, such that

B(z0, R) ⊆
M⋃

j=1

B(zj , R/2) and M ≤ 2d.

It is easy to verify that, for any d ≥ 1 and p ≥ 1, the space ldp is a metric space of
doubling dimension O(d). On the other hand, there are known many metrics of
a fixed dimension that appear to be very far from the finite-dimensional numeric
spaces (see, e.g. [14]).

Next, let Z ′ ⊂ Z be an arbitrary nonempty subspace of the space Z (of
doubling dimension d). By Δ = Δρ(Z ′) = sup{ρ(u, v) : u, v ∈ Z ′} and α =
αρ(Z ′) = inf{ρ(u, v) : {u, v} ⊂ Z ′} we denote an upper and a lower bounds for
the distances between the distinct points in Z ′, respectively.

Lemma 1 ([29]). Let 0 < α ≤ Δ < ∞. Then, the subspace Z ′ is finite and

|Z ′| ≤
(

2Δ

α

)d

.

In this paper, we restrict ourselves to finite metric spaces induced by complete
weighted graphs G = (Z,E,w). Let, further, U ⊂ Z be an arbitrary nonempty
node subset of the graph G, MST(U) be the minimum spanning tree for the
induced subgraph G〈U〉, and R = R(U) be a radius of the minimal ball (centered
at some point z ∈ Z) enclosing the subset U .

Lemma 2.
w(MST(U)) ≤ 12R · |U |1−1/d. (2)

4 Extended Das and Mathieu Approximation Scheme

In this section, we show that the well-known QPTAS proposed by A. Das and
C. Mathieu [11] for the Euclidean CVRP can be extended to the case of metric
spaces of any fixed doubling dimension d > 1. Supplementing the main idea of
their scheme with the technical results underlying the recent PTAS of Y. Bartal
et al. [7] for the metric TSP formulated in such spaces, we propose an algorithm
that, for an arbitrary 0 < ε < 1/8 finds a (1 + O(ε))-approximate solution of
the CVRP in a metric space of any doubling dimension d > 1. On the other
hand, we show that the resulting algorithm, generally speaking, ceases to be a
QPTAS, even for a fixed capacity q. Further, in Subsect. 4.5, we propose a novel
version of Das and Mathieu scheme and show that its complexity bound is quasi
polynomial, provided q = O(polylog n).

Similarly to the original scheme, our algorithm consists of several consecutive
stages, as follows:
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(i) Preliminary processing and accuracy driven rounding. At this stage,
given by ε > 0, to the instance in question, we assign an auxiliary instance
of more simple structure, called rounded, such that an arbitrary (1 + ε)-
approximate solution of this instance can be transformed efficiently to the
appropriate (1 + O(ε))-approximate solution of the initial problem.

(ii) Randomized hierarchical clustering. Given by values of random
parameters, at this stage, we construct a number of mutually nested parti-
tions of the set X ∪ {y}. Then, in each cluster located at any level of the
resulting hierarchy, we point out some number of special points (we call
them portals). Following to the approach proposed in [29], we show that,
for any rounded instance, there exist (1 + ε)-approximate solutions, each
their route crosses any cluster at most r times (for some number r, which
will be defined later) and at portals exclusively. Such routes are referred to
as net-respecting and r-light (see, e.g. [7]).

(iii) Dynamic Programming and Iterated Tour Partition. At this stage,
following [11], we allow some routes of the constructed solutions (we call
them relaxed) slightly violate the capacity constraint. Then, to obtain a
required feasible approximate solution,

(a) we apply dynamic programming to find a relaxed net-respecting and r-
light solution minimizing some especially penalized objective function

(b) applying a randomized rank procedure for the demand covered by the
routes of the solution obtained, we ensure that each route covers at most
q demand units of the highest rank; following to [11], we call such units
black

(c) all other units (we call them red) are excluded from these routes and
covered separately, by the additional routes constructed using the well-
known Iterated Tour Partition (ITP) heuristic [15]

(d) thus, we obtain two partial solutions Sblack and Sred, such that their
combination is a feasible solution to the problem in question.

Finally, we show that the expected cost of this combined solution over
random clustering and demand ranking fulfils the following equation

E(w(Sblack) + w(Sred)) = (1 + O(ε)) · CVRP∗(Z,w, q).

(iv) Derandomization. Relying on the arguments from [11] and [29], we show
that the proposed algorithm admits polynomial time derandomization.

4.1 Accuracy Driven Rounding

This stage dates back to the classic PTAS proposed by S. Arora for the Euclidean
TSP [3]. As above, let Δ = Δw(Z) = max{w(u, v) : u, v ∈ Z = X ∪ {y}} be the
diameter of the set Z. Without loss of generality, we assume that Δ = n/ε.
Indeed, otherwise, to the initial instance CVRP(Z,E,w), we can easily assign
an equivalent (in terms of optimality sets) scaled instance CVRP(Z,E,w′) with
the following weighting function: w′(u, v) = w(u, v) · n

ε·Δ .
We define the desired rounded instance in terms of metric nets.
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Definition 2. A subset N ⊆ Z is called a δ-net in the metric space (Z, ρ) for
some given δ > 0, if the following conditions holds

(i) for any u ∈ Z, there exists v = v(u) ∈ N , such that ρ(u, v) ≤ δ;
(ii) for an arbitrary distinct points v1, v2 ∈ N , the distance ρ(v1, v2) > δ.

Let N ′
1 = {ξ1, . . . , ξJ} be an arbitrary 1-net of the set X. Assuming N1 =

N ′
1 ∪ {y}, to the initial instance CVRP(Z,w, q), we assign the rounded one

CVRP-SD(N1,D,w1, q) as follows:

(i) breaking tights arbitrarily, we define a mapping ξ : X → N ′
1 such that

w(x, ξ(x)) ≤ 1 holds for any x ∈ X;
(ii) to any node ξj ∈ N ′

1, we assign the accumulated customer demand D(ξj) =
|ξ−1(ξj)|;

(iii) as new weighting function w1, we take a restriction w|N1 of the function w
to the set N1 ⊂ Z.

Lemma 3 establishes a close relation between optimum values of the initial and
rounded instances.

Lemma 3.

CVRP∗(Z,w, q) − 2n ≤ CVRP-SD∗(N1,D,w1, q) ≤ CVRP∗(Z,w, q) + 2n.

Notice that the procedures required for construction of the net N
′
1 as well as

the ones for assigning to the initial CVRP(Z,w, q) its rounded instance CVRP-
SD(N1,D,w1, q) and finally the reconstruction of solution S according to solu-
tion S̄ could be done in polynomial time.

As a simple corollary, we show that an arbitrary approximate solution of
CVRP-SD(N1,D,w1, q) corresponds to the suitable approximate solution of the
initial CVRP(Z,w, q).

Corollary 1. For any (1 + ε)-approximate solution of CVRP-SD(N1,D,w1, q)
can be transformed efficiently to an appropriate (1+O(ε))-approximate solution
of CVRP(Z,w, q).

Thus, in the sequel, without loss of generality, we assume that we a given by
a rounded instance.

4.2 Randomized Hierarchical Clustering

Following to [5], we fix a number s ≥ 6 and put L = �logs Δw(Z)� = O(log n −
log ε). Then, for each l = 0, 1, . . . , L+1, we fix an arbitrary sL−l-net N(l) of the
set Z. Without loss of generality, assume that N(l) ⊂ N(l+1) for any 0 ≤ l ≤ L.
Notice, that the net N(L + 1) = Z, whilst the net N(0) is a singleton.

In the following, we construct a randomized hierarchical clustering of Z by
induction on level l = 0, . . . , L + 1 as proposed in the paper [29].

We start with level l = 0, where we have a single cluster C0
1 . Further, let

Z = Cl
1 ∪ Cl

2 . . . ∪ Cl
K be a clustering at the level l < L. To proceed with the

clustering at level l + 1, we partition each cluster Cl
j separately, applying the

following simple procedure



56 M. Khachay et al.

(i) pick a random permutation σ of the sL−(l+1)-net N(l+1) = {h1, . . . , htl+1};
(ii) to an arbitrary hσ(i) ∈ N(l + 1), assign a number μ picked uniformly at

random in [1, 2);
(iii) define a subset Cl+1

ji by the formula

Cl+1
ji = B

(
hσ(i), μ · sL−(l+1)

)
∩ Cl

j \
i−1⋃
k=1

Cl+1
jk ;

(iv) construct a partition of the cluster Cl
j from all non-empty subsets Cl+1

ji .

where μ is an arbitrary value of uniform distribution on [1, 2). Finally, we obtain
the resulting clustering of the set Z at level l + 1 by combining individual par-
titions for all clusters Cl

j .
By construction, at level L + 1, all the clusters are singletons, while, at level

l = 0, we have the only cluster C0
1 . Thus, the total number of clusters is at most

(n + 1) · (L + 1) = O(n(log n − log ε)).
For the further constructions, we need to introduce a special type of routes.

Definition 3. A route R = (π, SR) is called net-respecting relatively to a given
hierarchy N(l), l = 0, 1, . . . , L+1 and value ε > 0, if, for an arbitrary edge {u, v}
of the cycle π, both its endpoints belong to N(l), such that

sL−l ≤ ε · ρ(u, v) < sL−l+1.

We say that a route R = (π, SR) crosses the boundary of some cluster Cl
j

at level l > 0, if π contains an edge {u, v}, such that |{u, v} ∩ Cl
j | = 1. In the

following, we introduce a special type of the net-respecting routes, each of them
is restricted to cross the boundary of any cluster not too often and at portals
exclusively.

Definition 4. Let M be some degree of s, for which

M

s
≤ dL

ε
< M. (3)

We call a portal an arbitrary point from Cl
j ∩ N(l + logs M).

Applying Lemma 1 we obtain the following upper bound for the number m of
portals of any cluster Cl

j .

m ≤
(

2
4sL−l

sL−l/M

)d

= (8M)d = O

((
d · (log n − log ε)

ε

)d
)

. (4)

Definition 5. A route R crossing the boundary of any cluster Cl
j at most r

times, is called r-light.

The main result of Subsect. 4.2 is the following Structure Theorem.
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Theorem 1. Let r = m and d > 1. For any fixed ε ∈ (0, 1/8) and an arbi-
trary feasible solution S of CVRP(Z,E,w), there exists an appropriate feasible
solution S̃ consisting of net-respecting and r-light routes, such that

E(w(S̃)) = (1 + O(ε))w(S),

where the expectation is made over the random hierarchical clustering.

As it follows from Theorem 1, any time, when we need to find an approximate
solution of the initial problem, we can restrict ourselves to the solutions consist-
ing of net-respecting and r-light routes exclusively. In the sequel, we call such
solutions net-respecting and r-light as well.

4.3 Demand Ranking and Relaxed Solutions

The aforementioned approach relying upon the minimization of total transporta-
tion cost in the class of net-respecting and r-light solutions yields a number of
seminal approximation results for intractable routing problems, including the
well-known Arora’s PTAS for the Euclidean TSP [3] and its extension to metric
spaces of a fixed doubling dimension [7]. Unfortunately, it is well-known that, for
the CVRP, this approach results in tremendously time expensive algorithms. In
this subsection, following to the main idea of the paper [11], we outline another
approach that leads us to really efficient approximation algorithms based on a
concept of relaxed solutions.

We start with some necessary definitions and notation. Consider a net-
respecting route R that enters and leaves the cluster Cl

j (located at some level
l > 0) at portals pin and pout respectively. We call an arbitrary maximal by
inclusion fragment

σ = pin, xi1 , . . . , xik
, pout, (5)

which entirely belongs to the cluster Cl
j , a crossing segment of the route R with

respect to the cluster Cl
j (or just a segment).

Definition 6. Let Λ = �log1+ε/(L+1)(qε)+1/ε�. Numbers ti, i = 1, Λ are called
rounding thresholds for covered customer demand, if

ti =
{

i for all i = 1, . . . , �1/ε�
ti−1(1 + ε/(L + 1)) otherwise.

Next, we proceed with ranking of customer demand. We assume that each
unit of the demand has an integer rank from the range 0, 1 . . . , L + 1. Each cus-
tomer can have demand units of different ranks. An arbitrary demand unit can
be either active or non-active depending on its rank and level of the considered
enclosing cluster. Namely, a demand unit of rank r is called active with respect
to any enclosing cluster located at level l > r (otherwise, this unit is called
inactive). By convention, demand units of rank 0 are active at any level.

A segment σ is called rounded inside the cluster Cl
j , if it covers exactly t

active demand units for some threshold t. Otherwise, σ is called unrounded.
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Definition 7. A set of tours S is called a relaxed solution if it covers the total
customer demand and there exists an assignment of ranks for all demand units,
such that

(i) each route R ∈ S covers at most q units of the rank 0;
(ii) if a route R covers exactly t units of active demand at level l, then at level

l + 1, it covers at most t(1 + ε/(L + 1)) such units;
(iii) for any route R ∈ S, if the number of its segments crossing some cluster

C exceeds γ =
(

L+1
ε

)2d
, then all these segments are rounded. Otherwise, all

of them are unrounded.

In the following, we call any relaxed solution S that is also net-respecting and
r-light a structured solution. Such solutions are essential point of our approach.
Given a random hierarchical clustering, we find a structural solution minimizing
the following auxiliary objective function

F (S) =
∑
R∈S

w(R) +
ε

L + 1

∑
R∈S

L+1∑
l=1

c(R, l) · sL−l, (6)

where, for any route R ∈ S, c(R, l) is the number of crossings the boundaries
of all clusters at level l.

Notice that with respect to feasible solutions the initial objective function
w(S) and the introduced above function F behave quite similarly.

Theorem 2. The hypothesis of Theorem 1 implies

E(F (S̃)) = (1 + O(ε))w(S),

where the expectation is made over the random hierarchical clustering.

Let, further, for a given random clustering, SDP be a minimizer of the func-
tion F in the class of structured solutions2. To address the possible infeasibility
of SDP , we introduce a random ranking of the customer demand by Algorithm 1.

Given by a demand ranking, we color each demand unit of the rank 0 in black
and all other units in red. After that, we transform the solutionSDP to the partial
solutionSblack by exclusion all the red units. Then, we employ the ITP heuristic to
find an approximate CVRP solution Sred that covers the remaining red demand.
Obtain upper bounds for E(w(Sblack)) and E(w(Sred)) individually. Indeed, by
definition of the function F , for any fixed hierarchical clustering,

w(Sblack) ≤ F (Sblack) ≤ F (SDP ) ≤ F (S̃∗),

where S̃∗ is the net-respecting and r-light feasible solution associated with an
arbitrary optimal solution S∗ of the initial problem, whose existence is guaran-
teed by Theorem 1. The right-most inequality is valid, since S̃∗ is a structured
solution, by Lemma 5 from [11]. Then, by Theorem 2, we obtain

E(w(Sblack)) ≤ E(F (S̃∗)) = (1+O(ε))w(S∗) = (1+O(ε))CVRP∗(Z,w, q), (7)
2 In Sect. 4.4, we provide a dynamic programming algorithm, which finds such a solu-

tion for any given random clustering.
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Algorithm 1. Demand Ranking Algorithm
Input: a structured solution SDP with respect to some random hierarchical clustering
Output: ranking of all units of demand

1: initialize rank of each unit of demand by 0
2: for all level l from L + 1 to 0 do
3: for all cluster Cl

j crossed by more than γ segments do
4: for all segment σ crossing the cluster Cl

j do
5: Let a be the number of active demand units covered by the segment σ and

t be the largest threshold, such that t ≤ a.
6: Pick an active demand unit at random and a − t − 1 consecutive units

(wrapping around to the start of σ if necessary) and assign to them the
rank l.

7: end for
8: end for
9: end for

where the expectation is taken over random clustering. The latter upper bound
is given by Lemma 4.

Lemma 4. For an arbitrary clustering and the expected value of w(Sred) over
random ranking of the demand, the following equation

E(w(Sred)) = O(ε) · (F (SDP ) + CVRP∗(Z,w, q)) (8)

is valid.

Finally, relying on Eq. (7), Lemma 4, and Theorem 2, we easily obtain the main
result of this subsection.

Theorem 3. Let an instance of the CVRP be given in a metric space of a fixed
dimension d > 1 and r = m. Then, for any ε ∈ (0, 1/8), Das and Mathieu
randomized scheme provides an approximate solution Sblack ∪ Sred, such that

E(w(Sblack) + w(Sred)) = (1 + O(ε))CVRP∗(Z,w, q),

where the expectation is taken over random clustering and ranking of the demand.

The obtained results shed new light on the approximation of the Capaci-
tated Vehicle Routing Problem formulated in metric spaces of a fixed dimension.
Actually, Theorem 3 implies that any structured solution SDP minimizing the
auxiliary objective function F can be transformed into a required approximate
solution of the given problem. Furthermore, as it follows from the seminal paper
[15], such post-processing can be carried out in polynomial time. In the sequel,
we develop an efficient procedure for finding such structured solutions.

4.4 Baseline Dynamic Programming

In this section, we present a short overview of our adaptation of the initial Das
and Mathieu dynamic programming algorithm to the case of metric spaces of a
fixed doubling dimension.
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We start with some necessary notation. We encode an arbitrary crossing
segment (5) by a tuple (pin, pout, s,d), where s is the amount of covered active
demand units and d indicates whether this segment should visit the depot y.

Given by a fixed hierarchical clustering, we index entries of the lookup table
of our dynamic program by couples (C,C), where C is a cluster and C is a
configuration defining behavior patterns for all segments crossing the boundary
of the cluster C. Depending on the number of segments described, we distinguish
two kinds of configurations, unrounded and rounded.

An unrounded configuration is just a finite sequence

((pin
ν , pout

ν , sν ,dν) : ν = 1, ku)

of at most γ tuples, each of them represents a single unrounded crossing segment.
On the other hand, a rounded configuration is set of ordered pairs

{(sν ,mν) : ν = 1, kr}, sν1 �= sν2 ,

each of them defines a common behavior pattern sν = (pin
ν , pout

ν , tν ,dν) for
exactly mν rounded segments. Namely, all such segments should enter and leave
the cluster in portals pin

ν and pout
ν respectively, cover tν units of active demand

exactly (for some threshold tν), and visit the depot according to the value of dν .
To define the concept of a feasible lookup table entry, we need some techni-

cal notation. A family Σ of segments crossing the boundary of some cluster C
augmented by a number of routes enclosed within this cluster is called a partial
relaxed solution for the cluster C, if this family covers all the customer demand
in this cluster and fulfills conditions (i), (ii), and (iii) enlisted in Definition 7
(with respect to this cluster).

Definition 8. An entry (C,C) is called feasible, if there exists a partial relaxed
solution Σ = Σ(C), such that

(i) if C is unrounded, then all the segments of Σ are unrounded and are too,
s.t. there exists a one-to-one correspondence between them and the entries
of the configuration C;

(ii) otherwise, if C is rounded, then the family Σ is partitioned into kr subfam-
ilies, such that the ν-th subfamily consists of mν rounded crossing segments
sharing the same behavior pattern sν .

As usual, the lookup table entries are computed bottom-up. The base case
corresponds to the level L+1, where all the clusters are singletons. Thus, all the
entries can be computed trivially.

To proceed with the recurrence, assume that all the entries for the levels
l + 1, . . . , L + 1 are calculated. Fix an arbitrary cluster Cl

j and try to compute
the entry (Cl

j ,C) for some configuration C. By the given clustering, we have a
partition Cl

j = Cl+1
j1 ∪ . . . ∪ Cl+1

jK for some K = 2O(d). Guided by the approach
proposed in [11], to compute the entry (Cl

j ,C), it is necessary to employ the
two-stage exhaustive search as follows:
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Stage (i) to enumerate all the combinations

((Cl+1
j1 ,C1), . . . , (Cl+1

jK ,CK)) (9)

of the computed already entries induced by the child subclusters;
Stage (ii) for any given combination (9), enumerate all the ways to stitch child

configurations to fulfill the initial configuration C. Any time when such a
stitching is possible, the record value of the function F is updated.

Thus, the entry (Cl
j ,C) is filled by the resulting record value, if such a value was

updated at least once. Otherwise, the entry is set to be infeasible and excluded
from the consideration. To obtain the desired structured solution SDP minimiz-
ing the objective function F , it is sufficient to compute the only entry (C0

1 ,C)
at level 0 for the empty configuration C.

The point is that although, for the finite dimensional Euclidean spaces con-
sidered by Das and Mathieu, Stage (ii) can be calculated efficiently, in metric
spaces even of a fixed doubling dimension, its running time is no longer quasi-
polynomial.

Indeed, at Stage (ii), the calculations are specified in terms of concatena-
tion profiles and interface vectors. A concatenation profile defines the stitching
order for any single segment crossing the boundary of the cluster Cl

j (or a route
contained in it).

Namely, a finite sequence of tuples ϕ = ((pin
k , pout

k , xk,dk) : k = 1, θϕ) is
called a concatenation profile, if, for each j-th tuple,

(i) pin
k and pout

k are some child portals
(ii) xk is either a threshold or a natural number from [1, γ]
(iii) dk indicates whether depot should be visited.

In turn, each entry of an interface vector specifies the number of times when
some concatenation profile is used during the stitching procedure. By definition,
an interface vector has the form I = (n1, . . . , n|Φ|), where ni ∈ [0, n · r] and Φ is
the number of all possible concatenation profiles. Since, by construction, |Φ| =
(log n)Ω(r), the number of distinct interface vectors enumerated at Stage (ii) is
at least

(nr)|Φ| = (nr)(log n)Ω(r)
. (10)

Evidently, the lower bound (10) is not quasi-polynomial for an arbitrarily
slowly increasing function r = r(n). Therefore, we cannot claim that the afore-
mentioned algorithm retains quasi-polynomial running time bound in metric
spaces of a fixed doubling dimension, even for any fixed q > 2, since at the
moment no structure theorems are known for such spaces, proved for a constant
r (see, e.g. [7]).

In the following subsection, we propose our modification of this scheme,
where, at Stage (ii) of the recursive step, the exhaustive search for the opti-
mal interface vector is replaced with an internal dynamic program, such that
the resulting scheme becomes QPTAS again, at least for q = polylog n.
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4.5 Our Improvement

For the sake of brevity, we restrict ourselves on the special case, where the cluster
Cl

j contains no depots and all the configurations C = {(si,mi) : i = 1, kC} and
Cu = {(su

v ,mu
v ) : v = 1, ku} for u ∈ {1, . . . , K} are rounded3.

Then, to match the configuration C with child configurations C1, . . . ,CK ,
we need to assign to each si a sequence Φi = (ϕi,1, . . . , ϕi,mi

) of not necessary
distinct concatenation profiles, such that

(i) each profile ϕi,j consists of tuples su
v only;

(ii) any tuple su
v is contained in the profiles mu

v times in total;
(iii) for any tuple si = (pin

i , pout
i , ti,di), the following inequality

ti ≤ Dϕi,j
< ti

(
1 +

ε

L + 1

)

holds, where Dϕi,j
is the total active demand covered by the profile ϕi,j ;

(iv) their total cost
kC∑
i=1

mi∑
j=1

cost(ϕi,j) → min, (11)

such that, for any profile ϕ = ((pin
k , pout

k , xk,dk) : k = 1, θ),

cost(ϕ) =
θ−1∑
k=1

ρ̃(pout
k , pin

k+1) +
2θ · ε

L + 1
· sL−l−1, (12)

where

ρ̃(pout
k , pin

k+1) =

{
ρ(pout

k , pin
k+1), if pout

k and pin
k+1 satisfy Definition 3,

+∞, otherwise.

Notice, that criterion (11) and the reduced costs (12) of concatenation pro-
files can be obtained straightforwardly from the auxiliary objective function (6).
Indeed, for any given configuration C and child configurations C1 . . . ,CK , thanks
to condition (ii), the total cost of all child subsegments is constant and does not
depend on profiles ϕi,j . Therefore, we exclude it from (11) and (12).

Further, notice that each concatenation profile ϕi,j to be constructed can
have its own size θϕi,j

fulfilling the condition θϕi,j
≤ K · r, since the resulting

solution is r-light. To ensure that each profile has the same size r̄ = K · r, we
pad it by enough copies of the dummy tuple σ0. Further, we introduce the set

S̄ = {σ0} ∪
K⋃

u=1

{su
1 , . . . , su

ku
} = {σ0, σ1, . . . , σK}, K =

K∑
u=1

ku

3 The general case can be treated similarly, we postpone its consideration to the forth-
coming paper.
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containing all the tuples su
v from the child configurations augmented by the

dummy tuple σ0,
By a resource matrix, we call any three-dimensional matrix A of size [kC ×

(K + 1) × r̄], whose entry ap
i,ν specifies how many times the tuple σν is used in

concatenation profiles Φi at position p. For any fixed i, we call the submatrix
Ai = ‖ap

i,ν‖, where p = 1, r̄ and ν = 0,K, the i-th resource row.
Our Algorithm 2 comes as a replacement of Stage (ii) of the initial Das and

Mathieu scheme. Skipping the rigorous definition of such a compatibility, we
illustrate it by the simple example (see Example 1). Its main idea is based on
the construction of a minimum cost family of concatenation profiles Φi compatible
with any given resource row Ai.

Example 1. A family of concatenation profiles Φi compatible with the resource
row Ai for K = 3, mi = 5, and S̄ = {σ0, . . . , σ3}

Ai
�

��σ
p

1 2 . . .

0 0 1
1 2 1
2 3 1
3 0 2

Φi =

⎡
⎢⎢⎢⎢⎣

(σ1, σ2, . . .)
(σ1, σ3, . . .)
(σ2, σ1, . . .)
(σ2, σ3, . . .)
(σ2, σ0)

⎤
⎥⎥⎥⎥⎦

Algorithm 2. Our ‘Stage (ii)’
Input: a parent cluster Cl

j with associated configuration C and the child DP table
entries (Cl+1

1 ,C1), . . . , (C
l+1
K ,CK)

Output: the minimum value of the objective function F for the given configurations
C,C1, . . . ,CK

1: for each resource matrix A do
2: check the validity of the feasibility constraints

∑K
ν=0 ap

i,ν = mi, (p = 1, r̄, i =

1, kC) and miti ≤ ∑r̄
p=1

∑K
ν=1 ap

i,ν · tν < miti

(
1 + ε

L+1

)
, (i = 1, kC)

3: if the matrix A is feasible then
4: for each i ∈ {1, . . . , kC} do
5: employ the Internal Dynamic Program (Algorithm 3) to obtain the min-

imum cost family Φi of mi concatenation profiles compatible with Ai (or
show that it is impossible)

6: end for
7: if all Φi are constructed then
8: sum up their costs and update the record
9: end if

10: end if
11: end for
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Internal Dynamic Programming Algorithm. The goal of the algorithm
is to construct a family of the minimum total cost (induced by the objective
function F ), which consists of mi segments crossing the boundary of the cluster
Cl

j , each of them corresponds to the behavior pattern si. Every such a segment
is stitched from the child subsegments (defined by the patterns σν ∈ S̄) in
accordance to some concatenation profile ϕi,j ∈ Φi. For the sake of simplicity, in
the sequel, we do not distinguish such segments and the concatenation profiles
that specify them and call the desired family Φi as well.

We construct the desired family Φi by recursion on the position p in concate-
nation profiles. Each entry of the internal dynamic programming lookup table
is indexed by a couple (p,Hp), where p = 1, . . . , r̄ indicates the current position,
and the matrix Hp = ‖hp

ν,c‖, ν = 0,K, c = 0, q specifies terminal constraints on

a family Φ
(p)
i of mi partial concatenation profiles of length p.

Actually, each entry hp
ν,c of the matrix Hp denotes the number of such profiles

(in this family), that cover exactly c units of active demand in total and have
the same tuple σν at position p. A matrix Hp is called compatible with the p-th
column of a resource Ai, if

∑q
c=0 hp

ν,c = ap
i,ν is valid for any ν = 0,K. In addition,

Hr̄ is compatible if and only if, for any ν, hr̄
ν,c > 0 implies c ∈ [ti, ti(1+ε/(L+1))).

Notice, that for any given resource row Ai, the sum of terms penalizing for
crossings all the boundaries of the child subclusters (at level l + 1) is fixed and
does not depend on Φi. Therefore, we can restrict ourselves to the minimization
of the stitching costs for child subsegments only.

Thus, we define our reduced internal objective function F̃ as follows. Let
Φ
(p)
i be a family of partial concatenation profiles ϕ

(p)
i,1 , . . . , ϕ

(p)
i,mi

, each of them

consists of p tuples. Then, F̄ (Φ(p)
i ) =

∑mi

j=1 cost(ϕ(p)
i,j ), where, for any partial

profile ϕ(p) = (σi1 , . . . , σip
), its reduced cost is defined by

cost(ϕ(p)) =
p−1∑
k=1

conn(σik
, σik+1) =

p−1∑
k=1

ρ̃
(
pout(σik

), pin(σik+1)
)
.

Further, the Bellman function D̄ takes the form

D̄(p, Hp) = min{F̄ (Φ
(p)
i ) : Φ

(p)
i satisfies the constraints imposed by the matrix Hp}.

Thus, to define the Bellman equation, we introduce a special kind of matrices,
establishing relationships between any pair of consecutive entries (p − 1,Hp−1)
and (p,Hp). We call a three-dimensional matrix X = ‖xc

ν1,ν2
‖, c = 0, q, ν1, ν2 =

1,K a transition matrix for some entries (p − 1,Hp−1) and (p,Hp), if xc
ν1,ν2

coincides with the number of partial concatenation profiles, that cover exactly c
units of active demand in total, and have the same tuples σν1 and σν2 at positions
p − 1 and p, respectively. By construction, any transition matrix satisfies the
following evident constraints

K∑
ν1=1

xc
ν1,ν2

= hp
ν2,c, (ν2 = 1,K),

K∑
ν1=0

xc
ν1,0 = hp

0,c. (13)
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Algorithm 3. Internal Dynamic Program
Input: a resource row Ai.
Output: a family Φi of concatenation profiles compatible with Ai and minimizing the
function F̄ .

1: base case: the only feasible entry (1, H1), where h1
ν,c =

{
a1

i,ν , if ν > 0, c = tν

0, otherwise

and D̄(1, H1) = 0
2: recursive step: assume that all feasible entries are computed for any p′ < p
3: for each Hp compatible with the p-th column of the resource row Ai do
4: apply the Bellman equation to compute an entry (p, Hp)

D̄(p, Hp) = min
X=‖xc

ν1,ν2
‖
{D̄(p − 1, Hp−1(X)) +

K∑

ν1=1

K∑

ν2=1

q∑

c=0

xc
ν1,ν2conn(σν1 , σν2)},

(14)

where the minimization is carried out over feasible entries (p−1, Hp−1(X)) only.
If at least one such an entry is found, then the result is stored in (p, Hp)

5: end for
6: if there are no feasible entries (r̄, Hr̄) or inf{D̄(r̄, Hr̄)} = ∞ then
7: output ‘no profile families compatible with Ai’.
8: else
9: the cost of the desired family Φi is contained within the entry

(r̄, H∗
r̄ ) = arg min{D̄(r̄, Hr̄)}. (15)

10: output the optimal solution Φi, which can be obtained from (15) by backtracking.
11: end if

5 Complexity Bounds

In this section, we find an upper bound for the time complexity of the proposed
scheme. First of all, we evaluate the maximum size of the lookup table for the
master (Das and Mathieu) dynamic program. The total amount of all clusters
is at most O(n log n). Then, to each cluster, we have at most (2m2q)γ and
(n · r)2m2L log q options to assign an unrounded and a rounded configuration
respectively. Therefore, an upper bound for the size of this lookup table is

O(n log n)Cmax, where Cmax = (n·r)2m2L log q+(2m2q)γ = O
(
(n · r)2m2L log q

)
.

Next, consider the complexity of computing an arbitrary entry (C,C) of this
table. In order to proceed, we enumerate all possible combinations (9), which
are exactly (Cmax)K , and apply Algorithm 2 to any such a combination.

In turn, Algorithm 2 enumerates all the possible resource matrices and, for
any such a matrix A, it applies Algorithm 3 to each its resource row Ai. There-
fore, its complexity is determined by the running time of Algorithm 3 multiplied
by the factor (n · r)kC(K+1)r̄ · kC which is polylog n · (n · r)O(m4L2 log2 q) for any
fixed d.
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Finally, the complexity of Algorithm 3 is determined by the number of entries
in the lookup table of the internal dynamic program and the upper running
time bound for computation of any such an entry, i.e. r̄ · (n · r)Kq × (n · r)K2q =
(n · r)O(K2q), since r̄ = K · r = 2O(d) · r. Further, combining all the terms, we
obtain the desired time complexity bound

poly(n) ·((n ·r)2m2L log q)2
O(d) ·(n ·r)O(m4L2 log2 q+K2q) = poly(n) ·nO(m4L2q log2 q).

where m = r = O

((
d·(log n−log ε)

ε

)d
)

and L = O(log n − log ε).

Applying the techniques proposed in [11] and [29], we can derandomize our
scheme in polynomial time.

Theorem 4. For the CVRP in a metric space of an arbitrary doubling dimen-
sion d > 1, an (1 + O(ε))-approximate solution can be found by the ran-
domized approximation algorithm within time poly(n) · nO(m4L2q log2 q), where

m = O

((
d(log n−log ε)

ε

)d
)

, and L = O(log n − log ε). The algorithm can be

derandomized efficiently.

The proposed scheme is QPTAS any time when q = O(polylog n).

6 Conclusion

In the paper, we extend the famous approximation framework proposed by
A. Das and C. Mathieu for the Euclidean Capacitated Vehicle Routing Problem
to the case of metric spaces of a fixed doubling dimension. To establish quasi-
polynomial time upper bound for our scheme, we replace exhaustive search in
the initial algorithm by the internal dynamic program that ensures that the
resulting approximation scheme became QPTAS for an arbitrary fixed doubling
dimension d > 1, at least for q = polylog n.

Nevertheless, the question of whether for any metric space of any fixed dou-
bling dimension there exists a QPTAS without any restriction on the capacity
growth, still remains open. We believe that we will manage to bridge this gap in
future work.
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