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Preface

The importance of the fungal cell wall has been recognized for centuries.
Historically, chitin was first discovered and analysed in mushrooms by H. Braconnot
in 1811 after a potassium hydroxide treatment, a chemical treatment which remains
to date the most appropriate to investigate the composition of the cell wall of yeast
and moulds. The second-most abundant on earth after cellulose and discovered 30
years before cellulose, chitin is present in all kingdoms (Chromista, Animalia,
Protozoa and Fungi) except plants and has been at the origin of the separation of
plants from the other kingdoms. Another major component of the cell wall is the
polysaccharide b-1,3 glucans which has been discovered by Mangin at the end of the
nineteenth century. It has been the topic of much structural research in the first half
of the last century favoured by the Beer/Whisky Scottish industry but also recog-
nized at the same time as one of the first potent immunostimulant.

In the early times, the study of the fungal cell walls has been only devoted to the
analysis of the cell wall polymers. Two pioneers (with very different characters!)
did open the mystery box of the cell wall synthesis: a student of F. Leloir, E. Cabib
who has identified biochemically the role of the nucleotide sugars in the synthesis
of chitin and glucans and S. Bartnicki Garcia who was the first one to identify
organelles responsible for this synthesis and has launched the role of cell biology in
the understanding of cell wall synthesis. This was 50 years ago. Then came the
revolution of molecular biology and the identification of many genes since 1/3 to
1/4th of the total genome is now considered to be devoted to the construction of the
cell wall. Too many genes indeed to be studied by a too low number of cell wall
scientists to be able to reach a full picture of the cell wall synthesis metabolism
which remains today poorly understood.

For a cell wall scientist, the question often arises: how did you fall into the
“magic potion” of the cell wall research and spend your life to the study of the
fungal cell wall. One reason has been for me the love of natural beauties: looking at
swimming Entomophthorales protoplasts in an insect hemocoel look like scuba
diving below a flight of Manta rays in an Indian ocean. For other scientists, the
fungal cell wall was a way to obtain an international recognition: Toll like receptors
or dectin1 would not have been identified without the use of b1,3 glucans, a major
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component of the fungal cell wall. More down to earth for many other scientists, it
has just been the desire to answer biological and mycological questions since the
cell wall is a unique and essential organelle protecting the fungus against external
stress; a role which has also attracted the diagnostic and drug industry.

The fungal cell wall is a fascinating topic but progresses in the area have been
desperately slow. We hope that the reading of these chapters will stimulate the
interest of many new young scientists. Dragging more people to this field is today
an important challenge. A multi-facetted experimentalist approach of the cell wall
with new biochemistry, immunology or cell biology technologies will certainly be
exciting incentives.

I thank all the contributors to this Current topic for their patience during my
editing and Anne for her support and help in the reviewing of the different chapters.

Heraklion, Crete, Greece Jean-Paul Latgé
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Abstract The cell wall of pathogenic fungi is highly important for the develop-
ment of fungal infections and is the first cellular component to interact with the host
immune system. The fungal cell wall is mainly built up of different polysaccharides
representing ligands for pattern recognition receptors (PRRs) on immune cells and
antibodies. Purified fungal polysaccharides are not easily available; in addition, they
are structurally heterogenic and have wide molecular weight distribution that limits
the possibility to use natural polysaccharides to assess the structure of their active
determinants. The synthetic oligosaccharides of definite structure representing
distinct polysaccharide fragments are indispensable tools for a variety of biological
investigations and represent an advantageous alternative to natural polysaccharides.
The attachment of a spacer group to these oligosaccharides permits their efficient
transformation into immunogenic glycoconjugates as well as their immobilization
on plates or microbeads. Herein, we summarize current information on synthetic
availability of the variety of oligosaccharides related to main types of fungal cell
wall components: galactomannan, a- and b-mannan, a- and b-(1 ! 3)-glucan,
chitin, chitosan, and others. These data are supplemented with published results of
biochemical and immunological applications of synthetic oligosaccharides as
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molecular probes especially as the components of thematic glycoarrays suitable for
characterization of anti-polysaccharide antibodies and cellular lectins or PRRs.

1 Introduction

Nowadays, the prevalence of fungal infections, especially severe invasive mycoses,
is increasing all over the world and emerges as a challenge for modern medicine
(Brown et al. 2012). The mortality rate associated with invasive fungal infections
often exceeds 50%, which is connected both with delays in diagnostic and limited
number of available anti-fungal drugs. Difficulties in disease management also arise
from the poorly understood mechanism of interaction between the host immune
system and fungal pathogens and especially the mechanism of fungal adaptation to
host conditions allowing escape from the host defense reactions.

The fungal cell wall is the first component of a pathogen in contact with the
immune system. The cell wall of most fungi contains a structural skeleton com-
posed of chitin and branched b-(1 ! 3)-glucan. This rigid central core is decorated
with amorphous polysaccharides in which composition varies with the fungal
species. Figure 1 is a schematic representation of the cell wall of different fungal
species although the cellular localization of the different components of the cell wall
is not clearly demonstrated for most polysaccharides. Moreover, the covalent and
noncovalent forces holding together the different components remain often
hypothetical.

Fig. 1 Schematic view of cell wall composition of main human fungal pathogens. Reprinted by
permission from Springer Nature: Nature Reviews Microbiology, vol. 14, Interactions of fungal
pathogens with phagocytes, Erwig L.P., Gow N.A.R., pp. 163–176, Copyright, 2016
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It is more and more obvious that polysaccharides play a major role in the
immune interaction of the host with the pathogen (Hall and Gow 2013; Erwig and
Gow 2016; Snarr et al. 2017). Moreover, cell wall polysaccharide antigenic markers
of invasive fungal infections used in their diagnosis (Nelson et al. 1990; Tamura
and Finkelman 2005; Cuenca-Estrella et al. 2012; Ullmann et al. 2018). In spite of
the obvious importance of fungal cell wall polysaccharides for immune response
modulation and for fungal infections diagnostic, little is known about the exact
structure of their antigenic or immunogenic epitopes. This knowledge is essential
for the understanding of the cellular immune response against the cell wall and for
the development of diagnostic tests based on the use of circulating antigens
antibodies.

To date, only the role of b-(1 ! 3)-glucan and its associated receptor (Dectin 1)
has been precisely analyzed (Brown 2006).

Precise quantitative analysis of carbohydrate-binding properties of anti-fungal
lectins and antibodies could be performed using arrays composed of structurally
defined glycans representing all the major carbohydrate structures present in the
cell wall of fungal pathogens. The idea of using a comprehensive carbohydrate
array for a wide range of glycobiology purposes has been proposed early by the
Consortium for Functional Glycomics (CFG, http://www.functionalglycomics.org)
since 2001 (Blixt et al. 2004; Raman et al. 2006). A number of thematic gly-
coarrays were designed and successfully applied to analyze viral and bacterial
infections, cancer process, autoimmune disorders, etc. For example, microarrays
composed of human glycans were used to survey the host specificity of different
strains of influenza viruses (Stevens et al. 2006). Arrays were used for the analysis
of glycan-specific antibodies against tumors in patient sera (Wang et al. 2008). An
array composed of synthetic glycans related to cell wall polysaccharides from the
human pathogen Mycobacterium tuberculosis and other mycobacteria was devel-
oped and applied for screening of specificity of immune system receptors (Zheng
et al. 2017).

Various formats of arrays in which carbohydrate ligands are attached to
microbeads, microtiter plate, chip, or glass slide have been used to study glycan–
protein interactions. The immobilization techniques, though widely varying, can be
divided into two main categories—noncovalent and covalent binding (Park et al.
2013) (Fig. 2). An example of noncovalent binding is attachment of
lipid-conjugated oligosaccharides (neoglycolipids, NGLs) to nitrocellulose surface
via hydrophobic interactions which is widely used to prepare glycan microarrays
(Li and Feizi 2018) (Fig. 2a). Covalent and site-specific immobilization requires
both introduction of a reactive functional group into the glycan and chemical
derivatization of the surface (e.g. attachment of amine-linked sugars to the
N-hydroxysuccinimide ester-coated surface, Fig. 2b) (Blixt et al. 2004).

Another immobilization strategy is based on a very strong biotin–streptavidin
interaction (Kd * 10−15 M) which, being formally noncovalent, is energetically
closer to covalent binding. The attachment of biotin-linked sugars to the
streptavidin-coated surface (Fig. 2c) has strong advantages. First of all, the amount
of ligand is defined by the binding capacity of the surface which is well
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documented. Thus, the molar density of the coating glycan is constant and does not
depend on its molecular weight, charge, and hydrophilic/hydrophobic properties.
Another advantage is the standardized distance between binding sites. The strep-
tavidin molecule is composed of four biotin-binding subunits with the average
distance between biotin molecules of about 2.5 nm. For a standard commercial
microtiter plate with the biotin-binding capacity of 5 pmol per well, the calculated
average distance between biotin-binding streptavidin subunits is 6.1 nm assuming
their uniform distribution. This exceeds the size of the immobilized oligosaccharide
molecules allowing the study of the interaction properties of individual carbohy-
drate ligands (Galanina et al. 2003).

The value of carbohydrate arrays as a powerful and easy tool for investigation of
protein–carbohydrate interactions is well recognized. However, there are no pub-
lications reporting a comprehensive glycoarray covering all the polysaccharide
types of the fungal cell wall. In this review, we summarize the currently available
information on synthetic availability of the variety of oligosaccharides related to
major fungal cell wall polysaccharides.

2 Thematic Glycoarrays

Due to their insolubility and their complex heterogenic structure, pure fungal
polysaccharides are not easy to obtain. This complicates the possibility to use them
as probes to investigate their immune role. An alternative to natural polysaccharides
is to use synthetic oligosaccharides of definite structure representing distinct
polysaccharide fragments. For over 15 years, our laboratory has been performing
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Fig. 2 Strategies of glycan immobilization on a surface. a noncovalent attachment of
lipid-conjugated glycans to nitrocellulose; b covalent attachment of amine-linked sugars to the
NHS ester-coated surface; c attachment via biotin–streptavidin interaction; and d structure of
biotin–streptavidin complex (PDB: 6j6j), the distance between biotin-binding sites is shown
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systematic synthesis of oligosaccharides related to the main types of fungal cell wall
polysaccharides: galactomannan, a- and b-mannans, a- and b-(1 ! 3)-glucans,
chitin, galactosaminogalactan, galactoxylomannan, and others. The use of such
oligosaccharides is illustrated with examples of biochemical and immunological
applications of the use of synthetic oligosaccharides as molecular probes suitable
for the characterization of anti-polysaccharide antibodies and cellular lectins.

2.1 Galactomannan

A specific carbohydrate antigen produced by Aspergillus and Penicillium species is
a galactomannan (Latgé et al. 1994). It is a complex heteropolysaccharide built up
of mannopyranose and galactofuranose monosaccharide residues. Latgé et al.
(1994) proposed its structure representing a-(1 ! 2)-/a-(1 ! 6)-linked poly-D-
mannoside backbone bearing b-(1 ! 5)-linked oligogalactofuranoside side chains
attached to some of the mannose units via either b-(1 ! 3)- or b-(1 ! 6)-bonds.
Shibata et al. (Kudoh et al. 2015; Krylov et al. 2018a) revealed the presence of
additional structural elements: b-(1 ! 6)-linkage within the oligogalactofuranoside
side chain and in addition to b-(1 ! 3)- or b-(1 ! 6)-bonds, b-(1 ! 2)-attach-
ment of the galactofuranoside side chain to the mannan backbone (Fig. 3a).

The first synthesized oligosaccharide fragments of the galactomannan corre-
sponding to the homo-galactofuranosyl chains of variable length were either naïve
or biotinylated (Veeneman et al. 1987; Zuurmond et al. 1990; Cattiaux et al. 2011).
The first synthesis of a heterosaccharide fragment containing both galactofuranosyl
and mannopyranosyl residues was then undertaken (Fu et al. 2005). Recently,
galactomannan-related oligosaccharides (Argunov et al. 2015, 2016; Krylov et al.
2018a) have been synthesized employing an alternative synthetic strategy based on
a new reaction in carbohydrate chemistry, namely pyranoside-into-furanoside
rearrangement (Krylov et al. 2014, 2016; Gerbst et al. 2019), and controlled O
(5) ! O(6) benzoyl migration (Argunov et al. 2016). A library of 13 synthetic
oligosaccharides (shown in Fig. 3B) was prepared in the form of aminopropyl
glycosides allowing their further modification, conjugation, and application in
different fields of glycoscience.

The synthetic galactomannan fragments (10 on Fig. 3b) and immunogens pre-
pared thereof were used for generation of monoclonal antibodies (mAb) and
characterization of their specificity (Matveev et al. 2018). Thus, 7B8 and 8G4
mAbs, obtained by immunization of mice with BSA-conjugate of the synthetic
pentasaccharide, efficiently recognized natural galactomannan of A. fumigatus.

The glycoarray formed from biotinylated oligosaccharides related to galac-
tomannan (Fig. 3b) was used to establish fine carbohydrate specificity of
anti-galactomannan poly- and monoclonal antibodies.

The galactomannan glycoarray was employed to reinvestigate the carbohydrate
specificity of the EB-A2 monoclonal antibody used in the commercial Aspergillus
sandwich immune assay. It was shown that EB-A2 could recognize
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oligosaccharides sequences containing only disaccharide Galf-b-(1 ! 5)-Galf
fragment (Krylov et al. 2019), but not the tetrasaccharide one as had been reported
previously (Stynen et al. 1992). This result could explain the occurrence of
false-positive signals due to the presence of such epitope not only in A. fumigatus
galactomannan but also in other bacteria and non-Aspergillus fungi. Monoclonal
antibodies 7B8 and 8G4 recognize longer oligosaccharides sequences (Matveev
et al. 2018) containing b-(1 ! 5)-linked trigalactofuranoside (8 on Fig. 3b) and
pentasaccharide b-D-Galf-[(1 ! 5)-b-D-Galf]3-(1 ! 6)-a-D-Manp (10 on Fig. 3b)
respectively.

Assaying of polyclonal rabbit antibodies obtained using different preparations of
Aspergillus species as immunogens and purified on affine sorbent revealed different
specificity profiles of anti-galactomannan antibodies. In all the cases, the smallest
carbohydrate fragment recognized by the pAb consisted of two b-(1 ! 5)-linked
galactofuranosyl residues (Krylov et al. 2018c, b).
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Synthetic oligosaccharides were also used to investigate the immunobiological
activity of the galactomannan. Its action was studied using RAW 264.7 cell line
murine macrophages and human PBMCs. Significant immunomodulating efficacy
of the galactomannan-related oligosaccharides was established by a proliferation/
cytotoxicity assay, phagocytosis and inductive cytokines, and growth factors
release (Paulovičová et al. 2017). Oligosaccharides with Galf(1 ! 5)Galf blocks
was shown to induce the secretion of cytokines and chemokines by immune cells
(Wong et al. 2020).

2.2 a- and b-Mannan

The outer layer of the cell wall of Candida species consists of mannoproteins. Their
mannan moieties are important for host–fungal interactions and virulence. The
mannan has a comb-like structure with an a-(1 ! 6)-linked backbone bearing
different types of oligomannoside side chains depending on the fungal species
(Shibata et al. 2012) (Fig. 4a). Some oligosaccharides have a phosphodiester
linkage which can be selectively cleaved by treatment with a weak acid solution,
releasing the “acid-labile” fraction of the mannan. Early studies have shown that
these mannoside fragments are responsible for the serotyping of Candida species
and are so-called antigenic factors (Fig. 4a) (Suzuki 1997). Numerous studies have
also shown the essential immunological role of these mannans (Netea et al. 2008).
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The synthesis of oligosaccharides related to fragments of yeast cell wall man-
nans was described in a monograph published in 2009 (Collot et al. 2009). The
synthetic works published afterward were considered in a review by Karelin et al. in
2017 (Karelin et al. 2017). The systematic syntheses of oligosaccharides related to
Candida mannan have been performed in our laboratory since 2007 and allow
construction of a representative library of aminopropyl glycosides corresponding to
main antigenic factors of yeast pathogens (Fig. 4b). For example, linear a-(1 ! 6)-
linked oligosaccharides 1–4 represent the mannan backbone, a-(1 ! 2)-linked
oligosaccharides 5–8 correspond to antigenic factor 1 (Karelin et al. 2007), and
branched oligosaccharides 11–13 are related to antigenic factor 4 (Karelin et al.
2010; Argunov et al. 2011).

Preparation of b-linked oligomannosides is a special problem due to the lack of
efficient and reliable corresponding synthetic methods. This task commonly
requires application of original approaches. Chemo-enzymatic synthesis was
developed for preparation of disaccharide ligand 14 with a b-mannoside linkage. It
included chemical cleavage and enzymatic dephosphorylation of biotechnologically
available phosphomannan followed by its chemical derivatization (Karelin et al.
2019). The strategy based on direct b-mannosylation with conformationally rigid
4,6-O-benzylidene protected mannosyl donors was applied for the synthesis of
ligands 15–20 related to antigenic factors 5 and 6 (Karelin et al. 2015, 2016).

Synthetic oligosaccharides and corresponding conjugates mimicking C. albicans
mannan were employed to study the interactions of immune cells with Candida.
BSA-based conjugates of synthetic oligomannosides effectively induced humoral
and cell-mediated immunity. The immunomodulating activity of the conjugates was
evaluated based on the induction of pro-inflammatory cytokines. Mice immuniza-
tion with BSA-conjugates resulted in the production of polyclonal antibodies
against synthetic oligosaccharides that were capable of recognizing branched a‐
oligomannoside structures on the cell wall of C. albicans yeast and hyphae
(Paulovičová et al. 2013a). Additionally, the anti-sera obtained after mice immu-
nization with BSA-mannooligosaccharides conjugates were able to enhance
phagocytosis of C. albicans cells by polymorphonuclear leukocytes (Paulovicová
et al. 2010; Paulovičová et al. 2013b). It is also worth to mention that the collected
databases of NMR-spectral characteristics for synthesized oligosaccharides can be
used for the development of computer-assisted method for structural analysis of
fungal mannans as it was applied for bacterial polysaccharides including vicinally
branched ones (Lipkind et al. 1992).

2.3 a- and b-(1 ! 3)-Glucans

Although the glucans (and especially b-(1 ! 3)-D-glucan with their associated
Dectin1 receptor) have been shown to be essential in the pathogenic life of different
fungi, their immunological role has been insufficiently analyzed. The main
restriction for the use of glucans from natural sources arises from their limited
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solubility. Accordingly, the soluble oligosaccharides related to specified glucan
fragments and conjugates thereof are highly demanded mimetics of such
polysaccharides.

The synthetic approaches to b-(1 ! 3)-D-glucan-related oligosaccharides are
relatively well elaborated (Tsvetkov et al. 2015). Syntheses of linear (Yashunsky
et al. 2016a) and branched (Yashunsky et al. 2016b) 3-aminopropyl glycosides of
b-(1 ! 3)-D-glucooligosaccharides were performed. b-(1 ! 6)-D-Glucotetraoside
and the corresponding biotinylated derivative was synthesized from monosaccha-
ride building blocks via successive glycosylation with a monosaccharide donor
(Yashunsky et al. 2018).

The synthesis of a-(1 ! 3)-glucooligosaccharides with a predefined structure
required special methods of 1,2-cis-glycosylation. Strategies based on remote
participation of acyl protecting groups were developed (Komarova et al. 2014,
2016) and successfully applied (Komarova et al. 2015, 2018) to obtain oligo-a-
(1 ! 3)-D-glucosides containing from three to eleven glucose units (Fig. 5). An
alternative synthetic approach to the assembly of oligosaccharides related to a-
(1 ! 3)-glucans (Wang et al. 2019) and a-(1 ! 4)-glucans (Wang et al. 2018) was
suggested in Codée’s group. However, to the best of our knowledge, the results of
their biochemical and immunological application studies have not been published
yet.

Synthetically prepared oligosaccharides were used to generate mono- and
polyclonal antibodies. For example, mouse monoclonal antibodies 3G11 and 5H5
were generated using synthetic nona-b-(1 ! 3)-D-glucoside conjugated with the
bovine serum albumin (G9-BSA) (Matveev et al. 2019). The glycoarray which
included linear and branched synthetic oligosaccharide demonstrated that 5H5
mAbs recognized the linear triglucoside fragment, while 3G11 mAbs could bind the
pentasaccharide. In addition, anti-C. albicans activity of 3G11 and 5H5 mAbs was
demonstrated in vivo and in vitro experiments. Active immunization by syntheti-
cally prepared G9-BSA also had revealed effective induction of specific humoral
responses against C. albicans infection (Paulovičová et al. 2016).

Immunization of mice with the BSA-conjugate of penta-a-(1 ! 3)-D-glucoside
led to generation of antibodies that recognized a-glucan on A. fumigatus cell surface
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(Komarova et al. 2015). Additionally, synthetic biotinylated oligo-a-glucosides
loaded on a streptavidin-coated plate were able to recognize human anti-a-glucan
antibodies in sera of patients with aspergillosis and induced cytokine responses
upon stimulation of human peripheral blood mononuclear cells (Komarova et al.
2018).

2.4 Polysaccharides Composed of 2-Deoxy-2-Aminosugars

In this section, a group of cell wall polysaccharides and corresponding oligosac-
charide fragments composed of amino sugars is considered. The most common
among them is chitin, an insoluble linear polymer, built up of b-(1 ! 4)-linked N-
acetylglucosamine units. This polysaccharide forms the inner layer of the fungal cell
wall and is responsible for its rigidity (Erwig and Gow 2016). Deacetylated chitin,
termed chitosan, is produced by many fungal species during their life cycle and plays
regulatory and signaling roles. Chitin blocks the recognition of C. albicans by
human PBMCs and murine macrophages, leading to significant reductions in
cytokine production (Mora-Montes et al. 2011). Galactosaminogalactan (GAG) is
the polysaccharide exposed on the outer surface of A. fumigatus cells. It acts as an
immunosuppressor helping the fungal pathogen to survive in the host medium
(Fontaine et al. 2011). Structurally, GAG represents a linear heterogeneous
polysaccharide composed of a-(1 ! 4)-linked galactose and N-acetylgalactosamine
units. Both monosacharides are randomly distributed along the chain with the per-
centage of galactose ranging from 15 to 60%. GAG inhibits pro-inflammatory Th17
and Th1 responses in human peripheral blood mononuclear cells by inducing the
expression of the anti-inflammatory interleukin-1 receptor antagonist (IL-1Ra),
which blocks IL-1b signaling (Gresnigt et al. 2014). Additionally, immunosup-
pressive GAG activity associated with diminishing neutrophil infiltrates was
observed in in vivo experiments (Fontaine et al. 2011).

The matter of a special interest is b-(1 ! 6)–linked poly-N-acetyl-D-glucosa-
mine (PNAG). Originally, it was isolated from the polysaccharide capsule of
Staphylococcus aureus and developed as a promising target for antibacterial ther-
apy and prophylaxis (Gening et al. 2007, 2010). To the best of our knowledge, this
polysaccharide was not isolated from fungal species, though immunofluorescence
labeling with specific monoclonal antibodies detected PNAG in such fungal species
as C. albicans, A. flavus, Fusarium solani, and C. neoformans, additionally
anti-PNAG antibodies have protective effect against these fungi (Cywes-Bentley
et al. 2013).

Due to its poor solubility, using natural chitin for immunobiological studies is
difficult. Synthetic chitooligosaccharides do not have these disadvantages. Thus,
spacer-armed chitotriose, chitopentaose, and chitoheptaose and their biotinylated
derivatives were prepared using a properly protected monosaccharide acceptor and
a disaccharide donor (Yudina et al. 2015, 2016). The synthetic scheme developed
for synthesis of GAG-related oligosaccharides involved the use of phenyl
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2-azido-2-deoxy-1-seleno-a-D-galactosides (Mironov et al. 2004) allowing highly
a-stereoselective formation of the glycoside bond (Khatuntseva et al. 2016). The
synthesis of the GAG-related biotinylated oligo-a-(1 ! 4)-D-galactosamines
comprising from 2 to 6 monosaccharide units and of N-acetylated derivatives of
above glycoconjugates was performed. Obtained series of GAG mimetics was used
to investigate the epitopes recognized by anti-GAG monoclonal antibodies and of
antibodies in blood sera of patients with allergic bronchopulmonary and chronic
pulmonary aspergilloses (Kazakova et al. 2020) (Fig. 6).

3 Conclusions

The elucidation of the immune response modulation by fungal cell wall components
is a highly important but a very complex task. The purification of standardized
individual cell wall polysaccharides is almost impossible due to high variability and
sensitivity of their structure to minor changes in cultivation conditions. Moreover,
natural polysaccharides are highly heterogenic which can result in a high variability
between the immune response against different strains.

The approach based on the use of synthetically prepared fragments related to
fungal cell wall glycans is the most appropriate to elucidate the complex immune
response against the fungal cell wall. In this review, we summarized recent works
on synthesis of oligosaccharides related to polysaccharides of the fungal cell wall
and a few examples of their potential to investigate their interactions with the host.
All synthetic molecules were prepared in spacer-armed form which made possible
their biotinylation and controlled site-specific immobilization on streptavidin-
coated microtiter plates. The oligosaccharide ligands were combined to thematic
glycoarrays used to determine fine specificity of antibodies and innate immune
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system receptors. The data obtained with such glycoarrays have obvious practical
importance for development of new diagnostic kits and vaccines for treatment and
prophylaxis of fungal infections.

Acknowledgements This work was supported by the Russian Science Foundation (grant
19-73-30017). We thank Professor J.-P. Latgé and Dr. A. G. Gerbst for critical reading this
manuscript and valuable comments.

References

Argunov DA, Karelin AA, Grachev AA et al (2011) A new synthesis of the 3, 6-branched
hexasaccharide fragment of the cell wall mannan in Candida albicans, corresponding to the
antigenic factor 4. Russ Chem Bull 60:1004–1011

Argunov DA, Krylov VB, Nifantiev NE (2015) Convergent synthesis of isomeric heterosaccha-
rides related to the fragments of galactomannan from Aspergillus fumigatus. Org Biomol Chem
13:3255–3267. https://doi.org/10.1039/C4OB02634A

Argunov DA, Krylov VB, Nifantiev NE (2016) The use of pyranoside-into-furanoside
rearrangement and controlled O(5) ! O(6) benzoyl migration as the basis of a synthetic
strategy to assemble (1 ! 5)-and (1 ! 6)-linked galactofuranosyl chains. Org Lett 18:5504–
5507. https://doi.org/10.1021/acs.orglett.6b02735

Blixt O, Head S, Mondala T et al (2004) Printed covalent glycan array for ligand profiling of
diverse glycan binding proteins. Proc Nat Acad Sci USA 101:17033–17038. https://doi.org/10.
1073/pnas.0407902101

Brown GD (2006) Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol
6:33–43. https://doi.org/10.1038/nri1745

Brown GD, Denning DW, Gow NAR et al (2012) Hidden killers: human fungal infections. Sci
Transl Med 4:165rv13. https://doi.org/10.1126/scitranslmed.3004404

Cattiaux L, Sendid B, Collot M et al (2011) Synthetic biotinylated tetra b (1 ! 5)
galactofuranoside for in vitro aspergillosis diagnosis. Bioorg Med Chem 19:547–555

Collot M, Loukou C, Mallet J-M (2009) Chemical synthesis of the oligosaccharidic fragments of
yeast mannans. In: Nifantiev NE (ed) Progress in the synthesis of complex carbohydrate chains
of plant and microbial polysaccharides. Transworld Research Network, Kerala, pp 371–398

Cuenca-Estrella M, Verweij PE, Arendrup MC et al (2012) ESCMID* guideline for the diagnosis
and management of Candida diseases 2012: diagnostic procedures. Clin Microbiol Infect 18
(Suppl 7):9–18. https://doi.org/10.1111/1469-0691.12038

Cywes-Bentley C, Skurnik D, Zaidi T et al (2013) Antibody to a conserved antigenic target is
protective against diverse prokaryotic and eukaryotic pathogens. Proc Nat Acad Sci USA 110:
E2209–E2218. https://doi.org/10.1073/pnas.1303573110

Erwig LP, Gow NA (2016) Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol
14:163. https://doi.org/10.1038/nrmicro.2015.21

Fontaine T, Delangle A, Simenel C et al (2011) Galactosaminogalactan, a new immunosuppressive
polysaccharide of Aspergillus fumigatus. PLoS Pathog 7:e1002372

Fu M, Zhang G, Ning J (2005) First synthesis of the immunodominant
b-galactofuranose-containing tetrasaccharide present in the cell wall of Aspergillus fumigatus.
Carbohyd Res 340:25–30

Galanina OE, Mecklenburg M, Nifantiev NE et al (2003) GlycoChip: multiarray for the study of
carbohydrate-binding proteins. Lab Chip 3:260–265. https://doi.org/10.1039/B305963D

Gening ML, Maira-Litrán T, Kropec A et al (2010) Synthetic b-(1 ! 6)-linked N-acetylated and
nonacetylated oligoglucosamines used to produce conjugate vaccines for bacterial pathogens.
Infect Immun 78:764–772. https://doi.org/10.1128/IAI.01093-09

12 V. B. Krylov and N. E. Nifantiev

http://dx.doi.org/10.1039/C4OB02634A
http://dx.doi.org/10.1021/acs.orglett.6b02735
http://dx.doi.org/10.1073/pnas.0407902101
http://dx.doi.org/10.1073/pnas.0407902101
http://dx.doi.org/10.1038/nri1745
http://dx.doi.org/10.1126/scitranslmed.3004404
http://dx.doi.org/10.1111/1469-0691.12038
http://dx.doi.org/10.1073/pnas.1303573110
http://dx.doi.org/10.1038/nrmicro.2015.21
http://dx.doi.org/10.1039/B305963D
http://dx.doi.org/10.1128/IAI.01093-09


Gening ML, Tsvetkov YE, Pier GB, Nifantiev NE (2007) Synthesis of b-(1 ! 6)-linked
glucosamine oligosaccharides corresponding to fragments of the bacterial surface polysaccha-
ride poly-N-acetylglucosamine. Carbohyd Res 342:567–575

Gerbst AG, Krylov VB, Argunov DA et al (2019) Driving force of the pyranoside-into-furanoside
rearrangement. ACS Omega 4:1139–1143. https://doi.org/10.1021/acsomega.8b03274

Gresnigt MS, Bozza S, Becker KL et al (2014) A polysaccharide virulence factor from Aspergillus
fumigatus elicits anti-inflammatory effects through induction of Interleukin-1 receptor
antagonist. PLoS Pathog 10:e1003936. https://doi.org/10.1371/journal.ppat.1003936

Hall RA, Gow NAR (2013) Mannosylation in Candida albicans: role in cell wall function and
immune recognition. Mol Microbiol 90:1147–1161. https://doi.org/10.1111/mmi.12426

Karelin AA, Tsvetkov YE, Kogan G et al (2007) Synthesis of oligosaccharide fragments of
mannan from Candida albicans cell wall and their BSA conjugates. Russ J Bioorg Chem
33:110–121

Karelin AA, Tsvetkov YE, Nifantiev NE (2017) Synthesis of oligosaccharides related to
polysaccharides of the cell wall of the fungi Candida and Aspergillus. Russ Chem Rev
86:1073–1126. https://doi.org/10.1070/RCR4750

Karelin AA, Tsvetkov YE, Paulovičová E et al (2015) Blockwise synthesis of a pentasaccharide
structurally related to the mannan fragment from the Candida albicans cell wall corresponding
to the antigenic factor 6. Russ Chem Bull 64:2942–2948

Karelin AA, Tsvetkov YE, Paulovičová E et al (2016) A blockwise approach to the synthesis of
(1 ! 2)-linked Oligosaccharides corresponding to fragments of the acid-stable b-mannan from
the Candida albicans cell wall. Eur J Org Chem 2016:1173–1181

Karelin AA, Tsvetkov YE, Paulovičová L et al (2010) Synthesis of 3,6-branched oligomannoside
fragments of the mannan from Candida albicans cell wall corresponding to the antigenic factor
4. Carbohyd Res 345:1283–1290

Karelin AA, Ustyuzhanina NE, Tsvetkov YE, Nifantiev NE (2019) Synthesis of a biotinylated
probe from biotechnologically derived b-D-mannopyranosyl-(1 ! 2)-D-mannopyranose for
assessment of carbohydrate specificity of antibodies. Carbohyd Res 471:39–42

Kazakova ED, Yashunsky DV, Krylov VB et al (2020) Biotinylated oligo-a-(1 ! 4)-
D-galactosamines and their N-acetylated derivatives: a-stereoselective synthesis and immunol-
ogy application. Submitted

Khatuntseva EA, Sherman AA, Tsvetkov YE, Nifantiev NE (2016) Phenyl
2-azido-2-deoxy-1-selenogalactosides: a single type of glycosyl donor for the highly
stereoselective synthesis of a-and b-2-azido-2-deoxy-D-galactopyranosides. Tetrahedron Lett
57:708–711. https://doi.org/10.1016/j.tetlet.2016.01.013

Komarova BS, Orekhova MV, Tsvetkov YE, Nifantiev NE (2014) Is an acyl group at O-3 in
glucosyl donors able to control a-stereoselectivity of glycosylation? The role of conformational
mobility and the protecting group at O-6. Carbohyd Res 384:70–86. https://doi.org/10.1016/j.
carres.2013.11.016

Komarova BS, Orekhova MV, Tsvetkov YE et al (2015) Synthesis of a pentasaccharide and
neoglycoconjugates related to fungal a-(1 ! 3)-glucan and their use in the generation of
antibodies to trace Aspergillus fumigatus cell wall. Chem Eur J 21:1029–1035. https://doi.org/
10.1002/chem.201404770

Komarova BS, Tsvetkov YE, Nifantiev NE (2016) Design of a-selective Glycopyranosyl donors
relying on remote Anchimeric assistance. Chem Rec 16:488–506. https://doi.org/10.1002/tcr.
201500245

Komarova BS, Wong SSW, Orekhova MV et al (2018) Chemical synthesis and application of
biotinylated oligo-a-(1 ! 3)-D-glucosides to study the antibody and cytokine response against
the cell wall a-(1 ! 3)-D-glucan of Aspergillus fumigatus. J Org Chem 83:12965–12976.
https://doi.org/10.1021/acs.joc.8b01142

Krylov VB, Argunov DA, Solovev AS et al (2018a) Synthesis of oligosaccharides related to
galactomannans from Aspergillus fumigatus and their NMR spectral data. Org Biomol Chem
16:1188–1199. https://doi.org/10.1039/C7OB02734F

Synthetic Oligosaccharides Mimicking Fungal Cell Wall … 13

http://dx.doi.org/10.1021/acsomega.8b03274
http://dx.doi.org/10.1371/journal.ppat.1003936
http://dx.doi.org/10.1111/mmi.12426
http://dx.doi.org/10.1070/RCR4750
http://dx.doi.org/10.1016/j.tetlet.2016.01.013
http://dx.doi.org/10.1016/j.carres.2013.11.016
http://dx.doi.org/10.1016/j.carres.2013.11.016
http://dx.doi.org/10.1002/chem.201404770
http://dx.doi.org/10.1002/chem.201404770
http://dx.doi.org/10.1002/tcr.201500245
http://dx.doi.org/10.1002/tcr.201500245
http://dx.doi.org/10.1021/acs.joc.8b01142
http://dx.doi.org/10.1039/C7OB02734F


Krylov VB, Argunov DA, Vinnitskiy DZ et al (2014) Pyranoside-into-furanoside rearrangement:
new reaction in carbohydrate chemistry and its application in Oligosaccharide synthesis. Chem
Eur J 20:16516–16522. https://doi.org/10.1002/chem.201405083

Krylov VB, Argunov DA, Vinnitskiy DZ et al (2016) The pyranoside-into-furanoside
rearrangement of alkyl glycosides: scope and limitations. Synlett 27:1659–1664. https://doi.
org/10.1055/s-0035-1561595

Krylov VB, Petruk MI, Glushko NI et al (2018b) Carbohydrate specificity of antibodies against
phytopathogenic fungi of the Aspergillus genus. Appl Biochem Microbiol 54:522–527

Krylov VB, Petruk MI, Grigoryev IV et al (2018c) Study of the carbohydrate specificity of
antibodies against Aspergillus fumigatus using the library of synthetic mycoantigens. Russ J
Bioorg Chem 44:80–89

Krylov VB, Solovev AS, Argunov DA et al (2019) Reinvestigation of carbohydrate specificity of
EB-A2 monoclonal antibody used in the immune detection of Aspergillus fumigatus
galactomannan. Heliyon 5:e01173. https://doi.org/10.1016/j.heliyon.2019.e01173

Kudoh A, Okawa Y, Shibata N (2015) Significant structural change in both O-and N-linked
carbohydrate moieties of the antigenic galactomannan from Aspergillus fumigatus grown under
different culture conditions. Glycobiology 25:74–87. https://doi.org/10.1093/glycob/cwu091

Latgé J-P, Kobayashi H, Debeaupuis J-P et al (1994) Chemical and immunological character-
ization of the extracellular galactomannan of Aspergillus fumigatus. Infect Immun 62:5424–
5433

Li Z, Feizi T (2018) The neoglycolipid (NGL) technology-based microarrays and future prospects.
FEBS Lett 592:3976–3991. https://doi.org/10.1002/1873-3468.13217

Lipkind GM, Shashkov AS, Nifant’ev NE, Kochetkov NK (1992) Computer-assisted analysis of
the structure of regular branched polysaccharides containing 2,3-disubstituted rhamnose and
mannose residues on the basis of 13C-NMR data. Carbohyd Res 237:11–22

Matveev AL, Krylov VB, Emelyanova LA et al (2018) Novel mouse monoclonal antibodies
specifically recognize Aspergillus fumigatus galactomannan. PLoS ONE 13:e0193938. https://
doi.org/10.1371/journal.pone.0193938

Matveev AL, Krylov VB, Khlusevich YA et al (2019) Novel mouse monoclonal antibodies
specifically recognizing b-(1 ! 3)-D-glucan antigen. PLoS ONE 14:e0215535. https://doi.org/
10.1371/journal.pone.0215535

Mironov Y, Sherman A, Nifantiev N (2004) Homogeneous azidophenylselenation of glycals using
of TMSN3-Ph2Se2-PhI(OAc)2. Tetrahedron Lett 45:9107–9110

Mora-Montes HM, Netea MG, Ferwerda G et al (2011) Recognition and blocking of innate
immunity cells by Candida albicans chitin. Infect Immun 79:1961–1970. https://doi.org/10.
1128/IAI.01282-10

Neelamegham S, Aoki-Kinoshita K, Bolton E et al (2019) Updates to the symbol nomenclature for
glycans (SNFG) guidelines. Glycobiology. https://doi.org/10.1093/glycob/cwz045

Nelson MR, Bower M, Smith D et al (1990) The value of serum cryptococcal antigen in the
diagnosis of cryptococcal infection in patients infected with the human immunodeficiency
virus. J Infect 21:175–181

Netea MG, Brown GD, Kullberg BJ, Gow NAR (2008) An integrated model of the recognition of
Candida albicans by the innate immune system. Nature Rev Microbiol 6:67–78. https://doi.
org/10.1038/nrmicro1815

Park S, Gildersleeve JC, Blixt O, Shin I (2013) Carbohydrate microarrays. Chem Soc Rev
42:4310–4326. https://doi.org/10.1039/c2cs35401b

Paulovičová E, Paulovičová L, Hrubiško M et al (2017) Immunobiological activity of synthetically
prepared immunodominant galactomannosides structurally mimicking Aspergillus galactoman-
nan. Front Immunol 8:1273

Paulovičová E, Paulovičová L, Pilišiová R et al (2013a) Synthetically prepared glycooligosac-
charides mimicking Candida albicans cell wall glycan antigens—novel tools to study
host-pathogen interactions. FEMS Yeast Res 13:659–673. https://doi.org/10.1111/1567-1364.
12065

14 V. B. Krylov and N. E. Nifantiev

http://dx.doi.org/10.1002/chem.201405083
http://dx.doi.org/10.1055/s-0035-1561595
http://dx.doi.org/10.1055/s-0035-1561595
http://dx.doi.org/10.1016/j.heliyon.2019.e01173
http://dx.doi.org/10.1093/glycob/cwu091
http://dx.doi.org/10.1002/1873-3468.13217
http://dx.doi.org/10.1371/journal.pone.0193938
http://dx.doi.org/10.1371/journal.pone.0193938
http://dx.doi.org/10.1371/journal.pone.0215535
http://dx.doi.org/10.1371/journal.pone.0215535
http://dx.doi.org/10.1128/IAI.01282-10
http://dx.doi.org/10.1128/IAI.01282-10
http://dx.doi.org/10.1093/glycob/cwz045
http://dx.doi.org/10.1038/nrmicro1815
http://dx.doi.org/10.1038/nrmicro1815
http://dx.doi.org/10.1039/c2cs35401b
http://dx.doi.org/10.1111/1567-1364.12065
http://dx.doi.org/10.1111/1567-1364.12065


Paulovičová E, Paulovičová L, Pilišiová R et al (2016) The evaluation of b-(1 ! 3)-
nonaglucoside as an anti-Candida albicans immune response inducer. Cell Microbiol
18:1294–1307. https://doi.org/10.1111/cmi.12631

Paulovicová L, Bystrický S, Paulovicová E et al (2010) Model a-mannoside conjugates:
immunogenicity and induction of candidacidal activity. FEMS Immunol Med Microbiol
58:307–313. https://doi.org/10.1111/j.1574-695X.2009.00642.x

Paulovičová L, Paulovičová E, Karelin AA et al (2013b) Effect of branched a-oligomannoside
structures on induction of anti-Candida humoral immune response. Scand J Immunol 77:431–
441. https://doi.org/10.1111/sji.12044

Raman R, Venkataraman M, Ramakrishnan S et al (2006) Advancing glycomics: implementation
strategies at the consortium for functional glycomics. Glycobiology 16:82R–90R. https://doi.
org/10.1093/glycob/cwj080

Shibata N, Kobayashi H, Suzuki S (2012) Immunochemistry of pathogenic yeast, Candida
species, focusing on mannan. Proc Japan Acad Ser B 88:250–265

Snarr BD, Qureshi ST, Sheppard DC (2017) Immune recognition of fungal polysaccharides.
J Fungi (Basel) 3. https://doi.org/10.3390/jof3030047

Stevens J, Blixt O, Paulson JC, Wilson IA (2006) Glycan microarray technologies: tools to survey
host specificity of influenza viruses. Nat Rev Microbiol 4:857–864. https://doi.org/10.1038/
nrmicro1530

Stynen D, Sarfati J, Goris A et al (1992) Rat monoclonal antibodies against Aspergillus
galactomannan. Infect Immun 60:2237–2245

Suzuki S (1997) Immunochemical study on mannans of genus Candida. I. Structural investigation
of antigenic factors 1, 4, 5, 6, 8, 9, 11, 13, 13b and 34. Curr Top Med Mycol 8:57–70

Tamura H, Finkelman MA (2005) Detection and Measurement of (1 ! 3)-b-D-Glucan with
Limulus amebocyte lysate-based reagents. In: Toxicology of 1-3-beta-glucans. CRC Press,
pp 191–210

Tsvetkov YE, Khatuntseva EA, Yashunsky DV, Nifantiev NE (2015) Synthetic b-(1 ! 3)-D-
glucooligosaccharides: model compounds for the mechanistic study of b-(1 ! 3)-D-glucan
bioactivities and design of antifungal vaccines. Russ Chem Bull 64:990–1013. https://doi.org/
10.1007/s11172-015-0969-4

Ullmann AJ, Aguado JM, Arikan-Akdagli S et al (2018) Diagnosis and management of
Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin
Microbiol Infect 24:e1–e38. https://doi.org/10.1016/j.cmi.2018.01.002

Veeneman GH, Notermans S, Liskamp RMJ et al (1987) Solid-phase synthesis of a naturally
occurring b-(1 ! 5)-linked D-galactofuranosyl heptamer containing the artificial linkage arm
L-homoserine. Tetrahedron Lett 28:6695–6698

Wang C-C, Huang Y-L, Ren C-T et al (2008) Glycan microarray of Globo H and related structures
for quantitative analysis of breast cancer. Proc Nat Acad Sci USA 105:11661–11666. https://
doi.org/10.1073/pnas.0804923105

Wang L, Overkleeft HS, van der Marel GA, Codée JD (2019) Reagent controlled stereoselective
assembly of a-(1,3)-glucans. Eur J Org Chem 2019:1994–2003. https://doi.org/10.1002/ejoc.
201800894

Wang L, Overkleeft HS, van der Marel GA, Codée JD (2018) Reagent controlled stereoselective
synthesis of a-glucans. J Am Chem Soc 140:4632–4638. https://doi.org/10.1021/jacs.8b00669

Wong S, Krylov VB, Argunov DA et al (2020) Potential of chemically synthesized oligosac-
charides to define th carbohydrate moieties of the fungal cell wall responsible for the human
immune response. The example of the Aspergillus fumigatus galactomannan. mSphere, in press

Yashunsky DV, Karelin AA, Tsvetkov YE, Nifantiev NE (2018) Synthesis of 3-aminopropyl b-
(1 ! 6)-D-glucotetraoside and its biotinylated derivative. Carbohyd Res 455:18–22. https://
doi.org/10.1016/j.carres.2017.11.001

Yashunsky DV, Tsvetkov YE, Grachev AA et al (2016a) Synthesis of 3-aminopropyl glycosides
of linear b-(1 ! 3)-D-glucooligosaccharides. Carbohyd Res 419:8–17. https://doi.org/10.1016/
j.carres.2015.10.012

Synthetic Oligosaccharides Mimicking Fungal Cell Wall … 15

http://dx.doi.org/10.1111/cmi.12631
http://dx.doi.org/10.1111/j.1574-695X.2009.00642.x
http://dx.doi.org/10.1111/sji.12044
http://dx.doi.org/10.1093/glycob/cwj080
http://dx.doi.org/10.1093/glycob/cwj080
http://dx.doi.org/10.3390/jof3030047
http://dx.doi.org/10.1038/nrmicro1530
http://dx.doi.org/10.1038/nrmicro1530
http://dx.doi.org/10.1007/s11172-015-0969-4
http://dx.doi.org/10.1007/s11172-015-0969-4
http://dx.doi.org/10.1016/j.cmi.2018.01.002
http://dx.doi.org/10.1073/pnas.0804923105
http://dx.doi.org/10.1073/pnas.0804923105
http://dx.doi.org/10.1002/ejoc.201800894
http://dx.doi.org/10.1002/ejoc.201800894
http://dx.doi.org/10.1021/jacs.8b00669
http://dx.doi.org/10.1016/j.carres.2017.11.001
http://dx.doi.org/10.1016/j.carres.2017.11.001
http://dx.doi.org/10.1016/j.carres.2015.10.012
http://dx.doi.org/10.1016/j.carres.2015.10.012


Yashunsky DV, Tsvetkov YE, Nifantiev NE (2016b) Synthesis of 3-aminopropyl glycoside of
branched b-(1 ! 3)-D-glucooctaoside. Carbohyd Res 436:25–30. https://doi.org/10.1016/j.
carres.2016.11.005

Yudina ON, Tsvetkov YE, Nifantiev NE (2015) Synthesis of 2-aminoethyl glycosides of
chitooligosaccharides. Russ Chem Bull 64:2932–2941

Yudina ON, Tsvetkov YE, Nifantiev NE (2016) Conditions of catalytic hydrogenolysis for the
simultaneous reduction of azido group and debenzylation of chitooligosaccharides. Synthesis
of biotinylated derivatives of chitooligosaccharides. Russ Chem Bull 65:2937–2942

Zheng RB, Jégouzo SAF, Joe M et al (2017) Insights into interactions of mycobacteria with the
host innate immune system from a novel array of synthetic Mycobacterial Glycans. ACS Chem
Biol 12:2990–3002. https://doi.org/10.1021/acschembio.7b00797

Zuurmond HM, Van der Klein PAM, Veeneman GH, Van Boom JH (1990) A convenient
iodonium-ion-assisted synthesis of an immunologically active tetrameric b (1 ! 5)-linked
D-galactofuranoside from the extracellular polysaccharide of Aspergillus and Penicillium
species. Recl Trav Chim Pays-Bas 109:437–441

16 V. B. Krylov and N. E. Nifantiev

http://dx.doi.org/10.1016/j.carres.2016.11.005
http://dx.doi.org/10.1016/j.carres.2016.11.005
http://dx.doi.org/10.1021/acschembio.7b00797


Aspergillus fumigatus DHN-Melanin

Georgios Chamilos and Agostinho Carvalho

Contents

1 Introduction.......................................................................................................................... 18
2 Conclusions and Unresolved Questions on Biology of A. fumigatus melanin.................. 23
References .................................................................................................................................. 25

Abstract Dihydroxynaphthalene melanin (DHN-melanin) is an integral compo-
nent of the conidial cell wall surface, which has a central role in the pathogenicity of
the major human airborne fungal pathogen Aspergillus fumigatus. Although the
biosynthetic pathway for A. fumigatus DHN-melanin production has been well
characterized, the molecular interactions of DHN-melanin with the immune system
have been incompletely understood. Recent studies demonstrated that apart from
concealing immunostimulatory cell wall polysaccharides, calcium sequestration by
DHN-melanin inhibits essential host effector pathways regulating phagosome bio-
genesis and prevents A. fumigatus conidia killing by phagocytes. From the host
perspective, DHN-melanin is specifically recognized by a C-type lectin receptor
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(MelLeC) present in murine endothelia and in human myeloid cells. Furthermore,
DHN-melanin activates platelets and facilitates opsonophagocytosis by macro-
phages via binding to soluble pattern recognition receptors. Dissecting the
dynamics of DHN-melanin organization on the fungal cell wall and the molecular
interplay with the immune system will lead to a better understanding of A. fumi-
gatus pathophysiology.

1 Introduction

Melanins have evolved over 500 million years across all animal kingdoms, yet their
biological functions remain enigmatic (Riley 1997; Burkhart and Burkhart 2005).
Melanin pigments are ubiquitous light-absorbing polymers of various chemical
composition, undetermined structure, and unique physicochemical properties (Riley
1997; Fogarty and Tobin 1996; Smith and Casadevall 2019; Solano 2014). Apart
from conferring protection against UV light, mechanical, chemical, and thermal
stress, melanins act as powerful cation chelators and anti-oxidants, bind and inac-
tivate microbicidal peptides and antimicrobial drugs, inhibit activation of enzymes,
and confer tolerance to dehydration (Riley 1997; Fogarty and Tobin 1996; Smith
and Casadevall 2019; Solano 2014). Therefore, melanins might have evolved to
confer protection against environmental stressors, including microbial predators
(Burkhart and Burkhart 2005).

In infectious diseases, melanins serve as virulence factors that confer protection
to microbial pathogens upon interactions with the host immune system (Smith and
Casadevall 2019; Langfelder et al. 2003; Solano 2014). On the host perspective,
melanins exert important immunomodulatory actions. Of interest, in invertebrates,
melanins serve as antimicrobial effectors. In particular, activation of innate pattern
recognition receptors (PRRs) by microbial ligands triggers the prophenoloxidase
pathway of melanization, which acts as a primitive complement system of verte-
brates (Burkhart and Burkhart 2005).This melanization response pathway results in
the encapsulation of larger organisms, including parasites, and killing via the
production of toxic-free radicals, quinine intermediate compounds, and other
antimicrobial effectors. Notably, fungal melanin seems to activate the alternative
complement pathway in mammalian serum (Rosas et al. 2002; Pinto et al. 2018).

In fungi, cell wall melanin has a central role in fungal survival and virulence
during interaction with the host immune response (Kuo and Alexander 1967; Smith
and Casadevall 2019; Perez-Cuesta et al. 2019). Fungal melanins are negatively
charged, hydrophobic pigments of high molecular weight produced by oxidative
polymerization of phenolic or indolic compounds, including catechol,
1,8-dihydroxynaphthalene (DHN) or 3,4-dihydroxyphenylalanine (DOPA). Most
Ascomycota, including Aspergillus fumigatus synthesize DHN-melanin, whereas
few species including A. nidulans are able to produce melanin through L-DOPA.
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Furthermore, some fungi including A. fumigatus produce pyomelanins, resulting
from the breakdown of aromatic amino acids (Heinekamp et al. 2013). This review
will discuss recent advances in understanding biology and interactions of A.
fumigatus cell wall DHN-melanin with the immune system.

A. Topology, gene regulation, and biosynthesis of melanin on A. fumigatus cell
wall

Topology of DHN-melanin in dormant conidia. Melanin—dihydroxynaphthalene
(DHN-melanin) is an integral component of A. fumigatus cell wall that accounts for
the brownish-gray color of conidia (Tsai et al. 1998; Tsai et al. 1999; Langfelder
et al. 1998). In particular, the outer layer of the A. fumigatus conidium is mainly
composed of a hydrophobic rodlet protein layer (Aimanianda et al. 2009).
DHN-melanin is located below the rodlet layer with melanin patches exposed on
the surface, which account for the echinulate surface of dormant conidia of
A. fumigatusin electron microscopy studies (Tsai et al. 1998; Bayry et al. 2014).
Both melanin and rodlet layer have been traditionally regarded as immunologically
inert molecules that conceal fungal pattern recognition molecular patterns (PAMPs)
and prevent activation of PRRs (Aimanianda et al. 2009; Bayry et al. 2014).

The molecular interactions of DHN-melanin on A. fumigatuscell wall have not
been precisely characterized. Atomic force microscopy studies suggest that
DHN-melanin physically interacts with hydrophobins, since pigmentless A. fumi-
gatus mutants lack the surface rodlet protein layer (Bayry et al. 2014; Pihet et al.
2009). Accordingly, genetic or chemical removal of the rodlet layer results in
higher surface exposure of DHN-melanin and in potent inhibition of host immune
responses in macrophages (Akoumianaki et al. 2016). Of interest, in Cryptococcus,
melanin is organized in spherical structures termed melanin granules, cell wall
micro domains of 200 nM size, which are further composed of nanospheres of
30 nM diameter that resemble mammalian melanosomes (Camacho et al. 2019).
This model of cell wall melanin organization allows for physical separation of the
melanin layer during cell division. Additionally, there is evidence of release of these
melanin nanospheres in exosomes (Smith and Casadevall 2019). It is tempting to
speculate that a similar model of cell wall organization and melanin release is
relevant to A. fumigatus. New biophysical approaches such as solid-NMR studies
could provide essential clues on molecular interactions of melanin with other cell
wall components of A. fumigatus (Kang et al. 2018).

DHN-melanin surface removal during cell wall remodeling. The fate of cell
wall melanin during A. fumigatus germination remains enigmatic. Of interest,
although present on early germinating conidia, DHN-melanin is no longer recog-
nized by the specialized host receptor MelLeC within 4 h of conidial swelling
(Stappers et al. 2018). Similarly, activation of physiological immune responses,
which are specifically inhibited by DHN-melanin, occurs within 2–4 h following
phagocytosis of A. fumigatus conidia by monocytes/macrophages (Kyrmizi et al.
2018). Therefore, removal of DHN-melanin from the conidial surface results in its
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functional inactivation. Importantly, the mechanism of removal or alteration of
DHN-melanin from the conidial surface during germination is not understood. It is
only known that (i) A. fumigatus is able to degrade DOPA-melanins of exogenous
sources via uncharacterized enzymatic mechanisms (Luther and Lipke 1980);
(ii) non-enzymatic degradation of different melanin pigments, including A. fumi-
gatus DHN-melanin can also be achieved within few min of exposure to hydrogen
peroxide in vitro (Akoumianaki et al. 2016; Korytowski and Sarna 1990). Whether
this is a physiologically relevant mechanism upon activation of NADPH oxidase
complex mediated ROS production inside the phagosome remains to be tested.

Biosynthesis of DHN-melanin and cell wall deposition. In A. fumigatus, the
polyketide-derived DHN-melanin is synthesized by six enzymes encoded by a gene
cluster located on the second chromosome (Tsai et al. 1999) (Fig. 1).The polyketide
synthase PKS or ALB1 (for “albino 1”) is responsible for the first biosynthetic step
in A. fumigatus, resulting in the biosynthesis of the heptaketide naphthopyrone
YWA1 from the substrates acetyl-CoA and malonyl-CoA. A series of subsequent
enzymatic reactions carried out by Ayg1, Arp2, Arp1, and Arp2 through hydrolysis
of YWA1 to produce 1,3,6,8-tetrahydroxynapthalene (T4HN) by Ayg1, followed
by serial reduction and dehydration reactions to produce scytalone,
1,3,8-trihydroxynapthalene (THN), and vermelone. Vermelone is next dehydrated
to form 1,8-DHN (DHN), which is then oxidized and polymerized by the copper
oxidase Abr1 and the laccase Abr2 to form mature melanin (Tsai et al. 1999;
Upadhyay et al. 2013).

Recent seminal studies have revealed important information on spatial and
temporal regulation of biosynthesis of A. fumigatus DHN-melanin. Notably, the
enzymes that function prior to the vermelone production, also called as early
enzymes in DHN-melanin biosynthesis (Alb1/Ayg1/Arp1/Arp2), are post-
translationally modified via palmitoylation for endosomal sorting and subse-
quently recruited to the secretory pathway via a non-canonical mechanisms that
involves sorting nexins (Upadhyay 2016a, b). In contrast, the late enzymes are
(Abr1/Abr2) located to the cell wall surface via trafficking through the classical
secretory pathway. This mechanism of trafficking of enzymes implicated in
A. fumigatus melanin biosynthesis likely ensures tightly regulated production and

Acetyl-coA +

Malonyl-coA

Alb1 Ayg1Heptaketide

naphtopyrone

(YWA1) 

1,3,6,8-THN Skytalone

Arp2

Arp1

1,3,8-THNVermelone

Arp2

1,8-DHN

Abr1Abr2
DHN-melanin

Fig. 1 Biosynthetic pathway of DHN-melanin in A. fumigatus. The initial step in melanin
biosynthesis is regulated by pksP or alb1 gene. Adapted from Tsai et al. (1998)
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has striking similarities with the compartmentalization of synthesis of mammalian
melanins in melanosomes (Upadhyay 2016a, b).

Gene regulation of DHN-melanin production. The transcriptional control of
DHN-melanin production is incompletely understood. Multiple pathways activated
by G protein-coupled receptors (GPCRs) converge to activation of transcriptional
regulators of pksP gene cluster control conidium formation, development, and
melanin biosynthesis in A. fumigatus. The cAMP pathway activates the gene cluster
of DHN-melanin biosynthesis via protein kinase catalytic unit 1 (PKaC1). MAPK
signaling pathways, including MpkB and MpkA, which have antagonistic inter-
actions, activate the master transcriptional regulator RlmA that binds directly to the
pksP promoter (Manfiolli et al. 2019).

B. Biological properties and pathogenetic role of melanin

In vivo virulence studies. Virulence testing performed via the intravenous route in
immunocompetent mice confirmed the marked decrease in pathogenicity of alb1
mutant as compared to the wild-type A. fumigatus strain (Jahn et al. 1997; Tsai et al.
1998; Langfelder et al. 1998). The alb1 mutant also is completely avirulent fol-
lowing pulmonary infection of mice immunosuppressed with cyclophosphamide
(Akoumianaki et al. 2016). Of interest, infection of Drosophila melanogasterToll-
deficient mutants via the oral or thoracic route with alb1 mutant resulted in atten-
uated pathogenicity, implying that the role of A. fumigatus melanin in virulence is
evolutionarily conserved (Lionakis et al. 2005). In contrast, mutation in abr2 laccase
encoding gene did not affect the virulence of A. fumigatus (Sugareva et al. 2006).
Notably, the contribution of other genes of DHN-melanin biosynthesis in virulence
has not been tested in vivo. In contrast, in the invertebrate experimental system
Galleria mellonela, mutants in the biosynthetic pathway of DHN-melanin generated
in two different genetic backgrounds displayed increased virulence (Jackson et al.
2009). This paradoxical increase in virulence might be related to an exuberant host
immune response by Galleria phagocytes coupled with a robust melanization
reaction; however, this hypothesis has not been explored mechanistically.

Interactions of melanin with professional phagocytes cells. In view of the
central role of myeloid cells in immunity against A. fumigatus, the pathogenetic role
of melanin has been predominantly tested during interactions with monocytes/
macrophages and neutrophils (Tsai et al. 1998; Langfelder et al. 1998; Jahn et al.
1997, 2000, 2002). These studies revealed the heightened susceptibility of
melanin-deficient (abino) mutants to killing by macrophages and neutrophils in
comparison with the wild-type isogenic conidia. Because the enhanced suscepti-
bility of pksP mutant was accompanied by a tenfold increase in ROS as compared
to the wild-type strain, it was concluded that melanin somehow compromises the
ability of phagocytic cells to activate ROS production, which is consistent with the
ROS scavenging properties of melanin pigments. Follow up studies suggested that
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DHN-melanin has a direct inhibitory action on phagosome acidification and
phagolysosomal fusion in monocytes/macrophages possibly via disruption of
V-ATPase assembly to the phagosome, which correlated with the increased resis-
tance of melanized conidia to killing by phagocytes (Thywißen et al. 2011;
Heinekamp et al. 2013). However, a mechanistic explanation on the ability of
DHN-melanin to inhibit phagosome responses remained elusive.

Targeting of LC3 associate phagocytosis (LAP) by melanin. In recent years, the
molecular machinery regulating phagosome maturation has been characterized.
Seminal work demonstrated that activation of certain PRR triggers recruitment of
components of the autophagy pathway to the phagosome and promotes
phagolysosomal fusion (Sanjuan et al. 2007). This specialized autophagic pathway
termed LC3-associated phagocytosis (LAP) requires certain members of the
autophagic machinery, activation of NADPH oxidase, and is regulated by Rubicon
(Martinez et al. 2015). LAP has an important role in killing of conidia by
mononuclear phagocytes and in physiological immunity against A. fumigatus
(Kyrmizi et al. 2018; Akoumianaki et al. 2016; Martinez et al. 2015). A. fumigatus
conidia selectively trigger the activation of LAP during intracellular germination via
the Dectin-1 signaling pathway (Kyrmizi et al. 2018). Of interest, melanin targets
the LAP pathway by interrupting the assembly of NADPH oxidase complex on the
phagosome (Akoumianaki et al. 2016). This response is important for fungal
pathogenicity as albino conidia recover full virulence in the setting of conditional
inactivation of LAP in myeloid cells. Importantly, melanin inhibits a calcium/
calmodulin signaling pathway regulating the activation of LAP (Kyrmizi et al.
2018). Specifically, calcium scavenging by melanin inside the phagosome lumen
inhibits the recruitment of calmodulin to the phagosome, abrogating
Rubicon-induced activation of NADPH oxidase and LAP. Whether this melanin
calcium binding inhibitory action interferes with specialized calcium channel
activation is currently unknown. Because calcium/calmodulin signaling is an
upstream regulator of phagosome acidification (Kyrmizi et al. 2018), this mecha-
nism explains the effect of melanin on other downstream phagosome responses,
including V-ATPase recruitment for phagosome acidification. Recent phagosome
proteomics studies indicate that melanin impacts on major host effector mechanisms
including iron homeostasis, mTOR signaling and metabolism, and endosomal
trafficking (Schmidt et al. 2018). Whether these differences in phagosome response
of albino and melanized conidia are related to inhibition of calcium signaling, other
immune effector pathways, or an effect of concealing of PAMPs remains to be
elucidated. Importantly, all the aforementioned virulence properties of A. fumigatus
DHN-melanin have been observed with DOPA-melanin of fungal or synthetic
origin arguing for a lack of specificity of the immune role of fungal melanin
(Akoumianaki et al. 2016).
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Host recognition of DHN-melanin. A novelC-type lectin receptor, termed
melanin-sensing C-type lectin receptor (MelLec), specifically recognizes
DHN-melanin of A. fumigatus and other melanized fungi (Stappers et al. 2018).
MelLec recognizes the naphthalene-diol unit of 1,8-dihydroxynaphthalene and has
an important role in immunity against A. fumigatus. Of interest, in mice, MelLec is
expressed in endothelia and a sub-population of epithelial cells and is absent from
myeloid cells. In contrast, in humans, MelLec is expressed in myeloid cells and
hypo-functional polymorphisms result in attenuated cytokine responses and
increased risk for invasive aspergillosis in stem cell transplant recipients. Apart
from MelLec, other innate immune mechanisms are also activated by A. fumigatus
melanin. Of interest, melanin triggers the activation of platelets following A.
fumigatus infection (Rambach et al. 2015), and these innate immune cells partici-
pate in antifungal host defense.

Finally, DHN-melanin activates PI3K/Akt signaling pathway to inhibit apoptosis
during interactions with macrophages and epithelia (Volling et al. 2011; Amin et al.
2014). This important virulence mechanism could be used as a Trojan horse by the
fungus to establish prolonged intracellular persistence. In addition, because PI3K/
Akt signaling is an upstream activator of mTOR, a major regulator of cell meta-
bolism, it would be interesting to explore the effect of melanin on shaping the
metabolism of host immune cells.

2 Conclusions and Unresolved Questions on Biology
of A. fumigatus melanin

Once considered an immunological inert cell wall component that confers resis-
tance to mechanical and osmotic stress, DHN-melanin has been recently evolved as
a major player of host-fungal interplay (Table 1). It has become apparent that
DHN-melanin targets essential phagosome biogenesis pathways to block
phagolysosome formation parallel with activation of anti-apoptotic pathways in
immune cells to promote fungal survival within the host. At the same time, innate
sensing of melanin via soluble and cell type specific PRRs mounts effective anti-
fungal immune responses to counteract the inhibitory actions of melanin (Wong
et al. 2018). Furthermore, metabolic rewiring during fungal-macrophage interplay
could be regarded as an alternative immune effector pathway to control fungal
disease. The full spectrum of interactions of melanin with host immune and
non-immune cells has just started to be characterized. Many unresolved questions
on the biological properties of Aspergillus fumigatus DHN-melanin as compared to
other fungal melanins are presented in Table 2.
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Abstract The conidia of airborne fungi are protected by a hydrophobic protein
layer that coats the cell wall polysaccharides and renders the spores resistant to
wetting and desiccation. A similar layer is presented on the outer surface of the
aerial hyphae of some fungi. This layer serves multiple purposes, including facil-
itating spore dispersal, mediating the growth of hyphae into the air from moist
environments, aiding host interactions in symbiotic relationships and increasing
infectivity in pathogenic fungi. The layer consists of tightly packed, fibrillar
structures termed “rodlets”, which are approximately 10 nm in diameter, hundreds
of nanometres long and grouped in fascicles. Rodlets are an extremely stable
protein structure, being resistant to detergents, denaturants and alcohols and
requiring strong acids for depolymerisation. They are produced through the
self-assembly of small, surface-active proteins that belong to the hydrophobin
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protein family. These small proteins are expressed by all filamentous fungi and are
characterised by a high proportion of hydrophobic residues and the presence of
eight cysteine residues. Rodlets are a form of the functional amyloid fibril, where
the hydrophobin monomers are held together in the rodlets by intermolecular
hydrogen bonds that contribute to a stable b-sheet core.

1 The Discovery of the Hydrophobic Rodlet Layer
on Conidia

The structure of fungal conidia allows fungi to survive and persist in harsh envi-
ronments that can be challenging in terms of extremes of pH, UV and osmotic
pressure. A. fumigatus spores can survive storage in liquid nitrogen for up to
18 years and can survive 60 years when lyophilised (Kwon-Chung and Sugui
2013). While all fungal cells are surrounded by a protective cell wall composed of
structural polysaccharides, the conidia have additional layers on the surface of the
cell wall which confer unique protective properties and which modulate interactions
with the environment and the host during infection. Most fungi use air dispersal to
disseminate conidia, and the outermost surface of these so-called dry spores is
comprised of a protein layer that is extremely hydrophobic. This layer lies on the
outside of the conidial melanin layer, which in turn covers the cell wall carbohy-
drate structures (van de Veerdonk et al. 2017). It prevents wetting of the spores and
hence spores remain light and are able to travel long distances on air currents
(Beever and Dempsey 1978). The hydrophobic coating also facilitates the dispersal
of conidia on the surface of water droplets (Whiteford and Spanu 2001). It is
estimated that humans inhale between 100 and 1000 spores per day, depending on
the season and environment (Latgé 1999). Cladosporium, Alternaria, Penicillium
and Aspergillus species contribute the majority of airborne spores present in out-
door places, and most indoor outbreaks of nosocomial fungal disease are caused by
airborne conidia from outside (Shams-Ghahfarokhi et al. 2014). Aspergillus fumi-
gatus spores are more hydrophobic than conidia of other Aspergillus species and
can disperse readily in the environment, making A. fumigatus conidia the most
commonly found spores in the air (Kwon-Chung and Sugui 2013).

The hydrophobic outer protein layer of the conidia is composed of tightly packed
fibrillar structures known as rodlets (Fig. 1a). The rodlet layer was first reported
following electron microscopy studies of conidia of Penicillium megasporum (Hess
et al. 1968). Rodlets have subsequently been characterised on the spores of
Cladosporium (Latge et al. 1988), Aspergillus (Ghiorse and Edwards 1973),
Neurospora species (Beever et al. 1979a; Hallett and Beever 1981) and many others
(references in (Cole 1973; Cole et al. 1979; Gardner et al. 1983; Gerin et al. 1994;
Lugones et al. 1996)). The rodlet morphology is also visible on vegetative hyphae of
Schizophyllum commune (Wessels et al. 1972) and on aerial and submerged conidia
of the entomopathogenic fungus Beauveria bassiana (Bidochka et al. 1995).
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Morphological information regarding the rodlet layer on the surface of conidia
has been obtained from freeze-etch electron microscopy investigations (Beever
et al. 1979a; Hess et al. 1968; Hess and Stocks 1969) and, more recently, from
atomic force microscopy using rodlets assembled in vitro on hydrophobic surfaces
(Gunning et al. 1998) and on intact conidia (Dague et al. 2008; Valsecchi et al.
2019b). Freeze-etch studies indicate that, for most species, the rod-like structures
are grouped into bundles or fascicles that form the component blocks of a
patchwork-like covering over the entire surface of the spore (Hallett and Beever
1981). Within the fascicles, small numbers of rodlets lie almost parallel (Fig. 1b).
The fascicles abut neighbouring fascicles of differing orientation and some may
overlap, with interdigitation of the rodlets from adjacent bundles (Cole 1973; Cole
et al. 1979). There are variations in the number of rodlets within the fascicles and in
the length of rodlets, and some of these characteristics may be species-specific

Fig. 1 a Freeze-fracture image of a Penicillium conidium, showing the patchwork covering of
rodlets, grouped into fascicles; magnification x18,200. Inset shows higher magnification of rodlets,
bar = 20 nm. Image from (Cole et al. 1979) by kind permission of the publisher. Surface carbon–
platinum replicas of b wild type and c ΔRodA mutant conidia of A. fumigatus show that in the
absence of RodA, no surface rodlet layer is present. Image reproduced with the permission from
(Thau et al. 1994), bar = 100 nm. d Hydrophobin rodlets are responsible for the hydrophobicity of
fungal aerial surfaces. A water droplet remains on the surface of aerial hyphae of wild-type
Schizophyllum commune, while droplets immediately soak into the mycelium of the ΔSC3 strain.
Image reproduced with the permission from (Wosten et al. 1999)
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(Hess et al. 1968). For example, in ten Penicillium species studied in detail
(P. brevicompactum, P. camemberti, P. chrysogenum, P. claviforme, P. cyclopium,
P. cylindrosporum, P. digitatum, P. herquei, P. megasporum, and P. rugulosum)
rodlets are approximately 5 nm wide, with rodlet-to-rodlet spacing of 10 nm.
Fascicles range from 10 to 250 nm in width, with rodlets up to 600 nm in length
(Hess et al. 1968). The variation in observed fascicle width on a single spore is
considerable, e.g. 3–30 nm for P. chrysogenum and 10–250 nm for P. herquei.
Rodlet length also varies with average length observed for P. chrysogenum of
90 nm and for P. rugulosum 300 nm (Hess et al. 1968). Rodlets from A. fumigatus,
A. melleus, A. awamori, A. nidulans, A. ustus and A. wentii range from 30 to greater
than 300 nm (Hess and Stocks 1969; Thau et al. 1994). Rodlets from N. crassa are
approximately 10 nm wide and range from 35 to 240 nm in length (Dempsey and
Beever 1979). Rodlets composed of the hydrophobin MPG1 on Magnaporthe
oryzae spores appear 5–7 nm in diameter (Kershaw et al. 1998). Early microscopy
studies reported the observation that the rodlets were composed of chains of sub-
units (Cole et al. 1979). A detailed examination of the aerial spores and mycelium
of Micropolyspora revealed the presence of rodlets of 6–8 nm diameter and fibres
of 3–4 nm diameter. A two-stranded helical substructure was observed within the
rodlets, suggesting that rodlets may be composed of two fibres (Takeo 1976).

2 Hydrophobins Are the Proteins that Make up the Rodlet
Layer

The proteinaceous nature of the rodlet layer was established in the late 1970s
through chemical analysis, as was its resistance to enzymatic treatment and hot SDS
treatment (Cole et al. 1979). However, the nature of the proteins that form the rodlet
layer was only revealed when Wessels and colleagues reported their identification
of a family of small, hydrophobic proteins with eight conserved cysteine residues
that were secreted into the culture medium and also accumulated in the walls of
emerging hyphae (Wessels et al. 1991). The layer of rodlets conferred hydropho-
bicity on hydrophilic surfaces and on the surface of the thn mutant that lacks the
ability to form aerial hyphae due to the lack of expression of the SC3 gene. They
gave these proteins the name “hydrophobins” and postulated that hydrophobins
were involved in the emergence of aerial structures in S. commune and might play a
general morphogenetic role in fungi. The hydrophobin SC3 was identified as the
protein that forms the hydrophobic rodlet coating on the aerial hyphae of S. com-
mune (Wessels et al. 1991; Wosten et al. 1994). The sequence similarity between
S. commune hydrophobins and the rodlet-forming protein in A. nidulans, RodA,
and the similar poor aerial dispersal of conidia formed by rodletless mutants of
A. nidulans and N. crassa were noted soon after (Stringer et al. 1991) (Fig. 1c).
Together, these studies revealed that the characteristic hydrophobicity of the fungal
conidial surface was due to the rodlet layer, which was composed of a polymeric
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form of a single hydrophobin protein (Fig. 1d). This new understanding of
hydrophobin structure and properties in S. commune, A. nidulans and N. crassa led
to a rapid identification of similar hydrophobins in other fungi. The MPG1 gene
was shown to encode a hydrophobin in Magnaporthe oryzae, and this hydrophobin
MPG1 was demonstrated to play a role in the production of infectious structures
(Talbot et al. 1993, 1996). The gene encoding RodA, the rodlet-forming hydro-
phobin in A. fumigatus, was cloned by homology with the RODA gene from
A. nidulans (Thau et al. 1994). The protein product of the rodlet-forming gene in
N. crassa was purified by Templeton and colleagues in 1995 (Templeton et al.
1995). It is named EAS for the “easily wettable” character of the spores produced
by the EAS mutant strain of N. crassa (Beever and Dempsey 1978). Subsequently,
genes encoding members of the hydrophobin protein family have been identified in
all of the genomes of filamentous fungi sequenced to date (Linder et al. 2005;
Littlejohn et al. 2012; Seidl-Seiboth et al. 2011).

3 Generic Properties of Class I Hydrophobin Rodlets

The ubiquitous presence of rodlets in the cell walls of filamentous fungi suggests
that conferring hydrophobicity on aerial surfaces is likely a generic and vital
property of these structures (de Vries et al. 1993). Hydrophobin rodlets are not
covalently attached to the fungal surface, although the association of rodlets with
the conidia is stronger in the presence of melanin and conversely, melanin assembly
appears enhanced by the presence of rodlets (Valsecchi et al. 2019a). Bundles of
rodlets may be shed from conidia when cells are passed through a cell fractionator
(Cole 1973) or when conidia are subjected to shaking (Beever et al. 1979b) or
sonication (Templeton et al. 1995). De Vries and colleagues showed that the
polymeric hydrophobin structures could be extracted from mycelia with formic acid
and solubilised and dissociated to a monomeric form by treatment with tri-
fluoroacetic acid in the absence of reducing agent. This revealed that the hydro-
phobin rodlets are not stabilized by intermolecular disulphide bridges (de Vries
et al. 1993). The conidial surface is rendered hydrophilic by genetic or chemical
removal of the rodlet layer, and conidia that lack a hydrophobin rodlet layer are
aggregation-prone (Beever et al. 1979a; Thau et al. 1994). Upon conidial germi-
nation, the ordered rodlet structure disappears, digested by conidial proteases
(Valsecchi et al. 2019b). The rodlet layer is completely absent from the conidial
surface after 5–6 h from the start of conidial swelling and germination (Fig. 2).
Although the melanin and hydrophobin rodlet layers form a robust shell on the
spore surface, resistant to a wide range of physicochemical insults, these layers do
not appear to control water influx since the germination of the conidium of the
parent strain and the RodA mutant occurs at the same speed (Valsecchi et al.
2019a).
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4 Sequence and Structural Analysis of Hydrophobins

The hydrophobin family consists of more than 1,000 small proteins (*5–20 kDa)
that are characterised by the presence of a high proportion of hydrophobic amino
acids and eight cysteine residues that occur in a distinctive pattern with two pairs of
vicinal cysteines (Gandier et al. 2017; Linder et al. 2005). Filamentous fungi
express multiple hydrophobin proteins at different stages of the life cycle to mediate
transitions between hydrophobic and hydrophilic environments and while all of
those characterised are surface-active and self-assemble into amphipathic layers, not
all hydrophobins form layers that are composed of rodlets (Linder et al. 2005;
Wosten and de Vocht 2000; Wosten and Scholtmeijer 2015; Zampieri et al. 2010).

Early sequence analysis of hydrophobins revealed that they could be divided into
two categories, with distinct and characteristic hydrophobicity plots and patterns of
inter-cysteine spacing (Wosten et al. 1994). These classes corresponded to hydro-
phobins that self-assembled into SDS-resistant rodlets (class I) and hydrophobins
that formed less regular and less stable assemblies (class II). Class I rodlets require
strong acids such as formic, trifluoroacetic or hydrofluoric acid to be solubilised to

(a)

(b) (c)

Fig. 2 a High-resolution atomic force microscopy (AFM) imaging of the surface of germinating
conidia of A. fumigatus shows the intact rodlet layer at 0 min, gradual loss of rodlet morphology
and emergence of amorphous material at 120 min and the complete absence of rodlets and
exposure of cell wall polysaccharides at 180 min. Image reproduced with the permission from
(Dague et al. 2008). Recombinant class I hydrophobin proteins spontaneously self-assemble into
rodlets when deposited from solution onto highly oriented pyrolytic graphite. b Recombinant
MPG1 hydrophobin (Pham et al. 2016) and c EASΔ15 hydrophobin (Kwan et al. 2008), a truncated
form of EAS from N. crassa, display the characteristic rodlet morphology when self-assembled.
Scale bar = 200 nm in all images
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the monomeric protein form, while class II hydrophobin layers are depolymerised
by treatment with hot alcohols and detergents (Linder et al. 2005). As more
members of the hydrophobin family have been sequenced and identified, this
classification has been adjusted to reflect that some hydrophobin members have
sequence and predicted structural characteristics that are intermediate between
representative members of the two major hydrophobin classes (Jensen et al. 2010;
Littlejohn et al. 2012) (Fig. 3a). Additionally, some basidiomycete hydrophobins,
e.g. the S. commune hydrophobin SC16, form a distinct class I subdivision, different
in monomer structure from both ascomycete class I hydrophobins and from a mixed
group of class I hydrophobins that display little sequence or loop length conser-
vation (Gandier et al. 2017). Rodlet formation by SC16 occurs at an air–water
interface, and the rodlets have a class I-like morphology and amyloid structure
(Gandier et al. 2017). In fungi where multiple hydrophobins of different classes
have been identified and studied, the different hydrophobins may have specific
properties suited to different stages and challenges of the life cycle and environ-
ments or they may complement each other (Grunbacher et al. 2014; Lacroix et al.
2008; Moonjely et al. 2018; Valsecchi et al. 2017; Linder et al. 2005). For example,
of the six hydrophobins present in the conidia of A. nidulans, all contribute to the
hydrophobicity of the structures and at least three are able to form rodlets, yet only
RodA is present in rodlet form on the wild-type spore surface (Grunbacher et al.
2014). Currently, the consensus for classification is based on the following criteria
(Littlejohn et al. 2012):

Class I:

X? � C� X5�7 � C� C� X19�39 � C� X8�23 � C� X5 � C� C� X6�18 � C
��X2�13

Class II:

X? � C� X9�10 � C� C� X11 � C� X16 � C� X8�9 � C� C� X10 � C
��X6�7

Intermediate/Class III:

X? � C� X8;11�14 � C� C� C� X5�17;40�42 � C� X3�8;23�41

� C� X4;6�9 � C� C� X4;5;21�35 � C��X14�457

Structural understanding of hydrophobins has advanced rapidly since the crystal
structures of the class II hydrophobins HFBI and HFBII, from Trichoderma reesei,
were first reported (Hakanpaa et al. 2004, 2006). HFBI and its close homologue
HFBII have small b-barrel structures that are tightly constrained by the presence of
the four disulphide bridges and have two short loops (L1 and L2) and a slightly
longer loop (L3), with an a-helix in L2 on the periphery of the barrel. The first
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structure of the monomeric form of a class I hydrophobin was determined in 2006,
when solution NMR spectroscopy revealed that EAS had a similar small b-barrel
core structure but is significantly different in the loop regions (Kwan et al. 2006)
(Fig. 3b). L2 in EAS contains b-sheet structure but L1 and L3 lack regular, stable
elements of secondary structure and are flexible. The NMR structures of other class
I hydrophobins, DewA, MPG1, RodA and SC16 reveal that while all of them
contain a half b-barrel structure that is characteristic of hydrophobins, there are
significant differences in the structures of the loop regions (Morris et al. 2013;

EAS

MPG1

DewARodA

SC16 NC2

EAS

MPG1

Class I

1 2 3 4 5 6 7 8
Intermediate / Class III

(a)

(b)

1 2 3 4 5 6 7 8
L1 L2 L3

1 2 3 4 5 6 7 8
Class II

L1 L2 L3
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Pham et al. 2016, 2018; Pille et al. 2015; Ren et al. 2013; Valsecchi et al. 2019b).
Helical elements are accommodated in the N-terminal regions and L1 and L2
regions but the extent and orientation of these elements is different in the individual
proteins (Fig. 3b). The sequence analysis and structure of SC16 from S. commune
reported by Gandier and colleagues (Gandier et al. 2017), combined with muta-
tional analysis of Vmh2 from Pleurotus ostreatus (Pennacchio et al. 2018), suggest
a further subdivision within basidiomycete hydrophobins, based on structure and
mechanism of rodlet assembly. All of the hydrophobins display a large area of
exposed hydrophobicity on the protein surface, unusual for soluble proteins (Sunde
et al. 2008). The stable display of this relatively extensive hydrophobic surface area
on a monomeric protein in solution is likely possible because of the presence of the
four disulphides, which prevent folding of the polypeptide to bury the hydrophobic
regions (Gandier et al. 2017; Wosten and Scholtmeijer 2015; Ren et al. 2014).
Intact disulphides are required for function and structured self-assembly in most
hydrophobins (Sallada et al. 2018; Valsecchi et al. 2019b). Additionally, in some
members of the class I hydrophobins, the flexibility of the inter-cysteine loops may
be critical in preventing unwanted self-assembly in solution (De Simone et al.
2012).

5 The Mechanism of Rodlet Assembly

Notably, Wessels and colleagues described in 1993 that the hydrophobin SC3
aggregates into rodlets when heated or exposed to bubbles and suggested that the
aggregation of the protein was likely to occur at gas–liquid interfaces (de Vries
et al. 1993). In a follow-up study, this group demonstrated that purified monomeric
SC3 protein could be induced to self-assemble into structures with a rodlet mor-
phology similar to that observed on the surface of aerial hyphae and that the process

JFig. 3 a Schematic representation of the differences and variations in inter-cysteine length that
underlie the classification of hydrophobins into three classes. The positions of the eight conserved
cysteine residues are highlighted in yellow. The lengths of the N- and C-terminal regions that lie
before cysteine 1, and after cysteine 8, respectively, have been omitted for clarity. Along the amino
acid sequence, the lengths of the polypeptide chains between the cysteine residues vary from that
shown in black (shortest) to the combined length illustrated in black and grey (longest). In the
intermediate/class III hydrophobins, two distinct sets of spacings are observed, as indicated by the
two sets of black and/or grey bars. The positions of the loops 1, 2 and 3 are indicated by L1, L2
and L3. b Cartoon representations of the secondary structure elements of the monomeric forms of
the class I hydrophobins EAS and MPG1 and topology diagrams indicating the four b-strands that
make up the conserved b-barrel in EAS, RodA, DewA, MPG1, SC16 and the class II hydrophobin
NC2. The corresponding four strands are coloured light green, blue, dark green and orange in the
three-dimensional structures of EAS and MPG1, for comparison. Topology diagrams were
produced with Pro-origami (Stivala et al. 2011) and representations of EAS and MPG1 structures
with the PyMOL Molecular Graphics System, Version 2.3.0 Schrödinger, LLC, using PDB codes
2FMC (EAS), 2LSH (DewA), 4AOG (NC2), 6GCJ (RodA), 2NBH (SC16) and 2N4O (MPG1)
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occurred at the surface of air vesicles (Wosten et al. 1993). Biophysical studies of
the process of self-assembly of purified SC3 demonstrated that self-assembly into
the rodlet form is associated with an overall increase in b-sheet structure, with the
involvement of a helical intermediate when assembly occurs on a hydrophobic
surface (de Vocht et al. 1998).

New insight into the structure of the rodlet form, and a breakthrough in
understanding the self-assembly process, came from two papers that almost con-
currently reported that hydrophobin rodlets have an amyloid substructure, i.e. the
ordered secondary structure within the rodlets consists of b-sheet structure in which
the constituent b-strands lie at right angles to the rodlet long axis. Butko et al.
provided spectroscopic evidence that interfacial assembly of SC3 generated an
amyloid-like structure (Butko et al. 2001), and Mackay and colleagues showed that
the rodlet form of EAS is a functional amyloid (Mackay et al. 2001). This appears
to be the case for all rodlet-forming hydrophobins characterised to date (Gandier
et al. 2017). Studies of recombinantly produced hydrophobins, namely RodA,
RodB and RodC from A. fumigatus and MPG1, DewA and EASD15, a truncated
version of EAS (Kwan et al. 2008) have demonstrated that all of these hydro-
phobins apart from RodC can be triggered to assemble in vitro into a fibrillar form
that is high in b-sheet content (Pham et al. 2018). However, the rodlets produced
in vitro may differ in some details, for example in lateral packing, from those
assembled in situ on spores, since the exact nature of the interacting surface pro-
vided by the cell wall is not replicated and the kinetics of formation may be
different. While the underlying structural core is the same, morphological differ-
ences are commonly observed between amyloid fibrils assembled in vitro and those
present in the biological context (Sunde et al. 2008; Kollmer et al. 2019).

The obvious difference between representative members of the two major classes
is the presence of relatively long loops of varied sequences in class I hydrophobins,
which are absent in class II members. This led to the hypothesis that the loops
would play a key role in the assembly or structure of the rodlet form (Kwan et al.
2006). However, deletion analysis of L1, the long loop between cysteines 3 and 4 in
EAS demonstrated that this loop could be dramatically shortened without com-
promising the ability of the protein to form rodlets Kwan et al. (2006, 2008).
Instead, the mutational analysis demonstrated that in EAS, the L3 loop between
cysteines 7 and 8 contains the key amyloidogenic segment (Macindoe et al. 2012).
Subsequent solid-state NMR analysis has confirmed that this region forms the
ordered b-sheet core of the EAS rodlet functional amyloid (Morris et al. 2012).
Other class I hydrophobins may accommodate the amyloidogenic segments in other
inter-cysteine regions that are sufficiently flexible to allow for the formation of
intermolecular b-sheet structures. The amyloid-forming segment(s) of other class I
hydrophobins have been suggested to be located in L1, L2 or L3 (Gandier et al.
2017; Morris et al. 2013; Pennacchio et al. 2018; Pham et al. 2016, 2018; Niu et al.
2014) and RodA is predicted to have two amyloidogenic segments, in L2 and L3
(Valsecchi et al. 2019b).
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The majority of the class I hydrophobins that have been characterised require a
hydrophilic–hydrophobic interface to trigger self-assembly (Lo et al. 2014; Pham
et al. 2016). In solution and in the absence of an interface, the monomeric form of
class I hydrophobins is prevented from self-assembling, possibly because the
amyloid-forming regions are shielded due to intramolecular interactions and/or
because the loops are too dynamic for intermolecular interactions to be favoured
(De Simone et al. 2012; Kwan et al. 2006). Certain hydrophobins, including DewA
and SC3, form dimers in the solution that are off-pathway for rodlet assembly and
may represent an assembly control mechanism (Morris et al. 2013; Wang et al.
2004). SC3 has been shown to exist in three different conformations: a soluble,
predominantly dimeric state in solution and a-helical and b-sheet states at a
hydrophilic–hydrophobic interface (Wang et al. 2002). The SC3 dimers dissociate
when the protein binds to a hydrophobic surface (Wang et al. 2004) and molecular
dynamic simulations suggest that the conversion from the a-helical to a stable
b-sheet conformation occurs when the monomers assemble into the rodlet state
(Fan et al. 2006). SC3 has also been demonstrated to form nanorods in solution,
with self-assembly promoted by low ionic strength and more alkaline pH, sug-
gesting that the self-assembly of individual hydrophobins may be tailored to the
environmental conditions present when they are expressed and functional
(Zykwinska et al. 2014a).

In general, the relatively large, surface-exposed hydrophobic regions of these
proteins result in their recruitment to hydrophilic–hydrophobic interfaces, and
alignment there, to maximise hydrophobic interactions. The high surface activity of
hydrophobins is reflected in the reduction in contact angle made by hydrophobin-
containing solutions, compared to water droplets, on hydrophobic surfaces (Morris
et al. 2011; Wosten et al. 1993). Interface properties are critical for recruitment and
alignment and additives that reduce the surface tension of a solution can be seen to
inhibit class I hydrophobin assembly (Morris et al. 2011). When class I hydro-
phobins are recruited to the interface, they undergo a conformational transition that
exposes the amyloidogenic regions, allowing intermolecular interactions to occur
and the stable amyloid core to develop (Macindoe et al. 2012). The very extensive
hydrogen bonding between monomers that occurs along the rodlet length is likely
responsible for the resistance of these structures to most denaturants. While EAS
has a single amyloidogenic region in the L3 loop, RodA from A. fumigatus appears
to have two amyloidogenic regions and the involvement of both of these in
b-sheet-rich rodlet structures may be the reason for the extreme stability of RodA
rodlets, which require hydrofluoric acid treatment to achieve complete depoly-
merisation (Valsecchi et al. 2019b). The model for class I hydrophobin
self-assembly to form functional amyloid rodlets is illustrated in Fig. 4. While class
II hydrophobins also assemble at hydrophilic–hydrophobic interfaces, they do not
form stable intermolecular b-sheet structure, and hence, class II assemblies are
readily depolymerized (Wosten and de Vocht 2000). The assemblies formed by
class III hydrophobins have not yet been investigated experimentally.
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6 Unique Biological Roles of Rodlet Functional Amyloids

In addition to providing a hydrophobic coating on fungal structures, some
rodlet-forming hydrophobins contribute to other properties that are characteristic of
particular fungi, including aiding symbiotic relationships or increasing the
pathogenicity of the fungus towards its host.

Hydrophobin rodlets are one type of a number of functional amyloid assemblies
now recognised as being applied for diverse biological purposes by organisms from
bacteria to mammals. In bacteria, filamentous fungi and yeasts, functional amyloids
assembled from different proteins have roles that range from stabilising biofilms,
altering surface properties, facilitating interactions, regulating heterokaryon
incompatibility, modulating transcription, environmental adaptation and acting as
cytotoxins (Shanmugam et al. 2019). Viral functional amyloids can inhibit host cell
responses and cell death (Pham et al. 2019). Although fungal hydrophobin rodlets
and certain bacterial and viral functional amyloids modulate the host response to
infection, they do not themselves cause disease but may be considered pathogenicity
factors (Bayry et al. 2012). In mammals, functional amyloids have been shown to be
involved in pigment biosynthesis and sequestration, haemostatic control, hormone
storage and release and signal transduction (Chuang et al. 2018).

Fungal functional amyloids take several different forms, involving the
self-assembly of different types of protein which display no sequence or structural
similarity. They include hydrophobin rodlets, prion aggregates in yeast such as those
formed by sup35p and ure2p in S. cerevisiae and the HET-s prion filaments of

hydrophobic

hydrophilic

(3)

(2)

(1)

rodlets

Fig. 4 Schematic representation of the assembly of monomeric forms of class I hydrophobins into
the rodlet structure, based on biophysical characterisation of the process in EASΔ15 (Kwan et al.
2008; Macindoe et al. 2012; Morris et al. 2013). (1) Recruitment of the protein to the hydrophilic–
hydrophobic interface, followed by (2) alignment and conformational change to expose the
amyloidogenic segment(s) and (3) formation of intermolecular b-sheet in the rodlet form. Cartoon
representations prepared using the PyMOL Molecular Graphics System, Version 2.3.0
Schrödinger, LLC, with PDB code 2K6A for the EASΔ15 monomer and rodlet form as in
(Macindoe et al. 2012)
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Podospora anserina. The formation of these amyloids is temporally and spatially
regulated and tightly controlled to confer the desired biological function. While
hydrophobin rodlet assembly follows a nucleation-dependent polymerisation
mechanism like other amyloids, the formation of the nucleus is localised to a
hydrophobic–hydrophilic interface (Pham et al. 2016). Disaggregation of rodlets
occurs prior to germination, likely through protease digestion. Prion assembly and
disassembly in yeast have been shown to be under chaperone control (Chuang et al.
2018).

This tight regulation of assembly and disassembly of functional amyloids con-
trasts with the formation and deposition of disease-associated amyloid fibrils, such
as amyloid-b in Alzheimer’s disease, prions in the spongiform encephalopathies
and transthyretin in familial amyloidotic polyneuropathy (Pham et al. 2014).
Disease-associated amyloid fibrils form as a consequence of protein misfolding and
aggregation, are generally stable and resistant to clearance and are associated with
cell death and tissue and organ disruption.

6.1 Hydrophobins in Symbiotic Relationships with Plants
and in Lichens

Fungi from the Tricholoma genus form ectomycorrhizal symbiotic relationships
with the roots of woodland trees. This relationship is mutualistic, allowing the
fungus access to carbohydrates and growth factors and providing the tree with
increased nutrient and water supply (Sammer et al. 2016). Species from Tricholoma
utilise hydrophobins to aid the communication and maintain the relationship
between host and fungus. Initial research identified a single class I hydrophobin
gene, hyd1 within the T. terreum species (Mankel et al. 2002). Hyd1 forms
hydrophobin rodlets that exist at the interface between the host tree and T. terreum,
and it was therefore proposed to aid in host compatibility (Mankel et al. 2002).
43 hydrophobin gene sequences have been identified in the Tricholoma genus, with
nine hydrophobin genes identified in T. vaccinum that are expressed at different
stages of the life cycle. These nine hydrophobins were shown to be involved in
aerial hyphae and fruiting body formation as well as host recognition and the
response to metal stress (Sammer et al. 2016).

A similar advantageous role for hydrophobins is observed in lichens, where
hydrophobins prevent waterlogging within airspaces. A lichen is a composite
organism generated by a symbiotic relationship between a fungus and algae or
cyanobacteria (Dyer 2002). Lichens have the ability to survive dramatic changes in
wettability, and this has been attributed to the presence of hydrophobins. Multiple
hydrophobins have been identified from two taxonomically unrelated fungi
Dictyonema glabratum and Xanthoria parietina (Scherrer et al. 2000, 2002;
Trembley et al. 2002). The hydrophobins create a hydrophobic coating on the
hyphae that is in contact with the algae and maintain gas-filled spaces despite the
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lichen being water-saturated (Honegger 1991). This ensures appropriate gas
exchange, and therefore, photosynthesis can occur even in conditions of high water
content (Dyer 2002). This function is similar to that attributed to the hydrophobin
SC4 from S. commune. SC4 lines gas channels in fruiting bodies and prevents them
from filling with water, therefore maximising gas exchange (van Wetter et al.
2000).

6.2 The Contribution of Hydrophobins to Plant and Insect
Infections

MPG1, from M. oryzae, was the first hydrophobin to be demonstrated to perform a
pathogenic role in a fungal disease. M. oryzae causes rice blast disease; responsible
for destroying up to one-third of the annual global rice crop (Fernandez and Orth
2018). MPG1 self-assembles at the spore–rice leaf interface, aiding in the detection
of the surface as well as attachment of the spore to the hydrophobic leaf (Talbot
et al. 1996). Knockout of mpg1 results in loss of the rodlet layer on spores and
reduced appressorium formation (Beckerman and Ebbole 1996). The appressorium
allows the fungus to puncture through the infection surface; therefore, a reduction in
appressorium formation decreases the pathogenicity of the fungus. MPG1 has also
been linked to the activity of the enzyme cutinase 2 produced by M. oryzae
(Skamnioti and Gurr 2008). Cutinase enzymes can degrade the robust cutin coating
on plant leaves. MPG1 stimulates cutinase 2 activation, which subsequently acti-
vates the appressorium formation and leads to penetration of the rice leaf (Pham
et al. 2016; Skamnioti and Gurr 2009). M. oryzae also contains a class II hydro-
phobin MHP1. MHP1 is similar to other class II hydrophobins in that it does not
form fibrillar rodlets but it has been shown to have a potential regulatory role in
MPG1 rodlet formation (Pham et al. 2016).

The temporal and spatial expression of the four class I hydrophobins produced
by the tomato pathogen Cladosporium fulvum suggests that they perform distinct
roles in the formation of aerial hyphae, conidia and germ tubes and during infection
(Lacroix et al. 2008; Whiteford and Spanu 2001).

Beauveria bassiana, an entomogenous pathogen, utilises two hydrophobins to
create a rodlet layer on spores (Zhang et al. 2011). B. bassiana contains two class I
hydrophobins Hyd1 and Hyd2, and initially, Hyd2 was proposed as the main
component of the rodlet layer on spores (Cho et al. 2007; Holder and Keyhani
2005). However, it has been shown that both Hyd1 and Hyd2 contribute to the
rodlet spore coat: Hyd2 is proposed to have a regulatory role and forms the
boundary of the rodlet nanodomains, initiating the nucleation of Hyd1 rodlet for-
mation (Zhang et al. 2011). This rodlet coat ultimately aids the attachment of a
spore to the insect cuticle and therefore subsequent hyphal penetration. This dis-
covery highlighted that the rodlets coating fungal spores are not necessarily com-
posed of a single type of hydrophobin (Zhang et al. 2011).

42 S. R. Ball et al.



6.3 The Role of RodA and Other Hydrophobins
in A. Fumigatus

Hydrophobins in the human pathogen A. fumigatus have a pathogenic role in
addition to aiding in spore dispersal and reversing wettability. A. fumigatus is an
opportunistic pathogen that can infect the human lung and subsequently spread to
other organs including the brain and kidneys (Latge 1999). The spores are deposited
into the alveoli of the lungs where they invade the epithelial cell wall lining and
germinate, leading to invasive aspergillosis, a condition that occurs predominantly
in immunocompromised patients. Patients with pre-existing pulmonary disease are
also more susceptible to allergic bronchopulmonary aspergillosis and the devel-
opment of aspergilloma (Lee and Sheppard 2016). A. fumigatus also causes
aspergillosis in a wide range of agricultural, domestic and wild animals and birds
(Seyedmousavi et al. 2018).

The hydrophobin rodlet layer plays an important role in evasion of the host
immune system by A. fumigatus since, along with the melanin layer, it
immunosilences the conidium (Aimanianda et al. 2009; Thau et al. 1994; Beauvais
and Latge 2018; Girardin et al. 1999; Paris et al. 2003; Valsecchi et al. 2017). In
dormant conidia, the hydrophobin coating shields the carbohydrate moieties of the
cell wall from detection by the dectin-1 receptor, which recognises b-1,3-glucan,
the dectin-2 receptor, which recognises galactomannan, and Toll-like receptors. The
presence of the rodlet layer thus prevents activation and maturation of dendritic
cells, macrophages or neutrophils and prevents cytokine induction in response to
the presence of conidia. Hence, even though most people breathe in several
hundreds of A. fumigatus spores daily, and these are small enough to reach the
alveoli in the lungs, they do not result in activation of the innate immune defenses.
Complement components such as the major complement protein C3, acute phase
proteins such as surfactants, and the pentraxin-related protein PTX3, act as soluble
mediators that interact with dormant A. fumigatus conidia and result in spore
ingestion by macrophages (Wong and Aimanianda 2017). The rodlet layer hides the
spore from immune detection until appropriate germination conditions are met. At
this point, the rodlet layer degrades and germination can commence. In immuno-
compromised patients, the macrophages fail to kill the conidia, and as a result,
filamentous hyphae can form and invade the lung tissue, resulting in a necrotizing
pneumonia and further dissemination to other tissues (Aimanianda et al. 2009;
Dague et al. 2008; Lee and Sheppard 2016).

A. fumigatus contains multiple hydrophobins (Rod A–G); however, only RodA
is well characterised (Valsecchi et al. 2017). Knockout of RODA reduces the dis-
persal of spores and results in hydrophilic spores that lack the rodlet layer, instead
of displaying an amorphous surface (Thau et al. 1994; Valsecchi et al. 2019a).
Chemical or genetic removal of the RodA rodlet layer generates spores that can
activate the immune system, releasing cytokines, chemokines and reactive oxygen
intermediates (Aimanianda et al. 2009). A decrease in surface RodA rodlets also
results in an increase in phagocytosis of A. fumigatus spores (Dagenais et al. 2010).
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RodA has been proposed to form a multilayer on spores compared to the observed
monolayer on spores of other fungi (Zykwinska et al. 2014b). Similar to
other hydrophobins, the rodlets are organised into nanodomains that vary in length
(120–220 nm) and width (60–100 nm) but are composed of at least three rodlets.
An analysis of atomic force microscopy images was used to elucidate the
approximate height of *5 nm for the RodA layer (Zykwinska et al. 2014b).
Previous research into hydrophobins has shown that EAS and SC3 organise into
monolayers of 2–2.5 nm in height (Zykwinska et al. 2014a; Yang et al. 2013).
From this observation, it was proposed that RodA forms a bilayer structure with
two monolayers stacked on top of each other. The first layer of the bilayer is
attached to the fungal cell wall via its hydrophobic side, interacting with
hydrophobic melanin, glycoproteins and polysaccharides. Pre-assembled oligomers
from the surrounding growth environment interact with their hydrophilic side with
the monolayer already assembled and therefore create a bilayer that renders the
spore hydrophobic (Zykwinska et al. 2014b).

Recent attempts to characterise the remaining five hydrophobins in A. fumigatus
suggest that not all are active in aiding fungal infection. The class I hydrophobins
RodA–C are very similar in sequence but RodD–G have limited similarity
(Valsecchi et al. 2017). RodD and RodE are controversial as hydrophobins as RodD
lacks a cysteine, and RodE has three additional cysteines, while the presence of
eight cysteines is a defining feature of hydrophobins. RodA, B and C are present in
the conidial cell wall of A. fumigatus. However, only RodA forms rodlets on the
conidium and is necessary for dispersal, hydrophobicity and immune evasion (Paris
et al. 2003). When A. fumigatus grows in a biofilm, the RODB gene is highly
expressed but the protein is not detectable in the biofilm by immunofluorescence
(Valsecchi et al. 2017). RodB is able to form rodlets in vitro (Pham et al. 2018) but
it does not appear to substitute for this function in ΔRodA mutants. The RODB gene
is also highly expressed in vivo in a mouse invasive model of aspergillosis but the
significance of this is unclear and despite being expressed, the role of the remaining
hydrophobins RodC–G in A. fumigatus remains unknown (Valsecchi et al. 2017).

7 Conclusions

The rodlet covering formed by class I hydrophobin proteins on the outside of the
cell wall of conidia and on aerial hyphae provides a protective coat on these fungal
surfaces. Building on the recognition of the distinct morphology of the rodlet layers
provided by imaging techniques, structural and mechanistic studies have revealed
that all class I hydrophobins share a b-barrel structure, stabilized by a characteristic
pattern of four disulphide bridges, and that rodlets are functional amyloid structures.
The class I hydrophobins generally have longer inter-cysteine sequences, and a
diversity of regular secondary structure elements, something that is lacking in class
II hydrophobins but which is consistent with the class I ability to form inter-
molecular interactions within the rodlet b-sheet-rich scaffold. The role of certain
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rodlets is well understood, where they have been demonstrated to increase the
attachment of fungi to host surfaces, to support the generation of infectious struc-
tures and to shield conidia from detection by host defenses, thereby contributing to
infectivity and pathogenicity. However, a full picture of the roles of the multiple
different rodlet-forming hydrophobins that are present in some fungal genomes
remains to be elucidated. Additionally, understanding of the process by which class
I hydrophobins localise to the outer surface of the fungal cell wall, for self-assembly
into the unique and remarkable rodlet structure, could identify ways to manipulate
the interaction of fungi with different environments.
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Abstract Glucans are characteristic and major constituents of fungal cell walls.
Depending on the species, different glucan polysaccharides can be found. These
differ in the linkage of the D-glucose monomers which can be either in a- or
b-conformation and form 1,3, 1,4 or 1,6 O-glycosidic bonds. The linkages and
polymer lengths define the physical properties of the glucan macromolecules, which
may form a scaffold for other cell wall structures and influence the rigidity and
elasticity of the wall. b-1,3-glucan is essential for the viability of many fungal
pathogens. Therefore, the b-1,3-glucan synthase complex represents an excellent
and primary target structure for antifungal drugs. Fungal cell wall b-glucan is also
an important pathogen-associated molecular pattern (PAMP). To hide from innate
immunity, many fungal pathogens depend on the synthesis of cell wall a-glucan,
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which functions as a stealth molecule to mask the b-glucans itself or links other
masking structures to the cell wall. Here, we review the current knowledge about
the biosynthetic machineries that synthesize b-1,3-glucan, b-1,6-glucan, and
a-1,3-glucan. We summarize the discovery of the synthases, major regulatory traits,
and the impact of glucan synthesis deficiencies on the fungal organisms. Despite all
efforts, many aspects of glucan synthesis remain yet unresolved, keeping research
directed toward cell wall biogenesis an exciting and continuously challenging topic.

1 Introduction

Glucans are polymers of D-glucose and represent the major constituent of many
fungal cell walls. Several different kinds of glucan polymers are found in the walls
of fungi. They differ in their O-glycosidic bonds between the D-glucose monomers
which can adopt either a- or b-conformation and are formed between the carbon
atoms 1,3, 1,4 or 1,6 of the pyranose moieties. Depending on the fungal species, the
abundance of the individual glucans as well as their importance for the cell wall
integrity and fungal physiology varies significantly. The cell walls of the better
characterized Ascomycota such as Saccharomycetes (e.g., Saccharomyces and
Candida) and Eurotiomycetes (e.g., Aspergillus, Penicillium, and Neurospora)
typically consist of a significant amount of glucans. The walls of the opportunistic
fungal pathogen Candida albicans contain 54–60% glucans (Ruiz-Herrera et al.
2006). Baker’s yeast has approximately 60% glucans in its cell wall (Klis 1994),
Schizosaccharomyces pombe 76–84% (Magnelli et al. 2005), and molds in the
genus Aspergillus 60–85% glucans (Gastebois et al. 2009). In contrast, in other
fungal species cell wall glucans are much less abundant. For example, cell walls of
the molds in the lineage Mucoromycotina (e.g., Rhizopus oryzae and Phycomyces
blakesleeanus) only contain 3–4% glucans (Mélida et al. 2015).

While b-glucans are characteristic for essentially all true fungi, a-glucans occur
only in cell walls of certain fungal species. Consequently, certain enzymes that are
essential for the synthesis of cell wall a-glucan are typically missing in lineages and
species void of a-glucans in their cell walls, such as the baker’s yeast
Saccharomyces cerevisiae, the Candida species, Fusarium graminearum, and
Ustilago maydis (Damveld et al. 2005a). Together with chitin, b-glucans build the
scaffold for further cell wall structures. For example, galactomannan, a cell wall
polymer typically—but not exclusively—found in Aspergillus species, is covalently
bound to the cell wall b-1,3-glucan (Fontaine et al. 2000). Similarly, mannoproteins
in Candida species are covalently bound to the b-1,3-glucan scaffold via short
b-1,6-glucan linkers (Kapteyn et al. 1995). These are only some examples of the
known cell wall constituents whose linkage to the cell wall will ultimately depend
on the b-1,3-glucan scaffold.

Considering the large portion of b-1,3-glucan present in the cell walls of many
fungal species and its role as scaffold for other constituents, it is conceivable that
the lack thereof may have a devastating effect on growth and viability. In fact,
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b-1,3-glucan biosynthesis is currently one of the most important targets for anti-
fungal drugs. The echinocandin class of antifungals (e.g., caspofungin, anidula-
fungin, and micafungin) specifically inhibits b-1,3-glucan synthesis and is broadly
applied in the clinics to treat invasive fungal infections (chapter “Cell
wall-modifying antifungal drugs” by David S. Perlin). Notably, the impact of
b-1,3-glucan synthesis inhibition clearly depends on the fungal species and obvi-
ously reflects the importance of this cell wall polymer in the respective organism.
While yeasts such as S. cerevisiae and Candida spp. typically cannot live without
b-1,3-glucan (Douglas et al. 1997; Inoue et al. 1995; Katiyar et al. 2012; Mazur
et al. 1995; Mio et al. 1997), Aspergillus fumigatus can survive, but is heavily
inhibited in growth and suffering from cell lysis (Dichtl et al. 2015). These
observations are based on yeast and mold mutants, but are also in line with the
activity of the echinocandin antifungals against these important pathogens. While
Echinocandins are considered fungicidal against Candida species, they are fungi-
static against Aspergillus species (Perlin 2015).

Being a characteristic and often essential structure in fungi, b-1,3-glucan is a
well-conserved pathogen-associated molecular pattern (PAMP). Animals, which
inherently lack this structure, developed specific pattern recognition receptors
(PRR), such as the human C-type lectins Dectin-1, Langerin, and the collectins
SP-A and SP-D, that detect b-1,3- (Dectin-1, Langerin) or b-1,6- (SP-A, SP-D)
glucans and trigger an innate immune response (reviewed in Goyal et al. 2018).
Variants of these PRRs are conserved from invertebrates to humans and play a
major role in the defense of these organisms against fungal infections (chapter
“PAMPs of the fungal cell wall and mammalian PRRs” by Remi Hatinguais,
Janet A. Willment, and Gordon D. Brown) (Legentil et al. 2015). b-1,3-/
b-1,6-glucan typically triggers activation of the host’s defense mechanisms.
However, inhibition of b-1,3-glucan synthesis has repeatedly and surprisingly been
reported to reinforce—and not dampen—the antifungal activity of the innate
immune system by paradoxically increasing the exposure of b-1,3-glucans at the
cell surface of the fungi (Beyda et al. 2015; Lamaris et al. 2008; Wheeler et al.
2008). Taken together, this suggests that inhibition of b-1,3-glucan synthesis fosters
exposure of PAMPs which then boosts activation of the immune defense. It is not
clear whether fungal cell wall a-glucans are specifically detected by any PRRs. It
was proposed that a-1,4-glucan of Mycobacterium tuberculosis is a ligand of
DC-SIGN (Geurtsen et al. 2009), but a-1,4-glucan is only a minor constituent of the
cell walls of a-1,3-glucan-positive fungi. In marked contrast to b-1,3-glucan,
a-1,3-glucan is rather a virulence factor than a ligand for innate immunity. There is
overwhelming evidence that a-1,3-glucan serves as a stealth polymer itself or as an
important linker for other masking structures in various human, animal, and plant
pathogenic fungi such as Cryptococcus neoformans, Aspergillus fumigatus,
Histoplasma capsulatum, Paracoccidioides brasiliensis, Blastomyces dermatitidis,
and Magnaporthe grisea (Beauvais et al. 2013; Fujikawa et al. 2012; Hogan and
Klein 1994; Rappleye et al. 2004, 2007; Reese and Doering 2003; San-Blas and
Vernet 1977).
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2 Biosynthesis of Cell Wall Glucans

Glucans are highly abundant and essential structures of many fungal cell walls.
Synthesis of the major fungal cell wall polymers b-1,3-glucan and a-1,3-glucan
relies on two specialized and not directly related enzymatic complexes. The pro-
teins representing the presumed catalytic cores of these two complexes were named
as the b-1,3-glucan synthase or the a-1,3-glucan synthase, respectively. However, it
should be emphasized that the enzymatic activities of these enzymes most likely
rely on a concerted interaction with multiple other enzymes. In addition, it is
controversial whether the presumed b-1,3-glucan, and a-1,3-glucan synthase
enzymes really contain the catalytic domains that synthesize the eponymous glucan
polymers.

2.1 b-1,3-Glucan Synthesis

b-1,3-glucans are characteristic for fungal cell walls, but are also found in other
eukaryotes such as plants (callose) and protozoa and in certain bacteria.
b-1,3-glucan chains have a helical structure that can present either as
single-stranded or three-stranded helices (Bohn and BeMiller 1995; Kopecká and
Kreger 1986; Laroche and Michaud 2007). This structure confers a remarkable
elasticity to the polymer chain (Klis et al. 2006) and forms an optimal basis for the
cell wall of a living organism. Besides plain linear b-1,3-glucan chains, modifi-
cations thereof are found in fungal cell walls. These present as branched polymers
where branches are formed by b-1,6 linkages to the core chain (Klis et al. 2006;
Latgé 2007; Lesage and Bussey 2006). The branches restrict the ability to form
hydrogen bonds between linear segments of the b-1,3-glucan chains and, therefore,
increase the elasticity of the cell wall even further (Morris et al. 1986; Rees and
Scott 1971). By modifying these interconnections of the b-1,3-glucan polymers, the
cell can vary the properties of the wall according to its needs.

b-1,3-glucan is synthesized by successive addition of glucose molecules gen-
erated by hydrolysis from cytoplasmic UDP-glucose [Fig. 1; (Frost et al. 1994)].
One of the direct products of the reaction, UDP, functions as a competitive inhibitor
of b-1,3-glucan synthesis (López-Romero and Ruiz-Herrera 1978; Shematek et al.
1980). During in vitro experiments with plasma membranes isolated from
S. cerevisiae, the nucleoside triphosphates ATP or GTP, glycerol, and bovine serum
albumin were required for maximal activity of b-1,3-glucan synthase (Shematek
et al. 1980). The glucose entity is added to the non-reducing end of the polysac-
charide chain with a resulting product length of 60 residues in average (Shematek
et al. 1980). However, determination of the degree of glucan polymerization in vivo
had resulted in values of approximately 1500 glucose residues per glucan molecule
(Fleet and Manners 1976; Manners et al. 1973). This discrepancy is probably
explained by the fact that glucan polymers isolated from baker’s yeast cell walls
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undergo extensive remodeling upon leaving the b-1,3-glucan synthase and arrival
in the extracellular space. This involves a bunch of conserved enzymes that show
glucanase or glucanosyltransferase activity which elongate and branch the
b-1,3-glucan chains via b-1,3- or b-1,6-glycosidic bonds (also discussed in chapter
“Glucanases and Chitinases” by César Roncero and Carlos R. Vázquez de Aldana).
For example, proteins of the Gas family have been shown to remodel b-1,3-glucans
by cleaving b-1,3-glucan polymers internally and transferring the new reducing end
to the non-reducing end of other b-1,3-glucan molecules and thereby elongate
existing chains (Mouyna et al. 2000). Since Gas1 is anchored to the membrane only
by a glycosylphosphatidylinositol (GPI) residue (Nuoffer et al. 1991), it might have
been lost during isolation of glucan synthase, a membrane embedded protein, for
in vitro experiments. Another enzyme, named Bgl2, was identified in S. cerevisiae
to introduce branches into the glucan chains. It cooperates with Gas1 and increases

Fig. 1 Fungal b-1,3-glucan synthesis. Two subunits of the fungal b-1,3-glucan synthase
complex have been identified, the b-1,3-glucan synthase (encoded by fks genes) and the Rho
GTPase Rho1. The b-1,3-glucan synthase is a membrane protein approx. 1800 amino acids in
length. 13 transmembrane helices (TM) span the plasma membrane. The large cytosolic loop
between TM6 and TM7 is highly conserved and contains the presumed catalytic site for glucan
synthesis and a domain required for interaction with regulating components. Rho1, which is
essential for b-1,3-glucan synthesis, might interact with this loop. Some studies suggest a primer
structure to initiate b-1,3-glucan synthesis. Cytosolic UDP-glucose is converted into UDP and the
elongating b-1,3-glucan polymer. Amino acid exchange at three hot spot regions confers
echinocandin resistance. These hot spots are located in the extracellular parts of the protein.
Possibly, the b-1,3-glucan synthase forms a pore-like structure to pass the synthesized
b-1,3-glucan chains to the outside. Various remodeling enzymes elongate and modify the linear
glucan chain to build the cell wall matrix
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branching efficiency in vitro (Aimanianda et al. 2017). In vivo, BGL2 deletion does
not affect cell growth. However, parallel deletion of GAS1 causes a synthetically
sick phenotype (Aimanianda et al. 2017) which indicates that both enzymes fulfill
overlapping roles. A homolog from A. fumigatus, Gel4, was recombinantly
expressed and showed similar results to recombinant Gas1 from S. cerevisiae
during in vitro branching assays (Aimanianda et al. 2017).

Shematek et al. believed b-1,3-glucan polymers to be synthesized de novo in
S. cerevisiae since experiments with 14C-labeled UDP-glucose showed the presence
of the labeled substrate at the reducing end of the chain (Shematek et al. 1980). In
agreement, Quigley and Selitrennikoff could not identify a primer structure for
b-1,3-glucan synthesis in Neurospora crassa either (Quigley and Selitrennikoff
1987). The lacking requirement for a primer would distinguish this mechanism
from that of other glycosyltransferases, which require acceptor molecules such as
proteins, lipids, or polysaccharides for the transfer of sugar units (Paulson and
Colley 1989). However, these findings do not exclude the possibility that the
polysaccharide is formed by transfer to a primer synthesized from 14C UDP-glucose
itself by other enzymes in the plasma membrane. Experiments with C. albicans
showed the inaccessibility of the reducing end of b-1,3-glucan because reducing
treatment of the resulting glucan synthase product did not lead to transformation
from glucose into sorbitol. This suggests synthesis of b-1,3-glucan on a primer
molecule of so far unknown identity (Paulson and Colley 1989).

While the biochemistry and properties of b-1,3-glucan synthesis could be ana-
lyzed to some extent with crude cell extracts, the genes encoding the actual
b-1,3-glucan synthase remained unknown for a long time. The first gene involved in
b-1,3-glucan synthesis (FKS1) was identified in 1993 in S. cerevisiae in several
parallel approaches conducted by independent research groups. One approach was
designed to identify alleles in S. cerevisiae conferring hypersensitivity to the
immunosuppressant tacrolimus (FK506) and cyclosporin A which inhibit the
calmodulin-dependent protein phosphatase calcineurin. In this screen, an allele was
identified and termed fks1-1 (FK506 supersensitive) and calcineurin subunit deletion
in this background turned out to be lethal (Parent et al. 1993). Sequencing of the gene
from a genomic plasmid library that complemented the fks1-1mutation revealed a so
far uncharacterized ORF that encodes a protein of about 1800 amino acids to be
responsible for the observed effects (Eng et al. 1994). Douglas et al. could show that
the gene ETG1, whose mutation can confer resistance to echinocandin antifungals, is
identical to FKS1 (Douglas et al. 1994). While screening for mutants that rely on the
calcineurin-dependent signalling pathway, the CND1 gene was identified. This gene
was also finally found to be identical to FKS1 (Garrett-Engele et al. 1995). The same
allele was described to encode an enzyme that rescues calcofluor white hypersen-
sitivity of the cwh53-1 mutant (Ram et al. 1995), complements hypersensitivity to
chitin synthesis inhibition (el-Sherbeini and Clemas 1995), confers susceptibility to
papulacandin B (Castro et al. 1995), and co-purifies with b-1,3-glucan (Inoue et al.
1995). A second b-1,3-glucan synthase with high homology (88% identity) to Fks1,
named Fks2, was identified in S. cerevisiae by Mazur et al. and Inoue et al. in 1995.
This enzyme was shown to be functionally redundant with Fks1 as disruption of only
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one of these two orthologues allows survival of the yeast cell; however, lack of both
genes is lethal (Inoue et al. 1995; Mazur et al. 1995). Fks2 expression depends on
Ca2+ in a calcineurin-dependent manner. Since calcineurin is the target of FK506,
this explains why the fks1-1 mutant exhibited FK506 hypersensitivity in the pre-
viously mentioned screens. The fact that Fks2 expression is also strongly induced in
response to pheromones in a calcineurin-dependent manner, suggests a role for Fks2
in cell wall synthesis during the mating process (Mazur et al. 1995). A third
b-1,3-glucan synthase homolog, Fks3, was identified in S. cerevisiae by homology
search (Mazur et al. 1995) and functionally characterized in more detail by Ishihara
and colleagues (Ishihara et al. 2007). Despite its high homology (56%) to Fks1 and
Fks2 which clearly complement each others function in vivo, endogenous Fks3 is
not sufficient to rescue a fks1 fks2 double deletion. Further investigation of Fks3
function by phenotypic analysis revealed abnormal spore wall formation in the
single fks3 mutant that could be complemented neither by Fks1 nor Fks2 (Ishihara
et al. 2007). Membrane extracts from cells overexpressing hemagglutinin-tagged
Fks3 under the FKS1 promoter with a temperature-sensitive fks1 mutant protein and
FKS2 deletion in the background showed hardly any glucan synthase activity
in vitro. The protein seemed to be lost from the enriched glucan synthase complex.
However, in the same experiment also wild-type Fks1 expressed from a plasmid
failed to restore full activity and the fact that in the same strain overexpression of
hemagglutinin-tagged Fks3 under the FKS1 promoter could restore growth at
restrictive temperature points in the direction that Fks3 can take over glucan synthase
function under specific conditions (Ishihara et al. 2007). All three homologs in
S. cerevisiae are differentially expressed: Fks1 constitutes the main b-1,3-glucan
synthase required under normal growth conditions, while Fks2 and Fks3 both seem
to be involved in formation of spore walls with the specialty of Fks3 to stabilize
active Rho1, the regulating enzyme in the b-1,3-glucan synthase complex (Ishihara
et al. 2007; see below). How this stabilization is achieved remains to be elucidated,
but one could speculate that an increased binding affinity between Fks3 and active
Rho1 might confer elevated stress resistance that cannot be achieved simply by
expression of constitutively active Rho1 (Ishihara et al. 2007).

Similar to the three b-1,3-glucan synthases of S. cerevisiae, the synthases
encoded in other fungal species have a length of about 1600–1900 amino acids.
Like baker’s yeast, many other fungi harbor several b-1,3-glucan synthase genes.
For example, Phycomyces blakesleeanus (Mucoromycotina lineage), despite the
low amount of glucan in its cell wall, and the two pathogenic yeasts C. albicans and
C. glabrata encode three b-1,3-glucan synthase homologs, and the fission yeast
S. pombe even four. Interestingly, the importance of the individual genes for the
respective species differs greatly. Partial redundancy of the synthases is observed in
C. glabrata. Very similar to the situation in S. cerevisiae, C. glabrata deleted for
FKS1 or FKS2 is viable, but Dfks1Dfks2 is not (Katiyar et al. 2012). In contrast,
viability of C. albicans strictly depends on one of the three glucan synthases, Gsc1/
Fks1, while the other two synthase homologs are dispensable (Douglas et al. 1997;
Mio et al. 1997; Suwunnakorn et al. 2018). S. pombe non-redundantly depends on
three of the four b-1,3-glucan synthase homologs, namely Bgs1, Bgs3, and Bgs4
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(Cortés et al. 2005; Liu et al. 1999, 2000, 2002; Martín et al. 2003). This indicates
that each of the three b-1,3-glucan synthase homologs must exert a specific and
essential function which cannot be compensated by the others [summarized in
(García Cortés et al. 2016)]. Other species like Cryptococcus neoformans,
Aspergillus fumigatus, and Magnaporthe oryzae encode only one b-1,3-glucan
synthase. Similar to other characterized yeasts, C. neoformans is not viable without
its b-1,3-glucan synthase (Thompson et al. 1999). b-1,3-glucan was initially
thought to be essential for viability of all fungi. However, it became clear that the
importance of b-1,3-glucan synthesis merely depends on the individual species and
cannot be generalized. In contrast to all other characterized species, A. fumigatus
can survive upon deletion of the only b-1,3-glucan synthase encoding gene, but
shows severe growth defects with cell lysis and a retention of galactosamino-
galactan. To compensate the lack of b-1,3-glucan, Aspergillus drastically increases
the cell wall chitin and essentially depends on the formation of septa (Dichtl et al.
2015; Loiko and Wagener 2017). The compensatory upregulation of cell wall chitin
depends on calcineurin signaling but also on other pathways and appears to be a
uniform reaction in fungi upon b-1,3-glucan synthesis inhibition because similar
observations were made in many different fungal species upon treatment with
echinocandins (Fortwendel et al. 2009; Stevens et al. 2006; Walker et al. 2008;
reviewed and discussed in Wagener and Loiko 2017). The lack of b-1,3-glucan
results in the absence of an important scaffold (Fontaine et al. 2000; Kang et al.
2018). As a consequence, galactomannan, a cell wall polymer characteristic for
Aspergilli, cannot be linked to the cell wall and is released to the supernatant (Dichtl
et al. 2015). Possibly, other fungi which have only minor amounts of b-1,3-glucan
in their cell walls (e.g., Mucorales; Mélida et al. 2015) and show no in vitro sus-
ceptibility to echinocandins (Almyroudis et al. 2007; Vitale et al. 2012) might have
even less or no growth defects upon complete inactivation of their b-1,3-glucan
synthases.

It was repeatedly questioned whether the FKS genes encode indeed the catalytic
subunit of the b-1,3-glucan synthase. In vitro glucan synthase assays were per-
formed with membrane fractions from S. cerevisiae fks1 mutants showing a
strongly reduced b-1,3-glucan synthase activity in the mutants compared to wild
type (Douglas et al. 1994). Due to high impurity of membrane preparations, this
observation could not exclude the possibility that Fks1 is not the enzyme itself but
merely a factor required for synthesis. Evidence came from three studies supporting
the assumption the catalytic center of the complex is encoded by FKS1. In the first
study, an antibody raised against the Fks1 homolog Fks2, also recognizing native
Fks1, was used to deplete membrane extracts of cells expressing either Fks1 or
Fks2 specifically of b-1,3-glucan synthase activity. This resulted in association of
b-1,3-glucan synthase activity with the respective precipitate (Mazur and Baginsky
1996) and demonstrates that Fks1 or Fks2 must be present in a protein complex
with b-1,3-glucan synthase activity. Further evidence for the FKS gene products
being part of the b-1,3-glucan synthase complex came from Inoue et al. They
generated antibodies against a purified cell fraction with b-1,3-glucan synthase
activity. The same antibodies were subsequently able to detect specifically a
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200 kDa protein in western blot analysis that was identified by HPLC and subse-
quent peptide sequencing as Fks1 (Inoue et al. 1995). Finally, Schimoler-O’Rourke
et al. were able to photo cross-link a radiolabeled UDP-glucose analog, the
b-1,3-glucan synthase substrate, to the Fks1 homolog FKS-1 in Neurospora crassa.
This demonstrated the direct interaction of FKS with UDP-glucose and strongly
supports its catalytic role in b-1,3-glucan synthesis (Schimoler-O’Rourke et al.
2003). Final clarification of the synthase activity will be obtained by reconstituting
the system in vitro. These findings in yeast and N. crassa were also supported by a
study that aimed on identifying the b-1,3-glucan synthase of A. fumigatus
(Beauvais et al. 2001). In this work, co-localization of Fks1 with newly synthesized
b-1,3-glucan at the apex of the germ tube was observed. In addition, product
entrapment of the synthase complex allowed the identification of Fks1, Rho1, a
membrane H+-ATPase and a homolog of a bacterial ABC glucan transporter which
indicates the functional conservation of Fks1 (Beauvais et al. 2001).

The only known regulatory subunit of the synthase complex, the Rho GTPase
Rho1, was identified by further analysis of the co-factors relevant for b-1,3-glucan
synthesis. In an extensive in vitro study, Mg2+-dependent ATP hydrolysis was
found to be required for b-1,3-glucan synthesis activity while GTP stimulated the
reaction by a hydrolysis-independent mechanism (Shematek and Cabib 1980). This
suggested that GTP itself acts as a stimulating factor for the b-1,3-glucan synthase.
ATP, on the other hand, would be most likely required to phosphorylate a so far
unknown activator of the b-1,3-glucan synthase. Separation of cell membrane
extracts into a membrane bound and a soluble phase revealed that both contain
components that are crucial for b-1,3-glucan synthesis. The previous observation
that small amounts of GTP stimulate glucan synthase activity (Shematek and Cabib
1980) and the phenotypic consistency of cell wall mutants with Rho GTPase
mutants resulted in them being tested for their role in glucan synthesis. Finally,
Rho1 could be confirmed as the activator of the glucan synthase complex
(Drgonová et al. 1996). The physical interaction between Fks1 and Rho1 was
proven by co-purification of both proteins (Qadota et al. 1996). Rho1 is a GTP
binding protein which itself cannot be labeled by UDP-glucose (Mazur and
Baginsky 1996) indicating its sole regulatory role during b-1,3-glucan synthesis.
Rho1 is able to stimulate b-1,3-glucan synthesis in its de-ribosylated state while
ribosylation of Rho1 strongly inhibits Fks activity. This observation was made
in vitro with extracts from Dfks1 and Dfks2 mutants where only one b-1,3-glucan
synthase was present (Mazur and Baginsky 1996) demonstrating both, Fks1 and
Fks2, can be regulated by Rho1. However, it cannot be excluded that in vivo under
certain conditions any of the b-1,3-glucan synthases is additionally regulated by
other Rho GTPases than Rho1. The strict requirement of Rho1 for b-1,3-glucan
synthase activity establishes a connection between b-1,3-glucan synthesis and the
cell wall integrity pathway in which Rho1 functions as signal transducer (see 2.4)
(Mazur and Baginsky 1996). The regulatory function of Rho1 appears to be
strongly conserved in fungi. For example, in 1996, it was shown that overexpres-
sion of rho1 in S. pombe can partially complement a temperature-sensitive
b-1,3-glucan synthase mutant (Arellano et al. 1996). Expression of constitutively
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active rho1 alleles resulted in strikingly increased b-1,3-glucan synthase activity
and thicker cell walls (Arellano et al. 1996). Repression of rho1 in A. fumigatus
results in cell lysis (Dichtl et al. 2012). And like in S. cerevisiae, Rho1 of
A. fumigatus could be co-purified with the b-1,3-glucan synthase Fks1 which is
again in agreement with direct interaction of both proteins in the b-1,3-glucan
synthase complex (Beauvais et al. 2001).

The b-1,3-glucan synthase is a plasma membrane-integrated enzyme with
multiple predicted transmembrane domains (Douglas et al. 1994; Johnson and
Edlind 2012; Klis et al. 2006; Lesage and Bussey 2006). Sequence alignments of
b-1,3-glucan synthase proteins from various fungi show the highest conservation of
the protein in its central domain while N- and C-terminal regions are rather
divergent (Johnson and Edlind 2012). The differences in the N- and C-terminal
regions are probably linked to their different functional roles and cell cycle
specificities observed in various different species. Topology predictions based on
different algorithms resulted in varying prognoses concerning the number and
positions of the transmembrane domains in yeast Fks1 (Johnson and Edlind 2012).
To further investigate the topology of Fks1, a hemagglutinin (HA)-Suc2-His4C
fusion assay (Kim et al. 2003) was performed. This assay employed fusions of Fks1
fragments, chosen to end in predicted loop regions between transmembrane
domains, to a C-terminal reporter. If the His4C part, which harbors an enzymatic
function essential for histidine biosynthesis, is localized to the cytosolic side, the
cell is able to grow on medium without histidine. In contrast, when the C-terminus
is localized to the extracellular space, the Suc2 moiety will become glycosylated in
the endoplasmic reticulum. The glycosylation can be monitored by degradation of
glycosyl residues resulting in a migration shift on SDS-PAGE. Based on this ele-
gant assay, Johnson and Edlind could propose an updated topology model for Fks1
which differs in some aspects from the in silico prediction. They could confirm the
presence of a soluble cytosolic N-terminus and six subsequent N-terminal helices.
The short C-terminus protrudes into the extracellular space preceded by seven
C-terminal transmembrane helices (four predicted C-terminal helices could not be
experimentally confirmed). N- and C-terminal membrane-integrated domains of the
protein are separated by a large and highly conserved cytosolic loop. Interestingly, a
previous study by Okado et al. (2010) mapped and correlated certain mutations
within the FKS1 gene to specific phenotypes. It was shown that mutations in the
soluble cytoplasmic N-terminus result only in slightly decreased glucan synthase
activity in vitro, but cells have a strong defect in incorporation of glucan into the
budding daughter cell wall (Okada et al. 2010). Probably, this region is involved in
proper targeting or regulation of the enzyme, but solid data supporting these
hypotheses are missing. A region within the central cytosolic loop close to the
N-terminal transmembrane domains was identified to influence cell morphology
and polarity (Okada et al. 2010). Since mutation in the more N-terminal region of
the central loop only partially reduces the synthase activity in vitro, it was proposed
that this part of the protein is required for interaction with a cell polarity regulating
factor (Okada et al. 2010). The nature of this factor, however, remains to be
identified.
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In baker’s yeast, Fks1 expression depends on the cell cycle (Mazur et al. 1995).
In agreement with this expression profile and growth defect, one of the b-1,3-glucan
synthases in S. pombe, Bgs1, was shown to be also involved in cell polarization
(Cortés et al. 2002). The catalytic site of Fks1 seems to be located in the more
C-terminal part of the central cytosolic loop as mutations in this region strongly
decrease the in vitro glucan synthase activity (Okada et al. 2010). Based on the
updated topology model of Johnson and Edlind, it was possible to map mutations
conferring either resistance or hypersensitivity to echinocandin glucan synthase
inhibitors in close proximity to the central loop, importantly, at the external side of
the plasma membrane. Of note, some mutations confer specific resistance to par-
ticular echinocandins suggesting interaction sites for echinocandin-specific side
chains (Johnson et al. 2011). However, all of them are in relatively close proximity
to the membrane which is in agreement with the fact, that echinocandins carry a
lipid tail that is crucial for their antifungal activity and probably anchor the
molecule within the outer membrane leaflet (Denning 2003). Due to the final
extracellular localization of b-1,3-glucan, it was suggested that during synthesis the
growing, polymer enters the cell wall space guided through the membrane by a
channel formed by the transmembrane domains of the enzyme. However, evidence
for this hypothesis is still missing despite all studies trying to dissect b-1,3-glucan
synthase function.

2.2 b-1,3;1,4- and b-1,6-Glucan Synthesis

Another cell wall glucan which is typically found in yeasts is b-1,6-glucan.
Although it represents only approx. 12% of the entire cell wall polysaccharides in
baker’s yeast (Magnelli et al. 2002), inhibition of b-1,6-glucan synthesis results in a
severe growth defect (Roemer et al. 1993). b-1,6-glucan was shown to cross-link
chitin to b-1,3-glucans (Kollár et al. 1995) and cell wall anchored mannoproteins to
chitin as well as to b-1,3-glucans (Kapteyn et al. 1996, 1997). This important role in
anchoring mannoproteins to the yeast cell wall is probably the reason for the strong
phenotype observed upon lack of b-1,6-glucan. Analysis of b-1,6-glucan synthesis
in vitro employing either membrane preparations or whole permeabilized cells of
S. cerevisiae revealed that the membrane fraction is sufficient for b-1,3-glucan
synthesis, but not for synthesis of b-1,6-glucan (Aimanianda et al. 2009). Several
players involved in b-1,6-glucan synthesis have been identified, mainly via
screening approaches. One screen was performed to identify mutants with increased
resistance to K1 killer toxin (Al-Aidroos and Bussey 1978; Boone et al. 1990). This
toxin specifically binds to b-1,6-glucan and thereby permeabilizes the cell mem-
brane to ion passage (Martinac et al. 1990; Pagé et al. 2003). The identified alleles
were called killer toxin resistant (KRE) and some of them were investigated in more
detail. KRE5 encodes a putative glycosyl transferase that localizes to the ER (Boone
et al. 1990; Meaden et al. 1990) and a kre5-ts2 mutant was unable to synthesize
b-1,6-glucan in an assay with permeabilized yeast cells (Aimanianda et al. 2009).
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Kre6, another factor for b-1,6-glucan synthesis identified in these screens (Roemer
and Bussey 1991), is a Golgi membrane protein which has a homolog, Skn1, that
can complement the Kre6 function (Roemer et al. 1994). Besides this, a cyto-
plasmic factor involved in this pathway named Kre11 was identified, but again its
precise role in b-1,6-glucan synthesis remains elusive (Brown et al. 1993). Only
two known players of b-1,6-glucan synthesis localize to the plasma membrane or
periplasmic space, the actual site where b-1,6-glucan synthesis takes place (Montijn
et al. 1999). Kre9 is a soluble protein and its deletion reduces b-1,6-glucan to 20%
of the original amount (Shahinian and Bussey 2000). Also, a kre9 deletion mutant
was tested in an in vitro assay and did not show any b-1,6-glucan synthase activity
(Aimanianda et al. 2009). Kre1 is a protein, predicted to be GPI-anchored to the
plasma membrane that was proposed for being the actual receptor of the K1 killer
toxin (Breinig et al. 2002, 2004). Its deletion resulted in 40% decrease of
b-1,6-glucan and in a reduction of the b-1,6-glucan polymer length (Boone et al.
1990). However, it remains to be elucidated whether one of these proteins functions
as a b-1,6-glucan synthase or this enzyme remains to be identified. In contrast to
yeasts, filamentous fungi like N. crassa and A. fumigatus completely lack
b-1,6-glucan in their cell walls (Fontaine et al. 2000; Maddi and Free 2010).
Instead, another polysaccharide species, b-1,3;1,4-glucan, was identified in
A. fumigatus which comprises approx. 10% of the total b-glucan (Fontaine et al.
2000). So far, only one component was identified to be involved in
b-1,3;1,4-glucan biosynthesis. A. fumigatus Tft1, a predicted glycosyltransferase,
was shown to be essential for b-1,3;1,4-glucan synthesis as knock out of the
encoding gene results in complete loss of b-1,3;1,4-glucan. However, the role of
b-1,3;1,4-glucan for survival of A. fumigatus is unclear as neither depletion nor
overexpression of the protein resulted in any growth phenotype (Samar et al. 2015).
Surprisingly, deletion of a functional homolog of AfTft1 in A. nidulans, celA, that is
required for b-1,3;1,4-glucan synthesis was reported to result in a strong
growth phenotype reminiscent to other cell wall biosynthesis mutants
(Guerriero et al. 2017).

2.3 a-1,3-Glucan Synthesis

Cell wall a-glucans have been identified in many filamentous fungi and some
yeasts, including the Ascomycota Schizosaccharomyces pombe, Aspergillus species,
Histoplasma capsulatum, Blastomyces dermatitidis, Paracoccidioides brasiliensis
as well as the plant pathogenic fungi Magnaporte grisea and Fusarium oxysporum
f. sp. lycopersici and in the basidomycetous fungus Cryptococcus neoformans (Bull
1970; Fujikawa et al. 2012; Hogan and Klein 1994; Horisberger et al. 1972;
Kanetsuna et al. 1969; Manners and Meyer 1977; Reese and Doering 2003;
San-Blas et al. 1978; Schoffelmeer et al. 1999). In Aspergillus species, a-glucans
represent approximately 35–46% of the total cell wall carbohydrates (Gastebois
et al. 2009). The fission yeast S. pombe contains 18–28% a-glucan in its cell wall
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(Manners and Meyer 1977). In contrast and as stated above, cell wall a-glucans are
absent from the baker’s yeast Saccharomyces cerevisiae, all Candida species,
Fusarium graminearum, and Ustilago maydis (Damveld et al. 2005a).

The chemical structure of cell wall a-glucans have been studied in the fission
yeast S. pombe, H. capsulatum, Aspergillus species, and P. brasiliensis. Cell wall
a-glucans in these fungi actually represent linear polymers consisting of glucose
with a-1,3 and a-1,4-glycosidic bonds. a-1,3-glycosidic lined glucans represent the
vast majority of these polymers. Grün et al. showed that cell wall a-glucan
of S. pombe is a linear polysaccharide without branching points composed of
approximately 260 glucose residues (Grün et al. 2005). Approximately 90% of
these a-glucan polymers are linked by a-1,3-glycosidic bonds and the remaining
10% are linked by a-1,4-glycosidic bonds (Grün et al. 2005). A detailed analysis of
these polymers revealed that the a-1,4-glycosidic bonds are not randomly dis-
tributed along the a-glucan chain. Instead, they occur at the reducing end of an
a-1,3-glucan chain approximately 120 glucose residues in length. Two of these
chains are interconnected to form one linear a-glucan polysaccharide macro-
molecule, having short a-1,4-glucan chains as a linker in between (Grün et al.
2005). A similar architecture was found for cell wall a-glucan from A. wentii,
A. nidulans, and A. fumigatus even though the structure was somewhat different.
The a-1,3-glucan chains were approximately 200 glucose residues in length and the
linearly assembled a-glucan polysaccharide macromolecule consisted of multiple
such chains interconnected by short a-1,4-glucan chains (Choma et al. 2013; Latgé
2010; Miyazawa et al. 2018). The average number of interconnected a-1,3-glucan
chains per macromolecule varied and were determined to be twenty-five in
A. wentii and approximately five in A. nidulans (Choma et al. 2013; Miyazawa
et al. 2018). Apparently, the number of interconnected a-1,3-glucan chains largely
depends on the enzymatic properties and expression rates of the individual
a-1,3-glucan synthases (Miyazawa et al. 2018). In contrast to a-glucan from
S. pombe, the reducing ends of a-glucan from A. wentii are terminated by
a-1,3-glucan and not by a-1,4-glucan (Choma et al. 2013; Grün et al. 2005). Cell
wall a-glucan of P. brasiliensis might differ significantly from a-glucan of
S. pombe and Aspergilli. It was shown that the macromolecules have about 97%
a-1,3-glucan, with some a-1,4-glucan branching points (Sorais et al. 2010).

Of essential importance for cell wall a-glucan synthesis in fungi are the
a-1,3-glucan synthases. These enzymes are found in all a-1,3-glucan-positive fungi
and were proposed to contain the catalytic domain(s) that synthesize a-glucan
chains. The number of a-1,3-glucan synthases encoded in the genomes of different
fungal species varies greatly. S. pombe and A. niger encode five a-1,3-glucan syn-
thases, A. fumigatus three, A. nidulans two and C. neoformans and H. capsulatum
only one. a-1,3-glucan synthase null mutants have been characterized in A. nidulans,
A. fumigatus, C. neoformans, and H. capsulatum (He et al. 2014; Henry et al. 2012;
Marion et al. 2006; Miyazawa et al. 2018; Reese et al. 2007; Yoshimi et al. 2013).
The cell walls of respective single (H. capsulatum, C. neoformans), double
(A. nidulans) or triple deletion mutants (A. fumigatus) were essentially free of
a-1,3-glucan which clearly demonstrates the essential roles of a-1,3-glucan
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synthases for a-1,3-glucan synthesis. Comprehensive analyses of the deletion
mutants allowed deciphering the role of a-1,3-glucan synthesis for individual fungal
species. Aspergilli deleted for all encoded a-1,3-glucan synthases hardly show any
growth defects on solid medium (Henry et al. 2012; Yoshimi et al. 2013). Prominent
phenotypes due to the lack of a-1,3-glucan synthesis in the cell wall of Aspergillus
spp. appear to be an altered extracellular matrix and a significantly reduced amount
of conidial and hyphal adhesion in liquid media (Fontaine et al. 2010; Yoshimi et al.
2013). Importantly, the virulence of the triple a-1,3-glucan synthase mutant of
A. fumigatus is highly reduced in a murine model of aspergillosis (Beauvais et al.
2013) and the fungus can be early detected by immune cells and more efficiently
engulfed by the macrophages of the host compared to wild type strain infections
(Beauvais et al. 2013). Besides this, the susceptibility to certain cell wall stress
conditions of such mutants is slightly altered (Damveld et al. 2005a; He et al. 2014;
Valsecchi et al. 2019). A recent analysis of the cell wall architecture of A. fumigatus
highlights the structural and functional versatilities of cell wall a-glucan in this mold
(Kang et al. 2018), even though the evident minor growth defects of the a-1,3-glucan
synthase deletion mutants argue against a major role in cell wall integrity (Henry
et al. 2012; Yoshimi et al. 2013). The cell wall a-1,3-glucan synthase of the fungus
C. neoformans is important for anchoring the polysaccharide capsule of this
pathogen (Reese and Doering 2003). Deletion of the a-1,3-glucan synthase of
H. capsulatum results in several in vitro growth defects, an altered cell wall structure
and reduced ability to colonize murine lungs (Rappleye et al. 2004, 2007). In marked
contrast to Aspergillus, Cryptococcus and Histoplasma, the fission yeast (S. pombe)
cannot live upon deletion of its main a-1,3-glucan synthase ags1 (Hochstenbach
et al. 1998; Katayama et al. 1999). Mutants lacking the less important a-1,3-glucan
synthases mok11-14 show no morphological changes or affectations of viability but
defects in sporulation (García et al. 2006).

The overall protein structure of the different a-1,3-glucan synthases encoded in
the so far characterized species appears to be very similar (Fig. 2). With the
exception of Mok14 of S. pombe (SpMok14), all a-1,3-glucan synthases have a
length of about 2400 amino acids. SpMok14 is significantly shorter (approx.
1300 amino acids). The N-termini of the synthases harbor a secretory signal peptide
which is readily predicted by bioinformatic algorithms such as SignalP 5.0
[Sec/SPI; (Almagro Armenteros et al. 2019)]. This is followed by an extracellular
domain with similarity to a-amylases [PF00128; (El-Gebali et al. 2019)]. This
domain is lacking in SpMok14. After approximately 1100 amino acids, a trans-
membrane domain is predicted [TMHMM Server v. 2.0; (Krogh et al. 2001)]. The
following intracellular protein part shares homology with a starch synthase catalytic
domain (PF08323). In case of three a-1,3-glucan synthases of S. pombe (Ags1,
Mok12, and Mok14) and the a-1,3-glucan synthase of C. neoformans, an additional
homology with glycosyl transferases (group 1; PF00534) can be found. Apparently,
this domain is also present in the other a-1,3-glucan synthases but is currently
simply not detected by the PF00534 hidden Markov model. The PF08323 (starch
synthase catalytic domain) pattern combined with the PF00534 (glycosyl trans-
ferase group 1) pattern next to it encompass approximately 500 amino acids and are
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commonly found in a-1,4-glucan-synthesizing enzymes such as glycogen and
starch synthases. This domain is followed by approximately 400 amino acids that
do not share much homology between the different a-1,3-glucan synthases. The
respective intracellular part of the protein was denoted as the SYN (synthase)
domain (Vos et al. 2007). The final C-terminal approximately 400 amino acids

Fig. 2 Fungal a-1,3-glucan synthesis. The a-1,3-glucan synthase is a membrane protein approx.
2400 amino acids in length. The N-terminal part of the protein is approx. 1000 amino acids in
length and facing the extracellular side. This domain is involved in linking the exported a-glucan
chains to form longer polysaccharide macromolecules. The extracellular part is followed by a
transmembrane domain and an intracellular part (approx. 1000 amino acids) which harbors the
synthase (SYN) domain. It is controversial whether this part of the protein synthesizes
a-1,4-glucan, a-1,3-glucan or both. At least in some fungal species, an intracellular a-amylase is
required for synthesis of a-1,4-glucan which probably functions as a primer and is required for
efficient a-1,3-glucan synthesis. The substrate(s) for a-1,4-glucan and a-1,3-glucan synthesis are
currently not known. The C-terminal multiple membrane-spanning part of the a-1,3-glucan might
form a pore-like structure to pass the synthesized a-glucan chains to the outside
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harbor a multiple membrane-spanning domain. It was proposed that this part of the
a-1,3-glucan synthases forms a pore-like structure to pass the a-glucan chains to the
outside (Hochstenbach et al. 1998). But experiments that clearly prove this are still
lacking.

In consideration of the conserved structure of a-1,3-glucan synthases with an
extracellular and intracellular part, it was suggested that the intracellular part of the
protein harbors the synthase domain that catalyzes the a-1,3-glucan chain synthesis
(Hochstenbach et al. 1998). However, it must be noted that neither any biochemical
synthesis activity of the intracellular protein part has been shown in vitro, nor was
the substrate for a-glucan synthesis clearly identified. UDP-glucose was proposed
to play some direct or indirect role (Hochstenbach et al. 1998; Marion et al. 2006).
According to a model proposed by Grün et al., the a-1,3-glucan synthase might not
assemble the a-1,3-glucan polymers directly. Instead, a short a-1,4-glucan oligomer
(*12 glucose residues) is required as a primer to initiate a-1,3-glucan synthesis
(Grün et al. 2005). The origin of such putative primers is not really clear. Vos et al.
suggested that the intracellular SYN domain of the a-1,3-glucan synthase might
synthesize a-1,4-glucan by itself (Vos et al. 2007). Indeed, the SYN domain shares
significant homology with well-characterized a-1,4-glucan-synthesizing enzymes
such as glycogen and starch synthases.

Vos et al. backed their hypothesis with a bunch of experimental results.
Overexpression of the a-1,3-glucan synthase Ags1 in S. pombe (SpAgs1) results in
increased accumulation of a-1,4-glucan (Vos et al. 2007). Importantly, results of
this study are based on an iodine vapor staining assay and the assumption that
iodine specifically stains a-1,4-glucan (and not other constituents of S. pombe). The
a-1,3-glucan content was not quantified in this study. Overexpression of a mutant
SpAgs1 which lacks the extracellular a-amylase-like domain (DTGL) also caused
accumulation of a-1,4-glucan while overexpression of mutant SpAgs1 which either
lacks the SYN domain or which harbors point mutations in a conserved Glu-X7-Glu
motif in the SYN domain did not result in accumulation of iodine-stainable material
(Vos et al. 2007). The red-brownish color shade of the SpAgs1-overexpressing
strains after iodine staining allowed Vos et al. to estimate the length of the
a-1,4-glucan chains to be between 10 and 40 residues (Vos et al. 2007). This is in
agreement with the finding that the a-1,3-glucan polymers are linked by short
a-1,4-glucan chains approximately 12 glucose residues in length, which are over-
produced upon overexpression of SpAgs1 (Vos et al. 2007).

In a recent study performed by Miyazawa et al., the effects of a-1,3-glucan
synthase overexpression were investigated in A. nidulans (Miyazawa et al. 2018).
This species encodes two a-1,3-glucan synthases (AgsA and AgsB).
Overexpression of any of these a-1,3-glucan synthases increased the overall
a-glucan amount in the cell wall, including a-1,3-glucan and not specifically
a-1,4-glucan. Notably, the lengths of the a-1,3-glucan chains in the a-glucan
polysaccharide macromolecules (approx. 200 glucose residues) remained the same
(Miyazawa et al. 2018). Taken together, the results of Vos et al. and Miyazawa
et al. both support a model where a-glucan synthesis at large depends on the
intracellular SYN domain. However, the observation of Miyazawa et al. that
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overexpression of the synthases increases cell wall a-1,3- and a-1,4-glucan equally
(Miyazawa et al. 2018) somehow challenges the specific conclusion of Vos et al.
that the SYN domain synthesizes a-1,4-glucan chains (Vos et al. 2007). If the
hypothesis of Vos et al. holds true, it raises the question whether the SYN domain
can additionally synthesize a-1,3-glucan chains or whether another unknown
enzyme is required to exert this function. Of course, based on the current knowl-
edge and because enzymatic domains that synthesize a-1,3-glucan in fungi are not
defined yet, it could also be the other way around.

A possible alternative origin of a-1,4-glucan could involve intracellular
a-1,4-amylases. Deletion of the a-1,4-amylase gene AMY1 in H. capsulatum
resulted in a mutant with greatly reduced and mislocalized a-1,3-glucan based on
immunostaining experiments (Marion et al. 2006). Expression of a homologous
protein of Paracoccidioides brasiliensis in this mutant restored the quantities and
surface localization of a-1,3-glucan (Camacho et al. 2012). Homologs of these
a-1,4-amylases were also studied in Aspergillus. The number of close homologs
varies among the different Aspergillus species. While A. fumigatus and A. nidulans
encode only one close homologue (AFUA_1G15150 and AN3309/amyG, respec-
tively), A. niger and A. oryzae encode two (An01g13610/amyD, An09g03110/
emyE and AO090005001193, AO090003001497, respectively). So far, a null
mutant has only been characterized in A. nidulans. He et al. showed that in A.
nidulans deletion of amyG resulted in a significant decrease of immunostainable
a-1,3-glucan (He et al. 2014). In agreement with this microscopy-based result, cell
wall analysis of this DamyG mutant demonstrated that the amount of glucose in the
alkali-soluble cell wall fraction (which primarily represents a-1,3-glucan) is dras-
tically reduced to approximately 13% of wild type. However, it is noteworthy that
A. nidulans mutants that lack the genes encoding the a-1,3-glucan synthases (agsA
and agsB) were found in the same study to exhibit even much less glucose in this
fraction (reduced to approx. 1% of wild type) (He et al. 2014). In agreement, very
similar results were obtained in a recent independent study in A. nidulans with
respect to a-glucan-stainability and cell wall composition (Miyazawa et al. 2018).
The observation that some mislocalized a-1,3-glucan was still stainable in the
H. capsulatum Damy1 mutant (Camacho et al. 2012; Marion et al. 2006) and the
finding that a significant amount of glucose (i.e., cell wall a-glucan) was still
present in the alkali-soluble fraction of the A. nidulans DamyG mutant (He et al.
2014; Miyazawa et al. 2018) suggests that the intracellular a-1,4-amylase con-
tributes to but is not essential for a-1,3-glucan synthesis per se. The substrate used
by the intracellular a-1,4-amylases to produce the presumed a-1,4-glucan primers
for a-1,3-glucan synthesis as well as the enzymes important for the substrate
synthesis remain unknown. Interestingly, fission yeast encodes many putative
a-amylases, but none of them is a close homologue of H. capsulatum Amy1 or
A. nidulans AmyG. This raises the question which enzyme could be responsible for
this apparently important function in a-1,3-glucan synthesis in S. pombe.

Upon arrival of the a-glucan chains outside of the cell, the extracellular domain
of the a-1,3-glucan synthases comes into play. The function of this domain was
studied based on a temperature-sensitive S. pombe mutant (ags1-1ts). This mutant
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harbors a mutation in SpAgs1 that results in an amino acid exchange at position 696
(G696S, positioned in the extracellular domain but outside the a-amylase domain).
The ags1-1ts mutant accumulates much less a-glucan in its cell wall and shows cell
lysis at restrictive temperatures (Hochstenbach et al. 1998). Expression of SpAgs1
proteins with mutations in the SYN domain that diminish the ability of the enzyme
to synthesize a-glucan chains can complement the temperature sensitivity of the
ags1-1ts mutant. This demonstrates that the growth defect of G696S mutation is
most likely linked to the function of the extracellular domain (Vos et al. 2007).
Interestingly, the cell wall a-glucan in the ags1-1ts mutant is not only reduced but
the polysaccharide macromolecules also had half the size compared to those of the
wild type (Pereira et al. 2000). The lengths of the a-1,3-glucan chains remained
similar to those of the wild type and kept some short a-1,4-glucan chains at the
reducing end. The authors, therefore, concluded that the extracellular domain links
the exported a-glucan chains to form longer polysaccharide macromolecules
(Pereira et al. 2000).

2.4 Regulation of Glucan Synthesis

Several signaling pathways have an impact on cell wall biogenesis. Best charac-
terized is the regulatory role of the cell wall integrity (CWI) signaling pathway.
Core components of this pathway exist in all fungal species that were characterized
so far. Detailed insights regarding its functionality and its crosstalk with other
signaling pathways were obtained in baker’s yeast (reviewed in Levin 2005, 2011).
Several aspects of CWI signaling were also studied S. pombe (Pérez and Cansado
2010) and in many other fungal model organisms (e.g., Richthammer et al. 2012;
Rodicio et al. 2008) and, in recent years, extensively in many pathogens due to its
role in virulence (Chen et al. 2019a, b; Dichtl et al. 2016). The CWI pathway
comprises specialized cell wall stress sensors at the cell surface, guanine nucleotide
exchange factors, Rho GTPases, GTPase-activating proteins, several kinases and
phosphatases, and transcription factors. The cell wall stress sensors are highly
glycosylated and membrane-anchored mechanosensors that detect specific alter-
ations in the cell wall. In S. cerevisiae, two types of cell wall stress sensors were
identified (Wsc1-3; Mid2 and Mtl1) which are also conserved in other fungal
species (Dichtl et al. 2012; Rodicio et al. 2008). Upon activation, both sensor types
activate guanine nucleotide exchange factors (in S. cerevisiae: Rom1 and Rom2)
and trigger GDP/GTP exchange at Rho GTPases (Kanno et al. 2015; Levin 2011;
Richthammer et al. 2012; Samantaray et al. 2013). In S. cerevisiae, clearly the most
important Rho GTPase in this context is Rho1 (ScRho1). In other fungal species,
the Rho2 GTPases appear to play an additional key role (Kwon et al. 2011; Pérez
and Cansado 2010; Richthammer et al. 2012). Importantly, especially Rho1 is also
a central player in multiple other pathways, for example, it is involved in regulation
of exocytosis and of the actin cytoskeleton (Levin 2011). A major downstream
effector of Rho1 is protein kinase C (in S. cerevisiae: Pkc1). This kinase activates a
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conserved MAP kinase module (in S. cerevisiae: Bck1 (MAPKKK), Mkk1 and
Mkk2 (MAPKK), and Mpk1 (a.k.a. Slt2; MAPK), and its homologous pseudoki-
nase Mlp1), but also multiple additional effectors (Dichtl et al. 2016; Levin 2011;
Pérez and Cansado 2010). The central MAP kinases (in S. cerevisiae: Mpk1, and
Mlp1) regulate the transcription of multiple enzymes involved in cell wall
biosynthesis and stress response (Fujioka et al. 2007; Levin 2011; Park et al. 2016).
The transcription factors regulated by Mpk1 and Mlp1 in S. cerevisiae are Rlm1
(ScRlm1; by Mpk1) and the SBF transcription factor Swi4/Swi6 (by Mpk1 and
Mlp1).

While the interaction between the CWI pathway and cell wall biogenesis is well
established, the exact regulatory steps and relevance of individual players on a
molecular level remain only partially resolved. Regulation of b- and a-glucan
synthesis probably occurs at multiple levels. These involve regulation on a tran-
scriptional level and most likely direct regulation of the enzymatic activities of the
synthases by protein–protein interactions.

2.4.1 Regulation of b-1,3-Glucan Synthesis

It is generally assumed that the Rho GTPase Rho1 is an essential part of the
b-1,3-glucan synthase complex (extensively discussed 2.1). This function appears
to be strongly conserved in other characterized fungal species and thereby strongly
links the CWI pathway with b-1,3-glucan synthesis (Arellano et al. 1996; Beauvais
et al. 2001).

Transcriptional regulation of b-1,3-glucan synthases may also occur via the CWI
pathway. At least in S. cerevisiae, expression of one of the three b-1,3-glucan
synthases, fks2, can be induced via the CWI MAP kinase Mpk1 and the down-
stream SBF transcription factor Swi4/Swi6 (Kim and Levin 2010, 2011). The
relevance of the CWI pathway for transcriptional regulation of b-1,3-glucan syn-
thases in other fungal species, e.g., Aspergillus, is controversial (Fujioka et al. 2007;
Rocha et al. 2016). However, yet another key signaling pathway was identified to
control expression of b-1,3-glucan synthases. This is the calcium-calcineurin sig-
naling pathway (Liu et al. 2015). It was shown that the calcineurin inhibitor FK506
can effectively block FKS2 expression in S. cerevisiae (Johnson and Edlind 2012;
Mazur et al. 1995). Blocking expression of FKS2 with FK506 was actually used to
identify the first synthase gene (FKS1) in baker’s yeast (Douglas 2001) (see
also 2.1). Induction of FKS2 expression required the transcription factor Crz1
(Stathopoulos and Cyert 1997). A similar calcineurin-dependency of b-1,3-glucan
synthase expression appears to be conserved in other fungal species, e.g., Candida
glabrata and A. fumigatus (Cramer et al. 2008; Katiyar et al. 2012; Kontoyiannis
et al. 2003; Steinbach et al. 2007).

Besides this, significant regulation of cell wall synthesis also occurs on a
spatio-temporal level by targeted secretion and localization of biosynthetic and
regulatory enzymes. b-1,3-glucan synthases specifically localize at sites undergoing
cell wall remodeling such as hyphal tips in case of filamentous fungi, budding sites
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in case of yeasts and, in some species, at sites of septum formation. For example,
the b-1,3-glucan synthase of N. crassa (FKS-1) specifically accumulates in certain
macrovesicles in the Spitzenkörper and in the plasma membrane of hyphal tips
(Sánchez-León and Riquelme 2015). In contrast to N. crassa where the
b-1,3-glucan synthase is not found at sites of newly formed septa (Sánchez-León
and Riquelme 2015), certain b-1,3-glucan synthases of yeasts (S. pombe, S. cere-
visiae) are specifically localized and essentially required at these sites (Cortés et al.
2007; Onishi et al. 2013).

2.4.2 Regulation of a-1,3-Glucan Synthesis

Similar to the b-1,3-glucan synthases, specific and distinct localization patterns
were also found for a-1,3-glucan synthases Ags1 and Ags2 by immunostaining in
A. fumigatus (Beauvais et al. 2005). This suggests that the mechanisms that
determine the localization of these enzymes have a significant impact on the reg-
ulation of a-1,3-glucan synthesis.

Direct interactions of Rho1 orthologs and a-1,3-glucan synthases were not
reported. However, it was shown that Rho2 of S. pombe has an impact on cell wall
a-glucan synthesis. Overexpression of Rho2 is lethal and also increases cell wall
a-glucan but rather not b-1,3-glucan (Calonge et al. 2000; Villar-Tajadura et al.
2008). Both phenotypes depend on the protein kinase C homologue Pck2 (but not
on Pck1) as deletion of pck2 suppressed lethality and the increase of cell wall
a-glucan (Calonge et al. 2000). This suggests that Rho2 does not regulate
a-1,3-glucan synthases directly by protein–protein interaction. In fact, it was shown
that the a-1,3-glucan synthase promoters are conserved targets of ScRlm1-like
transcription factors. The orthologs of ScRlm1 in A. niger, A. nidulans and
A. fumigatus, all were named RlmA, are targets of the CWI pathways of these fungi
and control expression of several a-1,3-glucan synthase genes (Damveld et al.
2005a, b; Fiedler et al. 2014; Fujioka et al. 2007; Hagen et al. 2007; Katayama et al.
2015; Meyer et al. 2007; Rocha et al. 2016). Thus, regulation of a-1,3-glucan
synthesis in these fungi may occur primarily on a transcriptional level via the Rho
GTPase Rho2, the protein kinase C, followed by the downstream MAP kinase
module which in turn activates the conserved transcription factor RlmA that binds
to a-1,3-glucan synthase promoters.

3 Concluding Remarks

Due to its absence in mammals, the fungal cell wall is an established target for
antifungal therapies and diagnosis of fungal infections. The echinocandins, which
effectively inhibit the b-1,3-glucan synthesis, represent one of the few available
antifungal drug classes suitable to treat life-threatening invasive fungal infections.
Ibrexafungerp, the first clinical candidate of a novel class of antifungals, the
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triterpene glycoside enfumafungin-derived “fungerps” which also target the
b-1,3-glucan synthase, recently entered phase III clinical trials (Davis et al. 2019).
These drugs also act by non-competitive inhibition of b-1,3-glucan synthase
activity, but apparently bind to a region distinct from that bound by echinocandins
which renders them active against echinocandin-resistant strains (Onishi et al.
2000). Serological tests have been developed and are routinely used for diagnosis of
invasive fungal infections which apply fungal cell wall b-glucan as a biomarker.
The role of b-glucans as central PAMPs for innate immune defense against fungal
infections as well as the function of a-glucans as fungal virulence factor just
became clear in the recent years. Multiple enzymes essential for a- and for b-glucan
synthesis have been identified and characterized in fungi in the last three decades
and great efforts have been made to elucidate the mechanisms of cell wall glucan
synthesis. Still, many key questions remain unanswered. For example, there are
conflicting results regarding the requirements and origin of primers for a- and
b-1,3-glucan synthesis initiations. Furthermore, the biosynthesis of b-1,6-glucan,
which is essential for linkage of mannoproteins in the cell wall of yeasts, remains
mostly unresolved. There is still skepticism whether the b-1,3-glucan synthase as
well as the a-1,3-glucan synthase enzymes really harbor the catalytic domains that
synthesize the eponymous glucan polymers. The regulatory traits of cell wall
biogenesis are just at the beginning of understanding. When and how does Rho1
interact with the b-1,3-glucan synthase? Are the a-1,3-glucan synthases only
regulated on a transcriptional level? In which way is b- and a-glucan synthesis
regulated on a spatio-temporal level? All these questions are of fundamental
importance to understand fungal cell wall biogenesis. In consideration of the many
medical implications of cell wall glucans, answers to all the open questions
regarding cell wall glucan synthesis will contribute to improving existing and
developing new therapeutic concepts.
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Abstract Chitin and chitosan are two related polysaccharides that provide
important structural stability to fungal cell walls. Often embedded deeply within the
cell wall structure, these molecules anchor other components at the cell surface.
Chitin-directed organization of the cell wall layers allows the fungal cell to effec-
tively monitor and interact with the external environment. For fungal pathogens,
this interaction includes maintaining cellular strategies to avoid excessive detection
by the host innate immune system. In turn, mammalian and plant hosts have
developed their own strategies to process fungal chitin, resulting in chitin fragments
of varying molecular size. The size-dependent differences in the immune activation
behaviors of variably sized chitin molecules help to explain how chitin and related
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chitooligomers can both inhibit and activate host immunity. Moreover, chitin and
chitosan have recently been exploited for many biomedical applications, including
targeted drug delivery and vaccine development.

1 Introduction

Chitin is one of the most common polysaccharides in nature, second only to cel-
lulose in abundance. Found in all fungal species, as well as many insects and
invertebrates, chitin has a simple primary structure. Chitin is a homopolymer
composed of b-(1-4)-linked N-acetylglucosamine (GlcNAc) subunits (Latgé and
Calderone 2005). Interestingly, chitin and cellulose are very similar in structure,
differing only in the alkyl group side chain of the monosaccharide subunits that
compose these two important polymers. In many fungi, chitin synthesis is
accomplished by a family of related chitin synthases (Niño-vega et al. 2004;
Roncero 2002). Although there is some degree of functional redundancy among
these enzymes, fungal chitin synthases can be divided into distinct functional
classes, with each class responsible for the production of distinct chitin subspecies
at distinct locations in the cell. Accordingly, many of these enzymes are specifically
localized to regions of the fungal cell corresponding to the site of action for indi-
vidual types of chitin (Treitschke et al. 2010; Weber et al. 2006).

Chitin makes up about 1–15% of the fungal cell mass with yeasts containing the
lowest percentage of overall chitin and filamentous fungi containing a higher
concentration of chitin in their cell walls. In the model ascomycete yeast
Saccharomyces cerevisiae, chitin comprises 1–2% of the cell wall mass (Lesage
and Bussey 2006). The cell walls of other yeasts such as Candida albicans are
composed of 2–5% chitin. The filamentous fungi contain higher percentages of
overall chitin, comprising 4% of the biomass of the cell wall in Neurospora crassa
and 7–15% Aspergillus fumigatus (Gastebois et al. 2009; Maddi and Free 2010).
Interestingly, the budding yeast Schizosaccharomyces pombe does not contain any
measurable chitin in its vegetative cells, but chitin is present in the conidia
(Magnelli et al. 2005; Matsuo et al. 2004).

Although the primary structure of chitin is that of a simple, linear polysaccha-
ride, the higher structural features of this molecule provide chitin with many of its
most interesting biological properties (Fig. 1a). The chitin homopolymer forms
antiparallel beta-sheets that are stabilized by intramolecular hydrogen bonds
(Fig. 1b). In this way, the molecule becomes exceptionally rigid, with greater
intrinsic strength than many other structural elements found in nature, including
bone. The rigidity and resilience of these chitin microfibrils allow them to serve as a
structural backbone for the fungal cell wall (Fig. 1c), as well as a rigid component
of the exoskeleton of higher organisms.

In addition to its intrinsic molecular strength, chitin also exists in different
polymer lengths. The size of individual chitin molecules is primarily determined by
processes occurring after its production, rather than as a function of its biosynthesis.
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For example, chitinases are mammalian enzymes that interact with exogenously
produced chitin to cleave large chitin molecules into smaller forms (Vega and
Kalkum 2012). Recent studies have indicated that different sized chitin molecules
have distinct biological features, including differential activation of host immune
cells. Chitin fragments at their smallest measure less than 2 µm in length and at
their largest can be up to 100 µm. This large size range has been subdivided further
into categories of fragment sizes that correspond to differences in immune activa-
tion responses (Da Silva et al. 2009).

Additional post-synthetic modifications of chitin also result in changes in its
biological functions. For example, varying degrees of chitin deacetylation result in
its conversion to chitosan or deacetylated chitin. This process is regulated by a
family of related enzymes known as chitin deacetylases (Baker et al. 2011;
Upadhya et al. 2018). Like the chitin synthases, the different chitin deacetylases are
localized at specific regions of the fungal cell, perhaps directing the formation of
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different types of chitosan required at specific cellular sites. Together, chitin and
chitosan form an important structural layer of the fungal cell wall, responsible for its
physical integrity as well as helping to direct its interaction with the environment.

2 Chitin and Chitosan and the Fungal Cell Architecture

The external architecture of the fungal cell is complex, layered, and dynamic.
Composed of a plasma membrane, a cell wall, a multitude of surface proteins, and a
variably present external layer of polysaccharides, the fungal cell exterior has
evolved intricate and adaptive mechanisms to protect the integrity of the cell. The
most internal of these structures is the phospholipid bilayer that comprises the
fungal plasma membrane. Importantly, this organelle maintains a distinct asym-
metry between the inner and outer leaflets of the lipid bilayer. The enrichment of
distinctly charged and sized phospholipids in each leaflet allows for transmembrane
proteins to localize to specific microdomains within the membrane and to sense and
internalize extracellular cues (Brown et al. 2018; Curto et al. 2014; van Meer 2011).
The most negatively charged and bulky phospholipids are often directed to the
cytosolic leaflet in order to hide them from the external environment, including
from host immune cells that might recognize these lipids as molecular patterns for
immune activation (Sheetz and Singer 1974; Shor et al. 2016). This asymmetry also
allows for the cell membrane to maintain a precise curvature and to provide a
scaffolding base for the remaining layers of the fungal cell surface.

The next, more external layer of the fungal cell is the cell wall, a complex and
well-ordered structure composed of a backbone of polysaccharides, including
chitin/chitosan and a/b-glucans, (galacto)-mannans, and glycosylated proteins
(Fig. 2a). The cell wall carbohydrates are maintained in a distinct and ordered
manner to direct structural stability, environmental sensing, and immune avoidance.
Chitin and chitosan occupy the deepest layer of the cell wall (Figs. 1 and 2a) (Gow
et al. 2017; Latgé 2007). Chitin molecules fold together to form nascent GlcNAc
chains and orient themselves in either a parallel or antiparallel manner relative to
other chains, classified as either a-, b- or c-chitin polymorphs accordingly (Fig. 1b)
(Minke and Blackwell 1978; Sugiyama et al. 1999). Intramolecular hydrogen bonds
form along the GlcNAc polymeric chain, adding tremendous structural stability to
this molecule (Fig. 1b). The tensile strength and integrity of chitin have been best
studied in crab exoskeletons (Ifuku et al. 2009; Yen et al. 2009) and fleshy fungi
such as mushrooms (Ifuku et al. 2011), as well as in the cell walls of pathogenic
fungal species (Lopez-Romero and Ruiz-Herrera 1986). One study investigating
chitin nanofibers extracted from crustaceans concluded that the strength of isolated
exoskeletons was directly correlated with high chitin content (Mushi et al. 2014).
Similarly, the structural stability of the fungal cell wall provided by the inner layers
of chitin and chitosan allows it to perform a vast array of functions ranging from
shielding the cell from extracellular stress to housing essential proteins embedded in
the cell wall and membrane.
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Although fungal chitin is a relatively simple homopolymer, it possesses diversity
in structure and function through variations in the size and structure of the
microfibrils (Fig. 1c) as well as in its polymer length and degree of acetylation (Da
Silva et al. 2009; Muszkieta et al. 2014). Sufficiently deacetylated forms of chitin
(i.e., chitosan) are chemically distinct from the parent molecule. Although fully
deacetylated forms of chitosan can be derived through ex vivo chemical reactions
(He et al. 2016), most biological forms of chitosan in fungi consist of a glucosamine
backbone with different degrees of deacetylation. Following chitin synthesis by
chitin synthase enzymes, chitin deacetylases remove approximately 70–80% of the
acetyl groups to form chitosan (Klis et al. 2006). Chitosan is therefore structurally
similar to chitin, working to maintain cell barrier functions and integrity during
vegetative growth.

In most fungal species, chitin is less abundant than other cell wall carbohydrates
such as the a- and b-glucans. Additionally, chitosan is present in very low con-
centrations in the cell walls of many fungal species, especially some of the more
frequently studied model ascomycete yeasts such as C. albicans in which approxi-
mately only 5% of the cell wall chitin will eventually be enzymatically converted
into chitosan (Gharieb et al. 2015). However, other fungi, including many basid-
iomycetes and zygomycetes, possess much higher relative levels of chitosan. For
example, in the basidiomycete fungus Cryptococcus neoformans, the relatively high
chitosan levels help to direct cell wall integrity, bud separation, melanin production,
and pigment retention, all of which are essential for cell survival, especially in the
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Dectin-2 (N-linked mannan)
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   Dectin-1     TLR6
   TLR2     CR3
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Yet to be identified

(a) (b)
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Fig. 2 a Outer cell wall components (a-glucans and various glycoproteins) build upon the
foundation of chitin (and chitosan) and b-glucan crosslinking. b Host immune cell receptors have
evolved to recognize various fungal cell wall components [Adapted from Esher et al. (2018),
Perez-Garcia et al. (2011)]
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context of an infected host (Baker et al. 2007). Accordingly, C. neoformans
chitosan-deficient mutants were less virulent than isogenic wild-type strains in a
murine model of cryptococcal infection (Baker et al. 2011; Upadhya et al. 2018). In
addition to being required for full virulence in a mouse model, chitosan was also
demonstrated to be important for cryptococcal infection persistence and retained
fungal viability in mouse lungs (Baker et al. 2011).

Zygomycete fungi, such as Mucor rouxii, Cunninghamella elegans, and various
Rhizopus species, also produce relatively high levels of chitosan compared to other
fungal species, using this molecule in similar ways to strengthen the cell wall. In
fact, in many zygomycete fungi, chitosan concentrations exceed that of chitin by
three-fold, and it is thought to protect against hydrolysis by chitin-targeting
mammalian chitinases (Gharieb et al. 2015; Gholizadeh Aghdam 2010; Klis et al.
2006). This wide range of chitosan concentrations implies that, for some fungal
species, chitosan plays an important role in either cell viability or pathogenesis.

The deep layer of chitooligomers within the fungal cell wall creates a
three-dimensional web-like structure on which the more superficially localized
glucans are chemically crosslinked (Bowman and Free 2006). In S. cerevisiae,
b-(1,3)-glucans are covalently attached to chitin (Figs. 1c and 2a), anchoring this
more peripheral layer of the cell wall in a structured manner (Klis et al. 2006).
Similarly in the filamentous fungus A. fumigatus, chitin covalently binds b-(1,3)-
glucans (Chai et al. 2011; Muszkieta et al. 2019). In C. neoformans, chitin and
chitin-derived structures have also been implicated in localizing the polysaccharide
capsule and melanin to the cell wall (Fig. 2a). Rodrigues et al. (2008) demonstrated
that the chitooligomer-binding lectin wheat germ agglutinin (WGA) bound to
structures linking the cell wall to the polysaccharide capsule (Rodrigues et al. 2008).
They further demonstrated that chitinase treatment caused the release of glu-
curonoxylomannan (GXM), the major component of the cryptococcal capsule
(Rodrigues et al. 2008). Furthermore, C. neoformans strains lacking chitosan have a
“leaky” melanin phenotype, indicating that they have defects in retaining their
melanin or melanin-producing enzymes (Baker et al. 2007; Banks et al. 2005;
Walton et al. 2005).

3 Chitin Synthases

Fungal chitin is synthesized from its monosaccharide precursor by a family of related
chitin synthase (Chs) enzymes. Fungal genomes typically contain multiple genes
encoding chitin synthases, and the number of CHS genes in a given species roughly
correlates with the amount of chitin present in the cell wall. For example, S. pombe
has only one CHS gene in its genome (SpCHS1), and its cell wall contains unmea-
surably low amounts of chitin. In this species, chitin is only present during sporu-
lation (Arellano et al. 2000). S. cerevisiae contains three CHS genes, and
approximately 2% of its cell wall is composed of chitin. In contrast, filamentous
ascomycetes and fungi in the Basidiomycota and Mucoromycota tend to have an
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expanded CHS gene family (Free 2013; Mélida et al. 2015). Thirty-eight CHS genes
have been identified in Allomyces macrogynus, a member of the Blastocladiomycota,
an early emerging phylum among the fungi, and twenty-six have been identified in
Rhizopus oryzae of the filamentous fungal class Mucoromycotina (Gonçalves et al.
2016). These fungal species also tend to have higher chitin and chitosan concen-
trations in their cell walls (Liu et al. 2017; Ruiz-Herrera and Ortiz-Castellanos 2010).

Many classification schemes have been developed to organize chitin synthases
into functional classes based on predicted structural features, subcellular patterns of
localization, and function inferred by loss-of-function mutations (Bowen et al.
1992; Roncero 2002; Nino-Vega 2004; Goncalves 2016). However, there is no
consensus regarding Chs classification or consistency in organizational nomen-
clature. For example, the phylogenetic classification of fungal Chs proteins by
Niño-Vega divides the enzymes into two families and seven classes. In contrast, a
more recent study proposed a different classification scheme using a phylogenetic
comparison of predicted CHS genes from over 130 fungal genomes (Gonçalves
et al. 2016). These investigators divided the predicted fungal Chs proteins into three
divisions and several subclasses. We chose to follow the Niño-Vega classification
since it is limited to fungal genes.

Fungal Family I chitin synthases. The Chs proteins in fungal Family I contain a
conserved catalytic domain and six C-terminal transmembrane domains (Fig. 3)
(Gonçalves et al. 2016). Class I CHS genes appear to encode mostly redundant
functions or enzymes expressed at low levels, as mutants in this class typically
display negligible changes in Chs activity or cell wall chitin levels. One exception
is the S. cerevisiae CHS1 gene that plays a role in cellular repair after cytokinesis
(Cabib et al. 1992).

The Class II CHS genes are present in most fungal species. In S. cerevisiae and
C. albicans, the ScCHS2 and CaCHS1 genes are important for the primary septum
formation in cell division (Munro et al. 2001a, b; Shaw et al. 1991). In contrast,
mutations in many Class II CHS genes in filamentous fungi have less notable
reductions in total cell Chs activity or morphological consequences (Roncero 2002).

The Class III CHS genes in fungal Family I appear to have been lost among
many ascomycete yeasts, but this family is expanded in filamentous ascomycetes
such as Aspergillus and Neurospora species (Mellado et al. 1996; Rogg et al. 2011).
Consistent with the predominant hyphal morphogenesis among these fungal spe-
cies, mutants in genes encoding Class III chitin synthases tend to have defects in
polarized growth and hyphal tip extension, resulting in colonies of reduced size
with tip-splitting defects (Mellado et al. 1996).

Fungal Family II chitin synthases. The Chs proteins in fungal Family II tend to
be broadly present in diverse fungal species, and they are divided into several
classes. Although the most active enzymes may differ between individual fungi,
many of these Chs proteins play major roles in growth and morphogenesis, as
assessed by loss-of-function mutants. The Class IV proteins are widely distributed
among many fungal species. These include the Chs3 proteins in the ascomycetous
yeasts S. cerevisiae and C. albicans. Although not essential for survival, ScCHS3
and CaCHS3 are the major chitin synthases in these species, and loss-of-function
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mutations result in very reduced chitin levels (Bulawa et al. 1995; Shaw et al. 1991;
Valdivieso et al. 1991). Interestingly, the closest homologs by DNA sequence in
filamentous fungi tend to result in less severe phenotypic alterations when mutated
(Munro and Gow 2001).

In contrast, the Class V Chs proteins are present primarily in filamentous fungi,
providing the bulk of chitin synthase activity in these species. Accordingly,
loss-of-function mutations in Class V CHS genes have implicated these proteins in
cell wall assembly, septum formation, and virulence (Amnuaykanjanasin and
Epstein 2003; Gonçalves et al. 2016; Munro et al. 2004). Additionally, the Class V
Chs proteins have predicted myosin-like domains fused to the end of the
N-terminus. Mutational analysis has demonstrated that this domain is involved in
actin-directed subcellular localization of these proteins to regions of active chitin
synthesis, often in a cell cycle-dependent manner (Treitschke et al. 2010; Weber
et al. 2006).

The proteins in both Family II Classes IV and V contain similar structural
features, including catalytic domains, one or two transmembrane domains, and a
cytochrome-b-like domain in the N-terminus (Fig. 3). Despite the similarity in
structure between enzymes in these two subclasses, it appears that, in general, the
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main chitin synthases in yeast-like fungi group together in phylogenetic Class IV,
whereas Class V enzymes provide the main chitin synthase activity for fungi that
grow predominantly as molds. Interestingly, the fungal Chs Class III (Family I), as
well as Classes V, VI, and VII (Family II) are only present in filamentous fungi,
perhaps related to the complex morphological transitions in these fungal species
that require precise cytoskeletal and cell wall coordination (Muszkieta et al. 2014).

Other less widely conserved fungal CHS-like genes include those in Classes VI
and VII (Niño-vega et al. 2004) as well as virus-like CHS genes such as Ectocarpis
siliculosus virus-like CHS (ESV) and the Chlorovirus-like CHS (CV) genes
(Fig. 3) (Gonçalves et al. 2016). No function has yet been assigned to the ESV
genes, but the CV genes have been associated with host interaction and
pathogenicity of plant fungal pathogens such as Fusarium graminearum (Zhang
et al. 2016).

4 Chitin in Fungal Cell Replication and Stress Response

In addition to its role in anchoring an orderly array of fungal cell wall polysac-
charides, chitin has been shown to aid in the cellular response to environmental
stress and to assist the cell in replication (Gottlieb et al. 1991; Rodrigues et al. 2008;
Segal et al. 1988). Chitin synthesis is localized at specific subcellular locations
during the cell cycle. During yeast cell budding and early cell growth, chitin is
enriched at the vulnerable bud tip, presumably to protect the emerging nascent cell.
Following budding, chitin is more evenly distributed throughout the entire daughter
cell wall during the period of rapid, isotropic cell growth (Sheu et al. 2000).
Following complete cell division, chitin remains enriched at the site of the prior
mother–bud interface, forming a permanent bud scar. Subsequently, enhanced
chitin synthesis, via the activity of chitin synthase (Chs) enzymes, polarizes once
again at the site of bud emergence as a new round of replication begins (Fischer
et al. 2008). In the model yeast S. cerevisiae, researchers have demonstrated that
this polarization of chitin synthesis is directed by the regulated localization of
specific chitin synthases, such as that seen with relocation of Chs3p to the bud neck
region to aid in cytokinesis (Bulik et al. 2003). Chs3p is maintained at a steady-state
level within internal chitosome reservoirs and at the plasma membrane, from which
it is trafficked by clathrin-dependent mechanisms involving additional Chs and
septin proteins for recycling and relocalization to the cell surface (Chuang and
Schekman 1996; DeMarini et al. 1997; Valdivia et al. 2002; Ziman et al. 1996). In
addition, phosphorylation has been shown to play a role in the proper localization of
these enzymes throughout the cell cycle in both S. cerevisiae and C. albicans
(Lenardon et al. 2010a; Martínez-Rucobo et al. 2009; Teh et al. 2009).

This dynamic pattern of highly localized and regulated chitin synthesis is similar
to the pattern of cyclical actin localization and delocalization that occurs during the
yeast cell cycle. Similar to chitin, actin localizes in a highly polarized manner at the
site of imminent bud formation and daughter cell emergence. While the daughter
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cell symmetrically increases in size during the period of isotropic growth, both actin
and chitin are more diffusely distributed throughout the cell surface. As the attached
daughter cell reaches maturity, both actin and chitin are enriched at the site of cell
separation (Munro et al. 2001a, b).

This process is similarly directed in fungi that grow predominantly as hyphae
and in which chitin synthases and actin localization are concentrated at the apical
tip and at the septa (Sánchez-León et al. 2011). The CHS-1 chitin synthase in the
filamentous fungus Neurospora crassa is enriched at regions of active cell wall
synthesis, such as the apical tip, developing septum, and the Spitzenkorper. In this
species, and likely in other fungi that predominantly grow as hyphae, actin
microfilaments help to direct specific chitin synthases to areas of the cell that
require higher levels of chitin. Accordingly, a fluorescently tagged N. crassa CHS-1
fusion protein [CHS-1-green fluorescent protein (GFP)] was mislocalized by actin
inhibitors and not by microtubule inhibitors (Sánchez-León et al. 2011).

Similarly, in the filamentous ascomycete fungus Aspergillus nidulans, the
Class V chitin synthase CsmA contains a myosin-like domain that is required for
proper protein localization and function. Given the interaction of myosin proteins
and actin, these studies further support actin-mediated subcellular localization of
specific chitin synthase activities during various stages of fungal development
(Takeshita et al. 2005, 2015). Filamentous actin tracks are also involved in the
polarized secretion of chitin synthases in the plant fungal pathogen Ustilago
maydis, directing its proper hyphal development (Schuster et al. 2012).

In the opportunistic pathogen and filamentous fungus A. fumigatus, a relatively
large group of eight fungal chitin synthases offer functional redundancy and flex-
ibility in the cellular adaptation to stress. For example, strains with combinations of
mutations of all Family 1 CHS chitin synthase genes only demonstrated growth
defects due to loss of CHSG activity. However, virulence in animal models of
invasive aspergillosis was retained even in the absence of all Family I genes.
Hyphal morphology and conidiation were more severely affected by mutation of
Family II CHS genes, especially CSGA (Muszkieta et al. 2014).

In many pathogenic fungi including A. fumigatus, C. albicans, and C. neofor-
mans, chitin synthase gene expression and activity, as well as overall chitin pro-
duction, while always required for basal growth, are increased in response to
external stimuli that induce cell wall stress. These stresses include, but are not
limited to, lytic enzyme activity, antifungal agents, and respiratory bursts within
host immune cells (Lenardon et al. 2010b). For example, in C. albicans, the stress
caused by treatment with cell wall-targeting drugs such as echinocandins leads to an
increase in the activity of its four chitin synthases, as well as an overall increase in
chitin levels. In fact, this increase in chitin provides protection against echinocandin
treatment; elevated chitin in the cell wall of C. albicans reduced its susceptibility to
caspofungin (Walker et al. 2008). Caspofungin treatment of A. fumigatus triggers a
similar increase in the activity of its eight chitin synthases, as well as overall chitin
levels (Fortwendel et al. 2009). C. neoformans, which has inherently low suscep-
tibility to echinocandins, induces eight chitin synthases to generate high levels of
chitin in response to increased temperature and a range of cell wall destabilizers
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(Congo Red, caffeine, and SDS) (Banks et al. 2005). Increased cell wall chitin
content resulting from enhanced chitin synthase activity protects these pathogenic
fungi from external stresses.

Chitin’s role in modifying the cell wall as a means of responding to stress has
also been observed in non-pathogenic yeast including S. cerevisiae, in which its
three chitin synthases become highly active in stressful growth environments (Bulik
et al. 2003). In fact, chitin synthase activity, such as that due to the Chs3 protein in
S. cerevisiae, can be induced either by the presence of extracellular stress or by
adding additional glucosamine as a substrate for chitin production. Interestingly, the
increase in chitin synthase activity in response to glucosamine was not associated
with increased CHS3 gene transcription nor increased Chs3 protein levels, sug-
gesting that this enzyme has the ability to rapidly increase its functional capacity in
response to the needs of the cell (Bulik et al. 2003). Alternatively, this could be
explained by the increase in expression of other CHS genes and/or production of
these enzymes as has been shown in C. albicans. In the absence of C. albicans
Chitin Synthases 1 and 3 (Chs1 and Chs3), this organism is able to survive intense
cell wall stress through the increased activity of the Chs2 and Chs8 enzymes, which
are regulatory activators of chitin synthesis pathways (Walker et al. 2008).

5 How the Host Responds to Chitin

As one of the most external features of the fungal cell, the cell wall acts as an
important immunological interface between fungal pathogens and the infected host.
Many investigators have therefore studied the role of individual cell wall compo-
nents on the initiation of an immune response by various host cells, especially those
of the innate immune system. Many cell wall epitopes act as pathogen-associated
molecular patterns (PAMPs) (Fig. 2b). PAMPs are common patterns displayed on
microbes that are innately recognized by host cells through surface pattern recog-
nition receptors (PRRs). This interaction leads to a host cell response, resulting in
defense against potential environmental threats without the necessity of a prior
encounter.

Many investigators have studied how the immune system is regulated in
response to chitin exposure. Interestingly, these studies often present somewhat
conflicting results. For example, introducing chitin to the host through either an
intranasal or intraperitoneal route of infection results in priming of the immune
system, suggesting that many of the host immune cells, such as alveolar macro-
phages and NK cells, are “preactivated” to elicit a response due to the
immune-modulatory effects of chitin and its derivatives (Muzzarelli 2010; Rizzetto
et al. 2016). Once these cells are primed by chitin exposure, they more readily
secrete IFN-c, IL-12, and TNF-a in response to other inflammatory stimuli (Shibata
et al. 1997a, b) (Muzzarelli 2010; Ozdemir et al. 2006; Strong et al. 2002).
Furthermore, when chitin and chitosan are administered as immune adjuvants, they
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elicit enhanced Th1 immune responses reminiscent of those induced by well-known
adjuvants, such as heat-killed Mycobacterium bovis (Shibata et al. 2000).

Similarly, chitin microparticles were able to alter the Th2-mediated allergic
responses in models of ovalbumin-induced asthma and A. fumigatus-induced
allergic sensitivity (Muzzarelli 2010; Ozdemir et al. 2006; Strong et al. 2002). Other
groups have also shown that chitin elicits a robust Th1 immune response through the
induction of IL-1, increasing both antibody levels and anti-tumor activities; how-
ever, these specific results may have been confounded by impure chitin preparations
(Nishimura et al. 1986a, b). Chitin has also been shown to elicit a direct allergic
response in the airways characterized by increases in tissue eosinophils and baso-
phils, as well as elevated expression of the Th2 cytokine, IL-4 (Reese et al. 2007;
Van Dyken et al. 2011). Furthermore, Da Silva et al. (2008) discovered that IL-17, a
pro-inflammatory cytokine, was increased in expression and activity in murine lung
macrophages that had been exposed to chitin. This IL-17 elevation was further
shown to be dependent on Toll-like receptor 2 (TLR2) in that TLR2-deficient mice
did not demonstrate a pulmonary inflammatory response to chitin exposure (Da
Silva et al. 2008). In contrast, “ultra-purified” chitin has the ability to inhibit T-cell
proliferation and induce the selective secretion of the anti-inflammatory cytokine
IL-10 in a C. albicans model of infection, potentially acting as a signal to dampen
immune activation during the clearing phase of a systemic fungal infection
(Wagener et al. 2014). In this study, chitin was prepared in a pyrogen-free and
microbiologically sterile manner with a purity of over 98% as analyzed by HPLC in
an attempt to remove potentially confounding additional cell wall components from
these assays. Therefore, a large body of investigators demonstrates varying degrees
of immune activation by chitin and its associated biomolecules.

However, most recent analyses of these data suggest that there are important
factors to be considered in evaluating studies exploring chitin as a regulator of
immunity. First, the specific chemical forms of chitin, including polymer size and
degree of acetylation, might dramatically affect interactions with host cells (Bueter
et al. 2011; Da Silva et al. 2009, 2008). Additionally, chitin is often chemically
associated with proteins and other polysaccharides when purified from different
species. For example, fungal cell wall chitin is often covalently linked to
beta-glucans (Fig. 1c). Therefore, varying degrees of chemically pure chitin derived
from different biological sources have limited the interpretation of some studies
exploring immune activation by chitin. Additionally, mammalian chitinases and
chitotriosidases, enzymes that degrade and modify chitin molecules, might also
affect the host response to chitin-bearing organisms.

6 Chitin Receptor

Although chitin is very abundant in nature, the identity of a singular and unique
chitin-detecting PRR has not yet been established. Over the past few decades,
several mammalian cell surface receptors have been shown to have a strong
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association with chitin and to control various cellular responses to this molecule.
For example, to explore mechanisms for how chitin is so readily phagocytosed by
macrophages once it encounters the host immune system (Bueter et al. 2011),
investigators searched for mammalian surface receptors that might directly interact
with chitin as candidate chitin-sensing PRRs (Fig. 2b). Cell surface proteins that
demonstrated in vitro chitin binding included Galectin-3, a lectin that is known to
bind b-galactosides (Seetharaman et al. 1998), and NKR-P1, an activating receptor
on natural killer (NK) cells (Semenuk et al. 2001). Furthermore, a secreted C-type
lectin receptor, RegIIIc, found in the Paneth cells of the gastrointestinal tract and
known to bind to peptidoglycan, was identified as a candidate mediator of the chitin
immunological response (Cash et al. 2006). Peptidoglycan and chitin are chemi-
cally related polysaccharides that both contain N-acetylglucosamine (Xu et al.
2008), providing some rationale for common recognition by RegIIIc. More
recently, a transmembrane receptor, FIBCD1, has been shown to bind chitin with a
high affinity in a calcium- and acetylation-dependent manner, suggesting that this
receptor would not recognize or bind to chitosan, the deacetylated form of chitin
(Schlosser et al. 2009). If confirmed, this observation would suggest distinct
mechanisms for recognition of chitin and chitosan by the host immune system, a
potentially very important factor for immune interactions with the host by fungi
possessing chitosan-rich cell walls.

Other well-established pattern recognition receptors, such as Dectin-1, have also
been predicted to regulate host immune activation in response to chitin exposure
(Mora-Montes et al. 2011). In these studies, the investigators prepared ultra-purified
chitin in a pyrogen-free and microbiologically sterile manner with a purity of over
98% as analyzed by HPLC. This chitin preparation blocked the cytokine response
in human peripheral blood mononuclear cells to C. albicans cells in a
Dectin-1-dependent manner. Interestingly, Dectin-1 did not directly bind chitin in
these assays. Moreover, other PRRs, such as TLR2, TLR4, and Mincle
(macrophage-inducible C-type lectin), also did not interact with chitin in these
assays. These results suggest a model in which chitin, though not typically exposed
on the surface of C. albicans, was able to inhibit the ability of this fungal pathogen
to engage and activate host innate immunity in a Dectin-1-dependent manner but
without directly binding to common PRRs.

The observation that chitin might actually act to block immune activation by
fungal cells was extended by studies in a C. albicans model of infection in which
chitin inhibited T-cell proliferation and elicited the selective secretion of IL-10, a
key anti-inflammatory cytokine (Wagener et al. 2014). In these same studies, chitin
reduced inflammation caused by LPS exposure in vivo, leading the investigators to
propose that chitin exposure by dying fungal cells might be one mechanism by
which the host turns off immune response signals and resolves immune activation
following challenge with a pathogen (Wagener et al. 2014). This study also found
that digested chitin, prevalent in later stages of this interaction, was recognized by
the mannose receptor (MR), resulting in uptake and further intracellular stimulation
of TLR9 and NOD2 (Wagener et al. 2014). Although none of these receptors/
mediators have been shown to directly bind to chitin in the setting of an infection,
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these studies provide evidence that chitin significantly contributes to the varied
aspects of host innate immune cell activation.

7 Chitin and Chitosan Immunostimulation

Chitin and chitosan, as previously mentioned, can have immunostimulatory effects
on varying parts of the immune system. Because of this, many fungal organisms
have developed ways to shield these molecules from host immune cells and avoid
recognition. In C. neoformans, the polysaccharide capsule serves to mask these
immunogenic cell wall components, and capsule-deficient mutants are highly
attenuated in murine models of cryptococcal infection (Fig. 2a). However, strains
with mutations in the alkaline-responsive Rim signaling pathway were found to be
paradoxically hypervirulent in murine models of infection, despite the loss of
surface polysaccharide capsule (O’Meara et al. 2010, 2013). This observation was
explained by studies that demonstrated that the rim101Δ mutant cell wall is highly
disorganized with increased exposure of chitin and chitosan. This poorly ordered
cell wall directed an excessive immune reaction characterized by enhanced Th1-
and Th17-mediated inflammation, with host damage primarily due to immune
pathology (O’Meara et al. 2013; Ost et al. 2017). Relatedly, the C. neoformans
mar1Δ mutant has increased cell wall chitooligomer exposure due to cell trafficking
defects and reduced glucan and mannan content in the cell wall. Like the rim
pathway mutants, the mar1Δ mutant, a strain with cell wall enzyme trafficking
defects, was found to hyper-activate macrophages in vitro (Esher et al. 2018).
Furthermore, C. neoformans mutant strains with high levels of chitooligomer
exposure stimulated macrophage responses in a TLR2/MyD88- and Dectin-1/
Card9-dependent manner (Esher et al. 2018; Ost et al. 2017). These studies high-
light the importance of strict organization within the fungal cell wall in host–
pathogen interactions, demonstrating how the more superficial layers can serve as
an immunological shield, preventing immune recognition of the deeper and more
immunogenic cell wall components.

Studies in human keratinocytes indicated that chitin was able to elicit activation
of these skin cells in a manner characterized by the induction of TLR4, both at the
transcript and protein level (Koller et al. 2011). Blocking TLR2 in the keratinocytes
inhibited this induction. However, no direct binding of chitin by TLR2 or TLR4 has
been demonstrated. While these results did not reveal a direct chitin-binding PRR,
they did extend growing observations of the roles of chitooligomers as immune
modulators.

Glycoproteins in yeast species such as Candida albicans are glycosylated with
mannose chains, and these mannoproteins account for 30–50% of the cell wall mass
(Brown and Catley 1992). In filamentous fungi, glycoproteins constitute between
15 and 30% of the cell wall dry weight and can be glycosylated with both galactose
and mannose chains, resulting in galactomannan proteins that can directly interact
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with the immune system (Bowman and Free 2006; Bowman et al. 2006). These
glycosylated proteins can include chitin-modifying enzymes such as chitin
deacetylases in C. neoformans, as well as adhesins in the human commensal fungus
C. albicans (Huang et al. 2002; Rieg et al. 1998). Although the complex, branching
carbohydrate structures attached to these proteins are hypothesized to aid in
immune avoidance for fungal pathogens, glycosylated proteins on the fungal cell
surface can also serve as immunodominant epitopes for a host immune response. In
fact, glycoproteins have been used as the basis for fungal vaccine strategies
(Schmidt et al. 2012; Specht et al. 2017). Cell wall proteins, including all modified
versions of these highly abundant glycoproteins, work in tandem with chitin within
the cell wall to protect the cell shape and size, guard from extracellular stress,
mediate molecule absorption, regulate signal transmission, and participate in
regenerating the cell wall itself.

In some filamentous fungi, such as A. fumigatus, there is an even more external
layer rich in galactosaminogalactan (GAG) that is released by the mycelium.
Production of GAG is especially important for filamentous fungi because this
antigenic polysaccharide is released during infection and favors in vivo prolifera-
tion of the fungus through promoting immunosuppressive effects (Beauvais et al.
2007; Fontaine et al. 2011; Loussert et al. 2010). GAG and related cell surface
carbohydrates may therefore serve to shield filamentous fungi from immune
recognition, especially those with higher cell wall chitin content (Gastebois et al.
2009; Maddi and Free 2010).

The immunomodulatory roles of chitosan have also been studied. The
deacetylated state of chitosan allows this molecule to interact with different com-
ponents of the host immune system compared to chitin. For example, in C. neo-
formans, chitosan stimulates the NLRP3 inflammasome in a phagocytosis-
dependent manner (Bueter et al. 2011, 2014). This is a chitosan-specific type of
immunostimulation as chitin does not activate the inflammasome to the same extent
(Bueter et al. 2011, 2014). This activation of the inflammasome by chitosan elicits
specific cytokine responses that would not be accomplished through chitin alone,
indicating that these molecules work together to differentially stimulate the host
immune system.

8 Size-Dependent Immune Response

One of the most important observations regarding the role of chitin as an immune
regulatory molecule is the relationship between the size of the chitin particles and
the immunological response that is subsequently initiated. This relationship was
originally identified through observation of the divergent immune responses that are
elicited between small, easily phagocytosed chitin particles and larger,
non-phagocytosable chitin (Shibata et al. 1997). Prior to this observation, it was
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known that foreign structures, such as yeast cells, zymosan, or chitin/chitosan, were
internalized by macrophages through initial binding to mannose receptors on the
plasma membrane of the immune cells (Warr 1980). However, the size- and
phagocytosis-dependent differences in immune cell activation were not fully
appreciated until investigators demonstrated that small chitin and chitosan particles
actually primed alveolar macrophages to initiate a significantly more robust
immune response and oxidative burst compared to larger chitin particles (Shibata
et al. 1997). This size-dependent activation of the immune system by various
macromolecules is similarly observed in the detection of hyaluronic acid by TLR4.
Hyaluronan fragments are produced following tissue injury and are subsequently
and quickly cleared in order to avoid further damaging inflammation. These
molecules were found to stimulate chemokine production by macrophages in a
size-dependent and TLR4-dependent manner, similar to what has been reported for
chitin fragments (Jiang et al. 2005).

More recent studies have further investigated the chitin size-dependent activation
of inflammation. Chitin particles of varying sizes differentially stimulate IL-17
production by macrophages in a TLR2- and MyD88-dependent manner (Da Silva
et al. 2008). In these studies, the investigators defined big chitin (BC) as those
molecules ranging in length from 70 to 100 µm, with intermediate chitin
(IC) fragments ranging from 40 to 70 µm, small chitin (SC) being smaller than
40 µm, and super small chitin (SSC) fragments being approximately 2 µm or
smaller (Da Silva et al. 2009). When exposed to intermediate chitin (IC) and small
chitin (SC), murine lung macrophages displayed a robust immune activation phe-
notype, characterized by increased TNF-a production. In contrast, exposure of these
cells to BC or SSC molecules did not result in measurable activation, suggesting
that chitin is recognized as a size-dependent PAMP (Da Silva et al. 2009). Similar
to prior studies, this macrophage activation response was dependent on TLR2 and
Dectin-1. Additionally, both IC and SC resulted in activation of downstream
immune effectors such as NFkB and spleen tyrosine kinase (Syk), as well as an
increase in p65 nuclear staining. These events are commonly observed after mac-
rophage activation of TNF-a pathways by TLR2 stimulation. Interesting, SC, but
not IC, also elicited an anti-inflammatory IL-10 cytokine response, which was
inhibited through blockages of Dectin-1 and phagocytosis (Da Silva et al. 2009).
Another dissimilarity between the response to SC and IC is that SC immune
activation was dependent on the mannose receptor (Da Silva et al. 2009).

These results began to clarify prior observations of the differential effects of
chitin in different models of immune activation: Perhaps, some of these effects were
dependent on the size and form of the chitin molecules introduced into the system.
Since the molecular size of chitin is dependent on post-synthesis cleavage events,
these studies also emphasized the potential importance of chitin-modifying
enzymes in the interaction of fungi with their environment.

Chitosan also displays a similar size-dependent immune activation. The studies
mentioned previously, that identified a chitosan-specific activation of the inflam-
masome, also found that smaller chitosan molecules stimulated macrophages better
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than larger ones, inducing more IL-1b cleavage and release (Bueter et al. 2011,
2014). This size-dependent immune activation could be explained by the ease at
which macrophages can engulf smaller chitosan molecules compared to larger ones.

9 Mammalian Chitinases

While humans and other mammalian hosts do not actively make chitin, they do
produce chitin-degrading enzymes or chitinases. As mentioned previously, these
enzymes are crucial to the processing and cleavage of chitin encountered by the
immune system and may play a role in the immune response and ultimate pathogen
clearance (Elias et al. 2005; Gorzelanny et al. 2010; Zhu et al. 2004). Interestingly,
the induction of chitinase activity occurs as a part of a generalized inflammatory
response. However, the presence of these enzymes and their roles in chitin pro-
cessing provide further support for chitooligomers as important molecules
encountered in the external environment (Vega and Kalkum 2012).

Chitinases are members of the glycosyl hydrolase 18 family, and there are six
known mammalian chitinase enzyme homologs (Boot et al. 2005; Kzhyshkowska
et al. 2007). The two most well-studied are chitotriosidase (CHIT1) and acidic
mammalian chitinase (AMCase) (Boot et al. 2001; Renkema et al. 1997), which are
the only mammalian chitinases known to be catalytically active. The remaining four
enzymes are chitinase homologs, but these proteins contain amino acid substitutions
in their active sites, potentially explaining their lack of enzymatic activity. They
have been annotated as chitinase-3-like protein 1 (CHI3Li, also referred to as
YKL-40, Hcgp39, or GP39), stabilin-1 interacting chitinase-like protein (SI-CLP),
chitinase-3-like protein 2 (YKL-39), and oviductin (Kzhyshkowska et al. 2007).

The first identified, enzymatically active chitinase, CHIT1, was identified in the
plasma of patients with Gaucher’s disease, a genetic disorder that results in the
cellular accumulation of glucosylceramide (Hollak et al. 1994). Following the
successful cloning and characterization of CHIT1, a second chitinase, AMCase,
was identified (Boot et al. 2001). Although very similar to CHIT1 in both structure
and function, it is mostly active in acidic environments such as the stomach (Boot
et al. 2001).

Shortly following the discovery of CHIT1, this enzyme was detected as both a
marker of A. fumigatus infections and of macrophage activation (Overdijk et al.
1996; Renkema et al. 1997), suggesting that CHIT1 could be used as a diagnostic
biomarker for severe mycoses. However, further studies revealed that additional
stimuli, including IFN-c, TNF-a, and LPS, can stimulate CHIT1 activity. Therefore,
CHIT1 activity is better viewed as a non-specific marker of inflammation, rather than
a specific biomarker for individual fungal infections (Malaguarnera et al. 2005).

Subsequent studies have further explored the role of chitinases in many
inflammatory conditions. For example, single-nucleotide polymorphisms (SNPs) in
the CHIT1 gene were found to lead to decreased expression of chitinase and
increased susceptibility to allergic conditions such as asthma, as well as infections
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due to the filarial parasite Wuchereria bancrofti (Bierbaum et al. 2006; Sibylle
Bierbaum et al. 2005; Choi et al. 2001). AMCase activity was also similarly
associated with allergic diseases such as asthma, rhinosinusitis, and nasal polyposis
(Boot et al. 2001, 2005; Ramanathan et al. 2006). Further studies revealed that
CHIT1 is highly expressed by macrophages, and CHIT1 mRNA levels are
increased when macrophages are treated with phorbol 12-myristate 13-acetate
(PMA), a stimulus that induces macrophage differentiation and priming (Boot et al.
2005; Pham et al. 2007; van Eijk et al. 2005).

The discovery that chitinase expression and activation were so tightly linked with
innate immune activation led many to hypothesize that chitin sensing and processing
by the immune system might be an innate mechanism for defense against invasive
fungal infections (IFIs). One study using a murine inhalational model of C. neo-
formans infection demonstrated increased AMCase activity in the airways (Vicencio
et al. 2008). The induction of this acidic chitinase in a tissue that is generally
maintained at a nearly neutral pH suggests that this enzyme may be secreted for
activity within acidic microenvironments in the lung, including regions of local
hypoxia on the acidic phagolysosome. In a different study, rat lungs were inoculated
with zymosan, a chitin-containing extract of the cell walls of S. cerevisiae. In this
model, host CHIT1 activity was increased, suggesting an active role for cell wall
material in inducing chitinases (Korolenko et al. 2000). Another study demonstrated
that overexpression of chitinases in transgenic tobacco resulted in the relative
resistance of these plants to fungal infections (Jach et al. 1995), further supporting a
link between chitinases and chitin processing with host immunity to mycoses.

In studies investigating the immune response to degraded chitooligomers in
C. neoformans (Gorzelanny et al. 2010), investigators identified that host-derived
chitinases were responsible for cleaving chitin through a process of “processivity,”
resulting in a robust macrophage response due to the creation of small and diffusible
chitooligomer fragments. Furthermore, this processivity and immune activation led
to a further increase in chitinase production, specifically mammalian CHIT1
(Gorzelanny et al. 2010). This work supported prior studies characterizing chitinase
activity as a primary effector in the size-dependent immune activation by chitin. In a
positive feedback loop, specific recognition of IC and SC by the immune system is
enhanced by the host chitinase response, and in turn, the chitinase response is
maintained by continuous exposure to cleaved chitin molecules.

Chitosanases are enzymes that catalyze the hydrolytic degradation of chitosan,
but they are not found in mammals and seem to be only present in soil microor-
ganisms (bacteria and fungi) and plants (Li et al. 2008; Rodríguez-Martín et al.
2010). Glucosaminidases can also convert chitosan into glucosamine, but these
enzymes have only been isolated from fungal species (Ike et al. 2006). Chitinases
can also function as chitosan-degrading enzymes, but this is dependent on the
degree of acetylation. Chitinases need GlcNAc in the −1 position in order to
catalytically cleave the substrate (Somashekar and Joseph 1996). Therefore, the role
of chitosanases on mammalian–fungal interactions remains unclear.
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10 Biomedical Applications of Chitin and Chitosan

Due to the importance of chitin synthesis on fungal growth and pathogenesis,
targeting this process has been proposed as an effective way to treat infections and
clear fungal disease. To date, there have been no chitin synthase (Chs) inhibitors
approved for clinical trials. However, compounds targeting Class I Chs proteins
in vitro have been developed, and these include the competitive enzyme inhibitors
nikkomycin Z and other polyoxins. However, when first tested in vivo, these
compounds failed to target other classes of chitin synthase enzymes, and they did
not inhibit fungal growth when tested in a C. albicans model of infection (Munro
1995). Since those original studies, researchers have tried to expand the breadth of
therapeutically promising Chs inhibitors. One drug that seemed promising,
RO-09-3143, was fungistatic against wild-type C. albicans and fungicidal against
strains with a mutation in the CHS2 chitin synthase gene. This finding suggested a
complicated mechanism of chitin synthesis with both overlapping and distinct
functions for various Chs proteins (Munro et al. 2001a, b; Sudoh et al. 2000).

Given the compensatory increases in fungal cell wall chitin content in response
to various cell stresses, other investigators have proposed using Chs inhibitors in
combination with other antifungals, especially glucan synthase inhibitors. Targeting
pathogens such as C. albicans and A. fumigatus with both glucan synthase and Chs
inhibitors proved to be significantly more effective at fungal killing than treatment
with either inhibitor alone (Fortwendel et al. 2009; Walker et al. 2008). In
C. albicans, the compensatory increase in cell wall chitin as a response to
echinocandins was inhibited by pre-treatment with the Chs inhibitor nikkomycin
Z. Accordingly, strong antifungal synergy was observed in this species using
nikkomycin Z in combination with glucan synthase inhibition (Walker et al. 2008).
In contrast, A. fumigatus cell wall chitin was not decreased by treatment with
nikkomycin Z alone, suggesting that this compound is not a highly effective
inhibitor of the complex array of chitin synthases in this species. However, the
combination of nikkomycin Z and caspofungin still resulted in synergistic anti-
fungal activity (Fortwendel et al. 2009). In C. neoformans, no synergy was
observed using nikkomycin Z and caspofungin in combination, despite a conserved
compensatory chitin response to echinocandin therapy (Pianalto et al. 2019).
However, in contrast to C. albicans and A. fumigatus, neither drug demonstrates
striking primary anticryptococcal activity. The development of new antifungal
compounds with different mechanisms of Chs inhibition would likely be a very
attractive addition to current combination antifungal strategies. Given the central
role for Class IV and V Chs enzymes in the growth and development of diverse
fungal species, these classes of enzymes would be especially exciting new targets.

In addition to their roles as potential targets for antifungal therapy, chitin and
chitosan have proven to be useful in novel vaccine design platforms. Mucosal
vaccines that used chitosan as an adjuvant for human challenge studies with
influenza antigens resulted in enhanced serum antibody production compared to
historical, non-adjuvanted controls (Read et al. 2005). Additionally, chitosan
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mucosal delivery systems for a detoxified diphtheria toxoid vaccination induced
potent Th2-mediated immune responses in human subjects (McNeela et al. 2004).

In addition to using chitooligomers to shape immune responses, investigators
have also used chitin-modifying enzymes as vaccine immunogens themselves.
These studies build upon prior observations that mannosylated surface proteins, such
as chitin deacetylases, often act as immunodominant epitopes after fungal exposure,
resulting in measurable serum antibodies against these proteins (Huang et al. 2002).
For example, investigators used a prime-boost strategy of intramuscular immu-
nization with C. neoformans chitin deacetylase antigens (Cda1 and Cda2) in the
context of glucan particles derived from S. cerevisiae. Preimmunization with these
cryptococcal proteins provided protection from subsequent challenges with either C.
neoformans or Cryptococcus gattii (Specht et al. 2017). A different vaccine strategy
used a live attenuated a strain of C. neoformans that lacks all three chitin deacety-
lases (Cda1, Cda2, and Cda3). Infection with this hypovirulent mutant strain pro-
tected mice against subsequence challenges with the virulent wild-type isolate
(Upadhya et al. 2018). These studies were especially compelling since C. neofor-
mans infections do not typically induce secondary immunity against subsequent
infections. Therefore, determining the mechanisms by which this type of mutant
strain provides an immunizing effect will substantially inform the direction of new
investigations promoting antifungal immunity.

11 Conclusions

Chitin is one of the most common molecules in nature, found in the majority of
fungi, as well as in many insect and invertebrate species. Although it is a relatively
simple homopolymer of N-acetylglucosamine, chitin and its deacetylated partner
chitosan serve as the structural backbone of the fungal cell wall, acting as a matrix
onto which the outer polysaccharide and glycoprotein layers are linked. These
“hidden figures” within the fungal cell wall provide the architectural strength to
ensure cell integrity in the face of stress, while also allowing the cell to minimize
detection by the host immune system. Chitin synthesis is tightly regulated and
intimately involved in growth during the cell cycle, as well as the response to cell
stress, and the localization of chitin synthase enzymes is dynamic and highly
organized. The interaction between chitin and the immune system is complex, and
the outcome depends on many factors, including the type and size of chitin
encountered. While no single PRR has been directly characterized as a chitin
receptor, several mammalian cell surface receptors have been demonstrated to play
a role in the host response to chitin. These responses include the production of
chitin-degrading chitinase enzymes. Finally, in addition to their role the fungal cell
wall and lifecycle, chitin and chitosan have a large number of potential biomedical
applications, including serving as biosensors, diagnostic tools, drug delivery
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devices, vaccine adjuvants, and in enhancers of wound healing. These findings,
combined with recent efforts in chitin synthase classification and targeting, will help
elucidate the many ways in which this biopolymer directs fungal physiology and
environmental adaptation.
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Abstract Filamentous fungi are covered by a cell wall consisting mainly of chitin
and glucan. The synthesis of chitin, a b-1,4-linked homopolymer of N-acet-
ylglucosamine, is essential for hyphal morphogenesis. Fungal chitin synthases are
integral membrane proteins that have been classified into seven classes. ChsB, a
class III chitin synthase, is known to play a key role in hyphal tip growth and has
been used here as a model to understand the cell biology of cell wall biosynthesis in
Aspergillus nidulans. Chitin synthases are transported on secretory vesicles to the
plasma membrane for new cell wall synthesis. Super-resolution localization
imaging as a powerful biophysical approach indicated dynamics of the
Spitzenkörper where spatiotemporally regulated exocytosis and cell extension,
whereas high-speed pulse-chase imaging has revealed ChsB transport mechanism
mediated by kinesin-1 and myosin-5. In addition, live imaging analysis showed
correlations among intracellular Ca2+ levels, actin assembly, and exocytosis in
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growing hyphal tips. This suggests that pulsed Ca2+ influxes coordinate the tem-
poral control of actin assembly and exocytosis, which results in stepwise cell
extension. It is getting clear that turgor pressure and cell wall pressure are involved
in the activation of Ca2+ channels for Ca2+ oscillation and cell extension. Here the
cell wall synthesis and tip growth meet again.

1 Introduction

Filamentous fungi grow as highly polarized tubular cells called hyphae that extend
the cell body at one end in a process called ‘tip growth.’ Cell extension sites are
maintained at hyphal tips, where simultaneous actin assembly, exocytosis, and tip
extension occur (Fischer et al. 2008; Riquelme et al. 2011; Takeshita et al. 2014;
Riquelme et al. 2018). Several filamentous fungi that extend cells in this manner are
excellent systems for analyzing this process (Lopez-Franco et al. 1994). Some
filamentous fungi are pathogenic to animals and plants and invade host cells via
hyphal growth (Perez-Nadales et al. 2014). Others have uses in biotechnology and
food production such as enzyme production and fermentation, respectively, as they
secrete large amounts of enzymes (Kobayashi et al. 2007; Punt et al. 2002). Both
the pathogenicity and enzyme secretory ability of fungi are closely associated with
hyphal growth. Thus, understanding polarized growth in filamentous fungi can
provide insights that are important to medicine, agriculture, and biotechnology.

2 Chitin Biosynthesis

The cell wall not only imparts physical strength to the cell but also plays a role in
transmitting information about the natural or artificial environmental conditions to
the inside of the cell. The cell walls of Aspergillus fumigatus are composed of
b-(1,3)-glucan, chitin, b-(1,3)-/b-(1,4)-glucan, /-(1,3)-glucan, galactomannan
(GM), galactosaminogalactan (GAG), and proteins (Latge et al. 2017). Most cell
wall proteins are modified by N-glycan, O-glycan, and/or a glycosylphos-
phatidylinositol anchor. These components are complexly intertwined to form the
three-dimensional structure of cell walls (Fig. 1a). During hyphal tip growth, var-
ious glycan synthases, including b-(1,3)-glucan synthases, chitin synthases, and /-
(1,3)-glucan synthases, are transported to the tips by secretory vesicles. The
transported glycan synthases generate the corresponding glycans, which then
penetrate into the interstices of the cell wall skeleton, where they act like cement.
Thus, the hyphae grow by forming a complicated three-dimensional structure.

Chitin, a b-(1,4)-linked polymer of N-acetylglucosamine (GlcNAc), is a major
skeletal component of the cell wall of A. fumigatus and gives the wall mechanical
rigidity. The higher amount of chitin (>10%) present in the walls of Aspergillus
sp. as compared to yeast (Blumenthal and Roseman 1957; Johnston 1965) indicates
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that the synthesis of chitin is essential for hyphal morphogenesis (Rogg et al. 2012).
Chitin is biosynthesized by several chitin synthases localized at the plasma mem-
brane; these are responsible for the sequential synthesis of GlcNAc using
UDP-GlcNAc as a sugar donor.

Fig. 1 Scheme of tip growth in A. nidulans hyphae. a Schematic representation of structural
organization of the cell surface of Aspergillus. The different polysaccharides have their roles;
glucans are the most abundant compounds in the fungal cell walls and an amorphous gel-like
matrix, chitin as a cell wall skeleton. b Secretory vesicle trafficking via the microtubule and actin
cytoskeleton depending on kinesin-1 and myosin-5, respectively. Before fusion with the plasma
membrane, secretion vesicles accumulate at Spitzenkörper. c Scheme of the function of cell end
markers in A. nidulans. d Localization of GFP-ChsB at Spitzenkörper (upper). Localization of cell
end markers mRFP1-TeaA and GFP-TeaR at the hyphal tip (lower)
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Fungal chitin synthases are integral membrane proteins that have been classified
into seven classes and three divisions according to their structural properties
(Lenardon et al. 2010a, b; Gonçalves et al. 2016). Aspergillus fumigatus and
Aspergillus nidulans have eight different chitin synthases (ChsA-ChsD, ChsF,
ChsG, CsmA, and CmsB in A. nidulans) (Horiuchi 2009; de Groot et al. 2009).
Among these, ChsB, a class III chitin synthase, is known to play a key role in hyphal
tip growth, maintenance of cell wall integrity, and development (Yanai et al. 1994;
Borgia et al. 1996; Fukuda et al. 2009). The chsB disruptant hyphae have enlarged
tips, a high degree of branching, and disorganized lateral walls (Borgia et al. 1996).
Class III chitin synthases are important for hyphal morphology, cell wall integrity,
and pathogenicity in other filamentous fungi as well (Rogg et al. 2012; Muszkieta
et al. 2014). Meanwhile, ChsA and ChsC are required for the formation of the
septum and a normal conidiophore (Motoyama et al. 1994; Fujiwara et al. 2000;
Ichinomiya et al. 2005). CsmA and CsmB, that are widely distributed in filamentous
fungi and dimorphic yeasts but lacking in S. cerevisiae and S. pombe, have myosin
motor-like domains (Fujiwara et al. 1997). The myosin motor-like domains bind to
actin filaments, suggesting a direct link between the actin cytoskeleton and polarized
cell wall synthesis (Takeshita et al. 2005, 2006). ChsB has been used as a model to
understand the vesicles trafficking in chitin synthesis.

3 Transport of Chitin Synthase

Polarized growth of fungal hyphae is sustained by the continuous delivery of
vesicles loaded with biomolecules to the hyphal tips (Rittenour et al. 2009; Sudvery
2008; Schuster et al. 2016; Takeshita 2016; Riquelme et al. 2018; Zhou et al. 2018).
Vesicle trafficking supplies the required proteins and lipids via actin, as well as
microtubule cytoskeletons and their corresponding motor proteins (Fig. 1b)
(Taheri-Talesh et al. 2008; Steinberg 2011; Egan et al. 2012; Penalva et al. 2017;
Renshaw et al. 2016). Microtubules serve as tracks of secretory vesicles for
long-distance transport to hyphal tips and are important for rapid hyphal growth
(Horio and Oakley 2005; Seiler et al. 1997). Actin cables formed from the hyphal
tip in the retrograde direction are involved in exocytosis and secretory vesicle
accumulation before exocytosis (Berepiki et al. 2011; Bergs et al. 2016). These
vesicles accumulate at the apices prior to fusion with the membrane. They form a
structure called Spitzenkörper (Harris 2009), which is thought to act as a vesicle
supply center, a site where cargo for the hyphal tip is sorted (Riquelme and
Sánchez-León 2014).

Besides their role as tracks for vesicle traffic, microtubules are necessary to
maintain the direction of hyphal growth (Riquelme et al. 1998). Polar organization
of the actin cytoskeleton is mediated mainly by microtubule-dependent positioning
of polarity marker proteins (Fig. 1c). One polarity marker in Aspergillus nidulans
(TeaA) is specifically delivered to the apex by growing microtubules, and it is
anchored to the apical membrane by direct interaction with another polarity marker
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(TeaR) at the plasma membrane (Fig. 1c) (Fischer et al. 2008; Takeshita et al.
2008). Their interdependent interaction at the apical membrane initiates the
recruitment of additional components including the formin which polymerizes actin
cables for targeted cargo delivery (Higashitsuji et al. 2009). Defective polarity
markers result in hyphae that are curved or zigzagged instead of straight (Takeshita
et al. 2008).

In A. nidulans, microtubules extend all the way to the hyphal tip, whereas actin
cables are found mostly near the hyphal tip (Bergs et al. 2016). Vesicles containing
components of the growth machinery are transported along microtubules from
posterior sites to the apical region, transferred to actin cables, and finally delivered
to the apical cortex of the hypha (Egan et al. 2012; Fischer et al. 2008;
Pantazopoulou et al. 2014; Taheri-Talesh et al. 2008; Takeshita et al. 2014). These
secretory vesicles (SVs) are released from the trans-Golgi network after maturation
(Pantazopoulou et al. 2014; Pinar et al. 2015). Since gene deletion of kinesin-1 or
myosin-5 decreases the amount of SVs at the hyphal tips, resulting in growth
retardation, SVs are believed to be transported along microtubules by kinesin-1 and
further along actin filaments by myosin-5 to the hyphal tip for exocytosis
(Pantazopoulou et al. 2014; Seiler et al. 1997; Taheri-Talesh et al. 2012). However,
localization analysis reported that kinesin-1 diffuses in the cytoplasm and myosin-5
accumulates at the hyphal tip (Requena et al. 2001; Taheri-Talesh et al. 2012). SV
transport was not directly observed, probably due to the small size and fast motion.
Early endosomes (EEs) are easier to track, so their bi-directional transport along
microtubules by kinesin-3 and dynein has been thoroughly studied (Abenza et al.
2009, 2010; Egan et al. 2012; Lenz et al. 2006; Schuster et al. 2011).

Chitin synthases are thought to be transported on SVs to the plasma membrane
for new cell wall synthesis (Fig. 1d), where they are subsequently internalized by
endocytosis and transported on EEs for degradation in vacuoles, or recycled back to
the plasma membrane (Sacristan et al. 2012). Actin patches are peripheral punctate
structures, where the endocytic machinery is probably located (Araujo-Bazán et al.
2008). Kinesin-1 is required for transport of ChsB to the subapical region.
However, mechanistic details could not be resolved due to high background
fluorescence near the hyphal tip, insufficient time resolution to resolve fast motions,
and the inability to distinguish between SVs and EEs (Takeshita et al. 2015).

An essential role for chitin synthase phosphorylation in the polarized biosyn-
thesis of fungal cell walls is demonstrated in the polymorphic human pathogen
Candida albicans (Lenardon et al. 2010a, b). Class III chitin synthase (Chs3) is
localized at the tips of growing buds and hyphae, and at the septum.
A phospho-proteome analysis of C. albicans revealed that Chs3 is phosphorylated.
Mutation of this site showed the phosphorylation is required for the correct local-
ization and function of Chs3.
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4 Super-resolution Imaging and Cluster Analysis of Chitin
Synthase

ChsB localizes to hyphal tips and concentrates at the Spitzenkörper in A. nidulans
(Fukuda et al. 2009). In recent study, super-resolution localization imaging and
high-speed pulse-chase imaging as a powerful biophysical approach have been used
to analyze ChsB transport and dynamics of the Spitzenkörper (Zhou et al. 2018).
The resolution of conventional light microscopy techniques is limited to around
250–300 nm due to light diffraction. Super-resolution microscopy techniques, such
as STORM, PALM, etc., have overcome the diffraction limit, resulting in lateral
image resolution as high as 20 nm, providing a powerful tool to investigate protein
localization in high detail (Sahl and Moerner 2013).

To quantitatively analyze the spatio-temporal development of the Spitzenkörper
with very high resolution, hyphae expressing ChsB was imaged as a fusion protein
with mEosFPthermo (Wiedenmann et al. 2011). The thermostable monomeric
green fluorescent chromophore can be permanently photoconverted to red with
near-UV irradiation (Nienhaus et al. 2005, 2006). That is widely employed for
fluorescence imaging, pulse-chase experiments, and super-resolution photoactiva-
tion localization microscopy (PALM) (Betzig et al. 2006; Hess et al. 2006). PALM
uses photoswitchable fluorophores to achieve temporal control of the emission
through conversion between fluorescent ‘on/red’ and ‘off/green’ states. When
sample excitation is a sufficient low intensity, only a random sparse fluorophore
subset will be in the ‘on/red’ state at any time, allowing these molecules to be
imaged individually, precisely localized. Such strategy leads to the construction of a
super-resolution image.

Single-molecular imaging-based localization microscopy revealed a pronounced
fluorescent cluster of mEos-ChsB at the hyphal apex, representing the
Spitzenkörper, and multiple speckles mostly near the plasma membrane (Fig. 2a)
(Zhou et al. 2018). ChsB accumulation at the hyphal tip was classified by cluster
analysis, where more than 10 molecules within 50 nm are defined as a cluster
(Fig. 2b). Cluster images of 2.5 s time intervals were generated for a total period of
120 s with a moving window binning technique (500 frames binning with 50
frames shift) (Fig. 2c) (Ishitsuka et al. 2015). Each cluster is shown in different
colors. The cluster areas and numbers of ChsB molecules within each cluster were
calculated over the time course of the experiment (Fig. 2d). The green cluster of
0.1 µm2 containing *100 molecules is visible from 7.5–60 s. It grows via fusion
with the blue cluster and evolves into the pink, crescent-shaped cluster of *0.2
µm2 containing *200 molecules, visible from 62.5–80 s. Subsequently, this
cluster breaks up into two smaller ones (*0.05–0.1 µm2, *50–100 molecules),
depicted in light green and light blue. The shape change of the cluster from globular
to crescent reflects the transition from vesicle accumulation prior to exocytosis to
vesicle fusion with the apical plasma membrane during exocytosis.

118 N. Takeshita



Fig. 2 Super-resolution imaging of Spitzenkörper dynamics. a Localization image of a hypha
with mEosFP-ChsB clusters (constructed with 500 frames for 25 s). Scale bars; 1 µm. b Top:
image of the hyphal tip. Each dot indicates single molecule. Bottom: ChsB accumulations
classified by cluster analysis; more than ten molecules within 50 nm are defined as a cluster.
c Sequence of ChsB cluster images (clusters in different colors) rendered from images
reconstructed by time-lapse PALM (2.5 s interval by moving window binning for 120 s). Scale
bars; 300 nm. d Time courses of number of ChsB molecules. Lines are drawn in colors
corresponding to the clusters in (c) (modified Zhou et al. 2018)

5 Pulse-Chase Analysis of mEosFP-ChsB After
Photoconversion

High-speed pulse-chase imaging of mEos-ChsB after photoconversion was
employed to monitor its transport (Zhou et al. 2018). After photobleaching all
red-emitting molecules with a 561 nm laser, a spot *5 µm behind the hyphal tip
was irradiated for 1 s with a tightly focused 405 nm laser beam to locally photo-
convert mEos-ChsB to its red-emitting form (Fig. 3a). In Fig. 3b, image ‘0’ shows
the red fluorescence excited by the 405 nm laser, marking the local photoconver-
sion spot. Then, the 561 nm laser was again switched on (image ‘1’), and images
were acquired for 15–30 s with a dwell time of 50 ms. A large red-emitting spot
appeared at the site of photoconversion, which gradually faded and dispersed due to
vesicle transport away from the photoconversion region. By taking advantage of the
low background in this pulse-chase imaging scheme, both anterograde (from back
to tip) and retrograde (from tip to back) vesicle movements are easily observed in a
kymograph along the axis of the hypha (Fig. 3c). The typical linear vesicle dis-
placements were occasionally interrupted by brief stops, and there were also some
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Fig. 3 High-speed pulse-chase analysis of mEos-ChsB transport. a Sequence of pulse-chase
analysis of mEosFP-ChsB after photoconversion at back of hyphae. b Images of mEosFP-ChsB
prior to photoconversion (−1), with 405-nm light applied at the spot marked by the dashed line for
1 s (0) and after photoconversion for 15 s. c Kymograph calculated from panel (b); arrows indicate
anterograde and retrograde transport. The blue dashed line and the red asterisk mark the positions
of the hyphal tip and the photoconversion locus, respectively; the red square indicates the
photoconversion interval. d Speed distribution of anterograde transport. Slow anterograde
(red) and fast anterograde (blue) transport (mean ± SD; n = 42, and 7, respectively) (modified
Zhou et al. 2018)

immobile spots. We further noticed that the fluorescence from the hyphal tip stayed
constant beyond *5 s after photoconversion.

The slopes of the lines in the kymograph encode the speed of ChsB vesicle
movement. From observations of a large number of hyphae, we noticed that most
displacements occurred at speeds of 2–4 µm s−1; however, there were also clearly
faster processes with speeds of 7–10 µm s−1. Accordingly, the speed histogram of
anterograde movements appears to consist of two sub-distributions (Fig. 3d), a pre-
dominant distribution associated with slow transport centered on 3.0 ± 1.0 µm s−1

and a smaller distribution representing fast transport centered on 8.3 ± 0.7 µm s−1.
By comparison with the transport of EE and SV markers, the slow transport and fast
transport were unambiguously assigned to ChsB associated with EEs and SVs,
respectively. In fungi, EEs are 4–5 times larger than SVs (Gibeaux et al. 2013; Lin
et al. 2016). Therefore, the slower transport of EEs is probably caused by the size of the
cargo. Of note, in cultured mammalian cells, the speeds of kinesin-1 and kinesin-3 are
similar, *1–2 µm s−1 (Hammond et al. 2009; Tanenbaum et al. 2014). Comparative
analysis usingmotor protein deletionmutants allowed us to assign the fast movements
(7–10 µm s−1) to transport of secretory vesicles by kinesin-1, and the slower ones
(2–7 µm s−1) to transport by kinesin-3 on early endosomes (Zhou et al. 2018). These
results show howmotor proteins ensure the supply of vesicles to the hyphal tip, where
temporally regulated exocytosis results in stepwise tip extension.
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6 Oscillation of Fungal Tip Growth

Time-lapse super-resolution PALM (photoactivation localization microscopy)
analysis revealed that membrane-associated polarity marker TeaR in A. nidulans
transiently assembles (approximately 120 nm) at the hyphal tip membrane and

Fig. 4 Pulses of Ca2+ coordinate actin assembly and exocytosis. a Fluorescence image of F-actin
and SV visualized by GFP-TpmA and mCherry-ChsB, respectively, in the growing hypha.
Kymographs of F-actin (green) and SV (red) along the growth axis in the growing hypha. Total
180 s. b Scheme of the Ca2+ biosensor, R-GECO. c, d Fluorescence images and kymographs
along the growth axis of F-actin (GFP-TpmA) (c) or secretory vesicles (GFP-BglA) (d) and Ca2+

(R-GECO). Total 180 s. Scale bar: 2 lm. (e) Scheme of oscillation in fungal tip growth
coordinated by Ca2+ influx (modified Takeshita et al. 2017)
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disperses along the membrane after exocytosis, which inserts a new membrane that
results in local membrane extension (Ishitsuka et al. 2015). These findings gave rise
to a ‘transient polarity assembly model’ to explain how fungal tip cells extend
through repeated cycles of TeaR assembly/disassembly, actin polymerization, and
exocytosis, rather than by constant elongation (Ishitsuka et al. 2015; Takeshita
2016). The findings of colocalization studies further support the notion that TeaR
clusters represent zones of exocytosis and are prerequisite for apical membrane
extension. In line with this model, recent work on Neurospora crassa has identified
bursts of exocytotic events at various sites within the apical membrane rather than a
persistent exocytosis site (Riquelme et al. 2014).

F-actin and secretory vesicles (SV) were visualized by fluorescence of
GFP-tagged tropomyosin (TpmA) and mCherry-tagged ChsB, respectively
(Fig. 4a) (Takeshita et al. 2017). Prominent signals were visible at the hyphal tip,
and time-resolved recording and frame analysis by kymographs revealed that the
signal intensity oscillated. The mean interval of the intensity of F-actin peaks was
29 ± 8 s, whereas the mean interval of peaks of SV was comparable to the one of
F-actin, 30 ± 7 s. The temporal relationship between the presence of F-actin and
SV was calculated as the normalized cross-correlation of their signal intensities,
revealing the central peak is 0.50, indicative of a positive correlation between the
signals of F-actin (green) and SV (red) (1 and −1 represent perfect positive and
negative correlations, respectively). There were a few second delays in the signals
of SV in comparison to the signals of F-actin, indicating that SV accumulate during
actin polymerization phases and SV are depleted due to exocytosis during actin
depolymerization.

7 Ca2+ Oscillation

Intracellular Ca2+ levels regulate actin assembly and vesicle fusion (Janmey 1994;
Schneggenburger and Neher 2005). The red-fluorescent Ca2+ biosensor R-GECO
was produced in A. nidulans (Fig. 4b) (Takeshita et al. 2017). Pulses of the
R-GECO signal were observed: The mean interval between peaks was 26 ± 7 s.
The R-GECO signal appeared as a tip-high gradient and diffused backwards. Such
R-GECO pulses continued for multiple times before they disappeared (max. n = 8
in 180 s), probably due to a limited turnover of R-GECO. The fluorescence of
R-GECO could not be detected in media without CaCl2 or with 1 lM CaCl2
+ 10 mM EGTA, indicating that the increase of the intracellular Ca2+ level is
induced by the influx of Ca2+ to the cells at hyphal tips.

The signals of R-GECO and GFP-TpmA (F-actin) or BglA-GFP (/-glycosidase,
secreted protein as a marker for SV) showed oscillation in kymographs along the
growth axis indicated temporal changes of signal intensities (Fig. 4c, d). The signal
intensities of F-actin (green) and the Ca2+ concentration (red) at the tip indicated
that oscillations of peak intensities had similar periods (29 ± 8 and 26 ± 7 s,
respectively) and were synchronized. Normalized cross-correlation analysis yielded
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a positive correlation between the concentrations of F-actin (green) and Ca2+ (red),
with the central peak at 0.40 and indicated that the peaks of Ca2+ appeared a few
seconds earlier than those of F-actin. These results are in agreement with the notion
that Ca2+ influx at the growing hypha induces actin depolymerization. Hyphae
producing R-GECO and BglA-GFP (SV) also showed oscillations of the GFP
intensity at the tip and R-GECO pulses (Fig. 4d), with similar periods (30 ± 7 and
26 ± 7 s, respectively), which were synchronized. Normalized cross-correlation
analysis yielded a positive correlation with a central peak value of 0.43 and a few
seconds delay of BglA-GFP, indicating that Ca2+ influx affords exocytosis medi-
ated by fusion of SV with the plasma membrane as well as actin depolymerization.

The oscillation of Ca2+ levels at the hyphal tips of filamentous fungi suggested
the stepwise extension of hyphal tips (Kim et al. 2012). Indeed, critical correlations
were shown between intracellular Ca2+ levels, actin polymerization, exocytosis, and
cell extension at fungal tips (Takeshita et al. 2017). Thus, the pulsed Ca2+ influx
coordinates the temporally controlled actin polymerization and exocytosis that drive
stepwise cell extension (Fig. 4e). Several Ca2+ channels, pumps, and transporters,
such as the plasma membrane, ER, Golgi, mitochondria, and vacuoles function in
fungal organelles (Zelter et al. 2004). The Ca2+ channels at the plasma membrane of
Saccharomyces cerevisiae, Mid1 and Cch1p, share a single pathway that responds
to environmental stressors and ensures cellular Ca2+ homeostasis (Iida et al. 1994;
Locke et al. 2000; Paidhungat and Garrett 1997). Deletion of the orthologs midA
and cchA from A. nidulans causes defective polarized growth and cell wall syn-
thesis (Wang et al. 2012). Proper tip growth and the oscillation of F-actin, secretory
vesicles, and growth rates require Ca2+ channels (Takeshita et al. 2017). The
oscillatory model explains how transient Ca2+ influx depolymerizes F-actin at the
cortex, stimulates secretory vesicles to fuse with the plasma membrane, and extends
the cell tip faster. After Ca2+ diffusion, F-actin and secretory vesicles accumulate at
hyphal tips.

The key event appears to be the activation of Ca2+ channels. One attractive
notion is that the Ca2+ channels could be stretch-activated. Cells gradually build up
turgor pressure against the membrane and the cell wall during slow growth phases,
and Ca2+ channels might be activated when membrane tension exceeds a threshold.
The entry of Ca2+ into the cell promotes exocytosis and leads to cell extension,
which in turn decreases turgor pressure and inactivates the channels. Indeed, the
ortholog Mid1 of S. cerevisiae is stretch-activated (Kanzaki et al. 1999). The next
items to address would be missing links between turgor pressure and cell wall
extension.

8 Biological Meaning of Oscillations

Relationships between cellular responses and receptor stimuli are encoded by the
spatial and temporal dynamics of downstream signaling networks (Kholodenko
2006). Positive feedback, alone or in combination with negative feedback, can
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trigger oscillations, for example, the Ca2+ oscillations that arise from Ca2+-induced
Ca2+ release (Goldbeter 2002). The shape of oscillations is characterized by their
amplitude and phase. The frequency modulation of Ca2+ oscillations provides an
efficient means to differentiate intracellular biological responses (Smedler and
Uhlen 2014).

The oscillation of cortical F-actin presumably follows that of Ca2+ and correlates
with the oscillations of vesicle secretion. These coordinated steps result in growth
oscillation (Takeshita 2018). A feedback cycle might be efficient for all these steps
to continuously proceed. In addition, oscillatory cell growth allows cells to respond
more rapidly and frequently to internal and external cues such as chemical or
mechanical environmental signals. Indeed, Ca2+ influx by Ca2+ channels is involved
in the control of directional hyphal growth in C. albicans (Brand et al. 2007). The
influx of Ca2+ promotes Cdc42 GTPase trafficking and amplifies Cdc42-mediated
directional growth signals (Brand et al. 2014). Stepwise growth coordinated by a
transient Ca2+ influx might link growth with chemotropism and chemotaxis. Cell–
cell fusion is essential for colony development in N. crassa (Herzog et al. 2015).
Before growing partners fuse in a tip-to-tip manner, the cells coordinately switch
between two physiological stages via the oscillatory recruitment of a MAP kinase
(MAK-2) and a protein of unknown molecular function (SO) to the apical plasma
membrane of growing fusion tips (Fleissner et al. 2009; Serrano et al. 2017). The
oscillation of signaling, which is probably related to signal sending and signal
receiving, allows cells to coordinate their behavior and achieve efficient cell fusion
(Goryachev et al. 2012).

9 Conclusion and Perspective

The dynamic responses to external and internal signals are fundamental to the
increased understanding of chemotropism, cell–cell fusion, microbial interaction,
and the fungal penetration of plant and animal cells. The pulsed Ca2+ influx
coordinates the temporally controlled actin polymerization and exocytosis that drive
stepwise cell extension of filamentous fungi. Besides them, to understand the
hyphal tip growth, we need to pay attention to the balance between turgor pressure
and cell wall pressure, which is regulated by cell wall synthesis, degradation, and
maturation. The filamentous fungus elongates hyphae by tip growth while forming
a cell wall comprising a complex three-dimensional structure. Understanding the
cell wall biosynthesis is very important in understanding the interaction with other
microorganisms and the infection mechanism of filamentous fungi to plants and
animals. Recent studies have identified many glycosyltransferase genes involved in
biosynthesis of constituent polysaccharides. Next open questions are the formation
mechanism of the polysaccharide structure which changes according to the envi-
ronmental changes and the cell wall formation mechanism at the time of differ-
entiation, also how all the chitin and glucan synthases and cell wall relating proteins
are trafficking coordinated in the formation of the cell wall skeletons.
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Abstract In many yeast and fungi, b-(1,3)-glucan and chitin are essential com-
ponents of the cell wall, an important structure that surrounds cells and which is
responsible for their mechanical protection and necessary for maintaining the cel-
lular shape. In addition, the cell wall is a dynamic structure that needs to be
remodelled along with the different phases of the fungal life cycle or in response to
extracellular stimuli. Since b-(1,3)-glucan and chitin perform a central structural
role in the assembly of the cell wall, it has been postulated that b-(1,3)-glucanases
and chitinases should perform an important function in cell wall softening and
remodelling. This review focusses on fungal glucanases and chitinases and their
role during fungal morphogenesis.
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1 The Fungal Cell Wall and Its Components

The cell wall is the outer structure that surrounds the fungal cell and is essential for
the mechanical protection of the cell and to maintain the cellular shape. In spite of
their rigidity and mechanical properties, fungal cell walls are highly dynamic
structures required to maintain cell viability, and their composition and structure
changes in response to environmental growth conditions and extracellular stresses.
In addition, it needs to be remodelled during diverse morphogenetic processes, such
as cell growth, cytokinesis or the development of specialised types of fungal cells
(reviewed in Latgé 2007; Levin 2011; Free 2013; Gow et al. 2017; Hopke et al.
2018). During fungal infections, the cell wall is the interface of the pathogen that
interacts with host cells, therefore playing a key role in fungal pathogenicity and
virulence (reviewed in Erwig and Gow 2016; Geoghegan et al. 2017; Latgé et al.
2017). The cell wall provides adherent properties that are vital for an invasion of the
host tissues and protects against the defensive machinery of the host (reviewed in
Lipke 2018).

Most fungal cell walls have a similar multi-layered structure, with an innermost
layer built of a matrix of long chains of structural polysaccharides to which a
variety of proteins and other superficial components are added to form the outer
layers, which are more heterogeneous and sometimes species-specific (reviewed in
Latgé 2007; Orlean 2012; Free 2013; Klis et al. 2014; Latgé and Beauvais 2014;
Gow et al. 2017). The inner layer in most fungi is composed of branched b-(1,3)-
glucan, with both b-(1,6)-glucan and some chitin being connected to the
non-reducing ends (NREs) of the glucan filament, whereas the outer layers are more
varied and contain many glycoproteins that are covalently attached to the glucan
network (reviewed in Klis et al. 2001, 2002; Lesage and Bussey 2006; Latgé 2007;
Cabib and Arroyo 2013). Fungal cells contain a large collection of carbohydrate
active enzymes required for the assembly and modification of this structure along
the life cycle and also in response to environmental stresses. These include
multigene families of chitin and glucan synthases as well as remodelling enzymes
such as glycohydrolases (glucanases, chitinases) and transglycosidases.

1.1 Glucans

The main glucan of the inner layer is b-(1,3)-glucan, composed of glucose monomers
linked by b-(1,3) bonds, although there are also b-(1,6), a-(1,3) and a-(1,4)-glucans.
b-(1,3)-glucan is usually the most abundant glucan, accounting for 65–90% of the
total cell wall b-glucans. Depending on the organism, b-(1,3)-glucan represents
between 25–30% of the total cell wall in Aspergillus fumigatus to 50–55% in
Saccharomyces cerevisiae and Schizosaccharomyces pombe (Lipke andOvalle 1998;
Gastebois et al. 2009; Orlean 2012). This polymer is mainly composed of a b-(1,3)-
glucan backbone periodically branched with b-(1,6)-linked b-(1,3)-glucan side
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chains. The frequency of b-(1,6) branches varies depending on the organism (re-
viewed in Latgé 2007; Orlean 2012; Gow et al. 2017).

The fungal cell walls also contain a lower proportion of b-(1,6)-glucan, ranging
from 5 to 12% in S. cerevisiae to 21% in Candida albicans (Manners et al. 1973; Klis
et al. 1997; Lipke and Ovalle 1998; Lesage and Bussey 2006; Orlean 2012). The
structure and degree of branching are highly variable depending on the fungi. S.
pombe is the organism that contains a higher degree of branched b-(1,6)-glucan
(Magnelli et al. 2005), whereas linear b-(1,6)-glucan is absent in A. fumigatus. b-
(1,6)-glucan acts as a glue to covalently bind b-(1,3)-glucan, chitin and glycoproteins
(Kollar et al. 1995; Kapteyn et al. 1996; Kollar et al. 1997; Fontaine et al. 2000; Iorio
et al. 2008). b-(1,6)-glucan is also important for the assembly of cell wall proteins
(CWPs) to the b-(1,3)-glucan–chitin skeleton, acting as a linker that attaches the
proteins via a glycosylphosphatidylinositol (GPI) remnants (Klis et al. 2001).

a-(1,3)-glucan is also important in the organisation of the cell wall of yeast and
moulds human pathogens (Cryptococcus neoformans and A. fumigatus), as well as
in S. pombe, but is absent from budding yeasts like S. cerevisiae or C. albicans. The
fraction of this polymer is variable, ranging from 28 to 46% (reviewed in Yoshimi
et al. 2017). a-(1,3)-glucan is crucial for the virulence of several fungal pathogens.
Thus, it has been shown that the absence of a-(1,3)-glucan results in the loss of the
surface capsule and prevents fungal pathogenesis in C. neoformans (Reese et al.
2007), and that deletion of the three a-(1,3)-glucan synthase genes in A. fumigatus
produces extensive structural modifications of the conidial cell wall and decreased
virulence (Beauvais et al. 2013).

1.2 Chitin

Chitin is an N-acetylglucosamine (GlcNAc) polymer in which the monomers are
linked by b-(1,4) bonds. The microfibrils are stabilised through hydrogen bonds,
resulting in a huge tensile strength (Gow et al. 2017). Chitin is present in the cell
wall of all fungal species except S. pombe, although the proportion varies greatly. In
budding yeast, it only represents around 1–3% of the cell wall, whereas it is around
10–20% in A. fumigatus and Neurospora crassa (Kapteyn et al. 1997; Bowman and
Free 2006; Lesage and Bussey 2006).

Even though chitin is a minor component of the cell wall in budding yeast, it is
essential for cell survival since it plays an important role in cell division (reviewed
in Cabib and Arroyo 2013). A fraction of the chitin is attached to b-(1,3)-glucan,
and another fraction is free (Kollar et al. 1997). In yeasts, chitin is attached to b-
(1,6)-glucan through a b-(1,3)-linked glucose branch and to the NRE terminal
glucose of b-(1,3)-glucan. A detailed analysis of the binding status of chitin in
budding yeasts has shown differences depending on the cell wall position (Cabib
and Durán 2005). Thus, most of the bound chitin at the bud neck is linked to b-
(1,3)-glucan, in lateral walls the attachment to b-(1,6)-glucan predominates, and
most of the chitin in the primary septum is free.
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2 Fungal Glucanases

2.1 General Features of Glucan-Hydrolysing Enzymes

Glucan-hydrolysing enzymes, also known as glycoside hydrolases (GH) or gly-
cosidases, are enzymes that catalyse the hydrolytic cleavage of glycosidic bonds,
leading to the formation of a sugar hemiacetal. Glucan-hydrolysing enzymes are
present in many different organisms, including fungi, bacteria, archaea, algae,
molluscs and higher plants (reviewed in Pitson et al. 1993; Martin et al. 2007).
These enzymes catalyse the hydrolysis of glycosidic bonds via general acid
catalysis, and they require a proton donor and nucleophile/base for activity, which
are provided by two amino acids, typically glutamate or aspartate. Two reaction
mechanisms are found for these enzymes, leading to the retention or inversion of
the anomeric configuration (Davies and Henrissat 1995) (Fig. 1a). In both mech-
anisms, the position of the proton donor is identical, but the nucleophilic base is in
close proximity to the sugar anomeric carbon in retaining enzymes, while it is more
distant in inverting enzymes which must accommodate a water molecule between
the base and the sugar (McCarter and Withers 1994).

Hydrolysis with the retention of configuration is normally achieved via two
steps, double-displacement mechanism involving a covalent glycosyl enzyme
intermediate. In the first step, the nucleophile attacks the anomeric centre to dis-
place the aglycone and forms a glycosyl enzyme intermediate. In the second step,
the glycosyl enzyme is hydrolysed by water. Hydrolysis with the inversion of the
anomeric configuration occurs in one step by a single-displacement mechanism
involving oxocarbenium ion-like transition states.

2.1.1 Modes of Action of Fungal Glucanases

GHs can be classified in many different ways. Glucanases have been systematically
classified by the type of glycosidic linkages that they hydrolyse and their action
pattern. Two major groups are recognised: exo- and endo-hydrolases. The terms
exo- and endo- refer to the ability of a GH to cleave the substrate at the end (usually
the NRE) or within the middle of a chain (Fig. 1b) (Davies and Henrissat 1995).
Exo-hydrolases cleave glucose residues from the NRE, generating glucose as the
only product, while endo-hydrolases cleave internal linkages at apparently random
sites, releasing smaller oligosaccharides as products. In the context of the cell wall,
some fungal glucanases can also function as glucosyltransferases (Fontaine et al.
1997a; Mouyna et al. 1998). Glucanases may cleave a single glucan chain several
times before being freed from their substrate for further hydrolysis or can function
by a multi-chain single attack strategy, where another glucan chain is attacked soon
after the initial glucan chain is cleaved, as has been described for exo-b-(1,3)-
glucanase in A. fumigatus (Fontaine et al. 1997a).
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Fig. 1 Mechanism of action of glucanases. a Glycoside hydrolases catalyse the hydrolysis of
glycosidic bonds via general acid catalysis. Two reaction mechanisms are most commonly found
for these enzymes, leading to the retention or the inversion of the anomeric configuration.
Hydrolysis with retention of configuration is achieved via two steps, double-displacement
mechanism involving a covalent glycosyl enzyme intermediate. Hydrolysis with inversion of the
anomeric configuration occurs in one step by a single-displacement mechanism. b Exo-hydrolases
hydrolyse the glucan chain by cleaving glucose residues from the non-reducing end, generating
glucose as the only hydrolysis product. Endo-hydrolases cleave internal linkages along the
polysaccharide chain, releasing smaller oligosaccharides as hydrolysis products
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Another classification of GHs is based on EC codes assigned by the Enzyme
Commission number. This is a numerical classification of enzymes based solely on
the chemical reactions that they catalyse. All of the enzymes that catalyse the same
reaction receive the same EC number, and when an enzyme can catalyse different
reactions, it can bear more than one EC number. For instance, glycoside hydrolases
belong to the EC 3.2.1-class, and this includes enzymes hydrolysing O- and S-
glucosyl compounds.

2.1.2 Sequence-Based Classification of Fungal Glucanases: CAZy
Database

A classification of glycoside hydrolases based on sequence and structural data was
developed several years ago by Henrissat (1991), which uses algorithmic methods to
assign sequences to various families. GHs have been classified into more than 160
families (Bourne and Henrissat 2001), with a classification that is permanently
updated and available through the carbohydrate active enzyme (CAZy, http://www.
cazy.org/) database (Lombard et al. 2014) and the associated CAZypedia
(CAZypedia_Consortium 2018). Each GH family contains proteins that are related
by sequence and/or structure, which indicates a similar mechanism of action and a
similar geometry around the glycosidic bond (Henrissat et al. 1995). GH families are
grouped into larger groups, termed “clans” (Davies and Henrissat 1995; Henrissat
and Bairoch 1996). Therefore, this classification reveals the possible phylogenetic
relationship between different families based on structural features rather than a
common mechanism of action. For example, enzymes with glucan exo-b-(1,3)-
glucosidase activity (E.C.3.2.1.58) are found in families 3, 5, 16, 17 and 55, while
those with glucan endo-b-(1,3)-glucosidase activity (E.C.3.2.1.39) are present in
families 17 and 55, but also in families 16, 64, 81, 128, 152, 157 and 158.

2.2 Function of Fungal a- and b-Glucanases

The fungal cell wall is a complex network in which abundant branching and
extensive cross-linking between chitin, glucan and other wall components exist
(Cabib et al. 2001; Klis et al. 2002). In spite of its mechanical strength, the cell wall
is a highly dynamic structure that is constantly being remodelled during the life cycle
of fungi, such as during cell expansion and cell separation in yeasts, and during spore
germination, hyphal branching or septum formation in filamentous fungi (reviewed
in Adams 2004; Roncero and Sánchez 2010; Mouyna et al. 2013). In addition,
environmental signals, such as nutrients or pH, can modulate cell wall composition
and architecture, as shown in C. albicans (Ene et al. 2015; Sherrington et al. 2017).

Glucan and chitin biosynthetic enzymes generate long, linear chains of b-(1,3)-
glucose or b-(1,4)-N-acetylglucosamine, respectively. Therefore, branching and
cross-linking of the different components and cell wall remodelling during
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morphogenetic processes depend on the activity of additional enzymatic activities
associated with the fungal cell wall. Many fungal cell wall-associated proteins have
been characterised to date, and they have different catalytic activities, such as
glucanase or chitinase activity and some of them also function as transglycosidases.
These enzymes therefore contribute to the remodelling of cell wall components
during growth and morphogenesis, breaking and re-forming bonds within and
between polymers.

Yeast and fungi contain a wide range of endo- and exo-glucanases belonging to
different CAZy families. In most cases, they are multigene families which code for
redundant proteins with similar catalytic activity, making the analysis of the
function of each individual gene difficult. In some cases, proteins from the same
family have different spatial or temporal regulation, either because they have dif-
ferent localisation signals or because they are differentially expressed, suggesting
that the proteins perform their function at specific regions of the cell or at particular
moments. Most of the fungal b-glucanases are secreted proteins that contain a
signal sequence for secretion and either remain associated with the cell wall or are
released to the surrounding medium where they exert their function. However, there
are also examples of glucanases that lack a signal sequence and are present in the
cytoplasm of cells, either as diffuse cytoplasmic proteins such as the S. pombe
exo-glucanase SpExg3 or associated with the endocytic machinery, as is the case of
the endo-glucanase SpEng2 (Dueñas-Santero et al. 2010; Encinar del Dedo et al.
2014).

This chapter is focused on hydrolase activities that are associated with the cell
wall and have a defined role in fungal morphogenesis. In both saprophytic and
mycoparasitic fungi, b-glucanases have an important nutritional role, where they
are part of the biochemical machinery required for cell wall degradation. For
example, mycoparasitic Trichoderma species secrete b-(1,3) and b-(1,6)-glucanases
that efficiently hydrolyse other fungal cell walls (de la Cruz et al. 1995; Kim et al.
2002). These enzymes might also serve to degrade callose during plant parasitic
attack (Moy et al. 2002). These enzymes are not discussed here (see Martin et al.
2007 for additional discussion).

2.2.1 Family GH5 Exo-Glucanases

Family GH5 is one of the largest groups of hydrolases with different substrate
specificities such as b-glucosidase (EC 3.2.1.21), glucan b-(1,3)-glucosidase (EC
3.2.1.58), endo b-(1,4)-glucanase/cellulase (EC 3.2.1.4) or endo-b-(1,3)-glucanase/
laminarinase (EC 3.2.1.39). They are widely distributed across Archaea, bacteria
and eukaryotes, notably fungi and plants, although there are no known human
enzymes, and they have been classified into 51 different subfamilies (Aspeborg
et al. 2012). We will focus on proteins belonging to Subfamily GH5_9, which
includes a group of cell wall modifying enzymes present in yeast and fungi with
glucan (1,3)-b-glucosidase (EC 3.2.1.58), endo-b-(1,6)-glucanase (EC 3.2.1.75) or
b-glucosidase (EC 3.2.1.21) activity, and that are thought to function in fungal cell
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wall modification. All of them contain a GH5 domain accompanied by different
localisation signals: some contain a signal sequence, some contain a GPI-anchor at
the C-terminus or a single transmembrane domain (TM) for membrane association
and others appear to be intracellular.

Members of this subfamily are present in most yeast and fungi, often as a family
of redundant enzymes. S. cerevisiae contains three related exo-b-(1,3)-glucanases
known as ScExg1, ScExg2 and ScSsg1. According to the InterPro Database
(Mitchell et al. 2019), the three contain a GH5 domain after a signal sequence but
have different functions in the life cycle. ScExg1 is an extracellular protein while
ScExg2 is bound to the membrane via a GPI-anchor (Fig. 2a and Table 1)
(Vázquez de Aldana et al. 1991; Larriba et al. 1995). SSG1 (also known as SPR1)
codes for a sporulation-specific exo-b-(1,3)-glucanase present in sporulating
diploids, and its deletion produces a delay in the formation of mature asci and
reduces spore thermoresistance (Muthukumar et al. 1993; San Segundo et al. 1993).

Fig. 2 Domain organisation of GH5, GH81 and GH71 glucanases. a Schematic representation
of the domain organisation of GH5 hydrolases from S. cerevisiae, S. pombe and A. fumigatus.
Protein domains were identified using the InterPro database (http://www.ebi.ac.uk/interpro/) and
are drawn to scale. Proteins in this family have a Glycoside hydrolase family 5 domain
(IPR001547) and different localisation signals. Length of the protein is indicated at the C-terminus.
b GH81 proteins contain a glycosyl hydrolase family 81 domain (IPR040451 and IPR040720),
preceded by a signal sequence or a Pro-rich region. In S. pombe, SpEng1 has three repeats of the
carbohydrate-binding module family CBM52 (IPR018909) at the C-terminus of the protein.
c a-glucanases contain a Glycoside hydrolase family 71 domain (IPR005197). Only two of the A.
fumigatus GH71 a-glucanases (AFUA_2G03980 and AFUA_7G08350) are shown
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In contrast, no growth phenotype for the single exg1D and exg2D mutants has been
observed (Vázquez de Aldana et al. 1991; Larriba et al. 1995), and the triple ssg1D
exg1D exg2D mutant is similar to the ssg1D mutant in sporulation (San Segundo
et al. 1993).

C. albicans also contains three GH5 proteins, known as CaXog1, CaExg2 and
CaSpr1. CaXog1 is similar in organisation to ScExg1, whereas CaExg2 and CaSpr1
contain a putative GPI-attachment site. xog1D null mutants have no growth or
filamentation defects, indicating that the enzyme is not essential in C. albicans,
although the mutant is slightly more sensitive to glucan synthesis inhibitors and
more resistant to chitin biosynthesis inhibitors than the parental strain (González
et al. 1997).

S. pombe contains three orthologues that have been characterised
(Dueñas-Santero et al. 2010). SpExg1 is a secreted protein; SpExg2 has a TM
domain, and it remains associated with the membrane; and SpExg3 is a cytoplasmic
protein (Fig. 2a and Table 1). The phenotype of the triple exg1D exg2D exg3D
mutant is similar to the parental strain, but overexpression of SpExg2 produces an
increase in cell wall material at the poles and septum (Dueñas-Santero et al. 2010).

The A. fumigatus genome contains four GH5 proteins (AfExg1 to AfExg4) with
different predicted localisations (Mouyna et al. 2013) (Fig. 2a and Table 1)
although their function is unknown, since none of the genes has been deleted.

Characterisation of the biochemical activity of the proteins indicated that
ScExg1 and CaXog1 are able to degrade b-(1,3)-glucans (Vázquez de Aldana et al.
1991; Chambers et al. 1993). However, S. cerevisiae exg1D mutants were found to
be more sensitive to the K1 killer toxin while EXG1 overexpression led to resis-
tance (Jiang et al. 1995). Increased resistance to this toxin often correlates with low
levels of b-(1,6)-glucan, which is the receptor molecule (Shahinian and Bussey
2000). Furthermore, EXG1 overexpression also resulted in a modest reduction in
the cell wall b-(1,6)-glucan while disruption of the gene led to a small increase in
this component. Therefore, it was suggested that ScExg1 may have a functional role
in cell wall glucan metabolism and might function in vivo as a b-(1,6)-glucanase
(Jiang et al. 1995). Interestingly, recombinant ScExg1 is able to cleave b-(1,3)-
linkages as well as b-(1,6)-linkages (Suzuki et al. 2001). The activity of CaXog1
was also characterised and has marked specificity for b-(1,3)-linkages, and it also
acts as a transglycosylase in the presence of high concentrations of
laminari-oligosaccharides (Stubbs et al. 1999). Analysis of the enzymatic activity of
the S. pombe proteins shows that SpExg1 and SpExg3 are only active on b-(1,6)-
glucans with an endo-hydrolytic mode of action while no enzymatic activity was
detected for SpExg2 (Dueñas-Santero et al. 2010). The exg1+ gene has periodic
expression during the cell cycle, with a maximum coincident with the septation
process and SpExg1 localises to the septum region, suggesting a possible function
in the assembly or remodelling of this structure.
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Table 1 Cell wall glucanases and chitinases present in yeast and fungi

Glucanases

Family S. cerevisiae C. albicans S. pombe A. fumigatus

GH3 – Bgl22
(CR_09420C_A)
Ngs1
(CR_00190W_A)

SPBC1683.04 Exg12 (AFUA_1G05770)
Exg13 (AFUA_7G06140)
Exg14 (AFUA_7G00240)
Exg15 (AFUA_1G17410)
Exg16 (AFUA_8G02100)
Exg17 (AFUA_6G14490)
Exg18 (AFUA_5G07190)
Exg19 (AFUA_6G11910)
Exg20 (AFUA_6G08700)
Exg21 (AFUA_6G03570)

GH5 Exg1
(YLR300w)
Exg2
(YDR261c)
Ssg1/Spr1
(YOR190w)

Xog1
(C1_02990C_A)
Exg2
(C1_02630C_A)
Spr1
(C2_06840W_A)

Exg1
(SPBC1105.05)
Exg2
(SPAC12B10.11)
Exg3
(SPBC2D10.05)

Exg1 (AFUA_1G03600)
Exg2 (AFUA_6G09250)
Exg3 (AFUA_7G05610)
Exg4 (AFUA_2G09350)

GH16 – – SPBC21B10.07 Eng2 (AFUA_2G14360)
Eng3 (AFUA_1G05290)
Eng4 (AFUA_5G02280)
Eng5 (AFUA_4G13360)
Eng6 (AFUA_6G14540)
Eng7 (AFUA_3G03080)
Eng8 (AFUA_5G14030)

GH55 – – – Exg5 (AFUA_6G11980)
Exg6 (AFUA_6G13270)
Exg7 (AFUA_3G07520)
Exg8 (AFUA_1G14450)
Exg9 (AFUA_2G00430)
Exg10 (AFUA_4G03350)

GH71 – – Agn1
(SPAC14C4.09)
Agn2
(SPBC646.06c)

AFUA_2G03980
AFUA_5G03940
AFUA_7G08510
AFUA_1G03340
AFUA_1G00650
AFUA_8G06030
AFUA_7G08350

GH81 Eng1/Dse4
(YNR067c)
Eng2/Acf2
(YLR144c)

Eng1
(C1_03680W_A)
Eng2
(C1_03680W_A)

Eng1
(SPAC821.09)
Eng2
(SPAC23D3.10c)

Engl1 (AFUA_1G04260)

GH132
G. I

Sun4/Scw3
(YNL2411w)
Uth1
(YKR042w)
Sim1
(YIL123w)
Nca3
(YJL116c)

Sun41
(C6_00820W_A)
Sun42
(C1_13940W_A)

Psu1
(SPAC1002.13c)
SPBC2G2.17c

Sun1 (AFUA_7G05450)

G. II YMR244w C3_04450C_A Adg3
(SPCC18.01c)

Sun2 (AFUA_1G13940)
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2.2.2 Family GH81 Endo-Glucanases

Family GH81 contains proteins with endo-b-(1,3)-glucanase (EC 3.2.1.39) activity.
Two orthologues are present in S. cerevisiae, S. pombe and C. albicans, known as
Eng1 and Eng2, while a single member is present in A. fumigatus (ENGL1)
(Table 1). AfEngl1 was initially isolated as a glycosylated protein from A. fumigatus
autolysates (Fontaine et al. 1997a) and represents 10–15% of the b-(1,3)-glucanase
activity of A. fumigatus cell walls. The active site of the enzyme recognises five
glucose units linked by a b-(1,3) bond. The activity of ScEng1, SpEng1 and SpEng2
was also characterised, and they have the same enzymatic activity as that described
for AfEngl1 (Baladrón et al. 2002; Martín-Cuadrado et al. 2008b).

GH81 endo-glucanases have different localisations. Eng1 proteins in S. cere-
visiae, C. albicans and A. fumigatus have a signal sequence followed by a Ser/
Thr-rich region and the C-terminal GH81 domain, suggesting that they are secreted
proteins (Fig. 2b). In S. pombe, SpEng1 contains a C-terminal carbohydrate-binding
module (CBM) consisting of three repeats of 50 amino acids, each belonging to
family CBM52, which are essential for catalytic activity against insoluble substrates
and for in vivo localisation (Martín-Cuadrado et al. 2003, 2008a). Eng2 proteins lack
any secretion signal and only contain the GH81 domain. They are cytoplasmic
enzymes containing a Pro-rich region near the N-terminus.

Their function has been analysed in yeast and fungi. Deletion of ENG1 in S.
cerevisiae results in the formation of clumps of cells, suggesting that ScEng1, like

Table 1 Cell wall glucanases and chitinases present in yeast and fungi

Chitinases (Family GH18)

Class A Class B Class C

S.
cerevisiae

Cts2 (YDR371 W) Cts1 (YLR286C)

C. albicans Cht4 (C2_02010C_A) Cht1 (CR_00180C_A)
Cht2 (C5_04130C_A)
Cht3 (CR_10110W_A)

U. maydis Cts1 (UMAG_10419)
Cts3 (UMAG_06190)

Cts2 (UMAG_02758)

N. crassa Ncgh18-2 (NCU03209)
Ncgh18-3 (NCU03026)
Ncgh18-4 (NCU04883)
Ncgh18-5 (NCU04554)
Ncgh18-7 (NCU06020)

Ncgh18-1 (NCU04500)
Ncgh18-10 (NCU01393)
Ncgh18-11 (NCU12033)
Ncchit-1 (NCU02184)

Ncgh18-6 (NCU05317)
Ncgh18-8 (NCU07484)
Ncgh18-9 (NCU07035)

A.
fumigatus

AFUA_1G02800
AFUA_8G01410
AFUA_7G08490
AFUA_3G11280
AFUA_1G00310
AFUA_3G07160

AFUA_5G03960
AFUA_5G06840
AFUA_6G13720
AFUA_5G01400
AFUA_6G09310
AFUA_6G09780

Chi1 (AFUA_5G03760)
Chi2 (AFUA_8G00700)
Chi3 (AFUA_7G05140)
Chi4 (AFUA_5G03530)
Chi5 (AFUA_3G07110)

The common name of the protein and the systematic name of the gene are indicated. Group I (G. I)
and Group II (G. II) glucanases are indicated in family GH132
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the ScCts1 chitinase, is involved in the dissolution of the mother–daughter septum
during cell separation (Baladrón et al. 2002); a similar function has been described
for CaEng1 (Esteban et al. 2005). CaEng1 partially complements the separation
defect of the S. cerevisiae eng1D mutant, suggesting a close functional relationship
between them. ScEng1 asymmetrically localises to the daughter side of the septum,
since ENG1 is one of the daughter-specific genes regulated by the ScAce2 tran-
scription factor (Colman-Lerner et al. 2001; Baladrón et al. 2002).

In S. pombe, the absence of SpEng1 produces defects in cell separation, since
mutant cells fail to degrade the primary septum (Martín-Cuadrado et al. 2003). The
septum in fission yeast is different to that of budding yeast, and the primary septum
is mainly composed of linear b-(1,3)-glucan instead of chitin (reviewed in Sipiczki
2007; García-Cortés et al. 2016). Thus, SpEng1 has the same function as chitinase
ScCts1 in S. cerevisiae, which provides the main catalytic activity required for
primary septum dissolution. SpEng1 is secreted to the septum, forming a ring that
surrounds it; its localisation requires a functional exocyst and septins, as well as
CBM52 (Martín-Cuadrado et al. 2005, 2008a).

The gene encoding aGH81 endo-b-(1,3)-glucanase inA. fumigatuswas cloned and
named ENGL1 (Mouyna et al. 2002). Initial studies indicated that this endo-b-(1,3)-
glucanase has no relevant morphogenetic function, since the Dengl1 deletion mutant
has no apparent phenotype, consistent with the fact that A. fumigatus is a filamentous
fungus that does not require cell separation. However, recent studies have shown that
AfEngl1 is expressed in resting conidia and during germination, and that AfEngl1,
together with four other endo-b-(1,3)-glucanases from Family GH16, contributes
separation of the conidia (Mouyna et al. 2016) (see 2.2.7. Family GH16 glucanases).

The function of the cytoplasmic Eng2 has been characterised in S. pombe.
SpEng2 has also endo-b-(1,3)-glucanase (Martín-Cuadrado et al. 2008b) and per-
forms its function after sporulation, being required for degradation of the ascus wall
and for spore release (Encinar del Dedo et al. 2009). Later, it was shown that
SpEng2 plays an additional function during vegetative growth, which is unrelated
to its enzymatic activity, suggesting that it is a new “moonlighting protein” (re-
viewed in Gancedo and Flores 2008; Royle 2011). Depletion of SpEng2 causes
profound defects in endocytic uptake, which are not due to the absence of the
glucanase activity but require the N-terminal Pro-rich region (Encinar del Dedo
et al. 2014). It was proposed that SpEng2 is a component of a novel endocytic
module, which probably couples the endocytic coat to the actin module during
endocytosis. Interestingly, its orthologue in S. cerevisiae might have a similar
function, since it is also known as ScAcf2 (Assembly Complimenting Factor 2),
and it was originally identified as a factor required for the polymerisation of cortical
actin patches in semi-permeabilised cells (Lechler and Li 1997).

2.2.3 Family GH71 a-Glucanases

a-(1,3)-glucanases (mutanases, EC3.2.1.59) hydrolyse a-(1,3)-glucan and these
enzymes are grouped into two GH families, GH71 glucanases present in fungi and
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GH87 enzymes from bacteria (for a review, see Suyotha et al. 2016). Blast searches
and phylogenetic analyses showed a high number of proteins containing GH71
domains in Basidiomycota and Pezizomycotina, but not in Saccharomycotina
(Sipiczki et al. 2014). The lack of GH71 proteins in Saccharomycotina species,
such as S. cerevisiae or C. albicans, is associated with the lack of a-(1,3)-glucan in
the cell walls of these yeasts.

Fungal a-(1,3)-glucanases are divided into two subgroups based on the physi-
ological roles. The first group is a-(1,3)-glucanases from Trichoderma, a myco-
parasitic fungi that secrete many cell wall degrading enzymes with a nutritional
role, hydrolysing extracellular carbohydrates for assimilation as carbon sources and
will not be discussed further here. The typical example of the second group are the
SpAgn1 and SpAgn2 a-(1,3)-glucanases from S. pombe (Fig. 2c and Table 1).
SpAgn1 is only active against (1,3)-a-glucan, and the main reaction products are
oligosaccharides with a degree of polymerisation of 2–7, and the same substrate
specificity and mechanism of action was described for SpAgn2 (Dekker et al. 2004,
2007), indicating that both enzymes are a-(1,3)-glucanases with an endo-hydrolytic
mode of action.

SpAgn1 and SpAgn2 are paralogues involved in different cellular processes. The
deletion of agn1+ results in the formation of clumps of cells that remain attached by
cell wall material, an indication that it is involved in the hydrolysis of the cell wall
a-(1,3)-glucan that surrounds the septum (the septum edging) (Dekker et al. 2004).
SpAgn1 contains a signal sequence (Fig. 2c), and its correct localisation to the
septum region requires the exocyst and septins (Martín-Cuadrado et al. 2005).
Therefore, the complementary action of the b-glucanase SpEng1 and the
a-glucanase SpAgn1 is necessary for the efficient degradation of the primary sep-
tum and the a- and b-glucans of the septum edging, allowing the two daughter cells
to become two independent entities (Martín-Cuadrado et al. 2003; Dekker et al.
2004; García et al. 2005).

SpAgn2 is required for the endolysis of ascus cell wall, since the agn2D mutant
has a defect in the release of the ascospores (Dekker et al. 2007). Therefore, the
SpEng2 b-glucanase and the SpAgn2 a-glucanase form another pair of comple-
mentary enzymes with similar functions during sporulation. The fact that the dele-
tion of either of these enzymes results in the same phenotype indicates that a-(1,3)-
glucan and b-(1,3)-glucan from the diploid cell wall must be hydrolysed for
ascospores to be efficiently released by the concerted action of SpAgn2 and SpEng2.

Paracoccidioides brasiliensis is a human systemic pathogen with clinical rele-
vance in the Latin America area. The outermost layer of the cell wall is composed
of a-(1,3)-glucan, and it is believed that it plays a protective role against host
defence mechanisms (San-Blas et al. 1977). A single gene belonging to GH71
family has been identified and termed AGN1. Its transcription is sharply increased
under growth conditions that induce a-(1,3)-glucan synthesis, suggesting a role in
a-(1,3)-glucan remodelling (Villalobos-Duno et al. 2013). Interestingly, expression
of AGN1 in S. pombe was able to complement the separation defect of the agn1D
mutant, indicating that it might have a similar function and be involved in the
remodelling of the P. brasiliensis cell wall.

Glucanases and Chitinases 143



In A. nidulans, the a-(1,3)-glucanase mutA (AN7349) was identified as a gene
that is differentially expressed during sexual development (Wei et al. 2001). In this
organism, a-(1,3)-glucan is considered the main reserve material accumulated
during vegetative growth and consumed during sexual development. However, the
DmutA strain shows reduced degradation of a-(1,3)-glucan but it is able to form
cleistothecia, probably because of genetic redundancy within this family of pro-
teins. A similar function has been proposed for the A. niger agnB gene (van
Munster et al. 2015). In A. fumigatus, seven proteins belonging to family GH71 are
present (Fig. 2c and Table 1). All of them contain a signal sequence for secretion,
but their function is currently unknown.

2.2.4 Family GH132 Exo-Glucanases

Family GH132 contains a group of fungal proteins that were initially annotated as
b-glucosidases based on their sequence similarity to the BglA b-glucosidase of
Candida wickerhamii (Skory and Freer 1995). Their biochemical activity was
completely unknown until AfSun1 and CaSun41 were purified and characterised
(Gastebois et al. 2013). Both are active against b-(1,3)-glucans but not against
p-nitrophenyl-glucose (pNPG), confirming that they are not b-glucosidases. AfSun1
and CaSun41 act as exo-b-(1,3)-glucanases that degrade substrates from lami-
naribiose to insoluble b-(1,3)-glucans. Interestingly, a minor transferase activity was
also detected. Based on these results, this group of proteins, which are also known as
SUN proteins, were included in family GH132 in the CAZy database.

The SUN family was originally identified in S. cerevisiae, and it is composed of
four paralogous genes: SIM1, UTH1, NCA3 and SUN4. The proteins share a
common structure that includes a signal peptide, a low complexity region rich in
serine and threonine, and a conserved SUN domain characterised by a
C-X5-C-X3-C-X24-C motif predicted to bind iron based on similarities to Fe-S
proteins, although there are no experimental evidences indicating that iron is
required for enzymatic activity (Fig. 3a) (Bandara et al. 1998). Phylogenetic
analysis showed that they can be classified into two groups. Proteins from Group I
have the described structure, whereas members of Group II have a shorter
N-terminal region and different spacing between the third and fourth cysteines of
the SUN domain (Firon et al. 2007).

SUN proteins were first described to be involved in different cellular processes in
S. cerevisiae, such as yeast-ageing, resistance to various stresses, prolonged
replicative lifespan or mitochondrial function (Pelissier et al. 1995; Bandara et al.
1998; Camougrand et al. 2004). Indeed, some proteins have a dual localisation in
the cell wall and in the mitochondrial membrane (Velours et al. 2002). S. cerevisiae
contains four GH132 proteins from Group I encoded by SUN4/SCW3, UTH1, SIM1
and NCA3 and a Group II protein (Ymr244w) (Table 1 and Fig. 3a). ScSun4
(ScScw3) was initially identified as a cell wall protein released from intact cells by
dithiothreitol (Cappellaro et al. 1998), and it was shown to function during cell
separation since the sun4D strain often possesses more than one bud, and daughter
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cells remain attached to the mother cell (Mouassite et al. 2000). More recently,
ScSun4 was shown to localise to the daughter side of the bud neck together with
ScDse2 and ScEgt2 and was involved in the separation of the daughter from the
mother cell (Kuznetsov et al. 2016). ScUth1 may also affect the function of the cell
wall, since the b-glucan and chitin composition of the uth1D mutant is different
from that of the wild-type, and it is more resistant to zymolyase treatment (Ritch
et al. 2010). Little is known about the function of the other three members of SUN
family.

Fig. 3 Domain organisation of GH132 and GH3 glucanases. a GH132 glucanases or SUN
proteins have been classified into two groups. Proteins from group I have a common structure that
include a signal secretion peptide, a low complexity region rich in serine and threonine residues
and a conserved C-terminal SUN domain (IPR005556) containing a C-X5-C-X3-C-X24-C motif.
Members of group II have a shorter N-terminal region and a different spacing between the third
and fourth cysteines of the SUN domain. b Schematic representation of the domain organisation of
GH3 glucanases from C. albicans (CaBgl22 and CaNgs1) and A. fumigatus (AfExg12 to
AfExg21). The GH3 is composed of two independent signatures in the InterPro database, the
Glycoside hydrolase family 3, N-terminal domain (IPR001764) and the Glycoside hydrolase
family 3, C-terminal domain (IPR002772). Most of the proteins contain a Fibronectin type III-like
domain (IPR026891) near the C-terminus. The four A. fumigatus proteins that lack a secretion
signal (AfExg14, AfExg17, AfExg18 and AfExg19) contain an insertion in the C-terminal GH3
domain that corresponds to a galactose-binding-like domain(IPR040502)
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In C. albicans, there are three SUN proteins known as CaSun41, CaSun42 and
C3_04450C_A (Table 1 and Fig. 3a). Deletion of CaSUN41 also results in a
separation defect, whereas the double deletion of CaSUN41 and CaSUN42 is
synthetically lethal due to the lysis of mother cells after septation, and this phe-
notype is rescued by osmotic protection (Firon et al. 2007). Cell wall defects seen in
this double mutant are mainly localised in the region surrounding the septa in
mother yeast cells and subapical hyphal compartments. CaSun41 is also important
for cell attachment to a substrate and for biofilm formation. The sun41D strain
forms aberrant hyphae and has decreased virulence (Hiller et al. 2007; Norice et al.
2007). All of these observations led to the proposal that C. albicans SUN proteins
could be involved in cell wall remodelling linked to the maintenance of cell
integrity during cell division (Firon et al. 2007).

In S. pombe, there are three proteins containing a SUN domain, SpPsu1, SpAdg3
and SPBC2G2.17c. Deletion of the Group I gene psu1+ results in cell wall defects
during cell separation, generating swollen cells that eventually undergo lysis (Omi
et al. 1999). SpAdg3 is one of the genes whose transcription is regulated by SpAce2,
and the protein is required for efficient cell separation (Alonso-Nuñez et al. 2005).

A. fumigatus contains two SUN proteins, the Group I AfSun1 and Group II
AfSun2 (Gastebois et al. 2013). The expression of AfSUN1 is strongly induced
during conidial swelling and mycelial growth, whereas AfSUN2 is not expressed.
Accordingly, the deletion of AfSUN1 produces defects during hyphal growth and
conidiation. Hyphal cells lacking AfSun1 have swollen hyphae, leaky tips and a
double cell wall, indicating that this protein is also involved in cell wall biogenesis
in A. fumigatus, like in yeast. Furthermore, the DAfsun1 had intrahyphal hyphae and
many Woronin bodies in the septal region, an indication of difficulties in the
completion/closure of the septum that suggests a role of AfSun1 during septation. In
contrast, the deletion of AfSUN2 had no apparent phenotype. In spite of the initial
reports on the role of SUN proteins in various cellular process not cell wall asso-
ciated, there is increasing evidence suggesting that SUN proteins play indeed a role
in cell wall biogenesis, septum integrity and cell separation in yeast and fungi
(Mouassite et al. 2000; Ritch et al. 2010; Gastebois et al. 2013).

2.2.5 Family GH3 Exo-Glucanases

Family GH3 contains exo-hydrolases that act on different substrates and display a
variety enzymatic activities, such as b-glucosidase (EC 3.2.1.21), glucan b-(1,3)-
glucosidase (EC 3.2.1.58), glucan b-(1,4)-glucosidase (EC 3.2.1.74) or exo-b-(1,3)-
(1,4)-glucanase (EC 3.2.1.-) among others. In filamentous fungi, there is a large
degree of redundancy and several proteins are present in the genome (from 5 to 11).
In contrast, C. albicans contains two GH3 proteins (CaBgl22 and CaNgs1), S.
pombe only one (SPBC1683.04) and no orthologues are present in S. cerevisiae
(Fig. 3b and Table 1).

There is little information about the function of these proteins in fungal
cells. The only protein whose enzymatic activity has been characterised is the
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A. fumigatus glucanase known as ExoGII (encoded by EXG12). ExoGII was iso-
lated from cell wall autolysates and characterised as a protein with activity against
b-(1,3)-glucan, b-(1,6)-glucan and also acting on pNPG (Fontaine et al. 1997b). In
addition to ExoGII, A. fumigatus contains another nine proteins from this family,
named AfExg13 to AfExg21 (Table 1) (Mouyna et al. 2002). All of them contain
the N-terminal and C-terminal glycoside hydrolase family 3 signatures (Fig. 3b),
but a phylogenetic tree constructed with GH3 fungal proteins showed the existence
of two main groups (Mouyna et al. 2013). The first group is composed of the five
proteins that contain a signal sequence (AfExg12, AfExg13, AfExg15, AfExg16
and AfExg20) and AfExg21, which contains a putative TM domain. The second
phylogenetic group contains the remaining proteins that lack any secretion signal or
TM domains, and the C-terminal GH3 signature is separated into two fragments by
a galactose-binding-like domain (Fig. 3b). In addition, all of them, except AfEgx14,
contain an additional Fibronectin type III-like domain (FnIII) at the C-terminus.
Fibronectin (FN) is a protein able to bind simultaneously to cell surface receptors,
collagen, proteoglycans and other FN molecules (Maurer et al. 2015), although the
function of the Fibronectin-like domain in GH3 proteins is unknown.

C. albicans contains two GH3 proteins, known as CaBgl22 and CaNgs1
(Fig. 3b). Deletion of BGL22 is viable, and its function is not known. CaNgs1 has a
modular structure slightly different, since it lacks a secretion signal and only con-
tains the N-terminal domain of GH3 proteins. Recent work might shed light on the
function of cytoplasmic GH3 proteins. CaNgs1 has been identified as a GlcNAc
sensor and transducer important for GlcNAc-induced hyphal development (Su et al.
2016). The N-terminal GH3 domain acts as an N-acetyl glucosaminidase that can
bind GlcNAc, and this binding activates its C-terminal domain necessary for
down-regulation of the Nrg1 repressor.

The S. pombe SPBC1683.04 protein also contains the GH3 domain and the
C-terminal FnIII domain but lacks a secretion signal. Little is known about its
function, although the mutant has been identified in a large-scale screen searching
for morphological abnormalities during sexual reproduction (Dudin et al. 2017).
The null mutant forms a mating projection with a longer tip than normal and shows
incomplete cell wall disassembly at the site of cell–cell fusion, suggesting that it
might function in cell wall reorganisation during conjugation.

2.2.6 Family GH55 Exo-Glucanases

Family GH55 contains proteins with exo-b-(1,3)-glucanase (EC 3.2.1.58) and
endo-b-(1,3)-glucanase (EC 3.2.1.39) activity present in bacteria and filamentous
fungi, but are absent in the genome of S. cerevisiae, C. albicans or S. pombe. A.
fumigatus contains six GH55 proteins that have been named AfExg5 to AfExg10
(Table 1) (Mouyna et al. 2013).

Similar to other GH families, the A. fumigatus proteins have different localisa-
tion signals (Fig. 4a). All of them contain two repeats of a domain similar to the
pectate lyase 3 domain, although this is only inferred by sequence similarity and
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might not reflect a similar function. Indeed, the only enzymatic activity charac-
terised in A. fumigatus corresponds to AfExg6, and it has been shown that it is the
exo-b-(1,3)-glucanase isolated several years ago from cell wall autolysates and
named ExoGI (Fontaine et al. 1997b). This enzyme exclusively hydrolyses b-(1,3)-
glucans and has a minimal substrate size of four glucose residues. Recently, it has
been shown that GH55 family proteins are essential for the proper organisation and
structuring of the conidial cell wall, and conidia maturation, normal dissemination
and germination (Millet et al. 2019). A sextuple mutant lacking AfEXG5 to
AfEXG10 has defects in conidial cell wall maturation that result in abnormal shape,
becoming ovoid and unable to separate.

Interestingly, the function of a GH55 glucanase in N. crassa has been described
and it is similar to that mentioned for A. fumigatus. A proteomic analysis of the
conidial cell wall identified the CGL-1 b-(1,3)-glucanase (NCU07523) and the
NAG-1 exo-chitinase (NCU10852) as components of cell wall (Ao et al. 2016).
Analysis of the phenotype of the deletion mutants of both genes showed that the
conidia failed to properly separate. These results suggest that the exo-chitinase and
the glucanase are required for the remodelling of the conidial cell wall, which is
necessary for the conidia to separate from one another and facilitate dispersal.

More recently, the activity of H. capsulatum Exg8 was characterised, and it acts
as an exo-glucanase that produces mono-, di- and trisaccharides from laminarin,
suggesting a minimal substrate size similar to that of AfExg6 (Garfoot et al. 2017).

2.2.7 Family GH16 Endo-Glucanases

Family GH16 is a large family in the CAZy database that contains proteins active
on b-(1,4) or b-(1,3) glycosidic bonds in various glucans and galactans. A wide
variety of enzymatic activities are included in this family, such as endo-b-(1,3)-
glucanase (EC 3.2.1.39), endo-b(1,3) (4)-glucanase (EC 3.2.1.6), xyloglucan
xyloglucosyltransferase (EC 2.4.1.207), keratan-sulphate endo-b(1,4)-galactosidase
(EC 3.2.1.103), licheninase (EC 3.2.1.73), b-agarase (EC 3.2.1.81) or xyloglu-
canase (EC 3.2.1.151).

Even though GH16 proteins have diverged significantly in their primary
sequences, they all feature a common fold (a classical sandwich-like b-jelly roll)
and a common catalytic motif, justifying their inclusion in the same CAZy family.
However, phylogenetic analysis indicates that this family could be divided into
different subfamilies (Mertz et al. 2009). In the Conserved Domain Database (CDD,
https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) (Marchler-Bauer et al.
2017), it contains six different subfamilies: GH16_lichenases (cd02175), GH16_
kappa_carrageenases (cd02177), GH16_XETs (Xyloglucan endotransglycosylase,
cd02176), GH16_b_agarases (cd02178), GH16_fungal_CRH1_transglycosilase
(cd02183) and GH16_laminarinase_like (cd08023).
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Fungal endo-b-(1,3)-glucanases are included in subfamily GH16_laminarinase_
like, and are mainly present in filamentous fungi, with numbers ranging from one in
Magnaporthe grisea to eight inA. fumigatus. S. pombe is the only yeast that possesses
a GH16 glucanase (SPBC21B10.07), since they are absent in the genome of S.
cerevisiae or C. albicans. The seven GH16 glucanases in A. fumigatus have been
named AfEng2 to AfEng8 (Mouyna et al. 2013) (Table 1, Fig. 4b). All of them seem
to be extracellular proteins, since they contain either a signal peptide or a TM domain
in themiddle of the protein, suggesting that they localise to the plasmamembranewith
the active domain pointing towards the cell wall.

The biochemical activity of AfEng2 was characterised by its expression in
Pichia pastoris (Hartl et al. 2011). The recombinant protein acts on b-(1,3)-glucans
and lichenan but not on b-(1,6) substrates. AfEng2 preferentially acts on soluble
polymers like laminarin and shorter b-(1,3) oligosaccharides and showed a slight
transferase activity. Deletion of the ENG2 gene showed that the mutant has no
phenotype, and it is similar to the parental strain, suggesting that AfEng2 alone does
not play an essential role in fungal morphogenesis (Hartl et al. 2011). However, a
deletion of four of the GH16 genes (ENG2 to ENG5) in combination with a deletion
of the endo-b-(1,3)-glucanase Engl1 (Family GH81) resulted in a defect in conidial

Fig. 4 Domain organisation of GH55 and GH16 glucanases. a A. fumigatus exo-b-(1,3)-
glucanases belonging to family GH55 share a common structural organisation, containing two
repeats of the pectate lyase superfamily domain (IPR024535). Four of them contain a signal
sequence, whereas AfExg5 and AfExg9 lack this localisation signal. AfExg9 is the largest of all of
them and contains a C-terminal Lysozyme-like domain (IPR023346). b Schematic representation
of the domain organisation of GH16 endo-b-(1,3)-glucanases from A. fumigatus (AfEng2 to
AfEng8). The proteins contain a Glycoside hydrolase family 16 domain (IPR000757) accompa-
nied by different localisation signals
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morphogenesis (Mouyna et al. 2016). The quintuple mutant Deng1,2,3,4,5 formed
linear chains of conidia that were unable to separate, but the germination rate was
not affected. Thus, endo b-(1,3)-glucanases from families GH16 and GH81 are
essential for proper conidial cell wall assembly and for conidia separation after
conidiation is complete in a filamentous fungus.

3 Fungal Chitinases

3.1 Organising the Action: From Chitin
to N-Acetylglucosamine

The breakdown of chitin in the fungal cell wall is promoted by a number of
chitinolytic enzymes including lytic polysaccharide monooxygenases (LPMOs),
chitinases and N-acetylglucosaminidases (NAGAs), all of them working in a
coordinated manner for efficient degradation (Langner and Göhre 2016). These
enzymes will act co-ordinately on chitin following the simple scheme depicted in
Fig. 5. LPMOs and endo-acting chitinases produce strand breaks at random posi-
tions within the chitin chains, this cleavage generating free reducing and

Fig. 5 Hierarchical machinery involved in chitin degradation. Chitin chains are fragmented
by LPMOs and endo-chitinases to serve as substrates for the action of exo-chitinases that released
Chito-oligosaccharides, which are further processed to N-Acetyl glucosamine monomers by the
action of N-Acetylglucosaminidases belonging to family GH20

150 C. Roncero and C. R. Vázquez de Aldana



non-reducing ends. The free ends will serve as targets for processive exo-acting
chitinases, which release short chito-oligosaccharides (CHOS), mainly (GlcNAc)2
and (GlcNAc)3, from either the reducing or non-reducing end, leading to the
complete decomposition of the strand (Horn et al. 2006). CHOS, mainly
(GlcNAc)2, are the preferred substrates for N-acetylglucosaminidases, which
catalyse the further degradation to GlcNAc from NRE (Chen et al. 2015).

These three types of enzymes belong to different CAZy groups. LPMO enzymes
have only been recently described and are classified as auxiliary enzymes belonging
to A9-15 classes (Levasseur et al. 2013), and they have been found in most fungal
groups (CAZy, http://www.cazy.org/). Their mechanism of action is still not fully
understood, but accumulating evidence shows that it involves binding of a copper
ion that will enable the transport of an electron to molecular oxygen, thereby
creating a superoxo-intermediate which then initiates the cleavage of the polymer
(reviewed in Courtade and Aachmann 2019). These types of enzymes could have
an important biotechnological interest, but their role in fungal biology is unknown;
therefore, they are out of the scope of this review.

Chitinases, in contrast, have been studied for years, and their mechanism of
action is well known. All fungal chitinases belong to CAZy family GH18 and use a
substrate-assisted retaining mechanism (van Aalten et al. 2001) in which a con-
served glutamate of the catalytic diad (D–E) serves as the general acid/base. During
hydrolysis, the anomeric configuration of the substrate is retained. Their proces-
sivity separates them in endo-acting and processive (exo-acting) chitinases, a
characteristic that directly depends on the tridimensional architecture of the binding
cleft of the enzyme, which is organised in a rather open conformation in the
non-processive, endo-acting chitinases clearly different from the “tunnel-shaped”
conformation attained by the processive enzymes.

N-acetylglucosaminidases belong to family GH20, and their mode of action is
similar to that of GH18 proteins previously described (Chen et al. 2015).

3.2 Structure and Diversity Between Fungal Chitinases

The chitinases, although they share a unique catalytic domain, are a rather complex
group of enzymes that include proteins with a very different organisation. Some
proteins are secreted by means of a signal peptide while others lack a canonical
sequence and are secreted by alternative and poorly studied secretion mechanisms.
Some of them are expected to be integral membrane proteins due to the presence in
their sequence of TM domains. Most of them are glycosylated, and some are also
modified by the addition of GPI modules. Moreover, some chitinases contain dif-
ferent CBMs that can be arranged in multiple copies (Tzelepis et al. 2012). On top
of that, the number of chitinase genes presented in each fungal family differs
radically, from a single gene in S. pombe to more than 30 genes in different
phytopathogenic species of the Trichoderma genus (Karlsson and Stenlid 2008).
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Based on this complexity, the classification of chitinases is difficult and the most
comprehensive classification is based exclusively on their GH18 catalytic domains,
which are relatively well conserved. Based on this, they are classified into two big
clusters (reviewed in Karlsson and Stenlid 2008). Cluster A includes the enzymes
classified as exo-chitinases and can be subdivided into 6 groups, A-II to A-V and
C-I and C-II. Groups A-II to A-V showed the highest degree of amino acid con-
servation, whereas C-I and C-II displayed the lowest levels of amino acid con-
servation. The catalytic domain of the cluster B showed intermediate levels of
conservation, although the catalytic domain of sub-classes B-V can be considered
as one of the most conserved. All of the enzymes belonging to cluster B display
endo-chitinase activity and many have been linked to morphogenetic processes (see
below). Interestingly, not all chitinase groups are uniformly distributed among fungi
and the subgroups A-II, C-I and C-II appear to be unique for filamentous asco-
mycetes. Moreover, subgroups C-I and C-II have been identified as the most likely
targets for the observed expansion of chitinases between filamentous fungi. These
C-subgroups of chitinases share extensive homology with the a-toxin of the yeast
killer system from K. lactis (Butler et al. 1991), which facilitates internalisation of
the catalytic component of this toxin, the gamma subunit, by the permeabilisation of
the cell wall and membrane of the susceptible strains (Jablonowski et al. 2001).
This has led to the suggestion that C-I and C-II chitinases would be involved in
competitive fungal–fungal interactions.

The data presented above clearly reflect a very significant expansion in size of
the chitinase gene families included in GH18, suggesting that this gene family has
been important for species fitness during evolution, probably by facilitating adap-
tation to specific natural environments. It is difficult to know exactly how many
chitinase genes were present in the original fungal ancestor, although it has been
estimated that 5 chitinase genes were already present in this extant ancestral species
(Karlsson and Stenlid 2008) whose origin can be placed around 800 million years
ago, after the divergence of the Chytridiomycetes (Stajich et al. 2009). From this
original number, gene expansion took place to produce an average number of 12–
15 different genes. Figure 6 shows a schematic representation of the diversity of
fungal chitinases using N. crassa as a model (Tzelepis et al. 2012). However, other
expansion processes should have occurred between the filamentous ascomycetes,
mostly through the C-I and C-II subgroups. This expansion has a maximum
between mycoparasitic fungi, probably associated with a specific role of these new
enzymes in this lifestyle. Interestingly, not only has the expansion phenomena been
found, but also significant contractions as well. Between filamentous ascomycetes,
the contraction of the subgroup C-II observed in human pathogenic species is
noteworthy, as this led to the absence of this type of enzyme in organisms like
Coccidioides immitis or H. capsulatum (Karlsson and Stenlid 2008), a clear indi-
cation for the irrelevance of this type of enzyme for the human pathogenic lifestyle.
It is also relevant the reduced number of chitinase genes present in fungi living as
yeast, independently of their phylogenetic relationship. With the exception of S.
pombe, having a strong contraction to only a single group B chitinase gene, these
yeast-like fungi contain typically between 2 and 3 chitinase genes, belonging
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always to clusters A and B. This reduced number of genes has made them very
suitable models for the study of the biological function of these enzymes (see
below).

3.3 The Biological Roles of Fungal Chitinases

As explained above, the problems with the establishment of a coherent classifica-
tion of fungal chitinases are translated into the identification of the biological
function of these proteins. Gene redundancy has made extremely difficult to create
fungal strains in which complete families of chitinases have been eliminated;
therefore, most of our knowledge is based on the characterisation of single and
double mutants complemented with more general studies of gene expression. In
order to approach this chapter, we will refer as study model to the filamentous fungi
N. crassa, which contains an intermediate number chitinase genes (Tzelepis et al.
2012) and to several yeast-like fungi, for what multiple gene deletion strains have
been extensively characterised. In general, chitinases are believed to participate in
at least 4 clear biological functions:

1. Nutrition. Chitinases are used for fungi to thrive in nature using chitinous
substrates. This role is achieved by the coordinated action of LPMOs, chitinases
and NAGA enzymes to produce single carbohydrates as carbon source (Langner
and Göhre 2016). This function correlates with the fact that the expression of
several chitinase genes is strongly regulated by the carbon source and induced
upon growth in chitinous-based media. In our referred model, N. crassa, the
expression of type A gh18-7 and gh18-5 and type C gh18-9 and gh18-8 chiti-
nases has been shown to be under nutritional control; these are expected to
perform nutritional functions, although individual mutants in the gh18-5 and
gh18-8 genes did not show apparent phenotypes (Tzelepis et al. 2012).
Moreover, N-acetyl hexosaminidases Nag1 and Nag2 are essential for growth in
chitin or chitobiose in T. atroviride (Brunner et al. 2003), and a clear indication
that full degradation of the chitinous material is required to become an effective
carbon source.

2. Cellular Antagonism. Fungal cells normally compete in nature in specific
environments, and cellular antagonism has been described between them.
Moreover, some fungi have also been described as mycoparasites. Considering
that most fungi contain high levels of chitinous material in their cell wall, it is
not surprising that chitinase production would affect interaction between fungal
cells. Accordingly, the N. crassa exo-chitinases gh18-7, gh18-3, gh18-4, gh18-6
and gh18-8 and endo-chitinases gh18-11 and chit-1 are induced during com-
petitive interaction with other fungi (Tzelepis et al. 2012). In other mycopara-
sitic fungi like T. atroviridae, the chitinases ech42 and ech37 are induced in the
presence of fungal cell walls, but the induction of ech42 also depends on the N-
acetyl hexosaminidase Nag1, linking this induction to the presence of free
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GlcNAc and thus linking the N-acetyl hexosaminidase activity to mycopara-
sitism (Brunner et al. 2003). In other fungi, the induction of these types of
enzymes depends on the biological origin of the cell walls used as inductor,
which in fact indicates a crosstalk between competitor fungi (Tzelepis et al.
2014). The nature of this interaction is not fully understood, but it probably
relies in the different nature of the fungal cell walls and in the capacity of the
different chitinases for their degradation and for the associated release of
molecular inductors. It is generally believed that class C exo-chitinases have an
important role in cellular antagonism and mycoparasitism because of their
similarity with K. lactis toxin, although their expression patterns are rather
complex and probably their action involved self and non-self cell wall degra-
dation (Tzelepis et al. 2014).

It should be noticed the close relationship between the cellular antagonism and
the cellular nutritional program; therefore, it is not surprising to find that the
expression of multiple chitinase enzymes potentially involved in fungal competition
is also regulated through carbon catabolite repression.

3. Autolysis. Autolysis is the natural process of self-digestion of aged hyphal
cultures. It has considerable interest from an application point of view as a way
of increasing product yields from fungal cells or as a mechanism of promoting
cell death during fungal infections. However, autolysis is also extremely
important in nature cycles as a way of releasing nutrients from death cells to
provide nutrients for other cells present in the same environment. In this respect,
autolysis would have an important nutritional impact affecting fungal growth
under nutritional depletion but also for fungal competition. Therefore, this
function is intimately linked to previous ones and the chitinase enzymes
involved in fungal autolysis are those described in previous epigraphs, whose
production is nutritionally regulated.

4. Morphogenesis. Fungal cells are able to grow based on a delicate balance
between the strength and plasticity of their cell walls; therefore, it has been
assumed for many years that a balance between synthesis and degradation of
structural polymers as chitin is required for fungal cell expansion (Riquelme
et al. 2018). Accordingly, it has been proposed that a discrete action of chiti-
nases at the hyphal tip favours fungal cell expansion and growth; similarly, yeast
cells need to separate after cytokinesis; therefore, chitinases are expected to act
at the latest step of the yeast cell cycle. While these models are conceptually
very sound, only the latter has been experimentally confirmed to show that
chitinases are required for cell separation in different cellular systems (Kuranda
and Robbins 1991). A direct involvement of chitinases in hyphal growth is still
under debate due to the absence of conclusive experimental evidence showing
that the absence of chitinases affects hyphal development.

An additional aspect of fungal morphogenesis is fungal sexual and asexual
development, where chitinases could exert also defined functions beyond indirect
effects through the nutritional program. In yeast, the role of some chitinases during
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sporulation has been established, but in filamentous fungi the evidence for a
function of some chitinases in spore development is scarce and therefore still under
debate.

In conclusion, while some roles of chitinases in fungal morphogenesis are well
established, these roles are not general and will require additional evidence. We will
discuss the different aspects of these roles in more detail in Sect. 3.4.

An important issue common to the biological functions associated with chiti-
nases is the accessibility of these enzymes to the different substrates, which would
dictate whether they could have deleterious or positive effects by participating in
self and non-self cell wall degradation (Gruber and Seidl-Seiboth 2012). It is
assumed that most chitinases are secreted either by conventional or unconventional
routes depending on the presence of signal peptides on their sequence. Secretion to
the periplasmic space will facilitate their interaction with its own cell wall and its
further participation in fungal cell wall morphogenesis (see below). This interaction
would be facilitated by additional modules that retain these enzymes in the
periplasmic space, like TM domains or GPI-anchor sequences. Moreover, some
chitinases had also CBMs that would favour their interaction with high molecular
weight polysaccharides (Fig. 6). However, most chitinases lack these domains and
the major pool of these enzymes are located in the culture supernatant, strongly
suggesting that they act from the outer side of the cell wall. How can chitinases
discriminate the own cell wall from those of potential fungal competitors? Although
the discrimination mechanisms are not fully understood, it was suggested that the
accessibility of chitin within the fungal cell wall could be a major determinant in
these processes (reviewed in Gow et al. 2017). In healthy hyphae, accessibility may
be limited by the protection conferred by the outermost face of the cell walls,
formed by distinct proteins. This hypothesis is supported by the fact that a chiti-
nolytic mixture from autolytic extracts of T. atroviride spores does not inhibit the
germination of its own spores but strongly affects spore germination of other fungi
like T. reesei, N. crassa and A. niger (Hartl et al. 2012). Accordingly, the induction
of chitinase production in fungi by cell wall extracts depends on the biological
origin of the cell walls (Tzelepis et al. 2014), which will be necessarily linked to the
capacity of its enzymes to degrade the foreign cell wall and produce the appro-
priated inductor molecules. The increased expression of these enzymes will favour
fungal competition, not only by killing competitor cells (cellular antagonism), but
also by degrading their cell walls, providing additional nutritional resources
(nutrition).

3.4 The Role of Chitinases in Fungal Morphogenesis: From
Yeasts to Filamentous Cells

As explained above, the number of chitinase-encoding genes is rather variable due
to a strong genetic expansion in some fungi, especially filamentous fungi.
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Therefore, the number of multiple mutants characterised is limited, which com-
promises the interpretation of the physiological data due to the possible redundancy
between similar genes. Accordingly, most of our knowledge about the role of
chitinases in fungal morphogenesis comes from studies of fungi with a limited
repertoire of chitinase genes, mostly yeasts, independent of their capacity to form
filaments under some conditions.

The first report linking chitinase activity to morphogenesis was obtained by
Cabib’s group, showing that S. cerevisiae yeast cells were lysed in acidic media in
the absence of the chitin synthase CHS1, a lysis that was prevented by the chemical
inhibition of the chitinase activity with allosamidin (Cabib et al. 1989). Later it was
shown that deletion of the CTS1 gene encoding a class B endo-chitinase activity
prevents cell separation (Kuranda and Robbins 1991) and that ScChs1 synthase
activity counterbalances ScCts1 chitinase activity during cell separation, acting as a

Fig. 6 Structural diversity of GH18 chitinases in Neurospora crassa (a) and in several
yeast-like fungi (b). The domains present in each protein are indicated as well as the chitinase
class to what each protein belong (based on Karlsson and Stenlid 2008). All the proteins contain a
glycoside hydrolase family 18 catalytic domain (IPR001223) accompanied by different
localisation signals and/or CBM modules: CBM1 (IPR000254), CBM18 (IPR036861), CBM19
(IPR005089) or CBM50 (IPR036779). Ncgh18-6 and Ncgh18-8 also contain an Ecp2 effector
protein domain (IPR029226) near the C-terminus

156 C. Roncero and C. R. Vázquez de Aldana



repair activity (Cabib et al. 1992). In agreement with these results, a deleterious
effect of chitinase activity has also been shown in mutants defective in the synthesis
of the chitin ring (Gómez et al. 2009). Very similar results have been described for
the chitinase encoded by the CHT3 from C. albicans, including a functional
heterologous complementation (Dünkler et al. 2005). In U. maydis, a double
deletion cts1D cts2D also produced a cellular separation defect (Langner et al.
2015). Interestingly, S. cerevisiae and U. maydis contain a unique
endo-chitinase-encoding gene, but C. albicans contains three CHT1, CHT2 and
CHT3 although only CHT3 appears to encode a biological functional
endo-chitinase. Based on this evidence, it can be concluded that endo-chitinases
have an important morphogenetic role in yeasts. Their expression is cell cycle
regulated, and it is dependent on the Ace2 transcription factor, which promotes their
specific expression in daughter cells (Colman-Lerner et al. 2001; Kelly et al. 2004).
This localised expression promotes the specific secretion to the septum zone only
from the daughter side leading to a limited degradation of the cell wall, which
eventually produces cell separation without cell lysis (Ufano et al. 2004). In this
degradative effort, the action of chitinases is complemented by the action of specific
endo-glucanases as described above in this same chapter (2.2.2. Family GH81). The
mechanisms that direct this differential secretion as well that those involved in the
limited action of these enzymes are out of the scope of this review.

The class B chitinase group is one of the best conserved in GH18, and these
chitinases are present in most fungi in variable numbers; therefore, it has been
tempting to speculate with a general function of this type of enzymes along with
fungal kingdom. This would be consistent with the hyphal tip localisation of the
type B chitinase ChiA in A. nidulans (Yamazaki et al. 2008). Surprisingly, indi-
vidual mutants of different class B chitinases did not show apparent morphological
phenotypes. In N. crassa, Dgh18-10 and Dchi-1 mutants have normal morphology
but show delayed growth under different experimental conditions. While the effect
of the Dchi-1 mutation has been tentatively interpreted as a consequence of a
reduced cell wall plasticity at the hyphal tip, the effect of the absence of gh18-10 is
more difficult to interpret. The phenotype of this Dgh18-10 mutant has been
explained by a nutritional role of this chitinase, but also by a potential role of this
enzyme at the ER as a deglycosylating activity (Tzelepis et al. 2012). More
importantly, an A. fumigatus strain lacking the 5 class B endo-chitinases present in
this fungi has been constructed to show that, despite a significant reduction in
chitinase activity, its physiology is very similar to the control in the multiple aspects
tested (Alcazar-Fuoli et al. 2011). Additional individual mutants generated in other
filamentous fungi also lacked morphogenetic phenotypes. Moreover, a triple cts1D
cts2D cts3D mutant of U. maydis formed normal infective filaments (Langner et al.
2015) and the strictly filamentous fungi Ashbya gossypii lacks any
endo-chitinase-encoding gene (Dünkler et al. 2008). In this context, it is also rel-
evant that the addition of allosamidin, a potent inhibitor of chitinase activity, has no
effect on filamentous fungi but strongly affects the growth of yeast cells (Sakuda
et al. 2013). Altogether, the multiple evidences from several systems argue against
any role of endo-chitinases in the morphogenesis of the fungal hyphae, although
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this hypothesis can always be questioned by the potential functional redundancy
with other type of chitinases.

Fungal cells contain also a varied panoply of exo-chitinases belonging to classes
A and C that could have an impact on cell morphogenesis. Therefore, multiple
individual mutants have been constructed in order to characterise their phenotypes.
In general, it can be stated that none of the mutants obtained in different fungi
showed significant morphogenetic alterations, although the growth of some mutant
strains is affected, probably because of nutritional reasons. The strong genetic
redundancy between these classes of enzymes had been frequently invoked to
explain the absence of clear phenotypes; however, in yeast-like fungi, which
contain a single class A exo-chitinase, the deletion of these genes did not promote
either apparent phenotypes, arguing against a general role for this type of enzymes
in hyphal morphogenesis.

It should be noted, however, that some individual exo-chitinase mutants showed
some alterations in spore formation. The A. gossypii cts2D mutant produces spores
with aberrant cell walls, a defect that can be suppressed by the heterologous
expression of equivalent exo-chitinases from S. cerevisiae or C. albicans.
Moreover, a quadruple chitinase mutant in C. neoformans is defective in sexual
development but not in vegetative growth (Baker et al. 2009) and some individual
mutants of N. crassa also showed altered patterns of perithecial formation (Tzelepis
et al. 2012). However, the importance of nutrition in sporulation made extremely
difficult to discriminate between a direct defect of these mutants on cellular mor-
phogenesis or an indirect effect through nutritional signalling.

In conclusion, despite extensive efforts along the years, the role of chitinases in
fungal morphogenesis is unclear beyond yeast cells and their interest as potential
antifungal targets has diminished over the years.

3.5 The Far Side of Chitinases in Fungal Cells

We have centred until now on the role of chitinases in fungal biology, but it should
be noted that chitinases are ubiquitous in nature and are also produced by plants and
animal cells. In this case, foreign chitinases would degrade fungal cell walls
potentially acting as true antifungal agents. The mechanism involved in this anti-
fungal response is well studied in plant, and in general, plant chitinases do not act
directly lysing fungal cells but promoting limited degradation of chitin to produce
chitin-derived inductors that trigger strong cellular responses in plant cells
including Ca2+ spiking, ROS production, activation of the MAPK cascade,
up-regulation of defence gene expression, callose deposition and molecular flux via
plasmodesmata (Langner and Göhre 2016). Similarly, animal cells are also infected
by fungi and the recognition of these pathogens through chitin-derived molecules is
critical to trigger effective responses.
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4 Concluding Remarks

In these pages, we have highlighted the enormous repertoire of glycosyl hydrolases
in fungal cells. This large repertoire is the consequence of multiple gene expansion
processes and unveils the importance of these enzymes for the adaptive fitness of
the different fungal species to specific environments. The genetic expansion of the
different families has produced an important degree of genetic redundancy that had
made it difficult to establish the real importance of these enzymes in the physiology
of the fungi, and convincing data on the role of these enzymes on fungal mor-
phogenesis had been reported for yeast cells in most cases. Figure 7 is an attempt to
summarise the known functions of glucanases and chitinases described in this
review in the life cycle of yeast and fungi. The proposed functions are mainly based
on the phenotypes reported for mutants lacking a either a single gene or the whole
family of redundant genes. It is interesting to note that in both yeast and fungi, these
hydrolases are preferentially involved in cell separation (mother–daughter cells in
yeasts and conidium in fungi) rather than for plasticizing the cell wall, as it was
suggested in the past. Perhaps the high degree of redundancy, not only in the
number of genes belonging to a single a family, but also the redundant glycosylase
and transglycosylase activities present in the cells makes it difficult to find clear
phenotypes associated with cell wall softening. Another interesting difference
between yeast and fungi is that fungi contain a large number of hydrolases that are

Fig. 7 A general overview of the function of glucanases and chitinases in yeast and moulds
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secreted to catabolise complex polysaccharides for nutrition (which is not the case
for yeast). This expansion of the different chitinase families probably reflects the
general requirement of moulds for thriving in complex natural environments where
competence for nutrients is higher.

The importance of these enzymes goes beyond the limits of the cells, since the
wall of the fungal cells is the interface through which they interact with the envi-
ronment and a direct target for the host in fungal pathogenesis. Accordingly, the
production of glycosyl hydrolases from the host side favours the recognition of the
pathogen and the triggering of the appropriate cellular responses to control it.
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Abstract Glycosylphosphatidylinositol (GPI) anchored proteins are a class of
proteins attached to the extracellular leaflet of the plasma membrane via a
post-translational modification, the glycolipid anchor. GPI anchored proteins are
expressed in all eukaryotes, from fungi to plants and animals. They display very
diverse functions ranging from enzymatic activity, signaling, cell adhesion, cell wall
metabolism, and immune response. In this review, we investigated for the first time
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an exhaustive list of all the GPI anchored proteins present in the Aspergillus fumi-
gatus genome. An A. fumigatus mutant library of all the genes that encode in silico
identified GPI anchored proteins has been constructed and the phenotypic analysis of
all these mutants has been characterized including their growth, conidial viability or
morphology, adhesion and the ability to form biofilms. We showed the presence of
different fungal categories of GPI anchored proteins in the A. fumigatus genome
associated to their role in cell wall remodeling, adhesion, and biofilm formation.

1 Introduction

The fungal cell wall is composed of polysaccharides and glycoproteins. The main
central core of this cell wall is very similar in all fungal species but the nature of the
carbohydrates and the degree and type of bridges between polysaccharides vary
from one species to another. Synthases responsible for the biogeneration of linear
polysaccharides are transmembrane proteins acting alone or in protein complexes
(Latgé et al. 2017). The neosynthesized polysaccharides are extruded through the
plasma membrane via as yet, undefined mechanisms. They are modified in the
periplasmic space by remodeling enzymes. Many of the cell wall associated pro-
teins responsible for the remodeling of these polysaccharides are anchored to the
plasma membrane by a glycosylphosphatidylInositol (GPI) anchor and designed as
GPI anchored proteins.

The role of GPI anchored proteins has been previously investigated in
Saccharomyces cerevisiae and Candida albicans (Caro et al. 1997; Plaine et al.
2008). In silico analysis suggested that C. albicans possesses 115 putative GPI
anchored proteins, almost twice the number reported for S. cerevisiae. Moreover, it
has been shown previously that some of the GPI anchored proteins play a major
enzymatic role in cell wall morphogenesis like, for example, the elongation of b-(1–
3)-glucans in yeasts and molds (Popolo and Vai 1999; Mouyna et al. 2000a;
Gastebois et al. 2010a), whereas in yeast, it was also mentioned that these proteins
are covalently bound to the cell wall polysaccharide (Caro et al. 1997; Kapteyn
et al. 2000; Frieman et al. 2002). Herein, we describe our in silico analysis to
provide comprehensive role of the cohort of genes that encode GPI anchored
proteins in A. fumigatus genome. To aid our understanding of the role of these GPI
proteins in the construction of the cell wall, we have generated and characterized
null mutants for all of the genes we identified in this study.

2 Identification of putative GPI anchored proteins
in the A. fumigatus genome

The identification of putative GPI anchored proteins in the A. fumigatus genome
(AF293; http://fungi.ensembl.org/Aspergillusfumigatus/Info/Index) has been
undertaken using the prediction programs PredGPI (http://gpcr.biocomp.unibo.it/
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predgpi/proteome.htm) and big PI (http://mendel.imp.ac.at/sat/gpi/gpi_server.html)
(Eisenhaber et al. 2004). In total, 86 proteins have been identified and predicted as
being GPI anchored (see Table 1).

3 Comparative genomic analysis

By performing BLAST analysis (https://www.yeastgenome.org/blast-fungal and
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) with these proteins, we
were able to show that all had orthologues in a second A. fumigatus isolate A1163.
Orthologues of only 28 proteins (32.5%) were commons to the yeasts S. cerevisiae
and C. albicans and filamentous fungi and a further 38 proteins (44%) were
restricted to filamentous fungal species. Interestingly, 20 GPI anchored proteins
(23.5%) were found exclusively in the genomes of the Aspergilli (Table 1).

4 Functions of GPI anchored proteins

Of the GPI anchored proteins that we have identified, the role of 34 proteins has
been previously characterized either in A. fumigatus or in other fungi. In the fol-
lowing section, we describe their known roles.

(a) GPI anchored common to yeast and filamentous fungi acting on cell wall
morphogenesis

Among the GPI anchored proteins previously described, several enzymes, GEL,
BGT2, DFG, SUN, and CRH, have been well studied and shown to have functions
associated with remodeling cell wall polysaccharides. The GPI anchors on these
proteins result in them being co-localized with other cell membrane proteins that
have direct roles in cell wall biogenesis and hence allow them to modify neosyn-
thesized polysaccharides. The most extensively studied of these enzymes belong to
the GEL family (GH72 in the CaZy database http://www.cazy.org/ which describes
families of structurally related catalytic and carbohydrate-binding modules). Seven
members of this family are encoded in the A. fumigatus genome, whereas S.
cerevisiae (GAS) and C. albicans (PHR) have five members each (Rolli et al. 2011;
Popolo et al. 2017). GEL/GAS/PHR family enzymes are responsible for the elon-
gation of b-(1,3)-glucans, which is an essential activity given that deletion of GEL4
in A. fumigatus is lethal (Hartland et al. 1996; Mouyna et al. 2000a, b; Gastebois
et al. 2010a). It was recently shown that some members of this family have a dual
activity that allows them not only to elongate but also to branch the neo elongated
b-(1,3)-glucan (Aimanianda et al. 2017). This branching activity is only seen in
enzymes that have the carbohydrate-binding module, CBM43, and loss of this motif
abolishes b-(1,3)-glucan branching (Aimanianda et al. 2017).
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Table 1 List of predictive GPI anchored proteins

AFUB
number

AFUA.number Gene name
or function

Phenotype Fungi References

AFUB_018250 AFUA_2G01170 GEL1 § no Yeast and
Filamentous

Hartland et al.
(1996);
Mouyna et al.
(2000a, b)

AFUB_077400 AFUA_6G11390 GEL2 § Conidia, Growth,
S-D

Yeast and
Filamentous

Mouyna et al.
(2005)

AFUB_028470 AFUA_2G12850 GEL3 no phenotype Yeast and
Filamentous

Gastebois et al.
(2010a

AFUB_022370 AFUA_2G05340 GEL4 Growth, S-D Yeast and
Filamentous

Gastebois et al.
(2010a)

AFUB_084480 AFUA_8G02130 GEL5 no Yeast and
Filamentous

Gastebois et al.
(2010a)

AFUB_036000 AFUA_3G13200 GEL6 no Yeast and
Filamentous

Gastebois et al.
(2010a)

AFUB_078410 AFUA_6G12410 GEL7 no Yeast and
Filamentous

Gastebois et al.
(2010a)

AFUB_048180 AFUA_3G00270 BGT2 no Yeast and
Filamentous

Gastebois et al.
(2010b); Millet
et al. (2018)

AFUB_002130 AFUA_1G01730 DFG1 no Yeast and
Filamentous

Muszkieta
et al. (2019)

AFUB_017760 AFUA_2G00680 DFG2 no Yeast and
Filamentous

Muszkieta
et al. (2019)

AFUB_048110 AFUA_3G00340 DFG3 Growth, S-D Yeast and
Filamentous

Muszkieta
et al. (2019)

AFUB_047740 AFUA_3G00700 DFG4 no Yeast and
Filamentous

Muszkieta
et al. (2019)

AFUB_101170 AFUA_4G00620 DFG5 no Yeast and
Filamentous

Muszkieta
et al. (2019)

AFUB_100440 AFUA_4G02710 DFG7 no Yeast and
Filamentous

Muszkieta
et al. (2019)

AFUB_013430 AFUA_1G13940 SUN2 no Yeast and
Filamentous

Gastebois et al.
(2013)

AFUB_095070 AFUA_6G03230 CRH1 § no Yeast and
Filamentous

Fang et al.
(2019)

AFUB_020180 AFUA_2G03120 CRH2 § no Yeast and
Filamentous

Fang et al.
(2019)

AFUB_074470 AFUA_6G08510 CRH4 no Yeast and
Filamentous

Fang et al.
(2019)

AFUB_015530 AFUA_1G16190 CRH5 no Yeast and
Filamentous

Fang et al.
(2019)

AFUB_029980 AFUA_2G14360 ENG2 no Yeast and
Filamentous

Hartl et al.
(2011)

AFUB_034540 AFUA_3G14680 PBL3 no Yeast and
Filamentous

Shen et al.
(2004)

AFUB_052270 AFUA_5G03760 Chitinase
A1

no Yeast and
Filamentous

Alcazar-Fuoli
et al. (2011)

AFUB_063890 AFUA_4G06820 Ecm33 § Conidia,virulence Yeast and
Filamentous

Chabane et al.
(2006)

(continued)

170 M. Samalova et al.



Table 1 (continued)

AFUB
number

AFUA.number Gene name
or function

Phenotype Fungi References

AFUB_076480 AFUA_6G10430 CDA6 no Yeast and
Filamentous

Mouyna et al
(2020)

AFUB_092930 AFUA_6G05350 OPSB no Yeast and
Filamentous

AFUB_064130 AFUA_4G07040 CTSD no Yeast and
Filamentous

Vickers et al.
(2007)

AFUB_042000 AFUA_3G07050 no Yeast and
Filamentous

AFUB_056560 AFUA_5G09020 no Yeast and
Filamentous

AFUB_020300 AFUA_2G03230 AmylaseA no Filamentous
fungi***

AFUB_047500 AFUA_3G00900 Amylase conidia,
Growth,conidiation

Filamentous
fungi***

AFUB_000660 AFUA_6G14090 CFEMA no Filamentous
Fungi

Vaknin et al.
(2014)

AFUB_076620 AFUA_6G10580 CFEMB no Filamentous
Fungi

Vaknin et al.
(20201414)

AFUB_072620 AFUA_6G06690 CFEMC no Filamentous
Fungi

Vaknin et al.
(2014)

AFUB_057130 AFUA_5G09580 RODA # Conidia,virulence Filamentous
Fungi

Aimanianda
et al. (2009);
Valsecchi et al.
(2017a)

AFUB_016640 AFUA_1G17250 RODB # no Filamentous
Fungi

Valsecchi et al.
(2017a)

AFUB_042020 AFUA_3G07030 Glutaminase no Filamentous
Fungi

AFUB_081470 AFUA_8G06030 a(1-3)
glucanase

no Filamentous
Fungi

AFUB_097010 AFUA_6G00500 chitosanase no Filamentous
Fungi

AFUB_003980 AFUA_1G03570 PhoA § no Filamentous
Fungi

Bernard et al.
(2002)

AFUB_022180 AFUA_2G05150 AfMP2 Biofilm Filamentous
Fungi

Woo et al.
(2018)

AFUB_099880 AFUA_4G03240 AFMP1 no Filamentous
Fungi

Woo et al.
(2018)

AFUB_006180 AFUA_1G05790 Biofilm Filamentous
Fungi

AFUB_087030 AFUA_7G00450 Biofilm Filamentous
Fungi

AFUB_001030 AFUA_6G13710 no Filamentous
Fungi

AFUB_004040 AFUA_1G03630 no Filamentous
Fungi

AFUB_008960 AFUA_1G09510 no Filamentous
Fungi

(continued)
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Table 1 (continued)

AFUB
number

AFUA.number Gene name
or function

Phenotype Fungi References

AFUB_009040 AFUA_1G09590 no Filamentous
Fungi

AFUB_009100 AFUA_1G09650 no Filamentous
Fungi

AFUB_018780 AFUA_2G01710 no Filamentous
Fungi

AFUB_035550 AFUA_3G13640 no Filamentous
Fungi

AFUB_036090 AFUA_3G13110 no Filamentous
Fungi

AFUB_044890 AFUA_3G03370 no Filamentous
Fungi

AFUB_047260 AFUA_3G01150 no Filamentous
Fungi

AFUB_047510 AFUA_3G00880 no Filamentous
Fungi

AFUB_050450 AFUA_5G01920 no Filamentous
Fungi

AFUB_056330 AFUA_5G08800 no Filamentous
Fungi

AFUB_057570 AFUA_5G09960 no Filamentous
Fungi

AFUB_057610 AFUA_5G10010 no Filamentous
Fungi

AFUB_069330 AFUA_4G12370 no Filamentous
Fungi

AFUB_082130 AFUA_8G05410 no Filamentous
Fungi

AFUB_083170 AFUA_8G04370 no Filamentous
Fungi

AFUB_084140 AFUA_8G02450 no Filamentous
Fungi

AFUB_085740 AFUA_8G00830 no Filamentous
Fungi

AFUB_088990 AFUA_7G02440 no Filamentous
Fungi

AFUB_089500 AFUA_7G03970 no Filamentous
Fungi

AFUB_095500 AFUA_6G02800 no Filamentous
Fungi

AFUB_010650 AFUA_1G11220 Conidia, S-D Aspergillus

AFUB_066710 AFUA_4G09600 conidia,
conidiation

Aspergillus

AFUB_096850 AFUA_6G00620 Conidia Aspergillus

AFUB_099690 AFUA_4G03360 Conidia Aspergillus

AFUB_018220 AFUA_2G01140 Conidia Aspergillus
(continued)
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The GH17 family in A. fumigatus contains five members (BGT1–3, SCW4 and
SCW11); however, BGT2 is the only member of this family that is GPI anchored.
Bgt1 transfers the donor b-(1,3)-glucan on the non-reducing end of the chain
(Mouyna et al. 1998), whereas Bgt2 preferentially transfers within the b-(1,3)-
glucan chain (Gastebois et al. 2010b). No phenotype has been associated to the
deletion of BGT2 alone in A. fumigatus or its ortholog BGL2 in the yeast S.
cerevisiae (Cappellaro et al. 1998). However, Millet et al. (2018) and Sestak et al.
(2004) showed that in A. fumigatus and S. cerevisiae, the non-GPI-members of the

Table 1 (continued)

AFUB
number

AFUA.number Gene name
or function

Phenotype Fungi References

AFUB_040120 AFUA_3G08990 CSPA Conidia, adhesion Aspergillus Levdansly
et al. (2010);
Valsecchi et al.
(2017b)

AFUB_019530 AFUA_2G02440 no Aspergillus

AFUB_031860 AFUA_2G16180 no Aspergillus

AFUB_044000 AFUA_3G03960 no Aspergillus

AFUB_084580 AFUA_8G02030 no Aspergillus

AFUB_087170 AFUA_7G00580 no Aspergillus

AFUB_087560 AFUA_7G00970 no Aspergillus

AFUB_000740 AFUA_6G14010 no Aspergillus

AFUB_082630 AFUA_8G04860 no Aspergillus

AFUB_030420 AFUA_2G14780 no Aspergillus*

AFUB_037960 AFUA_3G11190 no Aspergillus*

AFUB_089000 AFUA_7G02460 no Aspergillus*

AFUB_016760 AFUA_1G17390 no Aspergillus*

AFUB_066570 AFUA_4G09450 no Aspergillus*

AFUB_084830 AFUA_8G01770 Conidia, Growth,
S-D

Aspergillus* Mouyna et al.
(2020) in
preparation

List of the putative GPI-anchored proteins identified by the two softwares in the A. fumigatus genome including
the corresponding AFUB and AFUA number (http://fungi.ensembl.org/Aspergillus_fumigatus/Info/Index), the
gene name when identified, the phenotype of the mutant and their presence in the other genomes. Yeast and
Filamentous: Proteins which are present in C. albicans, S. cerevisiae, A. fumigatus and others filamentous fungi;
Filamentous Fungi: proteins present in filamentous fungi and not in the yeast genome; Filamentous Fungi***:
these proteins are not present in the S. cerevisiae and C. albicans genome but they are present in the S. pombe
and C. neoformans genome. Aspergillus: proteins only present in Aspergillus species; Aspergillus*: proteins
only present in few species of Aspergillus like A. clavatus, A. lentulus, A. thermomutatus, and the A. turcosus
species; S-D: sensitivity to drugs. The GPI mutant library was screened for the growth on different media (Malt
or Minimal medium), or Minimal medium (MM) including calcofluor white (40mg/ml), or congo red (50mg/
ml) after 48h at 37°C, conidial morphology, conidial viability as described by (Millet et al. 2018), adhesion
(104 conidia were incubated at 37°C on MM medium + 0.01% tween 20 on plates TPP for 24h) as described by
Fontaine et al., (2010) and the ability to form biofilm on agar plates on MM medium after 22h of growth at 37°
as described by (Beauvais et al., 2007). NB: no=no phenotype; S-D: higher sensitivity to drugs; Conidia:
mutants which are affected in their conidia (shape, linear chains); Conidiation: mutants which are affected in
conidiation. # RODA and RODB predicted to be GPI in silico but proved biochemically to be non GPI. §

Proteins proved to be GPI biochemically

GPI Anchored Proteins in Aspergillus fumigatus … 173

http://fungi.ensembl.org/Aspergillus_fumigatus/Info/Index


GH17 family, especially Scw4, Scw11, and Bgt3 and Scw4, Scw10, and Scw11,
are important for cell wall integrity. The enzymatic activity of Scw4, Scw11, and
Bgt3 is still unknown but the analysis of the quintuple null mutant showed that
Scw4, Scw11, and Bgt3 have antagonistic and distinct functions to Bgt2 and Bgt1.

Recently, it has been shown in A. fumigatus that the DFG family (GH76 CaZy
family) is involved in the covalent binding of Galactomannan (GM) to the b-(1,3)-
glucan–chitin core of the cell wall. This family contains seven members in
A. fumigatus, all of which are GPI anchored proteins, except DFG6 (Muszkieta
et al. 2019). The single mutant Dfg3 is playing the major role in the association of
the GM to the glucan core. However, the phenotype defect was enhanced in the
septuple DFG deleted mutant, such as highly reduced growth with hyper-branched
hyphae and higher sensitivity to drugs, showing that Dfgs have additional activities
on structural properties of the cell wall (Muszkieta et al. 2019). In both, S. cere-
visiae and C. albicans, although single knockouts of DFG5 and DCW1 are viable, a
double knockout is synthetically lethal (Kitagaki et al. 2002; Spreghini et al. 2003).
Interestingly as yeasts do not have galactomannan in their cell wall, the biochemical
function of these remodeling enzymes remains to be discovered.

The SUN family in A. fumigatus (also known as the GH132 CaZy family)
comprises two members, SUN1 and SUN2 which is the only one predicted to be
GPI anchored in A. fumigatus. They are so called as they encode a SUN domain
originally identified in the yeast proteins SIM1, UTH1, NCA3, and SUN4. The SUN
domain is closely related, at the sequence level, to a b‐glucosidase of Candida
wickerhamii; however, the yeast proteins have no detectable b‐glucosidase activity.
The deletion of SUN2, which is most closely related to the uncharacterized protein
YMR244W in S. cerevisiae, did not induce any morphological alterations. In
contrast, the deletion of the SUN1 genes in yeasts and molds has been shown to
exhibit defects in septum closure (Hiller et al. 2007; Norice et al. 2007; Firon et al.
2007; Gastebois et al. 2013) However, the baker’s yeast SUN1 and their ortholog in
C. albicans SUN41/SUN42, which encodes an exo b-(1,3)-glucanase but are not a
GPI anchored protein, play a role in cell wall morphogenesis. Inactivation of SUN1
genes and orthologs leads to a defect in the separation of daughter cells from mother
cells, and simultaneous inactivation of SUN41 and SUN42 is lethal in the absence of
osmotic protection. Like for A. fumigatus, cell wall defects seen in this double
mutant are mainly localized in the region surrounding the septa in mother yeast
cells and subapical hyphal compartments. The role taken by each SUN protein
remains unknown as well as the role of the GPI anchor in the function of
A. fumigatus SUN2 in the cell.

The CRH (for Congo Red Hypersensitivity) GH16 CaZy family has been
associated to glucan/chitin linkage in yeast S. cerevisiae (Rodríguez-Peña et al.
2000; Cabib et al. 2008; Blanco et al. 2012; Arroyo et al. 2016). In A. fumigatus,
five members are present in the genome (four proteins being GPI anchored pro-
teins). The phenotype of the quintuple mutant is very weak and not associated to
congo red resistance. Congo red toxicity is pleiopropic with this molecule acting
not only on cell wall biosynthesis but also in oxido-reduction pathways. Moreover,
the biochemical function of the Crh proteins has not been demonstrated and there is

174 M. Samalova et al.



not a definite proof that these genes could be essential for the establishment of
chitin–glucan linkages (Fang et al. 2019).

Members of the SPS2 family (which are not assigned to a CaZy family) play an
essential role in the formation of the ascospore cell wall in S. cerevisiae (Coluccio
et al. 2004), whereas the ortholog in A. fumigatus, ECM33, is important for conidial
morphogenesis and virulence (Chabane et al. 2006). However, its enzymatic
function remains unknown.

Three GPI anchored proteins, CFEM (A-C), containing fungal-specific CFEM
domains (Common in Fungal Extracellular Membrane) are characterized by spaced
cysteine residues (Kulkarni et al. 2003). Most CFEM-containing cell wall proteins
studied to date have been shown to be involved in host-pathogen interactions and
virulence. In C. albicans, deletion of the three GPI anchored-CFEM-encoding
genes in the genome (Rbt5/Rbt51/Csa1) results in an increased sensitivity to cell
wall damaging agents and a reduced ability to form a biofilm (Pérez et al. 2006,
2011). In contrast, in A. fumigatus, (Vaknin et al. 2014) showed that these proteins,
even though their respective mutants display a higher sensitivity to congo red and
calcofluor white than their parental strain, did not play any role in cell wall mor-
phogenesis or virulence.

Finally, no phenotype has been associated to the endo b-(1,3)-glucanase ENG2
(Hartl et al. 2011) or the chitinase A1 (Alcazar-Fuoli et al. 2011) and the chitin
deacetylase CDA6 (Mouyna et al. 2020), which are the only GPI members in their
respective family. However, the sequential deletion of ENG2–5 belonging to the
GH16 family altogether with ENG1 (GH81) showed conidiogenesis defects, with
linear chains of conidia unable to separate while the germination rate was not
affected (Mouyna et al. 2016).

(b) GPI anchored proteins only found in filamentous fungi which are associated to
cell wall structures

In addition to the GPI anchored proteins common to yeast and filamentous fungi
which have been shown to be biochemically associated to cell wall construction,
other GPI anchored proteins identified in silico are present only in the cell wall of
filamentous fungi and are involved in adhesion and biofilm formation (Table 1).

The outer layer of the conidium is composed of melanin covered by a rodlet
layer that confers hydrophobic properties to A. fumigatus conidia. This rodlet layer
is exclusively composed of hydrophobins, which are low molecular weight proteins
rich in cysteins residues. This rodlet layer masks conidial recognition by the human
innate immune system (Aimanianda et al. 2009). Recently, (Valsecchi et al. 2017a)
showed that seven hydrophobins (RodA–RodG) are present in the genome of A.
fumigatus. RodA and RodB were identified as putative GPI anchored protein based
on our in silico analysis. However, two lines of evidence indicate that the proteins
are probably not GPI anchored: the predicted x cleavage site which is the amino
acid immediately upstream of the putative site of GPI anchor addition (the omega
site) is located between Cys-residues C7 and C8, which would disrupt a conserved
disulfide bridge that is important to stabilize the structure of the proteins; moreover,
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it has been shown that the C-terminus of RodA extracted from conidia corresponds
to that of the full-length protein (Pille et al. 2015; Valsecchi et al. 2017a).

It has been shown by Levdansky et al. (2010) that deletion of CSPA, a repeat
rich GPI anchored protein only found in Aspergillus sp., is involved in reduced
adhesion and increase speed of conidial germination. Moreover, Valsecchi et al.
(2017b) showed that conidia of the CSPA mutant tended to stay grouped together in
long chains and adhered also between themselves. This gene has been shown to be
regulated by the Myb1 transcription factor (Valsecchi et al. 2017b).

5 Investigating the role of newly identified GPI anchored
proteins in cell wall morphogenesis

Most of the previously analyzed GPI proteins were associated somehow to cell wall
construction and fungal morphogenesis. These results suggested that all GPI
anchored proteins may have essential functions in fungal growth some of them
being undefined and this was at the basis of the study of the GPI proteins in
A.fumigatus. In order to investigate exhaustively the role of the GPI anchored
proteins, an A. fumigatus mutant library of all the genes identified in silico were
constructed following the procedures outlined in Zhao et al. (2019) and Furukawa
et al. (2020) using the oligonucleotide primers described in Supplementary Table 1
and screened for growth, conidiation, and biofilm formation.

From the screening analysis, three categories of GPI anchored protein null
mutants were identified: proteins found in yeast and filamentous fungi, proteins
found exclusively in filamentous fungi, and proteins found exclusively in
Aspergillus species. Ten of the 57 new mutants (the previously published mutants
are not counted) showed a distinct phenotype from the parental strain including
conidial morphology, growth, sensitivity to congo red and calcofluor white,
adhesion or biofilm formation (Table 1).

(a) Proteins found in Yeast and filamentous fungi

28 proteins are present in yeast and filamentous fungi genome, 23 being already
described previously (see above) and 38 proteins are present exclusively in fila-
mentous fungi genome.

• Proteins with putative enzymatic functions

Secreted proteases have always attracted attention as potential mediators of fungal
invasion, conidophore development, or adhesion (Monod et al. 2002). We did not
observe any distinct growth phenotype after the deletion of the aspartic proteases
CTSD (AFUA_4G07040) (Vickers et al. 2007) and OPSB (AFUA_6G05350).
Phospholipases (Plbs) activity which can destabilize host membranes are also
considered to be virulence factors for pathogenic fungi like C. albicans (Leidich
et al. 1998). In A. fumigatus, the mutant resulting from the deletion of the
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phospholipase PLB3 (AFUA_3G14680) (Shen et al. 2004) is not affected.
Similarly, phosphatase plays a major role in the fungal life. In A. fumigatus, the acid
phosphatase PhoA (AFUA_1G03570) which is specific to filamentous fungi
(Bernard et al. 2002) are not directly associated to growth (data not shown).
Moreover, the two genes encoding a putative chitosanase and a putative a-(1–3)-
glucanase (respectively AFUA_6G00500 and AFUA_8G06030) which were pre-
dicted as GPI anchored proteins specific to filamentous fungi, do not play a role in
the cell wall remodeling in A. fumigatus since the corresponding deleted mutant
behaved like the parental strain (data not shown). However, non-GPI anchored
homologs of these proteins (three for chitosanases and eight for a-(1–3)-glucanases)
are present in the A. fumigatus genome and could be involved in compensatory
mechanisms after the deletion of the GPI gene of the family.

The GPI anchored protein encoded by AFUA_3G00900, is a putative amylase.
The null mutant exhibits a twofold decrease in conidiation, a slight reduction in
radial growth and increased resistance to congo red (data not shown). The protein
encoded by this gene belongs to the GH13 family. This CAZYme family is a large
family containing various hydrolyzing and transglycosylating enzymes, mostly
acting on a-(1,4)- or a-(1,6)-glycosidic linkages, which can be involved in starch
degradation or in the synthesis or modification of alpha-glucan in the fungal cell wall
(Morita et al. 2006; Yuan et al. 2008). In addition to AFUA_300900, four other
GH13 proteins are present in the A. fumigatus genome: AFUA_2G03230, another
GPI anchored protein specific to filamentous fungi (Table 1), AFUA_2G00710,
AFUA_4G10130, and AFUA_2G13460. In contrast to AFUA_3G00900, we saw no
phenotype associated with the deletion of AFUA_2G03230. The phylogenetic tree
of the GH13 family of A. fumigatus showed two distinct groups, the first group (with
AFUA_2G00710 AFUA_4G10130) associated to proteins involved in starch
degradation like AmyA and AmyB in A. niger (Korman et al. 1990) and the second
group (AFUA_3G00900, AFUA_2G03230 and AFUA_2G13460) associated to
proteins with transferase activities like AgtA and AgtB in A. niger and Aah3 in
S. pombe (Morita et al. 2006; van der Kaaij et al. 2007b; Yuan et al. 2008) (Fig. 1).
In A. niger, both enzymes showed transglycosylation activity on donor substrates
with alpha-(1,4)-glycosidic bonds and at least five anhydroglucose units. The
enzymes, designated AgtA and AgtB, produced new alpha-(1,4)-glycosidic bonds
(van der Kaaij et al. 2007b). In S. pombe, disruption of AAH3 encoding a GPI
anchored protein resulted in hypersensitivity toward cell wall-degrading enzymes
and an aberrant cell shape, indicating that normal cell wall biosynthesis was affected
(Morita et al. 2006). Disruption of AgtA in A. niger also affected cell wall stability.
The protein sequence of AFUA_3G00900 and AFUA_2G13460 is very closely
related to AgtA and AgtB of A. niger (between 50 and 60% of identity) and notably
the catalytic conserved domain characteristics of transferase activities of this GH13
families (van der Kaaij et al. 2007a) suggest they may be also transferases in
A. fumigatus.
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• Proteins with unknown function

Most of the proteins exclusively present in filamentous fungi genome display
unknown functions (25 on the 38 identified).

Three null mutants corresponding to the genes (AFUA_2G05150,
AFUA_7G00450, and AFUA_1G05790) showed a twofold reduced ability to form
biofilm (Fig. 2a). AFUA_2G05150 is annotated as the cell wall galactomanno-
protein Mp2. In contrast, the AFUA_4G03240 null mutant (also a GPI anchored
protein) annotated as the galactomannoprotein Mp1 did not show any difference in
biofilm formation in our study. Mp1 and Mp2 are homologous to Penicillium
marneffei Mp1, a cell surface antigenic cell wall mannoprotein and a virulence
factor (Cao et al. 1998; Woo et al. 2016). A. fumigatus Mp1 and Mp2 have been
shown to be also immunogenic (Yuen et al. 2001; Woo et al. 2002; Chong et al.
2004). We constructed the double mutant Dmp1/Dmp2 but we did not observe
additional decreases in biofilm formation or reduction in adhesion in comparison to
the single mutant Dmp2 (data not shown). Recently, (Woo et al. 2018) identified
two distantly others homologs in A. fumigatus, Mp3 and Mp4, containing also one
lipid-binding domain and showed that Mp4 was involved in virulence.

Group I

Group II

Fig. 1 Phylogeny of the GH13 family of A. fumigatus, AtgA-B and AmyA-B of A. niger and
aah3 of S. pombe. Sequence alignment and phylogenetic reconstructions have been done using
clustalW (https://www.genome.jp/tools-bin/clustalw). The tree was constructed using FastTree v2.
1.8 with default parameters
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(b) Proteins found exclusively in Aspergillus species

For the deletion of AFUA_2G01140, AFUA_4G03360, AFUA_6G00620, and
AFUA_1G11220 which encode proteins of unknown function, we observed that the
shape of 5% of the conidia were ovoids (an example is given in Fig. 2b). In the case

100µm

(a)

(b) (c)

(d)

Ku80 AFUA_7G00450 

Ku80 AFUA_8G01770

AFUA_4G09600

AFUA_6G00620

Fig. 2 Phenotype analysis of some GPI anchored protein mutants: a SEM of the
AFUA_1G05790 deletion mutant involved in biofilm formation compared to the parental strain
Ku80. b Light microscopy of the shape of conidia after deletion of AFUA_6G00620 gene (63x).
c Light microscopy of the linear chains of conidia after the deletion of AFUA_4G09600 gene.
d Growth on Malt medium of the AFUA_8G01770 deletion mutant after 48 h at 37 °C in
comparison to the parental strain
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of AFUA_1G11220, the deletion of this gene was also associated with a twofold
increase in congo red and calcofluor white sensitivity (data not shown). This
modification of the morphology of the conidia and of the sensitivity to cell wall
drugs suggests that the proteins encoded by these genes could be involved in the
construction of the conidial cell wall.

Deletion of AFUA_4G09600, a protein containing several repetitions of amino
acid motif GGPSGNDGGN and VKDAYTDDHSV also found only in Aspergillus
sps, is correlated to a threefold reduction in conidiation compared to the parental
strain (data not shown). We also observed linear chains of conidia in this mutant
(Fig. 2c). This phenotype is reminiscent of the CSPA null mutant phenotype
(Valsecchi et al. 2017b).

Six GPI proteins (AFUA_2G14780, AFUA_3G11190, AFUA_7G02460,
AFUA_1G17390, AFUA_4G09450, AFUA_8G01770) are only present in the
Aspergillus species close phylogenetically ofA. fumigatus (A. clavatus,A. lentulus,A.
thermomutatus, and A. turcosus (Table 1). No significant homology or domain has
been found with any known proteins. Only the deletion of AFUA_8G01700 showed a
distinct phenotype from the parental strain, reduced growth, higher sensitivity to drugs
and reduced adhesion (Mouyna et al. 2020, manuscript in preparation) (Fig. 2d).

6 Discussion and Conclusion

Even if we try to dress an exhaustive list of all the GPI anchored proteins present in
the A. fumigatus genome using different algorithms, some proteins could have been
wrongly identified as GPI proteins (RodA and RodB) or missed. For example, the
conidial surface protein CcpA has been shown to be GPI anchored (Voltersen et al.
2018) while it was not identified using the prediction softwares. Only few proteins
have been demonstrated biochemically to be GPI anchored proteins after cleavage
of the anchor by a phospholipase C releasing the protein in the Triton X-114
fraction and recognized by a cross-reacting determinant antibody. A proteomic
analysis identified biochemically Gel1 and Gel2, Crh1, Crh2, Ecm33, PhoA as GPI
anchored proteins (Bruneau et al. 2001). All of these proteins were identified in our
bioinformatics predictions.

The localization of GPI anchored proteins has been also controversial. In the
yeast S. cerevisiae, and Candida (Kapteyn et al. 2000; Frieman et al. 2002), it has
been demonstrated that many GPI proteins (called GPI anchored cell wall proteins
or GPI‐CWPs) arrive at the plasma membrane but are then liberated. A remnant of
the GPI anchor reacts with b1,6 glucan resulting in cross‐linking of the GPI‐CWP
into the cell wall (Van der Vaart et al. 1997) suggesting that there are two terminal
fates for GPI proteins—residence at the plasma membrane (GPI anchored plasma
membrane proteins or GPI‐PMPs) and residence at the cell wall (GPI‐CWPs) (Lu
et al. 1994). Moreover, based on in silico analysis of GPI anchored proteins in S.
cerevisiae, Caro et al. (1997) proposed that a signal of two basic amino acids in the
four amino acids upstream of the x site acts to retain the protein at the plasma
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membrane. In the absence of this retention signal, the proteins are mobilized to the
cell wall. Using fusions of the GPI signal sequences from S. cerevisiae to
alpha-galactosidase, (Hamada et al. 1998) found a good correlation between
presence or absence of the dibasic motif and partitioning of the fusion protein to the
plasma membrane or cell wall. Analysis of various point mutations in specific GPI
anchor signal sequences also supported the importance of the dibasic motif in GPI
anchored protein localization. In contrast, in A. fumigatus, the structural cell wall
composition did not reveal the presence of b(1–6)glucan (Fontaine et al. 2000).
Moreover, no proteins have been shown to be covalently attached to the cell wall
after their release from the membrane (Bernard et al. 2002). In addition, none of the
FLO, CWP or TIR family proteins identified in the S. cerevisiae genome (Caro
et al. 1997) and predicted to be associated to the cell wall, have been found in the A.
fumigatus genome.

The different categories of GPI anchored proteins found in A. fumigatus and their
function are summarized in Fig. 3. The first category of proteins is highly con-
served in all fungi (yeast as well as filamentous fungi) and is essential in cell wall
morphogenesis. Indeed, the structural core of the cell wall between yeasts and
molds is conserved. Most of them belong to multigenic families of proteins. Their
analysis showed that most of the time, one or two genes in a family are responsible
for the phenotype observed (Gastebois et al. 2010a; Millet et al. 2018; Muszkieta
et al. 2019). Accordingly, all proteins in the same family are unlikely to have a
shared function, which supports the redundancy of genes already observed in the
Aspergillus genome. In the second category, we identified and characterized pro-
teins present only in filamentous fungi, which are mostly involved in biofilm for-
mation, adhesion, and virulence process. However, 60% of the proteins belonging
to this category did not present any domain or identity with previously annotated

Fig. 3 Different fungal categories of GPI anchored proteins, which show an association between
their putative role (cell wall remodeling, adhesion, biofilm or virulence) and their category
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proteins or a distinct phenotype associated to their gene mutation. Finally, the third
category of proteins is only present in Aspergillus species, or even in few related
species of Aspergillus. These proteins seem to be mostly associated with the for-
mation of the conidial stage but again their function is unknown. This review
suggests that other non-GPI-bound transglycosidases are important for the
remodeling of cell wall construction and remain to be discovered.
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Abstract Fungi are opportunistic pathogens that infect immunocompromised
patients and are responsible for an estimated 1.5 million deaths every year. The
antifungal innate immune response is mediated through the recognition of
pathogen-associated molecular patterns (PAMPs) by the host’s pattern recognition
receptors (PRRs). PRRs are immune receptors that ensure the internalisation and
the killing of fungal pathogens. They also mount the inflammatory response, which
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contributes to initiate and polarise the adaptive response, controlled by lympho-
cytes. Both the innate and adaptive immune responses are required to control fungal
infections. The immune recognition of fungal pathogen primarily occurs at the
interface between the membrane of innate immune cells and the fungal cell wall,
which contains a number of PAMPs. This chapter will focus on describing the main
mammalian PRRs that have been shown to bind to PAMPs from the fungal cell wall
of the four main fungal pathogens: Candida albicans, Aspergillus fumigatus,
Cryptococcus neoformans and Pneumocystis jirovecii. We will describe these
receptors, their functions and ligands to provide the reader with an overview of how
the immune system recognises fungal pathogens and responds to them.

1 General Introduction

Fungi are ubiquitous microbes found in the soil, plants and the microbiota of
animals. These microorganisms are responsible for a broad range of infection types
in humans from benign superficial colonisation of the skin and mucosa to deadly
invasive infections. The main fungi responsible for profound infections are the
opportunistic pathogens Candida albicans, Aspergillus fumigatus, Cryptococcus
neoformans, and Pneumocystis jirovecii (Brown et al. 2012). The mortality rate of
these infections ranges from 20 to 95% despite the existence of antifungal drugs
(Brown et al. 2012). Invasive infections are often the result of an underlying
immunological disorder. Primary immune deficiencies (genetic disorders resulting
in a broad or narrow defect of the immune system) can predispose patients to a
more or less broad range of bacterial, viral, parasitic and/or fungal infections
(Lanternier et al. 2013). Immunodeficiencies can also be secondary to another
pathology (e.g. cancer, diabetes, AIDS) or to a medical treatment (corticosteroids,
chemotherapy, graft rejection prevention, etc.). Thus, fungal infections constitute a
major burden for public health as they affect a significant number of people and are
associated with a high mortality rate in patients with comorbidities (Brown et al.
2012). Understanding the antifungal immune response and how it is impacted by
comorbidities and their respective treatments are crucial to predict, prevent and treat
these infections.

In this chapter, we will focus on the immune recognition of fungal pathogen by
innate immune cells. The innate immune response is a critical step of antifungal
response in order to eliminate the pathogens and to initiate and polarise the CD4+ T
helper (Th) adaptive response. It is commonly accepted that Th1 and Th17 adaptive
immune responses are protective against fungal pathogens (Romani 2011). Th2
responses favour the production of antibodies, which only have a minor antifungal
effect while promoting the development of fungal allergic sensitisation (Romani
2011). Th2 responses have only shown to be protective during Pneumocystis
spp. infection (Myers et al. 2013). Finally, regulatory CD4+ T cells (Treg) act as a
double-edge sword since their immunosuppressive properties prevent an immune
response against commensal fungi of the microbiota but can also repress the normal

188 R. Hatinguais et al.



immune response during invasive infection (Romani 2011). The respective func-
tions of the different Th subsets will not be further discussed but have been recently
reviewed (Speakman et al. 2020).

2 Innate Immune Recognition

While T cells require the presentation of microbial antigens by Antigen-Presenting
Cells (APCs), cells involved in the innate immune response recognise pathogens
either directly or after opsonisation. Pathogen-Associated Molecular Patters
(PAMPs) constitute the molecular immunogenic signatures of pathogens, and they
are usually essential structural components absent from the host and are directly
recognised by the host cells through binding to cellular or soluble expressed Pattern
Recognition Receptors (PRRs) (Janeway 1989). Far from being completely separate
components, these different effectors collaborate tightly in order to provide fully
protective host immunity.

Soluble proteins such as collectins, pentraxins and proteins from the complement
system can function as opsonins to facilitate pathogen engulfment by phagocytes
and/or as direct fungicidal effectors through recruitment of the complement path-
way components (Wong and Aimanianda 2017). Even though some of these sol-
uble factors have been shown to bind to specific components of the fungal cell wall,
they will not be further discussed as this chapter will focus on cell membrane
expressed PRRs. The recognition of A. fumigatus conidia by the soluble PRRs has
been reviewed in (Wong and Aimanianda 2017). The functions of the complement
and collectins in antifungal immunity have been in reviewed (Speth et al. 2008;
Brummer and Stevens 2010).

Most cell types, including leukocytes, express at least one type of the cellular
PRRs. There are four main types of cellular PRRs: Toll-Like Receptors (TLRs),
C-type Lectin-like Receptors (CLRs), NOD-Like Receptors (NLRs) and
RIG-I-Like Receptors (RLRs) (Brubaker et al. 2015). NLRs have been shown to
have a major role in the antifungal response; however, their activation seems to be
due to the triggering of other PRRs rather than by direct recognition of the pathogen
(Gross et al. 2009) and will not be discussed here. Also not further mentioned in
this chapter are RLRs, required for immunity against C. albicans (Jaeger et al.
2015), although currently the only known ligand for these receptors is viral RNA
(Brubaker et al. 2015).

TLRs and CLRs have been extensively studied in the context of fungal infection.
In addition, other receptors such as integrins and scavenger receptors also function
as PRRs. While some PRRs exert a redundant function during fungal infection, an
efficient antifungal immunity requires the cooperation of PRRs. Collaborative
triggering of these receptors induces the activation of signalling cascades resulting
in engulfment of the pathogen by professional phagocytes, initiation of inflam-
mation and secretion of cytokines and chemokines required for activation and
polarisation of the adaptive response.
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3 Fungal Cell Wall

The fungal cell wall is an essential element of the fungus and, thanks to its dynamic
remodelling, provides protection against exogenous stresses. This armour consti-
tutes a major virulence factor against the host’s fungicidal capacity, allows the
formation of hyphae and ensures invasion through tissue barriers (Gow et al. 2017).
Therefore, the cell wall composition is directly affected by environmental condi-
tions (temperature, pH, nutrients, oxidants, etc.) and the fungal morphology.
Indeed, dimorphic fungi can have a fundamentally different cell wall composition,
as it is the case with A. fumigatus (see below). The biology and structure of the
fungal cell wall have been reviewed elsewhere (Erwig and Gow 2016; Gow et al.
2017) and will only be briefly presented here with regard to the four main fungal
pathogens.

The fungal cell wall can be divided into twomain structures: the inner and outer cell
walls. The inner cell wall is composed of chitin (polymers of N-acetylglucosamine) and
linear b-glucans (b-1,3-glucans with or without b-1,6-glucans branches) (Erwig and
Gow 2016). It is relatively well conserved among all fungi genera and is protected from
immune recognition by the outer cell wall. The composition of the outer cell wall is
more variable across different fungi, and it contains polysaccharides, proteins and in
some cases pigments.

In C. albicans, the outer cell wall contains proteins heavily decorated with
O-linked, N-linked and phosphorylated mannans, which prevent the immune
recognition of the inner cell wall components (Gantner et al. 2005). This layer is
thinner at the level of the bud scar resulting from the division of the yeast, rendering
PAMPs from the inner cell wall accessible for immune recognition. The fungal
morphology (yeast or hyphae) affects the type of proteins found in the outer cell
wall and also influences the structure of the inner wall. Yeasts contain a linear form
of b-glucan, whereas in hyphae this polysaccharide adopts a cyclic configuration,
which directly affects the immune recognition (Lowman et al. 2014).

The infecting form of the Aspergillus genus is the conidium, a spore released in
the air that enters the lungs during normal breathing (Kosmidis and Denning 2015).
Conidia are covered by a hydrophobic layer composed of immunologically inert
proteins from the hydrophobin family (Aimanianda et al. 2009). This so-called
rodlet layer covers a coat of pigments, melanins, whose exact nature depends on the
species: DOPA-melanin, dihydroxynaphthalene-melanin (DHN-melanin) and
pyomelanin (Smith and Casadevall 2019). DHN-melanin is the most abundant
pigment of the conidia surface of A. fumigatus (Smith and Casadevall 2019). When
conidia germinate, both the rodlet and the melanin layers are removed, uncovering
a-1,3-glucans and b-glucans (Latge et al. 2017). These carbohydrates are also
exposed at the surface of hyphae, although partially masked by galactosamino-
glycans and galactomannans from the outer cell wall (Erwig and Gow 2016).

The cell wall of Cryptococcus spp. is composed of chitin, b-glucans and
a-glucans (Erwig and Gow 2016), and DOPA-melanin, which is located within the
inner part of the cell wall (Smith and Casadevall 2019). Remarkably, the cell wall
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of Cryptococcus spp. is covered by a very thick layer of glucuronoxylomannans
(GXM) and galactoxylomannans (GalXMs) that constitute the core of these
pathogens’ capsule (Erwig and Gow 2016). The capsule also contains other sac-
charides (sialic acid and hyaluronic acid) and mannoproteins (Kwon-Chung et al.
2014). In vivo, C. neoformans can form Titan cells, up to 100 lm in size compared
to 5–7 lm for yeast cells (Erwig and Gow 2016). These large cells are too big to be
internalised by immune cells and contain more chitin and mannose than the yeast
form (Mukaremera et al. 2018). The precise effects of these changes in the cell wall
composition on immune response are still unclear but it has been proposed that the
increased amount of chitin in Titan cells promotes a Th2 adaptive response
(Wiesner et al. 2015; Mukaremera et al. 2018).

P. jirovecii exhibits a peculiar life cycle, reminiscent of some parasites, as it
occurs obligatory in the mammalian host and specifically within the lungs. The cell
cycle of this parasite is still not completely understood, and it is proposed that
mating of the trophic form (spore) produces an ascus (also called cyst) which will
undergo meiosis and release eight immature trophic forms (ascospores) (Skalski
et al. 2015). It is believed that the trophic form is also able to undergo binary
scission. Both the trophic forms and asci produce DOPA-melanin and contain high
levels of mannosylated glycoproteins, including glycoprotein A (GpA) (Icenhour
et al. 2003; Skalski et al. 2015). b-glucans are present in the inner cell wall of asci
but absent from the trophic form (Skalski et al. 2015). Chitin has been reported to
be produced by trophic forms and asci of rodent-infecting P. carinii (Walker et al.
1990), whether P. jirovecii is also able to produce this polymer is still unknown.

Hence, the composition of the fungal cell wall is diverse, even though some of
its constituents are widely shared across fungal genera (i.e. b-glucan, chitin). Many
of these components are actually PAMPs and constitute the cracks in the fungal
armour. Recognition of the fungal cell wall PAMPs by PRRs is a critical step in
antifungal immunity, activating the effectors of the innate immune response and
shaping the adaptive response.

4 Toll-like Receptors

The TLR family consists of 10 proteins in human and 12 in mouse, expressed in
many cell types including epithelial cells and innate immune cells (Kawai and
Akira 2010). TLRs recognise a wide range of bacterial, viral, fungal and parasitic
PAMPs and also have endogenous ligands through their typical leucine-rich repeat
domain (Kawai and Akira 2010). Binding to a ligand induces the dimerization of
the receptors and the initiation of an intracellular signalling cascade through their
Toll/IL-1 Receptor (TIR) domain. Although we will focus on TLRs that recognise
fungal cell wall PAMPs (TLR2, TLR4 and TLR9), it is notable that fungal nucleic
acids also constitute ligands for the intracellular receptors TLR3 and TLR9 that
respectively recognise RNA and DNA (Miyazato et al. 2009; Carvalho et al. 2012).
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4.1 Signalling Pathways of TLRs

Triggering of TLRs can activate two different main signalling cascades: the Myeloid
Differentiation factor 88 (MyD88) pathway and the TIR-domain-containing
adapter-inducing Interferon-b (TRIF) pathway (Fig. 1) (Kawai and Akira 2010).
The MyD88 pathway is induced by TLR2 and TLR4 from the plasma membrane,
whereas TLR9 is not expressed at the cell surface and activates MyD88 from the
endosome (Gay et al. 2014). For reasons which are still unclear, TLR4 is also able to
signal through TRIF from the endosome once it has been internalised.

Upon ligand binding and dimerization, TLRs intracellularly recruit Mal (Myd88
adapter-like, also known as TIRAP) and MyD88. This adaptor molecule activates
the IL-1 Receptor-Associated Kinases IRAK4 and IRAK1 that phosphorylate TNF
Receptor-Associated Factor 6 (TRAF6) (Gay et al. 2014). Phosphorylation of
TRAF6 allows the dissociation of this protein from the receptor and activation of
the TGF-Activated Kinase 1 (TAK1 complex) (Gay et al. 2014). Through its kinase
activity, TAK1 activates two different signalling cascades: the Nuclear Factor jB
(NFjB) and the Mitogen-Activated Protein Kinase (MAPK) pathways. Typically,
the canonical NFjB transcription factor comprises two subunits: RelA (p65) and
p50. Its activation is repressed by cytoplasmic protein chaperon Inhibitor of NFjB
(IjB) (Mitchell et al. 2016). TAK1 activates the IjB kinase (IKK) complex that
causes the phosphorylation and degradation of IjB. Released NFjB translocates
into the nucleus and induces the transcription of pro-inflammatory cytokines such
as TNFa, IL-6 and IL-12 (Mitchell et al. 2001).

TAK1 is a MAPK Kinase Kinase (MAPKKK), it phosphorylates MAPKKs,
which results in the activation of Erk, Jnk and p38 MAPKs (Kawai and Akira
2010). MAPKs contribute to the activation of transcription factor Activator
Protein-1 (AP-1), which induces transcription of pro-inflammatory cytokines and
enzymes involved in the production of Reactive Nitrogen Species (RNS) such as
inducible Nitric Oxide Synthase (iNOS) (Arthur and Ley 2013).

The TRIF pathway is independent from MyD88 but requires the adaptor protein
TRIF-Related Adaptator Molecule (TRAM) to be activated by TLRs (Kawai and
Akira 2010). Besides, the activation of NFjB, TRIF also interacts with
Interferon-Regulatory Factor (IRF) 3 and 7 that then induces the production of type
I interferons. Of note, TLR9-mediated activation of TRAF6 also activates IRF7
(Gay et al. 2014). The role of type I interferons in antifungal immunity is not
completely understood but several studies have shown a protective effect of these
cytokines during infection by C. albicans and C. neoformans (Biondo et al. 2008,
2011).
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Fig. 1 Signalling pathways triggered by TLR activation. At the plasma membrane, dimerization
of TLR2 with TLR1 or TLR6, homodimerization of TLR4, and TLR9 dimers in the endosome
activate the MyD88-dependent pathway resulting in TRAF6-mediated activation of TAK1. TAK1
induces the MAPK cascade by phosphorylating MAPKKs that activate in turn p38, Erk and Jnk.
This pathway results in the activation of transcription factors such as AP-1 that induces
transcription of genes coding for iNOS and pro-inflammatory cytokines. TAK1 also activates IKK,
which causes the degradation of chaperone IjB by phosphorylation and the subsequent release of
NFjB, which then translocates into the nucleus and is responsible for transcription of
pro-inflammatory cytokine-encoding genes. The TRIF pathway is induced by the recruitment of
TRAM to internalised TLR4. TRIF activates TRAF6 and TRAF3, which contribute to the
TAK1-mediated NFjB activation pathway and also activation of IRF3 and IRF7 that then induce
the transcription of type I interferons
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4.2 TLRs and Fungal Infections

The overall role of TLRs in antifungal immunity has been debated since their
discovery. For instance, several authors disagreed about the respective roles of
TLR2 and TLR4 during C. albicans systemic infections. A study eventually sug-
gested that the contribution of TLR4 to inflammation was dependent on the strain of
the pathogen studied (Netea et al. 2010). An explanation for this observation is the
strain-dependent relative proportions of the different cell wall components
(Cavalieri et al. 2017), which adds a layer of complexity in deciphering the role of
PRRs during fungal infections.

In addition, there are major differences in the functions of TLRs between human
and mice. While deficiency for MyD88 in mice is associated with increased sus-
ceptibility to a wide range of pathogens, including fungi (Bellocchio et al. 2004;
von Bernuth et al. 2008), patients with a deficiency for this protein (or IRAK4) are
not more susceptible to fungal infections (Picard et al. 2003; von Bernuth et al.
2008). On the other hand, single nucleotides polymorphisms (SNPs) in genes
encoding for TLRs have been associated with increased risk to develop some fungal
infections, reviewed in (Campos et al. 2019). The biological consequences of these
SNPs are not always understood, even though the effects on fungal infection sus-
ceptibility suggest an overall non-redundant role for TLRs in antifungal immunity.

4.2.1 TLR2

TLR2 forms heterodimerswith TLR1orTLR6 to transduce signals, it recognises fungal
pathogens mainly through binding of mannosylated PAMPs (Oliveira-Nascimento
et al. 2012). While the first fungal ligand of TLR2 identified was phosphomannan,
present at the cell wall surface of C. albicans yeasts (Jouault et al. 2003), this receptor
also recognises mannosylated cell wall components from other fungi. More recently,
chitin was identified as a ligand for TLR2 (Wagener et al. 2014; Fuchs et al. 2018).
Chitin requires a minimum of 6 N-acetylglucosamine moieties to induce a
pro-inflammatory response through TLR2-TLR1 dimers (Fuchs et al. 2018). There is
some controversy about TLR2 binding chitin, as Becker and colleagues could not
identify any specific interactionwith PRRs and only found immunoglobulins to interact
with this polymer (Becker et al. 2016).

TLR2 is a major receptor for anti-Candida immunity at the mucosal level. In
mice, TLR2 deficiency has been associated with increased susceptibility to
colonisation of the gastrointestinal (GI) (Prieto et al. 2016) and reproductive (Miro
et al. 2018) tracts, and animals exhibit a local excessive inflammation in response to
the pathogen (Miro et al. 2018). During systemic infection, TLR2 contributes to
IL-10 production by APCs, which favours the polarisation of Th cells into Treg
(Netea et al. 2004). Tregs regulate inflammation, and this might be the reason why
some authors have reported an increased resistance of TLR2-deficient mice com-
pared to wild-type (WT) animals (Bellocchio et al. 2004; Netea et al. 2010, 2004).
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A human polymorphism of TLR2 has been associated with recurrent vulvovaginal
candidiasis (RVVC) (Rosentul et al. 2014).

TLR2 recognises a-1,3-glucans from the cell wall of A. fumigatus
(Stephen-Victor et al. 2017) and the deletion of this receptor leads to increased
susceptibility to pulmonary infection in immunocompromised mice (Bellocchio
et al. 2004; Balloy et al. 2005). While the dimerization of TLR2 with either TLR1
or TLR6 does not have obvious consequences on intracellular signalling pathways
in vitro (Farhat et al. 2008), these receptors appear to be non-redundant in vivo
as it was shown that TLR6-deficient mice are more prone to airway
hyper-responsiveness during an A. fumigatus allergic sensitisation model (Moreira
et al. 2011). In humans, SNPs in either TLR1 or TLR6, but not in TLR2, are
associated with risks of invasive aspergillosis (Kesh et al. 2005).

The binding of TLR2 to purified GXMs from the capsule of C. neoformans
(Fonseca et al. 2010) requires collaboration with CD14 (Yauch et al. 2004).
Although the TLR signalling molecule MyD88 is required in mouse for protection
against C. neoformans, individual TLRs or CD14 knock-out mice are not as sus-
ceptible, showing receptor collaboration is necessary for full immunity (Yauch et al.
2004).

The role of TLR2 in anti-Pneumocystis immune response is not well understood
yet. Mice studies using P. murina, the species responsible for mouse infection,
showed that this pathogen is able to activate TLR2 but the ligand is unknown
(Zhang et al. 2006). Deficiency in TLR2 increases the susceptibility to P. murina
(Wang et al. 2008). However, only alveolar macrophages but not epithelial cells
appear to require TLR2 to mount an inflammatory response (Zhang et al. 2006;
Bello-Irizarry et al. 2012).

4.2.2 TLR4

TLR4 collaborates with CD14 to bind O-linked mannans and mannosylated pro-
teins from C. albicans cell wall but the precise biologically active structure of these
PAMPs is still unknown (Tada et al. 2002; Netea et al. 2006; Pietrella et al. 2006).
In vitro, the inflammatory response mounted by murine macrophages and human
monocytes against C. albicans yeasts requires TLR4, while this receptor appears to
play only a minor role against hyphal forms (Tada et al. 2002; van der Graaf et al.
2005). The role of TLR4 is not only affected by the fungal strain used (Netea et al.
2010) but also depends on the host cell type studied: TLR4 deficiency partially
impairs the macrophage anti-C. albicans reponse, whereas it does affect neu-
trophils. To date, there is no human polymorphism of TLR4 associated with
increased susceptibility to candidiasis (Rosentul et al. 2014).

TLR4 recognises the mannans from A. fumigatus conidia and swollen conidia but
its ligand is thought to be masked at the surface of hyphae (Mambula et al. 2002;
Netea et al. 2003). TLR4 is required to ensure protection in immunosuppressed mice
(Bellocchio et al. 2004), although it is dispensable in immunocompetent mice
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(Dubourdeau et al. 2006). Several SNPs of this receptor have been associated with
increased susceptibility to invasive aspergillosis in patients following allogenic
hematopoietic-stem cell transplantation regardless of whether the mutation was
carried by the donor or the recipient (Bochud et al. 2008; Koldehoff et al. 2013).

TLR4 is activated by GXMs from the capsule of C. neoformans (Shoham et al.
2001; Monari et al. 2005). Yet, GXMs do not induce the secretion of
pro-inflammatory cytokines, even though NFjB translocates into the nucleus
(Shoham et al. 2001). The role of TLR4 during cryptococcal infection seems to be
only minor in mouse models (Yauch et al. 2004; Nakamura et al. 2006).

There is no known Pneumocystis spp. ligand for TLR4. The reports regarding
the function of TLR4 on the response of alveolar macrophages towards P. murina
in vitro are contradictory (Ding et al. 2005; Zhang et al. 2006), and it does not affect
the response of alveolar epithelial cells (Bello-Irizarry et al. 2012). During infection
by P. murina, the absence of TLR4 only has a minor effect on inflammation and
does not affect the fungal burden (Ding et al. 2005).

4.2.3 TLR9

TLR9 is an intracellular receptor that can be trafficked to the phagosome where it
recognises its ligand(s). In addition to recognising fungal DNA (Miyazato et al.
2009), TLR9 recognises chitin (Wagener et al. 2014). Internalisation of chitin by
the mannose receptor (MR) allows the binding of this PAMP to TLR9, which then
induces IL-10 secretion (Wagener et al. 2014). It has been proposed that the effects
of chitin on the inflammatory response depend on the size and the concentration of
this polysaccharide. Low concentrations of chitin and chitin particles of small size
(less than 40 lm) induce IL-10 through TLR9 and the MR (Da Silva et al. 2009;
Wagener et al. 2014). In contrast, high concentrations of chitin and chitin particles
of intermediate size (40–70 lm) mainly induce the pro-inflammatory cytokine
TNFa in a TLR2- and Dectin-1-dependent manner (Da Silva et al. 2009; Wagener
et al. 2014).

TLR9 negatively regulates pro-inflammatory cytokine secretion by murine
macrophages and human blood leukocytes in response to C. albicans (van de
Veerdonk et al. 2009; Kasperkovitz et al. 2011), and it also decreases their
fungicidal abilities (Kasperkovitz et al. 2011). In vivo, TLR9 seems to be redundant
as the deletion of this receptor does not increase the susceptibility to systemic
candidiasis (van de Veerdonk et al. 2009). On the contrary, some authors have
reported enhanced control of infection by TLR9-deficient animals compared to the
WT (Bellocchio et al. 2004).

TLR9 is a major PRR for anti-A. fumigatus immune response. The phagocytosis
of A. fumigatus conidia induces the activation of TLR9, which contributes to
activate the Nuclear Factor of Activated T cells (NFAT) (Herbst et al. 2015). NFAT
induces the production of pro-inflammatory cytokines and chemokines required for
neutrophils recruitment in the lungs (Herbst et al. 2015). TLR9 exerts a protective
effect against invasive aspergillosis in immunocompromised mice but favours the
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development of fungal sensitisation (Ramaprakash et al. 2009). In human, this
receptor also protects against invasive infection and TLR9 SNPs have been asso-
ciated with higher susceptibility to fungal allergic conditions (Carvalho et al. 2008;
Overton et al. 2017).

TLR9 is involved in mounting the inflammatory response against C. neofor-
mans, activation of this PRR induces IL-12 and induces the recruitment of
leukocytes in the lungs (Nakamura et al. 2008; Wang et al. 2011, Qiu et al. 2012).
TLR9-deficient mice are more susceptible to infection than WT counterparts
(Nakamura et al. 2008; Wang et al. 2011) but the role of this receptor in humans is
unexplored. TLR9 has not been studied in the context of P. jirovecii infection.

5 C-Type Lectins-like Receptors (CLRs)

Proteins containing a C-Type Lectin-like Domain (CTLD) constitute a superfamily
of transmembrane or secreted glycoproteins, divided into 17 groups (grouped from
I to XVII) (Zelensky and Gready 2005). The CTLD has a conserved structure and is
responsible for binding ligand(s). To be noted, in addition to the participation in the
antifungal immune response, some CLRs can bind ligands from bacteria, viruses,
parasites as well as self-ligands or Damage-Associated Molecular Patterns
(DAMPs) from the mammalian host and exert physiological or pathological roles
(Brown et al. 2018).

The transmembrane expressed CLRs involved in antifungal immunity belong
to three different groups of CTLD-containing proteins. The MR is a type
I-transmembrane protein that belongs to group VI, while CLRs from the groups II
(DC-SIGN, MCL, Dectin-2, Mincle, Langerin, CD23) and V (Dectin-1, MelLec)
are type II-transmembrane receptors (Zelensky and Gready 2005).

5.1 Signalling Through the CLRs

CLRs primarily signal through two main pathways: the spleen tyrosine kinase
pathway (Syk) and the Ras-Raf pathway. Upon binding of their respective ligands,
Dectin-1, Dectin-2, MCL, Mincle, CD23 and MR recruit Syk either directly or after
coupling with Fc receptor c chain (FcRc) (Sancho and Reis e Sousa 2012). Two
CLRs are known for activating the Ras-Raf pathway: DC-SIGN and Dectin-1. The
signalling cascades induced by MelLec and Langerin are not known.

5.1.1 Syk pathway

Activation of Syk by Dectin-1, Dectin-2, MCL, Mincle, CD23 and MR leads to the
activation of several transcription factors such as NFjB, AP-1 and NFAT (Fig. 2)
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Fig. 2 Signalling pathways triggered by CLR activation in a DC. CLRs associate with Syk,
binding to the hemITAM of Dectin-1 or through their association with FcRc (complexed with
Dectin-2, Mincle, MR or MCL). Syk phosphorylates a wide range of targets, including PI3K that
induces Akt-mediated NADPH oxidase-mediated ROS production. Syk-mediated activation of
PLCc induces the production of DAG and IP3 through the degradation of PIP2. IP3 induces the
release of calcium from the endoplasmic reticulum, which activates calcineurin and results in
translocation of transcription factor NFAT, responsible for the production of IL-2. Activation for
PKCd by Syk induces the NADPH oxidase-mediated ROS production and the activation of AP-1
through the MAPK pathway. Syk activates Vav and PKCd, that induce the formation of the
CARD9-Bcl10-MALT1 (CBM) complex Dectin-1 induces activation of both RelA and c-Rel
canonical NFjB (red arrows), while Dectin-2 only activates c-Rel through MALT1 (blue arrow),
which is responsible for the induction of the transcription of Th17-polarising cytokines IL-1b and
IL23. Dectin-1 also induces the activation of NIK which activates the non-canonical NFjB RelB,
which limits the action of the canonical NFjB. The CBM complex also induces the translocation
of IRF5 into the nucleus, which induces the transcription of type I interferon. CBLB regulates the
activation of the Syk pathway by targeting Dectin-1, Dectin-2 and Syk to the proteasome for
degradation. DC-SIGN and Dectin-1 are able to trigger the Ras-Raf1 pathway that results in
post-translational modifications of RelA and inhibition of RelB. Acetylation of RelA increases the
production of IL-10, IL-12 and IL-23
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(Rogers et al. 2005; Sato et al. 2006; Strasser et al. 2012). Dectin-2, MCL, Mincle,
MR and CD23 are associated with FcRc at the cell membrane (Robinson et al.
2009; Kerscher et al. 2016; Rajaram et al. 2017; Guo et al. 2018). The binding of
their respective ligands by these CLRs induces the phosphorylation of an amino
acid consensus sequence—called Immunereceptor Tyrosine-based Activation Motif
(ITAM)—located in the cytoplasmic tail of FcRc and that is responsible for Syk
recruitment and activation (Sancho and Reis e Sousa 2012). In contrast, Dectin-1
does not require FcRc: this receptor possesses an incomplete ITAM motif
(hemITAM) in its cytoplasmic tail that is able to recruit Syk in a SH2-dependent
manner (Rogers et al. 2005; Deng et al. 2015). The activation of Syk by Dectin-1
involves the clustering of this receptor at the point of contact with the pathogen,
which is termed the phagocytic synapse (Goodridge et al. 2011).

Through phosphorylation of Vav proteins and Protein Kinase Cd (PKCd), Syk
induces the formation of the CBM (CARD9-Bcl10-MALT1) complex (Gross et al.
2006; Lanternier et al. 2013; Roth et al. 2016). The CBM complex activates IRF5,
which mediates the transcription of type I interferons (del Fresno et al. 2013).
The CBM also activates the canonical NFjB family members RelA and c-Rel
(Gringhuis et al. 2009; Gringhuis et al. 2011). NFjB then translocates to the
nucleus and induces high-level transcription of Th1- and Th17-polarising cytoki-
nes: IL-12, and IL-1b and IL-23, respectively (Gringhuis et al. 2009; 2011).
The CBM complex also activates the NFjB-inducing kinase (NIK), which activates
the non-canonical NFjB RelB that represses the activity of canonical NFjB and
induces the transcription of Treg-attracting chemokines (Gringhuis et al. 2011).

PKCd also activates the NADPH oxidase and thus induces Reactive Oxygen
Species (ROS) generation in macrophages and neutrophils (Li et al. 2016). ROS
production and fungal killing by neutrophils require PKCd activation (Li et al.
2016), while in monocytes the NADPH oxidase is also activated by another
Syk-mediated pathway involving the Phosphatidylinositol-3 Kinase (PI3K) and Akt
(Shah et al. 2009; Camilli et al. 2018). Even though PKCd also contributes to ROS
production in macrophages, fungal killing depends on the activation of CARD9 and
is not affected by the absence of PKCd, suggesting that macrophages mostly rely on
non-oxidative mechanisms to clear fungi (Li et al. 2016).

Syk also activates the Phospholipase Cc (PLCc), which produces inositol
triphosphate (IP3) and diacylglycerol (DAG) from phosphoinositide-bisphosphate
(PIP2) (Lowell 2011). PLCc is required to induce the MAPK pathway (Tassi et al.
2009; Xu et al. 2009), a known result of DAG production (Lowell 2011). On the
other hand, IP3 is responsible for the release of calcium from intracellular stocks in
the endoplasmic reticulum, which then activates calcineurin that subsequently
activates NFAT (Lowell 2011). This transcription factor is involved in the tran-
scription of IL-2, required for T cell activation and proliferation. The major role of
this signalling pathway was further demonstrated by showing that PLCc-deficient
DCs were unable to activate T cells in vitro (Tassi et al. 2009).

The Syk pathway exerts a self-regulating control in time through the activation
of ubiquitin ligase Casitas B Lymphoma B (CBLB). The activation of CBLB
induces the ubiquitinylation of Dectin-1, Dectin-2 and Syk, resulting in the
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degradation of these proteins in the proteasome and thus reducing the antifungal
action of macrophages and DCs but not neutrophils (Wirnsberger et al. 2016; Xiao
et al. 2016). Inhibition of CBLB in mice has been shown to protect animals infected
with a lethal inoculum of C. albicans (Wirnsberger et al. 2016), highlighting the
major role of this regulation pathway and its potential therapeutic applications.

5.1.2 Ras-Raf Pathway

Dectin-1 and DC-SIGN are both able to activate the small guanosine triphosphatase
(GTPase) Ras (Gringhuis et al. 2007; Gringhuis et al. 2009) that in turn activates
Raf-1 (den Dunnen et al. 2009). Raf-1 modulates the immune response by inducing
post-translational modification (phosphorylation and acetylation) of the NFjB RelA
subunit (den Dunnen et al. 2009). Acetylation of NFjB promotes the transcription
of IL-10 (Gringhuis et al. 2007). On the other hand, phosphorylation of RelA
represses the nuclear translocation of RelB into the nucleus (Gringhuis et al. 2009).
Thus, by counterbalancing the Syk-dependent activation of the non-canonical
NFjB, the Ras-Raf-1 pathway contributes to amplify the synthesis of IL-1b, IL-12
and IL-23 that are required for Th1 and Th17 polarisation (Gringhuis et al. 2009).

5.2 CLRs and Fungal Infections

CLRs orchestrate the antifungal immune response via collaboration with other
PRRs, such as TLRs. For instance, stimulation with only Dectin-1 specific ligands
does not induce potent inflammation (Gantner et al. 2003), except in the case of
binding to a non-phagocytosed ligand (Hernanz-Falcon et al. 2009). Yet, when a
TLR is simultaneously triggered, Dectin-1-mediated activation of Syk induces the
degradation of IjB, which potentiates the signal initiated by TLRs and results in a
synergic effect on the secretion of pro-inflammatory cytokines (Gantner et al. 2003;
Dennehy et al. 2008). CLRs also collaborate with each other to mount the
inflammatory response to fungal pathogens (Thompson et al. 2019) and to polarise
the adaptive immune response. Through activation of all three members of the
NFjB family (RelA, RelB and c-Rel), Dectin-1 promotes both the Th1 and Th17
polarisation of the adaptive immune response and exerts a broad antifungal effect
(Gringhuis et al. 2009, 2011). In contrast, Dectin-2 has been reported to favour the
differentiation of Th17 rather than Th1 (Robinson et al. 2009). Secretion of
Th17-polarising cytokines IL-1b and IL-23 following CLR activation seems to be
completely dependent on c-Rel, which is selectively activated by Dectin-2 for
unclear reasons (Gringhuis et al. 2011).

The major function of the CLR family in the antifungal immunity lies in the
activation of CARD9, whose deficiency predisposes patients to fungal but not to
other types of infection (Drummond et al. 2016). SNPs in the gene encoding for this
protein impair fungal killing by granulocytes and the polarisation of Th17 cells
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(Drewniak et al. 2013). In mouse, CARD9 deficiency increases the susceptibility to
chronic mucocutaneous candidiasis (CMC) and to central nervous system
(CNS) infection by C. albicans and by A. fumigatus (Glocker et al. 2009; Jhingran
et al. 2012; Drummond et al. 2019). In the brain, deficiency for CARD9 prevents
neutrophil recruitment and fungal clearance (Drummond et al. 2019). Interestingly,
mice deficient for a single CLR did not recapitulate this phenotype, suggesting a
redundant role for these receptors and stressing the importance of PRRs collabo-
ration (Drummond et al. 2019). CARD9 SNPs in patients predispose them to CNS
infection by C. albicans and mucocutaneous infections by a range of fungal
pathogens, including Candida spp. (Drummond et al. 2016). The other members of
the CBM complex, Bcl10 and MALT1, have also been associated with increased
risk of CMC in human but not in mouse (Drummond et al. 2016); however, these
deficiencies are less specific to antifungal immunity as they also predispose humans
to infection by viral and bacterial pathogens (Drummond et al. 2016).

5.2.1 Dectin-1 (CLEC7A)

Dectin-1 binds b-1,3-glucans and b-1,6-glucans (Brown 2006; Brown and Gordon
2001) and is predominantly expressed by leukocytes, including some subtypes of
T cells (Brown 2006). Binding of Dectin-1 to particulate b-glucan induces a
rearrangement of the cell membrane and the clustering of the receptor at the
phagocytic synapse and internalisation of the particle (Goodridge et al. 2011).
Interestingly, the ability of Dectin-1 to engulf its ligand has a significant impact
on the cellular response: frustrated phagocytosis, the inability to internalise a par-
ticle due to its size or pharmacological inhibition, induces a more potent
Dectin-1-mediated inflammation than smaller sized, phagocytosable particles
(Hernanz-Falcon et al. 2009). It is proposed that this phenomenon is due to the lack
of Dectin-1 signal attenuation by internalisation of this receptor (Hernanz-Falcon
et al. 2009). As already mentioned above, when the ligand is phagocytosable,
triggering of Dectin-1 alone does not induce secretion of pro-inflammatory
cytokines, yet costimulation with a TLR agonist potentiates the activation of NFjB
and the production of cytokines (Brown et al. 2003; Gantner et al. 2003).

Another phenomenon regulated by the pathogen size is the release of neutrophil
extracellular traps (NETs) (Branzk et al. 2014; Papayannopoulos 2018). Dectin-1
mediated uptake of the pathogen induces the delivery of neutrophil elastase into the
phagolysosome (Branzk et al. 2014). When neutrophils encounter hyphae too large
to be engulfed, elastase is delivered into the nucleus instead and induces the release
of NETs (Branzk et al. 2014), which have been shown to contribute in vitro to the
killing of C. albicans but not of A. fumigatus (Urban et al. 2006; Gazendam et al.
2016).

After uptake of the pathogen by APCs, Dectin-1 controls the acidification and
the maturation of the phagosome (Mansour et al. 2013) and recruits MHC-II to
facilitate the presentation of fungal antigens to T cells by macrophages and DCs
(Ma et al. 2012).
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In addition of the protective effects of Dectin-1 activation on innate and adaptive
immunity, b-glucan-mediated triggering of Dectin-1 is able to imprint mononuclear
phagocytes in a metabolic and epigenetic manner, rendering them more responsive
to a secondary stimulation (Ifrim et al. 2013; Cheng et al. 2014; Saeed et al. 2014).
This phenomenon, termed trained immunity, is independent of the presence of
lymphocytes and has been shown to provide a long-term non-specific immunity
(Quintin et al. 2012). The benefits of trained immunity during fungal infection still
have to be demonstrated in human.

In C. albicans, b-glucans are exposed at the level of the bud scar on the yeast.
Hyphae are protected from Dectin-1 recognition in vitro due to the mannan layer
(Gantner et al. 2005) but b-glucans appear to be exposed in vivo a few days after
infection (Wheeler et al. 2008). As Dectin-1 induces a more potent inflammatory
response when its ligand is too large to be phagocytosed, it is appealing to suggest
that Dectin-1 response supports discrimination between yeast/conidia and larger
hyphal structures. Another factor that might be able to participate in the ability of
host cells to differentiate between yeasts and hyphae is their respective cell wall
composition. Indeed, b-glucans from C. albicans hyphae possess 2,3-linkages and
adopt a cyclic conformation. As a result, they are more potent inducers of
pro-inflammatory cytokines than branched linear b-glucans of C. albicans yeast
(Lowman et al. 2014). Thus, more studies are required to fully establish how yeasts
and hyphae are differentially recognised by the host. In vivo, Dectin-1 is required to
control systemic infection by C. albicans and the absence of this receptor leads to
decreased secretion of pro-inflammatory cytokines and consequently impaired
recruitment of leukocytes to infected tissues (Taylor et al. 2007). Importantly, while
the pathogen strain does not affect the role of Dectin-1 in vitro, it has been shown
that the importance of Dectin-1 in vivo is directly affected by the C. albicans strain
(Marakalala et al. 2013). Dectin-1 is a major PRR to control oral and genital
mucosal infection by C. albicans; it is also required to control the colonisation of
the GI tract after during systemic infection but not during gavage of animals (Taylor
et al. 2007; Vautier et al. 2012). Dectin-1 deficiency does not affect CD8+ cells but
impairs the activation of CD4+ T cells, which are required to control GI tract
infection (Drummond et al. 2016). Several SNPs in human CLEC7A have been
associated with increased risk of RVVC and oropharyngeal candidiasis (Campos
et al. 2019).

In A. fumigatus, exposure of b-glucan is stage-specific: this PAMP is masked on
the resting conidia but is uncovered when the spores start to swell and germinate
(Steele et al. 2005); it is also accessible on hyphae (Gersuk et al. 2006). Thus,
recognition of A. fumigatus spores by Dectin-1 occurs once b-glucan becomes
exposed by conidia swelling extracellularly or when in the phagosome
(Faro-Trindade et al. 2012). Dectin-1 is required in vivo to mount the inflammatory
response against A. fumigatus and to recruit neutrophils to prevent lungs coloni-
sation by the fungus (Werner et al. 2009). Several SNPs in the human gene
encoding for this receptor are associated with higher susceptibility to invasive
aspergillosis in patients undergoing chemotherapy or hematopoietic stem cell
transplantation (Sainz et al. 2012).
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Dectin-1 is thought to be involved in C. neoformans uptake in collaboration with
Dectin-2 (Lim et al. 2018). However, deficiency for Dectin-1 does not increase
mice susceptibility to infection by this fungus (Nakamura et al. 2007) and its role in
humans has not been explored.

Recognition of Pneumocystis spp. by Dectin-1 induces the internalisation and
killing in alveolar macrophages and induces the production of ROS (Steele et al.
2003; Saijo et al. 2007). However, Dectin-1 does not affect the secretion of TNFa
and IL-12 in response to Pneumocystis spp., instead the release of these cytokines
requires signalling through MyD88 and suggests involvement of TLRs (Saijo et al.
2007). Dectin-1 deficiency does not impair the clearance of P. carinii in mouse but
it delays the elimination of the fungus from the airways (Saijo et al. 2007).

5.2.2 MelLec (CLEC1A)

Melanin-sensing C-type lectin (MelLec) binds DHN-melanin that covers the spores
under the rodlet layer of A. fumigatus (Stappers et al. 2018). MelLec is not able to
bind to DOPA-melanin, produced by other fungal pathogens, including
Cryptococcus spp. (Stappers et al. 2018; Smith and Casadevall 2019). As of today,
the role of MelLec has only been studied in the context of A. fumigatus infection. In
mouse, MelLec has been shown to be expressed by endothelial cells in several
tissues and also by an epithelial cell subpopulation in the lungs and liver but not by
leukocytes (Stappers et al. 2018). Following challenge with A. fumigatus conidia,
MelLec is required for early leukocytes recruitment in the lungs of mice but its
signalling pathway is still unknown (Stappers et al. 2018). MelLec has been shown
to inhibit Th17 polarisation in a rat heart transplantation model (Thebault et al.
2009) but whether it can affect the adaptive immune response to fungi remains to be
determined.

In humans, this receptor is expressed by endothelial cells and leukocytes,
including monocytes, dendritic cells and granulocytes, but not by lymphocytes
(Sattler et al. 2012). A SNP in the human gene has been associated with higher risk
to develop invasive aspergillosis following hematopoietic stem cell transplantation
if the donor carries the mutation, independently of the allele carried by the recipient
(Stappers et al. 2018).

5.2.3 Dectin-2 (CLEC6A)

Dectin-2 recognises a-1,2-mannobiose structures (disaccharide constituted of 2
mannoses) present at the surface of the fungal cell wall (McGreal et al. 2006;
Feinberg et al. 2017). This receptor is constitutively expressed by monocytes,
dendritic cells and macrophages, but expression in neutrophils occurs only after
stimulation by pro-inflammatory cytokines (Taylor et al. 2014). A splicing variant
of Dectin-2, devoid of most the transmembrane and the intracellular domains
(isoform b), thus unable to induce the signalling cascade following triggering has
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been identified (Gavino et al. 2005). Interestingly, during the encounter between
macrophages and C. albicans there is a shift in expression of the full-length
Dectin-2 (isoform a) towards the spliced isoform b, which might constitute a
post-transcriptional mechanism to regulate the antifungal immune response (Munoz
et al. 2019).

This receptor is able to bind to C. albicans yeast and hyphae and requires
cooperation with FcRc to transduce signals (Sato et al. 2006; Saijo et al. 2010).
Several studies have reported a preferential binding to hyphae even though it is still
unclear whether this phenotype is due to a difference in the nature or the proportion
of ligand(s) (Sato et al. 2006; Robinson et al. 2009; Saijo et al. 2010). The role of
Dectin-2 seems to be quite minor during disseminated candidiasis as this CLR is
poorly involved in the internalisation and the killing of the yeast (Ifrim et al. 2016)
and does not improve mouse survival in the short term (Robinson et al. 2009; Ifrim
et al. 2016). However, when the infection is prolonged, Dectin-2 deficiency impairs
the clearance of the fungal burden in the kidneys and the survival of the animals
(Saijo et al. 2010; Ifrim et al. 2016). This phenotype might be explained by the
major role that Dectin-2 plays in polarising the T cell response towards Th17
response (Robinson et al. 2009; Saijo et al. 2010), yet there are no known Dectin-2
human polymorphisms associated with an increased susceptibility to candidiasis.

Dectin-2 has been shown to be involved in the anti-A. fumigatus immune
response; however, its ligand seems to be masked by the rodlet layer (Carrion Sde
et al. 2013). Thus, Dectin-2 might only be able to interact with A. fumigatus during
swelling and germination as the outer layers are lost (Sun et al. 2014; Loures et al.
2015). Activation of Dectin-2 contributes directly to the elimination of the fungus
by increasing the ability of cells to produce ROS (Taylor et al. 2014) and secrete
pro-inflammatory cytokines (Sun et al. 2014; Loures et al. 2015).

The exact component of C. neoformans recognised by Dectin-2 has not been
clearly identified and only C. neoformans lysate but not the whole yeast has been
reported to activate Dectin-2, suggesting that the ligand is masked by the capsule
(Nakamura et al. 2015). This hypothesis is supported by another study showing that
Dectin-2 is able to bind a strain of C. neoformans devoid of the capsule (McGreal
et al. 2006). Nevertheless, several authors have reported a role for Dectin-2 in the
internalisation of C. neoformans in collaboration with Dectin-1 (Walsh et al. 2017;
Lim et al. 2018). The Th17-polarising function of Dectin-2 was confirmed in vivo
as mice devoid for Dectin-2 exhibit an aberrant Th2 response when challenged with
C. neoformans, although they have similar clearance of fungus from the airways
(Nakamura et al. 2015). A human SNP of CLEC6A has been associated with
increased risk of pulmonary cryptococcosis (Hu et al. 2015).

It has been shown that Dectin-2 is able to bind GpA from the cell wall of
Pneumocystis spp. (Kottom et al. 2018, 2019). In vitro, deficiency for Dectin-2
impairs the inflammatory response mounted by alveolar macrophages incubated
with P. murina cell wall extract (Kottom et al. 2018). However, the absence of this
receptor appears not to affect the fungal clearance by mice (Kottom et al. 2018).
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5.2.4 MCL (CLEC4D, CLECSF8, Dectin-3)

The Macrophage C-type Lectin (MCL) is expressed by neutrophils, monocytes and
monocytes-derived macrophages and DCs (Graham et al. 2012; Kerscher et al.
2016). Some cell types, including alveolar macrophages, do not express MCL at
basal level but surface expression of this receptor is upregulated upon stimulation
with microbial components (Kerscher et al. 2016). Interestingly, MCL and Mincle,
another group II CLR, require each other and FcRc for surface expression in mouse
(Kerscher et al. 2016). However, in human, it appears that MCL is not required for
Mincle expression (Wevers et al. 2014).

MCL can bind a-mannans in the cell wall of C. albicans hyphae and does so
more efficiently as a heterodimer with Dectin-2 (Zhu et al. 2013). MCL-deficient
mice are less resistant to low-dose infection with C. albicans than WT animals (Zhu
et al. 2013). On the other hand, in the case of infection with a high-dose inoculum,
this receptor might only have a minor role (Graham et al. 2012). Thus, the in vivo
function of MCL is not fully resolved and its role in human antifungal response is
unexplored.

The role of MCL during cryptococcal infection also remains unclear as two
studies from the same group have successively obtained contradictory results on the
ability of this receptor to trigger uptake of the C. neoformans and anti-cryptococcal
activity by DCs (Hole et al. 2016; Campuzano et al. 2017). However, MCL defi-
ciency does not affect mice survival upon C. neoformans infection (Hole et al.
2016; Campuzano et al. 2017). MCL ligand on C. neoformans is not known, and
there is no data on the role of this receptor in anti-A. fumigatus or anti-P. jirovecii
immune response.

5.2.5 Mincle (CLEC4E, CLECSF9)

Macrophage-inducible C-type lectin (Mincle) is a CLR expressed by monocytes,
macrophages, DCs and neutrophils. This receptor requires FcRc and MCL to be
expressed at the cell surface, and its expression is upregulated when cells are
stimulated with microbial compounds (Kerscher et al. 2016).

Mincle binds C. albicans (Bugarcic et al. 2008) and participates in the uptake
and killing by murine macrophages (Haider et al. 2019). In mouse, Mincle
improves the clearance of C. albicans in the kidney but has no effect on the overall
mouse survival following infection (Wells et al. 2008; Thompson et al. 2019).
Mincle represses Dectin-1-dependent secretion of IL-2 and induction of Th1 cells
in vitro (Wevers et al. 2014). Nevertheless, Mincle deficiency does not affect the
mortality rate of mice in a systemic C. albicans infection model (Thompson et al.
2019). The role of Mincle in humans is not completely understood as one study
showed that Mincle does not bind to C. albicans and another suggested that Mincle
expression induces the phagocytosis and killing of this fungus by neutrophils but
not by monocytes (Vijayan et al. 2012). Thus, more studies are required to decipher
the full role of this receptor in candidiasis.
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Regarding the role of Mincle in aspergillosis, this receptor has only been studied
in a mouse model of fungal keratitis, an infection of the cornea that can result in
blindness (Yu et al. 2018). Mincle contributes towards the inflammatory response
against A. fumigatus in the cornea and impairment of this receptor worsens the
infection (Yu et al. 2018).

GpA recognition by Mincle allows the binding of Pneumocystis spp. by mac-
rophages (Kottom et al. 2017, 2019). In mouse, deficiency for Mincle has only a
minor effect on the mortality of animals during the early stages of infection and it
partially impairs the fungal burden (Kottom et al. 2017). Compared to WT animals,
Mincle-deficient mice exhibit higher levels of pro-inflammatory cytokines (TNFa,
IL-1b) and anti-inflammatory cytokines (IL-1RA) in the lungs following infection
but decreased expression of IL-17 (Kottom et al. 2017). Whether Mincle plays a
role in humans or not remains to be determined. Mincle has not been studied in the
context of infection by C. neoformans.

5.2.6 DC-SIGN (CD209, Mouse SIGNR1 to SIGNR8)

The human Dendritic Cell-Specific intercellular adhesion ICAM-3-Grabbing
Non-integrin (DC-SIGN) protein has 8 murine homologues: SIGNR1–8
(SIGN-Related) (Powlesland et al. 2006). SIGNR5 has been proposed to be the
closest homologue based on its genomic localisation and its high-level expression
in splenic DCs (Park et al. 2001). Nevertheless, SIGNR3 was shown to be the
homologue with the closest biochemical properties: similar affinity for mannosyl-
and fucosyl-glycans, induction of endocytosis upon binding and ligand release at
endosomal pH (Powlesland et al. 2006). DC-SIGN possesses a single CRD and is
present as tetramer at the cell surface of DCs (Mitchell et al. 2001). The DC-SIGN
family of receptors binds mannose and mannosylated proteins present at the surface
of fungi (Takahara et al. 2012).

SIGNR1 is able to bind C. albicans but has poor phagocytic capacities (Taylor
et al. 2004). Upon binding to C. albicans, DC-SIGN contributes to potentiate the
production of TNFa induced by TLR2 activation (Takahara et al. 2012a, b).
Interestingly, TLR2 and DC-SIGN appear to associate at the cell membrane, but
whether this affects the recognition of pathogens by either one is not determined
(Takahara et al. 2012b). The role of DC-SIGN in vivo or in human candidiasis is
not deciphered.

DC-SIGN mediates the binding and internalisation of A. fumigatus through the
recognition of galactomannans (Serrano-Gomez et al. 2005). A DC-SIGN over-
expression model suggested that this receptor contributes to the production of IL-10
and IL-12 (Li et al. 2018). The effects of this receptor on Th polarisation remain to
be determined. Nevertheless, several human DC-SIGN SNPs have been associated
with increased risk of developing invasive aspergillosis in patients undergoing
chemotherapy or hematopoietic stem-cell transplantation (Sainz et al. 2012).

DC-SIGN binds mannoproteins from the C. neoformans cell wall and GpA from
Pneumocystis spp. (Mansour et al. 2006; Kottom et al. 2019). However, the role of
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DC-SIGN has not been further characterised and more studies are required to
determine the role of this receptor during the infection by these two pathogens.

5.2.7 Mannose Receptor (CD206)

The Mannose Receptor (MR) was the first membrane receptor whose binding to
yeasts was shown to be inhibited by mannans (Warr 1980). The MR is expressed by
macrophages, DCs, and some subsets of endothelial and epithelial cells
(Martinez-Pomares 2012); some have also reported expression in human monocytes
(Smeekens 2011). The mannose receptor is a multidomain receptor that comprises 8
CRDs organised in an extended linear conformation and responsible for the binding
of mannose and mannosylated sugars and proteins (Martinez-Pomares 2012; Lam
et al. 2007). MR also possesses two non-CRD cysteine-rich domains that mainly
bind endogenous ligands (Martinez-Pomares 2012). Due to the spatial arrangement
of its CRDs, MR recognises linear and short (2 to 6) mannosylated saccharides; in
comparison, the tetrameric organisation of DC-SIGN allows the latter to bind to
complex sugars (Frison et al. 2003). MR also recognises and induces the inter-
nalisation of chitin particles, which is required for this compound to exert
anti-inflammatory effects (Wagener et al. 2014). Interestingly, Dectin-1 activation
induces the cleavage of membrane-bound MR, which releases a soluble form of the
receptor’s extracellular domains (Gazi et al. 2011) in serum and alveolar fluid. The
soluble MR can bind to extracellular pathogens, but its functions are poorly
understood (Fraser et al. 2000).

The precise role of MR during fungal infections is still unclear. Several authors
have reported that MR is unable to induce the internalisation of C. albicans (Lee
et al. 2003; Heinsbroek et al. 2008). Instead, it was proposed that C. albicans
uptake is mediated by Dectin-1 and that the MR is recruited to the phagosome
(Heinsbroek et al. 2008), suggesting that these PRRs collaborate sequentially. MR
signals through the FcRc and collaborates with TLR2 and Dectin-1 to polarise T
cells towards a protective Th17 response in mouse (van de Veerdonk et al. 2009;
Rajaram et al. 2017). In spite of this, MR-deficient mice are not more susceptible to
C. albicans infection than WT animals, nor do their immune cells have altered
candidacidal abilities (Lee et al. 2003).

In vitro, MR contributes to initiate the secretion of TNFa and IL-1b by human
corneal epithelial cells when infected with A. fumigatus (Wang et al. 2016). In these
cells, triggering of MR increases the expression of Dectin-1, which is also required
to mount the anti-A. fumigatus immune response in the cornea (Xu et al. 2015).

The ability of MR to induce the internalisation of C. neoformans is not resolved
(Mansour et al. 2006). Binding of mannoproteins from C. neoformans cell wall by
MR is essential to induce an efficient adaptive immune response (Mansour et al.
2006; Dan et al. 2008), even though the effects of this receptor on Th polarisation
remain to be determined. The deficiency of the MR increases susceptibility to
C. neoformans infection in mouse (Dan et al. 2008) but there are no reports of
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increased susceptibility infection due to MR polymorphisms. MR has not been
explored in the immune response against P. jirovecii.

5.2.8 Langerin (CD207)

Langerin is expressed by Langerhans cells (LC) found in the skin and the mucosa; it
is also expressed by minor populations of DCs in the lungs, dermis, gut and
lymphoid tissues (Takahara et al. 2002; De Jesus et al. 2014; Bigley et al. 2015;
Patel et al. 2017). Langerin is a homotrimeric protein that binds mannose structures
and b-glucans and targets them to the Birbeck granules - the endosomal com-
partments of LCs.

Langerin can interact with C. albicans, but not C. neoformans, through inter-
action with b-glucans and mannans (de Jong et al. 2010; Tateno et al. 2010). It is
able to mediate uptake of Candida spp. and b-glucan preparations (i.e. zymosan)
(de Jong et al. 2010). LCs are required to induce Th17 but not Th1 adaptive
responses at the skin level in response to C. albicans (Igyarto et al. 2011). In
addition, Langerin+ DCs are necessary to initiate the adaptive responses against
C. albicans at the level of the skin and the oral cavity (Igyarto et al. 2011; Sparber
et al. 2018). However, in the studies mentioned above, Langerin was used as cell
marker and no direct role for Langerin in the recognition of C. albicans or initiation
of the adaptive response has been demonstrated. Other functions of Langerin in
antifungal immunity are still unexplored.

5.3 CD23 (FceRII)

The low-affinity IgE Fc receptor (CD23) is expressed by lymphocytes, granulo-
cytes, DCs, monocytes, macrophages and some epithelial cells (Acharya et al.
2010; Palaniyandi et al. 2011). This CLR can be either membrane bound as trimer
(Kilmon et al. 2004) or released as a secreted monomer (McCloskey et al. 2007) or
trimer (Beavil et al. 1995). In addition to the binding of immunoglobulins, it was
recently shown that CD23 is able to interact directly with b-glucan and a-mannans
(Guo et al. 2018).

Consistently with its ability to induce NO synthase upon activation, CD23 was
reported to be involved in the killing, but not in the uptake of C. albicans by
macrophages (Guo et al. 2018). Moreover, mice deficient for CD23 were more
susceptible to C. albicans and A. fumigatus infection but not to C. neoformans
challenge (Guo et al. 2018). More studies are needed to determine whether it can
affect the adaptive response or if this receptor is involved in the anti-P. jirovecii
immunity.
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6 Other PRRs

6.1 CR3 (CD11b/CD18, Mac-1)

Complement receptor 3 (CR3) is composed of two integrins, CD11b and CD18; it
is expressed by granulocytes, monocytes, macrophages and DCs (Erdei et al. 2019).
CR3 is able to bind GXMs and b-glucans from fungal pathogens (Ross et al. 1987;
Dong and Murphy 1997). Although Dectin-1 has been shown to have a major role
in the phagocytosis and initiation of inflammation by mononuclear phagocytes in
response to b-glucan, CR3 is the main receptor for this PAMP in neutrophils (van
Bruggen et al. 2009), whereas it has only a minor role in mononuclear phagocytes
(Li et al. 2011). It is believed that this difference lies in the difference of expression
of these PRRs by these different cell types (van Bruggen et al. 2009). Actually, in
neutrophils, CR3 and Dectin-1 collaborate tightly to respond to fungal pathogens.
Integrins are often expressed as inactive receptors at the cell surface and need a
signal from another receptor (PRR, cytokine receptor, etc.) to acquire
ligand-binding properties through conformational modifications (Hynes 2002).
Triggering of Dectin-1 induces the activation of CR3 through the Syk-Vav path-
way, and this step is required for neutrophils to acquire their fungicidal abilities
(Li et al. 2011). The interactions of CR3 with complement-opsonized pathogens can
also mediate internalisation of the opsonized target and influence Th cell polari-
sation (Gresnigt et al. 2013) but we will only discuss its functions as a PRR.

Upon recognition of b-glucan, CR3 is able to mediate internalisation of patho-
gens and the production of ROS by neutrophils (van Bruggen et al. 2009; Li et al.
2011). CR3 is involved in the killing of non-opsonized C. albicans yeasts and
A. fumigatus conidia through iron sequestration (Gazendam et al. 2014, Gazendam
et al. 2016). In contrast, the killing of A. fumigatus hyphae seems to occur by the
production of NETs and ROS (Clark et al. 2018). CR3 signals through the Syk
pathway and activates the NADPH oxidase mainly through activation of PKCd
(Li et al. 2016) but the PI3K-Akt pathway has also been reported to be involved
(Bose et al. 2014). Activation of the MAPK signalling cascade potentiates the
signal induced by Dectin-1 and contributes to an increased secretion of
pro-inflammatory cytokines (Huang et al. 2015). There is no known role for CR3 in
the immune response of C. neoformans or P. jirovecii.

Deficiency for CD18 has been shown to be a major risk factor for susceptibility
to invasive fungal infection (Lanternier et al. 2013). This immunodeficiency is
called leukocyte adhesion deficiency (LAD) type I, and cells from LAD patients are
less responsive to zymosan (Ross et al. 1987). However, reasons underlying sus-
ceptibility to fungal infections might also link with the decreased ability of neu-
trophils from these patients to leave the bloodstream and access the infected tissues
(Hanna and Etzioni 2012).
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6.2 CD14

CD14 is a membrane-bound protein expressed at the surface of myeloid cells, and it
can also be secreted as a soluble form (Wu et al. 2019). This protein has been
extensively Characterised for its functions as a co-receptor for TLR2 and TLR4
(Wu et al. 2019), and this collaboration has been shown to be important for acti-
vation of these receptors in response to fungal pathogens, such as A. fumigatus and
a minor role for C. neoformans (Wang et al. 2001; Tada et al. 2002; Yauch et al.
2004). Through its ability to bind LPS and to activate NFAT in a PLCc-dependent
manner (Wu et al. 2019), CD14 is also a PRR in itself. This receptor has been
shown to bind GXMs from C. neoformans independently of TLR4 (Shoham et al.
2001) but whether this binding leads to the TLR-independent activation of CD14
remains unknown. There is no other report of CD14 functioning directly as a PRR
in fungal infections, and it is proposed to function as a co-receptor only.

6.3 Scavenger Receptors

The scavenger receptors constitute a “supergroup” of receptors defined by their
ability to bind common ligands, including low-density lipoproteins, rather than a
common structure (Zani et al. 2015). In addition to endogenous ligands, a few
scavenger receptors also bind b-glucans (Zani et al. 2015).

CD5 has been shown to activate the MAPK pathway and induce the secretion of
pro-inflammatory cytokines in response to zymosan (Vera et al. 2009). CD36 and
SCARF1 act as TLR2 co-receptors, mediate the uptake of C. neoformans and exert
a protective role in vivo against this pathogen (Means et al. 2009).

LOX-1 is a scavenger receptor belonging to the CLRs superfamily (Zelensky
and Gready 2005); it is expressed on endothelial cells and in the corneal epithelium
(Li et al. 2015; He et al. 2016). This receptor has been shown to participate in
antifungal immune response in A. fumigatus keratitis. In response to this fungus,
LOX-1 contributes to induce the production of pro-inflammatory cytokines and
ROS (Gao et al. 2016; He et al. 2016). Nevertheless, whether its functions are
linked to the binding of a fungal ligand remains to be confirmed.

6.4 Ephrin Type-A Receptor 2 (EphA2)

EphA2 is a tyrosine-kinase transmembrane receptor expressed on endothelial cells,
epithelial cells and some subsets of leukocytes, including neutrophils, monocytes
and DCs (Funk and Orr 2013). Ephrin receptors contribute to intercellular com-
munication by recognising membrane-bound ligands. They regulate endothelial
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permeability, inflammation, embryogenesis and carcinogenesis (Darling and Lamb
2019).

In addition, EphA2 binds b-glucans and can induce the internalisation of
C. albicans by epithelial cells and neutrophils (Swidergall et al. 2018, 2019). It
activates the MAPK pathway in an FcRc-dependent manner and induces the
secretion of pro-inflammatory cytokines and antifungal peptides (Swidergall et al.
2019). Deficiency for EphA2 impairs the recruitment of leukocytes to the oral
mucosa and the oxidative killing of C. albicans by neutrophils (Swidergall et al.
2018, 2019). The role of EphA2 in oral infection by C. albicans might be limited to
the early stages of infection as fungal clearance is only delayed in mice deficient for
this receptor (Swidergall et al. 2019).

EphA2 is able to induce the binding and internalisation of C. neoformans to
endothelial cells in vitro (Aaron et al. 2018). In an in vitro blood–brain barrier
model, silencing of EphA2 has been shown to impair barrier crossing by C. neo-
formans (Aaron et al. 2018), highlighting its potential interest for therapeutic
application in the prevention of cryptococcal meningitis.

7 Conclusion

The innate immune response to fungal pathogens is required to prevent invasive
infections and initiate the adaptive immune response. As described in this chapter,
many PRRs are activated by PAMPs from the fungal cell wall and have been more
or less extensively characterised. During fungal infections, the interplay between
the fungus and immune cells is highly dynamic and the interaction between the
pathogen and the host primarily occurs at the level of the fungal cell wall whose
structure alters as the morphology and composition change. The identity and role(s)
of different PRRs involved in the immune response are governed not only by the
fungus encountered but also by the fungal morphotype, the localisation of infection
and the host cell type considered. PRR collaboration is essential to ensure an
efficient antifungal immune response that also requires modulation to avoid dele-
terious excessive inflammation that can lead to organ failure in the case of severe
sepsis (Annane et al. 2005).

The fungal cell wall constitutes the armour which provides protection against
external aggression from the host immune response. It also constitutes a weak point
whose recognition leads to the initiation of the immune response and the subse-
quent elimination of the pathogen. Fungi are able to escape and avoid immune
recognition by altering the composition of their cell wall to mask or shed major
PAMPs, such as b-glucans (Ballou et al. 2016; Hopke et al. 2018). Other fungal
immune evasion strategies include the activation of the immunosuppressive com-
ponents of immunity and secretion of immunomodulatory proteins (Marcos et al.
2016).

A great body of knowledge has been accumulated for Dectin-1 and the TLRs,
notably thanks to epidemiological studies that have linked SNPs, in their genes or
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those of their signalling intermediates, to altered susceptibility to infections
(Lanternier et al. 2013). On the other hand, the role of several PRRs, such as
MelLec and the scavenger receptors, is not completely understood and needs to be
studied further to fully appreciate their contribution to the antifungal immune
response. In addition, it is still unclear why different PRRs have different biological
functions while they activate the same signalling cascades. Finally, we need to
expand our understanding of these immune receptors, and how they collaborate in
mounting an efficient immune response, to develop more effective therapeutic
strategies and vaccines against fungal pathogens to alleviate their burden on human
health.
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Abstract During infection, many fungal pathogens form biofilms within tissues or
on biomedical devices. The growth of fungi within biofilms increases dramatically
their resistance to both immune defences and antifungal therapies. In the last twenty
years, studies have begun to shed light on many of the steps involved in biofilm
synthesis and composition, revealing new antifungal strategies. This chapter will
focus on the biofilm exopolysaccharides produced by A. fumigatus and C. albicans,
the two main causes of human fungal infections. We will review the current state of
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our understanding of the structure, biosynthesis, and role of exopolysaccharides in
biofilm development and function with a view to identifying future strategies for
prophylaxis and treatment of these devastating infections.

1 Introduction

As with most scientific discoveries, biofilms were discovered by a technology
breakthrough: The development of powerful microscopy lenses that allowed
microorganisms to be observed for the first time. During the seventeenth century,
Antony Van Leeuwenhoek used his unique single lens microscope to scrutinize
diverse samples such as rainwater, the surface of molding meat or the surface of his
own teeth (Fred 1933). The description of all his observations revealed the presence
of microbial communities (Fred 1933). Three hundred years later, in the late 1960s,
several reports flourished suggesting the existence of a bacterial “glycocalyx” made
of secreted carbohydrates extracellularly modified for adherence purposes
(Costerton et al. 1978). In 1978, this new microbiological concept was formalized
into what we now know as biofilms (Donlan and Costerton 2002). Bacterial bio-
films and their importance for viability in the environment were first to become
recognized (Hall-Stoodley et al. 2004), and it was only in the 2000s that fungal
biofilms were recognized as a major health concern (Harding et al. 2009).

Over the past 10–20 years, the composition, architecture, and synthesis of fungal
biofilms have begun to be investigated in detail. While these adherent multicellular
communities of microorganisms embedded in an extracellular matrix are as diverse
as the microorganisms themselves (Mitchell et al. 2016), their strategy to build
effective adherent biofilms is remarkably similar. This process consists of the
secretion of copious amounts of polysaccharides, enzymes, and structural proteins
to form the biofilm core to which lipids, DNA, melanin, and metabolites, can be
added to refine the biofilm structure and function (Reichhardt et al. 2016). Once
assembled, biofilms can be pictured as a microbial fortress. In the same way, a
fortress’ fortifications provide a safe environment for its inhabitants, the adhesive
properties of biofilms allow organisms to colonize surfaces and surround them with
an defensive layer protecting them from biotic and abiotic stresses (Stewart and
Franklin 2008). Furthermore, the network formed by the biofilm allows differential
efficiency of water and nutrient distribution creating diverse microenvironments
from which physiologically heterogeneous populations arise (Flemming and
Wingender 2010; Stewart and Franklin 2008). From quiescent persister cells to
metabolically active cells secreting exopolysaccharides that can engage or deacti-
vate defense mechanisms of specific aggressors, this population diversity is
responsible for most of the biofilm-related resistance mechanisms (Mah and O’toole
2001; Snarr et al. 2017b; Ramage et al. 2009).
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The biofilm’s ability to adhere and grow on diverse substrata and to enhance
resistance mechanisms granted them the title of “most successful form of life on
Earth” (Flemming and Ridgway 2009). Unfortunately, medical device surfaces and
human tissues are one of the surfaces upon which biofilms form, leading to the
development of infections that are often resistant to conventional antimicrobial
therapy (Boisvert et al. 2016; Rasmussen and Givskov 2006). Biofilms constitute a
source of recurrent infections with high mortality rates, in part due to the increasing
use of medical devices such as catheters and prostheses (Desai et al. 2014; Lagree
and Mitchell 2017).

In the environment, dozens of thousands of fungi species exist (Blackwell 2011).
However, only a few are medically relevant and form biofilms including: Candida
sp. (Hawser and Douglas 1994), Aspergillus sp. (van de Veerdonk et al. 2017),
Cryptococcus sp. (Martinez and Casadevall 2015), Rhizopus sp. (Singh et al. 2011),
Histoplasma sp. (Pitangui et al. 2012), Coccidioides sp. (Davis et al. 2002),
Trichosporon sp. (Di Bonaventura et al. 2006), and Pneumocystis sp. (Cushion
et al. 2009). This chapter will focus on the biofilm and biofilm exopolysaccharides
produced by the two main causes of human fungal infections, C. albicans and
A. fumigatus which represent more than 85% of the fungal infections (Sanguinetti
and Posteraro 2016). The biofilm composition and the polysaccharide synthesis
pathways will be presented and the strategies by which fungi use these structures
for adherence, invasion, and resistance to antifungals will be reviewed. Finally,
currently available and potential therapies against biofilm infections will be
discussed.

2 Biofilm Composition, Structure and Synthesis

2.1 Aspergillus fumigatus Biofilm

Aspergilli are saprophytic filamentous molds that play an essential role in recycling
carbon and nitrogen in the environment (Latgé 1999). Due to their efficient dis-
semination strategy via the production of airborne conidia, Aspergilli are one of the
most ubiquitous fungi and can be found everywhere on the planet from the polar
circles to the most arid deserts (Abdel-Azeem et al. 2016). As a consequence, all
humans inhale Aspergilli conidia on a daily basis (Latgé 2001). However, despite
the existence of 339 Aspergilli species, only 40 are reported as pathogenic (Gugnani
2003; Abdel-Azeem et al. 2016), and more than 80% of the aspergillosis are caused
by one single species, Aspergillus fumigatus (Singh and Paterson 2005; Morgan
et al. 2005). The remaining aspergillosis cases are being due to A. terreus, A. flavus,
A. niger, and A. nidulans (Dagenais and Keller 2009). These species are also able to
form biofilms but will not be the focus of this chapter (Gutierrez-Correa et al. 2012;
Al-Gabr et al. 2013; Priegnitz et al. 2012; El-Ganiny et al. 2010).
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As with almost all fungal infections, preexisting health conditions are required to
develop aspergillosis (Badiee and Hashemizadeh 2014). Preexisting lung condi-
tions, such as cavitary lung disease, asthma, or cystic fibrosis, can lead to chronic
aspergillosis. In this condition, Aspergillus is contained by the immune system at
the site of infection, but is not cleared (Denning 2001). In contrast, in severely
immunocompromised patients hyphae can invade and destroy lung tissue, a con-
dition known as invasive aspergillosis (Tekaia and Latge 2005). In both conditions,
a biofilm is formed in vivo by A. fumigatus and is thought to contribute to virulence
(Kaur and Singh 2014; Reichhardt et al. 2019). The architecture of the biofilm in
the chronic and invasive aspergillosis differs. During chronic infections, A. fumi-
gatus form aspergillomas, balls of agglutinated hyphae covered in a thick layer of
extracellular matrix. Only the hyphae at the periphery of the fungal ball are viable
with hyphae present at the center dying from starvation. In invasive disease, all the
hyphae are viable and spread into the tissue, surrounding themselves with a thin
layer of extracellular matrix (Loussert et al. 2010; van de Veerdonk et al. 2017).
Immunolocalization of polysaccharides within these biofilms revealed the presence
of galactomannans (GM) and galactosaminogalactan (GAG) in both types of bio-
films, while a-glucans were observed only in aspergillomas (Loussert et al. 2010).
In vitro analysis of A. fumigatus biofilms by solid-state NMR spectroscopy revealed
that these exopolysaccharides comprise 43% of the extracellular matrix, accom-
panied by proteins (40%), lipids (14%), and nucleic acid (3%) (Reichhardt et al.
2015). It is important to note that these in vitro grown biofilms differ from those
generated in vivo (Müller et al. 2011). As electron microscopy and immunolabeling
studies have demonstrated, hyphae tend to agglutinate in a monolayer format
in vitro while in vivo they grow in three dimensions and contain higher levels of
GAG and GM in their extracellular matrix (Müller et al. 2011).

2.1.1 a-glucans

a-glucans are a major component of A. fumigatus hyphae and conidia cell wall
(Fontaine et al. 2000). However, their role in biofilm remains unclear. The synthesis
of these polymers of a-(1-3)-glucan is mediated by three genes in A. fumigatus:
ags1, ags2, and ags3 (Henry et al. 2012) (Fig. 1). The deletion of these three genes
is required to abolish the synthesis of the polymer and results in conidia with
reduced viability and attenuated virulence (Beauvais et al. 2013). While no studies
have directly examined the role of a-glucans in biofilm formation or adhesion, the
overexpression of homologous ags genes in A. nidulans causes the formation of
biofilms as adhesive as those of A. fumigatus, suggesting a role for a-glucans in
adhesion (He et al. 2018). These findings are supported by studies in A. oryzae in
which disruption of ags genes was associated with reduced hyphal aggregation
(Miyazawa et al. 2019), a finding consistent with the observation that a-glucans
mediate aggregation of swollen conidia in A. fumigatus (Fontaine et al. 2010).

228 F. Le Mauff



Collectively, these studies suggest the hypothesis that a-glucans are the “glue” that
holds hyphae together within aspergillomas and in vitro biofilms, but are absent
from the extracellular matrix of the more dispersed hyphae formed during invasive
aspergillosis (Beauvais and Latgé 2015).

2.1.2 Galactomannans

Galactomannans are one of the two polysaccharides found in all types of biofilms
made by A. fumigatus (Loussert et al. 2010; Beauvais and Latgé 2015). However, as
with the a-glucans, little is known about their role in biofilm structure. GM plays an
important structural role within the cell wall where it is complexed with chitin and
b-(1,3)-glucans (Latge and Beauvais 2014). The chitin-glucan-GM complex is
involved in conidiation, conidia germination, polarized growth, and cell wall
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permeability (Muszkieta et al. 2019; Henry et al. 2019). Many of the enzymes
governing GM synthesis have been identified, although several gaps in the pathway
remain (Muszkieta et al. 2019; Henry et al. 2019) (Fig. 1). GM synthesis is initiated
with the synthesis of UDP-galactofuranose (Galf) through the successive actions of
uge5 and ugm1 (also called glfA) (Lee et al. 2014; Oppenheimer et al. 2010). Uge5
has been shown to be a UDP-4-glucose epimerase generating UDP-Galp from
UDP-Glcp specifically for galactomannan synthesis (Lee et al. 2014). Ugm1 is a
UDP-galactopyranose mutase converting the UDP-Galp produced by Uge5 to
UDP-Galf (Oppenheimer et al. 2010). UDP-Galf is then transported into the Golgi
by glfB (Engel et al. 2009), where gfsA and gfsC assemble chains of 4 to 5 b-(1,5)
linked Galf residues, which comprise the short side chain of GM (Katafuchi et al.
2017; Oka 2018; Komachi et al. 2013) (Fig. 1). Less is known about the synthesis
of the a-(1,6) repeats of tetra-a-(1,2)-mannose backbone and the linkage of the Galf
side chains to this polymer. Synthesis of the mannan backbone requires the
GDP-Man transporter gmtA and members of the ktr family to synthesize a-(1,2)-
mannose (Engel et al. 2012; Henry et al. 2019) (Fig. 1). The enzymes responsible
for the insertion of the a-(1,6) linkage in the polymer every four mannose residues
and mediating the substitution of the mannose with the b-(1,5)-Galf side chains in
b-(1,3) or in b-(1,6) remain unknown (Latge et al. 1994) (Fig. 1). Once outside the
cell, GM is found associated to the plasma membrane by a GPI anchor (Costachel
et al. 2005; Li et al. 2018) and linked to b-(1,3)-glucans through the transglyco-
sylation activity of the Dfg proteins (Muszkieta et al. 2019). GM is also found free
in the cell wall and is secreted, but it is unknown if these GM molecules are
specifically targeted to these compartments or simply by-products of cell wall
synthesis (Fig. 1). Under specific culture conditions, longer Galf side chains bearing
additional b-(1,5)-Galf chains linked in b-(1,6) to the galactose residue at the
non-reducing end of the lateral chains have been observed (Kudoh et al. 2015). It
has been speculated that the presence of these long galactan side chains is related to
the low abundance of extracellular galactofuranosidases synthesized under these
conditions (Kudoh et al. 2015).

Several mutants with alterations in the GM biosynthesis pathway display
alterations in biofilm formation and adhesion. The Ddfg (Muszkieta et al. 2019) or
b-(1,3)-glucan-deficient Dfks1 mutant (Dichtl et al. 2015), which lack cell
wall-associated GM exhibited increased cell wall-associated GAG. It has been
suggested that in the absence of GM, the cell wall retains the GAG which overwise
would have been secreted into the extracellular matrix (Dichtl et al. 2015). The
Duge5, Dugm1, or in the DugtA (glfB homologous in A. nidulans) mutants which
lack the b-(1,5)-Galf side chains have all been reported to be more adherent likely
due to a increased secretion of GAG compensating for the absence of the Galf (Lee
et al. 2014; Lamarre et al. 2009; Afroz et al. 2011). The Dugm1 and DugtA mutants
also exhibit an altered cell surface in which the smooth amorphous layer typical of
the wild type was covered by an organized material (Lamarre et al. 2009; Afroz
et al. 2011). These adherence phenotypes may be explained by the redirection of
UDP-Galp toward other metabolic pathways such as GAG (Lee et al. 2014) or
a-glucans synthesis since in an A. niger DugmA mutant the overexpression of agsA
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(ags1 homolog) was observed (Arentshorst et al. 2019). Alternately, the increased
adherence of strains lacking the b-(1,5)-Galf may stem from unmasking of the
mannose backbone, a hypothesis supported by the fact that mannosidase treatment
can reduce adherence of these mutants (Lamarre et al. 2009). A similar role for
galactose in inhibiting adhesion was reported in yeast, in which cell surface
galactose inhibits the co-flocculation of Schizosaccharomyces pombe and
Pediococcus damnosus (Peng et al. 2001).

2.1.3 Galactosaminogalactan

Like GM, galactosaminogalactan is found in all types of biofilms made by
A. fumigatus (Loussert et al. 2010). Although this polymer is mostly found in the
extracellular matrix or culture supernatant, its synthesis begins in early germination
(Paulussen et al. 2017). GAG is the key element in the formation of adherent
biofilms. It exerts multiple immunomodulatory functions, and its synthesis has been
correlated to the degree of virulence of the strain (Sheppard 2011; Speth et al. 2019;
Lee et al. 2012), suggesting it is a true polysaccharide virulence factor (Briard et al.
2016; Fontaine et al. 2011).

GAG was first discovered in 1960 in Aspergillus parasiticus and termed
galactosaminoglycan since the authors only found galactosamine residues in the
polymer (Distler and Roseman 1960). The finding of this new polysaccharide
triggered the reports of other species producing a galactosamine-containing poly-
mer including other Aspergilli (Gorin and Eveleigh 1970; Leal and Ruperez 1978;
Bardalaye and Nordin 1976), Physarum polyphalum, Cordyceps ophioglossoides,
Bipolaris sorokiniana, Peacilomyces, and Penicillium frequentans (Farr et al. 1977;
Yamada et al. 1984; Pringle 1981; Takagi and Kadowaki 1985; Guerrero et al.
1988; Bartnicki-Garcia 1968). With the successive discoveries of GAG in the
different species, the common features of the polymer were discovered. The linkage
in a-(1,4) between the galactosamine was established as the norm, and acetylation
of galactosamine has been observed but with different ratios across the different
species. In addition, the presence of a-(1,4)-galactose residues were found in most
of the polymers, hence the modern name of galactosaminogalactan (Bardalaye and
Nordin 1976; Ruperez and Leal 1981; Guerrero et al. 1988).

In A. fumigatus, a polymer of N-acetylgalactosamine (GalNAc) was first
reported in 2000 while describing the organization of the alkali-insoluble fraction of
the cell wall (Fontaine et al. 2000). A. fumigatus galactosaminogalactan was ini-
tially reported to be composed of GalNAc and galactopyranose (Galp) linked in a-
(1,4) (Fontaine et al. 2011), and the presence of deacetylated GalN residues con-
firmed in a subsequent publication (Lee et al. 2016). The distribution and the ratio
of Galp to GalNAc in the polymer appear to be quite heterogeneous between
different fractions of GAG and are thought to vary between secreted and cell
wall-associated forms (Fontaine et al. 2000, 2011).
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GAG synthesis is thought to be mediated by the products of a 5-gene cluster
comprising gtb3 (AfuA_3g07860), agd3 (AfuA_3g07870), ega3 (AfuA_3g07890),
sph3 (AfuA_3g07900), and uge3 (AfuA_3g07910) (Lee et al. 2016) (Fig. 1). GAG
synthesis begins with the activity of the UDP-4-Glucose epimerase Uge3. Uge3
was the first enzyme of the GAG cluster to have been identified and characterized
(Gravelat et al. 2013; Lee et al. 2014) from a comparative transcriptomic study of
two regulatory mutant strains with impaired adhesion, DstuA and DmedA. Uge3
was found to mediate the interconversion of UDP-Glc to UDP-Gal, and
UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-GalNAc (Fig. 1). Deletion of
uge3 totally abrogated GAG synthesis without impacting the GM galactose content
(Lee et al. 2014), resulting in a defect in biofilm formation, reduced virulence, and
increased inflammatory response due to b-(1,3)-glucan exposure (Gravelat et al.
2010, 2013). Further studies revealed the presence of two other uge genes in the
A. fumigatus genome, uge4 and uge5, with redundant UDP-4-glucose epimerase
activities but distinct polysaccharide synthesis roles. Uge 5 activity was required to
supply UDP-Gal for GM synthesis and had minimal effects on the GAG pathway
while deletion of uge4 had no effect on the quantity of GM or GAG produced or
any other biosynthetic pathways tested (Lee et al. 2014).

Following nucleotide sugar interconversion, their polymerization into GAG is
hypothesized to take place at the plasma membrane through the action of Gtb3, a
putative membrane glycosyltransferase (Fig. 1). No studies of this protein have
been performed to date to confirm this gene annotation, and the mechanism of GAG
polymerization remains unknown (Latge et al. 2017). However, in the 5-gene
cluster model of GAG biosynthesis, Gtb3 would need to accept both UDP-Gal and
UDP-GalNAc for polymerization of the heteropolysaccharide, a rare characteristic
only shared by a limited amount of glycosyltransferases (Rini and Esko 2017;
Zhang et al. 2016; Narimatsu 2006). Alternately, it is possible that a second
glycosyltransferase is involved in GAG synthesis and remains to be discovered.

Following synthesis of the nascent polymer, GAG maturation then continues
extracellularly where the enzymes Sph3 and Agd3 can act on GalNAc-rich regions
of the polymer (Le Mauff et al. 2019; Lee et al. 2016) (Fig. 1). Sph3 is a type II
integral membrane protein can cleave GAG and is the sole member of the glycoside
hydrolase (GH) family 135 (Bamford et al. 2015). Sph3 is a highly specific a-(1,4)-
N-acetylgalactosaminidase with a retaining endolytic mechanism requiring a
sequence of at least seven GalNAc residues (Le Mauff et al. 2019). Despite this
hydrolytic activity, Sph3 is essential for GAG synthesis (Bamford et al. 2015). The
mechanisms underlying this requirement of Sph3 for GAG synthesis and biofilm
formation remain unclear but may involve controlling polymer length to facilitate
export through the cell wall.

Agd3 is the enzyme at the center of the GAG-mediated biofilm adherence
(Ostapska et al. 2018). Agd3 is a polysaccharide deacetylase converting GalNAc
residues to GalN rendering the polymer cationic and adherent at a physiological pH
(Lee et al. 2016) (Fig. 1). Deletion of agd3 resulted in a strain that produces fully
acetylated GAG that cannot adhere to the hyphal wall and is shed into the culture
supernatants. As a result, the Dagd3 mutant is unable to form adherent biofilm and
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exhibits exposure of the b-(1,3)-glucans at the surface of the hyphae (Lee et al.
2016). Detailed studies of Agd3 structure, mechanism of action, and impact on
GAG composition have not yet been performed.

The structure and the function of the final enzyme encoded by this gene cluster,
Ega3, have recently been reported. Ega3 is a transmembrane protein belonging to
the GH114 family that is a highly specific endo-a-(1,4)-galactosaminidase
(Bamford et al. 2019) (Fig. 1). Ega3 exhibits no activity against a-(1,4)-GalNAc
oligosaccharides, substrates of Sph3, demonstrating the non-redundancy of the two
GH present in the 5-gene cluster (Le Mauff et al. 2019; Bamford et al. 2019). To
date, no deletion mutant has been reported, so the role of Ega3 in biofilm formation
remains unknown. Upregulation of ega3 during biofilm formation has been
reported, suggesting that it likely plays an important role in GAG biosynthesis and
function (Muszkieta et al. 2013).

The factors governing the expression of the GAG biosynthetic gene cluster
remain poorly understood. To date, 4 putative transcription factors have been
shown to impact GAG synthesis: the two developmental regulators MedA and
StuA, (Gravelat et al. 2010, 2013) as well as SomA and PtaB, which regulate the
expression of MedA and StuA (Lin et al. 2015; Zhang et al. 2018). Whether these
proteins directly or indirectly regulate, expression of the GAG cluster genes is
unknown although a recent study reported that the histone acetyltransferase GncE
was also involved in the synthesis of GAG through a downregulation of ptaB and of
uge3 (Lin et al. 2019). Interestingly, in all these studies, a defect in the condition
pathway was observed in parallel to the defect in GAG synthesis and biofilm
formation suggesting that these two processes are intrinsically linked.

2.2 Candida albicans Biofilm

Candida species are the main causal agents of fungal infections worldwide
(Zarnowski et al. 2016). These yeasts constitute the fourth most common origin of
nosocomial bloodstream infections and are thought to cause more than 400,000
life-threatening infections annually (Brown et al. 2012; Yapar 2014). Despite the
existence of more than 200 Candida species, five of these account for 90% of
human infections: Candida albicans, Candida glabrata, Candida tropicalis,
Candida parapsilosis, and Candida krusei (Pappas et al. 2016). Recently, a sixth
strain, Candida auris, has emerged as a new multi-drug resistant fungal pathogen
(de Cassia Orlandi Sardi et al. 2018; Vallabhaneni et al. 2019). However, this
chapter will focus only on the main etiological agent of candidemia, C. albicans, as
biofilms formed by this genre are extraordinarily diverse (Cavalheiro and Teixeira;
2018; Jeffery-Smith et al. 2018).

The formation and composition of C. albicans biofilm have been the subject of
several studies and reviews (Cavalheiro and Teixeira 2018; Seneviratne et al. 2017;
Jadhav and Karuppayil 2017; Soll and Daniels 2016; Mitchell et al. 2016). C.
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albicans biofilm formation occurs in three distinct steps (Seneviratne et al. 2008).
During the early phase (up to 11 h), yeast cells adhere to surfaces and initiate
differentiation into hyphae. In the next 19 h, during the intermediate stage, cells
complete their differentiation and exopolysaccharides secretion begins. Finally, the
maturation takes place, biofilm becomes thicker by accumulation of extracellular
matrix in which a dense network of hyphae is embedded (Seneviratne et al. 2008).
The formation and dispersion of yeast cells from these mature biofilms reinitiate the
cycle of infection and biofilm formation (Uppuluri et al. 2010). The development of
methods for the large-scale production of biofilm matrix has enabled detailed
characterization of the C. albicans biofilm matrix (Zarnowski et al. 2016). The
matrix is composed of proteins (55%), polysaccharides (25%), lipids (15%), and
nucleic acid (5%) (Zarnowski et al. 2014). C. albicans can also integrate molecules
secreted by the host into its biofilm upon infection (Nett et al. 2015).

2.2.1 Exopolysaccharides

Compositional analysis of the C. albicans matrix has revealed the presence of
polysaccharides largely composed of four monosaccharides: arabinose (47.9%),
mannose (20%), glucose (12.5%), and xylose (12.6%), split differentially into two
fractions of distinct molecular weights (Zarnowski et al. 2014) (Fig. 2).

High Molecular Weight Polysaccharides

The high molecular weight polymer fraction of the biofilm matrix has received the
most attention. The mannose and glucose contents of this fraction originate from
mannans and glucans (Zarnowski et al. 2014). Mannans are the most abundant
polymers in C. albicans biofilms, comprising about 87% of the biofilm polysac-
charide fraction and help mediate adhesion to surfaces (Shibata et al. 2012). These
polymers are made of an a-(1,6)-mannan chain that is heavily substituted in a-(1,2)
by short chains of three to four (1,2)-mannoses (Zarnowski et al. 2014) (Fig. 2).
This structure is similar to the structure of N-glycans present in the cell wall of
C. albicans (Graus et al. 2018). Synthesis of biofilm mannans is linked to the
synthesis pathway of these N-glycans as both tunicamycin treatment and deletion of
mnn and alg genes alter the mannan fractions of biofilms (Mitchell et al. 2015).
However, the average length of the mannan biofilm is much longer than those
within the cell wall counterpart (Pierce et al. 2017; Zarnowski et al. 2014).
Furthermore, biofilm mannans are not covalently linked to proteins, as it is the case
in the cell wall.

The glucan fraction contains two polymers: b-(1,3)-glucans and b-(1,6)-glucans
(Fig. 2). Despite the importance of the b-(1,3)-glucans in antifungal resistance, this
polymer represents only 0.1% of the polysaccharide biofilm fraction (Zarnowski
et al. 2014). Despite this observation, b-(1,3)-glucans are crucial for biofilm for-
mation. Deletion of the biofilm specific b-(1,3)-glucan CAZymes bgl2, phr1, and
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xog1, coding for 2 glucan transferases and an exoglucanase, respectively, resulted
in altered biofilm formation, thickness, and increased antifungal sensitivity (Taff
et al. 2012). Furthermore, the conditional deletion of fks1, coding for b-(1,3)-glucan
glucan synthase, resulted in decreased biofilm-associated b-(1,3)-glucans, mannans,
and b-(1,6)-glucans (Mitchell et al. 2015) suggesting that b-(1,3)-glucans play an
important anchoring role in the biofilm matrix. Little is known about the b-(1,6)-
glucans which constitute the remaining 13% of the biofilm polysaccharide. Their
synthesis is governed by the genes big1 and skn1, kre5-9 and 6 (Umeyama et al.
2006; Han et al. 2019). Deletion of these genes results in a dramatic decrease of the
amount of b-(1,6)-glucans in the biofilm, thereby influencing the amount of man-
nans and b-(1,3)-glucans as well as the presence of proteins required for adhesion
(Mitchell et al. 2015).
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Low molecular
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Mannose, Glucose,
Arabinose, Rhamnose
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Fig. 2 C. albicans exopolysaccharides synthesis and secretion pathway. The polysaccharides are
represented following the symbol nomenclature for glycan (Varki et al. 2015). Blue circle:
Glucose, Green circle: Mannose. The enzymes involved in the different pathways are represented
under a cylinder shape for the transporter/transferase or under a square shape for any other
proteins. E.R. Endoplasmic Reticulum; UDP Uracil diphosphate; GDP Guanosine diphosphate;
EV Extracellular vesicles; ECM Extracellular matrix; MGCx mannan–glucan complex
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As indicated by the mutant studies detailed above, normal biofilm formation by
C. albicans requires the coordinated participation of mannans, b-(1,3)-glucans and
b-(1,6)-glucans. Extracellular polysaccharide interactions are integral to this pro-
cess since mixed mutant biofilm complementation can support the formation of
biofilms with similar properties to those formed by wild type organisms (Mitchell
et al. 2015). Together these polysaccharides are forming the mannan–glucan
complex, MGCx, which possesses structural features found unique to biofilms
(Zarnowski et al. 2014; Mitchell et al. 2015). Recent studies of this complex
revealed that extracellular vesicles secreted through the ESCRT machinery are
involved in the biosynthesis of biofilm MGCx. Analysis of the biochemical com-
position of the extracellular vesicles revealed a polysaccharide content with a
similar proportion of glucose and mannose as was found in the biofilm matrix, as
well as the presence of enzymes involved in matrix assembly and maturation
(Zarnowski et al. 2018).

Low Molecular Weight Polysaccharides

This fraction represents more than 60% of the biofilm polysaccharides and exhibits
a more diverse composition with arabinose, mannose, glucose, and xylose.
However, little is known about the composition of polymers contained within this
fraction (Zarnowski et al. 2014).

2.2.2 Proteins

A recent proteomic investigation identified 565 proteins encompassing more than
16 different metabolic pathways within the C. albicans biofilm matrix (Zarnowski
et al. 2014). The majority of these proteins are involved in one of three general
pathways: carbohydrate metabolism (177 proteins), amino acid metabolism (136
proteins), and energy-related metabolism (Pierce et al. 2017). In addition, studies of
C. albicans biofilms formed in vivo have demonstrated that inflammatory proteins
derived from leukocytes and erythrocytes can be encased into the biofilm matrix
(Zarnowski et al. 2014; Nett et al. 2015).

In contrast to A. fumigatus, in which a polysaccharide functions as the dominant
adhesin, C. albicans relies on a variety of cell wall proteins to adhere to abiotic
surfaces and host cell surfaces (Wang et al. 2012). Over 35 proteins have been
implicated in mediating fungal adherence at different stages of the biofilm life cycle
(exhaustively reviewed in (Araujo et al. 2017). These proteins can be classified into
two groups, transcription factors required for biofilm maturation and GPI-anchored
cell surface proteins directly mediating cell-to-cell and cell-to-surface adhesion
(Araujo et al. 2017; Richard and Plaine 2007). Among these proteins, the eight
members of the Agglutinin like sequence (Als) protein family have been the most
studied and are capable of recognizing and interacting with a wide range of host
constituents during infection (Araujo et al. 2017; Sheppard et al. 2004). Of these
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proteins, Als1, 3 and 5 have been found to play the most important role in medi-
ating fungal adhesion in partnership with Hyphal wall protein 1, Hwp1 (Nobile
et al. 2008; Staab et al. 1999; Modrzewska and Kurnatowski 2015).

2.2.3 Lipids

Neutral glycerolipids make up the majority of the lipid component of the biofilm.
Some of these glycerolipids originate from extracellular vesicles that were recently
identified to be transporting oligosaccharides and proteins involved in the synthesis
of the MGCx (Zarnowski et al. 2014, 2018). The role of lipids in biofilm formation
and structure is unknown but has been hypothesized to function largely as carriers
of other structural elements.

2.2.4 Nucleic Acids

Despite the low amount nucleic acid present in the biofilm (5%), extracellular DNA
plays a predominant role in biofilm formation, structural integrity, and maintenance
and has been found to enhance resistance to antifungals (Martins et al. 2010).

2.2.5 Biofilm Regulation

The genetic network allowing the formation of biofilm by C. albicans has been well
elucidated through the study of a comprehensive library of transcription factor
knockouts. Screening studies of this library have identified six master regulators of
biofilm formation in C. albicans: bcr1, tec1, efg1, ndt80, rob1, and brg1 (Nobile
et al. 2012). An exhaustive RNA sequencing of the regions bound by these six
transcription factors they regulate revealed a tightly interwoven genetic interme-
diate network of 23 genes that together govern the expression of over a thousand
target genes (Nobile et al. 2012). The complete list of the genes involved at the
different stage of C. albicans biofilm has been reviewed in detail elsewhere (Nobile
and Johnson 2015).

2.3 Other Relevant Human Fungal Pathogens Biofilms

2.3.1 Cryptococcus sp.

Cryptococcus neoformans and gatii are the two main ethological agents of cryp-
tococcosis. These organisms can infect the lungs and/or the central nervous system
(Chang et al. 2006; Bratton et al. 2012). As with A. fumigatus and C. albicans, an
important virulence factor is the secretion of exopolysaccharides:
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glucuronoxylomannan, GXM, and galactoxylomannan, GalXM (McClelland et al.
2006; Doering 2009; Denham et al. 2018). These polymers form a capsule which
surrounds and protects the fungal cell (Casadevall et al. 2018a; Araujo et al. 2016)
and are also shed copiously to form biofilms (Martinez and Casadevall 2015).
GalXM is an a-(1-6)-galactan alternately branched in C-3 by a chain of b-(1-4)-
Gal-a-(1-3)-mannose-a-(1-3)-mannose substituted by 0–3 b-xyloses (Vaishnav
et al. 1998). GXM is composed of an a-(1-3)-mannan backbone among which one
out three residues is substituted by glucuronic acid in b-(1-2). On this backbone,
differential substitutions by b-(1-2) and or b-(1-4)-xylopyranoses residues occur,
defining the serotype of Cryptococcus strains (Cherniak et al. 1998). GXM con-
tributes to cryptococcal adhesion in two ways. The anionic charge of the GlcA
residues permits the aggregation of the GXM through divalent cationic ions
(Nimrichter et al. 2007), likely in the same fashion that pectin auto-assembles into
an “egg-box” conformation under calcium influence (Peaucelle et al. 2012; Wang
et al. 2020). In addition, variations in xylose substitutions have also been linked to
strain differences in the ability to form robust biofilms (Martinez and Casadevall
2007). C. neoformans serotypes D and A form stronger biofilms than serotypes B
and C which are typically produced by C. gatii (Martinez and Casadevall 2005;
Chen et al. 2008). In addition to the GXM and GalXM, glucose, ribose, and fucose
have also been found in the biofilm matrix of Cryptococci but the molecule(s)
containing these sugars remain undefined (Martinez and Casadevall 2015).

2.3.2 Mucorales

Infection with members of the Mucorales is commonly seen in patients with
impaired immune system, high iron states or diabetes (Danion et al. 2015). The
most prevalent agents of such infection are Rhizopus arrhizus, more widely
reported as R. oryzae in the literature, and R. microsporus (Walther et al. 2019;
Dolatabadi et al. 2014). The exopolysaccharides produced by these species are
incompletely characterized, but contain mannose, fucose, glucuronic acid, and
minor amount of glucose and galactose (Mélida et al. 2015). Based on the com-
parative analysis of the exopolysaccharides produced by different species of Mucor
and Rhizopus, two structures have been proposed in the literature: a mucoran
mostly made of glucuronic acid and mannose (Bartnicki-Garcia and Lindberg
1972), and a fucomannan constituted of mannose and fucose (Miyazaki et al. 1979).
A more recent study of the cell wall polysaccharides of R. oryzae corroborated the
likely presence of fucomannan, but failed to identify mannose linked in C-3, calling
into question the presence of mucoran within the fungal cell wall (Mélida et al.
2015). Further studies are required to better understand the formation of biofilms by
these important pathogens.
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3 Biofilm, a Shelter from the Environment

In addition to mediating adhesion, biofilms provide a microenvironment that pro-
tects the fungi from external stresses such as host immune defences and antifungals
(Boles et al. 2004).

3.1 Biofilm and Exopolysaccharide-Related Resistance
Mechanisms to the Immune System

Although many biofilm-associated fungal exopolysaccharides can be recognized by
the immune system (Snarr et al. 2017b; Patin et al. 2019), exopolysaccharides can also
serve to protect the fungi from host immune responses. One strategy used by fungi to
tip the scales in favor of immune evasion consists in concealing the most immuno-
genic epitopes with other less immuno-reactive exopolysaccharides (Steele et al.
2005; Beaussart et al. 2015). In A. fumigatus and C. albicans, one of the most
immunogenic exopolysaccharides is the b-glucans, located in the cell wall of
A. fumigatus (Fesel and Zuccaro 2016) and in the cell wall and biofilms of C. albicans
(Ene et al. 2015; Gulati and Nobile 2016). b-glucans are recognized by C-type lectin
receptor Dectin-1 leading to a wide range of antifungal responses including regulation
of leukocyte phagocytosis, phagolysosomes recruitment and maturation, production
of reactive oxygen species, activation of autophagy, and induction of pro- and
anti-inflammatory cytokine secretion (Drummond and Brown 2011).

In A. fumigatus, b-glucans are hidden by rodlet proteins in resting conidia.
b-glucan concealment is therefore required during germination and hyphal growth
(Beauvais et al. 2013). During early conidia swelling and germination, a-glucans
are thought to serve to conceal b-glucans. Consistent with this hypothesis, the
a-glucan-deficient triple Dags mutant is more easily phagocytosed and killed by
mouse alveolar macrophages (Beauvais et al. 2013). Concealing b-glucans with
a-glucans exploits both the fact that no mammalian receptors have been identified
to date for this polymer (Snarr et al. 2017b), and that a-glucans fail to induce
differentiation of T cells due to their inability to induce large amounts of T-cell
polarizing cytokines (Stephen-Victor et al. 2017). In growing hyphae, b-glucans are
concealed by GAG (Gravelat et al. 2013). Although no immune receptor for GAG
has yet to be identified, GAG mediates many immunosuppressive effects during
infection, including the induction of neutrophil apoptosis, and IL-1 receptor
antagonist secretion (Rambach et al. 2015; Eisinger et al. 2018; Gresnigt et al.
2014). GAG also serves to protect hyphae from neutrophil extracellular traps
(NET) killing via a potential electrostatic repulsion of the cationic antimicrobial
peptides present within the NETs by GAG and thus protecting A. fumigatus from
their effects (Lee et al. 2015).

In C. albicans, the mannans within the MGCx serve to mask the glucans from
the immune system (Mora-Montes et al. 2010; Graus et al. 2018). The presence of
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the MGCx has been demonstrated to inhibit the formation of NETs and the pro-
duction of ROS which would normally kill the C. albicans (May et al. 2016;
Kernien et al. 2017; Xie et al. 2012; Urban et al. 2006).

3.2 Biofilm and Exopolysaccharide-Related Resistance
Mechanisms to Antifungals

Five families of antifungals are today available: the polyenes, the azoles, the
echinocandins, the pyrimidines analogues, and the allylamines (Denning and Hope
2010). Despite this diversity of therapeutic options, fungal infections remain a
threat to human health. Biofilms contribute to the failure of antifungal therapy as
successful eradication of biofilm-associated fungi requires concentration of
antimicrobials that are higher than the ones required to kill planktonic cells, and are
usually toxics to the host (Rasmussen and Givskov 2006). The resistance mecha-
nisms best linked to fungal biofilms center around prevention of antifungals
reaching their intracellular targets (Van Acker et al. 2014).

3.2.1 Drug Penetration and Sequestration

The biofilm matrix provides an important physical barrier limiting the penetration
of antifungals to fungal cells within the biofilm either through limiting the pene-
tration of antifungals or binding and sequestering these molecules (Nett and Andes
2017).

Candida b-(1,3)-glucans can mediate the sequestration of amphotericin B, azoles
and flucytosine (Müller 2014; Mitchell et al. 2013; Nett et al. 2007). B-(1,3)-
glucans interact physically with antifungal such as amphotericin B (Vediyappan
et al. 2010), and the deletion of genes involved in the synthesis or modification of
the b-(1,3)-glucans such as fks1, blg2, phr1, or xog1 impairs the ability of the
biofilm to protect the cells from antifungals (Nett et al. 2010; Taff et al. 2012).
However, the low quantity of b-(1,3)-glucans in C. albicans biofilm to about 0.1%
(Zarnowski et al. 2014) suggests that other molecules may be involved in this
process. Indeed, two other molecules were reported to mediate antifungal seques-
tration: Extracellular DNA for which role in resistance to amphotericin B was
established (Martins et al. 2012; Panariello et al. 2019), and MGCx for which a role
in resistance to fluconazole was demonstrated (Dominguez et al. 2018).

In A. fumigatus, cationic hyphal-associated GAG has been reported to limit the
uptake and antifungal effects of posaconazole (Snarr et al. 2017a). GAG-mediated
enhancement of resistance to amphotericin B and caspofungin was also reported;
however, the effects on intracellular penetration of these drugs were not studied
(Snarr et al. 2017a). Similar effects on caspofungin and amphotericin B resistance
have been reported with extracellular DNA (Rajendran et al. 2013).
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3.2.2 Efflux Pumps

A common mechanism of drug resistance is the upregulation of efflux pumps such
as ATP binding cassette (ABC) or major facilitator superfamily (MFS) transporters,
in order to prevent antifungals from reaching effective intracellular concentrations
(Goffeau 2008; Sanglard and Odds 2002). These efflux pumps have been found to
be overexpressed by cells in C. albicans and A. fumigatus biofilms (Ramage et al.
2002; Cannon et al. 2009). However, several reports demonstrated that these pro-
teins play a role largely during the establishment of the biofilm in order to protect
cells while the extracellular matrix is being synthesized and secreted (Ramage et al.
2002; Mukherjee et al. 2003; Watamoto et al. 2011).

3.2.3 Persister Cells

When fungal cells adhere to a substrate, they can switch to a dormant-like phe-
notype that is associated with multi-drug resistance. These cells are called persister
cells and are found exclusively in biofilms (Borghi et al. 2016; LaFleur et al. 2006).
The existence of such cells have been shown in A. fumigatus (Beauvais and Muller
2009), and in C. albicans biofilms (LaFleur et al. 2006). Although the relevance of
metabolic reprogramming in mediating persister cell resistance to antifungals is
somewhat controversial (Denega et al. 2019), metabolic changes in the cells sur-
viving antifungal treatments have been documented (Li et al. 2015). Persister cells
also exhibit increased resistance to reactive oxygen species (ROS) by multiple
mechanisms including limiting their production, direct detoxification, and inhibition
of the metabolic cascade resulting from ROS accumulation (Van Acker et al. 2014;
Li et al. 2015; Wuyts et al. 2018).

4 How Do We Fight Back?

Given the importance of biofilms in fungal infections, new therapeutics that target
these structures are crucially needed. There is an urgent need for effective
approaches preventing biofilm formation and innovative treatments to eradicate
existing biofilms.

4.1 Inhibitors of Biofilm

Inhibition of fungal adhesion to surfaces is one approach to prevent biofilm for-
mation. The study of biofilm development has identified A. fumigatus GAG the
C. albicans Als proteins, especially Als3, as key adhesins involved in biofilm
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formation of these fungi. Thus, the inhibition of their synthesis or function repre-
sents potential therapeutic opportunities.

The adhesive properties of GAG require deacetylation by the carbohydrate
esterase type 4 (CE4) Agd3 (Lee et al. 2016). The extracellular localization and the
fundamental role of this enzyme in virulence make Agd3 a promising therapeutic
target (Lee et al. 2016). The use of an N-acetylhexosamine polymer deacetylated by
a CE4 for adherence is not unique (Ostapska et al. 2018) and may have originated
in bacteria (Sheppard and Howell 2016). Pseudomonas aeruginosa Pel polymer and
the PelA deacetylase (Jennings et al. 2015), Listeria monocytogenes galactose
substituted poly-N-acetylmannosamine and the PssB deacetylase (Köseoğlu et al.
2015), and Staphylococcus aureus, Bordetella bronchiseptica, Streptococcus
pneumoniae, Escherichia coli with their PNAG and associated IcaB, BpsB, PgdA,
and PgaB deacetylases, respectively, (Cerca et al. 2007; Little et al. 2015; Vollmer
and Tomasz 2002; Itoh et al. 2008), are only a few of the bacterial species that
produce these types of adhesive polymers. Attempts to develop inhibitors of PNAG
deacetylases to inhibit bacterial biofilm adhesion have been reported (DiFrancesco
et al. 2018). GlcNAc derivatives bearing metal chelating group were developed and
reported a partial mixed inhibition mode in the low micromolar range (DiFrancesco
et al. 2018). However, no inhibition of biofilm formation was demonstrated with
these compounds to date. The development of Agd3-inhibitors has not been
reported to date.

Inhibition of Als protein function has been studied in the context of vaccination
with Als3 N-terminal protein (Fidel and Cutler 2011; Schmidt et al. 2012;
Casadevall and Pirofski 2018; Edwards Jr et al. 2018). Anti-Als3 scFv3 antibody
was found to inhibit the adhesion of C. albicans to cells (Laforce-Nesbitt et al.
2008), and the recombinant Als3 vaccine has recently shown promise in a clinical
trial for the prevention of vulvovaginal candidiasis (Edwards Jr et al. 2018). Other
efforts to prevent Candida biofilm have focused on the prevention of the mor-
phologic transition from yeast to hyphae (Raut et al. 2013, 2014; Morales et al.
2013) or the modification of surfaces to prevent fungal adherence. Two strategies
have been reported to prevent biofilm formation at the surface of medical device:
“lock therapies” in which the lumen of catheters devices are filled with high con-
centration of antifungals or ethanol (Cavalheiro and Teixeira 2018), or the “coat-
ing” of the device with antifungals or other antimicrobial compounds (Ceresa et al.
2015, 2016; Sroisiri and Boonyanit 2010). Each of these approaches holds promise,
but further pre-clinical and clinical studies are required to move these approaches to
clinical use.

4.2 Disruption of Biofilm

Studies of biofilm development have also yielded several promising strategies for
the treatment of established biofilms. Since the late 2000s, enzymes targeting
structural elements of biofilms have been reported able to disrupt biofilms and to
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potentiate antifungals. b-(1,3)-glucanase was the first enzyme used to disrupt C.
albicans biofilms and was reported to increase the activity of neutrophils and
efficiency of antifungals in vivo and in vitro (Nett et al. 2007; Tan et al. 2017,
2018). DNAase has also been found to exhibit activity against both C. albicans and
A. fumigatus biofilms (Rajendran et al. 2013; Martins et al. 2010) and enhanced the
activity of both caspofungin and the amphotericin B, but not fluconazole (Martins
et al. 2012).

A second enzyme-based strategy has been reported in which the glycoside
hydrolases Sph3 and Ega3 from the GAG biosynthetic pathway were repurposed as
anti-GAG therapeutics (Le Mauff et al. 2019; Bamford et al. 2019). Recombinant
hydrolase domains from these enzymes are able to degrade GAG and disrupt bio-
films (Le Mauff et al. 2019; Bamford et al. 2019). Hydrolase treatment was able to
attenuate the virulence of A. fumigatus in a mouse model of invasive disease (Snarr
et al. 2017a). In addition, glycoside hydrolase treatment improved antifungal effi-
ciency by improving intracellular uptake of these agents in vitro (Snarr et al. 2017a).

5 Conclusion

Fungal biofilms infections represent a great medical challenge. Over the last two
decades, the compositions, structures, and roles of individual biofilm components
have been elucidated; however, many more challenges remain. While our under-
standing of C. albicans biofilms has advanced greatly, A. fumigatus biofilms are not
as well understood and the synthesis and regulation of GAG have not been com-
pletely elucidated. Nonetheless, the advances in our understanding of fungal bio-
films are beginning to provide the first tools in the fight against these infections.
Such advances may also improve our abilities to fight polymicrobial biofilm-related
infections. Understanding mechanisms by which fungi build and maintain biofilms
will be invaluable in identifying future therapeutic and diagnostic targets for these
important diseases.
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Abstract Antifungal therapy is a critical component of patient management for
invasive fungal diseases. Yet, therapeutic choices are limited as only a few drug
classes are available to treat systemic disease, and some infecting strains are
resistant to one or more drug classes. The ideal antifungal inhibits a fungal-specific
essential target not present in human cells to avoid off-target toxicities. The fungal
cell wall is an ideal drug target because its integrity is critical to cell survival and a
majority of biosynthetic enzymes and wall components is unique to fungi. Among
currently approved antifungal agents and those in clinical development, drugs
targeting biosynthetic enzymes of the cell wall show safe and efficacious antifungal
properties, which validates the cell wall as a target. The echinocandins, which
inhibit b-1,3-glucan synthase, are recommended as first-line therapy for Candida
infections. Newer cell wall-active drugs in clinical development encompass
next-generation glucan synthase inhibitors including a novel echinocandin and an
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enfumafungin, an inhibitor of Gwt1, a key component of GPI anchor protein
biosynthesis, and a classic inhibitor of chitin biosynthesis. As the cell wall is rich in
potential drug discovery targets, it is primed to help deliver the next generation of
antifungal drugs.

1 Introduction

Fungal infections are a major global health problem with significant morbidity and
mortality (Brown et al. 2012). Invasive fungal infections cause life-threatening
meningitis, pneumonia, asthma, and mucosal diseases like oral and vaginal thrush.
Most serious invasive fungal infections are a consequence of underlying health
problems such as AIDS, cancer, stem cell or organ transplantation, and corticos-
teroid therapies with Cryptococcus, Candida, and Aspergillus species accounting
for most deaths (Brown et al. 2012). In all cases, the clinical management of
invasive fungal diseases requires effective antifungal therapy. In contract to bac-
terial infections, treatment options for fungi are limited. Current antifungal drugs
target, either directly or indirectly, the plasma membrane (azoles, polyenes), nucleic
acid biosynthesis (flucytosine), or cell wall (echinocandins). The paltry number of
targets represented and limited chemical classes available is problematic especially
as organisms with either acquired and inherent resistance to approved drugs are
increasingly encountered (Perlin et al. 2017). Yet, after decades of paltry drug
development, we are entering a renaissance for antifungal drugs, as new drug
candidates representing novel targets and chemical matter are in clinical develop-
ment (Perfect 2017). The cell wall has long been considered an ideal target for the
antifungal drug, and now, the nearly two-decade success of echinocandins as safe
and efficacious drugs for primary therapy and prophylaxis has validated its
importance, leading to next-generation products. The cell wall is a target-rich
structure that is ripe for new discovery.

2 Fungal Cell Wall as a Prime Antifungal Target

The cell wall is an essential structure that ensures the integrity of the fungal cell by
maintaining its rigidity and shape. Nearly 90% of the fungal cell wall is composed
of polysaccharides that are absent in humans (Latge 2007). Yet, far from static, it is
a highly dynamic structure that undergoes extensive remodeling during cell growth,
division, and maturation (Ene et al. 2015). The biological importance of the fungal
cell wall can be appreciated by the fact that nearly 20% of the yeast genome is
committed to the biosynthesis of the cell wall (Gow et al. 2017). These genes
include the carbohydrate-active enzymes (CAZymes) [http://www.cazy.org])
involved with the synthesis of glucans and chitin, cell wall remodeling glycohy-
drolases (e.g., glucanases, chitinases) and transglycosidases. Many of the core
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structural components are conserved across fungal genera, while other components
are species-specific (Gow et al. 2017). Maintaining the structural integrity of the
cell wall is of the utmost importance. The cell wall contains an integrated network
of environmental sensors allowing fungi to resist stress, osmotic pressure, or toxic
molecules (Latge 2010). Many of the critical cellular pathways have been eluci-
dated that modulate and protect the cell in response to cell wall stresses (Ene et al.
2015). The biosynthetic enzymes critical to forming and remodeling the cell wall
are unique to fungi and are not represented in humans. Hence, they serve as ideal
targets for pathogen-specific antifungal therapy. It is well established that genetic or
chemical modulation of major cell wall components, which alter the wall’s struc-
tural integrity, results in cell collapse and death. It is also imperative to understand
that the cell wall is the primary interface with its local environment within the
human host. As such, it plays a critical role in immune recognition and surveillance,
as it has many antigenic features that are important for health and disease (Hall and
Gow 2013).

Structurally, the cell walls of prominent fungal pathogens including the Candida
spp., Aspergillus spp., Pneumocystis, Cryptococcus, and endemic fungi have
important structural similarities that include a prominent backbone layer of the
glucose polymer b-1,3-glucan, as well as chitin and mannoproteins. Chitin is far less
prevalent in the wall, but it forms covalent cross-links with the b-glucan scaffold
contributing to the strength of the cell wall. The presence of b-1,3-glucan among
yeasts and molds as an essential scaffold component is a nearly universal feature.
Nevertheless, the cell walls of yeasts and molds are not the same, as their organi-
zation of associated structural components varies. Mannoproteins (30–40%) form
the outer lamella of the cell wall and are represented by glycosylphosphatidylinositol
(GPI)-modified proteins. They form covalent linkages to b-1,6-glucan while other
mannoproteins are linked to b-1,3-glucan. Cell wall proteins are often mannosylated
via O- and N-linkages that contribute to pathogenicity and cell wall dynamics (Hall
and Gow 2013). The outer layer is more variable among the fungi and accounts for
many of the phenotypic differences and diverse host interactions. The composition
and form of the cell wall often vary during growth and development. Yeasts such
as Candida and Pneumocystis jiroveci have an outer cell wall comprising highly
mannosylated glycoproteins that covers the inner wall. In A. fumigatus, a-1,3-glucan
(not found in yeasts) galactomannan, and galactosaminogalactan are found at
conidia stage, along with an outer layer of hydrophobins and melanin (Latge 2007
#675). In C. neoformans, a glutinous capsule of glucuronoxylomannan and galac-
toxylomannan occludes the polysaccharides (Gow 2017). Collectively, the core
structural carbohydrate elements, cross-linked polymers, and proteins create a highly
stable yet dynamic structure. The wide array of fungal-specific biosynthetic and
remodeling enzymes provides ideal targets for antifungal drug development and has
been exploited in the past decades. They now comprise the specific targets for some
of our most important antifungal drugs.
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3 Inhibitors of Glucan Synthase

1,3-b-D-Glucan synthase remains an attractive target for antifungal drug action
because it is present in many pathogenic fungi, which affords broad antifungal
spectrum. Also, since there is no mammalian counterpart, it is presumed that
compounds selectively inhibiting glucan synthase have little or no mechanism-
based toxicity. The b-1,3-D-glucan synthase is a multi-subunit enzyme complex that
catalyzes the transfer of sugar moieties from activated donor molecules to specific
acceptor molecules forming glycosidic bonds (Orlean 1982). Our understanding of
glucan synthase has come from genetic and biochemical studies in yeast (Douglas
et al. 1994; Sawistowska-Schroder et al. 1984) and more recently from studies of
FKS-resistant mutants from Candida spp (Park et al. 2005; Garcia-Effron et al.
2009a, b). The enzyme complex has at least two subunits, Fks and Rho. Fks is the
catalytic subunit and is encoded by three related genes, FKS1, FKS2, and FKS3.
FKS1 is essential in C. albicans but in C. glabrata and S. cerevisiae, genetic
disruptants are viable due to the paralog FKS2. These FKS2 genes are calcineurin
dependent and down regulated by FK506 (Eng et al. 1994). In Aspergillus, there is
a single FKS1 gene. Rho1p, a GTP-binding protein, found to copurify with Fks1p
in preparations of the enzyme purified by product entrapment, helps regulates the
activity of glucan synthase (Mazur and Baginsky 1996), most likely through Pkc1p
(Sekiya-Kawasaki et al. 2002), although the precise nature of the activation remains
unclear. The three known chemical classes of natural product inhibitors of 1,3-b-D-
glucan synthesis include the lipopeptides (echinocandins, arborcandins), the gly-
colipid papulacandins, and the terpenoids (e.g., enfumafungins) All glucan synthase
inhibitors are non-competitive with their biosynthetic substrate UDP-glucose
(Douglas 2001). The echinocandins have enjoyed the most clinical success, while
an enfumafungin is looming and is in late-stage clinical development. Finally,
poacic acid is a natural plant metabolite found in the lignocellulosic hydrolysates of
grasses that has antifungal activity, and it targets b-1,3-glucan synthesis by a
mechanism non-overlapping with echinocandins (Lee et al. 2018). It is not yet in
clinical development.

3.1 Echinocandins

The clinical success of the echinocandins, which can only be administered paren-
tally, has validated b-1,3-glucan synthase (GS) as an antifungal target. The
echinocandins are semi-synthetic cyclic hexapeptides with an amide-linked fatty
acyl side chain (Zambias et al. 1992). The early echinocandins showed potent
in vitro inhibition of glucan synthase with a pronounced affect only on Vmax

(Sawistowska-Schroder et al. 1984) and in vivo antifungal activity in murine
infection models of C. albicans (Bartizal et al. 1992) and Pneumocystis jiroveci
(Schmatz et al. 1991). They target and inhibit b-1-3-D-glucan synthase, and as such,

258 D. S. Perlin



they are broadly active against diverse Candida species, against which they are
fungicidal (Bartizal et al. 1997). In Aspergillus, echinocandins slow growth and
cause lysis of some growing tips resulting in altered the hyphal morphology (Kurtz
et al. 1994b). In vitro, the cells form rosette-type structures. Echinocandin-induced
alteration of the cell wall architecture enhances its immunoreactive properties in
Candida and Aspergillus, especially at low drug levels (Wheeler and Fink 2006;
Hohl et al. 2008). Echinocandin class drugs share a closely related overall chemical
structure but vary in the hexapeptide ring and the amide-linked side chains (Fig. 1).
Given their current two-decade long clinical history of safe and efficacious therapy,
echinocandins are now the IDSA recommended preferred antifungal agent for
treatment of candidiasis among high-risk patient populations (Pappas et al. 2016).

3.2 Early Echinocandin History

Papulacandins A–E, isolated from the fermentation broths of Papularia
sphaerosperma, inhibited b-(1,3)-D-glucan synthase and were first reported in 1977
(Traxler et al. 1977). They contained a benzannulated spiroketal unit, which is the

Fig. 1 Chemical structure for echinocandin drugs. All drugs are FDA approved except
rezafungin, which is in late-stage clinical development. The red circle indicates the choline ether
modification, which imparts its strong stability and half-life
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signature for many bioactive natural products including the current echinocandin
drugs. They showed narrow spectrum being highly high specific against yeasts but
largely inactive against filamentous fungi. Studies with a series of papulacandin
derivatives demonstrated that the fatty acid chain and the galactose residue were not
required for activity at the target site, but the long fatty acid tail was essential for
biological activity (Zambias et al. 1992). The echinocandins were introduced as a
broader activity cyclic peptide antifungal, which showed lysis of actively growing
C. albicans (Cassone et al. 1981; Kurtz et al. 1994a). They inhibit glucan synthase
activity by reducing the Vmax of the enzyme (Sawistowska-Schroder et al. 1984;
Garcia-Effron et al. 2009b). Cilofungin, a semi-synthetic analog of echinocandin B,
inhibited b-(1,3)-glucan synthase resulting in severe modifications of the cell wall
and cytoplasmic membrane of sensitive organisms. It was the first clinically applied
member of the echinocandin family (Taft and Selitrennikoff 1990). Ultimately,
cilofungin was supplanted by the current echinocandins caspofungin, micafungin,
and anidulafungin.

In 2001, the US Food and Drug Administration approved caspofungin for sal-
vage therapy for patients with invasive aspergillosis refractory to conventional
therapy. Subsequently, all three echinocandin drugs, caspofungin, micafungin, and
anidulafungin, were approved for the treatment of esophageal and invasive can-
didiasis, including candidemia, empirical therapy in febrile neutropenic patients and
prophylaxis in patients undergoing hematopoietic stem cell transplantation. The
echinocandins are largely inactive against Zygomycetes, Cryptococcus species, or
Fusarium species, which may reflect a reduced importance of b-(1,3)-glucan and/or
compensatory mechanisms to stabilize the cell wall. They are highly effective
against azole-resistant yeasts owing to their separate mechanism of action and the
fact that they are not substrates for multidrug transporters (Niimi et al. 2006).
Furthermore, echinocandins show activity against Candida biofilms (Bachmann
et al. 2002) albeit culture condition-dependent (Kucharikova et al. 2011). Despite a
common mechanism of action, the three echinocandins vary in basic pharmaco-
dynamic properties including metabolism, half-life, drug–drug interactions, and
pharmacodynamic targets (Lepak et al. 2015; Nett and Andes 2016). Echinocandin
drugs are only administered intravenous (IV) due to their high molecular weights,
low solubility, and poor absorption by the gastrointestinal tract. Fungicidal efficacy
correlates with the ratio of AUC:MIC, although there is also a concentration-
dependent (Cmax) killing (Nett and Andes 2016). All echinocandin drugs exhibit a
high degree of binding to plasma proteins (>99%) and distribute minimally to the
brain, gastrointestinal tract, and eye. The echinocandins have an excellent thera-
peutic index with a low potential for toxicity or drug–drug interactions (Chen et al.
2011).
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3.3 Echinocandin Drug Resistance

Echinocandin therapy is highly efficacious, but increasingly echinocandin drug
resistance is a threat to successful clinical management. Among C. albicans and
other Candida species, the frequency of resistance is relatively low at 1–3%, but
this is not true for C. glabrata, where resistance is more severe, often presenting as
multidrug resistance (Ostrosky-Zeichner 2013; Perlin et al. 2017). Echinocandin
resistance among C. glabrata isolates ranges from 3 to 5% in population-based
studies (Perlin 2015). Yet, some centers report rates of 10–15% (Alexander et al.
2013; Farmakiotis et al. 2014). Echinocandin resistance always arises de novo
during therapy and is associated with repeated or chronic drug exposure, although
resistance can follow brief drug exposure (Lewis et al. 2013). Colonization of C.
glabrata within the gastrointestinal (GI) tract and intraabdominal abscesses repre-
sents major internal reservoirs for infection. The global resistance problem is
expected to grow more severe as expanding numbers of patients are exposed to
antifungal prophylaxis, drugs like caspofungin are now generic and cheaper, and
new echinocandins are looming.

3.4 FKS Mechanism of Resistance

Clinical resistance resulting in breakthrough infections involves modification of Fks
subunits of glucan synthase (Park et al. 2005). Unlike azoles, echinocandins are not
substrates for multidrug transporters (Niimi et al. 2006). Resistance conferring
amino acid substitutions in Fks subunits induces elevated MIC values (Arendrup and
Perlin 2014) and reduces the sensitivity of glucan synthase (IC50) to drug by 100-
to >3000-fold (Garcia-Effron et al. 2009a). For most Candida spp., mutations occur
in two highly conserved “hot-spot” regions of FKS1. These limited regions
encompass residues (C. albicans) Phe641-Pro649 and Arg1361(Arendrup and Perlin
2014). Amino acid changes at Ser641 and Ser645 (C. albicans) are the most
prevalent (*90%) causing the most pronounced resistance phenotype (Arendrup
and Perlin 2014). In C. glabrata, mutations conferring resistance occur at conserved
positions in both FKS1 and FKS2 with S629P, F625S, D632E (FKS1) and S663P,F,
Y and F659S,V (FKS2) being the most prominent (Pham et al. 2014). Nearly
19 years after the FDA-approved caspofungin as a first-in-class echinocandin,
mutations in FKS conferring reduced sensitivity to drug are still the only mechanism
associated with Candida clinical failures (Shields et al. 2012; Perlin 2015; Shields
et al. 2012), and clinical breakpoints (CLSI and EUCAST) reflect this underlying
mechanism (Pfaller et al. 2011). Recently, a new mechanism independent of FKS
mutation has been elucidated in Aspergillus involving changes in the lipid
microenvironment of glucan synthases rendering it insensitive to echinocandin
drugs. This mechanism is also relevant for drug tolerance in Candida species
(Healey et al. 2012) and may explain the long-standing phenomenon of paradoxical
growth at high drug levels.
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3.5 Drug Resistance Emergence: Tolerance and Escape

Exposure of fungal cells to echinocandins leads to cell wall deformation resulting in
osmotic instability and death to most cells. Yet, in a typical infection (*109 cells),
a subset (*104−5) of cells survive and show drug tolerance over a wide range of
drug exposures. In vivo, this response is observed as drug stasis in target organs
(Slater et al. 2011). Ultimately, such cells have the potential to ultimately “escape”
drug action and form genetically stable FKS-resistant mutants resulting in clinical
failure. Drug resistance occurs following a progression of stages involving (1) cell
stress, (2) tolerance, and (3) drug (phenotypic) escape (Healey and Perlin 2018).
Tolerance reflects a repertoire of adaptive response mechanisms that stabilize the
cell wall against drug stress. Much of what is known about the genetics of cell wall
biosynthesis/remodeling comes from studies in S. cerevisiae (Lesage and Bussey
2006). Once the cell has sensed environmental changes, signaling cascades activate
transcriptional regulators, which modulate the expression of specific target genes
(Rosenwald et al. 2016). Among the different signaling pathways, the mitogen-
activated protein kinase (MAPK) cascades are well studied (Rispail et al. 2009)
consisting of a conserved cascade of kinases. For each cascade, a single MAPK
moves into the nucleus after being phosphorylated altering gene expression. The
major physiological activities assigned to MAPKs in fungi are cell wall biosyn-
thesis, osmoregulation, mating, and virulence. Sensor–transducer proteins Slg1/
Wsc1, Wsc2, Wsc3, Mid2, and Mtl1 detect damage and signal to Rom1/2 and
Rho1, which activates protein kinase Pkc1 causing a kinase cascade including Bck1
(a MAPKKK), Mkk1/2 (MAPKKs), and Slt2/Mpk1. Slt2 phosphorylates several
transcription factors, including Rlm1 and Swi4/6 turning on the expression of genes
encoding proteins responsible for the synthesis of the cell wall including FKS2/
GSC2 (Levin 2011). An important adaptive response is the upregulation of chitin
biosynthesis genes, CHS, and mobilization of chitin from internal stores to stabilize
the cell wall (Valdivia and Schekman 2003). In addition, the high-affinity calcium
uptake system signals some genes responsible for cell wall biosynthesis and plasma
membrane via the calcineurin-regulated transcription factor, Crz1, as well as HSP90
and its client proteins (Cowen and Steinbach 2008). Collectively, these adaptive
cellular pathways have the ability to stabilize cells in the presence of “fungicidal”
levels of echinocandins.

3.6 Echinocandins: The Next Generation

Rezafungin (formerly CD101) is a novel semi-synthetic echinocandin with
broad-spectrum activity and demonstrated high potency in vitro (Arendrup et al.
2018b) and in vivo activity against Candida spp., Aspergillus spp., Pneumocystis
spp., Trichophyton mentagrophytes, Trichophyton rubrum and Microsporum gyp-
seum. Rezafungin and comparator echinocandins (micafungin, caspofungin and
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anidulafungin) antifungal agents were evaluated for drug susceptibility by the
Clinical and Laboratory Standards Institute (CLSI) method against invasive fungal
isolates, including 531 Candida species and 56 Aspergillus spp., collected world-
wide Pfaller et al. 2017a, b). Rezafungin at � 0.12 lg/ml inhibited 95% of all C.
glabrata isolates and 100% of C. albicans, C. dubliniensis, C. tropicalis, and C.
krusei isolates. Typical of an echinocandins, Rezafungin, showed a high MIC
of � 4 lg/ml against C. parapsilosis. Rezafungin was comparable in activity to the
three echinocandin drugs against all Candida species except C. krusei, which was
fourfold less active with caspofungin. All isolates of A. fumigatus were inhibited by
Rezafungin at � 0.03 lg/ml (minimum effective concentration [MEC]), and all
four agents were highly active against A. fumigatus with MEC for 90% of isolates at
0.015–0.03 lg/ml. Similarly, a large multicenter evaluation of 2018 clinical
Candida spp isolates for drug susceptibility according to the European Committee
on Antimicrobial Susceptibility Testing (EUCAST) (E.Def 7.3.1) methodology
found that Rezafungin MICs (geometric MIC (GM-MIC) were lowest for
C. albicans (0.016, 0.002–0.125 lg/ml) and highest for C. parapsilosis (1.657,
0.063 ! 4 lg/ml); MICs for all other species were within these values (GM-MICs
0.048–0.055 lg/ml) (Arendrup et al. 2018b).

Like other echinocandins, it is an IV-only drug that targets and inhibits glucan
synthase (Zhao et al. 2016). It is under late-stage clinical investigation for targeted
therapy of candidemia and invasive candidiasis (Phase 3 ReSTORE), as well as
prophylaxis (Phase 3 ReSPECT) for invasive fungal infections, including Candida,
Aspergillus, and Pneumocystis. The FDA has designated rezafungin as a Qualified
Infectious Disease Product (QIDP) with Fast Track status and orphan drug desig-
nation. Rezafungin is a chemical analog of anidulafungin (Fig. 1) in which the
hemiaminal is replaced with a choline aminal ether that imparts greater stability and
solubility to the product parent compound (Krishnan et al. 2017). This chemical
stability imparts important pharmacokinetic and taxological advantages (Ong et al.
2016; Lepak et al. 2018), including a terminal half-life of approximately 130 h in
humans that allows for protracted interval dosing (Sandison et al. 2017). It has
demonstrable in vitro and in vivo potency that is either equivalent to or an
improvement upon that of comparator echinocandins (Krishnan et al. 2017). Its
chemical properties facilitate greater penetration of rezafungin into infected lesions
in an intrabdominal abscess model relative to micafungin (Zhao et al. 2017).
Rezafungin is subject to the same basic FKS resistance mechanisms as other
echinocandins. But because it can be dosed at a much higher level without toxicity,
it can overcome weaker phenotypes caused by certain FKS mutations (Bader et al.
2018) and may help prevent resistance emergence (Zhao et al. 2016) (Fig. 2).

3.7 Enfumafungin

Like the echinocandins, enfumafungins are potent inhibitors of glucan biosynthesis.
Chemically, they are a hemiacetal triterpene glycoside (Fig. 3) produced by
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Hormonema spp. associated with living leaves of Juniperus communis (Pelaez et al.
2000). The antifungal mode of action of enfumafungin and other antifungal
triterpenoid glycosides was determined to be the inhibition of (l,3)-b-D-glucan
synthase (Onishi et al. 2000). This potent class of glucan synthase inhibitors with
favorable solubility characteristics which has resulted in Ibrexafungerp (formerly
MK3118 and SCY-078) is a semi-synthetic derivative of the enfumafungin being
developed as a new class of b 1,3-glucan synthesis inhibitors with both oral and
intravenous antifungal treatment for Candida and Aspergillus species fungal
infections.

Fig. 2 Evolution of echinocandin resistance. Multistep cellular processes influencing the ability
of a fungal cell to adapt to echinocandin drug exposure resulting in the formation of phenotypic
FKS escape mutants that are refractory to drug and cause clinical failures (Healey and Perlin 2018)

rrezafungin

Fig. 3 Structures of
Ibrexafungerp, a
semi-synthetic enfumafungin
derivative
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Using both CLSI and EUCAST methodologies for antifungal susceptibility
testing, it was broadly active against all Candida and Aspergillus species with MIC
values of � 1 µg/ml and � 0.015 µg/ml against clinical isolates of 7 Candida
spp. and 40 Aspergillus spp., respectively. It showed similar potency to caspofungin
against C. albicans, C. tropicalis, C. parapsilosis, and C. krusei, but it was
eightfold more potent than caspofungin against C. glabrata strains (Pfaller et al.
2017a, b; Lamoth and Alexander 2015; Schell et al. 2017). Ibrexafungerp has both
IV and oral formulations, which distinguishes it from IV-only echinocandins. It is
currently in development for the treatment of fungal infections caused primarily by
Candida and Aspergillus species. It has demonstrated broad spectrum of antifungal
activity, in vitro and in vivo, against multidrug-resistant pathogens, including azole-
and certain echinocandin-resistant strains with prominent fks mutations
(Jimenez-Ortigosa et al. 2014, 2017). The FDA has granted QIPD and Fast Track
designations for the formulations of SCY-078 for the indications of invasive can-
didiasis (IC) (including candidemia), invasive aspergillosis (IA), and VVC, and has
granted Orphan Drug Designation for the IC and IA indications. It has in vivo
activity against Aspergillus and Candida (Ghannoum et al. 2018; Lepak et al.
2015), including against multidrug-resistant (MDR) species Candida auris
(Ghannoum et al. 2019). Ibrexafungerp is currently in Phase 3 clinical development
for the treatment of multiple serious and life-threatening invasive fungal infections
caused by Candida, Aspergillus, and Pneumocystis species, as well as efficacy
against vulvovaginal candidiasis (VVC) (Larkin et al. 2019). Ibrexafungerp, like
other enfumafungins, is not in the echinocandin chemical class. Accordingly, it is
highly active against strains of C albicans and C. glabrata with prominent fks
hot-spot 1 mutations conferring echinocandin resistance (e.g., S645F in C. albi-
cans.) However, it showed markedly less susceptibility against prominent
N-terminal hot-spot 1 mutations (e.g., S641F) that also confer echinocandin
resistance suggesting that there may be shared but non-identical binding domain for
Ibrexafungerp and echinocandins for inhibition of glucan synthase. Further support
for this view has come from detailed in vitro selection of resistant mutants in C.
glabrata in which mutations common to echinocandin resistance were found, but
new mutations outside the hot-spot regions were identified. The mutations con-
ferred both elevated MIC values and several log-fold decreases in sensitivity to
drug in glucan synthases kinetic inhibition studies (Jimenez-Ortigosa et al. 2017).

4 Inhibitors of Glycosylphosphatidylinositol

Glycosylphosphatidylinositol (GPI) forms a lipid anchor for many cell-surface
proteins. It is a protein posttranslational modification with a glycolipid and found
widely in eukaryotes. (Kinoshita 2016). After GPI attachment to proteins, the GPI
anchor is remodeled, which regulates the trafficking and localization of
GPI-anchored proteins. In fungi, GPIs are transferred to selected glycoproteins that
are then transported to the plasma membrane, where they remain anchored to the
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outer surface of the plasma membrane via the GPI or they become cross-linked to
the cell wall. The GPI anchor is assembled on a phosphatidylinositol lipid in the
endoplasmic reticulum where it is covalently attached to a protein’s carboxyl ter-
minus. The GPI backbone consists of phosphatidylinositol, glycans comprising
glucosamine and mannoses (n = 3), and a terminal phosphoethanolamine, which is
amide-bonded to the carboxyl terminus of the protein during GPI attachment. The
lipid moiety of the GPI anchor can be a 1-alkyl-2-acyl phosphatidylinositol, diacyl
phosphatidylinositol, or inositol-phosphoceramide (Kinoshita 2016). GPI biosyn-
thesis is essential for fungal growth. The GPI proteins are secreted to the cell
surface, where they may remain bound to the plasma membrane or, more often,
cross-linked to b-1,6-glucan polymers of the cell wall. There are important func-
tional differences in the GPI anchor process that distinguish fungi from mammalian
cells, including Gwt1-dependent acylation of inositol and Mcd4-mediated ethano-
lamine phosphate (EtNP) addition to mannose 1 (Man1) of the GPI core despite the
presence of human homologs Pig-W and Pig-N (Pittet and Conzelmann 2007).
These properties make this process in fungi desirable as an antifungal target.
Utilizing a chemical genomics-based screening platform, novel inhibitors of Gwt1
and Mcd4 were identified with potent antifungal properties (Mann et al. 2015).

Gwt1p is a membrane protein predicted to have 13 predicted transmembrane
domains with the amino and carboxy termini facing luminal and cytoplasmic sides of
the endoplasmic reticulum (ER) (Fig. 4). Inositol acylation is believed to occur on the
luminal side of the ER membrane (Sagane et al. 2011). Utilizing a chemical
genomics-based fitness screening platform forC. albicans,Mann et al. 2015 identified
novel inhibitors of Gwt1 and a second enzyme in the glycosylphosphatidylinositol
(GPI) cell wall anchor pathway, Mcd4 (Mann et al. 2015). In 2011, E1210, 3-(3-{4-
[(pyridin-2-yloxy)methyl]benzyl}isoxazol-5-yl)pyridin-2-amine, discovered by the
Tsukuba Research Laboratories of Eisai Co., Ltd., was described as a new first-
in-class, broad-spectrum antifungal with a novel mechanism of action involving
inhibition offungal GPI biosynthesis. It showed efficacy inmurine infectionmodels of

(a) (b)

AAPX001A

Fig. 4 Inhibition of GPI-anchor protein biosynthesis. a Chemical structure of APX001A.
b Putative GPI-anchor protein biosynthetic pathway and role of Gwt1 (Adapted from Sagane et al.
2011.)
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oropharyngeal and disseminated candidiasis, pulmonary aspergillosis, and dissemi-
nated fusariosis (Hata et al. 2011).

APX001 is a first-in-class, broad-spectrum antifungal agent for the treatment
of invasive fungal infections. It is the N-phosphonooxymethyl prodrug of
APX001A (2-amino-1-((phosphonooxy)methyl)-3-(3-((4-((2-pyridinyloxy)methyl)
phenyl)methyl)-5-isoxazolyl) -pyridinium) (Fig. 4) (Matsukura 2013); it has
received FDA’s Orphan Drug designation for six different fungal infections and is
classified as a Qualified Infectious Disease Product in the USA. APX001A is active
against major pathogenic fungi including Candida species (except C. krusei),
Cryptococcus neoformans, Aspergillus species, and other molds like Fusarium and
Scedosporium (Kinoshita 2016). In an in vitro susceptibility study of 1706 con-
temporary clinical fungal isolates collected in 2017 from 68 medical centers
worldwide using the CLSI reference broth microdilution method, APX001A was
more potent than conventional azole and echinocandin antifungal agents (Pfaller
et al. 2019). It displayed highly potent MIC50/90 values of 0.008/0.06 lg/ml against
Candida species that were 1–2 log orders more sensitive than existing antifungal
agents. APX001A was � eightfold more active than fluconazole against C. neo-
formans var. grubii and showed comparable activity to the echinocandins with
Aspergillus spp. APX001A was also highly active against uncommon species of
Candida and rare molds, including 11 isolates of Scedosporium spp. Finally,
APX001A demonstrated potent in vitro activity against recent fungal isolates,
including echinocandin- and fluconazole-resistant strains (Pfaller et al. 2019). In a
related study, Arendrup et al. (2018a) reported that APX001A was highly active
against most Candida species including drug-resistant Candida auris and Candida
glabrata, although it was less active on C. krusei and C. norvegensis. Some
non-wild type isolates were fluconazole resistant, and a correlation was observed
between APX001A and fluconazole MICs across all species except C. guillier-
mondii and C. auris. This raises the prospect that APX001A may be a substrate for
drug efflux transporters induced in the azole-resistant strains. Azole resistance in C.
auris correlates with specific amino acid mutations in Erg 11 (Healey et al. 2018),
and as such, APX001A is active in vivo against drug-resistant C. auris (Hager et al.
2018). APX001 shows wide tissue distribution in rats and monkeys including the
brain (Mansbach et al. 2017). Importantly, treatment with APX001 leads to a
significant reduction in brain CFU in both a rabbit model of hematogenous C.
albicans meningoencephalitis and a mouse disseminated C. auris model (Hager
et al. 2018). APX001A has good in vitro activity against the mold form of
Coccidioides with a potent MEC90 of 8 ng/ml (Viriyakosol et al. 2019). Finally,
APX001 is highly effective in murine models of invasive pulmonary aspergillosis
(Gebremariam et al. 2019). APX001 is being developed as both an IV and oral
formulation, which facilitates IV treatment within the hospital setting and
step-down oral treatment after patient discharge. In recently completed Phase 1
studies, both formulations were well tolerated and showed favorable safety profile
in Phase 1 studies with a low proclivity for clinically relevant drug–drug interac-
tions. A Phase 2 study is being conducted in patients with candidemia, as well as an
additional Phase 1b study in patients who are neutropenic (e.g., acute leukemia
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patients receiving chemotherapy) and at risk of fungal infections. Finally, the nature
of resistance resulting in therapeutic failures is unknown at this stage. Mutations in
GWT1 can lead to higher MIC values, and C. krusei is inherently resistant to drug
suggesting that over-expression of certain drug pumps may be a factor for emerging
resistance.

5 Inhibitors of Chitin Synthesis

Chitin is an essential structural component of fungal cell walls and septa, and it is
synthesized by multiple chitin biosynthetic enzymes. As chitin is not found in
human cells, it has been a long-standing attractive target for antifungal therapy
(Ruiz-Herrera and San-Blas 2003). Chitin synthesis is catalyzed by the transfer of
GlcNAc from UDP-GlcNAc to chitin by chitin synthase. In Candida albicans,
chitin is synthesized by a family of four isoenzymes, which comprise three separate
classes of chitin synthase enzymes, Chs1 (class II), Chs3 (class IV), Chs2 and Chs8
(class I) (Lenardon et al. 2010). The two class I enzymes, Chs2 and Chs8, are
responsible for the majority of chitin synthase activity (Preechasuth et al. 2015).
Class I enzymes reinforce cell wall integrity during early polarized growth.

Polyoxins and Nikkomycins are two structurally related groups of secondary
metabolites that are selective inhibitors of chitin synthetase. The polyoxins (poly-
oxin A, B, D) and nikkomycins (nikkomycin X, Z) described in the 1960s and
1970s are peptide–nucleoside compounds produced by Streptomyces cacaoi and
Streptomyces tendae, respectively (Zhang and Miller 1999). They are structural
similarity to UDP-N-acetylglucosamine (Fig. 5), and the precursor substrate for
chitin and both has comparable in vitro potency against isolated chitin synthetases
from a variety of fungi.

They are competitive inhibitors of Chs2, Chs1, and Chs3 (Cabib 1991;
Gaughran et al. 1994). In yeasts, nikkomycin Z enters the cell via distinct peptide
transport systems (McCarthy et al. 1985). Extensive efforts over the decades, nei-
ther polyoxins nor nikkomycins, have been developed to treat common Candida

Nikkomycin ZUDP-N-acetylglucosamine

Fig. 5 Chemical structure for UDP-N-acetylglucosamine and Nikkomycin Z
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and Aspergillus invasive infections. This most likely reflects the complexity of the
chitin synthase enzymes and the dynamic and resilient nature of the cell wall stress
responses. However, recently Nikkomycin Z has been advanced as a first-in-class
antifungal drug for Coccidioidomycosis (Valley Fever). In ongoing multi-dose
human safety Phase I trials, nikkomycin Z has thus far showed little or no toxicity.
This agent also had previously demonstrated in vivo activity in mouse models of
histoplasmosis (Goldberg et al. 2000) and blastomycosis (Clemons and Stevens
1997). The US Food and Drug Administration (FDA) granted nikkomycin Z as a
“qualifying infectious disease product” (QIDP). Resistance to nikkomycin can
occur through a defect in the one of the transporters for dipeptides (Yadan et al.
1984), as well as in Gig1, which may play a role GlcNAc metabolism (Gunasekera
et al. 2010).

6 Conclusion and Perspective

The clinical success of the echinocandin drugs has validated the importance of the
cell wall as a prominent target for safe and efficacious antifungal therapy. In par-
ticular, direct inhibition of b-(1,3)-glucan synthase has emerged as an important
focal point for current drug development with a new long-acting echinocandin and
an orally available enfumafungin nearing clinical approval. The current
echinocandin drugs are limited by spectrum, delivery by IV-only route, limited
tissue distribution, and emergence of drug resistance. These limitations are sub-
stantially addressed by these newer agents. The new Gwt1 GPI anchor protein
inhibitor also overcomes many of the limitations of echinocandins with high
potency and activity against a range of fungi including Aspergillus, other molds,
and Cryptococcus. Finally, after decades of investment, nikkomycin Z with its
potent inhibition of chitin biosynthesis is poised to have a significant impact on
difficult to treat endemic fungi. Other important targets in the cell wall ripe for
discovery include b-1,6-glucan synthase or other enzymes involved in the inter-
connections of cell wall glucans, which have lead inhibitors but have not been
developed (Kitamura et al. 2009).

The importance of the wall to the fungal cell is also reflected by the fact that
numerous stress-response pathways have evolved to maintain its integrity. These
pathways, which rapidly sense wall insult and injury, play a critical role in adap-
tation of the cell to cell wall-active drugs. This drug-adapted tolerance state pre-
disposes the cell for genetically induced breakthrough resulting in clinical drug
resistance. Intervening in the tolerance pathways may be an important adjunct for
cell wall-directed therapies to prevent downstream drug resistance. The complexity
of the cell wall and its biosynthetic machinery provides a fertile landscape for drug
discovery as numerous essential targets abound. Yet, equally important, the cell
wall houses numerous non-essential targets that are critical for host recognition and
targeting these virulence components may be a highly productive route for new
antifungals that can be used for therapy and prophylaxis. The lesson of current
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cancer immunotherapy is that non-essential virulence targets can be easily modified
with a new generation of biologics (e.g., antibodies) and cell therapy.

Finally, it is time to consider the use of combination therapy involving multiple
cell wall targets to address difficult to treat infections, including certain molds.
Combined inhibition of b-(1,3)-glucan synthase by echinocandins and chitin syn-
thase with nikkomycin Z has a profound impact on cellular morphology that sig-
nificantly impact viability and pathogenicity (Cheung and Hui 2017).
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Abstract Proper structure and function of the fungal cell wall are controlled by
metabolic processes, as well as an interplay between a range of cellular organelles.
Somewhat surprisingly, mitochondrial function has been shown to be important for
proper cell wall biogenesis and integrity. Mitochondria also play a role in the sus-
ceptibility of fungi to cell wall-targeting drugs. This is true in a range of fungal
species, including important human fungal pathogens. The biochemical mechanisms
that explain the roles of mitochondria in cell wall biology have remained elusive, but
studies to date strongly support the idea that mitochondrial control over cellular lipid
homeostasis is at the core of these processes. Excitingly, recent evidence suggests
that the mitochondria–lipid linkages drive resistance to the echinocandin drug
caspofungin, a clinically important therapeutic that targets cell wall biosynthesis.
Here, we review the state of affairs in mitochondria–fungal cell wall research and
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propose models that could be tested in future studies. Elucidating the mechanisms
that drive fungal cell wall integrity through mitochondrial functions holds promise
for developing new strategies to combat fungal infections, including the possibility
to potentiate the effects of antifungal drugs and curb drug resistance.

1 Introduction

It is estimated that around 300 fungal species are pathogens of humans
(Hawksworth and Lücking 2017), with Candida, Aspergillus, Cryptococcus and
Pneumocystis being the most common causes of deadly infections (Brown et al.
2012). Serious fungal infections primarily occur in immunocompromised individ-
uals, for example upon cancer chemotherapy-associated neutropenia or with
long-term corticosteroid therapy. Apart from this, hospital procedures, such as
central venous catheters and surgeries that break down mucosal barriers also
increase the risk of contracting a fungal infection (Perlroth et al. 2007).

Most human fungal pathogens are opportunistic and are either environmental or
human commensal species. In their natural habitats, fungi have evolved to be
exceptionally well adapted to rapid changes in nutrient supply. This serves them well
in the situation of infection, as the availability of many nutrients is limited in the
human host (Miramón and Lorenz 2017). The possibility to quickly adjust their
metabolism to the conditions they are facing helps fungi survive inmany different host
niches. Consistent with this, mitochondria have been shown to be important for
virulence of human fungal pathogens, reviewed by Calderone et al. (2015) and
Shingu-Vazquez and Traven (2011). Mitochondria play several functions in fungal
virulence, including in the biology of cell walls, which is the topic that we review here.

The mechanisms that control cell wall biogenesis, remodeling and integrity have
been the focus of intense research because this structuremaintains viability of the fungal
cell and further promotes host cell attachment, invasion, immune recognition and the
response of fungi to a major class of antifungal drugs, the echinocandin inhibitors of
b-1,3 glucan synthase. The inner wall structure is composed of chitin, b-1,3 glucan and
b-1,6 glucan (Gow et al. 2017; Latgé 2007). While the inner core is very similar in
different fungal species, the outer layer varies and consists of mannosylated glyco-
proteins. The composition and structure of the cell wall determine the recognition of
fungi by the host’s immune system. Mannan, b-glucan, chitin and other cell wall
polysaccharides serve as pathogen-associated molecular patterns (PAMPs), which are
detected by monocytes, macrophages and neutrophils in the circulation and in infected
tissues via membrane-localized or soluble pattern recognition receptors (PRRs),
including TLR2, TLR4 and Dectin-1 (Netea et al. 2015). Recognition of PAMPs
promotes phagocytosis and, ideally, killing of the fungal cell. As such, the fungal cell
wall “reveals” the fungus as an invader to the host. In recent years, it has become
apparent that fungi have developed mechanisms to facilitate evasion of the immune
system by concealing (“masking”) their cell wall components in response to stimuli
such as non-fermentable carbon source and low oxygen (Ballou et al. 2017; Lopes et al.
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2018; Pradhan et al. 2018).These results indicate that the structure of the cellwall and its
organization respond to the metabolic state of the fungal cell. The nature of the envi-
ronmental changes causing cell wall rearrangements, chiefly fermentable versus
non-fermentable carbon source and the levels of oxygen (Ballou et al. 2017; Ene et al.
2012; Lopes et al. 2018; Pradhan et al. 2018) strongly points to the involvement of
mitochondria in this process. Indeed, several lines of evidence show that mitochondrial
defects trigger fungal cell wall dysfunction (Dagley et al. 2011; Qu et al. 2012; She et al.
2015, 2013; Sun et al. 2013). In this review, we will summarize the current state of
research and explore the models for how mitochondria might influence the fungal cell
wall. Of themajor human fungal pathogens, this topic has beenmost intensively studied
in Candida albicans, which is why this organism will be the predominant model of
choice in this review. It is reasonable to expect that much of our understanding of
mitochondrial roles in cellwall biologywill be broadly applicable across fungal species.

2 Metabolic Aspects of Cell Wall Biogenesis and Links
with Mitochondrial Functions

Cell wall biogenesis is a metabolically challenging process, which requires the
biosynthesis and remodeling of complex carbohydrates, a regulated interplay of
several organelles, intracellular transport and trafficking processes and the function
of multiple signaling pathways that respond to cell wall dysfunction. The building
blocks of the cell wall are directly linked to metabolism; for example, glucan is a
polymer of glucose, chitin is a polymer of N-acetyl-glucosamine, and the synthesis
of glycosyl-phosphatidylinositol (GPI) anchors present in many cell wall proteins
integrates carbohydrate and phospholipid metabolism. The main synthesizing
enzymes for chitin and glucan are found in the phospholipid environment of the
plasma membrane (meaning that the lipid environment could control their activity),
while mannosylation of glycoproteins occurs in endoplasmic reticulum (ER) and
the Golgi via the action of membrane enzymes, and GPI anchors for cell wall
proteins are attached in the ER. A key pathway to regulate cellular integrity and cell
wall maintenance is the protein kinase C (PKC) pathway, which is conserved in
most fungal species including human fungal pathogens (Rispail et al. 2009).
Furthermore, the Ca2+/calcineurin pathway, the HOG pathway and the RIM101
pathway all contribute to cell wall adaptation in response to environmental con-
ditions and signals (Du and Huang 2016; Román et al. 2019; Yu et al. 2015).

Mitochondria are metabolic hubs, and every eukaryotic cell contains several of
them. Mitochondria are best known for their role in oxidative phosphorylation as
energy providers, and are home for other major metabolic activities such as the citric
acid cycle. Mitochondria are also the location of the biosynthesis of certain amino
acids, iron–sulfur clusters and heme. Beyond that, mitochondria are intensively
involved in phospholipid metabolism as the majority of phosphatidylethanolamine
(PE) for cellular membranes is synthesized in the mitochondria. Mitochondrial
morphology is associated with correct organelle function. Under standard growth
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conditions, fungal mitochondria most commonly display a network of tubular
organelles. This structure is maintained via dynamic fusion and fission events, and
further to this, dynamic changes to mitochondrial morphology can occur in response
to stress, such as stress-induced fragmentation (Fannjiang et al. 2004).

It is also now appreciated that mitochondria do not exist in isolation within cells.
Instead, they are highly interconnected via so-called membrane contact sites, which
are often mediated by protein tethers and enable the functional connections between
mitochondrial membranes and other membrane structures in the cell, including the
plasma membrane, the ER, the vacuole, peroxisomes and also lipid droplets
(Lackner 2019; Scorrano et al. 2019). The contacts of mitochondria with other
organelles are important for the transfer of molecules, such as phospholipids, and
further serve to coordinate mitochondrial dynamics, division and inheritance (Jeong
et al. 2017; Kawano et al. 2018; Lackner et al. 2013). Multiple mitochondrial
tethers have been described in fungi, including ER-mitochondria encounter struc-
ture (ERMES) (Kornmann et al. 2009), vacuole and mitochondrial patch
(vCLAMP) (Elbaz-Alon et al. 2014) and mitochondria-ER-cortex anchor (MECA)
(Lackner et al. 2013), reviewed by Lackner (2019).

Mitochondrial activity influences the structure and organization of the fungal cell
wall, but the biochemical mechanisms behind this remain unclear. Substantial
research efforts are focused on solving the link between mitochondrial function,
mitochondrial morphology and cell wall structure. This interest is also fueled by the
demand for new antifungal drugs, as the mitochondrion would be an attractive drug
target. Even though mitochondrial factors are generally conserved between fungi
and humans, it is possible to identify fungal-selective inhibitors, as exemplified by
the cytochrome bc1 inhibitor Inz-1 (Vincent et al. 2016). Additionally, there are
mitochondrial proteins that play important roles in the biology of fungal pathogens,
but lack structural homolog in mammalian mitochondria or do not exist at all in
mammals. Examples are the ER-mitochondria tether ERMES characterized in C.
albicans and A. fumigatus (Becker et al. 2010; Geibel et al. 2017; Tucey et al. 2016)
and the C. albicans Goa1 protein needed for assembly of respiratory complex I in
the mitochondrial inner membrane (Bambach et al. 2009).

One of the early reports showing that mitochondrial function is connected to cell
wall biogenesis came from Lussier et al. (1997). In order to identify genes involved in
cell wall assembly, the authors screened transposon-mutagenized baker’s yeast
Saccharomyces cerevisiae for altered sensitivity to calcofluor white and discovered
mitochondria-related genes, such as the cytochrome c oxidase assembly factor
COX11, the phosphatidylglycerol synthase PGS1 (also known as PEL1) and IFM1,
which encodes the mitochondrial translation initiation factor. Deletion of these genes
resulted in hypersensitivity to calcofluor white and in some cases led to additional
phenotypes indicative of aberrant cell wall structure, such as sensitivity to zymolyase
and in the case of the pgs1mutant reduced N-acetylglucosamine (chitin) (it should be
noted that for the pgs1, mutant the transposon insertion was in the promoter region,
rather than the coding sequence) (Lussier et al. 1997). A few years later, Page et al.
identified 17 deletion mutants of S. cerevisiae with impaired respiration and ATP
metabolism that showed increased resistance to the K1 killer toxin (Pagé et al. 2003).
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The K1 pore-forming toxin is produced by K1 killer yeast strains and requires the
presence of b-1,6-glucan and O-mannosylation on the cell wall to cause cellular
damage (Hutchins and Bussey 1983). Mitochondrial mutants of several Candida
species and S. cerevisiae are hypersensitive to the echinocandins (Chamilos et al.
2006; Dagley et al. 2011; Sarinová et al. 2007) and can also be hypersensitive to cell
wall inhibitors such as congo red and calcofluor white (Dagley et al. 2011; Qu et al.
2012; She et al. 2016, 2015, 2013; Sun et al. 2013). Links between mitochondria and
the cell wall have also been made in C. neoformans through Vps45, an SM (Sec1/
Mun18) protein found to have partial mitochondrial localization and impact on
mitochondrial and cell wall functions (Caza et al. 2018). Recent work in A. fumigatus
demonstrated a link between respiratory complex I activity and the ability of cells to
grow at high concentrations of the echinocandin caspofungin (the so-called para-
doxical effect) (Aruanno et al. 2019). This suggests links between mitochondria
respiration and cell wall stress responses in this pathogenic species.

3 Mitochondrial Phospholipid Metabolism
and Cell Wall Structure

Mitochondria display a complex phospholipid membrane system consisting of an
outer and an inner mitochondrial membrane. These two membranes differ in
structure and lipid composition, which creates a specific environment for optimal
membrane and enzyme function. Mitochondria are able to synthesize some of their
phospholipids on their own, but they are also dependent on phospholipid supply
from the ER; for review see Tatsuta et al.(2014). The capacity of mitochondria to
synthesize their own lipids is restricted to phosphatidylglycerol (PG), cardiolipin
(CL) and phosphatidylethanolamines (PE). Enzymes synthesizing phosphatidyl-
choline (PC), phosphatidic acid (PA), phosphatidylinositol (PI) and phos-
phatidylserine (PS) are missing in mitochondria. Therefore, these organelles are
strictly dependent on the import of these lipids. In S. cerevisiae, mitochondria
represent the major source of cellular PE, although different routes for PE synthesis
exist in various organelles such as the Golgi apparatus, ER or lipid droplets. For PE
synthesis in mitochondria, PS is imported from the ER and the mitochondrial
phosphatidylserine decarboxylase Psd1p decarboxylates PS to form PE, which is
then redistributed within the cell (Birner et al. 2001; Clancey et al. 1993). While we
can assume this to be conserved, whether mitochondria-derived PE predominates in
other fungal species remains to be directly determined.

The contribution of mitochondria to phospholipid homeostasis of the cell has
been implicated in the regulation of cell wall integrity. Deletion of PGS1, the
mitochondrial phosphatidylglycerol phosphate synthase, deprives the cell of CL
and PG. Loss of PG and CL results in hypersensitivity to cell wall perturbing agents
such as caffeine and calcofluor white and reduces the b-1,6 and b-1,3 glucan levels
in S. cerevisiae (Zhong et al. 2005). In the pgs1 deletion mutant, chitin is mislo-
calized from bud scars to being along the cell walls and its levels increased
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threefold (Zhong et al. 2005). Upregulation of chitin levels to fortify the wall is a
typical response to cell wall dysfunction, and therefore, this phenotype further
underscores a role for PGS1 in cell wall integrity in S. cerevisiae. The reduction in
glucan levels in the pgs1 deletion mutant was attributed to decrease glucan synthase
activity and dysfunction of cell wall integrity pathway activation (Zhong et al.
2007). The function of CL in cell wall integrity is also shown by the fact that
inactivation of the cardiolipin synthase gene CRD1 in S. cerevisiae causes
hyper-susceptibility to caspofungin, which belongs to the echinocandin family of
antifungal compounds (Sarinová et al. 2007). CL is only found in mitochondrial
membranes (mainly in the inner membrane), posing the question of what its roles in
cell wall biogenesis might be. Although speculative at the moment, the answer
could be related to signaling for cell wall integrity. In mammalian cells, CL has
been shown to play important signaling functions at mitochondria (Dudek 2017),
and CL has also been implicated in cell cycle control signaling in S. cerevisiae
under conditions of respiratory deficiency (Chen et al. 2010a, b).

Deletion of PGS1 not only compromises phospholipid homeostasis in mito-
chondria, but also results in loss of the mitochondrial genome (mtDNA) and
therefore leads to respiratory deficient cells. In itself, loss of mtDNA introduces a
drastic change in cell wall composition compared to wild type cells, mainly
decreasing the levels of glucans (Zhong et al. 2005). Whereas the links between
mitochondrial function and cell wall integrity are undoubtable, the relationship
between mitochondrial membrane lipids and loss of mtDNA complicates the
mechanistic interpretation of the pgs1 mutant data—is the loss of cell wall glucan
resulting from changes in lipid composition or from respiratory deficiency? This
consideration is pertinent to other mitochondrial mutants as well, as many mito-
chondrial mutations have indirect effects on mtDNA stability, and mitochondrial
membrane lipids are intimately linked with the function and assembly of the res-
piratory chain.

In addition to PG and CL, PS and PE are also important for proper cell wall
biogenesis. The phosphatidylserine synthase Cho1 catalyzes the production of PS
from cytidyldiphosphate-diacylglycerol (CDP-DAG) and serine in the ER. PS
travels from the ER to mitochondria, where it serves as a substrate for mitochon-
drial Psd1 to form PE. Deletion of cho1 in C. albicans leads to cell wall integrity
deficiencies, which result in abnormalities of the ultrastructure of the cell wall,
higher levels of chitin and hypersensitivity to SDS and caspofungin (Chen et al.
2010a, b). The cho1 mutant has a drastic reduction in PS and also displays lower
levels of PE (due to PS being a PE precursor) (Chen et al. 2010a, b). A role for PE
in cell wall integrity in C. albicans has been demonstrated directly by the pheno-
types of the mutant that lacks mitochondrial PSD1, and the double mutant of PSD1
and the backup phosphatidylserine decarboxylase PSD2. These mutants are
hyper-susceptible to caspofungin and their reduced growth can be rescued by
osmotic stabilization (Chen et al. 2010a, b).
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4 Mitochondrial Morphology, Cell Wall Structure
and Links to Phospholipids

The lipid composition of mitochondrial membranes is connected to mitochondrial
morphology, as mutants with impaired mitochondrial lipid homeostasis can display
a disrupted structure of mitochondria (Dagley et al. 2011; Kornmann et al. 2009).
Several mitochondrial morphology mutants in S. cerevisiae show hypersensitivity
toward caspofungin and calcofluor white. A high proportion of these mutants is
connected to phospholipid homeostasis, including SAM37, MDM10, MDM35,
MDM31 and UPS2 (Dagley et al. 2011). Deletions of MDM10, MDM35, MDM31
and UPS2 result in altered levels of PE, and for MDM10 and MDM31 also in CL
(Kornmann et al. 2009; Osman et al. 2009; Tamura et al. 2009). Mdm10 is located
at the outer mitochondrial membrane as a subunit of the ERMES mitochondria-ER
tether, as well as a subunit of the sorting and assembly machinery (SAM) involved
in the biogenesis of mitochondrial outer membrane proteins (Kornmann et al. 2009;
Meisinger et al. 2004). Loss of the SAM subunit Sam37 in S. cerevisiae results in a
50% slower conversion of PS to PE and PC in mitochondria (Dagley et al. 2011),
showing a role for Sam37 in phospholipid homeostasis. Mdm31 is in the inner
mitochondrial membrane and shows genetic interactions with ERMES (Dimmer
et al. 2005), and Mdm35, found in the mitochondrial intermembrane space, also
contributes to phospholipid homeostasis (Osman et al. 2009; Tamura et al. 2009).

The functions of ERMES and SAM in cell wall functions have been further
explored in C. albicans. Deletion of the C. albicans SAM37 gene results in a cell
wall characterized by increased thickness, although it displays the same relative
levels of mannan, b-1,6 and b-1,3 glucans as the wild type (Qu et al. 2012). The
sam37 deletion strain is also avirulent in the mouse bloodstream infection model
(Qu et al. 2012). It should also be mentioned that deletion of Sam37 results in loss
of mtDNA (Qu et al. 2012). As C. albicans is considered a so-called petite-negative
organism, only cells which are able to maintain their mtDNA will survive.
Therefore, sam37 deletion mutants are slow-growing and only viable because a
proportion of cells kept their mtDNA and respiratory proficiency (Qu et al. 2012).
Conditional inactivation of the ERMES subunitMMM1 in C. albicans led to a rapid
change in mitochondrial morphology and loss of tubular structure (Tucey et al.
2016). Hyphae of the mmm1 mutant are of normal morphology with a tendency to
form shorter filaments, and the mmm1 mutant showed reduced exposed b-1,3
glucan on the cell wall possibly due to slower hyphal extension (Tucey et al. 2016).
Further indication of a role for ERMES in cell wall integrity is that C. albicans
mutants in the core subunits MMM1, MDM10 and MDM12 display higher sus-
ceptibility to caspofungin (Koch et al. 2017). Deletion of the C. albicans gene
encoding the mitochondrial GTPase Gem1, which is associated with ERMES in S.
cerevisiae, also resulted in loss of tubular mitochondrial morphology, cell wall
stress susceptibility and delayed activation of the cell wall stress signaling pathway
orchestrated by the kinase Cek1 (Koch et al. 2017). These data suggest links
between mitochondrial morphology and cell wall signaling in C. albicans.
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5 Models for How Mitochondrial Morphology and Lipid
Homeostasis Might Impinge on Cell Wall Integrity

The mechanisms by which mitochondria influence cell wall biogenesis via their
roles in phospholipid homeostasis and organelle morphology are not solved yet.
Some possibilities can be proposed (Fig. 1). It has recently been shown that pro-
teins associated with cell wall biogenesis are also located in mitochondria. Recent
proteome characterization in S. cerevisiae of highly purified mitochondria using
stringent criteria identified about 200 proteins that were not yet annotated as
mitochondrial proteins (Vögtle et al. 2017). Among them were the factors involved
in cell wall biogenesis such as Bgl2 (an endo-b-1,3 glucanase involved in cell wall
maintenance) and the glucanase Exg2, as well as b-1,3 glucanosyltransferases from
the GAS family (Gas3, Gas5) for which the precise roles in cell wall integrity
remain to be understood (Vögtle et al. 2017). Rho1, the GTP-binding protein that
regulates the activity of the b-1,3 glucan synthase Fks1 was also found to be
localized in mitochondria (Reinders et al. 2006; Renvoisé et al. 2014; Zahedi et al.
2006), and surprisingly so was Fks1 itself, although with low coverage (Sickmann

Fig. 1 Model for how mitochondrial morphology and lipids homeostasis might regulate cell
wall integrity. Cell wall biogenesis enzymes and various regulators of signaling are localized in
the plasma membrane. As such, the plasma membrane is the location of cell wall biogenesis and it
is important in signal transduction mechanisms responding to cell wall stress. Physical closeness
mediated by membrane contact sites between mitochondria, the ER and the plasma membrane (see
black box) might play a role in establishing a microenvironment and lipid composition that
promotes proper cell wall biogenesis and stress responses. In baker’s yeast S. cerevisiae, multiple
protein tethers have been described, which mediate membrane-to-membrane contacts with
mitochondria and bring them in proximity to other organelles, reviewed by Lackner (2019).
Membrane contact sites do not allow for membrane fusion, but the membranes are close,
from <80 nm to being significantly further apart (approximately 300 nm, such as in the case of the
plasma membrane tethering protein Num1 of the MECA complex) (Ping et al. 2016) and reviewed
by Scorrano et al. (2019). Disruption of mitochondrial morphology would be expected to impair
contacts with other organelles, which could in turn impact on the membrane-localized processes
that are important in cell wall biology (biosynthesis, integrity and stress responses).
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et al. 2003; Vögtle et al. 2017). Mitochondrial localization of these cell wall bio-
genesis factors or regulators is surprising, and it should be kept in mind that these
findings come from “omics” studies and future research will need to clarify if this is
a case of “localization” or “association” with mitochondria. Mitochondria are
known to be tethered to the plasma membrane via the MECA tether (Lackner et al.
2013). These membrane contact sites essentially bring mitochondria in physical
proximity to the location of cell wall biogenesis—the plasma membrane (Fig. 1).
By fluorescence microscopy, the MECA complex can be observed all around cell
periphery of yeast cells (S. cerevisiae), including at the mother-bud neck (Kraft and
Lackner 2017). To our knowledge, the MECA complex has not been visualized in
filamentous hyphal species, but it is worth noting that, for example in Neurospora,
mitochondria are found in high numbers at the growing hyphal tip (where cell wall
synthesis occurs) (Levina and Lew 2006). Fks1 is an integral plasma membrane
protein, and its regulator Rho1 also localizes to the membrane. It is possible that
their mitochondrial association is a result of their co-localization to membrane
contact sites between the mitochondrial outer membrane and the plasma membrane.
A speculative model might be that the lipid composition of mitochondrial mem-
branes, dynamic regulation of mitochondrial morphology and the impact of these
processes on mitochondria–plasma membrane contacts might play a role in con-
trolling the activity of these cell wall factors. Rho1 is an important regulator of the
PKC-dependent cell wall integrity pathway, and roles of mitochondrial PG and CL
have been proposed in PKC pathway activation in S. cerevisiae (Zhong et al. 2007).
Indeed, cell wall stress signaling fundamentally originates at the plasma membrane
and in C. albicans inactivation of the mitochondrial GTPase Gem1 delayed Cek1
pathway activation in response to cell wall stress (Koch et al. 2017).

The membrane linkages between mitochondria, the ER and the plasma mem-
brane could further facilitate the exchange of lipids and regulate the mitochondria–
lipids–cell wall linkages. We have previously proposed that mitochondrial effects
on phospholipid homeostasis might impact on the activity of glucan or chitin
synthases, which are integral plasma membrane enzymes (Dagley et al. 2011;
Shingu-Vazquez and Traven 2011). A recent example from Aspergillus fumigatus
showed an indirect way for mitochondria to influence the lipid composition of the
plasma membrane and with that the susceptibility of glucan synthase FKS1 to
caspofungin (Satish et al. 2019). Lipid profiling by mass spectrometry showed that
the growth with caspofungin triggers an increase in dihydrosphingosine and phy-
tosphingosine in lipid fractions containing Fks1, and the authors postulated that
these lipid changes trigger a distinct conformation of Fks1 and limit the interaction
with caspofungin (Satish et al. 2019). This effect of caspofungin on the lipid
microenvironment of Fks1 was linked to caspofungin-induced mitochondrial ROS
production (Satish et al. 2019). How exactly mitochondrial ROS leads to an altered
sphingolipid composition still needs to be investigated, but the proximity of
mitochondria, the ER and the plasma membrane places the relevant organelles
together. In S. cerevisiae, mitochondria-derived ROS activates TORC2 signaling
regulating the early steps of sphingolipid biosynthesis (Niles et al. 2014; Satish
et al. 2019), and sphingolipid homeostasis more generally has been connected to
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mitochondrial functions, including the mitochondria–nucleus signaling pathway
called the retrograde response that responds to mitochondrial dysfunction
(Spincemaille et al. 2014). Similar mechanisms might be involved in the caspo-
fungin–mitochondria–sphingolipids process described in A. fumigatus.

Mitochondrial lipid functions, particularly in PE synthesis, could further impact
on cell wall integrity via effects on GPI anchors. These anchors are added to
proteins in the ER via the transaminidase enzyme complex. This concept is sup-
ported by phenotypes of the sam37 mutant in S. cerevisiae, which shows slower
conversion of PS to PE and lower protein levels of the GPI-anchored b-1,3 glu-
canosyltraferase Gas1 (Dagley et al. 2011). This can be partially rescued by
exogenous ethanolamine, which can serve as a precursor for PE synthesis via the
non-mitochondrial Kennedy pathway (Dagley et al. 2011).

6 Mitochondrial Respiration and Cell Wall Structure

Yeasts use two different pathways to meet their energy demands, namely respiration
and fermentation. S. cerevisiae uses a combination of fermentation and respiration
with a strong preference toward fermentation even when oxygen levels are high;
whereas,C. albicans,C. parapsilosis,C. tropicalis and other related species continue
respiration even in the presence of high levels of fermentable sugar (Veiga et al. 2000).
C. albicans and related species possess the electron transport complexes I-V located in
the inner mitochondrial membrane and utilize the canonical electron transport chain
(ETC). They also harbor alternative oxidases (Aox1 and Aox2) permitting respiration
evenwhen the classical ETC is compromised (Aoki and Ito-Kuwa 1984).C. glabrata,
similarly to S. cerevisiae, does not possess a complex I (Koszul et al. 2003).

Fungal mutants deficient in mitochondrial respiration tend to exhibit hypersen-
sitivity to cell wall-targeting drugs, indicating that their cell wall structure and
organization are altered (Fig. 2). The contribution of complex I of the ETC toward
cell wall integrity is one of the best studied, especially the roles of the C. albicans
proteins Goa1, Nuo1, Nuo2 and Ndh51. The function of Goa1 likely lies in reg-
ulating the activity of complex I; whereas, Nuo1 and Nuo2 assist in the assembly of
this complex, and NDH51 is a complex I subunit. What makes these proteins of
special interest is that only Ndh51 is highly conserved in mammals, while GOA1 is
found only in the CTG clade of Candida spp., which includes most of the human
pathogenic Candida species (Bambach et al. 2009). Nuo1 is found in fungi, algae
and plants, and Nuo2 is fungal specific (She et al. 2015). Inactivation of the genes
GOA1, NUO1 or NUO2 results in reduced energy production, which is mainly
attributed to reduced function of complex I (She et al. 2015). Loss of any one of
these genes also results in increased ROS levels and, in case of GOA1, increased
sensitivity to congo red and calcofluor white (Li et al. 2016; She et al. 2013).
A transcriptomic analysis of C. albicans deletion strains of the genes GOA1, NUO1,
NUO2 and NDH51 confirmed that genes involved in cell wall biogenesis and
integrity were differentially regulated in all four mutants and showed that the loss of
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GOA1, NUO1 or NUO2 had more effect on cell wall-related pathways than the loss
of NDH51 (She et al. 2015). The absence of these three factors in mammalian cells
and their effect on mitochondria and cell wall integrity would make them acceptable
targets for new antifungal drugs. Therefore, several studies have been conducted
with more detailed analyses of the consequences of their loss on the cell wall.

A transcriptomics study showed that 86 genes involved in cell wall biogenesis,
integrity and adhesion including FKS1, PHR1 and PHR3 and the b-1,2 manno-
syltransferase BMT3 are downregulated in the goa1 mutant (She et al. 2013; Sun
et al. 2013). This accounts for about 5.4% of all downregulated genes (She et al.
2013). Of note, although the genes are related to cell wall functions, not all of the
86 genes encode cell wall proteins or biogenesis/remodeling factors, as genes
encoding factors related to the cell membrane, signaling, stress response and var-
ious proteins found to be antigenic are also included. Downregulation of these
genes does not come without consequences for the cell wall. In the goa1 mutant, the
outer cell wall surface comprising N-linked mannans is less fibrillar, fibrils are
shorter, and the inner cell wall is more electron transparent, but its diameter is
similar to wild type cells (She et al. 2016). The overall hexose content of the cell
wall in the goa1 mutant is reduced; however, b-1,3 glucan and chitin are less
affected (She et al. 2016).

Fig. 2 ROS induced by respiratory blocks impact on cell wall structure and drug resistance.
Genetic or biochemical inhibition of mitochondrial respiration triggers production of ROS.
Moreover, caspofugin has been shown to induce mitochondrial ROS production in A. fumigatus
(Satish et al. 2019). Intriguingly, mitochondrial ROS induction changes the sphingolipid
composition of the glucan synthase environment in the membrane, triggering caspofungin
resistance. ROS could further act as a signaling molecule for cell wall integrity.
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N-linked mannan/mannoproteins are important immunogenic moieties, and they
confer a net negative charge to the cell wall. While a wild type C. albicans cell wall
comprises high, intermediate and low molecular weight mannans, the goa1 mutant
lacks the high and intermediate weight mannans suggesting that either less of
mannan is synthesized or that mannan instability is occurring (She et al. 2016).
Furthermore, a reduction in b-mannosyl but not a-mannosyl linkages is observed
(She et al. 2016). While the glucan content is not affected in the goa1 mutant, its
structure could be. Compared to the wild type strain, in the goa1 mutant the
frequency of b-1, 6 glucan side chains is increased (two times higher), but the
chains display reduced length (She et al. 2016).

Considering the cell wall changes of the goa1 mutant, it appears that loss of a
functional complex I of the ETC, which goes hand in hand with a loss of energetic
capacity and metabolic flexibility of cells, appears to have very specific effects on the
cell wall (She et al. 2016). In agreement with the observed cell wall changes, the
goa1 mutant is phagocytosed less by mouse macrophages and neutrophils than wild
type C. albicans, but is killed as much (She et al. 2013). The goa1 mutant has
additionally shown to be non-responsive to hypoxia in terms of changes to the cell
wall that result in masking of b-glucan, which was not occurring in the mutant
(Pradhan et al. 2018). This provides a further mechanism by which mitochondrial
respiration would determine cell surface architecture in infection niches (where
hypoxia occurs), thereby influencing how the immune system detects C. albicans.
A detailed analysis of the cell walls of the nuo1 and nuo2 null mutant strains has still
to be conducted, but it is known that these strains are avirulent in a mouse model and
have a similar transcriptional pattern to the goa1 mutant (She et al. 2015).

Proteomic investigations of the goa1, nuo1 and nuo2 deletion mutants showed
that even though downregulation of the b-1,2 mannosyltransferases was observable
on a transcriptional level and phenotypic alterations in N-linked mannans were
measurable after the inactivation of GOA1, there were no alterations in b-1,2
mannosyltransferase protein amounts (She et al. 2018). Nevertheless, protein levels
of the alpha 1,3 mannosyltransferase Mnn15 were reduced, as were the levels of
proteins involved in phospholipid and ergosterol biosynthesis, which were even
more affected in the nuo1 and nuo2 mutants than in the goa1 mutant (She et al.
2018). These links between complex I, respiration and lipid homeostasis suggest
again that it might not always be possible to uncouple the various functions of
mitochondria with respect to cell wall biogenesis and integrity.

Respiration can also be inhibited chemically. In the context of therapy, however,
standard respiratory inhibitors, such as cyanide or antimycin A, cannot be used as
they are cytotoxic. To test the inhibition of respiration with a compound that is well
tolerated by humans, Duvenage et al. used the nitric oxide (NO) donor sodium
nitroprusside (SNP) to test the effects of respiration inhibition in C. albicans. SNP is
a widely used medication to lower blood pressure and might have the potential to be
repurposed as a drug against C. albicans. Nitric oxide (NO) released by SNP tran-
siently inhibits complex IV of the ETC. Duvenage et al. (2019) also investigated the
effects of inhibition of the alternative oxidases Aox1 and Aox2 on the cell wall of
C. albicans using salicylhydroxamic acid (SHAM). In contrast to the effects resulting
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from a loss of function of complex I, which modifies the cell wall in a way that leads to
less recognition of C. albicans by immune cells, transient inhibition of complex IV by
NO and additional inhibition of the alternative oxidases by SHAM, results in an
increased recognition by macrophages (Duvenage et al. 2019). Similar to loss of
function of complex I, treatment with SNP in combination with SHAM leads to
hypersensitivity to congo red and calcofluor white, indicating differences in cell wall
structure, but investigation of the cell wall revealed that the relative levels of chitin,
glucan and mannan were not affected (Duvenage et al. 2019). Only the outer cell wall
exhibited a reduction in thickness (Duvenage et al. 2019). Transcriptional analyses did
indeed identify downregulation of several genes involved in chitin synthesis and
organization. In contrast, genes in mannan and glucan biosynthesis and organization
were upregulated after exposure to SNP and SHAM. As there were no observable
changes in relative cell wall composition, differential expression of these genes likely
leads to cell wall rearrangements (Duvenage et al. 2019). In line with this assumption,
inhibition of complex IV by SNP leads to exposure of the normally hidden chitin layer
of the cell wall (Duvenage et al. 2019). In addition to chitin, b-1,3 glucan was also
more exposed on the cell surface as it was recognized by the receptor Dectin-1. All of
these changes are in accordance with the increased recognition by macrophages in
treated C. albicans cells.

Intriguingly, SNP and SHAM treatment led to caspofungin resistance and an
accumulation of lipid droplets (Duvenage et al. 2019). This effect is dependent on the
presence of the transcription factor Upc2, as deletion of UPC2 abolishes the resis-
tance to caspofungin of SNP and SHAM-treated cells (Duvenage et al. 2019). This
again provides a link between respiration and lipid homeostasis, as Upc2 is a reg-
ulator of ergosterol biosynthesis. As discussed above, mitochondrial ROS stress was
shown to trigger alterations to the plasma membrane lipids surrounding glucan
synthase Fks1, the target of caspofungin, and causes resistance to this drug in A.
fumigatus (Satish et al. 2019). Inhibition of complex IV and the alternative respi-
ratory pathway leads to changes in lipid metabolism as can be judged by the
appearance of lipid droplets on a microscopic level, on a transcriptional level
downregulation of CHO1 and CHO2 (indicating effects on phospholipid metabo-
lism), downregulation of the expression of ergosterol and linoleic acid biosynthesis
genes, and caspofungin resistance depended on UPC2 on a genetic level (Duvenage
et al. 2019). It is possible that changes in the lipid microenvironment of Fks1 are also
the reason for caspofungin resistance in C. albicans. It is not known whether these
changes in lipid metabolism are also driven by increased ROS stress that might be a
result of inhibition of complex IV and the alternative respiratory pathway.

Even though inhibition of complex IV by SNP caused increased macrophage
recognition due to exposure of chitin and b-1,3 glucan, virulence was increased in a
systemic mouse model, and the reason for this is rather surprising (Duvenage et al.
2019). SNP causes rapid activation of filamentation, while this effect is not
observable with SHAM-treated cells (Duvenage et al. 2019). The development of
hyphae is a key virulence trait of C. albicans. Several studies have indicated that
exogenous and endogenous nitric oxide levels influence the morphological switch
from yeast to hyphal growth of C. albicans. For example, exposure to SNP induced
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germination in several C. albicans wild type strains (Abaitua et al. 1999). It was
also shown that a deletion strain of YHB1, the main NO detoxifying enzyme in C.
albicans, results in hyper-filamentation possibly due to elevated endogenous NO
levels (Hromatka et al. 2005). We have recently shown that the restriction of
endogenous NO by scavengers inhibits the ability of C. albicans to filament (Koch
et al. 2018). In the same study, we demonstrated that the compound mdivi-1
triggers reprogramming of metabolism-related genes including a reduction in the
expression of genes important for mitochondrial respiration and lowers the levels of
endogenous NO (Koch et al. 2018). Collectively, these studies highlight the
complex interactions between mitochondrial activity, cell wall changes, immune
interactions and fungal cell morphology, which ultimately conspire to drive viru-
lence of C. albicans.

7 Summary and Future Directions

It is clear that metabolic pathways and mitochondrial functions regulate cell wall
structure of fungal pathogens. The challenge now is to understand the mechanistic
aspects and how these processes could be targeted therapeutically. For example,
while several fungal mitochondrial mutants display increased susceptibility to cell
wall inhibition and the echinocandin drugs, two recent studies, one in C. albicans
and another one in A. fumigatus, showed the opposite—that mitochondrial dys-
function can in some cases trigger echinocandin resistance (Duvenage et al. 2019;
Satish et al. 2019). Complex changes in cell wall structure have been reported as a
result of mitochondrial dysfunction, making it difficult to predict how a certain
mitochondrial mutation will affect cell wall structure and drug susceptibility.
Several years ago, in 2011, we wrote a review proposing that roles in ensuring
proper cellular lipid homeostasis underscore the functions of mitochondria in cell
wall biogenesis and drug susceptibility (Shingu-Vazquez and Traven 2011). This
prediction still holds—a leitmotiv in the studies that we discussed here is that the
changes in lipid pathways are common in mitochondrial mutants that show cell wall
phenotypes. Furthermore, a change in the lipid environment of glucan synthase
induced by mitochondrial dysfunction has now been directly implicated in resis-
tance to the echinocandin caspofungin, with potential clinical relevance (Satish
et al. 2019). It is interesting that it has been suggested that ROS production in
mitochondria impacts on lipid homeostasis and caspofungin susceptibility (Satish
et al. 2019). Blocks in the respiratory chain are known inducers of ROS, and
therefore, lipid homeostasis defects could underlie the cell wall phenotypes
observed in mitochondrial respiration mutants more broadly. In addition, we pro-
pose that, when thinking about mitochondria–cell wall–lipid functional networks,
we should keep in mind the physical connections between membranes in eukaryotic
cells. Mitochondria are physically tethered to several other organelles, including the
plasma membrane which is a critical site for cell wall biogenesis and cell wall stress
responses. While our model in Fig. 1 on how the membrane contact sites of
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mitochondria might promote cell wall biosynthesis and stress responses are spec-
ulative at the moment, we hope it will promote future research of the roles of
mitochondria in cell wall biology.

As discussed in this review, one key issue with understanding how exactly
mitochondria impact on the cell wall is the pleiotropic nature of mitochondrial
mutations. One experimental solution is to use conditional repressible mutants, in
which some of the direct and indirect effects of mitochondrial mutations might be
temporally separable. An example of this strategy from our own work is with the
ERMES complex in C. albicans, for which conditional inactivation revealed that a
mitochondrial morphology defect precedes fitness and lipid phenotypes (Tucey
et al. 2016). This allowed us to more directly link mitochondrial morphology to
virulence-related pathways (Tucey et al. 2016). We also note that in fungal and
mammalian species mitochondria act as a signaling platform, for example through
ROS production, but also through localization of important factors to mitochondria
under specific circumstances. The data showing that in S. cerevisiae several cell
wall biogenesis factors and regulators such as Rho1 localize to mitochondria are
intriguing, but it should be noted that these localization data come from
high-throughput studies, and it needs to be shown whether this is a true localization
or association with mitochondria. More directed approaches for testing mitochon-
drial association of these cell wall regulators in fungal pathogens under various
conditions should be done, and then roles in signaling studied were warranted.
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Abstract The fungal cell wall is an essential organelle that maintains cellular
morphology and protects the fungus from environmental insults. For fungal
pathogens such as Candida albicans, it provides a degree of protection against
attack by host immune defences. However, the cell wall also presents key epitopes
that trigger host immunity and attractive targets for antifungal drugs. Rather than
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being a rigid shield, it has become clear that the fungal cell wall is an elastic
organelle that permits rapid changes in cell volume and the transit of large lipo-
somal particles such as extracellular vesicles. The fungal cell wall is also flexible in
that it adapts to local environmental inputs, thereby enhancing the fitness of the
fungus in these microenvironments. Recent evidence indicates that this cell wall
adaptation affects host-fungus interactions by altering the exposure of major cell
wall epitopes that are recognised by innate immune cells. Therefore, we discuss the
impact of environmental adaptation upon fungal cell wall structure, and how this
affects immune recognition, focussing on C. albicans and drawing parallels with
other fungal pathogens.

1 Introduction

The ascomycete fungus, Candida albicans, is carried as a relatively harmless
commensal by most healthy individuals in their oral cavity, or urogenital and
gastrointestinal tracts. In general, the local epithelial barriers, innate immune
defences and microbiota limit the colonisation and outgrowth by C. albicans cells.
However, the perturbation of any of these local defences often leads to local
mucosal infection (thrush) (Sobel 2007; Hertel et al. 2016). Most women suffer at
least one episode of vaginitis in their lifetime, and oral thrush is common in babies,
the elderly, diabetics and HIV patients. C. albicans is the most common cause of
fungal mucosal infections (Denning et al. 2018). In neutropenic patients, whose
immune defences are severely compromised, C. albicans can cause systemic
infections of the blood and internal organs (Perlroth et al. 2007; Gouba and
Drancourt 2015). Despite the availability of several classes of the antifungal drug,
including azoles, polyenes, echinocandins and flucytosine (Odds et al. 2003), these
systemic infections display about 40% mortality (Brown et al. 2012; Kullberg and
Arendrup 2015). This, combined with the emergence of resistance to the current
antifungal drugs in clinical use, means that there is a clear need for the development
of new, more effective antifungals (Brown et al. 2012).

From a clinical perspective, the fungal cell wall represents an attractive target for
the development of new antifungal drugs (Odds et al. 2003; Gow et al. 2017). This
is because human cells lack a cell wall, whereas the cell wall is essential for the
viability of fungal pathogens such as C. albicans (Douglas et al. 1997; Munro and
Gow 2001; Munro et al. 2001). Therefore, drugs that target cell wall biosynthesis or
function are less likely to perturb human cells. The C. albicans cell wall also
represents the first point of direct contact with the host, and cell wall molecules are
exploited as key recognition targets by our immune defences. For this reason, the
cell wall is also an attractive target for the development of vaccines and
immunotherapeutics that might prevent or combat Candida infections. In addition,
structural distinctions between the cell walls of pathogenic fungal species (Erwig
and Gow 2016) represent a point of leverage for the development of the novel
diagnostics that are required to accelerate the diagnosis, and thereby improve the
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prognoses of life-threatening systemic infections (Brown et al. 2012). Therefore, a
comprehensive understanding of the structure and function of the fungal cell wall is
vital for the elaboration of the new antifungal drugs, immunotherapies, diagnostics
and vaccines that ultimately will improve patient outcomes.

From the perspective of the fungus, the cell wall is a vital organelle that requires
significant metabolic and energetic investment to construct. (The wall comprises
about 30% of the dry weight of a yeast cell (Nguyen et al. 1998). The cell wall
provides protection against environmental insults (Gow et al. 2017). It maintains
cell shape and osmotic integrity, asserting the cellular morphology driven by the
regulatory apparatus that establishes the balance between isotropic and polarised
growth, generating morphogenetic transitions between yeast, pseudohyphal and
hyphal growth forms in response to the environmental conditions (Sudbery 2011).
Yet the cell wall is an elastic, not a rigid structure, which permits the transit of large
liposomes and extracellular vesicles (Vargas et al. 2015; Walker et al. 2018), as
well as rapid changes in cell volume in response to osmotic challenges (Ene et al.
2015). Furthermore, rather than being a relatively inert shield, the cell wall responds
to local inputs as the fungus adapts to environmental change (Sosinska et al. 2008;
Ene et al. 2012; Hall 2015). Therefore, the fungal cell wall is a remarkable organelle
that is simultaneously robust but elastic, and stable but flexible.

In this chapter, we focus on the cell wall of the major pathogen, C. albicans. We
review the structure of the C. albicans cell wall, its stability and elasticity; how the
cell wall responds to environmental challenges, whether natural or therapeutic; and
how changes in the C. albicans cell wall affect host-fungus interactions. We then
discuss parallels with other fungal pathogens before suggesting key questions for
the future.

2 Structure and Synthesis of the C. Albicans Cell Wall

Significant differences exist between the cell walls of the major fungal pathogens of
humans (Gow et al. 2017; Erwig and Gow 2016). Nevertheless, some of the
macromolecular building blocks that comprise the cell wall are conserved across
most of these fungal species. These consist of b-1,3- and b-1,6-glucan, chitin and
mannoproteins. Additionally, some fungal cell walls contain melanin, chitosan and
b-1,4-glucan (Gow et al. 2017; Shepherd 1987; Klis et al. 2001; Bowman and Free
2006). A combination of microscopy, biochemistry and molecular genetics has
shown clearly that the C. albicans cell wall comprises two main layers: an inner
layer of chitin and glucan cross-linked together and an outer layer of mannan fibrils
that are covalently attached to this inner layer via their anchoring mannoproteins
(Fig. 1).

Chitin is a linear homopolymer of b-1,4-linked N-acetylglucosamine, which
forms antiparallel chains linked by intrachain hydrogen bonds. Chitin accounts for
only about 2–3% of the dry weight of the C. albicans yeast cell wall. Yet it is a
strong fibrous structural component of the inner layer that contributes significantly
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to the overall integrity of the cell wall. C. albicans mutants with impaired chitin
synthesis present with a disordered cell wall architecture and display osmotic
instability (Lenardon et al. 2007; Lenardon et al. 2010). In C. albicans, a small
fraction of chitin (less than 5%) is deacetylated to chitosan by one or more chitin
deacetylases, making chitin fibrils more elastic and protecting them from the action
of hostile chitinases (Lenardon et al. 2010).

In C. albicans chitin is synthesised by a family of four chitin synthases, repre-
senting three different classes of chitin synthase that generate chitin microfibrils of
different lengths (Lenardon et al. 2007). Together, these enzymes engineer the
chitin skeleton in the fungal cell wall and septum. Chs1 is an essential Class II
enzyme that is required for the synthesis of the primary septum. Chs3 is a Class IV
enzyme, which is usually located in the tip of buds and hyphal cells and synthesises
the majority of chitin found in the fungal cell wall and septum. Chs2 and Chs8 also
contribute to cell wall integrity during normal growth and stress conditions. These
Class I enzymes account for most of the chitin synthase activity that is measurable
in vitro, and indeed the deletion of CHS2 alone reduces in vitro chitin synthase
activity by 80–91% (Munro and Gow 2001; Lenardon et al. 2010; Staniszewska
et al. 2013; Preechasuth et al. 2015).

Fig. 1 Architecture of the C. albicanscell wall. The model of the cell wall structure illustrates
the organisation of chitin and glucan in the inner cell wall and the N-mannan fibrils of the outer cell
wall, which are linked to the inner cell wall via the GPI-anchored proteins from which these fibrils
radiate. GPI-proteins are attached to b-1,6-glucan which, in turn, is linked to b-1,3-glucan,
whereas Pir proteins are linked directly to b-1,3-glucan. The cartoon, which is taken with
permission from (Erwig and Gow 2016), is compared with a transmission electron micrograph of
the C. albicans cell wall (upper panel), which is an expanded region (blue box) from a micrograph
of a complete cell (lower panel). The diameters of inner and outer layers of the cell wall are each
about 0.14 µm across (Pradhan et al. 2018)
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b-Glucan is the major structural polysaccharide of the C. albicans cell wall,
accounting for 50–60% of the dry weight of the yeast cell wall (Shepherd 1987;
Klis et al. 2001). b-Glucan is composed of chains of glucose residues linked via
b-1,3- or b-1,6 linkages. b-1,3-Glucan fibrils represent the main structural com-
ponent of the C. albicans cell wall, and chitin, b-1,6-glucan and mannoproteins are
covalently attached to this b-1,3-glucan network in the inner layer of the wall.
b-1,3-Glucan is synthesised at the plasma membrane and extruded into extracellular
space by the beta-1,3-glucan synthase complex, which consists of catalytic subunits
encoded by GSC1/FKS1 and GSC2/FKS2, and a small regulatory GTPase encoded
by RHO1 (Mio et al. 1997; Kondoh et al. 1997). b-1,3-Glucan synthase is essential
for fungal viability and is the target of echinocandin drugs, such as caspofungin
(Douglas et al. 1997).

b-1,6-Glucan is less abundant than b-1,3-glucan. Branched b-1,6-glucan struc-
tures are crosslinked to b-1,3-glucan in the inner layer of the C. albicans cell wall,
providing an additional platform for the covalent anchoring of some cell wall
mannoproteins (Kapteyn et al. 2000). A number of genes are involved in b-1,6-glucan
biosynthesis, includingKRE5,KRE6,KRE9, BIG1 and SKN1.Although it is not clear
where b-1,6-glucan synthesis occurs, it does involve enzymes localised in the
endoplasmic reticulum and the Golgi apparatus (Umeyama et al. 2006).

The mannoproteins in the C. albicans cell wall are frequently heavily decorated
with N- and/or O-linked oligosaccharides (Klis et al. 2001; Chaffin 2008). Together
with phospholipomannans, these represent up to 30–40% of the dry weight of the
cell wall. The O-mannans are relatively short linear carbohydrate polymers com-
prised of two to six a-1,2-linked mannose units. Their synthesis requires the
activities of PMR1, the PMT gene family, MNT1 and MNT2 (Buurman et al. 1998;
Bates et al. 2005; Munro et al. 2005; Timpel et al. 1998). The addition of the first
mannose residue to the polypeptide chain is catalysed by O-mannosyltransferases
(encoded by PMT genes), whilst Mnt1 and Mnt2 are responsible for the addition of
the first and second a-1,2-mannose units into the a-mannose backbone. The resultant
O-linked oligosaccharides are thought to promote a rod-like conformation to the
serine-threonine-rich repeats to which they are generally attached (Gatti et al. 1994).

The outer layer of the C. albicans cell wall is composed of highly branched
N-linked oligosaccharide structures that are covalently linked to asparagine residues
in the mannoproteins. These N-mannans contain a N-glycan core, to which are
attached long branched chains with an a-1,6-mannose backbone and side chains of
oligomannosides linked via a-1,2 or a-1,3 bonds (Klis et al. 2001). The synthesis of
the N-linked oligosaccharide core structure occurs in the endoplasmic reticulum and
involves the sequential addition of sugar residues by glycosyltransferases, encoded
by asparagine-linked glycosylation (ALG) genes. The mannosyltransferase Och1
catalyses the addition of the first alpha-1,6-mannose (Bates et al. 2006), and the
branched oligosaccharide structure is then added to the nascent protein by the
oligosaccharyltransferase complex. After the initial glycosylation, the mannoprotein
is further modified in the ER and Golgi apparatus. Golgi resident enzymes, encoded
by members of the KTR/KRE/MNT and MNN gene families, process and elongate
the N-linked as well as O-linked oligosaccharides (Mora-Montes et al. 2010;
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Hall et al. 2013; Hall and Gow 2013). Phosphomannan is a b-1,2-mannose moiety
linked to the branched N-glycan via a phosphodiester bond. A similar moiety can be
linked to lipid domains creating the phospholipomannans. Different enzymes from
the MNN and BMT families participate in the synthesis of phosphomannan and
phospholipomannans (Hall and Gow 2013; Hobson et al. 2004; Murciano et al.
2011).

There are two main classes of cell wall mannoprotein in C. albicans based on the
nature of their linkage to cell wall polymers. GPI-anchored proteins, which are the
most abundant class of cell wall mannoprotein, are covalently attached via their
carboxy-terminal glycosylphosphatidylinositol (GPI) anchor to b-1,6-glucan which,
in turn, is linked to b-1,3-glucan (Kapteyn et al. 2000). Pir proteins (proteins with
internal repeats) are less abundant, and these are covalently linked directly to
b-1,3-glucan (Kapteyn et al. 2000; Toh-e et al. 1993).

Cell wall proteins provide anchors for the mannan outer layer of the cell wall.
They contribute to the structural integrity of the cell wall, and some are cell wall
remodelling enzymes responsible for generating essential covalent linkages
between cell wall components (Ene et al. 2015; Pardini et al. 2006; Popolo et al.
2017). Transglycosylases from the GH72 family catalyse glucan remodelling, and
their inactivation affects growth, morphology and virulence. For example, PHR1
and PHR2 (pH-responsive genes 1 and 2) encode members of this family, and they
catalyse the pH-regulated cross-links between b-1,6- and b-1,3-glucans. PHR1
plays a crucial role in the formation of the hyphal cell wall and in pathogenesis
(Popolo et al. 2017; Fonzi 1999). The GPI-anchored yapsin-like aspartic proteases
Sap9 and Sap10 have functions in cell surface integrity and cell separation during
budding, whilst the CRH family of chitin-glucanosyltransferases (Crh11, Crh12,
Utr2) are involved in formation of linkages between b-1,3-glucan and chitin
(Pardini et al. 2006). The degree of cross-linking between components of the cell
wall is important for its organisation and integrity, as this determines its elasticity,
resistance and porosity. This is evidenced by the deletion or over-expression of
genes encoding cell wall remodelling enzymes, which result in altered sensitivity to
cell wall disrupting agents, such as Congo Red, Calcofluor White, SDS and high
Ca2+ concentrations (Ene et al. 2015; Pardini et al. 2006; Popolo et al. 2017).

Besides its structural role, the cell wall promotes C. albicans pathogenicity, for
example, through adhesion, invasion and damage. Adhesins are important not only
for fungal colonisation but also for biofilm formation and interactions with other
microbes. Most of the known adhesins are GPI anchored proteins, and many are
members of multigene families such as the ALS and HWP gene families (Staab et al.
1999; Hoyer et al. 2008). Some adhesion genes, such as ALS3 and HWP1, are
expressed during hypha formation, which is why this morphotype is particularly
adherent. The HWP adhesin family is required for adhesion to host cell proteins,
biofilm formation, cell-cell aggregation and mating (Staab et al. 1999; Hofs et al.
2016). HWP1, HWP2 and RBT1 expressions are induced not only during hypha
formation but also during mating of opaque cells. Another member of this family,
EAP1, is expressed in both yeast and hyphal cells and is differentially regulated
during yeast phenotypic switching (Hofs et al. 2016; Gow and Hube 2012).
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Als3 acts both as an adhesin and an invasin as it binds to a host receptor on
epithelial or endothelial cells to induce endocytosis (Phan et al. 2007). Als3 also
enables iron acquisition by binding transferrin and has effects on host cell damage
and cytokine induction (Almeida et al. 2008).

The general structure of the C. albicans cell wall has been reasonably well
understood for some time (Gow et al. 2017; Shepherd 1987; Klis et al. 2001).
However, recent technological advances are extending our knowledge of this field.
For example, atomic force microscopy is providing direct information about cell
wall structure and elasticity (Dague et al. 2010). Also, super-resolution microscopy
has shown that phosphomannans, which are negatively charged, are critical for
glucan masking at the cell surface (Graus et al. 2018). Furthermore, high-resolution
electron tomography has permitted the development of the first scale model of
C. albicans cell wall architecture (Megan Lenardon, Prashant Sood and Neil Gow,
personal communication). This deeper understanding of C. albicans cell wall
biosynthesis, structure and organisation is helping the development of new thera-
pies and diagnostics.

In the past, the fungal cell wall was often portrayed as a rigid shield-like
structure in which, for example, chitin was compared to the steel in reinforced
concrete. However, it has become clear that the cell wall is actually a surprisingly
elastic structure. C. albicans releases extracellular vesicles which carry diverse
cargo (including enzymes, toxins and nucleic acids, for example) that are believed
to function in cell-to-cell communication, metabolism and pathogenesis (Vargas
et al. 2015; Deatherage and Cookson 2012; Joffe et al. 2016). These extracellular
vesicles vary in size from 50 to 850 nm, and yet these membrane-bound com-
partments are able to transit through the cell wall into the surrounding milieu
(Vargas et al. 2015). Another study has demonstrated that large liposomal particles
can gain entry to the cell by traversing the C. albicans cell wall. Transmission
electron microscopy has revealed that Ambisome particles of 60–80 nm, which are
much larger than the predicted pore size of the cell wall (approximately 6 nm), are
able to transit through the cell wall whilst both particle and cell wall retain their
integrity (Walker et al. 2018). The remarkable elasticity of the C. albicans cell wall
is further reflected in the ability of C. albicans cells to undergo rapid and dramatic
changes in volume in response to acute hyper-osmotic stress (Ene et al. 2015).
Therefore, the cross-linked polymers of the C. albicans cell wall have evolved to
provide an elastic and flexible structure, not a rigid shield.

3 Cell Wall Remodelling in Response to Damage

The C. albicans cell wall is a dynamic structure that changes in response to mor-
phogenetic triggers, other environmental inputs, genetic perturbation and antifungal
treatment. Transcriptomic, proteomic and biochemical studies from a number of
research groups have revealed condition-specific programmes of cell wall protein
expression (Chaffin 2008) and carbohydrate content or synthesis (Hall 2015).
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A complex network of signalling pathways regulates this cell wall adaptation.
These pathways include the cell wall integrity pathway, high osmolarity glycerol
(Hog1) mitogen-activated protein kinase (MAPK) signalling, the calcineurin-
calmodulin pathway, the protein kinase A (PKA) pathway, the Cek1 MAPK
pathway, mitochondrial reactive oxygen species (ROS) signalling, casein kinase I
(Yck2, Yck3) and the heat shock transcription factor (Hsf1)-Hsp90 auto-regulatory
circuit (Munro et al. 2007; Blankenship et al. 2010; Galan-Diez et al. 2010; Leach
et al. 2011; Znaidi et al. 2018; Pradhan et al. 2018) (Fig. 2). This complexity
probably reflects the absolute requirement to retain cell wall homoeostasis in the
face of a diverse range of environmental inputs and challenges.

This complex regulatory network presents an issue for antifungal therapy
because, following exposure to agents that compromise cell wall integrity, the
network provides mechanisms for compensatory changes to the fungal cell wall.
The major classes of antifungal drug impose major insults on the cell wall by
targeting the synthesis or structural integrity of the cell wall and plasma membrane.
Echinocandins, such as Caspofungin, target b-glucan biosynthesis via the catalytic
subunit of glucan synthase, Fks1. The inhibition of Fks1, and hence b-glucan
synthesis, by Caspofungin induces compensatory activities in the form of increased
chitin synthesis and deposition in the cell wall (Walker et al. 2008). This elevation
in cell wall chitin then protects cells against further Caspofungin treatment both
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in vitro and in vivo, thereby compromising the efficacy of the antifungal drug (Lee
et al. 2012).

Azole drugs, such as fluconazole, target lanosterol 14-a-demethylase (Erg11) on
the ergosterol biosynthesis pathway. This induces significant changes in plasma
membrane rigidity and integrity. Although azoles do not appear to affect the cell
wall directly, proteomics and cell wall sensitivity assays have shown that
fluconazole treatment indirectly perturbs the integrity of the cell wall (Sorgo et al.
2011).

Clearly, genetic perturbation of cell wall components can significantly affect cell
wall architecture. The loss of b-glucan synthase (Fks1) is lethal to C. albicans
(Douglas et al. 1997; Mio et al. 1997). However, only one of the four chitin
synthase genes (CHS1) is essential for viability (Munro et al. 2001; Gow et al.
1994), due to compensatory changes in chitin synthesis rescuing the loss of other
CHS genes (Lenardon et al. 2007). In general, cell wall mannoproteins themselves
are rarely essential for viability, but the inactivation of some specific GPI-anchored
proteins can perturb integrity of the C. albicans cell wall (Albrecht et al. 2006;
Plaine et al. 2008). Mutations with more general effects upon the localisation or

JFig. 2 A complex network of signalling pathways regulates cell wall synthesis and
remodelling in C. albicans. Cell wall remodelling depends on the cell integrity pathway
(red) (Paravicini et al. 1996; Navarro-Garcia et al. 1998). Cell wall damage is thought to be
detected by Wsc1/2/4, which activates protein kinase C (Pkc1) via Rho1. This leads to activation
of the Mkc1 MAPK module which triggers cell wall remodelling via the transcription factor Rlm1
but primarily via Cas5 (Dichtl et al. 2016; Bruno et al. 2006; Delgado-Silva et al. 2014). The Hog1
pathway (blue) also contributes to the control of cell wall synthesis and remodelling (Munro et al.
2007). Cell wall or osmotic stress down-regulates Sln1, which leads to the activation of the
Hog1 MAPK module via the Ypd1 and Ssk1 phosphorelay (San Jose et al. 1996; Smith et al.
2004; Cheetham et al. 2007; Day et al. 2017). Hog1 then modulates cell wall largely via the
transcription factor Sko1, which also represses Brg1 (Su et al. 2013). Hog1 is down-regulated by
the phosphatases Ptp2/3, which are activated by TOR signalling (grey) (Su et al. 2013). Hog1 also
activates Mkc1 signalling and represses the Cek1 pathway (dark green) (Monge et al. 2006). Msb2
acts in concert with Sho1 to activate the Cek1 pathway in response to osmotic stress or cell wall
damage, and Opy2 also contributes to Cek1 activation via Cst20 (Leberer et al. 1996; Roman et al.
2009; Cantero and Ernst 2011; Herrero de Dios et al. 2013). Cek1 activates Cph1 which is thought
to contribute to cell wall remodelling during hyphal development. Morphogenesis is also activated
by cAMP-PKA signalling (purple), which leads to cell wall remodelling. In response to a variety
of environmental inputs, the Gpr1-Gpa2 and Ras modules activate adenyl cyclase (Cyr1), which
leads to cAMP accumulation and inactivation of the PKA regulatory subunit Bcy1 (Noble et al.
2017). This leads to activation of the PKA catalytic subunits (Tpk1, Tpk2) which stimulates a
network of transcription factors (Efg1, Ume6, Brg1) and releases Nrg1-Tup1-mediated repression
to activate hypha-specific genes, hyphal development and cell wall remodelling (Staniszewska
et al. 2013; Ebanks et al. 2006; Castillo et al. 2008; Gil-Bona et al. 2015; Fanning et al. 2012). This
pathway is repressed by quorum sensing (brown), which inhibits adenyl cyclase (Cyr1), and also
stabilises the repressor Nrg1 via Ubr1, Cup9 and Sok1 (Lindsay et al. 2012; Lu et al. 2014a, b).
Calcium (Ca++)—camodulin (Cmd1)—calcineurin (Cna/b) signalling (lime green) also plays an
important role in cell wall remodelling (Munro et al. 2007; Sanglard et al. 2003; Sato et al. 2004).
Activation of this pathway, possibly via the stretch-activated channel Mid1, leads to the
up-regulation of the transcription factor Crz1, which promotes cell wall remodelling (Santos and
de Larrinoa 2005; Karababa et al. 2006)
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mannosylation of GPI anchored cell wall proteins also affect the sensitivity of
C. albicans to cell wall stresses (Buurman et al. 1998; Bates et al. 2005; Munro
et al. 2005; Bates et al. 2006; Richard et al. 2002; Moreno-Ruiz et al. 2009). This
type of approach, involving the analysis of cellular responses to the disruption of
cell wall genes or to cell wall perturbing agents, has helped to elucidate the roles of
specific proteins or protein families in virulence-related phenotypes, such as
adhesion and biofilm formation. In the context of this article, it has also highlighted
key mechanisms underlying cell wall maintenance and homoeostasis.

The cell wall integrity signalling pathway drives the main compensatory changes
in the cell wall that are initiated in response to antifungal drugs, other cell wall
stresses, and genetic insults. This pathway has been evolutionarily conserved across
those fungi investigated and has been extensively studied in the model yeast,
Saccharomyces cerevisiae. The cell wall integrity pathway responds to the acti-
vation of cell wall stress sensors by up-regulating the expression of cell wall
synthesis genes via a highly conserved MAPK signalling cascade (Fig. 2). In
S. cerevisiae, signalling via the cell wall integrity pathway is initiated by the
membrane proteins Wsc1, Wsc2, Wsc3, Mid2 and Mtl1, which act as cell integrity
sensors (Levin 2011). Upon loss of cell wall integrity, these sensors interact with
Rom2 to activate Rho1, which then activates protein kinase C (Pkc1). Pkc1 signals
to a MAPK module comprising Bck1, which activates MKK1/2, which phospho-
rylate and activate the MAPK, Slt2. Slt2 then activates the transcription factors
Rlm1 and Swi4/6, which induce the expression of genes that include the cell wall
synthesis machinery (Levin 2011).

C. albicans has homologues for many components of the cell wall integrity
pathway (Paravicini et al. 1996; Navarro-Garcia et al. 1998; Dichtl et al. 2016).
Mutations in many affect the virulence of C. albicans, as well as its cell wall
integrity, which suggests a key role for the cell wall integrity pathway in host
niches. Furthermore, some components of this PKC-MAPK module in C. albicans
have broader roles than their homologues in S. cerevisiae. For example, Mkc1, the
C. albicans homologue of the S. cerevisiae MAPK Slt2, has an expanded role in
regulating cellular morphogenesis under certain conditions (Navarro-Garcia et al.
1998). In addition, in C. albicans, Cas5 (rather than Rlm1) appears to be the
transcription factor that plays the major role in controlling key gene outputs of the
cell wall integrity pathway (Bruno et al. 2006). The cell wall integrity pathway also
engages in cross-talk with other important signalling pathways that include the
cAMP-PKA, target of rapamycin (TOR) and Hog1 pathways, which help to
coordinate the response to specific stressors (Fuchs and Mylonakis 2009; Garcia
et al. 2017) (Fig. 2). It is worth noting that the cell wall integrity pathway also
regulates important virulence traits in other fungi, for example, capsule synthesis in
Cryptococcus neoformans (Donlin et al. 2014) and drug resistance and virulence in
Aspergillus fumigatus (Valiante et al. 2015).
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4 Cell Wall Remodelling in Response to Environmental
Change

The ability of the C. albicans cell wall to remodel itself in response to sub-lethal
concentrations of cell wall damaging agents (above) reflects the fact that cell wall
remodelling is simply an important component of the normal adaptive responses of
this fungus to environmental change. Yeast-hypha morphogenesis is one of the
most studied adaptive responses of C. albicans because of the importance of this
reversible morphological transition for host-fungus interactions and virulence
(Lo et al. 1997; Saville et al. 2003; Mukaremera et al. 2017). A range of envi-
ronmental stimuli trigger hyphal development, including temperatures above 36 °C,
neutral pH, serum, bacterial peptidoglycan, high CO2 levels, release from quorum
sensing and nutrient starvation. The resultant yeast-to-hypha transition is accom-
panied by shifts in the carbohydrate and proteomic content of the cell wall
(Staniszewska et al. 2013; Ebanks et al. 2006; Castillo et al. 2008; Gil-Bona et al.
2015). The cell walls of C. albicans hyphae can have up to twofold less mannan,
threefold more glucan and five times more chitin than the walls of yeast cells
(Staniszewska et al. 2013). Furthermore, changes in glucan structure are associated
with hypha formation (Lowman et al. 2014). These changes in cell wall structure
attenuate Dectin-1-mediated recognition of hyphae by innate immune cells, which
compound the physical challenges associated with the phagocytosis of mycelia
(Lowman et al. 2014; Gantner et al. 2005; Bain et al. 2014; Hopke et al. 2018).

Carbon source availability differs significantly between host niches. For exam-
ple, glucose concentrations are about 0.06–0.1% in the bloodstream, but are
essentially zero in the colon (Barelle et al. 2006), whilst significant amounts of
short-chain fatty acids, such as lactate, are present in the vagina and colon (Owen
and Katz 1999; Louis et al. 2007). Changes in carbon source have been found to
exert major effects on the architecture and content of the C. albicans cell wall.
Although the relative amounts of chitin, glucan and mannan remain similar,
C. albicans cells grown on lactate, rather than glucose, have a thinner and less
elastic cell wall (Ene et al. 2015; Ene et al. 2012). These changes in cell wall
architecture correlate with changes in the cell wall proteome and secretome. In
particular, the levels of certain chitinases increase (Cht1, Cht3), as do the cell wall
remodelling enzymes Pga4, Phr1, Phr2, Pir1 and Xog1 (Ene et al. 2012).

The availability of essential micronutrients such as iron and zinc also varies
between host niches, and this is exacerbated by the host’s attempts to deprive
invading pathogens of these micronutrients via nutritional immunity (Weinberg
1975; Hood and Skaar 2012; Potrykus et al. 2013). Therefore, the ability to
scavenge iron and zinc is critical for fungal pathogenicity and tissue invasion
(Ramanan and Wang 2000; Citiulo et al. 2012). In C. albicans, adaptation to iron
starvation triggers changes in the expression of genes encoding cell wall proteins,
biosynthetic enzymes and cross-linking enzymes (e.g. Als2, Bgl2, Cht2, Mnt4,
Phr2, Pir1, Scw11) (Lan et al. 2004) and the elevation of Hwp1 and Rbt5 in the cell
wall proteome (Sosinska et al. 2008). Recent data from our laboratory has shown
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that iron limitation is also accompanied by significant changes in cell wall archi-
tecture (Pradhan et al. 2019). Changes in zinc availability also affect the C. albicans
cell wall. Adaptation to zinc deprivation yields more adherent C. albicans cells that
expose less mannan, but more chitin at their cell surface (Malavia et al. 2017). Also,
zinc mobilisation is linked to PKA signalling (Kjellerup et al. 2018), which
influences cell wall remodelling (Munro et al. 2007).

Host niches also vary significantly in their ambient pH. For example, the
bloodstream is maintained at around pH 7.4, whereas the vaginal mucosa varies
from pH 4 to pH 5 (Sobel 2007; O’Hanlon et al. 2013), and the major compart-
ments of the gastrointestinal tract range from pH 2 to pH 7.5 (Evans et al. 1988;
Fallingborg 1999; Koziolek et al. 2015). This type of change in ambient pH has a
significant effect upon the C. albicans cell wall. When cells are exposed to low pH,
the chitin content of the cell wall increases and the mannan fibrils in the outer layer
of the cell wall become shorter and more disorganised (Sherrington et al. 2017).
The expression of cell wall protein genes is also affected by changes in ambient pH.
For example, exposure to alkaline pHs leads to the up-regulation of genes encoding
cell wall biosynthetic enzymes (Kre6, Ecm38), modifying enzymes (Cht2, Crh1,
Phr1), adhesins (Als3, Hwp1) and other cell wall mannoproteins (Hyr1, Rbt1, Rbt4)
(Saporito-Irwin et al. 1995; Hoyer et al. 1998; Bensen et al. 2004). Growth at an
alkaline pH also induces the expression of cell wall and secreted proteins that play
important roles in host-fungus interactions, such as the zincophore Pra1 and the
candidalysin precursor, Ece1 (Citiulo et al. 2012; Bensen et al. 2004; Moyes et al.
2016).

Oxygen levels vary dramatically between host niches, approaching zero in the
human colon and in some fungal lesions (Savage 1977; Grahl et al. 2012; Lopes
et al. 2018). Adaptation to hypoxia drives changes to the architecture of the
C albicans cell wall (Fig. 3), yielding a thinner inner glucan-chitin layer and thinner
mannan outer layer (Pradhan et al. 2018). Hypoxia up-regulates ECM33, which is
important for cell wall biogenesis and integrity (Martinez-Lopez et al. 2006), and
ALG2, which encodes a putative mannosyltransferase (Setiadi et al. 2006). There is
also an increase in the abundance of specific GPI-anchored proteins in the cell wall
proteome (Hwp1, Pir1, Rbt5) (Sosinska et al. 2008). Hypoxic regulation of cell wall
changes depends largely upon a combination of mitochondrial, PKA and Efg1
signalling (Pradhan et al. 2018; Setiadi et al. 2006).

Changes in ambient temperature also affect the C. albicans cell wall. When
C. albicans yeast cells grow at 42 °C, their chitin content increases relative to cells
grown at 30 °C (Heilmann et al. 2013). Furthermore, the levels of the cell wall
b-glucan glycosidases, Phr1 and Phr2, and chitin transglycosidases, Crh11 and
Utr2, increase during growth at 42 °C (Heilmann et al. 2013). In addition, the
temperature has an effect on the branched N-mannan composition of the cell wall:
there is a decrease in b-1,2-linked mannose and an increase in a-1,3-linked man-
nose during growth at higher temperatures (Okawa and Goto 2006). Unsurprisingly,
the perturbation of thermal regulatory processes in C. albicans also affects the cell
wall. For example, depletion of the molecular chaperone Hsp90, which regulates
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the transcription factor Hsf1, affects the chitin content of the cell wall and leads to
an increase in the thickness of both the inner and outer layers of the wall (Leach
et al. 2012).

As discussed above, exposure to antifungal drugs or to cell wall stresses triggers
cell wall remodelling. Other types of environmental stress also affect the cell wall.
C. albicans is exposed to oxidative stress during phagocytic attack, and the cell
wall provides the first line of defence against the oxidative damage caused by
reactive oxygen species (ROS). ROS-detoxifying enzymes such as superoxide
dismutases (Sod4, Sod5) and catalase (Cat1) are found at the cell surface (Crowe
et al. 2003; Frohner et al. 2009). Furthermore, the peroxidase Tsa1 is localised to
the hyphal cell wall (Urban et al. 2005). All of these are up-regulated upon
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Fig. 3 Environmental factors modulate the exposure of cell surface epitopes to promote
immune evasion or inflammation. A number of factors have been shown to influence the
exposure of key epitopes (PAMPs) on the C. albicans cell surface. Caspofungin treatment leads to
b-glucan exposure via the cell integrity (Mkc1) pathway (red) (Wheeler and Fink 2006; Wheeler
et al. 2008). In contrast, host-derived lactate triggers b-glucan masking via Gpr1-Gpa2 and PKA
signalling (purple) (Pradhan et al. 2018; Ballou et al. 2016). Hypoxia also initiates b-glucan
masking, but this is mediated by mitochondrial signalling (grey), which then activates the PKA
pathway (purple) (Pradhan et al. 2018). Micronutrient depletion leads to morphological changes
that coincide with elevated chitin exposure at the cell surface (Malavia et al. 2017). This might be
transduced via PKA signalling (Kjellerup et al. 2018). Growth in acidic pHs leads to increased
b-glucan and chitin exposure (Sherrington et al. 2017). The increase in chitin exposure is mediated
by Bcr1 and Rim101 signalling (Sherrington et al. 2017)
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encountering oxidative stress (Frohner et al. 2009; Urban et al. 2005; Enjalbert et al.
2006). Oxidative stress also influences cell wall architecture by inducing elongation
of b-1,2-linked mannose side chains (Koyama et al. 2009).

Changes in osmolarity drive changes in cell volume. Under these circumstances,
the elasticity of the cell wall underlies the ability of C. albicans cells to adjust their
volume without incurring fatal rupturing of the wall or plasma membrane (Ene et al.
2015). This cell wall elasticity is dependent on the expression of the CHR family of
transglycosylases (Chr11, Chr12, Utr2) (Ene et al. 2015). Adaptation to osmotic
shock is dependent on signalling through the MAP kinases Hog1 and Mkc1, both of
which regulate cell wall synthesis and remodelling (Navarro-Garcia et al. 1998; San
Jose et al. 1996; Smith et al. 2004; Herrero-de-Dios et al. 2014) (Fig. 2).

Quorum sensing also influences cell wall biogenesis by modulating yeast-hypha
morphogenesis and PKA signalling at high cell densities (Fig. 2). C. albicans
generates farnesol, which accumulates at high cell densities. Farnesol attenuates the
activity of adenyl cyclase, thereby down-regulating PKA activity (Lindsay et al.
2012). Farnesol also inhibits hyphal development by blocking Ubr1-mediated
protein degradation of Nrg1, which represses hyphal development (Lu et al. 2014a;
Murad et al. 2001).

Clearly, the cell wall is a flexible organelle that responds to local environmental
inputs. These adaptive changes in cell wall structure and organisation directly affect
the fitness of the fungus in these microenvironments. However, they also affect the
fitness of the fungus indirectly in these microenvironments by influencing
host-fungus interactions (below).

5 The Cell Wall in Immune Surveillance

As mentioned above, the cell wall is the first point of direct contact between
C. albicans cells and innate immune cells. The cell wall polymers chitin, b-glucan
and mannan are present on diverse fungal pathogens (Erwig and Gow 2016). The
immune system has evolved to recognise these cell wall polymers as key epitopes,
or pathogen-associated molecular patterns (PAMPs) (Netea et al. 2008).
Professional phagocytes (including neutrophils, macrophages and dendritic cells)
and non-professional phagocytes (such as epithelial and endothelial cells) express
an array of fungal-sensing receptors, or pattern recognition receptors (PRRs)
(Brown and Gordon 2001; Dambuza and Brown 2015). These host receptors detect
C. albicans PAMPs, many of which are located at the cell surface, and this
recognition elicits innate immune responses (Brown and Netea 2007; Netea et al.
2015; Lionakis and Levitz 2018) (Fig. 4).

Chitin is located in the inner layer of the C. albicans cell wall, in relatively low
abundance compared to the other main cell wall components. Consequently, most
of the chitin in the lateral cell wall is largely shielded by the outer layer of mannan
fibrils. Nevertheless, chitin is exposed at the cell surface in bud/birth scars and at
sites of cell wall damage and does act as a PAMP (Netea et al. 2008). Chitin is
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thought to undergo degradation into small particles (<1 um) during the inactivation
of fungal cells by neutrophils and macrophages and by chitinase digestion
(Wagener et al. 2014). These chitin particles are recognised by the mannose
receptor (MR) and, thereafter, intracellularly by NOD2 and TLR9, eliciting an
anti-inflammatory programme that includes elevated IL-10 expression and the
dampening of TNF-a levels (Wagener et al. 2014). Furthermore, C. albicans chitin
suppresses the generation of nitric oxide by macrophages and shifts macrophage
polarisation from a pro-inflammatory M1 state towards anti-inflammatory M2
activation (Wagener et al. 2017).

b-Glucan is highly immunogenic and the recognition of this PAMP is critical for
antifungal immunity. Whilst most b-glucan is buried in the inner layer of the
C. albicans cell wall and masked by mannan fibrils (Graus et al. 2018; Wheeler and
Fink 2006), some b-glucan is exposed at bud scars and at small puncta over the
lateral cell surface (Gantner et al. 2005) Bain et al. unpublished). b-Glucan
recognition occurs predominantly through the C-type lectin receptor (CLR),
Dectin-1 (Brown and Gordon 2001). Dectin-1-mediated recognition of b-glucan
promotes the formation of a phagocytic synapse, which activates pro-inflammatory
signalling through Syk/CARD9, driving the respiratory burst and the release of
cytokines such as TNF-a, IL-6 and IL-12 (Goodridge et al. 2011). In addition, the
recognition of b-glucan by Dectin-1 triggers phagocytosis, phagosome maturation
and ultimately clearance of the offending fungal cell (Mansour et al. 2013).

The critical importance of Dectin-1 in anti-Candida immunity is highlighted by
the susceptibility of Dectin1 knockout mice to lethal infection (Taylor et al. 2007),
as well as by the association of a genetic polymorphism in human Dectin-1, which
disrupts b-glucan recognition by phagocytes and abrogates cytokine expression,
with familial recurrent vulvovaginal candidiasis (Ferwerda et al. 2009).
Furthermore, elevated b-glucan exposure on C. albicans cells correlates with their
reduced fitness in the gastrointestinal tract (Sem et al. 2016), probably because this

fungus

N-mannan

host
cytosol

NOD2

Dectin 1 CR3
TLR2 TLR4

Galectin-3
MincleDC-

SIGN

TLR9

Dectin 2
Dectin 3

Mannose
receptor

Fig. 4 Host receptors that recognise fungal cell wall components. A range of CLRs, TLRs and
other PRRs in host cells recognise PAMPs such as glucan (red), chitin (brown) and mannan (blue)
in the C. albicans cell wall. This figure is adapted from (Netea et al. 2015) using information
described in the text
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exposure enhances Dectin-1-mediated clearance of the fungal cells from the gut. In
addition to activating phagocytosis and pro-inflammatory functions,
Dectin-1-mediated sensing of C. albicans b-glucan enables “trained immunity” via
epigenetic reprogramming of monocyte metabolism to drive enhanced protection
against secondary infections (Saeed et al. 2014). Also, a link to adaptive immunity
was demonstrated in a study, showing that Dectin-1 expressed on dendritic cells
controls CD4+ T cell-mediated gut immunity in mice (Drummond et al. 2016).

These observations illustrate the central importance of Dectin-1 in anti-Candida
innate and adaptive immune defences. However, additional receptors contribute to
the recognition of b-glucan. CR3 (Mac1, CD11b/CD18) is an integrin expressed on
several myeloid and lymphoid cell types with affinity for a variety of ligands
including iC3b-opsonised target cells (Xia et al. 1999). The I-domain of the CD11b
subunit can bind b-glucan (Thornton et al. 1996) and contributes, along with
Dectin-1, to the recognition of C. albicans hyphae by macrophages (Maxson et al.
2018). CR3 is also important for the recognition of C. albicans by neutrophils,
which leads to activation and fungal killing (O’Brien and Reichner 2016). Other
b-glucan receptors include the glycosphingolipid lactosylceramide, the scavenger
receptors SCARF and CD36 and CD23 (Jimenez-Lucho et al. 1990; Means et al.
2009; Guo et al. 2018).

As stated above, the frond-like mannan fibrils that decorate the outer cell wall
limit the exposure of b-glucan to immune recognition (Graus et al. 2018).
Nevertheless, the mannan fibrils themselves contain molecular signatures that
potentiate host immune responses (Netea et al. 2008). N-mannan is detected by the
mannose receptor, which promotes the oxidative burst and Th1/Th17 responses to
control C. albicans infection (van de Veerdonk et al. 2009). DC-SIGN (SIGN-R in
mice), which is expressed by dendritic cells, also binds fungal N-mannan. This
leads to interactions with plasma membrane “pickets”, such as CD44, that connect
the N-mannan-DC-SIGN synapse to the cytoskeleton, thereby stabilising phago-
cytic binding to the target C. albicans cells (Te Riet et al. 2017).

The PRRs Dectin-2 and Dectin-3 (MCL, ClecSF8) recognise hyphal a-mannan
(McGreal et al. 2006; Saijo et al. 2010; Zhu et al. 2013). Indeed, hetero-
dimerisation of Dectin-2 with Dectin-3 drives a more potent NFkB response than
either of these receptors alone (Zhu et al. 2013). The Mincle (macrophage inducible
Ca++-dependent lectin) receptor also recognises a-mannan in the C. albicans cell
wall to drive TNF-a production, thereby promoting protection against systemic
infection in mice (Lionakis and Levitz 2018; Wells et al. 2008). In humans, Mincle
expression on monocytes is non-phagocytic, but drives pro-inflammatory respon-
ses, whereas Mincle expression on neutrophils mediates phagocytosis and killing of
C. albicans (Vijayan et al. 2012). C. albicans a-mannans are also recognised by
CD23, resulting in NFkB activation (Guo et al. 2018).

Mannose-binding lectin (MBL) is a secreted circulatory PRR that supports
opsono-phagocytosis, and mice that lack MBL succumb to lethal C. albicans
infections (Held et al. 2008). Gut epithelial cells secrete MBL upon sensing
C. albicans to regulate gut homoeostasis and control infection (Choteau et al.
2016). Galectin-3, which is expressed in the cytoplasm of host cells and in body
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fluids (Dong et al. 2018), has direct fungicidal activity against C. albicans cells
(Kohatsu et al. 2006). Galectin-3 binds fungal b-1,2 mannoside residues, which are
found in phospholipomannan and occasional side branch caps of N-mannan chains
in the outer wall of C. albicans (Roman et al. 2016). Meanwhile, the PRR Langerin
recognises mannan and b-glucan and is the dominant receptor on Langerhans cells,
which are specialised dendritic cells that are positioned within the epidermis to
sample Candida species during gut colonisation (de Jong et al. 2010; De Jesus et al.
2015).

The role of Toll-Like Receptors (TLRs) in mammalian antifungal defences was
initially suggested by a Drosophila melanogaster study that revealed the regulation
of drosomycin by the Toll pathway (Lemaitre et al. 1996). Subsequently, TLR2 and
TLR4 were shown to modulate cytokine production during candidiasis (Netea et al.
2002). These TLR receptors recognise phospholipomannan and O-linked mannan
in the C. albicans cell wall, respectively (Tada et al. 2002; Jouault et al. 2003;
Netea et al. 2006).

Host receptors do not act efficiently in isolation. Instead, sensing of fungal
targets is best achieved by collaboration between PRRs and the multi-valent
engagement of multiple PAMPs on the cell surface. The inflammatory programme
is maximised by co-stimulation of TLR and CLR and activation of MyD88 and
Syk/CARD9 pathways, respectively. For example, Dectin-1 and TLR2 cooperate to
drive TNF-a production following recognition of C. albicans b-glucan (Brown
et al. 2003; Gantner et al. 2003). Dectin-1 also mediates cooperative signalling with
CR3 and SIGN-R1 (Taylor et al. 2004; Huang et al. 2015) and, as mentioned above,
the paired engagement of Dectin-2 and Dectin-3 synergistically boosts inflamma-
tory responses (Zhu et al. 2013). Our understanding of fungal recognition, com-
binatorial signalling and effector function is limited, and this is further complicated
by the context of immune cells involved, their activation status and the nature of the
fungal target encountered.

6 The Cell Wall in Immune Evasion

Most studies of fungal immunology have focussed on the immune cell—the
receptors and their ligands, mechanisms of intracellular and cytokine signalling and
phagocytosis, for example. Less attention has been paid to the fungus and in
particular to the impact of fungal adaptation upon PAMP exposure. Indeed, most
fungal immunology studies have examined fungal cells that were grown under
standardised, but non-physiological conditions in vitro. Yet, as described above,
C. albicans remodels its cell wall in response to environmental change. It is
therefore unsurprising that the conditions under which C. albicans is grown sig-
nificantly affect PAMP exposure, and thereby, the outcome of host-fungus inter-
actions (Hopke et al. 2018). It is becoming clear that, in reality, C. albicans is a
moving target for the immune system.
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Early indications that C. albicans is a moving immunological target arose from
Wheeler’s work showing that dynamic morphogenetic changes during infection
affect the degree of b-glucan exposure on the fungal cells (Wheeler et al. 2008). In
part, this effect appears to be mediated by the damage that neutrophil extracellular
traps cause to the fungal cell surface in situ, and the subsequent fungal cell wall
remodelling and repair, which is largely mediated by Hog1-dependent processes
(Hopke et al. 2016).

The paradigm of the moving immunological target was clearly demonstrated by
the observation that exposing C. albicans cells to physiological levels of lactate
(a metabolite generated in the vagina and gut by host cells and the microbiota)
triggers b-glucan masking at the fungal cell surface (Ballou et al. 2016). C. albicans
cells detect extracellular lactate via the receptor Gpr1, which signals through Gpa2,
PKA, Crz1 and Ace2, leading to reduced b-glucan exposure at the cell surface
(Pradhan et al. 2018; Ballou et al. 2016) (Fig. 3). This results in decreased mac-
rophage phagocytosis, lower rates of neutrophil recruitment to sites of infection,
and decreased production of the pro-inflammatory cytokines TNF-a and MIP-1
(Ballou et al. 2016). This work, together with the correlative studies of Sem and
co-workers (Sem et al. 2016), suggests that C. albicans exploits local environ-
mental signals to evade immune recognition and thereby enhance its fitness in
certain host niches.

More recently, C. albicans has been shown to trigger b-glucan masking and
immune evasion in response to hypoxia (Pradhan et al. 2018; Lopes et al. 2018).
During the development of a lesion, oxygen concentrations are lower through the
combined activities of the infecting C. albicans cells and the neutrophils in immune
infiltrates that form in an attempt to clear these fungal cells. The resultant hypoxic
microenvironment activates b-glucan masking by the C. albicans cells, thereby
protecting them from clearance by the surrounding neutrophils (Lopes et al. 2018).
The hypoxic signal is transduced via the mitochondrion, which leads to
PKA-mediated b-glucan masking (Pradhan et al. 2018) (Fig. 3). More recently, we
have shown that iron depletion also promotes b-glucan masking in C. albicans
(Pradhan et al. 2019). Iron depletion is highly relevant to systemic infection as the
fungus becomes exposed to iron-limiting conditions in tissues as a consequence of
the nutritional immunity imposed by immune infiltrates around fungal lesions
(Potrykus et al. 2013). Clearly, C. albicans is able to exploit the local signals in
certain host niches to evade immune recognition.

Other host niches appear to trigger PAMP exposure and inflammation, rather
than PAMP masking and immune evasion. C. albicans cells that are exposed to the
relatively low ambient pH of the human vagina tend to expose higher levels of
b-glucan and chitin at their surface than cells grown at neutral pH of the blood-
stream, for example (Sherrington et al. 2017). The elevated chitin exposure appears
to be mediated by a reduction in chitinase (Cht2) expression via Bcr1 and Rim101
signalling (Fig. 3). The exposed fungal cells are phagocytosed more efficiently by
macrophages and neutrophils, they stimulate increased production of
pro-inflammatory cytokines, and they recruit immune cells more efficiently to
infection sites (Sherrington et al. 2017). These observations appear to resonate with
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the inflammatory behaviour of C. albicans during vulvovaginal candidiasis (Hall
and Noverr 2017).

Artificial environmental inputs, such as antifungal drugs, also convert C. albi-
cans into a moving immunological target. Exposure to sub-inhibitory concentra-
tions of caspofungin increases b-glucan exposure in C. albicans to sufficient levels
to elicit a potent TNF-a response from macrophages (Wheeler and Fink 2006). This
caspofungin-mediated b-glucan exposure is relevant in vivo during infection
(Wheeler et al. 2008). A heightened immune response to C. albicans can also be
caused by mannan grazing by Bacteroidetes (a Gram-negative member of the gut
microbiota), possibly via trimming of the outer fibrillar layer of the cell wall to
reveal the underlying b-glucan (Cuskin et al. 2015).

7 Parallels with Other Fungal Pathogens

C. albicans is not the only fungal pathogen to evade host immune responses by
masking a major PAMP in their cell wall. A. fumigatus, C. neoformans,
Histoplasma capsulatum and other dimorphic fungal pathogens have evolved
effective mechanisms to avoid Dectin-1-mediated immune responses. These fungal
pathogens mask PAMPs via two major mechanisms: firstly, by physically masking
the PAMP with non-stimulatory cell wall molecules; or secondly, by
hydrolase-mediated remodelling of the exposed PAMP.

A. fumigatus is the most common cause of invasive mould infections in
immunocompromised patients (Brown et al. 2012). The initial host-pathogen
interaction, and an important stage for immune evasion, occurs between conidia,
lung epithelial cells, and resident alveolar macrophages. The A. fumigatus cell wall
contains pro-inflammatory PAMPs, such as galactomannans and b-glucan, which
stimulate robust antifungal immune responses and clearance mechanisms (Luther
et al. 2007; Heinekamp et al. 2015; Stappers et al. 2018). A. fumigatus PAMP
exposure peaks with conidial swelling and early hyphal germination, but is masked
in mature hyphae and ungerminated conidia (Hohl et al. 2005). These ungerminated
conidia mask their cell wall PAMPs under a rodlet layer composed of
DHN-melanin and the hydrophobic RodA protein (Aimanianda et al. 2009).

RodA masks Dectin-1- and Dectin-2-mediated detection of A. fumigatus coni-
dial PAMPs, and this promotes early immune evasion and fungal survival in the
host (Carrion Sde et al. 2013). DHN-melanin plays an important role in preventing
phagosomal acidification, thereby enhancing virulence (Langfelder et al. 1998;
Thywissen et al. 2011). However, DHN-melanin is also a PAMP and the ligand for
the newly characterised host PRR, MelLec (Stappers et al. 2018). Sensing of
DHN-melanin by MelLec is important for the control of systemic A. fumigatus
infection and MelLec polymorphisms are associated with increased risk of
aspergillosis in certain cohorts of transplant patients (Stappers et al. 2018).

The protective rodlet layer is lost during A. fumigatus germination to reveal the
underlying PAMPs. However, A. fumigatus hyphae synthesise a cell wall
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polysaccharide, galactosaminogalactan, which masks b-glucan whilst mediating
adherence to host cells (Gravelat et al. 2013). A. fumigatus mutants with defects in
galactosaminogalactan biosynthesis display increased b-glucan exposure, they are
attenuated in their virulence, and they induce hyper-inflammation in mice (Gravelat
et al. 2013).

C. neoformans is another environmentally prevalent human fungal pathogen that
causes disease in immunocompromised patients (Brown et al. 2012; Voelz and May
2010). Despite its clinical significance, relatively little is known about how the
immune system recognises C. neoformans (Heung 2017). In addition to the con-
served carbohydrate polymers that typically form fungal cell walls (e.g. chitin,
b-glucans, and mannans (Erwig and Gow 2016), C. neoformans possesses a unique
polysaccharide capsule, primarily composed of glucuronoxylomannan, which
masks its cell wall PAMPs. Glucuronoxylomannan is recognised by the receptor
TLR4, but TLR4 engagement is not sufficient to induce TNF-a or influence mouse
susceptibility to cryptococcosis (Shoham et al. 2001; Yauch et al. 2004).
Interestingly, the collectin SP-D binds to glucuronoxylomannan in vitro, and its
interaction with C. neoformans cells facilitates fungal protection from macrophage
killing (Geunes-Boyer et al. 2009). This suggests a possible proactive immune
evasion role for C. neoformans capsule beyond simply passively shielding cell wall
PAMPs (Geunes-Boyer et al. 2009).

Acapsular C. neoformans mutants are avirulent and are phagocytosed more
efficiently than encapsulated cells (Geunes-Boyer et al. 2009), which is likely due to
the unmasking of the underlying immune-stimulatory PAMPs. These appear to
include mannoprotein moieties recognised by the Mannose Receptor (Mansour
et al. 2002), as mice lacking the Mannose Receptor are more susceptible to
infection than wild-type mice (Dan et al. 2008). Other major receptors, such as
Dectin-1, Dectin-2, and Dectin-3, are not essential for in vivo defences against
cryptococcosis (Nakamura et al. 2007; Nakamura et al. 2015; Campuzano et al.
2017).

The virulence of dimorphic fungal pathogens, such as H. capsulatum,
Blastomyces dermatitidis and Paracoccidioides brasiliensis, has been linked to
a-1,3-glucan in their cell walls. a-1,3-Glucan blocks the recognition of cell wall
b-1,3-glucan via Dectin-1 by physically masking b-1,3-glucan (Rappleye et al.
2007). Consequently, P. brasiliensis and B. dermatitidis mutants with low
a-1,3-glucan production display decreased virulence in mouse models of infection
(San-Blas et al. 1977; Hogan and Klein 1994). However, this association between
H. capsulatum virulence and a-1,3-glucan is dependent on strain chemotype.
H. capsulatum strains of chemotype II require a-1,3-glucan for virulence (Edwards
et al. 2011) and the inactivation of a-1,3-glucan synthesis attenuates H. capsulatum
virulence in mice (Rappleye et al. 2004).

In addition to physically masking b-1,3-glucan with a-1,3-glucan, H. capsulatum
also enzymatically reduces b-glucan exposure in its cell wall (Garfoot and Rappleye
2016). This is achieved by expressing Eng1, an endoglucanase that hydrolyses
b- (Sobel 2007; Denning et al. 2018) -glycosyl linkages. Eng1 decreases b-glucan
exposure at the cell surface, thereby reducing Dectin-1-mediated recognition of
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H. capsulatum cells, and enhancing the virulence of H. capsulatum (Garfoot and
Rappleye 2016). Therefore the combined effects of physical masking (via
a-1,3-glucan) and enzymatic trimming (via Eng1) provide H. capsulatum with
effective PAMP masking mechanisms (Fig. 3). No doubt these contribute to the
inability of innate immune cells to control H. capsulatum infection, with macro-
phages ultimately serving as a reservoir for disseminated infection (Garfoot and
Rappleye 2016). Interestingly, Eng1 homologues exist in other important fungal
pathogens, including C. albicans, suggesting that PAMP trimming mechanisms
might contribute to immune evasion in these fungi.

8 Conclusions and Outlook

To summarise, the fungal cell wall is a remarkable organelle that retains a high
degree of elasticity and permeability, whilst retaining sufficient tensile strength and
spatial integrity to preserve the morphology of the cell. In this way, the cell wall is
able to protect the fungal cell against certain acute environmental stresses, whilst
permitting communication with the host or local microbiota through the release of
large extracellular vesicles. Furthermore, through a complex signalling network that
regulates cellular adaptation and cell wall synthesis, the cell wall is responsive to a
wide variety of environmental challenges. This cell wall remodelling allows a
fungal pathogen to evade the potentially lethal effects of certain antifungal drugs or
debilitating mutations, and of local cell wall stresses imposed by host niches.

However, the cell wall is also a point of fragility for a fungal pathogen, as it
carries immuno-stimulatory epitopes that can trigger antifungal host defences.
Therefore the cell wall has a major influence upon host-fungus interactions.
Nevertheless, the ability to remodel the cell wall has provided fungal pathogens
with the capacity to evolve effective immune evasion strategies that either mask or
remove cell surface PAMPs. C. albicans, in particular, has “learned” to exploit a
variety of host-derived signals to activate b-glucan masking and immune evasion,
including lactate, iron deprivation and hypoxia.

A number of fascinating questions remain to be answered. For example, what is
the exact nature and frequency of the covalent cross-links between the major cell
wall polymers in the C. albicans cell wall? And how, together with the properties of
these polymers, do these cross-links promote the remarkable elasticity and mor-
phological stability of the cell wall? The development of monoclonal or recombi-
nant antibodies that are specific for particular cross-links would permit the
frequency and spatial distribution of these linkages to be analysed in situ on the
C. albicans cell wall. This would be particularly interesting in the context of
environmental or genetic changes that affect cell wall elasticity and/or morphology
(e.g. Ene et al. 2012, 2015; Pardini et al. 2006; Fonzi 1999).

It would be fascinating to screen for host inputs that influence b-glucan exposure
in C. albicans and thereby affect immune evasion. A number of specific host inputs
have been identified already, but an unbiased screen of host signals has yet to be
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reported. Then, given the complexity and diversity of host niches, it would be
important to test combinations of inputs to establish which signals are most
influential in particular niches, and to test PAMP exposure on cells isolated directly
from these niches. For example, recent data (e.g. (Pericolini et al. 2018) suggests
that lactate-mediated b-glucan masking might dominate over pH-mediated b-glucan
exposure during vulvovaginal infection. But what signals dominate in the gas-
trointestinal tract, and how does this affect C. albicans colonisation of the colon, for
example?

It is also important to understand exactly how do C. albicans cells mask
b-glucan at their cell surface—by covering it with mannan or by trimming via an
Eng1-like activity (Graus et al. 2018; Garfoot et al. 2016)? Does b-glucan masking
attenuate C. albicans-phagocyte interactions by simply delaying phagocytic
recognition, or does masking (also) reduce the dynamics of phagocytic uptake and/
or phagolysosomal maturation?

These questions are not simply of academic interest. A better understanding of
the intricacies of cell wall structure and biogenesis is likely to reveal new thera-
peutic targets that will compromise this essential organelle. Furthermore, a better
understanding of the immune evasion strategies exploited by fungal pathogens
might reveal ways in which PAMP masking might be blocked. This type of drug
might provide a potential means of augmenting antifungal immunotherapies. These
could potentially include, for example, specific fungal polysaccharides that provide
immuno-amelioration for certain infectious or inflammatory diseases. Time will tell.
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than solved the mystery of cell wall construction, by revealing the involvement of a
much higher number of proteins than originally thought. The situation has become
even more complicated since it is now recognized that the cell wall is an organelle
whose composition continuously evolves with the changes in the environment or
with the age of the fungal cell. The use of new and sophisticated technologies to
observe cell wall construction at an almost atomic scale should improve our
knowledge of the cell wall construction. This essay will present some of the major
and still unresolved questions to understand the fungal cell wall biosynthesis and
some of these exciting futurist approaches.

What is our current knowledge in the understanding of the fungal cell wall
biosynthesis in 2020? Many contributors to the Current Topics in Microbiology and
Immunology issue entitled “The fungal cell wall. An armor and a weapon for
human fungal pathogens” have presented the state of the art of our knowledge on
the structural organization, biosynthesis, and biological function of the cell wall of
the human fungal pathogens. Here, we present some of the still unresolved but
essential questions in the area. Questions are focused on human pathogenic fungi
but will be comparatively assessed with plant cell wall and fungal models. We also
hope that new methodologies presented at the end of this report will inspire the
development of new approaches absolutely required to advance the fungal cell wall
field.

1 Coupling Genome Analysis with Cell Wall Construction

Fungal diversity is enormous: around 120,000 fungal species are known and many
more are expected to be discovered. The huge amount of data gathered with the
increasing number of sequenced genomes offers the possibility to redefine fungal
evolutionary relationships and to assess the metabolic diversity that confers fungi
the remarkable adaptability to colonize virtually all environments. Fungi emerged
as the third kingdom of life and are one of the oldest and also largest groups of
living organisms; they play important roles in virtually all ecosystems. The fungal
kingdom is extremely diverse regarding morphology, lifestyle, habitats, and com-
plexity. The origin of all fungi might stem from a unicellular, flagellated eukar-
yvorous aquatic organism that evolved via unicellular parasites to terrestrial
mycelial, multicellular and multinucleated forms of variable size (Naranjo-Ortiz and
Gabaldón 2019). The fungal lifestyles are as diverse as their habitats, ranging from
obligate parasites over obligate anaerobic forms to terrestrial symbionts, com-
mensals, and pathogens.

In spite of their differences in lifestyle and morphology, fungi share one essential
common feature which is their cell wall, characterized by the presence of a
polysaccharide skeleton comprising b-1,3 glucan and chitin for most species.
Besides enzymes that are required for the synthesis of the major cell wall
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components, fungi also encode a huge collection of carbohydrate-active enzymes
that degrade, modify, or build glycosidic bonds of different cell wall components.
The cell wall is the first organelle of fungi interacting with the environment. In
contrast to old “postulates,” it is dynamic, actively remodeled according to growth
stage or environmental conditions (Elhasi and Blomberg 2019). In the host, it has
opposite functions since it is required to protect the fungus but also to activate
immune responses (Gow et al. 2017; Latgé et al. 2017).

Unlike nucleic acids and proteins, the assembly of glycans is not template-based
but it is dictated by the specificity of carbohydrate-processing enzymes. The
enzymes that assemble, modify, and break down polysaccharides and glycocon-
jugates are classified in sequence-based families in the carbohydrate-active enzyme
(CAZy) database (www.cazy.org), a continuously updated online resource available
since 1998. Due to the link of the carbohydrate metabolism of an organism and its
genome, the CAZy database has become an essential source for the analysis and
recovery of unknown putative carbohydrate-active enzymes across all organisms.
The huge number of sequenced genomes offers the possibility to compare the
diverse equipment of carbohydrate-active enzymes among the different fungi that
can cause disease in humans. However, a comprehensive picture of the complexity
of carbohydrate-active enzymes (CAZymes) acting on the fungal cell wall is still
missing, as well as a thorough comparison of the equipment of carbohydrate-active
enzymes between different fungal pathogens. The CAZy database systematically
groups the information on carbohydrate-active enzymes in the following five
enzyme classes: glycoside hydrolases (GHs), glycosyltransferases (GTs), polysac-
charide lyases (PLs), carbohydrates esterases (CEs), and redox auxiliary activities
(AAs). Redox auxiliary enzymes have not been investigated yet for a role in cell
wall synthesis or turnover but may be of interest since a growing number of
publications associate cell wall, redox potentials, and mitochondria (Duvenage et al.
2019; Yu et al. 2016). The database also lists the various families of non-catalytic
carbohydrate-binding modules (CBMs) that are frequently appended to the
CAZymes. The association between the CAZy families of the major human
pathogenic species and the cell wall composition of the different fungal classes is
shown in Tables 1, 2, 3, 4, 5, 6, and 7 and was based on the analysis of the jgi
mycocosm Web site (https://mycocosm.jgi.doe.gov/).

Other efforts are made by the JGI 1000 fungal genomes project, an international
initiative that aims to sequence at least two reference genomes from the more than
500 recognized families of fungi. The JGI MycoCosm fungal genomics resource
currently holds almost 1500 genomes that integrate several types of annotations
such as Gene Ontology, PFAM domains, KEGG, KOG, and CAZy (Grigoriev et al.
2014). Compared to several thousand fungal species that are able to colonize plants
(Knogge 1996) and cause diseases in plants, only about 300 fungal species are
described to cause disease in humans with the most prominent being Candida,
Aspergillus, Cryptococcus, Pneumocystis, Dermatophytes, and Zygomycetes
(Brown et al. 2012). To date the curated CAZy database covers over 16,000 gen-
omes, with only 1.6% eukaryotic genomes and human pathogenic fungi accounting
for a tiny low percentage (<0.2%).
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Clearly, the CAZy database is an essential reference source for the analysis and
recovery of genomic, structural, and biochemical information across organisms.
Even though the CAZy database integrates mainly glycoside hydrolases allowing
the fungus to grow on fresh or decaying plant material, the presence of cell
wall-associated CAZymes common to many species has been also used to identify
enzymes involved in morphogenetic processes. This is how the GPI-anchored
CAZymes encoded by GEL, DFG, SPS2, SUN, and CRH were suspected to be cell
wall-associated and shown later to play an active role in cell wall construction. The
discovery of new cell wall enzymes remains, however, a very difficult challenge
especially since the mechanisms of cell wall synthesis are complex and have been
insufficiently clarified at the molecular level as seen in the following paragraphs
describing the synthesis of the two major fungal polysaccharides: chitin and b-1,3
glucan (Latge and Beauvais 2014).

a. Chitin—a fungal key polysaccharide

The comparison of Microsporidia, Chytridiomycetes, and Zygomycetes with
Ascomycetes and Basidomycetes (Table 1) suggests that the most recent fungi in
the phylogeny appear to have the most complex cell wall composition. However, it
is also interesting to observe that some of the Zygomycetes have a complex cell
wall with an “algal” signature represented by fucoidan and glucuronan polysac-
charides (Mélida et al. 2015), a feature perhaps due to the fact that they populate
mainly the same habitat. Chitin, a polymer of b-1,4-linked N-acetylglucosamine, is
the key component of the fungal cell wall, though not in terms of abundance in the
cell wall. This polysaccharide is present in all fungal lineages and distinguishes the
fungal cell wall from that of plants. Chitin indeed evolved soon after plants split
from the other eukaryotes. Although it is a rigid molecule, it did not prevent the
ancestral fungal cells to move since the first fungi had flagella. The cell wall of the
most deeply branching fungal taxon, Rozella (Cryptomycota) is chitin-based. The
group of early diverging fungi includes members of Chytridiomycetes and
Zygomycetes are also chitin-rich. However, chitin is not necessary for all fungi
since it is missing in Pneumocystis or Schizoaccharomyces pombe. Of note, the S.
pombe genome harbors a class I chitin synthase gene. The proportion of chitin in
fungal cell walls varies widely from 1 to 2% of cell dry weight in yeasts up to 40%
in Zygomycetes (Bartnicki-Garcia and Lippman 1969).

Chitin biosynthesis is best studied in Saccharomyces cerevisiae, which encodes
three chitin synthases belonging to the CAZy family GT2. The chitin synthases of
the baker’s yeast can be subclassed in classes I, II, IV of the total seven subclasses
and the class IV Chs3 is responsible for the synthesis of 90% of the entire chitin
content (Osmond et al. 1999). One of the limitations in the analysis of the CAZy
family can be seen here: the other two GT2 members encoded by S. cerevisiae are
not associated to chitin synthesis but are Alg5 and Dpm1 which are required in the
assembly of the core glycolipid of GPI membrane anchor and in the synthesis of O-
and N-linked mannans, respectively. In addition, the quantity and the class of chitin
synthases genes encoded in a fungal genome can greatly vary, from a single gene to
multiple copies of different classes. The phylogeny of the chitin synthase genes is
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indeed quite complex with some of the candidate chitin synthases being found in
organisms which do not have chitin, raising the question of a putative role of chitin
synthases in other pathways than only chitin synthesis (Zakrzewski et al. 2014).

The construction of the cell wall chitin involves the cooperative and sequential
activity of several CAZy families including synthases (GT2), chitinases (GH18,
GH19), or remodeling enzymes such as chitin deacetylases (CE4). Some of these
enzymes can also harbor a CBM, but there also exist several chitin-binding modules
not appended to any catalytic domain. The chitin synthase activity to date has been
shown exclusively in vitro with rudimentary biochemical experiments using
NDP-sugars and crude membrane fractions. In each CAZy family involved, there
are several proteins, but their precise role and function are rarely properly identified.
For chitin hydrolases, a search in the CAZy database will recover mostly GH18 or
GH19 enzymes sometimes appended to chitin-binding domains of families CBM5,
12, 14, 18, 19, or 50 (Table 7) generating diverse modular structures. The bio-
logical function of fungal chitinases is difficult to appreciate as there is no easy way
to separate the chitinases which have a morphogenetic role in the construction/
remodeling of the cell wall from those that have a simple nutritional role
(Alcazar-Fuoli et al. 2011). Similar to obligate pathogens, S. cerevisiae has a
limited number of chitinases which are obviously not focused on nutrient acqui-
sition and have been shown to be exclusively involved in cell wall modifications.
There are 16 putative chitinases encoded in the Aspergillus fumigatus genome
(Table 2). All belong to family GH18, nine have just the catalytic GH18 module
while the others are appended to CBM18, 19 or 50 modules. Delineating the role of
these enzymes is arduous and involves multiple deletions of the corresponding
hydrolase genes. In A. fumigatus, a quintuple chitinase-deleted mutant showed only
a minor loss of chitinase activity and ongoing work suggests still more than 25% of
chitinase activity in a decuple mutant (Blatzer and Latgé unpublished).

Also, it is often difficult to correlate the presence of a CAZyme(s) and the
composition of the fungal cell wall which is often not accurately known. This is the
case for chitin deacetylases (CE4, Table 5) which are found in all fungal phyla
while only Zygomycetes or Cryptococcus sp. appear to contain their product chi-
tosan, the deacetylated derivative of chitin, in the cell wall. In Saccharomyces
cerevisiae, chitosan is only produced during sporulation in the ascospore cell wall
(Christodoulidou et al. 1996). A. fumigatus harbors seven CE4 family members;
one is coupled to two CBM18 chitin-binding modules while the other two members
are not (Table 7). Cryptococcus neoformans harbors four carbohydrate esterases of
the CE4 family and three members have been experimentally shown to contribute to
chitosan production. C. neoformans chitosan-deficient strains show a budding
defect and more importantly chitosan-deficient strains are rapidly cleared by the
host in the lungs (Banks et al. 2005). Interestingly, the chitin deacetylase activity of
Cda1 is critical for fungal virulence in a murine infection model (Upadhya et al.
2018). What would be the use of enzymes such as chitin deacetylases which are
expressed during growth by some Aspergillus sp. when the fungal cell wall does not
contain chitosan (Mouyna et al. 2020)? Is it possible that the presence of low
amounts of glucosamine go unnoticed after classical very harsh hydrolysis
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procedures used for cell wall analysis? Could the chitin be susceptible to
post-synthetic modifications and contain some glucosamine oligosaccharides which
would decrease the stiffness of the chitin fibrils and lead to a more plastic cell wall
exoskeleton? These are open questions which are also relevant for other cell wall
polysaccharides.

b. b-1,3 glucan, another major cell wall structural polysaccharide

b-1,3 glucans are the most abundant component of the cell walls of Ascomycetes
and Basidiomycetes. With chitin, they contribute to the rigidity of the cell wall as
fibrillar core and hold a central place in the cell wall organization and architecture.
They are branched with b-1,6 connections and are covalently linked to other cell
wall polysaccharides. Their synthesis is mediated by b-1,3 glucan synthases
belonging to GT48 family, which use UDP-glucose as the only glucosyl donor.
Deletion of the b-1,3 glucan synthase catalytic subunit (FKS) genes is lethal (FKS1
deletion in C. albicans, or simultaneous deletion of FKS1 and FKS2 in C. glabrata)
or lead to very impaired growth and abnormal morphology in A. fumigatus (Dichtl
et al. 2015; Douglas et al. 1997; Katiyar et al. 2006). Of note, the microsporidian

Table 7 An example of CAZYme organization and carbohydrate-binding modules in A.
fumigatus

Chitin binding b glucan binding Other mixed CBM modules

CBM 18—CBM 18—CE 4 4 x CBM 43—GH
72

AA 5/Subf 2—CBM 32

CBM 18—GH 16 Cellulose binding CBM 35—GH 27

CBM 18—GH 18 3 x AA 9—CBM
1

2 x CBM 35—GH 43

CBM 18—CBM 18—GH 18 CBM 1—CE 5 CBM 38—GH 32—GH 32

CBM 18—CBM 50—GH 18 CBM 1—CE 16 CBM 48—GH 13/Subf 8

CBM 18—CBM 18—CBM 50—
GH 18

2 x CBM 1—GH
5/Subf 5

CBM 66—CBM 66

2 x CBM 18—CBM 50—CBM 50
—GH 18

CBM 1—GH 5/
Subf 7

Single CBM only modules

CBM 19—GH 18 CBM 1—GH 6 CBM 1 distantly related to
plant expansins

2 x CBM 50—CBM 50 2 x CBM 1—GH
7

CBM1

CBM 50—CBM 50—CBM 50 CBM 1—GH 10 CBM 14

⍺ glucan binding CBM 1—GH 45 CBM 21

CBM 24—CBM 24 CBM 1—GH 62 CBM 48

CBM 24—CBM 24—GH 71 Starch binding CBM 50

CBM 24—CBM 24—CBM 24—
GH 71

CBM 20—GH 13/
Subf 1

CBM 63 distantly related to
plant expansins

CBM 24—CBM 24—CBM 24—
CBM 24—GH 71

3 x CBM 20—GH
15
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Encephalitozoon cuniculi lacks a FKS ortholog, consistent with the lack of b-1,3
glucans. b-1,3 glucans have been also the only structural core polysaccharide for
which a very specific pattern recognition receptor (PRR) ligand, dectin1, has been
characterized (Taylor et al. 2007) and a homolog of the mammalian dectin-1
triggers immune responses in plants (Mélida et al. 2018).

The steady-state growth theory established in the 70’s assumes the continuous
secretion at the apex of an expansible mixture of wall polymers that is continuously
removed at the base of the extension zone the rigid cell wall arising from inter-
actions between the polymers (Bartnicki-Garcia et al. 2000; Bartnicki-García 1999).
This suggests that b-1,3 glucanases are indeed only useful for cell separation as
seen with yeast and more recently in A. fumigatus (Kuznetsov et al. 2016; Millet
et al. 2019; Onwubiko et al. 2020; Wloka and Bi 2012). In A. fumigatus, five GH
families have so far been identified to act as b-1,3 glucanases: GH3, GH5, GH16,
GH81, and GH55. The latter family has been shown to be important during
conidiation and proper spore maturation and spore dissemination (Millet et al.
2019). Also, the endoglucanase activity of the GH16 members together with that of
the only GH81 member impact on conidial maturation (Mouyna et al. 2016). An
extension of this morphogenetic role of glucanases during cell separation is that the
septum insertion requires some degradation of the mature rigid cell wall for the
centripetal growth required for septum formation in filamentous fungi. In addition,
many of these hydrolases have now been recognized as true transglycosidases as
shown by the GH72 family. The remodeling role of these glycoside hydrolases
during cell wall expansion should be better assessed.

c. Fungal life and CAZymes

The CAZyme content appears to be co-evolving with the lifestyle of fungi. Among
the selected human pathogenic fungi, Encephalitozoon cuniculi possesses not only
the smallest genome but also the most reduced CAZyme portfolio with only 11
CAZymes belonging to three CAZy families (Table 1). Due to its peculiar obligate
intracellular lifestyle, it is not known if this CAZyme set constitutes a very reduced
set for the specialized environment of this pathogen. For example, as a basal
fungus, it possesses a mitochondrial remnant without DNA (Han et al. 2019). Chitin
and mannose have been identified as cell wall components of this pathogen. This is
reflected in the CAZy makeup, which consists of only two glycoside hydrolase
namely a class I chitinase from family GH19 and a trehalase of family GH37.
Furthermore, eight glycosyltransferases (which make up more than 70% of its tiny
CAZyme repertoire) are encoded in the genome of E. cuniculi. Family GT48 b-1,3
glucan synthase is missing from the E. cuniculi genome, in agreement with the
absence of b-1,3 glucan in this organism. Two GT2 members are present with
predicted chitin synthase and dolicholphosphate mannosyltransferase functions.
Another a-mannosyltransferase (PIG-V) from the family GT76, a third KTR like
GT15 glycolipid a-mannosyltransferase, and a GT4 family glycosyltransferase
likely to participate to GPI anchor biosynthesis complete the mannosytransferase
portfolio of E. cuniculi and confirm the essential role of the GPI pathway in fungal
life (and cell wall construction?). Such in silico analysis would suggest to inspect
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more deeply these glycolipid CAZymes whose role in the cell wall biosynthesis has
been insufficiently investigated. Of the third CAZy class, the carbohydrate estera-
ses, E. cuninculi possesses one single CE4 member, a polysaccharide deacetylase
responsible for the production of chitosan, whose presence has not been investi-
gated biochemically in this species.

At the other extreme of the spectrum of fungi, the opportunistic human, plant,
and insect pathogenic A. flavus can be found. While E. cuniculi is very specialized
regarding host and habitat and limited in its CAZyme makeup, A. flavus holds the
highest number of CAZymes among aerobic fungi with over 620 proteins. A. flavus
is able to infect intact plant tissues or insects or humans but is also able to survive as
a saprotroph as permitted by its large CAZyme equipment which allows this species
to acquire nutrients in diverse environments (St Leger et al. 2000). Indeed,
opportunistic ascomycetous molds encode the largest number of glycoside hydro-
lases (Table 1).

Pneumocystis jirovecii, another obligate pathogen, also harbors limited CAZyme
equipment with only 56 members (Table 1). This equipment is sufficient for the
fungus to survive and proliferate in the human lung but it is noteworthy that it lacks
the CAZymes that are required by rotting fungi or plant pathogens. P. jirovecii is
the only fungal representative lacking chitinases, in agreement with the fact that its
cell wall does not contain chitin and that chitin is also absent as carbon source in its
habitat, the human lung. The genome of P. jirovecii encodes only 15 glycoside
hydrolases (GH) members, a tiny number compared to plant pathogenic or plant
biomass decaying fungi which encode over 250 glycoside hydrolases, a majority of
which to decompose plant carbohydrates. Similarly, the commensal and oppor-
tunistic pathogen Candida albicans, which is also adapted to the human host, either
on mucosal surfaces or in the gastrointestinal tract, also displays a reduced number
of GHs with 52 glycoside hydrolase genes. The number of glycosyltransferases is
also decreased in P. jirovecii with only 36 members. Interestingly, the family GT2
members in this species are not chitin synthases, as no chitin is present, but have
been identified in silico as a dolicholphosphate mannosyl transferase and a
UDP-ceramide-glucosyltransferase. Surprisingly, P. jirovecii appears to have no
GT15 homolog while it has mannans in its cell wall. These results suggest that
mannan synthesis in this species may be different from the other molds and yeasts.

Another difficulty in the analysis of the CAZyme genes is that the genomic
survey most of the time does not take into accounts the relative and often huge
differences seen in the composition occurring between the different morphotypes of
the fungus (yeast vs mycelium in dimorphic or trimorphic fungi such as
Histoplasma or Paracoccidioides, mycelium vs conidium in filamentous fungi). It
is then unknown if a set of CAZymes are more important for the synthesis of one or
the other morphotype.

If we take into consideration all the points mentioned above and especially the
huge differences and variations between the cell walls of the different fungal groups
(Table 1), it is clear that the S. cerevisiae model for cell wall biosynthesis is not a
paradigm. Drastic changes occurred during evolution of the genes encoding the
enzymes involved in cell wall synthesis, as revealed by the variable degrees of
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similarity between the corresponding genes in the different fungal phyla. One
example is the CRH proteins of the GH16 family, which are involved in the
building of chitin–glucan linkages in S. cerevisiae (Blanco et al. 2012; Cabib et al.
2008), but not in filamentous fungi since the entire deletion of the CRH family (5
genes) in A. fumigatus does not change the morphogenesis of the cell wall [(Fang
et al. 2019) Mouyna and Millet unpublished]. Does it mean that the dogma the
construction of the cell wall requiring the covalent binding of glucan and chitin
should be abandoned or that some modifying enzymes have not been identified yet?
Moreover, orthologous genes with very similar sequences and even similar enzy-
matic function play a different role in the cell wall construction in S. cerevisiae and
other fungi. The DFG family assigned to the GH76 family is essential in yeast and
the analysis of the mutants suggested that the two members of this family have a
regulatory role in hypha development (Kitagaki et al. 2002; Spreghini et al. 2003).
In molds, this family is not essential and has been shown to play a role in the
anchoring of galactomannan to the glucan–chitin core (Muszkieta et al. 2019).
Significant discrepancies have been also found in the analysis of mannan synthesis
in yeast and molds. In yeast, mannosyl transferases which belong to the GT32,
GT34, GT62, and GT71 are responsible for the synthesis of the linear a-1,6 mannan
chains and their branching (Stolz and Munro 2002). In A. fumigatus, the eleven
orthologous genes of the yeast polymerase families do exist and are able to transfer
mannose to mannan from GDP-mannose in vitro but are not associated to the
synthesis of the cell wall mannan. In contrast, the homologs of the KTR genes of the
GT15 family, which are not involved in mannan cell wall production in yeast, are
essential for the synthesis of the cell wall mannan in A. fumigatus (Henry et al.
2019). To date, the enzymatic activity of these cell wall CAZymes has been mainly
investigated in vitro using recombinant proteins. Do these enzymes play a similar
role in situ in a cell wall environment with different acceptors and donors? Probably
not. This field has been totally untouched to date. Associated to this problem is the
poor understanding of the location of most of the cell wall proteins. This is very
clear for the function assigned to GPI proteins in yeast and molds. In S. cerevisiae,
it has been repeatedly suggested (but not fully demonstrated) that these proteins
have a structural role in the cell wall and would be covalently bound to polysac-
charides. In A. fumigatus, GPI proteins are not bound to polysaccharides but have
an enzymatic function essential for the remodeling of the cell wall polysaccharides
(Li et al. 2018).

2 Carbohydrate-Binding Domains

Carbohydrate-binding domains (CBMs) are independently folding protein modules
that have carbohydrate-binding properties but no enzymatic activity. They are often
appended to CAZymes and frequently attached to proteins of unknown function.
Within the fungi, the most common CBMs belong to cellulose-binding (CBM1) or
chitin-binding (CBM18 and CBM50/LysM domain) families (Tables 6, 7 and
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Fig. 1). Cellulose-binding CBMs like those of family CBM1 and CBM63 are often
attached to glycoside hydrolases, carbohydrate esterases, or auxiliary activity redox
enzymes, and they serve to target their appended catalytic domain to the plant cell
wall. Some of these CBM-containing proteins may not have an enzymatic function
associated to plant degradation. This is the case of some CBM1 and CBM63
members such as AFUA_6G03280 or AFUA_5G08030 in A. fumigatus, which bear
distant similarity with plant expansins. They are non-catalytic carbohydrate-binding
proteins that facilitate cell wall expansion during plant growth (Chase et al. 2020).

While CBMs have been widely investigated for their role in complex polymer
decomposition and biotechnological applications, in particular lignocellulose
breakdown, CBM-containing proteins have not yet been extensively studied
regarding their role in fungal cell wall deconstruction or remodeling (Pham et al.
2010).

Most fungal proteins with characterized CBMs are chitin-binding proteins. In
addition to being a structural component of the cell wall and a natural food for
saprotrophic fungi, chitin is a well-described pathogen-associated molecular pattern
(PAMP) for pathogenic fungi regardless if the host is a plant or mammal. In
mammals, chitin is able to activate a variety of innate and adaptive immune
responses (Elieh Ali Komi et al. 2018). To overcome host immunity, fungal plant
pathogens secrete effector molecules that can repress the host defense systems.
A class of conserved secreted effectors are LysM effectors, that carry no recog-
nizable protein domains other than the CBM50 motif (Kombrink and Thomma
2013). In A. fumigatus, eight putative LysM-domain proteins were identified
including three putative chitinases (AFUA_5G03960, AFUA_5G06840, and
AFUA_6G13720) and LdpA and B (AFUA_5G03980 and AFUA_1G15420) with
multiple putative LysM domains but without catalytic domain typical of LysM
domains found in plant pathogens (Muraosa et al. 2019). Single- and
double-deletion mutants revealed that LdpA and LdpB have no significant defects
on cell wall integrity or chitin content and virulence. Interestingly the commensal
C. albicans, as well as the skin-associated Malassezia globosa or the intracellular
pathogen P. jirovecii lack CBM50 or other chitin-binding effectors. These results
suggest that LysM molecules are not essential for the biosynthesis of cell wall chitin
in Aspergillus and that such molecules may not have the same function in plant and
in mammal pathogens. Mammalian fungal pathogens, such as opportunistic
pathogens, may use their LysM effector homologs in other processes rather than
host colonization, such as survival in the environment. The absence of LysM
effector genes in C. albicans, M. globosa, and P. jirovecii, which are among the
few fungal species that are commensals of humans and animals and that do not
occur free-living in the environment, seems to support this hypothesis (Kombrink
and Thomma 2013).

The A. fumigatus genome encodes several proteins with more than one CBM
(Fig. 1). The reasons for the presence of several CBM50 domains on a single
polypeptide remain unknown.

Most of the proteins with a chitin-binding module are chitinases. Others are
transglycosidases. Crh transglycosidases supposed to synthesize glucan–chitin
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branched polymers in yeast but not in molds belong to two GH16 subfamilies
GH16_18 and GH16_19 which possess or not different CBMs. When present, only
chitin-binding CBM 18 and 50 are found in these Crh proteins in the absence of any
b-1,3 glucan-binding CBM. This also points out the lack of understanding of the
biochemical activity of transglycosidases in situ since the Crh enzymes are able to
produce in vitro chitin–chitin or chitin—b-1,3 or even b-1,6 glucan cross-links
without any characterization of the acceptor and donor molecules for these enzymes
in situ (Blanco et al. 2012; Fang et al. 2019). No transglycosidases have been
indeed identified yet with two different CBMs recognizing the two polysaccharides
to be transglycosylated by the enzyme. Another question to rise is why only one of
the fourteen GH16 members in A. fumigatus possesses a CMB18 chitin-binding
module while the thirteen others are not associated with any other module. This
would question the role of the CBM in the control of the activity of these enzymes.

In contrast to chitin-modifying enzymes and in spite of the important role of
b-1,3 glucan enzymes, nearly all b-1,3 glucan CAZymes among human pathogens
(Table 6) possess a CBM43-binding domain. However, the presence or absence of
this CBM is essential in establishing the specificity of the CAZyme activity as seen
with the GH72 proteins (Aimanianda et al. 2017). All members of the GH72 have a
b-1,3 glucan elongating activity (Hartland et al. 1996; Mouyna et al. 2000) but
some of the GH72 proteins which contain a CBM43 at their C terminus have in
addition a b-1,3 glucan branching activity suggesting that linear elongation of b-1,3
glucan is a prerequisite and that the positioning of elongated b-1,3-glucan by the
CBM43 is absolutely required for the subsequent branching activity of Gas/Gel
proteins. In P. jivocenii, a CBM 52 [characterized in Schizosaccharomyces pombe
(Martín-Cuadrado et al. 2008)] has been noticed.

Even though mannan, galactan, galacturonan, b-1,6 glucans or fucoidan must be
transglycosylated to be covalently bound to the structural cell wall core of various
fungal species, no CBMs able to bind these polysaccharides have been identified
yet. Such observations suggest that there may be many unknown CBMs to discover
and especially some with key acceptor function in cell wall remodelases.

3 Gene Clusters and Gene Families in Fungi

Bacterial cell wall and exopolysaccharides are produced and degraded by the
products of gene clusters whose expression is highly coordinated (Pan et al. 2015;
Christiansen et al. 2020; Pilhofer et al. 2008; Schmid et al. 2015). By contrast, even
when the products of several genes cooperate for the biosynthesis of polysaccha-
rides, the corresponding fungal genes do not reside on the same chromosome
location. Fungal gene clusters do exist but they have been essentially described for
the enzymes synthesizing secondary metabolites (www.jcvi.org/smurf/) where they
need the cooperation of several enzymes but not for the synthesis of glycans. There
seems to exist a single exception to this rule, namely the synthesis of the galac-
tosaminogalactan (GAG) in A. fumigatus which was originally described as the first
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virulence polysaccharide in the fungal kingdom (Fontaine et al. 2011).
A transcriptomic analysis of A. fumigatus regulatory mutants deficient in GAG
production identified a cluster of genes (AFUA_3G07860 to AFUA_3G07910)
linked to GAG synthesis on chromosome 3 [(Bamford et al. 2015; Lee et al. 2014)
Briard et al., submitted]. This cluster encoded five putative enzymes: (i) Uge3
(AFUA_3G07910) a bifunctional cytoplasmic uridine diphosphate (UDP)-
glucose-4-epimerase that mediates the production of UDP-GalNAc and UDP-Gal,
(ii) Agd3 a secreted protein required for the partial deacetylation of newly syn-
thesized GAG polymer (AFUA_3G07890), (iii) Sph3 (AFUA_3G07890) a member
of CAZy family GH135, with endo-a-1,4-N-acetylgalactosaminidase activity,
(iv) Ega3 (AFUA_3G07890) a CAZy family GH114 endo-a-1,4-galactosaminidase
specific for GalN–GalN linkages, and (v) Gt4c (AFUA_3G07860) which encodes a
CAZy family GT4 glycosyltransferase whose catalytic domain is appended to a
large domain featuring multiple transmembrane segments. Cell wall chitin and
glucan polysaccharides are synthesized by synthases and composed of monomers.
In contrast, GAG is an alternating polysaccharide requiring a close collaboration of
enzymes which will add one monomer after another monomer of different nature. In
addition, the presence of hydrolases of the GH114 and 135 families in this cluster
suggest that GAG hydrolysis must be also concerted. The similarity between the
exopolysaccharide deacetylase PelA of Pseudomonas aeruginosa and Agd3 of A.
fumigatus as well the similarities with the exopolysaccharide synthesis analogous to
the bacterial ICA/PGA systems has helped understanding the function of all
members of the GAG cluster in A. fumigatus (Lee et al. 2016). However, the
complexity of the GAG structure and the identification of a single glycosyltrans-
ferase in the cluster of A. fumigatus suggests that other undiscovered yet glyco-
syltransferases may be located somewhere else in the genome. The GAG cluster of
A. fumigatus is conserved in other Aspergilli, but also in the Ascomycete Botrytis
cinerea, Phialocephala subalpina, Niesslia, Gloniopsis sp., and the Basidiomycete
Trichosporon asahii. However, the GH135 gene is missing from the cluster in
Sclerotinia sclerotiorum, Neurospora crassa, Clonostachys rosea, and Fusarium
oxysporum, while the GH135 and GT4 genes are missing in Alternaria brassici-
cola, suggesting that the colocalization of the GAG enzymes on the genome is not
an absolute requirement, neither is the coupling of synthesis and hydrolysis. The
chemical nature of all the fungal exopolysaccharides remains, however, to be
investigated in all these fungi containing “GAG genes”.

Other attempts have been made to identify phylogenetic clusters including chitin
synthases, chitinases, and putative cell wall metabolism genes. Across six
Aspergillus species, a cluster of five cell wall metabolic enzymes could be identi-
fied: a chitin synthase activator, a class V (or class i) myosin, a serine/threonine
kinase, a type 2A protein phosphatase PP2A (with a WD40 domain), and a cell wall
glucanase Scw11 (or beta-glucosidase Bgl2). The chitin synthase activator located
in this syntenic block shares its highest identity to an ortholog of S. cerevisiae’s
Chs4p/Skt5, a post-translational regulator of the Chs3 complex during vegetative
growth. Interestingly, the chitin synthase activator and the class IV chitin synthase
are close to each other in a head-to-head orientation, typical for secondary
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metabolite clusters or functionally related genes (Pacheco-Arjona and
Ramirez-Prado 2014). Another cluster with four other genes homologous to the
ones of the GAG cluster of the chromosome 3 (AFUA_4G14090 for UDP glucose
4 epimerase, AFUA_4G14085 and AFUA_4G14080 for two Spherulin-like pro-
teins and AFUA_4G14070 for a glycoside transferase) do not have any apparent
function in GAG synthesis at least during growth in vitro. In contrast to the
above-mentioned cluster, which is expressed in all environmental conditions, the
genes of the second cluster in the chromosome 4 are mainly highly expressed
in vivo (Latgé et al. unpublished), but have not been associated yet to the patho-
biology of A. fumigatus. These data suggest that it may exist in the CAZy database
more clusters homologous to the bacterial operons which are responsible for the
synthesis of polysaccharides. Such clusters would be devoted to the synthesis of
heterogenous polymer lacking repeating units.

One issue in cell wall biosynthesis is the total lack of understanding of the
significance of the presence of multiple genes per CAZy family of cell
wall-associated proteins. This is especially true for mold enzymes. Several exam-
ples are the GEL, KTR, DFG, or CHS families. In the GEL family, belonging to
CAZy family GH72, even though all these enzymes display the same glucan
elongation activity, mutants showed that Gel1 does not have any impact on the
construction of the cell wall whereas Gel4 is essential in A. fumigatus (Gastebois
et al. 2010). In the GT15 family of mannosyltransferases, two KTR enzymes KTR4
and 7 are essential for the synthesis of the cell wall mannan whereas the 3rd
member of the family does not play a role in the synthesis of mannan (Henry et al.
2019). In the GH76 family of the Dfg proteins which have been shown to be
involved in the transfer of the galactomannan to the branched b-1,3 glucan, the
DFG3 gene is essential whereas all the other genes do not have any (or a minute)
role in the cell wall morphogenesis (Muszkieta et al. 2019). Finally, some of the
eight chitin synthases of A. fumigatus do not seem to play any role in chitin
biosynthesis whereas others are absolutely needed. However, even though some of
the enzymes have a stronger impact in the function of interest, gene deletions of all
members of the family have suggested that in several cases these enzymes work
cooperatively (Muszkieta et al. 2014). Even though it has not been convincingly
shown in the absence of localization or specific activity per individual protein, it is
assumed that the presence of multiple genes per family enables a spatio-temporal
expression of these activities for a definite fungal stage or under different nutritional
or environmental conditions. Moreover, the characterization of cell wall-associated
enzymatic activities is performed most of the time in vitro which is certainly not the
most appropriate conditions to perceive the reality of the cell wall synthesis. Donor
and acceptor molecules and the physico-chemical protein environment may be
different in situ. Such differences could explain why the two KTR genes have been
shown in vitro to have only an a-1,2 mannosyltransferase activity while the mannan
of A. fumigatus is a mixture of a-1,6 an a-1,2 mannan. Obviously, efforts to mimic
in cellulo enzyme activities should be better developed.
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4 Uncertainties in the Structure of the Cell Wall

Most studies have suggested that the skeleton of the cell wall is a branched b-1,3
glucan bound to chitin. However, a recent solid NMR study of the A. fumigatus cell
wall questions this conclusion and suggests that the a-1,3 glucans may be the
central polymer around which are arranged the other polymers especially chitin
(Kang et al. 2018). Could we then consider that b-1,3 glucans have a function of
stabilizer [like callose in plants (De Storme and Geelen 2014)] and that the structure
analyzed are not the reality due to the chemical modifications induced by the harsh
treatments to isolate soluble individual components. However, these NMR findings
do not provide a clear picture either, since mutants devoid of a-1,3 glucans do not
have an altered growth or even morphogenetic issues (Henry et al. 2012). We still
believe that the fibrillar aspect of the wall is due to chitin and b-1,3 glucan since
electron microscopy suggests that a-1,3 glucans are amorphous. In any case, this
provocative NMR study is very interesting and indicates that the structural orga-
nization of the fungal cell wall is far from fully understood. For example, the
possible association of microfibrils of structural polysaccharides with an amorphous
material made up of proteins and other types of polysaccharides have never been
investigated in situ in living fungus.

In the past, it was considered that the cell wall was an inert skeletal structure
whose modifications only associated with the extension of the fungal cell. Data are
now accumulating showing that the cell wall is constantly rearranged and modified
structurally and quantitatively depending on the external environment [(Beauvais
and Latgé 2015; Beauvais et al. 2014) see APJ Brown chapter]. Characterizing
these changes especially those occurring during growth in vivo on the polysac-
charides exposed on the surface of the cell wall is essential to understand better the
interactions between host and fungal pathogens (Valsecchi et al. 2019).
Interestingly, the fungal carbohydrate ligands recognized by C-type lectins are
poorly understood with the exception of the specific recognition by dectin1 of long
b-1,3 glucan fibrils (although dectin1 is also able to recognize Mycobacterium,
which lacks b-1,3 glucan). The ligands recognized by the other C-type lectins
remain poorly characterized. Is this due to the poorly defined carbohydrate poly- or
monomers used as ligands? Such recognition studies usually require soluble ligands
and most of the studies are based on insufficiently purified molecules. The new
availability of pure oligosaccharides representative of the cell wall polysaccharides,
obtained by chemical synthesis, can now allow the construction of glycoarrays to
analyze the recognition of ligands by C-type lectins (see Nifantiev chapter) but also
to mimic fungal infection with oligosaccharide-conjugated particles (Mansour et al.
2013). If the use of such definite tools does not identify precisely the ligands for the
lectins, it can suggest that the recognition is more based on the 3D structure of the
polysaccharide than on a specific chemical composition of the polysaccharide.
However, modeling the three-dimensional features of polysaccharides and carbo-
hydrate polymers is still in its infancy (Perez et al. 2015). More work devoted to this
area could help decipher the molecular bases of these host cell–fungal cell wall
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polysaccharide interactions and further precise the binding capacity of the CBMs.
Another important point already mentioned above is that the composition of the cell
wall varies depending on the fungal morphotype considered (yeast, conidia, and
mycelium). Unfortunately, the analysis of the role of the cell wall during infection is
rarely based on the morphotype of the infective propagule or on a propagule which
has been grown in a medium mimicking the in vivo situation. For example, in
Chytridiomycetes or Zygomycetes, the presence of b-1,3-glucans is restricted to the
sporangiospore wall or flagellate spores. In A. fumigatus, the mycelium is covered
by GAG (which is absent from the conidium), which favors the infection while the
conidium in contrast is covered and protected by melanin (absent from the hyphae)
[(Akoumianaki et al. 2016); Briard et al. submitted]. In spite of the progresses made
in the analysis of the fungal cell wall in the last 50 years, the structure of the fungal
cell wall remains uncertain as suggested by all different putative schemas of the
fungal cell wall, often contradictory, proposed by multiple authors (look at Google
“images of fungal cell wall”). Even though it is often not rewarding in terms of
publications, such studies should be implemented in the future.

5 Similar Questions and Common Problems
in the Understanding of Cell Wall Biosynthesis
in Plants and Fungi?

The plant and fungal cell walls face similar challenges: they have a composite
architecture based on a crystalline core (cellulose or chitin) surrounded by a matrix
of hydrated polysaccharides with aromatic material or proteins. If there are differ-
ences between plants and fungi, the majority of the questions asked in the analysis
of the fungal cell wall have not been answered in plant cell wall growth. For
example, what is exactly and what determines the length of a polysaccharide in a
growing or aged cell wall? What determines the substitution patterns of a
polysaccharide and what is the minimal branching level between polysaccharides to
keep the viscoelastic property of the cell wall? What are the auxiliary proteins and
cofactors in polysaccharide synthesis? How is the product influenced by the supply
of activated precursors such as nucleotide sugars and how are nucleotide sugar
transporters regulated? Activation of the cell wall-associated enzymes is thought to
occur after their integration into the plasma membrane, although the exact mech-
anism is unknown. One possibility is that the activation is achieved through
phosphorylation as it was shown for chitin synthases (Lenardon et al. 2010;
Martínez-Rucobo et al. 2009). How are the sequential biosynthetic events in the
addition of branched chains controlled and how are the sites of insertion defined?
What are the hot spots important to convey biomechanical stability to the wall? In
plants like in fungi, understanding the functional biochemical analysis of glyco-
syltransferases has been slow because they are membrane proteins which some-
times operate as part of large multimeric complexes. The glycosyltransferases have
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been identified based on biochemical enrichment strategies, heterologous protein
expression followed by in vitro activity assays, and/or the isolation of mutants or
overexpression (rarely undertaken in fungi) followed by the analysis of the cell wall
of the mutants. Substrate specificity for acceptor and donor in vitro and vivo,
enzyme kinetics, and cellular localization (rarely undertaken) are usually poorly
understood in both eukaryotic phyla. Because of this complexity, it has been
impossible to reconstruct synthetically an entire biosynthetic machinery to produce
a complex branched cell wall polysaccharide in vitro with a structure similar to that
found in the native cell wall. Will it be an interest to strengthen cross-fertilization
between these two kingdoms? Will we learn about the role of b-1,3 glucans in fungi
if we engineer the expression of fungal FKS genes in Arabidopsis or Gram negative
bacteria such as Agrobacterium producing the plant or bacterial b-1,3 glucans
callose or curdlan (Pauly et al. 2019)?

A grand challenge in the cell wall field is to relate cell wall structure to the
mechanics of cell walls and the action of cell wall-loosening agents (enzymes or
biophysical changes) that induce wall stress relaxation and provoke water uptake
needed for cell growth. Discussed in plants, the water entrance has not been really
followed up in fungi. Aquaporins which are present in fungi are obviously not the
unique element to regulate water entrance (Latgé et al. 2017). A deeper under-
standing of wall deformations will require more extensive experimental testing in
combination with quantitative models of how the structural components of the cell
wall are linked to one another and what kinds of polymer motions occur during
rapid, reversible deformations versus the slow irreversible enlargement of the
growing wall. Are these modifications only due to enzymes? In plants, the
best-studied example of non-enzymatic degradation of the cell wall matrix is the
family of expansins (Cosgrove 2016; Nikolaidis et al. 2014). Orthologous expansin
genes have been found in Aspergillus (Table 4), but their deletion which has been
initiated has not led yet to any modification of the fungal cell wall (Mouyna and
Latgé, unpublished). Moreover, the role of an increase in the intracellular osmotic
pressure in the modification of the elasticity of the cell wall structure has not been
investigated.

To date, a number of publications on plant cell wall and fungal cell wall are
equally numerous. Even though the studies on the plant and fungal cell walls target
different objectives and are more focused on biotechnology in the case of plants and
antifungals and immunology in human fungal pathogens, scientific questions are
numerous and remain similar.
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6 New Approaches to Understand Cell Wall Synthesis
and Degradation

The invention of the microscope in the late 1600s was critical to fuel interest in
biology. Since then, increasingly sophisticated microscopic tools have led to an
ever-more refined picture of the cell especially on the role of membrane complexes
which can accurately define the underlying molecular interactions through exten-
sive studies in biophysics, membrane biology, and advanced imaging. However,
these new technologies have not been applied to the study of the fungal cell wall
and only very scarcely to plant or bacterial cell wall. Super-resolution microscopy
techniques reach previously inaccessible spatial scales and the understanding of
short-lived interactions (protein–protein, protein–lipid, and protein–carbohydrate
interactions) that are not amenable to standard biochemical assays and have been
previously inaccessible in live cells. Super-resolution microscopy, such as PALM,
STORM, and STED, is able to accurately describe the nanoscale structure of living
cells with a sub-100 nm resolution. The development of CryoEM and
super-resolution microscopy which has been recently complemented by the
development of new Titan Krios microscopes will allow a “near-atomic” reso-
lution of samples in a fully hydrated environment (Atanasova et al. 2019;
Gustafsson et al. 2016; Sahl et al. 2017; Sezgin 2017). All these high-resolution
microscopy techniques should allow a better characterization of the membrane
complexes responsible for the synthesis and remodeling of the polysaccharides and
the insertion and secretion of the glycans in the membrane complex. The first
example to go after will be the Fks1/Rho1 complex which has been known to be
crucial for the synthesis of b-1,3 glucans. Many other questions should be inves-
tigated: for example, how do transglycosidases of family GH72 interact with the
neosynthesized b-1,3 glucan and the Fks synthase complex? Or how do the dif-
ferent chitin synthases cooperate with each other and interact with the glucan
synthase?

These new technological approaches would not only allow the localization of
the different CAZymes involved in fungal cell wall synthesis and turnover, but
they would enable studying (i) the timing of cell wall deposition, (ii) the variations
of cell wall composition during cell aging, and (iii) the identification of the linkages
truly responsible for the rigidity of the cell wall. Cell wall regeneration in proto-
plasts is an ancient tool used in the 70’s (Moore and Peberdy 1976; Peberdy and
Gibson 1971) which could be revisited now with the technology mentioned above.
Protoplasts are the most appropriate cells since they do not possess a cell wall
which would make the application of these technologies difficult. Multiple glucan
chains are simultaneously synthesized by single plasma membrane-localized syn-
thases and in contrast to the situation in plants (Li et al. 2014), we still do not know
what is the length of the neosynthesized glucan and chitin fibrils in situ, how are
assembled the polysaccharide molecules to form an elementary microfibril and how
are all these neosynthesized microfibrils imbricated.
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Coupling super-resolution approaches to click chemistry for the introduction
of specific labeled molecules inside the neosynthesized polysaccharides has not
been undertaken yet in the fungal field and very little in the plant or bacterial cell
wall fields (DeMeester et al. 2019; Simon et al. 2018).

Preliminary data suggest that a new method called PIP for polysaccharide
immunoprecipitation can be beneficial (Latgé unpublished). The idea behind PIP is
close to that used in chromatin immunoprecipitation (ChIP). Insoluble polysac-
charides and associated CAZymes in living cells are cross-linked by chemical
fixation and made soluble after cleavage by appropriate glycoside hydrolases. The
soluble molecules are immunoprecipitated with carbohydrate-specific antibodies or
lectins and the associated protein could be sequenced. Enrichment of specific
CAZyme proteins associated in vivo to the target polysaccharides should be an
indication of their involvement in the polysaccharide synthesis. Product entrapment
techniques (Inoue et al. 1995; Kang et al. 1984) which have been used in the past
should be now revisited with these new technologies.

These methods could be also applied to the analysis of the mechanisms
responsible for the secretion of cell wall polymers, which remains largely
unknown to date although they have an essential role in biofilm formation. One still
unanswered and very controversial question is the putative role of extracellular
vesicles (and even their existence in the plant cell wall biosynthesis field) in the
secretion of the polysaccharides [(Rodrigues and Casadevall 2018; Zarnowski et al.
2018) Rizzo et al., submitted]. In plants, the association between extracellular
vesicles and the cell wall is not clear (Cui et al. 2020). It is however obvious that the
secretion and transport pathways responsible for the passage of the cell wall
polymers through the plasma membrane and their deposition in the cell wall space
is different from the active secretory mechanisms responsible for the secretion of
proteins. The composition of the glycan present in biofilms or capsules is different
from the polysaccharides constitutive of the cell wall. In Aspergillus, the GAG
present in the extracellular mycelial matrix plays a role in the adhesion of hyphae in
the colony and to the host epithelial cells (Beaussart et al. 2015; Lee et al. 2015).
The capsule of C. neoformans is rich in glucuronoxylomannan and glucuronoxy-
lomannogalactan components which are also not present in the cell wall. The
polymers in C. albicans biofilm are rich in a-1,6-mannan and b-1,6- and
b-1,3-glucans, a composition different of the typical Candida cell wall (Zarnowski
et al. 2018; Doering 2009; Fontaine et al. 2011; Zarnowski et al. 2014). All these
polysaccharides must travel through the cell wall using (a) pathway(s) not defined
to date. The type of transport may also depend on signals for this recognition which
are also unknown. It has been recently shown that galactomannan in Aspergillus
which is covalently bound to the cell wall is transported by a different mechanism
than the one used for the membrane GPI-anchored galactomannan (Muszkieta et al.
2019). The passage of the polysaccharides through the cell wall will also depend on
the porosity of the cell wall. The mechanisms responsible for the permeability (or
impermeability) of the cell wall to external toxic or beneficial molecules remain
poorly understood or even explored (Liu et al. 2019; Stirke et al. 2019). The use of
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nanoparticles bound to several ligands has been shown to be a useful strategy to
analyze permeability [(Walker et al. 2018) Hua et al., unpublished].

Most questions are focused on cell wall synthesis but the degradation of the cell
wall is an issue which is less addressed. Enzymatic degradation of the cell wall has
been often mentioned as the only way for the fungal cell to soften the cell wall and
make the cell wall viscoelastic to allow the fungus to expand. However, the
essential role of glycoside hydrolases during yeast budding and conidium germi-
nation, or hyphal branching has not been fully demonstrated and the relationship
between internal turgor pressure and hydrolases remains fuzzy (Lew 2011). The
part taken by the internal osmotic pressure vs enzymatic hydrolysis has yet to be
quantified by biophysical methods. Another intriguing question is the
intra-phagosomal degradation of the cell wall polysaccharides. How are the cell
wall components degraded and presented by antigen-presenting cells to select for
polysaccharide-specific T-cells since human glycoside hydrolases have not been
shown to be able to degrade enzymatically cell wall polymers (even though they are
able to degrade chito-oligosaccharides or glycosaminoglycans and hyaluronan)?
(Nakamura et al. 2019; Kumar and Zhang 2019). In the phagosome, cell wall
polysaccharides can be degraded by the action of reactive oxygen radicals
(ROS) but the rearrangements of the glycan polymers consecutively to the oxida-
tion of the polysaccharides remain unknown. The role of ROS in the degradation of
glycans has been shown especially inside the phagocytes (Baum and Cobb 2017;
Duan and Kasper 2011; Velez et al. 2009). Such understanding is needed and
would certainly help the understanding of the PAMP/PRR interaction and espe-
cially the identification of the ligands for C-type lectins and help defining better
how glycan-specific T-cells emerge. Better identifying the links between glycobi-
ology, fungal virulence, and immunology is certainly a way of the future to promote
the study the fungal cell wall.

7 Conclusion

Fungal genome sequencing has made considerable progress over the last 20 years,
but this progress translates only slowly in a better understanding of cell wall
synthesis and turnover, due to the intrinsic experimental difficulties of character-
izing a poorly understood composite structure and to the difficult characterization of
dozens of membrane enzymes with overlapping substrates and products. Even
though the study of the cell wall biosynthesis has been initiated half a century ago,
major questions presented in Fig. 2 remain unsolved. It is clear that breakthrough in
the field will require new innovative approaches and technologies to advance our
understanding of cell wall construction. All the approaches presented in this essay
are of course not exclusive and new ideas and concepts are certainly welcome to
break codes and transcend ideas accepted to date in the fungal field.

Revisiting Old Questions and New Approaches to Investigate … 363



References

Aimanianda V, Simenel C, Garnaud C, Clavaud C, Tada R, Barbin L, Mouyna I, Heddergott C,
Popolo L, Ohya Y et al (2017) The dual activity responsible for the elongation and branching
of b-(1,3)-glucan in the fungal cell wall. MBio 8

Akoumianaki T, Kyrmizi I, Valsecchi I, Gresnigt MS, Samonis G, Drakos E, Boumpas D,
Muszkieta L, Prevost M-C, Kontoyiannis DP et al (2016) Aspergillus cell wall melanin blocks
LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe 19:79–90

Alcazar-Fuoli L, Clavaud C, Lamarre C, Aimanianda V, Seidl-Seiboth V, Mellado E, Latgé J-P
(2011) Functional analysis of the fungal/plant class chitinase family in Aspergillus fumigatus.
Fungal Genet Biol FG B 48:418–429

Atanasova M, Bagdonas H, Agirre J (2019) Structural glycobiology in the age of electron
cryo-microscopy. Curr Opin Struct Biol 62:70–78

Bamford NC, Snarr BD, Gravelat FN, Little DJ, Lee MJ, Zacharias CA, Chabot JC, Geller AM,
Baptista SD, Baker P et al (2015) Sph3 is a glycoside hydrolase required for the biosynthesis of
galactosaminogalactan in Aspergillus fumigatus. J Biol Chem 290:27438–27450

Banks IR, Specht CA, Donlin MJ, Gerik KJ, Levitz SM, Lodge JK (2005) A chitin synthase and
its regulator protein are critical for chitosan production and growth of the fungal pathogen
Cryptococcus neoformans. Eukaryot Cell 4:1902–1912

Bartnicki-García S (1999) Glucans, walls, and morphogenesis: on the contributions of J. G. H.
Wessels to the golden decades of fungal physiology and beyond. Fungal Genet Biol FG B
27:119–127

Bartnicki-Garcia S, Lippman E (1969) Fungal morphogenesis: cell wall construction in Mucor
rouxii. Science 165:302–304

Bartnicki-Garcia S, Bracker CE, Gierz G, López-Franco R, Lu H (2000) Mapping the growth of
fungal hyphae: orthogonal cell wall expansion during tip growth and the role of turgor.
Biophys J 79:2382–2390

Baum LG, Cobb BA (2017) The direct and indirect effects of glycans on immune function.
Glycobiology 27:619–624

Beaussart A, El-Kirat-Chatel S, Fontaine T, Latgé J-P, Dufrêne YF (2015) Nanoscale biophysical
properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus
fumigatus. Nanoscale 7:14996–15004

Beauvais A, Latgé J-P (2015) Aspergillus biofilm in vitro and in vivo. Microbiol Spectr 3
Beauvais A, Fontaine T, Aimanianda V, Latgé J-P (2014) Aspergillus cell wall and biofilm.

Mycopathologia 178:371–377
Blanco N, Reidy M, Arroyo J, Cabib E (2012) Crosslinks in the cell wall of budding yeast control

morphogenesis at the mother-bud neck. J Cell Sci 125:5781–5789
Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC (2012) Hidden killers:

human fungal infections. Sci Transl Med 4:165rv13
Cabib E, Farkas V, Kosík O, Blanco N, Arroyo J, McPhie P (2008) Assembly of the yeast cell

wall. Crh1p and Crh2p act as transglycosylases in vivo and in vitro. J Biol Chem 283:29859–
29872

Chase WR, Zhaxybayeva O, Rocha J, Cosgrove DJ, Shapiro LR (2020) Global cellulose biomass,
horizontal gene transfers and domain fusions drive microbial expansin evolution. New Phytol

Christiansen L, Pathiraja D, Bech PK, Schultz-Johansen M, Hennessy R, Teze D, Choi I-G,
Stougaard P (2020) A multifunctional polysaccharide utilization gene cluster in Colwellia
echini encodes enzymes for the complete degradation of j-Carrageenan, i-Carrageenan, and
Hybrid b/j-Carrageenan. MSphere 5

Christodoulidou A, Bouriotis V, Thireos G (1996) Two sporulation-specific chitin
deacetylase-encoding genes are required for the ascospore wall rigidity of Saccharomyces
cerevisiae. J Biol Chem 271:31420–31425

Cosgrove DJ (2016) Catalysts of plant cell wall loosening. F1000Research 5
Cui Y, Gao J, He Y, Jiang L (2020) Plant extracellular vesicles. Protoplasma 257:3–12

364 M. Blatzer et al.



De Storme N, Geelen D (2014) Callose homeostasis at plasmodesmata: molecular regulators and
developmental relevance. Front Plant Sci 5:138

DeMeester KE, Liang H, Zhou J, Wodzanowski KA, Prather BL, Santiago CC, Grimes CL (2019)
Metabolic incorporation of N-acetyl muramic acid probes into bacterial peptidoglycan. Curr
Protoc Chem Biol 11:e74

Dichtl K, Samantaray S, Aimanianda V, Zhu Z, Prévost M-C, Latgé J-P, Ebel F, Wagener J (2015)
Aspergillus fumigatus devoid of cell wall b-1,3-glucan is viable, massively sheds galactoman-
nan and is killed by septum formation inhibitors. Mol Microbiol 95:458–471

Doering TL (2009) How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in
Cryptococcus neoformans. Annu Rev Microbiol 63:223–247

Douglas CM, D’Ippolito JA, Shei GJ, Meinz M, Onishi J, Marrinan JA, Li W, Abruzzo GK,
Flattery A, Bartizal K et al (1997) Identification of the FKS1 gene of Candida albicans as the
essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob Agents Chemother
41:2471–2479

Duan J, Kasper DL (2011) Oxidative depolymerization of polysaccharides by reactive oxygen/
nitrogen species. Glycobiology 21:401–409

Duvenage L, Walker LA, Bojarczuk A, Johnston SA, MacCallum DM, Munro CA, Gourlay CW
(2019) Inhibition of classical and alternative modes of respiration in Candida albicans leads to
cell wall remodeling and increased macrophage recognition. MBio 10

Elhasi T, Blomberg A (2019) Integrins in disguise—mechanosensors in Saccharomyces cerevisiae
as functional integrin analogues. Microb. Cell Graz Austria 6:335–355

Elieh Ali Komi D, Sharma L, Dela Cruz CS (2018) Chitin and its effects on inflammatory and
immune responses. Clin Rev Allergy Immunol 54:213–223

Fang W, Sanz AB, Bartual SG, Wang B, Ferenbach AT, Farkaš V, Hurtado-Guerrero R, Arroyo J,
van Aalten DMF (2019) Mechanisms of redundancy and specificity of the Aspergillus
fumigatus Crh transglycosylases. Nat Commun 10:1669

Fontaine T, Delangle A, Simenel C, Coddeville B, van Vliet SJ, van Kooyk Y, Bozza S, Moretti S,
Schwarz F, Trichot C et al (2011) Galactosaminogalactan, a new immunosuppressive
polysaccharide of Aspergillus fumigatus. PLoS Pathog 7:e1002372

Gastebois A, Fontaine T, Latgé J-P, Mouyna I (2010) beta(1-3)Glucanosyltransferase Gel4p is
essential for Aspergillus fumigatus. Eukaryot Cell 9:1294–1298

Gow NAR, Latge J-P, Munro CA (2017) The fungal cell wall: structure, biosynthesis, and
function. Microbiol, Spectr, p 5

Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X,
Korzeniewski F et al (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic
Acids Res 42:D699–704

Gustafsson N, Culley S, Ashdown G, Owen DM, Pereira PM, Henriques R (2016) Fast live-cell
conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations.
Nat Commun 7:12471

Han B, Moretto M, Weiss ML (2019) Encephalitozoon: tissue culture, cryopreservation, and
murine infection. Curr Protoc Microbiol 52:e72

Hartland RP, Fontaine T, Debeaupuis JP, Simenel C, Delepierre M, Latgé JP (1996) A novel beta-
(1-3)-glucanosyltransferase from the cell wall of Aspergillus fumigatus. J Biol Chem
271:26843–26849

Henry C, Latgé J-P, Beauvais A (2012) a1,3 glucans are dispensable in Aspergillus fumigatus.
Eukaryot Cell 11:26–29

Henry C, Li J, Danion F, Alcazar-Fuoli L, Mellado E, Beau R, Jouvion G, Latgé J-P, Fontaine T
(2019) Two KTR mannosyltransferases are responsible for the biosynthesis of cell wall
mannans and control polarized growth in Aspergillus fumigatus. MBio 10

Inoue SB, Takewaki N, Takasuka T, Mio T, Adachi M, Fujii Y, Miyamoto C, Arisawa M,
Furuichi Y, Watanabe T (1995) Characterization and gene cloning of 1,3-beta-D-glucan
synthase from Saccharomyces cerevisiae. Eur J Biochem 231:845–854

Revisiting Old Questions and New Approaches to Investigate … 365



Kang MS, Elango N, Mattia E, Au-Young J, Robbins PW, Cabib E (1984) Isolation of chitin
synthetase from Saccharomyces cerevisiae. Purification of an enzyme by entrapment in the
reaction product. J Biol Chem 259:14966–14972

Kang X, Kirui A, Muszyński A, Widanage MCD, Chen A, Azadi P, Wang P, Mentink-Vigier F,
Wang T (2018) Molecular architecture of fungal cell walls revealed by solid-state NMR. Nat
Commun 9:2747

Katiyar S, Pfaller M, Edlind T (2006) Candida albicans and Candida glabrata clinical isolates
exhibiting reduced echinocandin susceptibility. Antimicrob Agents Chemother 50:2892–2894

Kitagaki H, Wu H, Shimoi H, Ito K (2002) Two homologous genes, DCW1 (YKL046c) and
DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored
membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae. Mol
Microbiol 46:1011–1022

Knogge W (1996) Fungal Infection of Plants. Plant Cell 8:1711–1722
Kombrink A, Thomma BPHJ (2013) LysM effectors: secreted proteins supporting fungal life.

PLoS Pathog 9:e1003769
Kumar A, Zhang KYJ (2019) Human chitinases: structure, function, and inhibitor discovery. Adv

Exp Med Biol 1142:221–251
Kuznetsov E, Váchová L, Palková Z (2016) Cellular localization of Sun4p and its interaction with

proteins in the yeast birth scar. Cell Cycle Georget. Tex 15:1898–1907
Latge J-P, Beauvais A (2014) Functional duality of the cell wall. Curr Opin Microbiol 20:111–117
Latgé J-P, Beauvais A, Chamilos G (2017) The cell wall of the human fungal pathogen Aspergillus

fumigatus: biosynthesis, organization, immune response, and virulence. Annu Rev Microbiol
71:99–116

Lee MJ, Gravelat FN, Cerone RP, Baptista SD, Campoli PV, Choe S-I, Kravtsov I, Vinogradov E,
Creuzenet C, Liu H et al (2014) Overlapping and distinct roles of Aspergillus fumigatus
UDP-glucose 4-epimerases in galactose metabolism and the synthesis of galactose-containing
cell wall polysaccharides. J Biol Chem 289:1243–1256

Lee MJ, Liu H, Barker BM, Snarr BD, Gravelat FN, Al Abdallah Q, Gavino C, Baistrocchi SR,
Ostapska H, Xiao T et al (2015) The fungal exopolysaccharide galactosaminogalactan mediates
virulence by enhancing resistance to neutrophil extracellular traps. PLoS Pathog 11:e1005187

Lenardon MD, Milne SA, Mora-Montes HM, Kaffarnik FAR, Peck SC, Brown AJP, Munro CA,
Gow NAR (2010) Phosphorylation regulates polarisation of chitin synthesis in Candida
albicans. J Cell Sci 123:2199–2206

Lew RR (2011) How does a hypha grow? The biophysics of pressurized growth in fungi. Nat Rev
Microbiol 9:509–518

Li J, Mouyna I, Henry C, Moyrand F, Malosse C, Chamot-Rooke J, Janbon G, Latgé J-P,
Fontaine T (2018) Glycosylphosphatidylinositol anchors from galactomannan and
GPI-anchored protein are synthesized by distinct pathways in Aspergillus fumigatus. J Fungi
Basel Switz 4

Li S, Bashline L, Lei L, Gu Y (2014) Cellulose synthesis and its regulation. Arab Book Am Soc
Plant Biol 12

Liu X, Li J, Zhao H, Liu B, Günther-Pomorski T, Chen S, Liesche J (2019) Novel tool to quantify
cell wall porosity relates wall structure to cell growth and drug uptake. J Cell Biol 218:1408–
1421

Mansour MK, Tam JM, Khan NS, Seward M, Davids PJ, Puranam S, Sokolovska A, Sykes DB,
Dagher Z, Becker C et al (2013) Dectin-1 activation controls maturation of
b-1,3-glucan-containing phagosomes. J Biol Chem 288:16043–16054

Martín-Cuadrado AB, Encinar del Dedo J, de Medina-Redondo M, Fontaine T, del Rey F, Latgé
JP, Vázquez de Aldana CR (2008) The Schizosaccharomyces pombe endo-1,3-beta-glucanase
Eng1 contains a novel carbohydrate binding module required for septum localization. Mol
Microbiol 69:188–200

Martínez-Rucobo FW, Eckhardt-Strelau L, Terwisscha van Scheltinga AC (2009) Yeast chitin
synthase 2 activity is modulated by proteolysis and phosphorylation. Biochem J 417:547–554

366 M. Blatzer et al.



Mélida H, Sain D, Stajich JE, Bulone V (2015) Deciphering the uniqueness of Mucoromycotina
cell walls by combining biochemical and phylogenomic approaches. Environ Microbiol
17:1649–1662

Mélida H, Sopeña-Torres S, Bacete L, Garrido-Arandia M, Jordá L, López G, Muñoz-Barrios A,
Pacios LF, Molina A (2018) Non-branched b-1,3-glucan oligosaccharides trigger immune
responses in arabidopsis. Plant J Cell Mol Biol 93:34–49

Millet N, Moya-Nilges M, Sachse M, Krijnse Locker J, Latgé J-P, Mouyna I (2019) Aspergillus
fumigatus exob(1-3)glucanases family GH55 are essential for conidial cell wall morphogen-
esis. Cell Microbiol 21:e13102

Moore PM, Peberdy JF (1976) A particulate chitin synthase from Aspergillus flavus link: the
properties, location, and levels of activity in mycelium and regenerating protoplast
preparations. Can J Microbiol 22:915–921

Mouyna I, Fontaine T, Vai M, Monod M, Fonzi WA, Diaquin M, Popolo L, Hartland RP, Latge JP
(2000) Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the
biosynthesis of the fungal cell wall. J Biol Chem 275:14882–14889

Mouyna I, Aimanianda V, Hartl L, Prevost M-C, Sismeiro O, Dillies M-A, Jagla B, Legendre R,
Coppee J-Y, Latgé J-P (2016) GH16 and GH81 family b-(1,3)-glucanases in Aspergillus
fumigatus are essential for conidial cell wall morphogenesis. Cell Microbiol 18:1285–1293

Mouyna I, Dellière S, Beauvais A, Gravelat F, Snarr B, Lehoux M, Zacharias C, Sun Y, de Jesus
Carrion S, Pearlman E, Sheppard DC, Latgé J-P (2020) What are the functions of chitin
Deacetylases in Aspergillus fumigatus? Front Cell Infect Microbiol 10:28. https://doi.org/10.
3389/fcimb.2020.00028

Muraosa Y, Toyotome T, Yahiro M, Kamei K (2019) Characterisation of novel-cell-wall
LysM-domain proteins LdpA and LdpB from the human pathogenic fungus Aspergillus
fumigatus. Sci Rep 9:3345

Muszkieta L, Aimanianda V, Mellado E, Gribaldo S, Alcàzar-Fuoli L, Szewczyk E, Prevost M-C,
Latgé J-P (2014) Deciphering the role of the chitin synthase families 1 and 2 in the in vivo and
in vitro growth of Aspergillus fumigatus by multiple gene targeting deletion. Cell Microbiol
16:1784–1805

Muszkieta L, Fontaine T, Beau R, Mouyna I, Vogt MS, Trow J, Cormack BP, Essen L-O,
Jouvion G, Latgé J-P (2019) The glycosylphosphatidylinositol-anchored DFG family is
essential for the insertion of galactomannan into the b-(1,3)-glucan-chitin core of the cell wall
of Aspergillus fumigatus. MSphere 4

Nakamura T, Fahmi M, Tanaka J, Seki K, Kubota Y, Ito M (2019) Genome-wide analysis of
whole human glycoside hydrolases by data-driven analysis in silico. Int J Mol, Sci, p 20

Naranjo-Ortiz MA, Gabaldón T (2019) Fungal evolution: diversity, taxonomy and phylogeny of
the Fungi. Biol Rev Camb Philos Soc 94:2101–2137

Nikolaidis N, Doran N, Cosgrove DJ (2014) Plant expansins in bacteria and fungi: evolution by
horizontal gene transfer and independent domain fusion. Mol Biol Evol 31:376–386

Onwubiko UN, Rich-Robinson J, Mustaf RA, Das ME (2020) Cdc42 promotes Bgs1 recruitment
for septum synthesis and glucanase localization for cell separation during cytokinesis in fission
yeast. Small GTPases

Osmond BC, Specht CA, Robbins PW (1999) Chitin synthase III: synthetic lethal mutants and
“stress related” chitin synthesis that bypasses the CSD3/CHS6 localization pathway. Proc Natl
Acad Sci USA 96:11206–11210

Pacheco-Arjona JR, Ramirez-Prado JH (2014) Large-scale phylogenetic classification of fungal
chitin synthases and identification of a putative cell-wall metabolism gene cluster in
Aspergillus genomes. PLoS ONE 9:e104920

Pan Y-J, Lin T-L, Chen C-T, Chen Y-Y, Hsieh P-F, Hsu C-R, Wu M-C, Wang J-T (2015) Genetic
analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella
spp. Sci Rep 5:15573

Pauly M, Gawenda N, Wagner C, Fischbach P, Ramírez V, Axmann IM, Voiniciuc C (2019) The
suitability of orthogonal hosts to study plant cell wall biosynthesis. Plants Basel Switz 8

Revisiting Old Questions and New Approaches to Investigate … 367

https://doi.org/10.3389/fcimb.2020.00028
https://doi.org/10.3389/fcimb.2020.00028


Peberdy JF, Gibson RK (1971) Regeneration of Aspergillus nidulans protoplasts. J Gen Microbiol
69:325–330

Perez S, Tubiana T, Imberty A, Baaden M (2015) Three-dimensional representations of complex
carbohydrates and polysaccharides–SweetUnityMol: a video game-based computer graphic
software. Glycobiology 25:483–491

Pham TA, Berrin JG, Record E, To KA, Sigoillot J-C (2010) Hydrolysis of softwood by
Aspergillus mannanase: role of a carbohydrate-binding module. J Biotechnol 148:163–170

Pilhofer M, Rappl K, Eckl C, Bauer AP, Ludwig W, Schleifer K-H, Petroni G (2008)
Characterization and evolution of cell division and cell wall synthesis genes in the bacterial
phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and phylogenetic
comparison with rRNA genes. J Bacteriol 190:3192–3202

Rodrigues ML, Casadevall A (2018) A two-way road: novel roles for fungal extracellular vesicles.
Mol Microbiol 110:11–15

Sahl SJ, Hell SW, Jakobs S (2017) Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol
18:685–701

Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and
engineering strategies. Front Microbiol 6:496

Sezgin E (2017) Super-resolution optical microscopy for studying membrane structure and
dynamics. J Phys Condens Matter Inst Phys J 29:273001

Simon C, Spriet C, Hawkins S, Lion C (2018) Visualizing lignification dynamics in plants with
click chemistry: dual labeling is BLISS! J Vis Exp JoVE

Spreghini E, Davis DA, Subaran R, Kim M, Mitchell AP (2003) Roles of Candida albicans Dfg5p
and Dcw1p cell surface proteins in growth and hypha formation. Eukaryot Cell 2:746–755

St Leger RJ, Screen SE, Shams-Pirzadeh B (2000) Lack of host specialization in Aspergillus
flavus. Appl Environ Microbiol 66:320–324

Stirke A, Celiesiute-Germaniene R, Zimkus A, Zurauskiene N, Simonis P, Dervinis A,
Ramanavicius A, Balevicius S (2019) The link between yeast cell wall porosity and plasma
membrane permeability after PEF treatment. Sci Rep 9:14731

Stolz J, Munro S (2002) The components of the Saccharomyces cerevisiae mannosyltransferase
complex M-Pol I have distinct functions in mannan synthesis. J Biol Chem 277:44801–44808

Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, Haynes K, Steele C,
Botto M, Gordon S et al (2007) Dectin-1 is required for beta-glucan recognition and control of
fungal infection. Nat Immunol 8:31–38

Upadhya R, Baker LG, Lam WC, Specht CA, Donlin MJ, Lodge JK (2018) Cryptococcus
neoformans Cda1 and its chitin deacetylase activity are required for fungal pathogenesis. MBio
9

Valsecchi I, Dupres V, Michel J-P, Duchateau M, Matondo M, Chamilos G, Saveanu C,
Guijarro JI, Aimanianda V, Lafont F et al (2019) The puzzling construction of the conidial
outer layer of Aspergillus fumigatus. Cell Microbiol 21:e12994

Velez CD, Lewis CJ, Kasper DL, Cobb BA (2009) Type I Streptococcus pneumoniae
carbohydrate utilizes a nitric oxide and MHC II-dependent pathway for antigen presentation.
Immunology 127:73–82

Walker L, Sood P, Lenardon MD, Milne G, Olson J, Jensen G, Wolf J, Casadevall A,
Adler-Moore J, Gow NAR (2018) The viscoelastic properties of the fungal cell wall allow
traffic of AmBisome as intact liposome vesicles. MBio 9

Wloka C, Bi E (2012) Mechanisms of cytokinesis in budding yeast. Cytoskelet. 69:710–726
(Hoboken NJ)

Yu Q, Zhang B, Li J, Zhang B, Wang H, Li M (2016) Endoplasmic reticulum-derived reactive
oxygen species (ROS) is involved in toxicity of cell wall stress to Candida albicans. Free
Radic Biol Med 99:572–583

Zakrzewski A-C, Weigert A, Helm C, Adamski M, Adamska M, Bleidorn C, Raible F, Hausen H
(2014) Early divergence, broad distribution, and high diversity of animal chitin synthases.
Genome Biol Evol 6

368 M. Blatzer et al.



Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J, Lounes-Hadj
Sahraoui A, Fontaine J, Sanchez H, Hatfield RD et al (2014) Novel entries in a fungal biofilm
matrix encyclopedia. MBio 5:e01333–01314

Zarnowski R, Sanchez H, Covelli AS, Dominguez E, Jaromin A, Bernhardt J, Mitchell KF,
Heiss C, Azadi P, Mitchell A et al (2018) Candida albicans biofilm-induced vesicles confer
drug resistance through matrix biogenesis. PLoS Biol 16:e2006872

Revisiting Old Questions and New Approaches to Investigate … 369


	Preface
	Contents
	187 Synthetic Oligosaccharides Mimicking Fungal Cell Wall Polysaccharides
	Abstract
	1 Introduction
	2 Thematic Glycoarrays
	2.1 Galactomannan
	2.2 α- and β-Mannan
	2.3 α- and β-(1 → 3)-Glucans
	2.4 Polysaccharides Composed of 2-Deoxy-2-Aminosugars

	3 Conclusions
	Acknowledgements
	References

	205 Aspergillus fumigatus DHN-Melanin
	Abstract
	1 Introduction
	2 Conclusions and Unresolved Questions on Biology of A. fumigatus melanin
	References

	186 Hydrophobin Rodlets on the Fungal Cell Wall
	Abstract
	1 The Discovery of the Hydrophobic Rodlet Layer on Conidia
	2 Hydrophobins Are the Proteins that Make up the Rodlet Layer
	3 Generic Properties of Class I Hydrophobin Rodlets
	4 Sequence and Structural Analysis of Hydrophobins
	5 The Mechanism of Rodlet Assembly
	6 Unique Biological Roles of Rodlet Functional Amyloids
	6.1 Hydrophobins in Symbiotic Relationships with Plants and in Lichens
	6.2 The Contribution of Hydrophobins to Plant and Insect Infections
	6.3 The Role of RodA and Other Hydrophobins in A. Fumigatus

	7 Conclusions
	Acknowledgements
	References

	200 α- and β-1,3-Glucan Synthesis and Remodeling
	Abstract
	1 Introduction
	2 Biosynthesis of Cell Wall Glucans
	2.1 β-1,3-Glucan Synthesis
	2.2 β-1,3;1,4- and β-1,6-Glucan Synthesis
	2.3 α-1,3-Glucan Synthesis
	2.4 Regulation of Glucan Synthesis
	2.4.1 Regulation of β-1,3-Glucan Synthesis
	2.4.2 Regulation of α-1,3-Glucan Synthesis


	3 Concluding Remarks
	References

	184 Chitin: A “Hidden Figure” in the Fungal Cell Wall
	Abstract
	1 Introduction
	2 Chitin and Chitosan and the Fungal Cell Architecture
	3 Chitin Synthases
	4 Chitin in Fungal Cell Replication and Stress Response
	5 How the Host Responds to Chitin
	6 Chitin Receptor
	7 Chitin and Chitosan Immunostimulation
	8 Size-Dependent Immune Response
	9 Mammalian Chitinases
	10 Biomedical Applications of Chitin and Chitosan
	11 Conclusions
	References

	193 Control of Actin and Calcium for Chitin Synthase Delivery to the Hyphal Tip of Aspergillus
	Abstract
	1 Introduction
	2 Chitin Biosynthesis
	3 Transport of Chitin Synthase
	4 Super-resolution Imaging and Cluster Analysis of Chitin Synthase
	5 Pulse-Chase Analysis of mEosFP-ChsB After Photoconversion
	6 Oscillation of Fungal Tip Growth
	7 Ca2+ Oscillation
	8 Biological Meaning of Oscillations
	9 Conclusion and Perspective
	References

	185 Glucanases and Chitinases
	Abstract
	1 The Fungal Cell Wall and Its Components
	1.1 Glucans
	1.2 Chitin

	2 Fungal Glucanases
	2.1 General Features of Glucan-Hydrolysing Enzymes
	2.1.1 Modes of Action of Fungal Glucanases
	2.1.2 Sequence-Based Classification of Fungal Glucanases: CAZy Database

	2.2 Function of Fungal α- and β-Glucanases
	2.2.1 Family GH5 Exo-Glucanases
	2.2.2 Family GH81 Endo-Glucanases
	2.2.3 Family GH71 α-Glucanases
	2.2.4 Family GH132 Exo-Glucanases
	2.2.5 Family GH3 Exo-Glucanases
	2.2.6 Family GH55 Exo-Glucanases
	2.2.7 Family GH16 Endo-Glucanases


	3 Fungal Chitinases
	3.1 Organising the Action: From Chitin to N-Acetylglucosamine
	3.2 Structure and Diversity Between Fungal Chitinases
	3.3 The Biological Roles of Fungal Chitinases
	3.4 The Role of Chitinases in Fungal Morphogenesis: From Yeasts to Filamentous Cells
	3.5 The Far Side of Chitinases in Fungal Cells

	4 Concluding Remarks
	Acknowledgements
	References

	207 GPI Anchored Proteins in Aspergillus fumigatus and Cell Wall Morphogenesis
	Abstract
	1 Introduction
	2 Identification of putative GPI anchored proteins in the A. fumigatus genome
	3 Comparative genomic analysis
	4 Functions of GPI anchored proteins
	5 Investigating the role of newly identified GPI anchored proteins in cell wall morphogenesis
	6 Discussion and Conclusion
	Acknowledgements
	References

	201 PAMPs of the Fungal Cell Wall and Mammalian PRRs
	Abstract
	1 General Introduction
	2 Innate Immune Recognition
	3 Fungal Cell Wall
	4 Toll-like Receptors
	4.1 Signalling Pathways of TLRs
	4.2 TLRs and Fungal Infections
	4.2.1 TLR2
	4.2.2 TLR4
	4.2.3 TLR9


	5 C-Type Lectins-like Receptors (CLRs)
	5.1 Signalling Through the CLRs
	5.1.1 Syk pathway
	5.1.2 Ras-Raf Pathway

	5.2 CLRs and Fungal Infections
	5.2.1 Dectin-1 (CLEC7A)
	5.2.2 MelLec (CLEC1A)
	5.2.3 Dectin-2 (CLEC6A)
	5.2.4 MCL (CLEC4D, CLECSF8, Dectin-3)
	5.2.5 Mincle (CLEC4E, CLECSF9)
	5.2.6 DC-SIGN (CD209, Mouse SIGNR1 to SIGNR8)
	5.2.7 Mannose Receptor (CD206)
	5.2.8 Langerin (CD207)

	5.3 CD23 (FcεRII)

	6 Other PRRs
	6.1 CR3 (CD11b/CD18, Mac-1)
	6.2 CD14
	6.3 Scavenger Receptors
	6.4 Ephrin Type-A Receptor 2 (EphA2)

	7 Conclusion
	Acknowledgements
	References

	199 Exopolysaccharides and Biofilms
	Abstract
	1 Introduction
	2 Biofilm Composition, Structure and Synthesis
	2.1 Aspergillus fumigatus Biofilm
	2.1.1 α-glucans
	2.1.2 Galactomannans
	2.1.3 Galactosaminogalactan

	2.2 Candida albicans Biofilm
	2.2.1 Exopolysaccharides
	High Molecular Weight Polysaccharides
	Low Molecular Weight Polysaccharides

	2.2.2 Proteins
	2.2.3 Lipids
	2.2.4 Nucleic Acids
	2.2.5 Biofilm Regulation

	2.3 Other Relevant Human Fungal Pathogens Biofilms
	2.3.1 Cryptococcus sp.
	2.3.2 Mucorales


	3 Biofilm, a Shelter from the Environment
	3.1 Biofilm and Exopolysaccharide-Related Resistance Mechanisms to the Immune System
	3.2 Biofilm and Exopolysaccharide-Related Resistance Mechanisms to Antifungals
	3.2.1 Drug Penetration and Sequestration
	3.2.2 Efflux Pumps
	3.2.3 Persister Cells


	4 How Do We Fight Back?
	4.1 Inhibitors of Biofilm
	4.2 Disruption of Biofilm

	5 Conclusion
	Acknowledgements
	References

	188 Cell Wall-Modifying Antifungal Drugs
	Abstract
	1 Introduction
	2 Fungal Cell Wall as a Prime Antifungal Target
	3 Inhibitors of Glucan Synthase
	3.1 Echinocandins
	3.2 Early Echinocandin History
	3.3 Echinocandin Drug Resistance
	3.4 FKS Mechanism of Resistance
	3.5 Drug Resistance Emergence: Tolerance and Escape
	3.6 Echinocandins: The Next Generation
	3.7 Enfumafungin

	4 Inhibitors of Glycosylphosphatidylinositol
	5 Inhibitors of Chitin Synthesis
	6 Conclusion and Perspective
	Acknowledgements
	References

	183 Mitochondrial Control of Fungal Cell Walls: Models and Relevance in Fungal Pathogens
	Abstract
	1 Introduction
	2 Metabolic Aspects of Cell Wall Biogenesis and Links with Mitochondrial Functions
	3 Mitochondrial Phospholipid Metabolism and Cell Wall Structure
	4 Mitochondrial Morphology, Cell Wall Structure and Links to Phospholipids
	5 Models for How Mitochondrial Morphology and Lipid Homeostasis Might Impinge on Cell Wall Integrity
	6 Mitochondrial Respiration and Cell Wall Structure
	7 Summary and Future Directions
	Acknowledgements
	References

	182 Impact of the Environment upon the Candida albicans Cell Wall and Resultant Effects upon Immune Surveillance
	Abstract
	1 Introduction
	2 Structure and Synthesis of the C. Albicans Cell Wall
	3 Cell Wall Remodelling in Response to Damage
	4 Cell Wall Remodelling in Response to Environmental Change
	5 The Cell Wall in Immune Surveillance
	6 The Cell Wall in Immune Evasion
	7 Parallels with Other Fungal Pathogens
	8 Conclusions and Outlook
	Acknowledgements
	References

	209 Revisiting Old Questions and New Approaches to Investigate the Fungal Cell Wall Construction
	Abstract
	1 Coupling Genome Analysis with Cell Wall Construction
	2 Carbohydrate-Binding Domains
	3 Gene Clusters and Gene Families in Fungi
	4 Uncertainties in the Structure of the Cell Wall
	5 Similar Questions and Common Problems in the Understanding of Cell Wall Biosynthesis in Plants and Fungi?
	6 New Approaches to Understand Cell Wall Synthesis and Degradation
	7 Conclusion
	References




