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Preface

This volume contains the refereed proceedings of the 19th International Conference on
Mathematical Optimization Theory and Operations Research (MOTOR 2020)1 held on
July 6–10, 2020, near Novosibirsk, Russia.

MOTOR 2020 was the second joint scientific event2 unifying a number of
well-known international and Russian conferences held in Ural, Siberia, and the Far
East for a long time:

– The Baikal International Triennial School Seminar on Methods of Optimization and
Their Applications (BITSS MOPT), established in 1969 by academician
N. N. Moiseev, was the 17th event3 in this series, held in 2017 in Buryatia

– The All-Russian Conference on Mathematical Programming and Applications
(MPA), established in 1972 by academician I. I. Eremin, was the 15th conference4

in this series, held in 2015 near Ekaterinburg
– The International Conference on Discrete Optimization and Operations Research

(DOOR) was organized nine times since 1996, and the last event5 was held in 2016
in Vladivostok

– The International Conference on Optimization Problems and Their Applications
(OPTA) was organized regularly in Omsk since 1997, and the 7th event6 was held
in 2018

As per tradition, the main conference scope included, but was not limited to,
mathematical programming, bi-level and global optimization, integer programming and
combinatorial optimization, approximation algorithms with theoretical guarantees and
approximation schemes, heuristics and meta-heuristics, game theory, optimization in
machine learning and data analysis, and valuable practical applications in operations
research and economics.

In response to the call for papers, MOTOR 2020 received 175 submissions. Out of
102 full papers considered for reviewing (73 abstracts and short communications were
excluded because of formal reasons) only 31 papers were selected by the Program
Committee (PC) for publication in this volume. Each submission was reviewed by at
least three PC members or invited reviewers, experts in their fields, in order to supply

1 http://math.nsc.ru/conference/motor/2020/.
2 http://motor2019.uran.ru.
3 http://isem.irk.ru/conferences/mopt2017/en/index.html.
4 http://mpa.imm.uran.ru/96/en.
5 http://www.math.nsc.ru/conference/door/2016/.
6 http://opta18.oscsbras.ru/en/.
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detailed and helpful comments. In addition, the PC recommended to include 33 papers
in the supplementary volume after their presentation and discussion during the con-
ference and subsequent revision with respect to the reviewers' comments.

The conference featured nine invited lectures:

– Prof. Aida Abiad (Eindhoven University of Technology, The Netherlands, and
Ghent University, Belgium), “Graph invariants and their application to the graph
isomorphism problem”

– Prof. Evripidis Bampis (Sorbonne Université, France), “Multistage Optimization
Problems”

– Prof. Bo Chen (University of Warwick, UK), “Capacity Auctions: VCG
Mechanism vs. Submodularity”

– Prof. Sergei Chubanov (Bosch Research, Germany), “Convex geometry in the
context of artificial intelligence”

– Prof. Igor Konnov (Kazan Federal University, Russia) “Equilibrium Formulations
of Relative Optimization Problems”

– Prof. Alexander Kostochka (University of Illinois at Chicago, USA), “Long cycles
in graph and hypergraphs”

– Prof. Panos Pardalos (University Florida, USA), “Inverse Combinatorial
Optimization Problems”

– Prof. Soumyendu Raha (Indian Institute of Science, Bangalore, India) “Optimal
complexity Matrix Multiplication like computation structures on network-on-chip
architecture subject to conflicts of resource allocation constraints”

– Prof. Yakov Zinder (University of Technology Sydney, Australia), “Two-stage
Scheduling Models with Limited Storage”

The following five tutorials were given by outstanding scientists:

– Prof. Alexander Grigoriev (Maastricht University, The Netherlands), “Evolution of
sailor and surgical knots”

– Prof. Michael Khachay (Krasovsky Institute of Mathematics and Mechanics,
Russia), “Metrics of a fixed doubling dimension: an efficient approximation of
combinatorial problems”

– Prof. Vladimir Mazalov (Institute of Applied Mathematical Research, Russia),
“Game Theory and Social Networks”

– Dr. Andrey Melnikov (Sobolev Institute of Mathematics, Russia), “Practice of using
the Gurobi optimizer”

– Prof. Konstantin Vorontsov (Institute of Physics and Technology, Russia),
“A survey of machine learning problems from optimization point of view”.

We thank the authors for their submissions, members of the PC, and external
reviewers for their efforts in providing exhaustive reviews. We thank our sponsors and
partners: Mathematical Center in Akademgorodok, Russian Foundation for Basic
Research, Sobolev Institute of Mathematics, Novosibirsk State University, Krasovsky
Institute of Mathematics and Mechanics, Higher School of Economics, and Melentiev
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Energy Systems Institute. We are grateful to Alfred Hofmann, Aliaksandr Birukou,
Anna Kramer, and colleagues from Springer LNCS and CCIS editorial boards for their
kind and helpful support.

July 2020 Alexander Kononov
Michael Khachay
Valery Kalyagin
Panos Pardalos
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Abstracts of Invited Talks



On Graph Invariants and Their Application
to the Graph Isomorphism Problem

Aida Abiad

Eindhoven University of Technology and Ghent University, The Netherlands
aida.abiad@ugent.be

Abstract. Graphs invariants have proven to be one of the most important and
fruitful concepts in modern Combinatorics and Theoretical Computer Science.
Besides being a fascinating study subject for their own sake, they play an
important role in the famous graph isomorphism problem. Their success serves
as a natural motivation for the following natural question: what are the graph
properties that can be deduced from a certain graph invariant? In this talk we
will give an overview and will report on recent results concerning two graph
invariants: the status sequence of a graph and the graph spectrum.

Keywords: Graph isomorphism problem • Graph invariant • Graph spectrum

http://orcid.org/0000-0003-4003-4291


Multistage Optimization Problems

Evripidis Bampis

Sorbonne Universite, Paris, France
bampis@gmail.com

Abstract. Many systems have to be maintained while the underlying con-
straints, costs and/or profits change over time. Although the state of a system
may evolve during time, a non-negligible transition cost is incurred for transi-
tioning from one state to another. In order to model such situations, Gupta et al.
(ICALP 2014) and Eisenstat et al. (ICALP 2014) introduced a multistage model
where the input is a sequence of instances (one for each time step), and the goal
is to find a sequence of solutions (one for each time step) that are both (i) near
optimal for each time step and (ii) as stable as possible. In this talk, we will give
a survey of recent results in algorithmic multistage optimization, both in the
offline and the online contexts and we will discuss connections with other
models taking into account the evolution of data during time.

Keywords: Multistage optimization • Approximation algorithms •

Online algorithms



Capacity Auctions: VCG Mechanism
vs. Submodularity

Bo Chen

University of Warwick, UK
Bo.Chen@wbs.ac.uk

Abstract. We study a form of capacity mechanism that combines capacity and
supply auctions. We characterize how participants bid in this auction and show
that, on a pay-as-bid basis, an equilibrium behavior gives Vickrey-Clarke-Groves
(VCG) profits and achieves efficient outcomeswhen there is submodularity, which
is in stark contrast with what in the existing literature—at equilibrium VCG
payments achieve truthful bids and efficiency. We also provide some necessary
and sufficient conditions for submodularity.

Keywords: Capacity mechanism • Supply auction • Submodularity

http://orcid.org/0000-0001-7605-9453


Convex Geometry in the Context of Artificial
Intelligence

Sergei Chubanov

Bosch Research, Germany
Sergei.Chubanov@de.bosch.com

Abstract. Applications of convex optimization in machine learning include
support vector machines, polyhedral classifiers, deduction of disjunctive and
conjunctive normal forms, time-series clustering, image segmentation, different
models based on information theory, e.g., those involving Shannon entropy and
Kullback-Leibler divergence. Virtually the whole spectrum of standard methods
of convex optimization such as the gradient descent, the Frank-Wolfe algorithm,
and interior-point methods is used for training deep neural networks. At the
same time, some new results in the area of linear programming and convex
optimization indicate that there are methodologies beyond the classical
approaches which can lead to substantially more efficient machine learning
algorithms and better interpretable machine learning models. So in this lecture
we will address recent developments in convex optimization and convex anal-
ysis, in particular in the context of machine learning.

Keywords: Machine learning • Polyhedral theory • Information theory

http://orcid.org/0000-0003-3164-3415


Equilibrium Formulations of Relative
Optimization Problems

Igor Konnov

Kazan Federal University, Russia
konn-igor@yandex.ru

Abstract: We consider relative or subjective optimization problems where the
goal function and feasible set are dependent of the current state of the system
under consideration. We propose equilibrium formulations of the corresponding
problems that lead to general (quasi-)equilibrium problems. We propose to
apply a regularized version of the penalty method for the general
quasi-equilibrium problem, which enables us to establish existence results under
weak coercivity conditions and replace the quasi-equilibrium problem with a
sequence of the usual equilibrium problems. We describe several examples of
applications and show that the subjective approach can be extended to
non-cooperative game problems.

Keywords: Quasiequilibrium problems • Penalty method • Weak coercivity
conditions

http://orcid.org/0000-0002-9426-6314


Long Cycles in Graph and Hypergraphs

Alexander Kostochka

University of Illinois at Chicago, USA
kostochk@illinois.edu

Abstract. Finding long cycles in graphs is an NP-hard problem. Cycles in
hypergraphs can be defined in several natural ways. Since finding long cycles in
hypergraphs is hard for all kinds of cycles, it makes sense to consider approx-
imate algorithms and extremal problems on long cycles in hypergraphs. We
discuss several such extremal problems, recent progress on them and possible
algorithms based on the proofs.

Keywords: Long cycles • Approximate algorithm • NP-hard problem

http://orcid.org/0000-0002-6363-3804


Inverse Combinatorial Optimization Problems

Panos M. Pardalos

University Florida, USA
pardalos@ise.ufl.edu

Abstract: Given an optimization problem and a feasible solution to it, the cor-
responding inverse optimization problem is to find a minimal adjustment of the
cost vector under some norm such that the given solution becomes optimum.
Inverse optimization problems have been applied in diverse areas, ranging from
geophysical sciences, traffic networks, communication networks, facility location
problems, finance, electricity markets, and medical decision-making. It has been
studied in various optimization frameworks including linear programming,
combinatorial optimization, conic, integer and mixed-integer programming,
variational inequalities, and countably infinite linear problems and robust opti-
mization. In this talk, we mainly concentrate on inverse combinatorial optimiza-
tion problems (ICOP). We will introduce some classes of ICOP as well as general
methods to solve them. Some open problems are proposed. We also discuss some
generalized inverse optimization problems. We introduce inverse optimization
problems on spanning trees and mainly concentrate on the inverse max+sum
spanning tree problems in which the original problem aims tominimize the sum of
a maximum weight and a sum cost of a spanning tree.

Keywords: Inverse optimization problem • Spanning tree • Optimization
framework

http://orcid.org/0000-0001-9623-8053


Optimal Complexity Matrix Multiplication
Like Computation Structures

on Network-on-Chip Architecture Subject
to Conflicts of Resource Allocation Constraints

Soumyendu Raha

Indian Institute of Science, Bangalore, India
raha@iisc.ac.in

Abstract. Massively parallel many-core coarse-grain reconfigurable
system-on-chip (SoC) solutions are being increasingly deployed for solving
compute intensive problems in an energy constrained environment. In this talk we
will present how computational structures similar to matrix multiplication, as in
all pairs shortest path algorithm, convolution neural networks, digital filtering,
etc. can be optimally (in terms of power, performance, and resource utilization)
constructed, and realized as efficient datapaths on a matrix of compute units
refered to as Hypercells. Several of such Hypercells interconnected over a
network-on-chip (NoC) make up the massively parallel many-core runtime
reconfigurable SoC. Deadlock free data communication on the network-on-chip
(NoC) is provisioned and scheduled in a way such that the optimality of the
computation structures is preserved both at the level of individual Hypercells, and
at the level of the overall many-core SoC.

Keywords: Matrix multiplication • Hypercells • System-on-chip

http://orcid.org/0000-0003-3530-7507


Two-Stage Scheduling Models with Limited
Storage

Yakov Zinder

University of Technology, Sydney, Australia
Yakov.Zinder@uts.edu.au

Abstract. Publications on the two-stage scheduling systems such as
two-machine flow shops, job shops and open shops, single machine with cou-
pled tasks, and their various generalisations constitute a significant part of the
scheduling literature. Many of these publications consider a limited storage
(buffer) or an additional limited resource. The majority of publications on
scheduling with a buffer consider the buffer as storage that limits the number of
jobs that have completed their first operation and are waiting for the com-
mencement of the second one. The majority of scheduling models with an
additional resource assume that the resource is used only during the processing
on a machine. Despite numerous possible applications that include, for example,
supply chains, multimedia systems and data gathering networks, much less
research has been done on the models where the resource (storage space, buffer)
is allocated to a job from the start of its first operation till the end of its second
operation and where the storage requirement varies from job to job. The talk
presents a survey of recent publications on this type of scheduling problems,
which includes NP-hardness proofs, particular cases amenable for
polynomial-time algorithms, polynomial approximation schemes, and integer
programming based algorithms, including for example Lagrangian relaxation.

Keywords: Scheduling with limited storage • Approximation algorithms •

NP-hard problem

http://orcid.org/0000-0003-2024-8129


Abstracts of Tutorials



Evolution of Sailor and Surgical Knots

Alexander Grigoriev

Maastricht University, Netherlands
a.grigoriev@maastrichtuniversity.nl

Abstract. This is a survey of recent developments in the computational knot
theory. We start with retrospective of well-known results and techniques
bringing topological knot theory and graph theory together: knots equivalence,
Reidemeister moves, knot diagrams and knot polynomials. Then, we briefly
address the complexity of the unknotting problem. We illustrate the difficulty of
unknotting on small and insightful examples of knots. The easy unknotting
cases, e.g., knot diagrams of treewidth 2, are addressed in details. We wrap up
the tutorial posing numerous open questions and introducing new research
directions.

Keywords: Knot theory • Unknotting problem • Graph theory

http://orcid.org/0000-0002-8391-235X


Metrics of a Fixed Doubling Dimension:
An Efficient Approximation of Combinatorial

Problems

Mikhail Khachay

Krasovsky Institute of Mathematics and Mechanics, Ekaterinburg, Russia
mkhachay@imm.uran.ru

Abstract. For decades, for many well-known combinatorial optimization
problems, the approximability results in the class of algorithms with theoretical
performance guarantees have had the quite similar nature. For instance, the
classic Traveling Salesman Problem (TSP) is strongly NP-hard both in general
and even in very specific settings, e.g. in the Euclidean plane. The problem is
hardly approximable in general setting, it is APX-complete for an arbitrary
metric, whilst, the problem admits polynomial time approximation schemes
(PTAS) in the Euclidean space of an arbitrary fixed dimension. Recent results in
the field of the analysis of finite metric spaces shed a light to the design of
approximation schemes for a wide family of metric settings of these problems.
In this tutorial, we give a short overview of such an approach leading to the
PTAS for the metric TSP in metric space of any fixed doubling dimension.

Keywords: Metric combinatorial problem • APX-completness • PTAS

http://orcid.org/0000-0003-3555-0080


Game Theory and Social Networks

Vladimir V. Mazalov

Institute of Applied Mathematical Research, Petrozavodsk, Russia
vmazalov@krc.karelia.ru

Abstract. Social networks represent a new phenomenon of our life. The
growing popularity of social networks in the Web dates back to 1995 when
American portal Classmates.com was launched. This project facilitated the soon
appearance of online social networks (SixDegrees, LiveJournal, LinkedIn,
MySpace, Facebook, Twitter, YouTube, and others) in the early 2000s. In
Russia, the most popular networks are VKontakte and Odnoklassniki. Social
networks are visualized using social graphs. Graph theory provides main anal-
ysis tools for social networks. In particular, by calculating centrality measures
for nodes and edges one may detect active participants (members) of a social
network. We use for the analysis of social networks game-theoretic approach.
We propose a new concept of the betweenness centrality for weighted graphs
using the methods of cooperative game theory. The characteristic function is
determined by special way for different coalitions (subsets of the graph). The
betweenness centrality is determined as the Myerson value. The results of
computer simulations for some examples of networks, in particular, for the
popular social network “VKontakte”, as well as the comparing with the
PageRank method are presented. Then we apply game-theoretic methods for
community detection in networks. Finally, for approaches based on potential
games we suggest a very efficient computational scheme using Gibbs sampling.

Keywords: Online social networks • Cooperative game theory • Social graphs

http://orcid.org/0000-0003-2262-2620


Practice of Using the Gurobi Optimizer

Andrey Melnikov

Sobolev Institute of Mathematics, Russia
a.a.melnikov@hotmail.com

Abstract. The general-purpose optimization software has never been more
powerful than today. It is universal, customizable, controllable, and enables a
user with a variety of tools and features to get better solutions in a shorter time.
In this tutorial, we will overview the ingredients of one of the fastest MIP
solvers, the Gurobi optimizer, that are relevant in academic studies. The key
topics would be the internal organization of the solver, its tuning when solving
LPs and MIPs, the most newly added features, and other selected ones.

Keywords: Optimization models • Mixed-integer programming • Software

http://orcid.org/0000-0002-2401-2407


A Survey of Machine Learning Problems
from Optimization Point of View

Konstantin Vorontsov

Moscow Institute of Physics and Technology, Russia
kvorontsov@hse.ru

Abstract. In recent years, machine learning problems have become increasingly
diverse and even exotic. We can no longer say that machine learning is basically
classification, clustering, regression, and density estimation from empirical data.
New types of machine learning, such as transfer, self-supervised, adversarial,
privileged, meta, one-shot, few-shot, positive-unlabeled, and others, are
expanding the boundaries of AI applications. Despite their diversity, each
of them remains an optimization problem for the sum of a large number of
terms. In this tutorial, you will learn how to set the meaning of a machine
learning task by changing the construction of the terms, whether it be a para-
metric model of data, loss function, or regularizer.

Keywords: Machine learning • AI applications • Optimization

http://orcid.org/0000-0002-4244-4270


Contents

Session 1: Invited Talks

Global and Local Search Methods for D.C. Constrained Problems. . . . . . . . . 3
Alexander S. Strekalovsky

Dual Newton’s Methods for Linear Second-Order Cone Programming . . . . . . 19
Vitaly Zhadan

Discrete Optimization

On Symmetry Groups of Some Quadratic Programming Problems. . . . . . . . . 35
Anton V. Eremeev and Alexander S. Yurkov

An Extension of the Das and Mathieu QPTAS to the Case of Polylog
Capacity Constrained CVRP in Metric Spaces of a Fixed
Doubling Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Michael Khachay, Yuri Ogorodnikov, and Daniel Khachay

Using Integer Programming to Search for Counterexamples:
A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Giuseppe Lancia, Eleonora Pippia, and Franca Rinaldi

On Asymptotically Optimal Solvability of Max m-k-Cycles Cover Problem
in a Normed Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Edward Kh. Gimadi and Ivan A. Rykov

Mathematical Programming

D.C. Constrained Optimization Approach for Solving Metal Recovery
Processing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Rentsen Enkhbat, Tatiana V. Gruzdeva, and Jamsranjav Enkhbayr

On Solving the Quadratic Sum-of-Ratios Problems . . . . . . . . . . . . . . . . . . . 115
Tatiana V. Gruzdeva and Alexander S. Strekalovsky

Adaptive Descent Splitting Method for Decomposable
Optimization Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Igor Konnov and Olga Pinyagina

Convergence Analysis of Penalty Decomposition Algorithm for Cardinality
Constrained Convex Optimization in Hilbert Spaces . . . . . . . . . . . . . . . . . . 141

Michael Pleshakov, Sergei Sidorov, and Kirill Spiridonov



Game Theory

Dixit-Stiglitz-Krugman Model with Nonlinear Costs . . . . . . . . . . . . . . . . . . 157
Ivan Belyaev and Igor Bykadorov

Investments in R&D in Monopolistic Competitive Trade Model . . . . . . . . . . 170
Igor Bykadorov

On the Cooperative Behavior in Multistage Multicriteria Game
with Chance Moves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Denis Kuzyutin, Ekaterina Gromova, and Nadezhda Smirnova

On a One-Dimensional Differential Game with a Non-convex
Terminal Payoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Igor’ V. Izmest’ev and Viktor I. Ukhobotov

Open-Loop Based Strategies for Autonomous Linear Quadratic Game
Models with Continuous Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Ildus Kuchkarov and Ovanes Petrosian

On Iterative Methods for Searching Equilibrium in Pure Exchange
Economy with Multiplicative Utilities of Its Agents. . . . . . . . . . . . . . . . . . . 231

Leonid D. Popov

The Continuous Hotelling Pure Location Game with Elastic
Demand Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Pierre von Mouche

Scheduling Problem

An Improved Approximation Algorithm for the Coupled-Task Scheduling
Problem with Equal Exact Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Alexander Ageev and Mikhail Ivanov

On the Optima Localization for the Three-Machine Routing Open Shop . . . . 274
Ilya Chernykh and Olga Krivonogova

Makespan Minimization for Parallel Jobs with Energy Constraint . . . . . . . . . 289
Alexander Kononov and Yulia Kovalenko

A Polynomial-Time Algorithm for the Routing Flow Shop Problem with
Two Machines: An Asymmetric Network with a Fixed Number of Nodes . . . 301

Ilya Chernykh, Alexander Kononov, and Sergey Sevastyanov

xxxiv Contents



Heuristics and Metaheuristics

Optimal Location of Welds on the Vehicle Wiring Harness:
P-Median Based Exact and Heuristic Approaches . . . . . . . . . . . . . . . . . . . . 315

Maurizio Boccia, Adriano Masone, Antonio Sforza, and Claudio Sterle

On Non-elitist Evolutionary Algorithms Optimizing Fitness Functions
with a Plateau. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Anton V. Eremeev

A Matheuristic for the Drilling Rig Routing Problem. . . . . . . . . . . . . . . . . . 343
Igor Kulachenko and Polina Kononova

Locating Facilities Under Deliberate Disruptive Attacks . . . . . . . . . . . . . . . . 359
Anton V. Ushakov and Igor Vasilyev

Improving Effectiveness of Neighborhood-Based Algorithms
for Optimization of Costly Pseudo-Boolean Black-Box Functions . . . . . . . . . 373

Oleg Zaikin and Stepan Kochemazov

Operational Research Applications

Securities and Cash Settlement Framework. . . . . . . . . . . . . . . . . . . . . . . . . 391
Ekaterina Alekseeva, Sana Ghariani, and Nicolas Wolters

A Stable Alternative to Sinkhorn’s Algorithm for Regularized
Optimal Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Pavel Dvurechensky, Alexander Gasnikov, Sergey Omelchenko,
and Alexander Tiurin

Most Favorable Russell Measures of Efficiency:
Properties and Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

Chiang Kao

Optimization of Gain in Symmetrized Itakura-Saito Discrimination
for Pronunciation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

Andrey V. Savchenko, Vladimir V. Savchenko,
and Lyudmila V. Savchenko

Integer Programming Approach to the Data Traffic Paths
Recovering Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

Igor Vasilyev, Dong Zhang, and Jie Ren

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

Contents xxxv



Session 1: Invited Talks



Global and Local Search Methods
for D.C. Constrained Problems

Alexander S. Strekalovsky(B)

Matrosov Institute for System Dynamics and Control Theory of SB of RAS,
Irkutsk, Russia
strekal@icc.ru

Abstract. This paper addresses the general optimization problem (P)
with equality and inequality constraints and the cost function given by
d.c. functions. We reduce the problem to a penalized problem (Pσ) with-
out constraints with the help of the Exact Penalization Theory. Further,
we show that the reduced problem is also a d.c. minimization prob-
lem. This property allows us to prove the Global Optimality Conditions
(GOCs), which reduce the study of the penalized problem to an inves-
tigation of a family of linearized (convex) problems tractable with the
help of standard convex optimization methods and software.

In addition, we propose a new Local Search Scheme (LSS1) which
produces a sequence of vectors converging to a so-called critical point.
On the other hand, the vector satisfying the GOCs turns out to be also
a critical point.

On the basis of the GOCs for finding a global solution to (Pσ), we
develop a Global Search Scheme, including the LSS1 with an update of
the penalty parameter, and a special stopping criteria allowing detec-
tion of a feasible vector in the original problem (P), and, consequently,
a global solution to the original Problem (P).

Keywords: Difference of convex functions · Equality and inequality
constraints · Exact penalty · Linearized problem · Local search ·
Critical vector · Global search

1 Introduction

According to the opinions of the well-known specialists, the optimization prob-
lems can be separated into two different classes: convex and nonconvex [1,4,6,10–
13,16–19,30].

At present, the convex problems look as commonly solved by standard classi-
cal methods and software [11,12,16]. Meanwhile, the nonconvex problems from
different fields of applications generated so many various difficulties (when it
comes to finding a global solution) that the majority of researchers prefer to use
the simplest approaches, such as “branch and bounds”, which lead, in general,
to “the dimension curse” and do not allow finding a global solution. As a result,
they only derive “suboptimal points”. Even such approaches as a “bioiniciated
c© Springer Nature Switzerland AG 2020
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method”, a genetic algorithm, the neuron’s sets, become more and more popular
without any mathematical substantiation. In contrast to this, we prefer to follow
another way, which might be viewed as a more “mathematical” one.

Below, we consider a rather general optimization problem when the data is
given by d.c. functions. As well-known, the linear space of d.c. functions merits
to be used for rather large fields of problems, since any continuous function over
a compact can be approximated by a d.c. function in the topology of uniformed
convergence [6,10–13,16–19,30]. Besides, we attack d.c. problems with the solid
theoretical foundation of the Global Optimality Conditions (GOCs), the Exact
Penalization Theory (EPT), the Local and Global Search convergence theory
and our algorithmic and computational experience [1,2,4–10,14,19–23,25–29].

The most advantageous property of the developed methodology with respect
to the other approaches [1,2,4–6,13,15] is the employing all the achievements of
the Theory and Methods of the Modern Optimization [1–6,9–18,30].

In particular, in the interior of the Local Search Schemes (LSS) for solv-
ing the convex linearized problems one can use any relevant method of uncon-
strained and constrained optimization and the corresponding computational soft-
ware (CPLEX, PATH, XpressMP, KNITRO etc.) [7,8,19,21,25].

Moreover, since the LSS and the linearized problems are used in global search
procedures based on GOCs, one can conclude that, first, the Modern Optimiza-
tion Theory and Methods provides the bricks with which one construct the new
numerical Global Search methods for nonconvex optimization.

Hence, it is clear, that this new methodology is completely different from the
B&B and its satellites, and off-causes from the “‘bioniciated”’ ideology which
has no relations to modern optimization methods.

As result, here we propose a new approach, which we present step by step.
After the statement of Problem (P) and the auxiliary Problem (Pσ), we show

in Sect. 2 that the objective function Fσ(·) of the penalized problem is also a d.c.
function, which allows us to present the GOCs in Theorem 1 and to comment
the first properties of these new tools of Optimization.

In Sect. 4, we discuss the Local Search for Problem (Pσ) and develop the
Local Search Method (LSS1) with an update of the penalty parameter value.

Furthermore, we study the convergence properties of LSS1 (Proposition 1
and 2 and Theorem 2). Theorem 2 is the principal result of Sec. 4: the limit
point x∗ of the sequence {xs}, produced by the LSS1, is a critical point, i.e.
the solution to the linearized problem (P∗L∗) (linearized just at the point x∗).
Moreover, this point, according to Theorem 3, turns out to be a KKT-point for
the original Problem (P) with the Lagrange multipliers provided by the auxiliary
linearized problem (23).

In Sect. 5, we present the Global Search Scheme (GSS) constructed on the
base of the GOCs (Theorem 4). The GSS includes the LSS1 (for instance), a
GSS for Problem (Pσ) and, of course, a penalty parameter update procedure,
the convergence properties of which was presented in [29].

The new stopping criteria at the final stage of the GSS1 allows us to obtain
a solution to the original problem (P).
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2 Problem Statements and Exact Penalty

Consider the problem with constraints:

(P) :
f0(x) := g0(x) − h0(x) ↓ min

x
, x ∈ S,

fi(x) := gi(x) − hi(x) ≤ 0, i ∈ I = {1, . . . , m},
fi(x) := gi(x) − hi(x) = 0, i ∈ E = {m + 1, . . . , l};

⎫
⎬

⎭

where the functions gi(·), hi(·) are convex and sufficiently smooth on IRn, so
that the functions fi(·), i ∈ {0} ∪ I ∪ E , are the d.c. functions [6,10,13,19,30].
Assume that the set S ⊂ IRn is convex and compact.

Further, suppose that the feasible set F ,

F := {x ∈ S | fi(x) ≤ 0, i ∈ I, fi(x) = 0, i ∈ E},

of Problem (P), and the set Sol(P) of global solutions to Problem (P),

Sol(P) := {x ∈ F | f0(x) = V(P) := inf(f0,F) := inf
x

{f0(x) | x ∈ F}

are non-empty, F �= ∅ �= Sol(P).
In addition, the optimal value V(P) of Problem (P) is supposed to be finite:

(Af ) : V(P) := inf(f0,F) = inf
x

{f0(x) | x ∈ F} > −∞.

(1)
Along with Problem (P), we consider the auxiliary (penalized) problem

(Pσ) : Fσ(x) := f0(x) + σW (x) ↓ min
x

, x ∈ S, (2)

W (x) := max{0, f1(x), . . . , fm(x)} +
∑

j∈E
|fj(x)| (3)

without constraints, where the penalty function W (x) has a mixed form, so
that the inequality constraints are penalized by the term defined with the help
of l∞-norm, meanwhile for the equality constraints one employs the l1-norm
penalization.

As known, the penalization aims at the replacing Problem (P) with con-
straints by Problem (Pσ) without them, with the hope that (Pσ) might be
easier to solve than (P), due to the strong nonconvexity of (P). For instance, if
z ∈ Sol(Pσ), and, in addition, z is feasible for Problem (P), i.e. z ∈ F , then z
turns out to be a global solution to (P): z ∈ Sol(P) [1,2,4,5,9,15,16].

Therefore, the key feature of the Exact Penalization Theory (EPT) is the
existence of a threshold value σ∗ ≥ 0 of the penalty parameter σ ≥ 0 for which
Sol(Pσ) ⊂ Sol(P) ∀σ ≥ σ∗. The latter means that for σ ≥ σ∗ Problems (P)
and (Pσ) are equivalent in the sense that Sol(P) = Sol(Pσ) (see [4], [12, Chapt.
VII, Lemma 1.2.1]).

It is worth noting that under various constraint qualification (CQ) conditions
(MFCQ, etc.), the error bound properties, etc., one can prove the existence of
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the exact penalty threshold σ∗ ≥ 0 for a local and global solutions, as well.
[1,4,5,9,14].

Assume henceforth that some regularity conditions for the existence of an
exact penalty threshold σ∗ ≥ 0 are fulfilled.

However, it can be readily seen that Problem (Pσ) stays to be nonconvex
and, moreover, preserves the d.c. structure, so that the idea of solving (Pσ) by
the classical (standard) optimization method (SQP, CGM, TRM, IPM, etc.) is
not sufficiently substantiated.

In order to easily assimilate this idea, let us show that the cost function Fσ(·)
of Problem (Pσ) is a d.c. function. Consequently, Problem (Pσ) turns out to be
nonconvex. Indeed, since |fi(x)| = 2max{gi(x), hi(x)} − [gi(x) + hi(x)], it can
be readily seen that

Fσ(x)
�
= f0(x) + σ max{0, fi(x), i ∈ I} + σ

∑

i∈E
|fi(x)| = Gσ(x) − Hσ(x), (4)

Hσ(x) := h0(x) + σ
[∑

i∈I

hi(x) +
∑

j∈E
(gj(x) + hj(x))

]
, (5)

Gσ(x) := Fσ(x) + Hσ(x) = g0(x) + 2σ
∑

i∈E
max{gi(x);hi(x)}

+σ max

{
∑

j∈I

hj(x);
[
gi(x) +

j �=i∑

j∈I

hj(x)
]
, i ∈ I

}

.
(6)

It is clear, that Gσ(·) and Hσ(·) are both convex functions [11,12,17,18], so that
Fσ(·) is a d.c. function, as claimed.

3 Global Optimality Conditions

It is easy to see that for a feasible (in (P)) point z ∈ S we have W (z) = 0, and
therefore, with ζ := f0(z), we obtain

Fσ(z)
�
= f0(z) + σW (z) = f0(z) = ζ. (7)

The following result was proved in [19,23,24,26,27].

Theorem 1. Let a feasible vector z ∈ F , ζ := f0(z), be a solution to Prob-
lem (P) and σ ≥ σ∗ > 0, where σ∗ ≥ 0 is a threshold value of the penalty
parameter, such that Sol(P) = Sol(Pσ) ∀σ ≥ σ∗.

Then, for every pair (y, β) ∈ IRn × IR satisfying the equation

Hσ(y) = β − ζ, (8)

the following inequality holds

Gσ(x) − β ≥ 〈∇Hσ(y), x − y〉 ∀x ∈ S. (9)
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Remark 1. It can be readily seen that Theorem 1 reduces the solution of the
nonconvex Problem (Pσ) to a study of the family of the convex (linearized)
problems as follows

(PσL(y)) : Φσy(x) := Gσ(x) − 〈∇Hσ(y), x〉 ↓ min
x

, x ∈ S, (10)

depending on the pairs (y, β) ∈ IRn+1, fulfilling the Eq. (8).
Moreover, the linearization is carried out with respect to the “united” non-

convexity of Problem (Pσ), which is accumulated by the function Hσ(·) (see (P),
(Pσ)–(2) and (5)).

Remark 2. If we can produce a triple (y, β, u) ∈ IRn+1 × S, Hσ(y) = β − ζ,
u ∈ S, which brakes down the principal inequality (9) of Theorem 1, i.e.

0 > Gσ(u) − β − 〈∇Hσ(y), u − y〉,

then, with the help the Eq. (8) and the convexity of the function Hσ(·), we derive

0 > Gσ(u) − β − Hσ(u) + Hσ(y) = Fσ(u) − ζ,

or, Fσ(z) > Fσ(u), u ∈ S, z ∈ F . Hence, the vector z is not a solution to (Pσ).
If, in addition, u is feasible in (P), z, u ∈ F , W (u) = 0 = W (z), we obtain

f0(z) = Fσ(z) > Fσ(u) = f0(u), so that z /∈ Sol(P) and the point u is better
than z ∈ F .

It means that the conditions (8)–(9) of Theorem 1 possess the classical con-
structive (algorithmic) property: once the conditions are violated, one can find
a feasible (in (P)) vector u, which is better than the point z ∈ F in question.

Employing the property of the Global Optimality Conditions [7,8,19–29], we
developed numerical methods of the local and global search in Problem (Pσ),
which will be used below for finding a global solution to Problem (P).

4 Local Search in Problem (Pσ)

Below we develop the standard scheme [15,19,22,25,28] of consecutive solution
of the convex (linearized) problems of type (PσL(y))–(10), where y is replaced
by the current iterate xs ∈ S, s = 0, 1, 2, . . . .

Our principal objective here is the investigation of the convergence of the
local search and the properties of a cluster point. For the sake of simplicity, in
this section, we use the following notations: Hs(·) := Hσs

(·), Gs(·) := Gσs
(·).

Suppose, that a starting point x0 ∈ S and a current iterate xs ∈ S are given.
Besides, let a value of the penalty parameter σs > 0 be also given. Then one can
find the next iterate xs+1 ∈ S, as satisfying the inequality as follows

Φs(xs+1)
�
= Gs(xs+1) − 〈∇Hs(xs), xs+1〉 − δs ≤

≤ inf
x

{Φs(x) = Gs(x) − 〈∇Hs(xs), x〉 | x ∈ S} =: Vs,
(11)
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where δs > 0, s = 0, 1, 2, . . . , is the accuracy of a solution to the following
linearized problem ((PsLs) := (Pσs

Ls))

(PsLs) : Φs(x) := Gs(x) − 〈∇Hs(xs), x〉 ↓ min
x

, x ∈ S. (12)

Assume, henceforth, the following condition on a number sequence {δs}

δs > 0, s = 0, 1, 2, . . . ,
∞∑

s=0

δs < +∞. (13)

Furthermore, in virtue of the assumption (Af )–(1), the goal function Fσ(x) of
Problem (Pσ) satisfies the similar condition

inf
x

{Fσ(x) | x ∈ S} > −∞, (1′)

due to the obvious inequalities: σ ≥ 0,W (x) ≥ 0, f0(x) ≤ Fσ(x)
�
= f0(x)+

σW (x).
Now we are ready to present a Local Search Scheme (LSS) for Problem

(Pσ), which is based on the idea of consecutive solution of linearized problems
[15,22,25] but with a penalty parameter update procedure [28].

Let there be given a starting point x0 ∈ S, an initial value σ0 > 0 of the
penalty parameter σ ≥ 0 along with two parameters η1 ∈]0, 1[, η2 ∈ [2, 10] of
the LSS. Then the first LSS can be described as follows.

Local Search Scheme 1 (LSS1)

Step 0. Set s := 0, xs := x0, σs := σ0.
Step 1. Solve the subproblem (PsLs)–(12) to get x(σs) ∈ δs − Sol(PsLs).
Step 2. If W (x(σs)) = 0, then set σ+ := σs, x(σ+) := x(σs), and go to Step 6.
Step 3. (W (x(σs)) > 0) If the inequality

Φs(xs) − Φs(x(σs)) ≥ η1σs[W (xs) − W (x(σs))] (14)

holds, then set σ+ := σs, x(σ+) := x(σs), and go to Step 6.
Step 4. (Else) Increase σs > 0, so that σ+ := η2σs with η2 ∈ [2, 10], and solve

the linearized problem

(P+L+) : Φ+(x) := G+(x) − 〈∇H+(x(σs)), x〉 ↓ min
x

, x ∈ S, (15)

with G+ := Gσ+ , H+ := Hσ+ , to get x(σ+) ∈ S, such that
x(σ+) ∈ δs − Sol(P+L+).

Step 5. Set x(σs) := x(σ+), σs := σ+ and return to Step 3.
Step 6. Set σs+1 := σ+, and xs+1 := x(σ+) ∈ S, s := s + 1, and loop to Step 1.

It is worth noting that the above scheme is not yet to become a proper
algorithm, since it is not clear what stopping criteria can be used here.
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In order to handle these issue, let us consider the first convergence features
of the scheme [22,25,28].

Introduce now the following assumption

(AW ) :
(a) :

∞∑

s=0

ξs
�
=

∞∑

s=0

(σs+1 − σs)W (xs) < +∞
(b) : ξs := (σs+1 − σs)W (xs) ≥ 0, s = 0, 1, 2, . . .

⎫
⎪⎬

⎪⎭
(16)

Note that it follows from (AW )–(16) (b) that σs+1 ≥ σs > 0.
Furthermore, it can be readily seen [25,28] that

Fs+1(xs+1) ≤ F(x
s) + ξs, s = 0, 1, 2, . . . (17)

and, due to (AW ) the number sequence {Fs(xs)} produced by the LSS1, turns
out to be almost decreasing (see (16)–(17)), and, therefore, converging [25,28].

Proposition 1. Let the assumption (Af )–(1) and (AW )–(16) be fulfilled.
Then, the sequence {xk} ⊂ S produced by the LSS1 satisfies the following

conditions.
The number sequences {Fs(xs)} and {ΔΦs+1}, where ΔΦs+1 := Φs+1(xs) −

Φs+1(xs+1)
�
= Gs+1(xs) − Gs+1(xs+1) + 〈∇Hs+1(xs), xs+1 − xs〉, converge, so

that
(a) : lim

s→∞ Fs(xs) =: F∗ > −∞;

(b) : lim
s→∞ ΔΦs+1 = 0.

}

(18)

#

Furthermore, it can be readily seen that, under the following assumption

(Astr) :
At least one of the functions hi, i ∈ I ∪ E ∪ {0},
gj , j ∈ E is strongly convex;

}

(19)
the functions Hσ(·), Hs(·), Hs+1(·) turn out to be strongly convex.

Moreover, it is well-known [10–12] that in a DC decomposition f(x) = g(x)−
h(x) of a DC function f(·), the convex components g(·) and h(·) can be always
chosen to be strongly convex [6,10–13,19,30].

Proposition 2. [25,28] Let the assumption (Astr)–(19) be satisfied. Then, the
sequence {xs}, produced by the LSS1, is the Cauchy sequence, i.e

lim
s→∞ = ||xs − xs+1|| = 0. (20)

#

To handle other properties of the sequence {xs}, suppose now that the fol-
lowing assumption holds

(Aσ) : ∃σup ∈ IR : σup ≥ σs, s = 0, 1, 2, . . . (21)
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Clearly, from the practical view-point (Aσ)–(21) looks too natural, and, on
the other hand, it is related to existence of the threshold value σ∗ ≥ 0 of the
penalty parameter σ ≥ 0, i.e. to the Exact Penalty Theory [1,2,4,5,9,14,24].

Moreover, combining (16′) and (21) we derive that there exists σ∗ > 0, such
that lim

s→∞ σs = σ∗ and one immediately gets the next result as was in [25,28].

Theorem 2. Let the assumptions (AW )–(16), (Af )–(1), (Astr)–(19) and (Aσ)–
(21) be fulfilled. Then, a limit point x∗ of the sequence {xs}, produced by the
LSS1, is a solution to the following convex problem

(P∗L∗) : Φ∗(x) := G∗(x) − 〈∇H∗(x∗), x〉 ↓ min
x

, x ∈ S, (22)

where G∗(x) := Gσ∗(x) = g0(x) + σ∗GW (x),H∗(x) := Hσ∗(x) = h0(x) +
σ∗HW (x), W (x) = GW (x) − HW (x), σ∗ = lim

s→∞ σs.

Remark 3. According to Theorem 2, any cluster point x∗ of the sequence {xs},
generated by LSS1, is a solution to the linearized Problem (P∗L∗) (linearized
just by ∇H∗(x∗) at the point x∗ with the limit value σ∗ = lim

s→∞ σs of the corre-

sponding number sequence {σs} of the penalty parameter). The point x∗ is now
said to be a critical in Problem (Pσ) (with respect to the LSS1).

However, it is not the only remarkable property of this point. It can be
shown, in addition, that a critical point x∗ turns out to be a KKT-vector for
the original Problem (P) with the Lagrange multipliers provided by an auxiliary
convex optimization problem [22–25,28].

Indeed, with the help of the explicit form (5), (6) of the functions Gσ(·)
and Hσ(·), it can be readily seen that the linearized Problem (P∗L∗) in not
smooth, since the function G∗(·) = Gσ∗(·) is not differentiable, while the entries
of (P) are supposed to be smooth. To avoid the difficulties generated by non-
smoothness, let us apply Lemma 4.1 from [23] (see also [10,16]), which states
the equivalence of Problem (P∗L∗)–(22) and the following problem with the
supplementary parameters (γ, tm+1, ..., tl) :

g0(x) − 〈∇H∗(x∗), x〉 + σ∗γ + 2σ∗
∑

j∈E
tj ↓ min

(x,γ,t)
, x ∈ S,

gi(x) +
j �=i∑

i∈I
hj(x) ≤ γ, i ∈ I,

∑

j∈I
hj(x) ≤ γ, γ ∈ IR;

gp(x) ≤ tp, hp(x) ≤ tp, p ∈ E , t = (tm+1, . . . , tl) ∈ IRl−m

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(23)

One can easily see that the problem (23) is a convex optimization problem with
the variables (x, γ, t) ∈ IRn+1 × IRl−m. Unlike Problem (P∗L∗), since the entries
of Problem (P) are smooth, the problem (23) stays smooth too. On the other
hand, comparing with Problem (P), (23) has only (m+1)+2(l−m) inequalities,
whereas (P) includes equality and inequality constraints.

Moreover, it can be readily seen that in (23) the Slater’s condition holds.
Hence, we have μ0 = 1 in the corresponding to (23) Lagrange function.
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In addition, the KKT-condition for (23) becomes necessary and sufficient for
a triple (x∗, γ∗, t∗) to belong to Sol(23), since x∗ is the solution to (P∗L∗) and
(23) is a convex optimization problem.

Constructing the corresponding Lagrange function [24,25,27,28] and employ-
ing the KKT-system for (x∗, γ∗, t∗) ∈ Sol (23) with

γ∗ = max{ ∑

j∈I
hj(x∗); [gi(x∗) +

∑

j∈I
hj(x∗)], i ∈ I},

tp∗ = max {gp(x∗);hp(x∗), p ∈ E}

}

(24)

we obtain, in particular, the following relations (see [25,26,28])

μm+1 +
∑

i∈I
μi = σ∗, ηp + νp = 2σ∗, p ∈ E , (25)

between the Lagrange multipliers (μ, η, ν) and the penalty parameter σ∗ > 0.
Furthermore, from the equality 0n = ∇xL(x∗, γ∗, t∗) one can derive the prin-

cipal KKT-equation

0n = ∇f0(x∗) +
∑

i∈I
μi∇fi(x∗) +

∑

p∈E
(ηp − σ∗)∇fp(x∗), (26)

where ∇fi(x∗) = ∇gi(x∗) − ∇hi(x∗), i ∈ {0} ∪ I ∪ E (see [23–25,27,28]).
Clearly, (26) is the principal equation of the KKT system for the original

Problem (P) at the critical point x∗ ∈ S with the Lagrange multipliers λ0 = 1
and λi, i ∈ I ∪ E , satisfying the condition

λi = μi ≥ 0, i ∈ I, λp = ηp − σ∗, ηp ≥ 0, p ∈ E . (27)

Moreover, it can be readily shown that, if the critical vector x∗ is feasible in Prob-
lem (P), i.e. W (x∗) = 0, then the complementarity conditions in Problem (P)
are also fulfilled with λi ≥ 0, i ∈ I, defined in (27) [25,28].

Besides, it turns out that the feasibility of the cluster point x∗ can be proved
under now natural condition of Proposition 1.

Proposition 3. Let the assumption (AW )–(16) and the following condition hold

(Aσ2) : If W (xs) > 0, then σs+1 ≥ σs + æ, æ > 0. (28)

Then, the limit point x∗ of the sequence {xs}, produced by the LS Scheme 1, is
feasible in Problem (P), i.e. W (x∗) = 0 = lim

s→∞ W (xs).

However, we should not forget that we just proved the following result.

Theorem 3. The limit point x∗ of the sequence {xs}, produced by the LSS1,
turns out to be a KKT-vector for the original Problem (P) with the Lagrange
multipliers λ0 = 1, λi ≥ 0, i ∈ I, λj ∈ IR, j ∈ E , completely defined by the
Lagrange multipliers (μ, η, ν) ∈ IRm

+ × IR2(l−m) of the problem (23) and the limit
penalty parameter σ∗ > 0, all satisfying (25), (27).
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Remark 4. Thus, it is clear, that x∗ is considerably stronger and better than the
usual stationary (KKT) point provided by classical optimization methods [16]
in Problem (P).

Let us add a few words about the stopping criteria that play an important
role in computational solutions, simulations, and experiments.

Besides, it would be reasonable to propose a few combinations of different
stopping criteria for the LSS1 and the Global Search in (Pσ) on the basis of
Theorems 2, 3 and Propositions 1–3. Let us begin with the well-known and
obvious conditions as follows (x+ := x(σ+), see Steps 2 and 4 of the LSS1):

W (x+) = 0 (or W (x+) ≤ τ), (29)

||x+ − xs|| ≤ τ. (30)

For (29), it is quite clear, that the fulfillness of (29) means only that x+ is
feasible in Problem (P) and nothing else. Meanwhile, the inequality (30) implies
that the process of convergence: ||xs+1 −xs|| ↓ 0, described in Theorem 2, might
be closed to or situated at the terminal stage.

On the other hand, Proposition 1 suggests that the inequality

Φs(xs) − Φs(xs+1) ≤ τ

2
(31)

may also be considered as a stopping criterion for the LSS1.
Indeed, due to the principal inequality (11) and (31) we have

Φs(xs)
�
= Gs(xs) − 〈∇Hs(xs), xs〉 ≤ τ

2
+ Φs(xs+1) ≤ Vs + δs +

τ

2
,

where Vs = infx{Φs(x) | x ∈ S} is the optimal value of the problem (PsLs).
Whence, by choosing δs ≤ τ

2
, we obtain Φs(xs) ≤ Vs + τ. It means that xs is

an τ -solution to (PsLs), which is rather satisfactory for any local search method,
in particular, in Problem (Pσs

) = (Ps).
Hence, the inequality (31) together with the inequality σs ≤ τ

2
can be used

as a reasonable stopping criterion.
Suppose, in addition, that the assumption (Astr)–(19) holds, then the func-

tion Hs(·) is strongly convex, i.e. with some ρs > 0 one has ∀x, y ∈ IRn

Hs(x) − Hs(y) ≥ 〈∇Hs(y), x − y〉 +
ρs

2
||x − y||2. (32)

Then, with the help of the inequalities (11) and (32), we derive
ρs

2
||x − y||2 ≤ Φs(xs) − Φs(xs+1) +

ρs

2
||xs − xs+1||2 + δs ≤

≤ Fs(xs) − Fs(xs+1) + δs,
(33)

from which the two inequalities follow:

||xs − xs+1|| ≤
√

2
ρs

[
Fs(xs) − Fs(xs+1) + δs

]1/2
; (33a)
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−δs

2
≤ Φs(xs) − Φs(xs+1) +

δs

2
≤ Fs(xs) − Fs(xs+1). (33b)

Note that (33b) was obtained under the condition that
δs

2
≤ ρs

2
||xs −xs+1||.

From (33a) it can be readily seen that the stopping criterion

|Fs(xs) − Fs(xs+1)| ≤ τ

2
, δs ≤ τ

2
(34)

is more suitable and practical than, for example, the inequality ||xs−xs+1|| ≤ τ

2
.

Indeed, suppose, for instance, we have |Fs(xs) − Fs(xs+1)| ≤ 2 · 10−4,
δs ≤ 2 ·10−4. Then, from (33a) with ρs = 2 it follows that ||xs −xs+1|| ≤ 2 ·10−2,
which can be insufficient and unsatisfactory even for τ = 10−3. Moreover, (33b)

means that the numbers ΔΦs
�
= Φs(xs) − Φs(xs+1) and [Fs(xs) − Fs(xs+1)] are

approximately of the same order when δs ≥ 0 is sufficiently small. The latter
result suggests that instead of the criterion (34) we can use the inequality (31)
together with σs ≤ τ

2
.

It is worth nothing that the latter criterion is easier to verify, since we com-
pute these numbers at every iteration of the LSS1 by solving the linearized
Problems (PsLs).

5 Global Search Scheme for Problem (P)

Here, we return to the problem of global search in Problem (P) with the equality
and inequality constraints. To this end, we will use Problem (Pσ) (without con-
straints). At present, there exists only one known tool for escaping a stationary
point (provided by classical optimization methods [16]) and improving the value
of a cost functional. This tool is the Global Optimality Conditions (GOCs) for
Problem (Pσ), in particular, Theorem 1. In addition, there exist two supplemen-
tary theorems, one of which yields the theoretical foundation for escaping from
a local pitfall and is presented below (see [23,24,26,27]).

Theorem 4. Assume that a feasible in Problem (P) point z is not a ε-solution
to (P), i.e. inf(f0,F) + ε = V(P) + ε < ζ := f0(z). In addition, let a vector
v ∈ IRn satisfy the following inequality f0(v) > ζ − ε.

Then, for any penalty parameter σ > 0 there exists a tuple (y, β, u), (y, β) ∈
IRn+1, u ∈ F , such that the following conditions hold

(a) Hσ(y) = β − ζ + ε; (b) Gσ(y) ≤ β,
(c) Gσ(u) − β < 〈∇Hσ(y), u − y〉.

}

(35)

Remark 5. It is worth noting now that if a point z ∈ S satisfies the GOCs, then
it turns out to be a critical vector in Problem (Pσ) (see Theorem 2). To show
this, it is sufficient to set in the conditions (8)–(9) of Theorem 1 y := z. Hence,
on account of the convergence property of a sequence {xs} generated by the
LSS1 of Sect. 4 (see Theorem 2), the notion of the critical point of Problem (Pσ)
seems to be the principal, essential and fundamental feature in DC optimization.
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On the basis of such theoretical foundation and on account of our computa-
tional experience [7,8,19–26,29], we are now able to develop the following Global
Search Scheme (GSS) for Problem (Pσ), where σ > 0 is fixed.

Suppose, we have a current iterate zk ∈ S, ζk := Fσ(zk).

(a) Choose a number β, such that

β− := inf(Gσ(·), S) ≤ β ≤ β+ := sup(Gσ(·), S). (36)

Then, for the level surface Yk = Y (ζk, β) = {y ∈ IRn : Hσ(y) = β − ζk} of
the convex function Hσ(·), we construct a finite approximation

A(ζk, β) =
{
y1, ..., yN | Hσ

(
yi

)
= β − ζk, Gσ(yi) ≤ β, i = 1, . . . , N

}
.

(b) For every yi ∈ Ak(β) := A(ζk, β), solve the linearized problem as follows

(PσLi) : Gσ(x) − 〈∇Hσ(yi), x
〉 ↓ min

x
, x ∈ S. (37)

Let ūi ∈ S be an approximate solution to (PσLi).
(c) By starting at the point ūi ∈ S, find a critical (to the LSS1, for example)

vector ui, i.e. which is an approximate solution to the linearized problem

(PσL(ui)) : Gσ(x) − 〈∇Hσ(ui), x
〉 ↓ min

x
, x ∈ S, (38)

(linearized at the point ui just).
(d) Furthermore, solve “the level problem”

(Lev Pσ) :
〈∇Hσ(v), ui − v

〉 ↑ max
v

, Hσ(v) = β − ζk. (39)

Let wi be an approximate solution to Problem (Lev Pσ).
(e) Compute the number ηk(β)= η(ζk, β) := η0(ζk, β) − β,

η0(ζ, β) = Gσ(uj) − 〈∇Hσ(wj), uj − wj〉 :=
= min

1≤i≤N
{Gσ(ui) − 〈∇Hσ(wi), ui − wi〉}.

(f) If ηk(β) < 0, then the vector uj ∈ S is better, than the point zk in question,
due to the convexity of Hσ(·), so that Fσ(uj) < Fσ(zk). Hence, in this case,
one can go to the next iteration, i.e. k := k + 1, zk+1 := uj .

(g) When η(ζk, β) ≥ 0, we have to change the value β for β := β+Δβ ∈ [β−, β+]
with the help of some one-dimensional search methods. #

By developing this general GSS for finding a global solution to (Pσ), we
proposed an algorithmic form of the GSS and proved the convergence of the
sequence {zk} produced by the method [29].

Now it is necessary to do the next step and to advance a new method for find-
ing a global solution to original Problem (P), which was our principal objective
from the very beginning.

It is clear that this algorithmic procedure should be a mature scheme includ-
ing, without doubts,
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(A) a local search method (LSM) (say, LSS1);
(B) a global search scheme (say, the GSS1 from [29]) aiming at a global solution

to the auxiliary Problem (Pσ) along with
(C) an update procedure for the penalty parameter providing a feasible (for the

original Problem (P)) iterate zk with a corresponding value of σk > 0.

For the sake of simplicity, let us use the following notations: Fk(·) := Fσk
,

Gk := Gσk
, Hk := Hσk

. In addition, let there be given a starting vector
x0 ∈ S and a starting penalty parameter value σ0 > 0 (say, σ0 = 1), and,
besides, the number sequences {ωk}, {τk}, {δk}, {εk} such that ωk, τk, δk, εk > 0,
k = 0, 1, 2, . . . , ωk ↓ 0, τk ↓ 0, δk ↓ 0, εk ↓ 0 (k → ∞) (see [19,21,25,26,29]).

Finally, suppose that numbers γ1 ∈]0, 1[ and γ2 ∈ [2, 10] (the parameters
of the GSS) are also given. Then the Global Search Procedure for the original
Problem (P) can be described as follows.

Global Search Scheme 1 (GSS1) for (P)

Step 0. Set k := 0, xk := x0, σk := σ0.
Step 1. By starting at xk ∈ S and with the help of a LSM (for example,

LSS1) for Problem (Pσ), produce a τk-critical point zk ∈ S, ζk := Fk(zk) ≤
Fk(xk) (for instance, satisfying the following inequality with Φk(x) = Gk(x)−
〈∇Hk(zk), x〉

Φk(zk) − τk ≤ inf
x

{Φk(x)| x ∈ S}). (40)

Step 2. If W (zk) > ωk, then increase σk up to σ+ to fulfill the inequality

Φk(xk) − Φk(x(σ+)) ≥ γ1σ+[W (zk) − W (x(σ+))], (41)

where x(σ+)∈δk-Sol(P+Lk); (P+Lk) :=(Pσ+L(zk)), G+ :=Gσ+ ,H+ :=Hσ+ ,

(P+Lk) : G+(x) − 〈∇H+(zk), x〉 ↓ min
x

, x ∈ S. (42)

Set zk := x(σ+), σk := σ+, Gk := G+, Hk := H+.
Step 3. Choose a number β ∈ [

β−
k , β+

k

]
. (One can set β0 := Gk(zk)),

β−
k := inf{Gk(x)| x ∈ S}, β+

k = sup{Gk(x)| x ∈ S}.
Step 4. Construct an approximation

Ak(β) := {y1, . . . , yNk | Hk(yi) = β − ζk, i = 1, . . . , Nk, Nk = Nk(β)},

and, according to Theorem 3, form a collection of indexes Ik defined as follows
Ik = Ik(β) = {i ∈ {1, . . . , Nk}| Gk(yi) ≤ β}.

Step 5. If Ik = ∅, set β := β + Δβ ∈ [β−
k , β+

k ] and loop to Step 4.
Step 6. For every i ∈ Ik find a global 2δk-solution ui ∈ S to the linearized

convex problem (PkL(yi)), and, after that, starting at ui ∈ S, use a LSM for
(Pσ) to produce a 2τk-critical vector ui ∈ S, so that

Gk(ui) − 〈∇Hk(ui), ui〉 − 2τk ≤ inf
x

{Gk(x) − 〈∇Hk(ui), x〉| x ∈ S}. (43)
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Step 7. Further, for every i ∈ Ik find a global 2δk-solution vi: Hk(vi) = β − ζk,
to the level problem (see the GOCs (8)–(9))

(Lev Pk) : 〈∇Hk(v), ui − v〉 ↑ max
v

, Hk(v) = β − ζk. (44)

Note that for a quadratic function Hk(·), this problem can be solved manually.
Step 8. Compute the number ηk(β) := η0

k(β) − β, where

η0
k(β) := Gk(uj) − 〈∇Hk(vi), uj − vj〉 :=
= min

i∈Ik
{〈Gk(ui) − ∇Hk(vi), ui − vi〉}. (45)

Step 9. If ηk(β) < 0, then set xk+1 := uj , σk+1 := σk, k := k + 1 and loop to
Step 1.

Step 10. (Else) Set β := β + Δβ ∈ [β−, β+], and go to Step 3.
Step 11. If ηk(β) ≥ 0 ∀β ∈ [β−, β+] (i.e. one-dimensional search on β is termi-

nated) and, in addition

W (zk) ≤ ω∗ (that means zk is approximately feasible in (P))
and δk ≤ δ∗, τk ≤ τ∗, εk ≤ ε∗,

}

(46)

where ω∗ > 0, δ∗ > 0, τ∗ > 0, ε∗ > 0 are the fixed accuracies of
corresponding computations, then STOP.

Step 12. (Else) Set xk+1 := zk (and perhaps σk+1 := γ2σk), k := k + 1, and
loop to Step 1.

It is clear that due to the stopping criteria (46) at Step 11 we obtain a
feasible in Problem (P) point zk (W (zk) ≈ 0) and, therefore, zk turns out to be
a solution to (P), since, due to Steps 3–10 (see [29]), zk ∈ Sol(Pσ) under the
corresponding assumptions on the approximation Ak(β) (Step 4) (see [19,29]).
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Abstract. The linear second-order cone programming problem is con-
sidered. For its solution, two dual Newton’s methods are proposed. These
methods are constructed with the help of optimality conditions. The non-
linear system of equations, obtained from the optimality conditions and
depended only from dual variables, is solved by the Newton method.
Under the assumption that there exist strictly complementary solutions
of both primal and dual problems the local convergence of the methods
with super-linear rate is proved.

Keywords: Linear second-order cone programming · Dual Newton’s
method · Local convergence · Super-linear rate of convergence

1 Introduction

The second-order cone programming problem (SOCP) is one of the main pro-
grams in cone programming. The linear SOCP is a problem in which the linear
objective function is minimized on the intersection of a linear manifold with
a second-order cone (the Lorentz cone) (see [1]). Many optimization problems,
including combinatorial problems, can be reduced to the SOCP programs [1–3].

Today, there are some numerical methods for solving SOCP programs. From
these methods, the primal-dual path-following methods are the most known
[4,5]. In [6] the dual barrier-projection methods have been proposed for SOCP
programs. These methods are generalizations of the corresponding methods for
linear programming [7]. The primal Newton’s method for SOCP have been con-
sidered in [8]. Both dual barrier-projection methods and the primal Newton’s
method had been worked out with the help of optimality conditions.

In dual methods the dual variables depending on primal variable are defined.
As a result, the system of nonlinear equations with respect to dual variables,
including a slack dual variable, is derived. In [6] this derived system of nonlinear
equations is solved by the fix point method. The proposed in [6] dual methods
are of the affine-scaling type. In present paper unlike to [6] the Newton method

c© Springer Nature Switzerland AG 2020
A. Kononov et al. (Eds.): MOTOR 2020, LNCS 12095, pp. 19–32, 2020.
https://doi.org/10.1007/978-3-030-49988-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49988-4_2&domain=pdf
http://orcid.org/0000-0002-2198-9079
https://doi.org/10.1007/978-3-030-49988-4_2


20 V. Zhadan

is used for solving the derived system of nonlinear equations. Under assumption
that the solutions of primal and dual problems are strictly complementary dual
Newton’s methods converge locally to these solutions with super-linear rate.

The paper is organized as follows. In Sect. 1, we formulate the SOCP program.
Section 2 is principal in the paper. In this section the dual iterative methods for
SOCP programs, based on the Newton method, are constructed. In Sect. 3 we
show that in the case of non-degenerate problem these dual methods are well-
posed. Finally, in Sect. 4, the local convergence of the methods is proved.

In what follows, the identity matrix of order s is denoted by Is. The symbol
0s is used for denoting the zero s-dimensional vector, and the symbol 0sk is used
for denoting s×k zero matrix. By Diag (x) is denoted the diagonal matrix with a
vector x at its diagonal. Similarly, a block diagonal matrix with diagonal blocks
M1, . . . ,Mk is denoted by DIAG (M1, . . . ,Mk).

2 The Linear Second-Order Cone Programming Problem

Let K ⊂ IRn denote a closed convex pointed cone with the nonempty interior.
This cone induces in IRn a partial order, that is: x1 �K x2, if x1 − x2 ∈ K. The
linear cone programming problem is

min 〈c, x〉, Ax = b, x ∈ K, (1)

where A is a m × n matrix, and c = [c1; . . . ; cn] ∈ IRn, b = [b1; . . . ; bm] ∈ IRm.
The semicolons between vectors or components of a vector denote that these
vectors or components are placed one under another. The angle brackets denotes
the usual Euclidean scalar product.

The linear SOCP program is a special case of the problem (1). Let ci ∈ IRni ,
1 ≤ i ≤ r. Let also matrices Ai have dimensions m×ni, 1 ≤ i ≤ r. Consider the
problem

min
∑r

i=1〈ci, xi〉,∑r
i=1 Aixi = b, x1 �K

n1
2

0n1 , . . . , xr �Knr
2

0nr
.

(2)

Here Kni
2 is the second order cone (the Lorentz cone) in IRni , defined as

Kni
2 =

{
[x0; x̄] ∈ IR × IRni−1 : x0 ≥ ‖x̄‖}

, 1 ≤ i ≤ r,

where ‖·‖ is the Euclidean norm. The cone Kni
2 is self-dual, that is (Kni

2 )∗ = Kni
2 .

The following problem is dual to (2)

max 〈b, u〉,
AT

i u + yi = ci, 1 ≤ i ≤ r; y1 �K
n1
2

0n1 , . . . , yr �Knr
2

0nr
,

(3)

in which u ∈ IRm.
Denote n = n1 + · · · + nr. If set c = [c1; . . . ; cr], x = [x1; . . . ;xr], y =

[y1; . . . ; yr] and A = [A1, . . . Ar], K = Kn1
2 × · · · × Knr

2 , then the problem (2)
can be written in the form of (1). The cone K is self-dual. We assume that both
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problems (2) and (3) have solutions, and that rows of the matrix A are linear
independent. We assume also that r > 1.

Let y(u) = c − ATu. By

FP = {x ∈ K : Ax = b} , FD = {[u, y] ∈ IRm × K : y = y(u)}

we will denote the feasible sets in problems (2) and (3), respectively. By FD,u

we will denote the projection of the set FD onto the space IRm, i.e. the set
FD,u = {u ∈ IRm : y(u) ∈ K} .

If x and [u, y] are solutions of problems (2) and (3), then they satisfy to the
following system of equalities

〈x, y〉 = 0, Ax = b, y = c − ATu, (4)

and to inclusions: x ∈ K, y ∈ K. Taking into account these inclusions, the
equality 〈x, y〉 = 0 from (4) can be replaced by n other equalities

xi ◦ yi = 0ni
, 1 ≤ i ≤ r, (5)

where the product between vectors xi ∈ R
ni and yi ∈ R

ni is defined by the
following way xi ◦ yi =

[
xT
i yi; x

0
i ȳ + y0i x̄i

]
. By introducing the matrix

Arr (xi) =

[
x0

i x̄T
i

x̄i x0
i In−1

]
,

the product xi ◦ yi can be represented as xi ◦ yi = Arr (xi) yi = Arr (yi) xi.
Compose the block-diagonal matrix Arr(y) = DIAG [Arr (y1), . . . , Arr (yr)] .

Then equalities (4) can be rewritten as

Arr (y) x = Arr (x) y = 0n, Ax = b, y = c − AT u, (6)

where, recall, x ∈ K, y ∈ K.

3 The Dual Newton’s Methods

Consider the iterative dual methods for solving problems (2) and (3). These methods
are analogs of the primal method proposed in [8]. In dual methods the dependence x(u)
or more general dependence x(u, y) are used to derive from (6) the system of nonlinear
equations depending on only dual variables.

In order to obtain x(u) we multiply the second equality from (6) by the matrix AT

and sum it with the first equality (6). As a result, we get the equation with respect to
x:

Φ(y)x = AT b, (7)
where by Φ(y) is denoted the matrix: Φ(y) = AT A + Arr (y). The matrix Φ(y) is
symmetric of order n. If Φ(y) is nonsingular, then, solving the Eq. (7), we obtain

x = x(y) = Φ−1(y)AT b.

Taking y = y(u), we conclude that in fact the matrix Φ(y) depends on u.
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Substituting the founded x(u) = x(y(u)) into the second equation from (6), we get
the system of nonlinear equations with respect to u, namely,

[
Im − AΦ−1(y(u))AT

]
b = 0m. (8)

The system (8) consists of m equations. The number of unknowns is also equal to m.
Applying the Newton method to solve (8), we obtain the iterative process

uk+1 = uk − G −1(uk) (Axk − b) . (9)

Here xk = x(uk) and G (u) = d
du

A x(u) = A xu(u).
Treating (7) as the identity with respect to u, we obtain after differentiating

Arru(y(u)) x(u) + Φ(y(u)) xu(u) = 0nm.

If Φ(y(u)) is a nonsingular matrix, then

xu(u) = −Φ−1(y(u))Arru(y(u)) x(u). (10)

Since y(u) = c − AT u, we get Arru(y(u)) = −Arry(y)AT .

Proposition 1. For any x ∈ R
n the equality

Arru(y(u)) x = −Arr (x)AT (11)

holds.

Proof. Let us take the product zi of any matrix Arr(yi) on the vector xi and differ-
entiate each row of zi by yi separately. First of all, the “null” row is the following:
z0

i =
∑n−1

j=0 xj
iy

j
i . Therefore,

d

dy
z0

i =
[
x0

i ; x1
i ; . . . ; xn−1

i

]
. (12)

Further, for any consequent j-th row: zj
i = yj

i x0
i + y0

i xj
i . Hence

d

dy
zj

i =
[
xj

i ; 0; . . . ; 0; x0
i ; 0; . . . , 0

]
, 1 ≤ j ≤ n − 1. (13)

From (12) and (13) we derive that Arry(y)x = Arr(x). Hence, the equality (11)
takes place. ��

According to Proposition 1 and to (10) G (u) = AΦ−1(u)Arr(x(u))AT . Thus, the
iterative method (9) can be written in the following form

uk+1 = uk −
[
AΦ−1(yk)Arr(xk)AT

]−1

(Axk − b) , (14)

where xk = x(uk), yk = y(uk).
It is possible to consider the more general with respect to (9) iterative process. In

this process both variables u and y are updated at each iteration. In order to construct
the method we add to the right side of Eq. (7) the second equality from (6), multiplied
by some parameter τ > 0. As a result, we obtain instead of (7) the system of equations

Φ(y)x = AT b + τ
(
y + AT u − c

)
(15)
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with the solution x(u, y) = Φ−1(y)f(u, y), where f(u, y) = AT b + τ
(
y + AT u − c

)
.

Substituting x(u, y) in first and second equalities from (6), we obtain the system
of n + m equations

AΦ−1(y)f(u, y) − b = 0m, Arr(y)Φ−1(y)f(u, y) = 0n. (16)

Denote w = [u; y] and Ψ(w) =
[
Ψ(1)(w); Ψ(2)(w)

]
, where

Ψ(1)(w) = AΦ−1(y)f(u, y) − b, Ψ(2)(w) = Arr(y)Φ−1(y)f(u, y).

Lemma 1. Let the point w = [u; y] ∈ FD be such that the matrix Φ(y) is nonsingular.
Then the matrix Ψw(w) has the form

Ψw(w) =

[
τAΦ−1AT AΦ−1 [τIn − Arr(x(w))]

τArr(y)Φ−1AT
[
In − Arr(y)Φ−1

]
Arr(x(w)) + τArr(y)Φ−1

]
. (17)

where Φ−1 = Φ−1(y).

Proof. Differentiating Ψ(1), we obtain: Ψ
(1)
u (w) = Axu(w), Ψ

(1)
y (w) = Axy(w). More-

over,

Ψ(2)
u (w) = Arr (y) xu(w), Ψ(2)

y (w) = Arr (x(w)) + Arr (y) xy(w).

Because of (15), the function x(w) is satisfied to the identity

[
AT A + Arr (y)

]
x(w) ≡ AT b + τ

(
y + AT u − c

)
. (18)

After differentiation (18) by u we obtain

[
AT A + Arr (y)

]
xu(w) = τAT . (19)

Respectfully, after differentiation (18) by y we derive the equality AT A xy(w) +
∂

∂ y
Arr (y)x(w) = τIn or

AT A xy(w) + Arr (x(w)) + Arr (y) xy(w) = τIn. (20)

Equalities (19) and (20) can be written as

Φ(y)xu(w) = τAT , Φ(y)xy(w) + Arr (x(w)) = τIn.

If Φ(y) is a nonsingular matrix, we derive from here that

xu(w) = τΦ−1(y)AT , xy(w) = Φ−1(y) [τIn − Arr (x(w))] .

Thus, the matrix Ψw(w) has the form (17). ��

If the matrix Ψw(w) is nonsingular for all points w in some neighbourhood of the
solution w∗ of the problem (3), then it is possible to apply the Newton method for
solving the system of nonlinear equations (16). We obtain the dual iterative method

wk+1 = wk − Ψ−1
w (wk)Ψ(wk). (21)

The point w0 must be taken from some vicinity of the solution w∗.
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Denote Γ(y) = AΦ−1(y)AT , K1(y) = AΦ−1(y), K2(y) = Arr(y)Φ−1(y). Then
the matrix (17) can be written as

Ψw(w) =

[
τΓ(y) K1(y) [τIn − Arr(x(w))]

τArr(y)KT
1 (y) [In − K2(y)]Arr(x(w)) + τK2(y)

]
.

Let the point w ∈ FD be such that the matrix Ψw(w) is nonsingular. In this case
the matrix Γ(y) is also nonsingular. Denote K3(y) = KT

1 (y)Γ−1K1(y) and

Ω(w) = [In − K2(y)]Arr(x(w)) + τK2(y) − Arr(y)K3(y) [τIn − Arr(x(w))] .

Then, by the Frobenius formula, we obtain

Ψ−1
w (w) =

[
P1 P2

P3 P4

]
,

where P4 = Ω−1 and

P1 = τ−1Γ−1 + τ−1Γ−1K1(y) [τIn − Arr(x(w))]Ω−1Arr(y)KT
1 (y)Γ−1,

P2 = −τ−1Γ−1K1(y) [τIn − Arr(x(w))]Ω−1, P3 = −Ω−1Arr(y)KT
1 (y)Γ−1.

At last, denote W = Γ−1K1(y) [τIn − Arr(x(w))]Ω−1. It follows from previous for-
mulas that P2 = −τ−1W and P1 = τ−1

[
Im − WArr(y)KT

1 (y)
]
Γ−1.

Therefore, the formulas (21) for updating the point [uk; yk] are following:

uk+1 = uk − τ−1
[(

Im − WArr(y)KT
1 (y)

)
Γ−1 (Axk − b) + WArr(yk)xk

]
,

yk+1 = yk + Ω−1
[
Arr(y)KT

1 (y)Γ−1 (Axk − b) − Arr(yk)xk

]
,

where xk = x(wk) = Φ−1(yk)f(wk).

4 Non-degeneracy in the Dual Problem

Let us show that the matrix Φ(y) is nonsingular, if the point [u, y] ∈ FD is non-
degenerate.

Definition 1. [1]. The point [u, y] ∈ FD is called non-degenerate if TK(y) + R(AT ) =
R

n, where TK(y) is the tangent space to the cone K at the point y and R(AT ) is the
image of the matrix AT .

Let [u, y] ∈ FD, and let the vector y ∈ K be partitioned onto three blocks of
components: y = [yF ; yI ; yN ] . We assume for definiteness that these blocks are con-
sisted from components yi ordered in the following way: yF = [y1; . . . ; yrF ], yI =
[yrF+1; . . . ; yrF+rI ], yN = [yrF+rI+1; . . . ; yrF+rB+rN ]. Recall that r = rF + rI + rN .

The partition of the vector y induces the partition of the index set Jr = [1 : r] onto
three subsets:

Jr
F (y) = [1, . . . , rF ], Jr

I (y) = [rF + 1, . . . , rF + rI ], Jr
N (y) = [rF + rI + 1, . . . , r].

If i ∈ Jr
F (y), then yi �= 0ni and yi ∈ ∂Kni

2 , where ∂Kni
2 is the boundary of the

cone Kni
2 . If i ∈ Jr

I (y), then yi = 0ni . At last, in the case, where i ∈ Jr
N (y), the

inclusion yi ∈ intKni
2 holds. According to the partition of the vector y onto three
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blocks of components we partition also the matrix A = [AF , AI , AN ] and the vector
c = [cF ; cI ; cN ].

For any nonzero component yi ∈ IRni , i ∈ Jr, the following spectral decomposition

yi = θi,1di,1 + θi,nidi,ni (22)

takes place [1]. Here the pair of vectors

di,1 =
1√
2

[
1;

ȳi

‖ȳi‖

]
, di,ni =

1√
2

[
1; − ȳi

‖ȳi‖

]
,

is a Jordan frame. The coefficients θi,1 and θi,ni in (22) are following:

θi,1 =
1√
2

(
y0

i + ‖ȳi‖
)
, θi,ni =

1√
2

(
y0

i − ‖ȳi‖
)
.

Both vectors di,1 and di,ni are orthogonal each to other and their lengths equal to one.
If yi ∈ Kni

2 , then θi,1 ≥ 0 and θi,ni ≥ 0. In the case, where yi �= 0ni and yi ∈ ∂Kni
2 ,

the equality y0
i = ‖ȳi‖ holds. Hence, only the first coefficient θi,1 =

√
2y0

i =
√

2‖ȳi‖
differs from zero.

Let us assume that yi ∈ Kni
2 and yi �= 0ni . The matrix Arr (yi) is symmetric.

Denote by Hi the orthogonal matrix with columns being eigenvectors of Arr (yi). The
vectors di,1 and di,ni are among eigenvectors of Arr (yi). The matrix Hi can be taken
in the following form

Hi = [di,1, hi,2, . . . , hi,ni−2, di,ni ] .

The eigenvectors hi,2, . . . hi,ni−2 are arbitrary vectors from the subspace

R
ni
0 =

{
z = [z0; z̄] ∈ R

ni : z0 = 0
}

.

All these vectors have the unit length and are orthogonal each to others. Moreover,
they are orthogonal to the vectors di,1 and di,ni .

Eigenvalues y0
i + ‖ȳi‖ and y0

i − ‖ȳi‖ correspond to the eigenvectors di,1 and di,ni ,
respectively. The eigenvalue y0

i has the multiplicity ni − 2 and corresponds to eigen-
vectors hi,2, . . . hi,ni−2. Denoting by Σi the diagonal matrix

Σi = Diag
(√

2θi,1, y
0
i , . . . , y0

i ,
√

2θi,ni

)
,

we have Arr (yi) = HiΣiH
T
i .

If i ∈ Jr
I (y), then yi = 0ni . In this case the identity matrix Ini can be taken as the

orthogonal matrix Hi. It is evident that Σi = 0nini for this Arr (yi).
Introduce into consideration the block-diagonal matrices

HF = DIAG [H1, . . . , HrF ] , HI = DIAG [HrF+1, . . . , HrF+rI ] ,

The matrices HF and HI are orthogonal. In the same way we combine the diagonal
matrices Σi:

ΣF = DIAG [Σ1, . . . , ΣrF ] , ΣI = DIAG [ΣrF+1, . . . , ΣrF+rI ] ,

Let AH
F = AF HF , and let ÃH

F be the matrix AH
F , from which all columns are

removed, except the columns being the first columns of matrices AiHi, i ∈ Jr
F (y). The

matrix ÃH
F has the dimension m × rF . Denote AH

FI =
[
ÃH

F , AH
I

]
, where AH

I = AIHI .

The following criterion of the non-degeneracy of the point [u, y] is valid [1].
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Proposition 2. The point [u, y] ∈ FD is non-degenerate if and only if columns of the
matrix AH

FI are linear independent.

It follows from Proposition 2, that at a non-degenerate point [u, y] the inequality
rF + nI ≤ m takes place, where nI =

∑
i∈Jr

I
(y) ni.

Proposition 3. [6] Let the point [u, y] ∈ FD be non-degenerate. Then the matrix Φ(y)
is nonsingular.

We call the dual problem (3) non-degenerate, if all points [u, y] ∈ FD are non-
degenerate. Below we suppose that the problem (3) is non-degenerate.

5 Local Convergence of the Dual Methods

Let x∗ and [u∗, y∗] be the solutions of problems (2) and (3), respectively. We assume
without loss of generality that for the vector x∗ the following partition onto three blocks
of components x∗ = [x∗,F , x∗,I , x∗,N ] holds. Moreover, the number of component in
blocks x∗,F , x∗,I and x∗,N is equal to rF , rI and rN , respectively. Each component x∗,i

from the block x∗,F belongs to the boundary of the cone Kni
2 . Each component x∗,i

from the block x∗,I is an interior point of Kni
2 . All x∗,i from the block x∗,N are zero

vectors.
Besides, let for the vector y∗ the decomposition onto block of components y∗ =

[y∗,F , y∗,I , y∗,N ] take place. Moreover, the number of components in blocks is equal to
r̄F , r̄I and r̄N , respectively. But unlike to x∗, components y∗,i from the block y∗,I are
zero vectors. On the contrary, y∗,i from the block y∗,N is an interior point of the cone
Kni

2 .
According to (5) the following complementary condition x∗,i ◦ y∗,i = 0, 1 ≤ i ≤ r,

holds. The strict complementary condition means that additionally x∗,i+y∗,i ∈ int Kni
2 .

In this case r̄F = rF , r̄I = rI and r̄N = rN . Furthermore, the matrices Arr(x∗,i) and
Arr(y∗,i) commute between themselves. The following decompositions

Arr(x∗,i) = HiΛiH
T
i , Arr(y∗,i) = HiΣiH

T
i , (23)

take place. Here Hi is an orthogonal matrix, and Λi and Σi are diagonal matrices with
eigenvalues of Arr(x∗,i) and Arr(y∗,i) at their diagonals, respectively. Below we set
rFI = rF + rI and Jr

F = [1 : rF ], Jr
I = [rF +1 : rFI ], Jr

N = [rFI +1 : r], Jr
FI = Jr

F ∪Jr
I .

Similar to (22) for x∗,i the spectral decomposition

x∗,i = ηi,1ei,1 + ηi,niei,ni (24)

holds, where

ei,1 =
1√
2

[
1;

x̄∗,i

‖x̄∗,i‖

]
, ei,ni =

1√
2

[
1; − x̄∗,i

‖x̄∗,i‖

]

are frame vectors. The coefficients ηi,1 and ηi,ni in (24) are following:

ηi,1 =
1√
2

(
x0

∗,i + ‖x̄∗,i‖
)
, ηi,ni =

1√
2

(
x0

∗,i − ‖x̄∗,i‖
)
.

Both ei,1 and ei,ni are unit vectors and orthogonal each to other.
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The orthogonal matrix Hi in (23) has the form

Hi = [ei,1, hi,2, . . . , hi,ni−2, ei,ni ] , (25)

where hi,2, . . . , hi,ni−2 are unit vectors from the subspace R
ni
0 . The matrix Λi =

Diag
(√

2ηi,1, x0
∗,i, . . . , x0

∗,i,
√

2ηi,ni

)
is diagonal with eigenvalues of Arr(x∗,i) on its

diagonal, i ∈ Jr
FI . Remark, that for i ∈ Jr

F the last eigenvalue is zero, that is
Λi = Diag

(
2x0

∗,i, x0
∗,i, . . . , x0

∗,i, 0
)
.

At solutions x∗ and y∗ according to the complementary condition the vector ei,ni

must be collinear to the vector di,1 from the spectral decomposition (22) for y∗,i.
Hence, the orthogonal matrix (25) can be used also in the spectral decomposition of
the matrix Arr(y∗,i), i ∈ Jr

FI , i.e. Arr(y∗,i) = HiΣiH
T
i , where Σi is a diagonal matrix

with the vector of eigenvalues of the matrix Arr(y∗,i) at its diagonal. For i ∈ Jr
F the

matrix Σi has the form Σi = Diag
(
0, y0

∗,i, . . . , y0
∗,i, 2y0

∗,i

)
. The matrix Λi is zero for

i ∈ Jr
N , and, vice verse, the matrix Σi is zero, when i ∈ Jr

I .
In addition, let the orthogonal matrix Hi for i ∈ Jr

N be defined by the matrix
Arr(y∗,i), that is Arr(y∗,i) = HiΣiH

T
i . Then Hi = [di,1, hi,2, . . . , hi,ni−2,di,ni ] and

Σi = Diag
(
y0

∗,i + ‖ȳ∗,i‖, y0
∗,i, . . . , y0

∗,i, y0
∗,i − ‖ȳ∗,i‖

)
. Moreover, Λi is a zero matrix

for i ∈ Jr
N .

Let Λ = DIAG (ΛF ,ΛI ,ΛN ), Σ = DIAG(ΣF ,ΣI ,ΣN ), where

ΛF = DIAG(Λ1, . . . , ΛrF ) , ΣF = DIAG(Σ1, . . . , ΣrF )

and
ΛI = DIAG(ΛrF+1, . . . , ΛrFI ) , ΣI = DIAG(ΣrF+1, . . . , ΣrFI ) ,

ΛN = DIAG(ΛrFI+1, . . . , Λr) , ΣN = DIAG(ΣrFI+1, . . . , Σr) .

Set also H = DIAG(H1, . . . , Hr) and denote: AHF = AHF , AHI = AHI , AHN =
AHN , AH = AH. For AH the decomposition AH =

[
AHF , AHI , AHN

]
is valid. With

the introduced notations the matrix G (u∗) can be submitted in the form

G (u∗) = AHΦ−H(y∗)Λ(x∗)(AH)T , Φ−H(y∗) =
(
ΦH(y∗)

)−1

, (26)

where y∗ = y(u∗) and ΦH(y∗) = HT Φ(y∗)H.
We have by aforesaid

ΦH(y∗) =

⎡
⎢⎣

(
AH

F

)T AH
F + ΣF

(
AH

F

)T AH
I

(
AH

F

)T AH
N(

AH
I

)T AH
F

(
AH

I

)T AH
I

(
AH

I

)T AH
N(

AH
N

)T AH
F

(
AH

N

)T AH
I

(
AH

N

)T AH
N + ΣN

⎤
⎥⎦ .

All diagonal entrees of the matrix ΣN are strictly positive. The diagonal matrix ΣF

is such that there are rF zero entrees at its diagonal. All these zero entrees are first
diagonal elements of the matrices Σi, i ∈ Jr

F .
Compute Φ−H(y∗). For this purpose we firstly rearrange rows and columns of the

matrix. Suppose that first columns of the matrices AH
i , i ∈ Jr

F , are removed from AH
i ,

and the separate sub-matrix ÃH
F is composed from these first columns. The dimension

of ÃH
F is m × rF . Denote by ÂH

F the sub-matrix of the matrix AH
F composed from

the rest columns of AH
F . Add the sub-matrix ÃH

F to the matrix AI , putting it before
AI . The resulting m × (rF + nI) matrix denote by AH

FI . Moreover, denote by Σ̂F the
diagonal sub-matrix of the matrix ΣF , from which first diagonal entrees of the matrices
Σi, i ∈ Jr

F , are eliminated. Let Π be a permutation matrix, realizing the mentioned



28 V. Zhadan

changes of rows and columns of ΦH(y∗). Then the matrix ΦH(y∗) can be written in
the form

ΦH(y∗) = Π

⎡
⎢⎢⎣

(
ÂH

F

)T

ÂH
F + Σ̂F

(
ÂH

F

)T

AH
FI

(
ÂH

F

)T

AH
N(

AH
FI

)T ÂH
F

(
AH

FI

)T AH
FI

(
AH

FI

)T AH
N(

AH
N

)T ÂH
F

(
AH

N

)T AH
FI

(
AH

N

)T AH
N + ΣN

⎤
⎥⎥⎦ΠT. (27)

Partition the matrix (27) onto four blocks:

ΦH(y∗) = Π

[
W11 W12

WT
12 W22

]
ΠT,

where

W11 =

⎡
⎣

(
ÂH

F

)T

ÂH
F + Σ̂F

(
ÂH

F

)T

AH
FI(

AH
FI

)T ÂH
F

(
AH

FI

)T AH
FI

⎤
⎦ , W12 =

⎡
⎣

(
ÂH

F

)T

AH
N(

AH
FI

)T AH
N

⎤
⎦

and W22 = ΣN +
(
AH

N

)T AH
N .

If the non-degeneracy condition holds at the point [u∗, y∗], then according to Propo-
sition 3 the matrix ΦH(y∗) is positive definite. Therefore, the diagonal blocks W11 and
W22 are also positive definite matrices.

Using the Frobenius formula, we obtain

Φ−H(y∗) = Π

[
V11 V12

VT
12 V22

]
ΠT,

where

V11 = W−1
11 + W−1

11 W12Z−1WT
12W−1

11 , V12 = −W−1
11 W12Z−1, V22 = Z−1 (28)

and Z = W22 − WT
12W−1

11 W12.
Firstly, compute the matrix W−1

11 . According to Proposition 2 the matrix(
AH

FI

)T AH
FI at the non-degenerate point [u∗, y∗] is nonsingular. Denote

Y =
(
ÂH

F

)T

ÂH
F + Σ̂F −

(
ÂH

F

)T

AH
FI

[(
AH

FI

)T

AH
FI

]−1 (
AH

FI

)T

ÂH
F . (29)

Denote also P = AH
FI

[(
AH

FI

)T AH
FI

]−1 (
AH

FI

)T
. The matrix P is an orthogonal projec-

tor onto the linear sub-space L, generated by columns of the matrix AH
FI . The matrix

P⊥ = I − P projects onto the orthogonal complement L⊥ to the sub-space L. By (29)

Y = Σ̂F +
(
ÂH

F

)T

P⊥ÂH
F . (30)

Let E =
[(

AH
FI

)T AH
FI

]−1

, S = ÂH
F Y−1

(
ÂH

F

)T

. With the help of the Frobenius

formula, we obtain

W−1
11 =

[
Y−1 −Y−1

(
ÂH

F

)T

AH
FIE

−E(AH
FI)

T ÂH
F Y−1 E + E(AH

FI)
T SAH

FIE

]
, (31)
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The matrix P⊥ is idempotent, that is P⊥ = P2
⊥. Using the Sherman-Morrison-

Woodbury formula, we derive from (30)

Y−1 = Σ̂−1
F − Σ̂−1

F

(
ÂH

F

)T

P⊥

[
Im + P⊥ÂH

F Σ̂−1
F

(
ÂH

F

)T

P⊥

]−1

P⊥ÂH
F Σ̂−1

F . (32)

Introduce the additional notation ÂH
FI =

[
ÂH

F , AH
FI

]
. Then the matrix Z can be

written in the form

Z = ΣN +
(
AH

N

)T
[
Im − ÂH

FIW−1
11

(
ÂH

FI

)T
]

AH
N . (33)

It can be seen from (33) that the matrix Z is a Schur complement of the positive
definite matrix W11 at (27). Therefore, Z is a positive definite matrix too.

Proposition 4. Let Ŝ = P + P⊥SP⊥. Then ÂH
FIW−1

11

(
ÂH

FI

)T

= Ŝ.

Proof. This equality can be obtained by direct calculations. ��

Corollary 1. According to (33) Z = ΣN +
(
AH

N

)T
(
Im − Ŝ

)
AH

N . Since ΣN is a pos-

itive definite diagonal matrix, we obtain by the Sherman–Morrison–Woodbury formula

Z−1 = Σ−1
N − Σ−1

N

(
AH

N

)T
(
I − Ŝ

)1/2

·
[
I +

(
I − Ŝ

)1/2

AH
NΣ−1

N

(
AH

N

)T
(
I − Ŝ

)1/2
]−1 (

I − Ŝ
)1/2

AH
NΣ−1

N

(34)

Using the matrices (31) and (34), it is possible by (28) compute the matrix Φ−H(y∗).

Below, we will need in the definition of non-degeneracy of a point x ∈ FP in the
primal problem (2).

Definition 2. [1]. The point x ∈ FP is called non-degenerate, if TK(x)+N (A) = R
n,

where TK(x) is a tangent space to the cone K at the point x, and N (A) is a null-space
of the matrix A.

Denote by HL
i , i ∈ Jr

F , the left ni × (ni − 1) sub-matrix of the matrix Hi. In other
words, HL

i is the matrix Hi, from which the last column ei,ni is removed. Denote also

by AHL
i = AiH

L
i . Compose from AHL

i , i ∈ Jr
F , the matrix AHL

F =
[
AHL

1 , . . . , AHL
rF

]
with the dimension m × (nF − rF ), where nF =

∑
i∈Jr

F
ni. Introduce additionally the

matrix AHL
FI =

[
AHL

F , AH
I

]
. The following criterion of non-degeneracy of the point

x ∈ FP is valid.

Proposition 5. [1]. The point x = [xF ; xI ; xN ] is non-degenerate if and only if rows
of the matrix AHL

FI are linear independent.

Lemma 2. Let x∗ ∈ FP and [u∗, y∗] ∈ FD be non-degenerate solutions of problems
(2) and (3), respectively. Let also the solutions x∗ and y∗ be strictly complementary.
Then the matrix G (u∗) = AΦ−1(u∗)Arr(x(u∗))AT is nonsingular.
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Proof. Since Ax∗ = b and Arr (y∗)x∗ = 0n, we have
[
Arr (y∗) + AT A

]
x∗ = AT b.

Hence, x(u∗) = x∗. Moreover, the expression (26) for G (u∗) takes place.
Let show, that the homogeneous system of linear equations

G (u∗)z = 0m (35)

has only zero solution z = 0m. It follows from here that the matrix G (u∗) is nonsin-
gular.

Denote ÂH = AHΠ. By (26) G (u∗) = ÂH Φ̂−H(y∗)Λ̂(x∗)
(
ÂH

)T

, where ÂH =[
ÂH

FI , AH
N

]
and Φ̂−H(y∗) = ΠT Φ−H(y∗)Π. The block-diagonal matrix Λ̂ = Λ̂(x∗) is

obtained from the matrix Λ by rearrangement of rows and columns with the help of
the permutation matrix Π, that is Λ̂ = ΠΛΠT. This matrix can be written also in

the form Λ̂ = DIAG
[
Λ̂FI ,ΛN

]
.

The right lower block ΛN is a zero matrix, therefore

G (u∗) = ÂH
FIV11Λ̂FI

(
ÂH

FI

)T

+ AH
NVT

12Λ̂FI

(
ÂH

FI

)T

.

Substituting V11 and V12, we derive that G (u∗) is the matrix of the following form

G (u∗) = ÂH
FIW−1

11 Λ̂FI

(
ÂH

FI

)T

+

[
ÂH

FIW−1
11

(
ÂH

FI

)T

− Im

]
AH

NZ−1
(
AH

N

)T ÂH
FIW−1

11 Λ̂FI

(
ÂH

FI

)T

.

Denote U = AH
NZ−1

(
AH

N

)T
. Then, using Proposition 4, we come to conclusion

that

G (u∗) =
[
Im −

(
Im − Ŝ

)
U

]
ÂH

FIW−1
11 Λ̂FI

(
ÂH

FI

)T

.

We multiply the equality (35) from the left on the matrix
(
AH

FI

)T
. Since Im − Ŝ =

P⊥ − P⊥SP⊥, we derive that
(
AH

FI

)T
(
Im − Ŝ

)
= 0. Thus, we have

(
AH

FI

)T

ÂH
FIW−1

11 Λ̂FI

(
ÂH

FI

)T

z = 0l1 , (36)

where l1 = rF + nI .
Assume that z �= 0m and consider separately two possibilities.

1)
(
AH

FI

)T
z �= 0l1 . In this case, taking into account the expression (31) for the

matrix W−1
11 , we get

(
AH

FI

)T

ÂH
FIW−1

11 =
(
AH

FI

)T [
P⊥ÂH

F Y−1, (Im − P⊥S) AH
FIE

]
= [0l1l2 , Il1 ] ,

where l2 = nF − rF . Hence, the equation (36) is reduced to the following one:

ΛFI

(
AH

FI

)T
z = 0l1 , where ΛFI is a right lower diagonal l1 × l1 sub-matrix of the

matrix Λ̂FI . Because all diagonal entrees of the matrix ΛFI are positive numbers, this
equality does not fulfilled, when z �= 0m.

2)
(
AH

FI

)T
z = 0l1 . Under this assumption z ∈ L⊥, therefore,

ÂH
FIW−1

11 Λ̂FI

(
ÂH

FI

)T

z = P⊥ÂH
F Y−1Λ̂F

(
ÂH

F

)T

P⊥z. (37)
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By (32) P⊥ÂH
F Y−1 =

(
Im + Ĉ

)−1

P⊥ÂH
F Σ̂−1

F , where Ĉ = P⊥ÂH
F Σ̂−1

F (ÂH
F )T P⊥. It

follows from here and (37) that

ÂH
FIW−1

11 Λ̂FI

(
ÂH

FI

)T

z =
(
Im + Ĉ

)−1

P⊥ÂH
F Σ̂−1

F Λ̂F

(
ÂH

F

)T

P⊥z = 0.

But the matrix
(
Im + Ĉ

)−1

is positive definite. Therefore, this equality is possible only

when P⊥ÂH
F Σ̂−1

F Λ̂F

(
ÂH

F

)T

P⊥z = 0.

All diagonal entrees of the diagonal matrix Σ−1
F Λ̂F are positive except of rF diago-

nal entrees equal to zero. All these zero entrees correspond to the last diagonal entrees
of matrices Λi in the decomposition Arr(x∗,i) = HiΛiH

T
i , i ∈ Jr

F . Denote by AHL
F

the sub-matrix of the matrix AH
F , from which the last columns of the matrices AH

i are
removed.

Let p = Σ̂−1
F Λ̂F

(
ÂH

F

)T

P⊥z. The vector p is non-zero. Really, otherwise, because

of
(
AH

FI

)T
z = 0, the rows of the matrix

[
AHL , AH

FI

]
are linear dependent. This con-

tradicts to non-degeneracy of the point x∗.
By the same reason the equality P⊥ÂH

F p = 0 is also impossible, since in the opposite
case we have contradiction with Proposition 5. ��

Lemma 3. Let assumptions of Lemma 2 hold. Then the matrix Ψw(w∗) is nonsingu-
lar, where w∗ = [u∗; y∗] is the solution of problem (3).

Proof. Multiplying the right column of the matrix Ψw(w∗) from the right by AT and
subtracting this column from the left column, we obtain the matrix

[
AΦ−1Arr(x∗)AT AΦ−1 [τIn − Arr(x(w))][

Arr(y∗)Φ−1 − In

]
Arr(x∗)AT

[
In − Arr(y∗)Φ−1

]
Arr(x∗) + τArr(y)Φ−1

]
,

(38)
where x∗ = x(w∗) is the solution of the primal problem (2), and Φ−1 = Φ−1(y∗).

Further, we multiply the first row of the matrix (38) from the left by the matrix
AT and sum it with the second row. Since

[
AT A + Arr(y∗)

]
Φ−1(y∗) = In, we amount

to the matrix [
AΦ−1(y∗)Arr(x∗)AT AΦ−1(y) [τIn − Arr(x(w))]

0nm τIn

]
. (39)

By Lemma 2 the left upper sub-matrix AΦ−1(y∗)Arr(x∗)AT is non-singular. Under
τ > 0 the right lower sub-matrix of the matrix (39) is also non-singular. Therefore, the
matrix (38) is non-singular too. ��

Remark 1. If the point [u∗, y∗] ∈ FD is non-degenerate, then due to continuity the
points [u, y] in some vicinity of [u∗, y∗] are also non-degenerate. Thus, the algorithmic
mappings in methods (14) and (21) are completely defined in some domain containing
points u∗ and w∗, respectively.

Theorem 1. Let all conditions of Lemma 2 be valid. Then the iterative methods (14)
and (21) converge locally to the solutions u∗ and w∗ with super-linear rate.

Proof. The proof follows from well-known results concerning the Newton method and
from Lemmas 2, 3. ��
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6 Conclusion

We have proposed two variants of the dual Mewton’s method for solving linear second
order cone programming problems. Both variants of the method converge locally with
the super-linear rate. From theoretical point of view dual methods are preferable in
compare with primal methods, when the number of equalities in the primal problem is
not large.
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Abstract. Solution and analysis of mathematical programming prob-
lems may be simplified when these problems are symmetric under appro-
priate linear transformations. In particular, a knowledge of the symme-
tries may help reduce the problem dimension, cut the search space by lin-
ear cuts or obtain new local optima from the ones previously found. While
the previous studies of symmetries in the mathematical programming
usually dealt with permutations of coordinates of the solutions space,
the present paper considers a larger group of invertible linear transfor-
mations. We study a special case of the quadratic programming prob-
lem, where the objective function and constraints are given by quadratic
forms, and the sum of all matrices of quadratic forms, involved in the
constraints, is a positive definite matrix. In this setting, it is sufficient to
consider only orthogonal transformations of the solution space. In this
group of orthogonal transformations, we describe the structure of the
subgroup which gives the symmetries of the problem. Besides that, a
method for finding such symmetries is outlined, and illustrated in two
simple examples.

Keywords: Non-convex programming · Orthogonal transformation ·
Symmetry group · Lie group

1 Introduction

Solution and analysis of mathematical programming problems may be simplified
when these problems are symmetric under appropriate linear transformations. In
particular, a knowledge of the symmetries may help reduce the problem dimen-
sion, cut the search space by symmetry-breaking linear cuts or obtain new local
optima from the ones previously found. These methods are applicable in the
case of a continuous solutions domain [3,6,8] as well as in the integer program-
ming [1,2,7,11,16] and in the mixed integer programming [10,12]. While most of
the applications of symmetries are aimed at speeding up the exact optimization
algorithms, yet in some cases the knowledge of symmetries may also be useful
in designing evolutionary algorithms [13] and other heuristics.
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In the present paper, we study the case of continuous solutions domain. While
the previous studies of symmetries in mathematical programming usually dealt
with permutations of coordinates of the solutions space [7,8,10], the present
paper considers a larger group of invertible linear transformations. We study the
special case of quadratically-constrained quadratic programming problem in R

N ,
where the objective function and the constraints are given by quadratic forms,
A, and B1, . . . , BM respectively:

⎧
⎪⎪⎨

⎪⎪⎩

xT Ax → max,

xT B1x ≤ 1,
. . .
xT BMx ≤ 1,

(1)

where x is an N -component column vector of variables, and the superscript T
denotes matrix transposition. In what follows, without loss of generality we assume
that N ×N matrices A,Bi, i = 1, . . . ,M are symmetric (note that any matrix can
be decomposed into a sum of symmetric matrix S and skew-symmetric matrix C,
and the quadratic form xT Cx identically equals zero). A more substantial assump-
tion that we will make in this paper is that BΣ :=

∑M
i=1 Bi is a positive definite

matrix. An example of application of quadratic programming problems with such
a property in radiophysics may be found e.g. in [4].

The results of this paper may also be used for finding symmetries if some
of the problem constraints have the inequality ≤, some have the inequality ≥
and some have the equality sign. We will consider only the inequalities ≤ for the
notational simplicity. The obtained results may also be applied in semidefinite
relaxation methods, see e.g. [15]. Note that in [15] the well-known Maximum
Cut problem (which is NP-hard) is reduced to the problem considered here.

By a symmetry of problem (1) we mean a set of linear transformations

x → y = Px, (2)

defined by a non-degenerate matrix P such that the problem (1), expressed in
terms of the transformed space (i.e., through the vector columns y), coincides
with the original problem. That is, in terms of the vectors y our optimization
problem again has the form

⎧
⎪⎪⎨

⎪⎪⎩

yT Ay → max,

yT B1y ≤ 1,
. . .
yT BMy ≤ 1,

(3)

with the same matrix A and the same set of matrices {Bi : i = 1, . . . , M}.
We emphasize that, in the set of constraints, matrices Bi may be numbered
arbitrarily, which, obviously, does not change the problem. The transformations
given by the matrices P obviously form a group, which we denote by G. The
goal of the paper is to analyse group G and propose an algorithm for finding it.

In some cases, it may also be of interest to find the symmetry group of the
set of constraints only. Obviously, this is not much different from the search for
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symmetry group G of the problem; one just needs to exclude matrix A from the
consideration (i.e. formally assume that A is a zero matrix). Furthermore, the
set of symmetries of the constraints is not larger than the set of all invertible
linear transformations, bijectively mapping the feasibility domain of the problem
D := {x ∈ R

N : xT Bix ≤ 1, i = 1, . . . ,M} onto itself. Therefore, the symmetry
group of the set of constraints is a subgroup in the symmetry group of invertible
linear transformations of D.

The structure of the paper is the following. In Sect. 2, it is shown that the
group of linear symmetries of the problem is a subgroup of orthogonal transfor-
mations. Also, the structure of the group of symmetries and the corresponding
Lie algebra are discussed. In Sect. 3, a general algorithm for finding the sym-
metries is proposed, and in Sect. 4 it is illustrated in two simple examples. A
discussion of obtained results and conclusions are provided in Sects. 5 and 6.

2 Structure of the Symmetry Group

Invariance of the problem under transformation P implies that

PT AP = A, PT BiP =
M∑

j=1

LijBj , j = 1, . . . ,M, (4)

where Lij are the elements of a permutation matrix, i.e. matrix L = (Lij) has a
single “1” in each column and in each row, other elements of L are zeros.

If (4) holds, then the invariance condition of the matrix BΣ is satisfied:

PT BΣP = BΣ . (5)

Naturally, the converse is not true in the general case, but at least we can say
that the desired group G is a subgroup of the invariance group of BΣ . This
matrix may be represented as a congruent transformation of a diagonal matrix:

BΣ = ST DS, (6)

where D is a diagonal matrix, which can have only “0”, “1”, or “−1” on its main
diagonal. Essentially, we are talking about reducing the quadratic form corre-
sponding to matrix BΣ to its canonical form. So matrix S can be constructively
obtained, for example, by the finite Lagrange method ([9], Ch. 5).

Now, if we restrict ourselves to the special case where matrix BΣ is positive
definite (it occurs, for example, in the radiophysical problem of optimizing the
excitation of antenna arrays [4]), then D will be the unit matrix and it may be
omitted in (6). Condition (5) then turns into

PT ST SP = ST S (7)

or
(SPS−1)T (SPS−1) = E, (8)
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where E is a unit matrix. This means that matrix

Q := SPS−1 (9)

is in the group of orthogonal transformations O(N) (see e.g. [17]). So we proved

Proposition 1. If BΣ is positive definite then group G is isomorphic to some
subgroup of O(N) and this isomorphism is given by Eq. (9).

Since P = S−1QS by (9), so application of (4) gives

(S−1QS)T A(S−1QS) = A,

(S−1QS)T Bi(S−1QS) =
N∑

j=1

LijBj , i = 1, . . . , M,
(10)

and after a simple transformation we have

QT ÃQ = Ã, QT B̃iQ =
N∑

i=1

LijB̃j , i = 1, . . . ,M, (11)

where

Ã =
(
S−1

)T
AS−1, B̃i =

(
S−1

)T
BiS

−1, i = 1, . . . ,M. (12)

So using isomorphism (9) we can substitute Eqs. (4) by the similar Eqs. (11),
but with the matrix substitution

A → Ã, Bi → B̃i , i = 1, . . . , M. (13)

and substituting P by the orthogonal matrix Q. These equations are significantly
simpler, since in this case condition (11) may be formulated linearly in Q:

ÃQ = QÃ, B̃iQ = Q

M∑

j=1

LijB̃j , i = 1, . . . ,M. (14)

If one finds all suitable orthogonal mappings Q, then it will be easy to restore the
corresponding matrices P . Assuming all this, we omit the tildes above matrices A
and Bi further in order to simplify the notation.

It is well-known that the orthogonal group O(N) consists of two connected
components, for one of them the determinant of the matrix equals 1, for the
other it equals −1 (see e.g. [17]). The first component is a subgroup of O(N),
denoted by SO(N) and also called the rotation group, due to the fact that in
dimensions 2 and 3, its elements are the usual rotations around a point or a line,
respectively. The second component does not constitute a subgroup of O(N),
since it does not contain the identity element. Matrices from the second compo-
nent can be represented, for example, in the following form: diag{−1, 1 . . . 1}Q,
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where Q ∈ SO(N), so between these components there is a one-to-one corre-
spondence (which is not an isomorphism in the group-theoretical sense, since it
does not preserve the group operations). The required matrices Q can belong to
both the first component and the second.

The standard facts of topological groups theory (see e.g. [17], Ch. 1) imply the
following properties of symmetry group G, endowed with the standard topology
of RN2

, applicable to the space of (N ×N)-matrices. As any topological group, G
consists of connected components (in the topological sense), only one of which,
hereafter denoted as G1, contains the identity element. This G1 is invariant sub-
group of G, see Theorem 1 [17], and called the continuous subgroup of symmetries
in what follows. The remaining connected components (not being subgroups) can
be considered as products of the elements of the group outside G1 and the ele-
ments of G1 i.e. the cosets of G1. These cosets make up a discrete group. Given
that G1 is an invariant subgroup, multiplication of the cosets of this discrete
group is determined naturally, and the discrete group is a factor group G/G1.
These cosets can be identified by indicating one (any) representative of a coset.

Naturally, degenerate cases are possible. First, when G1 degenerates into
the identity element, the entire symmetry group G is a purely discrete group
(each coset consists of one element). Secondly, there may be no other elements
of discrete symmetry but only the continuous subgroup of symmetries G1. And
finally, the entire symmetry group G may consist of only the identity element.

3 Finding the Symmetry Group

Due to the observations from Sect. 2, the search for all appropriate symmetry
transformations Q may be divided into two parts: the search in the first compo-
nent of O(N) (i.e., in subgroup SO(N)) and the search in the second component
where the determinant of orthogonal matrices equals −1. Initially we restrict our-
selves to the first subset. A generalization to the whole group O(N) will be done
by analogous consideration of the second subset while searching for discrete sym-
metries. The only difference will be that in the second case, it will be necessary
to replace Q → diag{−1, 1, . . . , 1}Q.

3.1 Continuous Subgroup of Symmetry

First, we consider the continuous subgroup of symmetry G1. Nontrivial permu-
tations of matrices Bi can not result from transformations which belong to G1,
since it is impossible to continuously move from the identical transformation
(which implies that matrices Bi are not permuted) to any transformation Q
yielding a non-trivial permutation of matrices Bi. Note that any such Q has a
neighborhood of transformations which do not yield the trivial permutation of
the matrices Bi. So the invariance conditions must hold:

QT AQ = A, QT BiQ = Bi , i = 1, . . . ,M. (15)
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For orthogonal transformations Q, this is equivalent to commutativity:

AQ = QA , BiQ = QBi , i = 1, . . . ,M. (16)

Proposition 2 may be considered a “folklore” fact of matrix analysis and therefore
provided without a proof here.

Proposition 2. Any matrix Q ∈ SO(N) can be represented as a matrix expo-
nential function of a skew-symmetric matrix. The converse is also true: the expo-
nential function of any skew-symmetric matrix is an orthogonal matrix.

So with some skew-symmetric matrix X we have Q = eX . The set of
skew-symmetric matrices X make up the Lie algebra corresponding to this
Lie group [17]. (The Lie algebra corresponding to SO(N) is usually denoted
by so(N).) Any Lie algebra is also a linear space, any of its elements can be
expressed by means of basis elements, called generators. Thus, any element of
the Lie algebra can be represented as:

X =
∑

n

anGn, (17)

where an are real numbers, Gn are the generators. The space of skew-symmetric
matrices has a dimension N(N − 1)/2, and there will be as many coefficients
an and as many generators. As generators, one can choose matrices containing
one unit element above the main diagonal (the rest are zeros), then the skew-
symmetry uniquely determines the remaining matrix elements of these genera-
tors. So, any element Q of SO(N) can be represented as:

Q = e

∑

n
anGn

. (18)

Since the desired continuous subgroup of symmetry G1 is a subgroup of SO(N),
so representation (18) is also valid for it, but, generally speaking, the parameters
an are not independent now. Thus, the search for this subgroup essentially reduces
to finding the restrictions on parameters an.

It is quite obvious that in order for commutativity conditions (16) to be
satisfied, it suffices that the following conditions hold true:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Bi

(
∑

n

anGn

)

=

(
∑

n

anGn

)

Bi,

A

(
∑

n

anGn

)

=

(
∑

n

anGn

)

A.

(19)

It means that if matrix X commutes with all matrices Bi and with matrix A,
then X lies in Lie algebra of G1. Indeed, expanding the exponential function in
a power series, we see that if the matrices A and Bi commute with the argu-
ment of this function, then they commute with the exponential function itself.
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Note that condition (19), generally speaking, is not necessary to fulfill (16).
However, the continuous subgroup of symmetry, as a connected Lie group, is
completely determined by its Lie algebra, so it is completely determined by the
restrictive relations for elements of the Lie algebra1. Thus, in search for the
continuous subgroup of symmetry, (16) may be replaced with (19).

Equations (19) are a system of linear algebraic equations that determine
parameters an. This system is homogeneous, so it has a continuum of nonzero
solutions. Note that there is always a trivial zero solution to the system of
equations (19) corresponding to an identity matrix Q. Some of parameters an

remain “free” (these will be the parameters of the desired subgroup), and the
rest of an may be linearly expressed through the “free” ones. The solution to this
system of equations (19) can be obtained constructively by the Gauss method.

The condition of problem invariance under transformation Q turnes into

Q = e
∑

n anĜn , (20)

where the sum goes over the “free” parameters an, and the new generators
denoted by Ĝn are linear combinations of the former generators Gn. The set of
all Q matrices satisfying (20) is parameterized by a finite set of real parameters
an. Note that this set of matrices is not necessarily isomorphic to a Euclidean
space, since more than one set of parameters an can correspond to the same Q.

Let us show that the set of matrices defined by formula (20) is a group. To
this end, it is sufficient to prove that this matrix set Â = {X̂, X̂ =

∑
n anĜn}

is a Lie algebra. For a matrix algebra to be a Lie algebra, it is necessary and
sufficient to be closed relative to the calculation of the commutator, i.e. Â is Lie
algebra if and only if for any X̂i, X̂j ∈ Â a commutator

[X̂i, X̂j ] = X̂iX̂j − X̂jX̂i, (21)

is also an element of Â. This is easily verified in our case. Indeed, since all X̂
lie in so(N), their commutators also lie in so(N). Therefore, for them to lie not
only in so(N), but also in Â, that is, for this algebra to be a Lie algebra, it
is sufficient that these commutators satisfy the same restrictive conditions that
distinguish set Â from so(N). The restrictive conditions (19) mean that all X̂
commute with all matrices Bi and with matrix A. But then all the products of
such X̂ also commute with all matrices Bi and with matrix A. And then the
commutator [X̂j , X̂j ], which is a product difference, satisfies the same restrictive
conditions. Thus, the set of matrices Â is a Lie algebra, and therefore the set of
matrices defined by formula (20) is a Lie group.

Now let us prove that the set of matrices defined by formula (20) is the whole
continuous subgroup of symmetries G1. We will show that a converse leads to
a contradiction. Indeed, the converce assumption implies that in the algebra of
the continuous group of symmetry there is at least one more generator Gextra

1 For abstract groups, such a unique connection exists only in the case of simply
connected groups; otherwise, an abstract exponent cannot be uniquely determined.
But in our case of a matrix group, the matrix exponent is uniquely determined.
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(with its own coefficient, let it be b), linear independent from generators Ĝn. But
then there is a one-dimensional subgroup of G1 produced by the element Q =
ebGextra . If we substitute this Q into the invariance condition (16), differentiate
with respect to b and set b = 0, then it turns out that Gextra satisfies exactly
the same condition, which distinguishes the set of matrices Â from the entire
Lie algebra of group SO(N). So this additional generator lies in the linear hull
of the generators Ĝn. Which is a contradiction. So we have proved the following

Theorem 1. The continuous subgroup of symmetries G1 consists of orthogo-
nal transformations with matrices expressed by the matrix exponential function
e
∑

n anĜn , where an are any real-valued parameters, and all Ĝn make up a basis
of the space of solutions to the system of linear equations (19) in the linear space
of the (N × N) skew-symmetric matrices.

3.2 Discrete Group of Symmetry

In the case of discrete symmetry, nontrivial permutations of matrices Bi are
possible. Therefore, the condition (16) is replaced by the following:

AQ = QA, BiQ = Q
N∑

j=1

LijBj , i = 1, . . . ,M. (22)

There are M ! permutation matrices L and they can be enumerated for small
problems. Then we can assume that in (22) Lnm are known. (Note that if we
generalize Problem (1) so that some of the constraints have inequalities ≤, some
have inequalities ≥, and some have equalities, then the permutations in each
of these three subgroups should be considered.) Furthermore, iterating over all
possible matrices L, one can solve Eqs. (22) with respect to Q. But it must
be taken into account that matrix Q lies in SO(N), otherwise Eq. (22) is not
valid. To this end, one can represent Q as a matrix exponential function (18)
and solve the equation for N(N − 1)/2 parameters an as variables. The same
should be done with matrix Qdiag{−1, 1, . . . , 1}. The resulting equations will
involve exponential functions, so for their solution in each particular case, it is
necessary to develop a special numerical method. Alternatively, one can solve
Eqs. (22) for matrix Q as a variable, conditioned that QQT = E.

4 Illustrative Examples

4.1 Example with Trivial Continuous Subgroup of Symmetries

Let us apply the obtained results to a quadratic programming problem with
N = M = 2, defined by the following matrices (see Fig. 1)

A =
(

1.0 0.0
0.0 0.8

)

, (23)
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B1 =
(

0.5 2.0
2.0 0.5

)

, B2 =
(

0.5 −2.0
−2.0 0.5

)

. (24)

In this example, BΣ is the identity matrix, and so S = E, therefore transfor-
mation (13) is not necessary. The feasibility area corresponding to matrices B1

and B2 is shown in Fig. 1. Its rotational symmetry properties (as well as the
symmetry properties of the problem which involves matrix A) are obvious from
geometric considerations: the symmetry group of the domain D consists of the
identical transformation (the identity matrix), rotations of 90◦, 180◦ and 270◦

(the latter is also the inverse element to the rotation of 90◦). In total, there are
four elements of the group.

Fig. 1. Feasibility domain defined by matrices B1 and B2 in Subsect. 4.1.

For the symmetry group of the problem, 90 and 270◦ rotations disappear,
the two other elements of the group remain. It is also clear that there will be
four local optima, two of which are global.

Let us now verify that the results described above give the same result.
Firstly, in this two-dimensional case there is only one generator:

G =
(

0 1
−1 0

)

. (25)

Accordingly, there is only one coefficient a. The generator G does not com-
mute with any of the matrices written above. Therefore, the system of equa-
tions (19) has only one zero solution corresponding to an identity matrix E.
The continuous subgroup of symmetry in this example degenerates into a trivial
subgroup of one identity element.

To find a discrete symmetry by direct calculations, we note that

eaG =
(

cos a sin a
− sin a cos a

)

, (26)
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B1e
aG = 0.5 cos aE − 2 sin aD + 0.5 sin aG + 2 cos aH,

eaGB1 = 0.5 cos aE + 2 sin aD + 0.5 sin aG + 2 cos aH,

B2e
aG = 0.5 cos aE + 2 sin aD + 0.5 sin aG − 2 cos aH,

eaGB2 = 0.5 cos aE − 2 sin aD + 0.5 sin aG − 2 cos aH,

AeaG = 0.9 cos aE + 0.1 cos aD + 0.9 sin aG + 0.1 sin aH,

eaGA = 0.9 cos aE + 0.1 cos aD + 0.9 sin aG − 0.1 sin aH.

(27)

where

D =
(

1 0
0 −1

)

,

H =
(

0 1
1 0

)

.

(28)

Substituting this all into the equations from Sect. 3, we obtain the following.
When considering the symmetry of D without permutations of matrices Bi, we
obtain the equation sin a = 0, and with permutations, the equation cos a =
0. The first one corresponds to the identical transformation and a rotation of
180◦ (a = 0, π). The second one corresponds to rotations of 90 and 270◦ (a =
π/2, 3π/2). Thus, a formal application of the above formulas agrees with the
geometric considerations.

If we additionally require the symmetry of the objective function, then in
both cases (with the permutation and without it) the second equation sin a = 0
will appear, excluding rotations of 90 and 270◦. Finally, to obtain all symmetries
of the problem, one has to solve Eqs. (22) for the matrix diag{−1, 1}eaG and
join resulting symmetries with the rotations found before.

4.2 Example with Non-trivial Continuous Subgroup of Symmetries

As a second example, now with a continuous symmetry, we can take a problem
with N = 3,M = 2 defined by the following matrices

A = diag{1, 1, 1},

B1 = diag{2, 2, 0},

B2 = diag{−1,−1, 1}.

(29)

In this example, the objective function is obviously invariant under any trans-
formations from SO(3), so the symmetry of the problem coincides with the
symmetry of D. Again, transformation (13) is not necessary here, since BΣ is
the identity matrix.
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In this example, we will choose the generators in the following form:

G1 =

⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ , G2 =

⎛

⎝
0 0 1
0 0 0

−1 0 0

⎞

⎠ , G3 =

⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ . (30)

Substituting this into (19) we see that a1 = a2 = 0, and the arbitrary parameter
is a3. Thus, the continuous symmetry subgroup is described by the following
one-parameter matrix family:

ea3G3 =

⎛

⎝
cos a3 − sin a3 0
sin a3 cos a3 0

0 0 1

⎞

⎠ . (31)

To find the discrete symmetry in this particular case, it is more convenient to
represent matrix Q not in the exponential form (18) but rather through the
Euler parameters α, β and γ, as a product of three exponential functions:

Q = eαG3eβG1eγG3 . (32)

Now we substitute (32) into Eq. (14), which may be written as

e−γG3e−βG1e−αG3Bie
αG3eβG1eγG3 =

M∑

j=1

LijBj , i = 1, . . . ,M. (33)

Note that exp(αG3) commutes with both matrices B1, B2, and therefore the
left factor cancels out. The last factor also cancels out after multiplying the
equations on the left and on the right side by the similar exponential functions.
So the defining Eq. (14) reduces to

e−βG1Bie
βG1 =

M∑

j=1

LijBm, i = 1, . . . ,M. (34)

We have two options for permutations: one trivial and one non-trivial. Accord-
ingly, two options are obtained. The first:

⎧
⎨

⎩

e−βG1B1e
βG1 = B1,

e−βG1B2e
βG1 = B2.

(35)

the second: ⎧
⎨

⎩

e−βG1B1e
βG1 = B2,

e−βG1B2e
βG1 = B1.

(36)

We note that due to the equality B2 = E−B1, in both cases the second equation
can be reduced to the first one and vice versa. So from two equations it is enough
to solve only one. By direct calculations we obtain the following:

eβG1 =

⎛

⎝
1 0 0
0 c −s
0 s c

⎞

⎠ , (37)
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where for simplicity of notation we denote s := sinβ, c = cos β . Further direct
calculations give

e−βG1B1e
−βG1 = 2

⎛

⎝
1 0 0
0 c2 −cs
0 −cs s2

⎞

⎠ . (38)

In the case of the trivial permutation, this reduces to a system of equations that
has two obvious solutions: c = ±1, s = 0. This results in two options for Q:

eαG3 diag{1, 1, 1} eγG3 ,

eαG3 diag{1,−1,−1} eγG3 .
(39)

Obviously, the first matrix belongs to a continuous subgroup of symmetry, it
does not need to be taken into account, since such matrices are already taken
into account above. The second matrix, however, does not belong to the contin-
uous subgroup2. As a representative of this component, we can take the above
expression, written for α = γ = 0, i.e. just diag{1,−1,−1}.

In the second case, where the permutation of matrices Bi is non-trivial, the
system of equations obviously has no solutions.

Thus, the subgroup of orthogonal symmetries with determinant 1 in this
example consists of two connected components. The first one is described by the
matrix family (31), parametrized by one real parameter (rotation angle). The
second one is described by the same matrices, but multiplied by diag{1,−1,−1}.

To obtain the whole group G, one has to solve the equations from Sect. 3 for
the matrix diag{−1, 1, 1}Q and join the resulting symmetries Q to the subgroup
of orthogonal symmetries with determinant 1 which we found above.

5 Discussion

As a “brute force” approach to finding all symmetries of the problem, one can
formulate a non-linear optimization problem in R

N2
:

min

(

||AQ − QA|| +
M∑

i=1

||BiQ − QCi(L)|| : QQT = E

)

where Q is a matrix of variables, the matrices Ci(L) are defined by L as Ci(L) :=
∑M

j=1 LijBj , and || · || denotes any matrix norm. A set of optimal solutions (with
zero objective value) gives the set of orthogonal symmetry transformations. The
union of M ! such sets, taken over all permutation matrices L, makes up the
whole group G. In the case of trivial continuous subgroup of symmetry, each of
the M ! problems has a discrete set of optimal solutions, which, in principle, may
be found e.g. by a multi-start of a gradient descent method.

There are other options to find group G using non-linear programming. For
example, one can similarly formulate a minimization problem with respect to
2 This is because Q33 is −1, rather than 1 as in the continuous subgroup.
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the elements of matrix P . Moreover, there is no need to impose the condition
det(P ) �= 0, since it follows from (5) that the square of this determinant is equal
to 1. Analysis of the properties and methods of solution of these non-linear
optimization problems is beyond the scope of the paper.

In applications of quadratic programming, it is not necessary to find all sym-
metries of a problem to improve performance of solution algorithms, such as the
branch and cut method. If some valid cuts are known already for the problem
instance, then each linear symmetry of a problem may be used to double the set
of valid cuts. Even if there were no cuts known before, then any symmetry P ∈ G
which maps a hemi-space {x : aT x ≥ 0} into the hemi-space {x : aT x ≤ 0} with
some a ∈ R

N then the constraint aT x ≥ 0 may be added to the set of problem
constraints as a valid cut.

If G has a non-trivial continuous subgroup so large that any element of D
may be mapped onto some hyper-plane in R

N by a corresponding P ∈ G, then
the problem dimension may be decreased by one, see e.g. the problem from
Subsection 4.2, where any vector may be rotated by mapping (31) with an
appropriate angle a3 into the subspace {x : x1 = 0}. In this respect, it would be
appropriate to study the following hypothesis: Problem (1) may be reduced to a
problem of the same form in solutions space R

N−K , where K is the size of the
basis mentioned in Theorem 1.

In local search, the problem symmetries may be used to identify equivalence
classes of local optima (consisting of local optima, identical up to a symme-
try transformation) since obviously, local optima are mapped to local optima
under invertible linear symmetries of the problem. In the multi-start procedure, a
smaller number of visited equivalence classes, compared to the number of visited
local optima, should tighten estimates of the total local optima number [5,14].

6 Conclusions

The results obtained in this paper further extend the applicability of the app-
roach to improving algorithms performance in the mathematical programming,
employing symmetries of the problem. The authors are not aware of other works
on problem symmetries, based on the theory of Lie groups and Lie algebras.
It is expected that the proposed approach may be extended to other types of
problems in the mathematical programming. In particular, it would be interest-
ing to try extending the analysis to the general case of problem (1) without the
assumption of positive-definiteness of the sum of matrices of quadratic forms.
It is challenging in this case that instead of the group of orthogonal transfor-
mations O(n) one would have to consider the more general pseudo-orthogonal
group O(p, q). Technical development of the outlined method for finding problem
symmetries is also a subject of further research.

Acknowledgments. The authors thank V.M. Gichev for helpful comments on the
preliminary version of the manuscript. The work on Sects. 2 and 3 was funded in accor-
dance with the state task of the Omsk Scientific Center SB RAS (project AAAA-A19-
119052890058-2). The rest of the work was funded by the program of fundamental
scientific research of the SB RAS, I.5.1., project 0314-2019-0019.



48 A. V. Eremeev and A. S. Yurkov

References
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Abstract. The Capacitated Vehicle Routing Problem (CVRP) is the
well-known combinatorial optimization problem having numerous prac-
tically important applications. CVRP is strongly NP-hard (even on the
Euclidean plane), hard to approximate in the general case and APX-
complete for an arbitrary metric. Meanwhile, for the geometric settings
of the problem, there are known a number of quasi-polynomial and even
polynomial time approximation schemes. Among these results, the well-
known QPTAS proposed by A. Das and C. Mathieu appears to be the
most general. In this paper, we propose the first extension of this scheme
to a more wide class of metric spaces. Actually, we show that the metric
CVRP has a QPTAS any time when the problem is set up in the metric
space of any fixed doubling dimension d > 1 and the capacity does not
exceed polylog (n).

1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) is one of the widely known
and actively studied combinatorial problems with numerous important appli-
cations in operations research [30]. To the best of our knowledge, the problem
was introduced by G. Dantzig and J. Ramser in their seminal paper [10], which
provided the first mathematical model of gasoline distribution over the network
of gas stations.

Since then, the field of the algorithmic design for the CVRP is developed in a
number of research directions. The first direction is based on a reduction of the
problem in question to some appropriate mixed-integer program and finding an
optimal solution of this program using some of the well-known branch-and-price
methods [12]. Recently, a significant success was achieved both in the develop-
ment of such algorithms and computational hardware [16,27]. Unfortunately,
due to the known strongly NP-hardness of the CVRP, instances of this problem
that are managed to be solved efficiently within this framework still remain quite
modest.
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A wide range of modern heuristic algorithms and metaheuristics makes up
the basis of the second research direction. To date, the most significant numeri-
cal results were obtained for local search algorithms [6], Tabu search [28], Vari-
able Neighborhood Search (VNS) [13], machine learning [24], evolutionary [31],
and bio-inspired algorithms [25], as well as their various combinations [9]. Often
heuristic algorithms demonstrate remarkable performance, yielding close to opti-
mal or even optimal solutions for CVRP instances of extremely large size. Nev-
ertheless, an absence of any theoretical guarantees implies additional computa-
tional expenses related to numerical performance evaluation and possible tuning
of their internal parameters during the transition to any novel class of instances.

The arguments above confirm the relevance of the third direction related
to the design of approximation algorithms with theoretical performance guar-
antees. It is known that CVRP is NP-hard in the strong sense, enclosing the
classic Traveling Salesman Problem (TSP), and remains intractable even on the
Euclidean plane [26]. The problem is hard to approximate in the general case
(provided P �= NP ), APX-complete for an arbitrary metric [5,15] even for an
arbitrary fixed capacity q ≥ 3.

Related Work. In the field of approximation algorithms with theoretical
bounds, the most significant results were achieved for the settings of CVRP in
finite-dimensional Euclidean spaces. All of them date back to the celebrated
papers by M. Haimovich and A. Rinnooy Kan [15] and S. Arora [4]. At the
moment, the most general result for the CVRP on the Euclidean plane is the
Quasi-Polynomial-Time Approximation Scheme (QPTAS) proposed by A. Das
and C. Mathieu [11]. For the planar CVRP with restricted capacity growth,
there are known a number of Polynomial-Time Approximation Schemes (PTAS),
among them, the algorithm [2] appears to be state-of-the-art. This PTAS allows
to find an (1 − ε)-approximate solution of the problem in polynomial time pro-
vided q ≤ 2logδ(ε)n. The approach proposed in [15] was extended to several
modifications of the problem including the CVRP settings in Euclidean spaces
of an arbitrary fixed dimension [17,22,23], additional time windows constraints
[19,20], and heterogeneity of demand [21].

Thus, until now, the class of metric CVRP instances approximable by PTAS
or QPTAS was exhausted by the Euclidean settings of the problem except maybe
some special cases investigated in [8,18]. For a long time, the similar theoretic gap
remained for a the very close Traveling Salesman Problem, until the pioneering
papers by K. Talwar [29], and Y. Bartal et al. [7] providing an opportunity for
the extension of famous Arora’s PTAS [3] to the universe of metric spaces of a
fixed doubling dimension. In this paper, we try to bridge a similar gap for the
metric Capacitated Vehicle Routing Problem.
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Our Contribution. The contribution of this paper is twofold.

(i) we show that the approach proposed by Das and Mathieu for the efficient
approximation of the Euclidean CVRP can be extended to a significantly
wider class of metric CVRP settings. We prove that this framework com-
bined with recent approximation results obtained for the metric TSP, for
any given ε > 0, provides a (1 + O(ε))-approximate solution for the CVRP
formulated in a metric space of an arbitrary fixed doubling dimension d > 1.

(ii) nevertheless, broadly speaking, the approximation scheme obtained by the
straightforward application of the Das and Mathieu framework is no longer
a QPTAS in general metric space of a fixed doubling dimension, even for
an arbitrary fixed capacity q > 2. Therefore, in this paper, we introduce
a refinement of their algorithm by replacing the stage of exhaustive search
with our internal dynamic program, such that the resulting scheme becomes
a QPTAS again, at least for q = polylog n.

The rest of the paper is structured as follows. In Sect. 2, we recall the state-
ment of the metric CVRP. Then, in Sect. 3 we overview some basic notation
regarding the metrics of a fixed doubling dimension. Main results of the paper
are presented in Sect. 4 and Sect. 5. In particular, Sect. 4 deals with approxima-
tion properties of the proposed scheme, whilst, in Sect. 5, we present an upper
bound of its running time. Finally, Sect. 6 summarizes the work and provides a
short overview of some questions that still remain open.

2 Problem Statement

The Capacitated Vehicle Routing Problem (CVRP) can be formulated informally
as follows. We are given by a set of customers X, each of them has a unit demand
on some homogeneous commodity. All the customer’s demand should be serviced
by identical vehicles of a fixed capacity q located initially at the given depot y.
The problem is to construct a minimum cost family of cyclic routes servicing
the total customer demand, each of them departs from and arrives at the depot
y and satisfies the capacity constraint.

For the sake of convenience, we give a mathematical statement of a slightly
more general problem, where each customer is free to have a non-unit integer
demand, which can be split between several routes. In the literature, this prob-
lem is referred to as the Capacitated Vehicle Routing Problem with Splittable
Demand (CVRP-SD).

An instance of the CVRP-SD is given by a complete weighted graph G =
(X ∪ {y}, E,D,w) and a natural number q. Here, X = {x1, . . . , xn} is a set
of customers, y is a depot, the non-negative weighting function D : X → Z+

specifies customer demand, the symmetric weighting function w : E → R+, to
any couple of nodes {u, v} ⊂ X ∪ {y}, assigns the transportation cost w(u, v)
related to the direct transition along the edge {u, v} ∈ E, and q is an upper
vehicle capacity bound.
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A route is an ordered pair R = (π, SR), such that π = y, xi1 , . . . , xit
, y is a

cycle in the graph G and the function SR : X → Z+ defines a distribution of the
serviced customer demand. For the route R, its cost w(R) is defined as follows

w(R) = w(y, xi1) + w(xi1 , xi2) + · · · + w(xit−1 , xit
) + w(xit

, y).

The route R is called feasible, if

SR(x)

{
≤ D(x) for any x ∈ {xi1 , . . . , xit

},

= 0, otherwise
and

∑
x∈X

SR(x) ≤ q.

The goal is to construct the cheapest family S of feasible routes, which
services the total customer demand

w(S) ≡
∑
R∈S

w(R) → min

s.t.
∑
R∈S

SR(x) = D(x) (x ∈ X).
(1)

Obviously, a statement of the classical CVRP can be obtained by restriction
of the above setting with the additional constraint D(x) ≡ 1.

If the function w satisfies the triangle inequality, i.e. w(v1, v2) ≤ w(v1, v3) +
w(v3, v2) holds for any subset {v1, v2, v3} ⊂ X ∪ {y}, the instance of CVRP is
called metric. In this case, nodes of the graph G are called points, w(u, v) is
referred to as a distance between the points u and v, and the cost w(R) of an
arbitrary route R is called its length.

In this paper, we consider the metric CVRP restricted as follows:

(i) the ordered pair (Z, ρ), where Z = X ∪ {y} and the metric ρ|E ≡ w, is a
finite metric space of some fixed doubling dimension d > 1;

(ii) the vehicle capacity bound q does not exceed polylog n.

Hereinafter, we do not distinguish the weight function w and the correspond-
ing metric ρ and use the notation CVRP(Z,w, q) and CVRP∗(Z,w, q) for the
instance specified by the graph G = (X ∪ {y}, E,w) and capacity q and its
optimum value, respectively1.

3 Metric Spaces of a Fixed Doubling Dimension

For the subsequent constructions, we need to recall some definitions and prelim-
inary technical results.

Suppose we are given by some metric space (Z, ρ). For any z0 ∈ Z and a
number R ≥ 0, the set B(z0, R) = {z ∈ Z : ρ(z0, z) ≤ R} is called a metric ball
of a radius R centered at the point z0 ∈ Z.
1 And the notation CVRP-SD(Z, D, w, q) and CVRP-SD∗(Z, D, w, q) for the case of

CVRP-SD as well.
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Definition 1 (see, e.g [1]). For a number d > 1, the space (Z, ρ) is referred
to as a metric space of the fixed dimension d, if, for an arbitrary z0 ∈ Z and
R > 0, there exist points z1, . . . , zM ∈ Z, such that

B(z0, R) ⊆
M⋃

j=1

B(zj , R/2) and M ≤ 2d.

It is easy to verify that, for any d ≥ 1 and p ≥ 1, the space ldp is a metric space of
doubling dimension O(d). On the other hand, there are known many metrics of
a fixed dimension that appear to be very far from the finite-dimensional numeric
spaces (see, e.g. [14]).

Next, let Z ′ ⊂ Z be an arbitrary nonempty subspace of the space Z (of
doubling dimension d). By Δ = Δρ(Z ′) = sup{ρ(u, v) : u, v ∈ Z ′} and α =
αρ(Z ′) = inf{ρ(u, v) : {u, v} ⊂ Z ′} we denote an upper and a lower bounds for
the distances between the distinct points in Z ′, respectively.

Lemma 1 ([29]). Let 0 < α ≤ Δ < ∞. Then, the subspace Z ′ is finite and

|Z ′| ≤
(

2Δ

α

)d

.

In this paper, we restrict ourselves to finite metric spaces induced by complete
weighted graphs G = (Z,E,w). Let, further, U ⊂ Z be an arbitrary nonempty
node subset of the graph G, MST(U) be the minimum spanning tree for the
induced subgraph G〈U〉, and R = R(U) be a radius of the minimal ball (centered
at some point z ∈ Z) enclosing the subset U .

Lemma 2.
w(MST(U)) ≤ 12R · |U |1−1/d. (2)

4 Extended Das and Mathieu Approximation Scheme

In this section, we show that the well-known QPTAS proposed by A. Das and
C. Mathieu [11] for the Euclidean CVRP can be extended to the case of metric
spaces of any fixed doubling dimension d > 1. Supplementing the main idea of
their scheme with the technical results underlying the recent PTAS of Y. Bartal
et al. [7] for the metric TSP formulated in such spaces, we propose an algorithm
that, for an arbitrary 0 < ε < 1/8 finds a (1 + O(ε))-approximate solution of
the CVRP in a metric space of any doubling dimension d > 1. On the other
hand, we show that the resulting algorithm, generally speaking, ceases to be a
QPTAS, even for a fixed capacity q. Further, in Subsect. 4.5, we propose a novel
version of Das and Mathieu scheme and show that its complexity bound is quasi
polynomial, provided q = O(polylog n).

Similarly to the original scheme, our algorithm consists of several consecutive
stages, as follows:
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(i) Preliminary processing and accuracy driven rounding. At this stage,
given by ε > 0, to the instance in question, we assign an auxiliary instance
of more simple structure, called rounded, such that an arbitrary (1 + ε)-
approximate solution of this instance can be transformed efficiently to the
appropriate (1 + O(ε))-approximate solution of the initial problem.

(ii) Randomized hierarchical clustering. Given by values of random
parameters, at this stage, we construct a number of mutually nested parti-
tions of the set X ∪ {y}. Then, in each cluster located at any level of the
resulting hierarchy, we point out some number of special points (we call
them portals). Following to the approach proposed in [29], we show that,
for any rounded instance, there exist (1 + ε)-approximate solutions, each
their route crosses any cluster at most r times (for some number r, which
will be defined later) and at portals exclusively. Such routes are referred to
as net-respecting and r-light (see, e.g. [7]).

(iii) Dynamic Programming and Iterated Tour Partition. At this stage,
following [11], we allow some routes of the constructed solutions (we call
them relaxed) slightly violate the capacity constraint. Then, to obtain a
required feasible approximate solution,

(a) we apply dynamic programming to find a relaxed net-respecting and r-
light solution minimizing some especially penalized objective function

(b) applying a randomized rank procedure for the demand covered by the
routes of the solution obtained, we ensure that each route covers at most
q demand units of the highest rank; following to [11], we call such units
black

(c) all other units (we call them red) are excluded from these routes and
covered separately, by the additional routes constructed using the well-
known Iterated Tour Partition (ITP) heuristic [15]

(d) thus, we obtain two partial solutions Sblack and Sred, such that their
combination is a feasible solution to the problem in question.

Finally, we show that the expected cost of this combined solution over
random clustering and demand ranking fulfils the following equation

E(w(Sblack) + w(Sred)) = (1 + O(ε)) · CVRP∗(Z,w, q).

(iv) Derandomization. Relying on the arguments from [11] and [29], we show
that the proposed algorithm admits polynomial time derandomization.

4.1 Accuracy Driven Rounding

This stage dates back to the classic PTAS proposed by S. Arora for the Euclidean
TSP [3]. As above, let Δ = Δw(Z) = max{w(u, v) : u, v ∈ Z = X ∪ {y}} be the
diameter of the set Z. Without loss of generality, we assume that Δ = n/ε.
Indeed, otherwise, to the initial instance CVRP(Z,E,w), we can easily assign
an equivalent (in terms of optimality sets) scaled instance CVRP(Z,E,w′) with
the following weighting function: w′(u, v) = w(u, v) · n

ε·Δ .
We define the desired rounded instance in terms of metric nets.
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Definition 2. A subset N ⊆ Z is called a δ-net in the metric space (Z, ρ) for
some given δ > 0, if the following conditions holds

(i) for any u ∈ Z, there exists v = v(u) ∈ N , such that ρ(u, v) ≤ δ;
(ii) for an arbitrary distinct points v1, v2 ∈ N , the distance ρ(v1, v2) > δ.

Let N ′
1 = {ξ1, . . . , ξJ} be an arbitrary 1-net of the set X. Assuming N1 =

N ′
1 ∪ {y}, to the initial instance CVRP(Z,w, q), we assign the rounded one

CVRP-SD(N1,D,w1, q) as follows:

(i) breaking tights arbitrarily, we define a mapping ξ : X → N ′
1 such that

w(x, ξ(x)) ≤ 1 holds for any x ∈ X;
(ii) to any node ξj ∈ N ′

1, we assign the accumulated customer demand D(ξj) =
|ξ−1(ξj)|;

(iii) as new weighting function w1, we take a restriction w|N1 of the function w
to the set N1 ⊂ Z.

Lemma 3 establishes a close relation between optimum values of the initial and
rounded instances.

Lemma 3.

CVRP∗(Z,w, q) − 2n ≤ CVRP-SD∗(N1,D,w1, q) ≤ CVRP∗(Z,w, q) + 2n.

Notice that the procedures required for construction of the net N
′
1 as well as

the ones for assigning to the initial CVRP(Z,w, q) its rounded instance CVRP-
SD(N1,D,w1, q) and finally the reconstruction of solution S according to solu-
tion S̄ could be done in polynomial time.

As a simple corollary, we show that an arbitrary approximate solution of
CVRP-SD(N1,D,w1, q) corresponds to the suitable approximate solution of the
initial CVRP(Z,w, q).

Corollary 1. For any (1 + ε)-approximate solution of CVRP-SD(N1,D,w1, q)
can be transformed efficiently to an appropriate (1+O(ε))-approximate solution
of CVRP(Z,w, q).

Thus, in the sequel, without loss of generality, we assume that we a given by
a rounded instance.

4.2 Randomized Hierarchical Clustering

Following to [5], we fix a number s ≥ 6 and put L = �logs Δw(Z)� = O(log n −
log ε). Then, for each l = 0, 1, . . . , L+1, we fix an arbitrary sL−l-net N(l) of the
set Z. Without loss of generality, assume that N(l) ⊂ N(l+1) for any 0 ≤ l ≤ L.
Notice, that the net N(L + 1) = Z, whilst the net N(0) is a singleton.

In the following, we construct a randomized hierarchical clustering of Z by
induction on level l = 0, . . . , L + 1 as proposed in the paper [29].

We start with level l = 0, where we have a single cluster C0
1 . Further, let

Z = Cl
1 ∪ Cl

2 . . . ∪ Cl
K be a clustering at the level l < L. To proceed with the

clustering at level l + 1, we partition each cluster Cl
j separately, applying the

following simple procedure
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(i) pick a random permutation σ of the sL−(l+1)-net N(l+1) = {h1, . . . , htl+1};
(ii) to an arbitrary hσ(i) ∈ N(l + 1), assign a number μ picked uniformly at

random in [1, 2);
(iii) define a subset Cl+1

ji by the formula

Cl+1
ji = B

(
hσ(i), μ · sL−(l+1)

)
∩ Cl

j \
i−1⋃
k=1

Cl+1
jk ;

(iv) construct a partition of the cluster Cl
j from all non-empty subsets Cl+1

ji .

where μ is an arbitrary value of uniform distribution on [1, 2). Finally, we obtain
the resulting clustering of the set Z at level l + 1 by combining individual par-
titions for all clusters Cl

j .
By construction, at level L + 1, all the clusters are singletons, while, at level

l = 0, we have the only cluster C0
1 . Thus, the total number of clusters is at most

(n + 1) · (L + 1) = O(n(log n − log ε)).
For the further constructions, we need to introduce a special type of routes.

Definition 3. A route R = (π, SR) is called net-respecting relatively to a given
hierarchy N(l), l = 0, 1, . . . , L+1 and value ε > 0, if, for an arbitrary edge {u, v}
of the cycle π, both its endpoints belong to N(l), such that

sL−l ≤ ε · ρ(u, v) < sL−l+1.

We say that a route R = (π, SR) crosses the boundary of some cluster Cl
j

at level l > 0, if π contains an edge {u, v}, such that |{u, v} ∩ Cl
j | = 1. In the

following, we introduce a special type of the net-respecting routes, each of them
is restricted to cross the boundary of any cluster not too often and at portals
exclusively.

Definition 4. Let M be some degree of s, for which

M

s
≤ dL

ε
< M. (3)

We call a portal an arbitrary point from Cl
j ∩ N(l + logs M).

Applying Lemma 1 we obtain the following upper bound for the number m of
portals of any cluster Cl

j .

m ≤
(

2
4sL−l

sL−l/M

)d

= (8M)d = O

((
d · (log n − log ε)

ε

)d
)

. (4)

Definition 5. A route R crossing the boundary of any cluster Cl
j at most r

times, is called r-light.

The main result of Subsect. 4.2 is the following Structure Theorem.
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Theorem 1. Let r = m and d > 1. For any fixed ε ∈ (0, 1/8) and an arbi-
trary feasible solution S of CVRP(Z,E,w), there exists an appropriate feasible
solution S̃ consisting of net-respecting and r-light routes, such that

E(w(S̃)) = (1 + O(ε))w(S),

where the expectation is made over the random hierarchical clustering.

As it follows from Theorem 1, any time, when we need to find an approximate
solution of the initial problem, we can restrict ourselves to the solutions consist-
ing of net-respecting and r-light routes exclusively. In the sequel, we call such
solutions net-respecting and r-light as well.

4.3 Demand Ranking and Relaxed Solutions

The aforementioned approach relying upon the minimization of total transporta-
tion cost in the class of net-respecting and r-light solutions yields a number of
seminal approximation results for intractable routing problems, including the
well-known Arora’s PTAS for the Euclidean TSP [3] and its extension to metric
spaces of a fixed doubling dimension [7]. Unfortunately, it is well-known that, for
the CVRP, this approach results in tremendously time expensive algorithms. In
this subsection, following to the main idea of the paper [11], we outline another
approach that leads us to really efficient approximation algorithms based on a
concept of relaxed solutions.

We start with some necessary definitions and notation. Consider a net-
respecting route R that enters and leaves the cluster Cl

j (located at some level
l > 0) at portals pin and pout respectively. We call an arbitrary maximal by
inclusion fragment

σ = pin, xi1 , . . . , xik
, pout, (5)

which entirely belongs to the cluster Cl
j , a crossing segment of the route R with

respect to the cluster Cl
j (or just a segment).

Definition 6. Let Λ = �log1+ε/(L+1)(qε)+1/ε�. Numbers ti, i = 1, Λ are called
rounding thresholds for covered customer demand, if

ti =
{

i for all i = 1, . . . , �1/ε�
ti−1(1 + ε/(L + 1)) otherwise.

Next, we proceed with ranking of customer demand. We assume that each
unit of the demand has an integer rank from the range 0, 1 . . . , L + 1. Each cus-
tomer can have demand units of different ranks. An arbitrary demand unit can
be either active or non-active depending on its rank and level of the considered
enclosing cluster. Namely, a demand unit of rank r is called active with respect
to any enclosing cluster located at level l > r (otherwise, this unit is called
inactive). By convention, demand units of rank 0 are active at any level.

A segment σ is called rounded inside the cluster Cl
j , if it covers exactly t

active demand units for some threshold t. Otherwise, σ is called unrounded.
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Definition 7. A set of tours S is called a relaxed solution if it covers the total
customer demand and there exists an assignment of ranks for all demand units,
such that

(i) each route R ∈ S covers at most q units of the rank 0;
(ii) if a route R covers exactly t units of active demand at level l, then at level

l + 1, it covers at most t(1 + ε/(L + 1)) such units;
(iii) for any route R ∈ S, if the number of its segments crossing some cluster

C exceeds γ =
(

L+1
ε

)2d
, then all these segments are rounded. Otherwise, all

of them are unrounded.

In the following, we call any relaxed solution S that is also net-respecting and
r-light a structured solution. Such solutions are essential point of our approach.
Given a random hierarchical clustering, we find a structural solution minimizing
the following auxiliary objective function

F (S) =
∑
R∈S

w(R) +
ε

L + 1

∑
R∈S

L+1∑
l=1

c(R, l) · sL−l, (6)

where, for any route R ∈ S, c(R, l) is the number of crossings the boundaries
of all clusters at level l.

Notice that with respect to feasible solutions the initial objective function
w(S) and the introduced above function F behave quite similarly.

Theorem 2. The hypothesis of Theorem 1 implies

E(F (S̃)) = (1 + O(ε))w(S),

where the expectation is made over the random hierarchical clustering.

Let, further, for a given random clustering, SDP be a minimizer of the func-
tion F in the class of structured solutions2. To address the possible infeasibility
of SDP , we introduce a random ranking of the customer demand by Algorithm 1.

Given by a demand ranking, we color each demand unit of the rank 0 in black
and all other units in red. After that, we transform the solutionSDP to the partial
solutionSblack by exclusion all the red units. Then, we employ the ITP heuristic to
find an approximate CVRP solution Sred that covers the remaining red demand.
Obtain upper bounds for E(w(Sblack)) and E(w(Sred)) individually. Indeed, by
definition of the function F , for any fixed hierarchical clustering,

w(Sblack) ≤ F (Sblack) ≤ F (SDP ) ≤ F (S̃∗),

where S̃∗ is the net-respecting and r-light feasible solution associated with an
arbitrary optimal solution S∗ of the initial problem, whose existence is guaran-
teed by Theorem 1. The right-most inequality is valid, since S̃∗ is a structured
solution, by Lemma 5 from [11]. Then, by Theorem 2, we obtain

E(w(Sblack)) ≤ E(F (S̃∗)) = (1+O(ε))w(S∗) = (1+O(ε))CVRP∗(Z,w, q), (7)
2 In Sect. 4.4, we provide a dynamic programming algorithm, which finds such a solu-

tion for any given random clustering.
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Algorithm 1. Demand Ranking Algorithm
Input: a structured solution SDP with respect to some random hierarchical clustering
Output: ranking of all units of demand

1: initialize rank of each unit of demand by 0
2: for all level l from L + 1 to 0 do
3: for all cluster Cl

j crossed by more than γ segments do
4: for all segment σ crossing the cluster Cl

j do
5: Let a be the number of active demand units covered by the segment σ and

t be the largest threshold, such that t ≤ a.
6: Pick an active demand unit at random and a − t − 1 consecutive units

(wrapping around to the start of σ if necessary) and assign to them the
rank l.

7: end for
8: end for
9: end for

where the expectation is taken over random clustering. The latter upper bound
is given by Lemma 4.

Lemma 4. For an arbitrary clustering and the expected value of w(Sred) over
random ranking of the demand, the following equation

E(w(Sred)) = O(ε) · (F (SDP ) + CVRP∗(Z,w, q)) (8)

is valid.

Finally, relying on Eq. (7), Lemma 4, and Theorem 2, we easily obtain the main
result of this subsection.

Theorem 3. Let an instance of the CVRP be given in a metric space of a fixed
dimension d > 1 and r = m. Then, for any ε ∈ (0, 1/8), Das and Mathieu
randomized scheme provides an approximate solution Sblack ∪ Sred, such that

E(w(Sblack) + w(Sred)) = (1 + O(ε))CVRP∗(Z,w, q),

where the expectation is taken over random clustering and ranking of the demand.

The obtained results shed new light on the approximation of the Capaci-
tated Vehicle Routing Problem formulated in metric spaces of a fixed dimension.
Actually, Theorem 3 implies that any structured solution SDP minimizing the
auxiliary objective function F can be transformed into a required approximate
solution of the given problem. Furthermore, as it follows from the seminal paper
[15], such post-processing can be carried out in polynomial time. In the sequel,
we develop an efficient procedure for finding such structured solutions.

4.4 Baseline Dynamic Programming

In this section, we present a short overview of our adaptation of the initial Das
and Mathieu dynamic programming algorithm to the case of metric spaces of a
fixed doubling dimension.
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We start with some necessary notation. We encode an arbitrary crossing
segment (5) by a tuple (pin, pout, s,d), where s is the amount of covered active
demand units and d indicates whether this segment should visit the depot y.

Given by a fixed hierarchical clustering, we index entries of the lookup table
of our dynamic program by couples (C,C), where C is a cluster and C is a
configuration defining behavior patterns for all segments crossing the boundary
of the cluster C. Depending on the number of segments described, we distinguish
two kinds of configurations, unrounded and rounded.

An unrounded configuration is just a finite sequence

((pin
ν , pout

ν , sν ,dν) : ν = 1, ku)

of at most γ tuples, each of them represents a single unrounded crossing segment.
On the other hand, a rounded configuration is set of ordered pairs

{(sν ,mν) : ν = 1, kr}, sν1 �= sν2 ,

each of them defines a common behavior pattern sν = (pin
ν , pout

ν , tν ,dν) for
exactly mν rounded segments. Namely, all such segments should enter and leave
the cluster in portals pin

ν and pout
ν respectively, cover tν units of active demand

exactly (for some threshold tν), and visit the depot according to the value of dν .
To define the concept of a feasible lookup table entry, we need some techni-

cal notation. A family Σ of segments crossing the boundary of some cluster C
augmented by a number of routes enclosed within this cluster is called a partial
relaxed solution for the cluster C, if this family covers all the customer demand
in this cluster and fulfills conditions (i), (ii), and (iii) enlisted in Definition 7
(with respect to this cluster).

Definition 8. An entry (C,C) is called feasible, if there exists a partial relaxed
solution Σ = Σ(C), such that

(i) if C is unrounded, then all the segments of Σ are unrounded and are too,
s.t. there exists a one-to-one correspondence between them and the entries
of the configuration C;

(ii) otherwise, if C is rounded, then the family Σ is partitioned into kr subfam-
ilies, such that the ν-th subfamily consists of mν rounded crossing segments
sharing the same behavior pattern sν .

As usual, the lookup table entries are computed bottom-up. The base case
corresponds to the level L+1, where all the clusters are singletons. Thus, all the
entries can be computed trivially.

To proceed with the recurrence, assume that all the entries for the levels
l + 1, . . . , L + 1 are calculated. Fix an arbitrary cluster Cl

j and try to compute
the entry (Cl

j ,C) for some configuration C. By the given clustering, we have a
partition Cl

j = Cl+1
j1 ∪ . . . ∪ Cl+1

jK for some K = 2O(d). Guided by the approach
proposed in [11], to compute the entry (Cl

j ,C), it is necessary to employ the
two-stage exhaustive search as follows:
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Stage (i) to enumerate all the combinations

((Cl+1
j1 ,C1), . . . , (Cl+1

jK ,CK)) (9)

of the computed already entries induced by the child subclusters;
Stage (ii) for any given combination (9), enumerate all the ways to stitch child

configurations to fulfill the initial configuration C. Any time when such a
stitching is possible, the record value of the function F is updated.

Thus, the entry (Cl
j ,C) is filled by the resulting record value, if such a value was

updated at least once. Otherwise, the entry is set to be infeasible and excluded
from the consideration. To obtain the desired structured solution SDP minimiz-
ing the objective function F , it is sufficient to compute the only entry (C0

1 ,C)
at level 0 for the empty configuration C.

The point is that although, for the finite dimensional Euclidean spaces con-
sidered by Das and Mathieu, Stage (ii) can be calculated efficiently, in metric
spaces even of a fixed doubling dimension, its running time is no longer quasi-
polynomial.

Indeed, at Stage (ii), the calculations are specified in terms of concatena-
tion profiles and interface vectors. A concatenation profile defines the stitching
order for any single segment crossing the boundary of the cluster Cl

j (or a route
contained in it).

Namely, a finite sequence of tuples ϕ = ((pin
k , pout

k , xk,dk) : k = 1, θϕ) is
called a concatenation profile, if, for each j-th tuple,

(i) pin
k and pout

k are some child portals
(ii) xk is either a threshold or a natural number from [1, γ]
(iii) dk indicates whether depot should be visited.

In turn, each entry of an interface vector specifies the number of times when
some concatenation profile is used during the stitching procedure. By definition,
an interface vector has the form I = (n1, . . . , n|Φ|), where ni ∈ [0, n · r] and Φ is
the number of all possible concatenation profiles. Since, by construction, |Φ| =
(log n)Ω(r), the number of distinct interface vectors enumerated at Stage (ii) is
at least

(nr)|Φ| = (nr)(log n)Ω(r)
. (10)

Evidently, the lower bound (10) is not quasi-polynomial for an arbitrarily
slowly increasing function r = r(n). Therefore, we cannot claim that the afore-
mentioned algorithm retains quasi-polynomial running time bound in metric
spaces of a fixed doubling dimension, even for any fixed q > 2, since at the
moment no structure theorems are known for such spaces, proved for a constant
r (see, e.g. [7]).

In the following subsection, we propose our modification of this scheme,
where, at Stage (ii) of the recursive step, the exhaustive search for the opti-
mal interface vector is replaced with an internal dynamic program, such that
the resulting scheme becomes QPTAS again, at least for q = polylog n.
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4.5 Our Improvement

For the sake of brevity, we restrict ourselves on the special case, where the cluster
Cl

j contains no depots and all the configurations C = {(si,mi) : i = 1, kC} and
Cu = {(su

v ,mu
v ) : v = 1, ku} for u ∈ {1, . . . , K} are rounded3.

Then, to match the configuration C with child configurations C1, . . . ,CK ,
we need to assign to each si a sequence Φi = (ϕi,1, . . . , ϕi,mi

) of not necessary
distinct concatenation profiles, such that

(i) each profile ϕi,j consists of tuples su
v only;

(ii) any tuple su
v is contained in the profiles mu

v times in total;
(iii) for any tuple si = (pin

i , pout
i , ti,di), the following inequality

ti ≤ Dϕi,j
< ti

(
1 +

ε

L + 1

)

holds, where Dϕi,j
is the total active demand covered by the profile ϕi,j ;

(iv) their total cost
kC∑
i=1

mi∑
j=1

cost(ϕi,j) → min, (11)

such that, for any profile ϕ = ((pin
k , pout

k , xk,dk) : k = 1, θ),

cost(ϕ) =
θ−1∑
k=1

ρ̃(pout
k , pin

k+1) +
2θ · ε

L + 1
· sL−l−1, (12)

where

ρ̃(pout
k , pin

k+1) =

{
ρ(pout

k , pin
k+1), if pout

k and pin
k+1 satisfy Definition 3,

+∞, otherwise.

Notice, that criterion (11) and the reduced costs (12) of concatenation pro-
files can be obtained straightforwardly from the auxiliary objective function (6).
Indeed, for any given configuration C and child configurations C1 . . . ,CK , thanks
to condition (ii), the total cost of all child subsegments is constant and does not
depend on profiles ϕi,j . Therefore, we exclude it from (11) and (12).

Further, notice that each concatenation profile ϕi,j to be constructed can
have its own size θϕi,j

fulfilling the condition θϕi,j
≤ K · r, since the resulting

solution is r-light. To ensure that each profile has the same size r̄ = K · r, we
pad it by enough copies of the dummy tuple σ0. Further, we introduce the set

S̄ = {σ0} ∪
K⋃

u=1

{su
1 , . . . , su

ku
} = {σ0, σ1, . . . , σK}, K =

K∑
u=1

ku

3 The general case can be treated similarly, we postpone its consideration to the forth-
coming paper.
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containing all the tuples su
v from the child configurations augmented by the

dummy tuple σ0,
By a resource matrix, we call any three-dimensional matrix A of size [kC ×

(K + 1) × r̄], whose entry ap
i,ν specifies how many times the tuple σν is used in

concatenation profiles Φi at position p. For any fixed i, we call the submatrix
Ai = ‖ap

i,ν‖, where p = 1, r̄ and ν = 0,K, the i-th resource row.
Our Algorithm 2 comes as a replacement of Stage (ii) of the initial Das and

Mathieu scheme. Skipping the rigorous definition of such a compatibility, we
illustrate it by the simple example (see Example 1). Its main idea is based on
the construction of a minimum cost family of concatenation profiles Φi compatible
with any given resource row Ai.

Example 1. A family of concatenation profiles Φi compatible with the resource
row Ai for K = 3, mi = 5, and S̄ = {σ0, . . . , σ3}

Ai
�

��σ
p

1 2 . . .

0 0 1
1 2 1
2 3 1
3 0 2

Φi =

⎡
⎢⎢⎢⎢⎣

(σ1, σ2, . . .)
(σ1, σ3, . . .)
(σ2, σ1, . . .)
(σ2, σ3, . . .)
(σ2, σ0)

⎤
⎥⎥⎥⎥⎦

Algorithm 2. Our ‘Stage (ii)’
Input: a parent cluster Cl

j with associated configuration C and the child DP table
entries (Cl+1

1 ,C1), . . . , (C
l+1
K ,CK)

Output: the minimum value of the objective function F for the given configurations
C,C1, . . . ,CK

1: for each resource matrix A do
2: check the validity of the feasibility constraints

∑K
ν=0 ap

i,ν = mi, (p = 1, r̄, i =

1, kC) and miti ≤ ∑r̄
p=1

∑K
ν=1 ap

i,ν · tν < miti

(
1 + ε

L+1

)
, (i = 1, kC)

3: if the matrix A is feasible then
4: for each i ∈ {1, . . . , kC} do
5: employ the Internal Dynamic Program (Algorithm 3) to obtain the min-

imum cost family Φi of mi concatenation profiles compatible with Ai (or
show that it is impossible)

6: end for
7: if all Φi are constructed then
8: sum up their costs and update the record
9: end if

10: end if
11: end for
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Internal Dynamic Programming Algorithm. The goal of the algorithm
is to construct a family of the minimum total cost (induced by the objective
function F ), which consists of mi segments crossing the boundary of the cluster
Cl

j , each of them corresponds to the behavior pattern si. Every such a segment
is stitched from the child subsegments (defined by the patterns σν ∈ S̄) in
accordance to some concatenation profile ϕi,j ∈ Φi. For the sake of simplicity, in
the sequel, we do not distinguish such segments and the concatenation profiles
that specify them and call the desired family Φi as well.

We construct the desired family Φi by recursion on the position p in concate-
nation profiles. Each entry of the internal dynamic programming lookup table
is indexed by a couple (p,Hp), where p = 1, . . . , r̄ indicates the current position,
and the matrix Hp = ‖hp

ν,c‖, ν = 0,K, c = 0, q specifies terminal constraints on

a family Φ
(p)
i of mi partial concatenation profiles of length p.

Actually, each entry hp
ν,c of the matrix Hp denotes the number of such profiles

(in this family), that cover exactly c units of active demand in total and have
the same tuple σν at position p. A matrix Hp is called compatible with the p-th
column of a resource Ai, if

∑q
c=0 hp

ν,c = ap
i,ν is valid for any ν = 0,K. In addition,

Hr̄ is compatible if and only if, for any ν, hr̄
ν,c > 0 implies c ∈ [ti, ti(1+ε/(L+1))).

Notice, that for any given resource row Ai, the sum of terms penalizing for
crossings all the boundaries of the child subclusters (at level l + 1) is fixed and
does not depend on Φi. Therefore, we can restrict ourselves to the minimization
of the stitching costs for child subsegments only.

Thus, we define our reduced internal objective function F̃ as follows. Let
Φ
(p)
i be a family of partial concatenation profiles ϕ

(p)
i,1 , . . . , ϕ

(p)
i,mi

, each of them

consists of p tuples. Then, F̄ (Φ(p)
i ) =

∑mi

j=1 cost(ϕ(p)
i,j ), where, for any partial

profile ϕ(p) = (σi1 , . . . , σip
), its reduced cost is defined by

cost(ϕ(p)) =
p−1∑
k=1

conn(σik
, σik+1) =

p−1∑
k=1

ρ̃
(
pout(σik

), pin(σik+1)
)
.

Further, the Bellman function D̄ takes the form

D̄(p, Hp) = min{F̄ (Φ
(p)
i ) : Φ

(p)
i satisfies the constraints imposed by the matrix Hp}.

Thus, to define the Bellman equation, we introduce a special kind of matrices,
establishing relationships between any pair of consecutive entries (p − 1,Hp−1)
and (p,Hp). We call a three-dimensional matrix X = ‖xc

ν1,ν2
‖, c = 0, q, ν1, ν2 =

1,K a transition matrix for some entries (p − 1,Hp−1) and (p,Hp), if xc
ν1,ν2

coincides with the number of partial concatenation profiles, that cover exactly c
units of active demand in total, and have the same tuples σν1 and σν2 at positions
p − 1 and p, respectively. By construction, any transition matrix satisfies the
following evident constraints

K∑
ν1=1

xc
ν1,ν2

= hp
ν2,c, (ν2 = 1,K),

K∑
ν1=0

xc
ν1,0 = hp

0,c. (13)
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Algorithm 3. Internal Dynamic Program
Input: a resource row Ai.
Output: a family Φi of concatenation profiles compatible with Ai and minimizing the
function F̄ .

1: base case: the only feasible entry (1, H1), where h1
ν,c =

{
a1

i,ν , if ν > 0, c = tν

0, otherwise

and D̄(1, H1) = 0
2: recursive step: assume that all feasible entries are computed for any p′ < p
3: for each Hp compatible with the p-th column of the resource row Ai do
4: apply the Bellman equation to compute an entry (p, Hp)

D̄(p, Hp) = min
X=‖xc

ν1,ν2
‖
{D̄(p − 1, Hp−1(X)) +

K∑

ν1=1

K∑

ν2=1

q∑

c=0

xc
ν1,ν2conn(σν1 , σν2)},

(14)

where the minimization is carried out over feasible entries (p−1, Hp−1(X)) only.
If at least one such an entry is found, then the result is stored in (p, Hp)

5: end for
6: if there are no feasible entries (r̄, Hr̄) or inf{D̄(r̄, Hr̄)} = ∞ then
7: output ‘no profile families compatible with Ai’.
8: else
9: the cost of the desired family Φi is contained within the entry

(r̄, H∗
r̄ ) = arg min{D̄(r̄, Hr̄)}. (15)

10: output the optimal solution Φi, which can be obtained from (15) by backtracking.
11: end if

5 Complexity Bounds

In this section, we find an upper bound for the time complexity of the proposed
scheme. First of all, we evaluate the maximum size of the lookup table for the
master (Das and Mathieu) dynamic program. The total amount of all clusters
is at most O(n log n). Then, to each cluster, we have at most (2m2q)γ and
(n · r)2m2L log q options to assign an unrounded and a rounded configuration
respectively. Therefore, an upper bound for the size of this lookup table is

O(n log n)Cmax, where Cmax = (n·r)2m2L log q+(2m2q)γ = O
(
(n · r)2m2L log q

)
.

Next, consider the complexity of computing an arbitrary entry (C,C) of this
table. In order to proceed, we enumerate all possible combinations (9), which
are exactly (Cmax)K , and apply Algorithm 2 to any such a combination.

In turn, Algorithm 2 enumerates all the possible resource matrices and, for
any such a matrix A, it applies Algorithm 3 to each its resource row Ai. There-
fore, its complexity is determined by the running time of Algorithm 3 multiplied
by the factor (n · r)kC(K+1)r̄ · kC which is polylog n · (n · r)O(m4L2 log2 q) for any
fixed d.
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Finally, the complexity of Algorithm 3 is determined by the number of entries
in the lookup table of the internal dynamic program and the upper running
time bound for computation of any such an entry, i.e. r̄ · (n · r)Kq × (n · r)K2q =
(n · r)O(K2q), since r̄ = K · r = 2O(d) · r. Further, combining all the terms, we
obtain the desired time complexity bound

poly(n) ·((n ·r)2m2L log q)2
O(d) ·(n ·r)O(m4L2 log2 q+K2q) = poly(n) ·nO(m4L2q log2 q).

where m = r = O

((
d·(log n−log ε)

ε

)d
)

and L = O(log n − log ε).

Applying the techniques proposed in [11] and [29], we can derandomize our
scheme in polynomial time.

Theorem 4. For the CVRP in a metric space of an arbitrary doubling dimen-
sion d > 1, an (1 + O(ε))-approximate solution can be found by the ran-
domized approximation algorithm within time poly(n) · nO(m4L2q log2 q), where

m = O

((
d(log n−log ε)

ε

)d
)

, and L = O(log n − log ε). The algorithm can be

derandomized efficiently.

The proposed scheme is QPTAS any time when q = O(polylog n).

6 Conclusion

In the paper, we extend the famous approximation framework proposed by
A. Das and C. Mathieu for the Euclidean Capacitated Vehicle Routing Problem
to the case of metric spaces of a fixed doubling dimension. To establish quasi-
polynomial time upper bound for our scheme, we replace exhaustive search in
the initial algorithm by the internal dynamic program that ensures that the
resulting approximation scheme became QPTAS for an arbitrary fixed doubling
dimension d > 1, at least for q = polylog n.

Nevertheless, the question of whether for any metric space of any fixed dou-
bling dimension there exists a QPTAS without any restriction on the capacity
growth, still remains open. We believe that we will manage to bridge this gap in
future work.
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Abstract. It is known that there exist 4-regular, 1-tough graphs which
are non-hamiltonian. The smallest such graph known has n = 18 nodes
and was found by Bauer et al., who conjectured that all 4-regular, 1-
tough graphs with n ≤ 17 are hamiltonian. They in fact proved that this
is true for n ≤ 15, but left open the possibility of non-hamiltonian graphs
of 16 or 17 nodes. By using ILP for modeling a counterexample, and then
finding out that the model has no solutions, we give an algorithmic proof
that their conjecture was indeed correct.

1 Introduction

Graph theory, as well as many other areas of mathematics, is rich of challenging
open problems. Many times the study of these problems seems to suggest that
their answer leans towards a particular side, so that one ventures to conjecture
that this is indeed the case. The conjecture then remains open until someone
either proves it (usually by means of some clever mathematical argument) or
disproves it, which is in general a simpler task. Indeed, to disprove a conjecture
it is sufficient to exhibit a counterexample, but finding one must be difficult or
otherwise the conjecture would not still be open. The search of a counterexample
becomes then an interesting problem on its own, which can be solved by an
ingenious construction or, in lack thereof, by some (apparently) “brute-force”
approaches which, however, require a certain degree of sophistication to succeed.

In this paper we adopt the latter strategy to prove a relatively minor, but
still challenging, conjecture on graphs by Bauer, Broesma and Veldman (1990)
stating that “Every 4-regular, 1-tough graph with at most 17 nodes is hamilto-
nian.” Prior to our work it was known that the statement holds for graphs of
at most 15 nodes, and also that it is false for 18 nodes. Our work has confirmed
that the conjecture was correct.

In order to settle the above conjecture we have formulated the search of a
counterexample as an Integer Linear Program (ILP), to be solved by standard
branch-and-bound techniques. The ILP models a feasibility problem, whose solu-
tion would be an n-vertex graph (for n = 16, 17) which is 4-regular, 1-tough but
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non-hamiltonian. Since at the end of the computation the model turned out to
be infeasible, we have obtained a proof that the conjecture is indeed true.

Exploiting computers for settling conjectures and/or for theorem proving
is not new and has been increasingly adopted in the recent years. The most
noteworthy example of this type of approach is the proof that all planar graphs
are 4-colorable, also known as the 4-colors theorem, by Appel and Haken in 1976
[1]. Our approach promotes the use of ILP for building combinatorial structures
with some given properties (or proving that such structures do not exist) which
seems, all considered, a potentially viable line of attack. Clearly, we are well
aware that this line of approach has its limitations (mostly due to the high
running times required by “large” instances), but we believe that there are still
some “small” conjectures in fields such as combinatorics or graph theory for
which this strategy could be worth trying.

1.1 Notation and Problem Statement

Let G = (V,E) be an undirected graph. The graph is called k-regular if every
node has degree k. For each S ⊆ V we denote by δ(S) the set of edges of G
having an endpoint in S and the other in V \{S}. Moreover, we denote by G[S]
the subgraph of G induced by S, i.e., the graph with vertex set S and edge set
E(S) containing all the edges of E with both endpoints in S. The graph is called
connected if for each pair of vertices i and j there is a path between i and j in
the graph. The graph is called 2-connected if for each i ∈ V the graph G[V \{i}]
is connected. A hamiltonian circuit of G is a circuit that visits each node of V
exactly once. A graph is called hamiltonian if contains a hamiltonian circuit. The
complete graph Kn is the simple graph with n vertices and edges {i, j} for each
pair i, j ∈ V . We denote the sets of vertices and edges of Kn by, respectively,
V n and En. Without loss of generality, we assume V n := {1, . . . , n}.

Let ω(G) denote the number of components of the graph G. The graph is
called t-tough if |S| ≥ t ω(G[V \S]) for every subset S ⊆ V with ω(G[V \S]) > 1.
The toughness of G, denoted τ(G), is the maximum value of t for which G is
t-tough. Computing the toughness of a graph is an NP-hard problem [2].

The concept of toughness was introduced over 40 years ago by Chvátal [7].
A lot of research has since then been done, mostly investigating the relation
between toughness conditions and the existence of cycle structures (see [3,6] for
a survey). The original paper by Chvátal contained a number of conjectures, the
most challenging of which, still open, states that there exists a finite constant
t0 such that every t0-tough graph is hamiltonian. Originally it was also believed
that in fact t0 = 2 (the “2-tough conjecture”) but in 2000 this conjecture was
shown to be wrong by Bauer, Broesma and Veldman [5] who provided a 42-nodes
counterexample.

Although a small value of toughness is not enough to imply that a graph is
hamiltonian, there might be simple additional conditions to force the existence
of a hamiltonian cycle in a t-tough graph for a small t, such as t = 1.

The property of 1-toughness can be stated in a simple way, namely, a con-
nected graph is 1-tough if one cannot create c components by removing less
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than c vertices. The following are easy to prove immediate consequences of the
definition:

Proposition 1. If a graph G is 1-tough, then G is 2-connected.

Proposition 2. If a graph G is hamiltonian, then G is 1-tough.

Although hamiltonian implies 1-tough, the converse is in general not true
(see, e.g., the Petersen graph). However, a simple condition such as being k-
regular might be enough to force a small 1-tough graph to be hamiltonian. In [4]
the authors considered the non-hamiltonian k-regular 1-tough graphs for k ≥ 3
(called (n, k)-graphs where n is the number of the vertices) and studied the
problem of finding the minimum order n = f(k) for which there exists an (n, k)-
graph. For the case k = 4, they provided the (18, 4)-graph represented in Fig. 1,
proving that f(4) ≤ 18.

Fig. 1. The (18, 4)-graph by Bauer, Broersma and Veldman [4]

On the other hand, the following result of Hilbig implies f(4) ≥ 16.

Theorem 1. ([11]) Let G be a 2-connected k-regular graph on at most 3k + 3
vertices. Then G is hamiltonian or G is the Petersen graph P or G is the 3-
regular graph obtained by P by replacing one vertex by a triangle.

At the end of the paper [4], Bauer et al. conjectured that f(4) = 18. (For a
discussion on this conjecture see also [8]). Given that f(4) ≥ 16, we can restate
this statement explicitly as the following theorem:

Theorem 2. Each 4-regular, 1-tough graph of n = 16 or n = 17 nodes is hamil-
tonian.

In this paper we give a proof of the above theorem showing, by contradiction,
that no 4-regular, 1-tough, non-hamiltonian graph of 16 or 17 nodes exists.

1.2 Paper Organization

The remainder of the paper is organized as follows. In Sect. 2 we describe a
preliminary analysis about 4-regular 2-connected graphs of 16 and 17 nodes that
are not 1-tough. In Sect. 3 we present the ILP model for the search of possible
counterexamples to the conjecture. In Sect. 4 we describe the main features of
the branch-and-cut procedure used to solve the ILP model. Finally, in Sect. 5 we
report the results of the computations and draw some conclusions.
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2 Replacing 1-Toughness by 2-Connectedness:
A Preliminary Analysis

Our strategy is based on the use of ILP to model a counterexample to the
conjecture. The variables of the model will represent the edges of the sought
graph, i.e., of the hypothetical counterexample, and there is no objective function
(i.e., the objective coefficients are all 0). While the constraints which enforce a
graph to be 1-tough are not simple (it is NP-complete to determine if a graph
is 1-tough [2]), it is easy to state a set of constraints which imply that a graph
is 2-connected. Since by Proposition 1 every 1-tough graph is 2-connected, the
search for a counterexample could then be relaxed to a somewhat simpler task,
i.e., finding a 4-regular, 2-connected, non-hamiltonian graph. If we fail, then we
can conclude that there is no counterexample at all. However, we might succeed
and find a 4-regular, 2-connected, non-hamiltonian graph which is not 1-tough.
In this case, we should add constraints to avoid the feasibility of this graph and
continue the search.

It becomes then important for our problem to study if it is possible to have
4-regular, 2-connected graphs of 16 or 17 nodes which are not 1-tough and, in
that case, characterize their structure (in the following we call a graph with
these properties an R-graph). In particular, given n ∈ {16, 17} and k = 2, . . . , n

2 ,
we consider the problem of finding the maximum number v(n, k) of connected
components that can result by removing k nodes from a 4-regular 2-connected
graph of n nodes. Clearly, if v(n, k) ≤ k for every k then there do not exist
R-graphs with n vertices.

Also for this preliminary analysis we have used Integer Linear Programming.
Before presenting the ILP model, let us we outline some simple properties.

Given a 4-regular 2-connected graph G = (V,E) and a subset S ⊆ V with
|S| = k let V1, . . . , Vt be the vertex-sets of the t connected components of the
graph G[V \ S] and nr := |Vr|, for r = 1, . . . , t.

Proposition 3. For each r = 1, . . . , t it is nr ≥ 5 − k.

Proof. Assume nr ≤ 4 − k for some r. Since each node v of Vr has degree 4 and
can be adjacent to at most nr − 1 ≤ 3 − k vertices of Vr, v must be adjacent to
at least k + 1 vertices in S, a contradiction.

Proposition 4. For each r = 1, . . . , t it is |δ(Vr)| ≥ mr := max{2, nr(5 − nr)}.
This in particular implies

∑t
r=1 mr ≤ 4k.

Proof. The 2-connectivity of G implies |δ(Vr)| ≥ 2. Moreover, if nr ≤ 4 then each
vertex of Vr must be adjacent to at least 5 − nr vertices of S, so |δ(Vr)| ≥ mr.
Since

∑t
r=1 |δ(Vr)| = |δ(S)| ≤ 4k the second statement holds.

For each n and k we can compute an upper bound v′(n, k) to the value
v(n, k) by solving the following ILP problem. Let xi be an integer variable
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representing the number of components of cardinality i in the graph G[V \ S]
and mi := max{2, 5i − i2}. By Proposition 3 we can assume that i goes from
s(k) := max{1, 5 − k} to n − k. Let us consider the model Pn,k:

v′(n, k) := max
n−k∑

i=s(k)

xi (1)

n−k∑

i=s(k)

i xi = n − k (2)

n−k∑

i=s(k)

mixi ≤ 4k (3)

xi ∈ N, s(k) ≤ i ≤ n − k. (4)

The objective function counts the number of components of the graph
G[V \ S], the constraint (2) states that the total number of nodes in these
components must be n − k and the constraint (3) requires that the property
stated in Proposition 4 is satisfied. If there exists an R-graph with n vertices
then it must be v′(n, k) > k for some k.

By solving problem Pn,k for n = 16, it turns out that v′(16, k) > k only for
k = 2, in which case it is v′(16, 2) = 3. The optimal solution is x∗

4 = 1, x∗
5 = 2,

x∗
i = 0 for i �= 4, 5. It is easy to verify that there is one R-graph compatible with

this solution, namely the graph G16 shown in Fig. 2. Indeed let S = {v1, v2} and
G[Vr] be a component of G[V \S] with |Vr| = 4, 5. A degree argument implies
that when |Vr| = 4 then G[Vr] is a complete graph K4 with |δ(Vr)| = 4, when
|Vr| = 5 and |δ(Vr)| = 2 then G[Vr] is a graph R5, where R5 denotes a graph
obtained by removing one edge from K5. In the latter case, by the 2-connectivity
of G, one of the nodes of degree three of G[Vr] is adjacent to v1, the other one
to v2. If one solves again problem P16,2 by adding either the condition x3 ≥ 1
or the condition

∑
i≥6 xi ≥ 1, he obtains optimal value 2. This implies that x∗

is the unique optimal solution of P16,2.

v1

v2

Fig. 2. Graph G16: the unique 4-regular 2-connected graph with 16 vertices that is not
1−tough

By solving problem Pn,k for n = 17, it turns out that v′(17, k) > k only
for k = 2, 4 with optimal values, respectively, v′(17, 2) = 3 and v′(17, 4) = 5.
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For k = 2 one optimal solution is x∗
5 = 3 and x∗

i = 0 for i �= 5. This solution
determines the four graphs G1

17, G2
17, G3

17 and G4
17 in Fig. 3. Indeed let G[Vr],

r = 1, 2, 3, be the three components of the graph G\S, S = {v1, v2}. Then
|δ(Vr)| = 2 for at least two components and thus, by the above argument, we
may assume that G[Vr], r = 2, 3, is a graph R5 containing one neighbour of v1
and one neighbour of v2. If the nodes v1 and v2 are adjacent, the same holds
for G[V1] and G is the graph G1

17. Otherwise |δ(V1)| = 4 and the number y, w
and z of the nodes of G[V1] of degree 2, 3 and 4, respectively, must satisfy the
conditions 2 y + 3 w + 4 z = 16, y + w + z = 5 and w ≥ z − 2. In particular,
w has to be an even number not smaller than two. If w = 2 then y = 1, z = 2
and G is the graph G4

17, otherwise w = 4, x = 0, z = 1 and G[V3] contains two
nodes adjacent to v1 and two nodes adjacent to v2. If the two neighbours of v1
are adjacent, then G is the graph G2

17, otherwise G is the graph G3
17.

v1

v2

v1

v2

v1

v2

v1

v2

Fig. 3. 4-regular 2-connected graphs with 17 vertices that are not 1−tough: from left
to right G1

17, G
2
17 in the first line and G3

17, G
4
17 in the second

By solving again P17,2 with the additional condition x3 +x4 ≥ 1 one obtains
a different solution x̄ of value 3 with x̄4 = x̄5 = x̄6 = 1 and x̄i = 0 for i �= 4, 5, 6.
This solution is compatible only with the two graphs G5

17 and G6
17 in Figs. 4(left)

and Fig. 4(center) which differ by the fact that the neighbours of v1 and v2 in
the component with six nodes are joined by an edge or not. The solutions x∗

and x̄ are the only solutions of P17,2 of value 3. Indeed, by adding to P17,2 either
the condition x3 ≥ 1 or the condition

∑
i≥7 xi ≥ 1 one obtains 2 as the optimal

value. This implies that x4 + x5 + x6 = 3 must hold for each solution of value 3.
The optimal solution for k = 4 is x̂1 = 3, x̂5 = 2 and x̂i = 0, i �= 1, 5, of value

5 which corresponds to the graph G7
17 in Fig. 4(right). By adding each one of the

constraints x1 ≤ 2, x1 ≥ 4 and x5 ≤ 1 to problem P17,4 one obtains an optimal
value not grater than 4. So x̂ is the unique optimal solution of the problem.

We summarise the results of the section in the following proposition.
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Proposition 5. Let G = (V,E) be a 2-connected 4-regular graph which is not
1-tough. Then, if n = 16, G is the graph G16 in Fig. 2, while if n = 17 G is one
of the graphs Gp

17, p = 1, . . . , 7, in Figs. 3 and 4.

v1

v2

v1

v2

v1v2

v3 v4

Fig. 4. 4-regular 2-connected graphs with 17 vertices that are not 1−tough: G5
17 (left),

G6
17 (center) and G7

17 (right)

3 The ILP Model for Finding a Counterexample

The problem of finding a counterexample to the statement of Theorem 2 can
be rephrased as follows. Given the complete graph Kn = (V n, En), where n ∈
{16, 17}, find a subset E ⊆ En such that the graph G = (V n, E) is 4-regular, 1-
tough and non-hamiltonian. This problem can in turn be modeled by an Integer
Linear Program as follows. Let us introduce a binary variable xe for each edge
e ∈ En where xe = 1 if e ∈ E, 0 otherwise. The following three families of
constraints guarantee that a solution x defines a graph G(x) = (V n, E(x)) with
the required properties.

– 4-degree constraints:
∑

e∈δ(i)

xe = 4 ∀ i = 1, . . . , n. (5)

These conditions force every node of G(x) to have degree four.

– non-hamiltonian constraints:
∑

e∈H

xe ≤ n − 1 ∀ hamiltonian circuit H ∈ Hn (6)

where Hn denotes the set of the hamiltonian circuits of Kn. These conditions
guarantee that the graph G(x) is non-hamiltonian.

– 1-toughness constraints:
∑

1≤a<b≤t

∑

e∈δ(Va)∩ δ(Vb)

xe ≥ 1 ∀ partition S, V1, . . . , Vt of V n with t > |S|.

(7)
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These conditions require that for each partition S, V1, . . . , Vt of V n with |S| < t
there exists at least one edge in E(x) joining two nodes in two distinct subsets
Va and Vb. This property is clearly equivalent to the 1-tough property.

The search for a counterexample to the conjecture is therefore equivalent to
the search of a binary vector x ∈ {0, 1}|En| satisfying the constraints (5), (6)
and (7). We call this feasibility ILP problem Mn, for n = 16 and n = 17. As
shown in Sect. 2, apart from a few cases, 4-regular graphs with 16 and 17 nodes
that are 2-connected are also 1-tough. For this reason we consider an additional
family of constraints that impose the 2-connectivity of the solutions.

– 2-connectivity constraints:
∑

e∈δ(S)\δ(v)

xe ≥ 1 ∀ v ∈ V, ∀ S ⊂ V \ {v}, 0 < |S| < n − 1 (8)

These conditions require that for each node v ∈ V and each subset S ⊆ V \{v},
the cut (S, V \(S ∪ {v})) in G[V \{v}] is not empty, i.e., that G[V \{v}] is con-
nected.

The number of constraints (6), (7) and (8) grows exponentially with the
number of nodes. Actually, even in the cases n = 16 and n = 17 this number
is very high and makes it impossible to create all the constraints in order to
input them to an ILP solver. To solve the problem Mn, we will have to adopt
a cutting plane approach (a branch-and-cut procedure [9,16]) in which we do
not to introduce all these constraints initially in the model but we generate
them dynamically only when needed. The problem of determining if a missing
inequality has in fact to be added to the model at any stage of the solving process
is called the separation problem, and is described in the next section.

3.1 The Separation Problems

In this section we consider the separation problems associated to the constraints
of the model Mn. In general, given a family L of inequalities, the separation
problem with respect to L is the following: Given a vector x̄ (not necessarily
integer), find an inequality of L violated by x̄ or determine that no such inequal-
ities do exist. An algorithm which solves this problem is called a separation
algorithm for L.

– The separation problem for the non-hamiltonian constraints. A vec-
tor x̄ does not satisfy the non-hamiltonian constraints (6) if and only if there
exists a hamiltonian circuit H ∈ Hn such that

∑

e∈H

x̄e > n − 1 ⇔
∑

e∈H

(x̄e − 1) > −1 ⇔
∑

e∈H

(1 − x̄e) < 1.

Thus the separation problem for the non-hamiltonian constraints can be solved
by finding the shortest hamiltonian circuit in Kn with respect to the lengths
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ce := 1 − x̄e for each e ∈ En . This is a Traveling Salesman Problem. If the
optimal TSP solution H∗ has value smaller than 1 then the constraint

∑

e∈H∗
xe ≤ n − 1

is violated by x̄ (which, in our branch-and-cut approach, implies that it must be
added to the model). Otherwise, no (6) constraint is violated by x̄.

Being the TSP, the separation problem for the non-hamiltonian constraints
is NP-hard for a general n. In our case, however, n is fixed (and rather small).
Solving the TSP problem on a ≤ 17-node graph is quite simple (see the result
on computational experiments) and there are several effective algorithms to this
end. In particular, we have used a simple branch-and-bound procedure.

– The Separation for the 1-Tough Constraints. Since the problem of
recognizing if a graph is 1-tough is NP-complete, the separation problem with
respect to the 1-toughness constraints (7) is NP -hard. We will separate these
constraints only for binary vectors x̄, corresponding to graphs G(x̄) that are
4-regular and 2-connected. As shown in the previous section there exist only
one graph on 16 nodes and seven graphs on 17 nodes satisfying these conditions
that are not 1-tough. A first way to separate the 1-toughness constraints for an
integer x̄ is that of testing if the graph G(x̄) is isomorphic to G16 when n = 16 or
is isomorphic to one of the graphs Gp

17, p = 1, . . . , 7, when n = 17. Alternatively,
one can model as an ILP the problem of finding a partition S, V1, . . . , Vt of V
with |S| = k < t and such that G(x̄)[V \S] has t connected components. Let us
introduce a binary variable zi, i ∈ V , where zi = 1 if i ∈ S and 0 otherwise
and a binary variable yir, i ∈ V and r = 1, . . . , t, where yi,r = 1 if i ∈ Vr and 0
otherwise. Any partition with the required properties defines a feasible solution
of the ILP model

Tk,t :
t∑

r=1

yir + zi = 1 i ∈ V (9)

yir ≤ yjr + zj {i, j} ∈ E(x̄), r = 1, . . . , t (10)
yjr ≤ yir + zi {i, j} ∈ E(x̄), r = 1, . . . , t (11)

∑

i∈V

yir ≥ 1 r = 1, . . . , t (12)

∑

i∈V

zi = k (13)

zi ∈ {0, 1} i ∈ V (14)
yir ∈ {0, 1} i ∈ V, r = 1., . . . , t. (15)

The conditions (9) impose that each node belongs to exactly one set of the
partition. The conditions (10) and (11) guarantee that each edge e ∈ E(x̄) has
either both endpoints in a same set Vr or at least one endpoint in S. Finally, all
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the sets Vr are not empty by the constraints (12) and |S| = k by the contraint
(13). We observe that, on the base of the results in Sect. 2, it will be sufficient
to solve the problem T2,3 for n = 16 and the problems T2,3 and T4,5 for n = 17.
Any feasible solution of these problems defines a 1-toughness constraint violated
by the vector x̄.

– The Separation for the 2-Connectivity Constraints. A vector x̄ does
not satisfy the 2-connectivity constraints if and only if there exists a node v̄ ∈ V
and a subset S̄ ⊆ V \{v̄} such that the sum of the components x̄e over the edges
of the cut δ(S̄) in Kn[V \{v}] is strictly smaller than 1. Thus the separation
problem for the 2-connectivity constraints can be solved in O(n4) by solving for
each v ∈ Vn a minimum-cut problem on the graph Kn[V \{v}] with respect to
the weights we := x̄e. If for some v̄ the optimal value is smaller than 1, the 2-
connectivity constraint defined by v̄ and the optimal solution S̄ is violated by x̄,
while if the optimal value is ≥ 1 there are no violated 2-connectivity constraints.
If x̄ is integer, the separation problem can be alternatively solved in time O(n)
(see [19]) by searching for the articulation points of the graph G(x̄), i.e., the
nodes whose removal disconnects the graph.

4 The Branch-and-Cut Procedure for Solving Mn

As already remarked, the model Mn has exponential size with respect to n and
must therefore be solved with a constraint-generation approach. The standard
way to do this is called branch-and-cut. Branch-and-Cut is a branch and bound
in which the constraint matrix at each node of the search tree contains only a
(small) subset of the constraints of the original model. Let us denote by N a
node of the search tree and by M(N) the set of constraints of the subproblem
corresponding to this node. These are the constraints that were input at the
root node, plus all the constraints which were added in the nodes on the path
from the root to N , plus all the branching constraints (fixing variables to 0 or
1) along the path to N .

Whenever the LP-relaxation of M(N) is solved, yielding a solution x̄, the
feasibility of x̄ with respect to Mn must be checked (if x̄ is feasible for Mn we
could stop the search, since the counterexample would have been found). The
solution x̄ could be infeasible because it is fractional, but also an integer solu-
tion could be infeasible since many constraints of Mn are missing at N . Before
branching from N and creating more subproblems we must then check if there
are any constraints of Mn which are violated by x̄. If that is the case, we add
one or more of these constraints to M(N) and solve M(N) again. In this phase
we use the separation procedures mentioned in Sect. 3.1 to find such inequalities.
This phase is called constraint- (or cut-) generation. The processing of the node
would terminate only when x̄ is integer and feasible for Mn (which, however,
never occurred), or when x̄ is fractional but does not violate any constraint of
Mn. In this case, a branching is performed from N , by picking a fractional com-
ponent x̄j and creating two new subproblems, N ′ in which we fix xj = 0, and
N ′′ in which we fix xj = 1.
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Our branch and cut procedure was implemented within the framework SCIP
[10] for solving ILPs. The overall computation was rather long, but it could have
been much longer had we not adopted some steps in order to make the search
as effective as possible. We now briefly describe some of the implementation
decisions that we had to take.

4.1 Symmetries and Orbital Branching

Consider a solution x ∈ {0, 1}|En| and the associated graph G(x). For every
permutation π of Vn we can define a new solution π(x) by setting π(x)ij =
x(π(i)π(j)) for each {i, j} ∈ En. The graph G(π(x)) is clearly isomorphic to G(x).
Since the 4-regularity, the 1-toughness and the property to be not hamiltonian
are preserved by graph isomorphisms, x is feasible for Mn if and only if π(x) is
feasible. This shows that every permutation π of Vn induces a symmetry of the
model Mn. It is well known that even relatively small instances of ILP problems
with large groups of symmetries can be extremely difficult to solve via branch
and cut. For this reason several techniques have been proposed in literature to
reduce the impact of symmetries (see for instance the surveys of Margot [13] and
Pfetsch and Rehn [18]). Among these techniques a very effective one is Orbital
Branching by Ostrovski and al. [17]. This method requires to compute at each
node N of the branch and bound tree 1) the group SN of the symmetries that
stabilize the sets of the indices of the variables fixed at 0 and 1 at N and 2) the
orbits induced by SN , where the orbit of an edge ē is the set O(ē) = {e ∈ En :
there exists π ∈ SN : e = π(ē)}. Then, given a free variable xē, two new nodes
are created according to the disjunction (xē = 1) ∨ (

∑
e∈O(ē) xe = 0). Clearly,

the additional computational effort required by the method is worthwhile as
long as it returns orbits of rather large size, in which case the orbital branching
rule significantly limits the visit of isomorphic solutions. Since the branching
constraints tends to reduce the symmetries of the problem, orbital branching is
usually performed only at the first levels of the branch and bound tree.

The strong impact of the orbital branching method in solving our problem is
highlighted by the computational results in Table 1 obtained by solving problem
Mn for 8 ≤ n ≤ 13 using the default branching rule vs using orbital branching
in the first eight levels of the search tree. For these values of n the 1-toughness
constraints are implied by the 2-connectivity constraints and are not included
in the model. The extremely high times required for n = 12, 13 with the default
branching rule make it clear that it is unlikely that the model can be solved in
a reasonable time for larger values of n without resorting to a suitable method
to handle its symmetries.

4.2 A Decomposition to Overcome the 1-Toughness Constraints

A main issue in solving the problem Mn is the time required by the separation
routine for the 1-toughness constraints (7). This is true either if we choose to
separate them by solving the ILP problems Tk,t introduced in Subsect. 3.1 or by
checking the isomorphism of G(x̄) with one of the graphs described in Sect. 2.
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Table 1. Times and nodes required by solving model Mn using the default branching
rule of SCIP and the orbital branching (up to level 8).

SCIP SCIP+OB

n Time (sec) # Nodes Time # Nodes

8 0,03 31 0,01 s 13

9 0,12 209 0,06 s 104

10 1,18 2253 0,46 s 809

11 83,20 78441 4,15 s 5550

12 18827,38 2257286 12,34 22896

13 >5 × 105 >15 × 106 212.33 187572

To overcome the complexity of dealing with the 1-toughness constraints, we
have chosen to adopt a decomposition scheme, based on the analysis of Sect. 2.
This decomposition has a twofold positive effect: (1) it allows us to restrict the
cases when we have to actually separate the constraints (7) to a limited set
of possibilities, in which the value of many variables can be fixed before the
computation even starts; (2) it allows us to strengthen the formulation for the
remaining cases by the introduction of a new family of constraints. We now
briefly describe this decomposition scheme for n = 16 and n = 17.

Case n = 16. We know from the results of Sect. 2 that the only 4-regular
2-connected graph which is not 1-tough is the graph G16 of Fig. 2. This graph
contains three disjoint induced subgraphs: a complete graph K4 and two graphs
R5, where, as in Sect. 2, R5 denotes a graph obtained by removing one edge from
K5. We decided to partition the solution set F16 of M16 into three sets F16(2R5),
F16(1R5) and F16(NOR5) which are, respectively, the solutions corresponding
to graphs containing at least two (disjoint) copies, a single copy or no copy of
R5.

This partitioning allows us to fix many variables in the model. In particular,
since the solutions in F16(2R5) must contain two disjoint copies of R5 we can
fix to 1 the variables corresponding to the subsets of edges shown in Fig. 5(left).
Similarly, since the solutions in F16(1R5) contain one copy of R5, and con-
sidering the 2-connectivity property, in this case we can fix to 1 the variables
corresponding to the edges in Fig. 5(right).
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Fig. 5. Variables fixed to 1 for the solutions in Fn(2R5) (left) and Fn(1R5) (right).
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Furthermore, we can add to the model a set of inequalities which forbid the
existence of any further R5 other than the one possibly fixed as above. We call
these inequalities noR5-constraints (NOR5) and they are

∑

e∈E(V ′)

xe ≤ 8 ∀ V ′ ⊆ W, |V ′| = 5, (17)

where W = {6, . . . , 16} in the case of F16(1R5), and and W = V in the case
of F16(NOR5). Notice that, for a general n, the number of these constraints is
O(n5) but this number is not small, not even when n = 16. Therefore, we have
decided not to add all these constraints to the models, but to separate them only
when needed.

Based on the above partitioning, we have solved three problems, but only in
the one for F16(2R5) we have used the separation of 1-toughness constraints,
since in the remaining two cases 2-connectivity constraints were sufficient.

Case n = 17. We have adopted the same partitioning of the solutions also
for the case n = 17, namely we have decomposed the feasible set F17 into three
sets F17(2R5), F17(1R5) and F17(NOR5). We observe that the case F17(2R5)
includes the five problematic graphs Gp

17, p = 1, 2, 3, 4, 7, and hence separation
of 1-toughness constraints is needed, done by solving the problems T2,3 and T4,5.
The case F17(1R5) includes the two problematic graphs G5

17 and G6
17 and hence

separation of 1-toughness constraints is needed, done by solving the problem T2,3.
The case F17(NOR5) does not require separation of 1-toughness inequalities.

Also the fixing of the initial variables is the same as the one used for n = 16.
Furthermore, we know from the Hoffman-Singleton Theorem [12] that there do
not exist 4-regular graphs with diameter 2 on 17 nodes. This fact allows us to
fix to 1 in F17(NOR5) the variables for two disjoint sets of edges, namely a star
with center 1 and neighbors {2, 3, 4, 5}, and another with center 6 and neighbors
{7, 8, 9, 10}.

4.3 Solution of Each Subproblem

For each one of the sets defined in the previous subsection, we initialized an
integer linear programming problem including only the 4-degree constraints and
those defining the initial fixing of some variables. The remaining constraints were
added only when generated by the separation routines. In particular we called the
separation procedures for the non-hamiltonian constraints, the 2-connectivity
constraints, possibly the noR5-constraints and the 1-toughness constraints in
this order. Indeed an (integer) solution that does violates a non-hamiltonian
constraint corresponds to a hamiltonian graph and so it cannot violate any 2-
connectivity or 1-toughness constraint. Moreover, our separation routine for the
1-toughness constraints is based on the analysis of Sect. 2 and thus it works
only if applied to integer vectors that satisfy the 2-connectivity constraints. As
described in the previous section, we actually considered (and separated) the
1-toughness constraints only for the instances defined by F16(2R5), F17(1R5)
and F17(2R5).
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For the separation of the non-hamiltonian constraints we have used a com-
binatorial branch and bound algorithm for the TSP. Although not the best pos-
sible for large TSP instances, this simple algorithm turned out to be very fast
for n = 16, 17. We have separated the 2-connectivity constraints only for inte-
ger solutions using a combinatorial procedure that searches for the articulation
points of a graph. Finally, we separated the noR5-constraints by an exhaustive
search for subsets of nodes that could violate the conditions stated in (17).

5 Computational Experiences and Conclusions

In this paper we have modeled the set of counterexamples to Bauer et al.’s
conjecture as the integer points of a polytope contained in [0, 1]n(n−1)/2, with
variables xe associated to the edges of a complete graph of n = 16 and 17 nodes.
We easily modeled the 4-regular degree constraints, while the non-existence of a
hamiltonian cycle or the property of being 1-tough were guaranteed by a set of
exponentially many inequalities, dealt with implicitly through a branch-and-cut
procedure.

The algorithm was implemented within SCIP, a framework for constraint
integer programming and branch-cut-and-price developed at ZIB (Zuse Insti-
tute Berlin). We solved all the instances corresponding to the decomposition
described in Subsect. 4.2 for n = 16 and n = 17, with an overall computation
which took about a week (see Table 2 for a detailed account of the time needed
to solve each of the subproblems in the decomposition). This might appear as
a long time, but it is in fact very small if compared to a brute force approach
that should have considered about 30,000 billions of billions of 4-regular graphs
of 17 nodes. Even assuming that checking if a graph is 1-tough and hamilto-
nian takes 1/1000 s, the task would have taken roughly 1 billion centuries. In
order to solve the problem in a reasonable amount of time some aspects proved
to be fundamental, especially the preliminary analysis and the use of orbital
branching.

Since all the instances were found infeasible, we conclude that the conjecture
by Bauer, Broesma and Veldman is true.

Table 2. Times and number of nodes required to solve problem Mn for the sets defined
in Subsect. 4.2.

Time (seconds) # Search tree nodes

F16(2R5) 2,17 28

F16(1R5) 2171,22 624623

F16(NOR5) 250904 16167197

F17(2R5) 171,03 367

F17(1R5) 1946,81 243540

F17(NOR5) 422303 37750576
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While testing our implementation, we also decided to use it for solving M18

for which it is known that there exists a counterexample. Our program did in
fact find a feasible solution, i.e., the same graph of Fig. 1 described by Bauer et
al. who, on the other hand, had to find it in a (more clever) “old-fashioned” way.

We conclude by remarking how the use of ILP modeling seems promising
for building small combinatorial structures (such as graphs) with some given
properties, or proving that none exists. We expect to see more applications of
this type in the future.
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Abstract. We consider the intractable problem of finding m edge-
disjoint vertex covers in d-dimensional normed space with maximum
total weight, such that each of them has exactly k cycles. We construct a
polynomial-time approximation algorithm for solving this problem and
derive conditions of its asymptotical optimality.

Keywords: Cycles cover · m-PSP · Asymptotically optimal · Normed
space · Polynomial-time algorithm

1 Introduction

We consider the following problem: given a complete undirected weighted graph
G = (V,E), where the set V consists of n vertices represented by points in
d-dimensional space Rd.

We assume that the vertexes of the graph G belong to a normed space Rd

and the weight of an edge (x, y) is equal to ‖x − y‖, where ‖ · ‖ is a given
norm on Rd. Following [19] we define a concept of an angle in an arbitrary
normed space, defining the an angle α between the vectors x and y as the dis-
tance between the vector x/‖x‖ and the closest of two vectors ±y/‖y‖, that is,
α(x, y) = min{‖x/‖x‖−y/‖y‖‖, ‖x/‖x‖+y/‖y‖‖}. For x = λy or if the norm of
one of the vectors equals zero, the angle between x and y is assumed to be zero.

A cycle cover of a graph is a spanning subgraph which consists of one or
several cycles.

A problem is to find a union C = {C1 ∪ C2 ∪ · · · ∪ Cm} of m edge-disjoint
cycle covers, with maximum total weight of all the edges in the union C, such
that each cycle cover Ci consists of exactly k cycles.
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2 Related Works

The problem is closely related to the well-known Traveling Salesman Problem
(TSP), being a direct generalization of k-Cycles Cover Problem (k-CCP). In the
latter problem, given a fixed natural number k and a complete weighted graph
G = (V,E), it is required to find an extremal (minimum, or maximum)-weight
vertex cover of G with k vertex-disjoint cycles. k-CCP is in turn a generalization
of TSP (which is k-CCP for k = 1).

The following results are known for minimization and maximization versions
of TSP and its generalizations.

2.1 Minimization Problem

It is known [16] that the TSP is NP-hard even in the Euclidean case, i.e., its opti-
mal solution can not be found in polynomial time, unless P = NP. Although TSP
is hard to approximate [17] in the general case, polynomial-time approximation
algorithms are developed for some special cases. For instance, the Metric TSP
[4] can be approximated in polynomial time with a ratio 3/2, and, for Euclidean
TSP, a polynomial-time approximations scheme [1] and an asymptotically cor-
rect algorithm [21] and [11] are developed.

Other well-known generalizations of the TSP are the m-Peripatetic Salesman
Problem (m-PSP) and the Min-L-Cycle Cover Problem (Min-L-CCP).

m-PSP is a problem of finding m edge-disjoint Hamiltonian cycles of min-
imum or maximum total weight in a complete edge-weighted n-vertex graph.
The problem was first introduced by Krarup in [13] and is known to be NP-hard
[5]. Being generalization of TSP, the problem remains intractable in metric and
Euclidean special cases.

In the Min-L-Cycle CP it is required to find the cycle cover, such that the
length of every cycle belongs to the set L ⊆ {3, 4, 5, ...}. Here the length of a
cycle is the number of its edges. The problem is NP-hard and APX-hard for
almost all sets L [15].

In [9] and [10] it is shown that the Min k-cycles CP is NP-hard in the strong
sense, both in general and in particular cases, Metric and Euclidean. For the
case k = 2 efficient 2-approximate algorithm is proposed, and for the Euclidean
problem on the plane a polynomial-time approximation scheme is derived.

2.2 Maximization Problem

An asymptotically optimal algorithm was introduced for Euclidean Max m-PSP
in [2]. In [8] a geometric variant of the problem in normed space is considered
and a polynomial time approximation algorithm for the m-PSP in a normed
space with fixed dimension is suggested. It is established that the algorithm is
asymptotically optimal for m = o(n).

In [12] the approximation polynomial-time algorithms for the Euclidean Max
k-cycles CP with a given lengths of cycles in a multidimensional Euclidean
space and the Random Max k-cycles CP with random instances UNI(0, 1) are
considered. It is shown that both algorithms have time complexity O(n3) and
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are asymptotically optimal for the number of covering cycles k = o(n) and
k ≤ n1/3 ln n, respectively.

In [18] author considers a problem of finding cycle cover with maximum
total weight which satisfies an given upper limit on the number of cycles and a
lower limit on the number of edges in each cycle. He suggests a polynomial-time
algorithm for solving this problem in the geometric case when the vertexes of
the graph are points in a multidimensional real space and the distances between
them are induced by a positive homogeneous function, such that its unit ball is
an arbitrary convex polyhedron with a fixed number of facets.

3 Preliminary

The input for the normed max-m-k-cycles cover problem is defined by integer
numbers d, n,m, k and the points v1 = (v11, . . . , v1d), . . . , vn = (vn1, . . . , vnd)
constituting the set V . The points define complete weighted graph G = (V,E),
where the weight of edge is equal to the distance (i.e., the norm of difference)
between corresponding points.

This problem is a generalization of two problems mentioned above, both of
them being generalizations of Max TSP:

– problem of finding m edge-disjoint Hamiltonian cycles in complete graph
(Max m-PSP): Max TSP is a particular case with m = 1;

– problem of finding a maximum-weight single covering of complete graph with
k cycles (the Max k-cycles CP): Max TSP is a particular case with k = 1.

First of these problems was considered in [2], where an asymptotically optimal
algorithm for the problem it was introduced.

Definition 1. An approximation algorithm A for some maximization problem
has a guaranteed relative error ε, if the algorithm is a (1 − ε)-approximation.
Namely,

OPT (X) − FA(X)
OPT (X)

≤ ε,

for any input X, where OPT (X) is the optimal value of the objective function
for the input X and FA(X) is the value of the objective function obtained by the
algorithm A.

Notation εA(n) is used for the worst relative error on all cases of size n:

OPT (X) − FA(X)
OPT (X)

≤ εA(n) ∀X : |X| = n

(i.e., for any input X consisting of n vertexes). A following theorem was proved:

Theorem 1. Euclidean Max m-PSP problem is solved with relative error

εA(n) ≤ 1
n

+ αd

(m

n

) 2
d+1

,

αd being a constant depending only on the dimension d.



88 E. Kh. Gimadi and I. A. Rykov

In [12] an algorithm for the latter problem (of finding k-cycles coverage of
maximal length) was introduced, with the following estimation for the relative
error:

Theorem 2. The Euclidean Max k-cycles CP is solved with relative error

εA(n) ≤ 2k

n
+ βd

( 1
n

) 2
d+1

,

βd being a constant depending only on the dimension d.

In current work we present algorithm for the general geometric problem in
normed space with both m and k being given as a part of input. We establish
the sufficient conditions of asymptotical optimality of the suggested algorithm.

4 Algorithm Prerequisites

The ideas of both algorithms mentioned above, as well as the new algorithm are
relied on techniques used to solve Euclidean Max TSP problem presented in [21]
(later simplified in [11]), and Max TSP in geometric normed space presented
in [19].

First, a maximal weighted matching M∗ is found and used as a basis for
building either a Hamiltonian cycle, several Hamiltonian cycles or a k-cycles
coverage. In fact, the resulting Hamiltonian cycle is edge-disjoint with M∗ (all
of them are substituted with different edges in the construction process), but
the procedure of substitution allows to estimate the loss in the weight of edges
w.r.t. the matching. In particular, the following lemma is being used:

Lemma 1 ([19]). Among any t vectors (t < n/2) in a normed space Rd there
exist two vectors such that the angle between them doesn’t exceed the value

α(d, t) =
2d

�(2t − 1)1/d� . (1)

In short, algorithm for solving Euclidean Max TSP takes the most parallel
edges of the matching and substitute them with the best of two pairs of edges
joining their end vertices. It is easy to see, that cos α(d, t) is an estimation for
the fraction of weight which remains after such operation. This is done until we
have less than t unpaired edges left (t is a parameter of the algorithm), so t
“lightest” edges are inserted between t paired chains separately.

In the case of m = 1 the maximum m-PSP is the well-known maximum
Travelling Salesman Problem (maximum TSP) [3,14], which is NP-hard even in
Euclidean d-dimensional space, d ≥ 3 [20]. In [19] a polynomial asymptotically
exact algorithm is introduced for the max-TSP in a normed space. This algorithm
uses ideas of known algorithms [21] and [7] for the TSP in a Euclidean space.
The algorithm is based on the following geometric facts:
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Lemma 2 ([19]). Let AB and CD be two intervals in Rd and α be the angle
between them. Then

1 ≥ max(‖AC‖ + ‖BD‖, ‖AD‖ + ‖BC‖)
‖AB‖ + ‖CD‖ ≥ 1 − α/2.

Definition 2. Algorithm A is asymptotically optimal if εA(n) → 0 as the size
n of the problem indefinitely increases.

In order to describe the algorithm for the problem under consideration, we
will use the spatial graph structure called the pseudo-prism P (see Fig. 1).

Definition 3. A subgraph of a graph G forms a pseudo-prism if it consists of
two edge-disjoint cycles (u1, . . . , uμ, u1) and (v1, . . . , vμ, v1), such that each pair
of vertexes with corresponding indexes is connected with an edge (uj .vj), j =
1, . . . , μ, where μ = �n

2 � (“connector”). Thus, the prism consists of 2μ vertices
and 3μ edges.

Note that unlike a regular spatial prism, in the case of a pseudo-prism the
opposite edges in side quadrangles can be non-parallel, and the vertexes of the
cycles do not have to belong to the same plane.

Further, the edges of the maximum matching of the original graph G will be
used as connectors in the constructed pseudo-prism.

Fig. 1. The example of the pseudo-prism P

5 Description of the Algorithm A for the Maximum
m-k-CsCP in a Normed Space

Let w(u, v) be the weight of edge e = (u, v) ∈ E and W (G′) =
∑

e∈E′ w(e) be
the total weight of a subgraph G′ = (V ;E′) of the initial graph G = (V ;E) with
the set of edges E′ ⊆ E. The goal of the algorithm A for the maximum m-k-CCP
is to find a subset of edges C̃ ⊂ E, consisting of m edge-disjoint k-Cycles Covers
C1, . . . , Cm. Initially, C̃ is set empty.

Let M∗ = {I1, . . . , Iμ} be the set of edges (intervals in Rd) of a maximum
weight matching in G; μ = �n/2�.



90 E. Kh. Gimadi and I. A. Rykov

Definition 4. Two edges e1, e2 ∈ E are linked (with respect to set C̃), if there
exists an edge e ∈ E (e ∈ C̃), that connects the end vertices of e1 and e2.

Definition 5. An I-chain is a sequence of edges, where each two neighboring
edges are linked.

Definition 6. Two I-chains are linked (with respect to set C̃) if their end edges
are linked.

We refer to one of the end edges of an I-chain as a master edge and to the
other one as the inferior edge.

Definition 7. An α-chain is an I-chain, where the angle between any two neigh-
boring edges of the chain is less or equal α.

Now let’s describe the approximation algorithm A.

5.1 Algorithm A
Preliminary Steps
Find a matching M∗ = {I1, . . . , Iμ} of maximum weight in graph G, where
μ = �n/2� is the number of its edges (intervals).

Fig. 2. μ − t heavy and t light edges of the maximal matching.

Put C̃ = ∅ and fix a parameter t ≤ μ/2. Sort the edges of M∗ in the non-
increasing order. We will refer to the first (i.e., heaviest) (μ − t) edges of M∗ as
heavy edges, and to the last t edges as the light edges (Fig. 2).

Phase i = 1, . . . , m
Phase i, consisting of Stages 1–5, constructs a k-Cycles Covering Ci.
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Stage 1. Constructing a sequence S = {S1, . . . , St} of t α-chains.

Define angle α = α(k, t) according to the relation (1):

α(d, t) =

{
2d

�(2t−1)1/d� , if i = 1;
2d

�(2t/(2i−2)−1)1/d� , if 1 < i ≤ m,
(2)

where t is the number of available edges.
We are going to build a set I of α-chains, |I| = t. Recall that we denoted the

(μ − t) heaviest edges of M̃∗ as the heavy edges. Each α-chain will consist only
of the heavy edges. Note that an edge is a one-element α-chain. We will start
with It consisting of the first t heaviest edges of M̃∗: It = {I1, I2, . . . , It}.

Put j = t.
In the current t-chain Ij , find a pair of non-linked (with respect to the set

C̃) I-chains such that the angle between their master edges is at most α.
Join these chains into one α-chain by setting their master edges to be neigh-

bors and assign one of the end edges of the joined chain (one of the former
inferior edges) to be the new master edge.

Put j := j + 1. If j < μ − t. Append one more heavy edge Ij to the current
set I and repeat Stage 1.

Now we have obtained a sequence S = {S1, . . . , St} of t α-chains such that
each of them consists of a sequence of heavy edges with the angle between any
consecutive (neighboring) pair of edges at most α = α(d, τ) (Fig. 3).

Fig. 3. The bold lines correspond to the edges of M∗, while the dashed lines indicates
the α-chains. The t light edges of M∗ were placed to the positions between the α-chains.
The last light edge Iνt is placed between the first and the t-th α-chains.

Stage 2. Constructing a pseudo-prism Pi.

Now consider the sequence S as a cycle, i.e. the α-chain St is followed by
the α-chain S1. Let the edges of the α-chains S1, . . . , St be enumerated so that
Sr = {Iνr−1+1, . . . , Iνr−1}, 1 ≤ r ≤ t, where ν1 < ν2 < . . . < νt are the numbers
reserved for the remaining light edges of the maximum matching M∗ (ν0 =
0, νt = μ).
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Place t light edges of the maximum matching M∗ to the positions
ν1, ν2, . . . , νt = μ, such that no light edge is linked to the neighboring end edges
of the α-chains.

Construct a pseudo-prism Pi such that Pi \ M∗ is edge-disjoint with P1 \
M∗, P2 \ M∗, . . . , Pi−1 \ M∗ in the following way.

We assume that the sequence of intervals {I1, I2, . . . , Iμ} of edges of the
maximum matching M∗ is given according to their order in the sequence S,
Ij = (xj , yj), j = 1, . . . , μ.

Now we are going to construct a pseudo-prism Pi.
For j = 1, . . . , μ execute the following operator:

if w(uj−1, xj , uj+1) + w(vj−1, yj , vj+1) ≥ w(uj−1, yj , uj+1) + w(vj−1, xj , vj+1),
then set uj = xj ; vj = yj ; otherwise, set uj = yj and vj = xj .

As a result of the Stage 2 we have obtained a pseudo-prism Pi consisting of
the two non-intersecting circuits (u1, u2, . . . , uμ.u1) and (v1, v2, . . . , vμ.v1), and of
the maximum matching M∗ = {I1, I2, . . . , Iμ} where Ij = (uj , vj), j = 1, . . . , μ
(See Figs. 4 and 5).

Fig. 4. The t light edges of M∗ are placed to the positions between the α-chains. The
last light edge Iνt is placed between the first and the t-th α-chains.

Stage 3. Constructing k-Cycles Covering Ci.

Randomly choose exactly k pairs of adjacent edges in the corresponding
ordering of matching M∗ and perform “reverse operation”, i.e. return edges of
matching into the solution Ci and remove pair of edges that connected endpoints
of this pair of adjacent edges. (see Fig. 6).

On further iterations these 2ik edges of matching M∗ added to C1, . . . Ci are
marked as forbidden.

Stage 4. Cases of evenness and oddness of n.

In the case of even n we have k-Cycles Covering Ci of graph G and go to
Stage 5.
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Fig. 5. The example of the pseudo-prism Pi with n = 28 after Stage 2.

Fig. 6. The example of a solution on the pseudo-prism Pi with n = 28. Thick lines
highlightes one of 3-Cycles Coverings.

If n is odd, there exists a vertex x0 that is not in M∗. In this case replace
one of the matching edge (u, v) of the constructed covering by the pair of edges
(u, x0) and (v, x0) so that none of these edges intersects the set C̃. The triangle
inequality guarantees that the weight of the cycle will not decrease.

Stage 5. Append the edges of the obtained k-covering Ci to the set C̃.

The description of the algorithm A is complete.

6 Analysis of Algorithm A
The algorithm A produces m k-coverings C1, C2, . . . , Cm. On each phase we
arrange the edges in S so that they are not linked with respect to the edges
of Ẽ, hence the obtained coverings are edge-disjoint. The running-time of the
algorithm is determined by the time one needs to construct a maximum weight
matching, which is O(n3).

6.1 Correctness of Stage 3

We search for another k pairs of adjacent edges. In the worst case 2ik edges are
forbidden and 2ik − 1 edges are located between them, one between each two
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forbidden and thus can’t be used. So, in order to be able to finish this operation
on m-th coverage, we need that

2k + 4(m − 1)k − 1 ≤ n/2.

This implies the following condition on the parameters of the problem:

k ≤ n

8m
.

If such condition holds, we are guaranteed to be able to build all m covers.

6.2 Error Bound

Note that the total weight W (M̃∗) of the first (μ − t) heaviest edges of M∗

satisfies the inequality [2]:

W (M̃∗) ≥ W (M∗)
(
1 − t

μ

)
. (3)

Therefore, the weight of single k-CCP satisfies

W (Ci) ≥ 2W (M∗)
(

1 − t

μ

)
(1 − αi/2),

where the angle αi is defined by (2).
On the other hand, the upper bound of optimum for the coverage problem

is estimated as
2W (M∗) ≥

(
1 − k

n

)
W (C∗

i ), (4)

(the worst case of all odd cycles), used in [12].
Thus,

W (Ci)
W (C∗)

≥ 1 − 2(k + t) + 1
n

− d (2τi − 1)−1/d,

where C∗ is the solution of the maximum k-CCP in the given graph and

τi =
{

t, if i = 1;
t/(2i − 2) for 1 < i ≤ m.

(5)

Using (3) and (5), for the approximation ratio εA(n) of algorithm A we have

εA(n) = 1 − WA
OPT ≤ 1 − WA

mW (C∗)

= 1 − W (C1)+...+W (Cm)
mW (C∗) ≤ 2(k+t)+1

n + d
m

∑m
i=1(2τi − 1)−1/d.

(6)

Lemma 3. For m ≤ t, d ≥ 2 the following inequality holds:

m∑
i=1

(2τi − 1)−1/d ≤ 2m
(m

t

) 1
d

.
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Proof. Using the definition (5) of τi, we have:
m∑

i=1

(2τi − 1)−1/d ≤ m
( t

m
− 1

)−1/d

≤ m
(m/t)1/d

(1 − m/t)1/d
≤ m

(m/t)1/d

1 − m/(dt)
≤ 2m

(m

t

)1/d

,

since under lemma assumptions m/(dt) ≤ 1/2, hence 1/(1 − m/(dt)) ≤ 2.

Theorem 3. The maximum m-k-CCP is solved by the approximation algorithm
A with relative error satisfying

εA(n) ≤ 2(k + t) + 1
n

+ 2d
(m

t

)1/d

. (7)

Theorem 4. The algorithm A with parameters t∗ = m
(

n
m

)1/d and k ≤ t∗ gives
asymptotically optimal solutions for the maximum m-k-CCP in the considered
metric space with a fixed dimension d and m = o(n).

Proof. Setting t = t∗ in (7), we obtain

εA(n) ≤ 1
n

+ 2
(m

n

)1−1/d

+ 2(d + 1)
(m

n

)1/(d+1)

→ 0

as n → ∞.

7 Conclusion

Using angle estimations obtained in [19], we construct an algorithm for the
maximum m-k-CCP, which gives asymptotically optimal solution for the prob-
lem in an arbitrary normed space of fixed dimension, given that m = o(n) and
k ≤ m

(
n
m

)1/d.
As a topic for further research it is interesting to extend this approach to

different modifications of the considered problem. For example, it is of natural
interest to construct an asymptotically optimal algorithm for the m-k-CCP that
would essentially rely on the specifics of problem statement and would have a
better relative error or less tight condition for the numbers m and k of coverings.
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Abstract. This paper was motivated by an industrial optimization
problem arisen at the Erdenet Mining Corporation (Mongolia). The
problem involved real industrial data turned out to be a quadratically
constrained quadratic programming problem, which we solve by applying
the global search theory for general DC programming. According to the
theory, first, we obtain an explicit DC representation of the nonconvex
functions involved in the problem. Second, we perform a local search that
takes into account the structure of the problem in question. Further, we
construct procedures for escaping critical points provided by the local
search method. In particular, we propose a new way of constructing an
approximation of the level set based on conjugated vectors. The com-
putational simulation demonstrates that the proposed method is a quite
flexible tool which can fast provide operations staff with good solutions
to achieve the best performance according to specific requirements.

Keywords: DC programming · Quadratic programming · Inequality
constraints · Manufacturing processes · Linearized problem · Local
search · Global search

1 Introduction

The general quadratic programming problems of the following form

f(x) = 〈x,Cx〉 + 〈d, x〉 + q → max(min), x ∈ D, (1)

where C is an n × n matrix, d, x ∈ Rn, and D is a nonempty polyhedral sub-
set of Rn, play an important role in mathematical optimization. For example,
quadratic programs appear as auxiliary problems for nonlinear programming
(linearized problems) or in optimization problems that are approximated by
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quadratic functions. Also, they have many applications in science, technology,
statistics, economics, and industry. For instance, a problem of maximizing the
rougher concentrate grade in the mining industry was considered as an optimiza-
tion problem with quadratic objective function over a box constraint and solved
numerically in [5].

Furthermore, many combinatorial optimization problems may be formulated
as quadratic program, e.g., integer programs, quadratic assignment problems,
linear complementary problems and network flow problems [13].

Moreover, in theory of optimal experiments and response surface problems
f(·) is regarded as a criterion and D is interpreted as a feasible experimental
region which might be even nonconvex set. Let us here remind briefly the main
idea of the response surface. It is assumed that the experimenter is concerned
with a technological process involving some response f(·) which depends on the
input variables x1, x2, . . . , xn from a given experimental region. The standard
assumptions on function f(·) are that f(·) is a twice differentiable function on the
experimental region and the independent variables x1, x2, . . . , xn are controlled
in the experimental process and measured with a negligible error. As a rule,
the researcher has the second-order regression or a quadratic model expressed
by a quadratic function that adequately represents the experimental data. It is
important for the experimenter to find global solutions in the extremal problems.
If one applies gradient methods or other local search methods, one might fail in
finding a global solution, because problem (1), in some cases, becomes nonconvex.
Unless he checks the nonconvexity of the problem (1), it is difficult to choose an
appropriate algorithm in advance for solving it.

If C is indefinite then problem (1) is a nonconvex quadratic program. It is
well known that in this case problem (1) is also NP-hard [14] and it can be
reduced to a DC programming problem [11,18,21,22]. Classical optimality con-
ditions for this problem yield only stationary points not guaranteed to be global
solutions. When D is a polyhedral set, global search methods based on the gra-
dient projection, generalized Bender’s cut methods, linear relaxation methods,
co-positivity procedure, and branch and bound algorithms, etc., have been devel-
oped for solving the problem (1) [1,3,11,13,14,23].

On the other hand, noncovexity of the feasible set D makes the problem
very hard. One way to handle the problem is based on DC decomposition of the
objective function and constraints in order to apply DC programming approach.

The aim of the paper is to develop a DC algorithm for solving a real-world
problem arisen in the mining industry. The paper is organized as follows. In
Sect. 2 we consider a real-world optimization problem from the mining industry
which is a quadratic program with a quadratic constraint. In Sect. 3 we describe
a local search algorithm for the DC programming problem. Section 4 is devoted
to global optimality conditions for DC programming. The implementation issues
are discussed in Sect. 5. In the last section, we present computational experiments
on real industrial data.
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2 Model Formulation

First, we consider the process of metal recovery in bulk and copper flotations
under specified technological requirements. We examine the best-operating con-
ditions (e.g., reagent dosages) of the flotation process at the Erdenet Mining
Corporation Mineral Processing Plant (Erdenet, Mongolia).

Erdenet Mining Corporation is a joint Russian-Mongolian enterprise founded
(together with the city of Erdenet) in 1974 and aimed at the commercial exploita-
tion of Asia’s largest porphyry copper-molybdenum deposit: Erdenetiyn-Ovoo
(“the treasure mountain”). Now the corporation is one of the biggest mining and
mineral processing companies in Asia that produces over 530 thousand tons of
copper concentrate and about 4.5 thousand tons of molybdenum concentrate by
processing 26 million tons of raw ore per year.

In order to model the flotation process of the copper-molybdenum ore, an
orthogonal central composite design (for more details see [5]) was conducted. The
response (dependent) variables were the metal recovery in copper and bulk flota-
tions. Based on multi-variable linear regression model, we choose the following
11 factors as the independent variables:

x1 — addition of collector agent AeroMix (in grams per ton);
x2 — addition of collector agent VK-901 (in grams per ton);
x3 — consumption of foaming agent MIBK (in grams per ton);
x4 — content of −74 micrometer grain class in the hydrocyclone overflow (in
% of mass);
x5 — total copper grade in the feed (in % of mass);
x6 — total content of primary copper in the feed (in % of mass);
x7 — total content of oxidized copper in the feed (in % of mass);
x8 — addition of Lime, Lime milk (in grams per ton);
x9 — content of iron in bulk concentrate (in % of mass);
x10 — density of feed-in Cu-Mo flotation (in % of mass);
x11 — addition of frother (in grams per ton).

According to theory of design experiment [2,6], in order to construct the
objective function it is important to normalize the original variables to the uni-
tary box:

−1 ≤ xi ≤ 1, i = 1, . . . , 11.

Exploring in total 5000 normalized tests providing the responses, the effects
of the independent variables were analysed with multiple regression, fitting the
two following empirical equations

f1(x) = 〈x,A1x〉 + 〈b1, x〉 + 59.2073;
f2(x) = 〈x,A2x〉 + 〈b2, x〉 + 15.3208.

(2)

They represent the metal recoveries in copper and bulk flotations (measured in
% of mass) as the functions f1(·) and f2(·), respectively, f1, f2 : IR11 → IR.
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The data in functions (2) are as follows

A1 =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

7.4844 2.8621 −1.3563 2.8452 0.8702 2.7041 −1.8030 0.6038 0.8183 −1.0549 1.5769
2.8621 5.2969 0.5824 1.1256 −1.4358 0.2105 −0.9234 −0.3883 5.3931 −3.9475 2.1795

−1.3563 0.5824 6.2678 0.1079 2.0562 2.5337 −4.6174 2.6590 1.6805 −1.5660 1.6390
2.8452 1.1256 0.1080 7.0252 −0.1282 1.2684 5.3151 3.7357 2.2280 2.2736 2.3403
0.8702 −1.4358 2.0562 −0.1282 10.4069 0.9900 2.8919 −2.8438 −0.3838 −1.6025 −0.7952
2.7041 0.2105 2.5337 1.2684 0.9900 6.5465 −1.1000 3.2553 0.7692 −0.9368 −0.5096

−1.8030 −0.9234 −4.6174 5.3151 2.8919 −1.1000 10.5364 −0.2095 −0.7646 5.4391 −1.0138
0.6038 −0.3883 2.6590 3.7357 −2.8438 3.2552 −0.2095 7.8553 2.0523 2.7186 0.2416
0.8183 5.3930 1.6805 2.2280 −0.3839 0.7692 −0.7646 2.0523 3.5162 2.5147 4.6300

−1.0550 −3.9475 −1.5660 2.2736 −1.6025 −0.9368 5.4391 2.7186 2.5147 6.2143 −1.8107
1.5769 2.1795 1.6390 2.3403 −0.7952 −0.5096 −1.0138 0.2417 4.6300 −1.8107 1.3092

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

b1 =(−8.1709, 0.4504, −9.1872, −4.0239, −2.9332, 3.4769, −2.7074, 3.9024, 0.2118, 12.9762, 2.9217),

A2 =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2.5153 1.3321 0.3640 1.4082 0.9246 1.5638 0.3606 0.8108 1.1713 0.3147 1.0303
1.3321 1.4373 0.5775 0.3157 −0.0496 0.3530 0.3119 0.4475 1.9302 −1.0077 0.6264
0.3640 0.5775 2.2432 0.3594 1.0691 1.2804 −0.4989 1.0219 0.9656 −0.0746 0.8145
1.4082 0.3157 0.3594 2.5899 0.1974 0.4206 1.8583 1.2385 1.3147 0.9326 0.5067
0.9246 −0.0496 1.0691 0.1974 2.9530 0.7173 1.3171 −0.1865 0.5984 −0.3380 −0.0875
1.5638 0.3530 1.2804 0.4206 0.7173 2.1809 0.5357 1.4077 0.8527 −0.0540 0.1202
0.3606 0.3119 −0.4989 1.8583 1.3171 0.5357 3.1876 0.5896 0.7835 1.9548 0.1820
0.8108 0.4475 1.0219 1.2385 −0.1865 1.4077 0.5896 2.6578 0.9982 1.1706 0.6078
1.1713 1.9302 0.9656 1.3147 0.5985 0.8527 0.7835 0.9982 1.5865 1.0152 1.6965
0.3147 −1.0077 −0.0746 0.9326 −0.3380 −0.0540 1.9548 1.1706 1.0152 1.6928 −0.5454
1.0303 0.6264 0.8145 0.5068 −0.0875 0.1201 0.1820 0.6078 1.6965 −0.5454 0.3747

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

b2 =(−1.5059, 1.1312, −1.4275, 0.0527, 0.3412, 1.7277, 0.4336, 2.1780, 0.4884, 4.3844, 1.9798).
Note that the matrices A1 and A2 are indefinite (see their eigenvalues in

Table 1). Hence, the corresponding quadratic functions f1(·) and f2(·) turn out
to be nonconvex; however, they happen to be DC functions. So, we can find
an explicit DC representation of the non-convex functions fl(·) = hl(·) − gl(·),
l = 1, 2, using a simple method of identifying convex functions h(·) and g(·) for
a general quadratic function: f(·) = h(·) − g(·) [10,18].

Table 1. The eigenvalues of the matrices A1 and A2

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11

A1 19.834 18.240 −5.350 13.086 11.499 8.236 −1.393 −0.171 3.825 3.256 1.398

A2 9.632 5.158 −2.165 3.644 2.965 1.909 −0.233 −0.004 1.188 0.788 0.538

It is known that any symmetric quadratic matrix Q may be represented as
the difference of two symmetric positive definite matrices , i.e. Q = Q1 − Q2.
Thus, we can get the following DC representation of the quadratic function
f(x) = 〈Qx, x〉:

f(x) = 〈Q1x, x〉 − 〈Q2x, x〉 �
= h(x) − g(x), (3)

where h(·) and g(·) are strongly convex functions (since Q1, Q2 are positive
definite matrices) [5].
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Therefore, we consider the following DC minimization problem

−f1(x) = g1(x) − h1(x) ↓ min, x ∈ Π,
−f2(x) = g2(x) − h2(x) ≤ −γ,

}
(P)

where
g1(x) = 〈x,A1

2x〉 − 〈b1, x〉 − 59.2073, h1(x) = 〈x,A1
1x〉;

g2(x) = 〈x,A2
2x〉 − 〈b2, x〉 − 15.3208, h2(x) = 〈x,A2

1x〉

(Al = Al
1 − Al

2, l = 1, 2, see (2)). The parameter γ = 22.5 denotes a given fixed
level of metal recovery in the bulk flotation.

Thus, the above problem is maximization of metal recovery in flotation under
the constraint of a certain level for metal recovery in a bulk flotation.

3 Local Search

In order to find a local solution to the problem (P), we develop a version of the
special local search method for the general DC optimization problem [7,8,16,21].
Its main idea consists in the linearization of the function h1(·), which defines “the
basic non-convexity” of the problem (P), at a current point with the subsequent
minimization of the convex approximation of the objective function over the
convex set obtained by replacing nonconvex constraints with their linearizations.
Observe that the algorithm designed in that way provides critical points by
employing only tools and methods of convex programming.

Assume that a feasible starting point x0 ∈ Π is given and, furthermore, that
after several successive iterations we find a current point xs ∈ Π, s ∈ {1, 2, . . .},
so the linearized problem at the point xs can be written as follows:

Φ1s(x)=g1(x) − 〈∇h1(xs), x〉 ↓ min
x

, x ∈ Π,

Φ2s(x)=g2(x) − 〈∇h2(xs), x − xs〉 − h2(xs) + γ ≤ 0.

}
(PLs)

Note that the problem (PLs) is convex, since both its objective function and
feasible set

Ds={x ∈ Π | g2(x) − 〈∇h2(xs), x − xs〉 − h2(xs) + γ ≤ 0} (4)

are convex, meanwhile the problem (P) was a nonconvex one. Hence, the prob-
lem (PLs) can be solved with a suitable convex optimization method [12] at any
given precision. Let us compute a new iteration xs+1 as an approximate solution
to the linearized problem (PLs), so that xs+1 is feasible, i.e. xs+1 ∈ Ds, and
satisfies the following inequality:

Φ1s(xs+1) = g1(xs+1) − 〈∇h1(xs), xs+1〉 ≤ Vs + Δs, (5)

where Vs := V(PLs) is the optimal value of the problem (PLs), i.e.

Vs = inf
x

{Φ1s(x) | x ∈ Π, Φ2s(x) ≤ 0},
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while a given sequence {Δs} is such that

Δs ≥ 0, s = 0, 1, 2, . . . ;
∞∑

s=0

Δs < ∞.

One can see that Ds ⊂ D. Hence xs+1 is feasible not only for the linearized
problem (PLs), but also for the original problem (P), since, due to convexity of
h2(·), we have

0 ≥ g2(xs+1) − 〈∇h2(xs), xs+1 − xs〉 − h2(xs) + γ
= Φ2s(xs+1) ≥ g2(xs+1) − h2(xs+1) + γ = −f2(xs+1) + γ.

As was proposed in [16], we can use one of the following inequalities as the
stopping criterion of the local search:

f1(xs+1) − f1(xs) ≤ τ

2
, Δs ≤ τ

2
, (6)

or

Φ1s(xs) − Φ1s(xs+1) ≤ g1(xs) − g1(xs+1) − 〈∇h1(xs), xs − xs+1〉 ≤ τ

2
,

Δs ≤ τ

2
,

(7)

Thus, if one of the inequalities (6)–(7) holds, the point xs turns out to be
a critical point for the problem (P) with the accuracy τ under the assumption
that Δs ≤ τ

2
. Indeed, (6)–(7) and the inequality (5) imply that

g1(xs) − 〈∇h1(xs), xs〉 ≤ τ

2
+ g1(xs+1) − 〈∇h1(xs), xs+1〉 ≤ Vs +

τ

2
+ Δs.

Therefore, if Δs ≤ τ

2
, the point xs is a τ -solution to the problem (PLs).

In the next paragraph we show how to escape from critical points provided
by the local search method and how to develop a global search algorithm based
on the global optimality conditions.

4 Optimality Conditions and the Global Search Scheme

First, in order to accumulate all of the “basic non-convexities” of the problem,
let us introduce the l∞-penalty function [4,12] for the problem (P):

W (x) := max{0, g2(x) − h2(x) + γ}, (8)

and consider the following penalized problem

θσ(x) = g1(x) − h1(x) + σW (x) ↓ min, x ∈ Π. (Pσ)

As well-known [4,9], if z ∈ Sol(Pσ), and z ∈ D := {x ∈ Π | g2(x) −
h2(x) + γ ≤ 0}, then z ∈ Sol(P). On the other hand, if z ∈ Sol(P), then, under
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supplementary conditions [4,9,12], for some σ∗ ≥ ‖λz‖1 (where λz ∈ IRm is the
KKT-multiplier corresponding to z), we have z ∈ Sol(Pσ) provided that σ ≥ σ∗.

Furthermore, according to [9, Lemma 1.2.1, Chapt. VII], Sol(P) = Sol(Pσ),
the sets of optimal solutions coincide, and the problems (P) and (Pσ) happen to
be equivalent ∀σ ≥ σ∗. Hence, the use of the exact penalty approach allows us
to solve a single unconstrained problem instead of a sequence of unconstrained
problems at σk → ∞.

It can be seen that the objective function θσ(·) of the penalized problem is
a DC function, since the functions fi(·), i = 1, 2, are the same. Moreover, since
σ > 0 and

max{0; g2(x) − h2(x) + γ} = max{g2(x) + γ;h2(x)} − h2(x),

the function θσ(x) can be represented as follows

θσ(x) = Gσ(x) − Hσ(x), (9)

where the functions
Hσ(x) := h1(x) + σh2(x), (10)

Gσ(x) := θσ(x) + Hσ(x) = g1(x) + σ max {h2(x); g2(x) + γ} , (11)

are obviously convex.
Observe that for any point z ∈ Π and feasible for (P), we have

W (z)
�
= max{0, g2(z) − h2(z) + γ} = 0.

Let us also denote ζ := −f1(z) = g1(z) − h1(z), so that

θσ(z)=g1(z) − h1(z) + σW (z) = ζ.

Now, similarly to the global optimality conditions for DC minimization prob-
lems [15,19], we can state the following theorem.

Theorem 1. If z ∈ Sol(Pσ), then

∀(y, β) : Hσ(y) = β − ζ (12)

the following inequality holds

Gσ(x) − β ≥ 〈∇h1(y) + σ∇h2(y), x − y〉 ∀x ∈ Π. (13)

Note that Theorem 1 reduces the process of searching for global optimal solutions
to the non-convex problem (Pσ) to solving a family of convex linearized problems
of the form

Gσ(x) − 〈∇Hσ(y), x〉 ↓ min
x

, x ∈ Π, (PσL(y))

by one of the well known convex optimization methods [12]. The problem
(PσL(y)) depends on the ‘perturbation’ parameters (y, β) satisfying (12).
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It is worth pointing out that the linearization is performed with respect to
the ‘unified’ nonconvexity of Problem (P) expressed by the function Hσ(·) that
accumulates the functions h1(·), h2(·) responsible for generating all nonconvex-
ities in (P).

If for a pair (y, β) and some u ∈ Π (u may be a solution to (PσL(y))), the
inequality (13) is violated, i.e.

Gσ(u) < β + 〈∇Hσ(y), u − y〉, (14)

then, using (12) and the fact of convexity of Hσ(·), we have

Gσ(u) < β + Hσ(u) − Hσ(y) = Hσ(u) + ζ.

The latter implies that θσ(u) = Gσ(u) − Hσ(u) < ζ := θσ(z), so that a feasible
point u ∈ Π is better than z. Therefore, we conclude that z ∈ Π is not optimal:
z /∈ Sol(Pσ).

Hence, the global optimality conditions (12), (13) described in Theorem 1 are
of algorithmic interest: once the conditions are violated, one can find a feasible
point which is better than the current one. Thus, using this useful algorithmic
feature, one can develop local and global search methods for the problem (Pσ)
[16,17] allowing one to escape from a local “pit” in order to find a global optimal
solution to (Pσ).

The issue is to find out whether such a set of parameters (y, β, u) exists. Now
the following theorem holds as well.

Theorem 2. [15] Let for a point z ∈ Π there exists w ∈ IRn such that

θσ(w) > θσ(z).

If z is not an optimal solution to the problem (Pσ), then one can find a pair
(y, β) ∈ IRn+1, satisfying (12), and a point u ∈ Π such that the inequality (14)
holds.

Moreover, on each level ζk = θσ(zk), there is no need to investigate all pairs
of (y, β) satisfying (12), but only to identify one pair (ỹ, β̃) and a point u ∈ Π
violating the inequality (13).

The global search strategy consists of two main components:

1. Local search, which provides an approximately critical point (a local solution);
2. Procedure of escaping from critical points, which is based on the global opti-

mality conditions.

Let λ be the Lagrange multiplier for the DC constraint in the problem (P):
λ corresponds to the point zk, k ∈ {1, 2, . . .}.

Global Search Scheme (GSS)

Step 1. Using the local search method from Sect. 3, find a critical point zk for
the problem (P).
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Step 2. Set σk := λ. Choose a number β : inf(Gσ,Π) ≤ β ≤ sup(Gσ,Π).
Step 3. Construct a finite approximation

Rk(β) = {v1, . . . , vNk | Hσ(vi) = β + ζk, i = 1, . . . , Nk, Nk = Nk(β)}

of the level set {Hσ(x) = β + ζk} of the function Hσ(·).
Step 4. Find a δk-solution ūi of the following Linearized Problem:

Gσ(x) − 〈∇Hσ(vi), x〉 ↓ min
x

, x ∈ Π, (PσLi)

so that Gσ(ūi) − 〈∇Hσ(vi), ūi〉 − δk ≤ infx{Gσ(x) − 〈∇Hσ(vi), x〉}.
Step 5. Starting from the point ūi, find a critical point ui by means of the local

search method from Sect. 3.
Step 6. Choose the point uj : f1(uj) ≥ max

i=1,...,N
f1(ui).

Step 7. If f1(uj) > f1(zk), then set zk+1 := uj , k := k + 1 and go to Step 2.
Step 8. Otherwise, choose a new value of β (for instance, β + Δβ) and go to

Step 3.

5 Implementation Issues

One of the principal features of the Global Search Scheme (GSS) is an approxi-
mation of the level set {Hσ(x) = β+ζk} of the convex function Hσ(·) which accu-
mulates the nonconvexities of Problem (P ) (Step 3). In particular, an approx-
imation R1k(β) of the level set for each pair (β, ζk), ζk = f1(zk) can be
constructed by the following rule [5,18,20]

vi = μie
i, i = 1, . . . , n, (15)

where ei is the unit vector from the Euclidean basis of IRn.
The search of μi turns out to be rather simple and, moreover, analytical (i.e.

it reduces itself to the solution of a quadratic equation of one variable) for the
quadratic function. When Hσ = h1(x) + σh2(x) =

〈
A1

1x, x
〉

+ σ
〈
A2

1x, x
〉

the
number μi for each i = 1, . . . , n, is computed by the following formula

μi = ±
√

β + ζk

Hσ(ei)
.

The set (approximation) (15) has proven to be rather competitive [5,18,20] dur-
ing the computational simulations.

A new way of constructing an approximation of the level set {Hσ(x) = β+ζk}
on Step 3 of GSS is to use vectors conjugate with respect to the matrix M =
A1

1 + σA2
1 which defines the function Hσ(·), i.e. an approximation R2k(β) of

the level set can be constructed by the following rule

vi = zk + νip
i, i = 1, . . . , n (16)
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where zk is the current critical point and pi, i = 1, . . . , n are conjugate vectors.
A search for νi turns out to be rather simple and moreover analytical for the
quadratic function Hσ(·), because it reduces itself to the solution of a quadratic
equation in one variable Hσ(zk + νip

i) = β + ζk, i = 1, . . . , n.
Therefore we constructed the set P = {p1, . . . , pn} of vectors verifying the

following condition
〈pi,Mpj〉 = 0 ∀i �= j. (17)

In other words, the vectors pi are conjugated one to another with respect to the
matrix M . Such vectors can be constructed by the algorithm as follows (see [12]).
Step 0. Set i = 1, pi := (1, 1, . . . , 1)�, ri := −pi.

Step 1. Compute the number α1
i :=

〈ri, ri〉
〈pi,Mpi〉 .

Step 2. Set ri+1 := ri + α1
i · Mpi.

Step 3. Compute the number α2
i+1 =

〈ri+1, ri+1〉
〈ri, ri〉 .

Step 4. Set pi+1 := −ri+1 + α2
i+1p

i.
Step 5. Set i := i + 1. If i < n, then loop to Step 1, else STOP.

According to results in [12] the set P = {p1, . . . , pn} constructed by the algo-
rithm just described has the properties as follows.

1) The condition (17) holds.

2) For every i ∈ {1, . . . , n} the following identity takes place
〈ri, pj〉 = 0 ∀j = 1, 2, . . . , (i − 1).

3) For each i ∈ {1, . . . , n} the equality as follows holds:

Lin{p1, p2, . . . , pi} = Lin{r1, r2, . . . , ri}.

We use these two methods for constructing approximations during the com-
putational experiment.

Besides, to implement Step 4 of the global search scheme, we have to solve
the following linearized (at the point vi) problem:

g1(x) + σ max{g2(x) + γ;h2(x)} − 〈∇h1(vi) + σ∇h2(vi), x〉 ↓ min
x

,

x ∈ Π.

}
(18)

Note that its objective function is nonsmooth, hence we use a new extra variable
t and rewrite the linearized problem (18) in the following equivalent formulation:

g1(x) − 〈∇h1(v) + σ∇h2(v), x〉 + σt ↓ min
(x,t)

, x ∈ Π, t ∈ IR,

g2(x) + γ ≤ t, h2(x) ≤ t.

}
(19)

Since the problem (19) is convex, it can be solved with any suitable commercial
solver.
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6 Computational Experiments

Problem (P) has been solved by the algorithm developed on the basis of the
Global Search Scheme (GSS). All computational experiments were performed on
the Intel Core i7-4790K CPU 4.0 GHz. All convex auxiliary (linearized) problems
arising when carrying out the GSS (Steps 1, 4, 5) were solved by the optimization
software package IBM ILOG CPLEX 12.6.2. (Concert library) freely available
for non-commercial research1.

Table 2 represents the results of computational testing of two variants of the
algorithm: GSS-R1 uses approximation R1 constructed by the rule (15) and
GSS-R2 takes approximation R2 with the rule (17). The following denotations
are employed in the table: # is the number of starting point; f1(x0) is the value
of the goal function to Problem (P ) at the starting point; fl(x∗) stands for the
value of the goal function at the solution provided by both GSS-R1 and GSS-
R2. Furthermore for each algorithm, we use the following denotations: ST is the
number of the local solution passed by algorithm; PL stands for the number
of Linearized Problems solved; Time is the CPU time of computing solutions
(seconds).

Table 2. The testing GSS-R1 and GSS-R2 algorithms

# f1(x0) f1(x
∗) GSS-R1 GSS-R2

St PL Time St PL Time

1 15.3208 275.6464 4 320 1.47 4 136 0.64

2 18.1831 275.6464 4 306 1.38 2 92 0.43

3 26.8545 275.6464 4 300 1.38 3 100 0.47

4 36.5119 275.6464 4 292 1.34 3 95 0.45

5 45.8025 275.6464 2 257 1.18 4 141 0.67

6 49.2538 275.6464 3 292 1.36 3 96 0.46

7 49.8730 275.6464 4 298 1.37 3 114 0.60

8 104.0111 275.6464 4 297 1.39 3 94 0.45

9 123.5783 275.6464 4 296 1.40 3 112 0.59

Of all the starting points, the same value f1(x∗) = 275.6464 was reached. In
this case f2(x∗) = 78.1001,

x∗
i = −1, i ∈ {1, 2, 3, 4, 6, 8, 11}, x∗

i = 1, i ∈ {5, 7, 10}.

The GSS-R2 algorithm’s run-time turned out to be much less than the run-
time of GSS-R1 algorithm. We can conclude that approximation R2 constructed
on the basis of conjugate vectors is more efficient in terms of CPU time.

1 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Further, we compared the goal function value and CPU time obtained using
GSS-R1, GSS-R2 and the others solvers (see Table 3) starting from the point
x0 = (0, . . . , 0)�.

Entries that correspond to the global solution are boldfaced.
So, as to the attainability of global solution, GSS shows itself as rather com-

petitive with respect to the well-known solvers.

Table 3. The comparison with solvers

Goal function value CPU time

CONOPT 250.2522 0.01

COUENNE 275.6464 0.47

KNITRO 220.4866 0.02

LINDOGLOBAL 250.2522 0.01

MINOS 228.5796 0.01

SCIP 275.6464 1.00

GSS-R1 275.6464 1.39

GSS-R2 275.6464 0.45

7 Conclusions

In this paper, we formulated a real-world optimization problem in Mongolian
mining industry as an indefinite quadratic programming problem with a noncon-
vex quadratic constraint. We examine this problem from a viewpoint of theory
for DC constrained DC programming problems. We apply the global optimality
conditions developed by A.S. Strekalovsky and propose the specialized local and
global search algorithms.

The numerical results are provided using real industrial data. The global
(best-known) solution obtained by the algorithm meets the technological require-
ments given by the Erdenet Mining Corporation.

Acknowledgements. This work supported by the project “ P2019-3751” of National
University of Mongolia.
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Abstract. This paper addresses the numerical solution of fractional pro-
grams with quadratic functions in the ratios. Instead of considering a
sum-of-ratios problem directly, we developed an efficient global search
algorithm, which is based on two approaches to the problem. The first
one adopts a reduction of the fractional minimization problem to the
solution of an equation with an optimal value of a parametric d.c. mini-
mization problem. The second approach reduces the original problem to
the optimization problem with nonconvex (d.c.) constraints. Hence, the
fractional programs can be solved by applying the Global Search Theory
of d.c. optimization.

The global search algorithm developed for sum-of-ratios problems
was tested on the examples with quadratic functions in the numera-
tors and denominators of the ratios. The numerical experiments demon-
strated that the algorithm performs well when solving rather complicated
quadratic sum-of-ratios problems with up to 100 variables or 1000 terms
in the sum.

Keywords: Fractional optimization · Nonconvex problem · Difference
of two convex functions · Quadratic functions · Global search
algorithm · Computational testing

1 Introduction

The global minimization of the sum of fractional functions has attracted the
interest of researchers and practitioners for a number of years, because these
problems have a large number of important real-life applications. From the the-
oretical viewpoint, the solution of these problems implies facing significant chal-
lenges, because, in general, fractional programs are nonconvex problems, i.e.,
they generally have several (often a huge number of) local optimal solutions
that are not globally optimal [18]. It was proven that the sum-of-ratios program
is NP-complete [6]. Various specialized methods and algorithms have been pro-
posed for solving these problems globally (see, for example, surveys in [3,18]),
but the development of new efficient methods for the following sum-of-ratios
problem [3,7,18]

(FP) : f(x) :=
m∑

i=1

ψi(x)
ϕi(x)

↓ min
x

, x ∈ S,
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where S ⊂ IRn is a closed convex set and ψi, ϕi : IRn → IR, are continuous
function such that

(H0) : ψi(x) > 0, ϕi(x) > 0 ∀x ∈ S, i = 1, . . . , m;

still remains an important field of research in the mathematical optimization.
If functions ψi(·), ϕi(·), i = 1, . . . , m are quadratic functions, then we classify
Problem (FP) as a quadratic fractional program.

On the other hand, the following general problem of d.c. optimization

(P) :

{
f0(x) := g0(x) − h0(x) ↓ min

x
, x ∈ S,

fj(x) := gj(x) − hj(x) ≤ 0, j = 1, . . . , m,

where the functions gj(·), hj(·), j = 1, . . . , m, are convex on IRn, S is a closed
and convex set, and S ⊂ IRn, remained over recent years one of the attractive
objects in nonconvex optimization [13–15,19,27,28].

It is worth noting that any continuous optimization problem can be approx-
imated by a d.c. problem with any prescribed accuracy [13,14,28]. In addition,
the space of d.c. functions, being a linear space, is then closed under most of oper-
ations usually considered in optimization (see, e.g., [19,28]). Moreover, any twice
differentiable function belong to the space of d.c. functions [13–15,19,27,28]. The
convexity of the two convex components g and h of the d.c. function f is widely
used to develop appropriate theoretical and algorithmic tools.

We develop a new efficient global search method for the fractional optimiza-
tion problems, which is based on the two following ideas [9,11,12]. First, gen-
eralizing the Dinkelbach’s approach [4], we propose to reduce the sum-of-ratios
problem with d.c. functions to solving an equation with the optimal value func-
tion of an auxiliary parametric problem with the vector parameter that satisfies
the nonnegativity assumption. Secondly, we also use the reduction of the frac-
tional program to a problem of type (P), where f0(x) is a linear function, i.e.
an optimization problem over nonconvex feasible set given by d.c. inequality
constraints.

Furthermore, based on the Global Search Theory for d.c. optimization [19,22]
and on the solution of these two particular cases of the general d.c. optimization
problem (P), we develop a two-method technology for solving a sum-of-ratios
problem and verify it on test problems with nonconvex quadratic functions in
the numerators and denominators of the ratios.

Most of the approaches and techniques for solving fractional programs are
designed for problems with affine functions in the numerators and denominators
of the ratios [1,5,16,17]. Problems with nonconvex quadratic (d.c.) functions are
more complex problems since it concerns a finding a global solution.

The outlines of the paper are as follows. In Sect. 2 and 3, we recall two
approaches to solving Problem (FP) using auxiliary d.c. minimization problems
and problems with d.c. inequality constraints, respectively. In Sect. 4, we show
how to represent explicitly the nonconvex functions, describing the goal function
and the constraints of the auxiliary d.c. problems as differences of two convex
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functions (the d.c. representation). Further, in Sect. 5, we propose the algorithm
which combines the two approaches to solving the fractional program via d.c.
optimization. The final section offers computational testing of the developed
algorithm on fractional program instances with up to 100 variables or 1000 terms
in the sum generated by the approach from [2].

2 Reduction to the D.C. Minimization Problem

Consider the following auxiliary problem

(Pα) : Φα(x) :=
m∑

i=1

[ψi(x) − αiϕi(x)] ↓ min
x

, x ∈ S,

where α = (α1, . . . , αm)� ∈ IRm
+ is the vector parameter and the set S ⊂ IRn is,

as above closed and convex.
First, let us recall some results from [9] about the relations between Problems

(FP) and (Pα). Further introduce the function V(α) of the optimal value to
Problem (Pα):

V(α) := inf
x

{Φα(x) | x ∈ S} = inf
x

{
m∑

i=1

[ψi(x) − αiϕi(x)] : x ∈ S

}
. (1)

In addition, suppose that the following assumptions are fulfilled:

(H1) :
{

(a) V(α) > −∞ ∀α ∈ K,where K is a convex set from IRm;
(b) ∀α ∈ K ⊂ IRm there exists a solution z = z(α) to Problem (Pα).

In what follows, we say that a given parameter vector α = (α1, . . . , αm)� ∈
IRm satisfies “the nonnegativity condition” in Problem (FP), if the following
inequalities hold

(H(α)) : ψi(x) − αiϕi(x) ≥ 0 ∀x ∈ S, i = 1, . . . , m.

Theorem 1. [9] Suppose that in Problem (FP) the assumptions (H0), (H1) are
satisfied. In addition, let there exist a vector α0 = (α01, . . . , α0m)� ∈ K ⊂ IRm

at which “the nonnegativity condition” (H(α0)) holds.
Finally, suppose that in Problem (Pα0) the following equality takes place:

V(α0)
�
= min

x

{
m∑

i=1

[ψi(x) − α0iϕi(x)] : x ∈ S

}
= 0. (2)

Then, any solution z = z(α0) to Problem (Pα0) is a solution to Problem (FP),
so that z ∈ Sol(Pα0) ⊂ Sol(FP).

Hence, in order to check up the equality (2), we should be able to solve
globally Problem (Pα) at a current α ∈ IRm

+ . Since ψi(·), ϕi(·), i = 1, . . . , m,
are convex or d.c. functions it can be readily seen that Problem (Pα) turns
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out to be a parametric d.c. minimization problem. As a consequence, in order to
solve the auxiliary Problem (Pα), we can apply the global search strategy for d.c.
minimization problems [19,22]. Its theoretical foundation can be provided by the
following Global Optimality Condition written here in the terms of Problem (Pα)
under the assumption that ψi(·), ϕi(·), i = 1, . . . , m, are convex functions and

therefore g(x) =
m∑

i=1

ψi(x), hα(x) =
m∑

i=1

αiϕi(x),

Φα(x) =
m∑

i=1

(ψi(x) − αiϕi(x)) = g(x) − hα(x).

If ψi(·), ϕi(·), i = 1, . . . , m, are d.c. functions, it is easy to see that the goal
function of (Pα) is d.c., as well, but having another d.c. decomposition.

Theorem 2. [19,22] Suppose, z(α) is a global solution to (Pα), ζ := Φα(z(α)).
Then,

(E) :
{

(a) ∀(y, β) ∈ IRn × IR : hα(y) = β − ζ,
(b) g(x) − β ≥ 〈∇hα(y), x − y〉 ∀x ∈ S.

(3)

The meaning of Theorem 2 lies in the fact that by selecting the “perturbation
parameters” (y, β) (satisfying (3a)) and solving the linearized problem

(PαL) : g(x) − 〈∇hα(y), x〉 ↓ min
x

, x ∈ S,

we try to violate the principal inequality (3b) (where y ∈ IRn is not obligatory
feasible).

Furthermore, according to the Theorem 1, we are able to avoid the direct
solution of Problem (FP) and address the parametrized problem (Pα) with
α ∈ IRm

+ . Hence, we propose to combine a solution of Problem (Pα) with a
search of the parameter α ∈ IRm

+ in order to find α0 ∈ IRm
+ such that V(α0) = 0.

This idea can be implemented by the following algorithm. Let [α0
−, α0

+] be an
initial segment for varying α, and x0 ∈ S stands for the starting point.

Algorithm 1 for solving the fractional problem via d.c. minimization

Stage 0. (Initialization) k := 0. Set xk := x0, αk
− := 0, αk

+ := α0
+, αk := α0

+
2 ∈

[α0
−, α0

+].
Stage I. (Local search) Starting at xk find a critical point to Problem (Pk) :=

(Pαk) using the special local search method for d.c. minimization [19].
Stage II. (Global search) Find a global solution z(αk) to Problem (Pk) using

the global search scheme for the parametric d.c. minimization [19,22]
Problem (Pk).

Stage III. (Stopping criterion) If V(αk) = 0 and min
i

{
ψi(z(αk)) − αk

i ϕi

(z(αk))
} ≥ 0, then STOP: z(αk) ∈ Sol(FP).

Stage IV. (Parameter variation) Find new parameters αk+1, αk+1
− and αk+1

+ ;
k := k + 1 and go to Stage I.
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Remark 1. The algorithm for solving the fractional program (FP) consists of
three basic stages: (a) a local and (b) a global searches in Problem (Pα) with a
fixed vector parameter α (Stages I, II) and (c) the method for finding the vector
α (Stage IV).

Let [α−, α+] be a segment for varying α. In addition, assume that we are
able to compute the value V := V(α) and let a solution z(α) to Problem (Pα)
be given.

In order to calculate a new parameter αnew and new boundaries αnew
− and

αnew
+ at the current iteration k for a segment for varying α on Stage IV of Algo-

rithm 1 one can use the following procedure, where α := αk from Stage III of
Algorithm 1.

Stage IV. Parameter variation algorithm

Step 1. If V > 0, then set αnew
− := α, αnew := 1

2 (α+ + α), αnew
+ := α+.

Step 2. If V < 0, then set αnew
+ := α, αnew := 1

2 (α− + α), αnew
− := α−.

Step 3. If V = 0 and min
i

Φi(z(α), α) < 0, then set

αnew
i :=

ψi(z(α))
ϕi(z(α))

∀i : ψi(z(α)) − αiϕi(z(α)) < 0;

αnew
i := αi ∀i : ψi(z(α)) − αiϕi(z(α)) ≥ 0.

In addition, set αnew
− := 0, αnew

+ := tαnew, where t =
max{α0

+1; . . . ;α
0
+m}

max{α1; . . . ;αm} .

Step 4. αk+1 := αnew, αk+1
− := αnew

− and αk+1
+ := αnew

+ ; k := k + 1 and go to
Stage I of Algorithm 1.

Remark 2. To choose an initial segment [α0
−, α0

+] for varying α, we should take
into account the following considerations. According to “the nonnegativity con-
dition” (H(α)) and the assumption (H0), we have

αi ≤ ψi(x)
ϕi(x)

≤
m∑

i=1

ψi(x)
ϕi(x)

∀x ∈ S, ∀i = 1, . . . , m,

therefore one can choose α0
+ i :=

ψi(x0)
ϕi(x0)

, α0
− i = 0, i = 1, . . . , m.

The performed computational experiment [8,9,11] showed that solving frac-
tional problem via d.c. minimization takes a large number of iterations, gener-
ated by an ineffective work of Stage IV. Therefore, it is very important to choose
a suitable parameter α in order to reduce the total number of iterations and,
therefore, the corresponding run-time of Algorithm 1.

Using the reduction of the sum-of-ratios problem to the optimization problem
with nonconvex constraints, we will look not only for a starting value of the
parameter α for Problem (Pα), but also for a better vector for Problem (FP).
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3 Reduction to the Problem with D.C. Constraints

In this section we consider the following optimization problem

(DCC) :

⎧
⎨

⎩

m∑
i=1

αi ↓ min
(x,α)

, x ∈ S,

ψi(x) − αiϕi(x) ≤ 0, i ∈ I = {1, . . . , m}.

The relations between Problems (FP) and (DCC) are as follows.

Proposition 1. [10] For any global solution (x∗, α∗) ∈ IRn × IRm to Prob-
lem (DCC), the point x∗ will be a global solution to Problem (FP) and

α∗i =
ψi(x∗)
ϕi(x∗)

, i ∈ I.

Remark 3. It is clear that, in contrast to Theorem 1 from Sect. 2, the vector
α∗ = (α∗1, . . . , α∗m)� ∈ IRm must be found simultaneously with the solution
vector x∗.

It is easy to see that Problem (DCC) is a nonconvex optimization problem
with the linear goal function and the nonconvex feasible set (see, e.g., [14,25]).
So, we can solve Problem (DCC) using the exact penalization approach for d.c.
optimization developed in [20,23,24]

However, the computational experiments showed [11,12] that solving frac-
tional program via problem with d.c. constraints (DCC) took more run-time
than using the parametric d.c. minimization, i.e. Problem (Pα).

Notwithstanding, in low-dimensional test problems of fractional program-
ming the known global solutions were found just by the local search method
(LSM) [21] for Problem (DCC) (see [10]). Therefore, we apply here only the
LSM, based on the classical idea of linearization with respect to the basic non-
convexity of the problem [19,21,26].

The LSM for Problem (DCC) is based on the consecutive solutions of the
following partially linearized (at the point (xs, αs)) problem [10,21,26]:

(DCCLs) :

⎧
⎨

⎩

m∑

i=1

αi ↓ min
(x,α)

, x ∈ S,

gi(x, αi) − 〈∇hi(x
s, αs

i ), (x, αi) − (xs, αs
i )〉 − hi(x

s, αs
i ) ≤ 0, i ∈ I,

where the functions gi(·) and hi(·), i ∈ I, are the convex functions obtained
by the d.c. representation of the constraint functions ψi(x) − αiϕi(x), i ∈ I
(see, for example, Sect. 4 for quadratic ψi(·) and ϕi(·)) and where ∇hi(x, αi) =
(∇x1hi(x, αi), . . . ,∇xn

hi(x, αi),∇αi
hi(x, αi))� ∈ IRn+1.

Due to the consecutive solutions of linearized convex problems (DCCLs) start-
ing at the point (x0, α0) we generate the sequence {(xs, αs)}: (xs+1, αs+1) ∈
Sol(DCCLs). As it was proven in [21], the cluster point (x∗, α∗) ∈ {x ∈ S |
gi(x, αi) − 〈∇hi(x∗, α∗i), (x, αi) − (x∗, α∗i)〉 − hi(x∗, α∗i) ≤ 0, i ∈ I} of the
sequence {(xs, αs)} generated by the LSM, is a solution to the linearized Prob-
lem (DCCL∗) (which is Problem (DCCLs) with (x∗, α∗) instead of (xs, αs)), and
a critical point of Problem (DCC): (x∗, α∗) ∈ Sol(DCCL∗).
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In order to implement the LSM [21,26] and the global search scheme for d.c.
minimization [19,22] (Stage II of Algorithm 1), we need an explicit d.c. represen-
tation of functions ψi(x) − αiϕi(x), i ∈ I. As well-know the d.c. decomposition
of function is not unique. The next section presents several possible d.c. repre-
sentations for the goal function of Problem (Pα) and constraint’s functions of
Problem (DCC) (in the case of quadratic ψi(·) and ϕi(·)).

4 D.C. Representations of the Goal Function
and Constraint’s Functions

Consider the following quadratic functions ψi(x) > 0, ϕi(x) > 0 ∀x ∈ S):

ψi(x) = 〈x,Aix〉 + 〈ai, x〉 + ξi, ϕi(x) = 〈x,Bix〉 + 〈bi, x〉 + γi,

where the matrices Ai and Bi are (n×n) positive definite, ai, bi ∈ IRn, ξi, γi ∈ IR,
i ∈ I. Therefore, the functions ψi(·) and ϕi(·) are convex functions, i ∈ I.

In this case, the d.c. representation of the goal function Φα(x) of Prob-
lem (Pα) (where α = (α1, . . . , αm) ∈ IRm

+ is the vector parameter) can be rather

simple: Φα(x) = g(x) − hα(x), where g(x) =
m∑

i=1

ψi(x), hα(x) :=
m∑

i=1

αiϕi(x),

or, in another way, g1α(x) =
m∑

i=1

[〈x,Aix〉 + 〈(ai − αib
i), x〉] +

m∑
i=1

(ξi − αiγi),

h1
α(x) =

m∑
i=1

αi〈x,Bix〉.

Remark 4. If the symmetric matrices Ai or/and Bi are indefinite, then they
can be represented as the difference of two symmetric positive definite matrices
Ai = Ai

1 − Ai
2, Ai

1, A
i
2 > 0, Bi = Bi

1 − Bi
2, Bi

1, B
i
2 > 0, using, for example, the

method from [19]. After this it is possible to construct functions g(·) and h(·) by
adding for all i ∈ I a convex part with the matrix Ai

1 or/and Bi
1 into g(·) and a

nonconvex part with the matrix Ai
2 or/and Bi

2 into h(·), i.e.

g2α(x) =
m∑

i=1

[〈x,Ai
1x〉 + αi〈x,Bi

2x〉 + 〈(ai − αib
i), x〉] +

m∑

i=1

(ξi − αiγi),

h2
α(x) =

m∑

i=1

[〈x,Ai
2x〉 + αi〈x,Bi

1x〉] .

A more complicated d.c. representation of functions appears in Problem
(DCC), because α = (α1, . . . , αm) ∈ IRm

+ is a variable and the problem has
the following nonconvex term

αiϕi(x) = αi〈x,Bix〉 + αi〈bi, x〉 + αiγi, (4)

which generates the bilinearity, and as a consequence, the nonconvexity in every
constraint (i ∈ I).
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The term αi〈bi, x〉 in (4) can be represented in the d.c. form as follows

〈αib
i, x〉 =

1
4

‖ αib
i + x ‖2 −1

4
‖ αib

i − x ‖2, i ∈ I. (5)

Further, the product αi〈x,Bix〉 can be expressed by formula (5):

αi〈x,Bix〉 =
1
4

(
αi + 〈x,Bix〉)2 − 1

4
(
αi − 〈x,Bix〉)2 , i ∈ I,

if Bi, i ∈ I, are positive definite matrices and the following conditions hold

αi + 〈x,Bix〉 ≥ 0, αi − 〈x,Bix〉 ≥ 0 ∀x ∈ S, i ∈ I. (6)

Then gi(x, αi) = ψi(x) +
1
4

(
αi − 〈x,Bix〉)2 +

1
4

‖ αib
i − x ‖2 −αiγi,

hi(x, αi) =
1
4

(
αi + 〈x,Bix〉)2 +

1
4

‖ αic
i + x ‖2

are convex functions and their difference present the constraints in Problem
(DCC) in the following d.c. form:

ψi(x) − αiϕi(x) = gi(x, αi) − hi(x, αi) ≤ 0, i ∈ I. (7)

5 Global Search Scheme for Solving the Sum-of-Ratios
Problems

The previous computational experiments [9,11,12] have demonstrated that Algo-
rithm 1 developed for solving fractional programs via d.c. minimization (see
Sect. 2) is quite efficient when applied to problems with affine functions in the
ratios. The algorithm has also shown its effectiveness for problems with quadratic
numerators and linear denominators [9,11,12]. However, the algorithm wastes a
lot of run-time on finding the vector parameter α at which the optimal value of
Problem (Pα) is equal to zero. The shortcoming of the approach of the reduction
of the sum-of-ratios problems (FP) to problems with d.c. constraints (DCC) is
a lot of run-times spent on solving Problem (DCC).

The results of computational experiments suggest a combination of the two
approaches for solving the fractional programs. So, we propose to use the local
search for Problem (DCC) to find a starting value α0 of the parameter α, which
takes less time to reduce the optimal value function of Problem (Pα) to zero. This
idea could be implemented by the method which consists of 3 basic parts: the
local search in Problem (DCC) with d.c. inequality constraints, the global search
in d.c. minimization Problem (Pα) with a fixed vector parameter α (found by
the LSM for Problem (DCC)) and the method for finding the vector α at which
the optimal value of Problem (Pα) is equal to zero.

We denote gk(·) = gαk(·), hk(·) = hαk(·), Φk(·) = Φαk(·).
Let an initial point x0 ∈ S, a vector α0 = (α01, . . . , α0m) ∈ IRm

+ and
an initial segment [α0

−, α0
+] for varying α be given. In addition, let there
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be given the number sequences {τs}, {δs}, {εs}, such that τs, δs, εs > 0,
s = 0, 1, 2, . . . , τs ↓ 0, δs ↓ 0 εs ↓ 0 (s → ∞).

Global search scheme for fractional program (F-GSS)

Stage 0. (Initialization) k := 0, ϑk := (x0, α0), αk
− := 0, αk

+ := α0
+.

Stage I. (Local search) Starting from the point ϑk, find by the LSM from [21]
a critical point (x(αk), αk) in the d.c. constrained Problem (DCC).

Stage II. (Global search) Starting from the point x(αk) find a solution z(αk)
to Problem (Pk) with the help of the global search scheme for d.c.
minimization [19,22], which consists of the following steps:

Step 0. s := 0, zs := x(αk), ζs := Φk(zs).
Step 1. Choose a number β ∈ [β−, β+], where the numbers β− = inf(gk,

S), β+ = sup(gk, S) can be approximated by rather rough esti-
mates. Set β0 := gk(z0).

Step 2. Construct an approximation A(β) = {y1, . . . , yN | hk(yj) = β−ζs,
j = 1, . . . , N = N(β)} of the level surface {y ∈ IRn | hk(y) =
β − ζs} of the function hk(·) and, according to Theorem 2, form
a collection of indices Js defined as follows Js = Js(β) = {j ∈
{1, . . . , Ns} | gk(yj) ≤ β}.

Step 3. If Js = ∅, then set β := β + Δβ ∈ [β−, β+], and loop to Step 2.
Step 4. For every j ∈ Js find a global 2δs-solution uj ∈ S to the following

linearized convex problem
gk(x) − 〈∇hk(yj), x〉 ↓ min

x
, x ∈ S.

and after that, starting at uj ∈ S, apply the LSM from [19] to pro-
duce a 2τs-critical vector uj ∈ S, so that gk(uj) − 〈∇hk(uj), uj〉 −
2τs ≤ inf

x
{gk(x) − 〈∇hk(uj), x〉 | x ∈ S}.

Step 5. For every j ∈ Js find a global 2δs-solution vj : hk(vj) = β − ζs, to
the following level problem (see Global Optimality Condition (E))

〈∇hk(v), uj − v〉 ↑ max
v

, hk(v) = β − ζs.

Note that for a quadratic function hk(·), this problem can be solved
manually.

Step 6. Compute the number ηs(β) := η0
s(β)−β, where η0

s(β) := gk(up)−
〈∇hk(vp), up − vp〉 := min

j∈Js

{gk(uj) − 〈∇hk(vj), uj − vj〉}.

Step 7. If ηs(β) < 0, then set s := s + 1, zs := up and loop to Step 2.
Step 8. (Else) set β := β + Δβ ∈ [β−, β+] and go to Step 2.

If ηs(β) ≥ 0 ∀β ∈ [β−, β+] (i.e. the one-dimensional search on β is
terminated) and δs ≤ δ∗, τs ≤ τ∗, εs ≤ ε∗, where δ∗ > 0, τ∗ > 0,
ε∗ > 0 are the fixed accuracies of corresponding computations,
then the global search (Stage II) has been terminated: z(αk) := zs.

Stage III. (Stopping criterion) If V(αk) = 0 and min
i

{
ψi(z(αk)) − αk

i ϕi

(z(αk))
} ≥ 0, then STOP: z(αk) ∈ Sol(FP).
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Stage IV. (Parameter variation) Implement the parameter variation algo-
rithm to find new parameters αk+1, αk+1

− and αk+1
+ . Set ϑk+1 =

(z(αk), αk+1), k = k + 1 and go to Stage I.

6 Computational Simulations

The algorithm developed on the basis of Global search scheme F-GSS from
Sect. 5 combining two approaches for solving the fractional programs (FP) via
d.c. optimization problems was coded in C++ language and applied to solve
sum-of-ratios problems with quadratic functions in the ratios.

The set of test examples was generated by the technique from [2]. The method
of generation was based on the Calamai’s and Vicente’s idea [29] to construct a
nonconvex quadratic problem with known local and global solutions and on the
reduction Theorem 1 to obtain fractional problem with quadratic functions in
the numerators and denominators of the ratios.

All computational experiments were performed on the Intel Core i7-4790K
CPU 4.0 GHz. All auxiliary convex (linearized) problems arising not only during
the implementation of the LSM for a d.c. constrained problem (Stage I of the
F-GSS) but also during the global search procedures for a d.c. minimization
problem (Stage II of the F-GSS) were solved by the software package IBM ILOG
CPLEX 12.6.2.

Table 1 shows the results of computational testing of the F-GSS and employs
the following denotations: n is the number of variables (problem’s dimension);
m is the number of terms in the sum; f(x0) is the value of the goal function of
Problem (FP) at the starting point x0; fglob stands for the value of the function
at the solution provided by the F-GSS; St is the number of critical points passed
by the algorithm; it-α is the number of variation of the parameter α in the F-
GSS; PL is the number of solved auxiliary (linearized) problems; T stands for
the CPU time; fM is the value of the goal function of Problem (FP) provided
by the fmincon solver of MATLAB.

The test problems (with known global solution) constructed with up to 100
variables and 1000 terms in the sum were successfully solved (see Table 1). We
got the global solution in all tests. At the same time, the fmincon solver of
MATLAB fails to find the global solution in all test problems (the starting point
was the same for both algorithms) and the gap was from 1% (n = 100, m = 70)
to 4.3% (n = 10, m = 10), and 1.8% on average.

Thus, we conclude that new computational results on solving of the sum-
of-ratios problems with quadratic functions in the ratios are rather promising.
The computational experiment showed that the algorithm developed for solving
fractional programs is quite efficient.
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Table 1. Results of computational testing of the F-GSS

n m f(x0) fglob St it -α PL T(hh:mm:ss) fM

10 10 12.412 10 3 62 742 00:00:00.96 10.444

10 20 24.184 20 4 87 984 00:00:01.27 20.747

10 30 36.600 30 3 135 1241 00:00:01.68 31.185

10 40 45.905 40 6 160 1967 00:00:02.68 41.055

10 50 59.338 50 5 163 1961 00:00:02.38 51.579

10 100 117.097 100 5 125 2171 00:00:03.00 102.925

20 10 10.985 10 7 73 2850 00:00:07.11 10.163

20 50 53.140 50 8 175 6853 00:00:17.13 50.923

20 100 109.900 100 7 216 6070 00:00:14.86 101.779

20 200 217.532 200 8 231 12648 00:00:33.45 203.212

20 300 331.148 300 8 437 18183 00:00:52.05 305.493

30 300 317.672 300 6 256 41390 00:02:58.92 303.219

30 400 429.763 400 8 501 36858 00:02:22.43 405.392

30 500 540.361 500 3 405 27851 00:02:48.37 507.485

30 600 648.150 600 7 477 134532 00:12:01.93 609.279

30 700 760.107 700 5 307 444514 00:59:51.79 711.176

30 800 843.491 800 4 498 674305 01:39:07.62 808.296

30 900 912.228 900 6 495 3691396 09:21:47.13 912.228

30 1000 1089.367 1000 3 500 2165762 06:25:22.73 1016.486

50 100 106.017 100 5 181 71973 00:11:37.92 101.043

50 200 213.638 200 7 276 56980 00:12:06.29 203.447

50 300 320.066 300 8 324 133878 00:25:20.29 303.882

50 400 429.090 400 6 298 85923 00:17:37.12 405.265

50 500 532.842 500 9 308 189331 00:42:18.27 506.385

50 1000 1059.655 1000 53 104 369255 01:38:07.78 1013.276

70 100 105.464 100 8 214 65055 00:22:52.85 102.133

70 200 210.726 200 8 226 188620 01:08:06.39 203.113

70 300 316.092 300 6 214 233466 01:32:50.30 303.042

70 400 425.458 400 6 214 115923 00:51:24.14 404.868

100 70 73.042 70 110 150 281305 03:26:19.46 70.693

100 90 95.764 90 6 181 139464 01:42:55.57 92.530

100 100 105.456 100 8 253 248367 04:47:31.88 101.156

7 Conclusions

In this paper, we showed how fractional programs with nonconvex quadratic
functions can be solved by applying the Global Search Theory for d.c.
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optimization problems. Instead of considering a sum-of-ratios problem directly,
we developed an efficient global search algorithm, which is based on two
approaches. The first one adopts a reduction of the fractional minimization prob-
lem to the solution of an equation with an optimal value of the d.c. minimization
problem with a vector parameter. The second method is based on the reduc-
tion of the sum-of-ratios problem to the optimization problem with nonconvex
constraints.

The global search algorithm developed for fractional program was tested on
examples with nonconvex quadratic functions in the numerators and denomina-
tors of the ratios. The numerical experiments demonstrated that the algorithm
performs well when solving rather complicated sum-of-ratios problems with up to
100 variables or 1000 terms in the sum.
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Abstract. We suggest a modified descent splitting method for optimiza-
tion problems having a special decomposable structure. The proposed
modification maintains the basic convergence properties but enables one
to reduce computational efforts per iteration and to provide computa-
tions in a distributed manner. On the one hand, it consists in component-
wise choice of descent directions together with a special threshold control.
On the other hand, it involves a simple adaptive step-size choice, which
takes into account the problem behavior along the iteration sequence.
Preliminary computational tests confirm the efficiency of the proposed
modification.

Keywords: Descent splitting method · Adaptive step-size choice ·
Decomposable optimization problem · Threshold control ·
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1 Introduction

Over the past decades, many methods have been developed for solving optimiza-
tion problems. Currently, the most interesting are not universal methods, but
those that use the peculiarities of optimization problems. Taking into account
the specific properties of the objective function and admissible set allows us to
create more efficient processes, which is especially important for solving large
dimensional problems. The splitting method is a good example of such methods.

The forward-backward splitting method was proposed first in [1] and further
developed, for example, in [2–9]. This method is well-suited for decomposable
optimization problems whose objective function can be split into two parts: the
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one part is differentiable but can be non-convex, and the other is convex but
non-differentiable in general.

Usually, the iterative process of the splitting method requires a certain step-
size line-search procedure, exact or inexact. Recently, in paper [13], using the
approach of [11,12], we proposed a modification of splitting method without line-
search iterative procedure. This modification takes into account the behavior of
the problem along the iterative sequence. In this approach, a majorant step-size
sequence converging to zero is given and the next decreased value of the step-size
is taken only when the current iterate does not give a sufficient descent.

On the other hand, in [10], a modification of the splitting method was
proposed for decomposable composite optimization problems, whose structure
allows one to construct a component-wise descent method. In the present paper,
for such problems we combine these two approaches and describe the adaptive
splitting method with component-wise choice of descent directions, a special
threshold control, and a simple adaptive step-size choice.

The paper is organized as follows. In Sect. 2 we recall the general scheme
and main properties of the splitting method. Section 3 contains a description
of a class of decomposable optimization problems. Section 4 describes and sub-
stantiates the coordinate splitting method with the adaptive step-size choice
for decomposable optimization problems. In Sect. 5 we present some results of
numerical tests.

2 The General Splitting Method and Its Properties

Let f : RN → R be a smooth but not necessarily convex function, h : RN → R
be a non necessarily smooth but rather simple and convex function, X ∈ RN be
a nonempty convex closed set. Many applications can be presented in the form

min
x∈X

−→ f(x) + h(x). (1)

We denote by X0 the set of stationary points of this problem, they are also
solutions to the following variational inequality

〈f ′(x),y − x〉 + h(y) − h(x) ≥ 0 ∀y ∈ X. (2)

At first we recall the general scheme of the forward-backward splitting method
for problem (1). Let a current iterate xk ∈ X be given. Then the next iterate
xk+1 ∈ X is defined as a solution to the variational inequality

〈f ′(xk) + α−1(xk+1 − xk),y − xk+1〉 + h(y) − h(xk+1) ≥ 0 ∀y ∈ X, (3)

where α > 0 is a given step-size parameter. Scheme (3) generalizes the well-
known optimization methods: if the function h is a constant, process (3) reduces
to the (explicit) projection method, but if f is a constant, then we obtain the
(implicit) proximal method.
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Under the given assumptions, there exists a unique solution to the optimiza-
tion problems

min
y∈X

→ {
h(y) + (2α)−1‖y − x‖2} (4)

and
min
y∈X

−→ {〈f ′(x),y〉 + h(y) + (2α)−1‖y − x‖2} (5)

for any α > 0 and any x ∈ X. We denote the solutions to problems (4) and
(5) by ȳ(α,x) and y(α,x), respectively. These optimization problems can be
equivalently written in the form of variational inequalities:

∃d ∈ ∂h(x), 〈d + α−1(y(α,x) − x),y − y(α,x)〉 ≥ 0 ∀y ∈ X

and

∃d ∈ ∂h(x), 〈f ′(x + d + α−1(y(α,x) − x),y − y(α,x)〉 ≥ 0 ∀y ∈ X,

respectively. It is clear that

y(α,x) = ȳ(α,x − αf ′(x)). (6)

Hence, the splitting method (3) can equivalently be defined as

xk+1 = ȳ(α,xk − αf ′(xk)), α > 0. (7)

The main properties of the mapping x → y(α,x) are composed in the following
proposition (see Propositions 4.1 and 4.2 from [3]).

Proposition 1. The mapping x → y(α,x) has the following properties:

a) it is continuous;
b) if x̄ = y(α, x̄) for some x̄ ∈ X, then x̄ ∈ X0;
c) ∃d ∈ ∂h(x), 〈f ′(x) + d,y(α,x) − x〉 ≤ −α−1‖y(α,x) − x‖2 ∀x ∈ X.

The essential property of the splitting method is that it easily allows one to
develop modifications that take into account peculiarities of the problem under
consideration. Following [10] and [13], we will apply the splitting method to
decomposable optimization problems.

3 A Class of Decomposable Optimization Problems

Let a partition N =
n∑

i=1

Ni be given such that N = {1, . . . , N}, |Ni| = Ni,

N =
n∑

i=1

Ni, and Ni ∩ Nj = ∅ if i = j. Also, let the feasible set X ⊂ RN have

the form

X =
n∏

i=1

Xi,
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where Xi is a nonempty convex closed set in RNi , i = 1, . . . , n. Then each
point x = (x1, . . . , xN )T can be presented in the form x = (x1, . . . ,xn)T , where
xi = {xj}j∈Ni

, i = 1, . . . , n.
In addition, let the function h be given in the decomposable form

h(x) =
n∑

i=1

hi(xi), (8)

we assume that hi : Xi → R are convex functions and have the nonempty
subdifferentials ∂hi(xi) at any xi ∈ Xi for all i = 1, . . . , n. Hence each hi is
lower semi-continuous on Xi, the whole function h is lower semi-continuous on
X, and

∂h(x) = ∂h1(xi) × · · · × ∂hn(xn), ∀x ∈ X.

We will consider the decomposable optimization problem

min
x∈X1×···×Xn

−→ ϕ(x) =

{

f(x) +
n∑

i=1

hi(xi)

}

. (9)

In addition, we assume that the function f : RN → R is smooth. We set
g(x) = f ′(x), then

g(x) = (g1(x1), . . . ,gn(xn)),where gi(xi) =
(

∂f(x)
∂xj

)

j∈Ni

∈ RNi , i = 1, . . . , n.

We need a general coercivity condition, which will provide the convergence
of the method, when the feasible set of the initial problem is unbounded.

(A1) There exists a number γ > ϕ∗ such that the set

Xγ = {x ∈ X : ϕ(x) ≤ γ}

is bounded.
Now we formulate the optimality condition for problem (9) (see Proposition

2.1 from [10])

Lemma 1. 1) Each solution of (9) is a solution to VI: Find a point x∗ ∈ X
such that

n∑

i=1

〈gi(x∗),y − x∗
i 〉 +

n∑

i=1

[hi(y) − hi(x∗
i )] ≥ 0 ∀yi ∈ Xi, i = 1, . . . , n. (10)

2) If the function f is convex, each solution to VI (10) is also a solution to (9).

We denote by X0 the solution set of VI (10) and by X∗ and ϕ∗ the solution
set of (9) and optimal value of its objective function, respectively.
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For problem (9), the mapping x → y(α,x), which was defined in Sect. 2, has
the form y(α,x) = (y1(α,x), . . . ,yn(α,x))T and each component i = 1, . . . , n
can be found independently, as a solution to the problem

min
yi∈Xi

−→ {〈gi(x),yi〉 + hi(yi) + (2α)−1‖yi − xi‖2
}

.

Let us formulate the descent component-wise property (see Lemma 2.1 from
[10]). For brevity, we set M = {1, . . . , n}.

Lemma 2. Set

ds =
{
ys(α,x) − xs if s = i,
0 if s = i.

for any x ∈ X and any i ∈ M. Then

ϕ′(x;d) ≤ −α−1‖yi(α,x) − xi‖2. (11)

For brevity, we set Δ(x) = ‖x − y(α,x)‖ and Δi(xi) = ‖xi − yi(α,x)‖,
i = 1, . . . , n.

Now we are ready to formulate the splitting method with component-wise
choice of descent directions and adaptive step-size.

4 Adaptive Component-Wise Splitting Method for
Decomposable Optimization Problems

Adaptive Component-Wise Splitting Method (ACWSM)
Step 0. Choose a point z0 ∈ Xγ , numbers α > 0, β ∈ (0, 1), and sequences

{δl} ↘ 0, {τp} → 0, τp ∈ (0, 1). Set l = 1, p = 0, u0 = z0, choose a number
λ0 ∈ (0, τ0].

Step 1. Set k = 1, xk = zl−1, uk = zl−1.
Step 2. Choose i ∈ M such that Δi(xk) ≥ δl, set ik = i,

dk
s =

{
ys(α,xk) − xk

s if s = ik,
0 if s = ik.

(12)

If this is not the case, set zl = xk, l = l + 1, and go to Step 1.
Step 3. Set vk+1 = xk + λkdk. If

ϕ(vk+1) − ϕ(xk) ≤ −βα−1λkΔ2(xk), (13)

then take λk+1 ∈ [λk, τp], set xk+1 = vk+1, and go to Step 5.
Step 4. Set λ′

k+1 = min{λk, τp+1}, p = p + 1, and take λk+1 ∈ (0, λ′
k+1]. If

ϕ(vk+1) ≤ γ, then set xk+1 = vk+1 and go to Step 5. Otherwise set xk+1 = uk,
uk+1 = uk, k = k + 1, and go to Step 2.

Step 5. If ϕ(xk+1) < ϕ(uk), then set uk+1 = xk+1. Set k = k + 1 and go to
Step 2.
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This method does not contain any iterative linesearch procedure, but expres-
sion (13) similar to the condition of the Armijo inexact linesearch is used: with
the help of this condition we make a decision to decrease the step-size at the next
iteration. In addition, the auxiliary sequence {uk} contains the “best” points of
the inner process (Steps 2–5), which is necessary only if the feasible set X is
unbounded.

Let us show the finiteness of the inner iterative process (Steps 2–5) of
ACWSM.

Theorem 1. Under the above assumptions, the inner iterative process (Steps
2–5) of ACWSM is finite.

Proof. Assume the contrary that the sequence {xk} is infinite. By construction,
{xk} belongs to the bounded set Xγ , therefore it has limit points. Since the set
M is finite, there exists an index ik = i, which is chosen infinitely in the iterative
process. We take the corresponding subsequence {xks}. In the rest of the proof,
we will take subsequences of this subsequence.

We take a subsequence of points with indices {js} such that

ϕ(vjs+1) > ϕ(xjs) − βα−1λjs‖djs‖2, (14)

ϕ(vjs+1) > γ, ϕ(xjs) ≤ γ. (15)

In other words, js are indices of such iterations, which do not give a sufficient
descent and the step value will decrease at the next iterate. However, we do not
take vjs+1 as the next iterative point, because the objective function value is
too large at this point.

Then several cases are possible.

Case 1. The subsequence {js} is infinite.
Take an arbitrary limit point x′ of subsequence {xjs}. Without loss of generality
we can assume that

x′ = lim
s→∞xjs , d′ = lim

s→∞djs ,

by construction of {djs} and because the mapping x → y(α,x) is continuous
due to assertion a) of Proposition 1. We also note that we take the next value
from the sequence {τp} for the next iterate at each is, i.e.,

λjs ∈ (0, τps
], λjs+1 ∈ (0, τps+1],

for some infinite subsequence of indices ps, where lim
p→∞ τps

= 0. Therefore

lim
s→∞ λjs = 0. The sequence {djs} is bounded, then by the construction of {vjs+1}
the limit points of subsequences {vjs+1} and {xjs} coincide. Since the function
h is convex by definition, from assumption (14) we obtain

f(xjs + λjsd
js) − f(xjs) + λjs〈q(vjs+1),djs〉 > −βα−1λjs‖djs‖2
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for some subgradient q(vjs+1) ∈ ∂h(vjs+1). Taking the limit s → ∞ in the
previous inequality yields

〈f ′(x′) + q(x′),d′〉 ≥ −βα−1‖d′‖2

for some subgradient q(x′) ∈ ∂h(x′). Using Lemma 2, we obtain

β‖d′‖2 ≥ ‖d′‖2.
Hence it follows that (1 − β)‖d′‖2 ≤ 0. On the other hand, ‖dk‖ ≥ δl > 0 for all
k. We obtain a contradiction, the subsequence {js} cannot be infinite.

Case 2: The subsequence {js} is finite.
We above assumed that the sequence {xk} is infinite. Then vk = xk for suf-
ficiently large k. The further proof depends on the properties of the sequence
{λk}.

Case 2a: The number of changes of the index p is finite.
Then we have λks

≥ λ̄ > 0 for number ks large enough, therefore we obtain from
condition (13) that

ϕ(xks+1) − ϕ(xks) ≤ −βα−1λks
‖dks‖2 ≤ −βα−1λ̄‖dks‖2

for ks large enough. Since ϕ(xk
s) ≥ ϕ∗ > −∞, we obtain

lim
ks→∞

‖dks‖ = 0. (16)

Then (16) contradicts the condition ‖dk‖ ≥ δl > 0, which holds for all k. Hence,
the number of changes of the index p cannot be finite.

Case 2b: The number of changes of the index p is infinite.
In this case, in the subsequence {xks} there exists an infinite subsequence of
points with indices {ls} such that xls+1 = xls + λlsd

ls and condition (13) is
violated:

ϕ(xls + λlsd
ls) − ϕ(xls) = ϕ(xls+1) − ϕ(xls) > −βα−1λls‖dls‖2. (17)

In addition,
λls ∈ (0, τps

], λls+1 ∈ (0, τps+1],

and lim
ps→∞ τps

= 0. Therefore, lim
l→∞

λls = 0. Note that since the subsequence {dls}
is bounded, the limit points of the subsequences {xls+1} and {xls} coincide. Let
us take an arbitrary limit point x′ of this subsequene {xls}. Without loss of
generality we can assume that

x′ = lim
s→∞xls , d′ = lim

s→∞dls .

by construction of {djs} and because the mapping x → y(α,x) is continuous
due to assertion a) of Proposition 1. Since the function h is convex by definition,
we obtain from assumption (17) that

f(xls + λlsd
ls) − f(xls) + λls〈q(xls+1),dls〉 > −βα−1λls‖dls‖2
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for some subgradient q(xls+1) ∈ ∂h(xls+1). Taking the limit s → ∞ in the
previous inequality yields

〈f ′(x′) + q(x′),d′〉 ≥ −βα−1‖d′‖2

for some subgradient q(x′) ∈ ∂h(x′). Using Lemma 2, we obtain

β‖d′‖2 ≥ ‖d′‖2.
Hence it follows that (1 − β)‖d′‖2 ≤ 0, then ‖d′‖ = 0. On the other hand,
‖dk‖ ≥ δl > 0 for all k. We obtain a contradiction, and the number of changes
of the index p cannot be infinite. This contradiction completes the proof.

Theorem 2. (See also Theorem 3.1 from [10].) Let assumption (A1) be fulfilled.
Then the sequence {zl} generated by ACWSM has limit point, all of them belong
to X0. If, in addition, f is convex, then all the limit points of {zl} belong to X∗.

Proof. First, we note that the sequence {zl} is bounded and has limit points.
Take an arbitrary point z̄ of {zl}, then

lim
s→∞ zls = z̄.

For all l > 0 and for all i ∈ M we have

Δi(zl) ≤ δl,

hence Δ(zl) ≤ δl
√

n. Taking the limit l = ls → ∞, we obtain Δ(z̄) = 0 and
y(α, z̄) = z̄. Due to Proposition 1, b) it follows that z̄ belongs to X0. If, in
addition, f is convex, then z̄ also belongs to X∗.

5 Test Calculations

We compared the proposed modification of the splitting method with adaptive
step-size and component-wise choice of descent direction (ACWSM) with the
component-wise version of this method (CWSM) proposed in [10], which uses
the inexact line-search procedure.

The component-wise splitting method with inexact step-size line-
search (CWSM)

Step 0. Choose an initial point z0 ∈ Xγ , coefficients α > 0, β ∈ (0, 1),
θ ∈ (0, 1), and sequences {δl} ↘ 0. Set l = 1.

Step 1. Set k = 1, xk = zl−1.
Step 2. Choose i ∈ M such that Δi(xk) ≥ δl, set ik = i,

dk
s =

{
ys(xk) − xk

s if s = ik,
0 if s = ik.

If it is impossible, set zl = xk, l = l + 1, and go to Step 1.
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Step 3. Choose the smallest non-negative integer m such that

ϕ(xk + θmdk) − ϕ(xk) ≤ −βα−1θmΔ2
i (x

k),

set λk = θm, xk+1 = xk + λkdk, k = k + 1 and go to Step 2.

The computational results are presented in the tables, which have the follow-
ing structure. The first column contains the dimensions of problems. Each row
presents the aggregate results of 100 problem instances: it contains mean values
(mean val.) and standard deviations (st.dev.) of calculation time and iterations
numbers. All the randomly generated data were uniformly distributed.

The smooth part of the objective function had the form

f(x) = 1/2〈Ax, x〉 − 〈b, x〉, (18)

where A = BT B. Coefficients bij and bi were randomly generated numbers from
the segment [−1, 1], i, j = 1, . . . , n. The coefficients of methods were α = 1,
β = 0.5, θ = 0.5, τ0 = 1, τk+1 = 0.5τk. The stopping criterion was δl < 0.01.

We remind that if the current iterate gives a sufficient descent, we can even
take an increasing step-size value at the next iterate. At each 20-th iterate, we
increased the step-size value λk+1 = λk/0.5.

Example 1. The first series of experiments contained simple nonsmooth functions,
which were defined as follows

h(x) =
∑

i=1,...,n

|xi|. (19)

For the sake of simplicity we considered the unconditional optimization problem,
i.e., X = RN (Table 1).

Table 1. Results for Example 1.

n CWSM ACWSM

Time (s) Iterations Time (s) Iterations

Mean val. St.dev. Mean val. St.dev. Mean val. St.dev. Mean val. St.dev.

50 0,012 0,004 6 124 552 0,006 0,005 3 031 519

100 0,092 0,015 23 042 1 663 0,047 0,009 11 936 1 590

150 0,193 0,029 32 362 3 341 0,126 0,019 20 983 1 968

200 0,680 0,066 85 512 5 418 0,379 0,054 46 404 5 088

250 1,074 0,095 101 420 5 630 0,695 0,088 63 215 5 083

300 1,518 0,126 117 630 5 676 1,040 0,108 78 389 5 499

350 4,214 0,245 280 706 11 808 1,568 0,148 97 092 6 003
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Example 2. In the next tests we took conditional optimization problems, where
the functions f and h were defined in (18) and (19), and the feasible set was a
parallelepiped

X = {x ∈ RN : di ≤ xi ≤ ei, i = 1, . . . , n}, (20)

where the coefficients di, ei were randomly generated numbers from the segment
[−10, 10], i = 1, . . . , n, taking into account that di ≤ ei for all i = 1, . . . , n
(Table 2).

Table 2. Results for Example 2.

n CWSM ACWSM

Time (s) Iterations Time (s) Iterations

Mean val. St.dev. Mean val. St.dev. Mean val. St.dev. Mean val. St.dev.

50 0,010 0,002 5 584 281 0,006 0,005 2 949 371

100 0,071 0,005 21 740 914 0,032 0,005 9 399 891

150 0,153 0,018 32 004 3 538 0,072 0,006 14 950 911

200 0,551 0,030 84 585 2 502 0,189 0,017 28 279 1 966

250 0,864 0,038 104 403 2 752 0,310 0,024 36 827 2 181

300 1,223 0,037 123 923 3 132 0,446 0,023 43 820 2 056

350 3,193 0,360 273 583 30 951 0,620 0,027 51 511 2 041

Example 3. This series of tests contained conditional optimization problems with
nonsmooth functions

h(x) =
∑

i=1,...,n

αi|xi|,

where αi were randomly generated numbers from the segment [0, 20], i =
1, . . . , n. The functions f were defined in (18) and X was given in (20) (Table 3).

Example 4. This example used problems with nonsmooth functions

h(x) =
∑

i=1,...,n

|xi − ci|,

where ci were randomly generated numbers from the segment [−10, 10], i =
1, . . . , n. The functions f were defined in (18) and X was given in (20) (Table 4).

Example 5. The next series of tests contained problems with nonsmooth functions

h(x) =
∑

i=1,...,n

αi|xi − ci|,

where αi were randomly generated numbers from the segment [0, 20], i = 1, . . . , n,
ci were randomly generated numbers from the segment [−10, 10], i = 1, . . . , n.
The functions f were defined in (18) and X was given in (20) (Table 5).
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Table 3. Results for Example 3.

n CWSM ACWSM

Time (s) Iterations Time (s) Iterations

Mean val. St.dev. Mean val. St.dev. Mean val. St.dev. Mean val. St.dev.

50 0,010 0,002 5 613 324 0,005 0,003 2 699 334

100 0,074 0,005 21 843 868 0,031 0,005 8 779 897

150 0,157 0,010 31 874 1 082 0,073 0,008 14 493 1 022

200 0,561 0,020 85 300 2 313 0,182 0,013 26 961 1 789

250 0,895 0,050 105 094 2 685 0,314 0,031 35 761 2 205

300 1,263 0,040 125 479 3 339 0,434 0,029 41 784 2 264

350 3,258 0,345 276 851 28 978 0,602 0,033 49 923 2 607

Table 4. Results for Example 4.

n CWSM ACWSM

Time (s) Iterations Time (s) Iterations

Mean val. St.dev. Mean val. St.dev. Mean val. St.dev. Mean val. St.dev.

50 0,010 0,003 5 610 339 0,005 0,005 3 064 382

100 0,076 0,007 21 845 909 0,033 0,006 9 606 963

150 0,157 0,009 31 525 1 112 0,077 0,008 15 316 993

200 0,569 0,019 84 843 2 344 0,193 0,013 28 610 1 709

250 0,876 0,028 103 991 2 701 0,321 0,025 37 524 2 369

300 1,255 0,037 124 067 3 414 0,446 0,026 43 614 2 170

350 3,257 0,367 272 637 30 604 0,628 0,035 51 803 2 593

Table 5. Results for Example 5.

n CWSM ACWSM

Time (s) Iterations Time (s) Iterations

Mean val. St.dev. Mean val. St.dev. Mean val. St.dev. Mean val. St.dev.

50 0,010 0,001 5 636 370 0,005 0,001 2929 335

100 0,072 0,005 21741 848 0,031 0,004 9334 934

150 0,154 0,017 32 201 3 398 0,073 0,006 14 980 1 028

200 0,559 0,022 85 173 2 446 0,188 0,014 28 056 1 825

250 0,865 0,027 104 094 2 474 0,313 0,023 36 939 2 056

300 1,279 0,079 124 740 3 273 0,458 0,043 43 495 2 296

350 3,299 0,287 277 123 22 813 0,624 0,038 51 245 2 348
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The program was written in Visual C# with double precision, tested on an
Intel i3-4170 CPU at 3.7 GHz, 4 Gb, running under Windows 7.

These preliminary results of computational tests show the efficiency of the
proposed modification. It is more flexible in the choice of parameters in compar-
ison with the version including the inexact line-search. The proposed approach
allows one to construct efficient implementations and deserves further study.

6 Conclusion

In the present work, we propose the modified splitting method for decomposable
optimization problems and prove its convergence under rather mild assump-
tions. The proposed modification maintains the basic convergence properties
but enables one to reduce computational efforts per iteration and provides com-
putations in a distributed manner. On the one hand, it consists in choosing
coordinate-wise descent directions together with a special threshold control. On
the other hand, it involves a simple adaptive step-size choice, which takes into
account the problem behavior along the iterative sequence and needs no itera-
tive line-search sequence. Preliminary numerical tests confirm the efficiency of
the proposed modification.
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Abstract. The paper examines an algorithm for finding approximate
sparse solutions of convex cardinality constrained optimization problem
in Hilbert spaces. The proposed algorithm uses the penalty decomposi-
tion (PD) approach and solves sub-problems on each iteration approxi-
mately. We examine the convergence of the algorithm to a stationary
point satisfying necessary optimality conditions. Unlike other similar
works, this paper discusses the properties of PD algorithms in infinite-
dimensional (Hilbert) space. The results showed that the convergence
property obtained in previous works for cardinality constrained opti-
mization in Euclidean space also holds for infinite-dimensional (Hilbert)
space. Moreover, in this paper we established a similar result for con-
vex optimization problems with cardinality constraint with respect to a
dictionary (not necessarily the basis).
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1 Introduction

Let H be a Hilbert space with norm ‖ · ‖H . Let E be a convex function defined
on H. The problem of convex optimization is to find an approximate solution to
the problem

E(x) → min
x∈H

. (1)

Let B the orthonormal basis in H. In many applied problems it is necessary
to find the solutions of problem (1) that are sparse with respect to B, i.e. it is
necessary to solve the following problem:

E(x) → inf
x∈Σm

, (2)
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where Σm is the set of all m-term polynomials with respect to B = {ei}i∈N:

Σm = Σm(B) =
{
x ∈ H : x =

∑

i∈I

xiei, card(I) = m
}
. (3)

Denote for any x ∈ H, x =
∑

i∈I xiei,

‖x‖0 := card(I),

i.e. ‖x‖0 denotes a number of non-zero elements of x with respect to the
basis B.

Thus, problem (2)–(3) can be rewritten as follows:

E(x) → inf
‖x‖0≤m

. (4)

Obtaining sparse solutions is of interest in many real applications including
(among many others)

– machine learning where one has to find a sparse solutions for a loss function
minimization problem [2,18,24];

– compressed sensing in which one need to decode a sparse signal by means of
a small number of linear measurements [3,5,8];

– logistic regression models where one is interested in feature selection in classi-
fication problems in which a sparse solution is needed to minimize the average
logistic loss [12,15];

– sparse inverse covariance selection in which one has to obtain the conditional
independence in graphical models [1,4,25];

– portfolio selection and economic applications [10,20,21].

One of the approaches to finding a sparse solution to problem (1) is to solve
a problem with imposed an additional l1-regularization on the original problem
[6,11]. The paper [17] employs another popular approach to deal with cardinality
constrained optimization problems which is based on the penalty decomposition
(PD) method. The paper [17] obtains the first-order optimality conditions for
these problems. Moreover, the authors of [17] proposed to use the penalty decom-
position method with the idea of solving a penalty subproblems via a block coor-
dinate descent method. They proved that under some suitable assumptions, any
limit point of the sequence generated by the penalty decomposition algorithm
fulfils the first-order optimality conditions.

It should be noted that the interest in the penalty decomposition method
has increased recently since the method had proved to be an effective and skill-
ful algorithm for solving the sparse optimization problems in various applica-
tions. For example, the extension of the method (which embeds the accelerated
iteration hard thresholding) was proposed in [7] combining the advantages of
the PD method and the AIHT method while averting their disadvantages. In
the paper [23] the authors proposed a penalty proximal alternating linearized
minimization method for the large-scale sparse portfolio problems in which a
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sequence of penalty subproblems is solved by utilizing the proximal alternating
linearized minimization framework and sparse projection techniques. Other effi-
cient developments of the penalty decomposition method as well as various tech-
nics for solving the l0-norm minimization problems have been proposed recently
in [9,16,19,26].

Following ideas of paper [17], this study examines an algorithm for find-
ing approximate sparse solutions of convex cardinality constrained optimization
problem (4) in Hilbert space H both with respect to the orthonormal basis
of H (Sect. 3) and with respect to a dictionary in H (Sect. 5). The proposed
algorithm uses the penalty decomposition approach proposed in [17] and solves
sub-problems on each iteration approximately. We examine the convergence of
the algorithm to a stationary point satisfying necessary optimality conditions.

2 Optimality Condition

For a functional F ∈ H∗ and an element f ∈ H in this paper we will use an
appropriate bracket notation F (f) = 〈F, f〉.

Let Ω(E) := {x ∈ H : E(x) ≤ E(0)}. We will suppose that function E is
Fréchet differentiable on Ω. We note that it follows from convexity of E that for
any x, y ∈ Ω

E(y) ≥ E(x) + 〈E′(x), y − x〉,
where E′(x) denotes Fréchet differential of E at x.

Necessary optimality conditions for cardinality constrained problems with
additional nonlinear constraints have been studied in [17]. Such conditions have
been used to study the convergence of the PD method proposed in the same
work.

Definition 1. We say that a point

x∗ =
∑

i∈I∗
x∗

i ei ∈ H,

satisfies first order optimality conditions of Lu–Zhang type [17] for problem (4)
if

– card(I∗) = m,
– x∗

i = 0 for all i ∈ N \ I∗,
– 〈E′(x∗), ei〉 = 0 for all i ∈ I∗.

Necessary optimality conditions for cardinality constrained problem (4) are
given in the following proposition.

Lemma 1. Let a point x∗ be the solution to the cardinality constrained problem
(4). Then x∗ satisfies first order optimality conditions of Lu–Zhang type defined
in Definition 1.
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Proof. Let x∗ =
∑

i∈N

x∗
i ei be the solution to the cardinality constrained problem

(4), i.e.
E(x∗) = inf

‖x‖0≤m
E(x).

There exists I∗ ⊂ N, such that card(I∗) ≤ m and

x∗ =
∑

i∈I∗
x∗

i ei.

Thus, we have x∗
i = 0 for all i ∈ N \ I∗.

It follows from necessary conditions for an extremum, that for all i ∈ I∗

〈E′(x∗), ei〉 = 0.

Thus, first order optimality conditions of Lu–Zhang type are fulfilled. 
�

3 Penalty Decomposition Method for the Cardinality
Constrained Problem in Hilbert Space

Applying the classical variable splitting technique [14], Problem (4) can be equiv-
alently expressed as

E(x) → inf
x∈H,y∈H

, (5)

where x, y such that
‖y‖0 ≤ m, (6)

x = y. (7)

Let us define, for any δ > 0, the function

F (x, y, δ) = E(x) +
δ

2
‖x − y‖2H , (8)

associated with problem (5)–(7). F represents a penalized objective function
which gets lower values when the unconstrained variable x is a good solution
w.r.t. E and at the same time is close to a point y which is feasible for the
original constrained problem. The penalty parameter δ balances the importance
of the two components.

Lemma 2. Let the function F (x, y, δ) be defined in (8) and suppose that E is
convex and for any x ∈ H we have E(αx) → ∞ if α → ∞. Then the set
Ω(F ) := {x, y ∈ H : F (x, y, δ) ≤ F (0, 0, δ)} is compact in H for any δ.

Proof. First we will show that under the assumption that E(x) is coercive, it
also holds that F (x, y, δ) defined in (8) is coercive as well.

We have two possible cases:

1. If ‖x‖H → ∞, then E(x) → ∞ and therefore F (x, y, δ) → ∞;
2. If ‖y‖H → ∞, then ‖x − y‖2H → ∞ and therefore F (x, y, δ) → ∞.
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Since F (x, y, δ) is coercive on H × H and convex in H × H, the set Ω(F ) is
compact. 
�

In [17], an algorithm was proposed to solve the cardinality constrained prob-
lem in Rn. In this section, we extend the algorithm to solve the problem in
Hilbert space with respect to basis B, i.e. problem (5)–(7).

The combination of reformulation (5)–(7) and Algorithm 1 is what can be
referred to as the penalty decomposition method (PDM) for the cardinality
constrained problem in Hilbert space.

The output of Algorithm1 is two sequences {xk}, {yk}. At each iteration
(for each k = 1, 2, . . .), the algorithm finds xk, which is an approximate solution
to the optimization problem consisting in minimizing the penalty function F
(with no restriction on cardinality). Block coordinate descent (BCD) is used
until a stationary solution is obtained, i.e. the point in which the gradient of
F is bounded by εk−1. Then the point yk is found as an approximation to xk

with the given cardinality m. The algorithm starts from an arbitrary feasible
point (x0, y0). After each iteration, the penalty parameter δk increases, and the
quantity of the approximation εk decreases. Before each iteration, it is necessary
to verify that the points obtained earlier are at the appropriate level. If this
test succeeds, the BCD starts from the point (xk, yk) obtained at the previous
iterations; otherwise, the pair (xk, yk−1) is used as the starting point for BCD
step. This is necessary in order to ensure the existence of an accumulation point
of the generated sequence.

Algorithm 1: PDM in Hilbert space

begin
· Input x0 = y0 ∈ Ω(F ), s.t. ‖x0‖0 ≤ m, {δk} s.t. δk → ∞ and δk > 0, {εk}
s.t. εk → 0 and εk > 0, A ≥ max{E(x0), infx F (x, y0, δ0)};

for each k ≥ 0 do
· l = 0;

· u0 = xk;

· if infx F (x, yk, δk) ≤ A then

v0 = yk

v0 = yk−1

· while ‖F ′
u(ul, vl, δk)‖H > εk do

· ul+1 = argminu F (u, vl, δk);

· vl+1 = argminv∈Σm F (ul+1, v, δk);
· l := l + 1;

· xk+1 = ul, yk+1 = vl;

· Output {xk}, {yk};

end

The algorithm presented in the paper has no significant differences with the
original method proposed in [17]. However, the main emphasis in the work is
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on the study of the convergence of the PD algorithm in the case of infinite-
dimensional (Hilbert) spaces.

Various numerical optimization methods can be used to solve the auxiliary
minimization problem arg minu F (u, vl, δk). The algorithm implementation and
the demonstration of the numerical results of its application for solving applied
problems are important. However, we leave these questions outside the scope of
this paper and restrict ourselves to a theoretical study of the convergence of the
algorithm.

It should be noted that the problem arg minv∈Σm
F (ul+1, v, δk) has a closed-

form solution in Hilbert space and is a vector vl+1 obtained as follows: m com-
ponents with largest absolute values are selected among the components of the
vector ul+1, and then the solution vl+1 to the problem is a vector, all compo-
nents of which are set to be 0, except for the m selected components that are
set to be equal to the corresponding components of the vector ul+1.

4 Convergence Analysis

Note that the while loop of the algorithm does not loop infinitely for any k.
Indeed, let us suppose the opposite, i.e. there is an iteration k for which the
sequence {ul, vl} is infinite. From the definition of the algorithm we get

F (ul, vl, δk) ≤ F (u0, v0, δk).

Consequently, we have {ul, vl} ∈ Ω(F ), which is compact from Lemma 2. Thus,
there is a subsequence K ⊂ {0, 1, . . .} such that (ul, vl) →K (u∗, v∗). From the
definition of Algorithm1 we get

F (ul+1, vl+1, δk) ≤ F (ul+1, vl, δk) ≤ F (ul, vl, δk).

Since F is continuous and is convex on the compact set, the function reaches its
infimum on the set. Note that F is Fréchet differentiable, and therefore there
exists k0 ∈ K such that ∥

∥F ′
u(ul, vl, δk)

∥
∥

H
< εk

for all k ≥ k0, k ∈ K. We obtain that

lim
l→∞, l∈K

∥
∥F ′

u(ul, vl, δk)
∥
∥

H
= 0,

which contradicts the initial suggestion.

Lemma 3. Suppose that the sequence {xk, yk} is generated by Algorithm1.
Then {xk, yk} has at least one limit (accumulation) point.

Proof. Let us consider an arbitrary iteration k of Algorithm 1. The choice of
values ul+1, vl+1 described in the algorithm yields the non-increasing of F ,
therefore we have

F (xk+1, yk+1, δk) ≤ F (u1, v0, δk) ≤ F (u0, v0, δk).
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From the definition of (u0, v0) we have only two possibilities: (u0, v0) =
(xk, yk), or (u0, v0) = (xk, yk−1), where

F (u0, v0, δk) ≤ A (9)

in both cases. Note that by the definition of F we have E(xk+1) ≤ F (xk+1,
yk+1, δk), i.e. E(xk+1) ≤ A.

It holds for every k, since {xk} ⊂ Ω(F ) is compact due to Lemma 2. Thus,
the sequence {xk} is bounded. From (9) we have

F (xk+1, yk+1, δk)) = E(xk+1) +
δk

2
‖xk+1 − yk+1‖2H ≤ A.

Then

‖xk+1 − yk+1‖2H ≤ 2
A − E(xk+1)

δk
.

Taking k → ∞, using the boundness of {xk}, and δk → ∞, we get that {yk} is
bounded as well. Thus, the sequence {xk, yk} is bounded and has a accumulation
point. 
�

There may be several limit (accumulation) points for the sequence {xk, yk}
generated by Algorithm 1.

Theorem 1. Let {xk, yk} be the sequence generated by Algorithm1. Suppose
that (x∗, y∗) is a limit point of {xk, yk}, i.e. there is K ⊂ {1, 2, . . .}, such that
(xk, yk) →K (x∗, y∗). Then

1. (x∗, y∗) is a feasible point for problem (5)–(7), and x∗ is feasible for problem
(4).

2. x∗ satisfies Lu–Zhang necessary conditions for problem (4).

Proof. 1) First we will show the feasibility of the limit point (x∗, y∗). From the
definition of Algorithm1, for each k we have

‖F ′
u(xk, yk, δk−1)‖H ≤ εk−1,

or ∥
∥
∥
∥

E′(xk)
δk−1

+ (xk − yk)
∥
∥
∥
∥

H

≤ εk−1

δk−1
.

Taking k → ∞, k ∈ K, using δk → ∞, εk → 0, and the boundness of {E′(xk)}
(since E′(x) is bounded), we get

‖x∗ − y∗‖H = lim
k∈K,k→∞

‖xk − yk‖H = 0. (10)

Thus, the first proposition of Theorem holds since ‖y∗‖0 ≤ m and norm ‖.‖0 is
semi-continuous.



148 M. Pleshakov et al.

2) Since the sequence {xk}, with xk =
∑∞

i=1 x
(k)
i ei, ei ∈ B, has a limit point,

for any real ε, there are k∗ = k∗(ε) ∈ N and an integer n∗ = n∗(ε) such that for
all k > k∗

∥
∥
∥
∥
∥
xk −

n∗
∑

i=1

x
(k)
i ei

∥
∥
∥
∥
∥

H

≤ ε.

Let J(xk) ⊂ {1, 2, . . . , n∗} be the index set defined by the following rules:

– card(J(xk)) ≤ m;
– if i ∈ J(xk) then x

(k)
i = 0;

– if i ∈ J(xk) then |x(k)
i | > |x(k)

j | for all j /∈ J(xk).

It follows from (10) that x∗ = y∗ and therefore ‖x∗‖0 ≤ m.
We have ∥

∥E′(xk) + δk−1(xk − yk)
∥
∥

H
≤ εk−1 (11)

where y
(k)
i = x

(k)
i for all i ∈ J(xk), while for all {1, 2, . . . , n∗} \ J(xk) we have

y
(k)
i = 0.

Consider the sequence {J(xk)}k>k∗ . Note that n∗ is fixed and therefore the
number of different index sets with cardinality m in the sequence is finite (in
fact it is equal to

(
n∗

m

)
). Denote J∗ the index set that is included in this sequence

infinitely many times and let K1 ⊂ K (K1 is infinite) be such that J(xk) = J∗

for all indices k ∈ K1.
From convergence of (xk, yk) to (x∗, y∗) for k ∈ K1 we have

J(x∗) ⊂ J∗. (12)

It follows from (11) that for any i ∈ J∗

dE(xk)
dxi

+ δk−1(x
(k)
i − y

(k)
i ) →K1 0.

By definition the equality x
(k)
i = y

(k)
i holds for every i ∈ J∗, and therefore

dE(xk)
dxi

→K1 0, (13)

for all i ∈ J∗. It follows from (12) that (13) holds for all i ∈ J(x∗). Then we
have

dE(x∗)
dxi

= 0,

for all i ∈ J(x∗), i.e. Lu–Zhang type optimality condition (see Lemma 1) holds.

�
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5 Sparse Convex Optimization with Respect to a
Dictionary in Hilbert Space

A set of elements D from the space H is called a dictionary (see, e.g. [22]) if
each element g ∈ D has norm bounded by one, ‖g‖H ≤ 1, and the closure of
span D is H, i.e. spanD = H. A dictionary D is called symmetric if −g ∈ D for
every g ∈ D. In this paper we assume that the dictionary D is symmetric.

Many problems in machine learning can be reduced to problem (1) with E
as a loss function [2]. In many real applications it is required that the optimal
solution x∗ of (1) should have a simple structure, e.g. be a finite linear combina-
tion of elements from a dictionary D in H. In other words, x∗ should be a sparse
element with respect to the dictionary D in H. Of course, one can substitute the
requirement of sparsity by a constraint on cardinality (i.e. the limit on the num-
ber of elements used in linear combinations of elements from the dictionary D to
construct a solution of problem (1)). However, in many cases the optimization
problems with cardinality-type constraint are NP-complete.

Note that the orthonormal basis B of the inner product space H is a special
case of the dictionary D.

We are interested in finding the solutions of problem (1) that are sparse with
respect to D, i.e. we are looking for solving the following problem:

E(x) → inf
x∈Σm(D)

, (14)

where Σm(D) is the set of all m-term polynomials with respect to D:

Σm(D) =
{
x ∈ H : x =

∑

g∈Λ

cgg, card(Λ) = m, Λ ⊂ D}
. (15)

Denote for any x ∈ H

‖x‖0,D := min

⎧
⎨

⎩
card(Λ) : x =

∑

g∈Λ⊂D
cgg

⎫
⎬

⎭
,

i.e. ‖x‖0,D denotes the number of non-zero elements of x with respect to the
dictionary D.

Definition 2. We say that a point

x =
∑

g∈Λ

cgg ∈ H, Λ ⊂ D,

satisfies first order optimality conditions of Lu-Zhang type for problem (14) if

– card(Λ) = m,
– cg = 0 for all g ∈ D \ Λ,
– 〈E′(x), g〉 = 0 for all g ∈ Λ.
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Necessary optimality conditions for cardinality constrained problem (14) are
given in the following proposition.

Proposition 1. Let a point x be the solution to the cardinality constrained prob-
lem (14). Then x satisfies first order optimality conditions of Lu–Zhang type
defined in Definition 2.

Applying the classical variable splitting technique [14], problem (4) can be
equivalently expressed as

E(x) → inf
x∈H,y∈H

, (16)

where x, y such that
‖y‖0,D ≤ m, (17)

x = y. (18)

Let

‖x‖2,D := inf

⎧
⎪⎨

⎪⎩

⎛

⎝
∑

g∈D
c2g

⎞

⎠

1
2

: x =
∑

g∈D
cgg

⎫
⎪⎬

⎪⎭

be the l2-type norm with respect to the set D. It should be noted that dictionary
expansion of an element from H over dictionary D may be not unique, and
therefore in the definition of ‖ · ‖2,D we choose the expansion that minimizes the
sum of squares of the expansion coefficients.

If the orthonormal basis B of H is the part of the dictionary, i.e. B ⊂ D,
‖x‖2,D ≤ ‖x‖H .

Let us define, for any δ > 0, the function

Q(x, y, δ) = E(x) +
δ

2
‖x − y‖22,D, (19)

associated with problem (16)–(18). Here Q is a penalized objective function,
which gets lower values when the unconstrained variable x is a good solution
w.r.t. E and at the same time is close to a point y which is feasible for the original
constrained problem. The penalty parameter δ reflects the balance between the
two components.

Then the penalty decomposition method (PDM) for the cardinality con-
strained problem in Hilbert space with respect to dictionary D is presented
by the reformulation (5)–(7) and Algorithm 2.

Penalty decomposition method (PDM) for the cardinality constrained prob-
lem in Hilbert space with respect to dictionary D have some differences (with
compare with PDM w.r.t. B). We redefine ‖ · ‖0 norm with respect to a dictio-
nary D. Dictionary expansion of an element from H over dictionary D may be
not unique, and therefore in our new definition we choose the expansion that
have minimum number of non-zero coefficients. At the same reason we intro-
duce ‖ · ‖2,D which is l2-type norm with respect to a dictionary D instead classic
Hilbert space norm ‖ · ‖H .

The following proposition can be proved in the same way as Theorem1.
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Algorithm 2: PDM in Hilbert space w.r.t. the dictionary D
begin

· Input x0 = y0 ∈ Ω(Q), s.t. ‖x0‖0,D ≤ m, {δk} s.t. δk → ∞ and δk > 0,
{εk} s.t. εk → 0, εk > 0, A ≥ max{E(x0), infx Q(x, y0, δ0)};

for each k ≥ 0 do
· l = 0;

· u0 = xk;

· if infx Q(x, yk, δk) ≤ A then

v0 = yk

v0 = yk−1

· while ‖Q′
u(ul, vl, δk)‖2,D > εk do

· ul+1 = argminu Q(u, vl, δk);

· vl+1 = argminv∈Σm(D) Q(ul+1, v, δk);
· l := l + 1;

· xk+1 = ul, yk+1 = vl;

· Output {xk}, {yk};

end

Theorem 2. Let {xk, yk} be the sequence generated by Algorithm2. Suppose
that (x∗, y∗) is a limit point of {xk, yk}, i.e. there is K ⊂ {1, 2, . . .}, such that
(xk, yk) →K (x∗, y∗). Then

1. (x∗, y∗) is a feasible point for problem (16)–(18), and x∗ is feasible for problem
(14).

2. x∗ satisfies Lu–Zhang necessary conditions for problem (14).

6 Conclusion

This paper presents the results on the convergence of a sequence of points gener-
ated by PD algorithms to a point satisfying the Lu–Zhang type necessary opti-
mality conditions. Unlike other similar works, this paper discusses the properties
of PD algorithms in infinite-dimensional (Hilbert) space. The results showed that
the convergence property obtained in the pioneering work [17] for cardinality
constrained optimization in Euclidean space also holds for infinite-dimensional
(Hilbert) space. Moreover, in this paper we established a similar result for con-
vex optimization problems with cardinality constraint with respect to a dictio-
nary (not necessarily the basis in H). Note that consideration of the problem
in infinite-dimensional spaces is justified for two reasons. Firstly, many applied
problems are distinguished by the fact that their dimension is extremely large
and can practically be considered infinite. Secondly, the results and estimates of
the rate of convergence obtained for problems in infinite-dimensional spaces are
independent of dimension.

Future research may include obtaining estimates on the convergence rate
for the PD algorithms under some restrictions on the moduli of smoothness
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for the objective function, as well as the study of issues related to sufficient
optimality conditions for the accumulation points of sequences generated by the
proposed algorithms. It would also be interesting to develop software based on
the PD algorithms and to perform it in real-world applications including sparse
k-monotone regression [13].
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Abstract. We study the market equilibrium in international trade
monopolistic competition model a‘la Dixit-Stiglitz-Krugman with homo-
geneous firms. The utility of consumers are additive separable. Transport
costs are of “iceberg type.” The only production factor is labor. The con-
crete functional form of sub-utility function is assumed unknown. Thus,
it is not possible to get the equilibrium in closed form. We examine
the local symmetric comparative statics of consumption, prices, firms
masses and firms sizes with respect to transport costs. For linear pro-
duction costs, the results about equilibria near free trade and autarky
are known. We show that many of these results are true for the case of
non-linear production costs.

Keywords: Dixit-Stiglitz-Krugman Model · Market equilibrium · Free
trade · Autarky · Comparative statics

1 Introduction

Differences in firms productivity are important and have various explanations.
Recent empirical researches examining industry markets1. The modern theoret-
ical interpretation of empirical phenomenons is based on some variations of the
international trade model under the monopolistic competition.

The concept of monopolistic competition, introduced by Chamberlin [12,13],
widely develops now, starting with the paper by Dixit and Stiglitz [14] for the
case of a closed economy, by Krugman [16,17] for the international trade, as
well as its modifications with heterogeneous firms, considered by Melitz [18].
The Dixit-Stiglitz-Krugman model describes the impact of economies of scale on
monopolistic competition and on the trade of two absolutely identical countries.

As it is usual in monopolistic competition (see, e.g., [4,14,24]), we assume
that consumers are identical, firms are identical, labor is the only production
factor; moreover, free entry, labor and trade balances hold2.
1 Some discussion of the stylized facts (see, e.g., [11,15,21,22]) can be found in [8].
2 See the details, e.g., in [1,6–8].
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In this paper we consider trade between two groups of countries: a group of
big countries and a group of small countries. Countries differ only in the number
of consumers. The number of countries in the group of big countries is (K + 1),
the number of countries in the group of small countries is (k + 1). It is proposed
to consider the case of free trade and the case of autarky. Previously, results
were obtained for trade between two countries with a nonlinear production costs
[5] and results for two groups of countries with linear production costs [8]. We
generalize these results for the case of trade between two groups of countries
with non-linear costs.

The paper is organized as follows. In Sect. 2 we set the model and the main
notations, describe the problem of consumers (Sect. 2.1) and the problem of
producers (Sect. 2.2), labor and trade balances (Sect. 2.3), equilibrium (Sect. 2.4).
Moreover, here we define the concept of free trade (Sect. 2.5) and the concept
of total autarky (Sect. 2.6). In Sect. 3 we study the local comparative statics
of equilibrium on transport costs: in free trade (Sect. 3.1) and in total autarky
(Sect. 3.2). Section 4 concludes.

2 Problem

Let us introduce the basic concepts and notation:

– L the number of consumers (the quantity of labor) in each big country,
– l the number of consumers (the quantity of labor) in each small country,

l ≤ L, therefore, Γ = (K + 1) L + (k + 1) l is the total number of consumers,
– N the number (mass) of firms in each big country,
– n the number (mass) of firms in each small country,
– Xi the individual domestic consumption produced by i-th firm, i ∈ [0, N ],
– Yi the individual import consumption in a big country produced in another

big country by i-th firm, i ∈ [0, N ],
– Zi the individual import consumption in a small country produced in a big

country by i-th firm, i ∈ [0, N ],
– xi the individual domestic consumption produced by i-th firm, i ∈ [0, n],
– yi the individual import consumption in a small country produced in another

small country by i-th firm, i ∈ [0, n],
– zi the individual import consumption in a big country produced in a small

country by i-th firm, i ∈ [0, n],
– PX

i , PY
i , PZ

i , px
i , py

i , pz
i the corresponding prices,

– wB = w the wage in each big country,
– ws ≡ 1 the wage in each small country.

Figure 1 illustrates the notations in the case of three big and three small
countries.
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Fig. 1. Graphical representation of the case of three big and three small countries

2.1 Consumers

The problem of a representative consumer in a big country is
∫

i∈[0,N ]

u (Xi) di + K ·
∫

i∈[0,N ]

u (Yi) di + (k + 1) ·
∫

i∈[0,n]

u (zi) di → max,

∫

i∈[0,N ]

PX
i Xidi + K ·

∫

i∈[0,N ]

PY
i Yidi + (k + 1) ·

∫

i∈[0,n]

pz
i zidi ≤ w,

while the problem of a representative consumer in a small country is
∫

i∈[0,n]

u (xi) di + k ·
∫

i∈[0,n]

u (yi) di + (K + 1) ·
∫

i∈[0,N ]

u (Zi) di → max,

∫

i∈[0,n]

px
i xidi + k ·

∫

i∈[0,n]

py
i yidi + (K + 1) ·

∫

i∈[0,N ]

PZ
i Zidi ≤ 1,

where the elementary utility function u (·) is three times differentiable and sat-
isfies (cf. [24])

u(0) = 0, u′(ξ) > 0, u′′(ξ) < 0,

i.e., it is everywhere strictly increasing and strictly concave.
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From the consumer’s first order condition (FOC), one has the inverse demand
functions

PX
i =

u′ (Xi)
Λ

, PY
i =

u′ (Yi)
Λ

, pZ
i =

u′ (Zi)
λ

, i ∈ [0, N ],

px
i =

u′ (xi)
λ

, py
i =

u′ (yi)
λ

, P z
i =

u′ (zi)
Λ

, i ∈ [0, n],

where λ,Λ are Lagrange multipliers.

2.2 Producers

To sell in foreign country, the firm spend the transport costs τ ≥ 1 of iceberg
type3. Then

Qi = L · Xi + K · τ · L · Yi + (k + 1) · τ · l · Zi , i ∈ [0, N ],

is the output (the size) of the firm i ∈ [0, N ] in a big country, while

qi = l · xi + k · τ · l · yi + (K + 1) · τ · L · zi , i ∈ [0, n],

is the output (the size) of the firm i ∈ [0, n] in a small country.
Each firm has a twice differentiable strictly increasing production cost func-

tion V (·), V ′ (·) > 0.
In symmetric case, we omit the index i in individual consumptions

Xi = X, Yi = Y, Zi = Z, i ∈ [0, N ] ,

xi = x, yi = y, zi = z, i ∈ [0, n] ,

sizes of the firms

Qi = Q = L · X + K · τ · L · Y + (k + 1) · τ · l · Z, i ∈ [0, N ] ,

qi = q = l · x + k · τ · l · y + (K + 1) · τ · L · z, i ∈ [0, n] ,

and prices (inverse demand functions)

PX =
u′ (X)

Λ
, PY =

u′ (Y )
Λ

, pz =
u′ (z)

Λ
, (1)

px =
u′ (x)

λ
, py =

u′ (y)
λ

, PZ =
u′ (Z)

λ
. (2)

Using the “normalized” revenue

R (ξ) = u′ (ξ) · ξ,

we write the profit of a firm in a big country (Π) and in a small country (π) as

Π = L · R (X)
Λ

+ K · L · R (Y )
Λ

+ (k + 1) · l · R (Z)
λ

− w · V (Q) ,

π = l · R (x)
λ

+ k · l · R (y)
λ

+ (K + 1) · L · R (z)
Λ

− V (q) .

3 To sell a unit, the firm produce the τ · 1.
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2.3 Labor and Trade Balances

In symmetric case, labor balances in the two kind of countries can be written as

N · V (Q) = L, n · V (q) = l. (3)

Trade balances in big and small countries are, respectively

N ·
(

K · L · R (Y )
Λ

+ (k + 1) · l · R (Z)
λ

)
= N ·K ·L · R (Y )

Λ
+n ·(k + 1) ·L · R (z)

Λ

and

n ·
(

k · l · R (y)
λ

+ (K + 1) · L · R (z)
Λ

)
= n · k · l · R (y)

λ
+ N · (K + 1) · l · R (Z)

Λ
.

Note that these two trade balances can both be rewritten as (one!) equation

N · l · R (Z)
λ

= n · L · R (z)
Λ

,

i.e., by substituting N and n from the labor balances (3),

TB ≡ R (Z)
λ · V (Q)

− R (z)
Λ · V (q)

= 0. (4)

2.4 Equilibrium

Standardly in monopolistic competition framework, we assume that firms freely
enter the market while their profit remains positive, which implies a zero-profit
(free-entry) conditions. In symmetric case we get

Π = 0, π = 0. (5)

Producer’s First order conditions (FOC) in symmetric case are

∂Π

∂X
= 0,

∂Π

∂Y
= 0,

∂Π

∂Z
= 0,

∂π

∂x
= 0,

∂π

∂y
= 0,

∂π

∂z
= 0. (6)

Second order conditions (SOC) are

∂2Π

∂X2
< 0,

∂2Π

∂X2
· ∂2Π

∂Y 2
−

(
∂2Π

∂X∂Y

)2

> 0, det Π ′′ < 0, (7)

where

Π ′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2Π

∂X2

∂2Π

∂X∂Y

∂2Π

∂X∂Z

∂2Π

∂X∂Y

∂2Π

∂Y 2

∂2Π

∂Y ∂Z

∂2Π

∂X∂Z

∂2Π

∂Y ∂Z

∂2Π

∂Z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and
∂2π

∂x2
< 0,

∂2π

∂x2
· ∂2π

∂y2
−

(
∂2π

∂x∂y

)2

> 0, det π′′ < 0, (8)

where

π′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2π

∂x2

∂2π

∂x∂y

∂2π

∂x∂z

∂2π

∂x∂y

∂2π

∂y2

∂2π

∂y∂z

∂2π

∂x∂z

∂2π

∂y∂z

∂2π

∂z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Symmetric equilibrium is a bundle(
X∗, Y ∗, Z∗, x∗, y∗, z∗, Λ∗, λ∗, w∗, N∗, n∗, PX∗

, PY ∗
, PZ∗

, px∗
, py∗

, pz∗)

satisfying the following:

– utility maximization (1) and (2);
– profit maximization (6) and (7), (8), and free entry conditions (5);
– labor balances (3) and trade balance (4).

Note that the equilibrium prices PX∗
, PY ∗

, PZ∗
, px∗

, py∗
, pz∗

and masses of
firms N∗, n∗ can be obtained from (1)–(3). So equilibrium individual consump-
tions X∗, Y ∗, Z∗, x∗, y∗, z∗, Lagrange multipliers Λ∗, λ∗ and wage in each big
country w∗ can be defined from the reduced system of equilibrium (4)–(6), i.e.,

∂Π

∂X
= 0,

∂Π

∂Y
= 0,

∂Π

∂Z
= 0,

∂π

∂x
= 0,

∂π

∂y
= 0,

∂π

∂z
= 0,

Π = 0, π = 0, TB = 0.

In the following we will use for function f (ξ), elasticity

Ef (ξ) =
f ′ (ξ) · ξ

f (ξ)

and Arrow-Pratt measure

rf (ξ) = −f ′′ (ξ) · ξ

f ′ (ξ)
= −Ef ′ (ξ) .

Note that we study mainly such functions u that their Arrow-Pratt measure
ru (·) increases, i.e., consider “pro-competitive” case4.
4 The meaning of “pro-competitiveness” have been explained, e.g. in [24], where closed

economy (only one country) was considered. It turns out that, in equilibrium, mass
of firms increases w.r.t. market size; price decreases if ru (·) increases, and price
increases if ru (·) decreases (of course, price is constant if ru (·) is constant, i.e., in
CES-case). Increasing of mass of firms means increasing of competition. Therefore,
if r′

u (·) > 0 then price decreases (“pro-competitive” case) while if r′
u (·) < 0 then

price increases (“anti-competitive” case). In our opinion, “pro-competitive” case is
more natural.
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2.5 The Case of Free Trade

Consider the situation of Free Trade, i.e., let τ = 1. Then

X = Y = Z = x = y = z,

w = 1, Λ = λ,

Q = q = ((K + 1) · L + (k + 1) · l) · X = Γ · X.

As usual, let us denote

R = R (X) = R (Y ) , R′ = R′ (X) , V = V (Q) , ER = ER (X) , EV = EV (Q) ,

etc.

2.6 The Case of Total Autarky

Autarky means that trade stops. Let us assume that there are three types of
(“partial”) autarky:

a) Trade among big countries stops;
b) Trade among big and small countries stops;
c) Trade among countries s stops.

Let us say the autarky is ‘ ‘total” if a), b), c) hold together, i.e., all (interna-
tional) trades stop. Depending on the order (w.r.t. τ) in which a), b), c) happen,
we can get six cases5:

– Case a − b − c,
– Case b − a − c,
– Case a − c − b,
– Case c − a − b,
– Case b − c − a,
– Case c − b − a.

For the study of total autarky, cases a−b−c and b−a−c, a−c−b and c−a−b,
b − c − a and c − b − a coincide, i.e., we can consider three different cases:

– Case I) the last trade that stops, is among small countries.
– Case II) the last trade that stops, is among big and small countries.
– Case III) the last trade that stops, is among big countries.

Obviously, in Case I), X,PX , Q,N,w,WB are constant w.r.t. τ on [τ2, τ3].
Analogously, in Case III), x, px, q, n, w,W s are constant w.r.t. τ on [τ2, τ3].

5 See details, e.g., in [8].
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3 Local Comparative Statics of Equilibrium on Transport
Costs

Comparative statics of equilibrium is an analysis of the reaction of equilibrium
variables to changes in parameters. Local comparative statics is a reaction to a
small change in parameters. Thus, to obtain local comparative statics on trans-
port costs, it is necessary to determine the signs of the derived equilibrium
quantities on the parameter τ . This section examines the behavior of the equi-
librium variables (individual consumptions X,Y,Z, x, y, z, Lagrange multipliers
Λ, λ and wage w) with a small change on transportation costs τ . To do this, we
can consider a system of the following nine equations:

– FOCs (6);
– free entry conditions (5);
– trade balance (4).

This way the equilibrium system can be written as

A (Ξ) = Θ9, (9)

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂Π

∂X
∂Π

∂Y
∂Π

∂Z
∂π

∂x
∂π

∂y

∂π

∂z
Π
π

TB

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Ξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X
Y
Z
x
y
z
Λ
λ
w

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Θ9 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
9.

We assume that system (9) has a solution6. By the total differentiation of
system (9) w.r.t. τ, we get the equations of the local comparative statics w.r.t.
τ as

d

dτ
(A (Ξ)) = Θ9,

i.e.,
∂A

∂Ξ
· dΞ

dτ
= −∂A

∂τ
,

6 The question of the existence of equilibrium is a separate problem (often not quite
simple), which is not the subject of this study.
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where

dΞ

dτ
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dX

dτ
dY

dτ
dZ

dτ
dx

dτ
dy

dτ
dz

dτ
dΛ

dτ
dλ

dτ
dw

dτ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
∂A

∂τ
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2Π

∂X∂τ
∂2Π

∂Z∂τ
∂2π

∂x∂τ
∂2π

∂Z∂τ
∂Π

∂τ
∂π

∂τ
∂TB

∂τ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that, due to the form of profits and free entry conditions, matrix
∂A

∂Ξ
is

rather sparse because at least 42 elements (from 81) are zero. More precisely,

∂A

∂Ξ
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ 0 0 0 ∗ 0 ∗
∗ ∗ ∗ 0 0 0 ∗ 0 ∗
∗ ∗ ∗ 0 0 0 0 ∗ ∗
0 0 0 ∗ ∗ ∗ 0 ∗ 0
0 0 0 ∗ ∗ ∗ 0 ∗ 0
0 0 0 ∗ ∗ ∗ ∗ 0 0
0 0 0 0 0 0 ∗ 0 ∗
0 0 0 0 0 0 0 ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

3.1 Comparative Statics in Free Trade

To formulate the results for free trade, let us define the elasticity of a variable ξ
with respect to transport costs τ

Eξ = Eξ/τ =
dξ

dτ
· τ

ξ
.

It turned out that the results of comparative statistics for free trade, obtained
in [5,8], are naturally transferred to the case of trade of two groups of countries
at non-linear production costs. The signs of the elasticities of firm’s sizes and the
masses of firms are determined uniquely by the monotony of ru. More precisely,
the following proposition holds.
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Proposition 1. In free trade, the elasticities of equilibrium firm sizes in small
countries (q∗) and big (Q∗) countries and the elasticities of equilibrium masses
of firms in big countries (N∗) and small (n∗) countries can be ordered depending
on the monotony of the Arrow-Pratt measure of sub-utility u as follows:

1. in pro-competitive case, when r′
u > 0,

r′
u > 0 =⇒ Eq > EQ > 0 > EN > En,

i.e., the size of firms increases, while the mass of firms decreases;
2. in anti-competitive case, when r′

u < 0,

r′
u < 0 =⇒ Eq < EQ < 0 < EN < En.

i.e., the size of firms decreases, while the mass of firms increases.

Moreover, if r′
u ≥ 0 then EΛ < EΛ + Ew < 0.

3.2 Comparative Statics in Autarky

In total autarky we have three cases, see Sect. 2.6:

– Case I): the last trade that stops, is among small countries, y = 0;
– Case II): the last trade that stops, is among big and small countries, Z =

0, z = 0;
– Case III): the last trade that stops, is among big countries, Y = 0.

Proposition 2. Under convex production costs (i.e., V ′′ (·) > 0), in total
autarky, the behavior of the equilibrium variable is as follows.

1. In Case I), in each small country, domestic consumption, the masses of firms,
prices for imported goods increase:

dx

dτ
> 0,

dn

dτ
> 0,

dpy

dτ
> 0,

while consumption of imports within a group of small countries, outputs and
prices of domestic goods decrease:

dy

dτ
< 0,

dq

dτ
< 0,

dpx

dτ
< 0.

2. In Case II), in each (both big and small) country, domestic consumption, the
masses of firms and the prices for imported goods produced in a large country
and consumed in a small one increase:

dX

dτ
> 0,

dx

dτ
> 0,

dN

dτ
> 0,

dn

dτ
> 0,

dpZ

dτ
> 0,

while import consumption, outputs and the prices of domestic goods in a small
country decrease:

dZ

dτ
< 0,

dz

dτ
< 0,

dQ

dτ
< 0,

dq

dτ
< 0

dpx

dτ
< 0.
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3. In Case III), in each big country, there are growing: domestic consumption,
the masses of firms, prices for imported goods (produced and consumed within
a group of big countries) increase:

dX

dτ
> 0,

dN

dτ
> 0,

dpY

dτ
> 0,

while import consumption within a group of big countries, outputs and prices
of domestic goods decrease:

dY

dτ
< 0,

dQ

dτ
< 0,

dpX

dτ
< 0.

4 Conclusion

In this paper, we study the international trade between two groups of countries:
a group of big (identical) countries and a group of small (identical) countries
under monopolistic competition of producers. The transport costs τ is of “ice-
berg type.” The utility is additive separable. The firms are homogeneous, the
production costs are assumed not necessary linear.

The consideration of two groups of countries needs to study new kind of
consumption: the import consumption in countries within the same group.

It turn out that the most results for linear production costs [8] can be gen-
eralized to the case of convex costs.

Besides, we generalize the results for two countries [5] to the case of two
groups of countries.

The obtained results can be useful for comparative statics of social welfare,
cf. [2,3,8,19,20].

Moreover, it seems interesting to consider consider the international trade of
of a larger number of different countries (or groups of countries). In this case,
we need to consider more then one trade balance (cf. (4)). More precisely, for M
different countries (or M groups of countries), we need to consider M − 1 trade
balances.

Besides, we can consider the impact of investments in R&D [10].
Finally, it is interesting to consider retailing questions [9,23].
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Abstract. We study a monopolistic competition model in the open
economy case. The utility of consumers are additive separable. The pro-
ducers can choose technology (R&D) endogenously. We examine the local
comparative statics of market equilibrium with respect to trade costs (of
iceberg type). Our main finding is the following: increasing trade costs
has opposite impacts on mass of firms and productivity. Moreover, we
study the cases of small trade costs and symmetric (on numbers of con-
sumers) countries.

Keywords: Dixit-Stiglitz-Krugman model · Market equilibrium ·
Endogenous choice of technology · Comparative statics

1 Introduction

The cross-countries differences in productivity are noticeable and allow for var-
ious explanations. The trade literature reports noticeable cross-countries differ-
ences in productivity and related indicators1.

In [11] we get the results for the model of closed economy. To expand this
analysis to trade, now we introduce a trade model. The setting of the trade model
is as in [12]. As to the main results, they are completely new. The economy
consists of two countries, “big” country and “small” country, one production
factor (labor) and one differentiated sector including continuum of varieties or
brands2.

The paper is organized as follows. In Sect. 2 we set the model, the main nota-
tions, describe the equilibrium and discuss the main equilibrium equations. In
Sect. 3 we present the preliminary results for comparative statics. In particular,
we get one of the main result of the paper: increasing trade cost has opposite
impacts on mass of firms and productivity. In Sects. 4 and 5 we study the com-
parative statics with respect to trade costs in two situations: when these costs
1 Some stylized facts that we believe to be a challenge for theory are, e.g., in [2,14,

18,22,23]. The details see, e.g., in [12,13].
2 There can be a different approach, see, e.g., [15,20,21,26]. The details see, e.g., in

[12].
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are “’infinitesimally” small and when the countries are symmetric in population.
Section 6 concludes.

2 Model

The setting of the model is as in [12].
The model of monopolistic competition [3,4,10,16,17,19,21,27] is based on

the following assumptions:

– the manufacturers produce goods of the same nature, but not completely
interchangeable (product diversity);

– each firm produces one type of product diversity and sets its price;
– the number (mass) of firms is large enough;
– the firms enter the market as long as their profits are positive.

In this paper, we consider the model of monopolistic competition in relation
to the trade of two countries, country B (“big”) and country s (“small”), different
in population. There are one industry and one production factor, interpreted as
labor. We introduce the basic concepts and notation. Let

– L be the number of consumers in big country,
– l be the number of consumers in small country, L ≥ l;
– N be the mass of firms in big country;
– n be the mass of firms in small country;
– Xi = X(i) be the individual domestic consumption in big country of the

goods produced by firm i ∈ [0, N ] ;
– Zi be the individual foreign consumption in small country of the goods pro-

duced by firm i ∈ [0, N ] in big country;
– xi be the individual domestic consumption in small country of the goods

produced by firm i ∈ [0, n] ;
– zi be the individual foreign consumption in big country of the goods produced

by firm i ∈ [0, n] in small country;
– Qi be the output (size)of firm i ∈ [0, N ] in big country;
– qi be the output (size) of firm i ∈ [0, n] in small country;
– w be the wage in a big country, while the wage in small country be normalized

to 1.

2.1 Consumers

We assume that each consumer share the same twice differentiable sub-utility
function, such that

u (0) = 0, u′(ξi) > 0, u′′(ξi) < 0.

Thus, function u is increasing and strictly concave.
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The Problem of a Representative Consumer in the Big Country is
∫ N

0

u (Xi) di +
∫ n

0

u (zi) di → max
Xi≥0,i∈[0,N ],zi≥0,i∈[0,n]

subject to ∫ N

0

pX
i (Xi) di +

∫ n

0

pz
i zidi ≤ w.

The Problem of a Representative Consumer in the Small Country is
∫ n

0

u (xi) di +
∫ N

0

u (Zi) di → max
xi≥0,i∈[0,n],Zi≥0,i∈[0,N ]

subject to ∫ n

0

px
i xidi +

∫ N

0

pZ
i Zidi ≤ 1.

From the consumer’s First Order Conditions (FOC), we get the inverse
demand functions

pX
i (Xi, Λ) =

u′ (Xi)
Λ

, pZ
i (Zi, λ) =

u′ (Zi)
λ

, i ∈ [0, N ] , (1)

px
i (xi, λ) =

u′ (xi)
λ

, pz
i (zi, Λ) =

u′ (zi)
Λ

, i ∈ [0, n] , (2)

where Λ and λ are the Lagrange multipliers of the two above defined problems.

2.2 Producers

Let F and f be fixed costs in countries B and s (chosen endogenously); c (F ) and
c (f) be the corresponding marginal costs. We assume that c′ (·) < 0. Besides, let
us assume, standardly, that the trade incurs some trade costs of “iceberg type”3.
Then the sizes of the firms in countries B and s are

Qi = LXi + τ lZi, i ∈ [0, N ] , (3)

qi = lxi + τLzi, i ∈ [0, n] , (4)

while the production costs are

V (Qi, F ) = c(F )Qi + F, i ∈ [0, N ] , (5)

V (qi, f) = c(f)Qi + f, i ∈ [0, n] . (6)

Let
R (ξ) = u′ (ξ) · ξ (7)

3 To sell a unit, the firm produce the τ · 1.



Investments in R&D in Monopolistic Competitive Trade Model 173

be the “normalized” revenue. Note that, due to (1) and (2), the normalized
revenue equals to the costs that one consumer spends on the purchase of products
of one company (divided by the corresponding Lagrange multiplier). Moreover,
R′ (ξ) = u′ (ξ) (1 − ru (ξ)) , where

rg (ξ) = −g′′ (ξ) ξ

g′ (ξ)
= −εg′ (ξ) (8)

is Arrow-Pratt measure of function g while εh is the elasticity of function h :

εh (ξ) =
h′ (ξ) ξ

h (ξ)
. (9)

Using the inverse demand functions (1), (2) and “normalized” revenue (7),
the profit of firm i in the big country can be written as

Πi = L · R (Xi)
Λ

+ l · R (Zi)
λ

− wV (Qi, F ) , i ∈ [0, N ] , (10)

while the profit of firm i in the small country can be written as

πi = L · R (zi)
Λ

+ l · R (xi)
λ

− V (qi, f) , i ∈ [0, n] . (11)

Labor and Trade Balances. In countries B and s, the labor balances (“total
production costs equal total labor”) are

∫ N

0

V (Qi, F ) di = L, (12)

∫ n

0

V (qi, f) di = l. (13)

Let us assume that trade balance (“export equals import”) holds:

l ·
∫ N

0

pZ
i (Zi, λ) Zidi = L ·

∫ n

0

pz
i (zi, Λ) zidi, (14)

where inverse demand functions pZ
i (Zi, λ) and pz

i (zi, Λ) are defined in (1), (2).

2.3 Symmetric Case

In each country, all consumers are assumed identical. So we will consider the
symmetric case, omitting index i. This way, the individual consumptions are

Xi = X, Zi = Z, i ∈ [0, N ] ,

xi = x, zi = z, i ∈ [0, n] .
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Therefore, we rewrite the inverse demand functions (1) and (2) as

p (X,Λ) =
u′ (X)

Λ
, p (Z, λ) =

u′ (Z)
λ

, (15)

p (x, λ) =
u′ (x)

λ
, p (z, Λ) =

u′ (z)
Λ

, (16)

sizes of the firms (3) and (4) as

Q = LX + τ lZ, (17)

q = lx + τLz, (18)

production costs (5) and (6) as

V (Q,F ) = c(F )Q + F, (19)

V (q, f) = c(f)q + f, (20)

profits (10) and (11) as

Π = L · R (X)
Λ

+ l · R (Z)
λ

− wV (Q,F ) , (21)

π = L · R (z)
Λ

+ l · R (x)
λ

− V (q, f) , (22)

labor balances (12) and (13) as

N · V (Q,F ) = L, (23)

n · V (q, f) = l. (24)

As to trade balance (14), it is

l · N · p (Z, λ) Z = L · n · p (z, Λ) z,

i.e., due to (15), (16), (23), (24) and (7),

R (Z)
V (Q,F ) λ

=
R (z)

V (q, f) Λ
. (25)

2.4 Symmetric Equilibrium

Here, sizes of the firms are (17) and (18), production costs are (19) and (20),
profits are (21), (22).

As it is usual in monopolistic competition, we assume that firms enter the
market while their profit remains positive, which implies a zero-profit (free-entry)
conditions. In symmetric case we get

Π = 0, π = 0. (26)
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Each firm maximizes its profits:

Π → max
X,Z,F≥0

, π → max
x,z,f≥0

.

Thus, the Producer’s First order conditions (FOC) in symmetric case are

∂Π

∂X
= 0,

∂Π

∂Z
= 0,

∂Π

∂F
= 0,

∂π

∂x
= 0,

∂π

∂z
= 0,

∂π

∂f
= 0. (27)

Second order conditions (SOC) are

∂2Π

∂X2
< 0,

∂2Π

∂X2
· ∂2Π

∂Z2
−

(
∂2Π

∂X∂Z

)2

> 0, det Π ′′ < 0, (28)

where

Π ′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2Π

∂X2

∂2Π

∂X∂Z

∂2Π

∂X∂F

∂2Π

∂X∂Z

∂2Π

∂Z2

∂2Π

∂Z∂F

∂2Π

∂X∂F

∂2Π

∂Z∂F

∂2Π

∂F 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and
∂2π

∂x2
< 0,

∂2π

∂x2
· ∂2π

∂z2
−

(
∂2π

∂x∂z

)2

> 0, det π′′ < 0, (29)

where

π′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2π

∂x2

∂2π

∂x∂z

∂2π

∂x∂f

∂2π

∂x∂z

∂2π

∂z2
∂2π

∂z∂f

∂2π

∂x∂f

∂2π

∂z∂f

∂2π

∂f2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Symmetric equilibrium is a bundle

(X∗, Z∗, F ∗, x∗, z∗, f∗, w∗, N∗, n∗, Λ∗, λ∗)

satisfying the following:

– profit maximization (27) and (28), (29);
– free entry conditions (26);
– labor balances (23) and (24);
– trade balance (25).
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Note that the equilibrium prices (inverse demand functions)

p (X∗, Λ∗) , p (Z∗, λ∗) , p (x∗, λ∗) , p (z∗, Λ∗)

can be obtained from (15) and (16). Moreover, First Order Conditions (27) are

R′ (X)
Λ

= wc (F ) ,
R′ (Z)

λ
= wτc (F ) , c′ (fH

)
qH = −1, (30)

R′ (x)
λ

= c (f) ,
R′ (z)

Λ
= τc (f) , c′ (fF

)
qF = −1. (31)

Following tradition and using (30), (31), we can express Λ∗, λ∗ via another equi-
librium variables. Therefore, after some calculations we lead to

Proposition 1. Trade equilibrium nine-elements bundle

(X∗, Z∗, F ∗, x∗, z∗, f∗, w∗, N∗, n∗)

satisfy the following nine equations4:

R′ (X)
R′ (z)

· c (f)
c (F )

· τ

w
= 1, (32)

R′ (x)
R′ (Z)

· c (F )
c (f)

· τw = 1, (33)

(
LX

εR (X)
+

lτZ

εR (Z)

)
· εV (Q)

Q
= 1, (34)

(
lx

εR (x)
+

Lτz

εR (z)

)
· εV (q)

q
= 1, (35)

− c′ (F ) Q = 1, (36)

− c′ (f) q = 1, (37)

N

L
· V (Q) = 1, (38)

n

l
· V (q) = 1, (39)

Z

εR (Z)
· εR (z)

z
· q

εV (q)
· εV (Q)

Q
· w = 1. (40)

Note that in Proposition 1,

4 Here εV (·) is the “partial” elasticity of production costs with respect to firm size:

εV (ξ) =
∂V (ξ, η)

∂ξ
· ξ

V (ξ, η)
.

.
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– (32) and (33) mean the optimality in consumption in each country: the ratio
of marginal utilities equals the ratio of the prices (inverse demands);

– (34) and (35) are the generalizations of well-known condition of monopolis-
tic competition in closed economy: “elasticity of revenue equals elasticity of
costs;”

– (36) and (37) determine optimal choice of technology in each country;
– (38) and (39) mean labor balances (23) and (24);
– (40) means trade balance in terms of elasticities of revenue and production

costs.

Note that the question of the existence of equilibrium is a separate problem
(often not quite simple), which is not the subject of this study5.

Actually, the aim is to study the impact of trade costs (τ) on investments
per firm and total investments, and on other equilibrium variables. Is it true
that when country B is bigger (L > l) then this country invests more per firm
and has less costs per unit? What is the ratio of total investments in countries
B and s? What we can say about the relation between the size of the firm, the
mass of the firms and prices in these two countries? Is it true that the wage is
bigger in larger country?

To answer all these questions, we plan to study comparative statics of the
above equations. At the moment it seems incredible to get complete global com-
parative statics for these equations. Therefore, let us concentrate on local com-
parative statics6.

2.5 Second Order Conditions

The conditions (28),(29) seem heavy. But in terms of revenue and Arrow-Pratt
measure, the Second Order Conditions (SOC) have a rather elegant form, as we
can see in the following

Proposition 2. 1. For country B, Second Order Conditions are

R′′ (X) < 0, R′′ (Z) < 0,
LX

rR (X)
+

lτZ

rR (Z)
<

rc (F )
εc (F ) c′ (F )

. (41)

2. For country s, Second Order Conditions are

R′′ (x) < 0, R′′ (z) < 0,
lx

rR (x)
+

Lτz

rR (z)
<

rc (f)
εc (f) c′ (f)

. (42)

5 The discuss this system of equations can be found, e.g., in [12].
6 Namely, the solution of these equations can be considered as implicit function of two

parameters,
L

L + l
(the share of the population of big country in total population)

and
1

τ
(the parameter of trade liberalization). Without loss of generality (cf. [12])

we can assume that couple

(
L

L + l
,
1

τ

)
belongs to the rectangle

[
1

2
, 1

]
× [0, 1] . The

idea is to get the answers to the questions above for the boundary of this rectangle,
see details in [12].
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Note that, due to (36) and (37), the last inequalities in (41) and (41) can be
written as

LXc′ (F )
rR (X)

− 1 + LXc′ (F )
rR (Z)

>
rc (F )
εc (F )

, (43)

lxc′ (f)
rR (x)

− 1 + lxc′ (f)
rR (z)

>
rc (f)
εc (f)

. (44)

Therefore, SOC depend explicitly only on individual consumptions and on invest-
ments in R&D, do not depend on wage w and trade costs τ.

3 Preliminary Results for Comparative Statics

Let us substitute (36) in (38), and (37) in (39):
(

F − c(F )
c′(F )

)
N = L, (45)

(
f − c(f)

c′(f)

)
n = l. (46)

Note that (45) and (46) do not depend explicitly from τ. These help us to obtain
some preliminary results on comparative statics for investments F and f, masses
of firms N and n, and also for the outputs of a firm (size of the firm) in countries
B and s.

In what follows, we will consider not only elasticity of function with respect
to a variable (see (8) and (9)), but also elasticity of a variable with respect to a
parameter, i.e.,

Eξ/ς =
dξ

dς
· ς

ξ
.

Proposition 3. In symmetric equilibrium, masses of firms N∗, n∗, investments
F ∗, f∗ and sizes of firms Q∗, q∗ are such that

1. elasticities w.r.t. τ :
(a) in country B:

EN∗/τ · EF ∗/τ < 0, EQ∗/τ · EF ∗/τ > 0,

(b) in country s:

En∗/τ · Ef∗/τ < 0, Eq∗/τ · Ef∗/τ > 0.

2. elasticities w.r.t. market sizes:
(a) in country B:

(
EN∗/L − 1

) · EF ∗/L < 0, EQ∗/L · EF ∗/L > 0,
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(b) in country s:
(
En∗/l − 1

) · Ef∗/l < 0, Eq∗/l · Ef∗/l > 0.

Proposition 3 shows that comparative statics in trade cost coefficient τ makes
mass of firms negatively correlated with investment in R&D which is always
positively connected with the size of the firms. As to the market size impact,
when we call elasticity relations EN∗/L > 1 and En∗/l > 1 as the“Home market
effect,” it turns out negatively correlated with increasing individual investment,
i.e., entails EF ∗/L < 0 and Ef∗/l < 0.

4 Comparative Statics w.r.t. τ : The Case τ ≈ 1

Let us study the comparative statics w.r.t. τ in the point τ = 1, i.e., consider the
case of “infinitesimally” small trade costs. Then in equilibrium one has w∗ = 1
and moreover

X∗ = Z∗ = x∗ = z∗, F ∗ = f∗.

Further, let us denote

D =
X∗

((2 − ru′ (X∗)) rc (F ∗) − 1) ru (X∗)
> 0. (47)

Remark that D > 0 due to SOC.
The following Proposition presents the comparative statics w.r.t. τ in the

neighborhood of τ = 1 for wage w∗, investments F ∗ and f∗, masses of firms N∗

and n∗, total investments N∗F ∗ and n∗f∗, “home market effect” (w.r.t. market
size)

N∗l
n∗L

,

“generalized home market effect” (w.r.t. GDP)

N∗l
n∗w∗L

and also for production of a firm (size of the firm) Q∗ and q∗.

Proposition 4. In the neighborhood of τ = 1, one has (about D see in (47))

Ew∗/τ =
L − l

L + l
· (1 − ru (X∗)) (=⇒ w∗ ≥ 1)

EF ∗/τ =
l

L + l
· D · r′

u (X∗) =
l

L
· Ef∗/τ ,

EN∗/τ = − l

L + l
· D · (1 − ru (X∗)) · r′

u (X∗) · rc (F ∗) =
l

L
· En∗/τ ,

EN∗F ∗/τ =
l

L + l
· D · (1 − ru (X∗)) · r′

u (X∗) · (1 − rln c (F ∗)) =
l

L
· En∗f∗/τ ,
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E N∗l
n∗L

/τ = E N∗
n∗ /τ =

L − l

L + l
· D · (1 − ru (X∗)) · r′

u (X∗) · rc (F ∗) ,

E N∗l
n∗w∗L

/τ = E N∗
n∗w∗ /τ =

L − l

L + l
· D · (1 − ru (X∗))2 · ru (X∗)

X∗ · (1 − rln c (F ∗)) ,

EQ∗/τ =
l

L + l
· D · r′

u (X∗) · rc (F ∗) =
l

L
· Eq∗/τ

and their signs satisfy classification in Table 1:

Table 1. Equilibrium: comparative statics w.r.t. τ ≈ 1

r′
u < 0 r′

u = 0 r′
u > 0

rln c > 1 rln c > 1 rln c > 1 rln c = 1 rln c < 1

Ew∗/τ >0 >0 >0 >0 >0

EF ∗/τ =
L

l
· Ef∗/τ <0 =0 >0 >0 >0

EN∗/τ =
L

l
· En∗/τ >0 =0 <0 <0 <0

EN∗f∗/τ =
L

l
· En∗f∗/τ >0 =0 <0 =0 >0

EN∗
n∗ /τ

>0 =0 <0 <0 <0

E N∗
n∗w∗ /τ

<0 <0 >0 =0 <0

EQ∗/τ =
L

l
· Eq∗/τ <0 =0 >0 >0 >0

Due to Proposition 4, in the neighborhood of τ = 1 we get

r′
u (X∗) > 0 ⇐⇒ F ∗ > f∗, Q∗ > q∗,

N∗

n∗ >
L

l
.

Moreover, since

1 − rln c (F ∗) =
ε′
c (F ∗) F ∗

εc (F ∗)
= εεc

(F ∗) ,

we get:

ε′
c (F ∗) > 0 ⇐⇒ N∗

n∗ <
Lw∗

l
.

5 Comparative Statics w.r.t. τ : The Case of Symmetric
Countries

Let the countries are symmetric in population, i.e., L = l.
Then X = x,Z = z, F = f,N = n,w = 1. Therefore,

– (32) and (33) become
R′ (X) = τR′ (Z) ; (48)
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– (34) and (35) coincide;
– (36) and (37) coincide;
– (38) and (39) coincide;
– trade balance (40) becomes identity,
– SOC (41) and (42) coincide, (43) and (44) coincide.

Thus, equilibrium X∗, Z∗, F ∗, N∗ satisfies (48), (34), (36), (23), (41).
Let us denote

T =
((

1
rR (X∗)

+
rc (F ∗)
εc (F ∗)

)
X∗ +

(
1

rR (Z∗)
+

rc (F ∗)
εc (F ∗)

)
τZ∗

)
L < 0 (49)

(T < 0 due to (43)) and

M =
1

rR (Z∗)
+

rc (F ∗) c (F ∗)
εc (F ∗)

· Q∗N∗ − 1. (50)

Proposition 5. If L = l then individual domestic consumption X∗, individual
foreign consumption Z∗, investments F ∗, mass of firms N∗, total investments
N∗F ∗ and firm size Q∗ are such that (definition of T and M see in (49), (50))

EX∗/τ =
MτZ∗

rR (X∗) T
,

EZ∗/τ =
MτZ∗ − T

rR (Z∗) T
,

EF ∗/τ =
(Nc (F ∗) T − M) τZ∗

εc (F ∗) T
,

EN∗/τ = − rc (F ∗)
1 − εc (F ∗)

· EF ∗/τ ,

EN∗F ∗/τ =
rln c (F ∗) − 1
Ec (F ∗) − 1

· EF ∗/τ ,

EQ∗/τ = rc (F ∗) · EF ∗/τ .

Note that, due to (32) and Proposition 5, EN∗/τ ·EF ∗/τ < 0, this corresponds
to Proposition 3.

6 Conclusion

Endogenous technology choice is a popular topic, but only recently has its the-
oretical representation been achieved in a rich enough model [25], one demon-
strates that both the positive and negative impacts of a big market on invest-
ments in productivity.

In [10,12,13] we modify the Vives’s model into the monopolistic competi-
tion framework, get rid of the quasi-linearity assumption (absent income effect)
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and strategic oligopolistic considerations. The resulting model becomes sim-
pler and more tractable. Now we extend our study to trade and cross-countries
comparisons7.

Besides, it can be interesting to consider the case of more than two countries.
In the case of k countries, we have k−1 trade balances instead of (40). Moreover,
the case of autarky (cf. [5]) with R&D has not yet been considered. Further,
we can consider the impact of technological innovations [1,6,7]. Finally, it is
interesting to consider the questions of retailing [9,24] and social optimality [8].
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Abstract. We consider a class of multistage multicriteria games in
extensive form with chance moves where the players cooperate to maxi-
mize their expected joint vector payoff. Assuming that the players have
agreed to accept the minimal sum of relative deviations rule in order to
choose a unique Pareto optimal payoffs vector, we prove the time con-
sistency of the optimal cooperative strategy profile and corresponding
optimal bundle of the cooperative trajectories. Then, if the players adopt
a vector analogue of the Shapley value as the solution concept, they need
to design an appropriate imputation distribution procedure to ensure the
sustainability of the achieved cooperative agreement. We provide a gen-
eralization of the incremental payment schedule that is applicable for the
games with chance moves and satisfies such advantageous properties as
the efficiency, strict balance condition and the time consistency property
in the whole game. We illustrate our approach with an example of the
extensive-form game tree with chance moves.

Keywords: Multicriteria game · Multistage game · Cooperative
behavior · Time consistency · Shapley value · Chance moves

1 Introduction

Multicriteria games (multiobjective games or games with vector payoffs) are
used to model various real-world interactive decision situations where sev-
eral objectives have to be taken into account. For example, in multiobjective
environmental games [1,3,17,18,34] a player aims at simultaneously obtaining
large quote for the use of a common resource, increasing production, saving
costs of water purification, saving health care costs, etc. Starting from [36],
much research has been done on non-cooperative multicriteria games (see, e.g.,
[8,12,15,32,37]). A cooperative behavior in games with vector payoffs was exam-
ined in [2,11,13,14,16,29,30,34].
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This paper is mainly focused on the dynamic aspects of cooperation in an
n-person multistage multicriteria games in extensive form (see, e.g., [7,9,10,12,
20,27]) with chance moves. The methods and the results are based on and closely
connected with the previous papers [11,13,15,16]. However, the main difference
and challenge here is that due to the chance moves a cooperative pure strategy
profile does not generate the unique optimal path in the game tree but rather
the whole bundle of optimal cooperative trajectories.

To achieve and implement a long-term cooperative agreement in a multicri-
teria dynamic game we solve the following problems. First, when players seek
to achieve the maximal total vector payoff of the grand coalition, they face the
problem of choosing a unique Pareto efficient payoffs vector. In the dynamic
setting it is necessary that a specific method the players agreed to accept in
order to choose a particular Pareto optimal solution not only takes into account
the relative importance of the criteria, but also satisfies time consistency [5–
7,10–13,16,21,22,24–28,33], i.e., a fragment of the optimal cooperative bundle
of the trajectories in the subgame should remain optimal in this subgame. In
this paper, we use the rule of minimal sum of relative deviations (MSRD) from
the ideal payoffs vector (see [16] for details) to find a unique optimal cooperative
bundle of the trajectories, which is proved to satisfy time consistency.

After choosing the cooperative bundle of the trajectories it is necessary to
construct a vector-valued characteristic function. To this end, we use the ζ-
characteristic function introduced in [4] as well as the MSRD rule in order to
choose a particular Pareto efficient solution for the auxiliary vector optimization
problems. To determine the optimal payoff allocation we use the vector analogue
of the Shapley value [29,30,35]. Such an approach is based on the assumption
that the payoff can be transferred between the players within the same criterion.
Note that the main measurable criteria used in multicriteria resource manage-
ment problems usually satisfy this component-wise transferable utility property.

Lastly, to guarantee the sustainability of the achieved long-term coopera-
tive agreement one needs to design a consistent imputation distribution pro-
cedure (IDP) or a payment schedule (see, e.g., [7,11,13,16,21,22,25,27,28,33])
that should satisfy a set of useful p Lastly, to guarantee the sustainability of
the achieved long-term cooperative agreement one needs to design a consis-
tent imputation distribution procedure (IDP) or a payment schedule (see, e.g.,
[7,11,13,16,21,22,25,27,28,33]) that should satisfy a set of useful properties.
The detailed review of dynamical properties the IDP may satisfy for multistage
multicriteria games is presented in [11,13–16] . In this paper we mainly focus
on the efficiency constraint and the strict balance condition as well as time
consistency in the whole game (see, e.g., [22,33]) and provide a generalization
of the incremental IDP to implement a long-term cooperative agreement in a
multistage multicriteria game with chance moves.

The contribution of this paper is twofold:

1. Using the MSRD rule, we provide an approach to choose the optimal bundle
of the cooperative trajectories for the class of multicriteria multistage games
with chance moves and prove that such Pareto optimal solution satisfies time
consistency.
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2. We propose an appropriate refinement of the time consistency definition for
imputation distribution procedure and design a generalized incremental IDP
which is proved to satisfy a number of important properties.

The rest of the paper is organized as follows: Sect. 2 recalls the main ingredi-
ents of the class of games of interest, and Sect. 3 deals with the construction of
time consistent optimal cooperative strategy profile and corresponding bundle of
cooperative trajectories. In Sect. 4, we design the incremental IDP for the Shap-
ley value that satisfies efficiency, strict balance condition and time consistency
property in the whole game. Section 5 provides a brief conclusion.

2 Multistage Game with Chance Moves and Vector
Payoffs

We consider a finite multistage r-criteria game in extensive form following [7,9–
13,16,20,27]. First we define the notation that will be used later on:

– N = {1, . . . , n} is the set of all players.
– K is the game tree with the root x0 and the set of all nodes P .
– S(x) is the set of all direct successors (descendants) of the node x, and S−1(y)

is the unique predecessor (parent) of the node y �= x0 such that y ∈ S(S−1(y)).
– Pi is the set of all decision nodes of the ith player (at these nodes the player

i chooses the following node), Pi ∩ Pj = ∅, for all i, j ∈ N , i �= j.
– Pn+1 = {zj}m

j=1 denotes the set of all terminal nodes (final positions), S(zj) =
∅ ∀zj ∈ Pn+1.

– P0 is the set of all nodes at which a chance moves, where π(y|x) > 0 denotes
the probability of transition from node x ∈ P0 to node y ∈ S(x). It holds that
n+1⋃

i=0

Pi = P .

– ω = (x0, . . . , xt−1, xt, . . . , xT ) is the trajectory (or the path) in the game tree,
xt−1 = S−1(xt), 1 ≤ t ≤ T , xT = zj ∈ Pn+1; where index t in xt denotes the
ordinal number of this node within the trajectory ω and can be interpreted
as the “time index”.

– hi(x) = (hi/1(x), . . . , hi/r(x)) is the r-component vector payoff of the ith
player at the node x ∈ P . We assume that for all i ∈ N , k = 1, . . . , r, and
x ∈ P the components of vector payoffs are positive, i.e., hi/k(x) > 0.

In the following, we will use MGcm(n, r) to denote the class of all finite mul-
tistage n-person r-criteria games with chance moves in extensive form defined
above, where Γ x0 ∈ MGcm(n, r) denotes a game with root x0. Note that Γ x0 is
an extensive-form game with perfect information (see, e.g., [9,20,27] for details).

Since all the solutions we are interested in throughout the paper are attain-
able when the players restrict themselves to the class of pure strategies we will
focus on this class of strategies. The pure strategy ui(·) of the ith player is
a function with domain Pi that specifies for each node x ∈ Pi the next node
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ui(x) ∈ S(x) which the player i has to choose at x. Let Ui denote the (finite) set
of all ith player’s pure strategies, U =

∏
i∈N Ui.

Denote by p(y|x, u) the conditional probability that node y ∈ S(x) is reached
if node x has been already reached (the probability of transition from x to y)
while the players use the strategies ui, i ∈ N . Note that for all x ∈ Pi and for
all y ∈ S(x) p(y|x, u) = 1, ui(x) = y and p(y|x, u) = 0 if ui(x) �= y. For chance
moves, i.e., if x ∈ P0 p(y|x, u) = π(y|x) for all y ∈ S(x) for each u ∈ U .

Then one can calculate the probability p(ω, u) of realization of the trajectory
ω = (x0, . . . , xτ , xτ+1, . . . , xT ), xT ∈ Pn+1, xτ+1 ∈ S(xτ ), τ = 0, . . . , T −1, when
the players use the strategies ui from the strategy profile u = (u1, . . . , un).

p(ω, u) = p(x1|x0, u) · p(x2|x1, u) · . . . · p(xT |xT−1, u) =
T−1∏

τ=0

p(xτ+1|xτ , u). (1)

Denote by Ω(u) = {ωk(u)|p(ωk, u) > 0} the finite set (or the bundle) of the
trajectories ωk which are generated by strategy profile u ∈ U . Note that for all
ωk(u) ∈ Ω(u), uj(xτ ) = xτ+1 for all xτ ∈ ωk(u) ∩ Pj , j ∈ N , 0 ≤ τ ≤ T − 1.

Let h̃i(ω) =
T∑

τ=0
hi(xτ ) denote the ith player’s vector payoff corresponding

to the trajectory ω = (x0, . . . , xt, xt+1, . . . , xT ).
Denote by

Hi(u) =
∑

ωk∈Ω(u)

p(ωk, u) · h̃i(ωk) =
∑

ωk∈Ω(u)

p(ωk, u) ·
T (k)∑

τ=0

hi(xτ ) (2)

the (expected) value of the ith player’s vector payoff function which corresponds
to the strategy profile u = (u1, . . . , un). Let Ωn+1(u) = {Ω(u) ∩ Pn+1} denote
the set of all terminal nodes of the trajectories ωk(u) ∈ Ω(u).

Remark 1. If the pure strategy profiles u and v generate different bundles Ω(u)
and Ω(v) of the trajectories, i.e., Ω(u) �= Ω(v), then Ωn+1(u) ∩ Ωn+1(v) = ∅.

According to [9,20,27] each intermediate node xt ∈ P \Pn+1 generates a subgame
Γ xt with the subgame tree Kxt and the subgame root xt as well as a factor-game
ΓD with the factor-game tree KD = (K \ Kxt) ∪ {xt}. Decomposition of the
original extensive game Γ xt at node xt onto the subgame Γ xt and the factor-
game ΓD generates the corresponding decomposition of the pure (and mixed)
strategies (see [9] for details).

Let P xt
i (PD

i ), i ∈ N , denote the restriction of Pi on the subgame tree
Kxt(KD), and uxt

i (uD
i ), i ∈ N , denote the restriction of the ith player’s

pure strategy ui(·) in Γ x0 on P xt
i (PD

i ). The pure strategy profile uxt =
(uxt

1 , . . . , uxt
n ) generates the bundle of the subgame trajectories Ωxt(uxt) =

{ωxt

k (uxt)|p(ωxt

k , uxt) > 0}. Similarly to (2), let us denote by

Hxt
i (uxt) =

∑

ω
xt
k ∈Ωxt (uxt )

p(ωxt

k , uxt) ·
T (k)∑

τ=t

hi(xτ ) =
∑

ω
xt
k ∈Ωxt (uxt )

p(ωxt

k , uxt) · h̃i(ωxt

k ) (3)
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the value of the ith player’s vector payoff in Γ xt , and by Uxt
i the set of all possible

ith player’s pure strategies in the subgame Γ xt , Uxt =
∏

i∈N Uxt
i . Note that for

each trajectory ω = (x0, . . . , xt, xt+1, . . . , xT ), 1 � t � T − 1, xT ∈ Pn+1,

p(ω, u) =
t−1∏

τ=0

p(xτ+1|xτ , u) ·
T−1∏

τ=t

p(xτ+1|xτ , u)

= p(ωxt , u) · p(ωxt , u) = p(ωxt , uD) · p(ωxt , uxt),

(4)

where ωxt = (x0, x1, . . . , xt−1, xt) denotes a fragment of trajectory ω imple-
mented before the subgame Γ xt starts, and p(ωxt , u) = p(xt, u) denotes the
probability that node xt is reached when the players employ the strategies ui,
i ∈ N . It is worth noting that factor-game ΓD = ΓD(uxt) is usually defined for
given strategy profile uxt in the subgame Γ xt since we assume that

hD
i (x0, x1, . . . , xt−1, xt) =

t−1∑

τ=0

hi(xτ )+Hxt
i (uxt) = h̃i(ωxt \{xt})+Hxt

i (uxt) (5)

(see, e.g., [9,27] for details). Moreover, given intermediate node xt, the bundle
Ω(u) = {ωk(u)|p(ωk, u) > 0} can be divided in two subsets, i.e. Ω(u) = {Ψm} ∪
{χl}, where xt ∈ Ψm, and xt /∈ χl, {Ψm} ∩ {χl} = ∅. Then, taking (1), (3), (4)
and (5) into account, we get

Hi(u) =
∑

m

p(Ψm, u) · h̃i(Ψm) +
∑

l

p(χl, u) · h̃i(χl)

=
∑

m

p(xt, u) · p(Ψxt
m , uxt) ·

[
h̃i(Ψxt

m \ {xt}) + h̃i(Ψxt
m )

]

+
∑

l

p(χl, u) · h̃i(χl) = p(xt, u
D) · h̃i(x0, . . . , xt−1) ·

∑

m

p(Ψxt
m , uxt)

+ p(xt, u
D) ·

∑

m

p(Ψxt
m , uxt) · h̃i(Ψxt

m ) +
∑

l

p(χl, u) · h̃i(χl)

= p(xt, u
D) · h̃i(x0, . . . , xt−1) + p(xt, u

D) · Hxt
i (uxt)

+
∑

l

p(χl, u) · h̃i(χl) = p(xt, u
D) · hD

i (x0, . . . , xt) +
∑

l

p(χl, u) · h̃i(χl).

(6)
Note that, since Pi = P xt

i ∪ PD
i , one can compose the ith player’s pure strategy

Wi = (uD
i , vxt

i ) ∈ Ui in the original game Γ x0 from her strategies vxt
i ∈ Uxt

i in
the subgame Γ xt and uD

i ∈ UD
i in the factor-game ΓD [9,27].

3 Cooperative Behavior

Let a, b ∈ Rm; we use the following vector preferences: a � b if ak � bk, k =
1, . . . , m; a > b if ak > bk, k = 1, . . . , m; a ≥ b if a � b, and a �= b. The last vector
inequality means that b is Pareto dominated (or Edgeworth-Pareto dominated)
by a (and hence b is called “inefficient”).
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If the players agree to cooperate in the game Γ x0 , first they are expected to
maximize w.r.t. the binary relation ≥ the total vector payoff

∑n
i=1 Hi(u) of the

grand coalition. Let PO(Γ x0) denote the set of all Pareto optimal pure strategy
profiles from U , i.e.:

u ∈ PO(Γ x0) if �v ∈ U :
∑

i∈N

Hi(v) ≥
∑

i∈N

Hi(u).

The set PO(Γ x0) is known to be nonempty and in general it contains multiple
strategy profiles (see, e.g. [27,31] for details). The players need to agree on a
specific rule γ they are going to use to choose a unique optimal cooperative
strategy profile u ∈ PO(Γ x0) as well as the corresponding optimal bundle of
strategies in the game tree. One of such rules that is applicable for a wide
class of multicriteria games with positive payoffs – the minimal sum of relative
deviations (MSRD) rule, – was formally introduced in [16].

Namely, denote by HN/k(u) =
∑

i∈N Hi/k(u) the sum of all players’ pay-
offs w.r.t. the criterion k, hN/k(xτ ) =

∑
i∈N hi/k(xτ ), xτ ∈ P . Let H∗

k =
maxu∈U HN/k(u). The vector (H∗

1 , . . . , H∗
r ) can be interpreted as the vector of

ideal payoffs for the grand coalition N (see, e.g., [19,27,31]).

Definition 1. According to the MSRD rule the players have to choose a Pareto
optimal pure strategy profile u which minimizes the sum of relative deviations
w.r.t. each criterion from ideal payoffs vector H∗. Namely,

r∑

k=1

H∗
k − HN/k(u)

H∗
k

= min
v∈U

r∑

k=1

H∗
k − HN/k(v)

H∗
k

= r − max
v∈U

r∑

k=1

HN/k(v)
H∗

k

,

or

u ∈ arg max
v∈U

r∑

k=1

1
H∗

k

· HN/k(v) = arg max
v∈U

r∑

k=1

μk · HN/k(v), (7)

where μk =
1

H∗
k

> 0, k = 1, . . . , r.

Since different criteria may have different scales a simple sum of absolute
values of all the deviations is a rather rough estimate of the distance from given
Pareto optimal payoffs vector to the vector of ideal payoffs. One approach to
obtain more precise estimate is to sum relative deviations, hence, we need to
divide the absolute deviation H∗

k − HN/k(v) w.r.t. criterion k by the range H∗
k

of this criterion (see [27,31] for details).
Let PO(Γ x0) denote the nonempty set of pure strategy profiles u ∈ U which

satisfy (7). If all strategy profiles u ∈ PO(Γ x0) generate the same bundle of
trajectories Ω(u) (see, e.g., [9,20,27] for discussion on redundancy of the pure
strategy definition in extensive game), let the players choose any strategy profile
u ∈ PO(Γ x0) and Ω(u) denote the corresponding bundle of the trajectories.

Otherwise, i.e. if the strategy profiles from PO(Γ x0) generate different (and
hence, disjoint) bundles of the trajectories, we assume that the players choose
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such u ∈ PO(Γ x0) that Ω(u) = {ωk(u) = (x0, . . . , xT (k) = zl) | p(ωk, u) > 0}
contains the trajectory ω(u) with minimal number l of the terminal node zl (see
Remark 1).

Henceforth, we will refer to the strategy profile u ∈ PO(Γ x0) and the bun-
dle of the trajectories Ω(u) as the optimal cooperative strategy profile and the
optimal bundle of the cooperative trajectories respectively. We will assume in
this paper that all the players have agreed to apply the MSRD rule in order to
choose the optimal cooperative strategy profile u and the corresponding bundle
Ω(u) of cooperative trajectories. Denote by Maxμ

u∈U

∑
i∈N Hi(u) =

∑
i∈N Hi(u)

the maximal (namely in the sense of MSRD rule) total vector payoff.
In the dynamic setting it is necessary that a specific method the players

agreed to accept in order to choose a particular Pareto optimal solution from
PO(Γ x0) satisfies time consistency [6,24,27], i.e., a fragment of the optimal
bundle of the cooperative trajectories in the subgame should remain optimal in
this subgame. Suppose that at every subgame Γ xt , xt ∈ ω(u), ω(u) ∈ Ω(u), i.e.
a subgame along the cooperative trajectories, the players choose the strategy
profile uxt ∈ Uxt such that

uxt ∈ arg max
vxt ∈Uxt

r∑

k=1

μk · Hxt

N/k(vxt), (8)

where the coefficients μk=
1

H∗
k

are the same as in (7). Let PO(Γ xt) denote the set

of all pure strategy profiles uxt ∈Uxt that satisfy (8) and the players use the same
approach to choose a unique optimal cooperative strategy profile uxt ∈PO(Γ xt)
in the subgame as for the original game Γ x0 (minimal number l of the terminal
node zl on the cooperative trajectory ωxt ∈Ω(uxt) generated by uxt).

Proposition 1. A Pareto optimal solution for Γ x0 ∈ MGcm(n, r) based on the
MSRD rule satisfies time consistency. Namely, let u ∈ U satisfies (7), and Ω(u)
be the optimal bundle of cooperative trajectories. Then for each subgame Γ xt ,
xt ∈ ω(u) = (x0, . . . , xt, xt+1, . . . , xT ) with x0 = x0, ω(u) ∈ Ω(u), it holds that

uxt = (ūxt
1 , . . . , ūxt

n ) ∈ arg max
vxt∈Uxt

r∑

k=1

μk · Hxt

N/k(vxt), (9)

while ωxt = (x̄t, x̄t+1, . . . , x̄T ) ∈ Ω(uxt), i.e. ωxt belongs to the optimal bundle
of cooperative trajectories in the subgame Γ xt .

Proof. The optimal bundle of cooperative trajectories Ω(u) generated by u ∈
PO(Γ x0) can be divided onto two subsets {Ψm} = {ω ∈ Ω(u) | xt ∈ ω} and
{χl} = {ω ∈ Ω(u) | xt /∈ ω} while {Ψm} ∩ {χl} = ∅, {Ψm} ∪ {χl} = Ω(u). Then,
taking (5) and (6) into account we get
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Hi/k(u) =
∑

m

p(Ψm, u) · h̃i/k(Ψm) +
∑

l

p(χl, u) · h̃i/k(χl)

= p(xt, u) ·
[
h̃i/k(x0, x1, . . . , xt−1) + Hxt

i/k
(uxt )

]
+

∑

l

p(χl, u
D) · h̃i/k(χl),

(10)

and (7) takes the form

r∑

k=1

μk · HN/k(u) =
r∑

k=1

μk ·
[

p(xt, u) ·
(
h̃N/k(x0, x1, . . . , xt−1) + Hxt

N/k(uxt)
)

+
∑

l

p(χl, u
D) · h̃N/k(χl)

]

= max
v∈U

r∑

k=1

μk · HN/k(v). (11)

Suppose that uxt does not satisfy (9), i.e. there exists vxt ∈ Uxt such that

r∑

k=1

μk · Hxt

N/k(uxt) <

r∑

k=1

μk · Hxt

N/k(vxt). (12)

Denote by Ω(vxt) = {λxt
m = (xt, . . . , xT (m)) | p(λxt

m , vxt) > 0} the bundle of all
trajectories in the subgame Γ xt generated by vxt . Then (12) takes the form

r∑

k=1

μk ·
[
∑

m

p(Ψxt
m , uxt) · h̃xt

N/k(Ψxt
m )

]

<
r∑

k=1

μk ·
[
∑

m

p(λxt
m , vxt) · h̃xt

N/k(λxt
m )

]

.

(13)
Denote by Wi = (ūD

i , vxt
i ), i ∈ N , the ith player’s compound pure strat-

egy in Γ x0 . The strategy profile W = (W1, . . . , Wn) generates the strategy
bundle Ω(W ) that can be divided onto two disjoint subsets {λm} = {ω ∈
Ω(W ) | xt ∈ ω} and {χl} = {ω ∈ Ω(W ) | xt /∈ ω}, where the second sub-
set for Ω(W ) coincides with the second subset for Ω(u) since WD = uD, and
λm = (x0, . . . , xt) ∪ (xt, . . . , xT (m)) = (x0, . . . , xt) ∪ λxt

m .

Adding
r∑

k=1

μk · h̃N/k(x0, x1 . . . , xt−1) to both sides of (13) we get

r∑

k=1

μk

(
h̃N/k(x0, . . . , xt−1) + Hxt

N/k
(uxt )

)
<

r∑

k=1

μk

(
h̃N/k(x0, . . . , xt−1) + Hxt

N/k
(vxt )

)
.

(14)
Then we can multiply both sides of (14) on p(xt, u) = p(xt, u

D) = p(xt,W
D) =

p(xt,W ) > 0 and rearrange the terms to obtain

r∑

k=1

μk

[
p(xt, u) ·

(
h̃N/k(x0, . . . , xt−1) + Hxt

N/k(uxt)
)]

<

r∑

k=1

μk

[
p(xt,W ) ·

(
h̃N/k(x0, . . . , xt−1) + Hxt

N/k(vxt)
)]

.



192 D. Kuzyutin et al.

Finally, adding
∑r

k=1 μk·∑
l

p(χl, u
D)·h̃N/k(χl) to both sides of the last inequality

and taking into account (4)–(6) and (11) for some W ∈ U we get

r∑

k=1

μk · HN/k(u) <
r∑

k=1

μk · HN/k(W )

The last inequality contradicts the fact that u ∈ PO(Γ x0), hence (9) is valid.
Arguing in a similar way (for the case when different strategy profiles from

PO(Γ xt) generate different bundles of the trajectories) we can verify that
ωxt = (xt, . . . , xT )—a fragment of the cooperative trajectory ω ∈ Ω(u), start-
ing at xt—remains the cooperative trajectory in the subgame Γ xt , i.e. ωxt ∈
Ω(uxt). 
�

When the players have agreed to choose optimal cooperative strategy profile
u = (ū1, . . . , ūn) that generates the optimal bundle Ω(u) of cooperative trajecto-
ries in Γ x0 ∈MGcm(n, r), the next step of cooperation is to define a vector-valued
characteristic function V x0(S). We adopt here a novel approach, proposed in [4],
i.e. we assume that when coalition S forms, the players i ∈ S use cooperative
strategies ūi while the left-out players j ∈ N \ S seek to minimize (in the sense
of MSRD rule) the total payoffs vector of the players from coalition S. Let

Minμ

uj ,j∈N\S

∑

i∈S

Hi(ūS , uN\S) =
∑

i∈S

Hi(ūS , uN\S)

denote the minimal (in the sense of MSRD rule) total payoffs vector for coalition
S. Then, this so-called ζ-characteristic function takes the form:

V x0(S) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0̄ ∈ Rr, S = ∅,

Minμ

uj ,j∈N\S

∑

i∈S

Hi(ūS , uN\S), S ⊂ N,

Maxμ

u∈U

∑

i∈N

Hi(u), S = N.

(15)

Note that ζ-vector-valued characteristic function is relatively friendly com-
putable and is proved to satisfy the weak superadditivity property for coop-
erative multistage multicriteria games without chance moves [16]. The charac-
teristic function V xt for the subgame Γ xt , xt ∈ ωm(u) = (x0, . . . , xt, . . . , xT (m)),
ωm(u) ∈ Ω(u) along the optimal bundle of cooperative trajectories can be con-
structed using the same approach as in (15). Note that

V xt(N) =
∑

ω
xt
m ∈Ω(uxt )

p(ωxt
m , uxt) ·

T (m)∑

τ=t

∑

i∈N

hi(xτ ). (16)

Let Γ x0 (N,V x0) denote multicriteria cooperative game Γ x0 ∈ MGcm(n, r) with
vector-valued characteristic function (15), and Γ xt

(
N,V xt

)
denote the corre-

sponding subgame.
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Definition 2. ([30,35]) The Shapley value of multicriteria game Γ x0(N,V x0)
denoted by ϕx0 is defined for every player i ∈ N as

ϕx0
i =

∑

S⊂N,i∈S

(n − |S|)!(|S| − 1)!
n!

(V x0(S) − V x0(S \ {i})). (17)

Remark 2. ([30,35]) The Shapley value in a multicriteria cooperative game was
proved to satisfy the efficiency property, i.e.:

n∑

i=1

ϕx0
i = V x0(N) =

∑

ωm∈Ω(u)

p(ωm, u) ·
T (m)∑

τ=0

∑

i∈N

hi(xτ ). (18)

Denote by
(
ϕxt

i

)
i∈N

the Shapley value in Γ xt
(
N,V xt

)
, xt ∈ ωm(u), ωm(u) ∈

Ω(u), t = 0, . . . , T (m).

4 Sustainability of the Shapley Value

Let β = {βi/k(xτ )}, i = 1, . . . , n; k = 1, . . . , r; τ = 1, . . . , T (l), x(τ) ∈ ωl(u),
ωl(u) ∈ Ω(u) denote the Imputation Distribution Procedure (IDP) for the Shap-
ley value

(
ϕx0

i

)
i∈N

or the payment schedule (see, i.e., [7,11,13,16,21,22,25,27,
28,33] for details). The IDP approach means that all the players have agreed to
allocate the total cooperative vector payoff V x0(N) between the players along
the optimal bundle Ω(u) of cooperative trajectories ωl(u) according to some
specific rule called IDP. Namely, βi/k(xτ ) denotes the actual current payment
that the player i receives at node xτ w.r.t. criterion k (instead of hi/k(xτ )) if
the players employ the IDP β. Moreover, one can design such an IDP β that all
the players will be interested in cooperation at any intermediate time, i.e. in any
subgame Γ xτ , x(τ) ∈ ωl(u), ωl(u) ∈ Ω(u).

Definition 3. ([13,22,33]) The IDP β = {βi/k(xτ )} satisfies the efficiency con-
dition at initial node x0 if

∑

ωm∈Ω(u)

p(ωm, u) ·
T (m)∑

τ=0

βi(x̄τ ) = ϕx0
i , i = 1, . . . , n. (19)

Equation (19) means that the expected sum of the payments to player i along
the optimal game evolution equals to what she is entitled to in the whole game
Γ x0 . Then the IDP for each player can be reasonably interpreted as a rule for
step-by-step allocation of the ith player’s optimal payoff.

Definition 4. ([13]) The IDP β = {βi/k(xτ )} satisfies the strict balance condi-
tion if for each node x̄τ ∈ ωm(u), ωm(u) ∈ Ω(u) ∀t = 0, . . . , T (m);∀k = 1, . . . , r

∑

i∈N

βi/k(x̄τ ) =
∑

i∈N

hi/k(x̄τ ). (20)
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Equation (20) ensures the “admissibility” of the IDP, i.e. the sum of payments
to the players in any node x̄τ is equal to the sum of payoffs that they can collect
in this node.

The next advantageous dynamic property of an IDP—the time consistency,
introduced in [25]—was extended to multicriteria cooperative games (without
chance moves) in [11,13,15,16].

To write down properly the time consistency condition for some intermediate
node xt ∈ ω(u) = (x̄0, x̄1, . . . , x̄t−1, x̄t, x̄t+1, . . . , x̄T ), ω(u) ∈ Ω(u), 1 � t < T , in
multistage game Γ x0 with chance moves we need to pay attention to all chance
nodes on the path (x̄0, . . . , x̄t−1) = ωxt \ {xt}.

Namely, let us numerate the chance nodes from P0 ∩ (ωxt \ {xt}) in order of
their occurrence on the path (x̄0, . . . , x̄t−1), i.e. y1 = xt(1), y2 = xt(2), . . . , yθ =
xt(θ), 0 � t(1) < t(2) < . . . < t(θ) < t.

Definition 5. The IDP β = {βi/k(xτ )} for the Shapley value ϕx0 is called time
consistent in the whole game Γ x0 (N,V x0) ∈ MGcm(n, r) if at any intermediate
node xt ∈ ω(u), ω(u) ∈ Ω(u), 1 � t < T , for all i ∈ N , it holds that

case θ = 0 (no chance nodes on the path (x̄0, . . . , x̄t−1)):

t−1∑

τ=0

βi(xτ ) + ϕxt
i = ϕx0

i , (21)

case θ = 1 (only one chance node y1 = xt(1) before x̄t):

t(1)∑

τ=0

βi(xτ ) + p(xt(1)+1, u) ·
⎧
⎨

⎩

t−1∑

τ=t(1)+1

βi(xτ ) + ϕxt
i

⎫
⎬

⎭ +
∑

xk∈S(xt(1))\{xt(1)+1}
p(xk, u) ·ϕxk

i = ϕx0
i ,

(22)
case θ = 2 (two chance nodes y1 = xt(1), y2 = xt(2) before x̄t):

t(1)∑

τ=0

βi(xτ ) + p(xt(1)+1, u) ·
{

t(2)∑

τ=t(1)+1

βi(xτ ) + p(xt(2)+1 | xt(2), u)

×
⎡

⎣
t−1∑

τ=t(2)+1

βi(xτ ) + ϕxt
i

⎤

⎦+
∑

xm∈S(xt(2))\{xt(2)+1}
p(xm | xt(2), u) · ϕxm

i

}

+
∑

xk∈S(xt(1))\{xt(1)+1}
p(xk, u) · ϕxk

i = ϕx0
i ,

(23)

. . .
Note that for partial case when xt ∈ S(xt(1)), i.e. if xt follows the chance

node xt(1) Eq. (22) takes the simpler form

t(1)∑

τ=0

βi(xτ ) +
∑

xk∈S(xt(1))

p(xk, u) · ϕxk

i = ϕx0
i .
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Similar note is valid for Eq. (23) etc.
Roughly speaking, Definition 5 implies that the payments collected by the ith

player (according to the payment schedule β) before reaching some intermediate
node xt plus the expected ith player’s component of the Shapley value in the
subgame Γ xt starting at xt plus this player’s expected Shapley value components
in other subgames along the cooperative trajectories which do not contain xt

corresponds to what the player i is entitled to in the original game Γ x0 (N,V x0).
Let us use the following example to clarify Definition 5 and then to demon-

strate the properties of the incremental IDP (see Definition 6 below).

x0 x1

x12 x3 x24 x5 x6 = z10

z1
x22

z3

z4

z2 x14 = z5

x34

z7

z6

z8 z9

Fig. 1. The game tree.

Example 1. (A 3-player multistage game tree with chance moves).
Let P0 = {x1, x3}, P1 = {x0, x

2
4}, P2 = {x1

2, x5}, P3 = {x2
2, x

3
4},

Pn+1 = {z1, . . . , z10}. Suppose that the optimal bundle Ω(u) of coopera-
tive trajectories contains four trajectories (marked in bold in Fig. 1): ω1 =
(x0, x1, x

1
2, x3, x

2
4, x5, x6), ω2 = (x0, x1, x

2
2, z3), ω3 = (x0, x1, x

1
2, x3, x

1
4) and

ω4 = (x0, x1, x
1
2, x3, x

3
4, z7).

The time consistency conditions for player i ∈ N at nodes x1, x3 and x5

according to (21), (22) and (23) take the form:

βi(x0) + ϕx1
i = ϕx0

i ,

βi(x0) + βi(x1) + p(x1
2, u)

{
βi(x1

2) + ϕx3
i

}
+ p(x2

2, u) · ϕ
x2
2

i = ϕx0
i ,

βi(x0) + βi(x1) + p(x1
2, u)

{
βi(x1

2) + βi(x3) + p(x2
4|x3, u) · [βi(x2

4) + ϕx5
i

]

+ p(x1
4|x3, u) · ϕ

x1
4

i + p(x3
4|x3, u) · ϕ

x3
4

i

}
+ p(x2

2, u) · ϕ
x2
2

i = ϕx0
i .

The review of different IDP for multicriteria games (without chance moves)
as well as the analysis of their properties can be found in [11,13,15,16]. In
this paper we introduce a refinement of so-called incremental IDP (see, e.g.,
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[13,15,16,22,25,33]) that can be applied in multicriteria multistage games with
chance moves to ensure the sustainability of a cooperative agreement.

Definition 6. The incremental IDP for the Shapley value ϕx0 in multicriteria
multistage game with chance moves Γ x0 is defined as follows:

βi(xt) = ϕxt
i −

∑

xk
t+1∈S(xt)

p(xk
t+1|xt, u) · ϕ

xk
t+1

i (24)

for xt ∈ ωl(u) = (x0, . . . , xt, . . . , xT (l)), ωl(u) ∈ Ω(u), t = 0, . . . , T (l) − 1, and

βi(xT (l)) = ϕ
xT (l)
i (25)

for xT (l) ∈ Ω(u) ∩ Pn+1.

Remark 3. Formulae (24), (25) are similar to the imputation distribution pro-
cedures suggested in [22,23,33] for (single-criterion) stochastic discrete-time
dynamic games played over event trees. If xt ∈ Pi, i = 1, . . . , n Eq. (24) takes
the simpler form βi(xt) = ϕxt

i − ϕ
xt+1
i , where ui(xt) = xt+1, that coincides with

the “classical” incremental IDP.

Proposition 2. The incremental IDP (24), (25) satisfies strict balance condi-
tion (20), the efficiency condition at initial node (19), and the time consistency
conditions (21)–(23) in the whole game Γ x0 ∈ MGcm(n, r).

Proof. To verify that incremental IDP β satisfies strict balance condition (20)
at any node xt ∈ ωm(u) = (x1, . . . , xt, xt+1, . . . , xT (m)), ωm(u) ∈ Ω(u) first
consider the case when xt ∈ Pi, i = 1, . . . , n. Note that ui(xt) = xt+1, ωxt

m =
{xt} ∪ ω

xt+1
m and p(ωxt+1

m , uxt+1) = p(ωxt
m , uxt) since p(xt+1|xt, u) = 1. Then,

taking into account (3) and (16) we get
∑

i∈N

βi(xt) =
∑

i∈N

ϕxt
i −

∑

i∈N

ϕ
xt+1
i = V xt − V xt+1

=
∑

ω
xt
m ∈Ω(uxt )

p(ωxt
m , uxt) · (hN (xt) + hN (xt+1) + . . . + hN (xT (m))

)

−
∑

ω
xt+1
m ∈Ω(uxt+1 )

p(ωxt+1
m , uxt+1) · (hN (xt+1) + . . . + hN (xT (m))

)

= hN (xt) ·
∑

ω
xt
m ∈Ω(uxt )

p(ωxt
m , uxt) =

∑

i∈N

hi(xt).

Arguing in a similar way for the case when xt ∈ P0 one can verify that (20) is
satisfied for the chance nodes as well.

The proof that IDP (24), (25) satisfies efficiency (19) and time-consistency
conditions (21)–(23) is based on direct calculations but rather cumbersome in
general case (i.e., for arbitrary game Γ x0). Let us demonstrate how it works for
the game in Example 1. For instance we verify that the incremental IDP satisfies
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the time consistency conditions at node x3. Note that βi(x0) = ϕx0
i − ϕx1

i ,

βi(x1) = ϕx1
i −

(
p(x1

2, u) · ϕ
x1
2

i + p(x2
2, u) · ϕ

x2
2

i

)
, β

x1
2

i = ϕ
x1
2

i − ϕx3
i .

Then, Eq. (22) takes the form

(
ϕx0

i − ϕx1
i

)
+
{

ϕx1
i −

(
p(x1

2, u) · ϕ
x1
2

i + p(x2
2, u) · ϕ

x2
2

i

)}

+ p(x1
2, u) ·

{(
ϕ

x1
2

i − ϕx3
i

)
+ ϕx3

i

}
+ p(x2

2, u) · ϕ
x2
2

i = ϕx0
i .


�
According to Proposition 2, the incremental payment schedule (24), (25)

can be used to implement a long-term cooperative agreement in a multistage
multicriteria game with chance moves.

5 Conclusion

In the paper we adopt a novel ζ-vector-valued characteristic function. It is
friendly computable and is proved to satisfy a number of good properties [4,16].
Note that the obtained results do not depend on the particular approach which
the players use to construct a vector-valued characteristic function.

We assume that the players use the Shapley value as an allocation mecha-
nism to divide the total cooperative vector payoff at each subgame. However,
it is worth noting that Proposition 2 remains valid if the players use another
cooperative single-valued solution satisfying the efficiency property (18).
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Abstract. A one-dimensional differential game is considered, in which
the payoff is determined by the modulus of the deviation of the phase
variable at a fixed time from the set value, taking into account the peri-
odicity. The first player seeks to minimize the payoff. The goal of the
second player is the opposite. For this problem, the price of the game is
calculated and optimal player controls are constructed. As an example,
we consider the problem of controlling a rotational mechanical system
in which the goal of the first player acquires the meaning of minimizing
the modulus of deviation of the angle from the desired state.

Keywords: Control · Differential game · Payoff

1 Introduction

The linear differential game with a given duration, using a linear change of
variables [6], can be reduced to the form, in which the dynamics of the new
system is determined by the sum of player controls with values that belong to
time-dependent sets. In the case when in a linear differential game the quality
criterion is defined as the value of the modulus of a linear function at a fixed time
moment, using a linear change of variables, we obtain a single-type differential
game, in which the sets of player controls are segments that depend on time (see
as example [4,5]). In general case, in these problems, the vectograms of player
controls are balls with time-dependent radii. Differential games that have this
type of dynamics after change of variables, are considered, for example, in [3]
and [9]. For differential games of this type, if the target set is a ball of a fixed
radius, the alternating integral is constructed in [9]. In [10], optimal controls of
players are found. In addition, in [10], a variant of this problem was considered
with a terminal payoff determined by the norm of the phase vector at a fixed
time moment. For this variant of the problem, the price of the game was found,
and the corresponding optimal player controls were constructed.
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In [5,11], we consider single-type differential games with non-convex terminal
sets. In [11], the terminal set is determined by the condition of belonging the
norm of a phase vector to a segment with positive ends. In this paper, a set
defined by this condition is called a ring. In [5], the terminal set is the union of
an infinite number of disjoint segments of equal length. This terminal set has
the meaning of ε-neighbourhood of the target position of the system, taking into
account the periodicity.

In present paper, continuing the research begun in [5], we consider a linear
differential game with a non-convex payoff, which is determined using the mod-
ulus of a linear function of the phase vector. Using a linear change of variables,
this linear differential game reduced to a single-type one-dimensional differential
game. After change of variables, the game payoff takes the form of the modulus
of the deviation of the new one-dimensional variable at a fixed time moment
from the given value, taking into account the periodicity. The goal of the first
player is to minimize this payoff. The goal of the second player is the opposite.
For this problem, the price of the game is calculated, and the corresponding
optimal player controls are constructed.

The obtained results can find application in solving problems of controlling
rotational mechanical systems (see as example [1,2,4,5,12]) with uncontrolled
disturbance, in which the control goal in the original problem acquires the mean-
ing of minimizing the modulus of deviation of the angle from the desired state.

In this paper, as an example of illustrating the theory, we consider a modifica-
tion of the problem of the turning of a ship [8, p. 103–104] on which uncontrolled
external forces act.

2 Problem Statement

Consider antagonistic differential game

ẋ = A(t)x − ξ + η, x(t0) = x0; x ∈ IRn, t ≤ p. (1)

Here, control of the first player is ξ ∈ W ⊂ IRn, control of the second player is
η ∈ F ⊂ IRn, where W and F are connected compacts; A(t) is a matrix with
corresponding dimension whose elements are continuous for t0 ≤ t ≤ p functions.

Define payoff as follows

min
i∈I

|〈ψ0, x(p)〉 − α∗ − iα| → min
ξ

max
η

. (2)

Here, 〈·, ·〉 denotes the scalar product in IRn, I = 0,±1,±2,±3, . . .. Vector ψ0 ∈
IRn and numbers α∗, α ∈ IR are given.

Reduce this problem to one-dimensional single-type differential game.
Denote by ψ(t) the solution of the Cauchy problem

ψ̇(t) = −A∗(t)ψ(t), ψ(p) = ψ0; t ≤ p. (3)

Here, A∗(t) denotes the transposed of matrix A(t).
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Denote

a−(t) = min
ξ

〈ψ(t), ξ〉, a+(t) = max
ξ

〈ψ(t), ξ〉, ξ ∈ W ;

b−(t) = min
η

〈ψ(t), η〉, b+(t) = max
η

〈ψ(t), η〉, η ∈ F.

Then connectivity of compacts W and F imply [7, p. 333–334, Theorem 4]
that

〈ψ(t), ξ〉 =
a+(t) + a−(t)

2
+ a(t)u, |u| ≤ 1, a(t) =

a+(t) − a−(t)
2

≥ 0;

〈ψ(t), η〉 =
b+(t) + b−(t)

2
+ b(t)v, |v| ≤ 1, b(t) =

b+(t) − b−(t)
2

≥ 0.

Introduce a new one-dimensional variable

z = 〈ψ(t), x〉 +
1
2

∫ p

t

(b+(r) + b−(r) − a+(r) − a−(r))dr − α∗.

Differentiate z:

ż = 〈−A∗(t)ψ(t), x〉 + 〈ψ(t), A(t)x − ξ + η〉 +
1
2
(a+(t) + a−(t) − b+(t) − b−(t)).

Given equality 〈ψ(t), A(t)x〉 = 〈A∗(t)ψ(t), x〉, the problem (1), (2) can be written
as follows

ż = −a(t)u + b(t)v, |u| ≤ 1, |v| ≤ 1, min
i∈I

|z(p) − iα| → min
u

max
v

. (4)

Further, for the completeness of the exposition we assume that the functions
a(t) ≥ 0 and b(t) ≥ 0 are summable on each segment of the semiaxis (−∞, p].

Admissible controls of players are arbitrary function, which satisfy inequali-
ties

|u(t, z)| ≤ 1, |v(t, z)| ≤ 1, t ≤ p, z ∈ IR. (5)

Fix the initial state t0 < p, z(t0) ∈ IR and the time moment t0 < t∗ ≤ p.
Take partition

ω : t0 < t1 < . . . < ti < ti+1 < . . . < tk < tk+1 = t∗

with diameter d(ω) = max(ti+1 − ti), i = 0, k. Construct polygonal line for
Eq. (4)

zω(t) = zω(ti) −
(∫ t

ti

a(r)dr

)
u(ti, zω(ti)) +

(∫ t

ti

b(r)dr

)
v(ti, zω(ti)) (6)

for ti < t ≤ ti+1. Here, zω(t0) = z(t0).
The motion of the system z(t) realized with admissible controls (5) from the

initial state z(t0) is defined as any uniform limit of the sequence of the polygonal
lines (6), for which diameters of partition tend to zero.
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3 Main Result

Denote
f(t) =

∫ p

t

(a(r) − b(r))dr

for t ≤ p.
Define function G(t, z) for t ≤ p and z ∈ IR as follows:

G(t, z) = max
{

min
i∈I

|z − iα| − f(t);− min
t≤τ≤p

f(τ)
}

, (7)

if

max
{

min
i∈I

|z − iα| − f(t);− min
t≤τ≤p

f(τ)
}

<
α

2
− max

t≤τ≤p
f(τ); (8)

G(t, z) =
α

2
− max

t≤τ≤p
f(τ), (9)

if

− min
t≤τ≤p

f(τ) <
α

2
− max

t≤τ≤p
f(τ) and

α

2
− max

t≤τ≤p
f(τ) ≤ min

i∈I
|z − iα| − f(t); (10)

G(t, z) =
α

2
− max

t∗≤τ≤p
f(τ) = − min

t∗≤τ≤p
f(τ), (11)

where

t∗ = min
{

r ∈ [t, p] : − min
s≤τ≤p

f(τ) ≤ α

2
− max

s≤τ≤p
f(τ) for all s ∈ [r, p]

}
, (12)

if
α

2
− max

t≤τ≤p
f(τ) ≤ − min

t≤τ≤p
f(τ). (13)

Lemma 1. For all z ∈ IR and α > 0 equality

min
i∈I

|z − iα| + min
i∈I

|z − (i + 0.5)α| =
α

2
(14)

holds.

Corollary 1. For all z ∈ IR and α > 0 inequality

min
i∈I

|z − iα| ≤ α

2

holds.

Theorem 1. There exists control of the first player that guarantees the inequality

min
i∈I

|z(p) − iα| ≤ G(t0, z(t0)). (15)
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Proof. Case 1. Let G(t0, z(t0)) be defined by formula (7).
Fix i∗ ∈ I such that

min
i∈I

|z(t0) − iα| = |z(t0) − i∗α|. (16)

Let’s change of the variable
z∗ = z − i∗α

and consider differential game

ż∗ = −a(t)u + b(t)v, |u| ≤ 1, |v| ≤ 1, |z∗(p)| → min
u

max
v

.

In [10], for this game, it was proved that control of the first player

u(t, z∗) = sign z∗

guarantees the inequality

|z∗(p)| ≤ max
{

|z∗(t0)| − f(t0);− min
t0≤τ≤p

f(τ)
}

.

Making the inverse change of variables, we obtain that control

u(t, z) = sign (z − i∗α)

guarantees the inequality

|z(p) − i∗α| ≤ max
{

|z(t0) − i∗α| − f(t0);− min
t0≤τ≤p

f(τ)
}

.

Further, using (16) and inequality

min
i∈I

|z(p) − iα| ≤ |z(p) − i∗α|,

we obtain inequality (15):

min
i∈I

|z(p) − iα| ≤ max
{

min
i∈I

|z(t0) − iα| − f(t0);− min
t0≤τ≤p

f(τ)
}

= G(t0, z(t0)).

Case 2. Let G(t0, z(t0)) be defined by formula (9).
Take t∗ ∈ [t0, p] such that

max
t0≤τ≤p

f(τ) = f(t∗). (17)

Further, acting similarly to case 1, we obtain that for any realized z(t∗)
there is a control of the first player on the segment [t∗, p], which guarantees the
inequality

min
i∈I

|z(p) − iα| ≤ max
{

min
i∈I

|z(t∗) − iα| − f(t∗);− min
t∗≤τ≤p

f(τ)
}

.
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Let
min
i∈I

|z(t∗) − iα| − f(t∗) ≥ − min
t∗≤τ≤p

f(τ).

Using Corollary 1 and (17), we obtain

min
i∈I

|z(t∗) − iα| − f(t∗) ≤ α

2
− max

t0≤τ≤p
f(τ) = G(t0, z(t0)).

Let
min
i∈I

|z(t∗) − iα| − f(t∗) < − min
t∗≤τ≤p

f(τ).

Using first inequality from (10), we obtain

− min
t∗≤τ≤p

f(τ) ≤ − min
t0≤τ≤p

f(τ) <
α

2
− max

t0≤τ≤p
f(τ) = G(t0, z(t0)).

Case 3. Let G(t0, z(t0)) be defined by formula (11), in which t∗ is defined by
formula (12).

Take t∗ ∈ [t∗, p] such that

max
t∗≤τ≤p

f(τ) = f(t∗). (18)

Further, acting similarly to case 1, we obtain that for any realized z(t∗)
there is a control of the first player on the segment [t∗, p], which guarantees the
inequality

min
i∈I

|z(p) − iα| ≤ max
{

min
i∈I

|z(t∗) − iα| − f(t∗);− min
t∗≤τ≤p

f(τ)
}

.

Let
min
i∈I

|z(t∗) − iα| − f(t∗) ≥ − min
t∗≤τ≤p

f(τ).

Using Corollary 1 and (18), we obtain

min
i∈I

|z(t∗) − iα| − f(t∗) ≤ α

2
− max

t∗≤τ≤p
f(τ) = G(t0, z(t0)).

Let
min
i∈I

|z(t∗) − iα| − f(t∗) < − min
t∗≤τ≤p

f(τ).

Then
− min

t∗≤τ≤p
f(τ) ≤ − min

t∗≤τ≤p
f(τ) = G(t0, z(t0)).

The theorem is proved.

Remark 1. The control constructed in the proof of Theorem 1 is positional con-
trol with memory, since for t̂ > t its value depends on the value z(t̂) of the phase
variable realized at time moment t̂ (t̂ = t0 in the Case 1, t̂ = t∗ in the Case 2,
t̂ = t∗ in the Case 3).
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Theorem 2. There exists control of the second player that guarantees the
inequality

min
i∈I

|z(p) − iα| ≥ G(t0, z(t0)). (19)

Proof. Consider auxiliary differential game

ż = −a(t)u + b(t)v, |u| ≤ 1, |v| ≤ 1, min
i∈I

|z(p) − (i + 0.5)α| → min
v

max
u

.

Acting similarly to proof Theorem 1, we obtain that there is control of the second
player that guarantees fulfilment following inequalities:

min
i∈I

|z(p) − (i + 0.5)α| ≤ max

{
min
i∈I

|z(t0) − (i + 0.5)α| + f(t0);− min
t0≤τ≤p

(−f(τ))

}
, (20)

if

max
{

min
i∈I

|z(t0) − (i + 0.5)α| + f(t0);− min
t0≤τ≤p

(−f(τ))
}

<
α

2
− max

t0≤τ≤p
(−f(τ));

(21)
min
i∈I

|z(p) − (i + 0.5)α| ≤ α

2
− max

t0≤τ≤p
(−f(τ)), (22)

if
− min

t0≤τ≤p
(−f(τ)) <

α

2
− max

t0≤τ≤p
(−f(τ)) (23)

and
α

2
− max

t0≤τ≤p
(−f(τ)) ≤ min

i∈I
|z(t0) − (i + 0.5)α| + f(t0); (24)

min
i∈I

|z(p) − (i + 0.5)α| ≤ α

2
− max

t∗≤τ≤p
(−f(τ)), (25)

where

t∗ = min
{

r ∈ [t0, p] : − min
s≤τ≤p

(−f(τ)) ≤ α

2
− max

s≤τ≤p
(−f(τ)) for all s ∈ [r, p]

}
,

(26)
if

α

2
− max

t0≤τ≤p
(−f(τ)) ≤ − min

t0≤τ≤p
(−f(τ)). (27)

Note also that

min
t≤τ≤p

(−f(τ)) = − max
t≤τ≤p

f(τ) and max
t≤τ≤p

(−f(τ)) = − min
t≤τ≤p

f(τ). (28)

Case 1. Let inequality (21) holds.
Case 1.1. Let

min
i∈I

|z(t0) − (i + 0.5)α| + f(t0) ≤ − min
t0≤τ≤p

(−f(τ)).

Using Lemma 1 and (28), rewrite this inequality, (20) and (21), respectively, as
follows:

α

2
− max

t0≤τ≤p
f(τ) ≤ min

i∈I
|z(t0) − iα| − f(t0),
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α

2
− max

t0≤τ≤p
f(τ) ≤ min

i∈I
|z(p) − iα|,

− min
t0≤τ≤p

f(τ) <
α

2
− max

t0≤τ≤p
f(τ).

From here we obtain (19), where G(t0, z(t0)) is defined by formulas (9) and (10).
Case 1.2. Let

min
i∈I

|z(t0) − (i + 0.5)α| + f(t0) > − min
t0≤τ≤p

(−f(τ)).

Using Lemma 1 and (28), rewrite this inequality, (20) and (21), respectively, as
follows:

α

2
− max

t0≤τ≤p
f(τ) > min

i∈I
|z(t0) − iα| − f(t0),

min
i∈I

|z(t0) − iα| − f(t0) ≤ min
i∈I

|z(p) − iα|,

− min
t0≤τ≤p

f(τ) < min
i∈I

|z(t0) − iα| − f(t0).

From here we obtain (19), where G(t0, z(t0)) is defined by formulas (7) and (8).
Case 2. Let inequalities (23) and (24) hold.
Using Lemma 1 and (28), rewrite (22), (23) and (24), respectively, as follows:

− min
t0≤τ≤p

f(τ) ≤ min
i∈I

|z(p) − iα|,

α

2
− max

t0≤τ≤p
f(τ) > − min

t0≤τ≤p
f(τ),

− min
t0≤τ≤p

f(τ) ≥ min
i∈I

|z(t0) − iα| − f(t0).

From here we obtain (19), where G(t0, z(t0)) is defined by formulas (7) and (8).
Case 3. Let inequality (27) holds. Definition of t∗ (26) implies equality

− min
t∗≤τ≤p

(−f(τ)) =
α

2
− max

t∗≤τ≤p
(−f(τ)).

Further, using this, Lemma 1 and (28), we obtain the following. Inequality
(25) takes the form

min
i∈I

|z(p) − iα| ≥ α

2
− max

t∗≤τ≤p
f(τ).

Formulas (26) and (27) take the form (12) and (13) for t = t0, respectively. Thus,
we obtain (19).

The theorem is proved.

Corollary 2. Theorem 1 and Theorem 2 imply that G(t0, z(t0)) is the price of
game in problem (4).
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4 Example

Let us consider a modification of the problem of the turning of a ship [8, p. 103–
104] on which uncontrolled external forces act.

Fig. 1. The problem of the turning of a ship.

Write down the equation of rotation of the ship around a vertical axis, passing
through its center of mass perpendicular to the plane of the figure (see Fig. 1).
We neglect lateral drift of the ship during its turns. We assume that the value
of the ship’s speed is constant. Then

Jθ̈ = −βθ̇ + M(φ) + N.

Here, θ is the deviation angle from the horizontal axis; J is the moment of inertia
of the ship relative to its vertical axis; value βθ̇ corresponds to the moment of
friction viscosity forces, and β > 0 is the coefficient of viscous friction; M(φ) is
the moment of forces created by the steering wheel; φ is the steering angle; N is
the moment of uncontrolled external forces. M(φ) and N are bounded:

|M(φ)| ≤ M∗, M∗ > 0; |N | ≤ N∗, N∗ > 0.

The goal of control is to minimize value

min
i∈I

|θ(p) − θ∗ − 2πi|.

Here, θ∗ is an angle corresponding to the desired direction; p is the end time
moment.

Denote

x1 = θ, x2 = θ̇, k =
β

J
, γ =

M∗
J

, ξ =
M(φ)
M∗

, δ =
N∗
J

, η =
N

N∗
.

Write down the considered problem as problem (1)
(

ẋ1

ẋ2

)
=

(
0 1
0 −k

)(
x1

x2

)
+

(
0
γ

)
ξ +

(
0
δ

)
η, |ξ| ≤ 1, |η| ≤ 1
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with quality criterion (2)

min
i∈I

|x1(p) − θ∗ − 2πi| → min
ξ

max
η

,

where

α = 2π, ψ0 =
(

1
0

)
.

Further, reduce this problem to one-dimensional single-type problem.
We write down Cauchy problem (3)

(
ψ̇1

ψ̇2

)
=

(
0 0

−1 k

)(
ψ1

ψ2

)
, ψ1(p) = 1, ψ2(p) = 0

and find its solution

ψ1(t) = 1, ψ2(t) =
1
k

(
1 − e(t−p)k

)
.

Introduce a new variable

z = x1 +
1
k

(
1 − e(t−p)k

)
x2 − θ∗.

Then

ż = −γ

k

(
1 − e(t−p)k

)
u +

δ

k

(
1 − e(t−p)k

)
v, u = −ξ, v = η.

Since z(p) = x1(p) − θ∗, the quality criterion takes the form

min
i∈I

|z(p) − 2πi| → min
u

max
v

.

Consider this problem as antagonistic differential game (4), in which u is
control of the first player, and v is control of the second player,

a(t) =
γ

k

(
1 − e(t−p)k

)
, b(t) =

δ

k

(
1 − e(t−p)k

)
.

Compute function f(t) in this example:

f(t) =
∫ p

t

(a(r) − b(r))dr =
γ − δ

k

(
p − t − 1 − e(t−p)k

k

)
.

Case 1. Let γ = δ. Then f(t) = 0 for all t ≤ p. Therefore

min
t≤τ≤p

f(τ) = 0, max
t≤τ≤p

f(τ) = 0.

Using these equalities and formulas (7)–(13), we obtain in this case that

G(t0, z(t0)) = min
i∈I

|z(t0) − 2πi|.
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The optimal control ξ can be written as follows:

ξ(t, z) = −sign(z − 2πi),

where i ∈ I gives a minimum to the expression |z(t0) − 2πi|.
Case 2. Let γ > δ. Then ḟ(t) ≤ 0 for all t ≤ p. Taking into account that

f(p) = 0, we obtain follows

min
t≤τ≤p

f(τ) = 0, max
t≤τ≤p

f(τ) = f(t).

Using formulas (7)–(13), we obtain in this case the following:

G(t0, z(t0)) = max
{

min
i∈I

|z(t0) − 2πi| − f(t0); 0
}

.

If f(t0) < 0.5α, then optimal control ξ is defined as in Case 1.
If f(t0) ≥ 0.5α, then ξ(t, z) —any with constraint |ξ(t, z)| ≤ 1 for t < t∗ and

ξ(t, z) = −sign(z − iα) for t∗ ≤ t,

where i ∈ I gives a minimum to the expression |z(t∗) − 2πi|. Here, t∗ ∈ [t0, p] is
solution of equation 0.5α = f(t).

Case 3. Let γ < δ. Then ḟ(t) ≥ 0 for all t ≤ p. Taking into account that
f(p) = 0, we obtain follows

min
t≤τ≤p

f(τ) = f(t), max
t≤τ≤p

f(τ) = 0.

Using formulas (7)–(13), we obtain in this case the following:

G(t0, z(t0)) = min
{

min
i∈I

|z(t0) − 2πi| − f(t0);π
}

.

If 0.5α > −f(t0), then optimal control ξ is defined as in Case 1.
If 0.5α ≤ −f(t0), then, with any control, the first player cannot guarantee a

deviation from the course less than π.

5 Conclusion

In this paper, we consider antagonistic differential game over the state-linear
control system and with a non-convex terminal payoff, which is determined using
the modulus of a linear function of the phase vector. Using a linear change of
variables, this problem is reduced to a single-type one-dimensional differential
game.

The main feature of the game is the structure of the payoff. First, it is non-
convex, which significantly complicates the game. Second, it allows to taking
into account periodicity properties inherent in the problem.
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Based on our previous results, we found the price of the game and constructed
the corresponding controls of the players.

As an example, we consider a modification of the problem of the turning of a
ship on which uncontrolled external forces act. The theoretical results obtained
can also find application in solving other problems of controlling rotational
mechanical systems.

In the future, this problem can be considered in the case, when dynamics of
the first player changes at an unknown time moment (for example, a breakdown
occurs).
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Abstract. The class of differential games with continuous updating is
quite new, there it is assumed that at each time instant, players use infor-
mation about the game structure (motion equations and payoff functions
of players) defined on a closed time interval with a fixed duration. As
time goes on, information about the game structure updates. A linear-
quadratic case for this class of games is particularly important for practi-
cal problems arising in the engineering of human-machine interaction. In
this paper, it is particularly interesting that the open-loop strategies are
used to construct the optimal ones, but subsequently, we obtain strate-
gies in the feedback form. Using these strategies the notions of Shapley
value and Nash equilibrium as optimality principles for cooperative and
non-cooperative cases respectively are defined and the optimal strategies
for the linear-quadratic case are presented.

Keywords: Differential games with continuous updating · Nash
equilibrium · Linear quadratic differential games

1 Introduction

Most conflict-driven processes in real-life evolve continuously in time, and their
participants continuously receive updated information and adapt accordingly.
The principal models considered in classical differential game theory are associ-
ated with problems defined for a fixed time interval (players have all the infor-
mation within a closed time interval) [7], problems defined for an infinite time
interval with discounting (players have all information specified over an infinite
time interval) [1], problems defined for a random time interval (players have
information over a given time interval, but the duration of this interval is a ran-
dom variable) [19]. One of the first works in the theory of differential games was
devoted to a differential pursuit game (the player’s payoff depends on the time
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of capture of the opponent) [17]. Another interesting application of dynamic and
differential games is the network, [5]. In all the above models and approaches
it is assumed that at the onset players process all information about the game
dynamics (equations of motion) and players’ preferences (cost functions). How-
ever, these approaches do not take into account the fact that many real-life
conflict-controlled processes are characterized by the fact that players at the
initial time instant do not have all the information about the game. Therefore
such classical approaches for defining optimal strategies as the Nash equilibrium,
the Hamilton-Jacobi-Bellman equation [2], or the Pontryagin maximum princi-
ple [18], for example, cannot be directly used to construct a large range of real
game-theoretic models.

In this paper, we extend the results of the paper [8], where the class of non-
cooperative linear-quadratic autonomous (model’s parameters do not depend on
time) differential games with continuous updating is considered and the explicit
form of the Nash equilibrium derived. It is interesting to construct not only the
non-cooperative solution but also to obtain the form of cooperative strategies,
characteristic function and cooperative solution for continuous updating case,
i.e. to study cooperative differential game model. An important and interesting
result that arises in the setting of open-loop strategies for continuous updating
is that the open-loop based Nash equilibrium and cooperative open-loop based
strategies have a feedback form. This fact is counter-intuitive by nature, but
it takes place for a continuous updating approach. The popularity of so-called
linear-quadratic differential games [4] on one hand can be explained by practical
applications in engineering. To some extent, these kinds of differential games are
analytically and numerically solvable.

Most real conflict-driven processes continuously evolve, and their participants
constantly adapt. This paper presents the approach of constructing a Nash equi-
librium for game models with continuous updating. In the game models with
continuous updating, it is assumed that players

– have information about motion equations and payoff functions only on [t, t +
T ], where T – information horizon, t – current time instant.

– receive updated information regarding motion equations and payoff functions
as time t ∈ [t0,+∞) evolves.

It is difficult to obtain the Nash equilibrium owing to the lack of fundamental
approaches to control problems with a moving information horizon. Classical
methods such as dynamic programming and Hamilton-Jacobi-Bellman equation
do not permit the direct construction of the Nash equilibrium in problems with
a moving information horizon.

In the framework of the dynamic updating approach, the following papers
were published [6,9,10,12–16,21]. Their authors set the foundations for further
study of a class of games with dynamic updating. It is assumed that the infor-
mation about motion equations and payoff functions is updated in discrete time
instants and the interval on which players know the information is defined by
the value of the information horizon. Another related paper [20] published in
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2019 paper considers repeated games with sliding planning horizons, which is
close in nature to dynamic updating approach.

However, the class of games with continuous updating provides new the-
oretical results. The class of differential games with continuous updating was
considered in the papers [8,11], here it is supposed that the updating process
evolves continuously in time. In the paper [11], the system of Hamilton-Jacobi-
Bellman equations are derived for the Nash equilibrium in a game with contin-
uous updating. In the paper [8] the class of linear-quadratic differential games
with continuous updating is considered and the explicit form of the Nash equi-
librium is derived. Strategies in the feedback form are considered in subgames
in [8] as opposed to strategies in the open-loop form in this paper.

For autonomous linear-quadratic game models with continuous updating,
the Nash equilibrium in open-loop form is constructed. The cooperative case is
presented as well, cooperative strategies, cooperative trajectory, characteristic
function, and Shapley value are constructed. A model example of non-renewable
resource extraction with an explicit solution is presented and conclusions are
drawn.

The paper is structured as follows. In Sect. 2, a description of the initial dif-
ferential game model and corresponding game model with continuous updating
as well as the concept of a strategy for it are presented. Section 3 is devoted
to optimal strategies in both non-cooperative and cooperative cases, i.e. Nash
equilibrium and cooperative strategies with continuous updating. In Sect. 4, the
explicit form of characteristic function and Shapley value for the linear-quadratic
autonomous game model are presented. The illustrative model example and cor-
responding numerical simulation are presented in Sect. 5. Section 6 presents our
conclusions.

2 Game Model

In this section description of the initial linear-quadratic differential autonomous
game model and corresponding game model with continuous updating are pre-
sented.

2.1 Initial Linear Quadratic Autonomous Game Model

Consider n-player (|N | = n) linear quadratic autonomous differential game
Γ (x0, T − t0) defined on the interval [t0, T ]:

Motion equations have the form

ẋ(t) = Ax(t) + B1u1(t, x) + . . . + Bnun(t, x),
x(t0) = x0,
x ∈ R

l, u = (u1, . . . , un), ui = ui(t, x) ∈ Ui ⊂ compRk, t ∈ [t0, T ].
(1)

Payoff function of player i ∈ N is defined as

Ki(x0, t0, T ;u) =

T∫

t0

⎛
⎝x′(t)Qix(t) +

n∑
j=1

u′
j(t, x)Rijuj(t, x)

⎞
⎠ dt, i ∈ N, (2)
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where Qi, Rij are assumed to be symmetric, Rii is positive defined, ( · )′ means
transpose here and hereafter, A, Bi, Qi, Rij are constants.

2.2 Linear Quadratic Autonomous Game Model with Continuous
Updating

Consider n-player differential game Γ (x, t, T ), t ∈ [t0,+∞) defined on the inter-
val [t, t + T ], where 0 < T < +∞.

Motion equations of Γ (x, t, T ) have the form

ẋt(s) = Axt(s) + B1u
t
1(s, x

t) + . . . + Bnut
n(s, xt),

xt(t) = x,
xt ∈ R

l, ut = (ut
1, . . . , u

t
n), ut

i = ut
i(s, x

t) ∈ Ui ⊂ compRk, t ∈ [t0,+∞).
(3)

Payoff function of player i ∈ N in the game Γ (x, t, T ) is defined as

Kt
i (x

t, t, T ;ut) =

t+T∫

t

⎛
⎝(

xt(s)
)′

Qix
t(s) +

n∑
j=1

(
ut

j(s, x
t)

)′
Riju

t
j(s, x

t)

⎞
⎠ ds, (4)

where xt(s), ut(s, x) are trajectory and strategies in the game Γ (x, t, T ).
Differential game with continuous updating evolves according to the rule:
Time parameter t ∈ [t0,+∞) evolves continuously, as a result players contin-

uously receive updated information about motion equations and payoff functions
under Γ (x, t, T ) .

Strategies u(t, x) in the game model with continuous updating are defined in
the following way:

u(t, x) = ut(t, x), t ∈ [t0,+∞), (5)

where ut(s, x), s ∈ [t, t + T ] are some fixed strategies defined in the subgame
Γ (x, t, T ).

State x(t) in the model with continuous updating is defined according to

ẋ(t) = A(t)x(t) + B1(t)u1(t, x) + . . . + Bn(t)un(t, x),
x(t0) = x0,
x ∈ R

l
(6)

with strategies with continuous updating u(t, x) involved.
The essential difference between the game model with continuous updating

and classic differential game Γ (x0, T −t0) with prescribed duration is that players
in the initial game are guided by the payoffs that they will eventually receive
on the interval [t0, T ], but in the case of a game with continuous updating, at
the time instant t they orient themselves on the expected payoffs (4), which are
calculated using information about the game structure defined on the interval
[t, t + T ].



216 I. Kuchkarov and O. Petrosian

3 Optimal Strategies with Continuous Updating in LQ
Differential Games

3.1 General Concept of Optimal Strategies with Continuous
Updating

In a game with continuous updating, the player at each moment focuses on the
nearest event horizon, trying to maximize profits on it. Comparing the structure
of the subgame and the initial game, we see that they are very similar. Thus,
the player chooses the optimal strategy for, generally speaking, a new game at
each moment in time. And the optimal strategy for the whole game is made up
of each particular decision.

For example, consider two time intervals [t, t+T ] and [t+ε, t+T +ε], ε << T .
According to the problem statement, uNE(t, x) at the instant t should coincide
with the Nash equilibrium in the game defined on the interval [t, t + T ] and
uNE(t + ε, x) at instant t + ε should coincide with the Nash equilibrium in the
game defined on the interval [t + ε, t + ε + T ]. Therefore direct application of
classical approaches for determining Nash equilibrium in feedback strategies is
not possible.

In order to determine the solution of a game with continuous updating, we
introduce the concept of a generalized solution as combination of solutions in
subgames. Let ut,∗(s, x)—some solution of (3), (4) for some t. Define generalized
solution as u∗(t, s, x) Δ= ut,∗(s, x). Now define solution of a game with continuous
updating as u∗(s, x) Δ= u∗(t, s, x)|s=t).

3.2 Concept of Nash Equilibrium for Games with Continuous
Updating

For non-cooperative games, we use open-loop Nash equilibrium. Define corre-
sponding concepts for a game with continuous updating.

Definition 1. Strategy profile ũNE(t, s, x) = (ũNE
1 (t, s, x), . . . , ũNE

n (t, s, x)), t ∈
[t0,+∞), s ∈ [t, t + T ] is a generalized open-loop Nash equilibrium in the game
with continuous updating, if for any fixed t ∈ [t0,+∞) strategy profile ũNE(t, s, x)
is Nash equilibrium in open-loop strategies in the game Γ (x, t, T ), 0 < T < ∞.

Using generalized open-loop Nash equilibrium it is possible to define solution
concept for a game model with continuous updating.

Definition 2. Strategy profile uNE(t, x) is called the open-loop-based Nash equi-
librium with continuous updating, if it is defined in the following way:

uNE(t, x) = ũNE(t, s, x)|s=t = (ũNE
1 (t, s, x)|s=t, . . . , ũ

NE
n (t, s, x)|s=t), (7)

where t ∈ [t0,+∞), ũNE(t, s, x) is the generalized open-loop Nash equilibrium
defined above.
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Strategy profile uNE(t, x) will be used as a solution concept in the non-
cooperative game with continuous updating. Sufficient conditions for the exis-
tence of open-loop-based Nash equilibrium with continuous updating are pre-
sented below.

Theorem 1. For an N-person linear-quadratic differential game with Qi ≥ 0,
Rij ≥ 0 (i, j ∈ N, i �= j), let there exist a solution set {M t

i , i ∈ N, t � t0} to the
matrix Riccati differential equations

dM t
i (τ)

dτ
+ TM t

i (τ)A + TA′M t
i (τ) + Qi − T

2
M t

i (τ)
∑
j∈N

BjR
−1
jj B′

jM
t
j (τ) = 0,

M t
i (1) = 0, i ∈ N.

(8)
Then, the differential game with continuous updating admits an open-loop-based
Nash equilibrium with continuous updating solution given by

uNE
i (t, x) = −R−1

ii B′
iM

t
i (0)Tx(t), i ∈ N.

Proof. In order to prove the Theorem we introduce the following change of vari-
ables

s = t + Tτ,

yt(τ) = xt(t + Tτ),

vt
i(τ, y) = ui(t + Tτ, x), i ∈ N.

(9)

By substituting (9) to the motion Eqs. (3), payoff function (4) we obtain

ẏt(τ) = TAyt(τ) +
N∑

i=1

TBiv
t
i(τ, y) (10)

and

Kt
i (y

t, τ ; vt) =

1∫

0

(
yt(s)

)′
Qiy

t(s) +
N∑

j=1

(
vt

j

(
s, y))′

Rijv
t
j(s, y)ds, i ∈ N. (11)

The Theorem 6.12 from [1] and existence of solution for the system of differ-
ential equations (8) lead to open-loop-based Nash equilibrium strategies in the
subgame Γ (x, t, T ) have the form

vt,NE
i (τ, y0) = −R−1

ii B′
iM

t
i (τ)TΦt(τ)y0,

where
dΦt

dτ
=

(
A −

∑
i∈N

BiR
−1
ii B′

i

)
Φt(τ),

Φt(0) = E.
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Returning to original variables we obtain the following strategies

ut
i(s, x) = −R−1

ii B′
iM

t
i

(
s − t

T

)
TΦt

(
s − t

T

)
x.

Then a generalized open-loop Nash equilibrium in the game with continuous
updating has the form

ũNE
i (t, s, x) = −R−1

ii B′
iM

t
i

(
s − t

T

)
TΦt

(
s − t

T

)
x. (12)

Apply the procedure (7) to determine Nash equilibrium with continuous
updating using generalized Nash equilibrium (12), s = t:

uNE
i (t, x) = −R−1

ii B′
iM

t
i (0)Tx, t ∈ [t0,+∞), i ∈ N. (13)

This proves the theorem.

Remark 1. Notice, open-loop-based solution with continuous updating has a feed-
back form, i. e. open-loop-based Nash equilibrium with continuous updating
explicitly depends on the current state. This happens because of the way the solu-
tion is constructed, as a value of solution generalized open-loop Nash equilibrium.

3.3 Concept of Cooperative Strategy for Games with Continuous
Updating

In contrast to the non-cooperative case, here all players minimize one functional

Kt(xt, t, T ;ut) =
∑
i∈N

Kt
i (x

t, t, T ;ut)

=
∑
i∈N

t+T∫

t

⎛
⎝(

xt(s)
)′

Qix
t(s) +

n∑
j=1

(
ut

j(s, x
t)

)′
Riju

t
j(s, x

t)

⎞
⎠ ds,

(14)
Define concepts of cooperative solution for a game with continuous updating.

Definition 3. Strategy profile ũ∗(t, s, x) = (ũ∗
1(t, s, x), . . . , ũ∗

n(t, s, x)), t � t0,
s ∈ [t, t + T ] is a generalized cooperative solution in the game with continuous
updating, if for any fixed t ∈ [t0,+∞) strategy profile ũ∗(t, s, x) is cooperative
solution in the game Γ (x, t, T ), 0 < T < ∞.

Using a generalized cooperative solution it is possible to define a solution
concept for a game model with continuous updating.

Definition 4. Strategy profile u∗(t, x) is called the cooperative solution with con-
tinuous updating, if it is defined in the following way:

u∗(t, x) = ũ∗(t, s, x)|s=t = (ũ∗
1(t, s, x)|s=t, . . . , ũ

∗
n(t, s, x)|s=t), (15)

where t ∈ [t0,+∞), ũ∗(t, s, x) is the generalized cooperative solution defined
above.
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Strategy profile u∗(t, x) will be used as a solution concept in the coopera-
tive game with continuous updating. Sufficient conditions for the existence of a
cooperative solution with continuous updating are presented below.

Theorem 2. For an N-person linear-quadratic differential game with Qi ≥ 0,
Rij ≥ 0 (i, j ∈ N, i �= j), let there exist a solution set {Zt, i ∈ N, t � t0} to the
matrix Riccati differential quations

Żt(τ) = −TA′Zt(τ) − TZt(τ)A + Zt(τ)SZt(τ) − Q,

Zt(1) = 0,
(16)

where S = T
2
BR−1B′, Q =

∑
i∈N

Qi, and B = [B1, . . . , Bn], R = {Rij}n
i,j=1—

block matrices. Then, the differential game with continuous updating admits an
cooperative solution with continuous updating given by

u∗(t, x) = −R−1B′Zt(0)Tx.

Proof. To prove the Theorem we introduce the change of variables. By substi-
tuting (9) to the motion Eqs. (3), payoff function (14) we obtain

ẏt(τ) = TAyt(τ) +
N∑

i=1

TBiv
t
i(τ, y) (17)

and

Kt(yt, τ ; vt) =
∑
i∈N

1∫

0

⎛
⎝(

yt(s)
)′

Qiy
t(s) +

N∑
j=1

(
vt

j

(
s, y))′

Rijv
t
j(s, y)

⎞
⎠ ds, i ∈ N.

(18)
The Theorem 5.1 from [4] and existence of solution for the system of differ-

ential equations (16) lead to cooperative solution in the subgame Γ (x, t, T ) have
the form

vt,∗(τ, y0) = −R−1B′Zt(τ)TΦt(τ)y0,

where
dΦt

dτ
=

(
A − SZt(τ)

)
Φt(τ),

Φt(0) = E.

Returning to original variables we obtain the following strategies

ut(s, x) = −R−1B′Zt

(
s − t

T

)
TΦt

(
s − t

T

)
x.

Then a generalized cooperative solution in the game with continuous updat-
ing has the form

ũ∗(t, s, x) = −R−1B′Zt

(
s − t

T

)
TΦt

(
s − t

T

)
x. (19)
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Apply the procedure (15) to determine Nash equilibrium with continuous
updating using generalized Nash equilibrium (19), s = t:

u∗(t, x) = −R−1B′Zt(0)Tx, t ∈ [t0,+∞), i ∈ N. (20)

This proves the theorem.

Remark 2. Notice, open-loop-based cooperative strategies with continuous
updating explicitly depend on current state.

4 Cooperative Solution with Continuous Updating

To determine how to allocate joint payoff among the players it is necessary to
define how the overall game evolves, how players forecast their behavior at every
current time instant t ∈ [t0,+∞] for the future interval [t, t + T ]:

1. forecasted trajectory
2. how the characteristic function is calculated along the forecasted trajectory
3. how the imputation and the cooperative solution is chosen along the fore-

casted trajectory

and finally how the cooperative solution with continuous updating is constructed
and what are the properties.

4.1 Characteristic Function for Subgame on Interval [t, t + T ]

Consider coalition S in n-player differential game Γ (x, t, T ) (3) (4). The char-
acteristic function is defined as the total payoff of the coalition S in the Nash
equilibrium uNE =

(
uNE

1 , . . . , uNE
nS

)
in a game ΓS(x, t, T ) with the following set

of players: a coalition S acting as one player and players from the set N \ S i.
e., in the game of nS = |N \ S| + 1 players.

Describe the building of the auxiliary game ΓS(x, t, T ). Let the first player
of this game be player associated with coalition S for convenience and let other
players have been renumbered in some way players from N \ S. Relabel matri-
ces for N \ S players AS = A, BS

i = Bki
, QS

i = Qki
, Ri,j = Rki,kj

, where
i, j = 2, nS and i—new index in ΓS(x, t, T ) of ki-th player from Γ (x, t, T ).
Some matrices for coalition player have a block structure: BS

1 = [Bm1 . . . Bmc
] ,

RS
1,1 = diag(Rm1,m1 , . . . , Rmc,mc

), RS
i,1 = diag(Rki,m1 , . . . , Rki,mc

); other—are
sum of corresponding matrices from Γ (x, t, T ): QS

1 =
∑

m∈S

Qm, RS
1,i =

∑
m∈S

Rm,ki
,

where m1, . . . ,ms ∈ S, i = 2, nS .
Thus motion equations of ΓS(x, t, T ) have the form

ẋt(s) = ASxt(s) + BS
1 ut

1(s, x
t) + . . . + BS

nut
n(s, xt),

xt(t) = x.
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Payoff function of player i ∈ NS in the game ΓS(x, t, T ) is defined as

KS,t
i (xt, t, T ;ut) =

t+T∫

t

⎛
⎝(

xt(s)
)′

QS
i xt(s) +

n∑
j=1

(
ut

j(s, x
t)

)′
RS

iju
t
j(s, x

t)

⎞
⎠ ds,

where xt(s), ut(s, x) are trajectory and strategies in the game ΓS(x, t, T ).

Lemma 1. For an N -person linear-quadratic differential game Γ (x, t, T ) with
QS

i ≥ 0, RS
ij ≥ 0 (i, j ∈ N, i �= j), let there exist a solution set {MS

i , i ∈ NS , t �
t0} to the matrix Riccati differential equations

dMS
i (τ)
dτ

+ TMS
i (τ)AS + T

(
AS

)′
MS

i (τ) + QS
i

− T
2
MS

i (τ)
∑

j∈NS

BS
j

(
RS

jj

)−1 (
BS

j

)′
MS

j (τ) = 0,

MS
i (1) = 0, i ∈ NS .

(21)

Then, the characteristic function for game Γ (x, t, T ) has form

V t(S, x, ξ, t + T ) =

t+T∫

ξ

(
(x∗(s, t, x))′

QS
1 x∗(s, t, x)

+
nS∑
j=1

(
ut

j(s, x)
)′

RS
1ju

t
j(s, x)

)
ds,

(22)

where

ut
i(s, x) = − (

RS
ii

)−1 (
BS

i

)′
MS

i

(
s − t

T

)
TΦS

(
s − t

T

)
x, (23)

ΦS(τ)—solution of system

dΦS

dτ
=

(
AS −

∑
i∈NS

BS
i

(
RS

ii

)−1 (
BS

i

)′
)

ΦS(τ),

ΦS(0) = E,

x∗(s, t, x)—solution of system

ẋt(s) = ASxt(s) + BS
1 ut

1(s, x) + . . . + BS
nut

n(s, x),

xt(t) = x.
(24)

Proof. We defined the characteristic function as the total payoff of the coalition
S in the Nash equilibrium in a game ΓS(x, t, T ).

Similar to Theorem 1 proof we use the change of variables (9), the Theorem
6.12 from [1] and existence of solution for the system of differential equations (21).
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It implies open-loop-based Nash equilibrium strategies in the subgame ΓS(x, t, T )
have the form (23).

According to building auxiliary game ΓS(x, t, T ) the total payoff of the coali-
tion S could calculate as KS,t

1 (xt, t, T , ut). Then function (22) is characteristic
and system dynamics evolves by (24).

4.2 Characteristic Function for Games with Continuous Updating

Suppose that the function Ṽ t(S; x̃∗
t (s), s, t + T ), S ⊆ N is continuously differen-

tiable by s ∈ [t, T ] and integrable by t ∈ [t0,+∞). Define characteristic function
in game model with continuous updating V (S;x∗(t), t) in the following way:

Definition 5. Function V (S;x∗(t), t), t ∈ [t0,+∞), S ⊆ N is a characteristic
function with continuous updating, if it is defined as the following integral:

V (S;x∗(t), t) =

+∞∫

t

− d

ds
Ṽ τ (S; x̃∗

τ (s), s, τ + T )|s=τdτ, t ∈ [t0,+∞), S ⊆ N,

(25)
where Ṽτ (S; x̃∗

τ (s), s, t+T ), s ∈ [τ, τ +T ], τ ∈ [t,+∞), S ⊆ N is a characteristic
function in the game Γ (x̃∗

τ (s), s, τ + T ) defined on the interval [s, t + T ].

Notice that the integral in (25) can be infinite. Therefore it is necessary to
define cooperative game model on finite time interval, i.e. t ∈ [t0, T ]:

V (S;x∗(t), t, T ) =

T∫

t

− d

ds
Ṽ τ (S; x̃∗

τ (s), s, τ +T )|s=τdτ, t ∈ [t0, T ], S ⊆ N. (26)

Theorem 3. For a coalitions S in N -person linear-quadratic differential game
with QS

i ≥ 0, RS
ij ≥ 0 (i, j ∈ N, i �= j), let there exist a solution set

{MS
i , i ∈ NS , t � t0} to the matrix Riccati differential equations (21). Then,

the characteristic function for game with continuous updating has form

V (S, x, t, T ) =

T∫

t

(x∗(s, t, x))′
⎛
⎝QS

1 − T
2

nS∑
j=1

P ′
jR

S
1jPj

⎞
⎠ x∗(s, t, x)ds, (27)

where
Pj =

(
RS

jj

)−1 (
BS

j

)′
MS

j (0), (28)

x∗(s, t, x)—solution of system

ẋt(s) =

(
AS −

nS∑
i=1

BS
i Pi

)
xt(s),

xt(t) = x.

(29)
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Proof. According to definition we have general form (26) of characteristic func-
tion for game with continuous updating. Lemma 1 gives the characteristic func-
tion (22) for subgame Γ (x, t, T ). By substituting (22) into (26) we get

V (S, x, t, T ) =

T∫

t

− d

ds
V τ (S; x̃∗

τ (s), s, τ + T )|s=τdτ

=

T∫

t

(
(x∗(s, t, x))′

QS
1 x∗(s, t, x)

+
nS∑
j=1

(
us

j(s, x
∗(s, t, x))

)′
RS

1ju
s
j(s, x

∗(s, t, x))

)
ds,

(30)

Taking into account ΦS(0) = E we have

us
i (s, x) = − (

RS
ii

)−1 (
BS

i

)′
MS

i (0) Tx. (31)

By substituting (31) into (30) with (28) we get

V (S, x, t, T ) =

T∫

t

(
(x∗(s, t, x))′

QS
1 x∗(s, t, x)

− T
2

nS∑
j=1

(x∗(s, t, x))′
P ′

jR
S
1jPjx

∗(s, t, x)

)
ds.

(32)

Give (32) in similar terms to (27). Taking into account (31), (24) we can describe
system dynamics as (29).

4.3 Shapley Value with Continuous Updating

Suppose that all the players united in a coalition of N , then, moving along the
cooperative trajectory x∗(t), they can secure a total payoff of V (N,x∗(t), t, T ).
To determine the payoffs of each player i ∈ N , we introduce the concept of
imputation ξ(x∗(t), t, T ) = (ξ1(x∗(t), t, T ), . . . , ξn(x∗(t), t, T )), i.e., e. the payoff
that the player i will receive after the redistribution of the maximum total win
V (N,x∗(t), t, T ) between all players.

For imputation two conditions must be met:

ξi(x∗(t), t, T ) ≥ V ({i}, t, T, x∗(t)), i ∈ N,

∑
i∈N

ξi(x∗(t), t, T ) = V (N, t, T, x∗(t)).
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As a imputation in the game with continuous updating, we will use the
Shapley vector:

Shi(x∗(t), t, T ) =
∑

S⊆N :
i∈S

(k − 1)! (n − k)!
n!

× (V (S, t, T, x∗(t)) − V (S \ {i}, t, T, x∗(t)) , i = 1, . . . , n, ) ,

(33)

where k = |S|.
Let there exist a solution set {MS

i , i ∈ NS , t � t0} to the matrix Riccati
differential equations (21) for every coalition S ⊂ N . Then we can calculate
Shapley vector (33) where V (S, t, T, x∗(t)) is calculated according to (27).

5 Example Model

5.1 Common Description

Consider the model in which there are two individuals investing in a public stock
of knowledge (see also Dockner et al. [3]). Let x(t) be the stock of knowledge
at time t and ui(t) – the investment of player i in public knowledge at time
t. Assume that the stock of knowledge evolves according to the accumulation
equation

ẋ(t) = −βx(t) + u1(t, x0) + u2(t, x0), x(0) = x0, (34)

where β is the depreciation rate. Assume that each player derives quadratic
utility from the consumption of the stock of knowledge and that the cost of
investment increases quadratically with the investment effort. That is, the cost
function of both players is given by

Ki(x0, t0, T ;u) =
∫ T

0

( − qix
2(t) + riu

2
i (t, x0)

)
dt, i = 1, 2.

5.2 Game Model with Continuous Updating

Now consider the case of continuous updating. Here we suppose that two individ-
uals at each time instant t ∈ [t0,+∞) use information about motion equations
and payoff functions on the interval [t, t + T ]. As the current time t evolves the
interval, which defines the information shifts as well. Motion equations for the
game model with continuous updating have the form

ẋt(s) = −βxt(s) + ut
1(s, x) + ut

2(s, x), xt(t) = x, t ∈ [t0,+∞).
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Non-cooperative Case. Payoff function of player i ∈ N for the game model
with continuous updating is defined as

Kt
i (x

t, t, T ;ut) =

t+T∫

t

(
− (

xt(s)
)2

qi +
(
ut

i(s, x)
)2

ri

)
ds, i = 1, 2.

As an example consider the symmetric case r1 = r2 = r, q1 = q2 = q here
and thereafter. According to the Theorem 1 defining the form of open-loop Nash
equilibrium with continuous updating on the first step we need to solve the
following differential equation:

{
k̇(τ) = 2βTk(τ) + 2Tk2(τ)

r + q,

k(1) = 0.
(35)

The solution of (35) is

k(τ) =
r(β − v)

2T

(
2v

v − β + (v + β)e2vT (1−τ)
− 1

)
, (36)

where v =
√

β2 − 2q
r . According to Theorem 1 open-loop-based Nash equilib-

rium with continuous updating has the form:

ũNE
i (t, x) = −k(0)xT

r
. (37)

By substituting (36) in (37) we obtain:

ũNE
i (t, x) =

β − v

2

(
2v

v − β + (v + β)e2vT (1−τ)
− 1

)
x, (38)

by substituting (38) in (34) we obtain x̃NE(t) as solution of equation

˙̃x
NE

(t) = −βx̃NE(t) + ũNE
1 (t, x) + ũNE

2 (t, x), x̃NE(0) = x0. (39)

Cooperative Case. Payoff function of player for the cooperative game model
with continuous updating is defined as

Kt(xt, t, T ;ut) =
2∑

i=1

t+T∫

t

(
− (

xt(s)
)2

qi +
(
ut

i(s, x)
)2

ri

)
ds.

Consider the symmetric case r1 = r2 = r, q1 = q2 = q again. According
to the Theorem 2 defining the form of cooperative strategies with continuous
updating on the first step we need to solve the following differential equation:

{
k̇(τ) = 2βTk(τ) + 2Tk2(τ)

r + 2q,

k(1) = 0.
(40)
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The solution of (40) is

k(τ) =
r(β − v1)

2T

(
2v1

v1 − β + (v1 + β)e2v1T (1−τ)
− 1

)
, (41)

where v1 =
√

β2 − 4q
r . According to Theorem 2 cooperative strategies with

continuous updating has the form:

ũ∗
i (t, x) = −k(0)xT

r
. (42)

By substituting (41) in (42) we obtain:

ũ∗
i (t, x) =

β − v1

2

(
2v1

v1 − β + (v1 + β)e2v1T (1−τ)
− 1

)
x, (43)

by substituting (43) in (34) we obtain x̃∗(t) as solution of equation

˙̃x
∗
(t) = −βx̃∗(t) + ũ∗

1(t, x) + ũ∗
2(t, x), x̃∗(0) = x0. (44)

We have characteristic function as

Ṽ (S, x, t, T ) =
∑
i∈S

T∫

t

(
− (x̃∗(s))2 qi + (ũ∗

i (s, x))2 ri

)
ds, (45)

taking into account (43) (44). By substituting (45) in (33) we obtain Shapley
value with continuous updating S̃hi(x̃∗(t), t, T ) for this example.

5.3 Game Model on Infinite Interval

Consider classic approach for Nash equilibrium for the game on infinite interval
[0,+∞). Motion equations have the form

ẋ(t) = −βx(t) + u1(t, x) + u2(t, x), x(0) = x0. (46)

Payoff function of player i ∈ N is defined as

Ki(x0;u) = lim
T→∞

∫ T

0

( − qix
2(t) + riu

2
i (t, x)

)
dt, i = 1, 2.

Non-cooperative Case. According to [4] open-loop Nash equilibrium strate-
gies have the form

u∗
i (t, x0) = −kx0

r
e−(β+ 2k

r )t (47)

in our symmetric case (r1 = r2 = r, q1 = q2 = q), where k is solution of

2k2

r
+ 2βk + q = 0.

By substituting (47) in (46) we obtain xNE(t) as solution of equation

ẋNE(t) = −βxNE(t) − 2kx0

r
e−(β+ 2k

r )t, xNE(0) = x0. (48)
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Cooperative Case. Payoff function in cooperative case is defined as

K(x0;u) =
2∑

i=1

lim
T→∞

T∫

0

( − qix
2(t) + riu

2
i (t, x)

)
dt.

According to [4] open-loop Nash equilibrium strategies have the form

u∗
i (t, x0) = −kx0

r
e−(β+ 2k

r )t (49)

in our symmetric case (r1 = r2 = r, q1 = q2 = q), where k is solution of

2k2

r
+ 2βk + 2q = 0.

By substituting (49) in (46) we obtain x∗(t) as solution of equation

ẋ∗(t) = −βx∗(t) − 2kx0

r
e−(β+ 2k

r )t, x∗(0) = x0. (50)

We have characteristic function as

V (S, x, t, T ) =
∑
i∈S

T∫

t

(
− (x∗(s))2 qi + (u∗

i (s, x))2 ri

)
ds, (51)

taking into account (49) (50). By substituting (51) in (33) we obtain Shapley
value on infinity interval Shi(x∗(t), t, T ) for this example.

Fig. 1. x̃NE(t) (39) - red lower line,
xNE(t) (48) - green upper line. (Color
figure online)

Fig. 2. ũNE(t) (38) - red upper line,
uNE(t) (47) - green lower line. (Color
figure online)
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Fig. 3. x̃∗(t) (44) - red lower line, x∗(t)
(50) - green upper line. (Color figure
online)

Fig. 4. ũ∗(t) (43) - red upper line,
u∗(t) (49) - green lower line. (Color
figure online)

Fig. 5. Payoff function with continuous
updating ˜V ({i}, x̃∗(t), t, T ) - red lower
line, payoff function on infinity inter-
val V ({i}, x∗(t), t, T ) - green upper line.
(Color figure online)

Fig. 6. Shapley value with continuous
updating ˜Shi(x̃

∗(t), t, T ) - red lower
line, Shapley value on infinity inter-
val Shi(x

∗(t), t, T ) - green upper line.
(Color figure online)

5.4 Numerical Simulation

Consider the results of numerical simulation for the game model presented above
on the interval [0, 8], i.e. t0 = 0, T = 8. At the initial instant t0 = 0 the stock
of knowledge is 100, i.e. x0 = 100. The other parameters of models: β = 0.9,
r = 6, q = −1, T = 3. In Fig. 1 the comparison of Nash equilibrium with
continuous updating (red lines) and Nash equilibrium in game on infinite interval
is presented. In Fig. 2 similar results are presented for the strategies. In Figs. 3
and 4 the similar comparisons of cooperative solutions are presented. In Fig. 5
the comparison of payoff function for a non-cooperative case is presented. In
Fig. 6 the comparison of Shapley value for these two cases is presented.
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6 Conclusion

The concept of open-loop based strategies for the class of linear-quadratic dif-
ferential games with continuous updating is presented. Open-loop based Nash
equilibrium and cooperative strategies in this class of differential games are
constructed and the corresponding Theorems are presented. The characteris-
tic function for a cooperative case is constructed, the path of possible solutions
(e.g. Shapley value) based on it is indicated. The results are demonstrated using
the differential game model of knowledge stock. Obtained results are both fun-
damental and applied in nature since they allow specialists from the applied
field to use a new mathematical tool for more realistic modeling of engineering
systems describing human-machine interaction.

References

1. Basar, T., Olsder, G.: Dynamic Noncooperative Game Theory. Academic Press,
London (1995)

2. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
3. Dockner, E., Jorgensen, S., Long, N., Sorger, G.: Differential Games in Economics

and Management Science. Cambridge University Press, Cambridge (2000)
4. Engwerda, J.: LQ Dynamic Optimization and Differential Games. Willey, New

York (2005)
5. Gao, H., Petrosyan, L., Qiao, H., Sedakov, A.: Cooperation in two-stage games on

undirected networks. J. Syst. Sci. Complexity 30(3), 680–693 (2017). https://doi.
org/10.1007/s11424-016-5164-7

6. Gromova, E., Petrosian, O.: Control of information horizon for cooperative differ-
ential game of pollution control. In: 2016 International Conference Stability and
Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conference) (2016)

7. Kleimenov, A.: Non-antagonistic Positional Differential Games. Science, Ekaterin-
burg (1993)

8. Kuchkarov, I., Petrosian, O.: On class of linear quadratic non-cooperative differ-
ential games with continuous updating. In: Khachay, M., Kochetov, Y., Pardalos,
P. (eds.) MOTOR 2019. LNCS, vol. 11548, pp. 635–650. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-22629-9 45

9. Petrosian, O., Kuchkarov, I.: About the looking forward approach in cooper-
ative differential games with transferable utility. In: Petrosyan, L.A., Mazalov,
V.V., Zenkevich, N.A. (eds.) Frontiers of Dynamic Games. SDGTFA, pp. 175–208.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23699-1 10

10. Petrosian, O., Shi, L., Li, Y., Gao, H.: Moving information horizon approach
for dynamic game models. Mathematics 7(12) (2019). https://doi.org/10.3390/
math7121239

11. Petrosian, O., Tur, A.: Hamilton-Jacobi-Bellman equations for non-cooperative
differential games with continuous updating. In: Bykadorov, I., Strusevich, V.,
Tchemisova, T. (eds.) MOTOR 2019. CCIS, vol. 1090, pp. 178–191. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-33394-2 14

12. Petrosian, O.: Looking forward approach in cooperative differential games.
Int. Game Theory Rev. 18(2), 1–14 (2016). https://doi.org/10.1142/
S0219198916400077

https://doi.org/10.1007/s11424-016-5164-7
https://doi.org/10.1007/s11424-016-5164-7
https://doi.org/10.1007/978-3-030-22629-9_45
https://doi.org/10.1007/978-3-030-23699-1_10
https://doi.org/10.3390/math7121239
https://doi.org/10.3390/math7121239
https://doi.org/10.1007/978-3-030-33394-2_14
https://doi.org/10.1142/S0219198916400077
https://doi.org/10.1142/S0219198916400077


230 I. Kuchkarov and O. Petrosian

13. Petrosian, O.: Looking forward approach in cooperative differential games with
infinite-horizon. Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots.
Upr. 4, 18–30 (2016)

14. Petrosian, O., Barabanov, A.: Looking forward approach in cooperative differential
games with uncertain-stochastic dynamics. J. Optim. Theory Appl. 172, 328–347
(2017)

15. Petrosian, O., Nastych, M., Volf, D.: Non-cooperative differential game model of oil
market with looking forward approach. In: Petrosyan, L.A., Mazalov, V.V., Zenke-
vich, N.A. (eds.) Frontiers of Dynamic Games. SDGTFA, pp. 189–202. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-92988-0 11

16. Petrosian, O., Nastych, M., Volf, D.: Differential game of oil market with moving
informational horizon and non-transferable utility. In: 2017 Constructive Nons-
mooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov)
(2017)

17. Petrosyan, L., Murzov, N.: Game-theoretic problems in mechanics. Lith. Math.
Collect. 6, 423–433 (1966)

18. Pontryagin, L.: On the theory of differential games. Successes Math. Sci.
26(4(130)), 219–274 (1966)

19. Shevkoplyas, E.: Optimal solutions in differential games with random duration. J.
Math. Sci. 199(6), 715–722 (2014)

20. Vasin, A., Divtsova, A.: A game-theoretic model of agreement on limitation of
transboundary air pollution. Autom. Remote Control 80, 1164–1176 (2019)

21. Yeung, D., Petrosian, O.: Cooperative stochastic differential games with informa-
tion adaptation. In: International Conference on Communication and Electronic
Information Engineering (2017)

https://doi.org/10.1007/978-3-319-92988-0_11


On Iterative Methods for Searching
Equilibrium in Pure Exchange Economy
with Multiplicative Utilities of Its Agents

Leonid D. Popov1,2(B)

1 Krasovskii Institute of Mathematics and Mechanics UB RAS,
Yekaterinburg, Russia
popld@imm.uran.ru

2 Ural Federal University, Yekaterinburg, Russia

Abstract. We consider the classical Arrow–Debreu model for a pure
exchange economy with multiplicative utilities of its agents. To calculate
its equilibrium prices, we present a new iterative algorithm that simulates
the simplest intuitive forms of the economic behavior of market agents. It
converges under very weak assumptions. The algorithm relies on increas-
ing prices for scarce products only. Moderate inflation, accompanying the
computational process, plays a positive role in establishing an equilib-
rium between commodity supply and demand. Schemes have a meaning-
ful economic interpretation. The convergence theorems are proved, and
the results of numerical experiments are presented, including other types
of economies.

Keywords: Arrow–Debreu model · Cobb–Douglas utility · Economic
equilibrium · T̊atonnement

1 Introduction

The investigation of market mechanisms, which create a balance between the
commodities demand and their supply, is the central issue of modern economic
theory. Fundamental ideas and hypotheses in this area were stated by Leon Wal-
ras in 1874 [1]. The first mathematical formulations describing the relationship
between the changing of the prices and the changing of market excess demand
can be found in the works of P. Samuelson, K. Arrow, L. Hurvicz, J. Debreu, G.
Scarf, H. Uzawa [2–6]. Some later, an extensive series of mathematical models
of general and particular economic equilibrium was proposed as well as various
algorithms for its search (see also [7–13] and many others).

Very soon, it became clear that the relatively simple assumptions, using by
the founders of the theory to prove the existence of the competitive equilib-
rium and convergence of continuous schemes for its search, were not enough
for convergence of discrete analogous of these algorithms [10–17]. Besides, the
discrete schemes themselves gradually became more and more complicated and
went away further and further from modeling simple business operations. It has
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aroused a feeling of the incompleteness of the initial premises in this area and
created a motivation to find additional ways and ideas.

One of such ideas is to implement instinctive forms of behavior of the eco-
nomic agents under conditions of their weak economic awareness. In the work,
we propose a new algorithm which corrects only prices for scarce commodities
at each exchange cycle. This implies some inflation which plays a positive role
in equilibrium search. Maybe, being not very efficient, the new iterative schemes
nevertheless converge under the most relaxed assumptions. As a testing base
to verify these ideas, the classic Arrow–Debreu exchange model with the multi-
plicative utilities of its participants is chosen.

The work is organized as follows. Sect. 2 describes the Arrow–Debreu model of
pure exchange and provides a brief overview of known approaches to its analysis.
Sect. 3 describes new algorithms and assumptions under which its convergence
will be proved. Sect. 4 contains the proof of convergence itself. Sect. 5 presents
the results of numerical experiments, including for other types of economies. A
conclusion and bibliography complete the work.

2 The Arrow–Debreu Model

The Arrow–Debreu model [3] describes the behavior of m market participants
(agents) who exchange of n types of commodities on the base of prevailing prices.
We analyze only the Cobb–Douglas economy, where the preferences of agents are
described by multiplicative utilities. Data on these functions and the initial dis-
tribution of commodities (endowments) can be gathered in two non-negative
matrices A = (aij)m×n and B = (bij)m×n. Each row of these matrices corre-
sponds to one of the market participants and each column corresponds to one
of the commodity types.

Matrix A consists of elasticity coefficients of the utility functions of each of
the market agents; these functions are of the form

ui(xi1, xi2, . . . , xin) =
n∏

j=1

x
aij

ij (i ∈ 1,m).

Matrix B consists of the initial stocks of commodities held by each of the par-
ticipants before exchange. As usual, we assume that each of the participants has
a non-zero supply of at least one type of product and needs at least one other
type of commodity. Also, each type of commodity is available in a non-zero total
quantity. Without loss of generality, we can assume that all row sums of the
matrix A and all column sums of the matrix B are equal to 1.

Let p = (p1, . . . , pn) > 0 be the vector of current prices for the commodi-
ties under consideration. Following these prices, each market participant (agent)
sells its commodities on the market and, using the proceeds, acquires other
commodities in such a way as to maximize the value of its utility function. Indi-
vidual choice of participants (their demand for commodities) can be organized in
a non-negative matrix X(p) = (xij(p))m×n. Each row of this matrix corresponds
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to one of the market participants, and each column corresponds to one type of
commodities.

Essentially, every row xi(p) of the matrix X(p) is a solution to one of the
optimization problems

(Pi) max
{ n∏

j=1

x
aij

ij :
n∑

j=1

pj xij ≤
n∑

j=1

pj bij , all xij ≥ 0
}

.

The corresponding solution has the form

xij(p) =
aij

pj

n∑

s=1

bisps (i ∈ 1,m, j ∈ 1, n).

Given these formulas, the components of the vector of market excess demand,
which we denote E(p), are equal to

Ej(p) =
1
pj

m∑

i=1

n∑

s=1

aijbisps − bj (j ∈ 1, n). (1)

Using vectors and matrix denoting, we can rewrite it as

E(p) = diag(p)−1A�Bp − b = diag(p)−1Cp − b,

where C = A�B and diag(w) is the diagonal matrix with the vector w on the
diagonal.

We introduce the notation E(C, b) for the exchange economy under consid-
eration. The auxiliary matrix C incorporates the properties of both matrices A
and B and describes the characteristics of the interaction between the market
agents. Recall that market excess demand is always (and not only in Cobb–
Douglas economy) satisfies the homogeneity condition E(λp) = E(p) (∀λ > 0)
and the Walras law, according to which p�E(p) = 0.

Definition. The price vector p̄ > 0 is called the equilibrium point in the
Arrow–Debreu model if the market clearing condition holds, i.e.

E(p̄) = 0. (2)

For the Cobb–Douglas economy, the equilibrium conditions (2) can also be
written as a system of homogeneous linear algebraic equations

m∑

i=1

n∑

s=1

aij bisps = bjpj (j ∈ 1, n),

or, in matrix denoting,

Cp − diag(b)p = 0, p > 0. (3)
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To date, a wide range of algorithms has been developed to find the equi-
librium, including ones for general types of utility functions of market agents.
Almost all of these algorithms, somehow or other, came from a continuous
dynamic Samuelson’s system

dp(t)
dt

= E(p(t)), t ∈ [0,+∞). (4)

In the above system, E(p) is a single-valued continuous function of prices.
Prices are constantly changing over time. The system itself formalizes Walras’s
argument that commodity prices rise with increasing demand for them and fall
along with its fall.

The stability of the system (4), i. e., its convergence to an equilibrium point,
rests upon that equilibrium prices p̄ > 0 exist and that the inequality p̄�E(p) > 0
holds for any vector of out-of-equilibrium prices p > 0 . In particular, such sta-
bility was earlier established for the cases when the market excess demand sat-
isfies the Property of Global Gross Substitutability (PGGS)1 or Weak Axiom
of Revealed Preferences (WARP)2. However, such conditions are not enough
when we pass from continuous trajectories p(t) of the system (4) to their dis-
crete approximations {pk}∞

k=0. Moreover, as shown in [11–13,15], many discrete
algorithms exhibit chaotic behavior for some economies, including the economy
with multiplicative utility functions of participants.

Of cause, it is possible to find an equilibrium of the Cobb–Douglas economy
through alternative methods based on the resolving of the system of linear equa-
tions (3). It may be finite methods [9] which are similar to the simplex method
as well as the infinite methods [17] liking to the regularized method of simple
iteration

pk+1 =
k + 1
k + 2

Cpk +
1

k + 2
p0 (k = 0, 1, 2, . . . ). (5)

However, these algorithms use the specificity of Cobb–Douglas model too explic-
itly and are difficult for economic interpretation.

Below we propose a new algorithm simulating the simplest forms of behavior
of economic agents. The last usually have no complete information about other
people’s preferences and spending plans neither about the initial distribution of
the commodities nor can execute any complex mathematical calculations. The
only ability of the agents we have in mind is to determine whether a given
particular type of commodity is in short supply or not.

3 Algorithm Description and Initial Assumptions

New algorithm has an iterative nature. At each iteration (cycle), agents exchange
their commodities according to their budgets and preferences. Some times one

1 It means that the partial derivatives dEi(p)/dpj > 0 for all i �= j.
2 This axiom states that for any price vectors p′, p′′ > 0, such that E(p′) �= E(p′′),
the implication is true

(
E(p′′)�p′ ≤ 0

) ⇒ (
E(p′)�p′′ > 0

)
.
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or other commodities disappear from the market and pass into the category
of scarce ones. Then agents correct the prices. But the mechanisms for such
correction will differ from using usually. Namely, only prices corresponding to
scarce commodities grow by a bit. Other ones do not change at all. Because the
total price level grows, we can observe weak inflation (which is custom in any real
economy). This inflation forces the demand for scarce commodities to decrease
and switch to other groups of commodities according to current norms of their
substitutability. Though in any cycle the increase in the prices is fixed, their not
absolute but relative changes fade from cycle to cycle, providing a generalized
convergence of the iterative process. To get a converging sequence, we can divide
current prices by the total cost of commodities sold. In the real economy, such
money denomination occurs from time to time.

Consider the formal scheme of algorithm proposed:

Algorithm 1. (checking of group demand)
Step 1. Choose an arbitrary initial prices p0 > 0. Put k = 0.
Step 2. Determine the current set of scarce commodities I+(k) by the rule

i ∈ I+(k) ⇐⇒ Ei(pk) =
ci1p

k
1 + ci2p

k
2 + · · · + cinpkn
pki

− 1 > 0.

Step 3. Correct prices of scarce commodities as below

pk+1
i =

{
pki + δki , δki > 0, iff i ∈ I+(k),

pki otherwise.

Step 4. Increase k := k + 1.
Step 5. Return to step 2.

Let us discuss some assumptions for Cobb–Douglas economy in question.
Consider the matrix C = A�B. All its elements are non-negative, and all its

column-wise sums are equal to 1, since by assumption C�e = B�Ae = B�e = e.
The arrangement structure of nonzero elements of the matrix C carries signif-

icant economic information and can also be described in terms of graph theory.
Namely, since all elements of the matrices A and B are not negative, the element
cij =

∑n
s=1 asibsj of the matrix C is nonzero if and only if at least one market

participant s owns the commodity j and needs the commodity i, i. e.

∃s : (asi > 0)&(bsj > 0).

Definition. In the economy E(C, b), the commodity i is defined to access the
commodity j directly if the element cij > 0. The commodity i is defined to access
the commodity j if there exists a chain of numbers j1, j2, . . . , jr such that i = j1,
jr = j and in intermediate pairs the commodity js−1 accesses the commodity js
directly.
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Consider the directed graph Γ(C) = (U, V ), where U is the set of its nodes,
and V is the set of its arcs. The nodes u ∈ U correspond to commodities circu-
lating within the economy E(C, b), and their pairs (i, j) form arcs if and only if
cij > 0. Thus, the item i accesses the item j if and only if there exists a path in
the graph Γ(C) leading from the node i to the node j. If all the commodities in
the economy are accessing each other, the graph Γ(C) is strongly connected.

Following to [9], without loss of generality, we may assume that the following
assumptions is fulfilled.

Assumption 1. The economy in question does not contain sub-markets, i.e.
graph Γ(C) is strongly connected.

Assumption 2. All price correction constants in algorithms 1 lie in some lim-
ited range of admissible values 0 < δ < δki < δ̄ < +∞, which is separated from
zero.

To illustrate fulfilling Assumption 1, recall the well-known example with multi-
plicative (3 × 3)-economy defined by the matrices:

A =

⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ , B =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , C = A�B =

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ .

As shown in [17], many popular calculating schemas can not work with this
example.

4 Convergence Analysis

Let us prove the convergence of algorithm 1. We consider three cases.
Case 1. Suppose that at the current iteration of the algorithm, the set of

indices of scarce commodities is full I+(k) = {1, 2, ..., n}. Then all Ei(pk) > 0. It
implies the inequality E(pk)�pk > 0 that contradicts the Walras law. The case
is impossible.

Case 2. Next suppose that at the current iteration of the algorithm, I+(k) =
∅, that is, all Ei(pk) ≤ 0. It means that all prices p̄i = pki > 0 do not change
further, and all Ei(p̄)p̄i ≤ 0. But according to the Walras law, their sum must
be equal to zero, which is possible only if all Ei(p̄) = 0, that is, the prices p̄i
form an equilibrium point. The work finishes.

Case 3. Finally, let the sets I+(k) �= ∅ and I+(k) �= {1, 2, ..., n} for all k.
In other words, we assume that at each iteration, part of the prices rises, and
other ones remain their values unchanged. Since the assortment of commodities
is finite, at least one of them belongs to the list of scarce commodities infinitely
many times, and the price of it grows unlimitedly. It is just the case that will be
studied in detail below. Recall that we work under assumptions 1–2.

Lemma 1. Let the sequence {pkj }∞
k=0, generated by the algorithm 1, grow unlim-

itedly, and the commodity i accesses the commodity j, that is cij > 0. Then the
sequence {pki }∞

k=0 also grows unlimitedly.
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Proof. From the unlimited increasing sequence {pkj }∞
k=0, let us single out a

suitable subsequence, also, of course, unlimited from above, with the indexes
k0, k1, k2, . . .. We make it as follows. Firstly, we put k0 = 0. Then we choose
the smallest k1 for which the inequality holds

pk1−1
j ≥ pk0

j +
pk0
i

cij
. (6)

This can be done because the sequence {pkj }∞
k=0 grows unlimitedly and the dif-

ference between its successive elements does not exceed a finite number δ̄ > 0.
Obviously, k1 > k0 +1. Let show that pk1

i ≥ pk0
i + δ, that is, during the time

between iterations with indexes from k0 to k1 the price of the i-th commodity
must increase at least once.

Indeed, if, during all iterations from k0 to k1−1, the price of the ith commod-
ity has never been adjusted and kept the same, then by (6) we have inequality

Ei(pk1−1) =
1

pk1−1
i

n∑

s=1

cisp
k1−1
s − 1 =

1
pk0
i

n∑

s=1

cisp
k1−1
s − 1 ≥ cijp

k1−1
j

pk0
i

− 1 > 0.

(7)
But then, by the rules of Algorithm 1, the price of the ith commodity will be
adjusted at the iteration of k1.

So, in any case, pk1
i ≥ pk0

i + δ.
Next, choose the smallest k2 such that

pk2−1
j ≥ pk1

j +
pk1
i

cij
, (8)

This inequality is similar to (6) from the previous step. Obviously, k2 > k1 + 1.
And again, we have an estimate of the price increase pk2

i ≥ pk1
i + δ, since during

the time between iterations from k1 to k2 the price of the j-th commodity, by
virtue of the formulas of algorithm 1, must increase at least once.

Indeed, if, during all iterations from k1 to k2 − 1, the price of the j-th com-
modity would never have been adjusted, then according to (8) the inequality
holds (compare with (7))

Ei(pk2−1) =
1

pk2−1
i

n∑

s=1

cisp
k2−1
s − 1 =

1
pk1
i

n∑

s=1

cisp
k2−1
s − 1 ≥ cijp

k2−1
j

pk1
i

− 1 > 0.

But then, by the rules of Algorithm 1, the price of the i-th commodity will be
adjusted at the iteration of k2.

So, in any case, pk2
i ≥ pk1

i + δ.
Continuing the above reasoning, we construct the next indexes k3, k4, ..., and

so on, and each time it turns out that

pks
i ≥ p

ks−1
i + δ ≥ p

ks−2
i + 2δ ≥ . . . ≥ p0i + sδ → ∞,

so the sequence {pks
i }∞

s=0, and therefore the sequence {pki }∞
k=0 (being

monotonous) really grows unlimitedly, q.e.d.
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Corollary 1. Let at least one of the price sequences, for example, {pki }∞
k=0, grow

unlimitedly. Then all the other price sequences also grow unlimitedly under the
Assumption 1.

Proof. By Assumption 1, the exchange graph Γ(C) is strongly connected. Thus,
any pair of its nodes are connected by a path containing at most (n − 1) arcs.
Consider a path connecting the initial node i, for which the corresponding price
grows unlimitedly, and an arbitrary node j that does not coincide with it. Let
this path be consist of intermediate nodes i = l0, l1, ..., lN = j so that all
clsls+1 > 0, s = 0, 1, ..., N − 1. By the Lemma 1, an unlimited increase in the
price of commodity l0 = i forces an unlimited increase in the price of commodity
l1. In its turn, an unlimited increase in the price of commodity l1 leads to an
unlimited increase in the price of commodity l2. And so on along the chain,
an unlimited rise in the price of commodity lN−1 will ultimately determine an
unlimited rise in the price of commodity lN = j, q.e.d.

Now analyze the discrete trajectories of the components of market excess
demand. If current prices are out-of-equilibrium, then, by the Walras law, some of
the components Ei(pk) must be positive, and some another must be negative. In
reality, these components make a wave-like motion. For example, let Ei(pk) < 0
at some iteration k. Because the price of ith commodity is temporary unchanged
and the prices for some other commodities keep on to increase, Ei(pk) gradually
grows and after several iterations become positive. But for i with positive Ei(pk

′
),

the price of ith commodity starts to grow. That is why, step by step, Ei(pk)
returns to the area of negative values. The price of ith commodity is temporarily
stabilized. Then everything repeats once more.

Let us evaluate the depth of immersion of an arbitrary trajectory in the
negative and positive regions.

Lemma 2. Suppose that Ei(pk) ≤ 0. Then, Ei(pk) ≤ Ei(pk+1) ≤ nδ̄/pki → +0.

Proof. When Ei(pk) ≤ 0, then, according to the rules of the algorithm 1, the
price of the i-th commodity remains unchanged, that is, pk+1

i = pki > 0. Since
all other prices do not decrease, we have

Ei(pk+1) =
1

pk+1
i

n∑

s=1

cisp
k+1
s −1 =

1
pki

n∑

s=1

cisp
k+1
s −1 ≥ 1

pki

n∑

s=1

cisp
k
s−1 = Ei(pk).

It gives us the left side of proving inequality. As for the right-hand side of this
inequality, then, by Assumption 2, the price increase is bounded from above,
and even when these prices rise all together, the new value of the ith component
of excess market demand will be bounded from above

Ei(pk+1) =
1
pki

n∑

s=1

cisp
k+1
s − 1 ≤ 1

pki

n∑

s=1

cis(pks + δ̄) − 1 ≤ Ei(pk) +
nδ̄

pki
≤ nδ̄

pki
,

q.e.d.
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Thus, the negative component of market excess being growing can come into
a positive area. But the altitude of such a jump will be less and less in absolute
value.

Consider now the case when the current component of market excess demand
is positive.

Lemma 3. Let Ei(pk) > 0. Then Ei(pk+1) > −δ̄/pki → −0.

Proof. If Ei(pk) > 0, then, according to the rules of algorithm 1, the price for
the i-th commodity increases by δki > 0, so

Ei(p
k+1) =

1

pki + δki
·

n∑

s=1

cisp
k+1
s − 1 ≥ 1

pki + δki
·

n∑

s=1

cisp
k
s − 1

=
pki

pki + δki
· Ei(p

k) − δki
pki + δki

> − δki
pki + δki

> − δ̄

pki
→ −0,

q.e.d.

Thus, the possible depth of immersion of each of the positive components of
market excess demand in the negative area occurs at ever smaller and smaller.

Corollary 2. Let all the price sequences {pki }∞
k=0 generated by the algorithm 1,

grow unlimitedly. Then

lim
k→∞

inf Ei(pk) ≥ 0 (∀i ∈ 1, n).

It remains to study the possible behavior of the trajectory of the components
of market excess demand within the positive range of its values.

Lemma 4. Let Ei(pk1−1) ≤ 0 and Ei(pk) > 0 for k1 ≤ k < k2. Then

γ(k1, k2) = max
k1≤k<k2

{
Ei(pk)

} ≤ n max
{
δ̄/p0i ; δ̄/δ

}
= Const.

Proof. Two cases are possible. In the first one, the maximum under consideration
is reached at the left end of the interval, and, taking into account the Lemma 2,
we conclude that

γ(k1, k2) = max
k1≤k<k2

{
Ei(pk)

}
= Ei(pk1) ≤ nδ̄/pk1

i ≤ nδ̄/p0i .

In the second one, the same maximum is reached inside this interval, i.e.

γ(k1, k2) = max
k1≤k<k2

{
Ei(pk)

}
= Ei(pk0), k1 < k0 < k2.

But since for all k1 ≤ k < k2 the inequality holds

Ei(pk+1) =
1

pk+1
i

n∑

s=1

cisp
k+1
s − 1 ≤ 1

pk+1
i

n∑

s=1

cis(pks + δ̄) − 1
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≤ pki
pk+1
i

·
∑n

s=1 cisp
k
s

pki
+

nδ̄

pk+1
i

− 1 ≤ pki
pk+1
i

Ei(pk) +
nδ̄

pk+1
i

,

which implies

Ei(pk0) ≤ pk0−1
i

pk0
i

Ei(pk0−1) +
nδ̄

pk0
i

≤ pk0−1
i

pk0
i

Ei(pk0) +
nδ̄

pk0
i

.

After multiplying both sides of the last inequality by pk0
i > 0 and rearranging

the terms, we have

pk0
i Ei(pk0) − pk0−1

i Ei(pk0) ≤ nδ̄,

so, finally,
δ Ei(pk0) ≤ (pk0

i − pk0−1
i ) Ei(pk0) ≤ nδ̄,

or
γ(k1, k2) = max

k1≤k<k2

{
Ei(pk)

}
= Ei(pk0) ≤ nδ̄/δ.

Combining the both cases above, we get

γ(k1, k2) = max
k1≤k<k2

{
Ei(pk)

} ≤ max
{

nδ̄/p0i ; nδ̄/δ
}

,

q.e.d.

Thus, we show that excess market demand is bounded from above by a certain
constant, and it is so despite the fact that the prices of various commodities may
increase with different rates. This allows us to formulate the next statement.

Lemma 5. Let the sequence {pk}∞
k=0 generated by the algorithm 1, be unlimited.

Then an arbitrary limit point p̄ of the normalized sequence {pk/‖pk‖1}∞
k=0 is

necessarily positive, that is, p̄ > 0.

Proof. All components of the normalized price sequence are positive, and due to
the homogeneity of market excess demand, the equality E(pk) = E(p̌k) holds,
where p̌k = pk/‖pk‖1. Suppose that for some commodity i the limit normalized
price p̄i is equal to zero. Then the convergence of some subsequence of p̌ki to + 0
takes place (we preserve the original numbering for it). But by virtue of the
Lemma 4 excess demand for the i-th commodity is bounded from above by some
constant

Ei(pk) = Ei(p̌k) =
1
p̌ki

n∑

s=1

cisp̌
k
s − 1 ≤ Const.

It implies
n∑

s=1

cisp̌
k
s ≤ (Const + 1)p̌ki → +0,

that is, within the framework of the chosen subsequence, the normalized prices
p̌ks for all those commodities for which the commodity i is exchanged directly
also converge to zero (since for them cis > 0).
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Using the same arguments to the normalized prices of commodities which are
connected by arcs with commodities connected by arcs with the commodity i, we
obtain the convergence to zero of the same subsequences made up of their nor-
malized prices. But by the Assumption 1, the graph Γ(C) is strongly connected.
So, we conclude that this property is true for all commodities, so a subsequence
of normalized prices is found that converges to zero simultaneously for all its
components. This, however, contradicts the assumption that all ‖p̌k‖1 = 1. The
revealed contradiction proves the strict inequality p̄ > 0. The proof is complete.

Now we can formulate the final convergence statement.

Theorem 1. Let the economy E(C, b) satisfy the Assumption 1, and the step
parameters of the algorithm 1 satisfy the Assumption 2. Then only the following
two cases are possible:

(a) price sequence {pk}∞
k=0 reaches equilibrium in a finite number of steps,

(b) the sequence of prices {pk}∞
k=0 grows unlimitedly and

lim
k→∞

Ei(pk) = 0 (∀i ∈ 1, n).

Moreover, any limit point p̄ of the normalized sequence {pk‖pk‖−1
1 }∞

k=0 is
positive and gives the equilibrium point of the economy in the sense of (2) .

Proof. Let us combine the above lemmas into a joint assertion. Firstly, if at
some step of the iterative process 1 the price system has stabilized, then it
represents an equilibrium point (this fact was considered at the beginning of
the section, see case 2). Secondly, if price stabilization does not occur, then we
can apply successively all the lemmas from case 3. We conclude that all prices
rise unlimitedly (Lemma 1). Moreover, due to Corollary 2 and the fact that the
function of market excess demand is homogeneous, we can write

lim
k→∞

inf E(pk‖pk‖−1
1 ) = lim

k→∞
inf E(pk) ≥ 0. (9)

Next, market excess demand is continuous function of prices and all the limit
points p̄ of the sequence {pk‖pk‖−1

1 }∞
k=0 are positive. Therefore (see Corollary 2)

E(p̄) ≥ 0. It implies p̄�E(p̄) ≥ 0 and we conclude that all Ei(p̄) = 0. Indeed,
if the inequality Ei(p̄) > 0 holds at least for one i, then we have the inequality
p̄�E(p̄) > 0, which contradicts the Walras law.

Therefore, all limit points of the sequence {pk‖pk‖−1
1 }∞

k=0 are equilibrium
points, and (to strengthen the property (9))

lim
k→∞

Ei(pk) = 0 (∀i ∈ 1, n).

The proof is complete.

It remains to estimate the rate of convergence of algorithm 1 for the case
where the elements of the sequence pk > 0 do not repeat.
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Lemma 6. Suppose that at each iteration of algorithm 1, at least one of the
components of current market excess demand is positive. Then a small ε > 0
exists such that pki > (εδ/n)k for all i and sufficiently large k.

Proof. We can assert that there are ε > 0 and number K such that for all i, j
and k > K the inequalities hold pki ≥ εpkj . Otherwise, one could single out a pair
of numbers i and j such that limk→∞ inf{pki /pkj } = 0, which means that there
would be the limit point p̄ of the sequence {pk}∞

k=0 lying on the boundary of a
non-negative orthant. But it contradicts the Lemma 5.

Next we denote Δpki = pk+1
i − pki . By assumption,

∑n
i=1 Δpki ≥ δ for all k.

As we already establish,

pki ≥ εpkj = ε

(
p0j +

k∑

s=0

Δpsj

)

for all sufficiently large k. Summing up this inequality over all j, we obtain

npki ≥ ε
n∑

j=1

(
p0j +

k−1∑

s=0

Δpsj

)
= ε‖p0‖1 + ε

k−1∑

s=0

n∑

j=1

Δpsj ≥ ε
(‖p0‖1 + kδ

)
> εδ k.

The desired conclusion obviously follows from this.

Corollary 3. Suppose, that at each iteration of algorithm 1, at least one of the
components of market excess demand is positive. Then there exists ε > 0 such
that

|Ei(pk)| < 2n2(δ̄/εδ) · (k − 1)−1

for all sufficiently large k.

Proof. By the Lemma 3 all Ei(pk) > −δ̄/pk−1
i , so, by the Lemma 6, for all

non-positive Ei(pk) the inequality holds

|Ei(pk)| < δ̄/pk−1
i < nδ̄/[εδ(k − 1)].

According to the Walras law,

pk · E(pk) =
∑

i∈I+(k)

pki Ei(pk) +
∑

i�∈I+(k)

pki Ei(pk) = 0,

so the last lemma gives us the inequality

εδk

n
max

i∈I+(k)

{
Ei(pk)

}
≤

∑

i∈I+(k)

pki Ei(pk) = −
∑

i�∈I+(k)

pki Ei(pk) < δ̄
∑

i�∈I+(k)

pki
pk−1
i

.

Whence for all positive Ei(pk) and all sufficiently large k we have an upper
bound

|Ei(pk)| ≤ max
i∈I+(k)

{
Ei(pk)

}
<

nδ̄

εδk

∑

i�∈I+(k)

pki
pk−1
i

<
nδ̄

εδk

∑

i�∈I+(k)

pk−1
i + δ̄

pk−1
i

<
nδ̄

εδk
2n.

Combining both obtained estimates, we complete the proof.
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5 Computational Experiments

For a computational experiment, we choose two methods: our algorithm 1, and
algorithm 2 from [17] (see (5), it also converges under weak assumptions). Tests
were selected from a well-known list of “bad” problems. Some of them were con-
structed using a random generating. The starting price vectors for all examples
are chosen the same, and only the control rules for step parameters in (5) are
varied (version 2.1: αk+1 = 1/(k+1), version 2.2: αk+1 = αk(1−αk), α1 = 1/2).
For calculations, we use the MATLAB system.

Table 1 demonstrates the results for the cyclical economy [17] already men-
tioned above. For this economy, only the necessary conditions for the existence
of equilibrium are satisfied. Besides, many well-known methods demonstrate
chaotic behavior for it. Below, the data in the first column indicates the num-
ber of iterations. The data in the rest columns show the equilibrium accuracy
achieved to these iterations and estimated by the 1-norm of the market excess
demand vector. The initial prices are equal, ‖E(p0)‖1 = 4.091.

As can be seen from Table 1, in the beginning, Algorithm 2 is better than
Algorithm 1. But then, with increasing accuracy requirements, both algorithms
demonstrate similar results. Nevertheless, Algorithm 1 requires less information
to choose the next direction of descent. As for the choice of step parameters,
it affects the convergence rate in the beginning. But with a sufficiently large
number of iterations, these differences disappear.

Table 2 demonstrates the analogous results for Cobb–Douglas economy of
dimension 10 × 10, randomly constructed. In this case, the matrix A is tri-
diagonal, and the matrix B is the identity matrix. The substantive meaning
of the data given in Table 2 is the same as in Table 1. The initial prices in each
method are the same too, ‖E(p0)‖1 = 15.42. We see that the experiments confirm
the previous conclusions.

In Table 3, Algorithm 1 is applied to G. Scarf’s economy from [10] and to an
economy with consumer preferences expressed by C.E.S. utility functions. Here,
starting prices p0 > 0 are chosen randomly from the range (0.1; 10). For them,
‖E(p0)‖1 = 2.21 for C.E.S. economics, and ‖E(p0)‖1 = 0.61 for G. Scarf’s exam-
ple. Although there is no theoretical analysis for these economies, the calculation
results are encouraging.

Recall that, in C.E.S. economy, the utility functions are of the form

u(x) =

⎛

⎝
n∑

j=1

a
1/r
j x

(r−1)/r
j

⎞

⎠
r/(r−1)

,

where all aj > 0, r < 1. It means that

Ej(p) =
aj

prj

n∑

s=1

psbs

(
n∑

s=1

p1−r
s as

)−1

− bj (j = 1, ..., n).

For the experiments, we take m = n = 3.
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As for G. Scarf’s example, its market excess demand is as

E(p1, p2, p3) =
(

p3
p1 + p3

− p2
p1 + p2

;
p1

p1 + p2
− p3

p2 + p3
;

p2
p2 + p3

− p1
p1 + p3

)
.

This economy is a popular counterexample to many t̊atonnement algorithms,
though has a single equilibrium (it is the ray p1 = p2 = p3 > 0). Nevertheless,
there is neither the property of global gross substitutability nor the fulfillment
of the weak axiom of revealed preferences nor the property p̄ · E(p) > 0. As we
see, for G. Scarf’s example converges is especially slow. But it is not surprising.

Table 1. The accuracy of the solution for problem 1

Iteration number Algorithm 1 Algorithm 2

δ = 1.0 δ = 0.1 δ = 0.01 vers. 2.1 vers. 2.2

100 0.051 0.135 3.075 0.039 0.040

500 0.197 0.012 1.120 0.048 0.037

1000 0.005 0.048 0.115 0.036 0.043

5000 0.002 0.001 0.001 0.0005 0.0004

10000 0.0005 0.0005 0.0005 0.0004 0.0004

100000 5.e –5 5.e –5 5.e –5 4.e –5 4.e –5

Table 2. The accuracy of the solution for problem 2

Iteration Algorithm 1 Algorithm 2

number δ = 1.0 δ = 0.1 δ = 0.01 vers. 2.1 vers. 2.2

100 0.425 5.56 12.7 0.034 0.033

500 0.007 1.55 7.9 0.007 0.007

1000 0.007 0.414 5.56 0.004 0.004

10000 0.0003 0.0007 0.414 0.0003 0.0003

100000 2.e –5 1.e –5 3.e –5 3.e –5 3.e –5

Table 3. Behavior of algorithm 1 for other types of economies

Iteration C.E.S Economy Economy by G.Scarf

number δ = 1.0 δ = 0.1 δ = 0.01 δ = 1.0 δ = 0.1 δ = 0.01

500 0.006 0.127 0.245 0.043 0.18 0.24

1000 0.003 0.015 0.0721 0.021 0.09 0.10

5000 0.0007 0.0016 0.0022 0.0044 0.012 0.022

10000 0.0005 0.0008 0.0011 0.0023 0.006 0.009

100000 4.e –5 4.e –5 5.e –5 0.0002 0.002 0.03

1000000 2.e –5 0.0002 0.002
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6 Conclusion

To find an equilibrium in the classical Arrow–Debreu model of pure exchange
with the multiplicative utilities of its agents, we construct new iterative method
simulating the simplest and instinctive forms of behavior of economic agents.
The method use increases in prices for scarce commodities only and converge
under very weak assumptions. The convergence theorems are given and the
results of computing experiments are presented, including ones for other types
of economies. It turned out that new method converges for these economies too.
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Abstract. The Hotelling pure location game has been revisited. It is
assumed that there are two identical players, strategy sets are one-
dimensional, and demand as a function of distance is constant or strictly
decreasing. Besides qualitative properties of conditional payoff functions,
attention is given to the structure of the equilibrium set, best-response
correspondences and the existence of potentials.

Keywords: Hotelling game · Potential game · Pure Nash equilibrium
existence · Principle of Minimum Differentiation

1 Introduction

In mathematics, a strategy to make progress is by studying concrete examples
and thereby trying to find out what drives the results. This in particular holds
in game theory for the topic of Nash equilibria of games in strategic form. An
important example in this context is Cournot oligopoly games. In the present
article we consider another one: Hotelling games.

By ‘Hotelling games’, one understands a variety of games that appeared in
the literature after the seminal article of Hotelling [1].1 The focus of interest
of the present article is pure location Hotelling games. In fact we consider the
pure location part of the model in [1] dealing with two sellers of a homogeneous
product locating a single plant on a finite one-dimensional geographic market.

The aim of our article is to further develop the theory for the Hotelling pure
location game with elastic demand. The bulk of articles presupposes inelastic
demand, meaning that the demand function f is constant; the elastic case was
first treated by [2]. Our article deals with the more difficult elastic case. The
game we consider is a generalisation of that in [7] in the sense that more general
demand functions are allowed.

The article is organized as follows. In Sect. 2, we fix the setting. Section 3
makes some useful observations about Nash equilibria of games with location and
player symmetry. Section 4 reviews the inelastic case. Before proceeding in Sect. 6
to the equilibrium structure of the elastic case, Sect. 5 establishes properties of
game-theoretic fundamental objects for this case. Section 7 investigates in which
sense the game is a potential game. Finally, Sect. 8 provides some concluding
remarks.
1 For an overview and discussion of the literature we refer to [5] and [6].
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2 Setting

Below we fix the setting for the Hotelling game that we are going to con-
sider. Well, strategy sets are one-dimensional, there are two identical players
and demand may be inelastic. We will allow for a non-continuous demand func-
tion. In order to distinguish the game in the present article from discrete variants
(see [14] and references therein), we simply refer to it as the cHg (‘continuous
Hotelling game’).

Throughout the whole article, S denotes a real interval [0, L] with L > 0
and f : S → R is a positive function which is constant or is strictly decreasing;
without loss of generality we assume f = 1 in the case f is constant. The case of
constant f is referred to as the inelastic case and the other one as elastic case.

In this article by a continuous Hotelling game (cHg), we understand a two-
person game in strategic form with player set N = {1, 2}, common strategy set
S and defining the function L : S → R by

L(x) :=
∫ x

0

f(z) dz

payoff functions u1, u2 : S × S → R given by,

ui(x1, x2) =

⎧⎪⎨
⎪⎩

L(xi) + L( |x1−x2|
2 ) if xi < xj ,

L(L − xi) + L( |x1−x2|
2 ) if xi > xj ,

1
2

(L(xi) + L(L − xi)
)

if xi = xj .

In the case where f even is continuously differentiable, the cHg becomes the
game in [7]. We refer to f as a demand function.2

The functions f− : [0, L [ → R and f+ : [0, L [ → R are well-defined by

f−(z) := lim
w↑z

f(w), f+(z) := lim
w↓z

f(w).

So f− and f+ are decreasing, f− ≥ f ≥ f+. One also knows that f− is right
continuous and that f+ is left continuous.

L has the following simple properties:

A. L ≥ 0 and L(0) = 0.
B. L is strictly increasing.
C. L is continuous.
D. L is linear if f is constant and L is strictly concave if f is strictly decreasing.
E. f is semidifferentiable: D−L(x) = f−(x) and D+L(x) = f+(x). And if f is

continuous at x, then L is differentiable at x and DL(x) = f(x).
2 Its standard interpretation in location theory concerns two competing vendors on a

beach. The vendors simultaneously and independently select a position. Customers
go to the closest vendor and split themselves evenly if the vendors choose an iden-
tical position. Each vendor wants to maximize his number of customers. One can
reframe the interpretation as two candidates placing themselves along an ideological
spectrum, with citizens voting for whichever one is closest (see e.g. [4]).
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F. For x′ > x the inequalities (x′ − x)f(x′) ≤ L(x′) − L(x) ≤ (x′ − x)f(x) hold
and these inequalities are strict if f is strictly decreasing.

There is an interesting principle for the cHg, the so called Principle of Mini-
mum Differentiation. For our (interpretation of the) cHg, this principle, coined by
Boulding [3], comes down to that firms liking3 to locate together. We formalize
this principle for the cHg as follows: the Principle of Minimum Differentiation
holds if the game has (L

2 , L
2 ) as unique (pure) Nash equilibrium.

3 Games with Player and Location Symmetry

The content of this section is borrowed from [14].
In this section we consider a game in strategic form with two players 1, and

2, with common strategy set S = [0, L] with L > 0, and with payoff functions
g1, g2 : S × S → R. Assume, player symmetry, i.e.

g2(x1, x2) = g1(x2, x1) (x1, x2 ∈ S).

Also assume,
gi(x1, x2) = gi(L − x1, L − x2) (x1, x2 ∈ S),

i.e. location symmetry. The cHg is an example of such a game.
We denote the conditional payoff function of player i where his opponent

plays xj ∈ S by g
(xj)
i ; so g

(x2)
1 : S → R is defined by g

(x2)
1 (x1) = g1(x1, x2) and

g
(x1)
2 : S → R of player 2 is defined by g

(x1)
2 (x2) = g2(x1, x2). With Bi we denote

the best-response correspondence of player i; so Bi : S � S.
The location symmetry implies the formulas4

g
(L−z)
i (x) = g

(z)
i (L − x) and Bi(x) = {L} − Bi(L − x).

And player symmetry implies

g
(z)
1 = g

(z)
2 and B1 = B2 =: B.

Denoting the Nash equilibrium set by E, player symmetry also implies for
every (e1, e2) ∈ E that {(e1, e2), (e2, e1)} ⊆ E and location symmetry implies
that {(e1, e2), (L − e1, L − e2)} ⊆ E. Thus for every (e1, e2) ∈ E

{(e1, e2), (e2, e1), (L − e1, L − e2), (L − e2, L − e1)} ⊆ E. (1)

Having this, we like to see (e1, e2), (e2, e1), (L − e1, L − e2), (L − e2, L − e1) as
the same equilibrium. We formalize this by defining on E the relation ∼ by

(e1, e2) ∼ (e′
1, e

′
2) means:

3 However, see concluding remark 3 in Sect. 8.
4 Here {L} − Bi(L − x) is the Minkowski sum of the sets {L} and −Bi(L − x).
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(e1, e2) ∈ {(e′
1, e

′
2), (e

′
2, e

′
1), (L − e′

1, L − e′
2), (L − e′

2, L − e′
1)}.

It is straightforward to check that this relation is an equivalence relation. Denote
by [E] the set of its equivalence classes, to be called equilibrium classes, and by
[(e1, e2)] the equilibrium class of (e1, e2) ∈ E. We have

[(e1, e2)] = {(e1, e2), (e2, e1), (L − e1, L − e2), (L − e2, L − e1)}.

We define the multiplicity of an equilibrium as the number of elements of its
equilibrium class. Of course, if the game has a unique equilibrium (e1, e2), then
there is just one equilibrium class consisting of this equilibrium and (e1, e2) has
multiplicity 1. Note that with the action distance of an action profile (x1, x2)
defined by |x2 − x1|, each element of a given equilibrium class has the same
action distance. Also note that (1) implies:

#E = 1 ⇒ E = {(
L

2
,
L

2
)}.

Theorem 1. If (e1, e2) ∈ E, then (e1, e2) has multiplicity 1, 2 or 4 and

#[(e1, e2)] = 1 ⇔ e1 = e2 ∧ e1 + e2 = L ⇔ e1 = e2 =
L

2
;

#[(e1, e2)] = 2 ⇔ [e1 = e2 ∧ e1 + e2 �= L] ∨ [e1 �= e2 ∧ e1 + e2 = L];

#[(e1, e2)] = 4 ⇔ [e1 �= e2 ∧ e1 + e2 �= L]. 
Proof. It is easy to prove the three displayed statements. They in turn imply, as
desired, that #[(e1, e2)] �= 3. Q.E.D.

We shall freely use all the results in this section together with the results
A–F for the function L in Sect. 2. Because of player symmetry, we often only
present results for player 1.

4 Inelastic Case

Let us start our investigation of the continuous Hotelling game by considering
the well-known inelastic case, i.e. the case where f is constant. Without loss of
generality, we assume f = 1.

First it may good to have a look to the simple results in Lemma 1 and Propo-
sition 1 below. In addition to these results, the following simple results hold for
the inelastic case (but not with exception of those in parts 2a and 2b for the
elastic case):

Theorem 2. 1. (a) u
(x2)
1 is on [0, x2 [ strictly increasing and on ]x2, L] strictly

decreasing.
(b) If x2 ≤ L

2 , then u
(x2)
1 is on [0, x2] strictly increasing.

(c) If x2 ≥ L
2 , then u

(x2)
1 is on [x2, L] strictly decreasing.
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2. (a) If x2 < L
2 , then u

(x2)
1 is on [0, x2 [ concave and on [x2, L] concave.

(b) If x2 > L
2 , then u

(x2)
1 is on [0, x2] concave and on ]x2, L] concave.

(c) u
(L

2 )
1 is concave.

(d) u
(x2)
1 is strictly quasi-concave.

3. B(x) =
{∅ if x �= L

2 ,
{L
2 } if x = L

2 .

4. E = {(L
2 , L

2 )}. Thus there is one equilibrium class, this class contains one
element and the Principle of Minimum Differentiation holds. 

5 Properties of Fundamental Objects

5.1 Smoothness

Lemma 1. 1. If 0 < x2 < L
2 , then limx1↑x2 u

(x2)
1 (x1) = L(x2) < u

(x2)
1 (x2) <

L(L − x2) = limx1↓x2 u
(x2)
1 (x1). And u

(0)
1 (0) < L(L) = limx1↓0 u

(0)
1 (x1).

2. If L > x2 > L
2 , then limx1↑x2 u

(x2)
1 (x1) = L(x2) > u

(x2)
1 (x2) > L(L − x2) =

limx1↓x2 u
(x2)
1 (x1). And u

(L)
1 (L) < L(L) = limx1↑L u

(0)
1 (x1).

3. limx1→ L
2

u
(L

2 )
1 (x1) = u

(L
2 )

1 (L
2 ) = L(L

2 ). 

Proof. 1. limx1↑x2 u
(x2)
1 (x1) = limx1↑x2(L(x1) + L( |x1−x2|

2 )) = L(x2) + L(0) =
L(x2) < L(x2)+L(L−x2)

2 = u
(x2)
1 (x2) and limx1↓x2 u

(x2)
1 (x1) = limx1↑x2(L(L −

x1) + L( |x1−x2|
2 )) = L(L − x2) + L(0) = L(L − x2) > L(x2)+L(L−x2)

2 = u
(x2)
1 (x2).

2. Analogous to part 1.
3. limx1↓ L

2
u
(L

2 )
1 (x1) = limx1↓ L

2
(L(L − x1) + L( |x1− L

2 |
2 ) = L(L

2 ) = u
(L

2 )
1 (L

2 ).

With this limx1↑ L
2

u
(L

2 )
1 (x1) = limx1↑ L

2
u
(L

2 )
1 (L − x1) = limx1↓ L

2
u
(L

2 )
1 (x1) =

u
(L

2 )
1 (L

2 ). So the desired result follows. Q.E.D.

Proposition 1. 1. u
(x2)
1 is continuous at every x1 �= x2 and discontinuous at

every x1 = x2 �= L
2 .

2. If x2 �∈ {0, L
2 , L}, then u

(x2)
1 is at x1 = x2 neither upper-semicontinuous

nor lower-semicontinuous. u
(0)
1 is at 0 lower-semicontinuous, but not upper-

semicontinuous. u
(L)
1 is at L upper-semicontinuous, but not lower-semiconti-

nuous.
3. For x2 < L

2 , u
(x2)
1 is left-upper-semicontinuous at x2 and right-lower-semicon-

tinuous at x2. For x2 > L
2 , u

(x2)
1 is right-upper-semicontinuous at x2 and

left-lower-semicontinuous at x2.
4. u

(L
2 )

1 is continuous.
5. u

(x2)
1 is semidifferentiable at each x1 �= x2. If f is continuous, then u

(x2)
1 even

is differentiable at each x1 �= x2. 
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Proof. 2. This follows from Lemma 1(1, 2).
1. First statement: clear. Second statement: from part 2.
3. By Lemma 1(1, 2).
4. By Lemma 1(3) together with part 1.
5. Clear. Q.E.D.

Here is an improvement of Proposition 1(5).

Proposition 2. 1. D±u
(x2)
1 (x1) = f±(x1) − 1

2f∓(x2−x1
2 ) (x1 < x2) and

D±u
(x2)
1 (x1) = −f∓(L − x1) + 1

2f±(x1−x2
2 ) (x1 > x2).5

2. u
(L

2 )
1 is semidifferentiable at L

2 and D±u
(L

2 )
1 (L

2 ) = ∓f−(L
2 ) ± 1

2f+(0). 

Proof. 1. First statement: for x1 ∈ [0, x2 [, we have u
(x2)
1 (x1) = L(x1)+L(x2−x1

2 ).
This implies D±u

(x2)
1 (x1) = L±(x1) + D±(L(x2−x1

2 )) = f±(x1) − 1
2f∓(x2−x1

2 ).
Second statement: in the same way.
2. Suppose f is continuous at 0 and L

2 . We have

D+u
(L

2 )
1 (

L

2
) = lim

h↓0
u
(L

2 )
1 (L

2 + h) − u
(L

2 )
1 (L

2 )
h

= lim
h↓0

L(L
2 − h) + L(h

2 ) − L(L
2 )

h

= lim
h↓0

L(L
2 − h) − L(L

2 )
h

+lim
h↓0

L(h
2 )

h
= lim

h↑0
−L(L

2 + h) − L(L
2 )

h
+lim

h↓0
L(h) − L(0)

2h

= −D−L(
L

2
) +

1
2
D+L(0) = −f−(

L

2
) +

1
2
f+(0).

From this D−u
( L
2 )

1 (L
2
) = limh↑0

u
( L
2 )

1 ( L
2 +h)−u

( L
2 )

1 ( L
2 )

h
= limh↓0

u
( L
2 )

1 ( L
2 −h)−u

( L
2 )

1 ( L
2 )

−h
=

limh↓0 −u
( L
2 )

1 (L
2 +h)−u

( L
2 )

1 (L
2 )

h = −D+u
(L

2 )
1 (L

2 ). Q.E.D.

5.2 Monotonicity

Lemma 2. 1. For all x2, x1, x
′
1 ∈ S with x2 < x1 < x′

1

u
(x2)
1 (x1) − u

(x2)
1 (x′

1)
{≥ (x′

1 − x1)(f(L − x1) − 1
2f(x1−x2

2 )),
≤ (x′

1 − x1)(f(L − x′
1) − 1

2f(x′
1−x2
2 )).

2. For all x2, x1, x
′
1 ∈ S with x1 < x′

1 < x2

u
(x2)
1 (x1) − u

(x2)
1 (x′

1)
{≥ (x′

1 − x1)(12f(x2−x1
2 ) − f(x1)),

≤ (x′
1 − x1)(12f(x2−x′

1
2 ) − f(x′

1)). 

5 So, if f is continuous, then by Proposition 1(5), these formulas become Du
(x2)
1 (x1) =

f(x1) − 1
2
f(x2−x1

2
) (x1 < x2) and Du

(x2)
1 (x1) = −f(L− x1) + 1

2
f(x1−x2

2
) (x1 > x2).
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Proof. 1. We have u
(x2)
1 (x1) − u

(x2)
1 (x′

1)

=
(
L(L − x1) − L(L − x′

1)
)

−
(
L(

x′
1 − x2

2
) − L(

x1 − x2

2
)
)
.

From this, as desired, u
(x2)
1 (x1)−u

(x2)
1 (x′

1) ≥ (x′
1−x1)f(L−x1)− x′

1−x1
2 f(x1−x2

2 )

and u
(x2)
1 (x1) − u

(x2)
1 (x′

1) ≤ (x′
1 − x1)f(L − x′

1) − x′
1−x1
2 f(x′

1−x2
2 ).

2. Analogous to part 1. Q.E.D.
Notation:

V := {x1 ∈ S | f(L − x1) ≥ 1
2
f(0)}. (2)

Note that V is a real interval containing L.

Lemma 3. u
(x2)
1 is strictly decreasing on V ∩ ]x2, L]. 

Proof. Suppose x1, x
′
1 ∈ V ∩ ]x2, L] with x1 < x′

1. We prove that u
(x2)
1 (x1) >

u
(x2)
1 (x′

1). Well, as f(L − x1) ≥ 1
2f(0), we obtain with Lemma 2(1), as desired,

u
(x2)
1 (x1) − u

(x2)
1 (x′

1) ≥ (x′
1 − x1)(f(L − x1) − 1

2
f(

x1 − x2

2
)) ≥

(x′
1 − x1)(f(L − x1) − 1

2
f(0)) ≥ 0.

Finally, note that here the last inequality is strict if f is constant and otherwise
the second inequality is strict. Q.E.D.

Lemma 4. Suppose f is upper-semicontinuous at L−x2 and f(L−x2) < 1
2f(0).

Then there exists a punctured right neighbourhood of x2 on which u
(x2)
1 is strictly

increasing. 
Proof. Note that x2 < L. Let d = 1

2f(0) − f(L − x2). As f is upper-
semicontinuous at L − x2, we can fix x′

1 with L > x′
1 > x2 such that

f(L − x′
1) < f(L − x2) +

d

2
(x2 < x′

1 < x′′
1).

We have 1
2f(x′′

1 −x2
2 ) > 0 > d

2 − 1
2f(0). With Lemma 2(1), we obtain for x1, x

′
1 ∈

]x2, x
′
1 [ with x1 < x′

1, as desired that u
(x2)
1 (x1) − u

(x2)
1 (x′

1) ≤ (x′
1 − x1)(f(L −

x′
1) − 1

2f(x′
1−x2
2 )) < (x′

1 − x1)(f(L − x2) + d
2 + (d

2 − 1
2f(0))) = 0. Q.E.D.

Proposition 3. Suppose f(L
2 ) ≥ 1

2f(0).

1. If x2 ≤ L
2 , then u

(x2)
1 is strictly increasing on [0, x2].

2. If x2 ≥ L
2 , then u

(x2)
1 is strictly decreasing on [x2, L].

3. u
(L

2 )
1 has L

2 as unique maximiser. 
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Proof. 1, 2. By location symmetry, it is sufficient to prove part 2. Fix x2 ≥ L
2 . We

prove that u
(x2)
1 is strictly decreasing on ]x2, L]; together with Lemma1(2) and

Proposition 1(4) the desired result follows. Well, with V as in (2), [L
2 , L] ⊆ V .

This implies ]x2, L] ⊆ V ∩ ]x2, L]. Finally, apply Lemma3.
3. By parts 1 and 2. Q.E.D.

The statements in Proposition 3 are no longer valid for the situation f(L
2 ) <

1
2f(0). For example, Lemma 4 shows (by taking x2 = L

2 ), that then Proposi-
tion 3(2) is no longer valid.

Proposition 4. Suppose f is continuous.

1. If x2 < L
2 , then u

(x2)
1 is strictly decreasing on [56L,L].

2. If x2 > L
2 , then u

(x2)
1 is strictly increasing on [0, 1

6L]. 

Proof. By location symmetry, it is sufficient to prove part 1. So suppose x2 < L
2 .

Note that x1−x2
2 > 2x1−L

4 and for x1 ≥ 5
6L that L − x1 ≤ 2L−x1

4 . Finally, note
that, together with Proposition 2(1), for x1 ≥ 5

6L

Du
(x2)
1 (x1) = −f(L−x1)+

1

2
f(

x1 − x2

2
) ≤ −f(

2L − x1

4
)+

1

2
f(

2L − x1

4
) < 0. Q.E.D.

5.3 Concavity

Proposition 5. Suppose f is strictly decreasing.

1. If x2 < L
2 , then u

(x2)
1 is on [0, x2 [ strictly concave and on [x2, L] strictly

concave.
2. If x2 > L

2 , then u
(x2)
1 is on [0, x2] strictly concave and on ]x2, L] strictly

concave.
3. u

(L
2 )

1 is on [0, L
2 ] strictly concave and on [L

2 , L] strictly concave.
4. If f(L

2 ) ≥ 1
2f(0), then u

(x2)
1 is strictly quasi-concave. 

Proof. 1. First statement: for the function u
(x2)
1 : [0, x2 [ → R we have

u
(x2)
1 (x1) = L(x1) + L(x2−x1

2 ). So this function is a sum of strictly concave
functions and therefore strictly concave.

Second statement: for the function u
(x2)
1 : ]x2, L] → R we have u

(x2)
1 (x1) =

L(L − x1) + L(x1−x2
2 ). So this function is a sum of strictly concave functions

and therefore strictly concave. As the function u
(x2)
1 : [x2, L] → R is, by Propo-

sition 1(1, 3) right lower-semicontinuous, it follows, as desired, that also this
function is strictly concave.

2. Analogous to part 1.
3. For the function u

(L
2 )

1 : [0, L
2 [ → R we have u

(L
2 )

1 (x1) = L(x1) + L(
L
2 −x1

2 ).
So this function is a sum of strictly concave functions and therefore strictly
concave. As, by Proposition 1(2), u

(L
2 )

1 is continuous, it follows that u
(L

2 )
1 is on
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[0, L
2 ] strictly concave. By location symmetry, it follows that u

(L
2 )

1 is on [L
2 , L]

strictly concave.
4. Suppose x2 ≥ L

2 . By Proposition 3(2), u
(x2)
1 is strictly decreasing on [x2, L].

By parts 2 and 3, u
(x2)
1 is on [0, x2] strictly concave. If x2 = L

2 , then u
(x2)
1 is

continuous by Proposition 1(4) and it follows that u
(x2)
1 is strictly concave. If

x2 > L
2 , then by Lemma 1(2), limx1↑x2 u

(x2)
1 (x1) > u

(x2)
1 (x2) > limx1↓x2 u

(x2)
1 (x1)

and it follows that u
(x2)
1 is strictly quasi-concave.

So the statement holds for x2 ≥ L
2 . Noting that u

(x2)
1 (x1) = u

(L−x2)
1 (L − x1)

the statement now also holds for x2 ≤ L
2 . Q.E.D.

5.4 Best-Response Correspondences

Notation: by fix(B) we denote the set of fixed points of the best-response corre-
spondence B, i.e. the set {x ∈ S | x ∈ B(x)}.

Proposition 6. 0 �∈ B(x2) (x2 ∈ S) and L �∈ B(x2) (x2 ∈ S). 
Proof. By location symmetry, it is sufficient to prove the first statement. By
Lemma 1(1), this statement holds for x2 = 0. Now suppose 0 < x2 < L

2 . We
have u

(x2)
1 (0) = L(0) + L(x2

2 ) < L( 34x2) < L( 34x2) + L(x2
4 ) = u

(x2)
1 ( 34x2). Thus

0 �∈ B(x2). Q.E.D.

Lemma 5. B(x2) ⊆
⎧⎨
⎩

argmax
x1∈ ]x2, L] u

(x2)
1 (x1) (0 ≤ x2 < L

2 ),

argmax
x1∈[0, x2 [ u

(x2)
1 (x1) (L

2 < x2 ≤ L).


Proof. We prove the statement for 0 ≤ x2 < L
2 ); then the other statement follows

by location symmetry. Well, part 1 implies that the statement is true for x2 = 0.
Now suppose 0 < x2 < L

2 . For every h > 0 with 0 ≤ x2−h < x2 < x2+h ≤ L we
have u

(x2)
1 (x2 − h) = L(x2 − h) + L(h

2 ) < L(L − x2 − h) + L(h
2 ) = u

(x2)
1 (x2 + h).

This implies B(x2) ⊆ [x2, L]. By Lemma 1(1), u
(x2)
1 (x2) < limx1↓x2 u

(x2)
1 (x1).

Therefore B(x2) ⊆ ]x2, L]. The desired result now follows. Q.E.D.

Proposition 7. 1. x2 �= L
2 ⇒ x2 �∈ B(x2). Thus fix(B) ⊆ {L

2 }.
2. If f is continuous at 0 and L

2 and f(L
2 ) < 1

2f(0), then L
2 �∈ fix(B). 

Proof. 1. By Lemma 5.
2. For x1 ∈ ]0, L

2 [ we obtain

u
(L

2 )
1 (x1) = L(x1) + L(

L

4
− x1

2
) = L(

L

2
) + L(x1) − L(

L

2
) + L(

L

4
− x1

2
)

= u
(L

2 )
1 (

L

2
) − (L(

L

2
) − L(x1)) + L(

L

4
− x1

2
)

≥ u
(L

2 )
1 (

L

2
) − (

L

2
− x1)f(x1) + (

L

4
− x1

2
)f(

L

4
− x1

2
)
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= u
(L

2 )
1 (

L

2
) +

1
2
(
L

2
− x1)(−2f(x1) + f(

L − 2x1

4
)).

As −2f(L
2 ) + f(L−2L

2
4 ) = −2f(L

2 ) + f(0) > 0 and f is continuous at 0 and L
2 ,

there exists δ > 0 such that −2f(x1) + f(L−2x1
4 ) > 0 for every x1 ∈ ]L

2 − δ, L
2 [.

So for these x1 we obtain u
(L

2 )
1 (x1) > u

(L
2 )

1 (L
2 ). It follows that L

2 �∈ B(L
2 ). Q.E.D.

Terminology: given a correspondence F : A � B, we call F proper if F (a) �=
∅ (a ∈ A) and call F at most single-valued if #F (a) ≤ 1 (a ∈ A).

Proposition 8. 1. Suppose f(L
2 ) > 1

2f(0).
(a) B is at most single-valued.
(b) B(L

2 ) = {L
2 }.

(c) Suppose f is lower-semicontinuous at L
2 . Then there exists a punctured

open interval around L
2 on which B is empty-valued, thus B is not proper.

2. Suppose f(L
2 ) = 1

2f(0).
(a) B is single-valued.
(b) B(L

2 ) = {L
2 }.

3. Suppose f(L
2 ) < 1

2f(0).
(a) Suppose f is upper-semicontinuous. Then B is proper and B is on S\{L

2 }
single-valued.

(b) Suppose f is continuous. Then B(L
2 ) = {x1, L − x1} with x1 the unique

solution y ∈ ]0, L
2 [ of the equation f(y) = 1

2f(
L
2 −y

2 ).
4. Suppose f(L

2 ) ≤ 1
2f(0), f continuous and x2 ∈ ]L

2 , L]. Then B(x2) = {x1}
with x1 the unique solution y ∈ ]0, x2 [ of the equation f(y) = 1

2f(x2−y
2 ). 

Proof. 1b, 2b. By Proposition 3(3).
1a. As u

(x2)
1 is, by Proposition 5, strictly quasi-concave.

1c. By location symmetry, it is sufficient to prove that there exists δ > 0
such that B(x2) = ∅ for all x2 ∈ ]L

2 − δ, L
2 [. Well, as f is lower-semicontinuous

at L
2 , we can take δ > 0 such that f(L

2 + δ) > 1
2f(0). Next fix x2 ∈ ]L

2 − δ, L
2 [.

As L
2 − δ < x2, we have L − x2 < L

2 + δ and therefore for x1 ∈ ]x2, L] it
follows that f(L − x1) ≥ f(L − x2) ≥ f(L

2 + δ) > 1
2f(0). So, with V as in (2),

]x2, L] ⊆ V ∩ ]x2, L]. By Lemma 3, u
(x2)
1 is strictly decreasing on ]x2, L]. As

x2 < L
2 , Proposition 7(1) guarantees B(x2) ⊆ ]x2, L]. It follows that B(x2) = ∅.

2a. As u
(x2)
1 is, by Proposition 5, strictly quasi-concave, we have #B(x2) ≤

1 (x2 ∈ S). So we still need to prove that B(x2) �= ∅ (x2 ∈ S). By part 2b and
location symmetry, it is sufficient to show that B(x2) �= ∅ for x2 < L

2 .
Fix x2 < L

2 . It is sufficient to show that u
(x2)
1 has a maximiser on [0, x2] and

on ]x2, L]. Well, by Proposition 1(1, 3, 4), u
(x2)
1 is on [0, x2] upper-semicontinuous

and therefore, by the Lemma of Weierstrass-Lebesgue, has a maximiser on this
segment. As f(L − x2) < f(L

2 ) = 1
2f(0), Lemma 4 guarantees that there exists

δ > 0 such that u
(x2)
1 is strictly increasing on ]x2, x2 + δ]. Also u

(x2)
1 is continuous

on [x2 + δ, L]. It follows that u
(x2)
1 has a maximiser on ]x2, L].
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3a. First statement: by location symmetry, it is sufficient to show that
B(x2) �= ∅ for x2 ≤ L

2 . Well, for x2 = L
2 , this follows from the Weierstrass

Theorem, as u
(L

2 )
1 is continuous by Proposition 1(4). Now fix x2 < L

2 . The rest
of the proof is the same as that in part 3a after ‘Fix x2 < L

2 ’.
Second statement: by the above is sufficient to prove that #B(x2) ≤ 1 for

all x2 �= L
2 . By location symmetry it is sufficient to prove this inequality for

x2 < L
2 . So suppose x2 < L

2 . By Proposition 7(1), B(x2) ⊆ ]x2, L]. As, by
Proposition 5(1), u

(x2)
1 : ]x2, L] → R is strictly concave, this function has at

most one maximiser. This implies #B(x2) ≤ 1.

3b. By Propositions 5(3) and 1(4), the function u
(L

2 )
1 : [0, L

2 ] → R is strictly
concave and continuous. It follows that this function has a unique maximiser,
say x1. Noting that u

(L
2 )

1 (x) = u
(L

2 )
1 (L − x) (x ∈ S), it follows that B(L

2 ) =
{x1, L−x1}. By Propositions 6 and 7(2) we have 0 < x1 < L

2 . As f is continuous,

the function u
(L

2 )
1 : [0, L

2 ] → R is by Proposition 1(5) differentiable at its interior

maximiser x1, Fermat’s theorem gives Du
(L

2 )
1 (x1) = 0. Proposition 2(1) implies

f(x1) = 1
2f(

L
2 −x1

2 ). As the function y �→ f(y) − 1
2f(

L
2 −y

2 ) is strictly increasing
on ]0, L

2 [, the proof is complete.
4. By parts 2b and 3c, #B(x2) = 1. Let B(x2) = {x1}. Now, 0 < x1 < x2

by Lemma 5. As u
(x2)
1 is differentiable at its interior maximiser x1, Fermat’s

theorem gives Du
(x2)
1 (x1) = 0. Proposition 2(1) implies f(x1) = 1

2f(x2−x1
2 ). As

the function y �→ f(y) − 1
2f(x2−y

2 ) is strictly increasing on ]0, x2 [, the proof is
complete. Q.E.D.

For the inelastic case B(x) = ∅ holds for all x �= L
2 . Proposition 8(1c) shows

that this property continues to hold in case of a continuous demand function f
with f(L

2 ) > 1
2f(0) for x in a punctured neighbourhood of L

2 .

Proposition 9. Suppose f is upper-semicontinuous and f(L
2 ) ≤ 1

2f(0). Then

B(x2) =

⎧⎨
⎩

argmax
x1∈ ]x2, L] u

(x2)
1 (x1) (0 ≤ x2 < L

2 ),

argmax
x1∈[0, x2 [ u

(x2)
1 (x1) (L

2 < x2 ≤ L).


Proof. By Lemma 5, we still have to prove ‘⊇’. We prove the statement for
0 ≤ x2 < L

2 ; then the other statement follows by location symmetry. So fix
x2 ∈ [0, L

2 [ and suppose x̃1 ∈ argmax
x1∈ ]x2, L] u

(x2)
1 (x1). By Proposition 8(2a,

3a), u
(x2)
1 has a maximiser, say x1. By Lemma 5, x1 ∈ argmax

x1∈ ]x2, L]u
(x2)
1 (x1).

It follows that u
(x2)
1 (x̃1) = u

(x2)
1 (x1). This implies x̃1 ∈ B(x2). Q.E.D.

Concerning the statement in the next theorem, note that we have Proposi-
tion 8(2a, 3a) on single-valuedness of the correspondence B.

Theorem 3. Suppose f(L
2 ) ≤ 1

2f(0) and f is continuously differentiable with
Df < 0. Then the functions B : [0, L

2 [ → R and B : ]L
2 , L] → R are continuously

differentiable and strictly increasing. 
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Proof. By location symmetry, it is sufficient to prove the second statement.
Well, by Proposition 8(4), B(x2) is the unique solution y of the equation
f(y) = 1

2f(x2−y
2 ) (0 < y < x2). So we have f(B(x2)) = 1

2f(x2−B(x2)
2 ). The

implicit function theorem applies and implies that B : [0, L
2 [ → R is continu-

ously differentiable with DB(x2) = Df(
x2−B(x2)

2 )

4Df(B(x2))+Df(
x2−B(x2)

2 )
< 0. Q.E.D.

6 Equilibria

In this section we provide results for the Nash equilibrium set E.

Proposition 10. If f is continuous at 0 and L
2 and f(L

2 ) < 1
2f(0), then

(L
2 , L

2 ) �∈ E. 
Proof. By Proposition 7(2). Q.E.D.

Theorem 4. If f is continuous and (e1, e2) ∈ E, then e1 + e2 = L. 
Proof. Suppose f is continuous. If f is constant, then, by Theorem 2(3), E =
{(L

2 , L
2 )} and so the statement is true. Now assume that f is strictly decreasing.

First we prove by contradiction that e1 + e2 ≥ L for each equilibrium (e1, e2).
So suppose (e1, e2) is an equilibrium with e1 + e2 < L. By player symmetry, we
may assume that e2 ≤ e1. Proposition 7(1) and e1 + e2 < L imply e2 �= e1. So
e2 < e1 holds. By Proposition 6, 0 < e2 < e1 < L. As u

(e2)
1 is differentiable at e1

and u
(e1)
2 is differentiable at e2, it follows Du

(e2)
1 (e1) = Du

(e1)
2 (e2) = 0. So, by

Proposition 2(1), noting that Du
(e1)
2 (e2) = Du

(e1)
1 (e2)

0 = −f(L − e1) +
1
2
f(

e1 − e2
2

), 0 = f(e2) − 1
2
f(

e1 − e2
2

).

We obtain f(L− e1) = f(e2). As L− e1 �= e2, this contradicts the strict decreas-
ingness of f . Thus e1 + e2 ≥ L for each equilibrium (e1, e2). By location symme-
try, (L − e1, L − e2) is also an equilibrium. Therefore (L − e1) + (L − e2) ≥ L.
Hence e1 + e2 = L follows. Q.E.D.

The next example shows that Theorem 4 no longer holds if we allow f therein
to be discontinuous.

Example 1. This example is taken from [11]. Consider the case L = 1 with the
following discontinuous demand function

f(z) =
{

2 − z if 0 ≤ z ≤ 5
24 ,

1
2 − 1

4z if 5
24 < z ≤ 1.

Note that f is upper-semicontinuous and that f(L
2 ) < 1

2f(0).
We now prove that (23 , 1

4 ) is an equilibrium.
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By Proposition 9, B( 14 ) = argmax
x1∈ ]14 , 1] u

( 1
4 )

1 (x1) and by Proposition 5(1),

the function u
( 1
4 )

1 is on [14 , 1] strictly concave. By Proposition 2(1), we have

D−u
( 1
4 )

1 ( 23 ) = −f+( 13 ) + 1
2f−( 5

24 ) = − 5
12 + 43

48 = 23
48 > 0. And D+u

( 1
4 )

1 ( 23 ) =
−f−( 13 ) + 1

2f+( 5
24 ) = − 5

12 + 43
192 = − 37

192 < 0. This implies 2
3 ∈ B( 14 ).

By Proposition 9, B( 23 ) = argmax
x1∈[0, 2

3 [ u
( 1
4 )

1 (x1) and by Proposition 5(2),

the function u
( 2
3 )

1 is on [0, 2
3 ] strictly concave. By Proposition 2(1), we have

D−u
( 2
3 )

1 ( 14 ) = f−( 14 ) − 1
2f+( 5

24 ) = 42
96 − 43

192 = 41
192 > 0. And D+u

( 2
3 )

1 ( 14 ) =
f+( 14 ) − 1

2f−( 5
24 ) = 42

96 − 43
48 = − 44

96 < 0. This implies 1
4 ∈ B( 23 ). 

Define the function H : [0, L
2 ] → R by

H(x1) := f(x1) − 1
2
f(

L

2
− x1).

Note that H(0) > 0, H is decreasing, and strictly decreasing if f is not constant.
Thus H has at most one zero. If f is continuous and f(L

2 ) ≤ 1
2f(0), then H has

a unique zero; we denote this zero by

x�.

As H(L
4 ) = 1

2f(L
4 ) > 0, we obtain

x� ∈
{

]L
4 , L

2 [ if f(L
2 ) < 1

2f(0),
= L

2 if f(L
2 ) = 1

2f(0).
(3)

Theorem 5. Suppose f is continuous. Then the game has a Nash equilibrium.
Even:

1. if f(L
2 ) ≥ 1

2f(0), then E = {(L
2 , L

2 )}.
2. if f(L

2 ) < 1
2f(0), then E = {(x�, L − x�), (L − x�, x�)}. 

Proof. 1. Suppose f(L
2 ) ≥ 1

2f(0). By Theorem 2(3), we may suppose that f

is strictly decreasing. By Proposition 8(1b, 2b), we have {(L
2 , L

2 )} ⊆ E. Now
suppose (e1, e2) ∈ E. We have to prove that (e1, e2) = (L

2 , L
2 ). This we do

by contradiction. So suppose (e1, e2) �= (L
2 , L

2 ). By player symmetry, we may
suppose e1 ≤ e2. By Theorem 4, e2 − L = e1. By Proposition 6, e1 �= 0 and
e2 �= L. It follows that 0 < e1 < L

2 < e2 < L. As (e1, L − e1) ∈ E, we
have Du

(L−e1)
1 (e1) = 0. By Proposition 2(1), f(e1) − 1

2f(L
2 − e1) = 0. Thus

f(L
2 ) < f(e1) = 1

2f(L
2 − e1) ≤ 1

2f(0), a contradiction.
2. Suppose f(L

2 ) < 1
2f(0). ‘⊆’: suppose (e1, e2) ∈ E. By location symmetry,

we may suppose e1 ≤ e2. By Theorem 4, e1 + e2 = L. Propositions 6 and 10 now
imply 0 < e1 < L

2 < e2 < L. By Proposition 8(3a), e1 = B(e2). By Proposi-
tion 8(4), f(e1) = 1

2f( e2−e1
2 ) = 1

2f(L
2 −e1). Thus e1 is a zero of H, and therefore

e1 = x�. We see (e1, e2) = (x�, L − x�) ∈ {(x�, L − x�), (L − x�, x�)}.
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‘⊇’: by location symmetry, it is sufficient to prove that (x�, L − x�) ∈ E.
By definition of x� we have 0 = f(x�) − 1

2f(L
2 − x�) = f(x�) − 1

2f( (L−x�)−x�

2 ).
Therefore Proposition 8(4) guarantees that x� = B(L−x�). This implies L−x� =
B(x�). It follows that (x�, L − x�) ∈ E. Q.E.D.

Thus for a continuous demand function, the Principle of Minimum Differentia-
tion holds if and only if f(L

2 ) ≥ 1
2f(0).

Corollary 1. Suppose f is continuous. Then the game has one equilibrium class
and this class contains one or two elements. 

In the next section we shall prove by a completely different approach that
each cHg has a Nash equilibrium (even if f is not continuous).

Proposition 11. Suppose f is continuous. Then for all (e1, e2) ∈ E it holds
that e1, e2 ∈ ]L

4 , 3
4L [. 

Proof. By Theorem 5 and (3). Q.E.D.

7 Potentials

In this section we review the results in [12] on potentials for the cHg. We shall
encounter the notions of generalized ordinal potential, best-response potential,
a weak quasi-potential and quasi-potential; again we denote with E the Nash
equilibrium set.6 We note that each generalized ordinal potential game and each
best-response potential game is a weak quasi potential game.

Define the function P • : S × S → R by

P •(x1, x2) := L(min{x1, x2}) + L(L − max{x1, x2}) + L(
|x2 − x1|

2
). (4)

Note that P • is continuous irrespective of the continuity of f . In the case of
f = 1, i.e. elastic demand, we have

P •(x1, x2) =

⎧⎨
⎩

L − x2−x1
2 if x1 < x2,

L if x1 = x2,
L − x1−x2

2 if x1 > x2.

Theorem 6. 1. Suppose f is continuous.
(a) If f(L

2 ) ≤ 1
2f(0), then P • is a continuous best-response potential.

6 For the cHg, a function P : S×S → R is (1) a generalized ordinal potential if for every
a1, b1, z ∈ [0, L] it holds that u1(a1, z) < u1(b1; z) ⇒ P (a1, z) < P (b1, z) and for
every a2, b2, z ∈ [0, L] it holds that u2(z, a1) < u2(z, b1) ⇒ P (z, a1) < P (z, b1); (2)
a best-response potential if B1(x2) = argmaxx1∈SP (x1, x2) (x2 ∈ S) and B2(x1) =
argmaxx2∈SP (x1, x2) (x1 ∈ S); (3) a quasi potential if argmaxP = E. (4) a weak
quasi potential if argmaxP ⊆ E. In this case, one calls the game a ‘generalized
ordinal potential game’ (etc.).
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(b) If f(L
2 ) > 1

2f(0), then there does not exist a continuous best-response
potential.

(c) If f is strictly decreasing, then P • is a continuous quasi potential.
2. If f is strictly decreasing, then P • is a continuous weak quasi potential.
3. If f is constant, then P (x1, x2) = −(|L

2 −x1|+ |L
2 −x2|) is a continuous quasi

potential.
4. The game may not have a generalized ordinal potential, even if f is continu-

ous. 
Proof. 1a. See Proposition 3.1 in [12].

1b. Suppose f(L
2 ) > 1

2f(0). By contradiction, suppose P is a continuous
best-response potential. By the Weierstrass theorem this would imply that B is
proper. But, by Proposition 8(1c), B is not proper.

1c. See Proposition 3.2 in [12].
2. See concluding remark 3 in [12].
3. By Theorem 2(3), E = {(L

2 , L
2 )}. Thus, as desired, argmax(P ) = E.

4. See Proposition 3.3 in [12]. Q.E.D.

Theorem 6(2, 3) implies:

Corollary 2. Each cHg has a Nash equilibrium. 
In addition to Theorem 6(1b), we have:

Proposition 12. In the case f is constant, P : [0, L] × [0, L] → R defined by

P (x1, x2) :=

{
−|x1 − x2| if x1 = L

2 ∨ x2 = L
2 ,

1
|x1− L

2 | + 1
|x2− L

2 | if x1 �= L
2 ∧ x2 �= L

2

is a (discontinuous) best-response potential. 
Proof. As P is symmetric, P being a quasi-potential comes down to

for all x2 ∈ [0, L] : B(x2) = argmaxx1∈[0,L]P (x1, x2).

We have argmaxx1∈[0,L]P (x1, x2) =
{∅ if x2 �= L

2 ,
{L
2 } if x2 = L

2 .
So P (x1,

L
2 ) = −|x1− L

2 |;
thus, as desired, argmaxx1∈[0,L]P (x1,

L
2 ) = {L

2 }. Now fix x2 �= L
2 . We have

P (x1, x2) =

{
1

|x1− L
2 | + 1

|x2− L
2 | if x1 �= L

2 ,

−|L
2 − x2| if x1 = L

2 .
From this formula, one sees, as

desired, that argmaxx1∈[0,L]P (x1, x2) = ∅. Q.E.D.

8 Concluding Remarks

1. We presented results for the Hotelling pure location game with two identical
players, one-dimensional strategy sets and a demand function f which is
constant (inelastic case) or strictly decreasing (elastic case). The elastic case
has been poorly studied in the literature. For the elastic case we tried to
derive the results without further smoothness assumptions on f .
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2. Although the inelastic case for our one-dimensional case of the cHg is simple
to analyse, this is no longer true for the two-dimensional case (see [9]).

3. We have shown that for a continuous f , the Principle of Minimum Differ-
entiation holds if and only if f(L

2 ) ≥ 1
2f(0). This is in accordance with the

observations in the literature (e.g. [5]) that this principle is not so robust.
4. In Corollary 1 we have shown that in the case of a continuous f , the game

has at most one equilibrium class and this class contains one or two elements.
In Example 1 we have shown for a specific cHg with a discontinuous demand
function, that it has (23 , 1

4 ) as equilibrium. Therefore also (14 , 2
3 ), (13 , 3

4 ) and
(34 , 1

3 ) are equilibria and this game has an equilibrium class with four elements.
An interesting question is whether there exists a cHg with more than one
equilibrium class.

5. We have shown ‘by hand’ that the cHg has a Nash equilibrium in the case
of a continuous demand function. One might want to have a deeper reason
for this existence. Concerning this Theorem 6 shows that each cHg admits a
continuous weak quasi potential (and therefore has an equilibrium).

6. As the cHg is a game with discontinuous payoff functions, it may be interesting
to find out in which sense general equilibrium existence results for games
in strategic form with discontinuous payoff functions apply. We here only
mention that the result in [8] does not apply as it assumes quasi-concave
conditional payoff functions.

7. The type of strict quasi-concavity in Proposition 5(5) has been studied in
more detail in [10], where it was called ‘semi-strict demi-concavity’.

8. A direction for further research concerns the comparison of the results in the
present article with those for the, also poorly studied, discrete variant of the
cHg [13,14].
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Abstract. We study the coupled-task single machine scheduling prob-
lem with equal exact delays and makespan as the objective function. It
is known that the problem cannot be approximated with a factor better
than 1.25 unless P = NP. In this paper, we present a 2.5-approximation
algorithm for this problem, which improves the best previously known
approximation bound of 3. The algorithm runs in time O(n logn) where
n is the number of jobs.

Keywords: Coupled-task scheduling · Inapproximability lower
bound · Approximation algorithm · Worst-case analysis

1 Introduction

We consider the single-machine coupled-task scheduling problem with exact
delays. In the problem, a set J = {1, . . . , n} of independent jobs is given. Each
job j ∈ J is composed of two operations with processing times aj and bj sep-
arated by a given exact delay lj , which means that the second operation of
job j must start processing exactly lj time units after the completion of first
operation of job j. It is assumed that at any time the machine can process at
most one operation and no preemption is allowed. The objective is to minimize
the makespan (the schedule length). In the standard three-field notation scheme
introduced by Graham et al. [12] (see also [14]) this single machine problem is
denoted by 1 | exact lj | Cmax.

In this paper, we consider the case of the single machine problem when all
delays are equal, i.e., lj = L for all j ∈ J . We refer to this case as 1 | exact lj =
L | Cmax.

The scheduling problems with exact delays spring from command-and-control
applications where an administrator gives away a set of orders (associated with
the first operations) and must wait to get responses (corresponding to the sec-
ond operations) that do not collide with each other (for more detailed discussion,
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see [10,16]). Investigations on problem 1 | exact lj | Cmax are mostly inspired
by applications in pulsed radar systems, where the machine is a multifunctional
radar whose goal is to simultaneously keep track of numerous targets by trans-
mitting a pulse and accepting its reflection some time later [8,10,11,15,16].
Coupled-task scheduling problems with exact delays also have applications in
chemistry manufacturing where there may be an exact technological delay
between the completion time of some operation and the starting time of the
next operation.

1.1 Related Work

Coupled-task scheduling problems have been investigated for decades. Quite a
few various results related to these problem are surveyed by Blazewicz et al. in [6]
(for later results see [7], [13]). We cite here only previously known approximation
results as well as those related to the case of equal delays.

Orman and Potts [15] establish that the problem is strongly NP-hard even in
some special cases. In particular, they prove this fact for 1 | exact lj = L, bj =
b | Cmax, i.e., in the case when lj = L, bj = b for all j ∈ J . Baptiste [4]
presents an algorithm with running time O(log n) for the very special case when
aj = a, bj = b, lj = L for all jobs j provided that a, b, and L are fixed. The
complexity status of the case, when a, b, and L are part of the input, remains
open [15],[5].

Ageev and Baburin [1] present non-trivial constant-factor approximation
algorithms for the single and the two machine problems subject to unit pro-
cessing times. More specifically, it is shown in [1] that problem 1 | exact lj , aj =
bj = 1 | Cmax is approximable within a factor of 7/4.

Ageev and Kononov [3] present a 3.5-approximation algorithm for the general
case of 1 | exact lj | Cmax and 3-approximation algorithms for the cases when
either aj ≤ bj , or aj ≥ bj for all j ∈ J . They also show that the last two
algorithms provide a 2.5-approximation for the case when aj = bj for all j ∈ J .
Moreover, they prove that problem 1 | exact lj | Cmax is not (2−ε)-approximable
in polynomial time unless P = NP even in the case of aj = bj for all j ∈ J .

Ageev and Ivanov [2] consider the coupled-task single machine scheduling
problem with equal exact delays. They show that the existence of a polynomial-
time (1.25 − ε)-approximation for 1 | exact lj = L | Cmax even in the case
aj = bj for all jobs j = 1, . . . n implies P = NP. On the positive side, they design
a 3-approximation for 1 | exact lj = L | Cmax. For the cases of 1 | exact lj =
L | Cmax when either aj ≤ bj , or aj = bj for all jobs j = 1, . . . n they present 2-
and 1.5-approximations, respectively. All approximation algorithms mentioned
above are polynomial-time.

1.2 Our Results

In this paper we design and analyze a 2.5-approximation algorithm for the general
case of 1 | exact lj = L | Cmax 2.5, which improves the best previously known
approximation bound of 3 established in the previous paper by the authors [3].
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Table 1. A summary of the approximability results.

Problem Appr. factor Inappr. bound

1 | exact lj , | Cmax 3.5 [3] 2 − ε [3]

1 | exact lj , aj ≤ bj | Cmax 3 [3] 2 − ε [3]

1 | exact lj , aj = bj | Cmax 2.5 [3] 2 − ε [3]

1 | exact lj , aj = bj = 1 | Cmax 1.75 [1]

1 | exact lj = L | Cmax 2.5 (this paper) 1.25 − ε [2]

1 | exact lj = L, aj ≤ bj | Cmax 2 [2] 1.25 − ε [2]

1 | exact lj = L, aj = bj | Cmax 1.5 [2] 1.25 − ε [2]

The algorithm runs in time O(n log n) and has an interesting property: its approx-
imation factor tends to 2 when the number of blocks it constructs tends to infinity.

Our result compared with the previously known approximation results is
shown in Table 1.

1.3 Basic Notation

For the problems under consideration an instance will be represented as a col-
lection of triples {(aj , lj , bj) : j ∈ J} where J = {1, . . . , n} is the set of jobs, aj

and bj are the lengths of the first and the second operations of job j, respec-
tively and lj is the given delay between these operations. As usual, we assume
that all input data are nonnegative integers. For a schedule σ and any j ∈ J ,
we denote by σ(j) the starting time of the first operation of job j. Since the
starting times of the first operations uniquely determine the starting times of
the second operations, any feasible schedule is uniquely specified by the collec-
tion of starting times of the first operations {σ(1), . . . , σ(n)}. For a schedule σ
and any j ∈ J , denote by Cj(σ) the completion time of job j in σ; note that
Cj(σ) = σ(j)+ lj+aj+bj for all j ∈ J . The length of a schedule σ is denoted by
Cmax(σ) and thus Cmax(σ) = maxj∈J Cj(σ). The length of a shortest schedule
is denoted by C∗

max.

2 Preliminaries

Our algorithm uses as a procedure algorithm A≤ for 1 | exact lj = L, aj ≤
bj | Cmax described in [2,3]. Since the general problem is symmetric with respect
to the time axis an evident modification of this algorithm is also applicable to the
case 1 | exact lj = L, aj ≥ bj | Cmax. We will denote this modification by A≥.

In what follows we will use structural properties of the schedules constructed
by algorithm A≤ (and its counterpart A≥). To make the paper self-contained we
give informal and formal descriptions of the algorithm.
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Informally, algorithm A≤ does the following. First it numbers the jobs in non-
increasing order of the durations of the first operations. Then it scans the list of
the jobs in this order and successively constructs blocks Bs (s = 1, . . . r) which
are some bundles of jobs js, . . . , js+1 − 1 (j1 = 1). In each block Bs, the second
operations of job js = 1, . . . , js −1 are processed one after the other without idle
times (see Fig. 1(a)). At that, both the first operations and the second operations
are scheduled in each block in increasing order of their indices. A block becomes
complete when it cannot be augmented in this way by the current job. Then
the algorithm starts constructing the next block. Finally, the algorithm outputs
a schedule which consists in the successive execution of blocks B1, . . . Br (see
Fig. 1(b) with r = 4). Note that block Br may be incomplete.

L

1 1 22 33

B B1 B B432

(a)

(b)

Fig. 1. (a) a block consisting of three jobs; (b) a schedule consisting of four blocks.

Now we present a formal description of the algorithm.

Algorithm A≤.

Phase I (jobs ordering). Number the jobs in the following way:

a1 ≥ a2 ≥ . . . ≥ an .

Phase II (constructing blocks 1, . . . , r). By scanning the set of jobs in the
order j = 1, . . . , n calculate the indices j1 < j2 < . . . < jr ≤ n in the following
way.

Step 1. Set j1 = 1. If
∑n−1

s=1 bs ≤ L, then retrieve r = 1 and go to Phase III.
Otherwise go to Step 2.

Step k(k ≥ 2). Set jk to be equal to the minimum index among indices t such
that n + 1 > t > jk−1 and

∑t−1
s=jk−1

bs > L. If jk = n or
∑t−1

s=jk
bs ≤ L for all

t = jk+1, . . . , n, then set r = k and go to Phase III. Otherwise go to Step k+1.

Phase III (constructing the schedule). Set σ(j1) = σ(1) = 0. If r > 1, then
for s = 2, . . . , r set

σ(js) = σ(js−1) + ajs−1 + L +
js−1∑

k=js−1

bk .
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For every j ∈ J \ {j1, . . . , jr}, set

σ(j) = σ(js) + ajs − aj +
j−1∑

k=js

bk

where s is the maximum index such that js < j.
The correctness of the algorithm is established by Lemma 1 in [3]. The run-

ning time is O(n log n). The worst-case analysis is based on exploiting the lower
bounds W1 and W2 that will be also crucial in analyzing our algorithm. It is
easy to observe that C∗

max ≥ max{W1,W2} where

W1 =
n∑

j=1

(aj + bj) (1)

and
W2 = L +max{

∑

j∈J

aj ,
∑

j∈J

bj}. (2)

The lower bound W1 (machine load) is evident. The bound W2 follows from the
fact that in any feasible schedule all first or all second operations are executed
outside the delay (=L) of the last or the first executed job, respectively.

A block B consisting of jobs j1, . . . , jt is called complete if
∑k

s=1 bjs ≥ L.
Otherwise the block is incomplete. The same term we will use for the blocks
retrieved by Algorithm A≥. In this case the block B is complete if

∑k
s=1 ajs ≥ L.

Assume that σ consists of k + 1 blocks. Since the first k blocks are complete
we have

Cmax(σ) ≤
n∑

j=1

(aj+bj)+kL+L ≤
n∑

j=1

(aj+bj)+
n∑

j=1

bj+L ≤ W1+W2 ≤ 2C∗
max.

3 A 2.5-Approximation

Assume that Algorithm A≤ (or Algorithm A≥) finds a schedule consisting of
k + 1 blocks. Then by the definition of complete block kL ≤ W1.

We say that two blocks are combinable if they can be combined as in Fig. 2
(a) otherwise they are non-combinable. If two incomplete blocks are combinable
then they can be combined as shown in Fig. 2 (b) by a mutual shift. We call the
configuration (b) in Fig. 2 (or its symmetric counterpart) the combined block of
two blocks.

Observe that if two blocks are combinable then they are both incomplete.
Furthermore, if at least one of them is complete then they are non-combinable.

3.1 Algorithm CombineBlocks

Divide the set of jobs J into two subsets J1, J2 such that J1 = {j ∈ J |aj ≤ bj},
J2 = {j ∈ J |aj > bj}. Let J1 = {(aj , L, bj) : j = 1, . . . , r}, J2 = {(aj , L, bj) :
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(a)

(b)

Fig. 2. Two combinable blocks (a) and the combined block of these blocks (b).

j = t + 1, . . . , n}. If t = 0 or t = n, i.e., either J1 or J2 is empty, apply
algorithm A≥ or A≤, respectively. Otherwise for the set J1 apply algorithm
A≤ and for the set J2, algorithm A≥. Assume that the retrieved schedule σ1

for J1 consists of blocks B1, B2, . . . Bk1+1 and the retrieved schedule σ2 for
J2 consists of blocks Dk2+1,Dk2 , . . . D1. The blocks Bk1+1 and Dk2+1 may be
incomplete, the remaining k = k1 + k2 blocks are necessarily complete. By
arranging the schedules σ1 and σ2 one after another we get a feasible sched-
ule σ̃ = (B1, B2, . . . Bk1+1,Dk2+1,Dk2 , . . . D1) for the set of jobs J (see Fig. 3).
If blocks Bk1+1 and Dk2+1 are non-combinable or k = 0, set σ = σ̃. Otherwise
combine blocks Bk1+1 and Dk2+1 into a block F and define σ as the schedule
(B1, B2, . . . Bk2F,Dk2 ,Dk2−1, . . . , D1) (see Fig. 4). Output σ.

B B B DD1 2 3 12

Fig. 3. A schedule σ̃ with k1 = 2 and k2 = 1. The block boundaries are shown in bold
lines. Blocks B1, B2, D1 are complete, blocks B3 and D2 are incomplete.

B B D1 2 F 1

Fig. 4. A schedule σ with k1 = 2 and k2 = 1 and the combined block F . The combined
block boundary is shown in bold lines.

Fig. 5. A combined block.
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3.2 Analysis

Note that Cmax(σ) ≤ Cmax(σ̃). For the length of σ̃ we have the following straight-
forward bound:

Cmax(σ̃) ≤
n∑

j=1

aj +
n∑

i=1

bj + 2L + kL,

which does not imply the claimed approximation factor. Fortunately, the sched-
ule σ has some helpful properties that will lead us to the desired goal.

Lemma 1. If the schedule σ contains at least one complete block, then 2L ≤
C∗

max, i.e., 2L is a lower bound.

Proof. If the schedule σ contains a complete block, then either L ≤ ∑
j∈J aj , or

L ≤ ∑
j∈J bj . However by (2) we have the lower bound

W2 = L +max{
∑

j∈J

aj ,
∑

j∈J

bj}.

Thus
2L ≤ L +max{

∑

j∈J

aj ,
∑

j∈J

bj} ≤ C∗
max.

��
Lemma 2. If the incomplete blocks Bk1+1 and Dk2+1 are combinable, then the
idle time in the combined block does not exceed L.

Proof. Let x denote the idle time in the combined block and let br be the length
of the last operation in the block Bk1+1. Then (see Fig. 5)

x ≤ (L − u) + (L − v)− d = (L − u) + (L − v) − (L + br − u − v) = L − br ≤ L.

��

L

Fig. 6. Non-combinable blocks

Lemma 3. If blocks Bk1+1 and Dk2+1 are non-combinable, then the total
machine load in the two blocks is at least L.

Proof. If blocks Bk1+1 and Dk2+1 are non-combinable, then the total machine
load in the blocks is at least u + v, with u + v ≥ L where u and v denote
the total lengths of the first and second operations in blocks Dk2+1 and Bk1+1,
respectively (see Fig. 6). ��
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1 21 2X XY Y

Fig. 7. The case of k = 0.

Now we consider the following four cases.

Case 1: k = 0. If σ̃ consists of a single block then its length is clearly at most
W1 + W2 ≤ 2C∗

max. Assume that σ̃ = {B1,D1}. Let Xi and Yi denote the total
lengths of the first and the second operations in blocks B1 and D1, respectively
(see Fig. 7). Then Cmax(σ)(σ) ≤ (L+X1 +X2)+ (L+Y1 +Y2) ≤ 2W2 ≤, which
is at most 2C∗

max.

Case 2: k = 1, Bk1+1 and Dk2+1 are combinable. W.l.o.g. we may assume
that σ = (B1, F ) where F is the combined block. By Lemma 1, 2L ≤ C∗

max. On
the other hand, by Lemma 2 the idle time in F is at most L. So by (1)

Cmax(σ) ≤ 2L +
∑

j∈J

(aj + bj) ≤ C∗
max + W1 ≤ 2C∗

max.

Case 3: k ≥ 2, Bk1+1 and Dk2+1 are combinable. Note that W1 ≥ kL. By
Lemma 2, Cmax(σ) ≤ ∑

j∈J(aj + bj) + kL + L and we have

Cmax(σ)
W1

≤ W1 + L + kL

W1
= 1 +

L + kL

W1
≤ 1 +

L + kL

kL
= 2 +

1
k

,

which gives Cmax(σ) ≤ (2 + 1/k)C∗
max.

Case 4: k ≥ 1, Bk1+1 and Dk2+1 are non-combinable. Then by Lemma 3,
W1 ≥ kL + L and therefore

Cmax(σ)
W1

≤ W1 + 2L + kL

W1
≤ 1 +

2L + kL

kL + L
= 2 +

1
k + 1

,

which implies Cmax(σ) ≤ (2 + 1
k+1 )C

∗
max.

Thus we arrive at

Theorem 1. Algorithm CombineBlocks runs in time O(n log n) and outputs a
schedule of length within a factor of 2.5 of the length of the optimal schedule.
Moreover, when the number of blocks CombineBlocks constructs tends to infinity
the approximation factor tends to 2. ��
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Abstract. A tight optima localization interval for the classical open
shop scheduling problem with three machines was established by
S. Sevastyanov and I. Chernykh in 1998. It was proved that for any prob-
lem instance its optimal makespan does not exceed 4

3
times the standard

lower bound. The process of proof involved massive computer-aided enu-
meration of the subsets of instances of the problem considered and took
about 200 h of the running time to complete. This makes it seemingly
impossible to use the same approach for more complicated problems, i.e.
the four machine open shop for which the optima localization interval is
still unknown. In this paper we apply that computer-aided approach to
the three-machine routing open shop problem on a two-node transporta-
tion network. For this generalization of the plain open shop problem
we derive some extreme instance properties and prove that the optimal
makespan does not exceed 4

3
times the standard lower bound, thus gen-

eralizing the result previously known for the three-machine open shop.

Keywords: Open shop · Routing open shop · Optima localization ·
Computer-aided proof · Approximation algorithm

1 Introduction

The main direction of this research is the search for the tight optima localization
interval (OL-interval for short) for a special case of one generalization of scheduling
and routing problems. To describe that interval, consider some optimization prob-
lem F (x) → min over some class of instances K. Let LB(I) be some lower bound
on the optimum, defined for every instance I from K. Then the OL-interval for the
problem F (x) → min other K with respect to LB is defined as the tightest interval
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of type [LB, ρ∗LB] such that for any I ∈ K we have F ∗(I) ∈ [LB(I), ρ∗LB(I)]. In
other words, the goal of this research is to find

ρ∗ = sup
I∈K

F ∗(I)
LB(I)

,

assuming that a lower bound is strictly positive. Note that the value of ρ∗ does
not depend on the instance, but is depends on the optimization problem, a lower
bound and class K.

This direction of research is important due to the following reasons. First, it
helps to estimate the quality of the lower bound for class K: the tighter is the
interval, the less is the gap between the optimum and LB. Second, it describes
some property of the optimal solution in form F ∗ � ρ∗LB. And at last (but not
the least), it often helps to describe some good approximation algorithm for the
optimization problem under consideration, due to the following observation. The
tightness of the localization interval is proved by the construction of a critical
instance I∗ such that F ∗(I∗) = ρ∗LB(I∗) (or by presenting an infinite series of

instances I∗
k such that lim

k→∞
F ∗(I∗

k)
LB(I∗

k)
= ρ∗). On the other hand, the fact that for

any I ∈ K the inequality F ∗(I) � ρ∗LB is usually established constructively, by
presenting an efficient algorithm that obtains an approximate solution xI with
F (xI) � ρ∗LB(I). Such an algorithm is obviously a ρ∗-approximation, moreover
it has an approximation ratio ρ∗ not only with respect to the optimum, but to
the lower bound LB. By definition of the OL-interval, this approximation is as
good as theoretically possible with respect to LB. This means, that in order
to improve the approximation ratio we need to improve the lower bound, or to
compare the solution obtained with the optimum itself.

The first (to the best of our knowledge) OL-interval for a scheduling problem—
namely the open shop—was found in [12]. The open shop problem ([8]) can be
described as follows. Given a set of machines M = {M1, . . . ,Mm}, set of jobs
J = {J1, . . . , Jn} and a matrix of processing times (pji), one needs to construct
a schedule of processing each of the jobs on each machine (operation Oji of
machine Mi on job Jj takes pji time units) such that operations of each job are
performed consecutively (in any order) and no machine operates two jobs at any
time. The goal is to minimize the makespan Cmax, i.e. the completion time of
the latest operation. Following the traditional three-field notation for scheduling
problems (see [11] for instance) the open shop problem with m machines is
denoted by Om||Cmax. It is known to be NP-hard for m � 3 and polynomially
solvable in the two-machine case [8].

The standard lower bound for any shop scheduling problem (open shop
included) is the following combination of the maximum machine load �max =
max

i
�i = max

i

∑

j

pji and the maximum job length dmax = max
j

dj = max
j

∑

i

pji:

C̄ = max{�max, dmax}. (1)

It is shown in [8] that for any instance of O2||Cmax the optimal makespan of I
coincides with the lower bound C̄, therefore the respective OL-interval consists
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of a single point. This is not the case for m � 3. The OL-interval for O3||Cmax—
[C̄, 4

3 C̄]—was established in [12]. That research required a computer-aided app-
roach, developed by Sevastyanov and Chernykh. The idea behind this approach
is an intelligent branch-and-bound-style enumeration of subsets of instances.
We utilize the same approach in this paper, it is described in detail in Sect. 5.
Another application of this approach can be found in [9] for a problem with mul-
tiprocessor tasks, what suggests that the method is viable. It actually helped to
describe a bunch of polynomially solvable cases, as well as establish OL-intervals
for other subproblems with respect to a simple lower bound �max [9].

Recently the OL result for O3||Cmax problem was improved for a special
case—so-called proportionate open shop—in which for every job its processing
times are equal: pji = pj . The OL-interval for this case is [C̄, 10

9 C̄], and the
proof didn’t require a computer-aided approach [13]. As for the general O||Cmax

problem (when the number of machines is a part of an input), we have only
partial knowledge of the OL-interval [C̄, ρ∗C̄]: the value of ρ∗ belongs to

[
3
2 , 2

)
.

The lower bound is supported by a well-known series of instances (see [12] for
instance), and the upper bound follows from the properties of dense schedules
(see [1]).

Other known OL results concern the routing open shop problem, which is
a subject of our investigation. Routing open shop was introduced in [2,3]. It
extends the classical open shop in the following way. Jobs are located at the nodes
of a transportation network described by an edge-weighted graph G = 〈V ;E〉.
Each node contains at least one job. A weight function on E represents the
travel time dist(v, u) of mobile machines over the edge [v, u] ∈ E. Initially
machines are located at the predefined depot v0 ∈ V , and have to return there
after performing all the operations. No restrictions on the traveling are in place:
any number of machines can travel simultaneously over the same edge in any
direction, machines are allowed to visit any node multiple times. The goal is to
construct a feasible schedule for each machine to travel and perform operations of
jobs with respect to the constraints from the classical open shop, and to return to
the depot minimizing the makespan, which is in this case the completion time of
last machine’s activity (either traveling to the depot or performing an operation
of the job from the depot). To distinguish this makespan from the objective
function of the classical open shop, we use notation Rmax for the routing open
shop problem. Following the three-field notation we use ROm||Rmax for the m-
machine routing open shop. An optional piece of notation G = X in the second
field is used if we want to specify the structure of the transportation network.
Optimal makespan of a problem instance I is denoted by R∗

max(I).
The routing open shop problem includes the metric traveling salesman prob-

lem as a special case even for m = 1, therefore it is strongly NP-hard in general.
Moreover, its very special case RO2|G = K2|Rmax is still NP-hard in the ordi-
nary sense [3]. An FPTAS for this special case is described in [10]. An OL result
for RO2|G = K2|Rmax was presented in [2] with respect to the following lower
bound R̄. Let T ∗ denotes the total weight of the optimal TSP solution on graph
G, J (v) is the set of jobs located at v, and dmax(v) = max

Jj∈J (v)
dj . Then
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R̄ = max
{

�max + T ∗,max
v

(dmax(v) + 2dist(v0, v))
}

(2)

is the standard lower bound for the routing open shop problem. Note that it
coincides with C̄ in case when all travel distances are zero or the transportation
network consists of a single node (in this case we have a plain open shop problem).

The known OL results for the two-machine routing open shop are shown in
Table 1. The OL-interval for the general RO2||Rmax is still unknown, although
we do not have any evidence that it differs from the common interval for the
known cases. On the other hand, a 4

3 -approximation algorithm for RO2|easy −
TSP |Rmax (with a known optimal solution of the underlying TSP) [4] suggests
that such an interval is not wider than [R̄, 4

3 R̄].

Table 1. OL-intervals for special cases of RO2||Rmax.

Problem: Interval: Reference:

RO2|G = K2|Rmax [R̄, 6
5
R̄] [2]

RO2|G = K3|Rmax [6]

RO2|G = tree|Rmax [5]

The OL result for the RO2|G = K2|Rmax problem was detalized in [7], where
the tight upper bound of the OL-interval is described as a function of distribution
of the total processing time between the nodes.

For a larger number of machines, the problem is still open. The only result
(mentioned above) concerns O3||Cmax (which we can denote as RO3|G =
K1|Rmax for consistency) [12]. The OL-interval for O4||Cmax is still unknown, and
we have no evidence that it is wider than the one for the O3||Cmax problem. The
research for the case m � 3 is complicated and the only known result achieved
required massive, though intelligent, computer-aided enumeration of subclasses
of instances. The main goal of this paper is to establish the OL-interval for at
least some special cases of RO3||Rmax problem. Naturally, we could not avoid
that computer-aided approach, moreover, in order to make it work in a reason-
able time we had to derive a number of reduction techniques which allowed the
approach to work faster, which in turn helped us to verify the surprising result,
that the OL-interval for RO3|G = K2|Rmax is in fact [R̄, 4

3 R̄]—the same as for
the classical O3||Cmax problem. Therefore we generalized the known result from
[12]. As a by-product, we describe a linear-time 4

3 -approximation algorithm for
the RO3|G = K2|Rmax problem.

The structure of the paper is the following. Section 2 contains preliminary
notes, definitions and known results we utilize in our research. In Sect. 3 the
properties of critical instances for ROm||Rmax are investigated. We show the OL
result for one special case of RO3|G = K2|Rmax in Sect. 4. Section 5 contains
the detailed description of the computer-aided approach for other special cases,
followed by conclusive remarks in Sect. 6.
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2 Instance Reduction Procedures

Together with notation pji, G, T ∗, R̄ and J (v), introduced in the previous
section, we use pji(I), G(I), T ∗(I), R̄(I) and J (I; v) if we want to refer to a
specific problem instance I. We denote the node load of v by Δ(v) =

∑

Jj∈J (v)

dj .

The latter notation will also be used in the form Δ(I; v) for a specific instance
I. Note that due to (2)

Δ =
∑

v

Δ(v) � m�max � m(R̄ − T ∗). (3)

By a reversible simplification procedure of a class of instances K we under-
stand an instance transformation ϕ : K → K with the following properties:

1. Procedure simplifies the instance (reduces the number of jobs/machines/
nodes, or structure of the transportation network), unless it is simple already.

2. Transformation is reversible: any feasible schedule of instance I ′ can be treated
as a feasible schedule of instance I with the same makespan.

On order to use such a procedure for the research of OL-intervals we need
another property.

Definition 1. An instance transformation ϕ on K is referred to as valid if
R̄(ϕ(I)) = R̄(I) for any I ∈ K.

For any valid reversible transformation ϕ on K we have

R∗
max(ϕ(I))
R̄(ϕ(I))

� R∗
max(I)
R̄(I)

,

therefore it is sufficient to investigate the OL for the image ϕ(K).
In our research we use simplification procedure based on the two known

simplification operations: job aggregation and terminal edge contraction.
The job aggregation operation (also known as grouping) utilizes a simple

idea of replacing a number of jobs with a single aggregated or composite job with
processing times of each equal to the total processing time of the operations of
jobs combined (see [6,12] for example).

Definition 2. For problem instance I, let K ⊆ J (I; v) for some node v. Then
by job aggregation of set K we understand the following instance transformation
I → I ′:

G(I ′) = G(I), J (I ′; v) = J (I; v) \ K ∪ {JK}, pKi =
∑

Jj∈K

pji.

The job aggregation is clearly a reversible transformation: any schedule of opera-
tion of a composite job JK can be treated as a schedule of respective operations
of jobs from set K processed without any idle time in an arbitrary sequence.
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Note that the machine loads and the node loads are preserved by any job aggre-
gation operation. However, it is possible that dmax(I ′; v) = dK > dmax(I; v), and
there is a possibility that R̄(I ′) > R̄(I) so that the job aggregation is not valid.
The sufficient condition of the validity of an aggregation of set K ⊆ J (v) is the
following inequality: ∑

Ji∈K

dj � R̄ − 2dist(v0, v). (4)

In particular we have the following

Definition 3. A node v from G(I) of some problem instance I is overloaded if

Δ(I; v) > R̄(I) − 2dist(I; v0, v). (5)

Otherwise the node v is referred to as underloaded.

By this definition and (4), the aggregation of J (I; v) is valid if and only if the
node v is underloaded.

We use the following

Definition 4. An instance I is called irreducible, if no valid job aggregation is
possible for I.

Note that there is a linear time valid transformation procedure converting any
instance into an irreducible one [6,12]. According to the earlier observation it is
sufficient to establish the OL-interval for irreducible instances only.

Terminal edge contraction can be used in case some terminal v node contains
a single job and is based on the following idea: transfer the single job from node
v to an adjacent one u, modifying its processing times to include the travel times
between v and u.

Definition 5. Let I be a problem instance, v �= v0 is a terminal node in G(I)
and J (I; v) = {Jj}. Let e = [u, v] be an edge incident to v. Then by the contrac-
tion of edge e we understand the following instance transformation I → I ′:

J (I ′;u) = J (I;u) ∪ {Jj}, G(I ′) = G(I) \ {v}, pji(I ′) = pji(I) + 2dist(u, v).

Again, we want to perform an edge contraction operation only if it is valid. The
exact condition of invalidity of an edge contraction operation is described in the
following

Definition 6. In the settings of Definition 5, the edge e is called overloaded if

dj + 2mdist(u, v) + 2dist(v0, u) > R̄(I), (6)

and underloaded otherwise.

Overloaded elements make the instance somehow problematic. Fortunately,
the number of such elements is rather small. It was proved in [6] that any irre-
ducible instance I of the RO2||Rmax problem contains at most one overloaded
node, and the only overloaded node (if any) contains at most three jobs. Recently
that result was generalized in [5].



280 I. Chernykh and O. Krivonogova

Lemma 1 ([5]). Any instance of the ROm||Rmax problem contains at most m−
1 overloaded elements.

The upper bound on the number of jobs in overloaded nodes is generalized for
the case of m machines in the next section.

3 Properties of Irreducible Instances

Proposition 1. Let I be an irreducible instance of the ROm||Rmax problem
such that |J (v)| = k > 1. Then

Δ(v) >
k

2
(R̄ − T ∗). (7)

Proof. Let J (I; v) = {J1, . . . , Jk}. Since I is irreducible, (4) implies

d1 + d2 > R̄ − 2dist(v0, v) � R̄ − T ∗

d1 + d3 > R̄ − 2dist(v0, v) � R̄ − T ∗

. . .
dk−1 + dk > R̄ − 2dist(v0, v) � R̄ − T ∗

⎫
⎪⎪⎬

⎪⎪⎭

k(k − 1)
2

inequalities

Each dj occurs k − 1 times in the left parts. Adding up these inequalities we
have

(k − 1)(d1 + d2 + . . . + dk) >
k(k − 1)

2
(R̄ − T ∗),

and (7) follows. 	

Theorem 1. Let I be an irreducible instance of ROm||Rmax. Then every under-
loaded node in I contains exactly one job, and all the overloaded nodes (if any)
contain at most 2m − 1 jobs.

We prove this theorem by contradiction to the existence of a counterexample
with at least 2m jobs in all overloaded nodes together. To that end, we use the
following

Definition 7. Let m and R be positive integers, collection D1, . . . , Dh is a par-
tition of the set of positive numbers {δ1, . . . , δ2m}, and

2m∑

j=1

δj ≤ mR, (8)

∀k ∈ {1, . . . , h}∀δi, δj ∈ Dk δi + δj > R, (9)
∀i|Di| ≥ 2. (10)

Then a tuple 〈m;R;D1, . . . , Dh〉 is called a counter-structure.
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Note that for any counter-structure we have

h � m − 1, (11)

and for |Dk| = x
∑

Dk

δj >
x

2
R. (12)

(The proof is similar to that of Proposition 1 and Lemma 1).

Lemma 2. A counterexample I to Theorem 1 with m machines, h overloaded
nodes and exactly 2m jobs in the overloaded nodes all together exists if an only
if there exists a counter-structure 〈m;R;D1, . . . , Dh〉 with R � R̄(I) − T ∗(I).

Proof. Let I be an counterexample with overloaded nodes v1, . . . , vh, and Dk =
{dj |Jj ∈ J (vk)}, k = 1, . . . , h. Then the tuple 〈m; R̄ − T ∗;D1, . . . , Dh〉 is a
counter-structure. Indeed, due to the irreducibility of I we have ∀k∀di, dj ∈ Dk

di + dj > R̄ − T ∗, and properties (8)–(10) follow from (3).
Now let us have a counter-structure 〈m;R;D1, . . . , Dh〉. We can construct the

corresponding counter-example as follows. Let G be a star with h terminal nodes
v1, . . . , vh and zero weight of edges. Node v0 contains a dummy job with zero
processing times, and each δj ∈ Dk corresponds to a job Jj ∈ J (vk) with equal
processing times δj/m. Then the irreducibility of the instance created follows

from (9) and the fact that R̄ = �max =
2m∑

j=1

δj/m � R. 	


Lemma 3. For any m > 0 there is no counter-structure 〈m;R;D1, . . . , Dh〉.
Proof. Assume there exists a counter-structure D = 〈m;R;D1, . . . , Dh〉 for some
minimal value of m.

Case 1. h = 1 or h = 2.
Assume |D1| = m + r and |D2| = m − r (in case h = 1 the second set is empty
and r = m). From (12) we have

∑

D1

δj >
m + r

2
R,

∑

D2

δj >
m − r

2
R,

therefore
2m∑

j=1

δj =
∑

D1∪D2

δj > mR,

which contradicts (8).

Case 2. h > 2.
In this case from (11) we have m − 3 > 0. Suppose for some of sets D1, . . . , Dh

its cardinality is not equal to 3. Without loss of generality let it be Dh, and
δ2m−1, δ2m ∈ Dh. Now we reduce our counter-structure in the following manner:
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remove elements δ2m−1, δ2m from Dh, and if Dh becomes empty, remove it from
D. As a result we have

2(m−1)∑

j=1

δj < (m − 1)R,

∀Dk ∈ D∀δx, δy ∈ Dk, δx + δy > R,

∀Dk ∈ D |Dk| ≥ 2,
∑

k

|Dk| = 2(m − 1).

That means that we obtained a counter-structure with a smaller m, which con-
tradicts the choice of D.

By contradiction we have ∀Dk ∈ D |Dk| = 3, and from (12)
∑

Dk

δj >
3
2
R.

Consider a structure D′ = 〈m − 3;R;D1, . . . , Dh−2〉. Then D′ is also a counter-
structure. Indeed, properties (9) and (10) are preserved. On the other hand,

h−2∑

k=1

∑

Dk

δj � mR −
∑

Dh−1

δj −
∑

Dh

δj < mR − 3R = (m − 3)R.

Hence property (8) holds, and lemma is proved by contradiction to the choice
of D. 	


To derive the proof of Theorem 1 from Lemmas 2 and 3 it is sufficient to
prove that any counterexample with 2m + x jobs in overloaded nodes can be
reduced to a counterexample with exactly 2m jobs in overloaded nodes. This
can be easily done by the following observation. Consider any overloaded node
v with at least three jobs (such a node exists due to Lemma 1). Introduce a
new dummy terminal node u adjacent to v with zero weight of the incident
edge. Transform one of the jobs from v to u. (This can be seen as an inverse of
the terminal edge contraction operation.) New node u is not overloaded (as it
contains a single job), and we can continue in this manner until we have exactly
2m jobs in overloaded nodes. 	


4 Optima Localization for RO3|G = K2|Rmax

We use notation aj , bj and cj instead of pj1, pj2 and pj3 for each job, moreover,
same notation is used to represent the operations themselves and not only their
processing times. The node v, different from the depot, will be referred to as
distant node, and the weight of the only edge is denoted by τ . Notation I3,n0+n1

is used for the set of irreducible instances with exactly n0 jobs at v0 and n1

jobs at v.
At first we show that even for proportionate instances from I3,1+1 the optimal

makespan can be as large as 4
3 R̄.
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Lemma 4. There exists a proportionate instance Î ∈ I3,1+1 such that
Rmax(S) = 4

3 R̄.

Proof. The instance Î consists of two jobs with a0 = b0 = c0 = 1 and a1 =
b1 = c1 = 0, J (v0) = {J0} and J (v1) = {J1}. The distance τ = 1. Note that
R̄(Î) = 3.

M1

M2

M3

a0

b0

c0
c1

a1

b1

1 2 3 4

Fig. 1. An optimal schedule for instance Î.

A schedule of makespan 4 for Î is shown in Fig. 1. That schedule is optimal
due to the following reasoning. Let S be some schedule for Î, without loss of
generality the operations of J0 are performed in order a0 ≺ b0 ≺ c0 (O1 ≺ O2

means that operation O1 precedes O2 in the schedule under consideration). If
b0 ≺ b1 in S then Rmax(S) � a0 + b0 + 2τ = 4. The case b1 ≺ b0 is considered
similarly. 	


The main goal of the rest of the paper is to describe the proof of the following

Theorem 2. There exists a linear time algorithm that obtains a feasible schedule
S for each instance of the problem RO3|G = K2|Rmax such that

Rmax(S) � 4
3
R̄(I).

The algorithm consists of three steps: transforming the initial instance I to
the irreducible one I ′ (and contracting the edge if it is underloaded), building a
schedule S′ for I ′ with a desired makespan not greater than 4

3 R̄, and restoring
the schedule S for the initial I from S′. The first and the last steps can be done
in linear time, and the second step requires constant time (because instance
I ′ has a constant number of operations). The difficult part is to guarantee the
performance of the algorithm, and to that end we need to establish the OL-
interval for the problem under consideration.

Further we assume that the only edge is overloaded, otherwise the problem
can be reduced to the plain O3||Cmax for which the OL-interval is known. The
following lemma describes a simple sufficient condition for that.

Lemma 5. Let I be such an irreducible instance of ROm|G = K2|Rmax problem
that

Δ(v0) ≥ (m − 1)R̄. (13)

Then the only edge is underloaded.
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Proof. Due to (13) and (3) the node v is underloaded and therefore contains
a single job Jα. Suppose that the edge is overloaded. By Definition 6 we have
dα + 2mτ > R̄. On the other hand, from (3) and (13) we have dα + 2mτ ≤
mR̄ − Δ(v0) < R̄. The lemma is proved by contradiction. 	

Corollary 1. Let an irreducible instance I of RO3|G = K2|Rmax problem con-
tain at least 4 jobs at the depot. Then the edge is underloaded.

Proof. Straightforward from Lemma 5 and Proposition 1.

By Theorem 1 and Corollary 1 it is sufficient to consider instances from the
following collection of sets:

⎛

⎝
⋃

n1�5

I3,1+n1

⎞

⎠ ∪
⎛

⎝
⋃

n0�3

I3,n0+1

⎞

⎠ ∪

⎛

⎜
⎜
⎝

⋃

n0+n1�5
n0,n1>1

I3,n0+n1

⎞

⎟
⎟
⎠ . (14)

In this section we present a detailed proof for the set I3,1+1. Another part
of the proof is done by the computer-aided approach, and described in detail in
the next section.

We use the branch-and-bounds approach to prove the main result. A similar
approach to the proofs of the OL was used, for example, in [12], [6]. To describe
a schedule for an arbitrary instance, we use the schedule templates defined by
digraphs, which determine a linear order of operations for each job and for
each machine. Nodes of the template represent operations and have weights of
respective processing times, while arcs represent precedence constraints on the
operations, and some of them also have weights representing travel times. We will
use two dummy nodes S and F of zero weight, denoting the start and the finish
of the schedule, respectively. By SH(I) we denote the early (or active) schedule
built according to template H for instance I. We can estimate the makespan of
that schedule as a weight of a critical path in graph H. The weight of a path is
a total weight of all its elements, and a critical path is a path of the maximum
weight.

However we cannot tell which path is critical until we know the instance,
therefore to complete the proof we consider all possible complete paths. We
exclude from consideration so-called trivial paths whose length does not exceed R̄
regardless of the instance. The same approach lies in the foundation of computer-
aided proofs and is described in greater detail in Sect. 5.

Lemma 6. Let I ∈ I3,1+1. Then one can in linear time build a feasible schedule
S for I such that Rmax(S) ≤ 4

3 R̄.

Proof. Let us have set of jobs J (v0) = {J0} and J (v1) = {J1}. Without loss of
generality assume a0 = max{a0, b0, c0}, therefore

b0 + c0 ≤ 2
3
R̄. (15)
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S

a0

b1

b0 c0

c1 a1

F
τ τ

τ

τ

τ S

a0

b1

b0c0

c1 a1

F
τ τ

τ

τ

τ
(a) (b)

Fig. 2. Templates H1 and H2.

Consider schedule S1 = SH1(I) (see Fig. 2, a).
Assuming Rmax(S1) > R̄ (otherwise the lemma is proved), we have

Rmax(S1) ≤ 2τ + b1 + c0 + max{b0, c1}.

Consider schedule S2 = SH2(I) (Fig. 2, b).
By similar reasoning, assuming Rmax(S2) > R̄,

Rmax(S2) = 2τ + c1 + b0 + max{c0, b1}.

By (2) and (15) we have

Rmax(S1) + Rmax(S2) = 2τ + b1 + c1︸ ︷︷ ︸
≤R̄

+ b0 + c0︸ ︷︷ ︸
≤ 2

3 R̄

+2τ + max{b0, c1} + max{c0, b1}.

Note that 2τ + max{b0 + b1, c0 + c1, b1 + c1} � R̄, therefore, unless b0 > c1 and
c0 > b1,

Rmax(S1) + Rmax(S2) ≤ 8
3
.

For the remaining case b0 > c1 and c0 > b1 regroup the sum in another way:

Rmax(S1) + Rmax(S2) = 2τ + b1 + b0︸ ︷︷ ︸
≤R̄

+ 2τ + c1 + c0︸ ︷︷ ︸
≤R̄

+ b0 + c0︸ ︷︷ ︸
≤ 2

3 R̄

≤ 8
3
R̄.

Therefore min{Rmax(S1), Rmax(S2)} � 4
3 R̄ and the lemma is proved. 	


5 Computer-Aided Approach and Approximation
Algorithm

Let I3,n1+n2 = {I ∈ I3,n1+n2 |R̄(I) = 1} is the set of the normalized instances.
The processing and the travel times are considered to be rational numbers. Obvi-
ously, any instance (except the trivial ones with zero standard lower bound) can
be normalized by dividing every processing and travel time by R̄, and an optimal
schedule for normalized instance is a scaled version of an optimal schedule for ini-
tial instance. Therefore, in order to justify the OL-interval for RO3|G = K2|Rmax

it is sufficient to prove theorems of the following type (similar to Lemma 6):
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Theorem. For any instance I ∈ I3,n1+n2 a schedule S with Rmax(S) � 4
3 can

be built in polynomial time.

Sometimes such theorems can be proved in traditional ways (Lemma 6 is an
example). For the others there is the computer-aided approach to search for the
OL-intervals for irreducible instances, developed by Sevastyanov and Chernykh
[12]. It can be described as follows.

The goal is to construct a tree of proof (which is actually an outtree, i.e. a
directed tree where all the arcs are oriented away from the root). Each vertex of
the tree (except for the terminal ones) corresponds to a template of a schedule,
feasible for the set of instances under consideration. Outgoing arcs represent
non-trivial complete paths in the corresponding template. The length of each of
those paths can be described by a linear expression on the variables pji and τ . A
sample template H1 (with jobs J1, J2 ∈ J (v0) and J (v1) = {J3}) is presented in
Fig. 3 (a), below is the list of its non-trivial paths in the form of linear expressions:

– R1 = p11 + p21 + p22
– R3 = p32 + p12 + p13 + 2τ
– R5 = p23 + p21 + p31 + 2τ

– R2 = p11 + p12 + p22
– R4 = p32 + p33 + p13 + 2τ
– R6 = p23 + p33 + p31 + 2τ

A fragment of an example structure of a tree of proof is depicted in Fig. 3 (b).
Each terminal vertex of the tree represents a subset of instances, e.g. for terminal
vertex T1 this subset I(T1) is defined as the following intersection:

I(T1) = {I|path R1 is critical in SH1(I)} ∪ {I|path R11 is critical in SH21(I)}.

Naturally, the number of subsets in the intersection coincides with the depth of
the terminal vertex in the tree of proof.

S

p11 p21 p31

p12 p22p32

p13p23 p33

F

τ

τ

τ τ

τ τ

(a)

H1

H21

H2k1

T1

H3t

Hk1x

R1

Rk1

...
...

...

...
...

...

R11

R1t

Rk1x

(b)

Fig. 3. (a) Sample template for the set I3,2+1, and (b) an example fragment of the
tree of proof.

Now we can use this information to derive an upper bound on optima of all
instances from I(T1) in the following way. The idea is to find a critical instance
from I(T1), i.e. such an instance Icrit(T1) for which the best among the schedules
SH1(I

crit(T1)) and SH21(I
crit(T1)) has the greatest makespan:

min{Rmax(SH1(I)), Rmax(SH21(I))} → max
I∈I(T1)

.
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This can be done by means of a linear program. Consider the lower bound
defined as LB = max{LB1, . . . , LBl}, there LBk is a linear expression on the
operations processing times and travel times. For instance, for set I3,2+1 we have
R̄ = max{�1 + 2τ, �2 + 2τ, �3 + 2τ, d1, d2, d3 + 2τ}, assuming J (v0) = {J1, J2}
and J (v) = {J3}. The critical instance and the upper bound on the worst-case
optimal makespan can be found with the following LP (the general form is on
the left, with τs being parameters of an instance in addition to the processing
times, i.e. travel times, and the example form is on the right):

ρ → max
s.t.⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LB1 � 1,
...
LBl � 1,

Rt1 � ρ,

Rt1t2 � ρ,
...
Rt1t2...tk � ρ,

pji, τs, ρ � 0;

ρ → max
s.t.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1 + 2τ � 1,

�2 + 2τ � 1,

�3 + 2τ � 1,

d1 � 1,

d2 � 1,

d3 + 2τ � 1,

R1 � ρ,

R11 � ρ

pji, τ, ρ � 0.

(16)

Thus, if the optimum value ρ∗ of LP (16) does not exceed the upper bound we
want to prove, we can discard the whole subset of instances (which becomes a
terminal node of the tree of proof). Otherwise, we obtain a critical instance I ′,
for which the upper bound ρ∗ is achieved. Further, we can use this instance to
select the next template for the current subset of instances, which works the best
for the instance I ′. That is the core idea of the computer-aided way to build and
verify a tree of proof. Note that for verification purposes one needs an exact
solution of LP (16), so it has to be solved in rational numbers instead of using
the floating point arithmetic.

We were able to construct a tree of proof in about 28 h of the running time.
For that end we discovered a few techniques to reduce the running time. The
description of those ideas is omitted from this paper due to the volume limitation.

6 Conclusion

The purpose of this paper is twofold. The first part is a theoretical foundation
for further research of OL intervals for ROm||Rmax (Theorem 1). Another one is
a mostly computer-aided proof of Theorem 2. We only provide a description of
that proof though, so how can one verify the result? Our strong belief is that the
best way to do it is not to use the program we have written (which is probable
inefficient), but to create an alternative one using our description. Indeed, it is
usually more difficult to figure out someone else’s code than to write one yourself.
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Abstract. We are given a set of parallel jobs that have to be executed
on a set of speed-scalable processors varying their speeds dynamically.
Running a job at a slower speed is more energy efficient, however it
takes longer time and affects the performance. Every job is character-
ized by the processing volume and the number of the required proces-
sors. Our objective is to minimize the maximum completion time so
that the energy consumption is not greater than a given energy budget.
For various particular cases we propose polynomial-time approximation
algorithms, consisting of two stages. At the first stage, we give an aux-
iliary convex program. By solving this problem in polynomial time, we
find processing times of jobs and a lower bound on the makespan. Then,
at the second stage, we transform our problem to the classical problem
without speed scaling and construct a feasible schedule.

Keywords: Parallel job · Speed scaling · Scheduling · Approximation
algorithm

1 Introduction

We consider the problem of scheduling a set of jobs J = {1, . . . , n} on m speed
scalable parallel processors. Each job j ∈ J is characterized by processing volume
(work) Wj and number of required processors sizej . Note that parameter sizej

for job j ∈ J indicates that the job can be processed on any subset of parallel
processors of the given size. Such jobs are called rigid jobs. It is assumed that
all jobs arrive at time step 0 unless stated otherwise. Job preemption, migration
and precedence constraint might or might not be allowed in the exploring of
scheduling in this paper.
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The standard homogeneous model in speed-scaling is considered. When a
processor runs at a speed s, then the rate with which the energy is consumed
(the power) is sα, where α > 1 is a constant. Each of m processors may operate
at variable speed. However, we assume that if processors execute the same job
simultaneously then all these processors run at the same speed. It is supposed
that a continuous spectrum of processor speeds is available.

The aim is to find a feasible schedule with the smallest value of the maximum
completion time (makespan) so that the energy consumption is not greater than a
given energy budget E. This is a natural assumption in the case when the energy
of a battery is fixed, i.e. the problem finds applications in computer devices
whose lifetime depends on a limited battery efficiency (for example, multi-core
laptops). Moreover, the bicriteria problems of minimizing energy consumption
and a scheduling metric arise in real practice. The most obvious approach is
to bound one of the objective functions and optimize the other. The energy of
the battery may reasonably be estimated, so we bound the energy used, and
optimize the makespan.

Note that there is an optimal solution where each job j is processed
with a fixed speed sj due to the convexity of the speed-to-power function.
Later we consider only feasible schedules with constant speeds of jobs. In
this case, the energy consumption during the execution of job j depends on
the duration pj = Wj/sj of its performing and is equal to sizejW

α
j p1−α

j .
The preemptive and nonpreemptive variants of the speed-scaling scheduling
of rigid jobs subject to the bound on energy consumption are denoted by
P |sizej , pmtn, energy|Cmax (P |sizej , pmtn∗, energy|Cmax if migrations are dis-
allowed) and P |sizej , energy|Cmax, respectively. We denote the special case with
precedence constraints on the set of jobs by placing “prec” in the second field of
the three-field notation.

2 Previous Research

The makespan scheduling with single-processor jobs has been widely investi-
gated. For the single-processor problem there is an optimal non-preemptive
schedule where all jobs are executed with the same speed. This schedule may
be computed via Karush-Kuhn-Tuker conditions in linear time (see, e.g., [13]).
Bunde [3] developed an exact constructive algorithm for the uniprocessor setting
with arbitrary release times of jobs. The implementation of the algorithm has
also running time O(n).

The makespan multiprocessor problem without migration is NP-hard even in
the case of two processors [3]. The non-preemptive problem is strongly NP-hard.
Pruhs et al. [13] proposed a PTAS for non-migrative independent jobs with zero
release times. The makespan minimization is reduced to minimizing the lα norm
of the loads on processors, and in the formed schedule each processor finishes
at the same time. They also proposed O(log1+2/αm)-approximation algorithm
for non-migrative jobs with precedence constraints. In the constructed schedule
the sum of the instantaneous powers at which the processors run is constant
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over time. In [2] the latter result was improved. Bampis et al. [2] proposed an(
2 − 1

m

)
-approximation algorithm, which computes durations of jobs and the

lower bound on the energy consumption. This allows reducing a speed scaling
problem to the classical makespan minimization problem with fixed speeds of
jobs. A fast approximation algorithm was proposed in [3] for multiprocessor non-
migrative instances with independent equal-work jobs having arbitrary release
times. The algorithm assigns jobs to processors using Round Robin strategy, and
finds a schedule for each processor separately.

Shabtay et al. [14] analyzed a closely related problem of scheduling single-
processor jobs on identical parallel processors, where job-processing times pj are
controllable through the allocation of a nonrenewable common limited resource
as pj(Rj) =

(
Wj

Rj

)κ

. Here Wj is the workload of job j, Rj is the amount of
resource allocated to processing job j and κ ≤ 1 is a positive constant. Exact
polynomial time algorithms were proposed for the following cases:

– uniprocessor makespan setting with precedence constraints;
– multiprocessor makespan instances with independent preemptive jobs;
– multiprocessor non-preemptive instances of minimizing the sum of completion

times.

Note that the algorithms from [14] can be adopted to solving the presented three
cases in the context of the speed scaling scheduling of single-processor jobs.

The speed scaling scheduling is important in computational systems. In addi-
tion to the time criteria, the energy consumption minimization under deadline
constraints is widely investigated. For details we refer the reader to the sur-
veys [1,5].

Our Results. Reductions from 2-Partition and 3-Partition imply that problem
P |sizej , energy, pmtn|Cmax is weakly NP-hard and problem P |sizej , energy|
Cmax is strongly NP-hard even if all jobs have a common release time and unit
processing volumes.

We propose approximation algorithms, which consist of two stages. At the
first stage, we obtain a lower bound on the makespan and calculate processing
times of jobs using an auxiliary convex program. Then, at the second stage, we
transform our problem to the classical problem without speed scaling, and we
use “list-scheduling” algorithms to obtain schedules of constant factor approxi-
mation. We consider the following makespan minimization cases:

1. rigid jobs without preemption ((2 − 1
m ) -approximation algorithm);

2. non-preemptive rigid jobs with precedence constraints
((

2−q
1−q

)
-

approximation algorithm, where sizej ≤ qm, 0 < q < 1 );
3. rigid jobs with preemptions and release times ((2 − 1

m ) -approximation
algorithm).
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3 Rigid Jobs Without Preemption

In this section, we present a constant factor approximation algorithm for the
case of non-preemptive rigid jobs.

The First Stage. We relax the condition that the processors should execute
the job simultaneously. More precisely, we replace job j ∈ J with sizej single-
processor jobs of volume Wj , provided that all these copies have the same pro-
cessing time pj . Then the relaxed problem can be formulated as the following
convex program with the variables pj and T, where pj is understood as an actual
processing time of each copy of job j.

T → min, (1)

max
j∈J

pj ≤ T, (2)

1
m

∑

j∈J
sizejpj ≤ T, (3)

∑

j∈J
sizejW

α
j p1−α

j ≤ E, (4)

pj ≥ 0, j ∈ J . (5)

The constraints (2)–(3) guarantee that the duration of any job does not
exceed T , and the total load of all processors is no more than Tm. Inequality (4)
ensures that the total energy consumption is not greater than the budget E.

Problem (1)–(5) can be solved using KKT (Karush-Kuhn-Tucker) conditions
(see, e.g., [9]). The time complexity is O(n2) if we have oracles to raise to a power
and extract a root. Let (p∗

1, . . . , p
∗
n, T ∗) denote the optimal solution to (1)–(5).

As a result, we obtain the lower bound T ∗ on the optimal makespan, C∗
max.

The Second Stage. The non-preemptive schedule S is constructed using “non-
preemptive list-scheduling” algorithm [11]: Whenever a subset of processors falls
idle, the “non-preemptive list-scheduling” algorithm schedules a rigid job j of
duration p∗

j that does not require more processors than are available (if it is
possible). The time complexity of the algorithm is O(n2).

Lemma 1. “Non-preemptive list-scheduling” algorithm generates a feasible
schedule S with length at most

(
2 − 1

m

)
T ∗ for problem P |sizej , energy|Cmax.

Proof. Let T ′ denote the length of schedule S. If at least
⌈

m+1
2

⌉
processors are

used at any time step in S, we have

T ∗ ≥ 1
m

∑

j∈J
p∗

jsizej ≥
⌈

m + 1
2

⌉
T ′

m
≥ T ′

2 − 1/m
.



Makespan Minimization for Parallel Jobs with Energy Constraint 293

Otherwise, assume that I is the last time interval of schedule S with mI <
�m+1

2 � processors are used during I. By the construction of S there is a job j
that is performed during the whole interval I. Let Cj be the completion time of
j in S. It is easy to see that at every point in time during interval [0, Cj − p∗

j )
schedule S uses at least m − sizej + 1 ≥ m − mI + 1 processors (otherwise job j
should be started earlier). Moreover, at least mI processors are utilized in interval
[Cj−pj , Cj), therefore, each job executed in interval [Cj , T

′) requires no less than
m − mI + 1 processors. Thus, the total load of all processors

∑
j∈J p∗

jsizej is at
least

mIp
∗
j + (T ′ − p∗

j )(m − mI + 1) ≤ T ∗m. (6)

As 1 ≤ mI <
⌈

m+1
2

⌉
, m − 2mI + 1 > 0 and p∗

j ≤ T ∗ for all jobs j ∈ J , we
have from (6)

T ′ ≤mLB + p∗
j (m − 2mI + 1)

m − mI + 1
≤ T ∗(2m − 2mI + 1)

m − mI + 1

= 2T ∗ − T ∗ 1
m − mI + 1

≤ T ∗
(

2 − 1
m

)
.

	

Using the results from [6], we conclude that the approximation ratio of(

2 − 1
m

)
for the “non-preemptive list-scheduling” algorithm is tight even if all

jobs have single-processor type. Indeed, consider an instance with (m2 −m) jobs
which have sizes sizej = 1 and works Wj = 1, and one single-processor job with
work m, i. e. n = m2 −m+1. The energy budget E is m2. In the optimal sched-
ule the speed of each processor is equal to 1, the job of length m is executed in
interval [0,m], for example, on the first processor, and all other jobs are executed
in arbitrary order in interval [0,m] on processors {2, . . . , m}. From lower-bound
model (1)–(5) we have T ∗ = m, p∗

1 = . . . = p∗
n−1 = 1 and p∗

n = m. Suppose
that jobs are sorted in order of nondecreasing processing times p∗

j . Then the
resulting schedule obtained by “non-preemptive list-scheduling” algorithm has
makespan 2m − 1, since (m2 − m) jobs of durations p∗

j = 1 are executed firstly.

Theorem 1. A
(
2 − 1

m

)
-approximate schedule can be found in O(n2) time

for problems P |sizej , pmtn, energy|Cmax, P |sizej , pmtn∗, energy|Cmax and
P |sizej , energy|Cmax.

4 Rigid Jobs with Precedence Constraints

In this section, we consider the case of non-preemptive rigid jobs and precedence
relations between the jobs. If job j precedes job j′ (we write j ≺ j′), then j′

cannot start until j is completed. The precedence constraints are represented in
the form of a directed acyclic graph G = (J,A), where arc (j, j′) belongs to set
A if and only if job j is constrained to precede job j′. Additionally, we assume
that each job j requires sizej ≤ qm processors, where 0 < q < 1.
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In [4], the strong NP-hardness of problem P2|sizej , chain|Cmax has been
proven, when the partial order consists of a set of chains. Using the approach
from [8] and a polynomial-time reduction from [4], we can prove that problem
P2|sizej , chain, energy|Cmax is also strongly NP-hard. Now we propose a two-
stage approximation algorithm for problem P |sizej , prec, energy|Cmax.

The First Stage. We formulate the following convex problem in order to obtain
a lower bound on the optimal makespan:

T → min, (7)

1
m

∑

j∈J
pjsizej ≤ T, (8)

Cj ≤ T, j ∈ J , (9)

pj ≤ Cj , j ∈ J , (10)

Cj + pj′ ≤ Cj′ , (j, j′) ∈ A, (11)
∑

j∈J
sizejW

α
j p1−α

j ≤ E, (12)

Cj ≥ 0, pj ≥ 0, j ∈ J . (13)

Here variable pj(Cj) represents the processing time (the completion time)
of job j ∈ J . Inequalities (10)–(11) allow to calculate the completion times
of jobs taking into account the processing times and precedence constraints.
Problem (7)–(13) can be solved in polynomial time using the Ellipsoid algorithm
(see, e.g., [7]).

To apply the ellipsoid method in polynomial time, we need to check two
additional technical conditions. The first condition is that the values of all vari-
ables are upper bounded by some number R. The second condition is that for
the convex program there is a feasible point (or solution) and every point in a
radius r is feasible. Then the running time of the ellipsoid method will be poly-
nomial in logR

r . The first condition and the bound on R can be derived from

the fact that the value of an optimal solution is bounded (pj ≤
(

sizejW α
j

E

) 1
α−1

,

Cj ≤ T for all j ∈ J , and T ≤ ∑
i∈J

(
sizeiW

α
i

E

) 1
α−1

). Therefore, R is a poly-
nomial involving various input parameters. The second condition is satisfied for

the point (p′
j , C ′

j , T
′) defined as follows: p′

j := Wj

(∑
i Wisizei

E

) 1
α−1

+ 1, j ∈ J ,
C ′

1 := (p′
1 + 1) + 1, C ′

j := C ′
j−1 + (p′

j + 1) + 1 for j = 2, . . . , n (we suppose that
jobs are ordered in accordance with the partial order) and T ′ is large enough
such that

T ′ − 1 ≥ max

⎧
⎨

⎩
C ′

n + 1;
1
m

∑

j∈J

(
(p′

j + 1)sizej

)
⎫
⎬

⎭
.
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Hence, the inequalities are satisfied in the ball of radius 1 around (p′
j , C ′

j , T ′),
that is r = 1 (for details see, e.g., Paragraph 3.2.6 in the book [12]).

The Second Stage. Let (p∗
1, . . . , p

∗
n, C∗

1 , . . . , C∗
n, T ∗) denote the optimal solu-

tion to (7)–(13). As a result, we obtain the lower bound T ∗ on the optimal
makespan, C∗

max. Using the found durations of jobs, we construct a feasible
schedule S by “precedence-dependent list-scheduling” algorithm: Whenever a
subset of processors falls idle, the algorithm schedules a rigid job that does not
require more processors than are available, for which all the predecessors have
been completed (if it is possible). The running time is O(n3). We state

Lemma 2. “Precedence-dependent list-scheduling” algorithm generates a fea-
sible schedule S with length at most

(
(2−q)m

(1−q)m+1

)
T ∗ < 2−q

1−q T ∗ for problem
P |sizej ≤ qm, prec, energy|Cmax.

Proof. Our proof uses some ideas from [10]. Let t1 < t2 < · · · < tμ < tμ+1 be the
events corresponded to the completion times of jobs in schedule S sorted accord-
ing to the increasing time, μ ≤ n. We define sub-intervals Ii−1 = (ti−1, ti], i =
1, . . . , μ + 1, where t0 := 0 is the starting time of the first job, and tμ+1 := LS

is the completion time of the last job in schedule S.
We consider the sub-intervals in the reverse order Iμ, Iμ−1, . . . , I2, I1, I0,

and partition them into two disjoint subsets �1 and �2 as follows. Let j1 be
the job that completes at time LS and starts at time tk1 . We put sub-intervals
Ik1 , Ik1+1, . . . , Iμ into set �1, and call them covered by job j1.

There are two reasons by which job j1 does not start at time tk1−1:

(C1) a job j2 is executed in interval Ik1−1, and this job precedes job j1;
(C2) job j1 is ready at time tk1−1, but interval Ik1−1 contains less than sizej1

available processors.

In the first case (C1), we find time instant tk2 , when job j2 starts. The sub-
intervals Ik2 , Ik1+1, . . . , Ik1−1 are put into set �1, and called covered by job j2.
Then we check why job j2 does not start at time tk2−1 and so on. In the second
case (C2), we put sub-interval Ik1−1 into set �2. Note that the number of busy
processors in interval Ik1−1 is larger than (1 − q)m. Then we go to sub-interval
Ik1−2 and check why job j1 does not start at time tk1−2 and so on.

Continuing the above reasoning, we divide all sub-intervals Ii, i = 0, . . . , μ,
into two disjoint subsets �1 and �2, and find a chain of jobs jk ≺ jk−1 ≺
jk−2 ≺ · · · ≺ j1 such that each sub-interval in �1 is covered by one of the jobs
in the chain. Let T1 and T2 be the total length of all sub-intervals in �1 and �2,
respectively. Then, the schedule length

LS = T1 + T2. (14)

From model (7)–(13) we have

T ∗ ≥ C∗
j1 ≥ C∗

j1 − C∗
jk

+ p∗
jk

≥
k−1∑

l=1

(C∗
jl

− C∗
jl+1

) + p∗
jk

≥
k∑

l=1

p∗
jl

= T1. (15)
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Moreover, inequality (8) guarantees that

T ∗ ≥ 1
m

∑

j∈J
p∗

jsizej . (16)

The number of busy processors in a sub-interval Ii ∈ �2 is larger than (1− q)m.
Otherwise, more ready jobs would be executed in this sub-interval as all jobs
j ∈ J have sizej ≤ qm. Also, at least one processor is used during each sub-
interval Ii ∈ �1. Therefore, the total load

∑

j∈J
p∗

jsizej ≥ T1 + ((1 − q)m + 1) T2 (17)

Summing up the relations (14), (15), (16), and (17) we obtain the following
bound on the ratio of schedule length LS to lower bound T ∗

LS

T ∗ ≤ T1 + T2

max{T1; T1/m + (1 − q + 1/m)T2} =: ρ. (18)

When T1 ≥ T1
m +

(
1 − q + 1

m

)
T2, i.e.

T2

T1
≤ 1 − 1/m

1 − q + 1/m
,

we have

ρ =
T1 + T2

T1
≤ 1 +

1 − 1/m

1 − q + 1/m
.

When T1 ≤ T1
m +

(
1 − q + 1

m

)
T2, i.e.

T2 ≥ T1
1 − 1/m

1 − q + 1/m
,

we have

ρ =
T1 + T2

T1/m + (1 − q + 1/m)T2
≤

T1 + T1
1−1/m

1−q+1/m

T1/m + (1 − 1/m)T1
= 1 +

1 − 1/m

1 − q + 1/m
.

This completes the proof. 	


Note that the approximation ratio of
(

(2−q)m
(1−q)m+1

)
is tight for single-processor

jobs with empty partial order as we can see from the example in Sect. 3.

Theorem 2. A
(

2−q
1−q

)
-approximate schedule can be found in polynomial time

for problem P |sizej , prec, energy|Cmax with sizej ≤ qm, 0 < q < 1.
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5 Rigid Jobs with Preemptions and Release Times

In this section, we consider the problem with preemptions, where jobs have
arbitrary release times rj ≥ 0, j ∈ J , and construct a polynomial time approx-
imation algorithm.

The First Stage. We formulate the following program:

T → min, (19)

rj +
∑

i∈Rj

pi ≤ T, j ∈ J� m
2 �, (20)

rj +
1
m

∑

i∈J : ri≥rj

pisizei ≤ T, j ∈ J , (21)

rj + pj ≤ T, j ∈ J , (22)

∑

j∈J
sizejpj

(
Wj

pj

)α

≤ E, j ∈ J , (23)

pj ≥ 0, j ∈ J , (24)

where J� m
2 � = {j ∈ J : sizej > m

2 �}, Rj = {i ∈ J� m
2 � : ri ≥ rj} for j ∈ J� m

2 �.
So, we have the convex program with a polynomial number of constraints. The
motivation to include constraint (20) is the fact that at most one job from J� m

2 �
can be performed at the same time. Constraint (21) indicates that the total load
of jobs with release times no less than rj does not exceed (T − rj)m.

Program (19)–(24) can be solved by the Ellipsoid method in polynomial
time. Here we also need to check two technical conditions as in the previous
section. The first condition follows from the polynomial bound on the value of

an optimal solution: pj ≤
(

sizejW α
j

E

) 1
α−1

for all j ∈ J and T ≤ maxj∈J rj +
∑

j∈J
(

sizejW α
j

E

) 1
α−1

. The second condition is satisfied for the point (p′
j , T

′)

defined as p′
j := Wj

(∑
i Wisizei

E

) 1
α−1

+ 1 for all j ∈ J , and T ′ is large enough
such that

T ′ − 1 ≥ max

⎧
⎨

⎩
max

j∈J� m
2 �

⎛

⎝rj +
∑

i∈Rj

(p′
i + 1)

⎞

⎠ ;

max
j∈J

⎛

⎝rj +
1
m

∑

i∈J : ri≥rj

(p′
i + 1)sizei

⎞

⎠ ;max
j∈J

(
rj + (p′

j + 1)
)
⎫
⎬

⎭
.
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The second stage. Let (p∗
1, . . . , p

∗
n, T ∗) denote the optimal solution to (19)–

(24). We set the duration of each job j equal p∗
j , and apply the “preemptive

sizej-list-scheduling” algorithm to construct a
(
2 − 1

m

)
-approximate schedule.

At every decision point (i.e., the release time or completion time of a job) all cur-
rently running jobs are interrupted. Then not yet completed jobs are considered
in order of nonincreasing sizej-values, and as many of them are greedily assigned
to the processors as feasibly possible. The time complexity of the algorithm is
O(n2).

Lemma 3. “Preemptive sizej-list-scheduling” algorithm generates a feasible
schedule S with length at most

(
2 − 1

m

)
T ∗ for problem P |rj , sizej , pmtn, energy|

Cmax.

Proof. Let l be the job that determines the makespan in the constructed
schedule S, and let Cl be its completion time. We distinguish two cases: (I)
sizel >

⌊
m
2

⌋
and (II) sizel ≤ ⌊

m
2

⌋
.

(I) sizel >
⌊

m
2

⌋
. We consider the last time interval, where at every time-

moment a job with sizej >
⌊

m
2

⌋
is executed. It follows from the definition of

“preemptive sizej-list-scheduling” algorithm that this interval begins with the
minimal release time rz of all jobs with sizej >

⌊
m
2

⌋
that are scheduled in this

last contiguous interval. So, we have Cl = rz + (Cl − rz) ≤ rz +
∑

i∈Rz
p∗

i ≤ T ∗

due to constraint (20).
(II) sizel ≤ ⌊

m
2

⌋
. We consider the last time interval, where at every time-

moment a job with sizej ≥ sizel is performed. By definition, the start time of
this interval is the minimal release time rz of all jobs that are scheduled in this
last contiguous interval. Thus, the total load of jobs from the last considered
interval is

(rl − rz)sizel + (Cl − rl − p∗
l )(m − sizel + 1) + p∗

l sizel ≤ Δm, (25)

where Δm is an estimation of the total load for jobs with rj ≥ rz. Now we define
the value of Δ. From constraints (21) and (22) the following inequalities hold:

rl + p∗
l ≤ T ∗,

rz +
1
m

∑

i∈J : ri≥rz

p∗
i sizei ≤ T ∗.

If 1
m

∑
i∈J : ri≥rz

p∗
i sizei ≤ (rl − rz) + p∗

l , then we put Δ := (rl − rz) + p∗
l

(in this case p∗
l + rl = Δ + rz and Δ + rz ≤ T ∗). Otherwise, we set Δ :=

1
m

∑
i∈J : ri≥rz

p∗
i sizei (in this case p∗

l + rl < Δ + rz and Δ + rz ≤ T ∗).
Next we suppose Cl >

(
2 − 1

m

)
(rz + Δ), and prove that the total load (25)

will be greater than Δm. Indeed,

(rl − rz)sizel + (Cl − rl − p∗
l )(m − sizel + 1) + p∗

l sizel >

(rl − rz)sizel +
((
2 − 1

m

)
(rz + Δ) − rl − p∗

l

)
(m − sizel + 1) + p∗

l sizel =

Δm + (Δ + rz − p∗
l − rl)(m − 2sizel + 1) + rz(m − sizel) +

(
rz
m

+ Δ
m

)
(sizel − 1) ≥ Δm.
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Here we use the following properties: Δ + rz ≥ p∗
l + rl, sizel ≤ ⌊

m
2

⌋
, and

sizel ≥ 1. Therefore, Cl ≤ (
2 − 1

m

)
(rz + Δ) ≤ (

2 − 1
m

)
T ∗. 	


Using the results from [6], we conclude that the approximation ratio of(
2 − 1

m

)
is tight even if all jobs have single-processor type (see the example

in Sect. 3).

Theorem 3. A
(
2 − 1

m

)
-approximate schedule can be found in polynomial time

for problem P |rj , sizej , pmtn, energy|Cmax.

6 Non-uniform Partition of Work

Theorems 1, 2 and 3 can be generalized to the case of rigid jobs with non-uniform
partition of the work between processors. Let a job j ∈ J consists of sizej

operations with processing volume Wjl, l = 1, . . . , sizej , and each operation
must be executed on an individual processor.

We only need to slightly correct the first stage of the presented algorithms.
Namely, in the lower-bound models, the constraint on the energy consumption
is modified as follows

∑

j∈J

sizej∑

l=1

Wα
jl · p1−α

j ≤ E.

7 Conclusion

We have studied the makespan minimization under the energy consumption con-
straint. Strongly polynomial-time approximation algorithms were constructed for
the case of rigid jobs. Our algorithms have constant factor approximation guar-
antees. Further research might address the approaches to the problems with more
complex structure, where processors are heterogeneous and jobs have alternative
execution modes with various characteristics.
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A Polynomial-Time Algorithm
for the Routing Flow Shop Problem
with Two Machines: An Asymmetric
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Abstract. We consider the routing flow shop problem with two
machines on an asymmetric network. For this problem we discuss prop-
erties of an optimal schedule and present a polynomial time algorithm
assuming the number of nodes of the network to be bounded by a con-
stant. To the best of our knowledge, this is the first positive result on the
complexity of the routing flow shop problem with an arbitrary structure
of the transportation network, even in the case of a symmetric network.
This result stands in contrast with the complexity of the two-machine
routing open shop problem, which was shown to be NP-hard even on the
two-node network.

Keywords: Scheduling · Flow shop · Routing flow shop ·
Polynomially-solvable case · Dynamic programming

1 Introduction

A flow shop problem to minimize the makespan (also known as Johnson’s prob-
lem) is probably the first machine scheduling problem described in the literature
[7]. It can be set as follows.

Flow Shop Problem. Sets M of machines and J of jobs are given, each
machine Mi ∈ M has to process each job Jj ∈ J ; such an operation takes
pji time units. Each job has to be processed by machines in the same order:
first by machine M1, then M2 and so on. No machine can process two jobs
simultaneously. The goal is to construct a feasible schedule of processing all the
jobs within the minimum makespan (which means, with the minimum completion
time of the last operation). According to the traditional three-field notation
of scheduling problems (see [9]), Johnson’s problem with a fixed number m of
machines is denoted as Fm||Cmax.
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Problem F2||Cmax can be solved to the optimum by the well-known Johnson’s
algorithm, which basically is a sorting of the set of jobs according to Johnson’s
rule [7]. On the other hand, problem F3||Cmax is NP-hard in the strong sense [6].

In classical scheduling problems (including flow shop), it is assumed that
the location of each machine is fixed, and either there is no pre-specified delay
between the processing of two consecutive operations of a job or such a delay
depends on the distance between the corresponding machines. However, this
assumption often diverges from real-life situations. Imagine that the company
is engaged in the construction or maintenance of country houses, cottages or
chalets. The company has several crews which, for example, specialize either in
preparing the site for construction, or filling the foundation, or building a house,
or landscaping the site. The facilities are located in a suburban area, and each
team must move from place to place to carry out their work. The sequence of
jobs performed by various crews is fixed, e.g., you cannot start to build a house
before filling the foundation1.

To take into account the situation described above, we consider a natural
combination of Fm||Cmax with the well-known traveling salesman problem, a so-
called routing flow shop problem introduced in [1]. In this model, jobs are located
at nodes of a transportation network G, while machines have to travel over the
edges of the network to visit each job and perform their operation in the flowshop
environment. All machines start from the same location (the depot) and have to
return to the depot after performing all the operations. The completion time of
the last machine action (either traveling or processing an operation of some job
in the depot) is considered to be the makespan of the schedule (Cmax) and has
to be minimized. (See Sect. 2 for the detailed formulation of the problem.)

We denote the m-machine routing flow shop problem as RFm||Cmax or
RFm|G = W |Cmax, when we want to specify a certain structure W of the
transportation network.

The routing-scheduling problems can simulate many problems in real-world
applications. Examples of applications where machines have to travel between
jobs include situations where parts are too big or heavy to be moved between
machines (e.g., engine casings of ships), or scheduling of robots that perform
daily maintenance operations on immovable machines located in different places
of a workshop [2]. Another interesting application is related to the routing and
scheduling of museum visitors traveling as homogeneous groups [10]. The model
is embedded in a prototype wireless context-aware museum tour guide system
developed for the National Palace Museum of Taiwan, one of the top five muse-
ums in the world.

The routing flow shop problem is still understudied. Averbakh and Berman
[1] considered RF2||Cmax with exactly one job at each node, under the following
restriction: each machine has to follow some shortest route through the set of
nodes of the network (not necessarily the same for both machines). This will be

1 The relationship between the routing flow shop problem and the problem of planning
the construction of country houses in England was proposed by Natalia Shakhlevich
in a private communication.
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referred to as an AB-restriction. They proved that for the two-machine problem
the AB-restriction affects the optimal makespan by a factor of at most 3

2 , and this
bound is tight. They also showed that, under this restriction, there always exists
a permutation optimal schedule, in which machines process jobs in the same
order (a permutation property). Using this property, they presented O(n log n)
algorithms for solving RF2|AB-restriction, G = W |Cmax to the optimum, where
W is a tree or a cactus, n is the number of jobs. These algorithms, therefore,
provide a 3

2 -approximation for the problem without the AB-restriction on a tree
or on a cactus with a single job at each node. Later on ([2]), they extended
these results to the case of an arbitrary graph G and an arbitrary number of
machines m by presenting a m+1

2 -approximation algorithm for the RFm||Cmax

problem. Yu and Znang [12] improved on the latter result and presented an
O(m

2
3 )-approximation algorithm based on a reduction of the original problem

to the permutation flow shop problem.
A generalized routing flow shop problem with buffers and release dates of

jobs was also considered in [8]. The authors present a heuristic based on solving
the corresponding multiple TSP.

Yu et al. [11] investigated the RF2||Cmax problem with a single job at each
node farther. They obtained the following results:

1. The permutation property also holds for the problem without the AB-
restriction.

2. The problem is ordinary NP-hard, even if G is a tree (moreover, if G is a
spider of diameter 4 with the depot in the center).

3. There is a 10
7 -approximation algorithm that solves the RF2|G = tree|Cmax

problem in O(n) time.

Finally, the possibility of designing a polynomial-time algorithm for the spe-
cial case of our problem, when the transportation network is symmetric, was
claimed in [5] (although, without any proof).

In the present paper, we investigate the generalization of RF2||Cmax problem
to the case of asymmetric travel times and of an arbitrary number of jobs at any
node. Thus, we have to consider a directed network G in which the travel times
through an edge may be different in the opposite directions. (We will denote such

a problem by
→
RF2||Cmax.) We prove that the permutation property holds for this

version of the problem, as well. We also establish another important property:
there exists an optimal permutation schedule (with the same job processing order
π on both machines) such that for each node v, sub-sequence πv of π consisting
of all jobs from node v obeys Johnson’s rule. These two properties allow us
to design a dynamic programming algorithm which solves this problem in time
O(ng2+1), where g is the number of nodes in G. Thereby, we have established
a polynomial-time solvability of the asymmetric two-machine routing flow shop
problem with a constant number of network nodes. This result stands in contrast
with the complexity result for the two-machine routing open shop problem, which
is known to be ordinary NP-hard even if G consists of only two nodes (including
the depot) [3].
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The structure of the paper is as follows. Section 2 contains a formal descrip-
tion of the problem under investigation, as well as some notation and definitions.
Properties of an optimal schedule are established at the beginning of Sect. 3
which also contains a description of the exact algorithm for solving the problem.
The analysis of its qualities follows in Sect. 4. Section 5 concludes the paper with
some open questions for further investigation.

2 Problem Setting, Definitions and Notation

Farther, throughout the paper, an expression of the form x ∈ [α, β] (where α
and β are integers, and x is an integer variable, by definition) means that x takes
any integral values from this interval; [β] .= {1, 2, . . . , β}. In this paper we will
consider the following problem.

Problem
→
RF2||Cmax. We are given n jobs {J1, . . . , Jn} that are to be processed

by two dedicated machines denoted as A and B. For each j ∈ [n], job Jj consists
of two operations that should be performed in the given order: first the operation
on machine A, and then on machine B. Processing times of the operations are
equal to aj and bj , respectively. All jobs are located at nodes of a transportation
network; the machines move between those nodes along the arcs of that network.
At the beginning of the process, both machines are located at a node called a
depot, and they must return to that very node after completing all the jobs.

Without loss of generality of the problem (and for the sake of convenience
of the further description and analysis of the algorithm presented in Sect. 3), we
will assume that a reduced network G = (V,E) (|V | = g + 2) is given, in which:
(1) only active nodes are retained, i.e., the nodes containing jobs (they will be
referred to as job nodes) and two node-depots : the start-depot and the finish-
depot ; (2) there are no jobs in both depots (otherwise, we split the original depot
into three copies, the distances between which are equal to zero; one of those
copies is treated as a job node, while the other two are job-free); the start-depot
and the finish-depot get indices 0 and g + 1, respectively, while all job nodes
get indices i ∈ [g] (g is the number of job nodes); thus, starting from the start-
depot, each machine will travel among the job nodes, and only after completing
all the jobs it may arrive at the finish-depot; (3) G is a complete directed
graph in which each arc e = (vi, vj) ∈ E is assigned a non-negative weight
ρ(e) = ρi,j representing the shortest distance between the nodes corresponding
to i and j in the source network in the given direction; therefore, the weights
of arcs satisfy the triangle inequalities; at that, the symmetry of the weights
is not assumed, i.e., the weights of the forward and the backward arcs may
not coincide. The objective function C(S) is the time, when machine B arrives
at the finish-depot in schedule S, and this time should be minimized.

Other designations: N .= (n1, . . . , ng), where ni denotes the number of jobs
located at job node i ∈ [g]. ‖K‖1 .=

∑
i∈[g] |ki| denotes the 1-norm of vector

K = (k1, . . . , kg).
Given an integer d > 0, we define a partial order � on the set Rd of d-

dimensional real-valued vectors, such that for any two vectors x′ = (x′
1, . . . , x

′
d),
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x′′ = (x′′
1 , . . . , x′′

d) ∈ Rd the relation x′
�x′′ holds, if and only if x′

i ≤ x′′
i , ∀ i ∈ [d].

By J (v), we will denote the set of indices of jobs located at node v ∈ V .
By a schedule, we will mean, as usual, the set of starting and the completion

times of all operations. Since, however, such a schedule model admits a contin-
uum set of admissible values of its parameters, it will be more convenient for us
to switch to a discrete model in which any schedule is determined by a pair of
permutations {π′, π′′} specifying the orders of processing the jobs by machines
A and B, respectively. Each pair (π′, π′′) uniquely defines both the routes of the
machines through the nodes of network G and an active schedule S(π′, π′′) of
job processing which is defined as follows.

A schedule S(π′, π′′) is called active, iff : (1) it is feasible for the given instance

of problem
→
RF2||Cmax; (2) it meets the precedence constraints imposed by per-

mutations {π′, π′′}; (3) the starting time of no operation in this schedule can be
decreased without violating the above mentioned requirements.

An active schedule S(π′, π′′) is called a permutation one, if π′ = π′′.

Definition 1. For each j ∈ [n], we define a priority vector χj = (χ′
j , χ

′′
j , j)

of job Jj , where (χ′
j = 1, χ′′

j = aj), if aj ≤ bj , and (χ′
j = 2, χ′′

j = −bj),
otherwise. We next define a strict linear order ≺ on the set of jobs: for two jobs
Jj , Jk (j, k ∈ [n]) the relation Jj ≺ Jk holds, iff χj <lex χk (i.e., vector χj is
lexicographically less than χk). Clearly, for any two jobs Jj , Jk (j �= k), one and
only one of two relations holds: either Jj ≺ Jk or Jk ≺ Jj .

We will say that a permutation of jobs π and the corresponding permuta-
tion schedule meet the Johnson local property, if for each node v ∈ V the jobs
from J (v) are sequenced in permutation π properly, which means: in the lexico-
graphically increasing order of their priority vectors. (Johnson [7] showed that
in the case of the networkless two-machine flow shop problem, such a job order
π provides the optimality of the corresponding permutation schedule.)

3 Properties of the Optimal Schedule and an Algorithm

for the Exact Solution of Problem
→
RF2||Cmax

The algorithm described in this section is based on two important properties of
the optimal schedule established in the following theorems.

Theorem 1. For any instance I of problem
→
RF2||Cmax there exists an optimal

schedule which is a permutation one.

Theorem 2. For any instance I of problem
→
RF2||Cmax there exists a permuta-

tion schedule which meets the Johnson local property and provides the minimum
makespan on the set of all permutation schedules.

The proofs of these theorems are omitted due to the volume limitations. They
can be found in arXiv [4]. Two theorems above imply the following
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Corollary 1. For any instance I of problem
→
RF2||Cmax there exists an optimal

schedule which is a permutation one and meets the Johnson local property.

The algorithm for computing the exact solution of problem
→
RF2||Cmax is

based on the idea of Dynamic Programming and on the two properties of optimal
solutions mentioned in Corollary 1 (and, thus, enabling us to restrict the set of
schedules under consideration by job sequences which meet these properties).
So, from now on, we will consider only permutation schedules which meet the
Johnson local property.

Let us number the jobs at each node vi properly, i.e., in the ascending order
of the relation ≺ (see Definition 1, p. 5). Then, due to Theorem 2, jobs at each
node vi (i ∈ [g]) should be processed in the order πi = (1, 2, . . . , ni). According
to this order, the jobs at node vi will be numbered by two indices: Jij (j ∈ [ni]).

In the schedule under construction, we will highlight the time moments when
a machine M ∈ {A,B} completes a portion of jobs at node vi and is preparing
to move to another node. Each such moment will be called an intermediate
finish point of machine M or, in short, an if-point of machine M . It follows from
Theorem 2 that at each if -point t′ of machine A the set of jobs already completed
by the machine is a collection of some initial segments [1, . . . , ki] of sequences
{πi | i ∈ [g]}. This collection can be specified by a g-dimensional integral vector
K = (k1, . . . , kg) (and will be denoted as J (K)), where ki denotes the number
of jobs performed by machine A at node i by time t′.

By Theorem 1, machine B completely reproduces the route of machine A
through network nodes (as well as the order of processing the jobs by that
machine) and, at some later point in time t′′ ≥ t′, it also finds itself at its if -
point with the same set J (K) of completed jobs, defined by vector K. Thus, a
natural correspondence is established between the if -points of machines A and
B: they are combined into pairs (ts′, ts′′) of if -points at which the sets of jobs
completed by machines A and B coincide and are defined by the same vector
Ks = (ks

1, . . . , k
s
g). The pairs of if -points divide the whole process of performing

the jobs by machines A and B into steps (s = 1, 2, . . . , s̄), each step s being
defined by two parameters: the node index (is) and the number of jobs (ds)
performed in this step at node is.

The tuple K̂
.= (K, i∗) consisting of a value of vector K = (k1, . . . , kg) and

a value of a node index i∗ determines a configuration of a partial schedule of
processing the subset of jobs J (K), with the final job at node i∗. The set of
admissible configurations is defined as the set including all basic configurations
(with values K = (k1, . . . , kg) ∈ [0, n1]×· · ·× [0, ng], i∗ ∈ [g], such that ki∗ > 0),
as well as two special configurations: the initial one K̂S = (0, 0) and the final
one K̂F = (N, 0).

Algorithm ADP for constructing the optimal schedule makes two things:
1) it enumerates all possible configurations of partial schedules, and 2) for each
of them, it accumulates the maximum possible set of pairwise incomparable
solutions (characterized by pairwise incomparable pairs (t′, t′′) of if -points with
respect to the relation �). In other words, given a configuration K̂

.= (K, i∗),
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we consider a “partial” bi-criteria problem P(K̂) of processing the jobs from
J (K), with the final job at node i∗. The objective is to minimize the two-
dimensional vector-function F̄

.= (F1, F2), where F1, F2 are the completion times
of jobs from J (K) by machines A and B, respectively. We compute the complete
set F(K̂) of representatives of Pareto-optimal solutions of this problem.

For each solution F̄ = (F1, F2) ∈ F(K̂), let us define the parameter Δ(F̄ ) =
F2 − F1. The set F(K̂) for each configuration K̂ will be stored as the list sorted
in the ascending order of component F1. (At that, the values of F2 and Δ(F̄ )
strictly decrease). The first element of each list F(K̂) will be a solution with the
value F1 = 0. This is either a dummy solution F̃ = (0,∞) (added to each list
F(K̂) at the beginning of its formation), or a real solution with the value F1 = 0
(if it is found).

We create lists F(K̂) successively for all configurations {K̂ = (K, i∗)}. At
that, the whole algorithm is divided into three stages: the initial, the main, and
the final one. Configurations with i∗ = 0 are considered in the initial and the
final stages only.

List F(K̂S) for the initial configuration K̂S = (0, 0) is created in the initial
stage and consists of the single solution (0, 0).

In the main stage, we enumerate configurations {K̂ = (K, i∗)} in non-
decreasing order of the norm ‖K‖1 =

∑
ki of vectors K (which varies from 1

to n); configurations with the same ‖K‖1 are enumerated in the lexicographically
ascending order of vectors K. Next, for each given vector K = (k1, . . . , kg), only
those values of i∗ ∈ [g] are enumerated for which ki∗ > 0 holds.

In the final stage, for the final configuration K̂F = (N, 0), we find its
optimal solution by comparing g variants of solutions obtained from the optimal
solutions of configurations {(N, i) | i ∈ [g]}. For each configuration K̂i = (N, i),
its optimal solution F̄ ∗

i = (F ∗
1 , F ∗

2 ) (with the minimum value of the component
F2) is located at the very end of list F(K̂i). Having added to F ∗

2 the distance
ρi,0 from node vi to the depot, we obtain the value of the objective function
C(S) of our problem for the given variant of schedule S. Having chosen (from g
variants) the variant with the minimum value of the objective function, we find
the optimum.

In order to create list F(K̂) for a given configuration K̂ = (K, i∗) in the
main stage, we enumerate all possible values K̂ ′ = (K ′, i′) of pre-configurations
(“p-c”, for short), i.e., such configurations that could be obtained in the previous
step of the algorithm. They should meet the inequality i′ �= i∗, and their vectors
K and K ′ should differ in exactly one (i∗th) component, so as k′

i∗ < ki∗ . At
that, if ki∗ is the only non-zero component of vector K, then K̂ ′ can only be the
initial configuration. Alternatively, if K ′ �= 0, then should be k′

i′ > 0. (Clearly,
there is no need for a machine to come to node vi′ without doing any job at it).

We note that for each configuration K̂ = (K, i∗) in the main stage, each
variant of its p-c K̂ ′ = (K ′, i′) can be uniquely defined by the pair (d, i′), where
i′ ∈ [0, g]\{i∗}, and d ∈ [ki∗ ] is the number of jobs being processed in this step
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at node vi∗ . The pairs (d, i′) are enumerated so as the loop on d is an exterior
one with respect to the loop on i′.

For each given value of d, we construct an optimal schedule Sd = S(K̂, d)
in problem F2||Cmax for the jobs from J (K̂, d) .= {Ji∗,j | j ∈ [ki∗ − d + 1, ki∗ ]},
and then compute three characteristics of that schedule: L1(K̂, d) and L2(K̂, d),
which are the total workloads of machines A and B on the set of jobs J (K̂, d),
and also δ(K̂, d) = C∗

max(K̂, d) − L2(K̂, d), where C∗
max(K̂, d) is the length of

schedule Sd.
After that, we start the loop on i′ which will be farther referred to as a c-loop

(which means, “the loop on configurations and pre-configurations”). Indeed, after
specifying the value of i′, a configuration and its pre-configuration are completely
defined. At each step of the c-loop, we adjust the current list F(K̂) of solutions
of configuration K̂. (Before starting the loop on d, the list consists of the single
dummy solution F̃ = (0,∞)).

For each value of i′, we enumerate all Pareto-optimal solutions F̄ ′ =
(F ′

1, F
′
2) ∈ F(K̂ ′) of the p-c K̂ ′ = (K ′, i′) in the ascending order of F ′

1 (and
the descending order of Δ(F̄ ′) = F ′

2 −F ′
1). Given a solution F̄ ′ and schedule Sd,

we form a solution F̄ ′′ = (F ′′
1 , F ′′

2 ) of configuration K̂ as follows.
F ′′
1 := F ′

1 + ρi′,i∗ + L1(K̂, d).

F ′′
2 :=

{
F ′
2 + ρi′,i∗ + L2(K̂, d), if Δ(F̄ ′) ≥ δ(K̂, d) (a solution of type (a));

F ′
1 + ρi′,i∗ + C∗

max(K̂, d), if Δ(F̄ ′) < δ(K̂, d) (a solution of type (b)).

Case (b) means that the component F ′
2 does not affect the parameters of the

resulting solution F̄ ′′ any more, and so, considering further solutions F̄ ′ ∈ F(K̂ ′)
(with greater values of F ′

1 and smaller values of Δ(F̄ ′)) makes no sense, since it
is accompanied by a monotonous increasing of both F ′′

1 and F ′′
2 (between which,

a constant difference is established equal to C∗
max(K̂, d) − L1(K̂, d)). Thus, for

any given p-c K̂ ′, a solution of “type (b)” can be obtained at most once.
For each solution F̄ ′′ obtained, we immediately try to understand whether it

should be added to the current list F(K̂), and if so, whether we should remove
some solutions from list F(K̂) (majorized by the new solution F̄ ′′).

To get answers to these questions, we find a solution F̄ � = (F �
1 , F �

2 ) in list
F(K̂) with the maximum value of the component F �

1 such that F �
1 ≤ F ′′

1 . Such
a solution always exists (we call it a control element of list F(K̂)). Since in the
loop on F̄ ′ ∈ F(K̂ ′), component F ′′

1 monotonously increases, the search for the
control element matching F̄ ′′ can be performed not from the beginning of list
F(K̂), but from the current control element. Before starting the loop on F̄ ′, we
assign the first item of list F(K̂) to be the current control element.

If the inequality F �
2 ≤ F ′′

2 holds, the current step of the loop on F̄ ′ ∈ F(K̂ ′)
ends without including the solution F̄ ′′ in list F(K̂) (we pass on to the next
solution F̄ ′ ∈ F(K̂ ′)). Otherwise, if F ′′

2 < F �
2 , we look through list F(K̂)

(starting from the control element F̄ �) and remove from the list all solutions
F̄ = (F1, F2) majorized by the new solution F̄ ′′ (which is expressed by the rela-
tions F ′′

1 ≤ F1, F ′′
2 ≤ F2). At that, the condition F ′′

1 = F1 is sufficient for
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removing the current control element, while the inequality F ′′
2 ≤ F2 is sufficient

for removing subsequent elements. The scanning of list F(K̂) stops as soon as
either the first non-majorized list item is found distinct from the control element
(for this item and for all subsequent items, the relations F2 < F ′′

2 hold), or if the
list has been scanned till the end. Include solution F̄ ′′ in list F(K̂) and assign
it to be a new control element, which completes the current step of the loop on
F̄ ′ ∈ F(K̂ ′).

4 The Analysis of Algorithm ADP

Theorem 3. Algorithm ADP finds an optimal solution of problem
→
RF2||Cmax

in time O(ng2+1).

Proof. Since the optimality of the solution found by algorithm ADP follows
explicitly from the properties of the optimal solution proved in Theorems 1
and 2, to complete the proof of Theorem 3, it remains to show the validity of
bounds on the running time of the algorithm; to that end, it is sufficient to
estimate the running time (TBS) of the Main stage of the algorithm.

In the Main stage, for each basic configuration K̂, the set F(K̂) of all its
Pareto-optimal solutions is found. Since this set is formed from the solutions
obtained in the previous steps of the algorithm for various pre-configurations of
configuration K̂, the obvious upper bound on the value of TBS is the product of
the number of configurations (NC), of the number of pre-configurations (NPC)
for a given configuration, and of the bound (Tstep) on the running time of any
step of the loop on configurations and pre-configurations (a c-loop).

In each step of the c-loop, list of solutions F(K̂ ′) of a given p-c K̂ ′ is scanned.
From each such solution, a solution for configuration K̂ is generated which is
then either included or not included in list F(K̂). The solutions included in
the list in this step of the c-loop will be called “new” ones; other solutions,
included in F(K̂) before starting this step will be called “old”.

While estimating a new solution claiming to be included in F(K̂), we scan
some “old” solutions of list F(K̂), which is performed in two stages. In the
first stage, we look through the elements from F(K̂), starting from the current
control element, in order to find a new control element immediately preceding
the applicant. In the second stage (in the case of the positive decision on
including the applicant in the list), we check the (new) control element and the
subsequent elements from F(K̂) subject to their removal from the list (if they
are majorized by the applicant). We continue this process until we find either
the first undeletable element or the end of the list. We would like to know: how
many views of items of list F(K̂) will be required in total in one step of the
c-loop? It is stated that no more than O(Z), where Z is the maximum possible
size of list F(K̂) in any step of the algorithm for all possible configurations K̂.

To prove this statement, we first note that none of the “new” elements
included in list F(K̂) in this step of the c-loop will be deleted in this step,
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since all “new” solutions included in the list are incomparable by the relation
�. This follows from the facts that: 1) all applicants formed by type (a) are
incomparable; 2) if the last solution is formed by type (b), then it is either
incomparable with the previous applicant, or majorized by it (and therefore, is
not included in the list). Thus, only “old” elements will be deleted from the list,
and the total (in the c-loop step) number of such deletions does not exceed Z.

In addition, the viewing of an element from F(K̂), when it receives the status
of a “control element”, occurs at most once during each c-loop step, and so, the
total number of such views in one step does not exceed Z. There may be also “idle
views” of elements subject to assigning them the status of a “control element”.
Such an idle view may happen only once for each applicant, and so, the number
of such idle views during one step of the c-loop does not exceed |F(K̂ ′)| ≤ Z.

Next, the total (over a step of the c-loop) number of views of elements from
F(K̂) subject to their removal from the list does not exceed O(Z), as well.
Indeed, viewing an element of F(K̂) with its removal occurs, obviously, for
each element at most once (or, in total over the whole step, at most Z times).
Possible “idle view” of an element from F(K̂) (without its deleting) happens
at most once for each applicant, which totally amounts (over the current step
of the c-loop) at most |F(K̂ ′)| ≤ Z. Thus, the total number of views of items
from F(K̂), as well as the total running time of the c-loop step (Tstep), does not
exceed O(Z). Let us estimate now number Z itself.

We know that for any given configuration K̂ the solutions F̄ = (F1, F2) from
list F(K̂) are incomparable with respect to relation �. Thus, the number of
elements in list F(K̂) does not exceed the number of different values of the
component F1. The value of the component F1 is the sum of the workload of
machine A and the total duration of its movement. (There are no idle times of
machine A in the optimal schedule.) Since the workload of machine A (for a
fixed configuration K̂) is fixed, the number of different values of the component
F1 can be bounded above by the number of different values that the length of a
machine route along the nodes of network G can take. As we know, each passage
of the machine along the arc (vi, vj) is associated with the performance of at
least one job located at node vj . Thus, any machine route contains x ≤ kj ≤ nj

arcs entering node vj , and the same number of arcs (x) leaving the node.
Let us define a configuration of a machine route as a matrix H = (hij) of size

g×g, where hij (i �= j) specifies the multiplicity of passage of an arc (vi, vj) ∈ G
in the route; hjj = nj − ∑

i�=j hij . Thus, for any j ∈ [g], the equality holds:

g∑

j=1

hij = ni. (1)

Clearly, for any closed route the following equalities are also valid:

g∑

i=1

hij = nj , j ∈ [g]. (2)
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Hence, it follows that the number of different values of the route length of a
machine does not exceed the number of configurations of a closed route. The
latter does not exceed the number of different matrices H with properties (1)
and (2). Let us (roughly) estimate from above the number (Z ′) of such matrices
without taking into account property (2).

The number of variants of the ith row of matrix H does not exceed the
number of partitions of the number ni into g parts, i.e., is not greater than

Cg−1
ni+g−1 =

1

(g − 1)!
(ni + 1)(ni + 2) . . . (ni + g − 1)

=
ng−1

i

(g − 1)!

(
1 +

1

ni

) (
1 +

2

ni

)
. . .

(
1 +

g − 1

ni

)
≤ ng−1

i

(g − 1)!
exp

(g − 1)g

2ni
.

Since the value of supni∈[1,∞) exp (g−1)g
2ni

depends only on g, a function f(g) can
be defined such that

Cg−1
ni+g−1 ≤ f(g)ng−1

i .

Let Π
.= n1n2 . . . ng. Then Z ≤ Z ′ ≤ (f(g))g · Πg−1, and the number of con-

figurations (NC) can be bounded above by O(gΠ). Finally, the number of pre-
configurations is bounded by NPC ≤ O(gn). Taking into account the above
bounds, the bound Π ≤ ng/gg, and the inequality g ≤ O(1), we obtain (for
some function ϕ(g)) the final bound on the running time of the algorithm:

TA ≈ TBS ≈ NCNPCTstep ≤ ϕ(g) · O(Πgn) ≤ O(ng2+1).

Theorem 3 is proved. ��

5 Conclusion

We have considered the two-machine routing flow shop problem on an asym-

metric network (
→
RF2||Cmax). We have improved the result by Yu et al. [11] by

showing that for a more general problem (the problem with an arbitrary asym-
metric network) the property of existing an optimal permutation schedule also
holds. Next, we have presented a polynomial time algorithm for the problem with
a fixed number of nodes, which is the first positive result on the computational

complexity of the general
→
RF2||Cmax problem.

We now propose a few open questions for future investigation.

Question 1. What is the parametrized complexity of problem
→
RF2||Cmax with

respect to the parameter g?

Question 2. Are there any subcases of problem
→
RF2||Cmax with unbounded g

(e.g., G is a chain, or a cycle, or a tree of diameter 3, or a tree with a constant
maximum degree, etc.) solvable in polynomial time?

Question 3. Are there any strongly NP-hard subcases of problem
→
RF2||Cmax

for which NP-hardness is not based on the underlying TSP? In other words, is
it possible that for some graph structure G = W the TSP on W is easy, but

problem
→
RF2|G = W |Cmax is strongly NP-hard?
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Abstract. Nowadays vehicles are highly customizable products. Indeed,
they can be equipped with a great number of options directly chosen by
the customers. This situation provides several harness design problems
to automotive companies, where by harness we mean the set of conduct-
ing wires (cables), positioned within the vehicle frame (chassis), which
transmit information and electrical power to the options to make them
operative. In this context we focus on an optimization problem arising in
the construction and assembly phase of the harness within a vehicle. The
options selected by customers have to be connected through a harness
shaped in a tree structure within the vehicle chassis. In particular, the
wiring has to connect subsets composed of two or more options. The total
length of the connecting cables could be very large if a dedicated cable
would be used for each couple of options in each subset. This length can
be significantly reduced by realizing the connection through the usage
of cable weldings. This work introduces for the first time the problem
of the optimal placement of the weldings on the wiring harness tree of
a vehicle, aimed at minimizing the total length and/or the cost of the
cables, weighted by their gauge. The problem can be schematized as a
p-median problem (PMP) on a tree in a continuous and discrete domain,
with additional technological constraints related to the welding positions
and mutual distance. This work proposes an integer linear programming
model and a matheuristic aimed at finding exact and/or heuristic solu-
tions for this constrained PMP. The efficiency and the effectiveness of
the proposed methodologies have been proved through the solution of
test instances built from real data provided by an automotive company.
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1 Introduction

Automobile Engineering also known an Automotive Engineering is a field con-
cerned with the activity of designing, developing, constructing, manufacturing,
operating and safety testing of vehicles (automobiles, buses and trucks) and
related subsystems. Its main objective is represented by the improvement of vehi-
cle technical performance, aesthetics and software. Given the wide range of ele-
ments present in a vehicle (mechanical, electrical, electronic, software and safety
elements), Automotive Engineering generally tackles complex decision problems
whose solution requires the involvement of different technical skills and exper-
tise. Among the others, several optimization problems arise for which Operations
Research methodologies can represent a valuable decision support tool.

In this work we focus on the manufacturing activities dealing with the cre-
ation and the assembly of the whole parts of a vehicle. One of the main critical-
ities in this field is represented by the fact that vehicles are highly customizable
products. Indeed, nowadays, in order to respond to the market needs, vehicles
can be equipped with a great number of electrical components (50 or more),
generically referred to as options. These options are made operative by the har-
ness of the vehicle, i.e., the set of conducting wires (cables), positioned within
the vehicle frame (chassis), which transmit information and electrical power, so
allowing the interconnection among the options and the connection to the power
and control unit.

A customer can configure a vehicle with the desired combination of options
(demand). Even if one cannot require all the possible option combinations,
because of technical and functional constraints, the number of different admis-
sible demands can be very high. Each demand is enabled by the corresponding
wiring configuration, containing all the needed cables. In this context, for a com-
pany, satisfying all the admissible demands installing exactly the related cables,
would mean to have a specific wiring configuration for each of them. This is obvi-
ously impossible, since it would mean that an automotive company should have
to produce in advance and manage at the assembly line a great number of wiring
configurations, each of them characterized by its own installation requirements.

From this brief discussion about the harness of a vehicle, it is easy to under-
stand that an effective and efficient management of the wiring configuration
production and assembly activities can represent a key factor for automotive
companies. In this context, three main optimization problems arise:

1. Production problem: it concerns the selection of the wiring configurations to
be produced in order to meet the forecast demands at the minimum cost.

2. Data representation problem: it is related to the development of data cluster-
ing algorithms for an effective and efficient demand database management.

3. Design problem: it concerns the determination of the most effective and effi-
cient deployment of the cables within the vehicle chassis, taking into account
the technical constraints at the production and assembly line.

This work is focused on the third problem. However, in the following we give
some hints to clarify the first problem, since its comprehension is preparatory



Optimal Location of Welds on the Vehicle Wiring Harness 317

for a better understanding of the third problem. Regarding the second problem,
we just address the interested reader to [8] and [9].

The first problem is known in literature as the Optimal Diversity Manage-
ment Problem, ODMP. In order to explain this problem we have to introduce the
extra-cost concept. Automotive companies produce in advance a limited num-
ber of opportunely chosen wiring configurations, instead of producing a specific
wiring configuration after receiving the demand of each customer. Then, if a
wiring configuration containing just the options of a demand is not produced,
the company substitutes it with a compatible (dominating) one. This substi-
tution allows the company to overcome the drawbacks related to the product
customization, but it also imposes that it has to sustain an additional wiring cost
(extra-cost), since it is giving the cables for one or more options not demanded
by the customer. Hence the choice of the number and the kind of wiring configu-
rations to produce in order to meet the forecast demand should be done in order
to minimize the extra-cost. ODMP was introduced as a particular variant of the
p-median problem (PMP) in [7], where it was solved by a Lagrangian relaxation-
based algorithm. Later, an exact solution approach exploiting the decomposition
of the ODMP in several reduced size p-median sub-problems has been proposed
in [6]. Exploiting the same idea, several decomposition approaches have been pro-
posed in [1,2,4] and [3]. The most recent contribution on ODMP is presented
in [14]. This work starts from several findings of [15] and it proposes an algo-
rithm structured in three stages, where Lagrangian relaxation-based techniques,
variable fixing and reduction tests, and a dynamic programming algorithm are
effectively combined. This method represents the state of the art for the problem.

The above introduced design problem arises downstream the (ODMP).
Indeed, the set options of the configurations selected through the ODMP solu-
tion have to be connected and made operative through a wiring harness, shaped
in a tree structure within the vehicle frame (chassis). The total length of the
connecting cables could be very large if a dedicated wire should be used for
each couple of options in each subset. This reflects also in the cost of the wiring
configuration (connection cost), which depends on the length and the gauge of
the used cables. Hence, it is necessary to use cable weldings to avoid expensive
dedicated connections among the options and reduce the overall length.

This work describes the design problem of the optimal placement of the weld-
ings (Optimal Welding Location Problem, OWLP) on the wiring harness tree of
a vehicle, aimed at minimizing the weighted length/cost of the cables. This prob-
lem can be schematized as a p-Median Problem (PMP) on a tree in a continuous
domain. However, exploiting the property imposing the correspondence between
vertices and medians of a graph [10,13], using an ad-hoc discretization procedure,
we can formulate and tackle the problem as a PMP in a discrete domain. This
allows to pass from an uncountable to a countable set of welding locations along
the tree, for which it is easier to impose additional technological constraints
related to the mutual distance between weldings or to the minimum distance
between the weldings and the fixing hooks/pegs. To the best of authors knowl-
edge, no contribution in literature deals with this distance constrained variant



318 M. Boccia et al.

of the PMP, as can be concluded from the comprehensive review on the topic
present in the following surveys and recent papers: [5,11,12,16,17].

In the following we present an original integer linear programming (ILP)
formulation and a matheuristic aimed at finding exact and/or heuristic solutions
for the OWLP. The proposed methods are then validated on test instances built
from real data coming from a company operating in the field and a discussion
about the obtained results is provided.

The paper is structured as follows: in Sect. 2, we provide a detailed description
of the OWLP ; in Sect. 3, we introduce the problem setting and present a p-
median based ILP formulation and a matheuristic approach for the OWLP ;
Sect. 4 is devoted to the presentation of computational results of the proposed
methods; finally, Sect. 5 provide conclusions and future work perspectives.

2 Problem Description

The harness of a vehicle, also known as wiring harness is the set of electrical
cables/wires which transmit signals or electrical power to the electrical compo-
nents. These masses of loose cables, if unrolled and stretched, could reach the
extension of several hundred metres. Hence, they are generally jacketed together
by a non-flexible, durable and insulating material, such as rubber, vinyl, tapes,
etc., or a combination of them (binding process). This solution gathering together
in common paths a large number of cables, has a twofold target: on one side, it
allows to secure the harness against potential damages and short; on the other
side, it provides an optimization of the used space and of the installation time,
since the worker has to install just a single ‘wire’ within the vehicle chassis. Before
performing the binding process, first the cables are cut to the desired length, and,
then, they are assembled and clamped together on a special workbench, or onto
a pin board (assembly board), according to the design specification, to form the
cable harness. After this, the ends of the cables are stripped to expose the metal
(or core) of the cables and fitted with terminals and connectors.

The harness design problem that we tackle in this work arises before the
binding process, when the cables are cut on the basis of the geometric and
electrical requirements in order to be positioned within the vehicle according to
a tree like topology. In the following, in order to facilitate the explanation and
the comprehension of the optimal welding location problem (OWLP), we will
use some graphical representations and samples.

Let us consider the harness tree network sketched in Fig. 1a, composed of 6
options coinciding with the leaves of the tree. Each option has to be connected
with one or more other options to form a functional package. Hence, in other
words, a functional package is a sub-set or an n-tuple of options, e.g.: couple
(3, 6), triplets (1, 2, 5), etc. For the sake of the completeness, it is important to
underline that each option can be composed of more pins and each pin or subset
of pins can be part of a functional package. A pin or a subset of pins can be
part of just one n-tuple, but an option can be involved in more n-tuples. In the
following we will focus just on the options, since it is easy to extend our approach
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to the pins by duplicating each leaf of the tree as many times as are the pins of
each option.

In order to make operative a functional package, we should connect each
couple of options forming it. Hence, for example, to connect the triplet (1, 2, 5)
we should construct three connections: (1–2), (2–5) and (1–5). Figure 1b shows
the sub-tree network deriving from the construction of all the connections among
the interested options. This kind of interconnection among the options provide
a total length of the harness which is equal to the sum of the lengths of each
connection. This length, and consequently the deriving connection cost, could
be reduced if all the options are connected through a welding performed in any
point along the sub-tree network identified by the functional package, as shown
in Fig. 1c.

Fig. 1. a) Harness tree network with 6 options. b) Harness sub-tree network connecting
options 1, 2 and 5 by dedicated cables. c) Harness sub-tree network connecting options
1, 2 and 5 by the usage of a welding.

The OWLP consists in determining the welding locations of all the functional
packages along related sub-tree networks, minimizing the total length/cost of the
used cables. By this description, we can easily understand that OWLP can be
schematized as a p-Median Problem (PMP) on a tree in a continuous domain,
where each median corresponds to a welding and just one welding has to be
performed for each functional package along the links or in the nodes constituting
the related sub-tree network. However, exploiting the above cited property about
the correspondence between vertices and absolute medians of a graph, using an
ad-hoc discretization procedure along the links of the tree, we can formulate and
tackle the OWLP as a PMP in a discrete domain, where weldings are located
only in the vertices of the tree, so passing from an uncountable to a countable
set of welding locations [10,13].

In next section we will provide the details to pass from the continuous to
the discrete domain. Here, we use the discretization of the welding locations to
explain other features and restrictions of the problem under investigation, related
to the diameter (gauge) of the cables and the welding positions, respectively.

The cables can be characterized by different diameters (gauge), depending
on the electrical requirement of the option to be supplied. The gauge obviously
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reflects on the weight and cost of each cable. Moreover, the cables forming the
harness are grasped to the chassis by the usage of fixing hooks and pegs. Techno-
logical constraints impose that no welding can be made at the leaves of the tree
and in correspondence with hooks and pegs, and the distance of the weldings
with respect to these points has to be higher than or equal to a predefined value
denoted as d. This distance restriction has to be satisfied also for each couple
of welds and it is motivated by the fact that the soldering of wire ends and
the plugging of wires into connector housings require enough space to be made
without causing flaws to the system. This restriction is the one which makes the
OWLP a complex problem, since otherwise it could be solved to optimality just
solving several 1-median problems, one for each functional package.

Figure 2 and Fig. 3 show two OWLPs in a discrete domain, characterized by
6 options and 2 hooks and 9 options and 2 hooks, respectively. The case of Fig. 2
considers two functional packages: p1 = (1, 2, 3) and p2 = (4, 5, 6). The case
of Fig. 3 considers also a third package p3 = (7, 8, 9). The discretized potential
welding locations for the three packages p1, p2 and p3 are highlighted in red,
blue and green, respectively. These locations have been obtained discretizing
the links with a step size equal to 25 cm. Let us assume also that d = 25 cm.
For the sake of the simplicity, the length associated to each link, whose value
is reported in the figure, is a multiple of the step size. Let us assume that the
options of the packages have to be connected using cables with three different
unitary costs (depending on their gauge): C1 = C4 = C8 = 0.05e/cm, C2 =
C5 = C7 = 0.025e/cm, C3 = C6 = C9 = 0.1e/cm. The total connection
cost of each package with respect to all the potential welding locations can be
easily computed multiplying the length of each connection by the corresponding
unitary cost. Then, the optimal welding location for each package is the one
corresponding to the minimum connection cost. The welding locations for the
two cases reported in the figures are identified by large coloured circles. It is
easy to note that the solution reported in Fig. 2 is optimal and feasible, whereas
the one reported in Fig. 3 is optimal but unfeasible because the mutual distance
constraints are not satisfied, since two weldings are in the same positions. This
simple example explains the need of a solution method which does not consider
the weldings one-by-one but optimize all of them at the same time.

3 OWLP Solution Approaches

In this section we introduce the problem setting of the OWLP detailing also the
discretization procedure to be implemented in order to pass from a PMP in a
continuous domain to a PMP in a discrete domain. Then we present an original
ILP formulation for the OWLP, achieved by the modification of the classical
PMP formulation. Finally, a matheuristic approach exploiting the proposed for-
mulation will be presented.
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Fig. 2. Optimal solution of a 2-welding case. (Color figure online)

Fig. 3. Infeasible solution of a 3-welding case. (Color figure online)

3.1 Problem Setting

Let G(V,A) be the harness tree network to be installed within the vehicle, where
V is the set of vertices and A is the set of links, each of them indicated with its
extreme vertices (e.g., (k1, k2), k1, k2 ∈ V ). The set of vertices V is the union of
three disjoint subsets: L, the set of leaves of the tree; I, the set of internal vertices
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of the tree; J , the set of potential welding locations along the links. Each generic
leaf l, l ∈ L, corresponds with an option to be connected; each intermediate
point i, i ∈ I, corresponds with an anchor point (fixing hook or peg) within
the vehicle chassis; each potential welding location j, j ∈ J , is an intermediate
point between any couple of point k1 and k2, k1, k2 ∈ L ∪ I, generated by the
discretization procedure.

We used a simple discretization procedure. Let us denote by d the minimum
mutual distance between two weldings or between a welding and a leaf/anchor
point. Moreover, let e(k1, k2) be the distance between vertices k1 and k2, k1, k2 ∈
L ∪ I. Two cases are possible:

– If n = e(k1,k2)−2d
d is an integer value, then we have exactly n + 2 admissible

welding locations between nodes k1 and k2. This means that we should find
the same discretization points independently of the direction of the dicretiza-
tion along the link (from k1 to k2 or viceversa).

– If n = e(k1,k2)−2d
d is a real value, then the discretization is affected by the

direction of the discretization along the link (from k1 to k2 or viceversa).
In this case, we can use n′ = � e(k1,k2)−2d

d � + 1 welding points, spaced out
with distance d, along each discretization directions. This case is represented
in Fig. 4, where the green points (1, 2, 3) and the red points (4, 5, 6) are the
welding potential locations obtained discretizing from k1 to k2 and viceversa,
respectively. It is important to say that, as demonstrated in [13], given a
link (k1, k2), the position of a median is always left or right shifted towards
one of the two extreme vertices. Hence, by a pre-processing procedure which
evaluates this situation for each welding and for each link, we could halve the
potential locations of each welding.

Fig. 4. Discretization procedure along a link with length not multiple of d. (Color
figure online)

Let us now define K as the set of weldings (corresponding to the functional
packages) to be performed and Lk ⊂ K as the subset of options that have to be
connected by the generic welding k, k ∈ K in order to make operative a package.
We recall that ∪k∈KLk = L and ∩k∈KLk = ∅, since each option can be part
of just one functional package. Similarly, let us define as Jk the set of potential
welding locations for the generic welding k, k ∈ K, obtained by the previously
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described discretization procedure along the sub-tree network identified by the
functional package. We highlight that ∪k∈KJk = J whereas the intersection
among the subsets Jk can be empty or not. Moreover, let G be the set of gauge
values of the cables to be used and let Hg be the unitary cost associated with
the generic gauge g, g ∈ G. We denote by LGl the unitary cost of the cable used
to connect the option l, l ∈ L to the other options of the functional package.

Given the previous problem setting, for each generic welding k, k ∈ K, we
can easily compute the minimum distance Dlk from each generic option l, l ∈ Lk,
to the generic welding potential location j, j ∈ Jk. Indeed, since the harness has
a tree topology, there is a unique path connecting an option l with a potential
welding location j. Thus, the value of Dlk is just the sum of the lengths of the
links composing the unique path connecting an option with a welding location.
On this basis, given a welding k, k ∈ K, we can easily obtain the connection
cost from each option l, l ∈ L, to each potential welding location j, j ∈ K, as:
Clj =

∑
l∈Lk

LGl Dlj . Obviously, for all the l, l /∈ Lk, the connection cost is
infinite.

Finally, let us indicate as ĵk a specific potential location of a welding k, k ∈ K.
Then we define Jĵk = {j ∈ J |Djĵk

≤ d}, i.e., the subset containing all the welding
potential locations whose distance with respect to ĵk is lower than d. Figure 5
reports a graphical representation of the set Jĵk for a generic welding position
k1 with respect to another welding k2.

Fig. 5. Representation of set Jĵk
for a generic welding.

3.2 A P-Median Based Formulation for the OWLP

On the basis of previous problem setting, the following binary variables have to
be defined in order to model the OWLP.

– yjk = {0, 1}: binary variable equal to 1 if the vertex j, j ∈ Jk, is selected as
location of the welding k, k ∈ K, 0 otherwise;

– xljk = {0, 1}: binary variable equal to 1 if the option l, l ∈ L is connected to
the vertex j, j ∈ Jk, selected as location of the welding k, k ∈ K, 0 otherwise.
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(OWLP) min z =
∑

k∈K

∑

j∈Jk

∑

l∈L

Cljxljk (1)

subject to:
∑

j∈Jk

xljk = 1 ∀l ∈ L, k ∈ K (2)

xljk ≤ yjkz ∀k ∈ K, l ∈ L, j ∈ Jk (3)
∑

j∈J

∑

k∈K

yjk = |K| (4)

yĵk +
∑

k′∈K,k′ �=k

∑

j∈J|j∈Jĵk

yjk′ ≤ 1 ∀k ∈ K, ĵk ∈ Jk (5)

xljk ∈ {0, 1}, ∀k ∈ K, l ∈ L, j ∈ Jk (6)
yjk ∈ {0, 1}, ∀k ∈ K, j ∈ Jk (7)

The objective function (1) and the constraints (2), (3), (4) configure a classi-
cal PMP formulation. Indeed, the objective function (1) minimizes total connec-
tion cost of the options to the weldings. Constraints (2) impose that each option
of a functional package has to be connected to just one welding performed along
the related sub-tree network. Constraints (3) are consistency constraints among
the variables. Constraints (4) impose that the number of weldings (medians) to
be located is equal to the cardinality of K, i.e., to the number of functional pack-
ages. Finally, constraints (5) are the additional constraints imposing the mutual
distance restrictions among the weldings positions. Indeed, they impose that no
more than one welding location is selected between ĵk and the ones in Jĵk . It
is important to highlight that the usage of a step size equal to d in the dis-
cretization procedure guarantees by construction the satisfaction of the distance
constraints between all the potential welding locations and the leaves/anchor
points.

3.3 A Matheuristic Approach for the OWLP

In this section we propose a matheuristic approach for the OWLP, based on the
exploitation of the proposed ILP formulation. The key idea is to generate only a
subset of all the potential welding locations used in the model, trying then to add
new locations just if they can provide an improvement of the objective function.

– STEP 0. Generate the set of potential welding locations performing the dis-
cretization procedure along all the links of the harness tree, considering only
the welding points which are at distance d and 2d from the extreme vertices
of each link. In other words, if we indicate by m a generic integer value, we
perform the discretization procedure considering all the points at distance
md, with m ≤ 2, from the vertices of each link. We denote this set as J ⊂ J
and we denote as Jk ⊂ J the set of potential locations of the generic welding
k, k ∈ K. Compute the Clj values forall k, k ∈ K, l ∈ L, j ∈ Jk.
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– STEP 1. Solve the OWLP formulation to optimality considering sets L, K
and J . Two situations can occur:

• In the obtained optimal solution all the weldings are located in positions
with distance d from the extreme vertices of the links. This means that
the solution is optimal also for the problem considering the whole set J ,
since all the weldings are shifted right or left towards the extreme vertices
of each link, as shown in [13]. Hence, the matheuristic STOPS.

• In the obtained optimal solution at least one welding is located in a
position with distance md from the extreme vertices of a link. This means
that, because of the mutual distance restriction, one or more weldings
instead of being shifted towards the extreme vertices of a link, have been
moved towards the internal side. Hence, this is a feasible solution, but not
the optimal one, since it could be possible to find a better solution allowing
the relocation of a welding on a different link. Hence, the matherustic
proceeds to STEP 2.

– STEP 2. Integrate the set J with additional welding locations. If m is the
current value of m, the set J is increased with all the welding locations at
distance md, with m = m+1. After this integration the matheuristic returns
to STEP 1.

As explained above, at each iteration, the proposed matheuristic either pro-
vides the optimal solution or a feasible solution, i.e., an upper bound, for the
OWLP.

4 Computational Results

In this section we summarize the results obtained on four test instances built
from real data coming from a company operating in the automotive field. The
instances differ in number of options (leaves of harness tree), weldings to be per-
formed, potential welding locations and structure of the harness tree. The set-
tings of the instances, using the notation of Subsect. 3.1, are reported in Table 1.

Table 1. Settings of the four test instances

|L| |I| |K| |J |
221 438 70 2500

203 438 65 2460

181 438 60 2310

162 438 55 2140
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The sets J have been obtained using a discretization step d = 5 cm, cor-
responding to the minimum distance value between the weldings and the
leaves/anchor points and to the mutual distance among the weldings. In all
the instances 6 or 4 different gauge values, each of them characterized by its
own unitary cost. In all the instances the unitary costs are related to the weight
of a cable and are expressed as gr/m.

The ILP formulations have been solved by the off-the-shelf software FICO
Xpress-MP 8.2 and the experimentation was run an Intel(R) Core(TM) i5-3210M
CPU @ 2.50 Ghz Processor and 4,00 GB RAM.

All the instances have been solved to optimality by both the ILP formulation
and the proposed matheuristic, within a computation time limit of 30 min and

Table 2. Solutions of the four test instances

70 weldings

Gauge Unitary cost (gr/m) Number of cables Total length (m) Total weight (Kg)

0.35 4.5 116 255.57 1.150

0.5 6.6 85 158.84 1.046

0.75 9 14 34.52 0.311

1 11 7 16.05 0.177

1.5 16 19 43.36 0.694

4 42 4 6.58 0.276

6 61 1 0.05 0.003

65 weldings

Gauge Unitary cost (gr/m) Number of cables Total length (m) Total weight (Kg)

0.35 4.5 108 240.03 1.080

0.5 6.6 85 158.84 1.046

0.75 9 14 34.52 0.311

1.5 16 19 43.36 0.694

4 42 1 3.43 0.143

6 61 1 0.05 0.003

60 weldings

Gauge Unitary cost (gr/m) Number of cables Total length (m) Total weight (Kg)

0.35 4.5 97 212.45 0.956

0.5 6.6 77 141.74 0.934

0.75 9 13 31.51 0.284

1.5 16 19 43.36 0.694

55 weldings

Gauge Unitary cost (gr/m) Number of cables Total length (m) Total weight (Kg)

0.35 4.5 85 193.56 0.871

0.5 6.6 74 137.87 0.909

0.75 9 13 31.51 0.284

1.5 16 15 36.64 0.587
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5 min, respectively. It is important to highlight that for these instances the pro-
posed matheuristic determines the optimal solution at the first step for the two
smaller instances and with a value of m equal to 5 for the other larger ones. For
each instance, Table 2 reports the following information for each cable gauge: the
unitary cost (gr/m); the number of cables used in the harness; the total length
of the cables and the corresponding weight. It is interesting to note that the total
length of the cables, corresponding to the loose unbounded cables unrolled and
stretched, can be higher than several hundred metres. This gives an idea of the
saving that a company can achieve by the optimization of this harness design
problem, where dedicated connections among the options are substituted by the
weldings.

5 Conclusions

In this work we presented a particular location problem arising in the vehicle
manufacturing field. It consists in the determination of the optimal positions of
the weldings needed to minimize the harness (connection) costs within a vehicle.
The problem has been tackled by both an exact and a matheuristic approach.
The performed experimentation on instances derived from real data confirm the
applicability and the effectiveness of the proposed methodologies. We want to
remark that even if in terms of cost of a single wiring harness the obtained saving
can be very small (few euros or less for few cable metres), the total saving for
a company has to be evaluated considering all the vehicle production, which is
around several millions of vehicles.

Future work will be aimed at providing some managerial insights about the
harness optimization of a vehicle, taking also into account some operative aspects
of the problem. Indeed, in spite of increasing automation, hand manufacture
continues to be the primary method of vehicle harness installation, because it
involves several activities which are not easy to be mechanized: routing wires
through sleeves; taping with fabric tape; clamps or cable ties; etc. Hence, it
could be interesting to investigate the possibility of minimizing the differences
between the welding locations for two or more harnesses, in order to standardise
the installation procedure performed by the workers.
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Abstract. We consider the expected runtime of non-elitist evolutionary
algorithms (EAs), when they are applied to a family of fitness functions
Plateaur with a plateau of second-best fitness in a Hamming ball of
radius r around a unique global optimum. On one hand, using the level-
based theorems, we obtain polynomial upper bounds on the expected
runtime for some modes of non-elitist EA based on unbiased mutation
and the bitwise mutation in particular. On the other hand, we show that
the EA with fitness proportionate selection is inefficient if the bitwise
mutation is used with the standard settings of mutation probability.

Keywords: Evolutionary algorithm · Selection · Runtime · Plateau ·
Unbiased mutation

1 Introduction

Realising the potential and usefulness of each operator that can constitute evo-
lutionary algorithms (EAs) and their interplay is an important step towards the
efficient design of these algorithms for practical applications. The proofs showing
how and when the population size, recombination operators, mutation operators
or self-adaptation techniques are essential in EAs can be found in [5,6,13,16,20]
and other works.

In the present paper, we study the efficiency of non-elitist EAs without recom-
bination, applied to optimization problems with a single plateau of constant values
of objective function around the unique global optimum. Significance of plateaus
analysis is associated with several reasons. Plateaus often occur in combinatorial
optimization problems, especially in the unweighted problems, such as Maximum
Satisfiability Problem [11,19]. As a measure of efficiency, we consider the expected
runtime, i.e., the expected number of objective (or fitness) function evaluations
until the optimal solution is reached. We study the EAs without elite individu-
als, based on bitwise mutation, when they are applied to optimize fitness functions
with plateaus of constant fitness. To this end, we consider the Plateaur function
with a plateau of second-best fitness in a ball of radius r around the unique opti-
mum. The goal of this paper is to study the expected runtime of non-elitist EAs,
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optimizingPlateaur, asymptotically for unbounded increasing number of binary
variables n, assuming constant parameter r.

It is shown in [1] that the (1 + 1) EA, which is one of the simplest mutation-
based evolutionary algorithms, using an unbiased mutation operator (e.g., the
bitwise mutation or the one-point mutation) optimizes Plateaur function with
expected runtime nr(1+o(1))

r! Pr(1≤ξ≤r) , where ξ is a random variable, equal to the number
of bits flipped in an application of the mutation operator. This is proved under
the condition that mutation flips exactly one bit with probability ω(n− 1

2r−2 ).
The most natural special case when this condition is satisfied is when exactly
one bit is flipped with probability Ω(1).

In the present paper, with the similar conditions on unbiased mutation we
obtain polynomial upper bounds on the expected runtime of non-elitist EAs,
using tournament selection, (μ, λ)-selection and, in the case of bitwise muta-
tion with low mutation probability of order 1/n2, using fitness proportionate
selection. The bounds are obtained using the level-based theorems [2,9] and [7].

Taking into account the similarity of function Plateaur to the well-known
OneMax function, we derive an exponential lower bound on the expected run-
time of the EAs with the proportionate selection and standard mutation proba-
bility 1/n, and more generally, with mutation probability χ/n, where χ is a con-
stant greater than ln 2. It is assumed that population size λ = Ω(n2+δ) for some
constant δ > 0. In these conditions, we also show that finding an approximate
solution within some constant approximation ratio also requires an exponential
time in expectation. The lower bounds for the case of proportionate selection
are based on the proof outlines suggested for linear functions in [3] and coincide
with those results in the special case of OneMax function.

2 Preliminaries

We use the same notation as in [2,4,15]. For any n ∈ N, define [n] := {1, 2, . . . , n}.
The natural logarithm and logarithm to the base 2 are denoted by ln(·) and log(·)
respectively. For x ∈ {0, 1}n, we write xi for the ith bit value. The Hamming
distance is denoted by H(·, ·) and the Iverson bracket by [·]. Throughout the
paper the maximisation of a fitness function f : X → R over a finite search space
X := {0, 1}n is considered. Given a partition of X into m ordered subsets/levels
(A1, . . . , Am), let A≥j := ∪m

i=jAi. Note that by this definition, A≥1 = X . A
population is a vector P ∈ X λ, where the ith element P (i) is called the ith
individual. For A ⊆ X , define |P ∩ A| := |{i | P (i) ∈ A}|, i. e., the count of
individuals of P in A.

2.1 The Objective Function

We are specifically interested in two fitness functions defined on X = {0, 1}n:

– The most well-known benchmark function

OneMax(x) :=
n∑

i=1

xi,
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it is deeply studied in the literature on the theory of EAs, and will be referred
here several times.

– A function from [1] with a single plateau of the second-best fitness in a ball
of radius r around the unique optimum

Plateaur :=

⎧
⎪⎨

⎪⎩

OneMax(x) if OneMax(x) ≤ n − r,

n − r if n − r < OneMax(x) < n,

n if OneMax(x) = n,

parametrized by an integer r, assumed to be a constant greater than one.

Note that our results will also hold for the generalised classes of such functions
(see, e.g., [8]), where the meaning of 0-bit and 1-bit in each position can be
exchanged, and/or x is rearranged according to a fixed permutation before each
evaluation.

2.2 Non-elitist Evolutionary Algorithm and Its Operators

The non-elitist EAs considered in this paper fall into the framework of Algo-
rithm 1, see, e.g., [4,15]. Suppose that the fitness function f(x) should be max-
imized. Starting with some P0 which is sampled uniformly from X λ, in each
iteration t of the outer loop a new population Pt+1 is generated by indepen-
dently sampling λ individuals from the existing population Pt using two opera-
tors: selection select : X λ → [λ] and mutation mutate : X → X . Here, select
takes a vector of λ individuals as input, then implicitly makes use of the function
f , i. e., through fitness evaluations, to return the index of the individual to be
selected.

Algorithm 1. Non-Elitist Evolutionary Algorithm
Require: Finite state space X , and initial population P0 ∈ X λ

1: for t = 0, 1, 2, . . . until termination condition met do
2: for i = 0, 1, 2, . . . , λ do
3: Sample It(i) := select(Pt), and set x := Pt(It(i))
4: Sample Pt+1(i) := mutate(x)

The function is optimised when an optimum x∗, i. e., f(x∗) = maxx∈X {f(x)},
appears in Pt for the first time, i. e., x∗ is sampled by mutate, and the optimi-
sation time (or runtime) is the number of fitness evaluations made until that
time.

In this paper, we assume that the termination condition is never satisfied
and the algorithm produces an infinite sequence of iterations. This simplifyng
assumption is frequently used in the theoretical analysis of EAs.
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Formally, select is represented by a probability distribution over [λ], and we
use psel(i | P ) to denote the probability of selecting the ith individual P (i) of P .
The well-known fitness-proportionate selection is an implementation of select
with

∀P ∈ X λ,∀i ∈ [λ] : psel(i | P ) =
f(P (i))

∑λ
j=1 f(P (j))

(if
∑λ

j=1 f(P (j)) = 0, then one can assume that select has the uniform distri-
bution). By definition, in the k-tournament selection, k individuals are sampled
uniformly at random with replacement from the population, and a fittest of
these individuals is returned. In (μ, λ)-selection, parents are sampled uniformly
at random among the fittest μ individuals in the population. The ties in terms
of fitness function are resolved arbitrarily.

We say that select is f-monotone if for all P ∈ X λ and all i, j ∈ [λ] it holds
that psel(i | P ) ≥ psel(j | P ) ⇔ f(P (i)) ≥ f(P (j)). It is easy to see that all three
selection mechanisms mentioned above are f -monotone.

The cumulative selection probability β of select (P ) for any γ ∈ (0, 1] is

β(γ, P ) :=
λ∑

i=1

psel(i | P ) · [
f(P (i)) ≥ f�γλ�

]
, where P ∈ X λ,

assuming a sorting (f1, · · · , fλ) of the fitnesses of P in descending order. In
essence, β(γ, P ) is the probability of selecting an individual at least as good as
the �γλ�-ranked individual of P ,

When sampling λ times with select(Pt) and recording the outcomes as
vector It ∈ [λ]λ, the reproductive rate of Pt(i) is

αt(i) := E [Rt(i) | Pt] where Rt(i) :=
λ∑

j=1

[It(j) = i].

Thus αt(i) is the expected number of times that P (i) is selected. The reproduc-
tive rate α0 of Algorithm 1 is defined as α0 := supt≥0 maxi∈[λ]{αt(i)}.

The operator mutate is represented by a transition matrix pmut : X×
X → [0, 1], and we use pmut(y | x) to denote the probability to mutate an indi-
vidual x into y.

In this paper, we consider the unbiased mutation operators [17]. This means
that the probability distribution pmut(y | x) is invariant under bijection transfor-
mations of the Boolean cube {0, 1}n, preserving the Hamming distance between
any pair of bitstrings x, y. This invariance may be regarded as invariance under
systematic flipping of arbitrary but fixed set of bit positions, and invariance
under systematically applying an arbitrary but fixed permutation to all the bits.

One of the most frequently used unbiased mutation operators, the bitwise
mutation (also known as the standard bit mutation), changes each bit of a given
solution with a fixed mutation probability pmut. Usually it is assumed that
pmut = χ/n for some parameter χ > 0. For the bitwise mutation with mutation
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probability χ/n we have

∀x, y ∈ {0, 1}n : pmut(y | x) =
(χ

n

)H(x,y) (
1 − χ

n

)n−H(x,y)

.

Another well-known mutation operator, the point mutation operator, chooses i
randomly from [n] and changes only the ith bit in the given solution. Note that
both of these mutation operators treat the bit values 0 and 1 indifferently, as
well as the bit positions, and therefore satisfy the conditions of unbiasedness.

3 Upper Bounds for Expected Runtime

3.1 Tournament and (μ, λ)-Selection

First of all, due to similarity of function Plateaur with the well-known Jump
function Jumpr, analogously to the proof of Theorem 11 (its Jumpr case) from [2]
we get

Theorem 1. The EA applied to Plateaur, r = O (1) , using

– a bitwise mutation given a mutation rate χ/n for any fixed constant χ > 0,
– k-tournament selection or (μ, λ)-selection with their parameters k or λ/μ

(respectively) being set to no less than (1 + δ)eχ, where δ ∈ (0, 1] being any
constant, and

– population size λ ≥ c ln n, for a sufficiently large constant c

has the expected runtime O (nr + nλ).

Note that by a slight modification of the proof of Theorem 11 [2], one can
also obtain the O (nr + nλ) upper bound on the expected EA runtime in the
case of Jump function.

In the general case of unbiased mutation we prove the following.

Theorem 2. The EA applied to Plateaur, r = O (1) ,using

– an unbiased mutation with Pr(ξ = 0) ≥ p0 = Ω(1) and Pr(ξ = 1) = Ω(1),
where ξ is the random variable equal to the number of bits flipped in mutation,

– k-tournament selection or (μ, λ)-selection with their parameters k or λ/μ
(respectively) being set to no less than (1 + δ)/p0, where δ ∈ (0, 1] being any
constant, and

– population size λ ≥ c ln n for sufficiently large constant c, independent of r

has the expected runtime O (
λnr+1

)
.

Proof. Let us consider a partition of X into m = n − r + 1 subsets, where
Ai := {x : |x| = i − 1}, i ∈ [m − 1], Am := {x : |x| ≥ n − r}. Then from
Theorem 7, analogously to the proof of Theorem 11 in [2], it follows that in
conditions formulated above, on average after at most Cn iterations the EA will
produce a population with at least γ0λ individuals on the plateau Am, where C
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and γ0 are positive constants. By the Markov’s inequality, this implies that with
probability at least 1/2, starting from any population, within 2Cn iterations,
the EA produces a population with at least γ0λ individuals on the plateau.

Consider any iteration t, when population Pt contains at least γ0λ individuals
on the plateau. For any offspring in the population Pt+1, the probability to have
not less than n − r + 1 ones is Ω(1/n). Given an individual x with n − r + i
ones, the probability to produce mutate(x) with at least n−r+ i+1 ones is also
Ω(1/n). By the EA outline, all individuals in each population Pt+i, i = 1, . . . , r
are identically distributed, so, by the inductive argument, for any i = 1, . . . , r,
the probability that the first individual produced in population Pt+i will have at
least n− r + i ones is Ω(1/ni). (Of course, an individual with any other index in
population Pt may be fixed here.) On the iteration t + r, the individual number
one is optimal with probability Ω(1/nr).

Now we can consider a sequence of series of the EA iterations, where the
length of each series is 2Cn + r = O (n) iterations. Suppose, Dj , j = 1, 2, . . . ,
denotes an event of absence of the optimal individuals in the population through-
out the jth series. In view of the above consideration, the probability of each
event Dj , j = 1, 2, . . . , is 1 − Ω(1/nr), so the probability to reach the optimum
in at most j series is lower bounded by (1 − C ′/nr)j for some constant C ′.

Let Y denote the random variable equal to the number of the first series
when the optimal solution is obtained. By the properties of expectation (see,
e.g., [10]),

E[Y ] =

∞∑

j=0

Pr(Y > j) = 1 +

∞∑

j=1

Pr(D1& . . . &Dj) ≤ 1 +

∞∑

j=1

(1 − C′/nr)j = O (
nr) .

Consequently, the expected runtime is O (
λnr+1

)
. �

The requirement of a positive constant lower bound on probability to mutate
none of the bits Pr(ξ = 0) = Ω(1) may be avoided at the expence of very high
selection pressure and a factor of λ longer runtime, using Theorem 9:

Theorem 3. The EA applied to Plateaur, r = O (1) , using an unbiased muta-
tion with Pr(ξ = 1) = Ω(1), where ξ is the random variable equal to the number
of bits flipped in mutation,

– and k-tournament selection, k ≥ n(1 + lnn)e/Pr(ξ = 1) with a population of
size λ ≥ k,

– or (μ, λ)-selection with λ/μ ≥ n(1 + lnn)/Pr(ξ = 1)

has the expected runtime O (
λ2nr+1

)
.

The proof is analogous to that of Theorem 2, but now the probability to
choose a parent with the fitness n − r within n − r iterations of each series is
lower-bounded only by 1/λ, rather than by the constant γ0. So, the probability
of each event Dj is 1 − Ω(n−r/λ) and E[Y ] = O (nrλ).
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3.2 Fitness-Proportionate Selection and Low Mutation Rate

Theorem 4. The expected runtime of the EA on Plateaur, r = O (1) , using

– fitness-proportionate selection,
– bitwise mutation with mutation probability χ/n, χ = (1 − c)/n, for any con-

stant c ∈ (0, 1)
– population size λ ≥ c′n2 ln(n), λ = O (

nK
)
, where c′ and K are positive

sufficiently large constants

is O(λn2 log n + n2r+1).

Proof. We will apply Theorem 8 as in the proof of Theorem 5 from [3]. To this
end, we use a partition of X into m = n + 1 subsets, where Ai := {x : |x| =
i − 1}, i ∈ [m − 1], Am := {x : |x| = n}.

Given x ∈ Aj for any j < m − 1, among the first j + 1 bits, there must be at
least one 0-bit, thus it suffices to flip the first 0-bit on the left while keeping all the
other bits unchanged to produce a search point at a higher level. The probability
of such an event is χ

n

(
1 − χ

n

)n−1
> χ

n

(
1 − 1

n

)n−1 ≥ 1−c
en2 =: sj , j ∈ [m − 1]. For

sm−1 we have s∗ := sm−1 = Ω((χ
n )r). This choice of sj satisfies (M1). To satisfy

(M2), we pick p0 := (1 − χ/n)n, i. e., the probability of not flipping any bit
position by mutation.

In (M3), we choose γ0 := c/4 and for any γ ≤ γ0, let fγ be the fitness
of the �γλ�-ranked individual of any given P ∈ X λ. Thus there are at least
k ≥ �γλ� ≥ γλ individuals with fitness at least fγ and let s ≥ kfγ ≥ γλfγ be
their sum of fitness. We can pessimistically assume that individuals with fitness
less than fγ have fitness fγ − 1, therefore

β(γ, P ) ≥ s

s + (λ − k)(fγ − 1)
≥ s

s + (λ − γλ)(fγ − 1)

≥ γλfγ

γλfγ + (λ − γλ)(fγ − 1)
=

γ

1 − (1 − γ)/fγ

≥ γ

1 − (1 − c/4)/f∗ ≥ γe(1−c/4)/f∗
,

where f∗ := n and in the last line we apply the inequality e−x ≥ 1−x. Note that
p0 = (1 − χ/n)n ≥ e−χ/(1−ε) for any constant ε ∈ (0, 1) and sufficiently large
n. Indeed, by Taylor theorem, e−z = 1 − z + zα(z), where α(z) → 0 as z → 0.
So given any ε > 0, for all sufficiently small z > 0 holds e−z ≤ 1 − (1 − ε)z.
For any ε ∈ (0, 1) we can assume that z = χ/(n(1 − ε)), then for all sufficiently
large n it holds that (1 − χ/n)n ≥ e−zn = e−χ/(1−ε). So we conclude that

β(γ, P )p0 ≥ γe(1−c/4)/f∗
e−χ/(1−ε) ≥ γ

(
1 +

1 − c/4 − χf∗/(1 − ε)
f∗

)
.

Since χf∗ ≤ χn = 1 − c, choosing ε := 1 − 1−c
1−c/2 ∈ (0, 1) implies χf∗/(1 − ε) ≤

1 − c/2. Condition (M3) then holds for δ := c/(4n) because

β(γ, P )p0 ≥ γ

(
1 +

1 − c/4 − (1 − c/2)
f∗

)
≥ γ

(
1 +

c

4n

)
.
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To verify condition (M4’), we assume C = 1 and note that

8
γ0δ2

log
(

Cm

δ

(
log λ +

1
γ0s∗λ

))
≤ c′′rn2 ln(n),

for some constant c′′ > 0, since λ ≤ nK and s∗ = Ω(n−2r). So (M4’) holds if
c′ is large enough. By Theorem 8, we conclude that on average after at most
O(λn2 log n + n2r+1) fitness evaluations the EA will produce the optimum. �

In the case of r = 0, the application of Theorem 4 for λ = Θ
(
n2 log n

)
gives

E [T ] = O (
n4 log2 n

)
, the same as the upper bound in Theorem 4.1 in [7].

4 Inefficiency of Fitness-Proportionate Selection Given
Standard Mutation Rate

In this section, we consider Algorithm 1 with fitness-proportionate selection
and the bitwise mutation given a constant value of the parameter χ > ln 2.
This algorithm turns out to be inefficient on Plateaur for any constant r. For
the proof we will use the same approach as suggested for lower bounding the
EA runtime on the OneMax fitness function in [15]. In order to obtain an
upper bound on the reproductive rate, we first show that, roughly speaking, it
is unlikely that the average number of ones in the individuals of EA population
becomes less than n/2 sometime during an exponential number of iterations.

Lemma 1. Let r, ε > 0 and δ > 0 be constants. Define T to be the smallest
t such that Algorithm 1, applied to Plateaur function, with population size
λ ≥ n2+δ, using an f-monotone selection mechanism, bitwise mutation with
χ = Ω(1), has a population Pt where

∑λ
j=1 |Pt(j)| ≤ λ(n/2)(1 − ε). Then there

exists a constant c > 0 such that Pr (T ≤ ecn) = e−Ω(nδ).

The proof of Lemma 1 is analogous to that of Lemma 9 from [14]. It is
provided in the Appendix B for the sake of completeness.

The main result of this section is Theorem 5 which establishes an exponential
lower bound for the expected time till finding an approximate solution with an
approximation ratio 1+w for w < (1−ln(2)/χ). The proof of this bound is based
on the negative drift theorem for populations [14] (see Theorem 6) and Lemma 1.
Since this proof is rather technical, we start with a more straightforward lower
bound for the EA runtime.

Proposition 1. Let δ > 0 be a constant, then there exists a constant c > 0 such
that during ecn generations Algorithm 1 with population size λ ≥ n2+δ, and λ =
poly(n), bitwise mutation with mutation probability χ/n for any constant χ >
ln 2, and fitness-proportionate selection, obtains the optimum of Plateaur(x)
with probability at most e−Ω(nδ).

The proof of Proposition 1 is based on the same ideas as Corollary 13 [15].
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Proof. It follows by Lemma 1 that with probability at least 1 − e−Ω(nδ) for any
constant ε′ ∈ (0, 1) we have

∑λ
j=1 Plateaur(Pt(j)) ≥ (1 − ε′)λ(n − r)/2 during

ec′n iterations for some constant c′ > 0. Otherwise, with probability e−Ω(nδ) we
can pessimistically assume that the optimum is found before iteration ec′n.

With probability at least 1 − e−Ω(nδ) the reproductive rate α0 satisfies

α0 ≤ λn

(1 − ε′)λ(n − r)/2
≤ 2

1 − ε′′ , (1)

for some ε′′ ∈ (0, 1), assuming n to be sufficiently large.
Inequality (1) implies that for a sufficiently small ε′′ it holds that α0 < eχ

and using Corollary 1, we conclude that the probability to optimise a func-
tion Plateaur within ec′′n generations is λe−Ω(n) for some constant c′′ > 0.
Therefore with c = min{c′, c′′}, the proposition follows. �

The inapproximability result is established in

Theorem 5. Let δ > 0 be a constant, then there exists a constant c > 0 such
that during ecn generations the EA with population size λ ≥ n2+δ, and λ =
poly(n), bitwise mutation probability χ/n for any constant χ > ln(2), and fitness-
proportionate selection, applied to Plateaur, will obtain a (1−w)-approximate
solution, w < (1 − ln(2)/χ)2/2, with probability at most e−Ω(nδ).

Proof. As in the proof of Proposition 1 we claim that with probability at least 1−
e−Ω(nδ) the reproductive rate α0 satisfies the inequality α0 ≤ 2

1−ε′′ , for any ε′′ ∈
(0, 1) assuming n to be sufficiently large, and then the upper bound α := 2

1−ε′′
satisfies condition 1 of Theorem 6 for any a(n) and b(n). Note that this α also
satisfies the inequality ln(α) = ln(2)−ln(1−ε′) < ln(2)+ε′e for any ε′ ∈ (0, 1/e).

Condition 2 of Theorem 6 requires that ln(α)/χ + δ′ < 1 for a constant δ′ > 0.
This condition is satisfied because ln(α)

χ < ln(2)+ε′e
χ < 1 for a sufficiently small

ε′. Here we use the assumption that χ > ln(2). It suffices to assume ε′ = χ−ln 2
2e .

Define ψ := ln(2)+ε′e
χ = ln(2)

2χ + 1
2 .

To ensure Condition 3 of Theorem 6, we denote ρ := ln(2)/χ < 1 and

M(χ) :=
1 − √

ψ(2 − ψ)
2

=
1 − √

ρ/2 − ρ2/4 + 3/4
2

.

Note that M(χ) is decreasing in ρ and therefore increasing in χ, besides that
M(χ) is independent of n and r. Now we define a(n) and b(n) so that b(n) <
M(χ)n and b(n)− a(n) = ω(n). Assume that a(n) := n(1− ε)M(χ) and b(n) :=
n(1 − ε/2)M(χ), where ε > 0 is a constant.

Application of Theorem 6 shows that with probability at most e−Ω(nδ) the
EA obtains a search point with less than

z(ε) :=
n(1 − ε)

2
·
(

1 −
√

ρ

2
−

(ρ

2

)2

+
3
4

)
(2)
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zero-bits for any constant ε ∈ (0, 1). Finally, using the Taylor series for the
square root, we note that for any positive constant w < (1 − ρ)2/2, there exists
ε ∈ (0, 1), such that the number of zero-bits in any (1+w)-approximate solution
to Plateaur is at most z(ε). �

5 Discussion

It is shown in [1] that under very general conditions we have mentioned in
the introduction, the (1+1) EA easily (in expected O (n log n) time) reaches
the plateau and then performs a random walk on it, quickly approaching to a
“nearly-uniform” distribution. A similar behaviour may be expected from the
elitist EAs like (μ + λ) EA, where the best incumbent, once having reached the
plateau, will travel on it, until the optimum is found. One can expect that in
the case of non-elitist EAs, if the selection is strong enough, the population will
stick to the plateau and spread on it as well. In the present paper, however, we
have not identified such regimes yet.

In the case of bitwise mutation, our Theorem 1 relies on a scenario, where the
EA quickly reaches the edge of the plateau and most of the remaining time (with
seldom possible retreats from the plateau) spends on the attempts to hit the opti-
mum by “large” mutations, inverting up to n−r zero-bits. Theorem 2, applicable
to a wider class of mutation operators, relies on a more graduate scenario, where
the search may consist of multiple stages, each one starting from an “arbitrary
bad” population, then reaches the edge of the plateau in expected O (n log n)
time and tries to hit the optimum by making r sequential single-bit mutations,
reducing the Hamming distance to the optimum by 1 in each EA iteration. If such
an attempt fails, then we consider the next stage, over-pessimistically assuming
that the search starts from a population of all-zero strings. Theorem 3 is even
less demanding to the properties of mutation operators, but demanding very
high selection pressure. It is likely that the runtime bound in this case may be
significantly improved, since with such a high selection pressure the non-elitist
EA becomes so close to the (1+1) EA. While Theorems 1 – 3 deal with the
tournament or (μ, λ)-selection, Theorem 4 shows that a similar situation may be
observed in the case of fitness proportionate selection, although in this case we
require that the mutation probability is reduced to Θ(1/n2) because otherwise
the EA is likely to spend exponential time on the way to the plateau, as it is
shown in Theorem 5.

6 Conclusions

This paper demonstrates the results, which are accessible by the available tools of
runtime analysis. It also naturally leads to several questions for further research,
some of which may require to develop principially new tools for EA analysis:

– What are the leading constants in the obtained upper bounds?
– What lower bounds can complement the obtained upper bounds?
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– Under what conditions on selection pressure is it possible to transfer the tight
results on (1+1) EA from [1] to the non-elitist EAs?

– How to extend the detailed runtime analysis to the Royal Road and Royal
Staircase fitness functions (see, e.g., [18]) which have multiple plateaus?

– Would the genetic algorithms, which use the crossover operators, have any
advantage over the mutation-based EAs considered in this paper?
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Appendix A

This appendix contains the formulations of results employed from other works.
Some of the formulations are given with slight modifications, which do not
require a special proof.

Our lower bound is based on the negative drift theorem for populations [14].

Theorem 6. Consider the EA on X = {0, 1}n with bitwise mutation rate χ/n
and population size λ = poly(n), let a(n) and b(n) be positive integers such
that b(n) ≤ n/χ and d(n) = b(n) − a(n) = ω(ln n). Given x∗ ∈ {0, 1}n, define
T (n) := min{t | |Pt ∩ {x ∈ X | H(x, x∗) ≤ a(n)}| > 0}. If there exist constants
α > 1, δ > 0 such that

(1) ∀t ≥ 0, ∀i ∈ [λ] : if a(n) < H(Pt(i), x∗) < b(n) then αt(i) ≤ α,
(2) ψ := ln(α)/χ + δ < 1,
(3) b(n)/n < min

{
1/5, 1/2 −

√
ψ(2 − ψ)/4

}
,

then Pr
(
T (n) ≤ ecd(n)

)
= e−Ω(d(n)) for some constant c > 0.

We also use a corollary of this theorem (Corollary 1 from [14]):

Corollary 1. The probability that a non-elitist EA with population size λ =
poly(n), bitwise mutation probability χ/n, and maximal reproductive rate
bounded by α < eχ − δ, for a constant δ > 0, optimises any function with a
polynomial number of optima within ecn generations is e−Ω(n), for some con-
stant c > 0.

To bound the expected optimisation time of Algorithm 1 from above, we
use the level-based analysis [2]. The following theorem is a re-formulation of
Corollary 7 from [2], tailored to the case of no recombination.

Theorem 7. Given a partition (A1, . . . , Am) of X , if there exist s1, . . . , sm−1,
p0, δ ∈ (0, 1], γ0 ∈ (0, 1) such that

(M1) ∀P ∈ X λ,∀j ∈ [m − 1] : pmut (y ∈ A≥j+1 | x ∈ Aj) ≥ sj ,
(M2) ∀P ∈ X λ,∀j ∈ [m − 1] : pmut (y ∈ A≥j | x ∈ Aj) ≥ p0,
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(M3) ∀P ∈ (X \ Am)λ
,∀γ ∈ (0, γ0] : β(γ, P ) ≥ (1 + δ)γ/p0,

(M4) population size λ ≥ 4
γ0δ2

ln
(

128m

γ0s∗δ2

)
, where s∗ := min

j∈[m−1]
{sj},

then, assuming T0 := min{t | |Pt ∩ Am| ≥ γ0λ}, we have

E [T0] <

(
8
δ2

) m−1∑

j=1

(
ln

(
6δλ

4 + γ0sjδλ

)
+

1
γ0sjλ

)
. (3)

Note that literally the formulation of Corollary 2 in [2] gives the bound (3)
only for the expected runtime, but it is easy to see from the proof therein that
the bound actually holds for the expected number T0 of the first population that
contains at least γ0λ individuals in level Am as we put it in Theorem 7. This
slight improvement is important in Sect. 3.

As an alternative to Theorem 7 we use the new level-based theorem based
on the multiplicative up-drift [7]. Theorem 3.2 from [7] implies the following.

Theorem 8. Given a partition (A1, . . . , Am) of X , define T := min{tλ |
|Pt ∩ Am| > 0}. If there exist s1, . . . , sm−1, p0, δ ∈ (0, 1], γ0 ∈ (0, 1), such that
conditions (M1)–(M3) of Theorem 7 hold and

(M4’) for some constant C > 0, the population size λ satisfies

λ ≥ 8
γ0δ2

log
(

Cm

δ

(
log λ +

1
γ0s∗λ

))
, where s∗ := min

j∈[m−1]
{sj},

then E [T ] = O
(

λm log(γ0λ)
δ + 1

δ

∑m−1
j=1

1
γ0sj

)
.

Theorem 8 improves on Theorem 7 in terms of dependence of the runtime
bound denominator on δ, but only gives an asymptotical bound. Its proof is
analogous to that of Theorem 7 and may be found in [3].

Theorem 9. Given an f-based partition A1, . . . , Am of X , if the EA uses the
mutation, such that Pr(mutate(x) ∈ A≥j+1) ≥ s∗ for any x ∈ Aj , j ∈ [m − 1]

– and a k-tournament selection, k ≥ (1+lnm)e
s∗

with a population of size λ ≥ k,

– or (μ, λ)-selection and λ ≥ μ(1+lnm)
s∗

then an element from Am is found in expectation after at most em genetations.

The proof is analogous to that of the main result in [9].

Appendix B

This appendix contains the proofs provided for the sake of completeness.
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Proof of Lemma 1. For the initial population, it follows by a Cher-
noff bound that Pr (T = 1) = e−Ω(n). We then claim that for all t ≥ 0,
Pr (T = t + 1 | T > t) ≤ e−c′n for a constant c′ > 0, which by the union bound
implies that Pr (T < ecn) ≤ ecn−c′n = e−Ω(n) for any constant c < c′.

In the initial population, the expected number of ones of a k-th individual,
k ∈ [λ] is |P0(k))| ≤ n/2. It will be more convenient here to consider the number
of zeros, rather than the number of ones. We denote Z

(j)
t := n−|Pt(j)| , for t ≥ 0,

j ∈ [λ], and Zt := λn−∑λ
j=1 |Pt(j)|. Let pj be the probability of selecting the j-

th individual when producing the population in generation t+1. For f -monotone
selection mechanisms, it holds that

∑λ
j=1 pjZ

(j)
t ≤ Zt/λ.

Let P = (x1, . . . , xλ) be any deterministic population. Denote the i-th bit of
its k-th individual by x(k,i), zk := n − |x(k)|, 1 ≤ k ≤ λ, and Z(P ) :=

∑λ
k=1 zk.

Let us consider the bitwise mutation first. The expected number of zero-bits
in any offspring j ∈ [λ] produced from population Pt = P is

E [|Pt+1(j)| | Pt = P ] =
λ∑

k=1

pk

[
n∑

i=1

(
x(k,i)(1 − χ/n) + (1 − x(k,i))χ/n

)]
,

so the expected value of Z
(j)
t+1 for any offspring j ∈ [λ] is

E
[
Z

(j)
t+1 | Pt = P

]
≤ n − E [|Pt+1(j)| | Pt = P ]

=
λ∑

k=1

pk

[
n∑

i=1

(
x(k,i)(1 − χ/n) + (1 − x(k,i))χ/n

)]

= n −
λ∑

k=1

pk

[
χ + (1 − 2χ/n)

n∑

i=1

x(k,i)

]

≤ n − χ − (1 − 2χ/n)
λ∑

k=1

pk(n − zk)

= χ + (1 − 2χ/n)
λ∑

k=1

pkzk ≤ χ + (1 − 2χ/n)Z(P )/λ.

If T > t and Z(P ) < λn(1 + ε)/2, then

E [Zt+1 | Pt = P ] ≤ λχ + Z(P ) (1 − 2χ/n)

< λχ +
λn

2
(1 + ε) (1 − 2χ/n) =

λn

2
(1 + ε) − ελχ.

Now Z
(1)
t+1, Z

(2)
t+1, . . . , Z

(λ)
t+1 are non-negative independent random variables, each

bounded from above by n, so using the Hoeffding’s inequality [12] we obtain

Pr
(

Zt+1 ≥ λn

2
(1 + ε)

)
≤ Pr (Zt+1 ≥ E [Zt+1] + ελχ) ≤ exp

(
−2(ελχ)2

λn2

)
,

which is e−Ω(nδ) since λ ≥ n2+δ. �
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Abstract. In this paper, we discuss the real-world Split Delivery Vehi-
cle Routing Problem with Time Windows (SDVRPTW) for drilling rig
routing in Siberia and the Far East. There is a set of objects (explo-
ration sites) requiring well-drilling work. Each object includes a known
number of planned wells and needs to be served within a given time
interval. Several drilling rigs can operate at the same object simultane-
ously, but their number must not exceed the number of wells planned
for this object. A rig that has started the work on a well completes it to
the end. The objective is to determine such a set of rig routes (including
the number of assigned wells for each object) to perform all well-drilling
requests, respecting the time windows, that minimizes the total traveling
distance. The main difference with traditional SDVRP is that it is the
service time that is split, not the demand.

We propose a mixed-integer linear programming (MILP) model for
this problem. To find high-quality solutions, we design the Variable
Neighborhood Search based matheuristic. Exact methods are incorpo-
rated into a local search to optimize the distribution of well work among
the rigs. Time-window constraints are relaxed, allowing infeasible solu-
tions during the search, and evaluation techniques are applied to treat
them. Results of computational experiments for the algorithm and a
state-of-the-art MILP solver are discussed.

Keywords: Logistics · Uncapacitated vehicles · Split delivery service ·
Time windows · Metaheuristics · Mathematical models · Optimization
problems

1 Introduction

Vehicle Routing Problems (VRP) are well-known NP-hard combinatorial opti-
mization problems with a large number of various real-world applications [7,23].
We consider the Drilling Rig Routing Problem (DRRP) arising in the oil and
gas industry. In this problem, we have a fleet of uncapacitated drilling rigs
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(in short, rigs) and a set of objects that are exploration sites. The objects contain
a predetermined number of wells planned to be drilled, and rigs have to perform
work on their drilling during a certain planning horizon. The initial location for
each rig is known. A rig travels from one object to another, performing drilling
until it drills all assigned wells, and it does not have to return to the initial loca-
tion after that. Each object has a time window that is a period of time during
which all work on this object has to be started and completed. That means each
object has the earliest time when a rig can start drilling and the latest time
when all wells have to be already drilled. Several rigs can operate at the same
object simultaneously, but their number must not exceed the number of wells
planned for this object. A rig that has started the work on a well completes it
to the end. The objective is to determine such a set of rig routes (including the
number of assigned wells for each object) to perform all well-drilling requests,
respecting the time windows, that minimizes the total traveling distance.

The described problem is similar to the Split Delivery Vehicle Routing Prob-
lem with Time Windows (SDVRPTW), where a fleet of capacitated homoge-
neous vehicles has to serve a set of customers requiring a service within a specific
time interval, but contrary to the classical VRP a customer can be visited by
several vehicles [2,11]. But usually SDVRPs consider split deliveries with respect
to customer demand for goods, not service time. The fact that vehicles may not
return to their initial location classifies the DRRP as Open VRP [15]. In [25],
an Uncapacitated Open SDVRP with splittable service demand was studied. In
this problem, the maximum service completion time was minimized, and time
windows were not considered.

Since the DRRP can also be applied, with some alterations, to other real-
world problems, we will sometimes refer to drilling rigs as vehicles and objects
as customers as in classical VRP formulation.

The DRRP can be decomposed into three separate subproblems: assignment
of customers to vehicles, sequencing of customers in vehicle routes, and distri-
bution of well-drilling work among vehicles. The objective of the first one is to
assign customers to vehicles in such a way that, while respecting time-window
constraints, an assignment cost, which approximates the traveling distance, is
minimized [4]. In the DRRP, this subproblem should also address the work shar-
ing. The second subproblem corresponds to the solution of the traveling salesman
problem for each vehicle separately [8]. The last subproblem requires the solution
of the previous two subproblems as input and seeks to redistribute well-drilling
work to get time-window feasibility. Thus, different decomposition approaches
can be applied to solve the overall problem [3]. In this paper, we refer to the
assignment and sequencing subproblems as the routing part of the DRRP.

Despite the advances in exact solution methods and hardware technology,
most large-scale VRPTWs are still not able to be solved to optimality, and
the performance of exact algorithms strongly varies with the time-window char-
acteristics [6,23,24]. Thus, heuristic and metaheuristic approaches are usually
applied to these problems. Hybrid metaheuristics, and matheuristics in par-
ticular, have seen significant advancement in recent years due to promising
results [3,16,22,23].
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We present a matheuristic combining a Variable Neighborhood Search (VNS)
with a Mixed-Integer Linear Programming (MILP) [9,10,17]. The VNS is used
to solve the routing part whereas the MILP is used to solve the well-drilling
work distribution part. We also relax time-window constraints, allowing infea-
sible solutions during the search, and use evaluation techniques from [18,24] to
effectively handle them.

The rest of this paper is structured as follows. We first introduce the math-
ematical model for the overall problem and the work redistribution subproblem
in Sect. 2. Neighborhood structures are presented in Sect. 3. The framework of
the VNS heuristic is described in Sect. 4. Computational results are discussed in
Sect. 5. The last Sect. 6 concludes the paper.

2 Mathematical Model

2.1 Mathematical Model for the DRRP

The problem is represented by a fleet of identical vehicles denoted by K and a
complete directed graph G = (V,A) with a set of vertices V and a set of arcs A.
Each vehicle k ∈ K is initially located at an individual depot vk. The set V is
the union of a set of all depots V K and a set of objects I requiring well-drilling
work. Each object i ∈ I has a given total number of planned wells Wi and an
interval of times allowable to service [ei, li] called time window. That specifies
that work on object i cannot be started before ei and finished later than li. If
some vehicle reaches an object i before the time ei, it has to wait. We assume
that drilling a well requires D days. Arcs (i, j) ∈ A represent the possibility to
travel from i to j with a distance dij and a duration tij in days.

We introduce the following binary decision variables:

xijk =
{

1, if arc (i, j) ∈ A is traversed by vehicle k ∈ K,
0, otherwise,

yik =
{

1, if vehicle k ∈ K visits object or depot i ∈ V,
0, otherwise.

It should be noted that variables yik are non-essential and are required for a
clearer understanding of the model.

The decision variables sik ≥ 0, defined for each vertex i ∈ V , represent the
time when vehicle k starts to serve object i. In case vehicle k does not serve
object i ∈ I or i ∈ V k, i �= vk, variable sik does not mean anything.

The variable wik ∈ Z≥0 represents the total number of wells drilled by rig k
at object i ∈ I and 0 for all depots.

Now we present the drilling rig routing problem as the mixed-integer linear
program:

min
∑
k∈K

∑
i∈V

∑
j∈V

dijxijk (1)
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subject to

yik =
{

1, i = vk,
0, i �= vk,

i ∈ V K , k ∈ K, (2)

sik = 0, i = vk, k ∈ K, (3)

wik = 0, i = vk, k ∈ K, (4)

∑
j∈V

xijk =
∑
j∈V

xjik = yik, i ∈ V, k ∈ K, (5)

∑
k∈K

wik = Wi, i ∈ I, (6)

wik ≥ yik, i ∈ I, k ∈ K, (7)

wik ≤ Wiyik, i ∈ I, k ∈ K, (8)

ei ≤ sik, i ∈ I, k ∈ K, (9)

sik + Dwik ≤ li, i ∈ I, k ∈ K, (10)

sik + Dwik + xijktij − sjk ≤ Mij(1 − xijk), i ∈ V, j ∈ I, k ∈ K, (11)

xijk, yik ∈ {0, 1}, sik ≥ 0, wik ∈ Z≥0, i, j ∈ V, k ∈ K. (12)

The objective function (1) minimizes the total traveling distance for all vehi-
cles over all days of the planning horizon. Equalities (2)–(4) set the distribution of
vehicles by their depots. Constraints (5) make sure that each object has exactly
one predecessor and one successor in the route, and each vehicle returns to its
depot. Equalities (6) ensure that the required number of wells are drilled at each
object. Inequalities (7) guarantee that if a vehicle visits an object, it drills there
at least one well, and inequalities (8) make sure that a vehicle cannot serve
an object without visiting it. Constraints (9)–(11) ensure schedule feasibility
with respect to time windows. Inequalities (11) also prevent subtours, and Mij ,
(i, j) ∈ A, are large constants that can be set to max{li−ej , 0}. Constraints (12)
define the types of variables.

Note that the problem (1)–(12) can be infeasible because of the limited fleet
of vehicles and the time-window constraints. To overcome this, we relax the
constraints (10) and include them into the objective function with penalties
γ ≥ 0. As a result, we get a relaxation of the original problem (1)–(12) as
follows:
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L(x, τ, γ) = min
∑
k∈K

∑
i∈V

(
∑
j∈V

dijxijk + γτik) (13)

subject to (2)–(9), (11)–(12) and additional constraints for new variables τik ≥ 0
indicating the tardiness for each pair (i, k), i ∈ I, k ∈ K:

τik ≥ sik + Dwik − li, i ∈ I, k ∈ K. (14)

Besides, constants Mij in (11) now need to be set to new large enough values,
for instance, max{(maxm∈I lm) + DWi − ej , 0}.

Now the relaxed problem (2)–(9), (11)–(14) is feasible even if there is just
one vehicle, and we can solve it by local search metaheuristics [21].

2.2 Mathematical Model for the Work Redistribution Subproblem

Employing the decomposition approach to the solution of the overall problem, we
consider the work redistribution subproblem separately. In this subproblem, to
achieve time-window feasibility while given a fixed visiting order, it is determined
for each object how many wells are served by which vehicles visiting this object.
To our knowledge, this problem is new, and its NP-hardness can be proved.

Let xijk and yik be already known, and we want to know the work distribu-
tion. If yik = 0, then object i is not visited by vehicle k. But if yik = 1, object i is
not necessarily visited by vehicle k, since we can redistribute wells wik to other
vehicles visiting this object.

Thereby, subproblem for well work distribution and readjustment of the
routes arises. Let all the initial “maximum” routes be set. For vehicle k, it
is a total preorder Ik = {ik0 , i

k
1 , . . . , i

k
uk

} with the following precedence relation:
ikl �Ik ikm if l ≤ m, or l = 0, or m = 0. Here ik0 corresponds to the depot of
vehicle k and ikuk

corresponds to the last object served by vehicle k.
We introduce new binary decision variables: x′

ijk defined only for i, j ∈ Ik,
i �Ik j, and y′

ik such that

y′
ik ≤ yik, i ∈ V, k ∈ K. (15)

Now we present well work redistribution subproblem, which is the prob-
lem (2)–(9), (11)–(14) defined on a reduced domain, as the MILP problem:

min
∑
k∈K

∑
i∈Ik

(
∑

j∈Ik,i�Ik
j

dijx
′
ijk + γτik) (16)

∑
k∈K

wik = Wi, i ∈ I, (17)

wik ≥ y′
ik, k ∈ K, i ∈ I, (18)

wik ≤ Wiy
′
ik, k ∈ K, i ∈ I, (19)
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ei ≤ sik, k ∈ K, i ∈ Ik, (20)

sik + Dwik ≤ li + τik, k ∈ K, i ∈ Ik, (21)

sik + Dwik + tijx
′
ijk − sjk ≤ Mij(1 − x′

ijk),
i ∈ Ik, j ∈ Ik \ {vk}, i �Ik j, k ∈ K,

(22)

∑
j∈Ik,j�Ik

i

x′
ijk =

∑
j∈Ik,i�Ik

j

x′
jik = y′

ik, i ∈ Ik, k ∈ K, (23)

x′
ijk ∈ {0, 1}, sik ≥ 0, τik ≥ 0, i, j ∈ Ik, i �Ik j, k ∈ K, (24)

y′
ik ∈ {0, 1}, wik ∈ Z≥0, i ∈ V, k ∈ K. (25)

The number of remaining variables now is by far less than for the problem (2)–
(9), (11)–(14). Thus, the subproblem can be solved in a reasonable time to
include it in the local search.

3 Neighborhoods

In the last four decades, local search has grown from a simple heuristic idea into
a mature field of research in combinatorial optimization [1,21]. Local search is
often used to solve NP-hard problems, such as VRP, since it provides a reliable
approach for obtaining high-quality solutions to realistic-size problems in a rea-
sonable time. Many neighborhoods for VRPs are introduced and studied from
a theoretical and an empirical point of view [5,12,19,23]. Below we present six
neighborhoods for the DRRP.

Let μk = (μk
0 , μ

k
1 , . . . , μ

k
uk

) be a sequence of visits in the route of vehicle k ∈
K, where μk

u, u ∈ {1, . . . , uk} is the uth visited object, μk
0 = vk. And let μ̃k be a

sequence of the same length, each element μ̃k
u of which is equal to the number

of wells of object μk
u served by the vehicle k, μ̃k

0 = 0. Then, the route for each
vehicle k ∈ K can be represented as a sequence σk = (σk

0 , σk
1 , . . . , σk

uk
), where

σk
u corresponds to the pair (μk

u, μ̃k
u) (Fig. 1).

Fig. 1. The sequence corresponding to the route of vehicle k

A feasible solution σ can easily be associated with the corresponding set
of sequences {σ1, . . . , σ|K|}. Now we define the following neighborhood struc-
tures for solution σ. Neighborhoods N1–N3 and N5–N6 are focused on a route
improvement and N4 aims to improve well distribution.
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– N1(σ) (Relocate): Relocate a subsequence (σk
i , . . . , σk

j ) containing 1 or 2 cus-
tomer visits. It can be relocated either to the same route or another.

– N2(σ) (Exchange): Exchange two disjoint subsequences (σk
i , . . . , σk

j ) and
(σk′

i′ , . . . , σk′
j′ ) containing 1 or 2 customer visits (Fig. 2a).

– N3(σ) (Cross): Exchange two visit subsequences (σk
i , . . . , σk

uk
), (σk′

i′ , . . . , σk′
uk′ )

involving the extremities of two distinct routes (Fig. 2b). One of these subse-
quences can be empty.

– N4(σ) (Split): Split one customer visit to visit at the same position but with
a smaller number of wells served (possibly zero) and a new visit by a different
vehicle that was not assigned to this customer before (Fig. 2c).

– N5(σ) (Kernighan–Lin Cross): Kernighan–Lin version for N3(σ). The idea of
this neighborhood structure is similar to the truncated Tabu Search method
by one neighborhood, allowing ascents with respect to objective function
within [13,14].

– N6(σ) (Kernighan–Lin Exchange and Relocate): Kernighan–Lin version for
Exchange and Relocate neighborhood. In this type of neighborhood, we
exchange two disjoint subsequences (σk

i , . . . , σk
j ) and (σk′

i′ , . . . , σk′
j′ ) containing

r and r′ customer visits, where 0 ≤ r, r′ ≤ 12, but at least one of them should
be non-empty.

(a) Exchange of two subsequences (b) Cross of two subsequences

(c) Split of the customer visit

Fig. 2. Neighborhood structures

For all neighborhoods, the resulting sequences are not allowed to contain a
customer more than once. One or both subsequences in N1–N3 and N5–N6 can
be reversed if they contain exactly two customer visits.

To reduce the neighborhoods we select a part of them by means of random-
ization and effective evaluation of the objective function. For the latter purpose,
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we use subsequence structures proposed in [24], which allow us for each subse-
quence (σk

i , . . . , σk
j ) to get the value of the objective function

f(σk(i, j)) = d(σk(i, j)) + γτ(σk(i, j)) + λε(σk(i, j)).

Here d, τ , ε correspond to the distance traveled, the tardiness time, and the
earliness time, related to visiting and serving the elements of the subsequence,
and γ, λ correspond to the penalties for tardiness and earliness. The concate-
nation of two subsequences can be calculated in O(1) and retains all structure
properties. This method uses the assumption that vehicles are able to go back in
time to avoid late work completion [18]. So we get maximum tardiness instead of
accumulated value for the whole route, and value f(σk(i, j)) is an estimation and
not the exact value of the objective function. We use notation L(σ) for the latter.

It can easily be seen that all moves for neighborhoods N1–N6 can be viewed
as a separation of routes into subsequences, which are then concatenated into
new routes [1,12]. So we can apply the above-mentioned subsequence structures
to our neighborhoods. Since the place for subsequence insertion can be seen as
an empty subsequence, two subsequences participate in moves for each of the
neighborhoods. At least one of them is non-empty. For certainty, we refer to this
subsequence as the first and the other one as the second.

To omit some unpromising candidates for the first subsequence we use the
contribution of the subsequence to the total penalty for the corresponding vehi-
cle. The contribution of subsequence (σk

i , . . . , σk
j ) is estimated as

c(σk(i, j)) =

⎧⎨
⎩

∑l=j
l=i γτlk + λεlk, j = uk,∑l=j
l=i (γτlk + λεlk) + f(σk(i, uk)) − f(σk(j + 1, uk))

− d(σk(i, j)), j �= uk,

where εlk corresponds to the earliness time for pair (l, k), l ∈ I, k ∈ K (Fig. 3).
For neighborhoods N1–N3, only subsequences having the value of contribu-
tion c > 0 are considered for the first subsequence. In neighborhoods N5–N6, the
first subsequence is considered regardless of the contribution. For each customer
in N4, it is determined which visit to select from all potential with probabilities
proportional to the contribution of these visits to the penalties.

Fig. 3. Contribution of the subsequence to the objective function

If solution σ has no tardiness and waiting times, then, for all neighborhoods,
the first subsequence is considered regardless of the contribution.



A Matheuristic for the Drilling Rig Routing Problem 351

The insertion place (the second subsequence) is selected in the best way with
respect to the objective function estimation from the places suitable for the time
window of the first customer in the first subsequence. For neighborhood N4, it
also implies that all options for the split of the wells between two visits are
considered.

To make the local search more diverse we use randomization inside neigh-
borhood search. Thus, we consider neighborhoods Nqi

i (σ), 0 < qi < 1, i ∈
{1, 2, . . . , 6} which are random parts of the neighborhoods Ni(σ). Each element
of the set Ni(σ) is included in the set Nqi

i (σ) with probability qi independently
of other elements. Randomization is applied not only when we select suitable
first subsequence, but also when the insertion place is picked.

4 Optimization Method

The solution approach we propose consists in an interactive operation of VNS
for the routing part of the problem and mathematical programming method for
solving the work redistribution subproblem. Combination of a metaheuristic and
mathematical programming techniques often leads to higher quality solutions,
and, in recent years, interest on such hybrid metaheuristics has risen considerably
in the field of optimization [3,9,16,22]. A similar approach was used in [10] for
another routing problem.

4.1 Initial Solution

For a start, we need to create an initial solution σ. Although the VNS method
can start from an arbitrary solution, we use a greedy heuristic that consists of
three steps: assignment of customers to vehicles, generating a route permutation
corresponding to this assignment, and distribution of well-drilling work among
vehicles. First, each customer i ∈ I is assigned to �2DWi/|li − ei|� nearest
vehicles. Then, we construct routes using nearest-neighbor heuristic with respect
to proximity measure (26) between two vertices vi, vj ∈ V assigned to vehicle
k ∈ K [20].

ρ(vi, vj , k) = dij + γE max{ej − sik − Dwik − tij , 0}
+ γT max{sik + Dwik + tij + Dwjk − lj , 0} (26)

This proximity measure considers not only distance but also the earliness
and the tardiness time. Coefficients γE and γT are set to 1 and 0.05 respectively.
We choose such values due to the excessive customer assignment and a rough
estimation of work distribution. The number of assigned wells wik initially is set
equal for each vehicle serving object i. After route construction, we distribute
drilling work by solving approximately the model (15)–(25).
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4.2 General Variable Neighborhood Search

Starting from an initial solution, the VNS consists of the following phases: shak-
ing procedure, improvement procedure, and neighborhood change step [9]. In
order to distinguish neighborhoods used in shaking and improvement proce-
dures, we use two different notations N and N , respectively. The pseudo-code
of the general VNS algorithm is presented below.

Algorithm 1. General Variable Neighborhood Search
1: function General VNS(σ, kmax, lmax, N , N)
2: while stopping criterion is not reached do
3: k ← 1
4: while k ≤ kmax do
5: σ′ ← Shake(σ, k, N )
6: σ′′ ← VND(σ′, lmax, N)
7: Neighborhood_change_sequential(σ, σ′′, k)

8: Solve to optimality the work redistribution subproblem w.r.t. the routes of σ
9: return best found solution σ

As the stopping criterion (step 2) in our experiments, we use maximum
CPU time allowed to be consumed by the method. In real applications, a more
suitable criterion is achieving a predetermined number of iterations without
improvement of the best found solution.

Shaking procedure (step 5) diversifies the search and tries to prevent getting
stuck in a local optimum. Let N = {N1, . . . ,Nkmax} be the set of neighborhoods
used in the shaking procedure. Function Shake(σ, k, N ) consists in a selection
of a random solution from Nk(σ). We use kmax = 6 in our experiments since
neighborhoods Nk(σ), k ≥ 7 are too diversified.

Algorithm 2. Shaking procedure
1: function Shake(σ, k, N )
2: for i ∈ {1, . . . , k} do
3: Choose j ∈ {1, 2} at random
4: Choose σ′ ∈ N j

k (σ) at random
5: σ ← σ′

6: return σ

Neighborhood N 1
k (σ) in Algorithm 2 corresponds to N4(σ), and N 2

k (σ) corre-
sponds to the cross-exchange operator, which exchanges two subsequences con-
taining r and r′ customer visits, where 1 ≤ r ≤ k, 0 ≤ r′ ≤ k.

We use Variable Neighborhood Descent (VND) as an improvement proce-
dure [9,17]. It also includes solving the subproblem (15)–(25).

Neighborhood change step makes a decision on which neighborhood will be
explored next. We use sequential neighborhood change, steps of which are given
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Algorithm 3. Variable Neighborhood Descent with work redistribution
1: function VND(σ, lmax, N)
2: repeat
3: stop ← true
4: l ← 1
5: σ′ ← σ
6: repeat
7: σ′′ ← arg minx∈Nl(σ) L(x)
8: Neighborhood_change_sequential(σ, σ′′, l)
9: until l = lmax

10: if L(σ) �= L(σ′) then
11: σ′ ← σ
12: Solve the work redistribution subproblem with regard to the routes of σ

13: if L(σ) < L(σ′) then
14: stop ← false

15: until stop = true
16: return σ

in Algorithm 4. At the final step of Algorithm 1, we solve the problem (15)–(25)
to optimality for routes of the best found solution σ.

Algorithm 4. Sequential neighborhood change step
1: procedure Neighborhood change sequential(σ, σ′, k)
2: if L(σ′) < L(σ) then
3: σ ← σ′

4: k ← 1
5: else
6: k ← k + 1

5 Computational Results

The described VNS algorithm is implemented in C++ with MSVC++ 14.16 com-
piler, using standard release options. All experiments are conducted on a com-
puter with an AMD Ryzen 5 2600 3.4 GHz processor and 16 GB of RAM running
under Microsoft Windows 10 (64-bit).

To test the algorithm we use location and service time data from the instance
with 670 customers and 3 depots from our previous paper [14], but with different
scaling coefficient for distances. We use this dataset only for the initial exper-
iments presented in this paper. For further research, it is planned to generate
other problem-specific datasets. We assign 30 wells to 1% of customers, 20 wells
to 5% of customers, 10 wells to 20% of customers, and 5 wells to the rest. The
number of days for drilling a well D is set to 2 days. The planning horizon is 365
days, and time windows for the customers are distributed uniformly through this
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period. A width of the time windows is varied between the value of the service
time and this value plus a small random number. Random parts of the instance
are selected to get smaller ones. As a result, we generate sets with 10 various
instances for each of the following instance cardinalities: 20 customers and 3 vehi-
cles, 50 customers and 6 vehicles, 150 customers and 12 vehicles. We also consider
an alteration of these instances, in which time windows are halved through the
reduction of the corresponding latest work completion time. Vehicles for such
instances are doubled, so their number is 6, 12, and 24.

The matrices (dij) and (tij) are the same and consist of the non-negative
integers indicating travel distances in days. Vehicles do not have to return to
the depot. To take it into account, we modify the matrices (dij) and (tij) by the
following rule:

dij = tij =
{

0, if i ∈ I, j ∈ V K ,
tij , otherwise.

For Kernighan–Lin neighborhoods, we generate 25 neighboring solutions. The
penalty γ is set to 10 since we aim to find feasible solutions with zero tardiness.
The penalty λ used for waiting times in evaluations is set to 0.05. The fractions
q1, . . . , q6 are set in such a way that all neighborhoods Nq1

1 (σ), . . . , Nq6
6 (σ) have

200 neighbors unless it is less than 5% or more than 60% of the neighborhood.
MILP solver Gurobi (version 9.0) is used to solve the work redistribution

subproblem during the search. We pass values corresponding to the incumbent
solution for all the decision variables sik, wik, τik, x′

ijk, and y′
ij to construct

an initial MILP solution. The following Gurobi parameters are used for the
subproblem: MIPFocus = 1, MIPGap = 0.03, TimeLimit = 0.5.

In Tables 1–3, we show results for instances of different sizes obtained by our
algorithm and Gurobi. To compare the results, the objective function (13) with
penalty γ = 10 is used. The columns τ indicate the related overall tardiness.

First, we test our algorithm on instances with 20 objects (Table 1). For this
size, Gurobi is able to find an optimal solution for every instance within 20 min
running with default parameters. The computation time of Gurobi varies for
different instances due to the structural differences of them, including the number
of wells and time windows. Each instance is run 100 times for 2 s for the VNS
algorithm, and the columns nopt indicate the number of optimal solutions found.
For all the tables, the Gurobi results are underlined if the optimality of the
solution is proved, and the best found solutions are shown in bold.

Next, we compare the algorithm with Gurobi on instances with 50
objects (Table 2). Each instance is run 10 times for 90 s for the VNS algorithm.
For this size, Gurobi is unable to find optimal solutions in an hour for any
instance. But it is able to prove optimality for a few instances if we extend cal-
culation time to 5 h. Also, for instances 1–3 and 6–10 with usual time windows,
Gurobi is run for an additional one hour with the passing of the best solution
found in 10 runs for constructing an initial MILP solution. None of these best
found solutions are improved. We use the following Gurobi parameters for these
instances: ImproveStartTime = 2520 for initial an hour runs, and MIPFocus = 1,
Presolve = 2, ImproveStartTime = 1800 for post-optimization an hour runs.
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Table 1. The results for instances with 20 objects

Usual time windows, |K| = 3 Halved time windows, |K| = 6

Gurobi VNS Gurobi VNS

Average Best nopt Average Best nopt

# Distance τ Distance τ Distance τ

1 67 67 67 100 95 4 119.8 2.1 98 4 0

2 68 68.24 68 99 112 1 111.7 1.3 112 1 57

3 83 83 83 100 151 4 141 5.3 151 4 33

4 88 88 88 100 131 3 136.1 3.1 134 3 0

5 115 115.07 115 99 176 3 170.8 4.8 176 3 3

6 93 93 93 100 133 4 133.3 4 133 4 97

7 49 49.45 49 95 101 1 103.8 1.1 101 1 57

8 115 117.11 115 46 195 3 196.9 3.3 205 2 11

9 66 66.41 66 74 137 3 132.4 4.2 137 3 13

10 77 77 77 100 152 2 149.9 3.5 152 2 3

Gap (%) −0.00 +0.38 −0.00 × −0.00 +3.15 +0.41 ×

Finally, we run the algorithm on instances with 150 objects (Table 3). Each
instance is run 10 times for 300 s for the VNS algorithm. For this size, Gurobi
shows poor results in an hour running for every instance if we run it without
an initial solution. However, it is capable to improve solutions which we pass
as initial. In Table 3, columns “Gurobi post opt” show the results for Gurobi
post-optimization an hour runs when we pass the best solution found in 10 runs

Table 2. The results for instances with 50 objects

Usual time windows, |K| = 6 Halved time windows, |K| = 12

Gurobi VNS Gurobi VNS

Average Best Average Best

# Distance τ Distance τ Distance τ Distance τ Distance τ Distance τ

1 160 4 160 4 160 4 242 1 245.8 0.9 243 1

2 170 6 164 6 159 6 232 0 232.8 0.8 238 0

3 73 3 73.8 3 73 3 117 0 117.7 0 117 0

4 154 0 155.6 0.3 155 0 223 2 232.1 1.5 224 2

5 148 0 154.7 0 152 0 227 1 236.3 0.4 227 1

6 135 45 166.7 37.5 164 37 218 1 232.4 0 229 0

7 118 0 118 0 118 0 194 0 202.4 0.3 204 0

8 140 1 128 2.6 140 1 177 0 180.2 0 179 0

9 268 1 246.6 0.7 237 0 320 2 342.8 1.7 331 2

10 121 0 121 0 121 0 191 0 191.6 0 191 0

Gap (%) −0.00 +0.25 −1.01 −0.00 +2.43 +1.33
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Table 3. The results for instances with 150 objects

Usual time windows, |K| = 12 Halved time windows, |K| = 24

VNS Gurobi VNS Gurobi

Average Best post opt Average Best post opt

# Distance τ Distance τ Distance τ Distance τ Distance τ Distance τ

1 318.5 0 313 0 313 0 479.2 1.3 460 1 440 0

2 306.5 0 299 0 299 0 500.7 0.3 484 0 475 0

3 235.8 0 232 0 226 0 360.3 0.2 357 0 350 0

4 355.1 1 339 1 339 1 444.6 0.4 439 0 426 0

5 282 0 276 0 276 0 428.1 1.5 422 0 422 0

6 330.5 0 320 0 320 0 500.7 0.6 500 0 496 0

7 272.2 3.8 266 4 266 4 395.1 1.7 393 1 392 1

8 272.6 12.1 261 12 261 12 408.9 5.1 404 5 392 5

9 369.7 1.8 366 0 366 0 472.5 0 462 0 455 0

10 377.1 2.3 359 1 359 1 514.4 1.2 511 1 488 0

Gap (%) +3.50 −0.00 −0.26 +2.57 −0.00 −2.47

for constructing an initial MILP solution. We use the same Gurobi parameters
for these instances as in experiments for instances with 50 objects. It is worth
noting that running the VNS algorithm for an hour improves all the results for
the VNS presented in the table, but the results of Gurobi post-optimization runs
on the instances with halved time windows are not always improved.

The tables show that our algorithm performs well and finds high-quality
solutions, but the quality for the instances with tighter time windows and high
sharing of the work can be improved.

6 Conclusion

In this paper, we have studied a new split delivery vehicle routing problem
with time windows arising in a real-world context of mobile drilling rig routing.
We formulated a well-drilling work distribution subproblem as a mixed-integer
linear program (MILP) that turns out to be relatively easy to solve even for
medium-sized instances. Thereby, we designed a matheuristic approach, where
the solution of the work redistribution subproblem through the MILP is inte-
grated within a VNS algorithm solving the routing part of the overall problem.

One of the new research directions is the optimization of robustness. Real-
world routing problems often tend to have uncertainties in travel and service
time, especially in long-term planning. In that case, it is important to build
solutions that are insensitive to these uncertainties.
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Abstract. Facility disruptions or failures may occur due to natural
disasters or a deliberate man-made attack. Such an attack is known
as interdiction. Recently, facility location problems, addressing inten-
tional strikes against operating facilities and strategies to reduce their
impact, have received particular attention. In this paper, we present a
new location-interdiction median problem aimed at designing a distribu-
tion network which is robust to the worst-case, long-term facility losses.
We suppose that there are two players: defender (system designer) and
attacker. The defender decides where to locate facilities to minimize the
overall cost of supplying the demands of customers. The attacker deter-
mines which r facilities to interdict to maximize the cost of serving the
customers from the remaining operational facilities. Note that we suppose
that the facilities are attacked simultaneously and interdicted facilities
become unavailable. We propose bilevel and single-level integer formu-
lations of this problem. For a particular case when the attacker hits a
single facility, we develop a fast local search procedure based on implicit
enumeration of interdiction strategies. We test our approaches in a series
of computational experiments on well-known test problems.

Keywords: Interdiction · Bilevel programming · p-median problem ·
Facility location · Disruption · Integer programming

1 Introduction

Facility location problems are ones of the most widely studied problems in combi-
natorial optimization and integer programming. Facilities and the corresponding
connecting infrastructure are the main ingredients in any production, distribu-
tion, or service system and supply chains [29]. A traditional approach to the
design of such systems assumes that all their components always remain oper-
able. However, some accidents, like natural disasters or man-made attacks, can
substantially reduce the system efficiency and even make it incapacitated. For
example, the current coronavirus outbreak is disrupting the global supply chains
from tech industry (production of cell phones and electronics) to fashion and car
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manufacturing. Hyundai and Nissan announced that they would stop manufac-
turing in South Korea, Europe, and the US because of a lack of parts from
China [5,8]. Meanwhile, Tesla considers to delay the production in Shanghai
for at least one week. The disruptions can also be man-made. For example, the
current French pension reform strike is the longest French strike over the last
50 years, which results in billion losses.

Given a service system, one may expect two main types of disruptions: facility
disruptions (loss of production capabilities) and failures of links connecting facil-
ities and customers. In the field of facility location, reliability and sustainability
issues of service systems are extensively studied in the scope of the so-called
reliable facility location. Such kind of models usually assume that the system
components have some inherent probability of failure. Thus, the aim is to max-
imize the expected system efficiency, e.g. minimize the expected service cost
in case of possible failures. The stochastic approach may be quite useful when
modeling sudden losses of components due to natural disasters or some inherent
system failures. However, disruptions may be caused not only by natural disas-
ters (like earthquakes or fire) but also by disruptive man-made actions (sabotage,
deliberate attacks). Intentional attack on a supply network is also called inter-
diction [11]. Interdiction models are aimed at identifying critical infrastructure
elements such that the loss of them due to an attack causes the maximum pos-
sible harm and makes a system much less efficient. Originally, such models were
mostly studied in military planning applications. Indeed, it is natural to identify
the places for interdicting enemies supply lines in order to inflict the maximal
damage. The first interdiction problem was considered in [22] where the aim
of interdiction was to disrupt enemy supply flows with a limited budget avail-
able [35]. Note that most of the military-induced applications are focused on
interdicting links of transportation networks (e.g. shortest paths) [18].

Recently, the interest has revived for interdiction problems due to fast grow-
ing threat of terrorist attacks (especially, after the September 11 attacks). Nowa-
days, we are witnessing how vulnerable may be facilities to such threats. Inter-
national counter-terrorism efforts are forcing the terrorist groups, like al Qaeda,
transfer their attention from so-called hard targets (embassies and military
assets) to soft targets (civilian facilities). The main goal of such attacks is to
engender the largest possible harm. For a service system, the harm is viewed as
the loss of service coverage or efficiency (increase in the overall service costs). The
first facility interdiction models were addressed in [11] where the r-interdiction
median and covering problems were proposed. For example, the r-interdiction
median problem is to find which r existing facilities to remove in order to decrease
the efficiency of the existing supply system the most.

The next research in this field was focused on developing strategies of hedg-
ing against the worst-case attacks. Thus, in [10], the authors extend the r-
interdiction problem by the possibility of fortifying (protecting) some existing
facilities so that they become immune to attacks. The problem is then modeled
as a bilevel integer program involving two players: attacker and defender [27].
This problem has received great attention and a number of effective solution
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algorithms has been developed. Among most effective are the implicit enumera-
tion algorithm [27], an exact approach based on reformulating the problem as the
maximal covering problem [28,36], and a branch-and-cut algorithm from [26].

Numerous papers addressing various bilevel facility location protection-inter-
diction problems have been published since then, e.g. hub interdiction median
problems [15,24], the stochastic r-interdiction median problem with fortifica-
tion [19], a r-interdiction median problem involving a defender’s budget for for-
tification and penalties for serving the demands of customers from interdicted
facilities [4], a partial interdiction model where some demand after interdiction
can be outsourced at some cost [1], an interdiction problem with hierarchical sys-
tem of facilities [7], a more general median protection/interdiction problem that
involves outsourcing, capacitated nested hierarchical facilities, and the budget
of interdiction [14], etc.

The aforementioned fortification-interdiction models assume that there is an
existing service system and the goal is to thwart intentional attacks by protect-
ing some facilities. Another approach consists in taking into account possible
worst-case facility losses in the initial location of facilities. Such problems, known
as location-interdiction models [29], are not widely addressed in the literature.
For example, in [23], the authors extend the r-interdiction covering problem
from [11] and introduce a maximal covering location-interdiction problem aimed
at maximizing the coverage of customers if the most critical facilities are failed.
Note that location-interdiction problems are more difficult to solve than the
protection-interdiction ones and most of effective algorithms developed for pro-
tection problems are not applicable to them [29]. Other closely related problems
are aimed at combining both location and protection decisions. An example is
the model proposed in [2], where capacitated facilities may be located either
protected or unprotected. In [3] the problem is to first locate a given number of
facility followed by protecting some of them with a limited protection budget.

In this paper we propose a new facility location-interdiction model by extend-
ing the r-interdiction median problem in the way closely related to [23]. We
formulate this problem as a bilevel integer linear program where the upper-level
player (defender) finds p sites for locating facilities in order to minimize the
overall cost of serving customers, taking into account that the lower-level player
(attacker) hits some r facilities in order to inflict the maximal possible damage.
We demonstrate that this problem can be reformulated as a single-level integer
program so that small- and medium size problem instances can be solved with a
general purpose commercial solver. For a particular case when the attacker hits
a single open facility, we develop a fast local search heuristic.

2 Bilevel Facility Location-Interdiction Problem

Our model relies upon the uncapacitated p-median problem. It is one of the basic
and widely studied facility location problems. It has been applied in designing
service and distribution systems in private and public sectors [20]. It is also
a powerful modeling tool with applications to production [9,21] and machine
learning [16,30].
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We suppose that there is a set I (|I| = m) of potential facility location sites
and a set J (|J | = n) of customers. We denote as dij the shortest distance (service
cost) between a customer j and the facility located at cite i. As for the p-median
problem, each customer is served by the closest open facility. If for a customer,
the closest open facility is interdicted, she/he is reassigned to the closest open
non-interdicted facility. The interdicted facilities become completely unavailable.
As the attacker has some limited resources for interdiction, we assume that
only r out of p open facilities can be attacked. Note that we suppose that the
attacker has perfect information about where the facilities are located, hence
he/she always hits only open facilities. We also suppose that all r facilities chosen
by the interdictor are attacked simultaneously, thus the defender has no way to
thwart any losses.

Our problem can be viewed as a static Stackelberg game where two players
make sequential decisions. The first player (leader or defender) first decides where
to locate p facilities in order to minimize the overall sum of distances between
customers and their closest open facilities, taking into account that some facilities
may be interdicted; the second player (follower or attacker), knowing where the
first player has located the facilities, tries to inflict the maximal possible harm
to the service system by attacking r of them. Thus, some customers have to be
reassigned to more distant facilities, which reduces the system efficiency.

Let us introduce the following decision variables:

yi =

{
1, if a facility is located at site i;
0, otherwise.

xij =

{
1, if a customer j is assigned to the facility located at site i;
0, otherwise,

si =

{
1, if a facility located at site i is interdicted;
0, otherwise,

Furthermore, to ensure the assignment of customers to the closest facilities, we
define the set Wij = {k ∈ I : dkj > dij}, i.e. the set of potential sites which
are farther from customer j than site i. The bilevel interdiction-location median
problem can be written as follows:

min
∑
i∈I

∑
j∈J

dijx
∗
ij(y), (1)

∑
i∈I

yi = p, (2)

yi ∈ {0, 1} ∀ i ∈ I, (3)
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where x∗
ij(y) is a solution of the attacker’s problem:

max
∑
i∈I

∑
j∈J

dijxij , (4)

∑
i∈I

xij = 1 ∀ j ∈ J, (5)

xij ≤ yi ∀ i ∈ I, j ∈ J, (6)∑
i∈I

si = r, (7)

si ≤ yi ∀ i ∈ I, (8)∑
k∈Wij

xkj ≤ 1 + si − yi ∀ i ∈ I, j ∈ J, (9)

si, xij ∈ {0, 1} ∀ i ∈ I, j ∈ J. (10)

Note that the defender and the attacker has the opposite objectives. The system
planner attempts to locate p facilities to minimize the overall sum of distances
between customers and the facilities remained after eliminating r of them. The
interdictor determines which open facilities to hit in order to maximize the cost
of serving customers. Constraints (2) set the number of facilities opened by
the defender. Constraints (5) and (6) are the standard facility location con-
straints guaranteeing that each customer is served by exactly one open facility.
Constraints (7) and (8) impose that the attacker can hit only r out of p open
facilities. Finally, constraints (9) ensure that each customer is served from the
closest open facility after attack occurs. Indeed, if a facility is located at site i
and not interdicted, a customer j cannot be served by a more distant facility
than i. As was noted in [27], these constraints can also be adapted to settings
where customers are not supposed to be served from the closest open facilities.
Instead, they may have some facilities preference ordering known for both the
defender and the attacker (e.g. see [31–33]).

Bilevel programming problems are usually very hard to solve, especially when
the problems on both levels are mixed-integer programs. In facility location,
bilevel problems usually arise in competitive location when there are two players
that compete for serving the demand of customers from a market [17]. A good
example of competitive facility location problems is the well-known (r|p)-centroid
problem [6,12]. This problem is known to be ΣP

2 hard [13].
As was noted above, the location-interdiction problems are much more chal-

lenging than widely studied fortification-interdiction problems. Their structure
hinders from application some very efficient exact approaches based on implicit
enumeration and decomposition techniques.

3 Integer Programming Formulation

In this section we demonstrate that the introduced location-interdiction median
problem can be formulated as a single-level integer program. Thus, it can be
solved by a commercial branch-and-bound solver.



364 A. V. Ushakov and I. Vasilyev

For our formulation, we denote by H the set of all interdiction patterns, i.e.
it consists of all possible strategies of interdicting r out of m potential location
sites. We also denote by h the index corresponding to a specific interdiction
strategy and by Ih the set of interdicted sites in pattern h. Our formulation uses
the variables yi that have the same definition as those in formulation (1)–(10).
We also introduce the following binary variables:

xh
ij =

⎧⎪⎨
⎪⎩

1, if a customer j is assigned to the facility located at site i
when interdiction pattern h occurs;

0, otherwise,

Thus, we can formulate our problem as follows:

min z (11)

z ≥
∑
i∈I

∑
j∈J

dijx
h
ij h ∈ H, (12)

∑
i∈I

xh
ij = 1 ∀j ∈ J, h ∈ H, (13)

xh
ij ≤ yi ∀i ∈ I, j ∈ J, h ∈ H, (14)∑
i∈I

yi = p, (15)

∑
i∈Ih

∑
j∈J

xh
ij = 0, ∀h ∈ H, (16)

yi ∈ {0, 1} ∀i ∈ I, (17)

xh
ij ∈ {0, 1} ∀i ∈ I, j ∈ J, h ∈ H. (18)

The objective function (11) is to minimize the overall cost z of serving cus-
tomers from operational facilities remained after the worst-case attack on r
potential location sites. Constraints (13)–(14) have the same definition as those
in formulation (1)–(10), i.e. they ensure that each customer j must be assigned
only to one open facility when interdiction pattern h occurs. Constraints (12)
define the cost of serving customers from a given set of facilities if r sites cor-
responding to pattern h are lost. Note that given a set of facilities, if none of
them are located at the sites from interdiction pattern h, then the cost z is equal
to the p-median objective value. Finally, constraints (16) ensure that customers
cannot be served by facilities located at the sites interdicted in pattern h.

Note that the model actually involves the exponential number of variables
and constraints. However, the common assumption is that terrorist groups usu-
ally have limited resources and are able to simultaneously hit only a small num-
ber of facilities [27]. In this case, one can determine all possible

(
m
r

)
interdiction

patterns in advance. In particular, if only one facility is supposed to be attacked,
the model contains O(m2n) decision variables and constraints.
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4 Local Search

Bilevel integer problems are quite challenging for exact methods, especially in
case of real-life instances of large size. Thus, the development of heuristics to
find quality feasible solutions in reasonable time is quite natural. The main idea
is to use a local search procedure which attempts to improve an initial solution
by searching its neighbors. The location-interdiction median problem is based
on the well-known p-median problem, hence the simplest and natural strategy is
to develop a local search procedure over the SWAP neighborhood. It consists of
all defender’s solutions which are obtained from a current incumbent by closing
one facility and opening another one in a different place.

In order to compute the defender’s objective value for a given set of open
facilities (the set of variables yi), we actually have to find an optimal solution of
the attacker’s problem:

max
∑

i:yi=1

∑
j∈J

dijxij , (19)

∑
i: yi=1

xij = 1, j ∈ J, (20)

∑
k∈Tij(y)

xkj ≤ si, i ∈ I : yi = 1, j ∈ J, (21)

∑
i: yi=1

si = r, (22)

si, xij ∈ {0, 1}, i ∈ I : yi = 1, j ∈ J, (23)

where Tij(y) is the set of open defender’s facilities which are farther from cus-
tomer j than facility i. This problem can be solved by a commercial branch-and-
bound solver. On the other hand, in some applications where the numbers of both
open and interdicted facilities are small, the attacker’s problem can effectively
be solved by enumerating all

(
p
r

)
possible facility losses.

In this section we focus on a special case of the attacker’s problem where
r = 1. Our main goal is to develop a local search procedure which is faster than
the naive implementation based on explicit enumeration.

Throughout this section we use the following notations. We denote as d(i, j)
the distance (service cost) between a customer j and a location i. We suppose
that S is a solution of the defender’s problem, i.e. S is any subset of I consisting
of p elements. The closest open facility in S for customer j is denoted as c1(j). To
perform a fast interchange, our algorithm needs the second and the third open
facilities to j that we denote as c2(j) and c3(j), respectively. Searching the swap
neighborhood, the algorithm picks one candidate facility to add to the current
solution and one to drop from it that we refer to as fi and fr, respectively.
Following [25], we assume that the distance between any facility site and any
customer can be computed in O(1) time. For example, this is the case when the
distance matrix is already calculated.
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Note that for the p-median problem, there are several fast implementations of
the swap-based local search, including prominent Whitaker’s implementation [34]
and a fast implementation from [25].

Given a solution S, we need to find a neighbor Ŝ providing a better value
of the defender’s objective or to check that such an improving neighbor does
not exist. Thus, we have p sites for dropping and m − p sites for insertion.
Given a pair (fi, fr), we have to compute the gain of swapping fr with fi. A
straightforward implementation assumes that, for each possible swap (fi, fr),
we have to solve the attacker’s problem, i.e. to enumerate all possible strategies
of interdicting facilities in the solution obtained after swapping. If r = 1, the
number of interdiction patterns is equal to p. If the three closest open facilities are
not pre-computed and the calculation of distances takes O(1) time, determining
the assignment of all customers under each interdiction pattern takes O(pn)
time. Since the total number of swaps is equal to p(m − p) = O(pm) and the
number of interdiction patterns for each possible swap is p, one iteration of local
search takes O(p3mn) time. Suppose now that the three closest facilities to each
customer j are found: this takes O(pn) time. In this case, one iteration of local
search can be performed in O(p2mn) time.

However, the computation time can be further reduced by avoiding the
explicit enumeration needed to find an optimal solution of the attacker’s prob-
lem. Indeed, the value of the defender’s objective function zlead for a solution S
can be written as follows:

zlead = zmed + max
s∈S

∑
j:c1(j)=s

d(c2(j), j) − d(c1(j), j), (24)

where zmed is the value of the p-median objective. In other words, the cost that
the defender will get after a disruptive strike can be computed as the sum of
costs for serving customers from the closest open facilities plus the cost induced
by the customers whose closest facility was lost due to attack. Thus, for each
pair (fi, fr), we must compute the gain from swapping fi and fr according to
both the p-median objective and the value induced by attack:

cost(fi, fr) = medcost(fi, fr) + losscost(fi, fr), (25)

where medcost(fi, fr) is computed as follows:

medcost(fi, fr) =
∑

j:c1(j) �=fr

min{0, d(fi, j) − d(c1(j), j)}

+
∑

j:c1(j)=fr

(min{d(c2(j), j), d(fi, j)} − d(c1(j), j)).
(26)

In other words, if the closest facility of a customer j is not replaced (it is not fr),
the customer either reassigns to fi, if it is closer, or stays assigned to the current
facility. If customer j is served from fr, then he/she assigns to the closest open
facility: fi or c2(j). If medcost(fi, fr) < 0, then we can gain from such a swap
with respect to the p-median objective.
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The value of losscost(fi, fr) can be computed in a similar way (see Algo-
rithm 1).

Algorithm 1 Finding an optimal solution of the attacker’s problem when as-
sessing the candidate pair (fi, fr)
1: for all (i ∈ S) closed(i) := 0
2: for all j ∈ J do
3: if c1(j) = fr then
4: if d(fi, j) < d(c2(j), j) then closed(fi)+ = d(c2(j), j) − d(fi, j)
5: else closed(c2(j))+ = min{d(c3(j), j), d(fi, j)} − d(c2(j), j)
6: end if
7: else
8: if d(fi, j) < d(c1(j), j) then closed(fi)+ = d(c1(j), j) − d(fi, j)
9: else if d(fi, j) > d(c1(j), j) and d(fi, j) < d(c2(j), j) then
10: closed(c1(j))+ = d(fi, j) − d(c1(j), j)
11: else
12: if c2(j) = fr then closed(c1(j))+ = min{d(fi, j), d(c3(j), j)} −

d(c1(j), j)
13: else closed(c1(j))+ = d(c2(j), j) − d(c1(j), j)
14: end if
15: end if
16: end if
17: end for
18: return s∗ = argmaxi∈S∪{fi}\{fr} closed(i),

losscost(fi, fr) := closed(s∗) − maxs∈S

∑
j:c1(j)=s d(c2(j), j) − d(c1(j), j)

The main idea is to implicitly calculate the costs of all interdiction patterns,
considering each customer j independently. Note that the attacker can cause a
harm to customer j if he hits the closest open facility to j.

If the closest facility to j is not dropped, fi may be either the closest to j
or the second closest. In the first case, the attacker may inflict damage only by
hitting fi, hence j remains assigned to the same facility (she/he was assigned
before swapping). In the second case, the attacker striking the closest facility
c1(j) forces the customer be served from the next facility: fi. There is also
another option. The candidate fi may also be farther than the second closest
facility c2(j). In this case, if c2(j) is dropped, the attacker engenders a harm
by hitting the closest facility c1(j) and forcing the customer assign to the third
closest facility c3(j). Otherwise, if c2(j) is not removed, the customer assigns to
it in case of attack.

If the closest facility c1(j) is dropped, there are two options. The new facility
fi is closer than c2(j), thus an attack on fi results in assigning the customer
to the second closest facility c2(j). If the new facility is farther than c2(j), the
customer in case of attack on c2(j) would be served from the third closest facility:
c3(j) or fi.

In all cases described above, for each customer j, only an attack on the
closest facility (after swapping) can leads to reassigning the customer to the
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next closest facility. Thus, closed in Algorithm 1 accumulates the contribution
of each particular customer to the cost of all possible interdiction patterns.

The values of medcost(fi, fr) and losscost(fi, fr) can obviously be computed
in O(n) time for each candidate pair. As the total number of swaps is p(m −
p), each iteration of local search takes O(pmn) time. Note that the standard
implementation of swap-based local search for the p-median problem requires
the same time per iteration. After a swap is accepted, updating the closest
facilities for each customer requires O(pn) time in the worst case.

5 Computational Experiments

In this section we report some computational experiments to test the proposed
integer linear program as well as the local search procedure devised. We utilized
several widely used test problem instances from the well-known TSPLIB1. Our
integer linear model was set up using IBM ILOG Concert technology and C++
programming language. It was then solved with IBM ILOG CPLEX 12.8.02,
freely available for non-commercial research. We implemented the local search
procedure using C++ programming language as well. Note that our local search
is not parallel, while CPLEX was allowed to use four parallel threads. We suppose
that the number of interdictions r is equal to 1. The initial solutions for the local
search were chosen at random. We performed only one run of the local search
on each particular test problem.

The results are presented in Table 1, where the first column shows the prob-
lem name, column p contains the number of defender’s facilities to be located.
In Objective values, we report three following values. Column Pmed shows the
optimal value of the p-median objective, i.e. the service cost without the threat
of possible attacks. Columns IntrCPLX and LS demonstrate the values of the
defender’s objective function found by CPLEX and the local search, respectively.
Columns Timecplx and TimeLS represent the running times of CPLEX and the
local search.

We can observe that CPLEX requires very much time to find an optimal
solution of the single-level location-interdiction median problem. For example,
CPLEX spent more than almost two hours to solve berlin52 instance involving
52 customers and 5 facilities. Recall that the single-level problem contains very
large number of variables and constraints, which makes it much harder than the
underlying p-median problem.

Observe that the found objective values of the location-interdiction problem
are in general much larger than those of the p-median problem, especially when
the number of facilities is small. For example, for the problem berlin52, incor-
porating risks of a possible deliberate attack when locating 3 facilities results in
increasing the service cost for over 27% with respect to the cost of the location
strategy that does not assume facility losses. Thus, if the system planner is risk-
averse, she may attempt to mitigate the impact of an attack but it may be quite
1 http://elib.zib.de/pub/mp-testdata/tsp/tsplib.
2 https://www.ibm.com/products/ilog-cplex-optimization-studio.

http://elib.zib.de/pub/mp-testdata/tsp/tsplib
https://www.ibm.com/products/ilog-cplex-optimization-studio
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Table 1. Results on the TSPLIB problem instances, where p is the number of facilities
opened by the defender, the number of interdictions r = 1.

Objective values Timecplx TimeLS

Problem m p Pmed IntrCPLX LS

ulysses22 22 2 70.02 123.47 123.47 7.1 0

3 51.55 109.74 109.74 12.5 0

4 42.57 67.54 67.54 9.5 0

5 35.30 54.13 54.13 4.92 0

bayg29 29 2 13601.85 19469.92 19469.92 43.5 0

3 10446.36 15343.86 16731.25 57.0 0

4 9013.30 12180.74 12708.10 57.5 0

5 7735.65 10239.33 10239.33 55.7 0.001

att48 48 2 72921.90 113222.34 113222.34 1262.3 0.001

3 54623.16 85741.06 86337.62 2641.2 0.001

5 39679.31 53308.19 53308.19 3854.7 0.001

8 29159.05 35615.89 35615.89 2864.9 0.002

berlin52 52 2 14816.78 20000.29 20000.29 2825.8 0.001

3 12057.82 16604.35 17599.84 4081.5 0.001

5 8888.74 12158.69 12199.40 7125.8 0.002

8 6402.17 8081.50 8080.88 5182.7 0.002

fl1400 1400 50 29090.23 – 31627.20 – 80.6

100 16552.22 – 17500.34 – 264.3

200 9355.34 – 10230.72 – 654.6

costly. Note that in case when 8 facilities are located, the increase in service
cost is about 20%. However, for the problem fl1400, the increase is only 9% if
200 facilities are located. Thus, when the number of open facilities is small, the
system planner may prefer a risky strategy (locating facilities according to the
p-median protocol) rather than the robust design of a service system resulting
in increase in the service cost. On the other hand, when the number of facilities
is relatively large, a robust system can be designed with small increase in the
service cost.

We see that the local search procedure found the same solutions as CPLEX
in most cases (especially for small problem instances). Recall that we ran the
local search only once. For berlin52, p = 8, it found a solution that even a little
better. Note that this may happen due to a relatively large duality gap inherent
in the single-level integer program.

Observe that the proposed heuristic is very fast, especially in comparison
with the commercial solver. It spent less than one second to find very close to
optimal solutions.
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6 Conclusion

In this paper we proposed a new location-interdiction median problem based on
the well-known p-median problem. This problem can naturally be formulated as
a bilevel integer linear program where the system designer makes decision about
where to locate facilities; and the attacker interdicts some facilities to engender
the maximal harm to the system efficiency. We demonstrated that the problem
can be formulated as a single-level integer linear problem that can be solved
with a commercial solver. Since it can be utilized to solving only small problem
instances, even assuming that only one facility is interdicted, we developed a
fast implementation of local search over the basic SWAP-neighborhood.

Our further research may be focused on developing alternative formulations
of the problem as well as exact solution approaches (branch-and-cut methods).
Our research will also aim at extending the proposed technique for larger values
of r and developing new heuristics. Finally, the developed local search procedures
may be employed to devise various metaheuristics.

Acknowledgement. The reported study was funded by RFBR according to the
research project No. 18-07-01037.
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Abstract. Optimization of costly black-box functions is hard. Not only
we know next to nothing about their nature, we need to calculate their
values in as small number of points as possible. The problem is even more
pronounced for pseudo-Boolean black-box functions since it is harder to
approximate them. For such functions the local search methods where
a neighborhood of a point must be traversed are in a particular disad-
vantage compared to evolutionary strategies. In the paper we propose
two heuristics that make use of the search history to prioritize the more
promising points from a neighborhood to be processed first. In the exper-
iments involving minimization of an extremely costly pseudo-Boolean
black-box function we show that the proposed heuristics significantly
improve the performance of a hill climbing algorithm, making it outper-
form (1+1)-EA with an additional benefit of being more stable.

Keywords: Pseudo-Boolean optimization · Black-box optimization ·
Local search · Costly function · Boolean satisfiability problem

1 Introduction

Black-box optimization studies objective functions whose analytical form is not
available [1,22]. Usually, black-box functions represent the result of a simula-
tion or the reaction of some environment to a specific input. Depending on the
processes involved, functions can be cheap or costly, defined everywhere or not,
be smooth or not, etc. It goes without saying, that as the different classes of
functions require special treatment, the same goes for the black-box functions.
For example, if a black-box function is costly, then the amount of calculations
should be as small as possible.

During the recent three decades, a considerable effort has been devoted to
development of effective algorithms aimed at optimizing both continuous and dis-
crete costly black-box objective functions. Some of these algorithms are based
on building a surrogate model (see, e.g., [8,11,14]) that serves as an approxi-
mation of a considered function and allows one to use gradient methods. The
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other algorithms rely only on direct calculations of a function (see the survey
[17]). However, very few optimization algorithms are able to deal with costly
pseudo-Boolean black-box functions. One of them was described in [27] where it
was proposed to build a surrogate model based on discrete Walsh functions.

The present study is aimed at development of optimization algorithms for a
class of costly pseudo-Boolean black-box functions. One can find their examples
in many areas, from bioinformatics to cryptanalysis. The defining characteristics
of these functions prevent the researcher from either obtaining any information
about their gradient or from constructing a surrogate model that is anywhere
near precision.

We propose two relatively simple heuristics that use the information accumu-
lated during processing of the search space to improve the effectiveness of algo-
rithms that optimize costly pseudo-Boolean black-box functions. Both heuris-
tics are designed with neighborhood-based methods in mind. In short, for every
Boolean variable we remember separately for its 1-value and 0-value the fraction
of a function value in a point, obtained by changing this variable value from 0
to 1 or from 1 to 0, to the function value in the original point. We show that
if we use this information to alter the order in which the points of a neighbor-
hood are processed, then an improvement is reached at a lower cost (in terms of
the number of function calculations) compared to the standard approach with
randomly ordered neighborhoods.

In our computational experiments we employed the proposed heuristics for
minimization of costly pseudo-Boolean black-box functions that arise in SAT-
based cryptanalysis. They were described, e.g., in [31,32]. Their peculiar feature
is that since a value is obtained by a specific procedure implementing the Monte
Carlo method with limitations, they are not total, i.e. there are points in which
the functions’ values can not be evaluated in any reasonable time. We compare a
hill climbing algorithm augmented with our heuristics with (1+1)-EA algorithm
that tends to work really well with these functions (see [20,21,32]) and show
that the proposed algorithm is more stable and often finds better records.

Let us give a brief outline of the paper. Section 2 contains the detailed descrip-
tion of the heuristics that we propose. In Sect. 3, the considered objective func-
tion is described. In Sect. 4 we conduct the computational experiments and dis-
cuss their results. After that we present brief conclusions and outline the direc-
tions for future research.

2 Proposed Heuristics

For optimization problems it is common to attempt to reduce the number of
function calculations required by an optimization algorithm. However, the situ-
ation is much more dire when dealing with costly functions. In their case, one
needs to make a decision, similar to that between exploration and exploitation
in machine learning, at each step of the search. For example, in local-search-
like algorithms whether to continue processing points from a neighborhood after
obtaining an improvement in some point, hoping to find even better improve-
ment, or to jump to a new point straight away. Note, that computing a costly
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function’s value in some point can take minutes or even hours. Thus, taking
into account realistic time limits of at most several days, the whole optimization
process should fit into thousands of function’s calculations at most. Therefore,
for practical problems every decision of the sort can greatly impact the result
of the algorithm in general. In contrast, for cheap functions it is often possi-
ble to compute their values several thousand times per second on one processor
core, thus several million points more or several million points less do not really
matter that much.

The often used method for directing the search is to use a surrogate model
that exploits the search history to approximate a function behavior and suggest
the most promising directions to move at. When dealing with a costly pseudo-
Boolean black-box function, it is possible to construct such a model [27] if the
function’s value can be evaluated in any given point. However, if its values in
some points are undefined, such a construction is not feasible. Nevertheless,
during the search the information about processed points and the corresponding
function’s values is inevitably accumulated. Thus, it is sensible to make use of
this information in an attempt to reduce the number of points to be processed.

In this section we propose two heuristics aimed at using the information
about the search history. They are designed with neighborhood-based methods
in mind, but can be adapted to other approaches, albeit in a less natural setting.

2.1 On Neighborhoods over Boolean Hypercube

Both proposed heuristics attempt to reduce the amount of function calculations
before obtaining a next improvement by establishing a specific order on a part
of a neighborhood of the current record.

In the present paper, we consider the case when a neighborhood of a point
v = {v1, . . . , vn}, vi ∈ {0, 1}, i ∈ {1, . . . , n} is formed by all points v′ at Hamming
distance 1 and also all points v′′ at Hamming distance 2 but with the same
Hamming weight as v. In other words, we consider the so-called add-remove-
replace neighborhood.

Recall that since we study the pseudo-Boolean functions defined over points
from a Boolean hypercube, it means that each point of a search space repre-
sents a subset of a set of all variables occurring in a function. Then, changing
one component of vector v, specifying a point of a search space, from 0 to 1
means adding a single variable to a set corresponding to v. We refer to all points
constructed in such a way as to add-neighborhood of v. Changing the value of
vector’s component from 1 to 0 corresponds to removal of an element from the
set, and the corresponding points are referred to as remove-neighborhood. Finally,
if we replace a set element from a subset corresponding to v by a set element
that does not belong to this subset, then it means that the Hamming weight of
a corresponding point remains the same, but the Hamming distance between a
new point and the original one is equal to 2. Let us say that such points form a
replace-neighborhood. The pseudocode for forming the corresponding neighbor-
hoods is presented at Algorithm 1.
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Function GenAddNeighborhood(v):

NAdd(v) ← ∅, k ← 0
for j ← 1 to n, if v[j] = 0 do

k ← k + 1, uk ← v, uk[j] ← 1

NAdd(v).Append(uk)

return NAdd(v)

Function GenRemoveNeighborhood(v):
NRemove(v) ← ∅, k ← 0
for j ← 1 to n, if v[j] = 1 do

k ← k + 1, uk ← v, uk[j] ← 0

NRemove(v).Append(uk)

return NRemove(v)

Function GenReplaceNeighborhood(v):

NReplace(v) ← ∅, g ← 0
for j ← 1 to n − 1, k ← j + 1 to n if v[k] �= v[j] do

g ← g + 1, wg ← v, wg[j] ← 1 − v[j], wg[k] ← 1 − v[k]

NReplace(v).Append(wg)

return NReplace(v)

Algorithm 1: Functions for generating add-, remove-, and replace-
neighborhoods

Function ProcessNeighborhood(N ,vi,i,fbkv,Updated):
for each u ∈ N do

f(u) = ComputeFunction(u)
if f(u) < fbkv then

fbkv ← f(u), i ← i + 1, vi = u
Updated ← true
break

Function RndOrder(N):
/* Assume that N = (u1, . . . , u|N|) */

(k1, . . . , k|N|) ← RandomPermutation(1, . . . , |N |)
Nrand ← (uk1 , . . . , uk|N|)
return Nrand

Algorithm 2: Auxiliary local search functions

In practice for costly functions it makes sense to implement neighborhood-
based methods in such a way that the algorithm processes the neighborhood of
Hamming radius 1 (add-remove-neighborhood) first and then proceeds to the
remaining points. For some functions, depending on their overall properties and
the starting point, it might make sense to first traverse the remove-neighborhood
or the add-neighborhood.
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Input: vstart
/* Compute value in starting point */

v0 ← vstart, i ← 0, fbkv ← f(v0)
Updated ← true
while Updated = True do

Updated ← false

NRemove
rand (vi) ←RndOrder(GenRemoveNeighborhood(vi))

ProcessNeighborhood(NRemove
rand (vi), vi, i, fbkv,Updated)

if Updated = false then

NAdd
rand(v

i) ←RndOrder(GenAddNeighborhood(vi))

ProcessNeighborhood(NAdd
rand(v

i), vi, i, fbkv,Updated)

if Updated = false then

NReplace
rand (vi) ← RndOrder(GenReplaceNeighborhood(vi))

ProcessNeighborhood(NReplace
rand (vi), vi, i, fbkv,Updated)

Algorithm 3: Simple hill climbing algorithm for an add-remove-replace neigh-
borhood

2.2 Add-Remove-Sorting and Replace-Sorting Heuristics

In this subsection two heuristics are proposed: add-remove-sorting and replace-
sorting. Note, that replace-sorting must be combined with add-remove-sorting
while the latter can be used independently.

Let us consider simple hill climbing (or first-choice hill climbing, see, e.g.,
[23]) as an example of a neighborhood-based optimization algorithm. Assume
that simple hill climbing starts from a point vstart ∈ {0, 1}n and attempts to
minimize a costly pseudo-Boolean black-box function f . The pseudocode of aux-
iliary functions that describe how neighborhoods are processed is outlined at
Algorithm 2. Simple hill climbing then works as presented at Algorithm3. Here
fbkv stands for the best known value of the objective function f . The goal of
random reordering of neighborhoods in Algorithm2 is to avoid the situations
when the variables with lesser numbers gain an unfair advantage compared to
the variables with larger numbers.

We assume that simple hill climbing processes remove-neighborhood first,
then add-neighborhood second and replace-neighborhood third because it better
suits the objective function we use in the computational experiments. However,
the proposed heuristics can be adapted with little to no change to the case where
add-neighborhood is processed before remove-neighborhood. If it is not known
beforehand which neighborhood should be processed first (add or remove), then
it makes sense to alternate choice of variants.
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Function ComputeFunctionWithMemory(u,Add,Remove,vi,fbkv):
fv ← ∞
if not u ∈ ComputedPoints then

ComputedPoints[u] ← ComputeFunction(u)

j ← index of the position in which u differs from vi

if HammingWeight(u)>HammingWeight(vi) then
Add[j] ← ComputedPoints[u]/fbkv

else
Remove[j] ← ComputedPoints[u]/fbkv

return ComputedPoints[u]
Function ProcessNeighborhoodMem(N ,vi,i,fbkv,Updated, Add, Remove):

for each u ∈ N do
f(u) = ComputeFunctionWithMemory(u,Add,Remove,vi,fbkv)
if f(u) < fbkv then

fbkv ← f(u), i ← i + 1, vi = u
Updated ← true, break

Algorithm 4: Auxiliary functions for simple hill climbing with sorting

Function SortedAddNeighborhood(v,Add):

NAdd
Sorted(v) ← ∅, NAdd

unknown(v) ← ∅, NAdd
known(v) ← ∅, k = 0

for j ← 1 to n, if v[j] = 0 do
k ← k + 1, uk ← v, uk[j] ← 1

if Add[j] = ∞ then NAdd
unknown(v).Append(uk)

else NAdd
known(v).Append(uk)

NAdd
Sorted(v) ← SortAsc(NAdd

known(v), Add)

NAdd
Sorted(v).Append(N

Add
unknown(v))

return NAdd
Sorted(v)

Function SortedRemoveNeighborhood(v, Remove):
NRemove

Sorted (v) ← ∅, NRemove
unknown(v) ← ∅, NRemove

known (v) ← ∅,k = 0
for j ← 1 to n, if v[j] = 0 do

k ← k + 1, uk ← v, uk[j] ← 1

if Remove[j] = ∞ then NRemove
unknown(v).Append(uk)

else NRemove
known (v).Append(uk)

NRemove
Sorted (v) ← NAdd

unknown(v)

NRemove
Sorted (v).Append(SortAsc(NRemove

known (v), Remove))

return NRemove
Sorted (v)

Algorithm 5: Functions for generating sorted add- and remove-neighborhoods

In the add-remove-sorting heuristic and replace-sorting heuristic we use the
function values at already processed points to sort add-, remove- and replace-
neighborhoods. In particular, we introduce three additional structures. The first
is the associative array (map) ComputedPoints, that contains the function val-
ues for the points of the search space where it has already been computed. The
second and third are two arrays Add and Remove of size n. The Add[j] stores



Improving Effectiveness of Neighborhood-Based Algorithms 379

the relative decrease in the value of a point from a neighborhood of some point
v obtained by adding the variable xj to v. Remove[j] stores the similar value
obtained for a point produced from some u by removing xj from u. Note, that
the currently stored values in Add and Remove arrays correspond to the most
recent computations of a function where these values could have been updated.
Here we need to take into account the fact that the value of an objective function
is not defined in some points (for example, its computation can be interrupted
due to exceeding some reasonable time limit). We assume that the value of a
function in such points is equal to ∞.

The pseudocode that describes how Add and Remove arrays are updated is
shown in the function ComputeFunctionWithMemory of Algorithm 4. The func-
tions denoted as SortedAddNeighborhood and SortedRemoveNeighborhood in
Algorithm 5 describe how they are used to alter the handling of the add- and
remove-neighborhoods. In case of the add-neigborhood, informally, we first pick
the part of a neighborhood for which the values of Add are less than ∞, i.e.
they correspond to recently computed function values. We rearrange the order
of these points in the ascending order of corresponding Add values. The order
of the remaining points is randomly rearranged. Then, we put in the resulting
sorted neighborhood the points with known Add values first and the remaining
ones last. For the sorted remove-neighborhood we put the sorted points with
known Remove after the randomly rearranged other points. The algorithm is
allowed to traverse randomly ordered points with unknown values from the add-
remove neighborhood in order to add bias to the search, that can be useful for
escaping local minima. Here the goal is to balance the exploitation and explo-
ration.

Function SortedReplaceNeighborhood(v,Add,Remove,k):

NReplace
Sorted (vi) ← ∅, NReplace

Best (vi) ← ∅, NReplace
Rest (vi) ← ∅, g ← 0

NAdd
SortAscAdd ← SortAsc(GenAddNeighborhood(v), Add)

NRemove
SortAscRemove ← SortAsc(GenRemoveNeighborhood(v), Remove)

for j ← 1 to k, h ← 1 to k do
/* replace in v ’remove’ variable by ’add’ variable */

NReplace
Best .Append(Combine(v,NAdd

SortAscAdd[j], N
Remove
SortAscRemove[h]))

for j ← k + 1 to |NAdd
SortAscAdd|, h ← k + 1 to |NRemove

SortAscRemove| do
NReplace

Rest .Append(Combine(v,NAdd
SortAscAdd[j], N

Remove
SortAscRemove[h]))

NReplace
Sorted (v) ← NReplace

Best .Append(RndOrder(NReplace
Rest ))

return NReplace
Sorted (v)

Algorithm 6: Function for generating sorted replace-neighborhoods

The replace-sorting heuristic is a little bit trickier compared to the first one.
There are two main distinctions here. First, the replace-neighborhood is usually
much larger than the add-remove neighborhood. Second, we start traversing
it only after having refreshed every single Add and Remove value. Thus, the
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information in Add and Remove is significantly more relevant and captures the
specifics of the current point the neighborhoods of which we process.

Input: vstart
v0 ← vstart, i ← 0, fbkv ← f(v0)
Add.SetSize(N), Remove.SetSize(N)
Add ← Remove ← (∞, . . . ,∞), Updated ← true,
while Updated ← true do

Updated ← false

NRemove
Sorted (vi) ← SortedRemoveNeighborhood(vi,Remove)

ProcessNeighborhoodMem(NRemove
Sorted (vi), vi, i, fbkv, Updated, Add,Remove) if

Updated = false then

NAdd
Sorted(v

i) ← SortedAddNeighborhood(vi, Add)

ProcessNeighborhoodMem(NAdd
Sorted(v

i), vi, i, fbkv, Updated, Add,Remove)
if Updated = false then

NReplace
Sorted (vi) ← SortedReplaceNeighborhood(v,Add,Remove,k)

ProcessNeighborhood(NReplace
rand (vi), vi, i, fbkv, Updated)

Algorithm 7: Sorted-Add-Remove-Replace Simple Hill Climbing algorithm

Also, since the size of the replace-neighborhood is so much larger, the poten-
tial gain and the potential loss of imposing a specific order on it are much
higher. Thus we introduce the parameter k to only apply our heuristic to the
top k × k points. It works as shown in SortedReplaceNeighborhood function
inbreak Algorithm 6. Essentially, it picks the first k points from the sorted add-
neighborhood and first k points from the sorted remove-neighborhood and com-
bines them to form k × k first points in the sorted replace-neighborhood. The
order of the remaining points is randomly rearranged similar to how it is nor-
mally done in simple hill climbing.

Note, that the algorithm stops processing a current neighborhood as soon
as it finds an improvement. Thus, the replace-neighborhood traversal is started
only if no improvement was found in the add-remove neighborhood. According to
our experiments (see Sect. 4), the replace-neighborhood is reached quite rarely,
but it significantly helps to escape local minima.

We further refer to the variant of simple hill climbing algorithm that employs
add-remove-sorting and replace-sorting heuristics as SHC-ARR-sorted. Its pseu-
docode is shown in Algorithm 7. The random variant of simple hill climbing
shown in Algorithm3 is called SHC-ARR-random. Note, that SHC-ARR-sorted
is in fact a variant of the variable neighborhood descent metaheuristic [5].

3 Objective Function

Costly pseudo-Boolean black-box objective functions are encountered quite often
in today’s world. One example of such a function is the computation of influ-
ence spread in Influence Maximization Problem [15]. Other examples include
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various formulations of location problems in economics, specific optimization
problems arising in cryptanalysis, etc. In the present paper, we focus on costly
pseudo-Boolean black-box objective functions aimed at estimating the hardness
of instances of the Boolean satisfiability problem (SAT, [4]). These functions are
stochastic since they use the Monte Carlo method [19] to evaluate the runtime of
some algorithm on a specific hard SAT instance. Different formulations of such
functions are known [25,26,32]. In prior literature these functions were opti-
mized via tabu search algorithms [25,26,32], evolutionary algorithms [20,21,32],
genetic algorithms [20,21], etc. In [32], an improved version of the function from
[25] was proposed that usually allows one to obtain more accurate estimations. In
the rest of the paper, we apply the heuristics proposed in Sect. 2 to minimization
of this very function.

Let us briefly describe the function from [32]. We will denote it as G. Assume
that C is a Boolean formula over a set X of Boolean variables. The objective
function G takes as an input a subset S of variables from X. Hereinafter such
a subset is called decomposition set. For given C and S the function’s value
is the estimation of the runtime (in seconds) required to solve all simplified
formulas produced by assigning all possible different combinations of values to
variables from S in C. The function implements the Monte-Carlo method [19]: an
estimation is calculated based on solving a relatively small number of simplified
formulas that form a random sample. This approach closely resembles the Cube-
and-Conquer approach [13], but is built on slightly different principles.

The function G has an important feature: its values in some points can be
undefined. It happens when SAT instances from some random samples can not
be solved in any reasonable time. Following [32], the processing of such samples
is interrupted with the objective function value set to plus infinity.

We used the objective function implementation from the ALIAS tool [16]
that is aimed at solving hard SAT instances. This tool in turn uses an IPASIR-
based [2] version of the SAT solver rokk [29] to solve simplified formulas. The fol-
lowing parameters control the function’s accuracy: number of intervals u; inter-
val size v. Similarly to [32], in all further experiments the following parameters’
values were used: 100 and 10000, respectively.

4 Computational Experiments

To minimize the objective function from Sect. 3, we employed two versions of sim-
ple hill climbing, SHC-ARR-random and SHC-ARR-sorted, described in Sect. 2.
In the replace-sorting heuristic k was equal to 10. We compared the mentioned
algorithms with (1+1)-EA [9] because in [32] it showed the best overall perfor-
mance among different algorithms for minimization of the considered function.

All computational experiments were conducted with the time limit of 1 day on
one node of the computing cluster “Academician V.M. Matrosov” [7], equipped
with 2 × 18-core Intel Xeon E5-2695 CPUs and 128 Gb of RAM. Note, that the
implementation of the objective function is multithreaded, so at any moment all
36 CPU cores were employed to calculate the function’s value.
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In the following subsections, we describe the chosen test problems, show
results of the experimental evaluation of proposed heuristics, and discuss the
obtained results.

4.1 Test Problems

In [32], four hard pseudo-Boolean black-box optimization problems were stud-
ied using the objective function briefly described in the previous section. Each
of them is in fact a problem of finding a decomposition set with low runtime
estimation for a given conjunctive normal form (CNF). Every such CNF in turn
encodes a SAT-based cryptanalysis [3] problem for a certain stream cipher [18].
In particular, four stream ciphers were studied: Trivium, Grain v1, Mickey, Rab-
bit. In [32], it was shown that Mickey and Rabbit do not suit well for this type of
SAT-based cryptanalysis. That is why for the present study we considered only
the optimization problems for Trivium [6] and Grain v1 [12]. A stream cipher’s
state is stored in registers, and its output is called keystream. The total size of
Trivium’s registers is 288 bits, while for Grain v1 it is 160 bits. Keystream sizes
were equal to 300 and 200, respectively.

We additionally considered two optimization problems for SAT-based crypt-
analysis problems of the following cryptographic keystream generators: the alter-
nating step generator (ASG) [10] with 192-bit total size of registers (keystream
size is 200); the Wolfram generator [28] with 256-bit total size of registers
(keystream size is 512).

The following variant of cryptanalysis was considered: given a known
keystream of a stream cipher (or a keystream generator), to find the initial state
of registers that was used to produce this keystream. CNFs for all considered
problems were constructed by the Transalg tool [24]. The CNFs for Trivium and
Grain v1 were taken from [32], while for ASG-192 it was taken from [30]. As for
Wolfram-256, it was constructed specifically for the present study.

Similarly to [32], in our experiments we limited the search space for all con-
sidered problems to only include the subsets of the set containing the variables
corresponding to initial register’s state, thus it was of size 2288 for Trivium;
2160 for Grain v1; 2192 for ASG-192; 2256 for Wolfram-256. Following [32], as a
starting point for every considered optimization algorithm we used a set of all
Boolean variables that encodes the initial states of the corresponding registers.

4.2 Improving (1+1)-EA by Memory Heuristic

(1+1)-EA can actually generate a new point that will coincide with the point
at which an iteration started. In [32] we detected such a situation directly, i.e.
without memory usage. In [21] it was proposed to permanently store all points
processed by (1+1)-EA in order to not calculate the objective function from
[26] more than once in any point. We improved (1+1)-EA in the same way in
application to the objective function from [32]. It means that the direct detect-
ing was augmented by the memory usage. The improved version is further called
(1+1)-EA memory. All processed points are stored in an associative array, where
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a point representation as a Boolean vector is an array key, while a corresponding
array value is an objective function value in this point. Let us further refer to
this simple heuristic as to memory heuristic. We implemented the associative
array using the std::map class from the C++ language, for which both inser-
tion and lookup operations have logarithmic complexity. It might be better to
use std::unordered map because for it both insertion and lookup operations have
constant average case complexity (albeit it requires more memory). Nevertheless,
even for std::map the required computational resources were negligible. Experi-
ments show that if an optimization algorithm is run for 1 day, the maintaining
of the memory heuristic takes less than 1 s. The memory heuristic was also used
in both SHC-ARR-random and SHC-ARR-sorted (see Subsect. 2.2).

Since the objective function is stochastic [32], in all further experiments 3
runs of an optimization algorithm on a given problem are conducted. Table 1
presents the following data for (1+1)-EA memory: (1) the number of points in
which the objective function was computed; (2) the number of points skipped via
the memory heuristic. From the table it follows that the memory heuristic makes
it possible to skip about 50% of already processed points. Note that only those
points whose repetitions were detected by an associative array are considered as
skipped. If we had additionally counted points whose repetitions were detected
directly (see the explanation above), then the number of skipped points would
have greatly increased.

4.3 Analysis of Add-Remove-Sorting and Replace-Sorting
Heuristics

We compared SHC-ARR-random, SHC-ARR-sorted (see Subsect. 2.2), (1+1)-
EA (in its original form), and (1+1)-EA memory on four considered optimiza-
tion problems. The results are shown in Fig. 1. Three runs of every algorithm are
marked with 0, 1, and 2. Here x-axis shows the number of the objective func-
tion’s calculations elapsed from the start of a run, while y-axis shows updates of
the current best known objective function value. In Table 2, for each pair (algo-
rithm, problem) the final objective function value of the best run (out of 3) is
shown.

Table 1. The number of calculated and skipped points for all runs of the (1+1)-
EA memory algorithm.

Problem Run 1 Run 2 Run 3

Calculated Skipped Calculated Skipped Calculated Skipped

Trivium 7545 7075 8342 6717 9486 8243

Grain v1 7155 4446 6676 7165 6995 5438

Wolfram-256 8372 5362 9272 5875 9013 4347

ASG-192 14222 14928 13833 13526 16438 18288
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Table 2. Final objective function values found by the optimization algorithms in their
best runs. The best result (among all algorithms) for every problem is marked with
bold.

Problem (1+1)-EA (1+1)-EA memory SHC-ARR-random SHC-ARR-sorted

Trivium 5.99e+41 4.68e+41 3.35e+42 4e+41

Grain v1 1.08e+31 2.19e+30 2.95e+30 1.63e+30

Wolfram-256 1.47e+14 3.78e+06 1.46e+07 3.69e+06

ASG-192 3.63e+15 4.54e+14 8.83e+13 8.97e+13

It is clear that SHC-ARR-sorted shows very good results. In particular, it
outperforms the competition (comparing results of the best runs) on 3 problems
out of 4. Also, it shows more stable results, i.e. its runs show less variation
in results (compared to other algorithms) and reach very close records. This
advantage allows one to safely run SHC-ARR-sorted only once on a considered
problem, while (1+1)-EA usually requires several runs due to high variation in
results.

It turned out that both SHC algorithms are much less affected by the mem-
ory heuristic compared to (1+1)-EA. In all runs, less than 1% of points were
repeated. Thus it can be concluded, that SHC-ARR-sorted showed such good
and stable results mainly due to the sorting heuristics.

As it was stated in Sect. 3, the function computation can be interrupted in
some points due to the time limit. We analyzed how often the function was inter-
rupted on the considered problems when SHC-ARR-sorted was run. It turned
out, that on Grain v1 the amount of interruptions is comparable to the amount
of successful calculations; on Trivium the amount of successful calculations was
6x–10x less than the amount of interruptions; on Wolfram-256 it was 15x–22x
less; on ASG-192 it was 30x–60x less.

We also compared SHC-ARR-random and SHC-ARR-sorted by indexes of
those points in neighborhoods on which the best known value of the objective func-
tion was updated. For this purpose we used a cumulative function Index cumul,
whose value for a given serial number x of an update is the summation of indexes
of all updates with serial number ≤ x. The comparison is presented in Fig. 2. The x-
axis shows serial numbers of updates, the y-axis shows values of Index cumul. From
this figure it is clear that the combination of the proposed add-remove-sorted and
replace-sorted heuristics allows the simple hill climbing algorithm to find new good
points in a given neighborhood faster.
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Fig. 1. Comparison of all considered optimization algorithms. The x-axis shows the
number of the objective function’s calculations elapsed from the start of a run, y-axis
shows updates of the current best known objective function value.

4.4 Discussion

From the presented results it follows that, when improved by both proposed
heuristics, simple hill climbing shows very good and stable results. This algo-
rithm outperformed (1+1)-EA and a basic simple hill climbing on 3 considered
problems out of 4. Note, that all analyzed algorithms were improved by the
memory heuristic.

As a result of our study, for two optimization problems, ASG-192 and
Grain v1, better record values of the objective function were found compared to
previously published results. In particular, in [30] for ASG-192 the best value
was 2.64e+15, while in the present study it is 8.83e+13. For Grain v1, we found
the record point corresponding to 1.63e+30, while in [32] it was 2.96e+30. Our
result for Trivium is slightly worse than the best published one. As for Wolfram-
256, to the best of our knowledge the corresponding optimization problem is
studied for the first time. Note, that earlier in [24] a much weaker variant of
Wolfram (with 128-bit secret key, i.e. Wolfram-128) was studied by SAT-based
cryptanalysis.
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Fig. 2. Comparison by indexes of the objective function record updates. The x-axis
shows the serial number of updates, the y-axis shows values of Index cumul.

5 Conclusions

In the present study we proposed two heuristics for neighborhood-based pseudo-
Boolean black-box optimization algorithms aimed at minimizing costly objec-
tive functions. These heuristics were used to improve the simple hill climbing
algorithm. The improved version showed the expected increase in performance
thanks to reducing the average number of function calculations between consecu-
tive improvements of records. An additional benefit of the proposed heuristics in
application to simple hill climbing consists in making the algorithm more stable.

In the future we are planning to apply the proposed heuristics to other
neighborhood-based optimization algorithms, such as tabu search. Also we
intend to study other costly pseudo-Boolean black-box objective functions.
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Abstract. The securities settlement process consists in delivering secu-
rities from one financial actor to another in exchange for payment in
currency. Each business day has a night-time settlement (NTS) period
when transactions (exchange of cash and/or security for payment) are
settled in batches. Banque de France is inter alia in charge of Math-
ematical Optimization Module (MOM) for the NTS period which is a
component of a large European platform. To reduce the number of failed
transactions some additional financial features can be triggered, such as
partial settlement of eligible transactions and provision of credit (auto-
collateralisation mechanism). MOM must settle as many transactions as
possible respecting all business constraints and taking advantage of these
financial features. Furthermore, MOM execution time is limited, the data
size is large (several hundred thousands of transactions over a billion
euro) and the number of transactions and their amounts require high
numerical precision. In this work we introduce the necessary financial
notions, explain the NTS process and formulate it as a discrete optimi-
sation model. We expose heuristic, mixed integer and linear programming
algorithmic approaches used to solve this large-scale problem. We present
results obtained on production data and discuss some perspectives.

Keywords: Application of OR in finance · Discrete large-scale
optimization · Mathematical programming · Heuristics

1 Introduction

From 2007 to 2015 four national central banks of Germany, France, Italy, and
Spain developed Target2Securities (T2S) platform to facilitate cross-border set-
tlement procedures among countries [10]. Currently, twenty-one Central Securi-
ties Depositories (CSD) - financial organizations holding securities - in twenty
European countries use the platform, which is multi-currency since 2018. Banque
de France is in charge of Mathematical Optimization Module (MOM) which
makes fully automated decisions regarding settlement of transactions during the
a night-time settlement (NTS) period by operations research (OR) algorithms.
Since 2015, MOM is operating and meeting the needs of market. This paper
addresses the optimisation problem related to the securities settlement process
in order to maximize the volume and amounts of settlements in Europe.
c© Springer Nature Switzerland AG 2020
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Different challenges had to be faced. Firstly, NTS problem (NTSP) has
stochastic nature, meaning that the input data: number and type of transactions,
total amount to settle and available resources (securities, cash) vary significantly
from one business day to another. Thus, it is a challenge to tune the optimisation
algorithms and fix their settings to guaranty good quality settlement results for
each business day.

Secondly, all amounts are converted into elementary units of their related
currency (e.g., cents for euro) and expressed as large integer values (thousand
billions) that result in numerical precision issues. For example, a solution with
9 digits after the decimal point (scale of 9) might cause the loss of an impor-
tant amount of money in comparison with a solution with scale of 12. Even
if the ready-to-use solvers try to handle these numerical difficulties [3], linear
programming algorithms may return an optimal solution ineffective in reality.

Thirdly, since the problem size is large and MOM execution time is strictly
limited, we neither can address a mixed integer mathematical formulation
directly, nor use the exact optimization algorithms to get an optimal solution in
a reasonable time. Moreover, the solution quality is a major issue. Therefore, the
right equilibrium between execution time and optimality gap had to be found.

Finally, T2S platform is developed and run on different operating systems:
Windows for development and z/OS for production. The choice of ready-to-
use solvers and then the program behavior depend on the OS and computer
hardware.

The contribution of this work is a presentation for the first time of a settle-
ment framework that deals with heterogeneous financial assets (securities and
currencies) using OR approaches. Section 2 presents state of the art of related
applications. Section 3 introduces the main components of the NTS process,
its objectives, and gives an example to explain the notions used in the paper.
Section 4 gives a mathematical formulation of the NTSP. Section 5 introduces
algorithms used by MOM. Sections 6 reports and discusses the computational
results on real data: MOM’s efficiency in terms of percentage of settled volume,
settled amounts, and computational time. We conclude the paper with the future
development directions.

2 Related Works

Since the mid-20th century, financial institutions have extensively used OR to
define trading strategies, to value financial instruments, to solve the portfolio
optimisation problem, to measure bank efficiency, and to solve other financial
problems mentioned in [6,8]. Banking environment provides an appropriate con-
text for application of OR techniques. The decision process in this environment
is often fully automated, so that solutions obtained by algorithms are strictly
implemented with low human intervention. However, the challenge is to solve
the large associated optimisation problems handling large-amount transactions,
a lot of constraints and variables and to overcome numerical issues in limited
time. The aim is not necessarily to get an exact solution optimising some objec-
tive functions, but to produce feasible solutions of good quality quickly and
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consistently. In [3] authors give suggestions to tackle possible numerical and
ill conditioning issues when ready-to-use solvers are used for linear and mixed
integer problems.

To the best of our knowledge, there is no publication that exposes a solution
of securities settlement process operating within a real-world platform. Several
early works [1,4,5] explain organisation and operation of interbank payment
and settlement systems presenting simulations results. In [4,5] authors describe
a simulator implemented by Finnish central bank used for studying liquidity
needs, system risks, pricing policies, and settlement modes. In [1] authors present
a simulation-based approach to study relationships between settlement delays
and intraday liquidity usage for Norwegian Bank’s settlement system.

NTSP investigated in this paper may contain special cases of difficult combi-
natorial optimisation problems such as multidimensional knapsack problem and
subset-sum problem [9]. These problems formalise so-called gridlock situation
which is named bank clearing problem in financial context. This situation arises
when there is no sufficient resources on a balance to settle a transaction alone but
it might be possible to settle it simultaneously with a group of other ones, i.e.,
netting transactions, to bring the missing resources. So, the problem is to settle
as many transactions between participants as possible applying netting mecha-
nism. In [2] it was shown that the bank clearing problem is NP -complete when
the number of participants is more than two. In comparison with knapsack prob-
lems, in [2,7] it was proved that there is no polynomial ε-approximative algorithm
unless P = NP for this problem even in case of two participants. In [2] authors
discussed and developed several approximate efficient algorithms depending on
the number of participants in netting. Algorithms were tested on random data
generated in cooperation with a German bank. In [7] a new algorithm based
on graph representation of the problem was implemented and compared with
previous algorithm from [2] on data of Belarus interbank settlement center.

All works mentioned above do not consider securities-related transactions.
In [2] authors mentioned extension of their research for securities settlement
systems as a future perspective.

3 Main Components of NTSP

3.1 Securities and Cash Accounts

Each user of T2S platform has at least one securities account (SA) holding
different securities emissions and one cash account (CA) holding money of the
same currency. National Central Banks (NCBs) provide CAs to payment banks
for securities settlement which in turn put CAs at disposal of other financial
institutions. Legally, each SA and CA are located in accounting books of CSD
and NCB, respectively.

Each SA and CA are divided in several compartments called “security posi-
tions” (SPs) and “cash balances” (CBs) depending on financial usage purpose
of position and balance, respectively. For example, SP1 holds NOKIA bonds for
trades, SP2 holds NOKIA shares for collateral operations, both within a single SA.
We further suppose that each transaction debits or credits only one SP or CB.
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Balance state of SPs belonging to issuers of securities and CBs belonging to
central banks might be negative. In this case, transaction debiting the SP (CB)
can always be fully settled.

3.2 Transaction Definition

Each user of T2S platform has a role of seller and/or buyer and may transfer
only securities, or only cash, or securities against cash. A transaction is an agree-
ment between a buyer and a seller to exchange resources (cash and/or security).
Each transaction generates one or multiple movements of resources between bal-
ances and positions. Figure 1 presents T-account graphical representation that
visualises movements for transactions of different type, as existing in accounting
books, with debit side on the left, and credit side on the right. Figure 1 details
the following transaction types considered in this paper:

(a) DV P (b) PFOD (c) FOP

Fig. 1. Different types of business transactions.

– Delivery-Versus-Payment (DV P ). Securities are transferred from seller’s SP
to buyer’s SP and, simultaneously, cash is debited from buyer’s CB and cred-
ited to seller’s CB. In Fig. 1(a) 10 securities are debited from seller’s SP and
credited to buyer’s SP against the payment of 50 euros debited from buyer’s
CB and credited to seller’s CB.

– Payment-Free-Of-Delivery (PFOD). Cash is debited from seller’s CB and
credited to buyer’s CB. In Fig. 1(b) 20 euros are debited from seller’s CB and
credited to buyer’s CB.

– Free-Of-Payment (FOP ). Securities are transferred from seller’s SP to buyer’s
SP without compensation in cash. In Fig. 1(c) 10 securities are debited from
seller’s SP and are credited to buyer’s SP.

Transactions might be linked together by two types of links:
– “with”. Linked transactions must be settled together.
– “after”. A transaction might be settled only if a linked transaction has already

been settled.

One transaction may be involved in several links.
Each transaction has a priority for being settled. It is defined by two ele-

ments: a functional priority assigned by a T2S actor and time during which
transaction stays unsettled in T2S platform. MOM has to favour the settlement
of the oldest transactions with highest functional priority.
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3.3 T2S Platform Features

T2S platform has two financial features intended to reduce the number of failed
transactions.

Partial settlement functionality may be activated only for transactions
of types DV P and FOP . Under this functionality transaction quantity and
amount can be partially settled. This functionality is triggered if a transaction
cannot be fully settled because of lack of securities available on the debited SP.
Also, only transactions that meet thresholds criteria (minimum cash amount,
minimum quantity) might be partially settled.

Auto-collateralisation (shortly, ACO) mechanism is a credit operation
triggered when a participant (payment bank or its client) does not have enough
cash to fully settle a transaction. The principle is to lend some cash against
the pledge of some securities belonging to the participant to settle a transaction
immediately. To manage the credit risk associated with this mechanism there
are certain conditions:

– only certain securities may be eligible for collateralisation;
– amount of credit is calculated based on a daily price for each eligible security;
– maximum amount of credit might be limited;
– all credits must be reimbursed at the end of a business day.

To model these conditions there are two objects: credit memorandum bal-
ance (CMB) and securities position valuation (SPV ). They allow estab-
lishing the links between the cash and securities accounts of participants pro-
viding and receiving credit to control the movements of resources on the related
accounts. Depending on who owns and who uses a CA there are two types of
CMB:

primary CMB establishes a link between CA and SA, both belonging to a
payment bank. When there is not enough cash on the CA, then some credit
might be provided from a central bank account. Central bank sets ACO credit
limit for the payment bank. CMB logs amount of credit provided by central
bank and headroom - remaining amount that a payment bank can still use
without exceeding central bank ACO limit for current day.
secondary CMB establishes a link between CA of a payment bank and SA
of a client of the payment bank. In this case the client uses the bank’s CA for
its transactions. The client has authorised usage (AU) limit. When the AU
limit is reached, i.e., the client does not have anymore cash, then the bank
provides a limited credit up to ACO limit. These limits vary according to
the business needs, credit-worthiness of the client and legal rules of countries
involved. Secondary CMB logs AU and ACO limits, and their headrooms.

We model CMB as a vector (cmbtype, cbPcmb, cbRcmb, aui
cmb, acoicmb), where

cmbtype is a primary or secondary CMB; cbPcmb, cbRcmb are the CBs providing and
receiving the credit via ACO mechanism, respectively; aui

cmb (only in case of sec-
ondary CMB) is the initial AU headroom; acoicmb is the initial ACO headroom.
These components are input data.
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We model SPV as a vector (sspv, cmbspv, spPspv, spRspv, pspv, yq
spv, ya

spv),
where sspv is the security eligible for collateral; cmbspv is CMB linking with
a credit provider; spPspv, spRspv are the SPs providing and receiving the pledged
securities, respectively; pspv is a daily price of the security valuated for cmbspv to
calculate credit (or collateral amount); yq

spv is the quantity of pledged securities
(or collateral quantity); ya

spv is the amount of cash lent (or collateral amount).
Components sspv, cmbspv, spPspv, spRspv, and pspv are input data, whereas values
of yq

spv and ya
spv have to be found by MOM.

3.4 Assumptions

Without loss of generality, we exclude some business features from the paper,
however, MOM handles them properly. Here are some of them:

– SA (CA) may have multiple SPs (CBs);
– order in which SPs (CBs) of the same SA (CA) are debited or credited;
– different restriction types for SPs and CBs (e.g., “reserved”, “blocked” etc.);
– so-called “realignment chains” arising when there are cross-border transac-

tions and resulting in additional technical transactions;
– some other credit limits in case of secondary CMB;
– some types of transactions which are in minority during NTS process;
– so-called “reverse transactions” reimbursing provided collateral amount.

3.5 Example

In this paragraph we demonstrate some notions introduced in the previous sec-
tions on a simple example.

Let payment bank PB1 sell 10 securities A. A buyer, payment bank PB2,
possesses 50 securities A on its SP (securities on stock) and does not have any
cash on its CB, Fig. 2. Seller PB1 has to deliver 10 securities to buyer PB2
against 20 euros. This is a DV P business transaction between two payment
banks that generates two financial movements between CBs and SPs. Buyer’s SP
and CB are linked through a primary CMB cmb1. Let initial available headroom
acoicmb be 100 euros. Providing account cbPcmb is a CB of central bank, that is
its balance is not limited. The buyer’s corresponding SPV object is composed of
security A (sspv); primary cmb1 (cmbspv); buyer’s SP from where the pledged

Fig. 2. DV P business transaction.
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securities are taken (spPspv); NCB’s SP to receive the pledged securities (spRspv);
and security price (pspv), let it be 0.4 euro.

Since buyer PB2 does not have enough cash to acquire securities but it has
50 securities on its SP, the ACO-mechanism is triggered. Figure 3 demonstrates
the settlement process using the ACO-mechanism:

– collateral of 50 securities (yq
spv) is taken from the buyer’s SP and transferred

to the NCB’s SP linked via the CMB;
– ACO credit ya

spv of 20 euros (= 50·0.4) is granted and transferred from NCB’s
CB to buyer’s CB;

– ACO headroom is reduced to 80 euros (= 100 − 20).

ACO-mechanism creates one technical DV P transaction t to move the collateral
and the credit, respectively. This transaction must be settled together with the
DV P business transaction.

Fig. 3. Settlement using ACO-mechanism.

In real situation, the buyer may use the acquired securities as a collateral to
obtain enough cash (securities on flow). Also, it is possible to use both collateral
on flow and on stock composed of different securities. MOM manages both cases.

3.6 NTS Process

Figure 4 visualises NTS process which is a sequence of seven optimisation runs
R0−R6 operating with batches of transactions of different types, financial nature
and authorisation to be partially settled. Run R0 deals with only cash related
transactions that “feed” CBs with resources and is solved by a particular algo-
rithm out of MOM. Runs R1−R6 call MOM to settle cash and securities related
transactions. Batch of transactions eligible for each run is composed of ones
unsettled during a precedent run (dashed arrows in Fig. 4), new transactions
specific to each run, and transactions arrived after the start of the precedent run.
R4 is the largest in amount and volume, R5 solves newly entered and previously
unsettled transactions. Run R6 authorises partial settlement of all transactions
eligible for this functionality and failed to be fully settled before. Duration of
each run varies and depends on batches sizes, transactions types and algorithms
behaviors on given data. Execution time of each run is strictly limited to 15 min
for runs R1, R2, and R3; and 45 min for runs R4, R5, and R6; that is in total
2 h 30 min for all runs of MOM. Taking into account the specific characteristics
of runs, MOM uses different optimisation algorithms presented in Sect. 5.
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Fig. 4. Sequence of MOM runs during the NTS period.

4 Problem Formulation

In this section we introduce notations, variables and constraints to formulate
NTSP as a mixed integer program (MIP) taking into account the assumptions
listed in Sect. 3.4.

Input Data. Table 1 introduces the mathematical notations of input sets and
data used in NTSP.

Variables. Let us introduce the following

binary variables xt =

{
1, if transaction t is settled, ∀t ∈ T\Tp

0, otherwise;
continuous

variables xt the settlement ratio of transaction t that can be partially settled,
xt ∈ [0, 1],∀t ∈ Tp; and nonnegative integer variables

xnbL
spv the number of lots of securities sspv for spv,∀spv ∈ SPV;

xnbL
t the number of lots of securities st for transaction t,∀t ∈ Tp;

ya
spv the collateral amount associated with spv, ∀spv ∈ SPV;

yq
spv the quantity of pledged securities associated with spv, ∀spv ∈ SPV;

zacmb the collateral amount for cmb, ∀cmb ∈ CMB1 ∪ CMB2;
acoNeed

cmb the necessary ACO amount related to cmb, ∀cmb ∈ CMB1∪CMB2.

Objective Function. Let RA
k and RV

k be the settlement amount and volume
ratios for transactions of priority k, respectively:

RA
k =

∑
t∈Tk

rat · xt∑
t∈Tk

rat
, RV

k =

∑
t∈Tk

xt∣∣ Tk

∣∣ (1)

MOM’s has a twofold objective: to maximise the total settled amount and
to maximise the total settled volume. Thus, the objective function is a sum of
weighted ratios with respect to priority and with equal weights regarding settled
amount and volume as follows:

max
∑
k∈K

(RA
k + RV

k ) · wk. (2)
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Table 1. Input sets and data notations.

Input sets

CB+, CB− Sets of CBs not allowed and allowed to be negative, resp.

SP+, SP− Set of SPs not allowed and allowed to be negative, resp.

S Set of all securities

T Set of all transactions to settle

Tp Set of all transactions that might be partially settled, Tp ⊆ T

CMB1, CMB2 Sets of primary and secondary CMBs, resp.

SPV Set of SPVs

K = {1, . . . , 16} Set of possible transaction priorities; “1” is the highest priority

Tk, ∀k ∈ K Set of transactions having priority k, T =
⋃

k∈K Tk

{U,C} Set of modes to partially settle transactions

∀b ∈ CB+ ∪ CB−

Tc
b, Td

b Set of transactions crediting and debiting CB b, resp., Tc
b,T

d
b ⊆ T

∀cmb ∈ CMB1 ∪ CMB2

Tc
cmb , Td

cmb Set of transactions crediting and debiting cbRcmb, resp., Tc
cmb,T

d
cmb ⊆ T

SPVcmb Set of SPVs linked to cmb, SPVcmb ⊆ SPV

∀p ∈ SP

Tc
p, Td

p Set of transactions crediting and debiting SP p, resp., Tc
p,T

d
p ⊆ T

SPVc
p Set of SPVs where SP p is spRspv , ∀spv ∈ SPV

SPVd
p Set of SPVs where SP p is spPspv , ∀spv ∈ SPV

Input data

wk > 0, ∀k ∈ K Weight associated with priority k and used in the objective function

qp, ∀p ∈ SP+ ∪ SP− Initial quantity of securities available on SP p

qp ≥ 0, ∀p ∈ SP+

ab, ∀b ∈ CB+ ∪ CB− Initial amount of cash available on CB b

ab ≥ 0, ∀b ∈ CB+

cmb1b , ∀b ∈ CB Primary CMB, where CB b is cbRcmb

∀t ∈ T

rat ≥ 0 Remaining amount of cash to settle for transaction t

rqt ≥ 0 Remaining quantity of securities to settle for transaction t

st, ∀t ∈ T Security used in transaction t

kt ∈ K priority of transaction t

∀t ∈ Tp in case of partial settlement of transaction t

m
p
t ∈ {U,C} Partial settlement mode for transaction t

∀s ∈ S

qmin
s ≥ 0 Minimum quantity of securities s to settle

amin
s ≥ 0 Minimum amount valued for security s to settle

nmin
s Minimum number of securities s that can be pledged

nlot
s Number of securities s per lot

lWt1t2
=

{
1, if transaction t1 must be settled with transaction t2, ∀t1, t2 ∈ T \ Tp

0, otherwise

lAtatb
=

{
1, if transaction ta must be settled after transaction tb, ∀ta, tb ∈ T \ Tp

0, otherwise

∀spv ∈ SPV

cmbspv CMB associated with SPV spv, cmbspv ∈ CMB1 ∪ CMB2

sspv Security eligible for pledge under SPV spv

pspv > 0 Daily price of eligible security to calculate the credit amount

aui
cmb ≥ 0, ∀cmb ∈ CMB2 initial headroom of authorised usage of balance cbRcmb

acoicmb, ∀cmb ∈ CMB1 ∪ CMB2 initial ACO headroom associated with balance cbRcmb

acomin
cmb ≥ 0, ∀cmb ∈ CMB1 ∪ CMB2 minimum allowed amount of ACO related to cmb
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Notice that, the objective function does not take into account the quantity of
securities settled within each transaction. For each priority level, only transac-
tions with payment (type DV P , PFOD) may contribute to both ratios in (2),
whereas each transaction of type FOP may contribute only to volume ratio.

Constraints.

xt1 ≤ xt2+1−lAt1t2 , xt1 ≤ xt2+1−lWt1t2 , xt2 ≤ xt1+1−lWt1t2 , ∀t1, t2 ∈ T\Tp (3)

Constraints (3) guaranty the right settlement of linked transactions not autho-
rised for partial settlement.∑

t∈Td
b

rat · xt −
∑
t∈Tc

b

rat · xt − zacmb1b
≤ ab, ∀b ∈ CB+

(4)

Constraints (4) guaranty the non-negative final cash balance.∑
t∈Td

p

rqt · xt +
∑

spv∈SPVd
p

yq
spv −

∑
t∈Tc

p

rqt · xt −
∑

spv∈SPVc
p

yq
spv ≤ qp,∀p ∈ SP+

(5)

Constraints (5) guaranty the non-negative balance for each position p from SP+.

zacmb =
∑

spv∈SPVcmb

ya
spv, ∀cmb ∈ CMB1 ∪ CMB2 (6)

Constraints (6) calculate the total collateral amount for each cmb.

if acoNeed
cmb = 0 then zacmb = 0, ∀cmb ∈ CMB1 ∪ CMB2 (7)

Constraints (7) establish a link between zacmb and acoNeed
cmb : if there is no need

for ACO in cmb, then the corresponding collateral amount must be zero.

acoNeed
cmb =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ∀cmb ∈ CMB1 such that cbRcmb ∈ CB−

max{0,
∑

t∈Td
cmb

rat · xt −
∑

t∈Tc
cmb

rat · xt − acbRcmb
},

∀cmb ∈ CMB1 such that cbRcmb ∈ CB+

max{0,
∑

t∈Td
cmb

rat · xt −
∑

t∈Tc
cmb

rat · xt − max{0, aui
cmb}},

∀cmb ∈ CMB2

(8)

Constraints (8) calculate the lack of cash (acoNeed
cmb ) on the cash balance cbRcmb

receiving the credit.

zacmb ≤ max{0, acoicmb}, ∀cmb ∈ CMB1 ∪ CMB2 (9)
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Constraints (9) guaranty non-negative flow on the collateral headroom for each
cmb. If the initial ACO headroom is negative, then there is no collateral for this
cmb.∑

t∈Td
cmb

rat · xt −
∑

t∈Tc
cmb

rat · xt − zacmb ≤ max{0, aui
cmb},∀cmb ∈ CMB2

(10)

Constraints (10) guaranty non-negative headroom for each secondary cmb.

if yq
spv > 0 then yq

spv = xnbL
spv · nlot

sspv and yq
spv ≥ nmin

sspv , ∀spv ∈ SPV (11)

Constraints (11) respect the rules to pledge securities by lots and minimal col-
lateral quantity.

if yq
spv > 0 then ya

spv = pspv · yq
spv and ya

spv ≥ acomin
cmbspv , ∀spv ∈ SPV (12)

Constraints (12) calculate the amount brought in by the ACO and check that it
satisfies to the minimum threshold amount for cmb associated with spv.

if 0 < xt < 1 then rqt · xt ≥ qmin
st , ∀t ∈ Tp such that mp

t ∈ {U,C} (13)

if 0 < xt < 1 then rat · xt ≥ amin
st , ∀t ∈ Tp such that mp

t = C (14)

if 0 < xt < 1 then rqt · xt = nlot
st · xnbL

t , ∀t ∈ Tp such that mp
t = U (15)

Constraints (13)–(15) check the thresholds related to the different modes for
partial settlement. If transactions are of mode U or C, then the minimum quan-
tity threshold qmin

st must be respected in (13), and, also, the minimum amount
threshold amin

st for mode C in (14) or settlements by lots for mode U in (15).
Note that in (7)–(15) we keep “max” and “if . . . then” for two reasons. First,

to avoid overloading of MIP of NTSP with auxiliary variables and constraints
in the paper. Second, we use CPLEX to solve MIPs (and associated linear pro-
gramming problems) where relations “max” and “if . . . then” can be modeled
in two ways: via additional constraints with auxiliary binary variables and big
constants, or via “indicator” constraints introduced in CPLEX 10 [11]. In MOM
we use both ways.

5 Solution Approaches

MOM is composed of three solution phases and multiple algorithms as it is pre-
sented in Fig. 5. The NTSP MIP is too large to be solved directly by a general
purpose optimizer. Thus, the preparatory phase reduces the problem size. Filter-
ing procedure analyses all transactions and eliminates those that cannot or can
be obviously settled. E.g., if transaction t1 debits more resources than a CB (or
SP) has, including resources that might be brought by incoming transactions,
then xt1 = 0 and t1 is eliminated from optimization. If a CB is debited by the
only one transaction t2 and has enough cash to settle t2, then xt2 = 1 and t2 is
eliminated from optimization. The filtering procedure may also eliminate some
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Fig. 5. MOM’s algorithmic components

SPVs. E.g., if the quantity of all potentially pledged securities is low than nmin
sspv

then this spv is eliminated.
Clusterisation step splits all remaining transactions into subsets to solve

smaller problems. The subset size is limited, it is a parameter to tune. All linked
transactions must be in the same subset. Clusterisation is based on ISIN code
that uniquely identifies a specific security emission. On the other hand, each
cluster corresponds to a connected component in a securities graph with SPs
as nodes and transactions as arcs. We developed different strategies to allocate
available resources (amount of cash on a balance and quantity of securities on a
position) between subsets. One of them assigns the resources on a pro rata basis
in accordance with the total amount of transactions from the same subset.

A construction phase launches a suite of algorithms H1 and MIP with
parameters p1 and p, respectively, for each subset in parallel. Heuristic H1(p1)
considers unsettled transactions sorted in descending order according to prior-
ity and settlement ratios and tries to settle one after another. The attempt is
successful if there are enough available resources to settle a transaction taking
into account ACO credit. MIP (p) solves MIP (2)–(10) by CPLEX with the sub-
solution obtained by H1(p1) as initial solution. Parameter p allows (de)activating
certain cuts (additional inequalities) in MIP. An aggregation step unifies the sub-
solutions x̄1, . . . , x̄n to each subset. The obtained solution xA may still violate
constraints (11)–(15).

A reparation phase launches several sequences of algorithms in competition
to improve and get valid solution. Heuristic H2 verifies and makes all functional
constraints satisfied. If a constraint is not satisfied then H2 deselects settled
transactions one after another and propagates the impact on available resources
and other transactions. Parameters p3 and p4 specify whether constraints (11)–
(15) and others (mentioned in Sect. 3.4) must be respected or not. Heuristic
H1(p2) starts as H1(p1) and if the attempt to settle transaction t is failed,
H1(p2) does not stop but looks for an adjacent (debiting the same balance or
position) transaction to unsettle, bring some resource and improve the objective
function value. The first found transaction resulting in successful attempt is
selected. Parameter p2 regulates the number of adjacent transactions to explore.
This algorithm reminds a stochastic local search.

HLP iteratively solves the linear relaxation of (2)–(10) with additional con-
straints. Let xi be solution obtained at iteration i, kH = min{kt|t ∈ T, xi

t < 1}.
Then, at iteration i + 1, ∀t ∈ T | xi

t < 1 and kt = kH :
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1. if t /∈ Tp then variable xt is fixed to 0;

2. otherwise, if t ∈ Tp constraint xt ≤ � rqt·xi
t

nlot
st

� · nlot
st

rqt
is added to respect (15).

The process stops when xt is integer ∀t ∈ T \Tp. Note that model (2)–(10) has
always a trivial feasible solution (all variables are zero).

Several combinations of H1, H2, and HLP with different parameters are used
during the reparation phase. The best found solution is returned at the end.

6 Computational Results

MOM is coded in C++, uses CPLEX V.12.6.1 and runs on a mainframe com-
puter IBM z15/OS with 16 dedicated processors. We present the computational
results obtained on real data for 40 business days. In this data set, there were
around 340 000 transactions for the total amount of around EUR 457 billion in
average per day composed of 82% of type DV P , 16% of type FOP , and 2% of
type PFOD. Figure 6 shows input data, the daily amount and volume to settle
expressed as percentages over the considered period. Days 20 and 28 had the
lowest amount and volume, respectively, and day 40 was the largest in both
amount and volume to settle.
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Fig. 6. Input data

We present here the final simulation results obtained with the configurations
of algorithms and parameter settings in production conditions without detailing
how they were tuned. Figure 7 shows the following indicators for each day d:
the production computational time of MOM (right vertical axis), and the effi-
ciency settlement ratios (left vertical axis) for amount and volume, respectively,
calculated as follows:

SRA
d (x) =

∑
t∈Td

rat · xt∑
t∈Td

rat
· 100% and SRV

d (x) =

∑
t∈Td

xt∣∣ Td

∣∣ · 100%,
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Fig. 7. Night-time settlement process results

where Td is the total number of transactions during NTS period of business day
d. As an optimal solution is unknown, we compare SRA

d and SRV
d for MOM

solution x with their upper bounds in order to have an idea of the quality of
obtained solutions. We calculated two upper bounds: on the total settled amount
and volume separately, as follows:

– for each business day input data was gathered over all runs into one batch of
transactions, and MOM ran only one time on the aggregated data;

– any transaction might have been partially settled;
– only the functional constraints related to the thresholds on minimum settled

cash amount and lot size were omitted;
– two objective functions to maximise total settled amount and volume were

optimised separately.

Let xUBA and xUBV be the solutions corresponding to the upper bounds on
amount and volume, respectively. In Fig. 7 the ratios SRV

d (xUBV ), SRV
d (x),

SRA
d (xUBA), and SRA

d (x) are represented by curves UB VOLUME, PROD VOL-
UME, UB AMOUNT, and PROD AMOUNT for each day of the considered
period.

Each run of MOM has to be finished as fast as possible and provide good
quality solutions. The longest process took 1 h13 min and the average computa-
tion time was 36 min long.

Note that reaching 100% ratios is unlikely to occur due to the links between
transactions, their types and limited resources. MOM gives better results regard-
ing the settled volume as curve PROD VOLUME is above PROD AMOUNT.
In average, MOM is able to settle 85% of the total input volume versus 58%
of the total input amount. For the considered data set, the largest difference
between the upper bound and MOM settlement ratios was 10 points for amount
and 3 points for volume. These gaps are not large, however, we believe that they
depend on the topology of input data. As we do not know where the optima are
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located, it is difficult to say how much these gaps can be further reduced. Based
on the results observed, it is difficult to conclude whether there is strong corre-
lation between the size of instances (total input amount and volume) and the
observed settlement indicators. This question is still open and under research.

7 Conclusions

The presented securities and cash settlement framework implemented in MOM
and integrated in the innovational European platform allows managing hundred
thousands of transactions over a billion euro every day. This is achieved by the
combination of operations research optimisation approaches and state-of-the-
art software. Results indicate the good solution efficiency and settlement ratios
regarding amount and volume of transactions. However, when the new actors
joint T2S platform, they might change the data topology (nature of transactions,
links between them, etc.). Thus, to guarantee the robustness and high quality
results of MOM, some future directions include the study of data topology, its
impact on the calculation time and quality of the solutions obtained, and upgrade
of the MOM’s algorithms.
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2. Güntzer, M.M., Jungnickel, D., Leclerc, M.: Efficient algorithms for the clearing of
interbank payments. Eur. J. Oper. Res. 106(1), 212–219 (1998)

3. Klotz, E., Newman, A.M.: Practical guidelines for solving difficult linear programs.
Surv. Oper. Res. Manag. Sci. 18, 18–32 (2013)

4. Leinonen, H.: Liquidity, risks and speed in payment and settlement systems: a
simulation approach. Bank of Finland Studies (2005)

5. Leinonen, H., Soramaki, K.: Simulation: a powerful research tool in payment and
settlement systems. Paym. Syst. Worldw. 15, 28–33 (2004)

6. Manfred, G., Maringer, D., Schumann, E.: Numerical Methods and Optimization
in Finance. Academic Press, Cambridge (2019)

7. Shafransky, Y.M., Doudkin, A.A.: An optimization algorithm for the clearing of
interbank payments. Eur. J. Oper. Res. 171(3), 743–749 (2006)

8. Sutcliffe, B.J., Charles, Z., William, T.: Applying operations research techniques
to financial markets. Interfaces 33, 12–24 (2003)

9. Toth, P., Martello, S.: Knapsack Problems: Algorithms and Computer Implemen-
tations. Wiley, New York (1990)

10. ECB homepage. https://www.ecb.europa.eu/paym/target/target2/html/index-.
en.html. Accessed 14 Feb 2020

11. IBM homepage. https://www.ibm.com/support/pages/difference-between-using-
indicator-constraints-and-big-m-formulation. Accessed 14 Feb 2020

https://www.ecb.europa.eu/paym/target/target2/html/index-.en.html
https://www.ecb.europa.eu/paym/target/target2/html/index-.en.html
https://www.ibm.com/support/pages/difference-between-using-indicator-constraints-and-big-m-formulation
https://www.ibm.com/support/pages/difference-between-using-indicator-constraints-and-big-m-formulation


A Stable Alternative to Sinkhorn’s
Algorithm for Regularized

Optimal Transport

Pavel Dvurechensky1,3(B) , Alexander Gasnikov2,3 , Sergey Omelchenko2 ,
and Alexander Tiurin4

1 Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
pavel.dvurechensky@gmail.com

2 Moscow Institute of Physics and Technology, Moscow, Russia
3 Institute for Information Transmission Problems RAS, Moscow, Russia

4 National Research University Higher School of Economics, Moscow, Russia

Abstract. In this paper, we are motivated by two important applica-
tions: entropy-regularized optimal transport problem and road or IP traf-
fic demand matrix estimation by entropy model. Both of them include
solving a special type of optimization problem with linear equality con-
straints and objective given as a sum of an entropy regularizer and a lin-
ear function. It is known that the state-of-the-art solvers for this problem,
which are based on Sinkhorn’s method (also known as RSA or balancing
method), can fail to work, when the entropy-regularization parameter
is small. We consider the above optimization problem as a particular
instance of a general strongly convex optimization problem with linear
constraints. We propose a new algorithm to solve this general class of
problems. Our approach is based on the transition to the dual problem.
First, we introduce a new accelerated gradient method with adaptive
choice of gradient’s Lipschitz constant. Then, we apply this method to
the dual problem and show, how to reconstruct an approximate solution
to the primal problem with provable convergence rate. We prove the rate
O(1/k2), k being the iteration counter, both for the absolute value of the
primal objective residual and constraints infeasibility. Our method has
similar to Sinkhorn’s method complexity of each iteration, but is faster
and more stable numerically, when the regularization parameter is small.
We illustrate the advantage of our method by numerical experiments for
the two mentioned applications. We show that there exists a thresh-
old, such that, when the regularization parameter is smaller than this
threshold, our method outperforms the Sinkhorn’s method in terms of
computation time.
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First-order methods · Accelerated gradient descent · Algorithm
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method · Sinkhorn’s fixed point algorithm · Entropy-regularized
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1 Introduction

The main problem, we consider, is convex optimization problem of the following
form

(P1) min
x∈Q⊆E

{f(x) : A1x = b1, A2x − b2 ∈ −K} ,

where E is a finite-dimensional real vector space, Q is a simple closed convex
set, A1, A2 are given linear operators from E to some finite-dimensional real
vector spaces H1 and H2 respectively, b1 ∈ H1, b2 ∈ H2 are given, K ⊆ H2

is some cone, f(x) is a γ-strongly convex function on Q with respect to some
chosen norm ‖ · ‖E on E. The last means that, for any x, y ∈ Q, f(y) ≥ f(x) +
〈∇f(x), y − x〉 + γ

2 ‖x − y‖2E , where ∇f(x) is any subgradient of f(x) at x and
hence is an element of the dual space E∗. Also we denote the value of a linear
function λ ∈ E∗ at x ∈ E by 〈λ, x〉.

We are motivated to consider the described class of problems by two partic-
ular applications. The first one comes from transportation research and consists
in recovering a matrix of traffic demands between city districts from the infor-
mation on population and workplace capacities of each district. As it is shown in
[23], a natural model of districts’ population dynamics leads to an entropy-linear
programming optimization (see (9) below for the precise formulation) problem
for the traffic demand matrix estimation. In this case, the objective function in
(P1) is a sum of an entropy function and a linear function. It is important to
note also that the entropy function is multiplied by a regularization parameter
γ and the model is close to reality, when the regularization parameter is small.
The same approach is used in IP traffic matrix estimation [54]. Close problems
arise also in more complicated congestion traffic modelling [4].

The second application is the calculation of regularized optimal transport
(ROT) between two probability measures introduced in [12]. The idea is to reg-
ularize the objective function in the classical optimal transport linear program-
ming problem [31] by entropy of the transportation plan. This leads to the same
type of problem with a regularization parameter as in the traffic demands matrix
estimation. For the detailed problem statement, see (9). As it is argued in [13],
for the case of discretization of continuous probability measures, entropy regu-
larization allows to obtain a better approximation for the optimal transportation
plan than the solution of the original linear programming problem. At the same
time, the regularization parameter γ should be small. Otherwise, the solution
of the regularized optimal transport problem will be a bad approximation for
the original optimal transport problem. To sum up, in both applications, it is
important to solve regularized problems with small regularization parameter.
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The problem statement (P1) covers many other applications besides men-
tioned above. For example, general entropy-linear programming (ELP) problem
[20] arises in econometrics [24], modeling in science and engineering [32]. Such
machine learning approaches as ridge regression [28] and elastic net [55] lead to
the same type of problem.

1.1 Related Work

Sinkhorn’s, RSA or Balancing Type Methods. Special types of Problem
(P1), such as traffic matrix estimation and regularized optimal transport, have
efficient matrix-scaling-based solvers such as balancing algorithm, [8], Sinkhorn’s
method, [12,46], RAS algorithm [30]. Strong points of these algorithms are fast
convergence in practice and easy parallel implementation. At the same time,
these algorithms are suitable only for Problem (P1) with special type of linear
equality constraints. A generalization for a problem with a special type of linear
inequalities constraints was suggested in [6], but without convergence rate esti-
mates. Recently, [11] extended the approach of [12] for other special classes of
entropy-minimization problems.

The problem of instability of the matrix-scaling approach for problems with
small regularization parameter was addressed in [44], but the proposed tech-
niques are less suitable for parallel computations than the initial algorithm.
There is a proof of linear convergence of the Sinkhorn’s method [21], but the
theoretical bound is much worse than the rate in practice and theoretical rate is
obtained in terms of convergence in a special metric, which is hard to interpret.
The papers [2,18,27,35] analyse complexity of the Sinkhorn’s algorithm to find
an approximate solution to the regularized and non-regularized optimal trans-
port problem. In particular, they show that the regularization parameter needs
to be of the order of the desired accuracy, which can lead to the instability of
the Sinkhorn’s algorithm. An alternative matrix scaling algorithm was proposed
in [1] together with theoretical analysis, but this method seems to be hard to
implement in practice and no experimental results were reported.

In any case, all the mentioned algorithms are designed for a special instance
of Problem (P1).

First-Order Methods for Constrained Problems. We consider Problem
(P1) in large-scale setting, when the natural choice is some first-order method.
Due to the presence of linear constraints, the applicability of projected-gradient-
type methods to the primal problem is limited. Thus, the most common approach
involves construction of the dual problem and primal-dual updates during the
algorithm progress. There are many algorithms of this type like ADMM [7,25]
and other primal-dual methods [5,9,19], see the extensive review in [48]. As it
is pointed in [48], these methods have the following drawbacks. They need the
tractability assumption of the proximal operator for the function f and some
additional assumptions. These methods don’t have appropriate convergence rate
characterization: if any, the rates are non-optimal and are either only for the dual
problem or for some weighted sum of primal objective residual and linear con-
straints infeasibility. In [48], the authors themselves develop a good alternative,
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based only on the assumption of proximal tractability of the function f , but
only for problems with linear equality constraints. This approach was further
developed in [53] for more general types of constraints. The key feature of the
algorithm developed there is its adaptivity to the unknown level of smoothness in
the dual problem. Nevertheless, the provided stopping criterion, which is based
on the prescribed number of iterations, requires to know all the smoothness
parameters. Further, in [49], the authors propose algorithms with optimal rates
of convergence for a more general class of problems, but, for the case of strongly
convex f , they assume that it is strongly convex with respect to a Euclidean-type
norm. Thus, their approach is not applicable to entropy minimization problems,
which are our main focus.

An advanced ADMM with provable convergence rate with appropriate con-
vergence characterization was proposed in [41], but only for the case of equality
constraints and Lipschitz-smooth f , which does not cover the case of entropy
minimization. A general primal-dual framework for unconstrained problems was
proposed in [14], but it is not applicable in our setting. An adaptive to unknown
Lipschitz constant algorithm for primal-dual problems was developed in [36],
but the authors work with a different from our problem statement and the case
of strongly convex objective is considered only in Euclidean setting, which also
does not cover the case of entropy minimization.

Several recent algorithms [10,17,22,26,34,39,42] are based on the application
of accelerated gradient method [37,38] to the dual problem and have optimal
rates. At the same time, these works do not consider general types of constraints
as in Problem (P1). Also the proposed algorithms use, as an input parameter,
an estimate of the Lipschitz constant of the gradient in the dual problem, which
can be very pessimistic and lead to slow convergence.

The idea of primal-dual accelerated gradient methods turned out to be quite
fruitful in the context of distributed decentralized optimization and it application
to Wasserstein baeycenter problem [15,16,29,33,43,50,51].

1.2 Contributions

1. In contrast to the existing methods for constrained problems in [3,5,7,9,10,
22,25,34,36,42,48,49,53], we propose an algorithm simultaneously for Prob-
lem (P1) with general linear equality and cone constraints; with optimal rate
of convergence in terms of both primal objective residual and constraints
infeasibility; with adaptivity to the Lipschitz constant of the objective’s gra-
dient; with online stopping criterion, which does not require the knowledge
of this Lipschitz constant; with ability to work with entropy function as f .
The main difference with [18] is that here we consider more general cone
constraints and consider not only regularized optimal transport problems as
application.

2. In contrast to existing Sinkhorn’s-algorithm-based algorithms for solving
entropy-regularized optimal transport problems [1,2,6,8,12,30,44,46], we
provide an algorithm simultaneously with provable convergence rate, easy
implementability in practice and higher stability, when the regularization
parameter is small.
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3. In the experiments, we show that our algorithm is better than the Sinkhorn’s
method in situations of small regularization parameter in the primal problem,
which means that the dual problem becomes less smooth problem.

The rest of the paper is organized as follows. In Sect. 2, we introduce nota-
tion, definition of approximate solution to Problem (P1), main assumptions, and
particular examples of (P1) in applications. Section 3 is devoted to primal-dual
algorithm for Problem (P1) and its convergence analysis. Finally, in Sect. 4, we
present the results of the numerical experiments for regularized optimal trans-
port and traffic matrix estimation problems.

2 Preliminaries

For any finite-dimensional real vector space E, we denote by E∗ its dual. We
denote the value of a linear function λ ∈ E∗ at x ∈ E by 〈λ, x〉. Let ‖ ·‖E denote
some norm on E and ‖ · ‖E,∗ denote the norm on E∗ which is dual to ‖ · ‖E , i.e.
‖λ‖E,∗ = max‖x‖E≤1〈λ, x〉. In the special case, when E is a Euclidean space, we
denote the standard Euclidean norm by ‖ · ‖2. Note that, in this case, the dual
norm is also Euclidean. For a cone K ⊆ E, the dual cone K∗ ⊆ E∗ is defined as
K∗ := {λ ∈ E∗ : 〈λ, x〉 ≥ 0 ∀x ∈ K}. By ∂f(x) we denote the subdifferential
of a function f(x) at a point x. Let E1, E2 be two finite-dimensional real vector
spaces. For a linear operator A : E1 → E2, we define its norm as follows

‖A‖E1→E2 = max
x∈E1,u∈E∗

2

{〈u,Ax〉 : ‖x‖E1 = 1, ‖u‖E2,∗ = 1}.

For a linear operator A : E1 → E2, we define the adjoint operator AT : E∗
2 → E∗

1

in the following way 〈u,Ax〉 = 〈AT u, x〉, ∀u ∈ E∗
2 , x ∈ E1. We say that

a function f : E → R has a L-Lipschitz-continuous gradient if it is differ-
entiable and its gradient satisfies Lipschitz condition ‖∇f(x) − ∇f(y)‖E,∗ ≤
L‖x − y‖E , ∀x, y ∈ E. Note that, from this inequality, it follows that

f(y) ≤ f(x) + 〈∇f(x), y − x〉 +
L

2
‖x − y‖2E , ∀x, y ∈ E. (1)

Also, for any t ∈ R, we denote by �t the smallest integer greater than or equal
to t.

We characterize the quality of an approximate solution to Problem (P1) by
three quantities εf , εeq, εin > 0.

Definition 1. We say that a point x̂ is an (εf , εeq, εin)-solution to Problem (P1)
iff the following inequalities hold

|f(x̂) − Opt[P1]| ≤ εf , ‖A1x̂ − b1‖2 ≤ εeq, ρ(A2x̂ − b2,−K) ≤ εin. (2)

Here Opt[P1] denotes the optimal function value for Problem (P1),

ρ(A2x̂ − b2,−K) := max
λ(2)∈K∗,‖λ(2)‖2≤1

〈λ(2), A2x̂ − b2〉.
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Note that the last inequality in (2) is a natural generalization of linear constraints
infeasibility measure ‖(A2xk − b2)+‖2 for the case K = R

n
+. Here the vector v+

denotes the vector with components [v+]i = (vi)+ = max{vi, 0}.
The Lagrange dual problem to Problem (P1) is

(D1) max
λ∈Λ

{
−〈λ(1), b1〉 − 〈λ(2), b2〉 + min

x∈Q

(
f(x) + 〈AT

1 λ(1) + AT
2 λ(2), x〉

)}
.

Here we denote Λ = {λ = (λ(1), λ(2))T ∈ H∗
1 × H∗

2 : λ(2) ∈ K∗}. It is convenient
to rewrite Problem (D1) in the equivalent form of a minimization problem

(P2) min
λ∈Λ

{
〈λ(1), b1〉 + 〈λ(2), b2〉 + max

x∈Q

(
−f(x) − 〈AT

1 λ(1) + AT
2 λ(2), x〉

)}
.

It is obvious that
Opt[D1] = −Opt[P2], (3)

where Opt[D1], Opt[P2] are the optimal function value in Problem (D1) and
Problem (P2) respectively. The following inequality follows from the weak duality

Opt[P1] ≥ Opt[D1]. (4)

We denote
ϕ(λ) = ϕ(λ(1), λ(2)) = 〈λ(1), b1〉 + 〈λ(2), b2〉
+ max

x∈Q

(
−f(x) − 〈AT

1 λ(1) + AT
2 λ(2), x〉

)
.

(5)

Since f is strongly convex, ϕ(λ) is a smooth function and its gradient is equal
to (see e.g. [38])

∇ϕ(λ) =

(
b1 − A1x(λ)
b2 − A2x(λ)

)
, (6)

where x(λ) is the unique solution of the strongly-convex problem

max
x∈Q

(
−f(x) − 〈AT

1 λ(1) + AT
2 λ(2), x〉

)
. (7)

Note that ∇ϕ(λ) is Lipschitz-continuous (see e.g. [38]) with constant

L ≤ 1
γ

(‖A1‖2E→H1
+ ‖A2‖2E→H2

)
.

Previous works [10,22,34,42] rely on this quantity in the algorithm and use it
to define the stepsize of the proposed algorithm. The drawback of this approach
is that the above bound for the Lipschitz constant can be way too pessimistic.
In this work, we propose an adaptive method, which has the same complexity
bound, but is faster in practice due to the use of a “local” estimate for L in the
stepsize definition.
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We assume that the dual problem (D1) has a solution λ∗ = (λ∗(1), λ∗(2))T

and there exist some R1, R2 > 0 such that

‖λ∗(1)‖2 ≤ R1 < +∞, ‖λ∗(2)‖2 ≤ R2 < +∞. (8)

It is worth noting that the quantities R1, R2 will be used only in the convergence
analysis, but not in the algorithm itself.

To motivate the considered problem we describe two particular problems
which can be written in the form of Problem (P1).

Traffic demand matrix estimation, [52], and Regularized optimal
transport problem, [12].

min
X∈R

p×p
+

⎧⎨
⎩γ

p∑
i,j=1

xij ln xij +
p∑

i,j=1

cijxij : Xe = μ,XT e = ν

⎫⎬
⎭ , (9)

where e ∈ R
p is the vector of all ones, μ, ν ∈ Sp(1) := {x ∈ R

p :
∑p

i=1 xi =
1, xi ≥ 0, i = 1, ..., p}, cij ≥ 0, i, j = 1, ..., p are given, γ > 0 is the regularization
parameter, XT is the transpose matrix of X, xij is the element of the matrix X
in the i-th row and the j-th column. This problem with small value of γ is our
primary focus in this paper.

General entropy-linear programming problem, [20].

min
x∈Sn(1)

{
n∑

i=1

xi ln (xi/ξi) : Ax = b

}

for some given ξ ∈ R
n
++ = {x ∈ R

n : xi > 0, i = 1, ..., n}.

3 Primal-Dual Algorithm

In this section, we return to the primal-dual pair of problems (P1)–(D1). We
apply Algorithm 1 in the supplementary of [18] to Problem (P2) and incorporate
in the algorithm a procedure, which allows to reconstruct also an approximate
solution of Problem (P1). The main novelty of this paper is the primal-dual
analysis of this algorithm in the presence of inequality constraints. We choose
Euclidean proximal setup, which means that we introduce euclidean norm ‖ · ‖2
in the space of vectors λ and choose the prox-function d(λ) = 1

2‖λ‖22. Then, we
have V [ζ](λ) = 1

2‖λ − ζ‖22.
Our primal-dual algorithm for Problem (P1) is listed below as Algorithm 1.

Note that, in this case, the set Λ has a special structure

Λ = {λ = (λ(1), λ(2))T ∈ H∗
1 × H∗

2 : λ(2) ∈ K∗}
as well as ϕ(λ) and ∇ϕ(λ) are defined in (5) and (6) respectively. Thus, the step
(10) of the algorithm can be written explicitly.

ζ
(1)
k+1 = ζ

(1)
k + αk+1(A1x(λk+1) − b1), ζ

(2)
k+1 = ΠK∗

(
ζ
(2)
k + αk+1(A2x(λk+1) − b2)

)
,

where ΠK∗(·) denotes euclidean projection on the cone K∗.
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It is worth noting that, besides solution of the problem (7), the algorithm
uses only matrix-vector multiplications and vector operations, which made it
amenable for parallel implementation.

Algorithm 1. Primal-Dual Adaptive Similar Triangles Method (PDASTM)
Require: starting point λ0 = 0, initial guess L0 > 0, accuracy ε̃f , ε̃eq, ε̃in > 0.
1: Set k = 0, C0 = α0 = 0, η0 = ζ0 = λ0 = 0.
2: repeat
3: Set Mk = Lk/2.
4: repeat
5: Set Mk = 2Mk, find αk+1 as the largest root of the equation Ck+1 := Ck +

αk+1 = Mkα2
k+1.

6: Calculate λk+1 = (λ
(1)
k+1, λ

(2)
k+1)

T = (αk+1ζk + Ckηk)/Ck+1.
7: Calculate

ζk+1 = (ζ
(1)
k+1, ζ

(2)
k+1)

T
= arg min

λ∈Λ

{
1

2
‖λ − ζk‖2

2 + αk+1(ϕ(λk+1) + 〈∇ϕ(λk+1), λ − λk+1〉)
}

.

(10)

8: Calculate ηk+1 = (η
(1)
k+1, η

(2)
k+1)

T = (αk+1ζk+1 + Ckηk)/Ck+1.
9: until

ϕ(ηk+1) ≤ ϕ(λk+1) + 〈∇ϕ(λk+1), ηk+1 − λk+1〉 +
Mk

2
‖ηk+1 − λk+1‖2

2. (11)

10: Set x̂k+1 = 1
Ck+1

∑k+1
i=0 αix(λi) = (αk+1x(λk+1) + Ckx̂k)/Ck+1.

11: Set Lk+1 = Mk/2, k = k + 1.
12: until |f(x̂k+1) + ϕ(ηk+1)| ≤ ε̃f , ‖A1x̂k+1 − b1‖2 ≤ ε̃eq, ρ(A2x̂k+1 − b2, −K) ≤ ε̃in.
Ensure: The points x̂k+1, ηk+1.

Theorem 1. Let the main assumptions hold. Then Algorithm1 will stop not
later than k equals to

max

⎧⎨
⎩

⌈√
16L(R2

1 + R2
2)

ε̃f

⌉
,

⌈√
16L(R2

1 + R2
2)

R1ε̃eq

⌉
,

⎡
⎢⎢⎢

√
16L(R2

1 + R2
2)

R2ε̃in

⎤
⎥⎥⎥

⎫⎬
⎭ .

Moreover, no later than k equals to

max

⎧⎨
⎩

⌈√
32L(R2

1 + R2
2)

εf

⌉
,

⌈√
16L(R2

1 + R2
2)

R1εeq

⌉
,

⎡
⎢⎢⎢

√
16L(R2

1 + R2
2)

R2εin

⎤
⎥⎥⎥

⎫⎬
⎭ ,

the point x̂k+1 generated by Algorithm1 is an approximate solution to Problem

(P1) in the sense of (2) and ‖x̂k+1 − x∗‖ ≤
√

2εf

γ , where x∗ is a solution to
Problem (P1).
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Remark 1. Note that the result of Theorem 1 can be reformulated as follows.
For any k ≥ 1, the output (x̂k, ηk) of Algorithm 1 satisfies

−16L(R2
1 + R2

2)
(k + 1)2

≤ f(x̂k) − Opt[P1] ≤ f(x̂k) + ϕ(ηk) ≤ 16L(R2
1 + R2

2)
(k + 1)2

,

‖A1x̂k − b1‖2 ≤ 16L(R2
1 + R2

2)
R1(k + 1)2

, ρ(A2x̂k − b2,−K) ≤ 16L(R2
1 + R2

2)
R2(k + 1)2

,

‖x̂k − x∗‖E ≤ 8
k + 1

√
L(R2

1 + R2
2)

γ
.

4 Numerical Experiments

In this section, we focus on the problem (9), which is motivated by important
applications to traffic demand matrix estimation, [52], and regularized optimal
transport calculation, [12]. We provide the results of our numerical experiments,
which were performed on a PC with processor Intel Core i5-2410 2.3 GHz and
4 GB of RAM using pure Python 2.7 (without C code) under managing OS
Ubuntu 14.04 (64-bits). Numpy.float128 data type with precision 1e−18 and
with max element ≈ 1.19e+4932 was used. No parallel computations were used.
We compare the performance of our algorithm with Sinkhorn’s-method-based
approach of [12], which is the state-of-the art method for problem (9). We use
two types of cost matrix C and three types of vectors μ and ν.

Cost Matrix C. The first type of the cost matrix C is usually used in optimal
transport problems and corresponds to 2-Wasserstein distance. Assume that we
need to calculate this distance between two discrete measures μ, ν with finite
support of size p. Then, the element cij of the matrix C is equal to Euclidean
distance between the i-th point in the support of the measure μ and j-th point
in the support of the measure ν. We will refer to this choice of the cost matrix
as Euclidean cost. The second type the cost matrix C comes from traffic matrix
estimation problem. Let’s consider a road network of Manhattan type, i.e. dis-
tricts present a m×m grid. We build a m2 by m2 matrix D of pairwise Euclidian
distances processing the grid rows one by one and calculating euclidean distances
from the current grid element to all the others elements of the grid. Then, as it
suggested in [45], we form the cost matrix C as C = exp(−0.065D), where the
exponent is taken elementwise. We will refer to this choice of the cost matrix as
Exp-Euclidean cost.

To set a natural scale for the regularization parameter γ, we normalize in
each case the matrix C dividing all its elements by the average of all elements.

Vectors μ and ν. The first type of vectors μ and ν is normalized uniform random.
Each element of each vector is taken independently from the uniform distribution
on [0, 1] and then each vector is normalized so that each sums to 1, i.e.
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The second type of vectors is random images. The first p/2 elements of μ
are normalized uniform random and the second p/2 elements are zero. For ν
the situation is the opposite, i.e. the first p/2 elements are zero, and the second
p/2 elements are normalized uniform random. In our preliminary experiments
we found that the methods behave strange on vectors representing pictures from
MNIST dataset. We supposed that the reason is that these vectors have many
zero elements and decided to include the described random images to the exper-
iments setting. Finally, the third type are vectors of intensities of images of
handwritten digits from MNIST dataset. The size of each image is 28 by 28
pixels. Each image is converted to gray scale from 0 to 1 where 0 corresponds to
black color and 1 corresponds to white, then each image is reshaped to a vector
of length 784. In our experiments, we normalize these vectors to sum to 1.

Accuracy. We slightly redefine the accuracy of the solution and use relative
accuracy with respect to the starting point, i.e.

ε̃f = [Accuracy] · |f(x(λ0)) + ϕ(η0)|, ε̃eq = [Accuracy] · ‖A1x(λ0) − b1‖2,
where we used the fact that λ0 = η0 = 0 and there are no cone constraints in (9).

Adaptive vs Non-adaptive Algorithm. First, we show that the adaptivity
of our algorithm with respect to the Lipschitz constant of the gradient of ϕ
leads to faster convergence in practice. For this purpose, we use normalized
uniform random vectors μ and ν and both types of cost matrix C. We compare
our new Algorithm 1 with non-adaptive Similar Triangles Method (STM), which
has cheaper iteration than the existing non-adaptive methods [10,22,34,42]. We
choose m = 10, and, hence, p = 100, Accuracy is 0.05. For the Exp-Euclidean
cost matrix C, we use γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and, for Euclidean cost matrix
C, we use γ ∈ {0.02, 0.1, 0.2, 0.3, 0.4, 0.5}. The results are shown in Fig. 1. In
both cases our new Algorithm 1 is much faster than the STM. This effect was
observed for other parameter values, so, in the following experiments, we consider
PDASTM.

Fig. 1. The perfomance of PDASTM vs STM, Accuracy 0.05, Exp-Euclidean C (left)
and Euclidean C (right).

Warm Start. During our experiments on the images from MNIST dataset
PDASTM worked worse than on the normalized uniform random vectors.
Possible reason is the large number of zero elements in the former vectors
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(a lot of black pixels). So we decided to test the performance of the algorithms
on the random images vectors μ and ν. Also we decided to apply the idea
of warm start to force PDASTM to converge faster. As we know, Sinkhorn’s
method works very fast when γ is relatively large. Thus, we use it in this
regime to find a good starting point for the PDASTM for the problem with
small γ. Notably, the running time of Sinkhorn’s method is small in compar-
ison with time of ASTM running. We test the performance of PDASTM ver-
sus PDASTM with warm start on problems with Exp-Euclidean matrix C and
γ ∈ {0.001, 0.003, 0.005, 0.008, 0.01} and on problems with Euclidean matrix C
and γ ∈ {0.005, 0.01, 0.015, 0.02, 0.025}. The results are in Fig. 2. Other parame-
ters are stated in the figure. The experiments were run 7 times, the results were
averaged. As we can see, warm start accelerates the PDASTM. Similar results
were observed in other experiments, so, we made the final comparison between
the Sinkhorn’s method and PDASTM with warm start.

Fig. 2. The perfomance of PDASTM vs PDASTM with warm start, Accuracy 0.05,
Exp-Euclidean C (left) and Euclidean C (right).

4.1 Sinkhorn’s Method vs PDASTM with Warm Start

First we compare Sinkhorn’s method and PDASTM with warm start on the
problem with normalized uniform random vectors μ, ν and Euclidean cost matrix
C with different values of p ∈ {100, 196, 289, 400}, Accuracy ∈ {0.01, 0.05, 0.1},
and γ ∈ [0.005; 0.025]. On each graph we point the value of γ used for generating
a starting point for PDASTM with warm start by Sinkhorn’s method. Each
experiments was run 5 times and then the results were averaged. The results are
shown on the Figs. 3, 4.

For the Exp-Euclidean cost matrix C, we performed the same experiments.
For the space reasons, we provide the results on the Fig. 5 only for Accuracy
0.05. The results for other Accuracy values were similar.

In another series of experiments we compare the performance of PDASTM
with warm start and Sinkhorn’s method on the problem with images from
MNIST dataset and Euclidean cost matrix C. We run both algorithms for the
same set of γ values for 5 pairs of images. The results are aggregated by γ
and the performance is averaged for each γ. We take three values of Accuracy,
{0.01, 0.05, 0.1}. The results are shown on the Fig. 6.
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Fig. 3. The perfomance of PDASTM with warm start vs Sinkhorn’s method, Accuracy
0.05, Euclidean cost matrix C.

Fig. 4. The perfomance of PDASTM with warm start vs Sinkhorn’s method, Accuracy
0.01, Euclidean cost matrix C.
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Fig. 5. The perfomance of PDASTM with warm start vs Sinkhorn’s method, Accuracy
0.05, Exp-Euclidean cost matrix C.

Fig. 6. The perfomance of PDASTM with warm start vs Sinkhorn’s method, Euclidean
cost matrix C, MNIST dataset.
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As we can see on all graphs, for small values of γ, namely, smaller than some
threshold γ0, our method outperforms the state-of-the-art Sinkhorn’s method.
Note that, from [38], it follows that, for very small values of γ, less than some
threshold γ∗ = ε

4 ln p , a good approximation of the solution to the problem (9)
can be obtained by solution of the linear programming problem corresponding
to γ = 0. We point these thresholds γ∗ on the figures above. It should be noted
that the threshold γ0 is larger than γ∗. This means that it is better to use our
method, but not some method for linear programing problems.

Finally, we investigate the dependence of running time of PDASTM with
warm start on the problem dimension p. As we can see from the Fig. 7, the depen-
dence is close to quadratic, which was expected from the theoretical bounds. Also
this dependence is close to that of the Sinkhorn’s method.

Fig. 7. Dependence of running time from the problem dimension p.

Conclusion

In this article, we propose a new adaptive accelerated gradient method for con-
vex optimization problems and prove its convergence rate. We apply this method
to a class of linearly constrained problems and show, how an approximate solu-
tion can be reconstructed. In the experiments, we consider two particular applied
problems, namely, regularized optimal transport problem and traffic matrix esti-
mation problem. The results of the experiments show that, in the regime of
small regularization parameter, our algorithm outperforms the state-of-the-art
Sinkhorn’s-method-based approach. It would be interesting to extend the adap-
tive primal-dual methods for the stochastic setting [40] and for problems with
inexact model of the objective [47].
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Abstract. Conventional radial efficiency measurement models in data envel-
opment analysis are unable to produce appropriate efficiency scores for pro-
duction units lying outside the cone generated by the convex hull of the extreme
efficient production units. In addition, in the case of production technologies
with variable returns to scale, the efficiency scores measured from the input and
output sides are usually different. To solve these problems, the Russell measure
of efficiency, which takes both the inputs and outputs into account, has been
proposed. However, the conventional Russell efficiency is measured under the
least favorable conditions, rather than the general custom of measuring under the
most favorable ones. This paper develops a model to measure Russell efficiency
under the most favorable conditions in two forms, the average and the product.
They can be transformed into a second-order cone program and a mixed integer
linear program, respectively, so that the solution can be obtained efficiently.
A case of Taiwanese commercial banks demonstrates that they are more reliable
and representative than the radial measures. Since the most favorable measures
are higher than the least favorable measures, and the targets for making
improvements are the easiest to reach, they are more acceptable to the pro-
duction units to be evaluated.

Keywords: Data envelopment analysis � Russell measure � Radial measure �
Slacks-based measure

1 Introduction

Efficiency measurement is an important management task because it reveals the extent
to which the performance of a production unit, or more generally, a decision making
unit (DMU), has been unsatisfactory in the past and provides a direction for making
improvements in the future. Many ideas for measuring efficiency have been proposed
[14]. Since the seminal work of Charnes et al. [11], data envelopment analysis
(DEA) has been considered an effective technique for measuring the relative efficiency
of a set of DMUs that applies multiple inputs to produce multiple outputs.

Charnes et al.’s model [11], usually referred to as the CCR model, is applied to
production technologies with constant returns to scale (CRS). Banker et al. [7] developed
a modified model that allows for technologies with variable returns to scale (VRS). This
model is commonly referred to as the BCC model in the literature. The efficiencies

© Springer Nature Switzerland AG 2020
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measured from the CCR and BCCmodels are a form of radial measure. One weakness of
this type of efficiency measure is that the efficiency scores of the DMUs lying outside the
cone generated by the convex hull of the extreme efficient DMUs cannot be appropriately
assigned. The radial efficiency can be measured from either the input or output side. In
the case of the BCC model, there is another weakness. While the efficiencies measured
from the input and output sides are the same for the CCRmodel, they are usually different
for the BCC model. Which model should be used between the input and output sides
depends on the purpose of the evaluation. When there is no specific purpose, there is no
rule to follow in deciding which model to use.

One way to solve these problems is to use the Russell measure of efficiency [12, 13]
to take all the inputs and outputs into account. The corresponding model is nonlinear.
To obtain a linear model, Pastor et al. [20] proposed an enhanced Russell efficiency
measure. Tone [23] termed this measure the slacks-based measure (SBM).

One feature of the DEA methodology is it allows the DMUs being evaluated to
select the most favorable conditions by which to measure efficiency. This feature makes
this methodology widely accepted for performance evaluation. While the Russell
measures can solve the problems of inappropriate efficiency scores being assigned to
certain DMUs and different results being obtained from the input and output models,
they are calculated under the least favorable conditions for inefficient DMUs. In other
words, the target on the production frontier selected for measuring efficiency is the
farthest, rather than the general custom of being the closest, point to the DMU being
evaluated. The results are thus unfair to inefficient DMUs.

Various approaches for measuring efficiency based on the closest targets have been
proposed in the literature, starting with the works of Briec [8, 9]. The major differences
of the approaches are the ways in which the production frontier and distance are
defined. For example, Aparicio et al. [6] developed a mixed integer linear programming
model to find the closest target in the conventional production possibility set. Aparicio
and Pastor [4, 5] searched for the closest target in the extended facet production
possibility set defined by Olesen and Petersen [19]. Fukuyama et al. [15] investigated
the least-distance p-norm measures on an extended free disposable set based on the
work of Ando et al. [1]. Petersen [21] developed a model to find the direction with the
shortest distance to the production frontier. Aparicio [2] conducted a survey of the
literature on this topic.

In this paper, we develop a model to measure the most favorable Russell efficiency
based on the frontier used in the conventional way of measuring the least favorable
Russell efficiency. Gonzaléz and Álvarez [16] initiated this study with an input-oriented
Russell measure. Aparicio et al. [6] developed a model in the primal (envelopment form)
and dual (multiplier form) combined spaces to measure the non-oriented Russell mea-
sure. However, Aparicio et al. [3] showed that, while this model works correctly for non-
oriented measures, it cannot be successfully applied to input- or output-oriented mea-
sures, and they proposed a bilevel linear programming model. The model developed in
the current study has two forms, the average and the product. The former can be
transformed into a second-order cone program and the latter into a mixed integer linear
program such that both can be solved efficiently. Since more favorable efficiency mea-
sures imply higher efficiency scores and closer targets for inefficient DMUs to reach with
less effort, the results are more persuasive and acceptable to the DMUs being evaluated.
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2 Conventional Efficiency Measures

Suppose a set of n DMUs that applies m inputs Xi, i = 1, …, m to produce s outputs Yr,
r = 1, …, s. Let Xij and Yrj denote the ith input and rth output, respectively, of DMU j,
j = 1, …, n. The production possibility set constructed from these DMUs under vari-
able returns to scale is T = {(x, y) |

Pn
j¼1 kjXij � xi, i = 1, …, m,

Pn
j¼1 kjYrj � yr,

r = 1,…, s,
Pn

j¼1 kj = 1, kj � 0, j = 1,…, n}. The strongly efficient frontier of this set

is @SðTÞ = {(x, y) 2 T | x̂ � x, ŷ � y, and (x̂, ŷ) 6¼ (x, y) ) (x̂, ŷ) 62 T}, which is the
set of strongly efficient points of T. Theoretically, a DMU should select a point on the
strongly efficient frontier to measure efficiency. The BCC model [7] for measuring the
efficiency of DMU k in the envelopment form can be formulated from the input or
output side, as follows:

Input-orientation

hIk ¼ min: h� e
Xm
i¼1

s�i þ
Xs
r¼1

sþr

 !
ð1aÞ

s:t:
Xn
j¼1

kjXij þ s�i ¼ hXik; i ¼ 1; . . .;m

Xn
j¼1

kjYrj � sþr ¼ Yrk; r ¼ 1; . . .; s

Xn
j¼1

kj ¼ 1

kj; s
�
i ; s

þ
r � 0; j ¼ 1; . . .; n; i ¼ 1; . . .; m; r ¼ 1; . . .; s

h unrestricted in sign:

Output-orientation

1

hOk
¼ max: uþ e

Xm
i¼1

s�i þ
Xs
r¼1

sþr

 !
ð1bÞ

s:t:
Xn
j¼1

kjXij þ s�i ¼ Xik; i ¼ 1; . . .;m

Xn
j¼1

kjYrj � sþr ¼ uYrk ; r ¼ 1; . . .; s
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Xn
j¼1

kj ¼ 1

kj; s
�
i ; s

þ
r � 0; j ¼ 1; . . .; n; i ¼ 1; . . .; m; r ¼ 1; . . .; s;

u unrestricted in sign;

where e is a small non-Archimedean number used to avoid ignoring the unfavorable
factors when measuring efficiency. The input efficiency hIk and output efficiency hOk
need not be the same. When the convexity constraint

Pn
j¼1 kj = 1 is deleted, the BCC

model becomes the CCR model [11]. In this case, the input and output models produce
the same efficiency score, which is denoted as hCCRk in this paper.

One way to solve the problems caused by the non-Archimedean number and input-
output difference in efficiency measurement is to apply a non-radial measure, such as
the Russell measure of efficiency. The Russell measure under variable returns to scale
is calculated via the following model [12]:

Rmin
k ¼ min:

1
mþ s

ð
Xm
i¼1

hi þ
Xs
r¼1

1
ur

Þ ð2Þ

s:t:
Xn
j¼1

kjXij � hiXik; hi � 1; i ¼ 1; . . .;m

Xn
j¼1

kjYrj �urYrk; ur � 1, r ¼ 1; . . .; s

Xn
j¼1

kj ¼ 1

kj � 0; j ¼ 1; . . .; n:

The efficiency is defined as the average of individual factor efficiencies. The
constraints hi � 1 and ur � 1 are imposed to restrict the target points for evaluating
efficiency to those that dominate the DMU being evaluated. If an assumption of
constant returns to scale is desired, then one simply deletes the convexity constraintPn

j¼1 kj = 1.
The Russell measure defines efficiency as the average of the efficiencies of all input

and output factors. Pastor et al. [20] and Tone [23] defined efficiency as the product of
the arithmetic average of the efficiencies of the m inputs and the harmonic average of
the efficiencies of the s outputs in the form of:
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Qmin
k ¼ min:

1
m

Pm
i¼1 hi

1
s

Ps
r¼1 ur

;

subject to the same constraints as those in Model (2). Substituting hi with (Xik − s�i )/Xik

and ur with (Yrk + sþr )/Yrk, one obtains the following equivalent model:

Qmin
k ¼ min:

1� 1
m

Pm
i¼1 s

�
i =Xik

1þ 1
s

Ps
r¼1 s

þ
r =Yrk

ð3Þ

s.t:
Xn
j¼1

kjXij þ s�i ¼ Xik; i ¼ 1; . . .;m

Xn
j¼1

kjYrj � sþr ¼ Yrk; r ¼ 1; . . .; s

Xn
j¼1

kj ¼ 1

kj; s
�
i ; s

þ
r � 0; j ¼ 1; . . .; n; i ¼ 1; . . .;m; r ¼ 1; . . .; s:

This model is called the slacks-based measure (SBM) model in Tone [23]. The
advantage of this model over Model (2) is that Model (2) is a nonlinear program, while
this model is a fractional linear program, which can be linearized by applying a variable
substitution technique proposed in Charnes and Cooper [10].

Different from the radial measure that requires either all inputs to be reduced in the
same proportion h as in Model (1a) or all outputs to be expanded in the same pro-
portion u as in Model (1b), the Russell measure takes the inputs and outputs into
account at the same time, and the proportions hi and ur can be different for different
factors. More importantly, the projection point used to measure efficiency is on the
strongly efficient frontier. Pastor et al. [20] and Tone [23] proved that the Russell
efficiency measure of the product form is less than or equal to both the input and output
radial efficiency measures. In symbols, it is Qmin

k � hIk and Qmin
k � hOk .

The objective of Model (2) or Model (3) is to find the greatest rates for reducing the
inputs and expanding the outputs of the DMU being evaluated within the production
possibility set at the same time. The purpose of the model is actually to identify the
production frontier, rather than measuring efficiencies. The objective value, known as
the efficiency of the DMU, is a by-product of this frontier identification process.
However, since the objective function has a minimization direction, the efficiency
measured from this model is the lowest among all possible measures, which contradicts
the basic idea of DEA suggesting that efficiency is measured under the most favorable
conditions.
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3 Most Favorable Measures

The envelopment form of the BCC input model (1a) is intended to find the minimum
value for h to reduce the inputs of the DMU being evaluated such that the resulting
point is still in the production possibility set. The purpose is to identify a frontier facet
from the production possibility set based on which efficiency of this DMU is measured.
If this DMU lies in the cone generated by the convex hull of the extreme efficient
DMUs in the input space so that the slack variables are zero, then the target point
(
Pn

j¼1 kjXj,
Pn

j¼1 kjY j) = (hIkXk , Yk), where Xj = (X1j, …, Xmj) and Y j = (Y1j, …, Ysj),

reflects that its efficiency is hIk , which is a by-product of this process. Conceptually, one
should find the maximum value for h to be the most favorable efficiency measure after
all the frontier facets are identified. Due to the geometric property of the radial mea-
sures, the minimum and maximum values for h are the same. Consider six DMUs,
labelled as A*F in Fig. 1, which apply different combinations of inputs X1 and X2 to
produce one output Y. In measuring the efficiency of DMU D, the idea of the BCC
input model is to identify a frontier facet by reducing X1D and X2D in the same

proportion of h along the ray OD
�!

until it reaches the boundary of the production
possibility set at D̂. The minimum value for h, or the largest extent of contraction, is hIk,
which is the ratio of OD̂ to OD. After all the frontier facets are identified, the strongly
efficient frontier is then determined, and the efficiency is measured as the largest value
for h such that hD on the ray OD̂ intercepts the strongly efficient frontier in the region

of D’ to D”. Since the intersection of the ray OD
�!

with the strongly efficient frontier in
the region of D’ to D” is the unique point D̂, the minimum and maximum values of h
are the same.

In measuring the Russell efficiency, all inputs and outputs are allowed to contract
and expand in different proportions, respectively. The minimum and maximum values
for the efficiency in this case may not be the same. More specifically, the target point
found in the process of identifying the frontier facet via minimizing the distance
parameters may not be the same as that found in the process of maximizing the
parameters. For example, the efficiency of DMU D in Fig. 1 calculated from Model (2)
is actually the lowest that can be obtained by using the points on the strongly efficient
frontier in the region of D’ to D” as the target. The idea of the DEA technique,
however, is to measure the efficiency under the most favorable conditions. Following
this idea, one should search for a target in the region of D’ to D” that can produce the
highest efficiency. The procedure for accomplishing this task can be separated into two
phases, where Phase I is to identify the strongly efficient frontier and Phase II is to find
a point on the strongly efficient frontier that will produce the highest efficiency.
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To construct the strongly efficient frontier, all extreme efficient DMUs of the
production possibility set that span the full dimensional efficient facets are identified
first by applying any DEA model, e.g., Model (1a). Each strongly efficient frontier facet
is the convex hull of a set of m + s neighboring extreme efficient DMUs, provided the
hyperplane extended from all sides of this facet envelops all DMUs. Let E0 denote the
set of the indices of m + s extreme efficient DMUs such that the convex hull of these
m + s DMUs is a frontier facet F0. The frontier facet F0 can be expressed as F0 = {(x,
y) |
P

j2E0
kjXij = xi, i = 1, …, m,

P
j2E0

kjYrj = yr, r = 1, …, s,
P

j2E0
kj = 1, kj � 0,

j 2 E0}. The frontier hyperplane extended from this frontier facet is H0 = {(x, y) |P
j2E0

kjXij = xi, i = 1, …, m,
P

j2E0
kjYrj = yr, r = 1, …, s,

P
j2E0

kj = 1, kj unre-
stricted in sign, j 2 E0}. The mathematical expression of the frontier hyperplane H0

differs from the frontier facet F0 only in that the values of kj are allowed to be negative.
Since F0 is a frontier facet, the corresponding frontier hyperplane H0 must envelop all
n DMUs. In this case, every DMU d must have a projection point (target) on the
hyperplane H0 that dominates itself. The projection point for DMU d can be expressed

as (
P

j2E0
kðdÞj Xij,

P
j2E0

kðdÞj Yrj), where
P

j2E0
kðdÞj = 1 and kðdÞj are unrestricted in sign.

Since every DMU d is dominated by its projection point (
P

j2E0
kðdÞj Xij,

P
j2E0

kðdÞj Yrj),

we have
P

j2E0
kðdÞj Xij + sðdÞ�i = Xid , i = 1, …, m, d = 1, …, n and

P
j2E0

kðdÞj Yrj

− sðdÞþr = Yrd , r = 1, …, s, d = 1, …, n, where sðdÞ�i , sðdÞþr � 0.
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Fig. 1. Geometric interpretation of the efficiency measurement of various models.
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Using the DMUs in Fig. 1 to explain this, line segment BC is a frontier facet that can

be expressed as F = {Z | Z = kBB + kCC, kB + kC = 1, kB, kC � 0}. The entire line BC
$

is expressed as H = {Z | Z = kBB + kCC, kB + kC = 1, kB, kC unrestricted in sign}.

Since BC is a frontier facet, the corresponding line BC
$

must envelop all DMUs by having
nonnegative slacks. Consider four DMUs, A, D, C, and F, which can be projected to A”,

D”, C” = C, and F” on Line BC
$

, respectively, by fixing X1 and Y at their current values.

For DMU D, we have D” = kðDÞB B + kðDÞC C = (3, 1.9; 1)T, with kðDÞB = 0.8 and

kðDÞC = 0.2. Positive values for kðDÞB and kðDÞC indicate that D” is located on line segment

BC. The corresponding slack variables have nonnegative values of sðDÞ�1 = 0,

sðDÞ�2 = 4.5 − 1.9 = 2.6, and sðDÞþ1 = 0. For DMU C, we have C” = C, with kðCÞB = 0

and kðCÞC = 1, and all the slacks are zero. For DMU A, we have A” = kðAÞB B + kðAÞC C = (2,

2.1; 1)T, with kðAÞB = 1.2 and kðAÞC = −0.2, where kðAÞC is negative. Positive kðAÞB and

negative kðAÞC indicate that A” is located to the left of DMU B on line BC
$

. The corre-

sponding slacks are sðAÞ�1 = 0, sðAÞ�2 = 5 − 2.1 = 2.9, and sðAÞþ1 = 0, which are non-

negative. Finally, for DMU F, we have F” = kðFÞB B + kðFÞC C = (8, 0.9; 1)T, with

kðFÞB = −1.2 and kðFÞC = 2.2, where kðFÞB is negative. Negative kðFÞB and positive kðFÞC

indicate that F” is located to the right of DMU C on line BC
$

. The corresponding slacks

are sðFÞ�1 = 0, sðFÞ�2 = 1.75 − 0.9 = 0.85, and sðFÞþ1 = 0, which, again, are nonnegative.
Since it is not known beforehand which frontier facet of the strongly efficient

frontier will be selected by DMU k to find the target to measure efficiency, all frontier
facets must be considered. Let E denote the set of the indices of the extreme efficient
DMUs. We use the binary variable Bj to indicate whether or not an extreme efficient
DMU j is used to span the frontier facet. The conditions for DMU k to consider all
possible frontier facets to measure efficiency can be expressed as:X

j2E k
ðdÞ
j Xij þ sðdÞ�i ¼ Xid; i ¼ 1; . . .;m; d ¼ 1; . . .; n ð4:1Þ

X
j2E k

ðdÞ
j Yrj � sðdÞþr ¼ Yrd; r ¼ 1; . . .; s; d ¼ 1; . . .; n ð4:2Þ

X
j2E k

ðdÞ
j ¼ 1; d ¼ 1; . . .; n ð4:3Þ

sðdÞ�i ; sðdÞþr � 0; i ¼ 1; . . .;m; r ¼ 1; . . .; s; d ¼ 1; . . .; n ð4:4Þ

kðkÞj � 0; j 2 E ð4:5Þ

kðdÞj unrestricted in sign; j 2 E; d ¼ 1; . . .; n d 6¼ k ð4:6Þ
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�MBj � kðdÞj �MBj; j 2 E; d ¼ 1; . . .; n ð4:7ÞX
j2E Bj �mþ s ð4:8Þ

Bj 2 0; 1f g; j 2 E; ð4:9Þ

where M is a large number for allowing all possible kðdÞj values to appear. The frontier
facet spanned by the efficient DMUs corresponding to Bj = 1 is the facet for DMU k to
measure efficiency. Constraints (4.1)–(4.4), for d = k, and (4.5) require the assessed
DMU k to select a point on this facet to calculate efficiency. Constraints (4.1)–(4.4) and
(4.6) ensure that all DMUs are enveloped by the hyperplane extended from the frontier
facet.

The frontier hyperplane has a dimension of m + s. The sum of Bj is thus equal to
m + s. However, to account for the degenerate case where the number of extreme
efficient DMUs is less than m + s, we require

P
j2E Bj � m + s in Constraint (4.8).

For cases of constant returns to scale, the convexity constraint
P

j2E k
ðdÞ
j = 1 is not

needed. Moreover, since the frontier facets must pass through the origin, this implies
that the origin must always be used with the m + s − 1 of other efficient DMUs to
constitute the frontier facet. Thus, m + s in constraint (4.8) is changed to m + s − 1.

To measure the Russell efficiency based on the closest target to the assessed DMU,
one first applies Model (2), or any DEA model, to identify the extreme efficient DMUs,
with their indices comprising the set E. One then uses the following mathematical
program to calculate the efficiency of DMU k:

Rmax
k ¼ max:

1
mþ s

½
Xm
i¼1

ðXik � sðkÞ�i

Xik
Þþ

Xs
r¼1

ð Yrk

Yrk þ sðkÞþr

Þ� ð5Þ

s:t: Constraint Set ð4Þ:

The objective function is nonlinear, and the constraints are linear, in that some
binary variables are involved. This model can be solved efficiently by transforming it
into a second-order cone program, as proposed in Sueyoshi and Sekitani [22] or a
semidefinite program, as discussed in Halická and Trnovská [17].

Similarly, the Russell measure of the product form, i.e., the slacks-based measure,
with the target closest to the assessed DMU can be calculated via the following model:

Qmax
k ¼ max:

1� 1
m

Pm
i¼1 s

ðkÞ�
i =Xik

1þ 1
s

Ps
r¼1 s

ðkÞþ
r =Yrk

ð6Þ

s:t: Constraint Set ð4Þ:
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This model is a fractional mixed integer program. By applying the variable sub-
stitution technique proposed in Charnes and Cooper [10], with 1/

(1 + 1
s

Ps
r¼1 s

ðkÞþ
r =Yrk) = w, wkðdÞj = lðdÞj , wsðdÞ�i = tðdÞ�i , and wsðdÞþr = tðdÞþr , a linear

mixed integer program for the VRS case is obtained as follows:

Qmax
k ¼ max: w� 1

m

Xm
i¼1

tðkÞ�i

Xik
ð7Þ

s:t: wþ 1
s

Xs
r¼1

tðkÞþr

Yrk
¼ 1

X
j2E l

ðdÞ
j Xij þ tðdÞ�i ¼ wXid i ¼ 1; . . .;m; d ¼ 1; . . .; n

X
j2E l

ðdÞ
j Yrj � tðdÞþr ¼ wYrd; r ¼ 1; . . .; s; d ¼ 1; . . .; n

X
j2E l

ðdÞ
j ¼ w; d ¼ 1; . . .; n

tðdÞ�i ; tðdÞþr � 0; i ¼ 1; . . .;m; r ¼ 1; . . .; s; d ¼ 1; . . .; n

lðkÞj � 0; j 2 E

lðdÞj unrestricted in sign, j 2 E; d ¼ 1; . . .; n; d 6¼ k

�MBj � l dð Þ
j �MBj; j 2 E; d ¼ 1; . . .; nX

j2E Bj �mþ s

w� 0

Bj 2 0; 1f g; j 2 E;

This model is much easier than Model (6) to solve.

4 Some Properties

The most favorable Russell measures of efficiency have several properties. First, it is
noted that the conventional Russell measure of the product form, Rmin

k , is calculated
based on the target that is the farthest to the assessed DMU. It can be calculated by
changing the direction of optimization in Model (5) from maximization to minimiza-
tion although the model in this case is more complicated than Model (2). This is also
true for the product form of Model (6). We thus have the following theorem:
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Theorem 1. The most favorable Russell measures of efficiency, both the average and
product forms, are greater than or equal to the least favorable measures.

Second, every DMU uses a point on the strongly efficient frontier as the target to
measure efficiency. The constraints (4.1)–(4.4) for d = k and (4.5) in models (5) and
(6), where all Xik and Yrk are positive, ensure that their most favorable Russell mea-
sures, both the average and product forms, are always positive. This leads to the
following theorem:

Theorem 2. The most favorable Russell measures are always positive.
Third, models (2) and (3) use the average and product, respectively, of the input

and output efficiencies as the DMU efficiency. The output efficiency in Model (3) is a
harmonic average of the efficiencies of individual outputs, instead of the usual arith-
metic average. To make the two measures comparable, the Russell efficiency of the
average form can be defined as the average of the arithmetic average of the input
efficiencies and the harmonic average of the output efficiencies, that is,

R̂max
k ¼ 1

2
½ð1
m

Xm
i¼1

hiÞþ ð 1
1
s

Ps
r¼1 ur

Þ�:

Based on the arithmetic-geometric mean inequality stipulating that the arithmetic
mean is greater than or equal to the geometric mean, we have the following
relationship:

R̂max
k ¼ 1

2
½ð1
m

Xm
i¼1

ĥiÞþ ð 1
1
s

Ps
r¼1 ûr

Þ� � 1
2
½ð1
m

Xm
i¼1

h�i Þþ ð 1
1
s

Ps
r¼1 u

�
r
Þ�

�
1
m

Pm
i¼1 h

�
i

1
s

Ps
r¼1 u

�
r

� �1=2

�
1
m

Pm
i¼1 h

�
i

1
s

Ps
r¼1 u

�
r
¼ Qmax

k ;

where (ĥi, ûr) and (h�i , u
�
r ) are the optimal solutions corresponding to R̂max

k and Qmax
k ,

respectively. The last inequality is obtained due to the fact that the value in the
parentheses is less than or equal to one, and its square has a smaller value. This proves
the following theorem:

Theorem 3. When the output efficiency in the Russell measure of the average and
product forms is defined as the same, the Russell measure of the average form, R̂max

k , is
greater than or equal to that of the product form, Qmax

k .
Finally, in radial measures, the efficiency scores are difficult to interpret when some

slack variables have positive values. Geometrically, if a DMU lies in the cone gen-
erated by the extreme efficient DMUs, then all the slack variables will be zero when
using the radial model to measure efficiency. In this case, the radial input efficiency of a
DMU k can be measured via Model (5) with the constraints corresponding to DMU

k replaced with
P

j2S k
ðkÞ
j Xij = hXik, i = 1, …, m and

P
j2S k

ðkÞ
j Yrj = Yrk, r = 1, …, s,

and the objective function replaced with min h. If we change the direction of opti-
mization from minimization to maximization, we still obtain the same objective value
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because the ray emanating from the origin to DMU k intersects the frontier facet at only
one point. We thus have h� = min h = max h.

To compare the most favorable Russell measure with the radial input measure, we
can formulate the constraints corresponding to DMU k in Model (5) asP

j2S k
ðkÞ
j Xij = hiXik, hi � 1, i = 1,…, m and

P
j2S k

ðkÞ
j Yrj = urYrk, ur � 1, r = 1, …,

s, with the objective function of

Rmax
k ¼ max

1
mþ s

ð
Xm
i¼1

hi þ
Xs
r¼1

1
ur

Þ:

Since BCC input efficiency hIk is a special case of the average form of the Russell
measure for hi = h for all i, and ur = 1 for all r, we have

Rmax
k ¼ max

1
mþ s

ð
Xm
i¼1

hi þ
Xs
r¼1

1
ur

Þ�max
1

mþ s
ðmhþ sÞ�max h ¼ hIk:

Similarly, since BCC output efficiency hOk is a special case of the average form of
the Russell measure for hi = 1 for all i, and ur ¼ u for all r, we have

Rmax
k ¼ max

1
mþ s

ð
Xm
i¼1

hi þ
Xs
r¼1

1
ur

Þ�max
1

mþ s
ðmþ s

u
Þ�max

1
u
¼ hOk :

We thus have the following theorem:

Theorem 4. For DMUs lying in the cone generated by the convex hull of the extreme
efficient DMUs, the most favorable Russell measure Rmax

k is greater than or equal to
both the radial input measure hIk and output measure hOk .

This theorem also holds for production technologies of constant returns to scale.
Combined with the property where the conventional least favorable Russell measure
Qmin

k is less than or equal to both BCC input efficiency hIk and output efficiency hOk , we
have the following result for DMU k:

Qmin
k � hIk

hOk

( )
�Rmax

k :

Note that the second inequality holds only for DMUs lying in the cone generated by
the extreme efficient DMUs, while the first holds for all situations.
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5 Taiwanese Commercial Banks

In a study predicting the performance of banks, Kao and Liu [18] measured the effi-
ciencies of twenty-four Taiwanese commercial banks using total deposits, interest
expenses, and non-interest expenses as the inputs and total loans, interest income, and
non-interest income as the outputs.

By applying the conventional CCR model to the data in Kao and Liu [18], the
efficiencies of the twenty-four banks under constant returns to scale are calculated.
There are twelve banks that are efficient. Column two of Table 1 shows the results for
the twelve inefficient banks. The numbers in parentheses are the ranks of the banks
among those that are inefficient. In calculating the CCR efficiency, it is noted that only
Bank No. 2 of these twelve inefficient banks lies in the cone generated by the extremely
efficient banks. In other words, the other eleven banks have at least one slack variable
with positive values. Their efficiency scores are dependent on the values assigned to the
non-Archimedean number e. The rankings obtained from the CCR efficiency scores are
thus not reliable.

By applying Model (5) under constant returns to scale with the objectives of
minimization and maximization, the least and most favorable Russell measures of
efficiency of the average form for the twelve inefficient banks are calculated, respec-
tively. The results are shown in columns three and four of Table 1. As expected, the
most favorable measures are greater than the least favorable measures for all twelve
banks. The average of the most favorable measures of 0.8895, as shown in the last row,
is 7.84% higher than that of the least favorable measures of 0.8248. The rankings based
on the two measures are slightly different, with a mean absolute difference of 1.17
ranks.

Table 1. Efficiencies measured from different models for the twelve inefficient banks.

Bank Radial efficiency Russell efficiency

CCR Average form Product form (SBM)

hCCRk (rank) Rmin
k (rank) Rmax

k (rank) Qmin
k (rank) Qmax

k (rank)

1 0.9960 (1) 0.9571 (1) 0.9960 (1) 0.8964 (2) 0.9920 (1)
2 0.9498 (5) 0.9182 (3) 0.9905 (2) 0.8388 (3) 0.9810 (2)
5 0.9933 (2) 0.8532 (6) 0.8634 (8) 0.6985 (5) 0.7143 (7)
7 0.8894 (8) 0.7662 (9) 0.8705 (7) 0.3389 (11) 0.6462 (9)
8 0.7328 (12) 0.6837 (11) 0.7577 (12) 0.2642 (12) 0.5721 (12)
9 0.9877 (4) 0.9477 (2) 0.9644 (3) 0.8971 (1) 0.9290 (3)
11 0.9379 (6) 0.8592 (5) 0.9558 (4) 0.7271 (4) 0.9122 (4)
12 0.9910 (3) 0.8900 (4) 0.9501 (5) 0.6252 (7) 0.8763 (5)
15 0.8607 (9) 0.7445 (10) 0.8233 (9) 0.4195 (9) 0.6654 (8)
17 0.9333 (7) 0.7764 (8) 0.8076 (10) 0.4536 (8) 0.6269 (10)
21 0.8548 (10) 0.8176 (7) 0.9131 (6) 0.6280 (6) 0.8279 (6)
23 0.7593 (11) 0.6835 (12) 0.7819 (11) 0.3979 (10) 0.5804 (11)
Ave. 0.9072 0.8248 0.8895 0.5988 0.7770
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According to Theorem 4, the most favorable Russell measures of those DMUs
lying in the cone generated by the extreme efficient DMUs are greater than or equal to
their radial measures. This implies that Rmax

k in column four of Table 1 must be greater
than or equal to the corresponding hCCRk in column two. However, since only Bank
No. 2 is in the defined cone, this relationship only holds for six of the twelve inefficient
banks. The rankings based on Rmax

k are quite different from those based on hCCRk . The
largest difference between the two rankings occurs for Bank No. 5, with a difference of
six ranks. The mean absolute difference between the two rankings is 1.83 ranks. Due to
the effect of the positive slack values on the efficiency scores, the rankings based on
Rmax
k are more reliable than those based on hCCRk .
The product form of the least and most favorable Russell measures for the twelve

inefficient banks under CRS can be calculated via Model (7), with the objectives of
minimization and maximization, respectively. The results are shown in the last two
columns of Table 1. The latter is obviously greater than the former for every bank. The
average scores shown in the last row of Table 1 indicate that the latter is 29.76% higher
than the former. The rankings based on these two measures are also different, with a
mean absolute difference of 1.16 ranks.

Based on the theorem proved in Pastor et al. [20] and Tone [23], the least favorable
Russell measures of the DMUs must be less than or equal to their radial measures. By
comparing the numbers in columns two and five, this property is confirmed, and their
averages show that the latter is 34% lower than the former.

Another pair of measures worth comparing is the least favorable Russell measures
of the product form, Qmin

k , and the most favorable Russell measures of the average
form, Rmax

k . The former is the conventional SBM, which has the lowest efficiency
measures among all types of Russell measures, while the latter, in contrast, has the
highest efficiency measure. This is actually a consequence of Theorem 4. The numbers
in columns four and five show that Rmax

k is indeed greater than Qmin
k for every bank, and

the average of the former, 0.8895, is 48.5% higher than that of the latter, 0.5988. The
rankings based on the two measures differ not by much, with a mean absolute differ-
ence of 1.33 ranks. Since the efficiency measure of the former is higher, and the
corresponding target is closer to the assessed bank, making it easier to reach, it is more
acceptable to the banks being evaluated.

All the discussions in this example are based on the assumption of constant returns
to scale. Similar discussions can be made under the assumption of variable returns to
scale.

6 Conclusion

The Russell measure of efficiency was proposed to solve the problems of radial
measures of efficiency that cannot provide appropriate efficiency scores for inefficient
DMUs lying outside the cone generated by the convex hull of the extreme efficient
DMUs and different scores produced from the input and output models under variable
returns to scale. While the conventional Russell measures can be used to solve these
problems, they are the least favorable measures, which contradict the idea of DEA that
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efficiency should be measured under the most favorable conditions. Moreover, the
targets associated with the measures are more difficult for inefficient DMUs to reach to
become efficient. To amend this drawback, a model is developed in this paper to
calculate Russell measures based on the target that is closest to the assessed DMU.

Two forms of the Russell measure are considered, the average and the product. It is
proven that, first, the average form produces higher efficiency scores than the product
form when the output efficiency is defined in the same way. Second, the most favorable
Russell measures of the average form are greater than or equal to the radial measures
for DMUs lying in the cone generated by the extreme efficient DMUs. A case of
Taiwanese commercial banks confirms these findings. In real world applications, the
most favorable efficiency measures produce a target that requires least effort for an
inefficient DMU to reach to become efficient. The corresponding rankings provide
better information for the top management to make appropriate decisions. For these
reasons, the most favorable Russell measures are more reliable and representative, and
are more acceptable to the DMUs to be evaluated as their efficiency scores.
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Abstract. This paper considers an assessment and evaluation of the
pronunciation quality in computer-aided language learning systems. We
propose the novel distortion measure for speech processing by using
the gain optimization of the symmetrized Itakura-Saito divergence. This
dissimilarity is implemented in a complete algorithm for pronunciation
learning and improvement. At its first stage, a user has to achieve a sta-
ble pronunciation of all sounds by matching them with sounds of an ideal
speaker. At the second stage, the recognition of sounds and their short
sequences is carried out to guarantee the distinguishability of learned
sounds. The training set may contain not only ideal sounds but the best
utterances of a user obtained at the previous step. Finally, the word
recognition accuracy is estimated by using deep neural networks fine-
tuned on the best words from a user. Experimental study shows that
the proposed procedure makes it possible to achieve high efficiency for
learning of sounds and their sequences even in the presence of noise in
an observed utterance.

Keywords: Signal processing · Itakura-Saito divergence · Gain
optimization · Computer-aided language learning · Speech quality
assessment · Convolutional neural networks (CNN)

1 Introduction

The problem of pronunciation training and improvement appears in many prac-
tical tasks including foreign language learning [1], teaching to hearing-impaired
patients [2,3] and many other applications of computer-aided language learning
(CALL) [4,5]. A typical CALL tool records speech of a user, detects and diag-
noses mispronunciations in it, and suggests a way for correcting them [6]. The
most important task is a pronunciation quality evaluation. It is usually solved by
using modern speech recognition techniques [7,8]. Pronunciation scoring makes
it possible to automatically provide feedback on the overall pronunciation quality
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and to point to specific production problems [9]. For example, a goodness of pro-
nunciation measure [10] took into account sub-phonemic (senone) posteriors at
the output of deep neural network (DNN) together with the state transition prob-
abilities of hidden Markov model (HMM). The human scores of pronunciation’s
goodness at word or sentence levels correlate significantly with averaged frame-
level posteriors of senones estimated by multi-layer, stacked Restricted Boltzman
Machines [4]. The problem of pronunciation quality evaluation from the intona-
tion point of view in second language learning is studied in [11]. Speaker adaptive
training and a grammar-based decoding graph limited the search space to the
frequent errors types of the hybrid DNN-HMM in teaching the Arabic pronunci-
ation [12]. The paper [13] separates recognition from assessment stage by using
two different acoustic models. The paired phone-posteriors are incorporated as
input features into a neural net model for assessing learner’s pronunciation qual-
ity in [14]. Quality assessment is posed as a classification problem in [15], and a
joint model was proposed by exploring interdependencies of pronunciation and
its dependent factors using DNN and LSTM (Long-Short Term Memory).

Unfortunately, the above-mentioned methods cannot be applied if the sounds
produced by a user should be matched with sounds of ideal speakers. Indeed,
HMM and DNN models are trained on large speech corpora, which pronunci-
ation quality may be low, especially for initial quality assessment on phonetic
level [16]. In such case it is typical to directly compare speech signals using
appropriate dissimilarity measures between their spectrums [17]. Unfortunately,
the dissimilarity between the same sounds may be too high due to the known
speech variability [18] and the presence of noise [19–21] if the CALL system is
launched on a laptop so utterances are recorded with a built-in microphone.

Though conventional spectral normalization techniques [22,23] are useful,
they are still sensible to the level of noise in the input or reference signal. In order
to deal with this issue, in this paper, we improve the quality and noise robustness
of spectral distortions by using the gain optimization techniques [8,24,25]. In
particular, we propose the novel spectral distortion by optimizing the gain in
the symmetric Itakura-Saito divergence [17,26]. This distortion is implemented
in a demo CALL application, which can be used for pronunciation learning of
Russian and English sounds.

The rest of the paper is organized as follows. In Sect. 2 we describe sev-
eral spectral distortion measures for assessment of sound pronunciation using an
autoregression (AR) model [18,27]. In Sect. 3 we introduce the proposed app-
roach based on gain optimization [17]. Section 4 contains experimental study of
our approach for Russian and English sounds. Concluding comments are given
in Sect. 5.

2 Sound Pronunciation Evaluation

The first task in most CALL systems is to learn correct pronunciation of C ≥ 1
phonemes or short sounds corresponded to letters [5]. We assume that a dataset
of R ≥ C signals {xr}, r ∈ {1, ..., R} with known labels c(r) ∈ {1, ..., C} of every
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reference sound xr is available. Each signal in this dataset should represent the
utterance produced by an ideal speaker. A user learns to produce every cth sound
to be as close as possible to one of ideal signals xr, where r is chosen so that
c(r) = c. Hence, the following condition is tested:

min
r∈{1,...,R|c(r)=c}

ρ(x,xr) < ρc, (1)

where ρ(x,xr) is an arbitrary dissimilarity measure between utterances x and
xr, and ρc is a fixed threshold that may depend on the class c of the learned
sound. If criterion (1) is satisfied for several attempts to produce the c-th sound,
one can assume that its pronunciation quality is appropriate. This procedure is
repeated until condition (1) holds for all C sounds.

The discrimination ρ(x,xr) in speech processing is typically computed using
power spectral densities (PSD) Ĝx(f) and Ĝr(f) of the input signal x and xr.
Here f ∈ {1, ..., F} is the discrete frequency, and F is the sample rate. These
PSDs may be estimated by assuming that the speech signals x and xr for every
sound can be represented as stationary AR ergodic Gaussian processes with zero
mean [27,28]:

Ĝx(f) =
σ̂2
x

2F

∣
∣
∣
∣
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1 +
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Ĝr(f) =
σ̂2

r

2F

∣
∣
∣
∣
∣
1 +

p
∑

m=1

ar(m)e−iπmf/F

∣
∣
∣
∣
∣

−2

, (3)

where i =
√−1 is the imaginary unit, p is the order of AR model, ax(m) and

ar(m),m ∈ {1, ..., p} are the AR or LPC (linear prediction coding) coefficients
and σ̂2

x and σ̂2
r are the gains or one-step prediction errors [17] that are equal to

the variance of generative white noise. These parameters of the AR model can be
estimated with the Levinson-Durbin algorithm and, e.g., the Burg method [27].

It is known [17,28] that the maximal likelihood solution for testing hypoth-
esis about covariance matrix of the Gaussian signal x is achieved by using the
Kullback-Leibler (KL) divergence [29] between the zero-mean Gaussian distribu-
tions. The latter can be computed as the Itakura-Saito (IS) distance [26] between
PSDs Ĝx(f) and Ĝr(f):

ρIS(Ĝx, Ĝr) =
1
F

F∑

f=1

(

Ĝx(f)
Ĝr(f)

− ln
Ĝx(f)
Ĝr(f)

− 1

)

. (4)

The IS divergence between PSDs (4) is well known in speech processing due
to its strong correlation with the subjective MOS (mean opinion score) estimate
of speech closeness [18]. Except the IS divergence (4), its symmetrized version,
namely, COSH distance [17,30]) is widely used in practice:

ρCOSH(Ĝx, Ĝr) =
2
F

F∑

f=1

(Ĝx(f) − Ĝr(f))2

Ĝx(f)Ĝr(f)
. (5)
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Unfortunately, the gains σ̂2
x and σ̂2

r in the PSD estimates (2), (3) depend on
the scale of signals x and xr. For example, if a user speaks two-times louder,
the variance σ̂2

x will become twice higher. Thus, the gain normalization tech-
niques are traditionally used in practice [17]:

ρgn−IS(Ĝx, Ĝr) = ρIS(Ĝx/σ̂2
x, Ĝr/σ̂2

r). (6)

The same normalization procedure is used to compute the gain-normalized
version of the COSH distance (5):

ρgn−COSH(Ĝx, Ĝr) = ρCOSH(Ĝx/σ̂2
x, Ĝr/σ̂2

r). (7)

However, even such normalization does not provide scale independence, which
is especially crucial if the input signal contains noise, i.e. when a user’s micro-
phone is imperfect. It is known that the noise influence can be significantly
reduced by using gain optimization of spectral distortions [17], in which the ref-
erence PSD is scaled in order to minimize the distance to the input signal. The
first attempts of such optimization lead to the well-known Itakura distance [31]:

ρI(Ĝx, Ĝr) = ln

⎛

⎝
1
F

F∑

f=1

Ĝx(f)/σ̂2
x

Ĝr(f)/σ̂2
r

⎞

⎠ . (8)

Let us describe the usage of such approach for the COSH distance (5).

3 Proposed Approach

3.1 Gain-Optimized COSH Discrimination

In this paper we automatically scale each r-th reference instance to be as close
as possible to the input signal x. In particular, the gains in the COSH distance
(5) are optimized as follows [8]:

ρgo−COSH(Ĝx, Ĝr) = min
λ>0

ρCOSH(Ĝx, λĜr), (9)

where

ρCOSH(Ĝx, λĜr) =
2
F

F∑

f=1

(Ĝx(f) − λĜr(f))2

Ĝx(f) · λĜr(f)
. (10)

Let us directly compute the minimum:

dρCOSH(Ĝx, λĜr)
dλ

=
2
F

d

dλ

F∑

f=1

(

Ĝx(f)
λĜr(f)

+
λĜr(f)
Ĝx(f)

− 2

)

(11)

= − 2
Fλ2

F∑

f=1

Ĝx(f)
Ĝr(f)

+
2
F

F∑

f=1

Ĝr(f)
Ĝx(f)

= 0.
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Hence, the optimal value of the scaling factor is equal to

λ∗ =

√
√
√
√
√
√
√
√

F∑

f=1

Ĝx(f)

Ĝr(f)

F∑

f=1

Ĝr(f)

Ĝx(f)

. (12)

By substituting this value into Eq. 10 and dividing it by 4, we obtain the
final value of the gain-optimized COSH distance (9):

ρgo−COSH(Ĝx, Ĝr) =
1
F

√
√
√
√
√

⎛

⎝

F∑

f=1

Ĝx(f)
Ĝr(f)

⎞

⎠

⎛

⎝

F∑

f=1

Ĝr(f)
Ĝx(f)

⎞

⎠ − 1. (13)

This dissimilarity has many important properties, such as non-negativity,
symmetry and dependence on the ratio of PSDs only. Despite the gain-
normalized version, the proposed distortion (13) does not depend on scale: every
PSD may be scaled without any affect. Moreover, it can be computed as effi-
ciently as the original divergences from Sect. 2.

Finally, due to the above-mention equivalence of the IS and the KL diver-
gences, one can use the known asymptotic distribution of the KL divergence
between samples from the same distribution [29]. In fact, (n(x) − p)-times sym-
metrized KL divergence has the chi-squared distribution with p(p+1)/2 degrees
of freedom, where n(x) is a duration (number of samples) of the input signal.
As the condition (1) is tested by assuming that the input signal represents the

c-th sound (correct null hypothesis), the threshold ρc can be set to
χ2

α,p(p+1)/2

4(n(x)−p) .
Here χ2

α,p(p+1)/2 is the α-quantile of the chi-squared distribution with p(p+1)/2
degrees of freedom and we take into account that (13) is 4-times lower than the
original minimal COSH distance.

3.2 Pronunciation Learning Algorithm

Complete data flow of the proposed pronunciation learning procedure for CALL
systems is presented in Algorithm 1. It is divided into three stages. At first, a user
learns to pronounce each sound to be as close to the corresponding sound of a
reference speaker as possible. The proposed gain-optimized COSH dissimilarity
(13) is used in (1). Thresholds ρc, c ∈ {1, ..., C} can be tuned in such a way
that unexperienced non-native speaker has an ability to satisfy this criterion.
However, type I error rate α and, as a consequence, these thresholds, should be
adaptively made lower while a user reaches a certain level of progress.

As it is necessary to control the stability of correct pronunciation, there are
three additional parameters, namely, a minimal number of trials Nmin > 0, a
minimal ratio of close sounds δmin ∈ [0, 1] and a minimal “radius” r0. The latter
is matched with the “radius” of a set of better pronounced sounds Xc:

r(Xc) =
1

|Xc|
∑

x∈Xc

ρgo−COSH(Ĝx, Ĝx∗
c
), (14)
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Algorithm 1. Proposed Approach for Pronunciation Learning
1: for c ∈ {1, ..., C} do � Learn isolated sounds
2: Nreliable := 0, Nattempts = 0, Xc := {}
3: while Nreliable < Nmin AND Nreliable

Nattempts
< δmin AND r(Xc) > r0 (14) do

4: Nattempts := Nattempts + 1
5: Record speech signal x for the c-th sound
6: Compute PSD Ĝx (2) of signal x
7: for r ∈ {1, ..., R|c(r) = c} do
8: Compute distance ρgo−COSH(Ĝx, Ĝr) (13)
9: if ρgo−COSH(Ĝx, Ĝr) < ρc then

10: Nreliable := Nreliable + 1
11: Append signal x to the set Xc

12: Break
13: end if
14: end for
15: end while
16: (Optional) add the best utterance (17) to the dataset of reference sounds {xr}
17: end for
18: repeat � Quality control: recognize isolated sounds
19: A := 0
20: for c ∈ {1, ..., C} do
21: for n ∈ {1, ..., N} do
22: Record speech signal x for the c-th sound
23: Compute PSD Ĝx (2) of the signal x
24: Obtain the nearest neighbor r∗ (16)
25: if c(r∗) = c then
26: A := A + 1
27: end if
28: end for
29: end for
30: Compute accuracy A := A/(CN)
31: until A > A0

32: (Optional) Repeat quality control (Steps 18-31) for a sequence of isolated syllables
33: (Optional) Repeat quality control for DNN-based recognition of words

where
x∗

c = argmin
x∗∈Xc

∑

x∈Xc

ρgo−COSH(Ĝx, Ĝx∗). (15)

At the second stage it is necessary to control speech intelligibility [32]. We
propose to recognize the user’s sounds in order to verify that they are distin-
guishable from each other. We record N ≥ 1 utterances for each sound and use
the nearest neighbor rule for that purpose:

r∗ = argmin
r∈{1,...,R}

ρgo−COSH(Ĝx, Ĝr). (16)
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The pronunciation is assumed to be correct only if estimated accuracy A
is higher than a fixed threshold A0, which can be increased over time. Unfor-
tunately, the recognition accuracy would be decreased greatly for non-native
speakers, compared with native ones if only an acoustic model from ideal speak-
ers is used in this stage [13]. Hence, we propose to let a user add the best
pronounced sound

argmin
x∈Xc

min
r∈{1,...,R|c(r)=c}

ρgo−COSH(Ĝx, Ĝr) (17)

to the dataset of reference sounds during the first stage in order to memorize
the best attempts and use them in subsequent stages.

At this point a learning procedure may be continued with optional steps. One
can control the pronunciation quality for a sequence of sounds or isolated sylla-
bles similarly to how children learn to read. At first, the input signal is prepro-
cessed in order to decrease its variability, detect voice activity regions, etc. [18].
Next, the largest piecewise quasi-stationary speech segments are detected and
all the steps of our algorithm are repeated with only one exception, namely,
the replacement of our dissimilarity measure (13) to the sum of these distances
between corresponding syllables.

The final optional step consists in learning of words using existing automatic
speech recognition techniques [18]. If the words produced by ideal speaker are
available, conventional dynamic programming techniques, e.g., Dynamic Time
Warping or the Viterbi algorithm in the HMM, are used to dynamically align
the speech frames [11]. The quality control is implemented by measuring the
distinguishability of words with conventional speech recognition based on DNNs.

The most computationally expensive steps in the described procedure have
the following run-time complexities:

1. estimation of AR coefficients with the Levinson-Durbin method requires
O(p(n(x) + p)) operations;

2. estimation of the PSD (2) of the input signal needs O(Fp) operations;
3. computing distortion (13) has complexity O(F );
4. finding the nearest neighbor (16) linearly depends on the number of reference

signals: O(FR).

In practice, computational complexity can be significantly reduced by wrap-
ping the PSD into the Mel-frequency scale Mel(f) = 1125 ln(1 + f/100) and
computing the weighted sum of PSD samples at regular intervals. As a result,
the number of spectral values will be significantly reduced. For example, if speech
ranges (f ∈ [200, 3400]) are analyzed and a duration of a regular interval is equal
to 55 Mels, such procedure will output only 31 samples of smoothed spectrum,
which is much lower than 4000 samples for telephone speech (F = 8000 Hz).

The proposed approach has been implemented in .Net Framework 4.5 using
C#. We developed the publicly available demo application (https://sites.google.
com/site/frompldcreators/PhonemeTraining.zip) for learning of Russian and
English sounds (Fig. 1). This application makes it possible to perform learn-
ing and recognition of isolated sounds, automatic segmentation and phoneme

https://sites.google.com/site/frompldcreators/PhonemeTraining.zip
https://sites.google.com/site/frompldcreators/PhonemeTraining.zip
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recognition in spontaneous speech. Moreover, it is possible to extend the set
{xr} by the sounds that are rather close to ideal signals to let a user reach not
only the ideal speech but his or her best attempts.

Fig. 1. Sample GUI of developed demo application “PhonemeTraining”.

4 Experimental Results

In this section the proposed approach (Algorithm1) is experimentally studied in
pronunciation learning for English and Russian languages. In the former case, the
reference dataset {xr} contains sounds of C = 10 English letters (“a”, “e”, “i”,
“j”, “o”, “r”, “u”, “w”, “x”, “y”) pronounced by ideal English native speaker
from BBC. These sounds are used in the CALL software “Professor Higgins:
English without accent” [5]. In the latter case, the set of reference sounds is
filled by C = 6 Russian vowels (/aa/, /ee/, /oo/, /ii/, /y/, /uu/) pronounced by
ideal native speaker for Russian version of “Professor Higgins” [5]. The following
parameters are chosen: single reference signal per class (R = C, c(r) = r), sample
rate F = 8000 Hz, AR-model order p = 20, the estimates of PSDs are smoothed
at regular Mel-frequency intervals as described in the previous section.

In the first experiment, each of 5 Russian speakers (3 men and 2 women)
produced 1200 isolated vowels (200 for each sound). An artificially generated
white noise was added to each test utterance using the following procedure. At
first, the signal-to-noise ratio (SNR) is fixed. Next, the initial and final pauses are
detected in each utterance using simple energy thresholding, and the standard
deviation of the remaining part with high energy is estimated. Finally, these
standard deviation was corrected using given SNR, and uncorrelated normal
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random numbers with zero mean and the resulted standard deviation was added
to each value of the speech signal.

The proposed gain-optimized dissimilarity measure (13) is compared with
sounds’ matching from “Professor Higgins” software [5] and conventional spectral
distortions, namely, IS (4), Gain-normalized IS (6), Itakura (8) and original
COSH (5) with its gain-normalized version (7). In order to test the quality for
criterion (1), we computed the dependence of AUC (area under ROC curve) on
the additive noise level (Table 1).

Table 1. Dependence of AUC (%) on SNR (dB)

Language Distance Signal-to-noise ratio, dB

26 20 16 14 12 10

Russian “Professor Higgins” [5] 88.0 87.1 86.5 86.1 85.3 84.2

IS (4) 64.1 62.8 61.3 59.3 57.1 55.4

COSH (5) 79.5 76.6 74.2 71.9 71.4 70.6

Gain-normalized IS (6) 92.7 92.4 91.1 89.0 86.4 84.0

Itakura (8) 91.6 90.6 89.5 88.4 87.0 85.4

Gain-normalized COSH (7) 94.7 94.3 93.2 91.9 90.2 88.7

Proposed optimized COSH (13) 94.8 94.4 93.4 92.3 90.9 89.4

English “Professor Higgins” [5] 76.7 77.1 76.8 77.3 75.3 72.8

IS (4) 73.2 73.1 70.9 68.2 65.2 64.6

COSH (5) 74.7 76.7 73.9 68.9 67.5 67.9

Gain-normalized IS (6) 75.6 79.6 77.8 77.8 76.5 76.0

Itakura (8) 78.2 79.1 77.8 78.1 76.9 76.4

Gain-normalized COSH (7) 80.8 79.3 79.2 78.9 77.4 76.8

Proposed optimized COSH (13) 80.7 79.4 79.3 79.0 77.8 77.4

Here, AUC of the testing of English sounds is much lower when compared
to Russian sounds because non-native speech is recognized worth. The usage of
unnormalized PSDs (2), (3) in IS (4) and COSH (5) distances is inappropriate
as their AUCs are 13–30% lower when compared to gain normalization and
optimization. The proposed optimization (13) leads to one of the highest values
of AUC, which is 2–5% and 3–4% higher than conventional gain-normalized IS
divergence (6) and its gain-optimized version (8).

AUC of our approach is slightly better than AUC of the original gain-
normalized COSH distance (7) especially if the noise level becomes higher. The
next experiment makes the advantages of our dissimilarity more noticeable. We
examine the second stage of the proposed approach, namely, the quality control
of sound pronunciation. The nearest neighbor rule (16) is used with the training
and testing sets from the first experiment. The recognition accuracy is presented
in Table 2.
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Table 2. Dependence of accuracy (%) on SNR (dB)

Language Distance Signal-to-noise ratio, dB

26 20 16 14 12 10

“Professor Higgins” [5] 72.2 71.6 70.2 67.2 64.8 62.3

IS (4) 32.1 26.4 19.9 17.5 17.4 17.1

COSH (5) 32.8 33.0 33.0 32.4 31.0 30.0

Russian Gain-normalized IS (6) 85.7 81.7 75.7 66.9 59.3 55.5

Itakura (8) 80.4 79.1 77.9 75.6 69.5 62.0

Gain-normalized COSH (7) 86.3 84.3 79.4 74.3 65.2 58.3

Proposed optimized COSH (13) 87.0 85.4 81.7 77.1 70.6 62.9

“Professor Higgins” [5] 47.5 45.0 47.5 50.0 47.5 35.0

IS (4) 42.5 42.5 40.0 37.5 30.0 25.0

COSH (5) 40.0 42.5 42.5 40.0 42.5 35.0

English Gain-normalized IS (6) 60.0 55.0 55.0 52.5 47.5 37.5

Itakura (8) 55.0 55.0 52.5 50.5 40.0 37.5

Gain-normalized COSH (7) 62.5 55.5 55.5 45.0 45.0 37.5

Proposed optimized COSH (13) 62.5 57.5 57.5 52.5 52.5 45.0

As one can notice, the proposed approach is 0.7–4.5% more accurate when
compared to the baseline (7). Gain normalization in the Itakura distance (8)
also helps to achieve slow accuracy degradation with a decrease of SNR. It is
necessary to emphasize that conventional matching of sounds in the “Professor
Higgins” learning system is not as accurate as normalized and optimized spectral
distortions. However, it is an order of magnitude faster. Moreover, its quality
practically does not depend on the noise level, so that this software is the best
one for SNR = 10 dB with only one exception that our dissimilarity (13) is still
0.6% more accurate.

An optional step 32 of the proposed Algorithm1 is studied in the next exper-
iment for Russian language. Two vocabularies are used, namely, 1) the list of
1832 Russian cities with corresponding regions; and 2) the list of 1913 drugs from
a pharmacy of Nizhny Novgorod. All speakers pronounced every word from all
vocabularies in isolated syllable mode, so that every vowel in the syllable is
made stressed. The part of speech data suitable to reproduce our experiments
is available for free download (https://sites.google.com/site/andreyvsavchenko/
SpeechDataIsolatedSyllables.zip). Observed utterances are divided into 30 ms
frames with 10 ms overlap. The syllables in the test signals are extracted with
the amplitude detector and the vowels are recognized in each syllable by simple
voting based on the results obtained using vowel recognition [20].

The dependence of the words recognition error rates on the SNR is shown
in Fig. 2 and Fig. 3 for cities and drugs vocabularies, respectively. Here, the pro-
posed optimization procedure leads to the dissimilarity (13) that is significantly
(1–10%) more accurate than the gain-normalized spectral distortions. Hence, the

https://sites.google.com/site/andreyvsavchenko/SpeechDataIsolatedSyllables.zip
https://sites.google.com/site/andreyvsavchenko/SpeechDataIsolatedSyllables.zip
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Fig. 2. Error rate (%), cities vocabulary.

Fig. 3. Error rate (%), drugs vocabulary.

usage of our approach makes it possible to reduce the training time by minimiz-
ing the mistakes made by the quality control procedure.

In the last experiment we provide preliminarily results for the last step of our
algorithm for recognition of the following English words: “down”, “go”, “left”,
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“no”, “off”, “on”, “right”, “stop”, “up”, “yes”. We use several existing convolu-
tional neural networks (CNN) pre-trained on Google Speech Commands dataset,
namely, 1) “conv” model based on CNN-trad-fpool3 [33]; 2) “low latency conv”
model based on CNN-one-fstride4 [34]; 3) “low latency svdf” model with rank-
constrained compression [35]; and 4) “tiny conv” model with one fully connected
layer. We compared the recognition accuracy for the original speaker indepen-
dent model and their fine-tuned versions on the best recognized words from
each speaker. Fine-tuning is implemented by using scripts from Simple Audio
Recognition example of TensorFlow framework. Each speaker pronounced at
least N = 10 examples of each word. In addition, inspired by our criterion (1),
we chose the best examples by matching the confidence of speaker-independent
CNN model with fixed threshold 0.9.

Table 3. Average accuracy (%) for CNN-based isolated word recognition

conv low latency conv low latency svdf tiny conv

Pre-trained 72 27 46 20

Fine-tuned (all words) 91 92 55 50

Fine-tuned (best words) 94 96 60 65

The average accuracies for extra validation set of 100 commands for each
speaker are shown in Table 3. Here, “conv” model is the most accurate one
for conventional speaker-independent quality control. However, the usage of the
speaker data in fine-tuned models drastically improves the overall accuracy on
19–65%. It is important to notice that the proposed selection of the best examples
during initial training makes it possible to further improve accuracy on 3–15%.

5 Conclusion

To sum it up, this article introduced an approach to develop CALL systems
(Algorithm 1), which most important part is a novel spectral distortion based on
optimization of the symmetrized Itakura-Saito, i.e., COSH, divergence. It was
experimentally shown that the proposed discrimination (13) makes it possible
to achieve high AUC for pronunciation learning and accuracy for quality control
even in the presence of noise in the input utterance.

In future, the last step of Algorithm1 should be examined more thoroughly
by using more complex DNN and LSTM models for speech recognition [36] to
control the quality of word’s pronunciation. Our preliminary study demonstrated
(Table 3) that the overall accuracy becomes much higher if the best utterances of
a learner are used similarly to our modification of the training set (17). Hence, it
is necessary to study speaker adaptation techniques [12] in order to fine-tune the
contemporary neural models. Finally, it is important to elaborate the possibility
to use the proposed algorithm on extra datasets of other languages to analyze
its performance and robustness thoroughly.
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Abstract. In this paper, we propose a novel approach to recovering
path relationships in communication networks. The path relationship is
one of the key input data which is necessary for network operation and
maintenance. We have a continuous network transformation, upgrades,
expansions, service allocations, thus the network physical topology and
paths relationship are permanently changing with high frequency. Our
approach is aimed at recovering the path relationships through flow infor-
mation of each arc in the network. Getting the flow information is not a
big technical problem and its control is included in the basic toolbox for
network monitoring. We consider two scenarios which lead us to integer
linear programs. The both of them minimize the flow deviation, where in
the first one we look for a directed spanning tree (r-arborescence) and, in
the second one—more general origin/destination paths (OD-paths). We
propose mixed integer linear programming formulations for both prob-
lems. Their feature is that they contain the non-polynomial number of
constraints which are considered implicitly by the cutting planes app-
roach. The preliminary computation results showed that the large-scale
instances of the first scenario can easily be solved. At the same time,
the optimal solutions of second scenario problems can be found only on
small- and medium-size instances, which inspires for the further research.

Keywords: Communication network · Data flow · Mixed integer
linear programming · Branch-and-cut algorithm

1 Introduction

In telecommunication networks, the physical topology of a network and the path
relationships of services are the key ingredient for network operation and main-
tenance (including network reconstruction and expansion, service distribution
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and change, delineation of network problems, etc.). For example, the emergence
of 5G technologies results in merging of 3/4/5G networks and substantial devel-
opment of a number of new services, such as the Internet of Things and Vehicles.
Telecommunication networks are subject to constant transformations, upgrades,
expansions, service allocations. Thus, the network physical topology and paths
relationships are permanently changing with high frequency.

It causes that the problems of accurate network topology tracking and service
path recovering are very important and challenging. This paper focuses on the
latter, i.e. the path recovery problem, supposing that the network physical topol-
ogy is already known. Traditionally, a telecommunication company attempts to
recover path relationships by analyzing the complex network configuration files.
However, this method has the following main disadvantages. First, it is very
time consuming because each network involves a huge number of configuration
files have to be collected and analyzed. Second, network usually do not assume
centralized management and their various parts are controlled by different main-
tainers. Thus, there is no the common standard of such kind of files. It means
that, for each network, we need to put a lot of efforts every time the network is
upgraded and the recovering process need to be done again.

In this paper, we propose a novel approach to recovering network path rela-
tionships. It is aimed at recovering the path relationships by analyzing the infor-
mation on data flows through the network arcs. Note that getting the flow infor-
mation is not a challenging technical problem, since the control of this infor-
mation is included in the basic toolbox for network monitoring. We consider
two scenarios (problems) which lead us to integer linear programs. The both
of them minimize the flow deviation: In the first one we look for a directed
spanning tree (so called r-arborescence), while in the second one—more general
origin/destination paths (OD-paths).

The integer programming is a common approach in the field of telecom-
munication networks and is widely used in a range of communication network
problems (see [18,21] for a survey). Steiner tree problem on graphs and its ver-
sion for directed graphs—r-arborescence problem—are well-known combinato-
rial optimization problems [7,11,13] with many applications to computer net-
works [9,10,16,17,23]. Different integer linear formulations were proposed for
this problem [12,15,19,22], which allow one to solve large-scale instances to opti-
mality. More general structures on networks, like finding OD-paths, are also com-
mon, especially in closely related network design and loading problems [2,3,6,8].

All the references mentioned above are about design, load and routing of data
traffic. As far as we know, the problem of recovering and predicting paths is not
addressed in the literature on communication networks. We could find only a few
related papers, addressing transportation networks [1,14,20], where the variation
between the historical time link flows and the simulated ones is minimized. Note
that the problems considered in this paper have some key features that do not
allow applying the same modelling and solution approaches.

The remainder of the paper is structured as follows. The statement of the
problem and its integer linear formulations are introduced in Sects. 2 and 3,
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Fig. 1. Network graph G(V,A), HC nodes are red boxes, HB—green circles, HA—black
dots. (Color figure online)

respectively. Section 4 describes test instances and some pre-solving techniques
to reduce the problem size. The approach based on branch-and-bound algorithm
is outlined in Sect. 5. Finally, Sect. 6 gives preliminary computation results and
concluding remarks.

2 Problem Statement

We have two scenarios for the path recovering problem. Let us describe some fea-
tures related to both of them. Given a communication network which is described
as follows:

G(A, V )—a simple directed graph which defines the network topology;
V —a set of vertices (nodes) consisting of three types of nodes:

VA—a set of nodes of the base layer (HA nodes). We can think about
these nodes as users.
VB—a set of nodes of the intermediate layer (HB nodes). These nodes are
supposed to be hubs or transmission nodes, i.e. they do not generate nor
absorb flows.
VC—a set of nodes of the core layer (HC nodes); These nodes can be
considered as routers, i.e. they connect our network with other “outside”
networks.

A—a set of arcs. The arcs are thought as data channels which connect nodes;
lij—the length of arc ij;
fij—an amount of data traversing arc ij ∈ A;

An example of the network is illustrated in Fig. 1.
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r

Fig. 2. r-arborescences from the dummy node r.

There are several main conditions to be taken into account:

1. HC nodes are not connected with each others directly.
2. There are no direct arcs between HC and HA nodes (between users and

routers).
3. We are given with the data traffic dt from one of HC node s ∈ VC to a base

layer node t ∈ VA. This traffic is unsplittable, i.e. it goes along one path pst

from s to t. The path pts from t ∈ VA to a HC node, which is also unsplittable,
goes in opposite direction of pst.

4. An additional condition is that no path can go backward from HA nodes to
HB or HC ones and from HB nodes to HC ones.

Since path pst is different from path pts solely in direction, we can only
consider paths which go from HC nodes. These paths form a so-called road map.
Our problem consists in recovering a road map so as the transfer of traffics dt

and qt through the network corresponds as close as possible to the given values
of fij , for arcs ij ∈ A, while the paths lengths are minimized.

There are additional conditions on paths, depending on the scenarios
described in the following subsections.

2.1 First Scenario

In this scenario the main feature is that there is only one unique path from
one HC node to any HA and HB nodes which the data flow can go along. Let
us consider a dummy node r and arcs rs ∀s ∈ VC . In this case, the road map
consists of Steiner arborescence rooted at r with HA nodes as terminals, i.e. we
have an r-arborescence (directed tree) with the root in r and all the HA nodes
are reachable form r. An example of this r-arborescences is given in Fig. 2.

Given such r-arborescence, there is only a unique path pst to any t ∈ VA

from one s ∈ VC .
Our problem consists in finding an r-arborescence such that transferring the

traffics dt and qt is as close as possible to the given fij for each arc ij ∈ A and
the r-arborescence is of the minimal length.
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Fig. 3. Road map of the second scenario.

2.2 Second Scenario

The required road map has a different structure than that from the first scenario.
Any path pst now consists of two parts. The first one is a subpath which goes
from a HC node to a HB node, and the second one is a subpath which starts
from the last HB node and goes to its destination at a HA node. Note that
the paths with a common HB node as a starting node of the second part have
the common first parts, as depicted in Fig. 3. For this example, the road map
consists of the following paths:

Path to HA1: HC2 → HB2 → HB4 → HB3 → HA1
Path to HA2: HC2 → HB2 → HB4 → HB3 → HA3 → HA2
Path to HA3: HC2 → HB2 → HB4 → HB3 → HA3
Path to HA4: HC2 → HB2 → HB4 → HB3 → HA3 → HA5 → HA4
Path to HA5: HC2 → HB2 → HB3 → HB4 → HA7 → HA5
Path to HA6: HC2 → HB2 → HB4 → HB3 → HA3 → HA7 → HA6
Path to HA7: HC2 → HB2 → HB3 → HB4 → HA7
Path to HA8: HC2 → HB2 → HB3 → HB4 → HA8
Path to HA9: HC2 → HB2 → HB3 → HB4 → HA9
Path to HA10: HC2 → HB2 → HB3 → HB4 → HA9 → HA10
Path to HA11: HC1 → HB1 → HB2 → HA11
Path to HA12: HC1 → HB1 → HB2 → HA11 → HA12

3 MILP Formulation

3.1 First Scenario

The problem can be viewed as a combination of two commodity flow problems,
where the first one goes from the root and another goes to the root. Let K =
{1, 2} be the set of commodities, f1

ij = fij be the flow of first commodity which
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goes through arc ij and f2
ij = fji—the flows of second commodity which goes

through arc ij in opposite direction, d1t = dt and d2t = qt—the corresponding
demand ∀t ∈ VA.

In order to find a r-arborescence, we add the dummy node and arcs to the
graph:

V := V ∪ {r}, A := A ∪ {rs : s ∈ VC}.

The conditions imposing that any path cannot go upward from HA nodes to HB
ones and from HB nodes to HC ones can be taken into account by setting

A := A \ {ij : (i ∈ VB ∧ j ∈ VC) ∨ (i ∈ VA ∧ j ∈ VB)}.

We use the following notations. Let W ⊂ V , then

δ−(W ) = {ij ∈ A : i ∈ V \ W, j ∈ W},

δ+(W ) = {ij ∈ A : i ∈ W, j ∈ V \ W},

δ−(v) = δ−({v}), δ+(v) = δ+({v}),
←→
A = {ij ∈ A \ δ+(r) : ij ∈ A ∧ ji ∈ A},

−→
A = {ij ∈ A \ δ+(r) : ij ∈ A ∧ ji /∈ A},

κ(k) =
{

1 if k = 2,
2 if k = 1.

Let us introduce the variables yij :

yij =
{

1 if arc ij belongs to the r-arborescence,
0 otherwise, ∀ij ∈ A,

the variables xk
ij defining the flow through arc ij ∈ A of demand k ∈ K; and the

variables zk
ij ∀ij ∈ A \ δ+(r) defining the deviations from the given fk

ij .
With these variables, the MILP can be formulated as follows:

min α ·
∑
k∈K

∑
ij∈A\δ+(r)

zk
ij + β ·

∑
ij∈A

lijyij (1)

subject to

zk
ij ≥ fk

ij − xk
ij − x

κ(k)
ji ∀k ∈ K, ∀ij ∈ ←→

A (2)

zk
ij ≥ xk

ij + x
κ(k)
ji − fk

ij ∀k ∈ K, ∀ij ∈ ←→
A (3)

zk
ij ≥ fk

ij − xk
ij ∀k ∈ K, ∀ij ∈ −→

A (4)

zk
ij ≥ xk

ij − fk
ij ∀k ∈ K, ∀ij ∈ −→

A (5)∑
ij∈δ−(v)

yij ≤ 1 ∀v ∈ VB ∪ VC (6)
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∑
ij∈δ−(t)

yij = 1 ∀t ∈ VA (7)

∑
ij∈δ+(W )

yij ≥ 1 ∀W ⊂ V : r ∈ W, VA \ W �= ∅ (8)

∑
ij∈δ+(r)

xk
ij =

∑
t∈VA

dk
t ∀k ∈ K (9)

∑
ij∈δ−(v)

xk
ij −

∑
ij∈δ+(v)

xk
ij = 0 ∀k ∈ K, ∀v ∈ VB ∪ VC (10)

∑
ij∈δ−(t)

xk
ij −

∑
ij∈δ+(t)

xk
ij = dk

t ∀k ∈ K, ∀t ∈ VA (11)

xk
ij ≤ M · yij ∀k ∈ K, ∀ij ∈ A (12)

yij ∈ B ∀ij ∈ A (13)

xk
ij ≥ 0 ∀k ∈ K, ∀ij ∈ A (14)

zk
ij ≥ 0 ∀k ∈ K, ∀ij ∈ A \ δ+(r) (15)

The objective function (1) minimizes the flow deviation with respect to both
Manhattan distance and the arborescence length. The parameters α and β define
the weights of the corresponding objectives and allow us to find different Pareto
optimal solutions of initial bi-objective optimization problem. zk

ij is the flow
deviation on arc ij defined by (2)–(5). Constraints (7) guarantee that all HA
nodes are reachable once occurred in the r-arborescence and constraints (6)
ensure that some HB nodes can be reached as well. Constraints (8) are the well
know directed Steiner tree cut constraints and their number is non-polynomial [5,
12]. Constraints (9)–(11) are the flow conservation constraints. Inequality (12)
bind x and y variables, i.e. the traffic can go only along the arborescence.

3.2 Second Scenario

To formulate the integer program for the second scenario, we also consider a
dummy node r and arcs to each HC node, but also arcs to HB nodes, i.e.

V := V ∪ {r}, A := A ∪ {ri : i ∈ VC ∪ VB}.

Paths which go upward from HA nodes to HB or HC nodes and from HB nodes
to HC ones are forbidden by

A := A \ {ij : (i ∈ VB ∧ j ∈ VC) ∨ (i ∈ VA ∧ j ∈ VB) ∨ (i ∈ VA ∧ j ∈ VC)}.

In addition to the notation of the first scenario, for some W 1 ⊆ V and
W 2 ⊆ V let as denote

(W 1 : W 2) = {ij ∈ A : i ∈ W 1, j ∈ W 2}.
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r
r

Fig. 4. G(V 1, A1) is on the left and G(V 2, A2) is on the right

The problem is divided into two parts. The first one is to find paths from
HC to HB nodes, and the second one is to find paths from HB to HA nodes.
Thus, the graph is divided into two corresponding subgraphs: G1(V 1, A1) and
G2(V 2, A2), where

V 1 = {r} ∪ VC ∪ VB , A1 = ({r} : VC) ∪ (VC : VB) ∪ (VB : VB),

V 2 = {r} ∪ VB ∪ VA, A2 = ({r} : VB) ∪ (VB : VA) ∪ (VA : VA),

The example corresponding to Fig. 1 is depicted in Fig. 4.
Let us also introduce the following notations:

←→
A1 = {ij ∈ A1 \ δ+(r) : ij ∈ A1 ∧ ji ∈ A1},

−→
A1 = {ij ∈ A1 \ δ+(r) : ij ∈ A1 ∧ ji /∈ A1},

←→
A2 = {ij ∈ A2 \ δ+(r) : ij ∈ A2 ∧ ji ∈ A2},

−→
A2 = {ij ∈ A2 \ δ+(r) : ij ∈ A2 ∧ ji /∈ A2}.

The problem of finding the first part of paths defined on the graph G(V 1, A1)
can be considered as a multi-commodity flow problem with |K| · |VB | commodi-
ties. To define required paths and flows, the following variables are introduced:

yw
ij =

{
1 if arc ij belongs to the path from r to w,
0 otherwise, ∀ij ∈ A1, ∀w ∈ VB,

xkw
ij —the flow through arc ij ∈ A1 of commodity (k,w) ∈ K × VB .

On the graph G(V 2, A2), the second part of paths can be considered as a
multi-commodity flow problem with 2 commodities k ∈ K = {1, 2}, using the
following variables:

yt
ij =

{
1 if arc ij belongs to the path from r to t,
0 otherwise, ∀ij ∈ A2, ∀t ∈ VA.

For both G(V 1, A1) and G(V 2, A2), the variables zk
ij are the deviations from

the given fk
ij ∀ij ∈ A \ δ+(r).
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With this basis, we can now formulate the following MILLP:

min α ·
∑
k∈K

∑
ij∈A\δ+(r)

zk
ij + β ·

⎛
⎝ ∑

w∈VB

∑
ij∈A1

lijy
w
ij +

∑
t∈VA

∑
ij∈A2

lijy
t
ij

⎞
⎠ (16)

subject to

zk
ij ≥ fk

ij −
∑

w∈VB

xkw
ij −

∑
w∈VB

x
κ(k)w
ji ∀k ∈ K, ∀ij ∈ ←→

A1 (17)

zk
ij ≥

∑
w∈VB

xkw
ij +

∑
w∈VB

x
κ(k)w
ji − fk

ij ∀k ∈ K, ∀ij ∈ ←→
A1 (18)

zk
ij ≥ fk

ij −
∑

w∈VB

xkw
ij ∀k ∈ K, ∀ij ∈ −→

A1 (19)

zk
ij ≥

∑
w∈VB

xkw
ij − fk

ij ∀k ∈ K, ∀ij ∈ −→
A1 (20)

zk
ij ≥ fk

ij −
∑
t∈VA

dk
t yt

ij −
∑
t∈VA

d
κ(k)
t yt

ji ∀k ∈ K, ∀ij ∈ ←→
A2 (21)

zk
ij ≥

∑
t∈VA

dk
t yt

ij +
∑
t∈VA

d
κ(k)
t yt

ji − fk
ij ∀k ∈ K, ∀ij ∈ ←→

A2 (22)

zk
ij ≥ fk

ij −
∑
t∈VA

dk
t yt

ij ∀k ∈ K, ∀ij ∈ −→
A2 (23)

zk
ij ≥

∑
t∈VA

dk
t yt

ij − fk
ij ∀k ∈ K, ∀ij ∈ −→

A2 (24)

∑
ij∈δ−(v)

yw
ij −

∑
ij∈δ+(v)

yw
ij = 0 ∀w ∈ VB , ∀v ∈ V 1 \ {r, w} (25)

∑
ij∈δ−(v)

xwk
ij −

∑
ij∈δ+(v)

xwk
ij = 0

∀k ∈ K,∀w ∈ VB ,
∀v ∈ V 1 \ {r, w} (26)

∑
ij∈δ+(r)

yw
ij −

∑
ij∈δ−(w)

yw
ij = 0 ∀w ∈ VB (27)

∑
ij∈δ+(r)

xwk
ij −

∑
ij∈δ−(w)

xwk
ij = 0 ∀k ∈ K, ∀w ∈ VB (28)

xkw
ij ≤ M · yw

ij ∀k ∈ K, ∀w ∈ VB, ∀ij ∈ A1 (29)∑
ij∈δ−(v)

yt
ij −

∑
ij∈δ+(v)

yt
ij = 0 ∀t ∈ VA, ∀v ∈ V 2 \ {r, t} (30)

∑
ij∈δ+(r)

yt
ij = 1 ∀t ∈ VA (31)

∑
ij∈δ−(t)

yt
ij = 1 ∀t ∈ VA (32)
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∑
ij∈(W :W )

yw
ij ≤ |W | − 1 ∀w ∈ VB , ∀W ⊆ V 1 \ {r, w} (33)

∑
ij∈(W :W )

yt
ij ≤ |W | − 1 ∀t ∈ VA, ∀W ⊆ V 2 \ {r, t} (34)

∑
ij∈δ−(w)

xwk
ij =

∑
t∈VA

dk
t yt

ij ∀k ∈ K, ∀w ∈ VB (35)

yw
ij ∈ B ∀w ∈ VB , ∀ij ∈ A1 (36)

yt
ij ∈ B ∀t ∈ VA, ∀ij ∈ A2 (37)

xkw
ij ≥ 0 ∀k ∈ K,∀w ∈ VB , ∀ij ∈ A1 (38)

zk
ij ≥ 0 ∀k ∈ K, ∀ij ∈ A \ δ+(r) (39)

Objective function (16) minimizes both the total flow deviation and paths length.
The flow deviations zk

ij on the arc ij are defined by (17)–(24). The flow conser-
vation constraints on G1(V 1, A1) are met due to (25)–(28), while the flows and
paths are binded by (29). Constraints (30)–(32) are the flow conservation on
G2(V 2, A2). Constraints (33) and (34) are the well-know subtour elimination
constraints for G1(V 1, A1) and G2(V 2, A2) correspondingly and their number is
non-polynomial [4]. The flows between these graphs are linked by (35).

4 Test Networks and Presolving

We were provided with data of many networks. Analyzed their structure, we
proposed two techniques to reduce the problem size.

4.1 Problem Decomposition

Relying on networks analysis and our own knowledge about real telecommunica-
tion networks, we can conclude that network has a structure with the following
properties:

1. HC nodes are not connected with each other.
2. HA and HB nodes are divided into several clusters which are not connected.

Each cluster is quite sparse. HA nodes are connected with HB nodes either
directly or by chains or circles with rare branching. HB nodes are connected
by circle with some chords.

Therefore, we can conclude that any required path in both of the scenarios
goes only within one cluster. Using these network properties, the problem can
be decomposed into subproblems related to each cluster. Let us describe how
the decomposition can be done. We are given with a network defined by the
digraph G(V,A). The clusters in G(V,A) can be found by eliminating HC nodes.
Thus, we get a disconnected graph, where each weakly connected component is
a cluster. The components can be easily identified, for example, by the Depth
First Search (DFS).



Integer Programming Approach to the Data Traffic Paths 465

Table 1. Details on problem decomposition

Name |VC | |VB | |VA| |V | |A|
t 04 0579 c1 2 10 185 197 373

t 04 0579 c2 2 9 126 137 248

t 04 0579 c3 2 6 96 104 195

t 04 0579 c4 2 8 137 147 278

t 04 0579 2 33 544 579 1300

Name |VC | |VB | |VA| |V | |A|
t 04 0579 c1 6 51 1380 1437 2614

t 04 0579 c2 6 6 221 233 442

t 04 0579 c3 6 5 193 204 363

t 04 0579 c4 6 20 469 495 934

t 04 0579 c5 6 5 128 139 261

t 04 0579 c6 6 5 197 208 391

t 04 0579 c7 6 5 158 169 290

t 07 2849 6 97 2746 2849 6216

To meet the specific requirements for paper length, we consider only two
networks: the smallest (t 04 0579) and the largest (t 07 2849) ones. The details
of problem decomposition are given in Table 1, where Name is the network name
(in appended cX, X means the cluster index). |VC | is the number of HC nodes,
|VB | is the number of HB nodes, |VA| is the number of HA nodes, |V | is the total
number of nodes, |A| is the number of arcs. It is easily seen that the problem is
decomposed in several subproblems of much smaller dimension. The impact of
this decomposition for different scenarios will be studied below.

4.2 Variable Fixing for the Second Scenario

In the second scenario, formulation (16)–(39) contains much more variables than
that in the first scenario. Note that the problem decomposition described above
is also valid for it. Furthermore, the following preprocessing, which allows us to
drastically reduce the formulation size, plays a very important role.

Actually, due to the particular graph structure and sparsity, a node t ∈ VA

can be reached only from a subset of nodes of G(V 2, A2). Let V 2
t ⊆ V 2 be a

subset of these nodes together with t, i.e. it contains t and the nodes for which
there is a path to node t. It is quite evident that the required path from r to
t goes along the arcs between these nodes. Thus, the variable defined on other
arcs can be fixed to zero, i.e.

yt
ij = 0 ∀ij /∈ A2

t , where At
2 = (V 2

t : V 2
t ). (40)

V 2
t and A2

t can easily be found, for example, by the DFS.
This preprocessing can significantly reduce the problem dimension. Figure 5

illustrates how sets A2
1 look like for the example presented in Fig. 4. Table 2 shows

the impact of this procedure in sense of the number of variables and constraints in
the formulation (16)–(39). Name is the network name (in appended cX, X means
the cluster index), nvar is the number of variables, ncon is the number of con-
straints without subtour elimination constraints (33) for the original formulation
and after the variable fixing is performed, respectively. The problem dimension is
reduced drastically, though it cannot actually be solved without decomposition
and variable fixing even in case of the smallest instances t 04 0579 c3.
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Table 2. Number of variables and constraints in the second scenario

Name Original After fixing

nvar ncon nvar ncon

t 04 0579 c1 67 991 111 414 5 544 8 568

t 04 0579 c2 30 986 53 299 3 656 5 689

t 04 0579 c3 18 820 30 866 2 578 4 055

t 04 0579 c4 37 796 61 858 3 894 6 058

t 04 0579 576 760 958 923 21 672 32 418

t 07 2849 c1 3 483 117 5 970 059 69 416 99 968

t 07 2849 c2 95 470 153 552 8 578 13 254

t 07 2849 c3 68 896 117 058 5 823 9 064

t 07 2849 c4 424 938 698 246 19 605 29 672

t 07 2849 c5 33 042 52 925 3 660 5 780

t 07 2849 c6 76 284 121 946 6 886 10 757

t 07 2849 c7 45 470 79 243 5 575 8 722

t 07 2849 14 009 099 23 556 017 173 795 244 793

5 Solution Approach

For initial testing of proposed formulations, a simple approach based on the
branch-and-cut algorithm was implemented. We use a MIP solver as the branch-
and cut framework. Steiner tree cut constraints (8) and subtour elimination
constraints (33), (34) are considered as lazy constraints, i.e. they are added to
the formulation in the case of violation by an integer solution.

In the first scenario, let us denote by W the set of all possible subsets in (8)
i.e.

W = {W ⊂ V : r ∈ W, VA \ W �= ∅},

W be a subset of W and P (W) be problem (1)–(15) with (8) defined only on W.
Our approach is outlined in Algorithm 1. It is necessary to solve a separation
problem on Step 2. In our simplified approach ȳ is integer, so this problem can
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Algorithm 1. Implementation of formulation (1)-(15)

Step 0. Define initial W.
Step 1. Solve P (W), let (ȳ, x̄, z̄) be the solution found.
Step 2. Find W ∈ W :

∑

ij∈δ+(W )

ȳij = min
W∈W

∑

ij∈δ+(W )

ȳij .

Step 3. If
∑

ij∈δ+(W )

ȳij >= 1 then goto Stop.

Step 4. If
∑

ij∈δ+(W )

ȳij = 0 then W := W ∪ W and goto Step 1.

Stop. (ȳ, x̄, z̄) is a optimal solution of problem (1)-(15).

Table 3. First scenario results

Name Time

Original Decomp

t 04 0579 v01 1.19 1.20

t 07 2849 v01 10.14 8.83

easily be solved. Let us consider arcs Ā = {ij ∈ A : ȳij = 1}. W consists of
r and the other nodes from V which are reachable from r over A. It forms an
arborescence, which can be easily found by DFS. If VA ⊂ W , the problem is
solved, otherwise the corresponding constraint (8) is added. Initially W = {r}.

As in the first scenario, sets W , on which the corresponding constraints (34)
and (33) are violated, can be easily found by scanning the arcs corresponding to
the integer solutions.

6 Computation Results and Concluding Remarks

For both scenarios, the approach has been implemented and tested on worksta-
tion with Intel Core i7-3770 CPU 3.4 GHz and 32 GB RAM. To solve the MILP
problems, we use MIPCL1 solver. We consider a case α = 1 and β = 0. In our
preliminary results we consider only the so-called steady case, i.e. we suppose
that the flow data is exact, without uncertainty and noise, which results in that
the optimal value of objective function equals to zero.

The results for the first scenario are given in Table 3, where running time in
seconds is given for the original and decomposed (Decomp) networks. As we can
see, all the instances are very simple and can be solved very fast even without
problem decomposition.

The second scenario seems to be much more challenging. The results are given
in Table 4, where ncuts is the number of generated subtour elimination constraints.
Using the decomposition and the variable fixing procedure, the instances on net-
work t 4 579 can be solved to optimality quite fast. The largest one was not solved,
because two subproblems were not solved within a time limit of one hour.
1 http://www.mipcl-cpp.appspot.com/index.html.

http://www.mipcl-cpp.appspot.com/index.html
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Table 4. Second scenario results

Name ncuts T ime

t 4 579 c1 13 22.7

t 4 579 c2 0 14.4

t 4 579 c3 2 9.4

t 4 579 c4 0 21.1

Total 15 67.6

Name ncuts T ime

t 7 2849 c1 0 3600.0

t 7 2849 c2 2 381.6

t 7 2849 c3 2 52.6

t 7 2849 c4 0 3600.0

t 7 2849 c5 0 12.1

t 7 2849 c6 5 952.1

t 7 2849 c7 5 1501.7

As concluding remarks, we can say that the problem on the first scenario
is simple and can efficiently be solved by MIP solvers. The problem of second
scenario is much harder and there is room for further research. It is worth men-
tioning that the LP relaxation can be solved fast, providing us with a good
lower bound for the objective value, but general MIP solvers cannot find a good
feasible solution. Therefore, it is necessary to develop a heuristic for searching
for upper bounds in order to tackle large instances. The further research have
to be also moved toward considering a more real scenario when the flow data is
uncertain and contains noise.
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