
Acceleration in Acoustic Wave
Propagation Modelling Using

OpenACC/OpenMP and Its Hybrid
for the Global Monitoring System

Noriyuki Kushida1(B) , Ying-Tsong Lin2 , Peter Nielsen1,
and Ronan Le Bras1

1 Comprehensive Nuclear-Test Ban Treaty Organization, Vienna, Austria
{noriyuki.kushida,peter.nielsen,ronan.lebras}@ctbto.org

http://www.ctbto.org
2 Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

ytlin@whoi.edu

Abstract. CTBTO is operating and maintaining the international
monitoring system of Seismic, Infrasound, Hydroacoustic and Airborne
radionuclide facilities to detect a nuclear explosion over the globe. The
monitoring network of CTBTO, especially with regard to infrasound and
hydroacoustic, is quite unique because the network covers over the globe,
and the data is opened to scientific use. CTBTO has been developing
and improving the methodologies to analyze observed signals intensively.
In this context, hydroacoustic modelling software, especially which that
solves the partial differential equation directly, is of interest. As seen
in the analysis of the Argentinian submarine accident, the horizontal
reflection can play an important role in identifying the location of an
underwater event, and as such, accurate modelling software may help
analysts find relevant waves efficiently. Thus, CTBTO has been test-
ing a parabolic equation based model (3D-SSFPE) and building a finite
difference time domain (FDTD) model. At the same time, using such
accurate models require larger computer resources than simplified meth-
ods such as ray-tracing. Thus we accelerated them using OpenMP and
OpenACC, or the hybrid of those. As a result, in the best case scenarios,
(1) 3D-SSFPE was accelerated by approximately 19 times to the orig-
inal Octave code, employing the GPU-enabled Octfile technology, and
(2) FDTD was accelerated by approximately 160 times to the original
Fortran code using the OpenMP/OpenACC hybrid technology, on our
DGX—Station with V100 GPUs.

Keywords: OpenACC/OpenMP hybrid · OpenACC with
Octave/Matlab · Split Step Fourier · FDTD · Hydroacoustic modelling

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-49943-3 2) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2020
S. Wienke and S. Bhalachandra (Eds.): WACCPD 2019, LNCS 12017, pp. 25–46, 2020.
https://doi.org/10.1007/978-3-030-49943-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49943-3_2&domain=pdf
http://orcid.org/0000-0002-8517-3765
http://orcid.org/0000-0001-5320-3272
https://doi.org/10.1007/978-3-030-49943-3_2
https://doi.org/10.1007/978-3-030-49943-3_2
https://doi.org/10.1007/978-3-030-49943-3_2

26 N. Kushida et al.

1 Introduction

The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is the treaty which bans
nuclear explosions in any environment over the globe, such as in the atmo-
sphere, in the ocean, and underground. Although the treaty has not entered into
force, Preparatory Commission for the CTBT Organization (CTBTO) has been
monitoring signs of nuclear explosions using four technologies, namely, seismic,
infrasound, hydroacoustic and air-borne radionuclide. The monitoring network of
CTBTO, especially with regard to infrasound and hydroacoustic, is quite unique
because the network covers over the globe and the data is opened to scientific
use. Therefore, CTBTO has been developing and improving the methodologies
to analyze observed signals intensively. Because of the complex natures of the
oceans and the atmosphere, computer simulation can play an important role in
understanding the observed signals. In this regard, methods which depend on
partial differential equations, in other words an “ab-initio” approach, are prefer-
able in order not to overlook any subtle phenomena. However, there have been
only a few groups which perform such computer modelling with the parabolic
equation (PE) methods [10,11]. Based on such circumstances, CTBTO has been
testing and developing hydroacoustic simulation software packages based on PE
called 3D-SSFPE [20], and the finite difference method (FDM) [18] respectively.
Lin et al. explained the advantages of 3D-SSFPE over other PE methods in their
literature i.e. 3D-SSFPE is designed for long distance modelling.

One of the biggest drawbacks of using such accurate methods is the high
demand on computer resources, especially the arithmetic computing perfor-
mance. Although computer simulation is not considered as a necessary product
for the treaty, providing the member states with modelling results promptly may
help their decision-making.

At the same time, computing accelerators such as general purpose graphics
processing unit (GPGPU), field-programmable gate arrays (FPGA), and so forth
are now prevalent in the computer simulation field. Particularly, a GPGPU is
available at an affordable price thanks to the active development in deep learn-
ing. Thus, we have started evaluating the performance gain with GPGPUs on our
simulation programs. Considering the effort we could spare for porting the codes,
the directive-based parallel programming is practically the only choice for a non-
research organization, even though there is a known gap in the achievable perfor-
mance between the special languages, such as CUDA and OpenCL, and the direc-
tive based parallel programming languages, such as OpenACC. Finally, we have
implemented our software on the DGX-station by NVIDIA using OpenACC.

In the following sections, the details of each program and performance eval-
uation results as well as the computing environment will be described.

2 Computing Environment

In the present study, we have employed the DGX–station produced by NVIDIA
[1] as a test–bed of a GPGPU environment. The DGX–station equips four
NVIDIA Tesla V100s. In the OpenACC framework, using one GPU per pro-

Acceleration in Acoustic Wave Propagation Modelling Using OpenACC 27

cess is the standard. In the present study, we employed OpenMP to launch
multiple threads and assigned one GPU to a thread for multi-GPU computation
in Sect. 4. The CPU installed is Intel Xeon E5-2698 v4 20 cores. The theoretical
peak performance of the CPU is 0.576 tera floating point operations per second
(TFLOPS) in double precision (0.0288 TFLOPS/core) and the memory band-
width is 71.53 giga byte per second (GB/s). At the same time, a V100 performs
7.5 TFLOPS in double precision and 900GB/s. The operating system is Ubuntu
18.04.2 LTS. The CUDA version is 10.0. The compilers employed are (1) GCC
version 9.1, which is available through the ubuntu-toolchain-r/test repository [5]
and (2) PGI compiler version 19.5. Both compilers have the capability of com-
piling OpenACC-enabled codes. However, the PGI compiler fails to generate
an object file which works together with Octave. Therefore, we employed GCC
for 3D-SSFPE, while the PGI compiler provides advanced features of OpenACC
such as managed memory. The PGI technical team recognizes this issue. Readers
who try to implement OpenACC-enabled codes on Octave with the PGI compiler
may check the release notes. The PGI compiler for Fortran 90 (pgf90) was used
throughout the FDM simulation development and it’s performance evaluation.
Octave is installed using apt-get and the version is 4.2.2.

3 3D-SSFPE

3.1 Overview

3D-SSFPE is a three-dimensional (3D) underwater sound propagation model
based on the parabolic equation (PE) combined with the Split-Step Fourier
method (SSF) [20]. In the literature, Lin et al. developed the code in the three
dimensional Cartesian coordinate as well as a cylindrical coordinate. In the
present study, since the long range wave propagation is of interest, we focus
on the Cartesian coordinate. The theoretical background as well as the imple-
mentation of 3D-SSFPE are given in the literature, and here, we provide readers
with a brief explanation, toward the GPU implementation. The 3D SSF solves
a linear wave equation by marching a two-dimensional (2D) grid (Y − Z plane)
along the perpendicular direction of the grid (X-axis) from the source term
to the point of interest, and each 2D solution grid is computed in spatial and
wavenumber domains alternately. The spatial and wavenumber domain trans-
form is performed through Fast Fourier Transform. As an analogy, the compu-
tation progresses like a wave-front propagates. However, SSF does not solve the
time evolution, instead it solves a boundary value problem. In the implementa-
tion point of view, 3D-SSFPE repeats the following steps;

1. Calculate the sound pressure at xn+1/2 = xn + Δx/2 in the wavenumber
domain

2. Correct the amplitude and phase of the sound pressure due to sound speed
changes (the index of refraction) at xn+1/2 in the spatial domain

3. Proceed to xn+1 in the wavenumber domain
4. if necessary, update the environment information

28 N. Kushida et al.

where xn denotes the nth grid point on the X-axis, and Δx denotes the grid
length. The conversion of the pressure between the spatial and wavenumber
domains is undertaken using the Fast Fourier Transform (FFT) and the inverse
FFT (iFFT). Since there are many well-tuned FFT libraries, the point of the
discussion of implementation is how to compute the remaining part efficiently.
In the following section, we discuss it for our computing environment.

3.2 Implementation

3D-SSFPE has been developed on Matlab, which is a well known commercial
scientific software development environment. 3D-SSFPE solves the state of a
wave of a specific frequency, whilst hydroacoustic researchers would like to solve
problems of a spatial domain with various wave frequencies. It is worth noting
that the problem of each frequency is completely independent and can be solved
in parallel. Therefore, launching multiple instances at the same time is beneficial.
In other words, avoiding the limitation on the number of licenses increases the
total computational speed. Thus we employed Octave, which is an open source
clone of Matlab. It should be also noted that pre/post processes are implemented
with Matlab’s unique file format, and we can avoid the re-implementation of such
processes by using Octave. 3D-SSFPE calls FFT and iFFT frequently. In our
preliminary experiment, the GPU enabled FFT function on Matlab was also
examined. However, probably because of the data transfer between GPU and
CPU, the total computational speed remained the same level with the non-GPU
version. This fact also motivated us to use OpenACC.

Octave, as well as Matlab, provides users with a functionality to call a rou-
tine written in C++. The functionality is called “Octfile” in Octave, or “Mex
file” in Matlab. Since the Octfile is written in C++, we can apply OpenMP
and OpenACC. Considering the similarity in OpenMP and OpenACC, and the
complexity appears only in OpenACC, specifically data transfer, we followed the
following three steps, namely;

1. Re-write the target functions in C++
2. Apply the OpenMP directives
3. Apply the OpenACC directives based on 2

FFT and iFFT are performed using FFTW [9](Step 1 and 2) or cuFFT [4](in
Step 3).

In the following sections, the details will be given to apply OpenMP and
OpenACC to the Octfile. For readers’ convenience, a 3D SSF implementation for
the Lloyd’s Mirror Problem in Matlab/Octave and its GPU version are available
on Zenodo (Matlab/Octave version [19] and GPU version [15]). Although 3D-
SSFPE deals with more complex geometries and the inhomogeneity of medium
which lead to additional complexity into the codes, we believe those samples
help readers understand the efforts in the present study.

Acceleration in Acoustic Wave Propagation Modelling Using OpenACC 29

Accessing Arrays. Octave provides users with the functionality to access a
multidimensional array in the Fortran style, specifically in the “array(i,j)”
form, in the Octfile. However, this style involves function calls which prevents
OpenACC compilers from generating GPU enabled loops. On the other hand,
there is a way to handle a raw pointer of an array. In the present study, we con-
struct all loops with raw pointers of multi-dimensional arrays including vectors
and matrices so that all the loops can be computed on GPU. In the following
program, a matrix Mat is initialized using the raw pointer. In the program, Mat is
a matrix defined in Octave and passed to the Octfile, Nc and Nr are the numbers
of columns and rows of Mat, and Mat_p is the pointer, which stores the content
of Mat. As the name of the method to obtain the raw pointer, fortran_vec(),
indicates, the matrix is stored in the column-major manner as Fortran. A vector
and higher dimensional arrays can be accessed in the same way.

Example of the initialization of a matrix with the raw pointer

double _Complex *Mat_p = reinterpret_cast<double _Complex *>
(const_cast<Complex *>(Mat.fortran_vec()));

octave_idx_type Nc = Mat.cols();
octave_idx_type Nr = Mat.rows();
for (int i=0; i< Nr; i++){

for (int j=0; j< Nc; j++){
Mat_p[j*Nr+i] = 0.0;

}
}

Double Complex Data Type. Since 3D-SSFPE uses FFT and iFFT, a com-
plex value data type is necessary. In the Octfile, the Complex data type is the
standard. However, with GCC version 9.1, more precisely, g++ version 9.1, the
Complex data type prevents the compiler from generating GPU enabled loops.
In the present study, we discovered that the double _Complex data type can
be used as an alternative of the Complex data type although this is a data type
in C. The binary format of the double _Complex data type and the Complex
data type is identical, and users can use the double _Complex data type with
matrices by casting the data type. The actual usage can be found in Section
Accessing arrays. With the double _Complex data type, compilers can gen-
erate GPU enabled loops, even with mathematical functions such as cexp, which
computes the exponential of a complex value.

Memory Mapping for OpenACC. Basically, OpenACC compilers should
allocate arrays on GPU automatically using directives, such as #pragma acc
data copy. However, in the Octfile, neither GCC nor PGI handles such directives
as expected. More precisely, error messages relevant to the memory address were
observed such as “Failing in Thread:1 call to cuMemcpyDtoHAsync returned
error 700: Illegal address during kernel execution”. In the present study, we

30 N. Kushida et al.

manually allocate arrays on GPU and associate them with corresponding arrays
on the main memory. In the following program, acc_malloc allocates arrays on
GPU, and acc_map_data associates arrays on GPU with corresponding arrays
on CPU. Finally, users can generate a GPU enabled loop using directives.

Example of the allocation of matrix on CPU and GPU in the Octfile

octave_idx_type Nc = Mat.cols();

octave_idx_type Nr = Mat.rows();

double _Complex *Mat_p = reinterpret_cast<double _Complex *>

(const_cast<Complex *>(Mat.fortran_vec()));

double _Complex *Mat_d = (double _Complex*)

acc_malloc(sizeof(double _Complex)*Nc*Nr);

acc_map_data(Mat_p,Mat_d,sizeof(double _Complex)*Nc*Nr);

#pragma acc parallel loop independent present(Mat_p[0:Nc*Nr])

for (int i=0; i< Nr*Nc; i++){

Mat_p[i] = 0.0;

}

Calling cuFFT with OpenACC. CuFFT is the FFT library which is one of
the best for GPUs provided by NVIDIA. NVIDIA also provides another FFT
library, called cuFFTW. The main difference in those libraries is that cuFFTW
takes arrays on CPU as input, while cuFFT takes arrays on GPU as input.
Since we are aiming to confine all the arrays into GPU, cuFFT is the choice
in the present study. CuFFT is designed to use together with CUDA, which
is the language that handles the pointers of arrays on GPU explicitly, whilst
OpenACC handles the pointers on GPU implicitly. To circumvent this issue,
we employed #pragma acc host data use device as inspired by the site [2].
An example of the Octfile which calls cuFFT from OpenACC is shown in the
following program. In the program, a matrix Matrix is given from Octave, and
iFFT is performed on it. The result is stored in out, and normalized using
the number of matrix elements as Octave’s native function does. The working
example can be found at Zenodo [17]. It is worth noting that, since both the
iFFT part and the normalization part are in the same #pragma acc data copy
region, only the arrays on GPU are accessed during the computation, which is
essential for performance.

Example of calling cuFFT from OpenACC in the Octfile

void inv_CUFFT(double _Complex *in_data,

double _Complex *out_data,

int nc, int nr, void *stream)

{

cufftHandle plan;

Acceleration in Acoustic Wave Propagation Modelling Using OpenACC 31

cufftResult ResPlan = cufftPlan2d(&plan, nc,nr, CUFFT_Z2Z);

cufftSetStream(plan, (cudaStream_t)stream);

cufftResult ResExec = cufftExecZ2Z(plan,

(cufftDoubleComplex*)in_data,

(cufftDoubleComplex*)out_data,

CUFFT_INVERSE);

cufftDestroy(plan);

}

DEFUN_DLD(testFFTGPU, args, ,

"main body;")

{

ComplexMatrix Matrix(args(0).complex_matrix_value());

octave_value_list retval;

ComplexMatrix out(Matrix.dims());

double _Complex *pmat = reinterpret_cast<double _Complex*>

(const_cast<Complex *>(Matrix.fortran_vec()));

double _Complex *pout = reinterpret_cast<double _Complex*>

(const_cast<Complex *>(out.fortran_vec()));

int Nc = pmat.cols();

int Nr = pmat.rows();

#pragma acc data copy(pmat[0:Nc*Nr],pout[0:Nc*Nr])

{

void *stream = acc_get_cuda_stream(acc_async_sync);

#pragma acc host_data use_device(pmat,pout)

{

inv_CUFFT((double _Complex*)pmat,(double _Complex*)pout,Nc,Nr,stream);

}

#pragma acc parallel

for(int i=0;i<Nr*Nc;i++){

pout[i] = pout[i]/double(Nr*Nc);

}

}

retval(0) = out;

return retval;

}

Conditional Access. It is well known that loops should be avoided in Matlab
and Octave, in terms of computational speed. Instead, users are encouraged to
use a technique called vectorization (note that, this vectorization is not equiv-
alent to the one in the context of supercomputing, especially on vector super-
computers). In the vectorization technique, users apply built-in operations and
functions which perform over the entire elements of vectors and arrays. In the

32 N. Kushida et al.

case that one needs to process only a part of an array, a new array needs to be
created, as;

smallArray = Array(find(X > 0.0))

In the above example, Array and X are the vectors which have the same num-
ber of elements, and if an element of X is greater than 0.0, the corresponding
element of Array is extracted and copied to smallArray. Finally, one can apply
vectorized operations on smallArray. On the other hand, the same operation
can be implemented in C++ as follows, where n is the size of Array and X;

int idx = 0;
for(int i; i<n; i++){

if(X[i] > 0.0){
smallArray[idx] = Array[i];
idx++;

}
}

This operation cannot be parallelized, because idx needs to be incremented
sequentially, and therefore, it cannot be implemented on GPU. As a result, Array
and smallArray need to be transferred between CPU and GPU, which should
be avoided from the computational performance point of view. In the present
study, we avoided creating such small arrays by processing all the elements of
Array with if branch.

3.3 Performance Evaluation and Conclusion

In order to evaluate the performance of the GPU implementation as well as the
multi-core implementation with OpenMP, the computation time was measured.
Table 1 gives the computation times of each implementation on three sizes of
problems, namely ny × nz = 1000 × 2000, 2000 × 4000, 4000 × 8000, where ny
and nz are the numbers of grid points along the Y -axis and the Z-axis respec-
tively. In the table, “Octave + FFTW (single)” denotes the computation time of
Octave with a single threaded FFTW, “Octave + FFTW (20cores)” denotes the
computation time of Octave with multi-threaded FFTW on 20 cores, “OpenMP”
denotes the multi-threaded version with OpenMP on 15 cores, and “OpenACC”
denotes the GPU version. The numbers listed in the table represent the compu-
tation time in seconds. Figure 1 shows the relative acceleration of each implemen-
tation to “Octave + FFTW (single)”. In all the cases, OpenACC shows the best
performance in all implementations. In addition, the larger the problem becomes,
the better the acceleration becomes. In the largest case, OpenACC is approxi-
mately 19 times faster than Octave + FFTW (single). Regarding OpenMP, the
same tendency with OpenACC is observed although the performance is worse
than Octave + FFTW (single), in the smallest case. Except in the smallest prob-
lem case, OpenMP shows better performance than “Octave + FFTW (20cores)”.

Acceleration in Acoustic Wave Propagation Modelling Using OpenACC 33

At the same time, “Octave + FFTW (20cores)” is always better than “Octave
+ FFTW (single)”. This implies that although FFT is dominant in 3D-SSFPE,
the remaining parts are not negligible.

Table 1. Computation time of each implementation on various problem sizes. Com-
putation time in seconds is listed. Problem size indicates the numbers of grid points
along the Y -axis and the Z-axis. The marching distance along the X-axis is identical
in all cases.

Problem size Octave + FFTW (single) Octave + FFTW(20cores) OpenMP OpenACC

4000× 8000 163 103 25.1 8.60

2000× 4000 36.8 25.3 9.52 2.94

1000× 2000 5.11 3.68 5.65 1.58

Fig. 1. Relative acceleration of each implementation to Octave + FFTW (single).
Problem size indicates the numbers of grid points along the Y -axis and the Z-axis.
The marching distance along the X-axis is identical in all cases.

Finally, we can conclude that porting the entire kernel of 3D-SSFPE to GPU
is necessary for high performance even though a well-tuned FFT on GPU is
provided. This is because (1) the communication between CPU and GPU is
expensive as well known and in order to avoid such communication, all the
computation should be performed on GPU, and (2) although FFT is dominant,
the remaining parts are also perceptible if FFT is sufficiently fast.

4 Global Acoustic Simulation with FDM

4.1 Overview

As discussed, an FDM-based global acoustic model has a favorable nature to
analyze CTBTO observation. One of the advantages of employing a FDM model

34 N. Kushida et al.

over PE methods is that one can apply a waveform directly to a source term.
However, so far, to our best knowledge, such models have not been developed
(pp 147–161 of ref [8,23]). The main difficulties in building such simulation codes
are: (1) considering the inhomogeneity of medium including background flows,
(2) high aspect ratio of computational domain, (3) stability during long time
integration. To overcome these difficulties, we employ a 2D FDM scheme on a
spherical coordinate with the Yin-Yang overset grid [12] solving the governing
equation of acoustic waves introduces by Ostashev et al. [21]. In the following
section, we discuss the formulation and the implementation on CPU as well as
GPU.

4.2 Formulation

Ostashev et al. give the formulation of the wave propagation over the moving
inhomogeneous media as;

(
∂

∂t
+ v · ∇

)
p + ρc2∇ · w = ρc2Q (1)

(
∂

∂t
+ v · ∇

)
w + (w · ∇)v +

∇p

ρ
=

F
ρ

(2)

where p is the pressure, w is the velocity vector of the wave, v is the velocity
vector of background media, ρ is the density of the background media, c is
the adiabatic sound speed, Q is a mass source, and F is a force acting on the
background media. Since we are interested in solving the wave propagation over
the globe, we need to know the explicit form of Eqs. 1 and 2 in a spherical
coordinate. We now define the spherical coordinate we use in the present study
as;

x = r sin θ cos φ

y = r sin θ sin φ (3)
z = r cos θ

where the radial distance r, the inclination θ, and the azimuth φ. Based on Eq. 3,
we have the operator ∇,

∇ =
(

∂

∂r
,
1
r

∂

∂θ
,

1
r sin θ

∂

∂φ

)
. (4)

We write down the explicit form of (v · ∇)w,

(v · ∇)w =
(

vr
∂

∂r
+

vθ

r

∂

∂θ
+

vφ

r sin θ

∂

∂φ

)
(wrer + wθeθ + wφeφ) , (5)

Acceleration in Acoustic Wave Propagation Modelling Using OpenACC 35

where er, eθ and eφ are the unit vectors of r, θ and φ, and v and w with
subscripts denote the components of each vector along each direction. Finally,

(v · ∇)w =
(

vr
∂wr

∂r
+

vθ

r

∂wr

∂θ
+

vφ

r sin θ

∂wr

∂φ
− vθwθ + vφwφ

r

)
er

+
(

vr
∂wθ

∂r
+

vθ

r

∂wθ

∂θ
+

vφ

r sin θ

∂wθ

∂φ
+

vθwr

r
− vφwφ cot θ

r

)
eθ

+
(

vr
∂wφ

∂r
+

vθ

r

∂wφ

∂θ
+

vφ

r sin θ

∂wφ

∂φ
+

vφwr

r
+

vφwθ cot θ

r

)
eφ.

(6)

In the same way, we have,

(w · ∇)v =
(

wr
∂vr

∂r
+

wθ

r

∂vr

∂θ
+

wφ

r sin θ

∂vr

∂φ
− wθvθ + wφvφ

r

)
er

+
(

wr
∂vθ

∂r
+

wθ

r

∂vθ

∂θ
+

wφ

r sin θ

∂vθ

∂φ
+

wθvr

r
− wφvφ cot θ

r

)
eθ

+
(

wr
∂vφ

∂r
+

wθ

r

∂vφ

∂θ
+

wφ

r sin θ

∂vφ

∂φ
+

wφvr

r
+

wφvθ cot θ

r

)
eφ.

(7)

The divergence of w is,

∇ · w =
1
r

∂

∂r

(
r2wr

)
+

1
r sin θ

∂

∂θ
(sin θwθ) +

1
r sin θ

∂wφ

∂φ
. (8)

By using Eqs. 6, 7, and 8, we have the explicit form of Eqs. 1 and 2 in the spherical
coordinate,

∂p

∂t
= −

(
vr

∂p

∂r
+

vθ

r

∂p

∂θ
+

vφ

r sin θ

∂p

∂φ

)

− κ

(
1

r

∂

∂r

(
r2wr

)
+

1

r sin θ

∂

∂θ
(sin θwθ) +

1

r sin θ

∂wφ

∂φ

)
+ κQ,

∂wr

∂t
= −

(
vr

∂wr

∂r
+

vθ

r

∂wr

∂θ
+

vφ

r sin θ

∂wr

∂φ
− vθwθ + vφwφ

r

)

−
(

wr
∂vr

∂r
+

wθ

r

∂vr

∂θ
+

wφ

r sin θ

∂vr

∂φ
− wθvθ + wφvφ

r

)
− b

∂p

∂r
+ bFr,

∂wθ

∂t
= −

(
vr

∂wθ

∂r
+

vθ

r

∂wθ

∂θ
+

vφ

r sin θ

∂wθ

∂φ
+

vθwr

r
− vφwφ cot θ

r

)

−
(

wr
∂vθ

∂r
+

wθ

r

∂vθ

∂θ
+

wφ

r sin θ

∂vθ

∂φ
+

wθvr

r
− wφvφ cot θ

r

)
− b

1

r

∂p

∂θ
+ bFθ,

∂wφ

∂t
= −

(
vr

∂wφ

∂r
+

vθ

r

∂wφ

∂θ
+

vφ

r sin θ

∂wφ

∂φ
+

vφwr

r
+

vφwθ cot θ

r

)

−
(

wr
∂vφ

∂r
+

wθ

r

∂vφ

∂θ
+

wφ

r sin θ

∂vφ

∂φ
+

wφvr

r
+

wφvθ cot θ

r

)
− b

r sin θ

∂p

∂φ
+ bFφ,

(9)

36 N. Kushida et al.

where κ = ρc2 and b = 1/ρ. By dropping the radial component in Eq. 9, we have
the governing equation of the wave propagation in the horizontal direction,

∂p

∂t
= −

(
vθ

r

∂p

∂θ
+

vφ

r sin θ

∂p

∂φ

)
− κ

(
1

r sin θ

∂

∂θ
(sin θwθ) +

1

r sin θ

∂wφ

∂φ

)
+ κQ,

∂wθ

∂t
= −

(
vθ

r

∂wθ

∂θ
+

vφ

r sin θ

∂wθ

∂φ
− vφwφ cot θ

r

)
−

(
wθ

r

∂vθ

∂θ
+

wφ

r sin θ

∂vθ

∂φ
− wφvφ cot θ

r

)

− b
1

r

∂p

∂θ
+ bFθ,

∂wφ

∂t
= −

(
vθ

r

∂wφ

∂θ
+

vφ

r sin θ

∂wφ

∂φ
+

vφwθ cot θ

r

)
−

(
wθ

r

∂vφ

∂θ
+

wφ

r sin θ

∂vφ

∂φ
+

wφvθ cot θ

r

)

− b

r sin θ

∂p

∂φ
+ bFφ.

(10)
In the present study, we employ Eq. 10 to solve the global acoustic wave propa-
gation.

4.3 Yin-Yang Grid

Kageyama and Sato developed an overset grid Called the Yin-Yang grid to over-
come the issues in FDM in a spherical coordinate. Namely, the Yin-Yang Grid
resolves the singularity at poles and provides a near uniform grid over the globe.
On the other hand, it leads to an additional complexity which originates in com-
bining two identical grids. The Yin-Yang grid, as the name implies, uses two
identical grids. In Fig. 2, we visualized the positional relationship of the Yin and
Yang grids. As can be seen in Fig. 2 [a], both are identical and a grid can be
projected onto the other grid only with rotation. We also visualised the locations
of each grid on the globe (Fig. 2 [b]). Since those two grids are identical, there
is no need to distinguish them by applying labels. However, for convenience, we
put the label of Yin on the blue grid, and Yang on the red grid. In order to com-
prehend the geographical location of each grid, we projected them with the plate
carree projection as well (Fig. 3). With those figures, we see that the poles are
covered by the Yang grid, whilst neither the Yin nor Yang grid has poles which
appear in the standard spherical coordinate grid. In addition, we can observe
that the grid width, which determines the time step length and therefore the
total computation time, is uniform. More precisely, in the standard spherical
coordinate grid, the grid lengths close to the poles are smaller than the ones
around the equator. Because of the stability in numerical computing, one needs
to choose a time step length based on the smallest grid length, which results in
a larger number of time steps. In this context, a uniform grid length reduces the
total computation time.

In the Yin-Yang grid, the computation proceeds by exchanging the physical
values on the boundaries of each grid. Kageyama and Sato pointed out that
there are regions which are computed twice, around the corners of each grid.
Ideally, such wasteful computations should be avoided, and Kageyama and Sato
also proposed a grid for this purpose. However, because of the following rea-
sons, we employed the one which is visualized in the figures; (1) The optimized

Acceleration in Acoustic Wave Propagation Modelling Using OpenACC 37

grid requires additional “if” statement, which may impact on the computational
speed, especially on GPU, (2) The number of such doubly computed grids is
negligible in practice.

[a] Yin-Yang grid

[b] Mapped on the globe

Fig. 2. Visualization of Yin-Yang grid. [a] Yin and Yang grids are identical and can
be projected only with rotation [b] Yin-Yang grid mapped on the globe (Color figure
online)

Fig. 3. Yin-Yang grid projected on the globe with the plate carree projection (Color
figure online)

4.4 Computational Schemes

In the present study, we followed the computational schemes which Ostashev
had employed, namely, the first order staggered grid for spatial discretization,
and the fourth order Runge-Kutta explicit time integration. Figure 4 shows the
schematic figure of the configuration of grid points. In the figure, the black dots
represent p and other scalar values, and the triangles represent the θ and φ
components of w and other vector values. A set of numbers in brackets indicates

38 N. Kushida et al.

the addresses of arrays in the Fortran notation. The dashed line indicates the
region which need to be computed, and values on the grid points outside the
region need to be imported from the other Yin-Yang grid. Equation 11 shows
the time integration with the Runge–Kutta method, where n denotes the time
step number, ψn denotes the physical value at the time step “n”, tn denotes the
time at the time step, and f represents a function. ψ∗ and ψ∗∗ are physical values
at intermediate steps which are only for computation. If we assume that the time
derivative can be derived using the first order differential, we can introduce the
explicit form of f using Eq. 10 without any difficulty.

ψ
∗
n+1

2
= ψn +

Δt

2
f (tn, ψn)

ψ
∗∗
n+1

2
= ψn +

Δt

2
f

(
t
n+1

2
, ψ

∗
n+1

2

)

ψ
∗
n+1 = ψn + Δtf

(
t
n+1

2
, ψ

∗∗
n+1

2

)

ψn+1 = ψn +
Δt

6

[
f (tn, ψn) + 2f

(
t
n+1

2
, ψ

∗
n+1

2

)
+ 2f

(
t
n+1

2
, ψ

∗∗
n+1

2

)
+ f

(
tn+1, ψ

∗
n+1

)]

(11)

4.5 Performance Optimization

Merging Function Evaluations. Equation 10 gives the functions that should
be evaluated in Eq. 11. In a naive implementation, those three functions are
implemented into three individual functions. However, at the same time, one
can point out that most variables appear in all three equations. For instance,
variables loaded to evaluate the first equation can be used in the remaining equa-
tions. As well known, modern computers including GPUs, have high arithmetic
intensity (the number of floating point operations per word). In other words,
reducing the number of memory instructions is the key technique to achieve high
performance. Thus, we evaluate those three equations within the same loop so
that a variable is reused as many times as possible. In Table 2, the computation
times of the naive implementation and the merged function implementation are
listed, as well as the speedup from the naive implementation to the merged imple-
mentation. The computational time is measured on Intel Xeon CPU E5-1620 v3
one core, only with the Yin grid. The grid sizes used are nφ × nθ = 1000 × 3000
(10 km/grid on the equator), and 3000 × 9000 (3.3 km/grid) where nφ and nθ
are the numbers of grid points along φ and θ directions, respectively. In the
smaller problem case, we obtained 4.85 times acceleration while we obtained
3.31 times acceleration in the larger problem case. The reason why the larger
case shows smaller improvement can be attributed to the data cache memory
working more effectively in the smaller problem. Since the number of floating
point operations required stays the same in both implementations, we believe

Acceleration in Acoustic Wave Propagation Modelling Using OpenACC 39

Fig. 4. Configuration of the staggered grid.

that the improvement originates in the reduction of memory access. Therefore,
we can expect that this optimization is also effective on GPU, although we are
not able to perform this test on GPU because the optimization was applied at
an early stage of the development.

Table 2. Computational times of the naive implementation and the merged functions
implementation. Times in seconds are listed.

Naive Merged Speedup

1000 × 3000 0.80 0.17 4.85

3000 × 9000 7.25 2.19 3.31

Memory Management. The structure data type is efficient in building soft-
ware. However, currently, handling the allocatable array in a structure is cum-
bersome, namely, users need to allocate arrays on GPU manually, and transfer
the data. In the present study, we employed the managed memory (the unified
memory in CUDA is equivalent technology), although this is only supported
by the PGI compiler currently. Using the managed memory, all the arrays used
on GPU are automatically uploaded. Once an array is uploaded onto GPU, no
communication between CPU and GPU is necessary except the case that output
files are created.

40 N. Kushida et al.

Double GPU. In the implementation point of view, we need to launch an iden-
tical function twice, namely once with the Yin grid and also with the Yang grid.
In other words, those two grids can be evaluated independently, if the boundary
values are exchanged correctly. Thus, using the two GPUs and assigning a grid
to a GPU is quite natural. However, at the same time, one needs to implement
a way to import and export the boundary values to the other. Thanks to the
managed memory technology which we employed in the present study, commu-
nication among GPUs and CPU is carried out automatically. On the other hand,
as we will discuss later, the communication cost among GPUs with the managed
memory technology is high and the total computational speed is worse than the
single GPU configuration. Thus, we implemented a communication functionality
with a lower level function “cudaMemcpyPeer”. cudaMemcpyPeer enables us to
send and receive data directly bypassing the CPU, whilst the data path with
the management memory technology is not visible for users. On the other hand,
cudaMemcpyPeer requires us to manage the memory space of GPU manually. In
the present study, we employ the device array and !$acc deviceptr directive
to use cudaMemcpyPeer.

Because of the prevalence of the GPU-cluster (multi-node) type supercom-
puters, there have been many reports of success in MPI–OpenACC hybridiza-
tion [7] and even training [3]. Here, MPI stands for Message Passing Interface.
Nevertheless, since the DGX–station we employed in the present study as well
as DGX–1 and DGX–2 by NVIDIA, which have a similar architecture with
DGX–station whilst more powerful, are single-node-multi-GPU computers, dis-
cussing the hybridization of OpenMP and OpenACC may draw attention from
researchers. One of the biggest advantages of using the OpenMP/OpenACC
hybridization is that users can progressively implement their codes based on their
sequential version, especially users who can use the managed memory technol-
ogy. As well known, MPI requires users to reconstruct the data structure which
may lead to the major code rewrite.

In the following program, we show the structure of the hybridization with
a pseudo code resembling Fortran. In the program, rungeKutta is the func-
tion which computes the physical values of the next step using the Runge–
Kutta algorithm on the Yin or Yang grid. Since the Yin grid and the Yang
grid are identical, we call the same function twice but with separate arrays
(yin and yang) in each iteration. In our hybrid program, each grid is assigned
on each OpenMP thread, so that two GPUs are used in parallel. The function
acc_set_device_num is a function provided within the OpenACC framework,
and this specifies the device that is used by a thread. The arrays, yin2yangSend,
yin2yangRecv, yang2yinSend and yang2yinRecv are device arrays which are to
exchange the boundary values. Since device arrays should be allocated on tar-
get devices, they are allocated after acc_set_device_num is called. calcEdge
is the function which computes the boundary values on the other grid, and
stores such values on yin2yangSend and yang2yinSend. Those arrays are copied

Acceleration in Acoustic Wave Propagation Modelling Using OpenACC 41

to yang2yinRecv and yin2yangRecv directly using cudaMemcpyPeer. Finally
the boundary values are copied to the Yin and Yang grids using the function
recoverBoundary so that we can move on to the next time step. Since we should
avoid the communication between CPU and GPUs, the computation in the func-
tions rungeKutta, calcEdge and recoverBoundary are all written in OpenACC.
Thus the hybridization of OpenMP/OpenACC is achieved on our FDM code.

Hybridization of OpenMP/OpenACC on the Yin-Yang grid FDM

program acousticFDM

! Structure that stores each grid values

type(yinYangGrid) :: yin, yang

! Device array to exchange boundary values

real(8),dimension(:),allocatable, device :: yin2yangSend, yin2yangRecv

real(8),dimension(:),allocatable, device :: yang2yinSend, yang2yinRecv

! GPU number 1 and 2 are used

integer,parameter, dimension(0:1) :: iDev = (/1,2/)

nPhi = 100 ! Number of grid points along Phi-axis

nTheta = nPhi*3 ! Number of grid points along Theta-axis

integer :: nEdge = 2*nPhi + 2*nTheta !Number of grid points on the all edges

!$omp parallel num_threads(2)

do ITER = 1, MAX_ITERATION ! Time integration loop

if(ITER==1)then

call acc_set_device_num(iDev(omp_get_thread_num()) , &

acc_device_nvidia)

if(omp_get_thread_num()==0)then

allocate(yin2yangSend(nEdge))

allocate(yang2yinRecv(nEdge))

else

allocate(yang2yinSend(nEdge))

allocate(yin2yangRecv(nEdge))

endif

endif

if(omp_get_thread_num()==0)then

! Compute the Yin grid

call rungeKutta(yin)

! Compute the values of grid point on the edged in the Yang grid

! and store in yin2yangSend

call calcEdge(yin,yin2yangSend)

! Copy yin2yangSend to yin2yangRecv which is on the other device

istat = cudaMemcpyPeer(yin2yangRecv,iDev(1), &

yin2yangSend,iDev(0),nEdge)

call recoverBoundary(yang2yinRecv,yin)

else

call rungeKutta(yang)

call calcEdge(yang,yang2yinSend)

istat = cudaMemcpyPeer(yang2yinRecv,iDev(0), &

yang2yinSend,iDev(1),nEdge)

42 N. Kushida et al.

call recoverBoundary(yin2yangRecv,yang)

endif

enddo

!$omp end parallel

end program acousticFDM

4.6 Software Evaluation

Accuracy Evaluation with a Live Experiment. Since this software has
been developed from scratch, we first would like to check the validity of our
code from the modelling point of view. In the present study, we refer to the
experiment performed in 1960 [22]. In this experiment, a chemical explosive
(amatol) was used as a source of the hydroacoustic wave, and it was detonated
by the research vessel Vema offshore Perth, Australia. A hydrophone was set in
the Bermuda area to catch the hydroacoustic wave. In the literature, authors
identified the propagation path and the effective sound speed was estimated. In
the present study, we employed the parameters given in the literature to perform
the modelling, namely,

– sound speed: 1485 m/s
– location of hydrophone: 32.10 N and 64.35 W
– location of detonation: 33.36 S and 113.29 E in the SOFAR channel
– travel time: 3 h 41 min 18 s to 3 h 42 min 24 s.

Since our FDM code does not take into account the radial direction, we assume
that the wave propagates at 1,000 m depth, close to where the SOFAR channel
is situated. ETOPO1 [6] is employed as the bathymetry data. The solid earth is
treated as the rigid body, in other words, the velocity of wave becomes zero at
the boundary.

As a result, the wave travels from Vema to Bermuda in 3 h 43 min 0 s, which
is slightly longer than the experiment. Although further evaluation and develop-
ment are necessary, we believe the implementation so far is successful. A visu-
alization animation of the wave propagation of this experiment is uploaded to
Zenodo [16].

Computational Speed. In order to evaluate the improvements in com-
putational speed, we measured the computation time per iteration of each
implementation with various problem sizes (Table 3. Figures in the table
are in seconds). In the present study, we used the following grids: nφ ×
nθ = 1000 × 3000(10 km/grid on the equator), 3000 × 9000(3.33 km/grid),
6000 × 18000(1.67 km/grid), 8000 × 24000(1.25 km/grid) and 9000 × 27000
(1.11 km/grid), where nφ and nθ are the numbers of grid points along the
φ-axis and the θ-axis. In the table, “CPU” denotes FDM implementation with
one core CPU, “OpenMP” denotes 20 cores parallel with OpenMP, “Multi-
core” denotes 20 cores parallel with OpenACC with the -ta=multicore option,

Acceleration in Acoustic Wave Propagation Modelling Using OpenACC 43

“Single GPU” denotes one GPU implementation with OpenACC, “managed
memory” denotes the dual-GPU implementation with the managed memory
technology, and “cudaMemcpyPeer” denotes the dual-GPU implementation with
the cudaMemcpyPeer function (please note that single GPU also relies on the
managed memory technology). In all the cases, CPU shows the slowest. The mul-
ticore parallel implementations (OpenMP and Multicore) are the second slowest.
Managed memory is faster than CPU, but slower than Single GPU although two
GPUs are involved in. Finally, cudaMemcpyPeer shows the best performance.
We observed that Single GPU with the 8000×24000 and 9000×27000 grids took
over 5 min for one time step computation. Thus we aborted the computation and
“Not Available (NA)” is indicated in the table. Thanks to the managed memory
technology, although the required memory size is larger than the actual device
memory size, the processes continued working. However, because many com-
munication instructions were issued between CPU and GPU, the performance
became worse than CPU.

We listed the acceleration of each implementation to CPU (Table 4). In most
cases cudaMemcpyPeer and Single GPU show over 100 times acceleration to
one core CPU. In the best case scenario, we obtained approximated 160 times
acceleration with two GPUs. In this case, cudaMemcpyPeer shows 1.4 better
performance than Single GPU, although it is still lower than the ideal accel-
eration. We observed that the ideal acceleration can be obtained by ignoring
cudaMemcpyPeer and recoverBoundary in our preliminary test. This implies
that there is a space for further optimization in the boundary exchange phase.
Finally, managed memory shows worse performance than Single GPU while the
problem size is sufficiently small. At the same time, managed memory allows
us to solve larger problem than Single GPU, and it runs faster than CPU. The
multicore implementations show approximately 10 times acceleration to CPU,
whilst Multicore is slightly faster than OpenMP.

For readers’ evaluation, we provide the CPU version [14], and the
cudaMemcpyPeer version [13] on Zenodo.

Table 3. Computational times at one time step of each implementation with various
problem sizes. Figures are in second. NA denotes “Not Available”

CPU OpenMP Multicore Single GPU Managed

memory

cuda

Memcpy

Peer

1000 × 3000 6.10E–01 7.28E–02 6.76E–02 7.65E–03 1.07E–01 1.42E–02

3000 × 9000 6.76E+00 7.40E–01 6.51E–01 5.91E–02 6.48E–01 5.26E–02

6000 × 18000 2.72E+01 3.00E+00 2.69E+00 2.45E–01 2.02E+00 1.71E–01

8000 × 24000 4.95E+01 5.52E+00 5.12E+00 NA 8.93E+00 3.87E–01

9000 × 27000 6.04E+01 7.12E+00 6.73E+00 NA 9.44E+00 4.43E–01

44 N. Kushida et al.

Table 4. Acceleration of each implementation to CPU with various problem sizes. NA
denotes “Not Available”

CPU OpenMP Multicore Single GPU Managed memory cudaMemcpyPeer

1000 × 3000 x1.00 x8.38 x9.03 x79.82 x5.71 x43.00

3000 × 9000 x1.00 x9.13 x10.39 x114.32 x10.43 x128.36

6000 × 18000 x1.00 x9.08 x10.12 x111.30 x13.50 x158.71

8000 × 24000 x1.00 x8.97 x9.67 NA x5.54 x127.76

9000 × 27000 x1.00 x8.49 x8.99 NA x6.40 x136.35

5 Conclusion

In the present study, we have implemented two hydroacoustic modelling codes on
GPU with OpenACC and gained better performance than on CPU. Since those
two modelling codes will be used to understand the observed signals in the inter-
national monitoring system of CTBTO, the larger the number of hypothetical
events we can solve, the better we can understand the observed signals. In this
context, the acceleration obtained in this study contributes to the mission of the
organization. The summaries of the achievements are: (1) In 3D-SSFPE, we suc-
ceeded in implementing GPU enabled code which works together with Octave,
which is a high-level computer language. As a result, we gained approximately 19
times acceleration to the original Octave code, in the best case scenario. Although
the obtained acceleration is lower than that can be observed in our sample codes
(50 times acceleration), which are relatively simpler than 3D-SSFPE, we are
proud of achieving high performance in a realistic problem. In addition, we may
gain further acceleration with updates on compilers. (2) In the in-house FDM
code, we succeeded in implementing an OpenMP/OpenACC hybrid code to use
two GPUs. As a result, we gained approximately 160 times speedup to one core
CPU in the best case scenario. Although there have been many research projects
which successfully implemented OpenACC codes on supercomputers, our expe-
rience might be of interest to researchers, especially those who are not familiar
with supercomputing.

Disclaimer. The views expressed on this article are those of the authors’ and
do not necessarily reflect the view of the CTBTO.

Acknowledgement. One of the authors, Noriyuki Kushida, would like to express
his gratitude to Dr Tammy Taylor, the director of the International Data Centre of
CTBTO, on her encouragement on the work. And also he would like to express his
gratitude to CEA in France as well as PRACE, on their support for the development
of FDM by awarding the machine times on Irena Skylake. Finally, he would like to
thank Dr Yuka Kushida for her English correction. She has pointed out errors which
had been overlooked even by a native speaker.

Acceleration in Acoustic Wave Propagation Modelling Using OpenACC 45

References

1. DGX Station web page. https://www.nvidia.com/en-us/data-center/dgx-station/.
Accessed 12 July 2019

2. Interoperability between OpenACC and cuFFT. https://www.olcf.ornl.gov/
tutorials/mixing-openacc-with-gpu-libraries/. Accessed 16 July 2019

3. MULTI GPU PROGRAMMING WITH MPI AND OPENACC. https://
gputechconf2017.smarteventscloud.com/connect/sessionDetail.ww?SESSION
ID=110507&tclass=popup. Accessed 22 July 2019

4. The API reference guide for cuFFT. https://docs.nvidia.com/cuda/cufft/index.
html. Accessed 13 July 2019

5. ubuntu-toolchain-r/test web page. https://launchpad.net/∼ubuntu-toolchain-r/
+archive/ubuntu/test. Accessed 13 July 2019

6. Amante, C.: Etopo1 1 arc-minute global relief model: procedures, data sources
and analysis (2009). https://doi.org/10.7289/v5c8276m, https://data.nodc.noaa.
gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.dem:316

7. Calore, E., Gabbana, A., Kraus, J., Schifano, S.F., Tripiccione, R.: Performance
and portability of accelerated lattice Boltzmann applications with OpenACC. Con-
curr. Comput.: Pract. Exper. 28(12), 3485–3502 (2016). https://doi.org/10.1002/
cpe.3862

8. Etter, P.: Underwater Acoustic Modeling and Simulation, 4th edn. Taylor & Francis
(2013)

9. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005). Special issue on “Program Generation, Optimization, and
Platform Adaptation”

10. Heaney, K.D., Campbell, R.L.: Three-dimensional parabolic equation modeling of
mesoscale eddy deflection. J. Acoust. Soc. Am. 139(2), 918–926 (2016). https://
doi.org/10.1121/1.4942112

11. Heaney, K.D., Prior, M., Campbell, R.L.: Bathymetric diffraction of basin-scale
hydroacoustic signals. J. Acoust. Soc. Am. 141(2), 878–885 (2017). https://doi.
org/10.1121/1.4976052

12. Kageyama, A., Sato, T.: “Yin-Yang grid”: an overset grid in spherical geometry.
Geochem. Geophys. Geosyst. 5(9) (2004). https://doi.org/10.1029/2004GC000734

13. Kushida, N.: Globalacoustic2D dual GPU (2019). https://doi.org/10.5281/zenodo.
3351369

14. Kushida, N.: Globalacoustic2D OpenMP (2019). https://doi.org/10.5281/zenodo.
3351284

15. Kushida, N.: GPU version of “Split Step Fourier PE method to solve the Lloyd’s
Mirror Problem”, August 2019. https://doi.org/10.5281/zenodo.3359888

16. Kushida, N.: Hydroacoustic wave propagation from Vema to Bermuda using FDM,
July 2019. https://doi.org/10.5281/zenodo.3349551

17. Kushida, N.: OpenACC enabled oct file (2019). https://doi.org/10.5281/zenodo.
3345905

18. Kushida, N., Le Bras, R.: Acoustic wave simulation using an overset grid for the
global monitoring system. In: AGU Fall Meeting. Oral Presentation: AGU Fall
Meeting 2017, New Orleans, USA, 11–15 December 2017 (2017)

19. Lin, Y.T.: Split Step Fourier PE method to solve the Lloyd’s Mirror Problem,
August 2019. https://doi.org/10.5281/zenodo.3359581

https://www.nvidia.com/en-us/data-center/dgx-station/
https://www.olcf.ornl.gov/tutorials/mixing-openacc-with-gpu-libraries/
https://www.olcf.ornl.gov/tutorials/mixing-openacc-with-gpu-libraries/
https://gputechconf2017.smarteventscloud.com/connect/sessionDetail.ww?SESSION_ID=110507&tclass=popup
https://gputechconf2017.smarteventscloud.com/connect/sessionDetail.ww?SESSION_ID=110507&tclass=popup
https://gputechconf2017.smarteventscloud.com/connect/sessionDetail.ww?SESSION_ID=110507&tclass=popup
https://docs.nvidia.com/cuda/cufft/index.html
https://docs.nvidia.com/cuda/cufft/index.html
https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/test
https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/test
https://doi.org/10.7289/v5c8276m
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.dem:316
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ngdc.mgg.dem:316
https://doi.org/10.1002/cpe.3862
https://doi.org/10.1002/cpe.3862
https://doi.org/10.1121/1.4942112
https://doi.org/10.1121/1.4942112
https://doi.org/10.1121/1.4976052
https://doi.org/10.1121/1.4976052
https://doi.org/10.1029/2004GC000734
https://doi.org/10.5281/zenodo.3351369
https://doi.org/10.5281/zenodo.3351369
https://doi.org/10.5281/zenodo.3351284
https://doi.org/10.5281/zenodo.3351284
https://doi.org/10.5281/zenodo.3359888
https://doi.org/10.5281/zenodo.3349551
https://doi.org/10.5281/zenodo.3345905
https://doi.org/10.5281/zenodo.3345905
https://doi.org/10.5281/zenodo.3359581

46 N. Kushida et al.

20. Lin, Y.T., Duda, T.F., Newhall, A.E.: Three-dimensional sound propagation
models using the parabolic-equation approximation and the split-step Fourier
method. J. Comput. Acoust. 21(01), 1250018 (2013). https://doi.org/10.1142/
s0218396x1250018x

21. Ostashev, V.E., Wilson, D.K., Liu, L., Aldridge, D.F., Symons, N.P., Marlin, D.:
Equations for finite-difference, time-domain simulation of sound propagation in
moving inhomogeneous media and numerical implementation. J. Acoust. Soc. Am.
117(2), 503–517 (2005). https://doi.org/10.1121/1.1841531

22. Shockley, R.C., Northrop, J., Hansen, P.G., Hartdegen, C.: Sofar propagation paths
from Australia to Bermuda: comparison of signal speed algorithms and experi-
ments. J. Acoust, Soc. Am. 71(1), 51–60 (1982). https://doi.org/10.1121/1.387250

23. Wang, L.S., Heaney, K., Pangerc, T., Theobald, P., Robinson, S.P., Ainslie, M.:
Review of underwater acoustic propagation models. NPL report, October 2014.
http://eprintspublications.npl.co.uk/6340/

https://doi.org/10.1142/s0218396x1250018x
https://doi.org/10.1142/s0218396x1250018x
https://doi.org/10.1121/1.1841531
https://doi.org/10.1121/1.387250
http://eprintspublications.npl.co.uk/6340/

	Acceleration in Acoustic Wave Propagation Modelling Using OpenACC/OpenMP and Its Hybrid for the Global Monitoring System
	1 Introduction
	2 Computing Environment
	3 3D-SSFPE
	3.1 Overview
	3.2 Implementation
	3.3 Performance Evaluation and Conclusion

	4 Global Acoustic Simulation with FDM
	4.1 Overview
	4.2 Formulation
	4.3 Yin-Yang Grid
	4.4 Computational Schemes
	4.5 Performance Optimization
	4.6 Software Evaluation

	5 Conclusion
	References

