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Preface

The ever-increasing heterogeneity in supercomputing applications has given rise to
complex compute node architectures offering multiple, heterogeneous levels of massive
parallelism. As a result, the ‘X’ in MPI+X demands more focus. Exploiting the
maximum available parallelism out of such systems necessitates sophisticated pro-
gramming approaches that can provide scalable as well as portable solutions without
compromising on performance. A programmer’s expectation from the scientific com-
munity is to deliver solutions that would allow maintenance of a single code base
whenever possible avoiding duplicate effort.

Raising the abstraction of the code is one of the effective methodologies to reduce
the burden on the programmer while improving productivity. Software
abstraction-based programming models, such as OpenMP and OpenACC, have been
serving this purpose over the past several years as the compiler technology steadily
improves. These programming models address the ‘X’ component by providing pro-
grammers with high-level directive-based approaches to accelerate and port scientific
applications to heterogeneous platforms.

These proceedings contain the papers accepted for presentation at the 6th Workshop
on Accelerator Programming using Directives (WACCPD 2019) – http://waccpd.org/.
WACCPD is one of the major forums for bringing together users, developers, and the
software and tools community to share knowledge and experiences when programming
emerging complex parallel computing systems.

Recent architectural trends indicate a heavy reliance of future exascale machines on
accelerators for performance. Toward this end, the workshop highlighted improve-
ments to the state of the art through the accepted papers and prompted discussion
through keynotes/panels that drew the community’s attention to key areas that will
facilitate the transition to accelerator-based high-performance computing (HPC). The
workshop aimed to showcase all aspects of heterogeneous systems discussing inno-
vative high-level language features, lessons learned while using directives to migrate
scientific legacy code to parallel processors, compilation and runtime scheduling
techniques, among others.

The WACCPD 2019 workshop received 13 submissions out of which 7 were
accepted to be presented at the workshop and published in these proceedings. The
Program Committee of the workshop comprised 24 members spanning universities,
national laboratories, and industries. Each paper received an average of five reviews.

For 2019, we encouraged all authors to add the Artifact Description (AD) to their
submissions. Two additional pages were made available to authors (however without
obligations) to make their code and data publicly available (e.g. on GitHub, Zenodo,
Code Ocean, etc.) in support of the reproducibility initiative. As a further push, only
papers with AD were considered for the Best Paper Award.

Of the 7 accepted papers, 86% had reproducibility information and these manu-
scripts are highlighted with an ‘artifacts available’ logo in this book.

http://waccpd.org/


The program co-chairs invited Dr. Nicholas James Wright from Lawrence Berkeley
National Laboratory (LBL) to give a keynote address on “Perlmutter – A 2020
Pre-Exascale GPU-accelerated System for NERSC: Architecture and Application
Performance Optimization.” Dr. Nicholas J. Wright is the Perlmutter chief architect and
the Advanced Technologies Group lead in the National Energy Research Scientific
Computing (NERSC) center at LBL. He led the effort to optimize the architecture of the
Perlmutter machine, the first NERSC platform designed to meet the needs of both
large-scale simulation and data analysis from experimental facilities. Nicholas has a
PhD from the University of Durham in computational chemistry and has been with
NERSC since 2009.

Robert Henschel from Indiana University gave an invited talk titled “The
SPEC ACCEL Benchmark – Results and Lessons Learned.” Robert Henschel is the
director of Research Software and Solutions at Indiana University. He is responsible for
providing advanced scientific applications to researchers at Indiana University and
national partners as well as providing support for computational research to the Indiana
University School of Medicine. Henschel serves as the chair of the Standard Perfor-
mance Evaluation Corporation (SPEC) High-Performance Group and in this role leads
the development of production quality benchmarks for HPC systems. He also serves as
the treasurer of the OpenACC organization. Henschel has a deep background in HPC
and his research interests focus on performance analysis of parallel applications.

The workshop concluded with a panel “Convergence, Divergence, or New
Approaches? – The Future of Software-Based Abstractions for Heterogeneous
Supercomputing” moderated by Fernanda Foertter from NVIDIA. The panelists
included:

– Christian Trott, Sandia National Laboratories, USA
– Michael Wolfe, Nvidia, USA
– Jack Deslippe, Lawrence Berkeley National Laboratory, USA
– Jeff Hammond, Intel, USA
– Johannes Doerfert, Argonne National Laboratory, USA

Based on rigorous reviews and ranking scores of all papers reviewed, the following
paper won the Best Paper Award. The authors of the Best Paper Award also included
reproducibility results to their paper, which the WACCPD workshop organizers had
indicated as a criteria to be eligible to compete for the Best Paper Award.

– Hongzhang Shan and Zhengji Zhao from Lawrence Berkeley National Laboratory,
and Marcus Wagner from Cray: “Accelerating the Performance of Modal Aerosol
Module of E3SM Using OpenACC”

Emphasizing the importance of using directives for legacy scientific applications,
each keynote/invited speakers, panelists, and Best Paper Award winners were given a
book on “OpenACC for Programmers: Concepts & Strategies.”

April 2020 Sandra Wienke
Sridutt Bhalachandra
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Abstract. Accelerating applications with portability and maintainabil-
ity is one of the big challenges in science and engineering. Previously, we
have developed a fast implicit low-order three-dimensional finite element
solver, which has a complicated algorithm including artificial intelligence
and transprecision computing. In addition, all possible tunings for the
target architecture were implemented; accordingly, the solver has infe-
rior portability and maintainability. In this paper, we apply OpenACC
to the solver. The directive-based implementation of OpenACC enables
GPU computation to be introduced with a smaller developmental cost
even for complex codes. In performance measurements on AI Bridging
Cloud Infrastructure (ABCI), we evaluated that a reasonable speedup
was attained on GPUs, given that the elapsed time of the entire solver
was reduced to 1/14 of that on CPUs based on the original CPU imple-
mentation. Our proposed template to use transprecision computing with
our custom FP21 data type is available to the public; therefore, it can
provide a successful example for other scientific computing applications.

Keywords: OpenACC · Finite element analysis · Conjugate gradient
solver · Transprecision computing · Lower-Precision data types

1 Introduction

Nowadays, computer architectures are becoming increasingly diverse and new
hardware, including heterogeneous systems, is released every year. Software
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-49943-3 1) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2020
S. Wienke and S. Bhalachandra (Eds.): WACCPD 2019, LNCS 12017, pp. 3–24, 2020.
https://doi.org/10.1007/978-3-030-49943-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49943-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-49943-3_1
https://doi.org/10.1007/978-3-030-49943-3_1
https://doi.org/10.1007/978-3-030-49943-3_1
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needs to keep up with this rapid development of hardware. Unfortunately, devel-
oping codes for every type of architecture leads to huge developmental costs. In
addition, handling all the maintenance in such a case becomes increasingly dif-
ficult. These two factors in particular have a marked influence on sophisticated
algorithms, which leads to long lines of codes.

Reflecting this situation, OpenACC [20] is in widespread use. OpenACC is a
programming model that offloads computations onto GPUs or multi-core CPUs
by inserting a few directives. Reference [3] demonstrated that simple codes can
easily be ported using OpenACC. For various scientific applications, porting
more complex algorithms to GPUs using OpenACC can be a successful example.

In this paper, we target a finite element analysis. We use implicit time integra-
tion for stability and low-order elements for complicated geometries; therefore,
the code tends to be complex and the performance decreases due to random
memory accesses. This analysis is regarded as a de-facto standard for manufac-
turing and Earth sciences; therefore, its acceleration is beneficial to these fields.
We demonstrated in WACCPD 2016 [5] and WACCPD 2017 [25] that finite ele-
ment solvers designed for CPU-based computers can be ported using OpenACC
and that such ported solvers exhibit reasonable performances.

Meanwhile, a solver extremely tuned for better performance on GPU-based
supercomputers was proposed [8]. Hereafter, we refer to this solver as the SC18-
GBF solver. It has a sophisticated algorithm including artificial intelligence (AI)
and transprecision computing with lower-precision data types. Moreover, its per-
formance is thoroughly optimized when using specialized hardware in the tar-
geted architecture, e.g., two-way packed half-precision computations on NVIDIA
Tesla V100 GPUs [19]. Therefore, the developed code lacks portability and main-
tainability.

We apply OpenACC to the SC18GBF solver to improve its compatibility for
portability and its performance. We show that our target application achieves
a reasonable speedup with a smaller developmental cost in a directive-based
method even though our solver includes a non-standard data type. Our sample
codes to use the lower-precision data type FP21 are available to the public [26];
thus, it could prove beneficial to other scientific computing applications.

The remainder of this paper is organized as follows. Section 2 describes the
baseline solver on CPU-based computers, and Sect. 3 describes the GPU imple-
mentation with FP21-32-64 data types using OpenACC. In Sect. 4, we show
the effectiveness of our proposed method via performance measurements on
AI Bridging Cloud Infrastructure (ABCI). In addition, we show an application
example on the supercomputer Summit. Section 5 provides our conclusions.

2 Baseline Solver on CPU-based Computers

In this paper, we target a low-order unstructured implicit finite element method
used for solving complex shaped three-dimensional (3D) domains. When solv-
ing this type of problem, solver programs often become complex due to the use
of sophisticated preconditioners in iterative solvers. Further, it is difficult to
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attain a good computational performance because the computation of unstruc-
tured elements requires a large amount of random memory accesses. The target
SC18GBF solver is further complicated compared to standard solvers due to its
use of AI and transprecision arithmetic in its preconditioner. Below we pose the
target problem and explain the solver algorithm and its CPU implementation.

2.1 The Target Problem

Earthquake simulations involve large-domain nonlinear time-evolution problems
with locally complex structures. Therefore, we solve the target dynamic nonlin-
ear continuum mechanics problem using a nonlinear dynamic 3D finite element
method with second-order tetrahedral elements because such a method is suit-
able for modeling complex geometries and analytically satisfies the traction-free
boundary condition at the surface. The target equation using the Newmark-β
method (β = 1/4, δ = 1/2) for time integration is

An δun = bn, (1)

where {
An = 4

dt2M + 2
dtCn + Kn,

bn = fn − qn−1 + Cnvn−1 + M
(
an−1 + 4

dtvn−1

)
.

Here, δu, u, v, a, q, and f are the incremental displacement, displacement,
velocity, acceleration, internal force, and external force vectors, respectively, M,
C, and K are the consistent mass, damping, and stiffness matrices, respectively,
dt is the time increment, and n is the time step. We use Rayleigh damping [1]
for C. After solving Eq. 1, q, u, v, and a are updated using⎧⎪⎪⎪⎨

⎪⎪⎪⎩
qn = qn−1 + Knδun,

un = un−1 + δun,

vn = −vn−1 + 2
dtδun,

an = −an−1 − 4
dtvn−1 + 4

dt2 δun.

(2)

In summary, the time-history response un is computed by repeating the following
steps.

1. Read the boundary conditions.
2. Evaluate Cn and Kn based on the constitutive relationships and the strain

at the time step n − 1.
3. Obtain δun by solving Eq. 1.
4. Update Eq. 2 using δun.

Because most of the computational cost is incurred when solving Eq. 1, we
explain the details of the linear equation solver in the next subsection.
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2.2 The Solver Algorithm

Although it is sparse, the symmetric positive definite matrix A in Eq. 1 becomes
large in scale. Therefore, it is difficult to store A or variants of A directly in fast
memory; consequently, matrix-free matrix-vector products are often used in iter-
ative solvers for solving Eq. 1. For example, the PCGE method, which combines a
matrix-free matrix-vector product [24] with 3× 3 block diagonal preconditioned
conjugate gradient solver is often used. This method solves the entire target
domain uniformly in double precision and, therefore, is robust for solving a wide
range of problems. However, its convergence rate is often slow, which makes
it computationally expensive. The efficiency of the conjugate gradient solver is
improved in the SC18GBF solver by changing the intensity of the computation
according to the mathematical properties of the target problem and, further, by
using AI methods considering the convergence characteristics. Below, we explain
the solver algorithm in detail following Algorithm 1.

1. Use of an adaptive conjugate gradient method
We first use an adaptive conjugate gradient method [6]. Instead of using a
fixed matrix approximating the inverse matrix A−1 in the preconditioner
of each conjugate gradient iteration, the preconditioning equation z = Ar
is solved using another conjugate gradient solver. We refer to the solving
of the preconditioning equation as the inner iteration (Algorithm1, lines 5–
17), while we refer to the original conjugate gradient iteration as the outer
iteration (Algorithm 1, lines 18–28). By setting suitable thresholds for the
tolerances of the preconditioning solvers, we can shift most of the computa-
tional cost to the inner iterations. Because the preconditioning equation only
needs to be roughly solved, this allows for flexibility in the algorithm design
combining different methods with varying accuracies and computational costs
in the preconditioner.

2. Use of AI in a preconditioner
Data analytics exemplified by AI is often faster in inference than equation-
based methods; however, its accuracy is often not as high [11]. Therefore, the
direct use of data analytics in equation-based methods may lead to a degrada-
tion of the accuracy of the result or a divergence in the solution. Therefore, to
use AI in linear equation solvers, an algorithm design considering the solver
robustness is required. Here we focus on the heterogeneity of the convergence
characteristics of a target matrix A; that is, we develop a preconditioner
algorithm that can coarsen or refine the solving process according to the con-
vergence characteristics at each local domain and consider using AI to guess
these convergence characteristics. Using this approach, even if the inference
of the convergence characteristics is not perfectly accurate, it is only used in
the preconditioner; therefore, the robustness of the solver and the accuracy
of the solution are maintained and only the computational performance is
affected.
First, in preparation for the training with AI, we uniformly coarsen the target
second-order tetrahedral finite element model (FEMmodel shown in Fig. 1a)
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Algorithm 1. SC18GBF solver algorithm for solving Ax = b on FEMmodel.
The matrix vector product Ay = ( 4

dt2M+ 2
dtC+K)y is computed using matrix-

free matrix-vector products (i.e., element-by-element method):
∑N

i ( 4
dt2Mi +

2
dtCi + Ki)yi, where dt is the time increment, M, C, and K are the consistent
mass, damping, and stiffness matrices, respectively, and subscript i indicates the
i-th element. diag[ ], (¯), and ε indicate the 3×3 block Jacobi of [ ], single-
precision variable, and tolerance for relative error, respectively. ( )c and ( )cp
indicates the calculation related to FEMmodelc and FEMmodelcp, respectively,
while the other is the related calculation of the FEMmodel. P̄ is a mapping
matrix, from FEMmodelc to FEMmodel, which is defined by interpolating the
displacement in each element of FEMmodelc. p, q, r, and z are temporal vectors
and α, β, and ρ are scalars in conjugate gradient method and i denotes the
number of iteration.
1: r ⇐ b − Ax, where x is initial solution
2: β ⇐ 0, i ⇐ 1
3: (* outer loop start *)
4: while ‖r‖2/‖b‖2 ≥ ε do
5: (* inner loop start *)
6: r̄ ⇐ r
7: z̄ ⇐ diag[A]−1r
8: r̄c ⇐ P̄T r̄
9: z̄c ⇐ P̄T z̄

10: Solve r̄c = Ācz̄c (* PreCGc: solved on FEMmodelc by PCGE with εinc and
initial solution z̄c *)

11: Extract z̄cp from z̄c and r̄cp from r̄c
12: Solve r̄cp = Ācpz̄cp (* PreCGcp: solved on FEMmodelcp by PCGE with εincp and

initial solution z̄cp with Dirichlet boundary condition of z̄c at boundary *)
13: Update z̄c with z̄cp
14: z̄ ⇐ P̄z̄c
15: Solve r̄ = Āz̄ (* PreCG: solved on FEMmodel by PCGE with εin and initial

solution z̄ *)
16: z ⇐ z̄
17: (* inner loop end *)
18: if i > 1 then
19: β ⇐ (z,q)/ρ
20: end if
21: p ⇐ z + βp
22: q ⇐ Ap (* computed by matrix-free matrix-vector multiplication *)
23: ρ ⇐ (z, r)
24: α ⇐ ρ/(p,q)
25: q ⇐ −αq
26: r ⇐ r + q
27: x ⇐ x + αp
28: i ⇐ i + 1
29: end while
30: (* outer loop end *)
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Algorithm 2. Standard time-integration algorithm for solving Aixi = bi(i =
0, ..., n− 1). Values with over bars (¯) indicate approximate values, while values
without over bars indicate exact values.
1: Set x−1 ⇐ 0
2: for i = 0; i < n; i = i + 1 do
3: Guess x̄i using standard predictor
4: Set Ai and bi using xi−1

5: Solve Aixi = bi with error tolerance
|Aixi − bi|

|bi| ≤ ε using initial solution x̄i:

Computed using iterative solver with matrix-free matrix-vector multiplication
kernel (1 vector)

6: end for

Algorithm 3 . Time-parallel time-integration algorithm for solving Aixi =
bi(i = 0, ..., n−1). Values with over bars (¯) indicate approximate values, while
values without over bars indicate exact values. Algorithm 1 is used to solve m
sets of linear systems of equations in line 9 in parallel.
1: Set x−1 ⇐ 0 and x̄i ⇐ 0(i = 0, ..., m − 2)
2: for i = 0; i < n; i = i + 1 do
3: Guess x̄i+m−1 using standard predictor
4: Set Ai and bi using xi−1

5: Āi ⇐ Ai

6: b̄i ⇐ bi

7: while
|Aix̄i − bi|

|bi| > ε do

8: Guess Āj and b̄j using x̄j−1(j = i + 1, ..., i + m − 1)
9: Refine solution

{
Āix̄j = b̄j

}
with initial solution x̄j(j = i, ..., i + m − 1):

Computed using iterative solver with matrix-free matrix-vector multiplication
kernel (m vectors)

10: end while
11: xi ⇐ x̄i

12: end for

using a geometric multi-grid [21] to obtain a first-order tetrahedral finite ele-
ment model (FEMmodelc shown in Fig. 1b). Next, we obtain the error history
distribution of a small-scale problem with similar characteristics to the target
large-scale problem using a standard PCGE solver. Using this error distribu-
tion data, we train an artificial neural network (ANN) that inputs mesh infor-
mation at a target node (i.e., the element connectivity, material property, and
element sizes) and outputs the level of error at that node. Using this ANN, we
infer the error levels at each node of the large-scale target problem using the
element connectivity, material property, and element size as input. The nodes
that are guessed to have large error levels (i.e., bad convergence) are included
in FEMmodelcp, as shown in Fig. 1c. We use a solver on FEMmodelcp (Algo-
rithm 1, lines 11–13) to refine the rough solution obtained by the solver on the
uniformly coarsened FEMmodelc (Algorithm 1, line 10) in the preconditioner.
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Buildings
Underground
structure

Soft ground layer
Medium ground layer
Hard ground layer

Extract part 
with bad 
convergence

Geometric 
multi-grid
coarsening

a) Whole target problem
(FEMmodel: with second-
order tetrahedral 
elements)

c) Extracted part of city model
(FEMmodelcp: with first-order 
tetrahedral elements)

b) Whole target problem
(FEMmodelc: with first-
order tetrahedral 
elements)

rank #1rank #0

Use FP64 for computation and 
communication of outer loop
(use low-precision data types 
for PreCG)

Use low-precision data 
types for computation and
communication of PreCGc

Use low-precision data 
types for computation and
communication of PreCGcp

rank #1rank #0 rank #1rank #0

Fig. 1. Extraction of part of the problem having bad convergence using AI.

Finally, we map this result to a second-order finite element model and use it
as an initial solution for the solver on FEMmodel (Algorithm1, line 15), and
further use the results for the search direction z in the outer iteration.
By setting the tolerance of each preconditioning solver to a suitable value, we
can solve parts of the problem with bad convergence extensively while solv-
ing most of the problem with good convergence less extensively. This leads
to a reduction in the computational cost compared to a solver that solves
the entire domain uniformly. Even if the selection of FEMmodelcp by ANN is
slightly altered, the effects are absorbed by the other preconditioning solvers
(PreCGc and PreCG); therefore, the solver becomes highly robust.
The training and reference of the AI for extracting FEMmodelcp are con-
ducted offline using commercial neural network packages on a few GPUs, and
are conducted only once prior to the time-history earthquake simulation .

3. Use of low-precision arithmetic in the preconditioner
While the solution of the entire solver is required in double precision, we
can use transprecision computing [15] in the preconditioner because it is only
used to obtain rough solutions. We can use not only FP32 but also other data
types, such as FP21, which has an intermediate range and the accuracy of
FP32 and FP16 to reduce the data transfer cost and the memory footprint.
As mentioned later, all vectors can be in FP21 on CPUs while FP32 must be
used for some vectors on GPUs. The introduction of FP21 data types in both
CPU and GPU implementations makes maintenance of the entire code and
performance evaluation more complex; thus, we use custom data type only
in GPU implementation for simplicity.

4. Use of time-parallel time integration in the solver
Although AI with a transprecision-computing solver appears to be highly
complicated, it is merely a combination of conjugate gradient-based solvers
solved using simple PCGE methods. Therefore, the majority of its compu-
tational costs consist of matrix-vector products. However, because the com-
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putation of matrix-vector products becomes dominated by random memory
accesses in unstructured finite element methods, it has become difficult to
attain high performance on recent computational architectures regardless of
the use of CPU or GPU. Using the fact that mesh connectivity is invari-
able in the time domain even for an unstructured finite element method, the
SC18GBF solver uses a time-parallel time-integration algorithm [7] to improve
the computational efficiency. In standard time integration, each step is solved
step by step (Algorithm 2), while in the time-parallel solver, several steps,
including future time steps, are solved simultaneously (Algorithm 3). When
indicating the number of time steps solved simultaneously as m, the arith-
metic count for computing a single iteration of the iterative solver becomes
m times of that of a standard solver. However, the results obtained by the
time-parallel solver can be used as high-precision initial solutions for future
time steps; therefore, the total number of iterations is reduced by approxi-
mately 1/m. Accordingly, the total arithmetic count becomes approximately
the same as that of a standard time-integration method. The advantage of
using a time-parallel method is that random accesses are reduced by 1/m
compared to a standard solver by placing time-directional nodal variables
consecutively in memory. This leads to the efficient use of single-instruction
multiple-data (SIMD) units, which leads to a short time-to-solution for the
entire solver. Typically, m = 4 is used because enlarging m leads to an increase
in the total arithmetic count due to the degradation in the prediction accuracy
of future time steps.

Because the approximated methods are only used in the preconditioner or are
used to obtain the initial solutions of the iterative solver, the obtained solution
δui(i = 1, 2, ...) is same as that of the double-precision PCGE method within
the solver error tolerance ε. Further, because most of the computational cost is
in matrix-vector products, we can maintain load balance by allocating an equal
number of elements to each process/thread, which leads to high scalability for
large-scale systems.

2.3 Implementation of Solver for CPU Systems

Because the innermost loop of the solver becomes the length m = 4 with con-
secutive data accesses, the current algorithm can be implemented using packed
SIMD units with width 4. Furthermore, for systems with AVX-512 instruction
units, loop blocking and splitting are applied for use of the 8-wide FP64 and
the 16-wide FP32 SIMD units in the computation of matrix-vector products.
We avoid data recurrence in multi-core computation of matrix-vector products
by coloring of elements for each core. See Ref. [4] for details of the SIMD and
multi-core implementation of matrix-vector products. This leads to an imple-
mentation of the solver with most of its computation using SIMD instructions
on multi-cores. For simplicity of implementation, we use FP32 for the compu-
tations and communication in the inner loop solvers (PreCGc, PreCGcp, and
PreCG) in the CPU version.
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Using the SC18GBF solver algorithm, the FLOP count is reduced by 5.56-
fold compared to the standard PGCE solver for an earthquake wave propa-
gation problem in a ground region with a buried concrete structure. Because
mixed-precision arithmetic and highly efficient SIMD arithmetic can be used,
we expected an additional speedup from the reduction in the arithmetic count.
Indeed, we obtained 9.09-fold speedup from the PCGE method [8] when mea-
sured on the CPU-based K computer system [18].

3 GPU Implementation Using OpenACC

Our solver algorithm, as described in the previous section, is suitable not only for
CPUs but also for GPUs. For example, the introduction of time-parallel compu-
tation circumvents random accesses to the global vector in a matrix-vector multi-
plication kernel, which greatly improves the performance on GPUs. In addition,
PreCGcp computation can reduce the data transfer size as well as the compu-
tational amount; accordingly, this solver is appropriate for GPUs because data
transfer is a major bottleneck in GPU computations. We assume that our solver
will be accelerated even by a straightforward implementation of GPU compu-
tations. In this section, we first describe a baseline OpenACC implementation
and then optimize its performance using lower-precision data types and other
tunings.

3.1 Baseline Implementation

We apply OpenACC to our CPU-based code following the general procedures
given below.

1. Define where to apply OpenACC
In our solver, all computations are computed for each node or each element
and are easily parallelized by GPUs. Therefore, we target the entire solver to
be ported to the GPUs. Conversely, the training and reference of the AI for
extracting FEMmodelcp conducted only once and their computational cost is
negligible. Accordingly, we do not port this part of the code.

2. Insert directive to parallelize loops
We can compute targeting loops on GPUs by adding the corresponding direc-
tives, as shown in Fig. 2. OpenACC has three levels of parallelism: gang,
worker, and vector. On NVIDIA GPUs, gang and vector correspond to block
and thread, respectively, and usually the worker level is ignored. We insert
directives so that the expected granularity of the parallelization can be
attained. Figure 2 describes an outline of the implementation in a matrix-
vector multiplication kernel. Loops for elements and time steps are collapsed
to enable further parallelism. Each thread on the NVIDIA GPU is assigned to
one element and its element-wise results are added to the global vector, which
may cause data race conditions between threads. A previous study [5] showed
that addition via atomic operations is much faster than explicit reordering
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Fig. 2. Porting example of the matrix-vector multiplication kernel on a tetrahedral
second order mesh.

Fig. 3. Example code for data transfer in a conjugate gradient loop.

via coloring; therefore, we use atomic operations for this part. As shown in
Fig. 2, we can enable atomic operations by adding the option #pragma acc
atomic.

3. Control data transfer between CPUs and GPUs
Without explicit instructions, OpenACC automatically transfers the neces-
sary data from the CPUs to the GPUs prior to the GPU computation and
from the GPUs to the CPUs following the GPU computation to obtain the
expected results. When data are transferred too frequently, the performance
greatly diminishes; therefore, we add directives to control the data transfer,
as described in Fig. 3, to minimize these data transfer costs.
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Fig. 4. Example code for point-to-point communication.

In addition, original codes are designed for the MPI parallelization to allow us to
use multiple GPUs and assign one GPU to each MPI process. Point-to-point com-
munication requires data transfer between GPUs; we use GPUDirect. We issue
MPI Isend/Irecv to access GPU memory directly by adding the corresponding
directives, as shown in Fig. 4.

We refer to these implementations as the baseline OpenACC implementation.
To improve the performance, we introduce lower-precision data types and modify
a few parts of the code that can decrease the performance.

3.2 Introduction of Lower-Precision Data Types

Our proposed solver can introduce transprecision computing to preconditioning
conjugate gradient solvers. These solvers include many memory-bound compu-
tations. Therefore, we can reduce the computational cost simply by reducing the
number of bits in each variable and reducing the footprint. In CPU-based imple-
mentations, a single-precision data type (FP32) is used in PreCGc, PreCGcp,
and PreCG. Typical floating-point numbers including FP32 are standardized in
IEEE 754 as x = (−1)sign × (1.fraction) × 2exponent−bias for normalized num-
bers [13]. The sign bit determines the sign of the number, the exponent width
influences the dynamic range of the number, and the fraction width defines the
accuracy of the data type. Recently, data types with lower precision than FP32
have become widely supported on various types of hardware. The half-precision
number, FP16, is a major example of such data types. It shortens the number of
exponent bits and fraction bits compared to FP32 data types. It is not difficult
to use FP16 for applications that do not require very high accuracy, e.g., deep
learning [14]; however, using it for general scientific computations is challenging
due to its narrow dynamic range. For our iterative solver, more exponent bits
are required. Another data type, bfloat16, was proposed in Ref. [23]. It has the
same width of exponent bits as FP32; therefore, it can avoid overflow/underflow
in more general computations. However, it cuts down on the fraction bits by
only 7 bits; accordingly, its machine epsilon becomes 1/27 = 1/128. This low
accuracy may lead to poor convergency.
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S e x p o n e n t f r a c t i o nFP32, 32 bits
(Single precision)

1bit sign + 8bits exponent + 23bits fraction

S e x p o n e n t f r a c t i o nFP21, 21 bits

1bit sign + 8bits exponent + 12bits fraction

S e x p f r a c t i o nFP16, 16 bits
(Half Precision)

1bit sign + 5bits exponent + 10bits fraction

S e x p o n e n t f r a cbfloat16, 16 bits

1bit sign + 8bits exponent + 7bits fraction

Fig. 5. Bit alignments for the sign, exponent, and fraction parts in each data type.
Each cell describes one bit.

Therefore, we define our custom 21-bit data type in Fig. 5. Hereafter, we refer
to this data type as FP21. FP21 has the advantage of the same dynamic range
as FP32 and bfloat16 and a better accuracy than FP16 or bfloat16. In addition,
the border between the sign bit and exponent bits and the border between the
exponent bits and fraction bits in FP21 are the same as those in FP32 num-
bers; therefore, conversions between FP21 and FP32 are easier than conversions
between other combinations of data types. To facilitate the bit operations, we
store three FP21 numbers in one component of the 64-bit arrays and space 1-bit.
Our proposed data type is not supported on our targeted hardware; therefore,
we use it only when storing into memory. We convert the FP21 data types into
FP32 prior to computation in FP32 and convert the results in FP32 into FP21
numbers following the computation. Figure 6 shows an implementation of the
data type conversion. Only addition or subtraction operations and bit opera-
tions are required for this conversion, and they can be implemented entirely
within OpenACC. If these functions are called with stack frames, they decrease
the performance. Therefore, they have to be in-line in all related computations.
When we convert FP32 data types into FP21, we can remove the lower 11-bits
in the fraction parts; however, rounding to the nearest number can halve the
rounding error compared to dropping the lower-bits. We obtain rounded num-
bers as follows. First, we remove the last 11 bits of the original FP32 number a
and obtain the FP21 number ā. Then, we can obtain the result by removing the
last 11 bits of a + (a − ā) in FP32.

Here, we are targeting a 3D problem; therefore, we have the three components
of x, y, and z per node. Using FP21 for this problem enables us to assign one
component in the 64-bit arrays to one node including the x, y, and z components
in FP21; therefore, we can easily handle memory access to the FP21 numbers.
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Fig. 6. Mock code for the FP21 implementation. These functions convert FP21
numbers into FP32 numbers and are in-line for all computations requiring FP21
computations.

Note that atomic operations used in matrix-free matrix-vector multiplication
are supported only for FP16/32/64 and that the output vector of this kernel must
be in FP32. Therefore, vectors in FP21 and FP32 are mixed in the precondi-
tioning solvers.

3.3 Miscellaneous Optimizations in the Solver

The introduction of FP21 data types is expected to reduce the computational
time of memory bound computations compared to the baseline implementation
using OpenACC; however, our solver algorithm includes several operations that
greatly decrease the performance compared to the low-level description, e.g.,
CUDA. We avoid this performance decrease via the following modifications.

1. Dot product targeting multiple vectors
Originally, dot products could be computed on OpenACC by adding the
option reduction to the loop directive #pragma acc loop. However, the
current version of OpenACC does not allow us to specify arrays for the target
of the reduction, which prevents the parallelization of the inner loops for
four time steps. We can compute dot products by creating multiple scalar
variables and corresponding loops, as described in Fig. 7. However, such an
implementation leads to strides in the memory accesses and a decline in the
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Fig. 7. Example code for computing dot products for multiple vectors in OpenACC.

Fig. 8. Example code to call the dot product kernel in CUDA from the OpenACC
codes.

performance. Therefore, we use a CUDA kernel to compute dot products. We
can call CUDA-based kernel from the OpenACC-based code via a wrapper,
as shown in Fig. 8, and improve the performance of this computation.

2. Overheads for launching kernels
OpenACC has larger overheads for launching kernels than CUDA. The
degrees of freedom in PreCGc and PreCGcp in our solver become smaller
than the original problem; therefore, the relative overhead cost increases for
computations with shorter loop lengths. To reduce overhead costs, we modify
several kernels. In particular, we add options #pragma acc async(1) and
#pragma acc wait(1) for kernels that can be computed asynchronously to
overlap the overhead cost. Moreover, local arrays in OpenACC loops are some-
times stored in local memory instead of in registers. When local memory
is used, memory allocation is required and this increases the overhead for
launching kernels; therefore, we redefine these local arrays as scalar variables.

4 Performance Measurement

In this section, we evaluate the performance of our proposed solver using GPU-
based supercomputer ABCI [2], which is operated by the National Institute of



Sophisticated Implicit Finite Element Solver Using OpenACC 17

Advanced Industrial Science and Technology. Each compute node of ABCI has
four NVIDIA Tesla V100 GPUs and two Intel Xeon Gold 6148 CPUs (20 cores).
Its peak performance in double precision is 7.8 TFLOPS × 4 = 31.2 TFLOPS
on the GPUs and 1.53 TFLOPS × 2 = 3.07 TFLOPS on the CPUs. In addition,
its theoretical memory bandwidth is 900 GB/s × 4 = 3600 GB/s on the GPUs
and 126 GB/s × 2 = 256 GB/s on the CPUs. The GPUs in each compute node
are connected via NVLink, with a bandwidth of 50 GB/s bandwidth in each
direction.

We generated a finite element model assuming a small-scale city problem. The
problem settings were nearly the same as those of our previous performance mea-
surement in Ref. [8] except for the domain size and the number of MPI processes.
The target domain included two soil layers and a layer with material properties
similar to concrete. This problem had 39,191,319 degrees of freedom. In addi-
tion, PreCGcp, PreCGc, and PreCG had 659,544, 5,118,339, and 39,191,319
degrees of freedom, respectively. The target domain was decomposed into four
sub-domains, and four MPI processes were used in the computation. We used 10
OpenMP threads per MPI process when using CPUs so that all CPU cores on
an ABCI compute node were used. We applied semi-infinite absorbing bound-
ary conditions on the sides and bottom of the domain. We can incorporate any
constitutive laws into our proposed solver. Here, we used modified RO model [9]
and the Masing rule [16]. Kobe waves observed during the 1995 Southern Hyogo
Earthquake [10] were input at the bottom of the model. The time increment
was 0.01 seconds, and we computed 25 time steps. Convergence in the conjugate
gradient loops was judged using a tolerance value of ε = 1.0× 10−8. In addition,
the tolerances in PreCGcp, PreCGc, and PreCG were set to 0.05, 0.7, and 0.25,
respectively, according to Ref. [8].

4.1 Performance Evaluation of FP21 Computation

We evaluated the performance of each computation in the solver. The elapsed
time was measured using MPI Wtime. In this section, we compared the original
CPU-based implementation, the baseline implementation using OpenACC, and
our proposed implementation.

First, we measured the performance of the real Alpha X Plus Y (AXPY) oper-
ation. We extracted a computation in the PreCG solver of x(i) = x(i) + αy(i),
where the arrays x(i) and y(i) are in FP32 or FP21 and the coefficient α
is in FP32. The elapsed times of all the implementations are described in
Table 1. This computation was a memory-bound computation. Given that the
theoretical memory bandwidths of the CPUs and GPUs per MPI process are
63.9 GB/s and 900 GB/s, the expected performance ratio was (CPU):(baseline
OpenACC):(proposed) = 1/(32/63.9):1/(32/900):1/(21/900) = 1:14.1:21.5.
Judging from this ratio, our GPU implementation achieved a reasonable speedup.
In addition, the measured bandwidth was close to the results of another bench-
mark [12]: 900 GB/s× 83.3% = 750 GB/s; therefore, we concluded that our per-
formance was reasonable. In addition, using FP21 variables resulted in a 1.5-fold
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speedup; therefore, we confirmed that the computational cost for the data type
conversion was negligible.

Second, we measured the performance of a dot product. The target ker-
nel computes α =

∑
i((x(1, i) × y(1, i) + x(2, i) × y(2, i) + x(3, i) × y(3, i)) ×

z(i)), where the arrays x(, i) and y(, i) are in FP32 or FP21 and the array
z(i) is in FP32. The expected performance ratio was (CPU):(baseline Ope-
nACC):(proposed) = 1/((32× 7)/63.9):1/((32× 7)/900):1/((21× 6 + 32)/900) =
1:14.1:20.0. Compared to the AXPY kernel, the measured memory bandwidth in
the baseline OpenACC implementation decreased because OpenACC cannot use
the reduction option for arrays and causes stride memory access to the vectors.
Conversely, our proposed implementation with CUDA attained nearly the same
bandwidth as the AXPY kernel.

Finally, we show the performance of the matrix-vector multiplication kernel
in Table 1. The simple implementation and our proposed method obtained 15.0-
fold and 14.8-fold speedups for our CPU-based kernel. The performance for
these kernels on the GPUs reached 4 TFLOPS. The bottlenecks of this kernel
are not memory bandwidth but the atomic addition to the global vector and the
element-wise multiplication; therefore, we were unable to observe a significant
difference in the performance even when using FP21 data types for the input
vectors. Regarding this kernel, the data conversion between FP32 and FP21
in our proposed method was a possible reason for the slight performance gap
between these two kernels.

Table 1. Performance of each kernel in the solver.

Precision CPU-based Baseline OpenACC Proposed

FP32 FP32 FP32/21

AXPY Elapsed time 9.61ms 0.605ms 0.401ms

Measured

bandwidth

50.2GB/s 797.1GB/s 802.2GB/s

Speeding up

ratio

1 15.8 24.0

Dot product Elapsed time 6.20ms 0.456ms 0.277ms

Measured

bandwidth

54.0GB/s 735.1GB/s 822.9GB/s

Speeding up

ratio

1 13.6 22.4

Matrix-vector product Elapsed time 54.61ms 3.65ms 3.69ms

Measured

FLOPS per

MPI process

0.27 TFLOPS 4.11 TFLOPS 4.07 TFLOPS

Speeding up

ratio

1 15.0 14.8
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4.2 Performance Evaluation of the Entire Solver

In this section, we evaluate the elapsed time for the entire solver. We com-
pare the original CPU-based solver, a solver simply ported using OpenACC,
a solver simply ported using CUDA, our proposed solver based on OpenACC,
and the SC18GBF solver [8]. The SC18GBF solver improved its performance
at the cost of portability. For example, shared memory on the V100 GPU was
used to summarize the element-wise computation results and reduce the num-
ber of atomic operations in the element-by-element kernel and two-way packed
FP16 computations in the V100 GPU were also applied. Moreover, matrix-vector
multiplication and point-to-point communication were reordered as described in
Ref. [17] so that computationally expensive data transfers could be overlapped.
The SC18GBF solver, designed for large-scale computers, conducted further
reductions in the data transfer cost by splitting the four time steps into two sets
of two vectors and overlapping point-to-point communications with other vector
operations. However, we compared the performance of the solver using only one
compute node in this paper. Each GPU in the compute node was connected via
NVLink; therefore, the data transfer cost was lower. Considering these problem
settings, we computed the four time step vectors without splitting. In the GPU
computations, we used atomic operations when the element-wise results were
added to the global vector; therefore, numerical errors occur due to differences
in the computation order. The final results of the analysis are consistent within
the tolerance of the conjugate gradient solver; however, the number of iterations
in the solver differs every time we run the program. Accordingly, we took the
average of 10 trials for each solver.

The elapsed time for each solver is described in Table 2. The test took 781.8 s
when using only CPUs on an ABCI compute node. Conversely, we reduced the
computation time to 66.71 s via the simple implementation of OpenACC, result-
ing in a speedup ratio of 11.7. It took 61.02 s using the simple implementa-
tion with CUDA. This gap in performance between OpenACC and CUDA is
attributed to the following three factors. The first is the performance decline
in the dot product kernels. The second is that kernels that conduct complex
computations and require many variables cause register spilling, which does not
occur in CUDA implementations. The third is that OpenACC has a larger over-
head for launching each kernel than CUDA, which resulted in a large gap in
PreCGcp. Our proposed solver based on OpenACC used the FP21 data types
and introduced techniques to circumvent the overhead in the OpenACC kernels.
The elapsed time of this solver was 55.84 s; it was 9% faster than the original Ope-
nACC implementation as well as faster than the simple implementation using
CUDA. Therefore, we confirmed that the introduction of the FP21 data types
was beneficial in accelerating the solver. Our proposed solver attained approxi-
mately 86% of the SC18GBF solver performance. Performance gap in PreCGcp

between our proposed solver and the SC18GBF solver was larger than those in
PreCGc and PreCG. This was because the degrees of freedom in PreCGcp was
smaller than other preconditioning solvers and data transfer cost was relatively
higher, which was mostly overlapped in the SC18GBF solver. The performance
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of our proposed solver is very good from a practical point of view considering
the portability provided by OpenACC.

Table 2. Elapsed time for the entire solver measured on ABCI. The total elapsed time
includes the output of the analysis results. Performance of the preconditioning solvers
is summarized in order of their appearance in CG solver. The numbers of iteration in
each solver are also shown in parentheses.

Precision in
PreCGc,
PreCGcp,
and PreCG

CPU-based Baseline OpenACC Baseline CUDA Proposed SC18GBF

FP32 FP32 FP32 FP32/21 FP32/21/16

PreCGc 161.4 s 14.89 s 14.21 s 9.79 s 7.47 s

(6199) (6300) (6210) (4751) (4308)

PreCGcp 69.9 s 15.94 s 12.20 s 13.22 s 8.98 s

(28830) (28272) (28491) (28861) (26887)

PreCG 372.0 s 22.90 s 22.30 s 18.27 s 16.98 s

(2674) (2729) (2735) (2575) (2797)

CG 83.9 s 5.77 s 4.57 s 5.89 s 8.32 s

(91) (89) (89) (122) (129)

Other 94.8 s 7.21 s 7.73 s 8.66 s 5.99 s

Total 781.8 s 66.71 s 61.02 s 55.84 s 47.75 s

Speeding up
ratio

1 11.7 12.8 14.0 16.4

When we used lower-precision numbers, e.g., FP16 or FP21, the convergence
characteristics in the solver changed. When we replaced a computation in FP21
with a computation in bfloat16 for comparison, the solver failed to converge.
These results indicate that more fraction bits than provided by bfloat16 were
required for our problem settings. A detailed verification of the convergency
when using lower-precision data types will be a future task.

Finally, we solved problems with complicated geometry comprised of the
ground and underground structures with 16,291,917,564 degrees of freedom and
3,961,851,160 elements, as demonstrated in Ref. [8]. Here we used 384 compute
nodes of the supercomputer Summit [22]. We computed for 2,500-time steps
with time increment dt = 0.001 s. As shown in Fig. 9, we obtained the displace-
ment distribution reflecting complex geometries; therefore, the importance of
our method was demonstrated.

Regarding the developmental cost, the introduction of CUDA required an
additional 18,342 lines of code (our original code had 33,527 lines in total). Our
OpenACC implementation required the addition of 9,300 lines of code; therefore,
maintenance of our codes are expected to become easier when using OpenACC.
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Fig. 9. Application example on Summit. a) 1,024 m × 1,024 m city area with under-
ground and building structures surrounded by two-layered ground modeled; b) under-
ground structures in the domain; c) displacement distribution at t = 2.50 s.

5 Conclusions

To increase productivity in science and engineering fields, providing performance
improvements that are portable and maintainable is a big challenge. In this
paper, we target an implicit low-order finite element solver, for which it is con-
sidered difficult to attain high performances. The acceleration of this solver is
required to enable practical applications in commerce or industry. We have devel-
oped fast solvers using supercomputers to reduce computational costs. Our latest
solver has a sophisticated algorithm including AI and transprecision computing.
Moreover, we thoroughly optimized the performance of each kernel using spe-
cialized hardware in our targeted architecture. Accordingly, the developed codes
lacked portability and maintainability.

We applied OpenACC to this finite element solver. Via a performance mea-
surement on ABCI, we confirmed that the OpenACC-based implementation
achieved a 14.0-fold speedup compared to the original CPU codes. This is approx-
imately 86% the performance of our extremely tuned solver using CUDA. Con-
sidering that the number of lines modified for the GPU implementation is much
less than the number modified for CUDA and that the developmental cost is
smaller, our proposed solver is sufficiently suitable for practical use. Our devel-
oped template to use transprecision computing with FP21 data types is available
to the public [26]; therefore it can provide an example of how to accelerate other
scientific computing applications using lower-precision data types.
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1 Introduction

The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is the treaty which bans
nuclear explosions in any environment over the globe, such as in the atmo-
sphere, in the ocean, and underground. Although the treaty has not entered into
force, Preparatory Commission for the CTBT Organization (CTBTO) has been
monitoring signs of nuclear explosions using four technologies, namely, seismic,
infrasound, hydroacoustic and air-borne radionuclide. The monitoring network of
CTBTO, especially with regard to infrasound and hydroacoustic, is quite unique
because the network covers over the globe and the data is opened to scientific
use. Therefore, CTBTO has been developing and improving the methodologies
to analyze observed signals intensively. Because of the complex natures of the
oceans and the atmosphere, computer simulation can play an important role in
understanding the observed signals. In this regard, methods which depend on
partial differential equations, in other words an “ab-initio” approach, are prefer-
able in order not to overlook any subtle phenomena. However, there have been
only a few groups which perform such computer modelling with the parabolic
equation (PE) methods [10,11]. Based on such circumstances, CTBTO has been
testing and developing hydroacoustic simulation software packages based on PE
called 3D-SSFPE [20], and the finite difference method (FDM) [18] respectively.
Lin et al. explained the advantages of 3D-SSFPE over other PE methods in their
literature i.e. 3D-SSFPE is designed for long distance modelling.

One of the biggest drawbacks of using such accurate methods is the high
demand on computer resources, especially the arithmetic computing perfor-
mance. Although computer simulation is not considered as a necessary product
for the treaty, providing the member states with modelling results promptly may
help their decision-making.

At the same time, computing accelerators such as general purpose graphics
processing unit (GPGPU), field-programmable gate arrays (FPGA), and so forth
are now prevalent in the computer simulation field. Particularly, a GPGPU is
available at an affordable price thanks to the active development in deep learn-
ing. Thus, we have started evaluating the performance gain with GPGPUs on our
simulation programs. Considering the effort we could spare for porting the codes,
the directive-based parallel programming is practically the only choice for a non-
research organization, even though there is a known gap in the achievable perfor-
mance between the special languages, such as CUDA and OpenCL, and the direc-
tive based parallel programming languages, such as OpenACC. Finally, we have
implemented our software on the DGX-station by NVIDIA using OpenACC.

In the following sections, the details of each program and performance eval-
uation results as well as the computing environment will be described.

2 Computing Environment

In the present study, we have employed the DGX–station produced by NVIDIA
[1] as a test–bed of a GPGPU environment. The DGX–station equips four
NVIDIA Tesla V100s. In the OpenACC framework, using one GPU per pro-
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cess is the standard. In the present study, we employed OpenMP to launch
multiple threads and assigned one GPU to a thread for multi-GPU computation
in Sect. 4. The CPU installed is Intel Xeon E5-2698 v4 20 cores. The theoretical
peak performance of the CPU is 0.576 tera floating point operations per second
(TFLOPS) in double precision (0.0288 TFLOPS/core) and the memory band-
width is 71.53 giga byte per second (GB/s). At the same time, a V100 performs
7.5 TFLOPS in double precision and 900GB/s. The operating system is Ubuntu
18.04.2 LTS. The CUDA version is 10.0. The compilers employed are (1) GCC
version 9.1, which is available through the ubuntu-toolchain-r/test repository [5]
and (2) PGI compiler version 19.5. Both compilers have the capability of com-
piling OpenACC-enabled codes. However, the PGI compiler fails to generate
an object file which works together with Octave. Therefore, we employed GCC
for 3D-SSFPE, while the PGI compiler provides advanced features of OpenACC
such as managed memory. The PGI technical team recognizes this issue. Readers
who try to implement OpenACC-enabled codes on Octave with the PGI compiler
may check the release notes. The PGI compiler for Fortran 90 (pgf90) was used
throughout the FDM simulation development and it’s performance evaluation.
Octave is installed using apt-get and the version is 4.2.2.

3 3D-SSFPE

3.1 Overview

3D-SSFPE is a three-dimensional (3D) underwater sound propagation model
based on the parabolic equation (PE) combined with the Split-Step Fourier
method (SSF) [20]. In the literature, Lin et al. developed the code in the three
dimensional Cartesian coordinate as well as a cylindrical coordinate. In the
present study, since the long range wave propagation is of interest, we focus
on the Cartesian coordinate. The theoretical background as well as the imple-
mentation of 3D-SSFPE are given in the literature, and here, we provide readers
with a brief explanation, toward the GPU implementation. The 3D SSF solves
a linear wave equation by marching a two-dimensional (2D) grid (Y − Z plane)
along the perpendicular direction of the grid (X-axis) from the source term
to the point of interest, and each 2D solution grid is computed in spatial and
wavenumber domains alternately. The spatial and wavenumber domain trans-
form is performed through Fast Fourier Transform. As an analogy, the compu-
tation progresses like a wave-front propagates. However, SSF does not solve the
time evolution, instead it solves a boundary value problem. In the implementa-
tion point of view, 3D-SSFPE repeats the following steps;

1. Calculate the sound pressure at xn+1/2 = xn + Δx/2 in the wavenumber
domain

2. Correct the amplitude and phase of the sound pressure due to sound speed
changes (the index of refraction) at xn+1/2 in the spatial domain

3. Proceed to xn+1 in the wavenumber domain
4. if necessary, update the environment information
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where xn denotes the nth grid point on the X-axis, and Δx denotes the grid
length. The conversion of the pressure between the spatial and wavenumber
domains is undertaken using the Fast Fourier Transform (FFT) and the inverse
FFT (iFFT). Since there are many well-tuned FFT libraries, the point of the
discussion of implementation is how to compute the remaining part efficiently.
In the following section, we discuss it for our computing environment.

3.2 Implementation

3D-SSFPE has been developed on Matlab, which is a well known commercial
scientific software development environment. 3D-SSFPE solves the state of a
wave of a specific frequency, whilst hydroacoustic researchers would like to solve
problems of a spatial domain with various wave frequencies. It is worth noting
that the problem of each frequency is completely independent and can be solved
in parallel. Therefore, launching multiple instances at the same time is beneficial.
In other words, avoiding the limitation on the number of licenses increases the
total computational speed. Thus we employed Octave, which is an open source
clone of Matlab. It should be also noted that pre/post processes are implemented
with Matlab’s unique file format, and we can avoid the re-implementation of such
processes by using Octave. 3D-SSFPE calls FFT and iFFT frequently. In our
preliminary experiment, the GPU enabled FFT function on Matlab was also
examined. However, probably because of the data transfer between GPU and
CPU, the total computational speed remained the same level with the non-GPU
version. This fact also motivated us to use OpenACC.

Octave, as well as Matlab, provides users with a functionality to call a rou-
tine written in C++. The functionality is called “Octfile” in Octave, or “Mex
file” in Matlab. Since the Octfile is written in C++, we can apply OpenMP
and OpenACC. Considering the similarity in OpenMP and OpenACC, and the
complexity appears only in OpenACC, specifically data transfer, we followed the
following three steps, namely;

1. Re-write the target functions in C++
2. Apply the OpenMP directives
3. Apply the OpenACC directives based on 2

FFT and iFFT are performed using FFTW [9](Step 1 and 2) or cuFFT [4](in
Step 3).

In the following sections, the details will be given to apply OpenMP and
OpenACC to the Octfile. For readers’ convenience, a 3D SSF implementation for
the Lloyd’s Mirror Problem in Matlab/Octave and its GPU version are available
on Zenodo (Matlab/Octave version [19] and GPU version [15]). Although 3D-
SSFPE deals with more complex geometries and the inhomogeneity of medium
which lead to additional complexity into the codes, we believe those samples
help readers understand the efforts in the present study.
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Accessing Arrays. Octave provides users with the functionality to access a
multidimensional array in the Fortran style, specifically in the “array(i,j)”
form, in the Octfile. However, this style involves function calls which prevents
OpenACC compilers from generating GPU enabled loops. On the other hand,
there is a way to handle a raw pointer of an array. In the present study, we con-
struct all loops with raw pointers of multi-dimensional arrays including vectors
and matrices so that all the loops can be computed on GPU. In the following
program, a matrix Mat is initialized using the raw pointer. In the program, Mat is
a matrix defined in Octave and passed to the Octfile, Nc and Nr are the numbers
of columns and rows of Mat, and Mat_p is the pointer, which stores the content
of Mat. As the name of the method to obtain the raw pointer, fortran_vec(),
indicates, the matrix is stored in the column-major manner as Fortran. A vector
and higher dimensional arrays can be accessed in the same way.

Example of the initialization of a matrix with the raw pointer

double _Complex *Mat_p = reinterpret_cast<double _Complex *>
(const_cast<Complex *>(Mat.fortran_vec()));

octave_idx_type Nc = Mat.cols();
octave_idx_type Nr = Mat.rows();
for (int i=0; i< Nr; i++){

for (int j=0; j< Nc; j++){
Mat_p[j*Nr+i] = 0.0;

}
}

Double Complex Data Type. Since 3D-SSFPE uses FFT and iFFT, a com-
plex value data type is necessary. In the Octfile, the Complex data type is the
standard. However, with GCC version 9.1, more precisely, g++ version 9.1, the
Complex data type prevents the compiler from generating GPU enabled loops.
In the present study, we discovered that the double _Complex data type can
be used as an alternative of the Complex data type although this is a data type
in C. The binary format of the double _Complex data type and the Complex
data type is identical, and users can use the double _Complex data type with
matrices by casting the data type. The actual usage can be found in Section
Accessing arrays. With the double _Complex data type, compilers can gen-
erate GPU enabled loops, even with mathematical functions such as cexp, which
computes the exponential of a complex value.

Memory Mapping for OpenACC. Basically, OpenACC compilers should
allocate arrays on GPU automatically using directives, such as #pragma acc
data copy. However, in the Octfile, neither GCC nor PGI handles such directives
as expected. More precisely, error messages relevant to the memory address were
observed such as “Failing in Thread:1 call to cuMemcpyDtoHAsync returned
error 700: Illegal address during kernel execution”. In the present study, we
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manually allocate arrays on GPU and associate them with corresponding arrays
on the main memory. In the following program, acc_malloc allocates arrays on
GPU, and acc_map_data associates arrays on GPU with corresponding arrays
on CPU. Finally, users can generate a GPU enabled loop using directives.

Example of the allocation of matrix on CPU and GPU in the Octfile

octave_idx_type Nc = Mat.cols();

octave_idx_type Nr = Mat.rows();

double _Complex *Mat_p = reinterpret_cast<double _Complex *>

(const_cast<Complex *>(Mat.fortran_vec()));

double _Complex *Mat_d = (double _Complex*)

acc_malloc(sizeof(double _Complex)*Nc*Nr);

acc_map_data(Mat_p,Mat_d,sizeof(double _Complex)*Nc*Nr);

#pragma acc parallel loop independent present(Mat_p[0:Nc*Nr])

for (int i=0; i< Nr*Nc; i++){

Mat_p[i] = 0.0;

}

Calling cuFFT with OpenACC. CuFFT is the FFT library which is one of
the best for GPUs provided by NVIDIA. NVIDIA also provides another FFT
library, called cuFFTW. The main difference in those libraries is that cuFFTW
takes arrays on CPU as input, while cuFFT takes arrays on GPU as input.
Since we are aiming to confine all the arrays into GPU, cuFFT is the choice
in the present study. CuFFT is designed to use together with CUDA, which
is the language that handles the pointers of arrays on GPU explicitly, whilst
OpenACC handles the pointers on GPU implicitly. To circumvent this issue,
we employed #pragma acc host data use device as inspired by the site [2].
An example of the Octfile which calls cuFFT from OpenACC is shown in the
following program. In the program, a matrix Matrix is given from Octave, and
iFFT is performed on it. The result is stored in out, and normalized using
the number of matrix elements as Octave’s native function does. The working
example can be found at Zenodo [17]. It is worth noting that, since both the
iFFT part and the normalization part are in the same #pragma acc data copy
region, only the arrays on GPU are accessed during the computation, which is
essential for performance.

Example of calling cuFFT from OpenACC in the Octfile

void inv_CUFFT(double _Complex *in_data,

double _Complex *out_data,

int nc, int nr, void *stream)

{

cufftHandle plan;
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cufftResult ResPlan = cufftPlan2d(&plan, nc,nr, CUFFT_Z2Z);

cufftSetStream(plan, (cudaStream_t)stream);

cufftResult ResExec = cufftExecZ2Z(plan,

(cufftDoubleComplex*)in_data,

(cufftDoubleComplex*)out_data,

CUFFT_INVERSE);

cufftDestroy(plan);

}

DEFUN_DLD(testFFTGPU, args, ,

"main body;")

{

ComplexMatrix Matrix(args(0).complex_matrix_value());

octave_value_list retval;

ComplexMatrix out(Matrix.dims());

double _Complex *pmat = reinterpret_cast<double _Complex*>

(const_cast<Complex *>(Matrix.fortran_vec()));

double _Complex *pout = reinterpret_cast<double _Complex*>

(const_cast<Complex *>(out.fortran_vec()));

int Nc = pmat.cols();

int Nr = pmat.rows();

#pragma acc data copy(pmat[0:Nc*Nr],pout[0:Nc*Nr])

{

void *stream = acc_get_cuda_stream(acc_async_sync);

#pragma acc host_data use_device(pmat,pout)

{

inv_CUFFT((double _Complex*)pmat,(double _Complex*)pout,Nc,Nr,stream);

}

#pragma acc parallel

for(int i=0;i<Nr*Nc;i++){

pout[i] = pout[i]/double(Nr*Nc);

}

}

retval(0) = out;

return retval;

}

Conditional Access. It is well known that loops should be avoided in Matlab
and Octave, in terms of computational speed. Instead, users are encouraged to
use a technique called vectorization (note that, this vectorization is not equiv-
alent to the one in the context of supercomputing, especially on vector super-
computers). In the vectorization technique, users apply built-in operations and
functions which perform over the entire elements of vectors and arrays. In the
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case that one needs to process only a part of an array, a new array needs to be
created, as;

smallArray = Array(find(X > 0.0))

In the above example, Array and X are the vectors which have the same num-
ber of elements, and if an element of X is greater than 0.0, the corresponding
element of Array is extracted and copied to smallArray. Finally, one can apply
vectorized operations on smallArray. On the other hand, the same operation
can be implemented in C++ as follows, where n is the size of Array and X;

int idx = 0;
for(int i; i<n; i++){

if(X[i] > 0.0){
smallArray[idx] = Array[i];
idx++;

}
}

This operation cannot be parallelized, because idx needs to be incremented
sequentially, and therefore, it cannot be implemented on GPU. As a result, Array
and smallArray need to be transferred between CPU and GPU, which should
be avoided from the computational performance point of view. In the present
study, we avoided creating such small arrays by processing all the elements of
Array with if branch.

3.3 Performance Evaluation and Conclusion

In order to evaluate the performance of the GPU implementation as well as the
multi-core implementation with OpenMP, the computation time was measured.
Table 1 gives the computation times of each implementation on three sizes of
problems, namely ny × nz = 1000 × 2000, 2000 × 4000, 4000 × 8000, where ny
and nz are the numbers of grid points along the Y -axis and the Z-axis respec-
tively. In the table, “Octave + FFTW (single)” denotes the computation time of
Octave with a single threaded FFTW, “Octave + FFTW (20cores)” denotes the
computation time of Octave with multi-threaded FFTW on 20 cores, “OpenMP”
denotes the multi-threaded version with OpenMP on 15 cores, and “OpenACC”
denotes the GPU version. The numbers listed in the table represent the compu-
tation time in seconds. Figure 1 shows the relative acceleration of each implemen-
tation to “Octave + FFTW (single)”. In all the cases, OpenACC shows the best
performance in all implementations. In addition, the larger the problem becomes,
the better the acceleration becomes. In the largest case, OpenACC is approxi-
mately 19 times faster than Octave + FFTW (single). Regarding OpenMP, the
same tendency with OpenACC is observed although the performance is worse
than Octave + FFTW (single), in the smallest case. Except in the smallest prob-
lem case, OpenMP shows better performance than “Octave + FFTW (20cores)”.
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At the same time, “Octave + FFTW (20cores)” is always better than “Octave
+ FFTW (single)”. This implies that although FFT is dominant in 3D-SSFPE,
the remaining parts are not negligible.

Table 1. Computation time of each implementation on various problem sizes. Com-
putation time in seconds is listed. Problem size indicates the numbers of grid points
along the Y -axis and the Z-axis. The marching distance along the X-axis is identical
in all cases.

Problem size Octave + FFTW (single) Octave + FFTW(20cores) OpenMP OpenACC

4000× 8000 163 103 25.1 8.60

2000× 4000 36.8 25.3 9.52 2.94

1000× 2000 5.11 3.68 5.65 1.58

Fig. 1. Relative acceleration of each implementation to Octave + FFTW (single).
Problem size indicates the numbers of grid points along the Y -axis and the Z-axis.
The marching distance along the X-axis is identical in all cases.

Finally, we can conclude that porting the entire kernel of 3D-SSFPE to GPU
is necessary for high performance even though a well-tuned FFT on GPU is
provided. This is because (1) the communication between CPU and GPU is
expensive as well known and in order to avoid such communication, all the
computation should be performed on GPU, and (2) although FFT is dominant,
the remaining parts are also perceptible if FFT is sufficiently fast.

4 Global Acoustic Simulation with FDM

4.1 Overview

As discussed, an FDM-based global acoustic model has a favorable nature to
analyze CTBTO observation. One of the advantages of employing a FDM model
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over PE methods is that one can apply a waveform directly to a source term.
However, so far, to our best knowledge, such models have not been developed
(pp 147–161 of ref [8,23]). The main difficulties in building such simulation codes
are: (1) considering the inhomogeneity of medium including background flows,
(2) high aspect ratio of computational domain, (3) stability during long time
integration. To overcome these difficulties, we employ a 2D FDM scheme on a
spherical coordinate with the Yin-Yang overset grid [12] solving the governing
equation of acoustic waves introduces by Ostashev et al. [21]. In the following
section, we discuss the formulation and the implementation on CPU as well as
GPU.

4.2 Formulation

Ostashev et al. give the formulation of the wave propagation over the moving
inhomogeneous media as;

(
∂

∂t
+ v · ∇

)
p + ρc2∇ · w = ρc2Q (1)

(
∂

∂t
+ v · ∇

)
w + (w · ∇)v +

∇p

ρ
=

F
ρ

(2)

where p is the pressure, w is the velocity vector of the wave, v is the velocity
vector of background media, ρ is the density of the background media, c is
the adiabatic sound speed, Q is a mass source, and F is a force acting on the
background media. Since we are interested in solving the wave propagation over
the globe, we need to know the explicit form of Eqs. 1 and 2 in a spherical
coordinate. We now define the spherical coordinate we use in the present study
as;

x = r sin θ cos φ

y = r sin θ sin φ (3)
z = r cos θ

where the radial distance r, the inclination θ, and the azimuth φ. Based on Eq. 3,
we have the operator ∇,

∇ =
(

∂

∂r
,
1
r

∂

∂θ
,

1
r sin θ

∂

∂φ

)
. (4)

We write down the explicit form of (v · ∇)w,

(v · ∇)w =
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vr
∂

∂r
+

vθ

r

∂

∂θ
+

vφ

r sin θ

∂

∂φ

)
(wrer + wθeθ + wφeφ) , (5)
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where er, eθ and eφ are the unit vectors of r, θ and φ, and v and w with
subscripts denote the components of each vector along each direction. Finally,

(v · ∇)w =
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(6)

In the same way, we have,
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(7)

The divergence of w is,

∇ · w =
1
r

∂

∂r

(
r2wr

)
+

1
r sin θ
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(sin θwθ) +

1
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. (8)

By using Eqs. 6, 7, and 8, we have the explicit form of Eqs. 1 and 2 in the spherical
coordinate,
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where κ = ρc2 and b = 1/ρ. By dropping the radial component in Eq. 9, we have
the governing equation of the wave propagation in the horizontal direction,
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(10)
In the present study, we employ Eq. 10 to solve the global acoustic wave propa-
gation.

4.3 Yin-Yang Grid

Kageyama and Sato developed an overset grid Called the Yin-Yang grid to over-
come the issues in FDM in a spherical coordinate. Namely, the Yin-Yang Grid
resolves the singularity at poles and provides a near uniform grid over the globe.
On the other hand, it leads to an additional complexity which originates in com-
bining two identical grids. The Yin-Yang grid, as the name implies, uses two
identical grids. In Fig. 2, we visualized the positional relationship of the Yin and
Yang grids. As can be seen in Fig. 2 [a], both are identical and a grid can be
projected onto the other grid only with rotation. We also visualised the locations
of each grid on the globe (Fig. 2 [b]). Since those two grids are identical, there
is no need to distinguish them by applying labels. However, for convenience, we
put the label of Yin on the blue grid, and Yang on the red grid. In order to com-
prehend the geographical location of each grid, we projected them with the plate
carree projection as well (Fig. 3). With those figures, we see that the poles are
covered by the Yang grid, whilst neither the Yin nor Yang grid has poles which
appear in the standard spherical coordinate grid. In addition, we can observe
that the grid width, which determines the time step length and therefore the
total computation time, is uniform. More precisely, in the standard spherical
coordinate grid, the grid lengths close to the poles are smaller than the ones
around the equator. Because of the stability in numerical computing, one needs
to choose a time step length based on the smallest grid length, which results in
a larger number of time steps. In this context, a uniform grid length reduces the
total computation time.

In the Yin-Yang grid, the computation proceeds by exchanging the physical
values on the boundaries of each grid. Kageyama and Sato pointed out that
there are regions which are computed twice, around the corners of each grid.
Ideally, such wasteful computations should be avoided, and Kageyama and Sato
also proposed a grid for this purpose. However, because of the following rea-
sons, we employed the one which is visualized in the figures; (1) The optimized
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grid requires additional “if” statement, which may impact on the computational
speed, especially on GPU, (2) The number of such doubly computed grids is
negligible in practice.

[a] Yin-Yang grid

[b] Mapped on the globe

Fig. 2. Visualization of Yin-Yang grid. [a] Yin and Yang grids are identical and can
be projected only with rotation [b] Yin-Yang grid mapped on the globe (Color figure
online)

Fig. 3. Yin-Yang grid projected on the globe with the plate carree projection (Color
figure online)

4.4 Computational Schemes

In the present study, we followed the computational schemes which Ostashev
had employed, namely, the first order staggered grid for spatial discretization,
and the fourth order Runge-Kutta explicit time integration. Figure 4 shows the
schematic figure of the configuration of grid points. In the figure, the black dots
represent p and other scalar values, and the triangles represent the θ and φ
components of w and other vector values. A set of numbers in brackets indicates
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the addresses of arrays in the Fortran notation. The dashed line indicates the
region which need to be computed, and values on the grid points outside the
region need to be imported from the other Yin-Yang grid. Equation 11 shows
the time integration with the Runge–Kutta method, where n denotes the time
step number, ψn denotes the physical value at the time step “n”, tn denotes the
time at the time step, and f represents a function. ψ∗ and ψ∗∗ are physical values
at intermediate steps which are only for computation. If we assume that the time
derivative can be derived using the first order differential, we can introduce the
explicit form of f using Eq. 10 without any difficulty.
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2
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2
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(11)

4.5 Performance Optimization

Merging Function Evaluations. Equation 10 gives the functions that should
be evaluated in Eq. 11. In a naive implementation, those three functions are
implemented into three individual functions. However, at the same time, one
can point out that most variables appear in all three equations. For instance,
variables loaded to evaluate the first equation can be used in the remaining equa-
tions. As well known, modern computers including GPUs, have high arithmetic
intensity (the number of floating point operations per word). In other words,
reducing the number of memory instructions is the key technique to achieve high
performance. Thus, we evaluate those three equations within the same loop so
that a variable is reused as many times as possible. In Table 2, the computation
times of the naive implementation and the merged function implementation are
listed, as well as the speedup from the naive implementation to the merged imple-
mentation. The computational time is measured on Intel Xeon CPU E5-1620 v3
one core, only with the Yin grid. The grid sizes used are nφ × nθ = 1000 × 3000
(10 km/grid on the equator), and 3000 × 9000 (3.3 km/grid) where nφ and nθ
are the numbers of grid points along φ and θ directions, respectively. In the
smaller problem case, we obtained 4.85 times acceleration while we obtained
3.31 times acceleration in the larger problem case. The reason why the larger
case shows smaller improvement can be attributed to the data cache memory
working more effectively in the smaller problem. Since the number of floating
point operations required stays the same in both implementations, we believe
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Fig. 4. Configuration of the staggered grid.

that the improvement originates in the reduction of memory access. Therefore,
we can expect that this optimization is also effective on GPU, although we are
not able to perform this test on GPU because the optimization was applied at
an early stage of the development.

Table 2. Computational times of the naive implementation and the merged functions
implementation. Times in seconds are listed.

Naive Merged Speedup

1000 × 3000 0.80 0.17 4.85

3000 × 9000 7.25 2.19 3.31

Memory Management. The structure data type is efficient in building soft-
ware. However, currently, handling the allocatable array in a structure is cum-
bersome, namely, users need to allocate arrays on GPU manually, and transfer
the data. In the present study, we employed the managed memory (the unified
memory in CUDA is equivalent technology), although this is only supported
by the PGI compiler currently. Using the managed memory, all the arrays used
on GPU are automatically uploaded. Once an array is uploaded onto GPU, no
communication between CPU and GPU is necessary except the case that output
files are created.
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Double GPU. In the implementation point of view, we need to launch an iden-
tical function twice, namely once with the Yin grid and also with the Yang grid.
In other words, those two grids can be evaluated independently, if the boundary
values are exchanged correctly. Thus, using the two GPUs and assigning a grid
to a GPU is quite natural. However, at the same time, one needs to implement
a way to import and export the boundary values to the other. Thanks to the
managed memory technology which we employed in the present study, commu-
nication among GPUs and CPU is carried out automatically. On the other hand,
as we will discuss later, the communication cost among GPUs with the managed
memory technology is high and the total computational speed is worse than the
single GPU configuration. Thus, we implemented a communication functionality
with a lower level function “cudaMemcpyPeer”. cudaMemcpyPeer enables us to
send and receive data directly bypassing the CPU, whilst the data path with
the management memory technology is not visible for users. On the other hand,
cudaMemcpyPeer requires us to manage the memory space of GPU manually. In
the present study, we employ the device array and !$acc deviceptr directive
to use cudaMemcpyPeer.

Because of the prevalence of the GPU-cluster (multi-node) type supercom-
puters, there have been many reports of success in MPI–OpenACC hybridiza-
tion [7] and even training [3]. Here, MPI stands for Message Passing Interface.
Nevertheless, since the DGX–station we employed in the present study as well
as DGX–1 and DGX–2 by NVIDIA, which have a similar architecture with
DGX–station whilst more powerful, are single-node-multi-GPU computers, dis-
cussing the hybridization of OpenMP and OpenACC may draw attention from
researchers. One of the biggest advantages of using the OpenMP/OpenACC
hybridization is that users can progressively implement their codes based on their
sequential version, especially users who can use the managed memory technol-
ogy. As well known, MPI requires users to reconstruct the data structure which
may lead to the major code rewrite.

In the following program, we show the structure of the hybridization with
a pseudo code resembling Fortran. In the program, rungeKutta is the func-
tion which computes the physical values of the next step using the Runge–
Kutta algorithm on the Yin or Yang grid. Since the Yin grid and the Yang
grid are identical, we call the same function twice but with separate arrays
(yin and yang) in each iteration. In our hybrid program, each grid is assigned
on each OpenMP thread, so that two GPUs are used in parallel. The function
acc_set_device_num is a function provided within the OpenACC framework,
and this specifies the device that is used by a thread. The arrays, yin2yangSend,
yin2yangRecv, yang2yinSend and yang2yinRecv are device arrays which are to
exchange the boundary values. Since device arrays should be allocated on tar-
get devices, they are allocated after acc_set_device_num is called. calcEdge
is the function which computes the boundary values on the other grid, and
stores such values on yin2yangSend and yang2yinSend. Those arrays are copied
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to yang2yinRecv and yin2yangRecv directly using cudaMemcpyPeer. Finally
the boundary values are copied to the Yin and Yang grids using the function
recoverBoundary so that we can move on to the next time step. Since we should
avoid the communication between CPU and GPUs, the computation in the func-
tions rungeKutta, calcEdge and recoverBoundary are all written in OpenACC.
Thus the hybridization of OpenMP/OpenACC is achieved on our FDM code.

Hybridization of OpenMP/OpenACC on the Yin-Yang grid FDM

program acousticFDM

! Structure that stores each grid values

type(yinYangGrid) :: yin, yang

! Device array to exchange boundary values

real(8),dimension(:),allocatable, device :: yin2yangSend, yin2yangRecv

real(8),dimension(:),allocatable, device :: yang2yinSend, yang2yinRecv

! GPU number 1 and 2 are used

integer,parameter, dimension(0:1) :: iDev = (/1,2/)

nPhi = 100 ! Number of grid points along Phi-axis

nTheta = nPhi*3 ! Number of grid points along Theta-axis

integer :: nEdge = 2*nPhi + 2*nTheta !Number of grid points on the all edges

!$omp parallel num_threads(2)

do ITER = 1, MAX_ITERATION ! Time integration loop

if(ITER==1)then

call acc_set_device_num(iDev(omp_get_thread_num() ) , &

acc_device_nvidia)

if(omp_get_thread_num()==0)then

allocate(yin2yangSend(nEdge))

allocate(yang2yinRecv(nEdge))

else

allocate(yang2yinSend(nEdge))

allocate(yin2yangRecv(nEdge))

endif

endif

if(omp_get_thread_num()==0)then

! Compute the Yin grid

call rungeKutta(yin)

! Compute the values of grid point on the edged in the Yang grid

! and store in yin2yangSend

call calcEdge(yin,yin2yangSend)

! Copy yin2yangSend to yin2yangRecv which is on the other device

istat = cudaMemcpyPeer(yin2yangRecv,iDev(1), &

yin2yangSend,iDev(0),nEdge)

call recoverBoundary(yang2yinRecv,yin)

else

call rungeKutta(yang)

call calcEdge(yang,yang2yinSend)

istat = cudaMemcpyPeer(yang2yinRecv,iDev(0), &

yang2yinSend,iDev(1),nEdge)
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call recoverBoundary(yin2yangRecv,yang)

endif

enddo

!$omp end parallel

end program acousticFDM

4.6 Software Evaluation

Accuracy Evaluation with a Live Experiment. Since this software has
been developed from scratch, we first would like to check the validity of our
code from the modelling point of view. In the present study, we refer to the
experiment performed in 1960 [22]. In this experiment, a chemical explosive
(amatol) was used as a source of the hydroacoustic wave, and it was detonated
by the research vessel Vema offshore Perth, Australia. A hydrophone was set in
the Bermuda area to catch the hydroacoustic wave. In the literature, authors
identified the propagation path and the effective sound speed was estimated. In
the present study, we employed the parameters given in the literature to perform
the modelling, namely,

– sound speed: 1485 m/s
– location of hydrophone: 32.10 N and 64.35 W
– location of detonation: 33.36 S and 113.29 E in the SOFAR channel
– travel time: 3 h 41 min 18 s to 3 h 42 min 24 s.

Since our FDM code does not take into account the radial direction, we assume
that the wave propagates at 1,000 m depth, close to where the SOFAR channel
is situated. ETOPO1 [6] is employed as the bathymetry data. The solid earth is
treated as the rigid body, in other words, the velocity of wave becomes zero at
the boundary.

As a result, the wave travels from Vema to Bermuda in 3 h 43 min 0 s, which
is slightly longer than the experiment. Although further evaluation and develop-
ment are necessary, we believe the implementation so far is successful. A visu-
alization animation of the wave propagation of this experiment is uploaded to
Zenodo [16].

Computational Speed. In order to evaluate the improvements in com-
putational speed, we measured the computation time per iteration of each
implementation with various problem sizes (Table 3. Figures in the table
are in seconds). In the present study, we used the following grids: nφ ×
nθ = 1000 × 3000(10 km/grid on the equator), 3000 × 9000(3.33 km/grid),
6000 × 18000(1.67 km/grid), 8000 × 24000(1.25 km/grid) and 9000 × 27000
(1.11 km/grid), where nφ and nθ are the numbers of grid points along the
φ-axis and the θ-axis. In the table, “CPU” denotes FDM implementation with
one core CPU, “OpenMP” denotes 20 cores parallel with OpenMP, “Multi-
core” denotes 20 cores parallel with OpenACC with the -ta=multicore option,
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“Single GPU” denotes one GPU implementation with OpenACC, “managed
memory” denotes the dual-GPU implementation with the managed memory
technology, and “cudaMemcpyPeer” denotes the dual-GPU implementation with
the cudaMemcpyPeer function (please note that single GPU also relies on the
managed memory technology). In all the cases, CPU shows the slowest. The mul-
ticore parallel implementations (OpenMP and Multicore) are the second slowest.
Managed memory is faster than CPU, but slower than Single GPU although two
GPUs are involved in. Finally, cudaMemcpyPeer shows the best performance.
We observed that Single GPU with the 8000×24000 and 9000×27000 grids took
over 5 min for one time step computation. Thus we aborted the computation and
“Not Available (NA)” is indicated in the table. Thanks to the managed memory
technology, although the required memory size is larger than the actual device
memory size, the processes continued working. However, because many com-
munication instructions were issued between CPU and GPU, the performance
became worse than CPU.

We listed the acceleration of each implementation to CPU (Table 4). In most
cases cudaMemcpyPeer and Single GPU show over 100 times acceleration to
one core CPU. In the best case scenario, we obtained approximated 160 times
acceleration with two GPUs. In this case, cudaMemcpyPeer shows 1.4 better
performance than Single GPU, although it is still lower than the ideal accel-
eration. We observed that the ideal acceleration can be obtained by ignoring
cudaMemcpyPeer and recoverBoundary in our preliminary test. This implies
that there is a space for further optimization in the boundary exchange phase.
Finally, managed memory shows worse performance than Single GPU while the
problem size is sufficiently small. At the same time, managed memory allows
us to solve larger problem than Single GPU, and it runs faster than CPU. The
multicore implementations show approximately 10 times acceleration to CPU,
whilst Multicore is slightly faster than OpenMP.

For readers’ evaluation, we provide the CPU version [14], and the
cudaMemcpyPeer version [13] on Zenodo.

Table 3. Computational times at one time step of each implementation with various
problem sizes. Figures are in second. NA denotes “Not Available”

CPU OpenMP Multicore Single GPU Managed

memory

cuda

Memcpy

Peer

1000 × 3000 6.10E–01 7.28E–02 6.76E–02 7.65E–03 1.07E–01 1.42E–02

3000 × 9000 6.76E+00 7.40E–01 6.51E–01 5.91E–02 6.48E–01 5.26E–02

6000 × 18000 2.72E+01 3.00E+00 2.69E+00 2.45E–01 2.02E+00 1.71E–01

8000 × 24000 4.95E+01 5.52E+00 5.12E+00 NA 8.93E+00 3.87E–01

9000 × 27000 6.04E+01 7.12E+00 6.73E+00 NA 9.44E+00 4.43E–01
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Table 4. Acceleration of each implementation to CPU with various problem sizes. NA
denotes “Not Available”

CPU OpenMP Multicore Single GPU Managed memory cudaMemcpyPeer

1000 × 3000 x1.00 x8.38 x9.03 x79.82 x5.71 x43.00

3000 × 9000 x1.00 x9.13 x10.39 x114.32 x10.43 x128.36

6000 × 18000 x1.00 x9.08 x10.12 x111.30 x13.50 x158.71

8000 × 24000 x1.00 x8.97 x9.67 NA x5.54 x127.76

9000 × 27000 x1.00 x8.49 x8.99 NA x6.40 x136.35

5 Conclusion

In the present study, we have implemented two hydroacoustic modelling codes on
GPU with OpenACC and gained better performance than on CPU. Since those
two modelling codes will be used to understand the observed signals in the inter-
national monitoring system of CTBTO, the larger the number of hypothetical
events we can solve, the better we can understand the observed signals. In this
context, the acceleration obtained in this study contributes to the mission of the
organization. The summaries of the achievements are: (1) In 3D-SSFPE, we suc-
ceeded in implementing GPU enabled code which works together with Octave,
which is a high-level computer language. As a result, we gained approximately 19
times acceleration to the original Octave code, in the best case scenario. Although
the obtained acceleration is lower than that can be observed in our sample codes
(50 times acceleration), which are relatively simpler than 3D-SSFPE, we are
proud of achieving high performance in a realistic problem. In addition, we may
gain further acceleration with updates on compilers. (2) In the in-house FDM
code, we succeeded in implementing an OpenMP/OpenACC hybrid code to use
two GPUs. As a result, we gained approximately 160 times speedup to one core
CPU in the best case scenario. Although there have been many research projects
which successfully implemented OpenACC codes on supercomputers, our expe-
rience might be of interest to researchers, especially those who are not familiar
with supercomputing.

Disclaimer. The views expressed on this article are those of the authors’ and
do not necessarily reflect the view of the CTBTO.
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Abstract. Using GPUs to accelerate the performance of HPC applica-
tions has recently gained great momentum. Energy Exascale Earth Sys-
tem Model (E3SM) is a state-of-the-science earth system model develop-
ment and simulation project and has gained national recognition. It has
a large code base with over a million lines of code. How to make effective
use of GPUs, however, remains a challenge. In this paper, we use the
modal aerosol module (MAM) of E3SM as a driving example to inves-
tigate how to effectively offload computational tasks to GPUs using the
OpenACC directives. In particular, we are interested in the performance
advantage of using GPUs and in understanding performance-limiting fac-
tors from both application characteristics and the GPU or OpenACC.

1 Introduction

E3SM is an Energy Exascale Earth System Model to investigate energy-relevant
science using the code optimized for the U.S. DOE’s advanced computers [4].
Its mission is to project critical changes that will impact the U.S. energy sector,
including water availability, extreme temperature, energy resource potentials,
sea level rise, etc. It combines the atmosphere, ocean, land ice, river, sea ice, and
land component models together to advance the DOE’s understanding of and
ability to predict the earth system. Among those components, atmosphere and
ocean are the two critical components that consume most of the run time.

As a more energy efficient approach, GPUs have been widely accepted in the
HPC community. As a result, developers of HPC applications have needed to
port their applications to various GPU accelerated platforms. Due to the rapid
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evolution of GPU and CPU technology, it is critical for application developers
to adopt a program model or framework that can deliver both performance and
portability while allowing minimal code development and maintenance efforts.
Some frameworks or ecosystems, such as Kokkos, have been developed to help
programmers write portable applications by hiding the complexity of low level
architectures, and have been successfully adopted by many applications [13].
However, Kokkos targets C++ only, leaving a large number of scientific codes
written in Fortran untouched, including the entirety of the E3SM code. As a
matter of fact, some E3SM code teams have rewritten the atmospheric dynam-
ical core (High-Order Methods Modeling Environment, HOMME) of E3SM in
C++ to employ Kokkos with success [1]. Their effort produced 13,000 new lines
of C++ and 2000 new lines of Fortran, required significant programming effort.
Directive-based programming models, such as OpenMP and OpenACC with
their offload features, are preferred options, especially when porting Fortran
applications to GPUs. OpenMP has a clear path forward in delivering perfor-
mance and portability with relatively little development effort, as its language
standards have been widely accepted among many compiler vendors and devel-
opers. As of right now, however, not many compilers support OpenMP offload
yet, meaning developers may find themselves spending more time dealing with
compiler bugs. On the other hand, OpenACC is well supported in PGI com-
pilers (GCC is catching up with the OpenACC support as well), and offers
performance and portability across GPUs and CPUs with a single source, which
can largely reduce the code maintenance effort. Additionally, with the support of
CUDA unified memory, data management becomes an easier task and efficient
development can be ensured. Due to its efficiency, OpenACC has been widely
adopted in HPC applications; as of GTC19, there have been 194 application
codes ported to GPUs with OpenACC, including the top three HPC applica-
tions, VASP, Gaussian, and MAS [7]. OpenACC has been previously explored by
the E3SM multi-scale modeling framework project [8], but not for current pro-
duction run codes. Notice that there is a consensus [3] in the HPC community
that after filling important gaps in ISO standards the directive-based parallel
programming models as well as the tools like Kokkos will eventually diminish
when the parallel constructs emerge in the native programming languages, such
as C/C++ and Fortran. This further assures the choice of OpenACC, which is
capable of delivering performance with relatively little programming effort and
minimal code changes.

In this work, we focus on accelerating the aerosol module (MAM) of the
atmosphere component of E3SM by offloading the work to GPUs using Ope-
nACC directives. The relevant MAM part includes tens of thousands of lines of
code written in Fortran 2003 while the whole atmosphere component includes a
few hundred thousand lines. Since the run time is dispersed among many func-
tions, we cannot focus our attention on a couple of kernels only, instead working
on many kernels with different performance characteristics. By exploring the
performance of different kernels and optimizing them for effective execution on
GPUs, our goal is to infer guidelines for future GPU porting. We found that to
offload the work efficiently to GPUs, we had to refactor the code significantly,
including breaking big irregular kernels to smaller ones, moving expensive I/O
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operations out of the loops, reorganizing the code to expose more parallelism,
and also minimizing data movement wherever possible by using unstructured
data regions. Ultimately, we were able to improve performance more than 5X
using GPU accelerators compared with using CPUs only. We have also observed
that for some kernels, significant overhead incurred when offloading to GPUs,
neutralizing the benefit of GPU usage.

The rest of the paper is organized as follows: we describe the OpenACC pro-
gramming model in Sect. 2, focusing on the language features used in this work,
and describe our experimental platform and approach in Sect. 3. After introduc-
ing the MAM algorithms and the four selected kernels in Sect. 4, we describe
how we offload the MAM kernels to GPUs using the OpenACC directives and
discuss their performance in Sect. 5. Then in Sect. 6, we discuss how to tune
the performance by launching multiple processes on a single GPU, and provide
further performance analysis. We will conclude the paper by summarizing our
observations and future work in Sect. 7.

2 OpenACC Programming Model

OpenACC is a directive-based programming approach to parallel computing.
It is designed for simplicity and performance portability. A single source code
can be run on different accelerator devices. Figure 1 shows a high level diagram
of generic OpenACC programming. Applications run on the host, and data and
computational kernels can be offloaded to accelerator devices through OpenACC
directives. However, offloading details are hidden; programmers do not need to
understand exactly how data is transferred between the host and device mem-
ories, or how computational kernels are executed on the devices. OpenACC is
thus easy to learn and easy to use, and the developers remain in familiar with
C, C++, or Fortran. This simplicity greatly speeds up the development process,
though extensive tuning may be required to achieve the best possible perfor-
mance.

OpenACC provides plenty of directives and clauses for parallelizing loops,
transferring and synchronizing data between hosts and GPUs. In this section,
we introduce only the concepts and directives we used in the MAM porting work.
For further information, please refer to [9,10].

2.1 Parallelizing Loops

Two OpenACC directives, kernels and parallel, to parallelize the loops are shown
in Code 2.1. Lines 1–3 are for a kernels loop while lines 5–7 are for a parallel loop.
The main difference between these two directives is that a kernels loop allows
more freedom for compilers to optimize the loop, especially in the case of a nested
loop. In our experience, we always use a kernels loop first, examine the compiler
report, then switch to a parallel loop to explicitly define the parallelization and
data movement.

In concept, OpenACC exposes three levels of parallelism via gang, worker,
and vector parallelism. A number of gangs will be launched on the accelerator,
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Fig. 1. OpenACC’s abstract programming model

2.1 Directives for Parallelizing Loops in Fortran
1: !$acc kernels loop [clause-list]
2: do loop
3: !$acc end kernels loop
4:
5: !$acc parallel loop [clause-list]
6: do loop
7: !$acc end parallel loop

each gang having one or more workers. Vector parallelism is for SIMD or vector
operations within a worker. How these three levels of parallelism will be mapped
to accelerators will be implementation dependent.

2.2 Data Transfer

OpenACC supports a couple of ways to control data transfer between the host
and device memories. Code 2.2 shows three ways to transfer data using the
vector add operation as an example. The main difference between these three
approaches is the lifetime of the device variables.

The first approach (lines 2–7) defines a structured data region. Arrays used
within the data region will remain on the device until the region’s end. The copyin
clause will allocate memory for variables a and b on device memory and copy
values from the host to the device. The copyout clause will allocate memory for
variable c and copy the value back from the device to the host when computation
has finished.

The second approach (lines 10–17) uses an unstructured data region. This
approach uses enter data to define the start of the lifetime of the device variables
and exit data to define the end of their lifetime. This approach is used when the
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2.2 Directives for Data Transfer in Fortran
1: 1. Structured:
2: !$acc data copyin(a,b) copyout(c)
3: !$acc parallel loop
4: do i = 1, n
5: c(i) = a(i) + b(i)
6: enddo
7: !$acc end data
8:
9: 2. Unstructured:

10: !$acc enter data copyin(a,b) create(c)
11: ... � Do something else
12: !$acc parallel loop
13: do i = 1, n
14: c(i) = a(i) + b(i)
15: enddo
16: ...
17: !$acc exit data copyout(c) delete(a,b)
18:
19: 3. Using Declare:
20: double precision, allocatable, dimension(:) :: a,b,c � a,b,c are module variables
21: !$acc declare create(a,b,c)
22: ...
23: allocate(a(n), b(n), c(n)) � a,b,c will be allocated both on host and device
24: ...
25: !$acc update device(a,b) � a,b have been initialized on host, update device
26: !$acc parallel loop
27: do i = 1, n
28: c(i) = a(i) + b(i)
29: enddo
30: !$acc update host(c) � update host c

structured data regions are not convenient to use, such as when using construc-
tors and destructors.

The third approach (lines 20–30) is to use the declare directive. This is used
in the declaration section of a Fortran subroutine, function, or module to specify
that a variable needs to be allocated on the device memory, and that its lifetime
is the duration of the implicit data region of a function, subroutine or program.
The update directive is used to synchronize variable values between the host and
the device.

3 Experimental Platforms and Approach

The platform we worked on is called Summit [12], located at Oak Ridge National
Laboratory. It has a theoretical peak double-precision performance of approx-
imately 200 PF, capable of running a wide range of scientific applications. Its
node architecture is illustrated in Fig. 2.
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Fig. 2. The node architecture of Summit.

Each node contains two IBM Power9 processors (CPU0, CPU1) and six
Nvidia V100 GPUs. Each Power9 processor has 21 IBM SIMD Multi-Cores
(SMC) with separate 32 KB L1 data and instruction caches. Each pair of SMCs
shares a 512 KB L2 cache and a 10 MB L3 cache. Each SMC supports four
hardware threads. The Power9 CPUs are connected with GPUs through dual
NVLINK bricks, each capable of a 25 GB/s data transfer rate in each direc-
tion. Each node contains 512 GB of DDR4 memory for Power9 CPUs and 96 GB
of high bandwidth memory (HBM) for GPUs. Each Nvidia V100 contains 80
streaming multiprocessors (SMs), 16 GB of HBM, and a 6 MB L2 cache. Each
SM contains 64 FP32 cores, 64 INT32 cores, 32 FP64 cores. Table 1 lists the key
features of Nvidia V100 GPUs. The V100 SM is partitioned into four processing
blocks, each with a new L0 instruction cache, a warp scheduler, a dispatch unit,
and a 64 KB register file.

Table 1. Summary of the key features of Nvidia V100 GPU.

SMs 80 FP32 cores/SM 64

FP64 Cores/SM 32 GPU Boost Clock 1530MHz

Memory Interface 4096-bit HBM2 Memory Size 16GB

L2 Cache Size 6144 KB Shared Memory Size/SM 96KB

Register File Size/SM 256 KB TDP 300W

Threads/Warp 32 Max Warps/SM 64

Max Thread Blocks/SM 32 Max Thread Block Size 1024
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We used the PGI compiler version 19.4, spectrum-mpi version 10.3.0.1, and
CUDA 10.1.168. Other libraries used in the E3SM code included NETCDF 4.6.1,
NETCDF-FORTRAN 4.4.4, ESSL 6.1.0, Parallel NETCDF 1.8.1, and HDF5
1.10.3. The data set for E3SM is SMS PS Ld5.ne16 ne16.FC5AV1C-L, which
stresses the atmosphere physics. Here, ne16 ne16 defines the cubed sphere grid
resolution (more details in the next section).

4 MAM Algorithms and Kernels

E3SM was developed to reliably project decade-to-century scale changes that
could critically impact the U.S. energy sector. It combined the atmosphere,
ocean, land, river, ice, and other components. The computation of the atmo-
sphere component is based upon the Spectral Element (SE) numerical discretiza-
tion of underlying PDEs for stratified, hydrostatic fluid dynamics on rotating
spheres. MAM is a submodule from the atmosphere component that plays an
important role in the climate system by influencing the Earth’s radiation bud-
gets and modifying cloud properties [5,6]. It predicts the mass and mixing ratios
of cloud liquid and cloud ice, diagnoses the mass and mixing ratios of rain and
snow, and handles complicated conversions between cloud hydrometeors.

(a) The cubed sphere grid (b) A 4x4 tensor product grid

Fig. 3. The cubed sphere grid for elements and the 4 × 4 tensor product grid of
GLL nodes used within each element. Copied from https://www.earthsystemcog.org/
projects/dcmip-2012/cam-se

E3SM models the Earth with a cubed-sphere grid as illustrated in Fig. 3a. The
sphere is divided into six panels (or faces) with no gaps or overlaps. These panels
are further divided into grid meshes. The resolution of the meshes is defined as
the number of spectral elements ne along the edge of each cube face. There are
therefore 6ne2 elements total in the mesh. For any spectral element grid with ne
elements, the number of unique points (or physics columns) is (np−1)2 ∗ne+2,
where each element contains a np∗np tensor product of Gauss-Lobatto-Legendre

https://www.earthsystemcog.org/projects/dcmip-2012/cam-se
https://www.earthsystemcog.org/projects/dcmip-2012/cam-se
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4.1 The Loop Structure for Computations
1: do j = 1, nchunks � number of chunks
2: do k = 1, nlev � vertical levels, may exist data dependency
3: do i = 1, ncols(j) � number of columns in chunk j
4: � sum(ncols(j) = total physical columns
5: computation kernels() � many different kernels
6: enddo
7: enddo
8: enddo

(GLL) points depicted in Fig. 3b [2]. With the exception of the sphere faces, there
exists another dimension, namely the vertical direction.

To compute the physical parameterizations for atmosphere including aerosol
subcomponents, we refer to all grid points by a given horizontal location. There-
fore, computations between physical columns are independent, and dependencies
only exist in the vertical direction. We used 72 as the maximum number of ver-
tical levels in the tests.

In the parallel implementation as described in [11], physical columns are
distributed among the processes based on a set of load balancing strategies. To
get better caching effects, all the columns assigned to a process will be grouped
in a data structure called a chunk. In each chunk, a maximum number of columns
PCOL is specified at compilation time. We used PCOL = 16 in the tests when
not specified explicitly. Grid points in a chunk can be referenced with a local
column index and a vertical index.

The loop structure is shown in Code 4.1.

5 Offloading Computations to GPUs

Our initial thought was to copy all the data needed by MAM to GPUs when
beginning the computation of atmosphere physics, then to copy the data back
to the host when exiting. However, this is unfeasible because 1) MAM has a
large code base with tens of thousands of lines of source code, 2) MAM does
checkpointing with various I/O operations scattered all over the code, and 3)
an excessive number of temporary subroutines or function variables need to be
promoted and explicitly allocated on the GPU memory as well.

Therefore, we profiled the code first and identified particularly expensive
loops. Unfortunately, profiling results showed that the run time distributed
across many functions, meaning we could not focus on just a couple of loops;
instead, we had to work on many loops at the same time. The programming
effort needed to optimize different kernels also varies significantly by kernel. In
this section, we will show four representative kernels in increasing order of code
refactoring effort.
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5.1 Kernel: subgrid mean updraft

The first kernel is called subgrid mean updraft shown in Algorithm 5.1, which
calculates the mean updraft velocity inside a general circulation model grid.
Later in the code, the mean velocity is used as the characteristic updraft velocity
to calculate the ice nucleation rate. The loop body has been modified from its
original implementation to remove some temporary variables and get slightly
better performance.

By examining the loops, we can find that there is no data dependence across
loops k and i. Therefore, we can collapse these two loops and create pver ∗
ncol independent threads on GPUs. As we mentioned before, the number of
maximum vertical levels pver is defined as 72, and each block can hold at most
PCOL (=16) number of columns (ncol <= PCOL). These two collapsed loops
can thus create at most 1152 threads on GPUs. For each thread, variables zz
and wa can be treated as private variables, while variables wsig and w0 need
to be copied from host to GPU memory. The amount of data is small (only
2 ∗ PCOL ∗ pver ∗ sizeof(real(r8)) bytes, roughly 18 KB). Variable ww needs
to be created on GPUs and copied back to the host. The OpenACC directive in
line 1 is used to offload to GPUs. The PGI compiler can automatically figure out
the parallelism for loop ibin in line 7 and sum computation in line 17, creating
the corresponding threads. There is therefore no need to add explicit OpenACC
directives.

For initial simplicity, we measured the performance using six MPI processes
on a Summit node so that each MPI rank can offload its work to one exclusive
GPU, as there are six Nvidia Volta GPUs on a node. The performance is shown in
Fig. 4 labeled as subgrid. The run times of six MPI ranks on IBM Power9 only are
labeled asCPU. The run times of using IBM Power9 with Nvidia GPUs are labeled
asCPU+GPU. For kernel subgrid mean updraft, using GPUs can improve the per-
formance by roughly 20X compared with running on CPU only. The OpenACC
directive maps threads to the GPU with num gangs = 1152, num worker = 1,
and num vectors = 128. We can limit the length of vector threads to 64 instead
of 128 to reduce memory usage on GPUs by defining vector length(64). However,
we did not observe a noticeable performance difference.

As we only needed to look into the kernel itself, the kernel is only about 20
lines, and only a small amount of data needs to be transferred between the host
and the device, the first kernel was overall relatively simple to offload.

Notice that the performance comparison between GPUs+CPUs and CPUs
in Fig. 4 was to see the role of GPU offloading, not for fair performance compar-
isons between GPUs and CPUs (See Section VI for fair comparisons). In addi-
tion, we compared the OpenACC ports to the original CPU implementations
as our main focus was on offloading from the original CPU version. OpenACC
offers portability across GPUs and CPUs with a single source. We ran our Ope-
nACC code on CPUs as well to verify the performance portability, and observed
a slightly better performance when compared to the original CPU implementa-
tion of the code. We didn’t include the portability discussion across GPUs and
CPUs in this paper again to focus on the offloading discussion.
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5.1 Kernel: subgrid mean updraft (subgrid)
1: !$acc parallel loop collapse(2) copyin(wsig,w0) copyout(ww) private(zz,wa)
2: do k = 1, pver
3: do i = 1, ncol
4: sigma = max(0.001 r8, wsig(i,k))
5: wlarge = w0(i,k)
6: xx = 6. r8 * sigma / nbin
7: do ibin = 1, nbin � constant nbin=50
8: yy = wlarge - 3. r8*sigma + 0.5*xx
9: yy = yy + (ibin-1)*xx

10: zz(ibin) = yy * exp(-1.*(yy-wlarge)**2/(2*sigma**2))/(sigma*sqrt(2*pi))*xx
11: if (zz(ibin) .gt. 0. r8) then
12: wa(ibin) = zz(ibin)
13: else
14: wa(ibin) = 0. r8
15: endif
16: end do
17: sum wa = sum( wa(:))
18: if (sum wa .gt. 0. r8) then
19: ww(i,k) = sum wa
20: else
21: ww(i,k) = 0.001 r8
22: end if
23: end do
24: end do

5.2 Kernel: hetfrz classnuc cam calc

The next kernel is called hetfrz classnuc cam calc, which calculates the hetero-
geneous freezing rates from classical nucleation theory. The code is shown in
Algorithm 5.2. First, we reordered the indices of three-dimensional variables,
awcam, awfacm, etc., from (pcols, pver, 3) to (3, pcols, pver) to get better data
locality. This change improved the kernel performance about 3% on CPUs.

One big difference from Algorithm 5.1 is that this kernel calls the subroutines
hetfrz classnuc calc, svp water, and svp ice, which are developed in other source
files. These subroutines then further call other subroutines. We needed to go
over all the subroutines and functions in the caller-callee tree to add routine
directives. Another major difference is that this kernel uses many more variables
defined either in modules or subroutines. For module variables, we use the declare
directive to create the variable on the GPU device and the update directive to
transfer the data between host and device memory. For other variables, we use
unstructured data regions to explicitly control data movement so that these
variables can be reused by several offloaded kernels together. The default(present)
directive indicates that data used in the kernel but not defined in the parallel
loop directive are treated as present in the device memory. No data transfer is
needed.
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Fig. 4. The CPU and CPU+GPU performance for different kernels when running six
MPI ranks on a Summit node.

The performance of the second kernel is shown in Fig. 4 labled as hetfrz. Com-
pared with the CPU results, we observed about a 6X speedup with GPUs, much
less than the 20X speedup for the previous kernel subgrid mean updraft. This
is reasonable, as this kernel is much more complicated. The inside subroutine
hetfrz classnuc calc itself has over 500 lines of code, with many if statements.
Although the Nvidia Volta GPU handles if statements much more efficiently
than earlier generations, many nested if statements could still slow down the
performance significantly. In addition, this subroutine uses 15,304 bytes of stack
frame, producing 420 bytes of spill stores and 420 bytes of spill loads. This kernel
also does not have an additional nested loop to be parallelized like the first ker-
nel does; the parallelism is limited to the k and i loops, which is mapped to the
GPUs with num gangs = ncol, num workers = 1, and vector length = 128.
As ncol is at most 16, the 80 SMs on a GPU could not be fully utilized.

5.3 Kernel: ccncalc

The third kernel is called ccncalc, and is used to calculate the number of concen-
trations of aerosols activated when cloud condensation nuclei are at supersatu-
ration. The code is shown in Algorithm 5.3. The loadaer subroutine called in line
8 is used to extract data from pbuf to the three variables naerosol, vaerosol, and
hygro. E3SM adopts a very complicated buffer management strategy. Extracting
data through the buffer (pointed by the top level pointer pbuf) not only involves
pointer tracing and type casting but also needs to access a lot of auxiliary data
structures. To avoid such complexity, we separated this subroutine from other
codes as shown in Algorithm 5.4. At the same time, we augmented variables
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5.2 Kernel: hetfrz classnuc cam calc (hetfrz)
1: !$acc declare create(ncnst, nmodes, . . . ) � create module variables on device
2: !$acc update device(ncnst, nmodes, . . . )
3: . . .
4: !$acc enter data create(total aer num, . . . )
5: . . .
6: !$acc parallel loop collapse(2) private(fn), copyin(t,pmid) &
7: !$acc& copyout(frzbccnt,. . . ) default(present)
8: do k = top lev, pver
9: do i = 1, ncol

10: if (t(i,k) .gt. 235.15 r8 .and. t(i,k) .lt. 269.15 r8) then
11: qcic = min(qc(i,k)/lcldm(i,k), 5.e-3 r8)
12: ncic = max(nc(i,k)/lcldm(i,k), 0. r8)
13: con1 = 1. r8/(1.333 r8*pi)**0.333 r8
14: r3lx = con1*(rho(i,k)*qcic/(rhoh2o*max(ncic*rho(i,k), 1.0e6 r8)))**0.333 r8
15: r3lx = max(4.e-6 r8, r3lx)
16: supersatice = svp water(t(i,k))/svp ice(t(i,k))
17: � svp water and svp ice are two functions
18: fn(1) = factnum(i,k,mode accum idx)
19: if (nmodes == MAM3 nmodes .or. nmodes == MAM4 nmodes) then
20: fn(2) = factnum(i,k,mode accum idx)
21: fn(3) = factnum(i,k,mode coarse idx)
22: else if (nmodes == MAM7 nmodes) then
23: fn(2) = factnum(i,k,mode finedust idx)
24: fn(3) = factnum(i,k,mode coardust idx)
25: end if
26: call hetfrz classnuc calc( &
27: deltatin, t(i,k), pmid(i,k), supersatice, &
28: fn, r3lx, ncic*rho(i,k)*1.0e-6 r8, frzbcimm(i,k), frzduimm(i,k), &
29: frzbccnt(i,k), frzducnt(i,k), frzbcdep(i,k), frzdudep(i,k), hetraer(:,i,k), &
30: awcam(:,i,k), awfacm(:,i,k), dstcoat(:,i,k), total aer num(:,i,k), &
31: coated aer num(:,i,k), uncoated aer num(:,i,k), &
32: total interstitial aer num(:,i,k), &
33: total cloudborne aer num(:,i,k), errstring)
34: � hetfrz classnuc calc is a sequential routine with hundreds of lines
35: end if
36: end do
37: end do
38: . . .
39: !$acc exit data delete(total aer num, . . . )

naerosol, vaerosol, and hygro from one dimension (pcols) to three dimensions
(pcols, ntot amode, pver) to save their values for the next loop.

We created a data region to transfer data between the host and device mem-
ories so that they can be used by other kernels as well. The parallel loop directive
at line 11 can map the kernel to the GPU with num gangs = pver− top lev+1,
num workers = 1 and vector length = 128. The compilers can automatically
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5.3 Kernel: ccncalc
1: do k=top lev,pver
2: do i=1,ncol
3: a(i)=surften coef/tair(i,k)
4: smcoef(i)=smcoefcoef*a(i)*sqrt(a(i))
5: end do
6: do m=1,ntot amode
7: phase=3
8: call loadaer(state, pbuf, 1, ncol, k, &
9: m, cs, phase, naerosol, vaerosol, hygro)

10: � get data from pbuf to naerosol, vaerosol, and hygro
11: where(naerosol(:ncol) .gt. 1.e-3 r8)
12: amcube(:ncol)=amcubecoef(m)*vaerosol(:ncol)/naerosol(:ncol)
13: sm(:ncol)=smcoef(:ncol)/sqrt(hygro(:ncol)*amcube(:ncol))
14: elsewhere
15: sm(:ncol)=1. r8
16: endwhere
17: do l=1,psat
18: do i=1,ncol
19: arg(i)=argfactor(m)*log(sm(i)/super(l))
20: ccn(i,k,l)=ccn(i,k,l)+naerosol(i)*0.5 r8*(1. r8-erf(arg(i)))
21: enddo
22: enddo
23: enddo
24: enddo

parallelize lines 13, 19, and 26. Performance results are shown in Fig. 4. For this
kernel, we only achieved a 2.2X speedup. This was because the loadaer loop con-
sumes about one quarter of the total run time. This part cannot be accelerated.
If we exclude the loadaer effect, the actual speedup is about 5X. Also, profiling
results indicate that transferring the data consumes more time than the actual
kernel computation.

5.4 Kernel: nsubmix

The last kernel is called nsubmix and computes the vertical diffusion and nucle-
ation of cloud droplets. The source code is outlined in Algorithm 5.5. Line 1 is
the outermost loop. There are more than four hundred lines of code between
line 1 and line 3 consisting of many small loops. At first, we tried to parallelize
the outermost loop, but the code complexity and the amount of data needing to
be transferred meant the overhead ultimately neutralized the benefits. Next, we
shifted our focus to line 3, which consumes about 40% of the run time. From line
5, we deduced that variables srcn, raercol, and raercol cw depend on their pre-
vious iteration values. As such, the loop at line 3 must be executed sequentially.
Finally, we focused on the loop at line 17. The variable ntot amode is a small
number unimportant to parallelize. By carefully examining the code, we found
an approach to combine the loops at lines 17 and 28 by creating a new variable
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5.4 Kernel: ccncalc gpu
1: do k=top lev,pver
2: do m = 1, ntot amode
3: call loadaer(state, pbuf, 1, ncol, k, &
4: m, cs, phase, naerosol(:,m,k), vaerosol(:,m,k), hygro(:,m,k))
5: � define naerosol, vaeroosol, hygro as 3D instead of 1D
6: end do
7: end do
8:
9: !$acc data copy(ccn) copyin(vaerosol, naerosol, hydro) &

10: !$acc& copyin(super,amcubecoef,argfactor,tair,smccoefcoef,surften coef)
11: !$acc parallel loop private(a,smcoef,arg,sm,amcube,m,i,l) default(present)
12: do k=top lev,pver
13: do i=1,ncol
14: a(i)=surften coef/tair(i,k)
15: smcoef(i)=smcoefcoef*a(i)*sqrt(a(i))
16: end do
17: do m=1,ntot amode
18: phase=3
19: where(naerosol(:ncol) .gt. 1.e-3 r8)
20: amcube(:ncol)=amcubecoef(m)*vaerosol(:ncol.m.k)/naerosol(:ncol,m,k)
21: sm(:ncol)=smcoef(:ncol)/sqrt(hygro(:ncol,m,k)*amcube(:ncol))
22: elsewhere
23: sm(:ncol)=1. r8
24: endwhere
25: do l=1,psat
26: do i=1,ncol
27: arg(i)=argfactor(m)*log(sm(i)/super(l))
28: ccn(i,k,l)=ccn(i,k,l)+naerosol(i,m,k)*0.5 r8*(1. r8-erf(arg(i)))
29: enddo
30: enddo
31: enddo
32: enddo
33: . . .
34: !$acc end data

mam idx 1d. The new code structure for lines 17–36 is shown in Algorithm 5.6.
We could then achieve parallelism of ncnst tot× (pver− top lev+1) and offload
it to GPUs. Although the computation itself was accelerated greatly, the total
run time was still slightly longer than that without offloading; the performance
suffers from the high cost of data movement and the high overhead of kernel
launching. We will leave this kernel on CPUs and pursue other approaches, such
as async operation, to accelerate the computation.
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5.5 Kernel: nsubmix outline
1: do i = 1, ncol
2: . . . � more than 400 lines of code
3: do n = 1, nsubmix
4: qncld(:) = qcld(:)
5: nnew ←→ nsav � nnew = 1, nnsav=0
6: srcn(:) = 0
7: do m = 1, ntot amode
8: mm = mam idx(m,0)
9: srcn(top lev:pver-1) = srcn(top lev:pver-1) + &

10: nact(top lev:pver-1,m)*raercol(top lev+1:pver,mm,nsav)
11: tmpa = raercol(pver,mm,nsav)*nact(pver,m) + &
12: raercol cw(pver, mm, nsav) * (...)
13: srcn(pver) = srcn(pver) + max(0.0 r8, tmpa)
14: enddo
15: call explmix(qcld, srcn, ..., qncld) � compute qcld from qncld
16:
17: do m = 1, ntot amode
18: mm = mam idx(m,0)
19: source(top lev:pver-1) = &
20: nact(top lev:pver-1,m)*(raercol(top lev+1:pver,mm,nsav))
21: tmpa = ... � same as line 9
22: source(pver) = max(0.0 r8, tmpa)
23: call explmix(raercol cw(:, mm, nnew), source, ..., raercol cw(:, mm, nsav), ...)
24: � compute raercol cw(,,nnew) from raercol cw(,,nsav)
25: call explmix(raercol(:, mm, nnew), source, ..., raercol(:, mm, nsav), &
26: raercol cw(:, mm, nsav))
27: � compute raercol(,,nnew) from raercol(,,nsav) and raercol cw(,,nsav)
28: do l = 1, nspec amode(m)
29: mm = mam idx(m, l)
30: source(top lev:pver-1) = � same as line 17 except using mact instead nact
31: tmpa = � same as line 19 except using mact instead nact variable
32: source(pver) = max(0.0 r8, tmpa)
33: call explmix � same as line 23
34: call explmix � same as line 25
35: enddo
36: enddo
37: enddo
38: . . .
39: end do

6 MAM Kernel Performance Discussion

By analyzing these four kernels, we first realized that our kernels are light, as
the average run time for each is within milliseconds. Table 2 shows the average
run times on CPUs and GPUs.

Secondly, the parallelism mainly comes from the vertical level (pver) and the
number of columns in a block (pcol). Considering that the Nvidia GPUs use
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5.6 Kernel: nsubmix restructure
1: do mm = 1, ncnst tot
2: do k = top lev, pver
3: m = mam idx 1d(1, mm)
4: l = mam idx 1d(2, mm)
5: kp1 = min(k+1,pver)
6: km1 = max(k-1,top lev)
7: if (l == 0) then
8: tmpa = nact(k,m)*raercol(kp1,mm,nsav)
9: if (k == pver) then

10: tmpa = tmpa + raercol cw(pver,mm,nsav)*(nact(pver,m) - taumix)
11: tmpa = max(0.0 r8, tmpa)
12: endif
13: else
14: tmpa = mact(k,m)*raercol(kp1,mm,nsav)
15: if (k == pver) then
16: tmpa = tmpa + raercol cw(pver,mm,nsav)*(mact(pver,m) - taumix)
17: tmpa = max(0.0 r8, tmpa)
18: endif
19: endif
20: call explmix(raercol cw(k, mm, nnew), source, . . . )
21: call explmix(raercol(k, mm, nnew), source, . . . )
22: end do
23: end do

Table 2. The average run times on CPUs and GPUs.

Total
CPU
time (s)

Total
GPU
time (s)

Number
of calls

Avg on
CPU
(ms)

Avg on
GPU
(ms)

subgrid 29.3 1.5 5520 5.3 0.3

hetfrz 40.3 6.1 5520 7.3 1.1

ccncalc 17.1 2.8 3 5520 3.1 1.4

nsubmix 11.4 11.4 88740 0.1

a warp size of 32 as the scheduling unit, neither pver(= 72) nor ncol(<= 16)
is a perfect fit, resulting in thread resource waste. This waste exceeds half the
resource total when ncol threads are scheduled together as vector threads.

To improve the performance from an application perspective, the size of pcol
and pver can therefore be aligned to multiples of warp size. Figure 5 shows the
performance of increasing the pcol from 16 to 32, then to 64 on GPUs. Increasing
the pcol size can improve the CPU performance only slightly (<5%). But for
GPUs, increasing the pcol value from 16 to 64 can improve the performance
6.9X, 6.5X, and 4.0X for subgrid, hetfrz, and ccncalc, respectively, leaving the
unparallelized kernel nsubmix as the major performance bottleneck. While only
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consuming about 12% of the total time initially, nsubmix takes up more than
80% of the total time when pcol = 64.

Fig. 5. The GPU performance for different kernels when running six MPI ranks on a
Summit node using different PCOL values.

6.1 Multi-Process Service (MPS)

For simplicity, we ran only six MPI ranks on a node so that each process can
offload its work to one exclusive GPU. The Nvidia Volta GPUs support multi-
process services. When mapping one, two, and four MPI processes to a Nvidia
Volta GPU, we can see that all kernels scale almost linearly as shown in Fig. 6.
The performance results also reflect the fact that our application does not pro-
vide enough parallelism. Therefore, mapping one MPI rank to a Volta GPU
cannot saturate the thread resources. Unfortunately, assigning more than four
MPI ranks to a GPU causes an out of memory error.

6.2 Scaling Results

Figure 7 shows the parallel scaling results when running across multiple nodes.
For the CPU results, we used 42 MPI ranks per node while for the CPU+GPU
results, we used 24 MPI ranks per node (full node !) so that four MPI ranks
were launched on each GPU. As shown earlier, running more than four MPI
ranks per GPU node causes an out of memory error. The results show that
both CPU and CPU+GPU versions scale well across different numbers of nodes.
However, when using GPUs the performance improves about 5X. Currently, the
GPU performance is limited by the nsubmix kernel.
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Fig. 6. The MPS performance effect on a Summit node. Doubling the number of MPI
ranks doubles the performance.

Fig. 7. The scaling performance of MAM kernels for both CPU and CPU+GPU and
their relative speedups.

7 Summary and Conclusion

In this work, we investigated how to use GPUs to accelerate the performance
of MAM, a module of E3SM on Summit through OpenACC. We have achieved
over a 5X performance speedup by offloading some of the kernels to Nvidia
Volta GPUs. The results revealed that under the current E3SM configuration
for product runs, some parameter settings do not suit offloading, such as the
number of columns per block and the number of vertical levels. These settings
not only severely limit the degree of parallelism but also fail to make effective
use of GPU thread resources, becoming a performance bottleneck.
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Moreover, run times scatter across many kernels, and each computational
kernel is relatively light, with average run times in milliseconds or less per call.
Such light computational kernels particularly require OpenACC implementation
to further reduce overhead from kernel launching, data transfer, etc. The results
also showed that performance was primarily limited by the kernel nsubmix, which
did not benefit from GPU offloading; we plan to work on this in the future. We are
currently looking into different approaches to improve MAM’s performance, such
as overlapping computations and data transfer using async OpenACC directives
and possibly merging kernel computations.
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Abstract. Achieving high performance and performance portability
for large-scale scientific applications is a major challenge on hetero-
geneous computing systems such as many-core CPUs and accelerators
like GPUs. In this work, we implement a widely used block eigensolver,
Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG),
using two popular directive based programming models (OpenMP and
OpenACC) for GPU-accelerated systems. Our work differs from exist-
ing work in that it adopts a holistic approach that optimizes the full
solver performance rather than narrowing the problem into small kernels
(e.g., SpMM, SpMV). Our LOPBCG GPU implementation achieves a
2.8×–4.3× speedup over an optimized CPU implementation when tested
with four different input matrices. The evaluated configuration com-
pared one Skylake CPU to one Skylake CPU and one NVIDIA V100
GPU. Our OpenMP and OpenACC LOBPCG GPU implementations
gave nearly identical performance. We also consider how to create an
efficient LOBPCG solver that can solve problems larger than GPU mem-
ory capacity. To this end, we create microbenchmarks representing the
two dominant kernels (inner product and SpMM kernel) in LOBPCG
and then evaluate performance when using two different programming
approaches: tiling the kernels, and using Unified Memory with the origi-
nal kernels. Our tiled SpMM implementation achieves a 2.9× and 48.2×
speedup over the Unified Memory implementation on supercomputers
with PCIe Gen3 and NVLink 2.0 CPU to GPU interconnects, respec-
tively.
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1 Introduction

There is a pressing need to migrate and optimize applications for execution
on GPUs and other accelerators. Future planned systems for the Department of
Energy Office of Advanced Scientific Computing Research (DOE ASCR) include
Perlmutter at NERSC (AMD CPU + NVIDIA GPU nodes), Aurora at ALCF
(Intel CPU + Intel Xe accelerator nodes), and Frontier at OLCF (AMD CPU
+ AMD GPU nodes). The full capability of these systems can only be real-
ized by making efficient use of the accelerators on the compute nodes. Most
efforts to use accelerators to date have involved scientists using the CUDA pro-
gramming language to target NVIDIA GPUs. The success of these efforts, the
expected marginal gains in general-purpose CPU performance, and the under-
standing that special purpose accelerators are the best way to obtain significant
performance gains within a fixed financial and power budget convinced DOE
ASCR to invest in accelerator-based systems. However, CUDA alone is not an
appropriate method to target accelerators produced by different vendors, e.g.
NVIDIA, AMD, Intel, Xilinx, although there are efforts by AMD to use the HIP
framework to convert CUDA to a more portable style of C++ [4].

In recent years, OpenACC and OpenMP have emerged as portable, base-
language independent, and an increasingly robust and performant way to target
accelerators. These directive-based methods have lowered the barrier of entry
for application developers to target accelerators and are anticipated to be a
key enabler for DOE users to efficiently use forthcoming supercomputers. How-
ever, there needs to be wider testing of OpenMP and OpenACC in scientific
applications to address any shortcomings in the language specifications, improve
the robustness and performance of vendor compilers, and continue to refine our
understanding of best practices to migrate applications to accelerators. At the
same time, the most efficient way to use accelerators is often achieved using
optimized math and scientific libraries, e.g. cuBLAS and Tensorflow. Therefore,
it will frequently be the case that non-trivial applications will increasingly need
to mix optimized library calls with directives to obtain highest performance for
the full application.

In this paper, we port and optimize a block eigensolver for GPUs using a
combination of directives and optimized library calls. Sparse matrix compu-
tations (in the form of eigensolvers and linear solvers) are central to several
applications in scientific computing and data analytics, from quantum many-
body problems to graph analytics to machine learning. In the context of eigen-
solvers, performance of traditional sparse matrix-vector multiplication (SpMV)
based methods are essentially limited by the memory system performance [33].
As such, block solver alternatives that rely on higher intensity operations such
as sparse matrix-matrix multiplication (SpMM) and multiplication of vector
blocks (i.e., tall skinny matrices) have garnered the attention of several groups
[7,29]. We adopt the Locally Optimal Block Preconditioned Conjugate Gradi-
ent (LOBPCG) [19,20] algorithm to represent block eigensolvers. Given that
LOBPCG is a relatively popular method and requires a fairly complex imple-
mentation, it represents a suitable choice for our purposes.
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An important issue in large scientific computing and data analysis work-
loads is that applications’ data usage often exceeds the available device memory
space. For instance, Many Fermion Dynamics - nuclei (MFDn), which is a quan-
tum many-body code based on the configuration interaction model, is a “total
memory-bound” application, i.e., scientific studies using this code typically uti-
lize all memory (DRAM) space available, thus easily exceeding the total device
memory available [5,24]. As such, our evaluation extends into such scenarios and
we present remedies for the significant performance degradations observed due
to large data transfers between host and device memories.

Our contributions in this study can be summarized as follows:

– We demonstrate that a complex block eigensolver can be implemented effi-
ciently using a mix of accelerator directives (in both OpenMP and OpenACC
frameworks) and optimized library functions. We obtain up to a 4.3× speedup
over a well optimized CPU implementation.

– We show that the performance of the Unified Memory version of SpMM, the
dominant kernel in LOBPCG, depends on the supercomputer used and appar-
ently the underlying CPU to GPU interconnect, when application working set
exceeds GPU memory capacity. We measure a 13.4× performance loss when
migrating from a supercomputer with a PCIe Gen3 CPU to GPU interconnect
to one with NVLink 2.0.

– We address the Unified Memory performance portability issue by tiling the
dominant kernels in LOBPCG. This obtains the highest performance on both
supercomputers which have different CPU to GPU interconnects.

The paper is organized as follows. In Sect. 2, we describe the related work on
efforts to port LOBPCG solvers to GPUs, application experience using OpenMP
and OpenACC directives, and the use of Unified Memory to simplify porting
applications to GPUs. In Sect. 3, we describe the kernel steps in the LOBPCG
solver, the baseline OpenMP version of the LOBPCG solver including the library
dependencies, and the steps we took to port the LOBPCG solver to GPUs. It
also describes our tiling method for expensive kernels in the LOBPCG algo-
rithm when a problem exceeds the GPU memory capacity. Finally, it describes
the Cori-GPU and Summit platforms used to evaluate the performance of our
directive based LOBPCG implementation and tiled microbenchmarks. In Sect. 4,
we present performance results obtained on the Cori-GPU and Summit super-
computers. Section 5 discusses the key lessons and aims to provide advice for
application developers based on our observations. Finally, Sect. 6 summarizes
our conclusions and plans for future work.

2 Background and Related Work

Sparse Matrix Operations (SpMV/SpMM) on GPUs: Sparse matrix-
vector multiplication (SpMV) and sparse matrix-matrix multiplication (SpMM)
are the main kernels of many iterative solvers [19,22], machine learning tech-
niques and other scientific applications. Several optimization techniques have
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been proposed for SpMV on GPUs [8,9,15,35]. However, performance of SpMV
is bounded by memory bandwidth [33]. The main appeal of block eigensolvers
(i.e. LOBPCG algorithm) is their high arithmetic intensity which is especially
important to reap the full benefits of GPUs. The main computational kernels
involved in block iterative solvers are the multiplication of a sparse matrix with
multiple vectors and level-3 BLAS operations on dense vector blocks. Optimizing
the SpMM kernel on GPUs has been studied in several research works. Yang et
al. [34] propose two novel algorithms for SpMM operation on GPUs that take
the sparse matrix input in compressed-sparse-row (CSR) format and focus on
latency hiding with instruction-level parallelism and load-balancing. They find
out a memory access pattern that allows efficient access into both input and
output matrices which is the main enabler for their excellent performance on
SpMM. A common optimization strategy of SpMM is to rely on a special sparse
matrix representation to exploit the nonzeros efficiently. Most commonly used
sparse matrix storage variants other than CSR format are ELLPACK called
ELLPACK-R [27] and a variant of Sliced ELLPACK called SELL-P [7]. Hong
et al. [16] separates the sparse matrix into heavy and light rows in order to
perform dynamic load-balancing. They process the heavy rows by CSR and the
light rows by doubly compressed sparse row (DCSR) in order to take advantage
of tiling. However, these special matrix storage formats incur some additional
computational and format conversion cost in the full computational pipeline.

Anzt et al. [7] optimize the performance of SpMM using ELLPACK format [6]
and compare the performance of their CPU-GPU implementation with the mul-
tithreaded CPU implementation of LOBPCG provided in the BLOPEX [21]
package. All of their kernels were written in CUDA 5.5 and they evaluated the
performance experiment on two Intel Sandy Bridge CPUs and one NVIDIA
K40 GPU. Dziekonski et al. [13] implement LOBPCG method with an inexact
nullspace filtering approach to find eigenvalues in electromagnetics analysis.

Most of the prior work focused on optimizing either the SpMV or the SpMM
operation on GPUs with the ultimate goal of accelerating the iterative solver
used in a scientific application. A distinguishing aspect of this paper is that we
adopt a holistic approach that includes all computational kernels required for
the LOBPCG solver. We use directive based programming models to achieve
portability. We also investigate the scenario where the total memory footprint
exceeds the device memory capacity and propose a solution that addresses per-
formance degradations seen with NVIDIA’s generic “Unified Memory” approach
(see below).

OpenMP/OpenACC: OpenMP and OpenACC are two directive-based meth-
ods to parallelize serial applications. Both languages enable a programmer to run
application kernels on a GPU. Multiple compilers support these directives and
can generate GPU code. The quality of GPU support in OpenMP and OpenACC
compilers is evaluated in [23] on a suite of 4 mini applications. Here, the authors
find issues with all compilers as well as challenges in creating a single portable
code which compiles and executes efficiently for all compilers. The interoper-
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ability of CUDA and OpenACC is evaluated in [32]. The author successfully
combines hand-written CUDA with OpenACC when using the PGI compiler.
Our work evaluates the performance of OpenMP and OpenACC implementa-
tions of a block eigensolver, as well the interoperability of these runtime systems
with optimized CUDA libraries for 3 different compilers.

Unified Memory: Unified Memory (UM) is a programming feature which pro-
vides a single memory address space accessible by all processors in a compute
node. It greatly simplifies GPU programming because the same single pointer
to data can be used on both CPU and GPU. The NVIDIA Volta V100 GPU
provides a page migration engine to move memory pages between CPU and
GPU when the page is not in the memory of the processor accessing the data.
NVIDIA evaluated UM performance using the PGI OpenACC compiler in [12].
The authors created UM versions of the OpenACC applications in the SPEC
ACCEL 1.2 benchmark suite. They ran the applications on the Piz-Daint super-
computer and found that the UM versions ran at 95% of the performance of
the original explicit data management versions. In [28], the NVIDIA presenter
shows that the Gyrokinetic Toroidal Code (GTC) has almost identical perfor-
mance on a x86+V100 system whether OpenACC data directives are used or
not. Our work also compares UM against explicit data management, but addi-
tionally considers problems whose memory requirements are significantly over
the device memory capacity. The performance of oversubscribing UM is evalu-
ated in [18]. The authors find that UM can be up to 2× slower than explicit
data management in several applications on an x86+V100 system. Our work
considers performance on both x86 and Power GPU-accelerated systems.

3 Methodology

In this section, we provide an overview of the LOBPCG algorithm, our base-
line CPU implementation, and the steps we took to port and optimize the CPU
implementation to run efficiently on GPU-accelerated systems using OpenMP
and OpenACC. We then describe our pathfinding activities for creating an effi-
cient LOBPCG algorithm which can operate on matrices exceeding the device
memory capacity. In particular, we discuss how we tiled the two most expen-
sive kernels in LOBPCG and created microbenchmarks that enable performance
comparison of programmer-controlled and system-controlled (i.e. Unified Mem-
ory) data movement schemes between the CPU and GPU. Finally, we describe
the experimental platforms used for evaluating the performance of our LOBPCG
and microbenchmark implementations on GPU-accelerated systems.

3.1 The LOBPCG Algorithm

LOBPCG is a commonly used block eigensolver based on the sparse matrix mul-
tiple vector multiplication kernel [19]. It is designed to find a prescribed number
of the largest (or smallest) eigenvalues and the corresponding eigenvectors of a
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Algorithm 1: LOBPCG Algorithm (for simplicity, without a precondi-
tioner) used to solve ĤΨ = EΨ

Input: Ĥ , matrix of dimensions N × N
Input: Ψ0, a block of randomly initialized vectors of dimensions of N × m
Output: Ψ and E such that ‖ĤΨ − ΨE‖F is small, and ΨT Ψ = Im

1 Orthonormalize the columns of Ψ0

2 P0 ← 0
3 for i = 0, 1, . . . , until convergence do

4 Ei = ΨT
i ĤΨi

5 Ri ← ĤΨi − ΨiEi

6 Apply the Rayleigh–Ritz procedure on span{Ψi, Ri, Pi}
7 Ψi+1 ← argmin

S∈span{Ψi.Ri,Pi}, ST S=Im

trace(ST ĤS)

8 Pi+1 ← Ψi+1 − Ψi

9 Check convergence

10 end
11 Ψ ← Ψi+1

symmetric positive definite generalized eigenvalue problem HΨ = EBΨ for a
given pair (H,B) of complex Hermitian or real symmetric matrices, where the
matrix B is also assumed positive-definite. Here, E is a diagonal matrix of the
sought eigenvalues and Ψ is the corresponding block of eigenvectors. Algorithm1
shows the pseudocode of the LOBPCG algorithm for the standard eigenvalue
problem HΨ = EΨ . LOBPCG comprises high arithmetic intensity operations
(SpMM and Level-3 BLAS). In terms of memory, while the ̂H matrix takes
up considerable space, when a large number of eigenpairs are needed (e.g., in
dimensionality reduction, spectral clustering or quantum many-body problems),
memory needed for the block vector Ψ can be comparable to or even greater than
that of ̂H. In addition, other block vectors (residual R, preconditioned residual
W, previous direction P), block vectors from the previous iteration and the pre-
conditioning matrix T must be stored (not shown in Algorithm 1 for simplicity),
and accessed at each iteration.

3.2 Baseline CPU Implementation

We implemented the baseline CPU version of LOBPCG using OpenMP and
OpenACC directives in C/C++. We adopted the Compress Sparse Row (CSR)
format to store the sparse matrix and used the mkl dcsrmm routine from Intel
MKL library for the SpMM kernel. We also implemented a custom SpMM kernel
in both OpenMP and OpenACC, again based on the CSR format, and used it
with the PGI and IBM compilers. For all LAPACK and BLAS routines needed,
we used Intel MKL, the PGI-packaged LAPACK and BLAS libraries, and IBM
ESSL for Intel, PGI and IBM compilers, respectively.
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3.3 A GPU Implementation of LOBPCG

The most expensive kernels in the baseline CPU version are the SpMM oper-
ation and the inner product of vector blocks (XT Y ). The cuSPARSE [26]
and cuBLAS CUDA libraries provide tuned versions of these kernels. We used
cusparseDcsrmm for the SpMM operation and replaced cblas dgemm routine
with cublasDgemm for the vector block operations. We allocated the device data
for these routines using cudaMalloc. We ported the remaining application ker-
nels using OpenMP and OpenACC offloading pragmas. The application kernels
are grouped together inside device data regions to avoid data movement between
successive application kernels. However, the performance of this implementation
was still poor because significant time was spent moving data between CPU and
GPU. This happened because the application and library kernels were operating
on distinct data on the GPU.

OpenMP and OpenACC provide a clause to enable the application ker-
nels to operate on data already resident on the device. The clause is named
is device ptr in OpenMP and deviceptr in OpenACC. We used the pointer
returned by cudaMalloc in our OpenACC implementation. This approach
caused a run time error in our OpenMP implementation compiled with LLVM/-
Clang. We therefore replaced cudaMalloc with omp target alloc in our
OpenMP implementation because the OpenMP 5.0 specification [2] states that
“Support for device pointers created outside of OpenMP, specifically outside of
the omp target alloc routine and the use device ptr clause, is implementa-
tion defined.”. Figure 1 shows an example of the structure of most of our appli-
cation kernels after using this clause. It enabled us to remove multiple Open-
MP/OpenACC data regions and thus considerable data movement between the
CPU and GPU1.

All kernels run on the GPU except for some LAPACK routines, i.e., LAPACKE-
dpotrf and LAPACKE dsygv which are not available in the CUDA toolkit math
libraries. This causes 10 small matrices to move between CPU and GPU in each
iteration of the LOBPCG method. As the sizes of those matrices are very small,
we find that the overhead associated with these data movements are insignificant
compared to the total execution time.

3.4 Tiling LOBPCG Kernels to Fit in GPU Memory Capacity

The LOBPCG GPU implementation described in Sect. 3.3 allocated the tall
skinny matrices and the sparse matrix in GPU memory. This approach is limited
to cases where the aggregated matrix memory footprint is less than the GPU
memory capacity. However, a major challenge in many scientific domains [5,25,
30] (such as configuration interaction in MFDn) is the massive size of the sparse
1 Alternatively, we could have copied the data to the device using OpenMP/OpenACC

and then passed the device pointer to the CUDA library functions using OpenMP’s
use device ptr clause or OpenACC’s use device clause. We did not use this app-
roach because we wanted the option to use cudaMallocManaged to allocate data in
managed memory.



Evaluation of Directive-Based GPU Programming Models on a Block 73

Fig. 1. The use of is device ptr to avoid memory copies. Error checking is omitted
for brevity.

matrix, which can have several billions of rows and columns and the total number
of nonzeros can easily exceed trillions. In this subsection, we explain how we
tiled the SpMM and inner product kernels (XT Y ) to operate on problems larger
than the GPU memory capacity. We extracted each kernel into a standalone
microbenchmark to check for correctness and enable performance evaluation.
Although not described in this paper, we have also implemented and evaluated
the linear combination kernel (XY ) which has similar characteristics to the inner
product kernel (XT Y ), but involves the multiplication of a tall-skinny vector
block (X) with a small square matrix (Y ).

SpMM Kernel: The SpMM kernel is typically the most expensive operation in
LOBPCG. Figure 2 shows the tiling idea for the SpMM kernel for cases when the
LOBPCG data is too large to fit into the GPU memory. For a given tile size β,
we divide the sparse matrix into block of rows. Algorithm2 describes the steps
in our tiled SpMM kernel. In short, we copy the Y matrix to the GPU at the
beginning and it resides there until all sparse matrix tiles are processed. Then,
we extract the CSR format of each of the tiles and copy that to GPU memory.
Then we apply the cusparseDcsrmm routine on the sparse matrix block and Y.
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Fig. 2. Overview of tiling SpMM operation.

Algorithm 2: Tiled SpMM (cusparseDcsrmm) kernel
Input: X(m × m) sprase matrix in CSR format (val, rowPtr, colIndex),

Y(m × b), β(tile size)
Output: Z(m × b)

1 nrowblk =
⌈

m
β

⌉

2 for i = 0 to nrowblk - 1 do
// extract CSR tile() method extracts the CSR format of the i-th

tile from the given sparse matrix

3 [rowPtrTile, colIndxTile, valTile, nnz Tile] = extract CSR tile(val, rowPtr,
colIndex, i)

4 cusparseDcsrmm(β, b, m, nnz tile, 1.0, valTile, rowPtrTile, colIndxTile, R,
m, 0.0, AR, β)

5 cudaDeviceSynchronize()
6 cudaMemcpy(Z[i-th tile], AR, cudaMemcpyDeviceToHost)
7 cudaDeviceSynchronize()

8 end

This produces the corresponding row blocks of the final output matrix Z. After
processing each tile, we copy back the partial output to the corresponding tile
of the Z matrix.

Inner Product Kernel: One of the most frequently invoked and expensive
kernels in LOBPCG is the inner product operation (Z = XT Y ) between two tall
skinny matrices. Hence, a well performing tiled inner product kernel is crucial for
large problem sizes. Figure 3 shows the overview of the matrix tiling idea for the
inner product kernel. X and Y are of size m×b where m � b. Both matrices are
partitioned into n =

⌈

m
β

⌉

tiles. In our custom inner product kernel, we transfer
each tile of X and Y from CPU to GPU and apply cublasDgemm routine on each
tile. We keep accumulating the partial output to a b × b matrix on the GPU.
After processing all tiles, we copy back the final result to Z. Algorithm3 gives
an overview of our custom inner product kernel.
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Fig. 3. Overview of tiling Inner Product kernel

Algorithm 3: Tiled Inner Product (cublasDgemm) Kernel
Input: X(m × b), Y(m × b), β(tile size)
Output: Z(b × b)

1 nrowblk =
⌈

m
β

⌉

2 cudaMemset(devZ, 0.0, b*b*sizeof(b))
3 for i = 0 to nrowblk - 1 do
4 cudaMemcpy(devX, X[i-th block], β * b, cudaMemcpyHostToDevice);
5 cudaMemcpy(devY, Y[i-th block], β * b, cudaMemcpyHostToDevice);
6 cudaDeviceSynchronize();
7 cublasDgemm(b, b, β, 1.0, devY, β, devX, β, 1.0, devZ, β);
8 cudaDeviceSynchronize()

9 end
10 cudaMemcpy(Z, devZ, b * b, cudaMemcpyDeviceToHost);

3.5 Hardware and Software Environment

We conducted all of our experiments on the Cori-GPU testbed at the National
Energy Research Scientific Computing Center (NERSC) [1] and the Summit
supercomputer at the Oak Ridge Leadership Computing Facility (OLCF) [3].
Cori-GPU is a Cray CS-Storm 500NX consisting of 18 compute nodes. Each
compute node has two 20-core Skylake processors clocked at 2.4 GHz and 8
NVIDIA Tesla V100 “Volta” GPUs with 16 GBs of HBM per GPU. The V100
GPU model has a peak double precision performance of 7.0 TFLOP/s. There is
a total of 384 GB DDR4 DRAM space on each node. The CPUs are connected to
the GPUs via four PCIe 3.0 switches and the GPUs are connected to each other
via NVIDIA’s NVLink 2.0 interconnect. The Summit supercomputer is an IBM
AC922 system consisting of 4608 compute nodes [31]. Each compute node has two
22-core IBM Power9 processors clocked at 3.1 GHz and 6 NVIDIA Tesla V100
“Volta” GPUs with 16 GBs of HBM per GPU. The V100 GPU model is based
on the SXM2 form factor and has a peak double precision performance of 7.8
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TFLOP/s. There is a total of 512 GB DDR4 DRAM space per node. Unlike Cori-
GPU, the CPUs and GPUs in a Summit compute node are all connected with
the high bandwidth NVLink 2.0 interconnect. This also provides cache coherence
between CPUs and GPUs and enables system-wide atomics. The theoretical peak
uni-directional bandwidth between 1 CPU and 1 GPU is 16 GB/s on Cori-GPU
and 50 GB/s on Summit. However, the highest pageable bandwidth we measured
from CPU to GPU was 5.2 GB/s on Cori-GPU and 25.0 GB/s on Summit.

The Cori-GPU and Summit supercomputers provide extensive software envi-
ronments to compile OpenMP and OpenACC programs. Here, we list the soft-
ware environment used in this paper. The software used on the Cori-GPU system
were Intel Compiler v19.0.3 (OpenMP for CPU), LLVM/Clang compiler v9.0.0-
git (OpenMP for GPU), and PGI compiler v19.5 (OpenACC for CPU and GPU).
We used Intel MKL with the Intel and LLVM/Clang compilers and PGI’s ver-
sion of LAPACK with the PGI compiler. The GPU accelerated libraries were
cuSPARSE and cuBLAS provided with CUDA v10.1.168. The software used on
Summit were IBM XLC Compiler v16.1.1-3 (OpenMP for CPU and GPU) and
PGI compiler v19.5 (OpenACC for CPU and GPU). We used IBM ESSL with
the IBM XLC Compiler and PGI’s version of LAPACK with the PGI compiler.
Once again, the GPU accelerated libraries were cuSPARSE and cuBLAS pro-
vided with CUDA v10.1.168.

3.6 Experiments

In this section we explain the experiments conducted. The first set of experiments
are used to evaluate the LOBPCG GPU implementation. The second set of
experiments are used to evaluate our microbenchmarks on problems exceeding
the GPU memory capacity.

Performance of the LOBPCG Solver: The CPU and GPU implementations
of LOBPCG are evaluated using a series of real-world matrices with different
sizes, sparsity patterns and application domains as shown in Table 1. The first 2
matrices are from the SuitSparse Matrix Collection [11] and the Nm7 and Nm8
matrices are extracted from two very large Hamiltonian matrices that arise in
nuclear structure calculations with MFDn. Note that the test matrices have
millions of rows and hundreds of millions of nonzeros. The memory footprint of
these matrices vary from 2 GB to 7.8 GB using the CSR matrix format.

Table 1. Test matrices.

Matrix Rows Columns Nonzeros Size (GB) Domain

Queen 4147 4,147,110 4,147,110 166,823,197 2.018 3D strctural problem

HV15R 2,017,169 2,017,169 283,073,458 3.405 Computational fluid dynamics

Nm7 4,985,422 4,985,422 647,663,919 7.792 MFDn

Nm8 7,579,303 7,579,303 592,099,416 7.136 MFDn
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We measured the runtime of the LOBPCG CPU implementation on a sin-
gle CPU socket on Cori-GPU and Summit nodes. The configurations used 1
thread per core and used the appropriate slurm, jsrun and OpenMP/Ope-
nACC environment variables to bind the process and child threads. We did not
use hyperthreading/SMT because our kernels are memory bandwidth bound. We
measured the runtime of the LOBPCG GPU implementation on a single CPU
socket and one GPU on Cori-GPU and Summit nodes. Our configurations only
ever used a single CPU socket to avoid potential performance issues associated
with non-uniform memory access time. We evaluated the compiler combinations
described in Sect. 3.5 and measured runtime with application timers.

Performance of XT Y and SpMM Kernels for Large Matrices: Our next
experiment evaluated the XT Y microbenchmark and SpMM microbenchmark
on input problems exceeding GPU memory capacity on Cori-GPU and Summit.
This experiment is designed to inform our future sparse solver implementations.
We tested the tiled versions of the microbenchmarks so that we could easily
separate how much time is spent in computation versus data movement between
the CPU and GPU. If more time is spent in computation then data movement
costs can potentially be hidden. In the XT Y microbenchmark, we chose to mul-
tiply two matrices of size 67, 108, 864 × 48 leading to a memory footprint of
51.54 GB. We set the tile size (β) to 131, 072 for the XT Y microbenchmark and
2, 597, 152 for the SpMM microbenchmark as this gives us the best performance.
The tile size (β) is an optimization parameter and one can vary it as long as
the memory footprint required to process a single tile is less than GPU memory
capacity. In the SpMM microbenchmark, we used a synthetic input matrix of
24 GB, leading to a memory footprint of 35.1 GB. The dimension of the synthetic
sparse matrix is 14, 957, 833×14, 957, 833 with 1, 946, 671, 770 nonzeros. We mul-
tiplied this sparse matrix with a dense matrix of dimension 14, 957, 833 × 48.
We used a multi-threaded RMAT graph generator [17] to generate our synthetic
sparse matrix. We measured compute and data movement time using the nvprof
profiler.

Performance of Tiled and Unified Memory Versions of SpMM:
Our final experiment evaluated the Unified Memory version of the SpMM
microbenchmark. The Unified Memory version was written in OpenACC and
compiled with the PGI compiler and the compiler option -ta:tesla:managed
to replace regular system memory allocations with managed memory allocations.
We compared runtime against the tiled version of SpMM on Cori-GPU and Sum-
mit for two input matrices. The first input matrix is Nm7 (see Table 1) and leads
to a microbenchmark memory footprint of 11.7 GB. The second input matrix is
the synthetic sparse matrix (14, 957, 833×14, 957, 833 with 1, 946, 671, 770 nonze-
ros) and leads to a microbenchmark memory footprint of 35.1 GB. The matrices
are chosen to create problems less than GPU memory capacity and greater than
GPU memory capacity. In both cases, we multiplied these sparse matrices with
a dense matrix of 48 vector blocks. We set the tile size (β) to 2, 597, 152 for both
of matrices as it is the highest tile size that we can use without overflowing the
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GPU memory and it gives the best performance. The nvprof profiler is used to
collect compute time, data movement time, and Unified Memory data movement
and page fault time.

4 Results

In this section we show performance results on the Cori-GPU and Summit super-
computers. Section 4.1 shows the performance of the CPU and GPU versions of
LOBPCG when parallelized with either OpenMP or OpenACC. We then con-
sider how we could use the LOBPCG solver on matrices larger than GPU mem-
ory capacity. Section 4.2 shows performance results when tiling the dominant
XT Y and SpMM kernels so that each tile fits within GPU memory capacity.
Finally, Sect. 4.3 compares the performance of the tiled implementation of the
SpMM kernel against a naive Unified Memory implementation.

4.1 Performance of the LOBPCG Solver

We compared the performance of the LOBPCG solver when using a suite of
different compilers. The compilers can all generate code for the host CPU and
sometimes also for the GPU. In the following sentences, we place CPU or GPU
in parenthesis to indicate whether we used the compiler to generate code for the
CPU or GPU. The OpenMP compilers were Intel (CPU) and Clang (GPU) on
Cori-GPU and IBM (CPU and GPU) on Summit. The OpenACC compiler was
always PGI (CPU and GPU). In all cases we used a hand-written portable SpMM
kernel except for our Intel compiler experiment which used mkl dcsrmm from Intel
MKL. We did this to obtain the best possible CPU time to more transparently
show the value of our GPU implementation. The performance results for the
Nm7 matrix are shown in Fig. 4. The execution time of the LOBPCG solver is
averaged over 10 iterations.

The results show that the execution time of our GPU implementation is
almost independent of directive based programming model and evaluation plat-
form. Our reasoning is that the OpenMP and OpenACC configurations use the
same GPU math libraries, the GPUs are nearly identical in Cori-GPU and Sum-
mit (different V100 models), and that our LOBPCG implementation has been
highly tuned to minimize data movement between CPU and GPU. The best GPU
performance is 3.05x faster than the best CPU performance for Nm7 matrix.
The CPU versions show more variable performance for different combinations
of compilers and math libraries used on Cori-GPU and Summit. The highest
performance is obtained with the OpenMP version when compiled with Intel
compiler on Cori-GPU. The performance differences can mostly be attributed
to the host CPU and SpMM performance: mkl dcsrmm is 1.4× faster than our
hand-written SpMM kernel in OpenMP and the hand-written SpMM kernel is
1.5–3.0× faster when using OpenMP rather than OpenACC. We did not inves-
tigate the host CPU performance in any more detail because it is not the focus
of our work.
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Fig. 4. The time spent in LOBPCG on Cori-GPU and Summit when using various
compilers with either OpenMP or OpenACC

Figure 5 shows how time is spent in the best configurations on CPU and
GPU when using the Nm7 matrix. Execution time is divided into library time,
application kernel time, and unaccounted CUDA API time. The library time is
spent in cuBLAS and cuSPARSE in the GPU implementation and Intel MKL in
the CPU implementation. The application kernel time is spent in user defined
functions in both the CPU and GPU implementations. The CUDA API time
includes GPU data allocation and data movement between CPU and GPU and
is calculated by subtracting time spent in application and library kernels from the
total run time. The library and application kernels speedup by 3.7× and 5.0×,
respectively, when using GPUs. Application kernel time is a relatively small
fraction of total run time on GPU. However, the offload is a key optimization
step needed to keep total run time low. Total run time would be significantly
slower if we decided to use host application kernels because of unnecessary data
movement between CPU and GPU.

Figure 6 shows GPU speedup over the best LOBPCG CPU implementation
for all the test matrices in Table 1. The LOBPCG GPU implementation achieves
2.8×–4.3× speedup over the best CPU implementation. The GPU implementa-
tion therefore performs well over a range of matrices from different domains with
different sparsity patterns.

4.2 Performance of XT Y and SpMM Kernels for Large Matrices

Figure 7 shows the time spent in the inner product (XT Y ) kernel on Cori-GPU
and Summit when total memory footprint is 51.54 GB. The tile size is 131,072.
The total time is divided into host-to-device (HtoD) data transfer time and com-
putation time in the inner product kernel (device-to-host (DtoH) data transfer
times are negligible for this kernel). We measured data transfer and computa-
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Fig. 5. The time spent in LOBPCG on Cori-GPU when using matrix Nm7

Fig. 6. LOBPCG GPU speedup on Cori-GPU for each test matrix

tion time using nvprof. The results show that total run time is dominated by
data transfers. Run time is lower on Summit because of the high bandwidth
NVLink 2.0 interconnect. We obtained data transfers of 4 GB/s on Cori-GPU
and 13 GB/s on Summit in this kernel. Results indicate that data transfer time
cannot be hidden behind computation when the matrix exceeds the GPU mem-
ory capacity.

Figure 8 shows the time spent in the SpMM kernel. The input sparse matrix
is 24 GB and the total memory footprint is 35.1 GB. This time, results show that
computation time is greater than the data movement time. This indicates that
data movement time could be completely hidden behind computation. It would
therefore be possible to obtain nearly the same computational throughput as one
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Fig. 7. Time spent in XT Y kernel on Cori-GPU and Summit when the memory foot-
print exceeds GPU memory capacity.

would get using matrices completely resident in the GPU memory. However, an
actual block eigensolver alternates between SpMM and vector block operations,
so this may not be easy to realize in practice.

Fig. 8. Time spent in SpMM kernel on Cori-GPU and Summit when the memory
footprint exceeds GPU memory capacity

4.3 Performance of Tiled and Unified Memory Versions of SpMM

Figure 9 shows the performance of the tiled SpMM kernel compared to the Uni-
fied Memory version of the SpMM kernel when the memory footprint is less
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than GPU memory capacity. The total memory footprint of this experiment
is 11.7 GB. The tiled version is fastest on both platforms. nvprof shows that
the tiled version is faster on Summit because of less time in CUDA memcpy.
Interestingly, the Unified Memory version performs similarly on both platforms.

Fig. 9. Time spent in tiled and Unified Memory versions of the SpMM kernel on Cori-
GPU and Summit. The memory footprint is less than GPU memory capacity.

Figure 10 shows the performance of the two SpMM kernels when the mem-
ory footprint exceeds GPU memory capacity. We used the same tile size (β)
for the tiled experiments in Figs. 9 and 10. There are now significant differences
between the performance of the tiled and Unified Memory versions. The most
surprising result is the 48.2× performance difference between tiled and Unified
Memory versions on Summit. This is a performance difference of 13.4× between
Cori-GPU and Summit when using Unified Memory on different machines. This
is unexpected given the high bandwidth NVLink 2.0 interconnect and hardware
managed cache coherency on the Summit IBM system. Although not shown,
there is a similar performance difference on Summit for the XT Y and XY ker-
nels. Unified Memory performance is therefore poor and depends on the machine
used.

Figure 11 shows nvprof output for the Unified Memory version of the XY
kernel on Cori-GPU and Summit. The results show that the total count of page
faults and the total data moved is the same on both systems. As expected, the
data transfer is 3× faster on Summit according to the bandwidth of the CPU to
GPU interconnect. However, the metric named “Gpu page fault groups” takes
30× more time on Summit compared to Cori-GPU for unknown reasons. This
explains the poor performance on Summit. We observed similar performance
difference without nvprof (nvprof added a performance overhead of about 10%
on both machines). We are currently in contact with OLCF and NVIDIA staff
to understand our performance observations.
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Fig. 10. Time spent in tiled and Unified Memory versions of the SpMM kernel on
Cori-GPU and Summit. The memory footprint exceeds GPU memory capacity. We
use a logarithmic scale on the Time (sec) axis to capture the slow run time for the
Unified Memory configuration on Summit.

Fig. 11. Unified Memory nvprof profile of the XY microbenchmark on Cori-GPU (top)
and Summit (bottom).

5 Discussion

In this section we discuss the key learnings from the results in Sect. 4.
The results show that we have successfully ported the LOBPCG solver to

NVIDIA GPUs using directives and optimized CUDA library calls. We obtained
similar performance for the OpenMP implementation using Clang and XLC com-
piler as we did for the OpenACC implementation using the PGI compiler. The
quality of OpenMP compilers for GPUs have often been criticized over the past
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few years [23], however, our experience provides evidence that OpenMP compil-
ers are becoming more robust and are capable of generating high performance
code.

We found that the key enabler of performance was to keep data resident on
the GPU between calls to optimized CUDA math functions. We were able to do
this trivially by adding OpenMP/OpenACC accelerator directives to the large
number of kernels in the LOBPCG solver. In the past, this would have been
much more challenging and time-consuming because the remaining application
kernels would need to be ported to CUDA. Our related work section shows that
earlier attempts to port a LOBPCG solver to GPUs by other scientists was gen-
erally focused on optimizing the SpMM kernel only on GPU whereas we focus on
optimizing the full solver on GPU. This highlights the productivity gains from
using directives and the importance of interoperability between the code gener-
ated by the OpenMP/OpenACC compilers and CUDA. This interoperability is
not required in the OpenMP specification and is only recommended as a note
to implementors in the OpenACC specification. However, we have highlighted
the importance of interoperability, and believe that the HPC community should
strongly request this support from compilers as we have done for LLVM/Clang
(https://bugs.llvm.org/show bug.cgi?id=42643).

We have shown that our LOBPCG microbenchmarks can be tiled to solve
problems larger than GPU memory capacity. We found that the time spent
in cublasDgemm for the inner product (XT Y ) microbenchmark is shorter than
the time spent moving data to and from the GPU. This indicates that it is
not possible to write a tiled cublasDgemm for larger problems which achieves
the same computational throughput as a problem which fits in GPU memory
capacity. The tiled cublasDgemm performance was mostly determined by the
bandwidth of the CPU to GPU interconnect. This will remain a challenge in
many CPU+GPU systems in the coming years because PCIe Gen4 has lower
bandwidth than NVLink 2.0. The SpMM microbenchmark showed the opposite
to XT Y in that more time was spent in computation than data movement. This
indicates that data movement costs could be hidden, i.e., computation on one
tile could occur concurrently with the data movement for the next tile. The full
LOBPCG solver includes XT Y and SpMM operations. Therefore, the amount
of computation on the GPU relative to data movement between CPU and GPU
is more than what is shown in our microbenchmarks. This indicates that it
should be possible to write an efficient LOBPCG solver for GPUs which can
solve problems larger than the GPU memory capacity.

https://bugs.llvm.org/show_bug.cgi?id=42643
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We had mixed success when using a Unified Memory implementation of the
SpMM kernel. The performance was a little worse than the tiled implementation
when the memory footprint was less than GPU memory capacity. This could be
acceptable to many application programmers because we obtained this perfor-
mance with much simpler code. This would be a huge productivity win for the
application programmer because there is no need to manage separate host and
device copies of data; there is just a single pointer to the data which can be
used on both host and device. We found that the performance of the Unified
Memory implementation was much worse than the tiled implementation when
the memory footprint exceeded GPU memory capacity. It was so bad on Sum-
mit that it would have been more efficient to use a CPU implementation and
leave the GPUs idle. We are still working to understand why Unified Memory
performance was so poor on Summit. However, our early experience serves as a
warning to application programmers that they should not rely on Unified Mem-
ory when application memory footprint is larger than GPU memory capacity.
It is also useful information to HPC system providers that the success of their
users strongly depends on purchasing GPUs with sufficient memory capacity.

We recommend that tiling be used in large memory footprint applications
on CPU+GPU systems. This can deliver both high performance and predictable
performance across different CPU+GPU systems. However, it can be a signif-
icant amount of work to tile and overlap data transfers with computation in
an application. This may become easier in future with enhancements to the
OpenMP standard providing directive-based partitioning and pipelining [10].
Alternatively, middleware for sparse solvers on GPUs could abstract away these
programming challenges.

6 Conclusions

In this paper, we have described our approaches to mix CUDA library calls
with OpenMP/OpenACC offloading pragmas in order to implement and opti-
mize the full LOBPCG eigensolver on GPU-accelerated systems. We successfully
used both OpenMP and OpenACC and achieved a speedup of 2.8×–4.3× over a
baseline CPU implementation. Our experiments with SpMM and inner product
microbenchmarks showed that tiling is the preferred approach for larger problem
sizes. We found that a naive Unified Memory implementation had worse perfor-
mance than a tiled implementation by up to an order of magnitude depending
on the target supercomputing platform. Our future work will go in the direction
of tiling the full LOBPCG solver and attempting to overlap computation with
data movement.
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Summary of the Experiments Reported

We conducted all of our experiments on the Cori-GPU testbed at the National Energy
Research Scientific Computing Center (NERSC) and the Summit supercomputer at
the Oak Ridge Leadership Computing Facility (OLCF) using Intel Compiler v19.0.3
(OpenMP for CPU), LLVM/Clang compiler v9.0.0-git (OpenMP for GPU), and PGI
compiler v19.5 (OpenACC for CPU and GPU), CUDA v10.1.168, IBM XLC Compiler
v16.1.1-3 (OpenMP for CPU and GPU) as described in the paper. Our software and
dataset are publicly available at 10.6084/m9.figshare.11636067 [14]. The repository
includes necessary instructions and scripts to run our software. Interested individuals
can contact the authors if they need they help to run the codebase.

Artifact Availability

Software Artifact Availability. All author-created software artifacts are main-
tained in a public repository under an OSI-approved license.

Hardware Artifact Availability. All author-created hardware artifacts are main-
tained in a public repository under an OSI-approved license.

Data Artifact Availability. All author-created data artifacts are maintained in a
public repository under an OSI-approved license.

Proprietary Artifacts. None of the associated artifacts, author-created or other-
wise, are proprietary.

List of URLs and/or DOIs Where Artifacts are Available. 10.6084/m9.

figshare. 11636067.

The details of the baseline experimental setup, and modifications made for
the paper are also available at https://github.com/fazlay-rabbi/WACCPD 2019
Artifact [14].
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Abstract. The US Department of Energy (DOE) started operating two
GPU-based pre-exascale supercomputers in 2018 and plans to deploy
another pre-exascale in 2020, and three exascale supercomputers in
2021/2022. All of the systems are GPU-enabled systems, and they plan
to provide optimized vendor-promoted programming models for their
GPUs such as CUDA, HIP and SYCL. However, due to their limited
functional portability, it is challenging for HPC application developers
to maintain their applications in an efficient and effective way with good
productivity across all US DOE pre-exascale/exascale systems. Directive-
based programming models for accelerators can be one of the solutions for
HPC applications on the DOE supercomputers. In this study, we employ
OpenMP and OpenACC offloading models to port and re-implement the
RI-MP2 Fortran kernel of the GAMESS application on a pre-exascale
GPU system, Summit. We compare and evaluate the performance of the
re-structured offloading kernels with the original OpenMP threading ker-
nel. We also evaluate the performance of multiple math libraries on the
NVIDIA V100 GPU in the RI-MP2 kernel. Using the optimized directive-
based offloading implementations, the RI-MP2 kernel on a single V100
GPU becomes more than 7 times faster than on dual-socket Power9
processors, which is near the theoretical speed-up based on peak per-
formance ratios. MPI+directive-based offloading implementations of the
RI-MP2 kernel perform more than 40 times faster than a MPI+OpenMP
threading implementation on the same number of Summit nodes. This
study demonstrates how directive-based offloading implementations can
perform near what we expect based on machine peak ratios.
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1 Introduction

Two US Department of Energy (DOE) GPU-based pre-exascale supercomputers
(i.e., Summit and Sierra) have been listed as the first and second ranks of the
TOP500 list [15] since November 2018. The US DOE also plans to deploy one
more pre-exascale supercomputer (i.e., Permultter at NERSC - National Energy
Research Scientific Computing Center) in 2020, and three exascale supercomput-
ers (i.e., Aurora at ALCF - Argonne Leadership Computing Facility, El Capitan
at LLNL - Lawrence Livermore National Laboratory, and Frontier at OLCF
- Oak Ridge Leadership Computing Facility) in 2021/2022, all of which are
also GPU-enabled systems. All the systems plan to provide optimized vendor-
promoted programming models for their GPUs such as CUDA [6], HIP [7] and
SYCL [14]. However, due to the potential limited functional portability, it is
very challenging for HPC application developers to maintain their applications
in an efficient and effective way with good productivity across all US DOE pre-
exascale and exascale systems. For the problem of portability across all systems,
directive-based programming models for accelerators can be one of the best solu-
tions for HPC applications on the forthcoming exascale regime.

General Atomic and Molecular Electronic Structure System (GAMESS)
[20,27], is a popular quantum chemistry software package which has been around
since the 1980s. It can calculate a wide variety of molecular properties using elec-
tronic structure methods. GAMESS is written in Fortran 77/90 with an addi-
tional GPU-accelerated library [16,17]. It is parallelized with MPI, OpenMP
for CPU threads, and CUDA for GPU. In this study, we employ OpenMP and
OpenACC offloading models for a kernel of the GAMESS application on the
state-of-the-art GPU system, Summit at OLCF. We compare performance of
the offloading kernels with the original OpenMP threading kernel, and evaluate
it with respect to the theoretical peak. We also evaluate and discuss the per-
formance of multiple math libraries on the NVIDIA V100 GPU compared to
multiple CPU-based math libraries on IBM Power9 processors and Intel Skylake
processors. Additionally, we consider multi-GPU nodes, and assess the perfor-
mance of MPI + directive-based offloading kernels on multiple GPUs from mul-
tiple Summit nodes is presented compared to MPI + OpenMP threading kernel
on the same number of Summit nodes.

This paper is organized as follows: Sect. 2 presents detailed descriptions about
the RI-MP2 kernel of GAMESS. In Sect. 3, we provide technical information
about the employed systems. The programming environments (i.e., compilers
and libraries) are discussed in Sect. 4. Section 5 provides OpenMP and OpenACC
offloading implementations for the RI-MP2 kernel and their limited performance
on a V100 GPU. In Sect. 6, we present optimal offloading implementations and
their performance on the GPU. The performance of the MPI + directive-based
offloading implementations on multiple Summit node is discussed in Sect. 7. In
Sect. 8, we summarize our work in this study.
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2 RI-MP2 Kernel of GAMESS

2.1 RI-MP2 Kernel

One of the methods implemented in GAMESS is resolution of identity Moller-
Plesset perturbation (RI-MP2) theory [18,19]. RI-MP2 is an electron correlation
method, which is a class of methods that include instantaneous electron-electron
interactions, and are required to perform accurate energy and property calcula-
tions for certain classes of molecular systems. Of the electron correlation meth-
ods, RI-MP2 tends to be one of the more computationally inexpensive methods,
but the formal computational complexity is still O(N5), where N is a measure of
system size. Because of the large computational complexity, and because the RI-
MP2 algorithm lends itself to being written in terms of many matrix multiplies,
RI-MP2 is a good candidate for GPU offloading. We note that there are several
RI-MP2 GPU codes in existence currently [21,23,28,29]. However, here the focus
is as a case study on the issues involved in converting a CPU MPI/OpenMP For-
tran implementation to offload with OpenMP/OpenACC with minimal changes
to the code. Figure 1 presents a code structure of the RI-MP2 mini app employed
in this study.

Fig. 1. Code structure of the RI-MP2 mini app

RI-MP2 Equations. After computing the Hartree-Fock energy [26] and wave-
function, the RI-MP2 method computes the correlation energy,

E(2) =
occ∑

i≤j

(2 − δij)
vir∑

ab

(ia|jb)[2(ja|jb) − (ib|ja)]
εi + εj − (εa + εb)

(1)
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where occ is set of the occupied orbitals, vir is the set of virtual orbitals, and εx
is the orbital energy for orbital x. In the RI-MP2 method, the 4-center 2-electron
orbitals (ia|jb) are computed as

(ia|jb) =
aux∑

n

Bi
anBj

bn (2)

Where aux is the auxiliary basis set, and Bi
an are three-center integrals used to

form the 2-electron orbitals.

2.2 Inputs for the RI-MP2 Kernel from GAMESS

The kernel inputs are generated by running regular RI-MP2 calculations, in
which fundamental information needed by the kernel is written into a binary file.
The inputs include several fundamental parameters (e.g., the number of atomic
orbital (N) and auxiliary (X) basis functions, the number of correlated occupied
(O) and virtual (V) molecular orbitals), the molecular orbital coefficients, the
molecular orbital energies, and 3-index integral matrix B(X, V, O)), and the
calculated MP2 correlation energy for validation. In this paper, the kernel input
for fullerene (c60.kern, see Fig. 2(a)), water clusters of 30 (w30.kern) and 60
(w60.kern, see Fig. 2(b)) water molecules are generated using the atomic and
auxiliary bases 6-31G(d) and cc-pVDZ-RI, respectively.

(a) Fullerene(c60.kern) (b) Water cluster(w60.kern)

Fig. 2. Structure of the inputs for the RI-MP2 kernel

The essential part of the input is the 3-index integral matrix B(X, V, O),
whose dimensions depend on the basis sets, and the molecular system size.
The size of the integral matrix B for kernel inputs (i.e., c60.kern, w30.kern
and w60.kern) are presented in Table 1.
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Table 1. Size of the integral matrix B for kernel inputs

X V O Total size (GB)
c60 3960 360 120 1.37
w30 2520 570 120 1.38
w60 5040 1140 240 11.03

3 Employed Systems

3.1 Summit System at Oak Ridge Leadership Computing Facility

Summit is a 200 petaflop system composed of IBM Power9 processors and
NVIDIA Volta V100 GPUs [4]. Summit contains 4,608 nodes, each with 2 IBM
Power9s and 6 NVIDIA Volta V100 GPUs, as shown in Fig. 3. The node struc-
ture has two sockets, where each socket has one Power9 and three V100s. Each
Power9 is connected to three V100s with an NVlink interconnect consisting of
two 25 GB/s bidirectional links, for a total bandwidth of 50 GB/s. The three
V100s are connected to each other with a 50 GB/s NVlink interconnect, and the
two Power9s are connected to each other by a 64 GB/s link.

Fig. 3. Summit node (credit: OLCF)

The two IBM Power9 processor per node each have 256 GB DDR4 mem-
ory with a 135 GB/s bandwidth. Each Power9 contains 22 SIMD Multi-Cores
(SMCs) with 4 hardware threads, where each SMC has a private 32 KB L1 data
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cache, and a 512 KB L2 and 10 MB L3 cache, which are shared by pairs of SMCs.
With a clock rate of 3.10 GHz, the peak performance is 3.1 Ghz * 4 (64-bit oper-
ations per cycle per SMC) * 2 (FMA factor) * 21 (SMCs per processor), for a
peak flop rate of 540 GFlop/s per processor, and 1.1 TFlop/s per node (note
that only 21 SMCs per processor are active, and there are two processors per
node).

The 6 NVIDIA V100s per node each have 16 GB of HBM memory with
a 900 GB/s bandwidth. Each V100 contains 80 streaming multiprocessors (SMs),
each with 32 64-bit CUDA cores, and 128 KB of combined L1 cache and shared
memory private to the SM. In addition, all SMs share a 6 MB L2 cache. With
a peak clock rate of 1.53 GHz, the peak performance per V100 is 1.53 Ghz * 32
(64-bit operations per SM per cycle) * 2 (FMA factor) * 80 (SMs per V100) =
7.8 TFlop/s per V100, for 46.8 TFlop/s per node [22].

3.2 JLSE System at Argonne Leadership Computing Facility

The Joint Laboratory for System Evaluation (JLSE) is computing cluster at
Argonne National Lab meant as a testbed system [3]. Among other hardware
architectures, it contains 12 compute nodes with dual-socket Intel Xeon Platinum
8180M Skylake processors [1]. Each Xeon contains 1.5 TB RAM, 32 KB L1 data
cache, 1 MB L2 cache, and 39 MB L3 cache per socket. Each socket has 28 cores,
with two hardware threads, and each core has two 512-bit vector registers. The
two sockets are connected with 3 UPI links, with an unidirectional speed of
20.8 GB/s per UPI link. With a peak clock of 2.3 GHz for AVX512 instructions,
each Xeon node has a peak performance of 2.3 GHz * 16 (64-bit operations per
core per cycle) * 2 (FMA factor) * 56 (cores per Xeon) = 4.1 TFlops/s theoretical
peak performance [2].

4 Programming Environments

4.1 Employed Compilers

IBM XLF for OpenMP Threading/Offloading. IBM XL Fortran compiler
[9] version 16.1.1-3 is employed in this study on Summit nodes , and it fully
supports the OpenMP API V4.5 specification [25], Via the OpenMP 4.5 imple-
mentation, the major computation in the RI-MP2 kernel is offloaded to NVIDIA
V100 GPUs on Summit nodes. The OpenMP CPU-only threading implementa-
tion for the RI-MP2 kernel is used as a reference of the kernel performance on
dual Power9 processors. The following FFLAGS is used during the compilation:

FFLAGS=-qsmp=omp -qoffload -qsuffix=cpp=f90 -g

PGI Fortran for OpenACC Offloading. PGI Fortran compiler [13] version
19.4 is used for the OpenACC 2.6 [24] implementation on Summit nodes. The
following FFLAGS is used for the compilation of the kernel:

FFLAGS=-mp -ta=tesla -Minfo=accel -Mpreprocess
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Intel Fortran for OpenMP Threading. On Intel Xeon processors, Intel
Fortran compiler [10] version 19.0.4.243 is used for OpenMP threading imple-
mentation of the RI-MP2 kernel. The compiler flag is set as follows:

FFLAGS=-Ofast -qopenmp -cpp -g

4.2 Math Libraries

The RI-MP2 kernel requires to solve DGEMM (i.e., Double-pprecisionn GEneral
Matrix Matrix multiplication) call to compute the whole energy. In this study, we
employ ESSL [8] for IBM Power9 processors, MKL [11] for Intel Xeon processors,
and NVBLAS [12], cuBLAS [5], and cuBLASXT [5] for NVIDIA V100 GPUs.

IBM ESSL. IBM ESSL [8] (i.e., Engineering and Scientific Subroutine Library)
provides mathematical subroutines in nine computational areas such as Linear
Algebra Subprograms, Matrix Operations, Linear Algebraic Equations, Eigen-
system Analysis, Fourier Transforms, Sorting/Searching, Interpolation, Numer-
ical Quadrature, and Random Number Generation. They are tuned for perfor-
mance on Power9 processors on Summit, and they can be used with Fortran, C
and C++ programs. In this study, ESSL/6.2.0-20190419 is used for DGEMM
on Power9 processors of Summit nodes. The following LDFLAGS is used during
the linking step:

LDFLAGS=-L$(OLCF_ESSL_ROOT)/lib64 -lessl

Intel MKL. Intel MKL [11] (i.e., Math Kernel Library) provides highly opti-
mized, threaded, and vectorized math functions that maximize performance on
Intel Xeon processors. It uses C and Fortran APIs for compatibility with pop-
ular BLAS, LAPACK, and FFTW functions, and it dispatches optimized code
for each processor automatically without the need to branch code. For the RI-
MP2 kernel on Intel Xeon processors, MKL/19.0.4.243 is employed for DGEMM
via the standard BLAS symbol. The following LDFLAGS is used for building a
binary executable on Intel Xeon processors:

LDFLAGS=-L${MKLPATH} -I${MKLINCLUDE} -lmkl_intel_lp64
-lmkl_sequential -lmkl_core -lpthread -lm

NVBLAS. The NVBLAS [12] Library is a GPU-accelerated Library that imple-
ments BLAS (Basic Linear Algebra Subprograms). It can accelerate most BLAS
Level-3 routines by dynamically routing BLAS calls to one or more NVIDIA
GPUs present in the system, when the characteristics of the call make it likely
to obtain a speedup on a GPU over a CPU. It is built on top of the cuBLAS
Library using only the cuBLASXT API. NVBLAS also requires the presence of
a CPU BLAS library on the system. Depending on the characteristics of BLAS
calls, NVBLAS redirects the calls to the GPUs present in the system or to the
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CPU. That decision is based on a simple heuristic that estimates whether the
BLAS call executes for long enough to amortize the transfers of the input and
output data to the GPU. NVBLAS is a host-side library that intercepts calls to
the host BLAS library, but will also accept GPU memory, a fact that will be
exploited later. It is intended as a drop-in replacement for a traditional CPU
BLAS library. NVBLAS is a thin layer above the cuBLASXT library, discussed
later.

In this study, NVBLAS of CUDA Toolkit [6] version 10.1.168 is used for
DGEMM via the standard BLAS symbol. IBM ESSL library is configured as a
fallback option for the CPU math library on Summit nodes. Table 2 shows the
configuration file for NVBLAS on Summit nodes. The following LDFLAGS is
used for the linking step:

LDFLAGS=-L$(CUDA_DIR)/lib64/ -lnvblas
-L$(OLCF_ESSL_ROOT)/lib64 -lessl

Table 2. NVBLAS configuration file on Summit nodes (nvblas.conf)

NVBLAS_LOGFILE nvblas.log
NVBLAS_TRACE_LOG_ENABLED
NVBLAS_CPU_BLAS_LIB $(OLCF_ESSL_ROOT)/lib64/libessl.so
NVBLAS_GPU_LIST ALL0
NVBLAS_TILE_DIM 2048
NVBLAS_AUTOPIN_MEM_ENABLED

CUBLAS. The cuBLAS library [5] is an implementation of BLAS (Basic Lin-
ear Algebra Subprograms) on top of the NVIDIA CUDA [6] runtime. To use
the cuBLAS API from the cuBLAS library, the application must allocate the
required matrices and vectors in the GPU memory space, fill them with data,
call the sequence of desired cuBLAS functions, and then upload the results from
the GPU memory space back to the host. The cuBLAS library is asynchronous
with the CPU, so it is necessary to synchronize appropriately before using results
from a cuBLAS routine on the CPU or GPU.

Since the RI-MP2 kernel is written in Fortran, Fortran wrappers for cuBLAS
library are used as a form of Fortran module, as presented in Table 12 in
Appendix I. The following LDFLAGS is used for the linking step on Summit
nodes:

LDFLAGS=-L$(CUDA_DIR)/lib64/ -lcublas

CUBLASXT. To use the cuBLASXT API from the cuBLAS library [5], the
application may keep the data in CPU memory and the library takes care of
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dispatching the operation to one or multiple GPUs present in the system. To be
able to share the workload between multiple GPUs, the cuBLASXT API uses a
tiling strategy as presented in Fig. 4. When one or more matrices are located on
some GPU devices, the same tiling approach and workload sharing is applied.
The memory transfers are in this case done between devices. However, when
the computation of a tile and some data are located on the same GPU device,
the memory transfer to/from the local data into tiles is bypassed and the GPU
operates directly on the local data. This can lead to a significant performance
increase, especially when only one GPU is used for the computation.

In this study, the same LDFLAGS as cuBLAS is used for cuBLASXT, and
the Fortran wrapper module in Table 12 in Appendix I is used to call cuBLASXT
functions.

5 Offloading the RI-MP2 Kernel

5.1 The RI-MP2 Kernel with OpenMP Threading

As presented in Sect. 2.1, the RI-MP2 kernel computes correlation energy in Eq. 1
for given inputs. Table 3 shows an OpenMP threading implementation of the
RI-MP2 kernel. It employs OpenMP threads for multiple occupied orbitals (i.e.,
do-loops for IACT and JACT in RIMP2_ENERGY_WHOLE). Each thread
independently computes the RIMP2_ENERGYIJ kernel. The computation for
4-center 2-electron orbitals in Eq. 2 uses the standard BLAS DGEMM in the
kernel. The kernel accumulates energy contribution in E2, and then passes E2 to
the RIMP2_ENERGY_WHOLE kernel. In this study, this OpenMP threading
implementation is tested with IBM ESSL for IBM Power9 processors on Summit
and Intel MKL for Intel Xeon Platinum 8180M Skylake processors on JLSE.

Fig. 4. Example of cublasXtdgemm() tiling (Credit NVIDIA)
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Table 3. The RI-MP2 kernels with OpneMP threading

subroutine RIMP2_ENERGY_WHOLE ( ... )
...

!$omp threadprivate(E2_omp)
call OMP_SET_DYNAMIC(.FALSE.)
nthreads=omp_get_max_threads()

...
!$omp parallel NUM_THREADS(nthreads) default(none) shared(...) private(...)
!$omp do schedule(DYNAMIC)
do-loop for JACT ! From 1 to NACT

do-loop for IACT ! From 1 to JACT
Set FAC
call RIMP2_ENERGYIJ (B32(:,:,IACT), B32(:,:,JACT), FAC, E2, ...)

enddo
enddo
!$omp end do

!$omp atomic
E2 = E2 + E2_omp
!$omp end parallel

end !subroutine RIMP2_ENERGY_WHOLE ( ... )

subroutine RIMP2_ENERGYIJ( ... )
...

call DGEMM for BI(:,:), BJ(:,:), QVV(:,:)
do-loop for IB ! From 1 to NVIR

do-loop for IA ! From 1 to NVIR
compute E2_t with QVV(:,:), eij(:,:), eab(:,:)

enddo
enddo
E2 = E2 + FAC*E2_t

end !subroutine RIMP2_ENERGYIJ( ... )

5.2 Offloading the RI-MP2 Kernels to GPUs via OpenMP 4.5
and OpenACC 2.6

Using OpenMP 4.5 from the IBM XLF compiler and OpenACC from the PGI
Fortran compiler, the RI-MP2 kernel is re-written for offloading computations
to GPUs. In Table 4, directives with blue color represent the OpenMP offload-
ing implementation, while directives in red color show the OpenACC offloading
implementation. Before starting dual do-loops for JACT and IACT in the sub-
routine RIMP2_ENERGY_WHOLE, array QVV is created on the device, and
arrays eij, eab and B32 are created and copied from the host to the device. After
completing the dual do-loop, all arrays on the device (i.e., QVV, eij, eab, B32)
are freed.

In the subroutine RIMP2_ENERGYIJ, the DGEMM from NVBLAS,
cuBLAS and cuBLASXT is called on the host, and the device pointers of the
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Table 4. The RI-MP2 kernels with OpneMP/OpenACC offloading

subroutine RIMP2_ENERGY_WHOLE ( ... )
...

!$omp target enter data map(alloc: QVV) map(to: eij,eab,B32)
!$acc enter data create(QVV) copyin(eij,eab,b32)
do-loop for JACT ! From 1 to NACT

do-loop for IACT ! From 1 to JACT
Set FAC
call RIMP2_ENERGYIJ (B32(:,:,IACT), B32(:,:,JACT), FAC, E2, ...)

enddo
enddo
!$omp target exit data map(release: QVV,eij,eab,B32)
!$acc wait
!$acc exit data delete(QVV,eij,eab,B32)

E2 = E2 + E2_omp
end !subroutine RIMP2_ENERGY_WHOLE ( ... )

subroutine RIMP2_ENERGYIJ( ... )
...

!$omp target data use_device_ptr(BI,BJ,QVV)
!$acc host_data use_device(BI,BJ,QVV)
call DGEMM for BI(:,:), BJ(:,:), QVV(:,:)
!$omp end target data
!$acc end host_data
!$omp target map(tofrom:E2_t)
!$omp teams distribute parallel do reduction(+:E2_t) collapse(2)
!$acc parallel loop collapse(2) reduction(+:E2_t) default(present)
do-loop for IB ! From 1 to NVIR

do-loop for IA ! From 1 to NVIR
compute E2_t with QVV(:,:), eij(:,:), eab(:,:)

enddo
enddo
!$omp end teams distribute parallel do
!$omp end target
E2 = E2 + FAC*E2_t

end !subroutine RIMP2_ENERGYIJ( ... )
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offloaded arrays are directly used on the DGEMM. After that, E2_t is computed
on the device via collapsed parallel loops using QVV from the DGEMM, and
then it is copied back to the host.

Tables 5 and 6 show the initialization and finalization processes for cuBLAS
and cuBLASXT, and they are implemented at the beginning and ending of the
RI-MP2 stand-alone code, respectively. NVBLAS does not required any initial-
ization or finalization process, since it is designed for the standard BLAS inter-
face. Table 7 provides the syntax of the DGEMM call in RIMP2_ENERGYIJ, for
NVBLAS, cuBLAS, and cuBLASXT. NVBLAS intercepts the standard BLAS
DGEMM API and does not require a synchronization step since it is always
based on synchronous calls for BLAS functions. The default mode of cuBLAS
and cuBLASXT is as an asynchronous call; therefore, cudaDeviceSynchronize is
required before starting the following computations that have dependencies of
the DGEMM results, unless they can be inserted in the same CUDA stream.

Table 5. Initialization for cuBLAS and cuBLASXT

Library Initialization before calling RIMP2_ENERGY_WHOLE(...)
cuBLAS cublas_return = cublascreate_v2(cublas_handle)
cuBLASXT cublas_return = cublasXtcreate(cublas_handle)

cublasXt_deviceId(1) = 0
cublas_return = cublasXtDeviceSelect(cublas_handle, 1, cublasXt_deviceId)
cublas_return = cublasXtSetBlockDim(cublas_handle, 2048)

Table 6. Finalization for cuBLAS and cuBLASXT

Library Finalization after completing RIMP2_ENERGY_WHOLE(...)
cuBLAS cublas_return = cublasdestroy_v2(cublas_handle)
cuBLASXT cublas_return = cublasXtdestroy(cublas_handle)

Table 7. DGEMM calls for the RI-MP2 kernel from NVBLAS, cuBLAS
and cuBLASXT

Library DGEMM call in RIMP2_ENERGYIJ(...)
NVBLAS call DGEMM(’T’, ’N’,&

NVIR, NVIR, NAUXBASD, 1.0D00, &
BI, NAUXBASD, BJ, NAUXBASD, 0.0D00, QVV, NVIR)

cuBLAS cublas_return = CUBLASDGEMM_v2(cublas_handle, &
CUBLAS_OP_T, CUBLAS_OP_N, &
NVIR, NVIR, NAUXBASD, 1.0D00, &
BI, NAUXBASD, BJ, NAUXBASD, 0.0D00, QVV, NVIR)

cublas_return = cudaDeviceSynchronize( )
cuBLASXT cublas_return = cublasXtDgemm(cublas_handle, &

CUBLAS_OP_T, CUBLAS_OP_N, &
NVIR, NVIR, NAUXBASD, 1.0D00, &
BI, NAUXBASD, BJ, NAUXBASD, 0.0D00, QVV, NVIR)

cublas_return = cudaDeviceSynchronize( )



GAMESS RI-MP2 Fortran Kernel on GPU w/Directives 103

5.3 Performance Results

Table 8 shows walltimes and speedups of the RI-MP2 kernel with OpenMP/Ope-
nACC offloading with the c60 input in Fig. 2(a). As a reference, the OpenMP
threading implementation linked against IBM ESSL was tested on dual IBM
power9 processors with 42 threads. It is around 27 times faster than on a single
core of IBM Power9 processor. The same source code using Intel MKL was tested
on dual Intel Xeon Platinum 8180M Skylake processors with 112 hypre-threads,
and it was around 2.63 times faster than on dual IBM Power 9 processors.
OpenMP and OpenACC offloading RI-MP2 kernels linked against NVBLAS,
cuBLAS and cuBLASXT were tested on a single V100 GPU on Summit. Their
performance is not superior to performance of the OpenMP threading kernel on
Power9 processors. According to the peak performance of a V100 GPU and two
Power9 processors, the measured speedups fail to reach our expectation.

Remark 1. Since NVBLAS has cuBLASXT functions at the backend, we only
test NVBLAS with OpenMP offloading to check if there is any overhead from
NVBLAS. It turns out the performance difference between cuBLASXT and
NVBLAS is negligible.

Remark 2. It would be interesting to see why OpenMP and OpenACC offload-
ing implementations with NVBLAS, cuBLAS, and cuBLASXT show different
performance in Table 8. However, we do not dive into the details, since their
performance do not meet our expectation. In the next section, we present their
optimized performance and discuss their performance difference.

Table 8. Walltimes and speedups of the RI-MP2 kernel with OpenMP/OpenACC
offloading (input: c60.kern)

Directives Math Library Processors Wall time (sec) Speedup
Serial ESSL 1 core of an

IBM Power9
344.763 0.037×

OpenMP threading ESSL 2 IBM
Power9
(42 threads)

12.623 1×

OpenMP threading MKL 2 Intel Xeon
8180M (112
threads)

4.802 2.63×

OpenMP offloading NVBLAS 1 NVIDIA
V100

11.320 1.12×

OpenMP offloading cuBLAS 1 NVIDIA
V100

9.282 1.36×

OpenMP offloading cuBLASXT 1 NVIDIA
V100

11.372 1.11×

OpenACC offloading cuBLAS 1 NVIDIA
V100

12.176 1.04×

OpenACC offloading cuBLASXT 1 NVIDIA
V100

14.548 0.87×
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Figure 5 shows a NVPROF plot of the OpenMP offloading kernel with
NVBLAS. The MemCopy between the host and the device looks small enough,
but the compute region has a lot of short compute blocks of DGEMM and E2_t
computations. Based on the plot, merging the small compute blocks could reduce
kernel launching overheads on the device, and it might improve the performance
of the offloading kernels.

Fig. 5. NVPROF plot for the RI-MP2 kernel with NVBLAS (c60.kern), dT = 0.1 s

6 Offloading the Restructured RI-MP2 Kernel

6.1 Restructuring the RI-MP2 Kernel for an Optimized
Performance on a GPU

Table 9 shows the restructured RI-MP2 kernels for a better performance on a
GPU. Parts in red color represent difference from the original RI-MP2 kernel in
Table 4. In order to increase the size of compute blocks for DGEMM and E2_t
computations, one of arrays (i.e., B32 array, see Table 9) is merged, and is used
as an input of the RIMP2_ENERGYIJ subroutine. As a result, the dimensions
of inputs to DGEMM (i.e., BI and QVV arrays) in RIMP2_ENERGYIJ increase
from 2D (i.e., BI(:,:), QVV(:,:) ) to 3D (i.e., BI(:,:,1:JACT), QVV(:,:,1:JACT) ).
In addition, the inner do-loop in the RIMP2_WHOLE_ENERGY disappears,
while dual do-loops for E2_t computations in RIMP2_ENERGYIJ becomes
triple do-loops.

6.2 Performance Results of the Restructured RI-MP2 Kernel

Table 10 shows walltimes and speedups of the restructured RI-MP2 kernel on
a V100 GPU, dual IBM Power9 processors, and dual Intel Skylake processors.
The restructured RI-MP2 kernel significantly improves the performance of the
OpenMP and OpenACC offloaing kernel, while it improves the performance of
the OpenMP threading on CPUs slightly; as a result, the speedups of OpenMP
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Table 9. The restructured RI-MP2 kernels for fewer DGEMM calls with larger matrices

subroutine RIMP2_ENERGY_WHOLE ( ... )
...

do-loop for JACT ! From 1 to NACT
call RIMP2_ENERGYIJ (B32(:,:,1:JACT), B32(:,:,JACT), E2, ...)

enddo
...
end !subroutine RIMP2_ENERGY_WHOLE ( ... )

subroutine RIMP2_ENERGYIJ( ... )
...

call DGEMM for BI(:,:,1:JACT), BJ(:,:), QVV(:,:,1:JACT)
...

do-loop for IC ! From 1 to JACT
Set FAC
do-loop for IB ! From 1 to NVIR

do-loop for IA ! From 1 to NVIR
compute E2_t with QVV(:,:,IC), eij(:,:), eab(:,:)

enddo
enddo
E2 = E2 + FAC*E2_t

enddo
...
end !subroutine RIMP2_ENERGYIJ( ... )

and OpenACC offloading kernels with NVBLAS and cuBLASXT on a V100 GPU
over OpenMP threading kernels with ESSL on dual Power9 processors become
more than 7×. The speedups of OpenMP and OpenACC offloading with cuBLAS
are more than 6×. They are very impressive performance on a V100 GPU, since
the peak performance ratio of a V100 GPU over dual Power9 processors is a
little bit higher than 7×.

In order to understand the performance difference of cuBLAS and NVBLAS
/cuBLASXT, the kernels were run with NVPROF, and Fig. 6 show the NVPROF
plots for the restructured RI-MP2 kernel with cuBLAS and cuBLASXT. The
NVPROF plot for the kernel with NVBLAS is very similar to the plot for
cuBLASXT, since NVBLAS uses cuBLASXT functions on the backend. In
Fig. 6(a), the compute blocks for DGEMM calls are long and continuous. How-
ever, DGEMM blocks in Fig. 6(b) are composed of multiple small blocks, since
cuBLASXT uses a tiling algorithm in Fig. 4 for better performance.
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Table 10. Walltimes and speedups of the restructured RI-MP2 kernel (input: c60.kern)

Directives Math Library Processors Wall time (sec) Speedup
Serial ESSL 1 core of an IBM

Power9
342.697 0.036×

OpenMP threading ESSL 2 IBM Power9
(42 threads)

12.231 1×

OpenMP threading MKL 2 Intel Xeon
8180M (112
threads)

4.317 2.83×

OpenMP offloading NVBLAS 1 NVIDIA V100 1.734 7.05×
OpenMP offloading cuBLAS 1 NVIDIA V100 1.983 6.17×
OpenMP offloading cuBLASXT 1 NVIDIA V100 1.728 7.08×
OpenACC offloading cuBLAS 1 NVIDIA V100 1.905 6.42×
OpenACC offloading cuBLASXT 1 NVIDIA V100 1.692 7.23×

(a) w/ cuBLAS

(b) w/ cuBLASXT

Fig. 6. NVPROF plot for the restructured RI-MP2 kernel with the c60 input, dT = 0.1 s
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Remark 3. In this study, we employ OpenMP 4.5 from the IBM compiler and
OpenACC 2.6 from the PGI compiler. Compared to the OpenMP 4.5 specifica-
tion, the OpenACC 2.6 specification provides an ability to interoperate between
the stream used for the DGEMM and the kernels generated by the compiler,
which reduces the synchronization cost. We believe the slightly better perfor-
mance of the OpenACC implementations in Table 10 is due to this difference.
Codes with more frequent interoperations between GPU libraries and compiler-
generated kernels may see an even greater impact. It is our hope that a future
revision of the OpenMP specification will support improved interactions between
the OpenMP runtime and CUDA streams to avoid unnecessary synchronization
overhead. It will also help other vendor-promoted programming languages such
as HIP and SYCL achieve improved interoperability with performance.

7 Performance of the Restructured RI-MP2 Kernel on
Multiple GPUs via MPI+OpenMP Offloading

The restructured RI-MP2 kernel with MPI+OpenMP offloading implementation
was tested on multiple GPUs on multiple nodes (upto 16 nodes) of the Summit
system, as presented in Table 11. IBM Spectrum MPI version 10.3.0.1-20190611
was used on Summit. For the OpenMP offloading with cuBLAS and cuBLASXT,
each MPI rank is assigned to one V100 GPU; as a result, 6 MPI ranks were
assigned to one Summit node. For the OpenMP threading with ESSL on Power9
processors, each MPI employed 7 OpenMP threads; therefore, each Summit node
was configured as 6 MPI ranks with 42 threads/node in total.

Table 11. Walltimes of the restructured RI-MP2 kernel on multiple GPUs (in sec): 1
GPU/MPI for cuBLAS & cuBLASXT, 7 threads/MPI for ESSL

Nodes MPIs w30 w60
cuBLAS cuBLASXT ESSL cuBLAS cuBLASXT ESSL

1 1 2.899 2.314 86.324 87.301 72.903 2727.419
1 2 1.582 1.287 43.848 44.646 37.512 1386.807
1 4 0.899 0.759 26.768 23.181 19.67 792.305
1 6 0.664 0.643 19.333 16.08 14.074 563.707
2 12 0.447 0.397 12.626 8.845 7.999 317.892
4 24 0.402 0.379 9.358 5.383 4.921 212.748
8 48 0.337 0.308 9.347 3.722 3.687 154.441

16 96 0.358 0.332 9.349 2.923 3.169 150.704



108 J. Kwack et al.

(a) Speedup of multiple GPUs over a sin-
gle GPU

(b) Speedup of RI-MP2 w/ cuBLASXT
over ESSL

Fig. 7. Performance of the restructured RI-MP2 kernel with w30 and w60 inputs via
MPI+OpenMP offloading on multiple GPU nodes of the Summit system

Figure 7(a) shows the corresponding speedups of multiple GPUs over a single
V100 GPU. The RI-MP2 kernel with the w60 input shows better speedups than
with the w30 input, since the w60 input has a bigger system for computations
than the w30 input. Figure 7(b) presents speedups of the RI-MP2 kernel with
OpenMP offloading and cuBLASXT over with OpenMP threading and ESSL. It
is around 40× to 48× speedup with the w60 input, while it is 25× to 32× with
the w30 input. In summary, the RI-MP2 with the w60 input obtains more than
40× speedup via the OpenMP offloading implementation on multiple Summit
nodes. The peak performance ratio of six V100 GPUs over two Power9 processors
on a Summit node is around 43×. Therefore, this is a remarkable performance
improvement case via a directive-based offloading implementation on multiple
GPUs.

8 Concluding Remarks

The RI-MP2 kernel from GAMESS application is re-written via OpenMP
and OpenACC offloading implementations. The offloading kernels are linked
against three different math libraries for GPUs (i.e., NVBLAS, cuBLAS, and
cuBLASXT). For the first performance tests, the OpenMP/OpenACC offload-
ing kernels are tested on a single V100 GPU. The RI-MP2 kernel with OpenMP
threading implementation is tested with vendors’ optimized math libraries
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(i.e., ESSL for IBM processors, and MKL for Intel processors) on a single core
of IBM Power9 processor, dual-socket Power9 processors with 42 threads, and
dual-socket Intel Xeon Platinum 8180M Skylake processor with 112 threads, as
references.

Only offloading the math library calls themselves did not change the per-
formance much compared to the CPU threaded version. Via restructuring the
offloading kernel, the compute blocks on the GPU become big enough for the
GPU; as a result, the OpenMP/OpenACC offloading RI-MP2 kernel on a single
V100 GPU shows around 6× to 7× speedups over dual-socket Power9 processors,
which is near what we expect based on peak performance ratios.

With a larger input (i.e, w60.kern), the restructured RI-MP2 kernel via MPI
+ OpenMP offloading implementation was tested on multiple GPUs on up to 16
Summit nodes. The MPI + OpenMP offloading kernel shows significant speedups
on multiple GPUs. It shows more than 40× speedup over the MPI + OpenMP
threading implementation on the same number of Summit nodes.

This case study demonstrates that directive-based programming models can
achieve high performance and a significant speed-up over threaded CPU-only
code, with a speed-up near the theoretical speedup based on peak theoreti-
cal performance numbers. We plan to extend these directive-based offloading
implementations to other kernels of GAMESS, so these kernels will be ready for
coming pre-exascale/exascale US DOE machines in 2020 (i.e., Permultter) and
2021/2022 (i.e., Aurora, El Capitan, and Frontier) that have GPU accelerators
provided by different vendors. Through this study, we can have a confidence
about performance of directive-based programming models for accelerators.
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Appendix I

Table 12. Fortran wrapper for cuBLAS and cuBLASXT functions

module cublasf
use, intrinsic :: iso_c_binding

enum, bind(c) !:: cublasOperation_t
enumerator :: CUBLAS_OP_N = 0
enumerator :: CUBLAS_OP_T = 1
enumerator :: CUBLAS_OP_C = 2

end enum !cublasOperation_t

interface

integer(c_int) function cublasCreate_v2(handle) &
bind(c, name="cublasCreate_v2")

use, intrinsic :: iso_c_binding
type(c_ptr) :: handle

end function cublasCreate_v2

integer(c_int) function cublasDestroy_v2(handle) &
bind(c, name="cublasDestroy_v2")

use, intrinsic :: iso_c_binding
type(c_ptr), value :: handle

end function cublasDestroy_v2

integer(c_int) function cublasDgemm_v2(handle, &
transa, transb, m, n, k, alpha, dA,ldda, &
dB, lddb, beta, dC, lddc) &
bind(c, name="cublasDgemm_v2")

use, intrinsic :: iso_c_binding
type(c_ptr), value :: handle
integer(c_int), value :: transa, transb, m, n, k
real(c_double) :: alpha, beta
real(c_double),dimension(*) :: dA, dB, dC
integer(c_int), value :: ldda, lddb, lddc

end function cublasDgemm_v2

integer(c_int) function cudaDeviceSynchronize() &
bind(c, name="cudaDeviceSynchronize")

use, intrinsic :: iso_c_binding
end function cudaDeviceSynchronize

integer(c_int) function cublasxtcreate(handle) &
bind(c, name="cublasXtCreate")

use, intrinsic :: iso_c_binding
type(c_ptr) :: handle

end function cublasxtcreate
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integer(c_int) function cublasXtDeviceSelect( &
handle, nbDevices, deviceId) &
bind(c, name="cublasXtDeviceSelect")

use, intrinsic :: iso_c_binding
type(c_ptr), value :: handle
integer(c_int), value :: nbDevices
integer(c_int),dimension(*) :: deviceId

end function cublasXtDeviceSelect

integer(c_int) function cublasXtSetBlockDim( &
handle, blockDim) &
bind(c, name="cublasXtSetBlockDim")

use, intrinsic :: iso_c_binding
type(c_ptr), value :: handle
integer(c_int), value :: blockDim

end function cublasXtSetBlockDim

integer(c_int) function cublasXtDgemm(handle, &
transa, transb, m, n, k, alpha, dA, ldda, &
dB, lddb, beta, dC, lddc) &
bind(c, name="cublasXtDgemm")

use, intrinsic :: iso_c_binding
type(c_ptr), value :: handle
integer(c_int), value :: transa, transb, m, n, k
real(c_double) :: alpha, beta
real(c_double),dimension(*) :: dA, dB, dC
integer(c_int), value :: ldda, lddb, lddc

end function cublasXtDgemm

integer(c_int) function cublasxtdestroy(handle) &
bind(c, name="cublasXtDestroy")

use, intrinsic :: iso_c_binding
type(c_ptr), value :: handle

end function cublasxtdestroy

end interface
end module cublasf
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Abstract. Performance portability is considered to be an inevitable
requirement in the exascale era. We explore a performance portable app-
roach for fusion plasma turbulence simulation code employing kinetic
model, namely the GYSELA code. For this purpose, we extract the
key features of GYSELA such as the high dimensionality and the semi-
Lagrangian scheme, and encapsulate them into a mini-application which
solves the similar but a simplified Vlasov-Poisson system. We imple-
ment the mini-app with a mixed OpenACC/OpenMP and Kokkos, where
we suppress unnecessary duplications of code lines. For a reference case
with the problem size of 1284, the Skylake (Kokkos), Nvidia Tesla P100
(OpenACC), and P100 (Kokkos) versions achieve an acceleration of 1.45,
12.95, and 17.83, respectively, with respect to the baseline OpenMP ver-
sion on Intel Skylake. In addition to the performance portability, we
discuss the code readability and productivity of each implementation.
Based on our experience, Kokkos can offer a readable and productive
code at the cost of initial porting efforts, which would be enormous for
a large scale simulation code like GYSELA.

Keywords: GPU · OpenACC · OpenMP · Kokkos · semi-Lagrangian

1 Introduction

The performance portability in supercomputing was not a critical issue in the past
decade, where supercomputers have been dominated by homogeneous CPU-based
clusters. A commonplace strategy has been to develop and maintain a single code
parallelized with MPI and OpenMP. If a code works well on a specific supercom-
puter, then it can be ported easily to other supercomputers while keeping a rea-
sonable performance. In those days, the users and developers could focus more on
physics rather than porting and optimizing a code on several devices.
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The emergence of GPU (graphics processing units) computing in the HPC
landscape has been changing the situation drastically. Many developers had to
refactor their codes to use GPUs either by architecture specific language like
CUDA or directive based approaches such as OpenMP 5.0 [19] and OpenACC
[18]. Regardless of their high peak performance over the conventional multi-
core CPUs, a naive porting of legacy codes often result in a poor performance
on GPUs, since the optimization strategy for GPUs are different from that for
CPUs. Performance portability becomes a non-trivial issue when using GPUs.
Unfortunately, a high diversity in computer architectures is expected for the
upcoming exascale supercomputers, including Intel/Cray CPU/GPU machine
Aurora and AMD/Cray CPU/GPU machine Frontier in US and Fujitsu ARM
CPU machine Fugaku in Japan. Needless to say, China and Europe will construct
their own exascale systems in the early 2020s, whose details are not announced
yet. In order to use these hardwares efficiently, we have to establish code refac-
toring approaches to easily access a good performance on different devices.

There are at least two ways to sustain the performance portability over mul-
tiple architectures: directive based approaches such as OpenMP 5.0 and Ope-
nACC, and a higher level abstraction with performance portable framework
such as Kokkos [8] and RAJA [12]. There already exist some performance anal-
ysis studies relying on different parallelization methods. D. Sunderland et al.
reported the performance portability of the Unitah software with Kokkos [21].
They have focused on the 3D stencil diffusion kernel and demonstrated that the
appropriate usage of Kokkos features can offer significant performance improve-
ments by better vectorization and cache effects. T. R. Law et al. worked with
a 2D unstructured hydrodynamics mini-application called BookLeaf [16]. They
have implemented BookLeaf in MPI+OpenMP, MPI+CUDA, MPI+Kokkos and
MPI+RAJA and assess the performance focusing on the overheads introduced
by Kokkos and RAJA frameworks. They reported that the overhead introduced
by the frameworks can partially be masked in memory-bound situation. P. Grete
et al. combined ATHENA++, an existing magnetohydrodynamics (MHD) CPU
code, with Kokkos, into K-ATHENA to allow efficient simulations on multiple
architectures using a single codebase [11]. They profiled the K-ATHENA per-
formance on different platforms including Intel Skylake CPUs, Intel Xeon Phis,
and NVIDIA GPUs. They defined a performance portability metric based on
the roofline analysis and it reached 83.1%.

Our goal is to explore a performance portable approach for fusion plasma
turbulence simulation code employing a kinetic model such as GYSELA code
[10]. The kinetic plasma simulation codes are characterized by their high dimen-
sional feature more than 4D (see the review paper [9], for example). Since it is a
huge challenge to port a whole version of the GYSELA code, we extract the key
features of GYSELA and encapsulate them into a mini-app which solves a simi-
lar but simplified Vlasov-Poisson system as GYSELA. We implement the mini-
app into two different portable approaches: a mixed OpenACC/OpenMP and
Kokkos. The former represents the directive-based approach, where the direc-
tives are switched with macros depending on the device type, i.e. OpenACC for
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GPUs and OpenMP for CPUs. A single OpenACC or OpenMP code could work
on both CPUs and GPUs, but the optimization process would be too tricky. We
took the mixed approach, in order to get better performance on each device.
The latter represents the higher level abstraction using a single code. In both
approaches, we focus on avoiding the duplications of code lines unless necessary.
We assess the performance portability of a mini-app across multi-core CPU and
GPU. We also discuss the readability and productivity of these two approaches
based upon our experience.

This paper is organized as follows. Section 2 describes the characteristics
of testbed. The CPU and GPU implementations of the GYSELA mini-app are
shown in Sects. 3 and 4, respectively. The portability feature is exposed in Sect. 5.
In Sect. 6, the performance portability based on each implementation is dis-
cussed. The obtained results are summarized in Sect. 7.

2 Testbed Description

In this work, the performance has been measured on JFRS-1 and Tsubame
3.0 [3] supercomputers. We employ a single socket of Intel Xeon Gold 6148
(Called “Skylake” in this work) on JFRS-1 as a conventional multicore CPU and
the single Nvidia Tesla P100 GPU (called “P100” hereinafter). The hardware
features are given in Table 1. On Skylake, we use 40 threads with Hyperthreading.

Table 1. Hardware description for one processor. Thermal Design Power (TDP) is
extracted from vendors data-sheets [13,17]. For the STREAM bandwidth [2], we use
the STREAM TRIAD value.

Processor Intel Xeon Gold 6148 Nvidia Tesla P100

(Skylake) (Pascal)

Number of cores 20 1792

Shared Cache [MB] 45 4

Peak performance [GFlops] 1536 5300

Peak B/W [GB/s] 127.97 732

STREAM B/W [GB/s] 80 540

B/F ratio 0.083 0.138

SIMD width 256 bit –

TDP [W] 145 300

Manufacturing process 14 nm 16 nm

Year 2017 2016
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3 GYSELA Mini-App and Baseline OpenMP
Implementation

In this section, we introduce the overview of the GYSELA mini-application and
its relationship to the GYSELA code [10]. The original GYSELA code is written
in Fortran 90 based on the hybrid OpenMP/MPI parallelism [5,15]. However, for
the sake of applying modern approaches such as Kokkos [8], we have developed
the mini-app in C++. Rather than extracting a single kernel from the original
GYSELA code, we have developed a mini-app which solves similar equations
with the same numerical scheme as GYSELA. This way, we can easily experiment
and compare different kernels and test interfaces to external libraries such as fftw
and cufft. The latter is an important aspect for the performance portability and
productivity.

As well as the original GYSELA code, the mini-app solves the 4D advection
(Vlasov) equation with the backward semi-Lagrangian scheme. It also solves the
2D poisson equation. This mini-app solves the physically meaningful system as
described in Ref. [7], but the Vlasov and Poisson equations are simplified in
the mini-app. In the present work, we considered the mini-app without MPI
parallelization. The GYSELA mini-app (called vlp4d) is available at https://
github.com/yasahi-hpc/vlp4d.

3.1 Four-Dimensional Vlasov-Poisson System

In this subsection, we describe the four-dimensional Vlasov-Poisson system [7].
The evolution of the distribution function f (t,x,v) in phase space (x,v) is
computed by solving the Vlasov and Poisson equations. The four-dimensional
phase space consists of configuration space (x, y) and velocity space (vx, vy). The
four-dimensional Vlasov equation can be written as

∂f

∂t
+ v · ∇xf + E(t,x) · ∇vf = 0, (1)

with x = (x, y) and v = (vx, vy). The two-dimensional Poisson equation

∇x · E(t,x) = ρ(t,x) − 1, (2)

with the ion density ρ(t,x) =
∫

dvf (t,x,v) and Electric field E(t,x). By cou-
pling the Vlasov Eq. (1) and Poisson Eq. (2), the system can be solved self-
consistently. In the following, “fn” will denote the distribution function at time
nΔt.

3.2 Algorithm

In order to avoid very expensive high dimensional interpolation, we use the
Strang’s operator splitting method [20] to solve the Vlasov Eq. (1). The 4D
Vlasov Eq. (1) can then be split as a combination of

https://github.com/yasahi-hpc/vlp4d
https://github.com/yasahi-hpc/vlp4d
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∂f

∂t
+ vx

∂f

∂x
= 0 at (y, vx, vy) fixed (3)

∂f

∂t
+ vy

∂f

∂y
= 0 at (x, vx, vy) fixed (4)

∂f

∂t
+ Ex

∂f

∂vx
= 0 at (x, y, vy) fixed (5)

∂f

∂t
+ Ey

∂f

∂vy
= 0 at (x, y, vx) fixed. (6)

The 1D advection Eq. (3) along x direction is solved with the backward semi-
Lagrangian scheme as described in Algorithm 1. For the interpolation scheme,
we employ the Lagrange interpolation (5th order using 6-points stencils). The
1D advection equations in each direction are solved in the same way.

Algorithm 1.1D advection along x direction with the semi-Lagrangian Scheme
for All grid points (yj , vxk, vyl) do

η (xi=∗) ← Lagrange coeff. from the 1D function fn (xi=∗, yj , vxk, vyl)
for All grid points (xi) do

(xi)
∗ ← foot of characteristic for one time step Δt that ends at

(xi, yj , vxk, vyl);
Interpolate fn at location (xi)

∗ using η coeff.;
fn+1 (xi, yj , vxk, vyl) ← the interpolated value;

end for
end for

The Poisson equation is solved in Fourier space as shown in Algorithm 2. The
variable Â means the Fourier representation of the variable A. Since we simply
use the periodic boundary conditions in (x, y) directions, we can solve Poisson
Eq. (2) with 2D FFT.

Algorithm 2.Poisson equation with 2D Fourier Transform
Input: fn, Output: En

x , En
y

for All grid points (vxk, vyl) do
ρn ← ρn +

∑
k,l dvxdvyf

n(∗, ∗, vxk, vyl)
end for
ρ̂n = 2D FFT [ρn] (Forward FFT in x, y directions)
Êx

n
= −ikxρ̂

n/(k2
x + k2

y)/normalization
Êx

n
= −ikyρ̂

n/(k2
x + k2

y)/normalization

En
x = 2D IFFT

[
Êx

n
]

(Inverse FFT in x, y directions)

En
y = 2D IFFT

[
Êy

n
]

(Inverse FFT in x, y directions)

Algorithm 3 shows the time integral scheme used in the mini-app. As shown,
we call the 1D advection along x and y directions twice and the other kernels
once in each time step.
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Algorithm 3.One time step
Input: fn, Output: fn+1

1D advection along x direction for Δt/2
1D advection along y direction for Δt/2
Velocity space integral: Compute ρn+1/2

Field solver: Compute E
n+1/2
x , E

n+1/2
y

1D advection along vx direction for Δt
1D advection along vy direction for Δt
1D advection along y direction for Δt/2
1D advection along x direction for Δt/2

3.3 Baseline OpenMP Implementation

The baseline version is implemented with OpenMP. Listing 1.1 shows the 1D
advection along x direction as an example. In order to manage high dimensional
array, we built an in-house view class which mimics the view class in Kokkos
(See Subsect. 4.1 for detail). Contrary to the Kokkos implementation, our view
can hold the data in row-major layout only.

Listing 1.1. 1D advection (x direction) with the semi-Lagrangian scheme
1 #define LAG ORDER 5
2 #define LAG OFFSET 2
3 #define LAG PTS 6
4 double inv dx = 1./dx;
5 #pragma omp for schedule(static) collapse(2)
6 for(int ivy = 0; ivy < nvy; ++ivy) {
7 for(int ivx = 0; ivx < nvx; ++ivx) {
8 const double vx = vx min + ivx ∗ dvx;
9 const double depx = dt ∗ vx;

10 for(int iy = 0; iy < ny; ++iy) {
11 for(int ix = 0; ix < nx; ++ix) {
12 const double x = x min + ix ∗ dx;
13 const double xstar = x min + fmod(Lx + x − depx − x min, Lx);
14 int ipos1 = floor((xstar − x min) ∗ inv dx);
15 const double d prev1 = LAG OFFSET
16 + inv dx ∗ (xstar − (x min + ipos1 ∗ dx));
17 ipos1 −= LAG OFFSET;
18 double coef[LAG PTS];
19 lag basis(d prev1, coef);
20 double ftmp = 0.;
21 for(int k = 0; k <= LAG ORDER; k++)
22 ftmp += coef[k] ∗ fn[ivy][ivx][iy][(nx + ipos1 + k) % nx];
23 fnp1[ivy][ivx][iy][ix] = ftmp;
24 }
25 }
26 }
27 }
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We simply parallelize along the outermost directions (vx, vy) with “for col-
lapse (2)” pragma. All the 4D loops appeared in the 1D advections, and integral
kernels are also parallelized in the same way. The Lagrange bases are computed
by the inline function “lag basis” (line 19). As found in Listing 1.1, the memory
accesses for each grid point are read operation from the 4D array fn and write
operation to the 4D array fn+1. The indirect memory access due to the integer
operations on “ipos1” is found in line 22. It should be noted that the OpenMP
parallel region “omp parallel” is declared outside of this kernel, so there is only
“omp for” inside.

3.4 Characteristics of Kernels

It turned out that more than 95 % of the costs come from the advection kernels
in Vlasov solver and the integral kernel in Poisson solver. Thus, in the present
work, we only measure the performance of these kernels. The characteristics of
the kernels are summarized in Table 2. Although the advection kernels seem to be
very similar, they perform interpolations along different directions. This gives
a critical difference in performance on cache-based architecture like CPUs as
discussed in Subsect. 6.1. As an intrinsic nature of the semi-Lagrangian scheme,
these kernels are sharply curbed by indirect memory accesses. The integral kernel
reduces the 4D array into 2D array, which is a little more complicated than
simply reducing an array into a scalar.

Table 2. Features of the kernels. The advection kernels are characterized by indirect
memory access patterns, while the integral kernel requires the reduction over velocity
space. The Flop/Byte is measured in average considering a perfect and unlimited cache.

Kernel advect x (advect y) advect vx (advect vy) Integral

Memory accesses 1 load + 1 store 1 load + 1 store 1 load

Access pattern Indirect access Indirect access Reduction by row

Flop/Byte (f/b) 67/16 65/16 1/8

4 GPU Implementation of GYSELA Mini-App

Since the GPU acceleration is an important aspect of our work, we have ported
the code to GPU environment. We have employed Kokkos as a higher level
abstraction approach and OpenACC as a directive-based approach.

4.1 Kokkos Implementation of GYSELA Mini-application

Kokkos is an open source performance portable library based on C++11 [8]. The
higher level abstractions available in Kokkos include “Memory Spaces”, “Mem-
ory Layout”, “Memory Traits”, “Execution Patterns”, “Execution Spaces”, and
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“Execution Policies”. The three former abstractions are relevant to the memory
management and the three latter abstractions focus on the parallel operations.

Listing 1.2. Example of Kokkos views
1 #include <Kokkos Core.hpp>
2 #include <Kokkos Complex.hpp>
3 typedef double float64;
4 typedef Kokkos::complex<double> complex64;
5 typedef Kokkos::DefaultExecutionSpace execution space;
6 typedef Kokkos::View<float64∗, execution space> view 1d;
7 typedef Kokkos::View<float64∗∗, execution space> view 2d;
8 typedef Kokkos::View<float64∗∗∗, execution space> view 3d;
9 typedef Kokkos::View<float64∗∗∗∗, execution space> view 4d;

10 typedef Kokkos::View<complex64∗, execution space> complex view 1d;
11 typedef Kokkos::View<complex64∗∗, execution space> complex view 2d;

Abstract Memory Management in Kokkos. Kokkos offers the multidimen-
sional array support called “views”. Views allow an abstract memory manage-
ment which can provide efficient memory access patterns for the given device.
The memory access patterns are particularly important when accessing the high
dimensional array. For multicore CPUs, it is preferable to apply the thread-level
parallelization to the outermost loop(s) and each thread performs some com-
putations over the innermost loop(s) in a SIMD (Single Instruction, Multiple
Data) manner. In contrast, on GPUs, it is important to assign threads to the
innermost loop to access memory contiguously (coalesced way).

Listing 1.3. Velocity space integral in Poisson eq. (2) using C++11 lambda
1 Kokkos::parallel for(nx∗ny, KOKKOS LAMBDA (const int ixy) {
2 int ix = ixy%nx, iy = ixy/nx;
3 float64 sum = 0.;
4 for(int ivy=0; ivy<nvy; ivy++) {
5 for(int ivx=0; ivx<nvx; ivx++) {
6 sum += fn(ix, iy, ivx, ivy);
7 }
8 }
9 rho(ix, iy) = sum;

10 });
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Listing 1.4. 1D advection (x direction) in Eq. (3) using a functor
1 struct advect 1D x functor {
2 Config∗ conf ;
3 view 4d fn , fnp1 ;
4 ...
5 advect 1D x functor(Config∗conf, const view 4d fn, view 4d fnp1, float64 dt)
6 : conf (conf), fn (fn), fnp1 (fnp1), dt (dt) {
7 const Domain ∗dom = &(conf −>dom ); // Initialize class members
8 ...
9 }

10

11 KOKKOS INLINE FUNCTION
12 void operator()( const int &i ) const {
13 int4 idx 4D = Index::int2coord 4D(i, nx , ny , nvx , nvy );
14 int ix = idx 4D.x, iy = idx 4D.y, ivx = idx 4D.z, ivy = idx 4D.w;
15 // Compute Lagrange bases (same as lines 12−19 in Listing 1.1)
16 ...
17 float64 ftmp = 0.;
18 for(int k=0; k<=LAG ORDER; k++) {
19 int idx ipos1 = (nx + ipos1 + k) % nx ;
20 ftmp += coef[k] ∗ fn (idx ipos1, iy, ivx, ivy);
21 }
22 fnp1 (ix, iy, ivx, ivy) = ftmp;
23 }
24 }
25

26 Kokkos::parallel for(nx∗ny∗nvx∗nvy, advect 1D x functor(conf, fn, fnp1, dt));

We define 1D to 4D views in the header file as shown in Listing 1.2. By
defining the views with “Kokkos::DefaultExecutionSpace” (lines 6–9, 10–11),
the “Memory Space” and “Memory Layout” are specified to fit with the given
architecture. For example, the data are located on the device space for CUDA
backend. For CUDA (resp. OpenMP) backend, the multidimensional array is
mapped to the memory in column major (resp. row major). The former corre-
sponds to Fortran Layout and the latter corresponds to C layout. A view only
keeps the metadata such as data shape, “Memory Space” and “Memory Layout”,
and the actual data are located on the host or device specified by the “Mem-
ory Space”. “Memory traits” specify how the data is accessed, but we have not
tested this feature in the present work. It is also worth noting that there is the
official support for the complex data defined in “Kokkos Complex.hpp” (line 2).
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Listing 1.5. Helper for index computation
1 namespace Index {
2 #if ! defined( KOKKOS ENABLE CUDA )
3 // For Layout right (C layout)
4 KOKKOS INLINE FUNCTION
5 int4 int2coord 4D(int i, int n1, int n2, int n3, int n4) {
6 int j234 = i%(n2∗n3∗n4), j1 = i/(n2∗n3∗n4);
7 int j34 = j234%(n3∗n4), j2 = j234/(n3∗n4);
8 int j4 = j34%n4, j3 = j34/n4;
9 return make int4(j1, j2, j3, j4);

10 }
11 #else
12 // For Layout left (Fortan layout)
13 KOKKOS INLINE FUNCTION
14 int4 int2coord 4D(int i, int n1, int n2, int n3, int n4) {
15 int j123 = i%(n1∗n2∗n3), j4 = i/(n1∗n2∗n3);
16 int j12 = j123%(n1∗n2), j3 = j123/(n1∗n2);
17 int j1 = j12%n1, j2 = j12/n1;
18 return make int4(j1, j2, j3, j4);
19 }
20 #endif
21 }

Abstract Parallel Operations in Kokkos. In order to perform parallel oper-
ations in an abstract way, Kokkos offers three types of “Execution Patterns”
including “parallel for”, “parallel reduce” and “parallel scan”. The “Execution
Space” specifies where the parallel operations are performed either GPUs or
CPUs. The “Execution Policy” determines how an execution pattern is per-
formed. A user can transmit a kernel to an execution pattern in either C++11
lambdas or functors. Listing 1.3 shows the velocity space integral operation in
Eq. (2) given by a lambda function. In this kernel, the 4D view “fn” is reduced
to the 2D view “rho” inside a 1D flatten parallel loop (line 1). Functors would
be preferable for a kernel with many lines, which improves code reusability (see
Subsect. 5.4 for adding a new range policy without reimplementing the entire
operation). Listing 1.4 shows the kernel to compute 1D advection along x direc-
tion given by a functor. The functor in Listing 1.4 is then fed to the “parallel for”
with a naive 1D range policy as shown in the bottom line of the Listing 1.4 Here,
the “parallel for” is operated over a single index which covers the entire four-
dimensional loops. In order to unpack the single index to the multidimensional
indices, we have prepared a helper for the index computations (line 22) as defined
in Listing 1.5, where memory accesses are contiguous for the given device. Here,
the execution space is identified using the macro “KOKKOS ENABLE CUDA”.
As discussed in Subsect. 5.4, the naive 1D policy harms the performance partic-
ularly on CPUs, since it conflicts with the vectorization on CPUs.
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4.2 OpenACC Implementation of GYSELA Mini-application

Since a multidimensional indices support of our in-house view class is relying
on the C++11 standard library, our view class is unavailable in the accelerated
region (lines 7–26). Thus, we just use the 1D raw pointer in the accelerated
region as found in Listing 1.6 (lines 1–2).

Listing 1.6. 1D advection (x direction) in OpenACC
1 float64 ∗dptr fn = fn.raw(); // Raw pointer to the 4D view fn
2 float64 ∗dptr fnp1 = fnp1.raw();
3

4 const int n = nx ∗ ny ∗ nvx ∗ nvy;
5 #pragma acc data present(dptr fn[0:n],dptr fnp1[0:n])
6 {
7 #pragma acc parallel loop collapse(3)
8 for(int ivy = 0; ivy < nvy; ivy++) {
9 for(int ivx = 0; ivx < nvx; ivx++) {

10 for(int iy = 0; iy < ny; iy++) {
11 #pragma acc loop vector independent
12 for(int ix = 0; ix < nx; ix++) {
13 // Compute Lagrange bases (same as lines 12−19 in Listing 1.1)
14 ...
15 float64 ftmp = 0.;
16 for(int k=0; k<=LAG ORDER; k++) {
17 int idx ipos1 = (nx + ipos1 + k) % nx;
18 int idx = idx ipos1 + iy∗nx + ivx∗nx∗ny + ivy∗nx∗ny∗nvx;
19 ftmp += coef[k] ∗ dptr fn[idx];
20 }
21 int idx = ix + iy∗nx + ivx∗nx∗ny + ivy∗nx∗ny∗nvx;
22 dptr fnp1[idx] = ftmp;
23 }
24 }
25 }
26 }
27 }

The raw pointers to 4D views “dptr fn” and “dptr fnp1” are required for
the data to be allocated on GPUs with “#pragma acc enter data create” at the
initialization stage. In order to maximize the loop body size, the outermost three
loops are collapsed (lines 8–10), whereas the innermost loop is vectorized with
“#pragma acc loop vector independent”. In OpenACC, it is of great importance
to inform compilers about the locations of data (line 5) by using the OpenACC
data-clause. Without this, the host to device data transfers arise when entering
the accelerated region (line 7) and the performance degrades significantly.
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5 Portable Implementation of GYSELA Mini-App with
OpenACC/OpenMP and Kokkos

In this section, we present a portable implementation of the GYSELA mini-app
based on OpenACC/OpenMP and Kokkos. The former approach uses a single
code and changes the directives depending on architecture with C macros. We
separate the directives since we are willing to use OpenMP and OpenACC for
GPUs (e.g. managing multiple GPU cards with OpenMP threads.) In the latter
approach, we just use the single code based on Kokkos. Either using OpenACC
or Kokkos, we first write codes on GPUs and made some tests on them. Once
we have checked that the code works correctly, we make the CPU versions while
keeping the GPU capability and avoiding the code duplications. For OpenACC
and Kokkos GPU version, we used pgi and gcc compilers, respectively. For the
rest, we used Intel compilers. The details are listed in Table 3.

Table 3. Compilers and compiler flags used for each version.

Version Compiler Compiler flags

Skylake (Kokkos) Intel compiler 18.0.2 -O3 -fopenmp -xCORE-AVX512

Skylake (OpenMP) Intel compiler 18.0.2 -O3 -fopenmp -xCORE-AVX512

P100 (Kokkos) cuda/8.0.61 -O3 -std=c++11 -mrtm -arch=sm 60

P100 (OpenACC) pgi compiler 19.1 -O3 -ta=nvidia:cc60

5.1 Portable Implementation with Kokkos

It is straight forward to write a CPU version in Kokkos: just change the com-
piler flags “KOKKOS DEVICES” from “Cuda” to “OpenMP” and “KOKKOS
ARCH” from “Pascal60” to “SKX” in our case. Listing 1.7 shows the Kokkos
implementation of Poisson solver in Fourier space. Since we use cufft to per-
form 2D FFT on GPUs, we have to prepare the fftw version to perform 2D
FFT on CPUs, which is probably the most demanding part. We have prepared a
FFT wrapper class which manages the 2D FFT using the domain specific FFT
libraries as backends (lines 1, 32–34). The backend is switched depending on the
macro “KOKKOS ENABLE CUDA”. Except for this wrapper, the same code
works on both GPUs and CPUs without any modifications. As for the parallel
part in lines 6–30, the coalesced memory accesses are allowed for GPUs along
“ix1” index. At the same time, the thread level parallelization is applied on CPUs
along “ix1” index. Since the 2D view has a column-major layout on GPUs and
a row-major layout on CPUs, the ’ix1’ dimension is the innermost (resp. outer-
most) direction on GPUs (resp. CPUs). It should be noted that the shallow copies
(lines 3–4) are needed to capture these class members by “KOKKOS LAMBDA”
(this matters when compiled with nvcc 8.0.64).
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Listing 1.7. Kokkos implementation for Poisson solver
1 fft −>rfft2(rho .ptr on device(), rho hat .ptr on device());
2

3 complex view 2d ex hat = ex hat , ey hat = ey hat , rho hat = rho hat ;
4 view 1d filter = filter ;
5 float64 normcoeff = 1./(nx∗ny);
6 Kokkos::parallel for(nx1h, KOKKOS LAMBDA (const int ix1) {
7 float64 kx = ix1 ∗ kx0;
8 int ix2 = 0;
9 ex hat(ix1, ix2) = −kx ∗ I ∗ rho hat(ix1, ix2) ∗ filter(ix1) ∗ normcoeff;

10 ey hat(ix1, ix2) = 0.;
11 rho hat(ix1, ix2) = rho hat(ix1, ix2) ∗ filter(ix1) ∗ normcoeff;
12

13 for(int ix2=1; ix2<nx2h; ix2++) {
14 float64 ky = ix2 ∗ ky0;
15 float64 k2 = kx ∗ kx + ky ∗ ky;
16

17 ex hat(ix1, ix2) = −(kx/k2) ∗ I ∗ rho hat(ix1, ix2) ∗ normcoeff;
18 ey hat(ix1, ix2) = −(ky/k2) ∗ I ∗ rho hat(ix1, ix2) ∗ normcoeff;
19 rho hat(ix1, ix2) = rho hat(ix1, ix2) / k2 ∗ normcoeff;
20 }
21

22 for(int ix2=nx2h; ix2<nx2; ix2++) {
23 float64 ky = (ix2−nx2) ∗ ky0;
24 float64 k2 = kx∗kx + ky∗ky;
25

26 ex hat(ix1, ix2) = −(kx/k2) ∗ I ∗ rho hat(ix1, ix2) ∗ normcoeff;
27 ey hat(ix1, ix2) = −(ky/k2) ∗ I ∗ rho hat(ix1, ix2) ∗ normcoeff;
28 rho hat(ix1, ix2) = rho hat(ix1, ix2) / k2 ∗ normcoeff;
29 }
30 });
31

32 fft −>irfft2(rho hat.ptr on device(), rho .ptr on device());
33 fft −>irfft2(ex hat.ptr on device(), ex .ptr on device());
34 fft −>irfft2(ey hat.ptr on device(), ey .ptr on device());

5.2 Portable Implementation with OpenACC/OpenMP

It is more problematic to replace OpenACC directives with OpenMP directives.
We use the in-house macro “ENABLE OPENACC” to switch OpenACC and
OpenMP directives. Listing 1.8 shows the OpenACC/OpenMP implementation
of Poisson solver in Fourier space (roughly the same one as Listing 1.7). As found
in Listing 1.8, we have to add the data-clause directives for OpenACC (lines 2, 6,
23). Clearly, this kind of macro heavy implementation degrades the readability.
It may be worth commenting on the layout issue in this version. Since the array
layout is always row-major in this version, the memory access pattern cannot
be ideal for both GPUs and CPUs. In this case, the performance issues arise
on the CPUs where the thread level parallelization is applied to the inner most
direction (along “ix1” index).
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Listing 1.8. OpenACC/OpenMP implementation for Poisson solver
1 #if defined( ENABLE OPENACC )
2 #pragma acc data present(dptr rho,dptr ex,dptr ey,...)
3 {
4 #endif
5 #if defined( ENABLE OPENACC )
6 #pragma acc host data use device(dptr rho, dptr rho hat)
7 #endif
8 fft −>rfft2(dptr rho, dptr rho hat);
9 #if defined( ENABLE OPENACC )

10 #pragma acc parallel loop
11 #else
12 #pragma omp for schedule(static)
13 #endif
14 for(int ix1=0; ix1<nx1h; ix1++) {
15 int idx = ix1; float64 kx = ix1 ∗ kx0;
16 dptr ex hat[idx] = −kx ∗ I ∗ dptr rho hat[idx] ∗ dptr filter[ix1] / (nx1∗nx2);
17 dptr ey hat[idx] = 0.;
18 dptr rho hat[idx] = dptr rho hat[idx] ∗ dptr filter[ix1]/ (nx1∗nx2);
19 for(int ix2=1; ix2<nx2h; ix2++) { /∗ Similar computations ... ∗/ }
20 for(int ix2=nx2h; ix2<nx2; ix2++) { /∗ Similar computations ... ∗/ }
21 }
22 #if defined( ENABLE OPENACC )
23 #pragma acc host data use device(dptr rho,...)
24 {
25 #endif
26 fft −>irfft2(dptr rho hat, dptr rho);
27 // Inverse FFTs for dptr Ex hat and dptr Ey hat
28 #if defined( ENABLE OPENACC )
29 }
30 #endif
31 #if defined( ENABLE OPENACC )
32 }
33 #endif

5.3 Performance Comparison of Baseline Versions

In this subsection, we compare the performance of the baseline versions. The
problem size is (Nx, Ny, Nvx

, Nvy
) = (128, 128, 128, 128) and the number of iter-

ations is 128. Figure 1 shows the obtained performance of the baseline version on
each device of Table 1. In the original implementation, OpenACC version outper-
forms the Kokkos version for advection kernels. For the integral kernel, Kokkos
version is a bit faster. Performance of Kokkos CPU version is a bit disappointing,
since it is two to three times slower than the OpenMP version.
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Fig. 1. The baseline performance of the OpenACC/OpenMP and Kokkos versions.

Fig. 2. The improved performance of the OpenACC/OpenMP and Kokkos versions.

5.4 3D MDRange Policy

In order to improve the performance of Kokkos version, we have modified the
execution policy from the naive 1D (bottom line in Listing 1.4) to 3D pol-
icy as shown in Listing 1.9. The first and second arguments of this 3D pol-
icy specifies the start and end indices in each dimension. The third argument
gives the tiling dimensions. Correspondingly, we have added a new operator to
the functor in Listing 1.4 for this 3D range policy as shown in Listing 1.10.
Contrary to the flattened version in Listing 1.4, 3D loops over “ix”, “iy” and
“ivx” are managed in the more preferable way for each architecture in Listing
1.10. In this version, we no longer need the index unpacking helper in Listing
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1.4. In addition, the loop along vy direction is kept inside the operator (line
6) which makes a room for vectorization on CPUs. As expected, the kernels
benefit from the vectorization on CPUs. On CPUs, the tile sizes are set as
(TX,TY,TZ) = (16, 1, 1), (1, 32, 4), (1, 1, 8) and (1, 1, 16) for the 1D advection
kernels along x, y, vx and vy directions, respectively. The best tile sizes are cho-
sen by manual tile size scan. On GPU, we use (TX,TY,TZ) = (32, 4, 2) only to
fit with the warp size of 32.

Listing 1.9. 3D MDRangePolicy
1 typedef typename Kokkos::Experimental::MDRangePolicy<
2 Kokkos::Experimental::Rank<
3 3, Kokkos::Experimental::Iterate::Default, Kokkos::Experimental::Iterate::Default>
4 > MDPolicyType 3D;
5 MDPolicyType 3D mdpolicy 3d( {{0,0,0}}, {{nx,ny,nvx}}, {{TX,TY,TZ}} );
6 Kokkos::parallel for(”md3d advection x”, mdpolicy 3d,
7 advect 1D x functor(conf, fn, fnp1, dt));

Listing 1.10. 3D operator for 1D advection (x direction)
1 KOKKOS INLINE FUNCTION
2 void operator()(const int ix, const int iy, const int ivx) const {
3 // Compute Lagrange bases (same as lines 12−19 in Listing 1.1.)
4 ...
5

6 for(int ivy=0; ivy<nvy; ivy++) {
7 float64 ftmp = 0.;
8 for(int k=0; k<=LAG ORDER; k++) {
9 int idx ipos1 = (nx + ipos1 + k) % nx ;

10 ftmp += coef[k] ∗ fn (idx ipos1, iy, ivx, ivy);
11 }
12 fnp1 (ix, iy, ivx, ivy) = ftmp;
13 }
14 }

This example indicates that the careful settings of execution policies can offer
significant performance improvements particularly on CPUs. Figure 2 shows the
performance of updated version, where Kokkos version outperforms for advec-
tions along x and vx directions. As we have noted, the 4D array Layouts in Sky-
lake (Kokkos) and Skylake (OpenMP) are different. Therefore one can expect
significant difference in terms of performance using OpenMP versus Kokkos. The
innermost direction is vy direction in Skylake (Kokkos) and it is x direction in
Skylake (OpenMP). The advection along innermost direction shows low perfor-
mance on Skylake, since the innermost loop cannot be well vectorized due to the
indirect memory accesses.

6 Performance Portability, Readability and Productivity

In this section, we present the absolute performance in Flops and summarize
the acceleration against the OpenMP baseline version. We also discuss the code
readability and productivity [6] of each implementation, which are also important
ingredients in a modern parallel computing framework.
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6.1 Performance Evaluation

In this subsection, we evaluate the achieved performance with each implementa-
tion. As a reference, we estimated the ideal performance by the Roofline model
[22] as follows.

Attainable GFlops/s = min(F,B × f/b), (7)

where F is the Peak Floating Point Performance in GFlops, B is the Peak
Memory Bandwidth in GBytes/s and f/b is the operational intensity. Figures 3
and 4 show the Roofline models for Skylake and P100. The red line shows the
Roofline estimated by Eq. (7), and the achieved performance of each kernel is
marked with the star (See Table 2 for the details of kernels).

Kokkos and OpenMP Performance on Skylake. Comparing Figs. 3 (a)
and (b), the advection kernels along x and vx directions show almost the ideal
performance in the Kokkos implementation, while the advection kernel along y
direction shows the highest performance in OpenMP implementation. The differ-
ence can be explained by the difference in memory layouts, where the innermost
direction is vy (resp. x) direction in Kokkos (resp. OpenMP) implementation.
Thus, the interpolation along vy (resp. x) direction bothers vectorization in
Kokkos (resp. OpenMP) due to the irregular accesses to memory (indirect mem-
ory accesses). The best performance is obtained in the advection along the second
innermost direction, where the indirect memory access to that direction benefits
from local L2 cache and the SIMD vectorization along the innermost direction
is still feasible. In the current problem size of 1284 grid points, the pressure to
the local cache at each step for accessing the innermost two directions is esti-
mated as (nx × ny) or (nvx

× nvy
) = 1282, which requires 0.125 MB for storing

double precision numbers. This size fits with the local L2 cache on Skylake (1
MB). The good performance in Kokkos for the interpolation along x direction
(the outermost direction) can be interpreted as the benefit of tiling and good
use of the shared L3 cache. We foresee the same performance as Kokkos if we
redesign the OpenMP version with a tiling and loop reordering. A recent proposal
to add tile directives to OpenMP will make ease this kind of optimizations in
OpenMP [14].

Kokkos and OpenACC Performance on P100. Comparing Figs. 4 (a) and
(b), the advection kernel along x direction in Kokkos shows almost the ideal
performance. This originates from good caching effects of GPUs. By explicitly
using the texture memories, we may expect substantial speedups [4], but it is too
architecture specific and does not fit with the philosophy of performance porta-
bility. The low performance of integral kernel in the OpenACC implementation
may be improved by specifying correctly the thread group size, which remains
as a future task.

Table 4 shows the achieved performance and upper ceilings for each ker-
nel. The Kokkos version of integral kernel achieves a higher bandwidth than
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Fig. 3. Roofline Model for 1D advection kernels and integral kernel on Skylake with
(a) Kokkos and (b) OpenMP. The kernels close to the upper ceiling indicate a good
performance.

Fig. 4. Roofline Model for 1D advection kernels and integral kernel on P100 with (a)
Kokkos and (b) OpenACC. The kernels close to the upper ceiling indicate a good
performance.

STREAM TRIAD bandwidth. As shown in Listing 1.3, this kernel is quite sim-
ilar to STREAM2 SUM [1] which gives a higher bandwidth than STREAM
TRIAD bandwidth on Skylake and P100. The final performance of the entire
mini-app is summarized in Table 5. These results demonstrate that the Kokkos
versions can outperform the OpenMP or OpenACC versions, unless we make
device specific optimizations. However, we have to state that we paid develop-
ment efforts on the Kokkos implementation, especially on the 3D range policy
discussed in Subsect. 5.4.

6.2 Readability

In this subsection, we discuss the code readability for the given implementation.

OpenMP. The directive-based OpenMP version is probably the most straight
forward and readable. In the OpenMP implementation, we only have to insert
pragmas to the loops to parallelize, which does not harm code readability.

OpenACC. Although it is directive-based, the OpenACC version is little more
complicated than the OpenMP version, mainly due to the existence of data-
clause. In OpenACC, it is of critical importance to minimize the data-transfer
between CPUs and GPUs, which can be controlled by the data-clause. If the



Performance Portable Implementation 135

Table 4. Achieved performance on single Skylake and P100. The ideal performance
is estimated by the Roofline model in Eq. (7), where the upper ceiling is given by the
STREAM bandwidth in each case. The achieved GB/s to the STREAM bandwidth
are presented in the parentheses.

Kernel f/b Ideal performance Achieved performance

[GFlops] GFlops Bandwidth [GBytes/s]

Skylake (Kokkos) advect x 67/16 335 271.7 64.9 (81.1%)

advect y 67/16 335 63.5 15.2 (19.0%)

advect vx 65/16 325 278.5 68.6 (85.7%)

advect vy 65/16 325 24.0 5.90 (7.4%)

integral 1/8 10 11.4 91.6 (114.5%)

Skylake (OpenMP) advect x 67/16 335 41.8 9.98 (12.5%)

advect y 67/16 335 291.1 69.51 (86.9%)

advect vx 65/16 325 31.94 7.86 (9.8 %)

advect vy 65/16 325 31.5 7.74 (9.6%)

integral 1/8 10 5.5 43.7 (54.7%)

P100 (Kokkos) advect x 67/16 2261.3 1737.9 415.0 (76.9%)

advect y 67/16 2261.3 704.4 168.2 (31.1%)

advect vx 65/16 2193.8 935.7 230.3 (42.7%)

advect vy 65/16 2193.8 638.6 157.2 (29.1%)

integral 1/8 67.5 68.7 550.0 (101.9 %)

P100 (OpenACC) advect x 67/16 2261.3 710.8 169.8 (31.4%)

advect y 67/16 2261.3 695.6 166.1 (30.8%)

advect vx 65/16 2193.8 605.2 149.0 (27.6%)

advect vy 65/16 2193.8 657.5 161.8 (30.0%)

integral 1/8 67.5 16.9 134.9 (25.0%)

Table 5. The elapsed time of the entire mini-app with 128 iterations. The acceleration
with respect to the baseline OpenMP version, that is Skylake (OpenMP), is also shown.

Version Time [s] Acceleration

Skylake (OpenMP) 278.197 1.0

Skylake (Kokkos) 192.079 1.45

P100 (OpenACC) 21.476 12.95

P100 (Kokkos) 15.600 17.83

code is written in C++, we need special treatments to manage data locations
of class members. In addition, we have to pay some attentions to call external
libraries such as cufft inside class methods (See Subsect. 5.2).
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Kokkos. Once the code is made based upon Kokkos, the Kokkos code would be
quite readable. Moreover, we can make a single code that works on both CPUs
and GPUs without duplicating the code. Some sort of optimizations like tiling
can be applied without changing the kernel as explained in Subsect. 5.4.

OpenACC/OpenMP. The merged version loses a bit of readability due to the
intensive macros (see Subsect. 5.2). If we separate the OpenMP and OpenACC
codes, the code can be simplified at the cost of huge duplications of the code.

6.3 Productivity

If a code is small (e.g. less than 5k lines of codes) and written in C++, there
may be not much difference in productivity either using OpenACC/OpenMP or
Kokkos. The challenge using Kokkos for the production code, however, lies in
the refactoring of data and loop structures and possibly language over the entire
code. When it comes to the GYSELA code, we have to refactor more than 50k
lines of code written in Fortran 90 [10] into C++ besides changing data and loop
structures. In contrast, we can keep the code structure and language if we rely
on OpenACC and OpenMP. The initial investments to port the production code
with Kokkos would be enormous, but this approach may suppress the main-
tenance and further development costs in the upcoming CPU and accelerator
based supercomputers. A directive with supports for memory layout and access
pattern managements (such as a tiling support in OpenMP [14]) would be a true
game-changer.

7 Summary

This paper presents a case study on the performance portability of kinetic plasma
simulation code with the semi-Lagrangian scheme, namely the GYSELA code.
The kinetic simulation codes are characterized by their high-dimensionality, more
than four dimensional. Although the optimization strategy of this kind of code
on conventional multicore CPUs is established, it is still questionable to port
the code to GPU environment without harming the performance. In the present
work, we extract the key features of GYSELA and encapsulate them into a mini-
app which solves a similar but simplified Vlasov-Poisson system as GYSELA.
The GYSELA mini-app is implemented in a mixed OpenACC/OpenMP and
Kokkos focusing on the performance portability, productivity and readability.
The mixed OpenACC/OpenMP approach represents the directive-based app-
roach, whereas the Kokkos approach represents the higher level abstraction using
a single codebase. In both approach, we focus to avoid the duplications of code
lines unless needed.
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In the mixed OpenACC/OpenMP approach, the OpenMP code can be ported
with OpenACC without any difficulty. The outstanding feature of OpenACC
is that we can generate GPU codes just by inserting few lines of pragmas. If
we suppress the extra data transfer between CPUs and GPUs, the OpenACC
version gives a speed-up of around 10× compared the baseline OpenMP version.
Unfortunately, by merging OpenMP and OpenACC directives, the code will soon
lose the readability due to the intensive macro usage. The lack of memory layout
abstraction can lead to inappropriate memory access patterns, which may result
in a performance bottleneck.

In the Kokkos approach, we have to pay initial porting costs for refactoring
the code. For example, we have to declare arrays as views and replace parallel
loops by appropriate “parallel patterns”. Once the porting is done, the code can
run on both CPUs and GPUs without any modifications. At first, we employed
a 1D naive range policy which covers the entire 4D loops and found a relatively
low performance on CPUs. The 1D flattened loop impairs performance, probably
interfering with the vectorization of the innermost loop. By introducing the 3D
range policy, the performance of CPU version has improved dramatically and
achieved a speed-up of 1.45 with respect to the baseline OpenMP version. The
Kokkos GPU version is 17 times faster than the baseline OpenMP CPU version.

Finally, we summarize the obtained results from the view point of perfor-
mance portability, readability and productivity. The mixed OpenACC/OpenMP
approach is the most promising in terms of productivity. Relying on OpenACC
directives, we can port the GYSELA code without changing language from For-
tran 90 to C++. In contrast, we have to rewrite the code in C++ in Kokkos
approach, where the porting costs would be enormous for a large scale code like
GYSELA consisting of more than 50k lines. At the cost of huge initial refactoring
efforts, Kokkos will offer a readable and productive code which may suppress the
maintenance and further development costs in the upcoming supercomputers.
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Abstract. As computer architectures are rapidly evolving (e.g. those
designed for exascale), multiple portability frameworks have been devel-
oped to avoid new architecture-specific development and tuning. How-
ever, portability frameworks depend on compilers for auto-vectorization
and may lack support for explicit vectorization on heterogeneous plat-
forms. Alternatively, programmers can use intrinsics-based primitives to
achieve more efficient vectorization, but the lack of a gpu back-end for
these primitives makes such code non-portable. A unified, portable, Single
Instruction Multiple Data (simd) primitive proposed in this work, allows
intrinsics-based vectorization on cpus and many-core architectures such
as Intel Knights Landing (knl), and also facilitates Single Instruction
Multiple Threads (simt) based execution on gpus. This unified primi-
tive, coupled with the Kokkos portability ecosystem, makes it possible to
develop explicitly vectorized code, which is portable across heterogeneous
platforms. The new simd primitive is used on different architectures to test
the performance boost against hard-to-auto-vectorize baseline, to mea-
sure the overhead against efficiently vectroized baseline, and to evaluate
the new feature called the “logical vector length” (lvl). The simd primi-
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tive provides portability across cpus and gpus without any performance
degradation being observed experimentally.

Keywords: Portability · Vectorization · cuda · simd Primitive ·
knl · arm

1 Introduction

Many different new computer architectures are being developed to potentially
improve floating point performance such as those being developed for exascale.
For example, Intel Haswell, Knights Landing (knl), and Skylake processors sup-
port vector processing with a vector length of 512 bits. armv8.2-A processors
have a vector length of 2048 bits [29]. Nvidia, Intel and amd gpus may be part of
upcoming supercomputers [6,23]. Multiple performance portability frameworks
are being developed to avoid architecture-specific tuning of programs for every
new architecture. Such portability frameworks as Kokkos [5] and raja [12] pro-
vide uniform APIs to shield a programmer from architectural details and provide
a new performant back-end for every new architecture to achieve the performance
portability. The Kokkos [5] library achieves performance portability across cpus
and gpus through the use of C++ template meta-programming.

Many pre-exascale and proposed exascale cpu and many-core architectures
increasingly rely on Vector Processing Units (vpus) to provide faster perfor-
mance. vpus are designed with Single Instruction Multiple Data (simd) capa-
bilities (Vector capabilities) that execute a single instruction on multiple data
elements of an array in parallel. simd constructs can enhance the performance
by amortizing costs of instruction fetch, decode, memory reads and writes [7].
The process of converting a scalar code (which processes one element at a time)
into a vector code (which can handle multiple elements of an array in parallel)
is known as the “Vectorization” or “simd transformation”. Thus, effective vector-
ization becomes very important for any performance portability tool, including
Kokkos, to extract the best possible performance on cpus.

Another important class of supercomputers uses gpus as accelerators (e.g.,
Summit, Sierra). The Single Instruction Multiple Threads (simt) execution
model of nvidia’s cuda divides iterations of a data parallel kernel among mul-
tiple cuda blocks and threads. A warp, a group of 32 cuda threads, runs in
the simd mode similar to the vpu (an exception: the latest Volta gpus allows
out of sync execution of warp threads). Any portable solution to vectorization
should allow both styles of vectorization without considerable effort from appli-
cation programmers. Furthermore, it is essential to distinguish between the phys-
ical vector length (pvl) in the hardware and the logical vector length (lvl) as
needed by the application usage. For example, Fig. 1(a) shows how Kokkos’ uni-
form apis, Team, Thread and Vector [5], provide three levels of parallelism, and
how they are mapped to cpus and Nvidia gpus. At the third level, user-provided
C++11 lambda is called and loop indexes are passed to the lambda.
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Fig. 1. Kokkos APIs and mapping to cpu and cuda

On Nvidia gpus, the cuda threads can be arranged in a three-dimensional
grid. Each thread is identified by a triplet of ids in three dimensions which
are accessed using “threadId.<x or y or z>”. Consider the number of teams,
threads and vectors requested by a user are L, T and V, respectively. In this
case, gpus, “L” Kokkos Teams are mapped to “L” cuda blocks. The cuda block
id is mapped to the Kokkos team id. Each cuda block is of the size VxTx1. The
cuda threads within a block can be logically divided among T partitions of size
V (not to be confused with cuda-provided Cooperative Groups). Each partition
is assigned with a unique threadIdx.y ranging from 0 to T-1. Kokkos maps these
partitions to Kokkos threads and the Kokkos thread id to cuda threadIdx.y.
The threads within a partition are assigned a unique threadIdx.x ranging from
0 to V-1. Kokkos Vectors get mapped to V threads within each partition. On
a cpu, the Kokkos Teams and Kokkos Threads are mapped to OpenMP thread
teams and OpenMP threads. Using the Kokkos Vector augments the user code
with the compiler directives, which helps the compiler in auto-vectorization.
This Kokkos design enables efficient simt execution on gpus. However, success-
ful automatic vectorization on cpus depends on a lack of loop dependencies,
minimal execution path divergence in the code, and a countable number of iter-
ations, i.e., the number of iterations should be known before the loop begins
execution [14]. Traditionally, compilers auto-vectorize loops that meet these cri-
teria but fail to auto-vectorize outer loops or codes having complex control flows,
such as nested if conditions or break statements. This problem can be addressed
by using simd primitive libraries that encapsulate architecture-specific intrinsic
data types and operators to achieve explicit vectorization without compromising
portability across cpus. Several such libraries exist for cpus [17,20,27,32]. How-
ever, using simd primitive libraries would break the portability model as shown in
Fig. 1(b). Instead of calling the Kokkos-provided Vector, programmers directly
call the lambda from a Thread, and in turn invoke any simd primitive libraries,
which would map user data types and functions to platform specific intrinsics.
This explicit vectorization can generate more efficient code where compilers do
a poor job. However, as far as the authors are aware no portable simd primitive
library provides a gpu back-end, except OpenCL, which supports vector data
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types on all devices [24]. Using such primitive libraries with Kokkos, however,
leads to compilation errors due to missing cuda back-end for the primitive.
As a result, programmers are forced to make a compromise - either achieve
portability at the cost of non-optimal cpu performance through the compiler
auto-vectorization or achieve the optimal cpu performance using simd primi-
tives, but maintain a separate version of code for gpu without using simd prim-
itive, thereby compromising portability. Maintaining a different code for gpus
defeats the purpose of using Kokkos i.e., “performance portability”. In order to
remedy the situation, this work makes the following contributions:

Heterogeneous Performance Portability: The primary contribution of this
work is to add a new cuda back-end to the existing simd primitive in Kokkos and
make the simd primitive portable across heterogeneous platforms with Nvidia
gpus, for the first time. (More back-ends can be added to Kokkos and to the
primitive to support a wider range of heterogeneous platforms.) The cuda back-
end is developed with the exact front-end interfaces as those built for the cpu
back-end. Using these uniform interfaces, the application programmers can now
achieve efficient vectorization on the cpu without maintaining a separate gpu
version of the code, which was not possible before. Thus, the new simd primitive
provides gpu portability and requires only a few hundred lines of new code for
the gpu back-end.

Using the new portable simd primitive gives a speedup up to 7.8x on Intel
knl and 2.2x on Cavium ThunderX2 (ARMv8.1) for kernels that are hard to
auto-vectorize. A comparison of the primitive with existing SIMD code (either
auto-vectorized cpu code or equivalent cuda code) shows no overhead due to
the primitive. The portable primitive provides explicit vectorization capabilities,
without the need to maintain a separate gpu code. As the outer loop may now
be easily vectorized using the new primitive, more efficient code can be generated
than auto-vectorization of the inner loop.

Logical Vector Length (LVL): Another feature of the new primitive is the
Logical Vector Length (lvl). Application developers can pass the desired vector
length as a template parameter (lvl) without considering underlying physical
vector length. The lvl can be used to write codes agnostic of physical vector
length (pvl), as explained in Sect. 3. Vectorizing the outer loop coupled with the
lvl automatically introduces the “unroll and jam [3]” transformations, without
any burden on programmers. These transformations can exploit instruction level
parallelism and data locality to provide speedups up-to 3x on knl and 1.6x on
cuda than the auto-vectorized/simt code.

Easy Adoption: Introducing the portable simd type needs less than a 10%
change in user’s loop. Once the primitive is introduced, the code can be explicitly
vectorized on cpus and also ported to gpus without any further changes.

Applicability to Use Cases: The new portable simd data type supports a
wide variety of computational science use cases, such as pde assembly for com-
plex applications, 2D convolution, batched linear algebra, and ensemble sparse
matrix-vector multiplication as will be shown below.
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2 Related Work

Vectorization has been studied from multiple perspectives: tools to identify vec-
torization opportunities [9]; portability frameworks using intermediate represen-
tations (ir) [26]; data parallel programming models [21] and data layout trans-
formations [8]. Existing methods for improving vectorization include compiler
directives, framework-based methods, tools to assist compilers [9], and language
extensions [21]. Compilers provide directives that help auto-vectorization, e.g.,
the Intel compiler’s #pragma vector directive instructs the compiler to override
efficiency heuristics. Intel’s #pragma simd can be used to force vectorization
(although it has been deprecated in the 2018 version). #pragma ivdep instructs
the compiler to ignore assumed loop dependencies. OpenMP provides #pragma
omp simd, which is similar to #pragma simd. Even after specifying these direc-
tives, complex control structures in a loop may prevent auto-vectorization. The
LLVM community is gradually developing more advanced vectorization capa-
bilities such as outer loop vectorization [30]. OpenCL [24], a portable parallel
programming standard, provides vector data types on all the supported devices.
The maximum length of a vector data type in OpenCL is limited to 16, which
may be problematic for architectures with larger pvls. On the other hand, the
lvl implemented in this work can be passed as a template argument and offers
more flexibility to users. In addition to Kokkos, there are other recently devel-
oped performance portable libraries such as raja[12], Alpaka [33] and occa[22].
The simd vectorization support in raja is limited to using the execution pol-
icy raja::simd_exec, which adds #pragma omp simd to the code and relies on
compiler auto-vectorization [15]. Alpaka refactors user code to help the compiler
in auto-vectorization. occa also provides hints to enable auto-vectorization but
lacks any explicit simd support at present.

Multiple implementations of a simd primitive for cpus such as the Vc vec-
torization library [20], the Unified Multi/Many-Core Environment (ume) frame-
work [17], and the Generic simd Library [32] enable an explicit vectorization using
architecture-specific simd intrinsics and operator overloading. KokkosKernels [19]
is a library that implements computational kernels for linear algebra and graph
operations using Kokkos. KokkosKernels uses a simd data type for its batched lin-
ear algebra kernels [18]. Embedded ensemble propagation [27] using the Stokhos
package in Trilinos [28] for uncertainty quantification uses another version of simd
primitives that allows flexible vector lengths. Furthermore, Phipps [27] addressed
portability of this “ensemble type” to simt architectures. Pai [26] addressed simt
portability using Intermediate Representations (ir).

While all these efforts are successful, they do not yet provide the full range
of portability shown in this work.

3 Portable simd Primitive

The portable simd primitive developed here sits on top of Kokkos, which provides
basic performance portability across a range of architectures. Figures 2, 3 and 4
present pseudo code of the portable simd primitive.
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// PVL: physical vector length
// LVL: logical vector length
// EL: element per vector lane

#define PVL ... // detect architecture -specific PVL

using namespace std;

// advanced declarations
template <typename T, int LVL , int EL=LVL/PVL >
struct simd_cpu; //for cpu

template <typename T, int LVL , int EL=LVL/PVL >
struct simd_gpu; //for gpu

template <typename T, int LVL , int EL=LVL/PVL >
struct gpu_temp;

// conditional aliases for Primitive and Temp
template <typename exe_space , typename T, int LVL >
using simd = typename conditional <

is_same <exe_space , OpenMP >::value ,
simd_cpu <T, LVL >, simd_gpu <T, LVL > >::type;

template <typename exe_space , typename T, int LVL >
using Portable_Temp = typename std:: conditional <

is_same <exe_space , OpenMP >::value ,
simd_cpu <T, LVL >, gpu_temp <T, LVL >>::type;

Fig. 2. Common declarations used in simd primitive

template <int LVL , int EL>
struct simd_cpu <double , LVL , EL >{

__m512d _d[EL]; // knl instrinsic for 8 doubles

Portable_Temp <exe_space , double , LVL > operator+ (const simd &x){
Portable_Temp <exe_space , double , LVL > y;

#pragma unroll(EL)
for(int i=0; i<EL; i++)

y._d[i] = _mm512_add_pd( _d[i], x._d[i]);
return y;

}
//more operators and overloads ...

};

Fig. 3. simd primitive: knl specialization for double

Common Declarations: Figure 2 shows some common declarations used to
achieve portability. The pvl macro definition derives platform-specific vector
length, i.e., physical vector length (pvl). “simd_cpu” and “simd_gpu” are for-
ward declarations for cpu and cuda primitives, respectively. They need a data
type and the logical vector length (lvl) as the template parameters. An alias
“simd” is created using std::conditional, which assigns “simd_cpu” to “simd” if
the targeted architecture (or the execution space in the Kokkos nomenclature)
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Fig. 4. simd primitive: cuda definition

Fig. 5. Example usage of the simd primitive: conditional addition of arrays without
(top) and with simd primitive.
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is OpenMP and “simd_gpu” if the execution space is cuda. The simd template
expands into respective definitions at compile time depending upon the execu-
tion space. As a result, both execution spaces can be used simultaneously, thus
giving portable and heterogeneous execution. The “Portable_Temp” alias and
“gpu_temp” type are used as a return type and are explained later.

CPU Back-end : The cpu back-ends containing architecture-specific simd
intrinsics are developed for Intel’s knl and Cavium ThunderX2. Template spe-
cializations are used to create different definitions specific to a data type as
shown in Fig. 3 (which is a specialization for double on knl). Overloaded opera-
tors invoke architecture-specific intrinsics to facilitate standard arithmetic oper-
ations, math library functions, if_else condition (as shown in the example later).
The new primitive can support bitwise permutation operations such as shuffle
and has been verified with some preliminary experiments. One such example
of an overloaded operator is shown in Fig. 3. The operator+ calls the intrin-
sic function “_mm512_add_pd”, which performs the addition of eight dou-
bles stored in the intrinsic data type __mm512 in a simd manner. The return
data type of the operator+ is “Portable_Temp”. When the execution space is
OpenMP, Portable_Temp is set to “simd_cpu” itself, which simply returns an
intrinsic data type wrapped in the primitive. The knl specific back-end from
Kokkos::Batched::Vector is reused, and the functionalities of the lvl and alias
definition based on the execution space are added on top of it. A new back-end
was added for ThunderX2 using ARMv8.1 intrinsics.

Logical Vector Length: Users can pass the desired vector length as the tem-
plate parameter “lvl”. The lvl iterations are evenly distributed among the phys-
ical vector lanes by the primitive. As shown in operator+ (Fig. 3), each vector
lane iterates over el iterations, where “el=lvl/pvl”, e.g., if pvl=8 and lvl=16,
then el=2, i.e. each vector lane will process two elements. Thus lvl, allows users
to write vector length agnostic code. In use cases, such as the 2D convolution
kernel presented in this work later, using lvl improved performance up to 3x.

CUDA Back-end and Portable_Temp: Finally, a new cuda back-end is
added with the same front-end apis as used in the cpu back-end, making the
primitive portable, as shown in Fig. 4. The common front-end apis present a uni-
fied user interface across heterogeneous platforms, which allows users to main-
tain a single portable version of the code and yet achieve effective vectorization.
The portability of the primitive avoids the development of two different versions
as required prior to this work. The common front-end APIs include structures
“simd” and “Portable_Temp”, declared in Fig. 2, along with their member func-
tions. Whenever a programmer switches to the cuda execution space, “simd”
alias refers to “simd_gpu” and expands into an cuda definition of the simd
primitive. To emulate the cpu execution model of simd processing, the gpu
back-end contains an array of “logical vector length” number of elements (dou-
ble _d [lvl]). These elements divided among the pvl number of cuda threads
along the x dimension. (The pvl is auto-detected based on a platform.) cuda
assigns unique threadIdx.x to each thread ranging from 0 to pvl-1 (as explained
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in Sect. 1.) Each cuda thread within operator+ (Fig. 4) adds different elements
the array _d indexed by “tid = i * blockDim.x + threadIdx.x”. (In this case
blockDim.x represents the number cuda threads along x dimension, which is
set to pvl.) Together, the pvl number of cuda threads process a chunk of pvl
number of elements in a simt manner. Each cuda thread execute el number of
iterations (loop variable i). Thus, the primitive processes lvl=pvl*el number
of elements within array _d. Offsetting by threadIdx.x allows coalesced access
and improves the memory bandwidth utilization.

However, the cuda back-end needed an additional development of gpu_temp
to be used as a return type. Consider a temporary variable of a type “simd”
used in the cpu code. The declaration is executed by the scalar cpu thread
and the elements of the variable are automatically divided among cpu vec-
tor lanes by the intrinsic function. Thus each vector lane is assigned with only
“el=lvl/pvl” number of elements. However, when used inside a cuda ker-
nel, each cuda thread i.e., each vector lane, declares its own instance of the
simd variable. Each instance contains lvl elements and results into allocating
pvlxlvl elements. The problem can be fixed by setting the alias Portable_Temp
to the type “gpu_temp”. “gpu_temp” holds only el elements - exactly those
needed by the vector lane. Thus, the total number of elements is still lvl. As
a result, the cuda implementation of the simd primitive needs combinations of
operands: (simd, simd), (simd, Portable_Temp), (Portable_Temp, simd) and
(Portable_Temp, Portable_Temp).

Two alternatives to avoid Portable_Temp were considered. The pvl can be
set to 1 (or el). One can even use cuda-supported vector types such as float2 and
float4. Both options will solve the return type problem mentioned earlier as each
vector lanes processes 1/2/4 elements and returns the same number of elements
as opposed to elements getting shared by vector lanes. Using cuda vector types
can slightly improve the bandwidth utilization due to vectorized load and store.
cuda, however, lacks any vectorized instructions for floating point operations,
and the computations on these vector types get serialized. Thus, using either
of these options will remove the third level of parallelism (i.e., Kokkos Vector).
Hence, the Portable_Temp construct was chosen.

Example Usage: Figure 5 shows an example of vectorization using the portable
simd primitive and Kokkos, but without showing Kokkos-specific details. Kokkos
View is a portable data structure used to allocate two arrays, A and B. Ele-
ments of A are added into each element of B until B reaches 1. The scalar code
(add_scalar function) does not get auto-vectorized due to a dependency between
if(B[i]<1.0) condition and addition. (Of course, adding #pragma simd or inter-
changing loops helps in this example, but may not always work.) The add_vector
function, a vectorized version of add_scalar, shows how the simd primitive can
vectorize the outer loop. Array A is cast from double to simd<double>, the num-
ber of iterations of the outer loop is factored by the lvl, and the “if” condition is
replaced by an if_else operator. The statement calls four overloaded operators,
namely, <, +, if_else and =. Vectorizing across the outer loop works because the
outer loop iterations are not dependent on each other. If the lvl is increased to
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2*pvl, the loop gets unrolled by a factor of two and each vector lane processes
on two iterations consecutively. As the main computations usually take place in
the innermost loop, the unrolled outer loop automatically gets jammed with the
inner loop. Users can simply set lvl=nxpvl and the primitive unrolls the outer
loop by a factor of n. Because the iterations of the outer loop are independent
of each other, the transformation can exploit instruction level parallelism.

4 Experiments

Experimental Platforms: A node of Intel knl with 64 cores, 16GB of High
Bandwidth Memory (or MCDRAM) configured in flat quadrant mode and
192GB RAM was used to test the cpu version. Each knl core consists of two
vpus with a vector length of 512 bits. Thus, using the double precision float-
ing point numbers allows a vector length of 8. The codes were compiled with
the Intel compiler suite 2018 with the optimization flags -O3 -xMIC-AVX512
-std=c++11 -fopenmp.

Tests were also run on a single node of the Astra cluster at Sandia National
Laboratories. Each Astra node provides 128GB of high bandwidth memory and
two Cavium ThunderX2 CN99xx processors with 28 cores each. Cavium Thun-
derX2 is an ARMv8.1-based processor with a vector length of 128 bits. It can
execute two double precision operations with a single simd instruction. The
GNU 7.2.0 compiler suite was used to compile applications with the flags -O3
-std=c++11 -mtune=thunderx2t99 -mcpu=thunderx2t99 -fopenmp.

The nvidia P100 gpu with Compute Capability 6.0, 3584 cuda cores, 16GB
of High Bandwidth Memory and 48 KB of shared Memory per SM was used to

Table 1. Summary of use cases, goals and expectations.

Use Goal Baseline Expected performance
case CPU GPU

pde cpu: achieve effective
Vectorization for the complex,
hard to vectorize code; gpu:
find out the overhead for a
performance sensitive portable
kernel

cpu: not
vectorized; gpu:
Ported to cuda

Near ideal
speedup

No extra
speedup. No
new overhead

2dConv Evaluate the benefit of lvl by
comparing it with a baseline
already running in simd mode

cpu:
auto-vectorized;
gpu: ported to
cuda

Small extra
speedup due to
lvl

Small extra
speedup due
to lvl

gemm Find out the overhead of the
primitive by comparing it with
a baseline already running in
simd mode efficiently

cpu: auto
vectorized; gpu:
ported to cuda

No extra speedup.
No new overhead

No extra
speedup. No
new overhead

spmv
†Baselines are written using Kokkos for two reasons: first to make the code portable and second to
measure the overhead of the primitive only. If the baseline is written using raw cuda or OpenMP,
then the performance measurements will include the overhead of both Kokkos and the primitive.
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Algorithm 1. CharOx Loop Structure, Holmen [10]
1: for all patches
2: for all Gaussian quadrature nodes
3: Kokkos::parallel_for cells in a patch //Can cells loop be vectorized?
4: Compute reaction constants.
5: Nested loops over reactions and species.
6: Multiple loops over reactions and species.
7: Nested loops over reactions and species.
8: while residual < threshold do //indefinite number of iterations
9: Multiple loops over reactions.
10: Nested loops over reactions and species.
11: Compute a matrix inverse.
12: Multiple loop over reactions.
13: end while
14: Loop over reactions.
15: end Kokkos::parallel_for

test the gpu performance. The applications were compiled using gcc v4.9.2 and
nvcc (from cuda v 9.1) with the optimization flags -O3 -std=c++11 –expt-
extended-lambda –expt-relaxed-constexpr.

Use Cases and Experimental Setup: The primary aim of the portability
libraries such as Kokkos is to enable “performance portable” programming. The
portable code gets compiled and executed on the heterogeneous platforms with-
out making any platform-specific changes and also provides performance close
to the native implementations (such as using raw cuda or using vector intrin-
sics). However, it is essential to understand that Kokkos or the simd primi-
tive is not a magic construct to provide an extra performance boost. When the
baseline itself is efficiently vectorized or has an efficient cuda implementation,
using Kokkos or the primitive can provide portability, but will not provide extra
speedup. Considering these factors, different use cases are chosen to test the per-
formance of the simd primitive for different scenarios. Table 1 summarizes the
four different kernels used in the evaluation. Of the four use cases, first two are
not efficiently vectorized and are chosen to demonstrate the effectiveness of the
primitive, whereas last two are efficiently vectorized and are chosen to measure
the overhead of the primitive.

Use cases were implemented using Kokkos - first without using the simd prim-
itive and then using it. A typical transformation from scalar code to vectorized
code using the portable simd primitive needs casting of legacy data structures
and variables and updating any conditional assignments. Some algorithm spe-
cific use cases need a special handling, e.g., the while loop discussed in Sect. 4.1.
All the arithmetic operations and math library functions remain untouched. For
all four kernels, less than 10% of the lines of code were modified to introduce the
simd primitive and this did not require any complex code transformations or
new data structures, which is typically needed to auto-vectorize a complex code.
The use of Kokkos and the simd primitive allows the same code to be compiled
on the different target platforms. Various combinations of the number of threads
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were tested and the best timing was chosen. Each experiment was repeated at
least 100 times, and the averages timings were used to compute the speedups.

4.1 PDE Assembly

Uintah [2] is a massively parallel asynchronous multi-task runtime that can be
used to solve complex multi-physics problems. It is being used for the multi-scale
and multi-physics combustion simulation of a coal boiler under DoE’s PSAAP II
project and has been successfully scaled to 256k cores on Titan and 512k cores
on MIRA [2]. One of the longest running kernels within Uintah is CharOx. It
simulates the char oxidation of coal particles by modeling multiple chemical reac-
tions and physical phenomenon involved in the process [1,11,25]. The CharOx
kernel consists over of 350 lines of code, reads around 30 arrays, updates five
arrays, and performs compute-intensive double precision floating point arith-
metic operations, such as exponentials, trigonometric functions, and divisions in
nested loops about 300 to 500 times for every cell. As shown in Algorithm1, the
main cell iterator loop contains different loops over reactions and species, each
with multiple levels of nesting. The Newton Raphson Solve loop has an unde-
termined number of iterations and contains more nested loops. The iterations
of the cell iterator loop are not dependent on each other. Hence, vectorizing the
cell iterator loop can potentially give a maximum speedup.

Auto-Vectorization: On the knl platform, the Intel compiler auto-vectorizes
some of the innermost loops only. Vectorization of the cell iterator loop can
be forced by adding the “#pragma simd” directive. However, this provides only
4.3x speedup, whereas the ideal speedup for the double precision on knl is 8x,
assuming the majority of the code is scalar. (Unfortunately, the pragma is dep-
recated in Intel compilers from 2018 onwards, and its replacement “#pragma
vector” fails to “force” vectorize the cell loop.) An inspection of the vectorization
report and assembly code shows gather/scatter instructions generated for every
read/write to the global arrays. These gather and scatter instructions are the
reason for the speedup of 4.3x. To maintain the halo region, Uintah internally
offsets all elements in its data structures with a constant value. All cells have the
same offset. Thus the stride between elements is always one, but the compiler
cannot deduce this and generates gather instructions. However, using the simd
primitive calls simd intrinsics that explicitly generate move instructions rather
than gather and makes vectorization efficient.

The GNU compilers used on the ThunderX2 platform did not vectorize the
cell iterator loop even after adding vectorization hint directives.

On the gpu, the size and the complexity of the kernel substantially increases
register usage. Profiling shows that 255 registers are used by every thread within
a block, thereby preventing the simultaneous execution of multiple blocks on a
single Streaming Multiprocessor (SM). This results in poor occupancy of the SMs
(only up to 12%). Hence, the simd primitive must not add additional overhead
in terms of registers, memory, or execution dependency, and the gpu perfor-
mance must not be compromised to gain cpu performance. Apart from casting
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data structures and variables to those based on the portable simd primitive,
the Newton-Raphson solver [10] used to solve oxidation equations for every cell
needed special handling. The solver iterates until the equations converge. In the
vectorized version, the vector of cells iterates until all cells within the vector
converge. Although the technique needs extra iterations for a few cells, it works
faster than executing solver iterations sequentially in a scalar mode.

The experiments were carried out using a total of 64 patches with two patch
sizes - 163 and 323. The CharOx kernel is invoked five times for every patch. With
64 patches, the kernel is executed 320 times in every timestep. The simulation
was run for 10 timesteps, and the average loop execution time over 3200 calls
was recorded. The shear complexity of this loop appears to provide a distinctive
and unusual challenge for performance portability.

Goal: This use case shows a particular instance where the compiler does a poor
job in auto-vetorizing the code on the cpu, but the cuda code works efficiently
on the gpu. It is thus important to ensure that improving cpu performance
using the primitive does not degrade gpu performance. The kernel is large and
complex enough to cause a register spill on the gpu even without using the
simd primitive. Thus, adding simd will help us to understand the performance
of sensitive kernels on gpu and associated overhead, if any.

Expectation: The code performs double precision floating point operations.
Hence, the speedups close to 8x and 2x are expected on knl and ThunderX2,
respectively. These are the ideal speedups for double precision computations on
these platforms considering the respective vector lengths of 512 bits and 128 bits.
The gpu code already runs in a simt mode, and hence the new primitive will pro-
vide portability without a performance boost. However, portability should not
cause any significant overhead either. Ideally, gpu performance should remain
the same with and without simd.

4.2 2D Convolution

Algorithm 2. Algorithm for a 2D Convolution Kernel
1: for b in 0:mini-batches
2: for co in 0:output filters
3: for i in 0:M //image rows
4: for j in 0:M //image columns
5: for ci in 0:input channels
6: for fi in 0:F //filter rows
7: for fj in 0:F //filter columns
8: out(b, co, i, j) += in(b, ci, i-F/2+fi, j-F/2+fj) * filter(co, ci, fi, fj)

2D convolution [4] (as shown in Algorithm 2) is a heavily used operation in
deep neural networks. The algorithm multiplies a batch of images (in) with a
filter (filter) by sliding the filter over the image to accumulate the result (out).
The operation is repeated for multiple filters. This algorithm has a high arith-
metic intensity. Using the simd primitive provides an opportunity to exploit the
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Table 2. Sparse matrices used for ensemble SpMV and comparison of the baseline
Kokkos version with Intel’s mkl and Nvidia cusparse libraries for ensemble size = 64.

Name Rows Columns Nonzeros Execution time (ms)
mkl baseline cusparse baseline
KNL KNL P100 P100

HV15R 2017169 2017169 283073458 275 147 160 123
ML_Geer 1504002 1504002 110686677 105 44 54 37
RM07R 381689 381689 37464962 46 25 23 14
ML_Laplace 377002 377002 27582698 34 11 13 9

spatial locality for all three variables: When the “i” loop is parallelized across the
Kokkos threads and the “j” loop across the simd lanes, every “filter” element is
reused for the “lvl” number of “j” iterations. Also, two levels of parallelism help
reusing elements in different rows “in” and “out” (similar to a stencil block). Of
course, these improvements can be obtained manually without using the prim-
itive. However, using the primitive introduces these transformations implicitly
and improves the programmability, portability and the maintenance of the code.

The mini-batch loop in the original code is parallelized across OpenMP
threads/cuda blocks. The code is then auto-vectorized across the j loop using
the directive #pragma simd on cpu and mapping the x dimension cuda threads
across the j loop on a gpu. #pragma unroll was used to unroll the full lengths
of the fi and fj loops. The code was then converted into a simd primitive code
instead of using #pragma simd. Different combinations of mini batch sizes (3584
and 7168), filter sizes (3× 3, 5× 5 and 7× 7), number of input (3, 5 and 10) and
output channels (3, 5 and 10) were tested for different values of the lvl.

Goal: Evaluate the effectiveness of the lvl against the vectorized baseline.

Expectation: As the baseline is efficiently auto-vectorized, using simd prim-
itive with lvl=pvl will not perform any better. However, setting lvl=2*pvl
or 4*pvl should give speedups on both cpu and gpu due to instruction level
parallelism and data reuse.

4.3 Compact gemm

The general matrix-matrix multiplication (gemm) on a batch of small, dense,
matrices is widely used within scientific computing and deep learning. Thread-
parallel gemm operations over collections of matrices organized in an interleaved
fashion can be made efficient and portable using the simd primitive [18]. This
approach is implemented within KokkosKernels, and used in a large-scale CFD
code called SPARC [13]. The KokkosKernels’ batched gemm kernel achieves per-
formance comparable or sometimes better than vendor provided libraries such
as Intel’s math kernel library (mkl) and Nvidia’s cuBLAS [18,31]. KokkosKer-
nels maintains two versions of batched gemm - the cpu version which uses an
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intrinsics-based simd primitive, and a cuda version, which does not have a simd
primitive. The only change needed in the kernel to utilize the portable simd
primitive was to map the matrix dimension to the simd dimension by casting
matrices from Kokkos views of doubles to Kokkos views of the simd primitive.
Thus, each cpu thread (or a section of a cuda warp) carried out each operation
on the lvl number of matrices in simd fashion. Both kernels had the same tiling
optimizations with tile sizes of 3× 3 and 5× 5 to extract spatial and temporal
locality among matrix elements. Experiments were carried out using four matrix
sizes: 3× 3, 5× 5, 10× 10 and 15× 15 using a batch of 16,384 matrices on all
three platforms.

Goal: The goal is to compare the performances of the new simd primitive and the
existing high performance explicitly vectorized code on cpu. Any performance
degradation will reveal the associated overheads, if any.

Expectation: The simd primitive should perform as well as the code without
the simd primitive on both cpu and gpu. Neither a performance boost nor any
extra overhead is expected.

4.4 Embedded Ensemble Propagation

This kernel is heavily used in the uncertainty quantification of predictive sim-
ulations which, involve evaluation of simulation codes on multiple realizations
of input parameters. The efficiently auto-vectorized baseline kernel multiplies
a sparse matrix by an ensemble of vectors with matrix rows distributed across
threads and vectors distributed across simd lanes. Vectors are arranged in an
interleaved fashion similar to batched gemm. This design, introduced by Phipps
[27], allows the reuse of matrix values across all vectors and provides up-to 4x
speedups over traditional batched sparse matrix-vector multiplication. Instead
of repeating Phipps’ experiments, the vectorized ensemble version itself is used
as a baseline. Compared to the vendor-provided libraries, i.e., Intel’s mkl and
Nvidia’s cusparse, the baseline kernels exhibit 1.8x to 3x speedup on knl and
1.3x to 1.6x on p100, respectively (See Table 2). These observations are in line
with Phipps’ experiments. This baseline kernel is converted to use our simd type
by casting data structures from double to those using the simd primitive and set-
ting the lvl equal to the ensemble length. Hence, any performance degradation
from baseline can show the shortcomings in the lvl implementation.

Goal: The goal is to find out any overhead associated with the simd primitive by
evaluating its performance against the highly optimized baseline that implements
the same design and parallelism pattern but without using the primitive.

Expectation: The code with the simd primitive should perform as well as the
baseline on cpu and gpu. No performance boost and no overhead is expected.

5 Results and Performance Analysis

The rows in Fig. 6 show the results of four use cases, and the columns indicate
three platforms. Each plot shows execution time along with the speedup com-
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pared to the baseline. The baseline is either the auto-vectorized code (AV) or
the code with no simd primitive (nsp) colored in cyan. Results of using the simd
primitive with different values of the lvl are represented by “sp”. As mentioned
earlier, the experiments have three goals: a) Find out performance improvement
when the code is not efficiently vectorized (pde and 2dConv cases), b) Ensure
that performance improvement on one platform, does not hamper the perfor-
mance on another platform (pde), and c) Measure the overhead of the new
primitive against the efficiently vectorized baseline, where the expected speedup
is 1x (gemm and SpMV). The performance of each use case is analyzed below.

The vectorized code (av and sp) both executes fewer instructions than the
scalar code, but the vector instructions execute more slowly than the scalar
counterparts, consuming more cycles. Hence, the Instructions Per Cycle (IPC)
count does not reflect the exact speedup. Similarly, knl hardware counters do not
accurately measure floating point operations (FLOPs), and numbers often get
skewed while measuring floating point instructions (FLIPs) [16]. Hence, simple
counts such as the total number of instructions and cache hits are used here for
performance analysis. The performance metrics and events are collected using
Intel vtune amplifier, Nvidia nvprof, and the papi library.

5.1 PDE Assembly

The knl plot in Fig. 6(a) shows the sp version that achieves 5.7x and 7.8x
speedups over AV for mesh patch sizes of 163 and 323, respectively. Analysis of
the 163 patch problem shows the number of instructions (inst_retired.any)
executed reduced from 1273 million for the AV code to 204 million for the sp
code (Table 3). Similarly, L1 cache data misses (papi_l1_dcm) decreased from
2.4 million for AV to 1.2 million for the sp. In this case, some of the cache lines
are evicted over the course of one iteration due to the complex operations and
the 30+ different arrays used in the kernel. When the next iteration starts, at
least some of the memory is missing from the L1 cache due to earlier evictions.
However, the vectorized code can take advantage of entire cache lines, and all
eight double elements from the 64 bytes cache lines can be read by eight vector
lanes, thus fully utilizing data fetched in a cache line. The increased cache line
efficiency along with vectorization provides near optimal speedup.

The p100 results show the nsp and sp both performing equally well. As the
nsp running on the gpu runs in simt mode, the sp does not provide any extra
level of parallelism and cannot provide an extra boost. These results showing
1x speedup are important in showing that the sp does not create any overhead
on a gpu, even when the nsp kernel causes register spilling. All the metrics
collected by nvprof showed similar values in this case. Increasing the value of
lvl to 2xpvl slowed down the performance by 1.5x, because the increased lvl
increased register spilling (evident from increased local memory accesses).

The sp version of CharOx kernel boosted performance by 2.2x and 2.3x for
patch sizes of 163 and 323, respectively, on ThunderX2. The ThunderX2 metrics
show a similar trend as that observed on knl. The total number of instructions
executed are reduced from 4253.8 million for the nsp to 1823.1 million for the
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Fig. 6. Comparison of execution times along with speedups for different kernels
on different architectures. Speedup “1x” indicates zero new overhead due to the new
primitive.
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sp. Again, vectorization reduced the number of cache misses from 5.7 million
to 1.5 million, which provided super-linear speedups up to 2.3x where the pvl
supported by the hardware for double precision is only 2.

Table 3. Performance metrics for CharOx. (counts in millions)

Intel knl Cavium ThunderX2
Number of
instructions

L1 cache
data misses

Number of
instructions

L1 cache
data misses

No simd primitive 1273 2.4 4253 5.7
simd primitive 204 1.2 1823 1.5

5.2 2D Convolution

Figure 6(b) shows speedups up to 3x on knl and 1.6x on p100 for the 2D
Convolution kernel shown in Algorithm2. The input image size, the number
of input and output channels were set to 64x64, 3 and 10, respectively. The
image was padded by filter size/2 number of cells. The baseline nsp and the sp
with lvl=pvl perform equally well as both get efficiently vectorized. Setting
lvl=2xpvl and 4xpvl gives better results on both knl and p100.

Line number 8 of Algorithm2 multiplies “in” with “filter” and accumulates
the result in “out”. Vectorizing the j loop coalesces accesses for “in” and “out”.
“filter” is independent of the j dimension, and hence the value is reused across all
vector lanes. When the lvl is set to 2xpvl (or 4xpvl), the same filter value gets
reused across twice (or four times) the pvl elements. An assembly instruction
inspection shows the register containing “filter” was reused across multiple fma
operations. All these fma operations are independent of each other and can
exploit instruction level parallelism. This “unroll and jam” transformation can
be introduced by simply increasing the value of lvl. Using lvl in this case can
save developers having to manually perform “unroll and jam” - especially for
larger codes - and maintain readability of the code.

Table 4. Performance metrics for 2DCov. (counts in billion)

Intel knl Nvidia P100
Number of
instructions

Number of
memory loads

Number of
instructions

Number of
memory loads

L2 cache hit
rate

No simd primitive 6.2 3 9.8 1.3 25%

simd primitive 2.6 2 6.8 0.8 83%

The reuse of the “filter” values across the j iterations reduced the number of
memory loads from 3 billion for the nsp to 2 billion for the sp with lvl=4xpvl on
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knl and from 1.3 billion to 0.8 billion on the p100. The number of instructions
executed reduced by 2.3x and 1.4x on knl and p100 platforms, respectively.
The L2 cache hit rate improved on the p100 from 25% to 83%. Additionally,
the number of control flow instructions executed was reduced by a factor of
3.5 on the p100 due to outer loop unrolling (see Table 4). The effectiveness
of the primitive and lvl can be judged from the fact that the naive code in
Algorithm2 with the simd primitive and lvl=4xpvl was only 20% slower than
the highly tuned cuDNN library by Nvidia as shown in Table 5. A small fix
to use gpu’s constant memory to store the filter gave additional boost and the
naive code performed equally well as the cuDNN library. Thus, the primitive can
help application programmers who may focus on the algorithms and applications
rather than spending time on specialized performance improvement techniques
such as tiling, loop unrolling, using shared memory, etc.

Table 5. Performance comparison with Nvidia cuDNN. Execution time in milliseconds

Filter size cuDNN simd primitive
lvl=4xpvl

simd primitive
lvl=4xpvl with
constant memory

3× 3 11 13 11
5× 5 24 31 25
7× 7 49 59 47

Unfortunately, experiments for 2D Convolution could not be conducted on
ThunderX2 because the Astra cluster was moved to a restricted domain by
Sandia National Laboratories.

5.3 Compact gemm

Figure 6(c) shows that the nsp and sp versions perform equally well on the
knl and p100 (speedup is 1x) and that the sp does not create any overhead.
These results are as expected because KokkosKernels (the nsp version) contains
explicitly vectorized code for knl and Kokkos code tuned explicitly for gpus.
These observations are confirmed by the same number of instructions executed
by the nsp and sp versions - 23 million on knl and 20 million on p100.

However, the ThunderX2 results show an improvement of up to 1.3x. The
architecture-specific intrinsic back-end for ThunderX2 had not yet been updated
in the KokkosKernels, and it falls back to an emulated back-end using arrays
and “for” loops. Although this nsp version gets auto-vectorized by the compiler,
the sp leads to more efficient vectorization. The nsp version executes 146 mil-
lion instructions whereas the sp version executes 114 million instructions on
ThunderX2.
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5.4 Embedded Ensemble Propagation

The kernel is evaluated using 13 matrices from the University of Florida sparse
matrix collection. However, results from only four matrices (listed in Table 2)
that represent the general trend are presented for the sake of brevity. Sparse
matrix-vector ensemble multiplication results on the gpu shown in Fig. 6(d)
indicate both versions, nsp and sp, perform equally on the p100 gpu. Both the
versions are efficiently ported to the simt model and use the same ensemble logic
for data reuse. Therefore, the matching gpu performance for both versions meets
our expectation and indicates that the primitive does not cause any overhead.

More surprising were speedups up to 1.3x on knl and and 1.1x ThunderX2.
Profiling showed about 10% to 20% reduction in the number of instructions
executed for different sparse matrices and different ensemble sizes. While the
FLOPs were, of course, the same for both versions, an assembly code inspection
revealed the reason behind the speedups. The result of matrix - vector ensemble
multiplication is also a vector ensemble. The design by Phipps et al. [27] fetches
a matrix element and multiplies all vectors with it to avoid repeated accesses
to matrix elements, which are costly when the sparse matrix is stored in the
“compressed row storage” format. Although the Phipps design performs faster
than the traditional batched multiplication, it has to repeatedly fetch elements
from the resultant vector ensemble to do the accumulation. In the nsp version,
the compiler generates three vector instructions for every vector operation: (i)
a fetch of the result ensemble from memory to a vector register, (ii) a vectored
fused-multiply-add (fma) on the result stored in a vector register with a vector
from memory and a matrix element stored in vector register, and (iii) a store
of the result from the vector register in the memory. When the sp is used, the
ensemble length is mapped to the lvl. This mapping helps the compiler to
deduce the array length and number of registers. Hence, for N = 64, all result
elements get loaded into eight vector registers only once, and fma operations are
repeated on these registers. Hence, using the sp eliminates the need to transfer
the result back and forth from the memory and takes only one store to move the
accumulated result from the vector registers to the memory. Thus, one load and
one store are saved for every fma operation, resulting in a more efficient code.

6 Assigning the Optimal LVL Value

The lvl value depends on register availability and levels of parallelism, both
dictated by the algorithm and hardware. If the lvl is set to 2xpvl or 4xpvl,
the compiler can usually allocate the structure into registers. Then the code can
take advantage of instruction level parallelism, if supported by the hardware,
as observed in the cases of 2DCov and SpMV. When, however, the lvl was set
to 8xpvl, the compiler allocated the structure into memory instead of registers
and so hampered the performance of 2DCov with extra loads and stores. The
CharOx kernel is very complicated and register spilling happens even in the
nsp. Therefore, setting lvl= 2xpvl, increased the register pressure further and
resulted in slower execution in contrast to other use cases. The second factor in
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choosing the right lvl is the number of levels of parallelism an algorithm can
offer. If the both levels of parallelism, thread level and simd level, are applied
to the same loop (as in gemm or CharOx), then increasing the lvl effectively
increases the workload per thread and decreases the degree of parallelism avail-
able, which can cause a load imbalance among cores. The gemm kernels were
hand-tuned to unroll and jam along matrix rows and columns. The optimization
gave enough workload to fully exploit available instruction level parallelism. As
a result, increasing the lvl did not provide any further advantage.

7 Conclusion and Future Work

This study describes a portable simd data type whose primary benefit is to
achieve vectorization in a portable manner on architectures with vpus and gpus.
This capability has a potential to be useful for massive applications that use
Kokkos to extract performance from future architectures (including exascale
architectures), without explicitly tuning the user code for every new architec-
ture. The largest benefits the simd primitive were observed in the most complex
kernel, which was hard to auto-vectorize. Performance boosts of up to 7.8x on
knl and 2.2x on Cavium ThunderX2 can be observed for double precision ker-
nels (pde). For the kernels which are vectorized/ported to gpus, the new simd
primitive results in the speedups up-to 3x on knl, 1.6x on p100 and 1.1x on
ThunderX2 due to more efficient vectorization (SpMV), cache reuse (2dConv),
instruction level parallelism (2dConv) and loop unrolling (2dConv and SpMV).
The comparison with efficiently vectorized kernels showed minimal overhead for
pde and zero overhead for gemm and SpMV kernels. The new primitive makes
outer loop vectorization easier (as shown with CharOx, SpMV and 2dConv).
The pde example proved that performance on one platform can be improved
without compromising the performance on another platform.

The Kokkos-based design will make it easier to port this simd primitive
to future gpu exascale architectures such as A21, and Frontier. The Kokkos
profiling interface can possibly be extended to profile the primitive-based code
in the future. Preliminary experiments showed that the new primitive can be
easily extended to both OpenACC and OpenMP 4.5. It will be interesting to
compare the performance of OpenACC, OpenMP 4.5/5.0 (in the future), and
Kokkos.

Data Availability Statement

Summary of the Experiments Reported

The performance comparison of the portable SIMD primitive (the main contribu-
tion) was done using four different problems on Intel’s KNL, Nvidia’s P100 and
Cavium ThunderX2. Bowman, White and ASTRA clusters from Sandia National
Laboratory were used to conduct the experiments along with some machines
available at SCI Institute, University of Utah and kingspeak cluster at CHPC,
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University of Utah. The problems used in experiments include: CharOxidation
kernel from Uintah framework, 2d convolution used in deep neural networks,
batched general matrix multiplication and ensembeled sparse matrix - vector
multiplication. More details about each problem are described in the research
paper.

Artifact Availability

Software Artifact Availability: All author-created software artifacts, details
regarding the baseline experimental setup, and modifications made for the paper
are maintained in a public repository under an OSI-approved license and can be
accessed using the following DOI:

List of URLs and/or DOIs where artifacts are available:
10.6084/m9.figshare.11553012

Artifact Evaluation

Verification and Validation Studies: The result from all four baselines (without
SIMD primitive) were compared to the modified version (using the SIMD prim-
itive) and the exact match was ensured between both values to ensure accuracy
of the code.

Accuracy and Precision of Timings: The execution timings from all four base-
lines (without SIMD primitive) were compared to the modified version (using
the SIMD primitive) to evaluate the performance. Each experiment was repeated
at least 100 times and the average of the timings is used to calculate speedups.
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