
Most Favorable Russell Measures of Efficiency:
Properties and Measurement

Chiang Kao(&)

Department of Industrial and Information Management,
National Cheng Kung University, Tainan, Taiwan, Republic of China

ckao@mail.ncku.edu.tw

Abstract. Conventional radial efficiency measurement models in data envel-
opment analysis are unable to produce appropriate efficiency scores for pro-
duction units lying outside the cone generated by the convex hull of the extreme
efficient production units. In addition, in the case of production technologies
with variable returns to scale, the efficiency scores measured from the input and
output sides are usually different. To solve these problems, the Russell measure
of efficiency, which takes both the inputs and outputs into account, has been
proposed. However, the conventional Russell efficiency is measured under the
least favorable conditions, rather than the general custom of measuring under the
most favorable ones. This paper develops a model to measure Russell efficiency
under the most favorable conditions in two forms, the average and the product.
They can be transformed into a second-order cone program and a mixed integer
linear program, respectively, so that the solution can be obtained efficiently.
A case of Taiwanese commercial banks demonstrates that they are more reliable
and representative than the radial measures. Since the most favorable measures
are higher than the least favorable measures, and the targets for making
improvements are the easiest to reach, they are more acceptable to the pro-
duction units to be evaluated.

Keywords: Data envelopment analysis � Russell measure � Radial measure �
Slacks-based measure

1 Introduction

Efficiency measurement is an important management task because it reveals the extent
to which the performance of a production unit, or more generally, a decision making
unit (DMU), has been unsatisfactory in the past and provides a direction for making
improvements in the future. Many ideas for measuring efficiency have been proposed
[14]. Since the seminal work of Charnes et al. [11], data envelopment analysis
(DEA) has been considered an effective technique for measuring the relative efficiency
of a set of DMUs that applies multiple inputs to produce multiple outputs.

Charnes et al.’s model [11], usually referred to as the CCR model, is applied to
production technologies with constant returns to scale (CRS). Banker et al. [7] developed
a modified model that allows for technologies with variable returns to scale (VRS). This
model is commonly referred to as the BCC model in the literature. The efficiencies
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measured from the CCR and BCCmodels are a form of radial measure. One weakness of
this type of efficiency measure is that the efficiency scores of the DMUs lying outside the
cone generated by the convex hull of the extreme efficient DMUs cannot be appropriately
assigned. The radial efficiency can be measured from either the input or output side. In
the case of the BCC model, there is another weakness. While the efficiencies measured
from the input and output sides are the same for the CCRmodel, they are usually different
for the BCC model. Which model should be used between the input and output sides
depends on the purpose of the evaluation. When there is no specific purpose, there is no
rule to follow in deciding which model to use.

One way to solve these problems is to use the Russell measure of efficiency [12, 13]
to take all the inputs and outputs into account. The corresponding model is nonlinear.
To obtain a linear model, Pastor et al. [20] proposed an enhanced Russell efficiency
measure. Tone [23] termed this measure the slacks-based measure (SBM).

One feature of the DEA methodology is it allows the DMUs being evaluated to
select the most favorable conditions by which to measure efficiency. This feature makes
this methodology widely accepted for performance evaluation. While the Russell
measures can solve the problems of inappropriate efficiency scores being assigned to
certain DMUs and different results being obtained from the input and output models,
they are calculated under the least favorable conditions for inefficient DMUs. In other
words, the target on the production frontier selected for measuring efficiency is the
farthest, rather than the general custom of being the closest, point to the DMU being
evaluated. The results are thus unfair to inefficient DMUs.

Various approaches for measuring efficiency based on the closest targets have been
proposed in the literature, starting with the works of Briec [8, 9]. The major differences
of the approaches are the ways in which the production frontier and distance are
defined. For example, Aparicio et al. [6] developed a mixed integer linear programming
model to find the closest target in the conventional production possibility set. Aparicio
and Pastor [4, 5] searched for the closest target in the extended facet production
possibility set defined by Olesen and Petersen [19]. Fukuyama et al. [15] investigated
the least-distance p-norm measures on an extended free disposable set based on the
work of Ando et al. [1]. Petersen [21] developed a model to find the direction with the
shortest distance to the production frontier. Aparicio [2] conducted a survey of the
literature on this topic.

In this paper, we develop a model to measure the most favorable Russell efficiency
based on the frontier used in the conventional way of measuring the least favorable
Russell efficiency. Gonzaléz and Álvarez [16] initiated this study with an input-oriented
Russell measure. Aparicio et al. [6] developed a model in the primal (envelopment form)
and dual (multiplier form) combined spaces to measure the non-oriented Russell mea-
sure. However, Aparicio et al. [3] showed that, while this model works correctly for non-
oriented measures, it cannot be successfully applied to input- or output-oriented mea-
sures, and they proposed a bilevel linear programming model. The model developed in
the current study has two forms, the average and the product. The former can be
transformed into a second-order cone program and the latter into a mixed integer linear
program such that both can be solved efficiently. Since more favorable efficiency mea-
sures imply higher efficiency scores and closer targets for inefficient DMUs to reach with
less effort, the results are more persuasive and acceptable to the DMUs being evaluated.
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2 Conventional Efficiency Measures

Suppose a set of n DMUs that applies m inputs Xi, i = 1, …, m to produce s outputs Yr,
r = 1, …, s. Let Xij and Yrj denote the ith input and rth output, respectively, of DMU j,
j = 1, …, n. The production possibility set constructed from these DMUs under vari-
able returns to scale is T = {(x, y) |

Pn
j¼1 kjXij � xi, i = 1, …, m,

Pn
j¼1 kjYrj � yr,

r = 1,…, s,
Pn

j¼1 kj = 1, kj � 0, j = 1,…, n}. The strongly efficient frontier of this set

is @SðTÞ = {(x, y) 2 T | x̂ � x, ŷ � y, and (x̂, ŷ) 6¼ (x, y) ) (x̂, ŷ) 62 T}, which is the
set of strongly efficient points of T. Theoretically, a DMU should select a point on the
strongly efficient frontier to measure efficiency. The BCC model [7] for measuring the
efficiency of DMU k in the envelopment form can be formulated from the input or
output side, as follows:

Input-orientation

hIk ¼ min: h� e
Xm
i¼1

s�i þ
Xs
r¼1

sþr

 !
ð1aÞ

s:t:
Xn
j¼1

kjXij þ s�i ¼ hXik; i ¼ 1; . . .;m

Xn
j¼1

kjYrj � sþr ¼ Yrk; r ¼ 1; . . .; s

Xn
j¼1

kj ¼ 1

kj; s
�
i ; s

þ
r � 0; j ¼ 1; . . .; n; i ¼ 1; . . .; m; r ¼ 1; . . .; s

h unrestricted in sign:

Output-orientation

1

hOk
¼ max: uþ e

Xm
i¼1

s�i þ
Xs
r¼1

sþr

 !
ð1bÞ

s:t:
Xn
j¼1

kjXij þ s�i ¼ Xik; i ¼ 1; . . .;m

Xn
j¼1

kjYrj � sþr ¼ uYrk ; r ¼ 1; . . .; s
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Xn
j¼1

kj ¼ 1

kj; s
�
i ; s

þ
r � 0; j ¼ 1; . . .; n; i ¼ 1; . . .; m; r ¼ 1; . . .; s;

u unrestricted in sign;

where e is a small non-Archimedean number used to avoid ignoring the unfavorable
factors when measuring efficiency. The input efficiency hIk and output efficiency hOk
need not be the same. When the convexity constraint

Pn
j¼1 kj = 1 is deleted, the BCC

model becomes the CCR model [11]. In this case, the input and output models produce
the same efficiency score, which is denoted as hCCRk in this paper.

One way to solve the problems caused by the non-Archimedean number and input-
output difference in efficiency measurement is to apply a non-radial measure, such as
the Russell measure of efficiency. The Russell measure under variable returns to scale
is calculated via the following model [12]:

Rmin
k ¼ min:

1
mþ s

ð
Xm
i¼1

hi þ
Xs
r¼1

1
ur

Þ ð2Þ

s:t:
Xn
j¼1

kjXij � hiXik; hi � 1; i ¼ 1; . . .;m

Xn
j¼1

kjYrj �urYrk; ur � 1, r ¼ 1; . . .; s

Xn
j¼1

kj ¼ 1

kj � 0; j ¼ 1; . . .; n:

The efficiency is defined as the average of individual factor efficiencies. The
constraints hi � 1 and ur � 1 are imposed to restrict the target points for evaluating
efficiency to those that dominate the DMU being evaluated. If an assumption of
constant returns to scale is desired, then one simply deletes the convexity constraintPn

j¼1 kj = 1.
The Russell measure defines efficiency as the average of the efficiencies of all input

and output factors. Pastor et al. [20] and Tone [23] defined efficiency as the product of
the arithmetic average of the efficiencies of the m inputs and the harmonic average of
the efficiencies of the s outputs in the form of:
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Qmin
k ¼ min:

1
m

Pm
i¼1 hi

1
s

Ps
r¼1 ur

;

subject to the same constraints as those in Model (2). Substituting hi with (Xik − s�i )/Xik

and ur with (Yrk + sþr )/Yrk, one obtains the following equivalent model:

Qmin
k ¼ min:

1� 1
m

Pm
i¼1 s

�
i =Xik

1þ 1
s

Ps
r¼1 s

þ
r =Yrk

ð3Þ

s.t:
Xn
j¼1

kjXij þ s�i ¼ Xik; i ¼ 1; . . .;m

Xn
j¼1

kjYrj � sþr ¼ Yrk; r ¼ 1; . . .; s

Xn
j¼1

kj ¼ 1

kj; s
�
i ; s

þ
r � 0; j ¼ 1; . . .; n; i ¼ 1; . . .;m; r ¼ 1; . . .; s:

This model is called the slacks-based measure (SBM) model in Tone [23]. The
advantage of this model over Model (2) is that Model (2) is a nonlinear program, while
this model is a fractional linear program, which can be linearized by applying a variable
substitution technique proposed in Charnes and Cooper [10].

Different from the radial measure that requires either all inputs to be reduced in the
same proportion h as in Model (1a) or all outputs to be expanded in the same pro-
portion u as in Model (1b), the Russell measure takes the inputs and outputs into
account at the same time, and the proportions hi and ur can be different for different
factors. More importantly, the projection point used to measure efficiency is on the
strongly efficient frontier. Pastor et al. [20] and Tone [23] proved that the Russell
efficiency measure of the product form is less than or equal to both the input and output
radial efficiency measures. In symbols, it is Qmin

k � hIk and Qmin
k � hOk .

The objective of Model (2) or Model (3) is to find the greatest rates for reducing the
inputs and expanding the outputs of the DMU being evaluated within the production
possibility set at the same time. The purpose of the model is actually to identify the
production frontier, rather than measuring efficiencies. The objective value, known as
the efficiency of the DMU, is a by-product of this frontier identification process.
However, since the objective function has a minimization direction, the efficiency
measured from this model is the lowest among all possible measures, which contradicts
the basic idea of DEA suggesting that efficiency is measured under the most favorable
conditions.
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3 Most Favorable Measures

The envelopment form of the BCC input model (1a) is intended to find the minimum
value for h to reduce the inputs of the DMU being evaluated such that the resulting
point is still in the production possibility set. The purpose is to identify a frontier facet
from the production possibility set based on which efficiency of this DMU is measured.
If this DMU lies in the cone generated by the convex hull of the extreme efficient
DMUs in the input space so that the slack variables are zero, then the target point
(
Pn

j¼1 kjXj,
Pn

j¼1 kjY j) = (hIkXk , Yk), where Xj = (X1j, …, Xmj) and Y j = (Y1j, …, Ysj),

reflects that its efficiency is hIk , which is a by-product of this process. Conceptually, one
should find the maximum value for h to be the most favorable efficiency measure after
all the frontier facets are identified. Due to the geometric property of the radial mea-
sures, the minimum and maximum values for h are the same. Consider six DMUs,
labelled as A*F in Fig. 1, which apply different combinations of inputs X1 and X2 to
produce one output Y. In measuring the efficiency of DMU D, the idea of the BCC
input model is to identify a frontier facet by reducing X1D and X2D in the same

proportion of h along the ray OD
�!

until it reaches the boundary of the production
possibility set at D̂. The minimum value for h, or the largest extent of contraction, is hIk,
which is the ratio of OD̂ to OD. After all the frontier facets are identified, the strongly
efficient frontier is then determined, and the efficiency is measured as the largest value
for h such that hD on the ray OD̂ intercepts the strongly efficient frontier in the region

of D’ to D”. Since the intersection of the ray OD
�!

with the strongly efficient frontier in
the region of D’ to D” is the unique point D̂, the minimum and maximum values of h
are the same.

In measuring the Russell efficiency, all inputs and outputs are allowed to contract
and expand in different proportions, respectively. The minimum and maximum values
for the efficiency in this case may not be the same. More specifically, the target point
found in the process of identifying the frontier facet via minimizing the distance
parameters may not be the same as that found in the process of maximizing the
parameters. For example, the efficiency of DMU D in Fig. 1 calculated from Model (2)
is actually the lowest that can be obtained by using the points on the strongly efficient
frontier in the region of D’ to D” as the target. The idea of the DEA technique,
however, is to measure the efficiency under the most favorable conditions. Following
this idea, one should search for a target in the region of D’ to D” that can produce the
highest efficiency. The procedure for accomplishing this task can be separated into two
phases, where Phase I is to identify the strongly efficient frontier and Phase II is to find
a point on the strongly efficient frontier that will produce the highest efficiency.
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To construct the strongly efficient frontier, all extreme efficient DMUs of the
production possibility set that span the full dimensional efficient facets are identified
first by applying any DEA model, e.g., Model (1a). Each strongly efficient frontier facet
is the convex hull of a set of m + s neighboring extreme efficient DMUs, provided the
hyperplane extended from all sides of this facet envelops all DMUs. Let E0 denote the
set of the indices of m + s extreme efficient DMUs such that the convex hull of these
m + s DMUs is a frontier facet F0. The frontier facet F0 can be expressed as F0 = {(x,
y) |
P

j2E0
kjXij = xi, i = 1, …, m,

P
j2E0

kjYrj = yr, r = 1, …, s,
P

j2E0
kj = 1, kj � 0,

j 2 E0}. The frontier hyperplane extended from this frontier facet is H0 = {(x, y) |P
j2E0

kjXij = xi, i = 1, …, m,
P

j2E0
kjYrj = yr, r = 1, …, s,

P
j2E0

kj = 1, kj unre-
stricted in sign, j 2 E0}. The mathematical expression of the frontier hyperplane H0

differs from the frontier facet F0 only in that the values of kj are allowed to be negative.
Since F0 is a frontier facet, the corresponding frontier hyperplane H0 must envelop all
n DMUs. In this case, every DMU d must have a projection point (target) on the
hyperplane H0 that dominates itself. The projection point for DMU d can be expressed

as (
P

j2E0
kðdÞj Xij,

P
j2E0

kðdÞj Yrj), where
P

j2E0
kðdÞj = 1 and kðdÞj are unrestricted in sign.

Since every DMU d is dominated by its projection point (
P

j2E0
kðdÞj Xij,

P
j2E0

kðdÞj Yrj),

we have
P

j2E0
kðdÞj Xij + sðdÞ�i = Xid , i = 1, …, m, d = 1, …, n and

P
j2E0

kðdÞj Yrj

− sðdÞþr = Yrd , r = 1, …, s, d = 1, …, n, where sðdÞ�i , sðdÞþr � 0.

F

D

O X1

2

4

6

X2

Y=1
C

A

E

2 4 6 8

B F ′

S′

D ′

D̂

A′′
S ′′

F ′′

D ′′

Fig. 1. Geometric interpretation of the efficiency measurement of various models.
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Using the DMUs in Fig. 1 to explain this, line segment BC is a frontier facet that can

be expressed as F = {Z | Z = kBB + kCC, kB + kC = 1, kB, kC � 0}. The entire line BC
$

is expressed as H = {Z | Z = kBB + kCC, kB + kC = 1, kB, kC unrestricted in sign}.

Since BC is a frontier facet, the corresponding line BC
$

must envelop all DMUs by having
nonnegative slacks. Consider four DMUs, A, D, C, and F, which can be projected to A”,

D”, C” = C, and F” on Line BC
$

, respectively, by fixing X1 and Y at their current values.

For DMU D, we have D” = kðDÞB B + kðDÞC C = (3, 1.9; 1)T, with kðDÞB = 0.8 and

kðDÞC = 0.2. Positive values for kðDÞB and kðDÞC indicate that D” is located on line segment

BC. The corresponding slack variables have nonnegative values of sðDÞ�1 = 0,

sðDÞ�2 = 4.5 − 1.9 = 2.6, and sðDÞþ1 = 0. For DMU C, we have C” = C, with kðCÞB = 0

and kðCÞC = 1, and all the slacks are zero. For DMU A, we have A” = kðAÞB B + kðAÞC C = (2,

2.1; 1)T, with kðAÞB = 1.2 and kðAÞC = −0.2, where kðAÞC is negative. Positive kðAÞB and

negative kðAÞC indicate that A” is located to the left of DMU B on line BC
$

. The corre-

sponding slacks are sðAÞ�1 = 0, sðAÞ�2 = 5 − 2.1 = 2.9, and sðAÞþ1 = 0, which are non-

negative. Finally, for DMU F, we have F” = kðFÞB B + kðFÞC C = (8, 0.9; 1)T, with

kðFÞB = −1.2 and kðFÞC = 2.2, where kðFÞB is negative. Negative kðFÞB and positive kðFÞC

indicate that F” is located to the right of DMU C on line BC
$

. The corresponding slacks

are sðFÞ�1 = 0, sðFÞ�2 = 1.75 − 0.9 = 0.85, and sðFÞþ1 = 0, which, again, are nonnegative.
Since it is not known beforehand which frontier facet of the strongly efficient

frontier will be selected by DMU k to find the target to measure efficiency, all frontier
facets must be considered. Let E denote the set of the indices of the extreme efficient
DMUs. We use the binary variable Bj to indicate whether or not an extreme efficient
DMU j is used to span the frontier facet. The conditions for DMU k to consider all
possible frontier facets to measure efficiency can be expressed as:X

j2E k
ðdÞ
j Xij þ sðdÞ�i ¼ Xid; i ¼ 1; . . .;m; d ¼ 1; . . .; n ð4:1Þ

X
j2E k

ðdÞ
j Yrj � sðdÞþr ¼ Yrd; r ¼ 1; . . .; s; d ¼ 1; . . .; n ð4:2Þ

X
j2E k

ðdÞ
j ¼ 1; d ¼ 1; . . .; n ð4:3Þ

sðdÞ�i ; sðdÞþr � 0; i ¼ 1; . . .;m; r ¼ 1; . . .; s; d ¼ 1; . . .; n ð4:4Þ

kðkÞj � 0; j 2 E ð4:5Þ

kðdÞj unrestricted in sign; j 2 E; d ¼ 1; . . .; n d 6¼ k ð4:6Þ
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�MBj � kðdÞj �MBj; j 2 E; d ¼ 1; . . .; n ð4:7ÞX
j2E Bj �mþ s ð4:8Þ

Bj 2 0; 1f g; j 2 E; ð4:9Þ

where M is a large number for allowing all possible kðdÞj values to appear. The frontier
facet spanned by the efficient DMUs corresponding to Bj = 1 is the facet for DMU k to
measure efficiency. Constraints (4.1)–(4.4), for d = k, and (4.5) require the assessed
DMU k to select a point on this facet to calculate efficiency. Constraints (4.1)–(4.4) and
(4.6) ensure that all DMUs are enveloped by the hyperplane extended from the frontier
facet.

The frontier hyperplane has a dimension of m + s. The sum of Bj is thus equal to
m + s. However, to account for the degenerate case where the number of extreme
efficient DMUs is less than m + s, we require

P
j2E Bj � m + s in Constraint (4.8).

For cases of constant returns to scale, the convexity constraint
P

j2E k
ðdÞ
j = 1 is not

needed. Moreover, since the frontier facets must pass through the origin, this implies
that the origin must always be used with the m + s − 1 of other efficient DMUs to
constitute the frontier facet. Thus, m + s in constraint (4.8) is changed to m + s − 1.

To measure the Russell efficiency based on the closest target to the assessed DMU,
one first applies Model (2), or any DEA model, to identify the extreme efficient DMUs,
with their indices comprising the set E. One then uses the following mathematical
program to calculate the efficiency of DMU k:

Rmax
k ¼ max:

1
mþ s

½
Xm
i¼1

ðXik � sðkÞ�i

Xik
Þþ

Xs
r¼1

ð Yrk

Yrk þ sðkÞþr

Þ� ð5Þ

s:t: Constraint Set ð4Þ:

The objective function is nonlinear, and the constraints are linear, in that some
binary variables are involved. This model can be solved efficiently by transforming it
into a second-order cone program, as proposed in Sueyoshi and Sekitani [22] or a
semidefinite program, as discussed in Halická and Trnovská [17].

Similarly, the Russell measure of the product form, i.e., the slacks-based measure,
with the target closest to the assessed DMU can be calculated via the following model:

Qmax
k ¼ max:

1� 1
m

Pm
i¼1 s

ðkÞ�
i =Xik

1þ 1
s

Ps
r¼1 s

ðkÞþ
r =Yrk

ð6Þ

s:t: Constraint Set ð4Þ:
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This model is a fractional mixed integer program. By applying the variable sub-
stitution technique proposed in Charnes and Cooper [10], with 1/

(1 + 1
s

Ps
r¼1 s

ðkÞþ
r =Yrk) = w, wkðdÞj = lðdÞj , wsðdÞ�i = tðdÞ�i , and wsðdÞþr = tðdÞþr , a linear

mixed integer program for the VRS case is obtained as follows:

Qmax
k ¼ max: w� 1

m

Xm
i¼1

tðkÞ�i

Xik
ð7Þ

s:t: wþ 1
s

Xs
r¼1

tðkÞþr

Yrk
¼ 1

X
j2E l

ðdÞ
j Xij þ tðdÞ�i ¼ wXid i ¼ 1; . . .;m; d ¼ 1; . . .; n

X
j2E l

ðdÞ
j Yrj � tðdÞþr ¼ wYrd; r ¼ 1; . . .; s; d ¼ 1; . . .; n

X
j2E l

ðdÞ
j ¼ w; d ¼ 1; . . .; n

tðdÞ�i ; tðdÞþr � 0; i ¼ 1; . . .;m; r ¼ 1; . . .; s; d ¼ 1; . . .; n

lðkÞj � 0; j 2 E

lðdÞj unrestricted in sign, j 2 E; d ¼ 1; . . .; n; d 6¼ k

�MBj � l dð Þ
j �MBj; j 2 E; d ¼ 1; . . .; nX

j2E Bj �mþ s

w� 0

Bj 2 0; 1f g; j 2 E;

This model is much easier than Model (6) to solve.

4 Some Properties

The most favorable Russell measures of efficiency have several properties. First, it is
noted that the conventional Russell measure of the product form, Rmin

k , is calculated
based on the target that is the farthest to the assessed DMU. It can be calculated by
changing the direction of optimization in Model (5) from maximization to minimiza-
tion although the model in this case is more complicated than Model (2). This is also
true for the product form of Model (6). We thus have the following theorem:
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Theorem 1. The most favorable Russell measures of efficiency, both the average and
product forms, are greater than or equal to the least favorable measures.

Second, every DMU uses a point on the strongly efficient frontier as the target to
measure efficiency. The constraints (4.1)–(4.4) for d = k and (4.5) in models (5) and
(6), where all Xik and Yrk are positive, ensure that their most favorable Russell mea-
sures, both the average and product forms, are always positive. This leads to the
following theorem:

Theorem 2. The most favorable Russell measures are always positive.
Third, models (2) and (3) use the average and product, respectively, of the input

and output efficiencies as the DMU efficiency. The output efficiency in Model (3) is a
harmonic average of the efficiencies of individual outputs, instead of the usual arith-
metic average. To make the two measures comparable, the Russell efficiency of the
average form can be defined as the average of the arithmetic average of the input
efficiencies and the harmonic average of the output efficiencies, that is,

R̂max
k ¼ 1

2
½ð1
m

Xm
i¼1

hiÞþ ð 1
1
s

Ps
r¼1 ur

Þ�:

Based on the arithmetic-geometric mean inequality stipulating that the arithmetic
mean is greater than or equal to the geometric mean, we have the following
relationship:

R̂max
k ¼ 1

2
½ð1
m

Xm
i¼1

ĥiÞþ ð 1
1
s

Ps
r¼1 ûr

Þ� � 1
2
½ð1
m

Xm
i¼1

h�i Þþ ð 1
1
s

Ps
r¼1 u

�
r
Þ�

�
1
m

Pm
i¼1 h

�
i

1
s

Ps
r¼1 u

�
r

� �1=2

�
1
m

Pm
i¼1 h

�
i

1
s

Ps
r¼1 u

�
r
¼ Qmax

k ;

where (ĥi, ûr) and (h�i , u
�
r ) are the optimal solutions corresponding to R̂max

k and Qmax
k ,

respectively. The last inequality is obtained due to the fact that the value in the
parentheses is less than or equal to one, and its square has a smaller value. This proves
the following theorem:

Theorem 3. When the output efficiency in the Russell measure of the average and
product forms is defined as the same, the Russell measure of the average form, R̂max

k , is
greater than or equal to that of the product form, Qmax

k .
Finally, in radial measures, the efficiency scores are difficult to interpret when some

slack variables have positive values. Geometrically, if a DMU lies in the cone gen-
erated by the extreme efficient DMUs, then all the slack variables will be zero when
using the radial model to measure efficiency. In this case, the radial input efficiency of a
DMU k can be measured via Model (5) with the constraints corresponding to DMU

k replaced with
P

j2S k
ðkÞ
j Xij = hXik, i = 1, …, m and

P
j2S k

ðkÞ
j Yrj = Yrk, r = 1, …, s,

and the objective function replaced with min h. If we change the direction of opti-
mization from minimization to maximization, we still obtain the same objective value
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because the ray emanating from the origin to DMU k intersects the frontier facet at only
one point. We thus have h� = min h = max h.

To compare the most favorable Russell measure with the radial input measure, we
can formulate the constraints corresponding to DMU k in Model (5) asP

j2S k
ðkÞ
j Xij = hiXik, hi � 1, i = 1,…, m and

P
j2S k

ðkÞ
j Yrj = urYrk, ur � 1, r = 1, …,

s, with the objective function of

Rmax
k ¼ max

1
mþ s

ð
Xm
i¼1

hi þ
Xs
r¼1

1
ur

Þ:

Since BCC input efficiency hIk is a special case of the average form of the Russell
measure for hi = h for all i, and ur = 1 for all r, we have

Rmax
k ¼ max

1
mþ s

ð
Xm
i¼1

hi þ
Xs
r¼1

1
ur

Þ�max
1

mþ s
ðmhþ sÞ�max h ¼ hIk:

Similarly, since BCC output efficiency hOk is a special case of the average form of
the Russell measure for hi = 1 for all i, and ur ¼ u for all r, we have

Rmax
k ¼ max

1
mþ s

ð
Xm
i¼1

hi þ
Xs
r¼1

1
ur

Þ�max
1

mþ s
ðmþ s

u
Þ�max

1
u
¼ hOk :

We thus have the following theorem:

Theorem 4. For DMUs lying in the cone generated by the convex hull of the extreme
efficient DMUs, the most favorable Russell measure Rmax

k is greater than or equal to
both the radial input measure hIk and output measure hOk .

This theorem also holds for production technologies of constant returns to scale.
Combined with the property where the conventional least favorable Russell measure
Qmin

k is less than or equal to both BCC input efficiency hIk and output efficiency hOk , we
have the following result for DMU k:

Qmin
k � hIk

hOk

( )
�Rmax

k :

Note that the second inequality holds only for DMUs lying in the cone generated by
the extreme efficient DMUs, while the first holds for all situations.
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5 Taiwanese Commercial Banks

In a study predicting the performance of banks, Kao and Liu [18] measured the effi-
ciencies of twenty-four Taiwanese commercial banks using total deposits, interest
expenses, and non-interest expenses as the inputs and total loans, interest income, and
non-interest income as the outputs.

By applying the conventional CCR model to the data in Kao and Liu [18], the
efficiencies of the twenty-four banks under constant returns to scale are calculated.
There are twelve banks that are efficient. Column two of Table 1 shows the results for
the twelve inefficient banks. The numbers in parentheses are the ranks of the banks
among those that are inefficient. In calculating the CCR efficiency, it is noted that only
Bank No. 2 of these twelve inefficient banks lies in the cone generated by the extremely
efficient banks. In other words, the other eleven banks have at least one slack variable
with positive values. Their efficiency scores are dependent on the values assigned to the
non-Archimedean number e. The rankings obtained from the CCR efficiency scores are
thus not reliable.

By applying Model (5) under constant returns to scale with the objectives of
minimization and maximization, the least and most favorable Russell measures of
efficiency of the average form for the twelve inefficient banks are calculated, respec-
tively. The results are shown in columns three and four of Table 1. As expected, the
most favorable measures are greater than the least favorable measures for all twelve
banks. The average of the most favorable measures of 0.8895, as shown in the last row,
is 7.84% higher than that of the least favorable measures of 0.8248. The rankings based
on the two measures are slightly different, with a mean absolute difference of 1.17
ranks.

Table 1. Efficiencies measured from different models for the twelve inefficient banks.

Bank Radial efficiency Russell efficiency

CCR Average form Product form (SBM)

hCCRk (rank) Rmin
k (rank) Rmax

k (rank) Qmin
k (rank) Qmax

k (rank)

1 0.9960 (1) 0.9571 (1) 0.9960 (1) 0.8964 (2) 0.9920 (1)
2 0.9498 (5) 0.9182 (3) 0.9905 (2) 0.8388 (3) 0.9810 (2)
5 0.9933 (2) 0.8532 (6) 0.8634 (8) 0.6985 (5) 0.7143 (7)
7 0.8894 (8) 0.7662 (9) 0.8705 (7) 0.3389 (11) 0.6462 (9)
8 0.7328 (12) 0.6837 (11) 0.7577 (12) 0.2642 (12) 0.5721 (12)
9 0.9877 (4) 0.9477 (2) 0.9644 (3) 0.8971 (1) 0.9290 (3)
11 0.9379 (6) 0.8592 (5) 0.9558 (4) 0.7271 (4) 0.9122 (4)
12 0.9910 (3) 0.8900 (4) 0.9501 (5) 0.6252 (7) 0.8763 (5)
15 0.8607 (9) 0.7445 (10) 0.8233 (9) 0.4195 (9) 0.6654 (8)
17 0.9333 (7) 0.7764 (8) 0.8076 (10) 0.4536 (8) 0.6269 (10)
21 0.8548 (10) 0.8176 (7) 0.9131 (6) 0.6280 (6) 0.8279 (6)
23 0.7593 (11) 0.6835 (12) 0.7819 (11) 0.3979 (10) 0.5804 (11)
Ave. 0.9072 0.8248 0.8895 0.5988 0.7770
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According to Theorem 4, the most favorable Russell measures of those DMUs
lying in the cone generated by the extreme efficient DMUs are greater than or equal to
their radial measures. This implies that Rmax

k in column four of Table 1 must be greater
than or equal to the corresponding hCCRk in column two. However, since only Bank
No. 2 is in the defined cone, this relationship only holds for six of the twelve inefficient
banks. The rankings based on Rmax

k are quite different from those based on hCCRk . The
largest difference between the two rankings occurs for Bank No. 5, with a difference of
six ranks. The mean absolute difference between the two rankings is 1.83 ranks. Due to
the effect of the positive slack values on the efficiency scores, the rankings based on
Rmax
k are more reliable than those based on hCCRk .
The product form of the least and most favorable Russell measures for the twelve

inefficient banks under CRS can be calculated via Model (7), with the objectives of
minimization and maximization, respectively. The results are shown in the last two
columns of Table 1. The latter is obviously greater than the former for every bank. The
average scores shown in the last row of Table 1 indicate that the latter is 29.76% higher
than the former. The rankings based on these two measures are also different, with a
mean absolute difference of 1.16 ranks.

Based on the theorem proved in Pastor et al. [20] and Tone [23], the least favorable
Russell measures of the DMUs must be less than or equal to their radial measures. By
comparing the numbers in columns two and five, this property is confirmed, and their
averages show that the latter is 34% lower than the former.

Another pair of measures worth comparing is the least favorable Russell measures
of the product form, Qmin

k , and the most favorable Russell measures of the average
form, Rmax

k . The former is the conventional SBM, which has the lowest efficiency
measures among all types of Russell measures, while the latter, in contrast, has the
highest efficiency measure. This is actually a consequence of Theorem 4. The numbers
in columns four and five show that Rmax

k is indeed greater than Qmin
k for every bank, and

the average of the former, 0.8895, is 48.5% higher than that of the latter, 0.5988. The
rankings based on the two measures differ not by much, with a mean absolute differ-
ence of 1.33 ranks. Since the efficiency measure of the former is higher, and the
corresponding target is closer to the assessed bank, making it easier to reach, it is more
acceptable to the banks being evaluated.

All the discussions in this example are based on the assumption of constant returns
to scale. Similar discussions can be made under the assumption of variable returns to
scale.

6 Conclusion

The Russell measure of efficiency was proposed to solve the problems of radial
measures of efficiency that cannot provide appropriate efficiency scores for inefficient
DMUs lying outside the cone generated by the convex hull of the extreme efficient
DMUs and different scores produced from the input and output models under variable
returns to scale. While the conventional Russell measures can be used to solve these
problems, they are the least favorable measures, which contradict the idea of DEA that
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efficiency should be measured under the most favorable conditions. Moreover, the
targets associated with the measures are more difficult for inefficient DMUs to reach to
become efficient. To amend this drawback, a model is developed in this paper to
calculate Russell measures based on the target that is closest to the assessed DMU.

Two forms of the Russell measure are considered, the average and the product. It is
proven that, first, the average form produces higher efficiency scores than the product
form when the output efficiency is defined in the same way. Second, the most favorable
Russell measures of the average form are greater than or equal to the radial measures
for DMUs lying in the cone generated by the extreme efficient DMUs. A case of
Taiwanese commercial banks confirms these findings. In real world applications, the
most favorable efficiency measures produce a target that requires least effort for an
inefficient DMU to reach to become efficient. The corresponding rankings provide
better information for the top management to make appropriate decisions. For these
reasons, the most favorable Russell measures are more reliable and representative, and
are more acceptable to the DMUs to be evaluated as their efficiency scores.
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