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Abstract. The linear second-order cone programming problem is con-
sidered. For its solution, two dual Newton’s methods are proposed. These
methods are constructed with the help of optimality conditions. The non-
linear system of equations, obtained from the optimality conditions and
depended only from dual variables, is solved by the Newton method.
Under the assumption that there exist strictly complementary solutions
of both primal and dual problems the local convergence of the methods
with super-linear rate is proved.
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1 Introduction

The second-order cone programming problem (SOCP) is one of the main pro-
grams in cone programming. The linear SOCP is a problem in which the linear
objective function is minimized on the intersection of a linear manifold with
a second-order cone (the Lorentz cone) (see [1]). Many optimization problems,
including combinatorial problems, can be reduced to the SOCP programs [1–3].

Today, there are some numerical methods for solving SOCP programs. From
these methods, the primal-dual path-following methods are the most known
[4,5]. In [6] the dual barrier-projection methods have been proposed for SOCP
programs. These methods are generalizations of the corresponding methods for
linear programming [7]. The primal Newton’s method for SOCP have been con-
sidered in [8]. Both dual barrier-projection methods and the primal Newton’s
method had been worked out with the help of optimality conditions.

In dual methods the dual variables depending on primal variable are defined.
As a result, the system of nonlinear equations with respect to dual variables,
including a slack dual variable, is derived. In [6] this derived system of nonlinear
equations is solved by the fix point method. The proposed in [6] dual methods
are of the affine-scaling type. In present paper unlike to [6] the Newton method
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is used for solving the derived system of nonlinear equations. Under assumption
that the solutions of primal and dual problems are strictly complementary dual
Newton’s methods converge locally to these solutions with super-linear rate.

The paper is organized as follows. In Sect. 1, we formulate the SOCP program.
Section 2 is principal in the paper. In this section the dual iterative methods for
SOCP programs, based on the Newton method, are constructed. In Sect. 3 we
show that in the case of non-degenerate problem these dual methods are well-
posed. Finally, in Sect. 4, the local convergence of the methods is proved.

In what follows, the identity matrix of order s is denoted by Is. The symbol
0s is used for denoting the zero s-dimensional vector, and the symbol 0sk is used
for denoting s×k zero matrix. By Diag (x) is denoted the diagonal matrix with a
vector x at its diagonal. Similarly, a block diagonal matrix with diagonal blocks
M1, . . . ,Mk is denoted by DIAG (M1, . . . ,Mk).

2 The Linear Second-Order Cone Programming Problem

Let K ⊂ IRn denote a closed convex pointed cone with the nonempty interior.
This cone induces in IRn a partial order, that is: x1 �K x2, if x1 − x2 ∈ K. The
linear cone programming problem is

min 〈c, x〉, Ax = b, x ∈ K, (1)

where A is a m × n matrix, and c = [c1; . . . ; cn] ∈ IRn, b = [b1; . . . ; bm] ∈ IRm.
The semicolons between vectors or components of a vector denote that these
vectors or components are placed one under another. The angle brackets denotes
the usual Euclidean scalar product.

The linear SOCP program is a special case of the problem (1). Let ci ∈ IRni ,
1 ≤ i ≤ r. Let also matrices Ai have dimensions m×ni, 1 ≤ i ≤ r. Consider the
problem

min
∑r

i=1〈ci, xi〉,∑r
i=1 Aixi = b, x1 �K

n1
2

0n1 , . . . , xr �Knr
2

0nr
.

(2)

Here Kni
2 is the second order cone (the Lorentz cone) in IRni , defined as

Kni
2 =

{
[x0; x̄] ∈ IR × IRni−1 : x0 ≥ ‖x̄‖}

, 1 ≤ i ≤ r,

where ‖·‖ is the Euclidean norm. The cone Kni
2 is self-dual, that is (Kni

2 )∗ = Kni
2 .

The following problem is dual to (2)

max 〈b, u〉,
AT

i u + yi = ci, 1 ≤ i ≤ r; y1 �K
n1
2

0n1 , . . . , yr �Knr
2

0nr
,

(3)

in which u ∈ IRm.
Denote n = n1 + · · · + nr. If set c = [c1; . . . ; cr], x = [x1; . . . ;xr], y =

[y1; . . . ; yr] and A = [A1, . . . Ar], K = Kn1
2 × · · · × Knr

2 , then the problem (2)
can be written in the form of (1). The cone K is self-dual. We assume that both
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problems (2) and (3) have solutions, and that rows of the matrix A are linear
independent. We assume also that r > 1.

Let y(u) = c − ATu. By

FP = {x ∈ K : Ax = b} , FD = {[u, y] ∈ IRm × K : y = y(u)}

we will denote the feasible sets in problems (2) and (3), respectively. By FD,u

we will denote the projection of the set FD onto the space IRm, i.e. the set
FD,u = {u ∈ IRm : y(u) ∈ K} .

If x and [u, y] are solutions of problems (2) and (3), then they satisfy to the
following system of equalities

〈x, y〉 = 0, Ax = b, y = c − ATu, (4)

and to inclusions: x ∈ K, y ∈ K. Taking into account these inclusions, the
equality 〈x, y〉 = 0 from (4) can be replaced by n other equalities

xi ◦ yi = 0ni
, 1 ≤ i ≤ r, (5)

where the product between vectors xi ∈ R
ni and yi ∈ R

ni is defined by the
following way xi ◦ yi =

[
xT
i yi; x

0
i ȳ + y0i x̄i

]
. By introducing the matrix

Arr (xi) =

[
x0

i x̄T
i

x̄i x0
i In−1

]
,

the product xi ◦ yi can be represented as xi ◦ yi = Arr (xi) yi = Arr (yi) xi.
Compose the block-diagonal matrix Arr(y) = DIAG [Arr (y1), . . . , Arr (yr)] .

Then equalities (4) can be rewritten as

Arr (y) x = Arr (x) y = 0n, Ax = b, y = c − AT u, (6)

where, recall, x ∈ K, y ∈ K.

3 The Dual Newton’s Methods

Consider the iterative dual methods for solving problems (2) and (3). These methods
are analogs of the primal method proposed in [8]. In dual methods the dependence x(u)
or more general dependence x(u, y) are used to derive from (6) the system of nonlinear
equations depending on only dual variables.

In order to obtain x(u) we multiply the second equality from (6) by the matrix AT

and sum it with the first equality (6). As a result, we get the equation with respect to
x:

Φ(y)x = AT b, (7)
where by Φ(y) is denoted the matrix: Φ(y) = AT A + Arr (y). The matrix Φ(y) is
symmetric of order n. If Φ(y) is nonsingular, then, solving the Eq. (7), we obtain

x = x(y) = Φ−1(y)AT b.

Taking y = y(u), we conclude that in fact the matrix Φ(y) depends on u.
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Substituting the founded x(u) = x(y(u)) into the second equation from (6), we get
the system of nonlinear equations with respect to u, namely,

[
Im − AΦ−1(y(u))AT

]
b = 0m. (8)

The system (8) consists of m equations. The number of unknowns is also equal to m.
Applying the Newton method to solve (8), we obtain the iterative process

uk+1 = uk − G −1(uk) (Axk − b) . (9)

Here xk = x(uk) and G (u) = d
du

A x(u) = A xu(u).
Treating (7) as the identity with respect to u, we obtain after differentiating

Arru(y(u)) x(u) + Φ(y(u)) xu(u) = 0nm.

If Φ(y(u)) is a nonsingular matrix, then

xu(u) = −Φ−1(y(u))Arru(y(u)) x(u). (10)

Since y(u) = c − AT u, we get Arru(y(u)) = −Arry(y)AT .

Proposition 1. For any x ∈ R
n the equality

Arru(y(u)) x = −Arr (x)AT (11)

holds.

Proof. Let us take the product zi of any matrix Arr(yi) on the vector xi and differ-
entiate each row of zi by yi separately. First of all, the “null” row is the following:
z0

i =
∑n−1

j=0 xj
iy

j
i . Therefore,

d

dy
z0

i =
[
x0

i ; x1
i ; . . . ; xn−1

i

]
. (12)

Further, for any consequent j-th row: zj
i = yj

i x0
i + y0

i xj
i . Hence

d

dy
zj

i =
[
xj

i ; 0; . . . ; 0; x0
i ; 0; . . . , 0

]
, 1 ≤ j ≤ n − 1. (13)

From (12) and (13) we derive that Arry(y)x = Arr(x). Hence, the equality (11)
takes place. ��

According to Proposition 1 and to (10) G (u) = AΦ−1(u)Arr(x(u))AT . Thus, the
iterative method (9) can be written in the following form

uk+1 = uk −
[
AΦ−1(yk)Arr(xk)AT

]−1

(Axk − b) , (14)

where xk = x(uk), yk = y(uk).
It is possible to consider the more general with respect to (9) iterative process. In

this process both variables u and y are updated at each iteration. In order to construct
the method we add to the right side of Eq. (7) the second equality from (6), multiplied
by some parameter τ > 0. As a result, we obtain instead of (7) the system of equations

Φ(y)x = AT b + τ
(
y + AT u − c

)
(15)
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with the solution x(u, y) = Φ−1(y)f(u, y), where f(u, y) = AT b + τ
(
y + AT u − c

)
.

Substituting x(u, y) in first and second equalities from (6), we obtain the system
of n + m equations

AΦ−1(y)f(u, y) − b = 0m, Arr(y)Φ−1(y)f(u, y) = 0n. (16)

Denote w = [u; y] and Ψ(w) =
[
Ψ(1)(w); Ψ(2)(w)

]
, where

Ψ(1)(w) = AΦ−1(y)f(u, y) − b, Ψ(2)(w) = Arr(y)Φ−1(y)f(u, y).

Lemma 1. Let the point w = [u; y] ∈ FD be such that the matrix Φ(y) is nonsingular.
Then the matrix Ψw(w) has the form

Ψw(w) =

[
τAΦ−1AT AΦ−1 [τIn − Arr(x(w))]

τArr(y)Φ−1AT
[
In − Arr(y)Φ−1

]
Arr(x(w)) + τArr(y)Φ−1

]
. (17)

where Φ−1 = Φ−1(y).

Proof. Differentiating Ψ(1), we obtain: Ψ
(1)
u (w) = Axu(w), Ψ

(1)
y (w) = Axy(w). More-

over,

Ψ(2)
u (w) = Arr (y) xu(w), Ψ(2)

y (w) = Arr (x(w)) + Arr (y) xy(w).

Because of (15), the function x(w) is satisfied to the identity

[
AT A + Arr (y)

]
x(w) ≡ AT b + τ

(
y + AT u − c

)
. (18)

After differentiation (18) by u we obtain

[
AT A + Arr (y)

]
xu(w) = τAT . (19)

Respectfully, after differentiation (18) by y we derive the equality AT A xy(w) +
∂

∂ y
Arr (y)x(w) = τIn or

AT A xy(w) + Arr (x(w)) + Arr (y) xy(w) = τIn. (20)

Equalities (19) and (20) can be written as

Φ(y)xu(w) = τAT , Φ(y)xy(w) + Arr (x(w)) = τIn.

If Φ(y) is a nonsingular matrix, we derive from here that

xu(w) = τΦ−1(y)AT , xy(w) = Φ−1(y) [τIn − Arr (x(w))] .

Thus, the matrix Ψw(w) has the form (17). ��

If the matrix Ψw(w) is nonsingular for all points w in some neighbourhood of the
solution w∗ of the problem (3), then it is possible to apply the Newton method for
solving the system of nonlinear equations (16). We obtain the dual iterative method

wk+1 = wk − Ψ−1
w (wk)Ψ(wk). (21)

The point w0 must be taken from some vicinity of the solution w∗.
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Denote Γ(y) = AΦ−1(y)AT , K1(y) = AΦ−1(y), K2(y) = Arr(y)Φ−1(y). Then
the matrix (17) can be written as

Ψw(w) =

[
τΓ(y) K1(y) [τIn − Arr(x(w))]

τArr(y)KT
1 (y) [In − K2(y)]Arr(x(w)) + τK2(y)

]
.

Let the point w ∈ FD be such that the matrix Ψw(w) is nonsingular. In this case
the matrix Γ(y) is also nonsingular. Denote K3(y) = KT

1 (y)Γ−1K1(y) and

Ω(w) = [In − K2(y)]Arr(x(w)) + τK2(y) − Arr(y)K3(y) [τIn − Arr(x(w))] .

Then, by the Frobenius formula, we obtain

Ψ−1
w (w) =

[
P1 P2

P3 P4

]
,

where P4 = Ω−1 and

P1 = τ−1Γ−1 + τ−1Γ−1K1(y) [τIn − Arr(x(w))]Ω−1Arr(y)KT
1 (y)Γ−1,

P2 = −τ−1Γ−1K1(y) [τIn − Arr(x(w))]Ω−1, P3 = −Ω−1Arr(y)KT
1 (y)Γ−1.

At last, denote W = Γ−1K1(y) [τIn − Arr(x(w))]Ω−1. It follows from previous for-
mulas that P2 = −τ−1W and P1 = τ−1

[
Im − WArr(y)KT

1 (y)
]
Γ−1.

Therefore, the formulas (21) for updating the point [uk; yk] are following:

uk+1 = uk − τ−1
[(

Im − WArr(y)KT
1 (y)

)
Γ−1 (Axk − b) + WArr(yk)xk

]
,

yk+1 = yk + Ω−1
[
Arr(y)KT

1 (y)Γ−1 (Axk − b) − Arr(yk)xk

]
,

where xk = x(wk) = Φ−1(yk)f(wk).

4 Non-degeneracy in the Dual Problem

Let us show that the matrix Φ(y) is nonsingular, if the point [u, y] ∈ FD is non-
degenerate.

Definition 1. [1]. The point [u, y] ∈ FD is called non-degenerate if TK(y) + R(AT ) =
R

n, where TK(y) is the tangent space to the cone K at the point y and R(AT ) is the
image of the matrix AT .

Let [u, y] ∈ FD, and let the vector y ∈ K be partitioned onto three blocks of
components: y = [yF ; yI ; yN ] . We assume for definiteness that these blocks are con-
sisted from components yi ordered in the following way: yF = [y1; . . . ; yrF ], yI =
[yrF+1; . . . ; yrF+rI ], yN = [yrF+rI+1; . . . ; yrF+rB+rN ]. Recall that r = rF + rI + rN .

The partition of the vector y induces the partition of the index set Jr = [1 : r] onto
three subsets:

Jr
F (y) = [1, . . . , rF ], Jr

I (y) = [rF + 1, . . . , rF + rI ], Jr
N (y) = [rF + rI + 1, . . . , r].

If i ∈ Jr
F (y), then yi �= 0ni and yi ∈ ∂Kni

2 , where ∂Kni
2 is the boundary of the

cone Kni
2 . If i ∈ Jr

I (y), then yi = 0ni . At last, in the case, where i ∈ Jr
N (y), the

inclusion yi ∈ intKni
2 holds. According to the partition of the vector y onto three
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blocks of components we partition also the matrix A = [AF , AI , AN ] and the vector
c = [cF ; cI ; cN ].

For any nonzero component yi ∈ IRni , i ∈ Jr, the following spectral decomposition

yi = θi,1di,1 + θi,nidi,ni (22)

takes place [1]. Here the pair of vectors

di,1 =
1√
2

[
1;

ȳi

‖ȳi‖

]
, di,ni =

1√
2

[
1; − ȳi

‖ȳi‖

]
,

is a Jordan frame. The coefficients θi,1 and θi,ni in (22) are following:

θi,1 =
1√
2

(
y0

i + ‖ȳi‖
)
, θi,ni =

1√
2

(
y0

i − ‖ȳi‖
)
.

Both vectors di,1 and di,ni are orthogonal each to other and their lengths equal to one.
If yi ∈ Kni

2 , then θi,1 ≥ 0 and θi,ni ≥ 0. In the case, where yi �= 0ni and yi ∈ ∂Kni
2 ,

the equality y0
i = ‖ȳi‖ holds. Hence, only the first coefficient θi,1 =

√
2y0

i =
√

2‖ȳi‖
differs from zero.

Let us assume that yi ∈ Kni
2 and yi �= 0ni . The matrix Arr (yi) is symmetric.

Denote by Hi the orthogonal matrix with columns being eigenvectors of Arr (yi). The
vectors di,1 and di,ni are among eigenvectors of Arr (yi). The matrix Hi can be taken
in the following form

Hi = [di,1, hi,2, . . . , hi,ni−2, di,ni ] .

The eigenvectors hi,2, . . . hi,ni−2 are arbitrary vectors from the subspace

R
ni
0 =

{
z = [z0; z̄] ∈ R

ni : z0 = 0
}

.

All these vectors have the unit length and are orthogonal each to others. Moreover,
they are orthogonal to the vectors di,1 and di,ni .

Eigenvalues y0
i + ‖ȳi‖ and y0

i − ‖ȳi‖ correspond to the eigenvectors di,1 and di,ni ,
respectively. The eigenvalue y0

i has the multiplicity ni − 2 and corresponds to eigen-
vectors hi,2, . . . hi,ni−2. Denoting by Σi the diagonal matrix

Σi = Diag
(√

2θi,1, y
0
i , . . . , y0

i ,
√

2θi,ni

)
,

we have Arr (yi) = HiΣiH
T
i .

If i ∈ Jr
I (y), then yi = 0ni . In this case the identity matrix Ini can be taken as the

orthogonal matrix Hi. It is evident that Σi = 0nini for this Arr (yi).
Introduce into consideration the block-diagonal matrices

HF = DIAG [H1, . . . , HrF ] , HI = DIAG [HrF+1, . . . , HrF+rI ] ,

The matrices HF and HI are orthogonal. In the same way we combine the diagonal
matrices Σi:

ΣF = DIAG [Σ1, . . . , ΣrF ] , ΣI = DIAG [ΣrF+1, . . . , ΣrF+rI ] ,

Let AH
F = AF HF , and let ÃH

F be the matrix AH
F , from which all columns are

removed, except the columns being the first columns of matrices AiHi, i ∈ Jr
F (y). The

matrix ÃH
F has the dimension m × rF . Denote AH

FI =
[
ÃH

F , AH
I

]
, where AH

I = AIHI .

The following criterion of the non-degeneracy of the point [u, y] is valid [1].
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Proposition 2. The point [u, y] ∈ FD is non-degenerate if and only if columns of the
matrix AH

FI are linear independent.

It follows from Proposition 2, that at a non-degenerate point [u, y] the inequality
rF + nI ≤ m takes place, where nI =

∑
i∈Jr

I
(y) ni.

Proposition 3. [6] Let the point [u, y] ∈ FD be non-degenerate. Then the matrix Φ(y)
is nonsingular.

We call the dual problem (3) non-degenerate, if all points [u, y] ∈ FD are non-
degenerate. Below we suppose that the problem (3) is non-degenerate.

5 Local Convergence of the Dual Methods

Let x∗ and [u∗, y∗] be the solutions of problems (2) and (3), respectively. We assume
without loss of generality that for the vector x∗ the following partition onto three blocks
of components x∗ = [x∗,F , x∗,I , x∗,N ] holds. Moreover, the number of component in
blocks x∗,F , x∗,I and x∗,N is equal to rF , rI and rN , respectively. Each component x∗,i

from the block x∗,F belongs to the boundary of the cone Kni
2 . Each component x∗,i

from the block x∗,I is an interior point of Kni
2 . All x∗,i from the block x∗,N are zero

vectors.
Besides, let for the vector y∗ the decomposition onto block of components y∗ =

[y∗,F , y∗,I , y∗,N ] take place. Moreover, the number of components in blocks is equal to
r̄F , r̄I and r̄N , respectively. But unlike to x∗, components y∗,i from the block y∗,I are
zero vectors. On the contrary, y∗,i from the block y∗,N is an interior point of the cone
Kni

2 .
According to (5) the following complementary condition x∗,i ◦ y∗,i = 0, 1 ≤ i ≤ r,

holds. The strict complementary condition means that additionally x∗,i+y∗,i ∈ int Kni
2 .

In this case r̄F = rF , r̄I = rI and r̄N = rN . Furthermore, the matrices Arr(x∗,i) and
Arr(y∗,i) commute between themselves. The following decompositions

Arr(x∗,i) = HiΛiH
T
i , Arr(y∗,i) = HiΣiH

T
i , (23)

take place. Here Hi is an orthogonal matrix, and Λi and Σi are diagonal matrices with
eigenvalues of Arr(x∗,i) and Arr(y∗,i) at their diagonals, respectively. Below we set
rFI = rF + rI and Jr

F = [1 : rF ], Jr
I = [rF +1 : rFI ], Jr

N = [rFI +1 : r], Jr
FI = Jr

F ∪Jr
I .

Similar to (22) for x∗,i the spectral decomposition

x∗,i = ηi,1ei,1 + ηi,niei,ni (24)

holds, where

ei,1 =
1√
2

[
1;

x̄∗,i

‖x̄∗,i‖

]
, ei,ni =

1√
2

[
1; − x̄∗,i

‖x̄∗,i‖

]

are frame vectors. The coefficients ηi,1 and ηi,ni in (24) are following:

ηi,1 =
1√
2

(
x0

∗,i + ‖x̄∗,i‖
)
, ηi,ni =

1√
2

(
x0

∗,i − ‖x̄∗,i‖
)
.

Both ei,1 and ei,ni are unit vectors and orthogonal each to other.
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The orthogonal matrix Hi in (23) has the form

Hi = [ei,1, hi,2, . . . , hi,ni−2, ei,ni ] , (25)

where hi,2, . . . , hi,ni−2 are unit vectors from the subspace R
ni
0 . The matrix Λi =

Diag
(√

2ηi,1, x0
∗,i, . . . , x0

∗,i,
√

2ηi,ni

)
is diagonal with eigenvalues of Arr(x∗,i) on its

diagonal, i ∈ Jr
FI . Remark, that for i ∈ Jr

F the last eigenvalue is zero, that is
Λi = Diag

(
2x0

∗,i, x0
∗,i, . . . , x0

∗,i, 0
)
.

At solutions x∗ and y∗ according to the complementary condition the vector ei,ni

must be collinear to the vector di,1 from the spectral decomposition (22) for y∗,i.
Hence, the orthogonal matrix (25) can be used also in the spectral decomposition of
the matrix Arr(y∗,i), i ∈ Jr

FI , i.e. Arr(y∗,i) = HiΣiH
T
i , where Σi is a diagonal matrix

with the vector of eigenvalues of the matrix Arr(y∗,i) at its diagonal. For i ∈ Jr
F the

matrix Σi has the form Σi = Diag
(
0, y0

∗,i, . . . , y0
∗,i, 2y0

∗,i

)
. The matrix Λi is zero for

i ∈ Jr
N , and, vice verse, the matrix Σi is zero, when i ∈ Jr

I .
In addition, let the orthogonal matrix Hi for i ∈ Jr

N be defined by the matrix
Arr(y∗,i), that is Arr(y∗,i) = HiΣiH

T
i . Then Hi = [di,1, hi,2, . . . , hi,ni−2,di,ni ] and

Σi = Diag
(
y0

∗,i + ‖ȳ∗,i‖, y0
∗,i, . . . , y0

∗,i, y0
∗,i − ‖ȳ∗,i‖

)
. Moreover, Λi is a zero matrix

for i ∈ Jr
N .

Let Λ = DIAG (ΛF ,ΛI ,ΛN ), Σ = DIAG(ΣF ,ΣI ,ΣN ), where

ΛF = DIAG(Λ1, . . . , ΛrF ) , ΣF = DIAG(Σ1, . . . , ΣrF )

and
ΛI = DIAG(ΛrF+1, . . . , ΛrFI ) , ΣI = DIAG(ΣrF+1, . . . , ΣrFI ) ,

ΛN = DIAG(ΛrFI+1, . . . , Λr) , ΣN = DIAG(ΣrFI+1, . . . , Σr) .

Set also H = DIAG(H1, . . . , Hr) and denote: AHF = AHF , AHI = AHI , AHN =
AHN , AH = AH. For AH the decomposition AH =

[
AHF , AHI , AHN

]
is valid. With

the introduced notations the matrix G (u∗) can be submitted in the form

G (u∗) = AHΦ−H(y∗)Λ(x∗)(AH)T , Φ−H(y∗) =
(
ΦH(y∗)

)−1

, (26)

where y∗ = y(u∗) and ΦH(y∗) = HT Φ(y∗)H.
We have by aforesaid

ΦH(y∗) =

⎡
⎢⎣

(
AH

F

)T AH
F + ΣF

(
AH

F

)T AH
I

(
AH

F

)T AH
N(

AH
I

)T AH
F

(
AH

I

)T AH
I

(
AH

I

)T AH
N(

AH
N

)T AH
F

(
AH

N

)T AH
I

(
AH

N

)T AH
N + ΣN

⎤
⎥⎦ .

All diagonal entrees of the matrix ΣN are strictly positive. The diagonal matrix ΣF

is such that there are rF zero entrees at its diagonal. All these zero entrees are first
diagonal elements of the matrices Σi, i ∈ Jr

F .
Compute Φ−H(y∗). For this purpose we firstly rearrange rows and columns of the

matrix. Suppose that first columns of the matrices AH
i , i ∈ Jr

F , are removed from AH
i ,

and the separate sub-matrix ÃH
F is composed from these first columns. The dimension

of ÃH
F is m × rF . Denote by ÂH

F the sub-matrix of the matrix AH
F composed from

the rest columns of AH
F . Add the sub-matrix ÃH

F to the matrix AI , putting it before
AI . The resulting m × (rF + nI) matrix denote by AH

FI . Moreover, denote by Σ̂F the
diagonal sub-matrix of the matrix ΣF , from which first diagonal entrees of the matrices
Σi, i ∈ Jr

F , are eliminated. Let Π be a permutation matrix, realizing the mentioned
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changes of rows and columns of ΦH(y∗). Then the matrix ΦH(y∗) can be written in
the form

ΦH(y∗) = Π

⎡
⎢⎢⎣

(
ÂH

F

)T

ÂH
F + Σ̂F

(
ÂH

F

)T

AH
FI

(
ÂH

F

)T

AH
N(

AH
FI

)T ÂH
F

(
AH

FI

)T AH
FI

(
AH

FI

)T AH
N(

AH
N

)T ÂH
F

(
AH

N

)T AH
FI

(
AH

N

)T AH
N + ΣN

⎤
⎥⎥⎦ΠT. (27)

Partition the matrix (27) onto four blocks:

ΦH(y∗) = Π

[
W11 W12

WT
12 W22

]
ΠT,

where

W11 =

⎡
⎣

(
ÂH

F

)T

ÂH
F + Σ̂F

(
ÂH

F

)T

AH
FI(

AH
FI

)T ÂH
F

(
AH

FI

)T AH
FI

⎤
⎦ , W12 =

⎡
⎣

(
ÂH

F

)T

AH
N(

AH
FI

)T AH
N

⎤
⎦

and W22 = ΣN +
(
AH

N

)T AH
N .

If the non-degeneracy condition holds at the point [u∗, y∗], then according to Propo-
sition 3 the matrix ΦH(y∗) is positive definite. Therefore, the diagonal blocks W11 and
W22 are also positive definite matrices.

Using the Frobenius formula, we obtain

Φ−H(y∗) = Π

[
V11 V12

VT
12 V22

]
ΠT,

where

V11 = W−1
11 + W−1

11 W12Z−1WT
12W−1

11 , V12 = −W−1
11 W12Z−1, V22 = Z−1 (28)

and Z = W22 − WT
12W−1

11 W12.
Firstly, compute the matrix W−1

11 . According to Proposition 2 the matrix(
AH

FI

)T AH
FI at the non-degenerate point [u∗, y∗] is nonsingular. Denote

Y =
(
ÂH

F

)T

ÂH
F + Σ̂F −

(
ÂH

F

)T

AH
FI

[(
AH

FI

)T

AH
FI

]−1 (
AH

FI

)T

ÂH
F . (29)

Denote also P = AH
FI

[(
AH

FI

)T AH
FI

]−1 (
AH

FI

)T
. The matrix P is an orthogonal projec-

tor onto the linear sub-space L, generated by columns of the matrix AH
FI . The matrix

P⊥ = I − P projects onto the orthogonal complement L⊥ to the sub-space L. By (29)

Y = Σ̂F +
(
ÂH

F

)T

P⊥ÂH
F . (30)

Let E =
[(

AH
FI

)T AH
FI

]−1

, S = ÂH
F Y−1

(
ÂH

F

)T

. With the help of the Frobenius

formula, we obtain

W−1
11 =

[
Y−1 −Y−1

(
ÂH

F

)T

AH
FIE

−E(AH
FI)

T ÂH
F Y−1 E + E(AH

FI)
T SAH

FIE

]
, (31)
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The matrix P⊥ is idempotent, that is P⊥ = P2
⊥. Using the Sherman-Morrison-

Woodbury formula, we derive from (30)

Y−1 = Σ̂−1
F − Σ̂−1

F

(
ÂH

F

)T

P⊥

[
Im + P⊥ÂH

F Σ̂−1
F

(
ÂH

F

)T

P⊥

]−1

P⊥ÂH
F Σ̂−1

F . (32)

Introduce the additional notation ÂH
FI =

[
ÂH

F , AH
FI

]
. Then the matrix Z can be

written in the form

Z = ΣN +
(
AH

N

)T
[
Im − ÂH

FIW−1
11

(
ÂH

FI

)T
]

AH
N . (33)

It can be seen from (33) that the matrix Z is a Schur complement of the positive
definite matrix W11 at (27). Therefore, Z is a positive definite matrix too.

Proposition 4. Let Ŝ = P + P⊥SP⊥. Then ÂH
FIW−1

11

(
ÂH

FI

)T

= Ŝ.

Proof. This equality can be obtained by direct calculations. ��

Corollary 1. According to (33) Z = ΣN +
(
AH

N

)T
(
Im − Ŝ

)
AH

N . Since ΣN is a pos-

itive definite diagonal matrix, we obtain by the Sherman–Morrison–Woodbury formula

Z−1 = Σ−1
N − Σ−1

N

(
AH

N

)T
(
I − Ŝ

)1/2

·
[
I +

(
I − Ŝ

)1/2

AH
NΣ−1

N

(
AH

N

)T
(
I − Ŝ

)1/2
]−1 (

I − Ŝ
)1/2

AH
NΣ−1

N

(34)

Using the matrices (31) and (34), it is possible by (28) compute the matrix Φ−H(y∗).

Below, we will need in the definition of non-degeneracy of a point x ∈ FP in the
primal problem (2).

Definition 2. [1]. The point x ∈ FP is called non-degenerate, if TK(x)+N (A) = R
n,

where TK(x) is a tangent space to the cone K at the point x, and N (A) is a null-space
of the matrix A.

Denote by HL
i , i ∈ Jr

F , the left ni × (ni − 1) sub-matrix of the matrix Hi. In other
words, HL

i is the matrix Hi, from which the last column ei,ni is removed. Denote also

by AHL
i = AiH

L
i . Compose from AHL

i , i ∈ Jr
F , the matrix AHL

F =
[
AHL

1 , . . . , AHL
rF

]
with the dimension m × (nF − rF ), where nF =

∑
i∈Jr

F
ni. Introduce additionally the

matrix AHL
FI =

[
AHL

F , AH
I

]
. The following criterion of non-degeneracy of the point

x ∈ FP is valid.

Proposition 5. [1]. The point x = [xF ; xI ; xN ] is non-degenerate if and only if rows
of the matrix AHL

FI are linear independent.

Lemma 2. Let x∗ ∈ FP and [u∗, y∗] ∈ FD be non-degenerate solutions of problems
(2) and (3), respectively. Let also the solutions x∗ and y∗ be strictly complementary.
Then the matrix G (u∗) = AΦ−1(u∗)Arr(x(u∗))AT is nonsingular.
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Proof. Since Ax∗ = b and Arr (y∗)x∗ = 0n, we have
[
Arr (y∗) + AT A

]
x∗ = AT b.

Hence, x(u∗) = x∗. Moreover, the expression (26) for G (u∗) takes place.
Let show, that the homogeneous system of linear equations

G (u∗)z = 0m (35)

has only zero solution z = 0m. It follows from here that the matrix G (u∗) is nonsin-
gular.

Denote ÂH = AHΠ. By (26) G (u∗) = ÂH Φ̂−H(y∗)Λ̂(x∗)
(
ÂH

)T

, where ÂH =[
ÂH

FI , AH
N

]
and Φ̂−H(y∗) = ΠT Φ−H(y∗)Π. The block-diagonal matrix Λ̂ = Λ̂(x∗) is

obtained from the matrix Λ by rearrangement of rows and columns with the help of
the permutation matrix Π, that is Λ̂ = ΠΛΠT. This matrix can be written also in

the form Λ̂ = DIAG
[
Λ̂FI ,ΛN

]
.

The right lower block ΛN is a zero matrix, therefore

G (u∗) = ÂH
FIV11Λ̂FI

(
ÂH

FI

)T

+ AH
NVT

12Λ̂FI

(
ÂH

FI

)T

.

Substituting V11 and V12, we derive that G (u∗) is the matrix of the following form

G (u∗) = ÂH
FIW−1

11 Λ̂FI

(
ÂH

FI

)T

+

[
ÂH

FIW−1
11

(
ÂH

FI

)T

− Im

]
AH

NZ−1
(
AH

N

)T ÂH
FIW−1

11 Λ̂FI

(
ÂH

FI

)T

.

Denote U = AH
NZ−1

(
AH

N

)T
. Then, using Proposition 4, we come to conclusion

that

G (u∗) =
[
Im −

(
Im − Ŝ

)
U

]
ÂH

FIW−1
11 Λ̂FI

(
ÂH

FI

)T

.

We multiply the equality (35) from the left on the matrix
(
AH

FI

)T
. Since Im − Ŝ =

P⊥ − P⊥SP⊥, we derive that
(
AH

FI

)T
(
Im − Ŝ

)
= 0. Thus, we have

(
AH

FI

)T

ÂH
FIW−1

11 Λ̂FI

(
ÂH

FI

)T

z = 0l1 , (36)

where l1 = rF + nI .
Assume that z �= 0m and consider separately two possibilities.

1)
(
AH

FI

)T
z �= 0l1 . In this case, taking into account the expression (31) for the

matrix W−1
11 , we get

(
AH

FI

)T

ÂH
FIW−1

11 =
(
AH

FI

)T [
P⊥ÂH

F Y−1, (Im − P⊥S) AH
FIE

]
= [0l1l2 , Il1 ] ,

where l2 = nF − rF . Hence, the equation (36) is reduced to the following one:

ΛFI

(
AH

FI

)T
z = 0l1 , where ΛFI is a right lower diagonal l1 × l1 sub-matrix of the

matrix Λ̂FI . Because all diagonal entrees of the matrix ΛFI are positive numbers, this
equality does not fulfilled, when z �= 0m.

2)
(
AH

FI

)T
z = 0l1 . Under this assumption z ∈ L⊥, therefore,

ÂH
FIW−1

11 Λ̂FI

(
ÂH

FI

)T

z = P⊥ÂH
F Y−1Λ̂F

(
ÂH

F

)T

P⊥z. (37)
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By (32) P⊥ÂH
F Y−1 =

(
Im + Ĉ

)−1

P⊥ÂH
F Σ̂−1

F , where Ĉ = P⊥ÂH
F Σ̂−1

F (ÂH
F )T P⊥. It

follows from here and (37) that

ÂH
FIW−1

11 Λ̂FI

(
ÂH

FI

)T

z =
(
Im + Ĉ

)−1

P⊥ÂH
F Σ̂−1

F Λ̂F

(
ÂH

F

)T

P⊥z = 0.

But the matrix
(
Im + Ĉ

)−1

is positive definite. Therefore, this equality is possible only

when P⊥ÂH
F Σ̂−1

F Λ̂F

(
ÂH

F

)T

P⊥z = 0.

All diagonal entrees of the diagonal matrix Σ−1
F Λ̂F are positive except of rF diago-

nal entrees equal to zero. All these zero entrees correspond to the last diagonal entrees
of matrices Λi in the decomposition Arr(x∗,i) = HiΛiH

T
i , i ∈ Jr

F . Denote by AHL
F

the sub-matrix of the matrix AH
F , from which the last columns of the matrices AH

i are
removed.

Let p = Σ̂−1
F Λ̂F

(
ÂH

F

)T

P⊥z. The vector p is non-zero. Really, otherwise, because

of
(
AH

FI

)T
z = 0, the rows of the matrix

[
AHL , AH

FI

]
are linear dependent. This con-

tradicts to non-degeneracy of the point x∗.
By the same reason the equality P⊥ÂH

F p = 0 is also impossible, since in the opposite
case we have contradiction with Proposition 5. ��

Lemma 3. Let assumptions of Lemma 2 hold. Then the matrix Ψw(w∗) is nonsingu-
lar, where w∗ = [u∗; y∗] is the solution of problem (3).

Proof. Multiplying the right column of the matrix Ψw(w∗) from the right by AT and
subtracting this column from the left column, we obtain the matrix

[
AΦ−1Arr(x∗)AT AΦ−1 [τIn − Arr(x(w))][

Arr(y∗)Φ−1 − In

]
Arr(x∗)AT

[
In − Arr(y∗)Φ−1

]
Arr(x∗) + τArr(y)Φ−1

]
,

(38)
where x∗ = x(w∗) is the solution of the primal problem (2), and Φ−1 = Φ−1(y∗).

Further, we multiply the first row of the matrix (38) from the left by the matrix
AT and sum it with the second row. Since

[
AT A + Arr(y∗)

]
Φ−1(y∗) = In, we amount

to the matrix [
AΦ−1(y∗)Arr(x∗)AT AΦ−1(y) [τIn − Arr(x(w))]

0nm τIn

]
. (39)

By Lemma 2 the left upper sub-matrix AΦ−1(y∗)Arr(x∗)AT is non-singular. Under
τ > 0 the right lower sub-matrix of the matrix (39) is also non-singular. Therefore, the
matrix (38) is non-singular too. ��

Remark 1. If the point [u∗, y∗] ∈ FD is non-degenerate, then due to continuity the
points [u, y] in some vicinity of [u∗, y∗] are also non-degenerate. Thus, the algorithmic
mappings in methods (14) and (21) are completely defined in some domain containing
points u∗ and w∗, respectively.

Theorem 1. Let all conditions of Lemma 2 be valid. Then the iterative methods (14)
and (21) converge locally to the solutions u∗ and w∗ with super-linear rate.

Proof. The proof follows from well-known results concerning the Newton method and
from Lemmas 2, 3. ��
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6 Conclusion

We have proposed two variants of the dual Mewton’s method for solving linear second
order cone programming problems. Both variants of the method converge locally with
the super-linear rate. From theoretical point of view dual methods are preferable in
compare with primal methods, when the number of equalities in the primal problem is
not large.
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