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Abstract Cold Atmospheric Plasma (CAP) jets provide a unique combination
of reactive oxygen species, reactive nitrogen species, photons, and electric fields
that exhibit desirable properties of triggering cell death pathway, selectively for
cancer cells. However, the effects of CAP on cancer cells vary substantially
depending on the particular type of cancer cell under treatments as well as various
properties of plasma jet, such as gas composition, discharge voltage, and treatment
duration. On the other hand, artificial intelligence has demonstrated remarkable
capabilities in decision-making under uncertainties. Adaptive plasma in conjunction
with artificial intelligence could lead to breakthroughs in autonomous, personalized
cancer treatments. This chapter presents mathematical modeling of plasma cancer
treatment, and summarizes the recent results in adaptive learning plasma.
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9.1 Introduction

Cold atmospheric plasma (CAP) jet is formed by ionization of noble gases, such as
helium and argon, initiated when the gas jet flows through a high electric field.

The recent progress has led to a generation of CAP with the corresponding ion
temperature close to the room temperature in a laboratory setting [1], and it is also
referred to as non-thermal plasma jet or non-equilibrium plasma jet [2].

CAP jet has attracted much attention in the past decade due to its potential
application in cancer therapy: it triggers cell death pathway in cancer cells while
leaving normal cells unharmed. Various researchers have pointed that its therapeutic
effects are related with the reactive oxygen and nitrogen species (RONS), including
atomic nitrogen and oxygen, hydroxyl (OH), singlet delta oxygen, superoxide, and
nitric oxide (NO) [3–7].

In particular, it is shown that the CAP jet eliminates cancer cells in vitro
selectively with minimal damage to healthy cells, and furthermore, it significantly
reduces tumor size in vivo [8]. The selectivity is suggested to be from the synergistic
effect of selective diffusion of RONS into tumor cells and the high basic RONS level
in tumor cells [9, 10]. As the level of RONS is already increased in cancer cells, the
additional RONS delivered by CAP causes leads to death pathways especially for
cancer cells. More specifically, these cause damage in DNA, causing cell cycle arrest
in G2/M or programmed cell death referred to as apoptosis.

Despite success with various in vitro and in vivo experiments, there are several
challenges in reliable CAP cancer treatment [11]. First, the therapeutic effect of
the CAP jet is susceptible to the variability of plasma parameters (such as discharge
voltage, flow rate, and frequency) and exogenous disturbances (such as temperature,
target properties, and gas composition of surrounding environment) [12–14]. Sec-
ond, different types of cancers exhibit different responses when exposed to the same
CAP treatment conditions. Change of cancer type, properties of the medium in the
device, and the treating duration exposure by plasma jet can drastically influence the
plasma characteristics and their effects on the viability of cancer cells [15]. Third,
the underlying biological mechanisms of novel therapy approaches have not been
fully understood and guidelines on how to schedule these therapies may need to be
established. Due to the complexity in clinical trials, the scheduling of treatments is
often guided by exhaustive and expensive trial-and-error approaches.

One of the unique features of CAP compared to other sources of reactivity
is the ability to rapidly change the reactive species production. As such, it is
possible to adjust the CAP parameters such that the reactive species delivered to
cells are customized in real-time according to the cancer cell response. Based on
these, the idea of adaptive plasma for medical application was proposed recently
in [16, 17]. More specifically, the objective is to develop an autonomous, self-
adaptive therapeutic system that determines the parameters in the device generating
plasma, after diagnosing the response of the cancer cells to CAP in a particular
patience under treatment.
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Fig. 9.1 Schematics of
adaptive plasma

The component of the adaptive plasma framework is illustrated in Fig. 9.1. First
the prior knowledge of the cancer cell response to CAP is represented in the
modeling block. This corresponds to our best projection for the behavior of cancer
in the future, which can be constructed by a mathematical model of cancer cell
dynamics or prior experiences in CAP cancer treatments. Then, according to the
model, the adaptive plasma system is designed to plan the parameters to generate
CAP for a specific treatment goal. Next, the actual cancer cell response is diagnosed
in real-time, and according to the discrepancy between the empirical model and
the in situ diagnostics, the adaptive plasma system learns the characteristics of
the particular cancer cell under treatments and adjusts the treatment conditions
accordingly.

This framework essentially corresponds to a real-time feedback mechanism in
control system engineering or a decision-making process in machine learning.
However, there is a unique challenge in developing the adaptive plasma system
particularly due to the complexities of cancer cell dynamics. The conventional
control systems rely on a mathematical model of the dynamic system, which
is often formulated as an ordinary differential equation that describes the time
evolution of its state, derived according to the first principles. While there have
been adaptive control techniques to handle uncertainties in the mathematical model,
or robust control to mitigate the effects of unknown disturbances, they focus on a
certain class of parametric uncertainties or additive disturbance perturbing the given
dynamics. The cancer cell response to CAP involves various complicated processes
in biochemistry under a spectrum of time scales, and as such, it is not feasible to
construct a mathematical model with sufficient reliability and simplicity required
for real-time implementation of such control systems.

On the other hand, reinforcement learning has been successfully applied to
sequential decision-making for a Markov process [18]. Reinforcement learning aims
to construct a so-called action-value function to evaluate the projected outcome of
each possible action, in selecting the optimal action at the current time. While this
approach is comparable to the conventional optimal control, the distinct feature is
that the action-value function is constructed in situ based on the prior experiences,
possibly avoiding the need to construct any dynamic model in prior. However,
successful implementation of reinforcement learning often requires numerous trials
before the value function converges, and the number of trials exponentially increases
as the complexities of the problem is intensified. It is impossible to administer
multiple trials for cancer patient in clinics. Even conducting several in vitro
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experiments requires nontrivial efforts and costs. As such, it is not practical to
implement reinforcement learning directly to the proposed adaptive plasma system.

Considering the above challenges of control system engineering and reinforce-
ment learning in adaptive plasma, the most reasonable choice is integrating both
approaches in a synergistic fashion. More specifically, we propose to construct an
empirical model by utilizing a limited set of experimental data or by characterizing
the overall behaviors from the current knowledge of treatment mechanism. Starting
from this empirical model, learning control techniques can be designed to generate
self-adaptive CAP treatments that adjust both of the treatment parameters and the
empirical model in real-time. This can be further extended to reinforcement learning
that does not require extensive pre-training.

Finally, our approach should be distinguished from model predictive control and
machine learning presented in [19–21], which are designed to regulate treatment
conditions of a device producing CAP jet, such as substrate temperature, plasma
current, and power with no consideration on the actual cellular and tissue response.
In contrast, we focus on adjusting plasma treatment conditions adaptive to the
cellular response of cancer.

This chapter is organized as follows. In the first part, we present two mathe-
matical models, namely an oxidative DNA stress model and an empirical model
that represent the dynamic response of cancer cells to CAP. Next, three control
approaches based on adaptive learning control and reinforcement learning are
presented.

9.2 Mathematical Model of Plasma Cancer Treatment

As discussed above, it is implausible to derive a dynamic model describing the
cancer cell responses to CAP from first principles. However, a dynamic repre-
senting our current knowledge of the corresponding mechanism will be critical
for the successful implementation of adaptive plasma, in terms of scheduling an
initial treatment plan to be updated or reducing the amount of data required for
reinforcement learning. This section presents two particular attempts: an analytical
model based on the oxidative DNA stress caused by CAP, and an empirical model
constructed by a limited set of experiments.

9.2.1 Oxidative DNA Stress Model

The cell cycle is a series of phases that a cell goes through when it is divided into
two daughter cells [22], which happen aggressively in cancer cells. It is composed
of the first growing phase G1, the synthesis S to replicate DNA, the second growing
phase G2, and the mitosis phase M where the cell is literally divided. To guarantee
successful cell division over these delicate processes, there are several mechanisms
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to ensure its proper progression, referred to as cell cycle check points. In particular,
multiple check points are involved in the transition from G2 to M to examine
DNA for the possible damage or incomplete replication. The presence of DNA
damage detected in these check points prevents the cells from transitioning into
the next phase for division, causing the cell cycle arrest, which eventually leads to a
programmed cell death called apoptosis.

In [23, 24], the following hypotheses are presented to explain the effects of CAP
on the cell cycle:

• the plasma treatment causes oxidative DNA stress at the most vulnerable S phase;
• the increased damage in DNA results in G2/M cell cycle arrest and apoptosis.

This proposition describes the effects of CAP reasonably without excessive com-
plication. Here, we present a mathematical model representing the above effects of
CAP on the cell cycle.

Cell Cycle Dynamics

To formulate the above hypotheses mathematically, we first present a cell cycle
model that specifies the population density of cells with respect to the stress level
at each cell cycle. In other words, we specify the distribution of the oxidative stress
for the cells going through a specific cell cycle.

More specifically, let x ∈ [0,∞) be the level of oxidative DNA stress,
represented by a positive real number. We assume x = 0 represents no stress, and
the stress is more intense as x becomes greater. The density of cells at time t for
the specific stress level x is denoted by g1(t, x), s(t, x), and g2(t, x) ∈ [0,∞),
respectively, for the cell cycle G1, S, and G2/M . We do not distinguish M from
G2, as the conventional flow cytometry is not able to separate those two cycles.
However, the proposed model is readily extended to four cell cycles.

According to the presented density model, cell population at the stress interval
[x, x + dx] is given by g1(t, x)dx for the G1 phase, and the total cell population at
G1 is given by

G1(t) =
∫ ∞

0
g1(t, x)dx.

Similarly, the population for S and G2/M are given by

S(t) =
∫ ∞

0
s(t, x)dx, G2(t) =

∫ ∞

0
g2(t, x)dx.

The proposed mathematical model of the cell cycle with oxidative stress is given
by
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∂g1(t, x)

∂t
= 2k2(x)g2(t, x) − k1g1(t, x), (9.1)

∂s(t, x)

∂t
= −v(u)

∂s(t, x)

∂x
+ d(u)

∂2s(t, x)

∂x2 + k1g1(t, x) − kss(t, x), (9.2)

∂g2(t, x)

∂t
= kss(t, x) − k2(x)g2(t, x) − μ2(x)a(t, x; Ta), (9.3)

where the cells subject to apoptosis is given by

a(t, x; Ta) = ks exp(−k2(x)Ta)s(t − Ta, x), (9.4)

for a time delay Ta > 0, and the boundary condition for (9.2) is

d(u)
∂s(t, 0)

∂x
− v(u)s(t, 0) = 0. (9.5)

Here, the parameters k denote the rate of transition from one cycle to the next
one. For example, k1 is the rate of transition from G1 to S, and ks is the rate of
transition from S to G2/M . In (9.1), the population density at G1 is reduced by the
rate of k1g1 leaving G1, and it is increased by the rate 2k2g2, where the factor 2
implies that the cells leaving G2/M at the rate of k2g2 are divided. In other words,
as there is cell division in the M phase, the influx rate to G1, namely 2k2, is twice of
the efflux rate k2 from G2/M . Next, in (9.2), the first two terms represent the effects
of CAP denoted by u, describing the increase and the diffusion of the stress over the
S phase. Finally, (9.3) is for the G2/M phase, where the last term μ2 corresponds
to the effects of the cell cycle arrest and the apoptosis, which are discussed below.
See Fig. 9.2 for an illustration of the above dynamics model.

Effects of CAP Treatments

Now, we discuss how the presented mathematical model reflects the hypotheses on
the cell cycle dynamics. Equations (9.1)–(9.3) are defined such that the following
three effects are formulated mathematically: the increase of the oxidative stress at
S; G2/M cell cycle arrest; the resulting apoptosis.

Increased Oxidative DNA Stress in S

As discussed above, it is considered that CAP treatment increases the oxidative
DNA stress at S. This is modeled by the overall shift and the diffusion of the stress
at (9.2) as follows. Assume the intensity or the gas composition of the plasma
treatment, such as the voltage and the helium gas flow rate, is parameterized by
u ∈ R

m. The treatment is modeled by the terms v(u) ∈ R and d(u) ∈ R in (9.2)
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apoptosis
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cell cycle
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Fig. 9.2 The effects of CAP treatment to the cell cycle dynamics: under nominal cancer growths,
the cells go through the phase G1, S, and G2/M at the exponential rates of k1, ks , and k2,
respectively. Due to the cell divisions, the influx of G1 is twice of the efflux of G2/M . As illustrated
by red colors, it is assumed that CAP treatments cause oxidative DNA stress at S2, which result in
G2/M cell cycle arrest represented by reduction of k2, and apoptosis modeled by μ2

that correspond to the advection or shift of the stress and the diffusion of the stress,
respectively. In other words, the distribution of the stress will shift toward higher x

with the rate v(u), and it will be smoothed according to d(u), and the rates of the
advection and diffusion are considered to be dependent of the treatment conditions
parameterized by u. The given boundary condition (9.5) ensures that no stress is
created arbitrarily at x = 0.

Cell Cycle Arrest

In the presented cell cycle model, the cell division is represented by the fact that
the rate of influx to G1, namely 2k2, is twice to that of the efflux from G2/M .
The effects of the increased cell stress at S to the other cell cycle are accounted by
formulating the cell division rate k2 and the death rate μ2 of G2/M as a function of
stress x so that only the cells with lower stress go through the mitosis to enter G1,
and the other cells with higher stress are destroyed.

More explicitly, consider the step function ρ(x) defined in the appendix, that is,
a smooth function satisfying (9.31). For constants k20 ∈ R and 0 < x0 < x1 ∈ R,
the cell division rate is defined as

k2(x) = k20(1 − ρ(x; x0, x1)). (9.6)

According to the property of the step function ρ summarized at (9.31),

k2(x) = k20, x ≤ x0,
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k2(x) < k20, x0 < x < x1,

k2(x) = 0, x ≥ x1.

As such, the cell with the stress lower than x0 completes the cell division at the fixed
rate k20 , and proceeds to G1. For other cells with stress greater than x0, either the
cell division rate is discounted for x > x0 or no cell division occurs for x ≥ x1.
Consequently, the cells with higher stress cannot complete the cell division to G1,
and remain at G2/M , thereby causing G2/M cell cycle arrest.

Apoptosis

For mathematical modeling of apoptosis caused by the above cell cycle arrest, the
death rate at G2/M , namely μ2(x), is defined as a function of the stress as follows:

μ2(x) = μ20ρ(x; x2, x3), (9.7)

for constants μ20, x2, x3 ∈ R satisfying x2 ≤ x3. Therefore,

μ2(x) = 0, x ≤ x2,

μ2(x) < μ20 , x2 < x < x3,

μ2(x) = μ20 , x ≥ x3.

This implies that no apoptosis occurs when x ≤ x2, and the rate is increased to μ20

for x ≥ x3. As such, the cells with higher stress go through apoptosis.
It is further assumed that the apoptosis is completed with the time delay of Ta >

0. The main motivation of introducing the time delay is the experimental results
showing that the apoptosis occurs a certain period after CAP treatment. As such,
the cells subject to apoptosis at t had entered G2/M at t − Ta with the rate of
kss(t − Ta, x), and they have evolved according to

∂a(τ, x; Ta)

∂τ
= −k2(x)a(τ, x; Ta),

for τ ∈ [t − Ta, t], with the boundary condition a(t − Ta, x; Ta) = kss(t − Ta, x).
This is identical to (9.3) with ks = μ2 = 0.

The above equation is linear, and it yields an explicit solution given by

a(t, x; Ta) = exp(−k2(x)Ta)kss(t − Ta, x). (9.8)

The above expression can be implemented even when t ≤ Ta , assuming s(t, x) =
s(t, 0) for t < 0.
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Special Case: Low-Stress

Here we consider a special case when the oxidative stress is sufficiently low. This
corresponds to the case where the cancer cells proliferate naturally without CAP
treatments. More explicitly, we assume x ≤ min{x0, x2} so that

k2(x) = k20, μ2(x) = 0.

In other words, all of the cells complete the cell division and there is no apoptosis.
Throughout this subsection, as it is independent of x, k2(x) is denoted by k2(x) = k2
for convenience.

From (9.1) and (9.3), it is straightforward to show

Ġ1(t) = 2k2G2(t) − k1G1(t),

Ġ2(t) = k2S(t) − k2G2(t).

Also, integrating (9.2) with respect to x,

Ṡ(t) = d

dt

∫ ∞

0
s(t, x)dx =

∫
∂s(t)

∂t
dx

=
∫

∂

∂x

(
−vs + d

∂s

∂x

)
+ k1G1(t) − ksS(t)

= −vs + d
∂s

∂x

∣∣∣∣
∞

0
+ k1G1(t) − ksS(t).

Therefore, for given boundary condition (9.5) of zero flux, this reduces to

Ṡ(t) = k1G1(t) − ksS(t).

As such, the dynamics of the cell population is given by the following linear
time-invariant system:

⎡
⎣Ġ1

Ṡ

Ġ2

⎤
⎦ =

⎡
⎣−k1 0 2k2

k1 −ks 0
0 ks −k2

⎤
⎦

⎡
⎣G1

S

G2

⎤
⎦ . (9.9)

The characteristic equation of the above system matrix is given by

λ3 +
∑
i∈I

kiλ
2 + 1

2

∑
i,j∈I,i �=j

kikjλ − k1ksk2 = 0,

with I = {1, s, 2}.
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One can show that there is one positive real eigenvalue, namely λ. Sup-
pose the initial condition is chosen such that [G1(0), S(0),G2(0)] is parallel
to the corresponding eigenvector of the positive read eigenvalue, i.e., (A −
λI)[G1(0), S(0),G2(0)]T = 0. Then, the corresponding solution of (9.9) is
given by

G1(t) = eλt G1(0), S(t) = eλtS(0), G2(t) = eλtG2(0). (9.10)

Let C(t) = G1(t) + S(t) + G2(t) be the total cell population. The above implies

C(t) = eλtC(0). (9.11)

Therefore, in the proposed model when the oxidative stress is sufficiently low, all of
the cell population at each cell cycle and the total cell population grow exponentially
with the same rate λ. Also the ratio of each cell cycle to the total cell population
remains unchanged.

Furthermore, the parameters k1, ks, k2 can be determined by the cell cycle ratio
and the exponential growth factor. More specifically, let f1, fs, f2 ∈ [0, 1] be the
ratio of the cell population at each cycle, i.e.,

f1 = G1

G1 + S + G2
, fs = S

G1 + S + G2
, f2 = G2

G1 + S + G2
. (9.12)

Then, it is straightforward to show k1, ks, k2 are given explicitly as

k1 = 2 − f1

f1
λ, ks = f2 + 1

fs

λ, k2 = λ

f2
. (9.13)

As such, the above parameters can be easily identified by the flow cytometry of
untreated cancer cells.

Numerical Example

Several numerical examples are presented. Throughout this section, the unit of time
is hours if unspecified. The cell cycle ratio is chosen as f1 = 0.5, fs = 0.3, and
f2 = 0.2, and the overall growth rate is chosen as λ = log 2

24 , which represents that
the doubling time is 24 h. From (9.13), the corresponding cell cycle transition rates
are given by

k1 = 0.0866, ks = 0.1155, k20 = 0.1444.

The apoptosis rate is μ20 = 1, and the delay is Ta = 12. The parameters to define
the step function in k2(x) and μ2(x) are given by x0 = 0.6, x1 = 1.4, x2 = 0.7,
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and x3 = 1.3. For CAP treatment, the rate of advection and diffusion is selected as
v = 30 and d = 3, and when there is no treatment, they are changed to zero.

The initial conditions are chosen as

g1(0, x) = f1
2√

2πσ
exp

(
− x2

2σ 2

)
, s(0, x) = fs

f1
g1(0, x),

g2(0, x) = f2

f1
g1(0, x),

with σ = 0.2. In other words, the stress is distributed according to the Gaussian
distribution, and scaled according to the cell cycle ratio. The resulting initial total
cell population is C(0) = G1(0) + S(0) + G2(0) = 1.

No CAP Treatment

We first consider the case of no CAP treatment. This represents the natural growth
of the cancer cells. For the selected initial stress distribution and the parameters of
the step function, the majority of cells, excluding less than 0.3% of the population,
have low stress less than min{x0, x1, x2, x3} = 0.6. As such, this case is well
approximated by the results presented in section “Special Case: Low-Stress.”

Figure 9.3 illustrates the simulation results. As presented in section “Special
Case: Low-Stress,” the total cell population and the population at each cell cycle
grow exponentially with the rate λ, and consequently, the cell cycle ratio remains
fixed.

Fig. 9.3 Simulation results for no CAP treatment. (a) Cell population growth. (b) Cell cycle ratio
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Fig. 9.4 Simulation results with CAP treatments. (a) The ratio of the total cell population to
the untreated growth for varying treatment duration. (b) Cell cycle ratio (T = 120:thin, T =
180:medium, T = 240:thick): the G2/M cell cycle arrest occurs when t = 12 h where the
population of G2/M exceeds those of S

CAP Treatments

Next, we consider the simulation results with CAP treatments. Three cases are
presented for varying treatment duration of 120, 180, and 240 s.

The total cell population relative to the untreated growth is shown at Fig. 9.4a. It
is also observed that the longer the treatment duration is, the ratio reduces further.
There are two phases in the decrease of the ratio. During the first Ta = 12 h, the
ratio decreases slightly due to the reduced cell division rate, namely k2(x) for cells
with higher stress. Afterwards, the apoptosis contributes to further decrease.

Figure 9.4b illustrates the cell cycle ratio. The ratio for G2/M increases until
t = 12 h, and it exceeds the S phase temporarily, representing the G2/M cell cycle
arrest. After the cells with higher stress are destroyed due to apoptosis, the cell cycle
ratio asymptotically converges to the initial value, indicating that the remaining cells
with lower stress proliferate in the same fashion presented in the preceding section
for the natural growth without treatment.

Figures 9.5, 9.6 and 9.7 show the evolution of the stress distribution for three time
segments, when the treatment period is 180 s. In those figures, the gradual increase
of the intensity of color represents the time evolution. In Fig. 9.5, it is shown that
the stress distribution of S increases due to CAP treatment. The next figure, Fig. 9.6,
the cells with the increased stress are transferred from S to G2/M , and they remain
at G2/M as the transition rate from G2/M to G1, namely k2(x), is discounted for
higher stress level. This corresponds to the G2/M cell cycle arrest, and it explains
the peak of the G2/M cell cycle ratio in Fig. 9.4b. Finally, in Fig. 9.7, the cells with
higher stress that have been accumulated at G2/M go through apoptosis and are
destroyed.
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Fig. 9.5 Evolution of oxidative stress distribution for 0 ≤ t ≤ 180 s: the stress at S is increased
due to CAP treatment. (a) Population density g1. (b) Population density s. (c) Population density g2

Fig. 9.6 Evolution of oxidative stress distribution for 180 s ≤ t ≤ 12 h: the cells with higher
stress level are transferred from S to G2/M , and they become accumulated at G2/M , while
representing G2/M cell cycle arrest. (a) Population density g1. (b) Population density s. (c)
Population density g2

Fig. 9.7 Evolution of oxidative stress distribution for 12 h s ≤ t ≤ 72 h: the cells with higher
stress level that have been accumulated at G2/M go through apoptosis. (a) Population density g1.
(b) Population density s. (c) Population density g2

9.2.2 Empirical Model

Next, we present another mathematical model of CAP treatments [25]. This is
developed to represent the dynamic response of cancer cells under CAP treatment,
based on the raw data from in vitro experiments presented in [26]. Cancer cell
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response to CAP is monitored over the course of 48 h for two types of cancer
cell, namely U87 and MDA-MB-231, where the treatment duration is varied from
0 to 180 s, and the plasma discharge voltage is selected from 3.16 and 3.71 kV.
The resulting CAP-induced cell death was investigated by RealTime-Glo MT Cell
Viability Assay several times.

To generalize the experimental data over arbitrary treatment conditions and time,
the following form of growth model is considered:

ṗ = pF(t, p), (9.14)

where p ∈ R denotes the population of cancer cell measured in terms of
the metabolic activities of cells. To have the consistent value of p for several
experiments presented in [26], we normalize the cancer cell viability under CAP
treatments with the initial cancer cell viability just before the CAP exposure.
Therefore the initial value is p(0) = 1 always, and the variable p is unit-less. Next,
F : R → R models its net exponential proliferation rate depending on the current
viability and the time.

The objective is to find an analytical expression of F that characterizes the
viability of cancer cells under CAP treatment as reported in [26], which exhibit
the following properties.

• immediately after CAP treatment, cell viability is reduced instantaneously;
• shortly afterwards, from 0 min to 6 h, the cell viability increases rapidly;
• from 6 to 24 h, the cell viability decreases when the treatment duration is

sufficiently large;
• from 24 to 48 h, the cell viability approaches its steady state value;
• for the effect of treating duration and voltage, the cell numbers decrease with the

increase of the treating duration and voltage.

Based on these common features, we formulate an expression for the net
proliferation rate as follows. To represent the instantaneous reduction of the cell
viability, the cell viability immediately after the treatment is given by p(0+) = p0
for p0 ∈ R. Afterwards, the cell viability evolves according to (9.14), where the net
proliferation rate is chosen as

F(t, p) = (c1 − c2t) exp
( − c−t

3 pc4
) − c5, (9.15)

where c1, c2, c3, c4, c5 ∈ R are parameters to be determined. The above expression
is applied to both types of cancer cells, namely U87 and MDA-MB-231, but c5 is
set to zero for U87.

Next, the values of the free parameters in (9.15) are determined according to
optimal system identification [27]. This is to minimize the discrepancy between the
experimental data and (9.14) measured by
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Fig. 9.8 Normalized cell viability for U87 with the discharge voltage of 3.16 kV (blue: analytical
model of (9.14); black circle: experimental data). (a) 60 s treatment. (b) 180 s treatment

J (c) =
n∑

i=1

∫ 48

0
‖pexpi

(t) − p(t; c)‖2dt, (9.16)

where pexpi
(t) denotes the cell viability at t for the i-th experimental data, and

p(t; c) corresponds to the value obtained by the mathematical model (9.14) with
a given parameter c = (c1, c2, c3, c4, c5) ∈ R

5. The optimal values of the free
parameters are selected by

copt = arg min{J (c)}. (9.17)

This is solved by the nonlinear programming solver, namely fmincon in MATLAB
for each discharge voltage of U = 3.16 and 3.71 kV.

The time evolution of the cell viability predicted by (9.14) is illustrated in Fig. 9.8
against the experimental data of [26] for two selected treatment durations. While the
experimental data are noisy, the presented analytical model reflects the overall trend
of the data successfully.

The above parameters are optimized for the particular set of the treatment
duration and discharge voltages considered in [26]. However, it can be generalized
for arbitrary treatment conditions, by assuming that such parameters vary linearly.
For example, the cell viability for the treatment duration �t = 100 s can be
constructed by interpolating the parameters of � = 90 and �t = 180. Similarly,
the effects of the discharge voltage can be generalized as well. They are illustrated
in Fig. 9.9.

In Fig. 9.9a, the treatment duration is varied linearly from �t = 60 (cyan)
to �t = 180 (purple) for a fixed discharge voltage U = 3.16 kV. Similarly, in
Fig. 9.9b, the discharge voltage is varied from U = 3.16 kV (cyan) to U = 3.71 kV
(purple) when �t = 90 s. As such, the presented empirical model (9.14) can
be utilized to predict the dynamics of cancer cell viability for arbitrary treatment
conditions.
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Fig. 9.9 Normalized cell viability for U87 generalized for arbitrary treatment conditions (blue:
smaller values; purple: larger values). (a) Treatment duration varying from 60 to 180 s. (b)
Discharge voltage varying from 3.16 to 3.71 kV

9.3 Adaptive Plasma

The mathematical model of the prior section can be utilized to plan a baseline
treatment schedule for a given objective. For example, the treatment duration and
the plasma discharge voltage can be chosen such that the cancer cell viability is
reduced to a desired level after a certain period. However, the effects of CAP on
cancer cells vary substantially depending on the various factors, such as the size
and the type of the cancer cell under treatment, ambient temperature, and humidity.
It is also susceptible to exogenous disturbances not accounted in the mathematical
model. Consequently, it cannot be expected that the actual cancer response would
follow the one predicted by the model. The key component of adaptive plasma
is to address this issue by adjusting the treatment conditions based on in situ
diagnostics of the actual response to compensate the discrepancy between the model
and the actual response. This section presents three such approaches, namely model
predictive control, adaptive learning control, and reinforcement learning, based on
the empirical model in Sect. 9.2.2.

9.3.1 Model Predictive Control

A model predictive control (MPC) is a control strategy to convert the solution
of open-loop optimal control into a feedback control [28]. The idea is applying
the optimal control repeatedly over a certain time period. As each optimization is
initiated by the current state vector, the corresponding control input constructed
from MPC is a feedback.
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We first formulate an optimal control problem as follows. Let the control
parameters be the CAP treatment duration �t . The objective is to minimize the
treatment time, while ensuring that the cancer cell viability is reduced to the desired
level. This is to maximize the therapeutic effect of CAP treatments for a prescribed
level of cancer growth inhibition. More explicitly, the objective function that is to
be minimized is

J (�t) = �t2. (9.18)

It is subject to a terminal inequality constraint to reduce the ratio of the terminal
cancer viability to the untreated case up to a desired ratio, i.e.,

p(t = 48 h;�t)

p(t = 48 h;�t = 0)
≤ rd, (9.19)

where rd ∈ R is the desired ratio of the cancer cell viability.
Once the value of �t is given, the above objective function and the inequality

constraint can be evaluated by integrating the dynamic model (9.14). As such, the
presented optimization can be addressed by any numerical parameter optimization
tool. Figure 9.10a illustrates the corresponding results, showing the treatment
duration �t required to reduce the relative cancer cell viability to the desired value
rd , where �t increases as rd decreases.

These provide a CAP treatment schedule for a specific level of cancer cell growth
inhibition. However, cancer cell response to CAP treatments depends on various
intrinsic and extrinsic factors, and the presented mathematical model may not
accurately characterize the actual response of the cancer cells under treatments. This
may cause that the terminal value of the relative cancer cell viability becomes greater
than the desired level, or it may yield unnecessarily intensive CAP treatments.

Fig. 9.10 Simulation results of model predictive control. (a) Optimal control to determine the
treatment duration in seconds for a given desired ratio. (b) Model predictive control
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We address this by optimal feedback framework based on model predictive
controls (MPC). The objective is to adjust the treatment parameters adaptively based
on the actual cell response.

A specific case is considered as below. We assume that a series of three CAP
treatments are conducted at the interval of 48 h such that the terminal ratio at the end
of 144 h reduces to 0.2. If there is no modeling error, the ratio of the cell viability
can be reduced by (0.2)1/3 as each treatment. Instead, in the presented MPC, the
desired relative cell viability is chosen as

rd =
⎧⎨
⎩

0.21/3 first treatment,

0.21/3 × (predicted ratio of cell viability)
(actual ratio of cell viability) remaining treatments.

(9.20)
The first treatment is scheduled based on the mathematical model. At the end of
the first treatment period, the predicted cell viability ratio is compared against the
actual value. For the next treatment, the treatment objective is adjusted as in (9.20)
to compensate the corresponding discrepancy. For example, this reduces the desired
viability of the next treatment further if the actual cell viability at the end of the
preceding treatment is greater than its predicted value.

The proposed approach is verified by a numerical simulation, where the pre-
ceding mathematical model is considered as the actual cancer response, and the
parameters of the mathematical model are altered to represent a mathematical model
available to MPC. Therefore, the mathematical model available to the controller is
different from the dynamic model representing the actual cancer cell response.

In Table 9.1, the three columns from the second to the fourth correspond to the
ideal case when the exact model is available to MPC. In this case, the relative cancer
viability reduces exactly by the desired factor rd at each treatment. The treatment
duration for all four treatments is identical to �t = 75.64, and the terminal relative
viability after four treatments is 0.2 as desired. The next three columns are the results
of MPC when the exact model is not available to MPC. The first treatment duration
is �t = 67.5 for the first treatment, and it is less than the ideal case due to the
modeling error. Consequently, the terminal viability ratio 0.64 becomes greater than
the desirable value of 0.58. To compensate this, the goal of the second treatment is
reduced to 0.47, which results in the viability ratio 0.36 that is slightly greater than
the ideal value of 0.34. The final treatment is adjusted similarly so that the actual
viability ratio at the end of three treatments achieves the treatment goal of 0.2, just
as the ideal case.

Table 9.1 Modeling predictive control of U87

Ideal case MPC

Treatment rd �t Viability ratio rd �t Viability ratio

1 0.58 75.64 0.58 0.58 67.5 0.64

2 0.58 75.64 0.34 0.47 78.8 0.36

3 0.58 75.64 0.20 0.50 77.0 0.20
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Figure 9.10b illustrates the temporal response of the relative cell viability. The
red, dotted lines show the desired relative cell viability at the end of each period.
The blue lines are the results of optimization without MPC. Due to the modeling
error, the actual cancer cell viability is greater than the desired value. Finally, the
black lines correspond to MPC, where the treatment goal is achieved at the end of
the three periods. These simulation results suggest that by adjusting CAP treatment
conditions adaptive to the actual cancer response, the adverse effects of modeling
errors can be mitigated.

9.3.2 Adaptive Learning Control

In the above model predictive control, comparing the actual viability at the end
treatment period with the predicted value constitutes the feedback mechanism. As
such, the evolution of the actual viability after a CAP treatment is not accounted.
Furthermore, the mathematical model itself remains unchanged even after the
discrepancy is observed, as the only part that is adjusted is the treatment global
of optimization.

It would be more desirable if the adaptive plasma system learns the dynamic
characteristics of the particular cancer cell under treatment, so that the mathematical
model can be refined as the treatment is repeated. This provides more accurate
mathematical model that can be used to adjust the prospective treatment plan
accordingly.

The conventional adaptive controls deal with unknown parameters in the equa-
tions of motion, and as such it is not suitable for the cancer cell dynamics
whose uncertainties cannot be represented in a structured form with parametric
uncertainties. Next, it is also critical to evaluate the degree of confidence in the
learned model, as we cannot rely on untrustworthy information in planning cancer
treatment. In other words, the learned model is useful only if we are confident about
its validity.

To address these, we propose to utilize Bayesian machine learning, which is
a broad field in artificial intelligence to account uncertainties in data-based learn-
ing [29]. This is useful as an arbitrary, non-structured model and can be represented
and learned in a probabilistic formulation that considers uncertainty distribution
explicitly, thereby resolving the aforementioned issues of the conventional adaptive
control or deterministic learning.

Gaussian Process

In particular, here we adopt the Gaussian process [30] to represent uncertainties in
the mathematical model. A Gaussian process is a stochastic process, defined such
that any finite number of collection is jointly Gaussian. It is completely described
by second-order statistics as follows. Define a mean function m(x) : Rn → R and
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a positive-definite covariance function K(x, x′) : Rn × R
n → R, which is referred

to as a kernel function. The corresponding Gaussian process is denoted by

g(x) ∼ G(m(x), K(x, x′)). (9.21)

Let D = {(xi, gi, σgi
)}i∈1,...N be a set of data, where gi ∈ R is a sample value

of g(x) when x = xi , after corrupted by an additive, independent noise. More
explicitly,

gi ∼ g(xi) + εgi
, (9.22)

with εgi
∼ N(0, σ 2

gi
).

Define g, x, and m(x) ∈ R
N be the concatenation of gi , xi , and m(xi) for i ∈

{1, . . . , N}, respectively. Also, let the matrix K(x, x) ∈ R
N×N be defied such that

its i, j -th element is K(xi, xj ), and let Σg = diag[σ 2
g1

, . . . , σ 2
gN

] ∈ R
N×N . From

the definition of the Gaussian process, we have

g ∼ N(m(g), K(x, x) + Σg). (9.23)

Let g∗ ∈ R be a sample value when x = x∗. It is jointly Gaussian with g as

[
g
g∗

]
= N

([
m(x)

m(x∗)

]
,

[
K(x, x) + Σg K(x, x∗)

K(x∗, x) K(x∗, x∗)

])
. (9.24)

Therefore, from the conditional distribution of joint Gaussian distributions, the
regression equation for g∗ is

g∗|D, x∗ ∼ N(m∗ + K∗x(Kxx + Σg)
−1(g − mx),

K∗∗ − K∗x(Kxx + Σg)
−1Kx∗), (9.25)

where the subscripts for m and K denote the input arguments, e.g., K∗x =
K(x∗, x) ∈ R

1×N .
The desirable feature is that a Gaussian process may represent an arbitrary

function explicitly as in (9.25), without need for training or numerical optimization
required for common multi-layer neural networks. The uncertainties are represented
by Gaussian distributions that are provided by various properties, which can be
utilized to simplify the required mathematical analysis.

Adaptive Learning Control with Gaussian Process

Consider the empirical model (9.14) perturbed by the unknown disturbance or
modeling error represented by �(t, p) ∈ R

2 × R:
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Table 9.2 Adaptive learning control of U87

Ideal case Adaptive learning control

Treatment rd �t Viability ratio rd �t Viability ratio

1 0.44 90 0.44 0.44 75.9 0.58

2 0.44 90 0.20 0.37 127.6 0.20

ṗ = pF(t, p) + �(t, p). (9.26)

To simplify the following discussion, suppose the above continuous-time differen-
tial equation is discretize over a time sequence {t0, t1, . . . , tN } into

pk+1 = pkFd(tk, pk) + �d(tk, pk), (9.27)

for Fd,�d : R2 × R and the subscript k denotes the value of a variable at tk . Here
the first term on the right-hand side pkFd(tk, pk) corresponds to the mathematical
model, and the second term �d(tk, pk) denotes the unknown modeling error or
disturbance that may be dependent of the current viability and time. This can be
generalized to incorporate other intrinsic and extrinsic factors.

Whenever the viability is measured, the above equation yields a sample data
{(tk, pk),�d(tk, pk)} to be used to represent the unknown disturbance with a
Gaussian process described above. The desirable property is that as the treatment
is repeated more data become available so that the Gaussian process models the
unknown part more accurately, thereby executing the learning process. Once the
model is updated, any control strategy can be applied.

The proposed adaptive learning control is applied to the CAP treatment problem
formulated in Sect. 9.3.1. The objective is to reduce the relative cancer viability into
0.2. But instead of three consecutive treatment, here we consider two treatments
over the interval of 96 h. The first treatment is scheduled based on the optimization
with the empirical model. After the first treatment, the cancer viability is measured
five times at t ∈ {0.2, 0.4, . . . , 1} h to produce a set of sample data for a Gaussian
process. The second treatment at t = 48 is planned based on the learned dynamic
model.

The corresponding simulation results are summarized in Table 9.2. The two
columns from the second to the fourth are for the ideal case when � = 0 without
adaptive learning. The desired ratio of each treatment is rd = 0.21/2 = 0.44, which
is achieved exactly with �t = 90 s. The resulting terminal viability ratio reduces
to the desired value exactly. The next three columns are for the proposed adaptive
learning control in the presence of non-zero modeling error �. Due to the modeling
error, the first treatment time �t = 75.9 is less than the ideal value of 90. However,
the cancer cell response to the first treatment is monitored, and the discrepancy is
accounted by the Gaussian process. Based on the learned dynamic model, the second
treatment is planned. As the error is properly compensated, the second treatment
from the learned model achieves the desired viability ratio exactly.
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Fig. 9.11 Simulation results of adaptive learning control. (a) Cell viability ratio. (b) Gaussian
process learning for modeling error

Figure 9.11a illustrates the evolution of the viability ratio, where the red dotted
lines are for the desired treatment goal. The blue lines are for treatments without the
Gaussian process learning, and it exhibits a substantial error: the terminal viability
ratio is 0.34, which exceeds the desired value by 70%. Finally, the black lines are for
the proposed adaptive learning control, which achieves the treatment goal at the end
of the second treatment. The next Fig. 9.11b illustrates the modeling error learned
by the Gaussian process, where the true values are represented by the red curve,
and the learned model is given by the blue curves with 3σ bounds represented by
a shaded area, and the training data denoted by the marks +. The learned model
accurately represents the true unknown modeling error. More importantly, the 3σ

bounds show that there is less uncertainty over the interval covered by the training
data, and outside of the interval is greater uncertainty. As such, it provides the level
of confidence in the learned model depending on the given domain.

This information can be utilized in the trade between performance and safety:
over the region of smaller uncertainties, we can plan an aggressive plan with
confidence; for the region of greater uncertainties, the treatment can be scheduled
more conservatively. Accounting uncertainties and gauging confidence are one of
the important attributes of the proposed adaptive learning control for adaptive
plasma. While this section relies on the Gaussian process, any multi-layer neural
network can be utilized to represent the modeling uncertainties. With Bayesian
machine learning, it is more suitable to represent more complicated modeling errors
and uncertainties depending on various factors.

9.3.3 Reinforcement Learning

Reinforcement learning (RL) deals with optimal strategies for an agent in an
environment to take the action to maximize a notion of cumulative reward [18].
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The interaction between the agent and the environment is typically modeled by a
Markov decision process. As such it is closely related to the dynamic programming
in optimal control. The unique feature of RL is that it may not assume the complete
knowledge of the dynamics, and the optimal policy does not have to be completely
determined in prior. Instead, the optimal policy that may be initialed randomly is
revised through each trial after evaluating the possible actions from experience.
Therefore, the theory and the practice of RL can be utilized in adaptive plasma,
to adjust the treatment plan in an optimal fashion to suppress the growth of the
particular cancer cell under treatments, without need for the complete knowledge
of the mechanism behind it. However, the successful implementation of RL often
requires a large number of trials, which leads to a challenge in cancer treatments.

This section provides a formulation of RL for adaptive plasma. It is based on a
partially observable Markov decision process (POMDP) defined by the following
components:

• State sk: It represents the current status of the cancer cell. For example, for the
empirical model in Sect. 9.2.2, the cancer viability corresponds to the state.

• Action ak: The parameters of CAP that can be adjusted arbitrarily are called
action. This may include the treatment duration, plasma discharge voltage, or
gas composition.

• Transition probability P(sk+1|sk, ak): According to the assumption of the
Markov process, the future state is completely determined by the current state
and the action taken, without need for the prior history. The transition probability
describes the distribution of the state in the next time step, for the given current
state and action.

• Reward R(sk, ak): This represents the reward by choosing the action ak at the
given state sk . This can be designed to reflect the objectives of the treatment. For
example, a reward can be the amount of the reduction of cancer cells.

• Observation ok: The observation corresponds to the characteristics of the cancer
that can be measured by a sensor. For example, the level of metabolism is
measured in [26]. Recently, the impedance is utilized for real-time diagnostics.

• Observation probability O(ok|sk, ak): this characterizes the type of sensor used.
It represents the distribution of the measurement for a given state and action.

In short, an agent (adaptive plasma) in an environment with the state sk (cancer)
chooses an action ak (CAP), which causes the environment to transfer the state
according to the transition probability (cancer dynamics). At the same time, the
agent receives a reward (cancer treatment) and an observation (measurement) from
the environment. The objective of the agent is to choose an action at each time step
that maximizes its expected cumulative reward, or return defined as

Gk = E

[ ∞∑
l=0

γ lR(sk+l+1, ak+l+1)

]
, (9.28)
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where 0 < γ < 1 is a discount factor. The strategy of the agent is called policy
π(a|s), which describes the distribution of the action for a given state at each step.
As the state is not directly measured, the belief of the state is determined by its
history of actions and observations. For the belief of the current state b(sk), the next
one is updated by

b(sk+1) ∝ O(ok|sk, ak)
∑
sk

P (sk+1|sk, ak)b(sk).

The problem of constructing the optimal policy maximizing (9.28) can be
addressed by the dynamic programming in optimal control. However, it is subjected
to complexities, referred to as curse of dimensionality, especially when the system
is of higher dimensions, and it requires the complete knowledge of the dynamics.

The heart of RL is avoiding these issues by iteratively updating the policy as
described below. For a given policy π , let Qπ(sk, ak) be the expected return when
an arbitrary action ak chosen as the k-th step, and the prospective actions at the
k + 1-th step and afterwards are chosen from the policy π , i.e.,

Qπ(s, a) = Eπ [Gk|sk = s, ak = a]. (9.29)

Once the Q function is computed, the policy can be improved by

π ′ = arg max Qπ(s, a), (9.30)

which is a greedy policy improvement that seeks for the best possible alternative
choice from π always. Instead of seeking the optimal action at every step greedily,
the above policy improvement can be relaxed to explore other possibilities.

However, constructing the Q function from (9.29) is not practical due to the
same issues of the dynamic programming: this may take nontrivial computational
efforts and it requires the complete knowledge of the dynamics. RL circumvents
these by revising the Q function continuously. First, the Q function is initialized by
some random values. Let the action a be chosen from the state s so that the state
is transferred to s′, while resulting in the reward r . From this experience, the best
guess of the correct value of Q(s, a) is r + γ maxa′ Q(s′, a′), which is referred to
as the TD target. Then the Q function is updated from the current value toward the
TD target according to

Q(s, a) = Q(s, a) + α{r + γ max
a′ Q(s′, a′)

︸ ︷︷ ︸
TD target

−Q(s, a)},

where α > 0 corresponds to a learning rate. Once the Q function is updated, the
policy can be improved according to (9.30). These process for improving the Q

function and the policy is repeated at each time step. It is a learning process as both
are improved by an experience represented by the set (s, a, s′, r).
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To implement this, the Q function can be defined as a lookup-table when there a
limited number of discrete states and actions. For continuous state and action, it can
be represented by any function approximator. In particular, when the dimension of
state and action is large, a deep neural network can be adopted for the Q function,
resulting in the so-called deep Q-learning [31].

As discussed above, the desirable feature is that it does not require the complete
prior knowledge of the cancer dynamics, and the optimal policy representing
adaptive plasma is improved as the set of experiences accumulates. The challenge
is that it may take a lot of trials until the Q function converges. Also to ensure
convergence to the global optimum and to facilitate the process, the agent may need
to take an unreasonable action through the course. This might be problematic for
cancer treatment, where it is infeasible to repeat numerous CAP treatments, and the
treatment should remain within a reasonable bound. This might be mitigated by pre-
training the Q function based on the mathematical models formulated in Sect. 9.2.
Even with the potential challenges, it is expected that an innovative advance in
adaptive plasma can be achieved by utilizing the theory and the practice of RL.

9.4 Conclusions

This chapter has presented mathematical models and control strategies for adaptive
plasma.

Mathematical Modeling
The mathematical models can be used to predict the cancer cell response to
CAP for a given treatment conditions, namely the treatment duration and the
plasma discharge voltage. The first oxidative DNA stress model is constructed to
mathematically formulate the effects of the CAP on the underlying cell cycle. This
represents one of the current understandings for the mechanism how CAP eliminates
cancer cells, and as such, there is a great potential that this model is further
generalized and revised to account various treatment conditions and exogenous
factors to reflect cancer cell dynamics accurately.

However, identifying the parameters would require a set of experiments to
monitor the evolution of cell cycle population.

On the other hand, the next empirical model is solely based on the observation
of cancer cell response, after treating the cancer cell dynamics as a completely
unknown system. As such, it does not reflect our comprehension behind the CAP
cancer treatment. However, it is relatively simple, and it can be adjusted to make a
reasonable prediction consistent with the experimental data.

Adaptive Plasma
Next, three control strategies, namely model predictive control, adaptive learning
control, and reinforcement learning, are presented. Model predictive control is
aligned with the traditional control engineering, and it can ensure optimality under
the feedback controls. However, the feedback mechanism is focused on adjusting
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the desired goal of optimization, and there are no adjustments in the mathematical
model and the control algorithm.

In contrast, the adaptive learning control attempts to utilize all of the information
available from the experience to refine the model and the control. Furthermore, the
proposed stochastic framework evaluates the level of uncertainties throughout the
information fusion. As such, the objective of control can be strategically adjusted
between higher performance in the region of lower uncertainties and safety in the
area of higher uncertainties.

Finally, reinforcement learning can be utilized for the complete model free
control. However, a successful implementation of reinforcement learning may
require numerous experiments, which can be mitigated by integrating with a
mathematical model. As the field of artificial intelligence is rapidly advancing, there
is a great potential for reinforcement learning utilized in innovative adaptive plasma.

Remarks
All of these mathematical models and control strategy would greatly benefit from
real-time in situ diagnostics. As it is nearly impossible to characterize the cancer
cell response to CAP from fundamental principles, any of the mathematical model
should rely on the experimental data, and the accuracy of such models is limited
by the richness and the quality of data. However, it is often that a cell viability
and proliferation assay or flow cytometry need to destroy the cell to detect and
measure its chemical and physical properties. As such, to measure the time evolution
of cancer response to CAP over multiple instances, a set of experiments should be
performed in parallel under the identical condition. Any real-time diagnostics can
be utilized to generate a variety of valuable data to be adopted for more reliable
mathematical models.

Furthermore, the critical component of adaptive plasma is monitoring the cellular
response in real-time so that the treatment conditions are adjusted accordingly. The
information that can be acquired from real-time diagnostics will play a critical role
in the success of adaptive plasma.

Appendix

Step Function

Here, we construct a smooth step function ρ(x; x0, x1) : R → [0, 1] such that

ρ(x; x0, x1) =
{

0 x ≤ x0,

1 x ≥ x1,
(9.31)

for x0 < x1.
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We introduce a C∞ function,

f (x) =
{

e−1/t t > 0,

0 t ≤ 0.

Consider

g(x) = f (x)

f (x) + f (1 − x)
,

which is a smooth step function from 0 for x ≤ 0 to 1 for x ≥ 1. Utilizing this, we
can define a function satisfying (9.31) as

ρ(x; x0, x1) = g

(
x − x0

x1 − x0

)
. (9.32)
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