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Abstract. Achieving high performance and performance portability
for large-scale scientific applications is a major challenge on hetero-
geneous computing systems such as many-core CPUs and accelerators
like GPUs. In this work, we implement a widely used block eigensolver,
Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG),
using two popular directive based programming models (OpenMP and
OpenACC) for GPU-accelerated systems. Our work differs from exist-
ing work in that it adopts a holistic approach that optimizes the full
solver performance rather than narrowing the problem into small kernels
(e.g., SpMM, SpMV). Our LOPBCG GPU implementation achieves a
2.8×–4.3× speedup over an optimized CPU implementation when tested
with four different input matrices. The evaluated configuration com-
pared one Skylake CPU to one Skylake CPU and one NVIDIA V100
GPU. Our OpenMP and OpenACC LOBPCG GPU implementations
gave nearly identical performance. We also consider how to create an
efficient LOBPCG solver that can solve problems larger than GPU mem-
ory capacity. To this end, we create microbenchmarks representing the
two dominant kernels (inner product and SpMM kernel) in LOBPCG
and then evaluate performance when using two different programming
approaches: tiling the kernels, and using Unified Memory with the origi-
nal kernels. Our tiled SpMM implementation achieves a 2.9× and 48.2×
speedup over the Unified Memory implementation on supercomputers
with PCIe Gen3 and NVLink 2.0 CPU to GPU interconnects, respec-
tively.
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1 Introduction

There is a pressing need to migrate and optimize applications for execution
on GPUs and other accelerators. Future planned systems for the Department of
Energy Office of Advanced Scientific Computing Research (DOE ASCR) include
Perlmutter at NERSC (AMD CPU + NVIDIA GPU nodes), Aurora at ALCF
(Intel CPU + Intel Xe accelerator nodes), and Frontier at OLCF (AMD CPU
+ AMD GPU nodes). The full capability of these systems can only be real-
ized by making efficient use of the accelerators on the compute nodes. Most
efforts to use accelerators to date have involved scientists using the CUDA pro-
gramming language to target NVIDIA GPUs. The success of these efforts, the
expected marginal gains in general-purpose CPU performance, and the under-
standing that special purpose accelerators are the best way to obtain significant
performance gains within a fixed financial and power budget convinced DOE
ASCR to invest in accelerator-based systems. However, CUDA alone is not an
appropriate method to target accelerators produced by different vendors, e.g.
NVIDIA, AMD, Intel, Xilinx, although there are efforts by AMD to use the HIP
framework to convert CUDA to a more portable style of C++ [4].

In recent years, OpenACC and OpenMP have emerged as portable, base-
language independent, and an increasingly robust and performant way to target
accelerators. These directive-based methods have lowered the barrier of entry
for application developers to target accelerators and are anticipated to be a
key enabler for DOE users to efficiently use forthcoming supercomputers. How-
ever, there needs to be wider testing of OpenMP and OpenACC in scientific
applications to address any shortcomings in the language specifications, improve
the robustness and performance of vendor compilers, and continue to refine our
understanding of best practices to migrate applications to accelerators. At the
same time, the most efficient way to use accelerators is often achieved using
optimized math and scientific libraries, e.g. cuBLAS and Tensorflow. Therefore,
it will frequently be the case that non-trivial applications will increasingly need
to mix optimized library calls with directives to obtain highest performance for
the full application.

In this paper, we port and optimize a block eigensolver for GPUs using a
combination of directives and optimized library calls. Sparse matrix compu-
tations (in the form of eigensolvers and linear solvers) are central to several
applications in scientific computing and data analytics, from quantum many-
body problems to graph analytics to machine learning. In the context of eigen-
solvers, performance of traditional sparse matrix-vector multiplication (SpMV)
based methods are essentially limited by the memory system performance [33].
As such, block solver alternatives that rely on higher intensity operations such
as sparse matrix-matrix multiplication (SpMM) and multiplication of vector
blocks (i.e., tall skinny matrices) have garnered the attention of several groups
[7,29]. We adopt the Locally Optimal Block Preconditioned Conjugate Gradi-
ent (LOBPCG) [19,20] algorithm to represent block eigensolvers. Given that
LOBPCG is a relatively popular method and requires a fairly complex imple-
mentation, it represents a suitable choice for our purposes.
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An important issue in large scientific computing and data analysis work-
loads is that applications’ data usage often exceeds the available device memory
space. For instance, Many Fermion Dynamics - nuclei (MFDn), which is a quan-
tum many-body code based on the configuration interaction model, is a “total
memory-bound” application, i.e., scientific studies using this code typically uti-
lize all memory (DRAM) space available, thus easily exceeding the total device
memory available [5,24]. As such, our evaluation extends into such scenarios and
we present remedies for the significant performance degradations observed due
to large data transfers between host and device memories.

Our contributions in this study can be summarized as follows:

– We demonstrate that a complex block eigensolver can be implemented effi-
ciently using a mix of accelerator directives (in both OpenMP and OpenACC
frameworks) and optimized library functions. We obtain up to a 4.3× speedup
over a well optimized CPU implementation.

– We show that the performance of the Unified Memory version of SpMM, the
dominant kernel in LOBPCG, depends on the supercomputer used and appar-
ently the underlying CPU to GPU interconnect, when application working set
exceeds GPU memory capacity. We measure a 13.4× performance loss when
migrating from a supercomputer with a PCIe Gen3 CPU to GPU interconnect
to one with NVLink 2.0.

– We address the Unified Memory performance portability issue by tiling the
dominant kernels in LOBPCG. This obtains the highest performance on both
supercomputers which have different CPU to GPU interconnects.

The paper is organized as follows. In Sect. 2, we describe the related work on
efforts to port LOBPCG solvers to GPUs, application experience using OpenMP
and OpenACC directives, and the use of Unified Memory to simplify porting
applications to GPUs. In Sect. 3, we describe the kernel steps in the LOBPCG
solver, the baseline OpenMP version of the LOBPCG solver including the library
dependencies, and the steps we took to port the LOBPCG solver to GPUs. It
also describes our tiling method for expensive kernels in the LOBPCG algo-
rithm when a problem exceeds the GPU memory capacity. Finally, it describes
the Cori-GPU and Summit platforms used to evaluate the performance of our
directive based LOBPCG implementation and tiled microbenchmarks. In Sect. 4,
we present performance results obtained on the Cori-GPU and Summit super-
computers. Section 5 discusses the key lessons and aims to provide advice for
application developers based on our observations. Finally, Sect. 6 summarizes
our conclusions and plans for future work.

2 Background and Related Work

Sparse Matrix Operations (SpMV/SpMM) on GPUs: Sparse matrix-
vector multiplication (SpMV) and sparse matrix-matrix multiplication (SpMM)
are the main kernels of many iterative solvers [19,22], machine learning tech-
niques and other scientific applications. Several optimization techniques have
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been proposed for SpMV on GPUs [8,9,15,35]. However, performance of SpMV
is bounded by memory bandwidth [33]. The main appeal of block eigensolvers
(i.e. LOBPCG algorithm) is their high arithmetic intensity which is especially
important to reap the full benefits of GPUs. The main computational kernels
involved in block iterative solvers are the multiplication of a sparse matrix with
multiple vectors and level-3 BLAS operations on dense vector blocks. Optimizing
the SpMM kernel on GPUs has been studied in several research works. Yang et
al. [34] propose two novel algorithms for SpMM operation on GPUs that take
the sparse matrix input in compressed-sparse-row (CSR) format and focus on
latency hiding with instruction-level parallelism and load-balancing. They find
out a memory access pattern that allows efficient access into both input and
output matrices which is the main enabler for their excellent performance on
SpMM. A common optimization strategy of SpMM is to rely on a special sparse
matrix representation to exploit the nonzeros efficiently. Most commonly used
sparse matrix storage variants other than CSR format are ELLPACK called
ELLPACK-R [27] and a variant of Sliced ELLPACK called SELL-P [7]. Hong
et al. [16] separates the sparse matrix into heavy and light rows in order to
perform dynamic load-balancing. They process the heavy rows by CSR and the
light rows by doubly compressed sparse row (DCSR) in order to take advantage
of tiling. However, these special matrix storage formats incur some additional
computational and format conversion cost in the full computational pipeline.

Anzt et al. [7] optimize the performance of SpMM using ELLPACK format [6]
and compare the performance of their CPU-GPU implementation with the mul-
tithreaded CPU implementation of LOBPCG provided in the BLOPEX [21]
package. All of their kernels were written in CUDA 5.5 and they evaluated the
performance experiment on two Intel Sandy Bridge CPUs and one NVIDIA
K40 GPU. Dziekonski et al. [13] implement LOBPCG method with an inexact
nullspace filtering approach to find eigenvalues in electromagnetics analysis.

Most of the prior work focused on optimizing either the SpMV or the SpMM
operation on GPUs with the ultimate goal of accelerating the iterative solver
used in a scientific application. A distinguishing aspect of this paper is that we
adopt a holistic approach that includes all computational kernels required for
the LOBPCG solver. We use directive based programming models to achieve
portability. We also investigate the scenario where the total memory footprint
exceeds the device memory capacity and propose a solution that addresses per-
formance degradations seen with NVIDIA’s generic “Unified Memory” approach
(see below).

OpenMP/OpenACC: OpenMP and OpenACC are two directive-based meth-
ods to parallelize serial applications. Both languages enable a programmer to run
application kernels on a GPU. Multiple compilers support these directives and
can generate GPU code. The quality of GPU support in OpenMP and OpenACC
compilers is evaluated in [23] on a suite of 4 mini applications. Here, the authors
find issues with all compilers as well as challenges in creating a single portable
code which compiles and executes efficiently for all compilers. The interoper-
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ability of CUDA and OpenACC is evaluated in [32]. The author successfully
combines hand-written CUDA with OpenACC when using the PGI compiler.
Our work evaluates the performance of OpenMP and OpenACC implementa-
tions of a block eigensolver, as well the interoperability of these runtime systems
with optimized CUDA libraries for 3 different compilers.

Unified Memory: Unified Memory (UM) is a programming feature which pro-
vides a single memory address space accessible by all processors in a compute
node. It greatly simplifies GPU programming because the same single pointer
to data can be used on both CPU and GPU. The NVIDIA Volta V100 GPU
provides a page migration engine to move memory pages between CPU and
GPU when the page is not in the memory of the processor accessing the data.
NVIDIA evaluated UM performance using the PGI OpenACC compiler in [12].
The authors created UM versions of the OpenACC applications in the SPEC
ACCEL 1.2 benchmark suite. They ran the applications on the Piz-Daint super-
computer and found that the UM versions ran at 95% of the performance of
the original explicit data management versions. In [28], the NVIDIA presenter
shows that the Gyrokinetic Toroidal Code (GTC) has almost identical perfor-
mance on a x86+V100 system whether OpenACC data directives are used or
not. Our work also compares UM against explicit data management, but addi-
tionally considers problems whose memory requirements are significantly over
the device memory capacity. The performance of oversubscribing UM is evalu-
ated in [18]. The authors find that UM can be up to 2× slower than explicit
data management in several applications on an x86+V100 system. Our work
considers performance on both x86 and Power GPU-accelerated systems.

3 Methodology

In this section, we provide an overview of the LOBPCG algorithm, our base-
line CPU implementation, and the steps we took to port and optimize the CPU
implementation to run efficiently on GPU-accelerated systems using OpenMP
and OpenACC. We then describe our pathfinding activities for creating an effi-
cient LOBPCG algorithm which can operate on matrices exceeding the device
memory capacity. In particular, we discuss how we tiled the two most expen-
sive kernels in LOBPCG and created microbenchmarks that enable performance
comparison of programmer-controlled and system-controlled (i.e. Unified Mem-
ory) data movement schemes between the CPU and GPU. Finally, we describe
the experimental platforms used for evaluating the performance of our LOBPCG
and microbenchmark implementations on GPU-accelerated systems.

3.1 The LOBPCG Algorithm

LOBPCG is a commonly used block eigensolver based on the sparse matrix mul-
tiple vector multiplication kernel [19]. It is designed to find a prescribed number
of the largest (or smallest) eigenvalues and the corresponding eigenvectors of a
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Algorithm 1: LOBPCG Algorithm (for simplicity, without a precondi-
tioner) used to solve ĤΨ = EΨ

Input: Ĥ , matrix of dimensions N × N
Input: Ψ0, a block of randomly initialized vectors of dimensions of N × m
Output: Ψ and E such that ‖ĤΨ − ΨE‖F is small, and ΨT Ψ = Im

1 Orthonormalize the columns of Ψ0

2 P0 ← 0
3 for i = 0, 1, . . . , until convergence do

4 Ei = ΨT
i ĤΨi

5 Ri ← ĤΨi − ΨiEi

6 Apply the Rayleigh–Ritz procedure on span{Ψi, Ri, Pi}
7 Ψi+1 ← argmin

S∈span{Ψi.Ri,Pi}, ST S=Im

trace(ST ĤS)

8 Pi+1 ← Ψi+1 − Ψi

9 Check convergence

10 end
11 Ψ ← Ψi+1

symmetric positive definite generalized eigenvalue problem HΨ = EBΨ for a
given pair (H,B) of complex Hermitian or real symmetric matrices, where the
matrix B is also assumed positive-definite. Here, E is a diagonal matrix of the
sought eigenvalues and Ψ is the corresponding block of eigenvectors. Algorithm1
shows the pseudocode of the LOBPCG algorithm for the standard eigenvalue
problem HΨ = EΨ . LOBPCG comprises high arithmetic intensity operations
(SpMM and Level-3 BLAS). In terms of memory, while the ̂H matrix takes
up considerable space, when a large number of eigenpairs are needed (e.g., in
dimensionality reduction, spectral clustering or quantum many-body problems),
memory needed for the block vector Ψ can be comparable to or even greater than
that of ̂H. In addition, other block vectors (residual R, preconditioned residual
W, previous direction P), block vectors from the previous iteration and the pre-
conditioning matrix T must be stored (not shown in Algorithm 1 for simplicity),
and accessed at each iteration.

3.2 Baseline CPU Implementation

We implemented the baseline CPU version of LOBPCG using OpenMP and
OpenACC directives in C/C++. We adopted the Compress Sparse Row (CSR)
format to store the sparse matrix and used the mkl dcsrmm routine from Intel
MKL library for the SpMM kernel. We also implemented a custom SpMM kernel
in both OpenMP and OpenACC, again based on the CSR format, and used it
with the PGI and IBM compilers. For all LAPACK and BLAS routines needed,
we used Intel MKL, the PGI-packaged LAPACK and BLAS libraries, and IBM
ESSL for Intel, PGI and IBM compilers, respectively.
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3.3 A GPU Implementation of LOBPCG

The most expensive kernels in the baseline CPU version are the SpMM oper-
ation and the inner product of vector blocks (XT Y ). The cuSPARSE [26]
and cuBLAS CUDA libraries provide tuned versions of these kernels. We used
cusparseDcsrmm for the SpMM operation and replaced cblas dgemm routine
with cublasDgemm for the vector block operations. We allocated the device data
for these routines using cudaMalloc. We ported the remaining application ker-
nels using OpenMP and OpenACC offloading pragmas. The application kernels
are grouped together inside device data regions to avoid data movement between
successive application kernels. However, the performance of this implementation
was still poor because significant time was spent moving data between CPU and
GPU. This happened because the application and library kernels were operating
on distinct data on the GPU.

OpenMP and OpenACC provide a clause to enable the application ker-
nels to operate on data already resident on the device. The clause is named
is device ptr in OpenMP and deviceptr in OpenACC. We used the pointer
returned by cudaMalloc in our OpenACC implementation. This approach
caused a run time error in our OpenMP implementation compiled with LLVM/-
Clang. We therefore replaced cudaMalloc with omp target alloc in our
OpenMP implementation because the OpenMP 5.0 specification [2] states that
“Support for device pointers created outside of OpenMP, specifically outside of
the omp target alloc routine and the use device ptr clause, is implementa-
tion defined.”. Figure 1 shows an example of the structure of most of our appli-
cation kernels after using this clause. It enabled us to remove multiple Open-
MP/OpenACC data regions and thus considerable data movement between the
CPU and GPU1.

All kernels run on the GPU except for some LAPACK routines, i.e., LAPACKE-
dpotrf and LAPACKE dsygv which are not available in the CUDA toolkit math
libraries. This causes 10 small matrices to move between CPU and GPU in each
iteration of the LOBPCG method. As the sizes of those matrices are very small,
we find that the overhead associated with these data movements are insignificant
compared to the total execution time.

3.4 Tiling LOBPCG Kernels to Fit in GPU Memory Capacity

The LOBPCG GPU implementation described in Sect. 3.3 allocated the tall
skinny matrices and the sparse matrix in GPU memory. This approach is limited
to cases where the aggregated matrix memory footprint is less than the GPU
memory capacity. However, a major challenge in many scientific domains [5,25,
30] (such as configuration interaction in MFDn) is the massive size of the sparse
1 Alternatively, we could have copied the data to the device using OpenMP/OpenACC

and then passed the device pointer to the CUDA library functions using OpenMP’s
use device ptr clause or OpenACC’s use device clause. We did not use this app-
roach because we wanted the option to use cudaMallocManaged to allocate data in
managed memory.
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Fig. 1. The use of is device ptr to avoid memory copies. Error checking is omitted
for brevity.

matrix, which can have several billions of rows and columns and the total number
of nonzeros can easily exceed trillions. In this subsection, we explain how we
tiled the SpMM and inner product kernels (XT Y ) to operate on problems larger
than the GPU memory capacity. We extracted each kernel into a standalone
microbenchmark to check for correctness and enable performance evaluation.
Although not described in this paper, we have also implemented and evaluated
the linear combination kernel (XY ) which has similar characteristics to the inner
product kernel (XT Y ), but involves the multiplication of a tall-skinny vector
block (X) with a small square matrix (Y ).

SpMM Kernel: The SpMM kernel is typically the most expensive operation in
LOBPCG. Figure 2 shows the tiling idea for the SpMM kernel for cases when the
LOBPCG data is too large to fit into the GPU memory. For a given tile size β,
we divide the sparse matrix into block of rows. Algorithm2 describes the steps
in our tiled SpMM kernel. In short, we copy the Y matrix to the GPU at the
beginning and it resides there until all sparse matrix tiles are processed. Then,
we extract the CSR format of each of the tiles and copy that to GPU memory.
Then we apply the cusparseDcsrmm routine on the sparse matrix block and Y.
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Fig. 2. Overview of tiling SpMM operation.

Algorithm 2: Tiled SpMM (cusparseDcsrmm) kernel
Input: X(m × m) sprase matrix in CSR format (val, rowPtr, colIndex),

Y(m × b), β(tile size)
Output: Z(m × b)

1 nrowblk =
⌈

m
β

⌉

2 for i = 0 to nrowblk - 1 do
// extract CSR tile() method extracts the CSR format of the i-th

tile from the given sparse matrix

3 [rowPtrTile, colIndxTile, valTile, nnz Tile] = extract CSR tile(val, rowPtr,
colIndex, i)

4 cusparseDcsrmm(β, b, m, nnz tile, 1.0, valTile, rowPtrTile, colIndxTile, R,
m, 0.0, AR, β)

5 cudaDeviceSynchronize()
6 cudaMemcpy(Z[i-th tile], AR, cudaMemcpyDeviceToHost)
7 cudaDeviceSynchronize()

8 end

This produces the corresponding row blocks of the final output matrix Z. After
processing each tile, we copy back the partial output to the corresponding tile
of the Z matrix.

Inner Product Kernel: One of the most frequently invoked and expensive
kernels in LOBPCG is the inner product operation (Z = XT Y ) between two tall
skinny matrices. Hence, a well performing tiled inner product kernel is crucial for
large problem sizes. Figure 3 shows the overview of the matrix tiling idea for the
inner product kernel. X and Y are of size m×b where m � b. Both matrices are
partitioned into n =

⌈

m
β

⌉

tiles. In our custom inner product kernel, we transfer
each tile of X and Y from CPU to GPU and apply cublasDgemm routine on each
tile. We keep accumulating the partial output to a b × b matrix on the GPU.
After processing all tiles, we copy back the final result to Z. Algorithm3 gives
an overview of our custom inner product kernel.
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Fig. 3. Overview of tiling Inner Product kernel

Algorithm 3: Tiled Inner Product (cublasDgemm) Kernel
Input: X(m × b), Y(m × b), β(tile size)
Output: Z(b × b)

1 nrowblk =
⌈

m
β

⌉

2 cudaMemset(devZ, 0.0, b*b*sizeof(b))
3 for i = 0 to nrowblk - 1 do
4 cudaMemcpy(devX, X[i-th block], β * b, cudaMemcpyHostToDevice);
5 cudaMemcpy(devY, Y[i-th block], β * b, cudaMemcpyHostToDevice);
6 cudaDeviceSynchronize();
7 cublasDgemm(b, b, β, 1.0, devY, β, devX, β, 1.0, devZ, β);
8 cudaDeviceSynchronize()

9 end
10 cudaMemcpy(Z, devZ, b * b, cudaMemcpyDeviceToHost);

3.5 Hardware and Software Environment

We conducted all of our experiments on the Cori-GPU testbed at the National
Energy Research Scientific Computing Center (NERSC) [1] and the Summit
supercomputer at the Oak Ridge Leadership Computing Facility (OLCF) [3].
Cori-GPU is a Cray CS-Storm 500NX consisting of 18 compute nodes. Each
compute node has two 20-core Skylake processors clocked at 2.4 GHz and 8
NVIDIA Tesla V100 “Volta” GPUs with 16 GBs of HBM per GPU. The V100
GPU model has a peak double precision performance of 7.0 TFLOP/s. There is
a total of 384 GB DDR4 DRAM space on each node. The CPUs are connected to
the GPUs via four PCIe 3.0 switches and the GPUs are connected to each other
via NVIDIA’s NVLink 2.0 interconnect. The Summit supercomputer is an IBM
AC922 system consisting of 4608 compute nodes [31]. Each compute node has two
22-core IBM Power9 processors clocked at 3.1 GHz and 6 NVIDIA Tesla V100
“Volta” GPUs with 16 GBs of HBM per GPU. The V100 GPU model is based
on the SXM2 form factor and has a peak double precision performance of 7.8
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TFLOP/s. There is a total of 512 GB DDR4 DRAM space per node. Unlike Cori-
GPU, the CPUs and GPUs in a Summit compute node are all connected with
the high bandwidth NVLink 2.0 interconnect. This also provides cache coherence
between CPUs and GPUs and enables system-wide atomics. The theoretical peak
uni-directional bandwidth between 1 CPU and 1 GPU is 16 GB/s on Cori-GPU
and 50 GB/s on Summit. However, the highest pageable bandwidth we measured
from CPU to GPU was 5.2 GB/s on Cori-GPU and 25.0 GB/s on Summit.

The Cori-GPU and Summit supercomputers provide extensive software envi-
ronments to compile OpenMP and OpenACC programs. Here, we list the soft-
ware environment used in this paper. The software used on the Cori-GPU system
were Intel Compiler v19.0.3 (OpenMP for CPU), LLVM/Clang compiler v9.0.0-
git (OpenMP for GPU), and PGI compiler v19.5 (OpenACC for CPU and GPU).
We used Intel MKL with the Intel and LLVM/Clang compilers and PGI’s ver-
sion of LAPACK with the PGI compiler. The GPU accelerated libraries were
cuSPARSE and cuBLAS provided with CUDA v10.1.168. The software used on
Summit were IBM XLC Compiler v16.1.1-3 (OpenMP for CPU and GPU) and
PGI compiler v19.5 (OpenACC for CPU and GPU). We used IBM ESSL with
the IBM XLC Compiler and PGI’s version of LAPACK with the PGI compiler.
Once again, the GPU accelerated libraries were cuSPARSE and cuBLAS pro-
vided with CUDA v10.1.168.

3.6 Experiments

In this section we explain the experiments conducted. The first set of experiments
are used to evaluate the LOBPCG GPU implementation. The second set of
experiments are used to evaluate our microbenchmarks on problems exceeding
the GPU memory capacity.

Performance of the LOBPCG Solver: The CPU and GPU implementations
of LOBPCG are evaluated using a series of real-world matrices with different
sizes, sparsity patterns and application domains as shown in Table 1. The first 2
matrices are from the SuitSparse Matrix Collection [11] and the Nm7 and Nm8
matrices are extracted from two very large Hamiltonian matrices that arise in
nuclear structure calculations with MFDn. Note that the test matrices have
millions of rows and hundreds of millions of nonzeros. The memory footprint of
these matrices vary from 2 GB to 7.8 GB using the CSR matrix format.

Table 1. Test matrices.

Matrix Rows Columns Nonzeros Size (GB) Domain

Queen 4147 4,147,110 4,147,110 166,823,197 2.018 3D strctural problem

HV15R 2,017,169 2,017,169 283,073,458 3.405 Computational fluid dynamics

Nm7 4,985,422 4,985,422 647,663,919 7.792 MFDn

Nm8 7,579,303 7,579,303 592,099,416 7.136 MFDn
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We measured the runtime of the LOBPCG CPU implementation on a sin-
gle CPU socket on Cori-GPU and Summit nodes. The configurations used 1
thread per core and used the appropriate slurm, jsrun and OpenMP/Ope-
nACC environment variables to bind the process and child threads. We did not
use hyperthreading/SMT because our kernels are memory bandwidth bound. We
measured the runtime of the LOBPCG GPU implementation on a single CPU
socket and one GPU on Cori-GPU and Summit nodes. Our configurations only
ever used a single CPU socket to avoid potential performance issues associated
with non-uniform memory access time. We evaluated the compiler combinations
described in Sect. 3.5 and measured runtime with application timers.

Performance of XT Y and SpMM Kernels for Large Matrices: Our next
experiment evaluated the XT Y microbenchmark and SpMM microbenchmark
on input problems exceeding GPU memory capacity on Cori-GPU and Summit.
This experiment is designed to inform our future sparse solver implementations.
We tested the tiled versions of the microbenchmarks so that we could easily
separate how much time is spent in computation versus data movement between
the CPU and GPU. If more time is spent in computation then data movement
costs can potentially be hidden. In the XT Y microbenchmark, we chose to mul-
tiply two matrices of size 67, 108, 864 × 48 leading to a memory footprint of
51.54 GB. We set the tile size (β) to 131, 072 for the XT Y microbenchmark and
2, 597, 152 for the SpMM microbenchmark as this gives us the best performance.
The tile size (β) is an optimization parameter and one can vary it as long as
the memory footprint required to process a single tile is less than GPU memory
capacity. In the SpMM microbenchmark, we used a synthetic input matrix of
24 GB, leading to a memory footprint of 35.1 GB. The dimension of the synthetic
sparse matrix is 14, 957, 833×14, 957, 833 with 1, 946, 671, 770 nonzeros. We mul-
tiplied this sparse matrix with a dense matrix of dimension 14, 957, 833 × 48.
We used a multi-threaded RMAT graph generator [17] to generate our synthetic
sparse matrix. We measured compute and data movement time using the nvprof
profiler.

Performance of Tiled and Unified Memory Versions of SpMM:
Our final experiment evaluated the Unified Memory version of the SpMM
microbenchmark. The Unified Memory version was written in OpenACC and
compiled with the PGI compiler and the compiler option -ta:tesla:managed
to replace regular system memory allocations with managed memory allocations.
We compared runtime against the tiled version of SpMM on Cori-GPU and Sum-
mit for two input matrices. The first input matrix is Nm7 (see Table 1) and leads
to a microbenchmark memory footprint of 11.7 GB. The second input matrix is
the synthetic sparse matrix (14, 957, 833×14, 957, 833 with 1, 946, 671, 770 nonze-
ros) and leads to a microbenchmark memory footprint of 35.1 GB. The matrices
are chosen to create problems less than GPU memory capacity and greater than
GPU memory capacity. In both cases, we multiplied these sparse matrices with
a dense matrix of 48 vector blocks. We set the tile size (β) to 2, 597, 152 for both
of matrices as it is the highest tile size that we can use without overflowing the
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GPU memory and it gives the best performance. The nvprof profiler is used to
collect compute time, data movement time, and Unified Memory data movement
and page fault time.

4 Results

In this section we show performance results on the Cori-GPU and Summit super-
computers. Section 4.1 shows the performance of the CPU and GPU versions of
LOBPCG when parallelized with either OpenMP or OpenACC. We then con-
sider how we could use the LOBPCG solver on matrices larger than GPU mem-
ory capacity. Section 4.2 shows performance results when tiling the dominant
XT Y and SpMM kernels so that each tile fits within GPU memory capacity.
Finally, Sect. 4.3 compares the performance of the tiled implementation of the
SpMM kernel against a naive Unified Memory implementation.

4.1 Performance of the LOBPCG Solver

We compared the performance of the LOBPCG solver when using a suite of
different compilers. The compilers can all generate code for the host CPU and
sometimes also for the GPU. In the following sentences, we place CPU or GPU
in parenthesis to indicate whether we used the compiler to generate code for the
CPU or GPU. The OpenMP compilers were Intel (CPU) and Clang (GPU) on
Cori-GPU and IBM (CPU and GPU) on Summit. The OpenACC compiler was
always PGI (CPU and GPU). In all cases we used a hand-written portable SpMM
kernel except for our Intel compiler experiment which used mkl dcsrmm from Intel
MKL. We did this to obtain the best possible CPU time to more transparently
show the value of our GPU implementation. The performance results for the
Nm7 matrix are shown in Fig. 4. The execution time of the LOBPCG solver is
averaged over 10 iterations.

The results show that the execution time of our GPU implementation is
almost independent of directive based programming model and evaluation plat-
form. Our reasoning is that the OpenMP and OpenACC configurations use the
same GPU math libraries, the GPUs are nearly identical in Cori-GPU and Sum-
mit (different V100 models), and that our LOBPCG implementation has been
highly tuned to minimize data movement between CPU and GPU. The best GPU
performance is 3.05x faster than the best CPU performance for Nm7 matrix.
The CPU versions show more variable performance for different combinations
of compilers and math libraries used on Cori-GPU and Summit. The highest
performance is obtained with the OpenMP version when compiled with Intel
compiler on Cori-GPU. The performance differences can mostly be attributed
to the host CPU and SpMM performance: mkl dcsrmm is 1.4× faster than our
hand-written SpMM kernel in OpenMP and the hand-written SpMM kernel is
1.5–3.0× faster when using OpenMP rather than OpenACC. We did not inves-
tigate the host CPU performance in any more detail because it is not the focus
of our work.
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Fig. 4. The time spent in LOBPCG on Cori-GPU and Summit when using various
compilers with either OpenMP or OpenACC

Figure 5 shows how time is spent in the best configurations on CPU and
GPU when using the Nm7 matrix. Execution time is divided into library time,
application kernel time, and unaccounted CUDA API time. The library time is
spent in cuBLAS and cuSPARSE in the GPU implementation and Intel MKL in
the CPU implementation. The application kernel time is spent in user defined
functions in both the CPU and GPU implementations. The CUDA API time
includes GPU data allocation and data movement between CPU and GPU and
is calculated by subtracting time spent in application and library kernels from the
total run time. The library and application kernels speedup by 3.7× and 5.0×,
respectively, when using GPUs. Application kernel time is a relatively small
fraction of total run time on GPU. However, the offload is a key optimization
step needed to keep total run time low. Total run time would be significantly
slower if we decided to use host application kernels because of unnecessary data
movement between CPU and GPU.

Figure 6 shows GPU speedup over the best LOBPCG CPU implementation
for all the test matrices in Table 1. The LOBPCG GPU implementation achieves
2.8×–4.3× speedup over the best CPU implementation. The GPU implementa-
tion therefore performs well over a range of matrices from different domains with
different sparsity patterns.

4.2 Performance of XT Y and SpMM Kernels for Large Matrices

Figure 7 shows the time spent in the inner product (XT Y ) kernel on Cori-GPU
and Summit when total memory footprint is 51.54 GB. The tile size is 131,072.
The total time is divided into host-to-device (HtoD) data transfer time and com-
putation time in the inner product kernel (device-to-host (DtoH) data transfer
times are negligible for this kernel). We measured data transfer and computa-
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Fig. 5. The time spent in LOBPCG on Cori-GPU when using matrix Nm7

Fig. 6. LOBPCG GPU speedup on Cori-GPU for each test matrix

tion time using nvprof. The results show that total run time is dominated by
data transfers. Run time is lower on Summit because of the high bandwidth
NVLink 2.0 interconnect. We obtained data transfers of 4 GB/s on Cori-GPU
and 13 GB/s on Summit in this kernel. Results indicate that data transfer time
cannot be hidden behind computation when the matrix exceeds the GPU mem-
ory capacity.

Figure 8 shows the time spent in the SpMM kernel. The input sparse matrix
is 24 GB and the total memory footprint is 35.1 GB. This time, results show that
computation time is greater than the data movement time. This indicates that
data movement time could be completely hidden behind computation. It would
therefore be possible to obtain nearly the same computational throughput as one



Evaluation of Directive-Based GPU Programming Models on a Block 81

Fig. 7. Time spent in XT Y kernel on Cori-GPU and Summit when the memory foot-
print exceeds GPU memory capacity.

would get using matrices completely resident in the GPU memory. However, an
actual block eigensolver alternates between SpMM and vector block operations,
so this may not be easy to realize in practice.

Fig. 8. Time spent in SpMM kernel on Cori-GPU and Summit when the memory
footprint exceeds GPU memory capacity

4.3 Performance of Tiled and Unified Memory Versions of SpMM

Figure 9 shows the performance of the tiled SpMM kernel compared to the Uni-
fied Memory version of the SpMM kernel when the memory footprint is less
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than GPU memory capacity. The total memory footprint of this experiment
is 11.7 GB. The tiled version is fastest on both platforms. nvprof shows that
the tiled version is faster on Summit because of less time in CUDA memcpy.
Interestingly, the Unified Memory version performs similarly on both platforms.

Fig. 9. Time spent in tiled and Unified Memory versions of the SpMM kernel on Cori-
GPU and Summit. The memory footprint is less than GPU memory capacity.

Figure 10 shows the performance of the two SpMM kernels when the mem-
ory footprint exceeds GPU memory capacity. We used the same tile size (β)
for the tiled experiments in Figs. 9 and 10. There are now significant differences
between the performance of the tiled and Unified Memory versions. The most
surprising result is the 48.2× performance difference between tiled and Unified
Memory versions on Summit. This is a performance difference of 13.4× between
Cori-GPU and Summit when using Unified Memory on different machines. This
is unexpected given the high bandwidth NVLink 2.0 interconnect and hardware
managed cache coherency on the Summit IBM system. Although not shown,
there is a similar performance difference on Summit for the XT Y and XY ker-
nels. Unified Memory performance is therefore poor and depends on the machine
used.

Figure 11 shows nvprof output for the Unified Memory version of the XY
kernel on Cori-GPU and Summit. The results show that the total count of page
faults and the total data moved is the same on both systems. As expected, the
data transfer is 3× faster on Summit according to the bandwidth of the CPU to
GPU interconnect. However, the metric named “Gpu page fault groups” takes
30× more time on Summit compared to Cori-GPU for unknown reasons. This
explains the poor performance on Summit. We observed similar performance
difference without nvprof (nvprof added a performance overhead of about 10%
on both machines). We are currently in contact with OLCF and NVIDIA staff
to understand our performance observations.
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Fig. 10. Time spent in tiled and Unified Memory versions of the SpMM kernel on
Cori-GPU and Summit. The memory footprint exceeds GPU memory capacity. We
use a logarithmic scale on the Time (sec) axis to capture the slow run time for the
Unified Memory configuration on Summit.

Fig. 11. Unified Memory nvprof profile of the XY microbenchmark on Cori-GPU (top)
and Summit (bottom).

5 Discussion

In this section we discuss the key learnings from the results in Sect. 4.
The results show that we have successfully ported the LOBPCG solver to

NVIDIA GPUs using directives and optimized CUDA library calls. We obtained
similar performance for the OpenMP implementation using Clang and XLC com-
piler as we did for the OpenACC implementation using the PGI compiler. The
quality of OpenMP compilers for GPUs have often been criticized over the past
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few years [23], however, our experience provides evidence that OpenMP compil-
ers are becoming more robust and are capable of generating high performance
code.

We found that the key enabler of performance was to keep data resident on
the GPU between calls to optimized CUDA math functions. We were able to do
this trivially by adding OpenMP/OpenACC accelerator directives to the large
number of kernels in the LOBPCG solver. In the past, this would have been
much more challenging and time-consuming because the remaining application
kernels would need to be ported to CUDA. Our related work section shows that
earlier attempts to port a LOBPCG solver to GPUs by other scientists was gen-
erally focused on optimizing the SpMM kernel only on GPU whereas we focus on
optimizing the full solver on GPU. This highlights the productivity gains from
using directives and the importance of interoperability between the code gener-
ated by the OpenMP/OpenACC compilers and CUDA. This interoperability is
not required in the OpenMP specification and is only recommended as a note
to implementors in the OpenACC specification. However, we have highlighted
the importance of interoperability, and believe that the HPC community should
strongly request this support from compilers as we have done for LLVM/Clang
(https://bugs.llvm.org/show bug.cgi?id=42643).

We have shown that our LOBPCG microbenchmarks can be tiled to solve
problems larger than GPU memory capacity. We found that the time spent
in cublasDgemm for the inner product (XT Y ) microbenchmark is shorter than
the time spent moving data to and from the GPU. This indicates that it is
not possible to write a tiled cublasDgemm for larger problems which achieves
the same computational throughput as a problem which fits in GPU memory
capacity. The tiled cublasDgemm performance was mostly determined by the
bandwidth of the CPU to GPU interconnect. This will remain a challenge in
many CPU+GPU systems in the coming years because PCIe Gen4 has lower
bandwidth than NVLink 2.0. The SpMM microbenchmark showed the opposite
to XT Y in that more time was spent in computation than data movement. This
indicates that data movement costs could be hidden, i.e., computation on one
tile could occur concurrently with the data movement for the next tile. The full
LOBPCG solver includes XT Y and SpMM operations. Therefore, the amount
of computation on the GPU relative to data movement between CPU and GPU
is more than what is shown in our microbenchmarks. This indicates that it
should be possible to write an efficient LOBPCG solver for GPUs which can
solve problems larger than the GPU memory capacity.

https://bugs.llvm.org/show_bug.cgi?id=42643
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We had mixed success when using a Unified Memory implementation of the
SpMM kernel. The performance was a little worse than the tiled implementation
when the memory footprint was less than GPU memory capacity. This could be
acceptable to many application programmers because we obtained this perfor-
mance with much simpler code. This would be a huge productivity win for the
application programmer because there is no need to manage separate host and
device copies of data; there is just a single pointer to the data which can be
used on both host and device. We found that the performance of the Unified
Memory implementation was much worse than the tiled implementation when
the memory footprint exceeded GPU memory capacity. It was so bad on Sum-
mit that it would have been more efficient to use a CPU implementation and
leave the GPUs idle. We are still working to understand why Unified Memory
performance was so poor on Summit. However, our early experience serves as a
warning to application programmers that they should not rely on Unified Mem-
ory when application memory footprint is larger than GPU memory capacity.
It is also useful information to HPC system providers that the success of their
users strongly depends on purchasing GPUs with sufficient memory capacity.

We recommend that tiling be used in large memory footprint applications
on CPU+GPU systems. This can deliver both high performance and predictable
performance across different CPU+GPU systems. However, it can be a signif-
icant amount of work to tile and overlap data transfers with computation in
an application. This may become easier in future with enhancements to the
OpenMP standard providing directive-based partitioning and pipelining [10].
Alternatively, middleware for sparse solvers on GPUs could abstract away these
programming challenges.

6 Conclusions

In this paper, we have described our approaches to mix CUDA library calls
with OpenMP/OpenACC offloading pragmas in order to implement and opti-
mize the full LOBPCG eigensolver on GPU-accelerated systems. We successfully
used both OpenMP and OpenACC and achieved a speedup of 2.8×–4.3× over a
baseline CPU implementation. Our experiments with SpMM and inner product
microbenchmarks showed that tiling is the preferred approach for larger problem
sizes. We found that a naive Unified Memory implementation had worse perfor-
mance than a tiled implementation by up to an order of magnitude depending
on the target supercomputing platform. Our future work will go in the direction
of tiling the full LOBPCG solver and attempting to overlap computation with
data movement.

Acknowledgments. This work was supported in part by the US Department of
Energy, Office of Science under the award DE-SC0018083 (NUCLEI SciDAC-4 col-
laboration) and the National Science Foundation under the award OAC-1845208. This
research used resources of the National Energy Research Scientific Computing Cen-
ter (NERSC), a U.S. Department of Energy Office of Science User Facility operated
under Contract No. DE-AC02-05CH11231. This research also used resources of the



86 F. Rabbi et al.

Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725. The authors would like to
thank Brandon Cook for helpful discussion about MFDn application requirements and
useful research directions for this project.

Data Availability Statement.

Summary of the Experiments Reported

We conducted all of our experiments on the Cori-GPU testbed at the National Energy
Research Scientific Computing Center (NERSC) and the Summit supercomputer at
the Oak Ridge Leadership Computing Facility (OLCF) using Intel Compiler v19.0.3
(OpenMP for CPU), LLVM/Clang compiler v9.0.0-git (OpenMP for GPU), and PGI
compiler v19.5 (OpenACC for CPU and GPU), CUDA v10.1.168, IBM XLC Compiler
v16.1.1-3 (OpenMP for CPU and GPU) as described in the paper. Our software and
dataset are publicly available at 10.6084/m9.figshare.11636067 [14]. The repository
includes necessary instructions and scripts to run our software. Interested individuals
can contact the authors if they need they help to run the codebase.

Artifact Availability

Software Artifact Availability. All author-created software artifacts are main-
tained in a public repository under an OSI-approved license.

Hardware Artifact Availability. All author-created hardware artifacts are main-
tained in a public repository under an OSI-approved license.

Data Artifact Availability. All author-created data artifacts are maintained in a
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Proprietary Artifacts. None of the associated artifacts, author-created or other-
wise, are proprietary.

List of URLs and/or DOIs Where Artifacts are Available. 10.6084/m9.
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The details of the baseline experimental setup, and modifications made for
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