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I. Introduction

Fungi are ubiquitous lifeforms that can grow in
a wide range of diverse environments. Based on
current phylogenetic analyses, the fungal king-
dom is divided into 8 phyla with 12 subphyla
and 46 classes (Spatafora et al. 2017). The two
monophyletic groups of Ascomycota and Basi-
diomycota form together the subkingdom of
Dikarya. Many fungi have a saprophytic life-
style. They live on decaying organic matter as
principal decomposers of our ecosystem. Fungi
play important roles in our food industry to
make cheese, ferment soybeans, or brew beer
and in the pharma industry to produce drugs
(Gerke and Braus 2014). But their appearance
can also be harmful to us. Fungal spores are
dispersed through the air and can be inhaled
into our lungs where most of them are inacti-
vated as long as the immune system is not
compromised (Shlezinger et al. 2017). Fungi
are responsible for many diseases in humans
and animals, ranging from allergies to life-
threatening intoxications and mycoses. The
infection of plants and contamination of har-
vest products by fungi lead to high economic
losses and are a threat for food supply and
safety (Meyer et al. 2016). In fungi, differentia-
tion processes, including the formation of
infection structures, are closely linked to the
production of specific chemicals. These
interconnected processes and their regulations
are the main focus of this chapter.

1 Institut für Mikrobiologie und Genetik, Abteilung Moleku-

lare Mikrobiologie und Genetik, Göttinger Zentrum für Mole-
kulare Biowissenschaften (GZMB), Georg-August-Universität

Göttingen, Göttingen, Germany; e-mail: gbraus@gwdg.de

Genetics and Biotechnology, 3rd Edition
The Mycota II
J.P. Benz, K. Schipper (Eds.)
© Springer Nature Switzerland AG 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49924-2_8&domain=pdf
mailto:gbraus@gwdg.de


A. Fungal Differentiation

Filamentous fungi of the Dikarya germinate
from single spores and initially grow in long,
tubular vegetative hyphae by tip extension
(Riquelme et al. 2018). The Spitzenkörper,
which is located at the hyphal tip, acts as a
dynamic center for the organization and supply
of the vesicles required for material transport.
Hyphae fuse through anastomosis tubes at the
tips and form branched two dimensional net-
works, called mycelia. When a certain state
of developmental competence is reached, the
fungus can respond to external signals to pro-
liferate through either asexual or sexual differ-
entiation (Fig. 8.1a). In asexual reproduction,
the fungus produces spore-forming structures
called conidiophores, which carry the uninu-
clear, mitotic-derived asexual spores called
conidia (Adams et al. 1998). These airborne
spores are distributed by the wind. In sexual
reproduction, ascomycetes produce sexual
spores called ascospores in a sac-shaped
ascus.1 In most species, each ascus carries
eight spores which are formed by meiosis and
subsequent mitotic division. The asci usually
form within the protecting fruiting bodies,
which can be closed and spherical (cleistothe-
cia), closed and flask-like (perithecia), or open
and cup-shaped (apothecia) and which serve as
overwintering structures in the soil (Pöggeler
et al. 2018). Whether asexual or sexual struc-
tures are formed depends strongly on the envi-
ronmental conditions, such as nutrients, light,
temperature, or oxygen availability. Fungi
change their lifestyle also during the infection
process. Whereas some fungi can gain entry
into the host without forming specialized struc-
tures, there are many plant pathogenic fungi
that produce adhesion and penetration struc-
tures, such as appressoria and hyphopodia.
These penetration organs form tiny infection
hooks and penetrate the host using turgor pres-
sure and/or by secreting large amounts of plant
cell wall-degrading enzymes (Lo Presti et al.
2015).

B. Fungal Secondary Metabolism

Whether a fungus initiates a differential pro-
gram depends not only on environmental con-
ditions but also on endogenous factors such as
the formation of primary or secondary metabo-
lites including pheromones. Metabolic pro-
grams are tightly connected with morphogenic
differentiation through sophisticated signal
sensing and transduction mechanisms as well
as transcriptional networks. Whereas primary
metabolites (also called central metabolites) are
essential for the growth of an organism, sec-
ondary metabolites (also called specialized
metabolites or natural products) are dispens-
able but offer advantages in the natural habitat
of their producer. Usually, primary metabolites
are the precursors for the biosynthesis of sec-
ondary metabolites, and the biosynthesis
occurs during developmental or aging pro-
cesses (Bayram et al. 2016). Several secondary
metabolites directly related to development are
known and show the close connection between
these two processes in fungi (Fig. 8.1a). These
secondary metabolites are involved, for exam-
ple, in the initiation and regulation of develop-
ment and in protection and survival. They are
also required for communication, competition,
and defense against other microorganisms as
well as for virulence in plant and animal infec-
tions (Macheleidt et al. 2016; Künzler 2018).

Although the biological benefit of most sec-
ondary metabolites has not yet been under-
stood, their biological activities have been
used for a very long time. Already our ancestors
used the healing extracts of fungi and plants as
medicine and nowadays many fungal com-
pounds serve as lead structures for the synthe-
sis of new drugs (Newman and Cragg 2012).
Examples of secondary metabolites with phar-
maceutical relevance from ascomycetes are the
antibiotic penicillin, the anticancer drug taxol,
the cholesterol-lowering drug lovastatin, or the
immunosuppressant ciclosporin. However, the
biological activities of secondary metabolites
can also be harmful for us. Fungi synthesize
strong carcinogens and mycotoxins such as
aflatoxins produced by Aspergillus and tri-
chothecenes produced by Fusarium (Gerke
and Braus 2014).1 Ascus ¼ skin bag.
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Fig. 8.1 Functions of fungal secondary metabolites
during life of an ascomycetous filamentous fungus liv-
ing in the soil. (a) Examples of secondary metabolites
contributing to growth, differentiation, communica-

tion, competition, protection, and survival of Aspergil-
lus nidulans. (b) Classification of fungal secondary
metabolites into the most common classes
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1. Secondary Metabolite Categories

Fungal secondary metabolites are categorized
according to their biosynthesis in the four
major groups polyketides, non-ribosomal pep-
tides, terpenes, and indole alkaloids but com-
prise also mixed forms or smaller groups
(Fig. 8.1b; Keller et al. 2005).

Polyketides are the most abundant second-
ary metabolites in fungi and are synthesized by
type I polyketide synthases (PKS). Type I PKS
are multi-domain enzymes similar to eukary-
otic fatty acid synthases, consisting of the
essential ketoacyl CoA synthase (KS), acyl-
transferase (AT), acyl carrier protein
(ACP) domains, and a termination domain
(Keller et al. 2005). Additionally, they can har-
bor variable domains like dehydratase, ketore-
ductase, enoylreductase, or methyltransferase
domains. The domains are arranged in a mod-
ule. Whereas bacterial PKS usually have multi-
ple modules, the fungal PKS typically carries
only one module, which can be used iteratively.
The precursors for the biosynthesis of polyke-
tides are usually acetyl coenzyme A (acetyl-
CoA) and malonyl-CoA, but also propionyl-
CoA or methylmalonyl-CoA are used. During
the starting stage of polyketide synthesis, the
precursors are loaded onto the starter domains
KS and ACP, catalyzed by the AT domain. In
the elongation stage, these loaded precursors
are condensed by decarboxylative condensa-
tion similar to the fatty acid synthesis, resulting
in a polyketide chain. By loading of another
starter unit, the next cycle starts, and the poly-
ketide chain is elongated by the new starter unit
similarly. The control of how many cycles are
performed is not yet understood. Finally, the
polyketide chain is released from the enzyme
by the termination domain (Keller et al. 2005).

Among the class of polyketides are several
products that demonstrate the tight link
between developmental processes and second-
ary metabolism by fulfilling survival or longev-
ity tasks, inducing sexual development as
hormones or conferring virulence. Typical
examples are melanins, zearalenone, and T-
toxin. Melanins are pigments that can be
incorporated into the fungal cell wall or
secreted to the environment. They strengthen

the cell wall, protect the fungal spores from UV
light, or can inhibit hydrolytic enzymes pro-
duced by other microorganisms (Toledo et al.
2017). Zearalenone, an estrogenic polyketide
produced exclusively by different Fusarium
species, is a sex hormone. Whereas loss of zear-
alenone prevents sexual reproduction, its addi-
tion can positively or negatively affect sexual
development, depending on the applied con-
centrations (Wolf and Mirocha 1977). T-toxin
is a polyketide produced by Cochliobolus het-
erostrophus, a necrotrophic fungal plant patho-
gen that causes southern corn leaf blight in
maize. It is connected with high virulence2

in maize cultivars carrying the “Texas male
sterile cytoplasm”, but it is not required for
pathogenicity3 itself. It contributes to virulence
by disrupting the mitochondrial activity (Ster-
giopoulos et al. 2013).

Non-ribosomal peptides are peptides that
are produced from proteinogenic and non-
proteinogenic amino acids by enzymes called
non-ribosomal peptide synthetases (NRPS)
without the use of ribosomes. NRPS are multi-
domain and multi-modular enzymes. Each
module contains an adenylation domain for
the recognition of the amino acid, a peptidyl
carrier domain for the activation and covalent
binding of the amino acid to the phosphopan-
tetheine transferase cofactor (PPTase) and a
condensation domain for peptide formation.
The final peptide is usually released by a thioes-
terase domain at the C-terminus of the enzyme.
The diversity of non-ribosomal peptides
derives from cyclization or branching of pep-
tides. Among them are, for instance, the antibi-
otic penicillin, siderophores, and gliotoxin.
Siderophores are iron-chelating compounds
produced for the uptake and storage of iron
ions. Usually they contain hydroxamate groups
that form strong iron(III) binding bidentates.
Most filamentous fungi and some yeasts, except
for the model organisms S. cerevisiae or C.
albicans, produce siderophores. A fine-tuned
system between iron uptake and storage is nec-
essary to prevent the fungus from iron starva-

2Virulence ¼ severity of a disease caused by a pathogen.
3 Pathogenicity ¼ ability of a pathogen to cause a disease.
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tion or toxicity (Haas 2014). Gliotoxin is
another prominent example of non-ribosomal
peptides. It is a mycotoxin produced by human
pathogens such as Aspergillus fumigatus, Tri-
choderma spp., and Penicillium spp. It inhibits
the proteasome and prevents NF-kB activation
(see Sect. V.A) as presumed virulence factor of
A. fumigatus by targeting primarily the activity
of neutrophils or other phagocytes of the host
immune system (Scharf et al. 2016).

Terpenes are built up from isoprene units
by terpene synthases (terpene cyclases). The
subgroup of oxygenated forms of terpenes is
called terpenoids. Most of known terpenes
derive from plants, for example, the major con-
stituents of essential oils. In terpene synthesiz-
ing fungi, they are produced by the mevalonate
pathway. Prominent examples are the caroten-
oid pigments, the gibberellin phytohormones
or the trichothecene mycotoxins (Schmidt-
Dannert 2014).

Indole alkaloids are nitrogen-containing
secondary metabolites incorporating one or
more indole or indoline moieties (Xu et al.
2014). Mostly, the indole precursors are trypto-
phan or related indole-3-glycerol-phosphate.
Tryptophan is prenylated with dimethylallyl
pyrophosphate by dimethylallyl tryptophan
synthases (DMATS). Ergotamine from Clavi-
ceps purpurea represents a prominent example
for an indole alkaloid. It works as vasoconstric-
tor with structural similarity to several neuro-
transmitters and is medicinally used against
acute migraine attacks (Schardl et al. 2006).

Besides the four main groups, there are
additional classes of fungal secondary metabo-
lites (Fig. 8.1b). Metabolites consisting of com-
binations of peptides and polyketides (peptide-
polyketide hybrids), such as emericellamides
or aspyridone, are formed by PKS-NRPS
hybrids that contain all typical domains of the
single PKS and NRPS (Du et al. 2001). Mero-
terpenoids are products with a partial terpe-
noid structure plus a polyketide or a peptide
moiety (Matsuda and Abe 2016). An example
for a meroterpenoid with a polyketide moiety is
dehydroaustinol produced by A. nidulans. The
addition of dehydroaustinol together with the
polyketide diorcinol restores spore formation
of A. nidulansmutants defective in sporulation,

suggesting that these two compounds or deri-
vatives serve as developmental signal for asex-
ual sporulation (Rodrı́guez-Urra et al. 2012;
Fig. 8.1a). Oxylipins (collectively termed psi-
factor (precocious sexual inducer)) are oxyge-
nated polyunsaturated fatty acids produced by
oxygenases (Brodhun and Feussner 2011). In
Aspergillus nidulans, three psi factor producing
oxygenases PpoA, PpoB, and PpoC have been
characterized producing mainly hydroxylated
oleic (18:1) and linoleic (18:2) acid. A careful
regulated system of oxylipins is necessary for a
proper balance between asexual and sexual
development (Tsitsigiannis et al. 2004). Besides
these non-volatile oxylipins, also volatile oxyli-
pins exist. They share an eight-carbon scaffold
and are suggested to be involved in fungus-
invertebrate interactions (Holighaus and Rohlfs
2018). Isocyanides, which function as chalko-
phores, contain nitrile groups and are synthe-
sized by isocyanide synthases that can also
occur as hybrids with NRPS. The first charac-
terized isocyanide was xanthocillin, which is
produced, e.g., by Penicillium notatum and by
A. fumigatus (Lim et al. 2018).

2. Secondary Metabolite Clusters Are Often
Silenced and Have to Be Activated for
Analysis in the Laboratory

The large diversity of secondary metabolites is
due to modifications that are performed after
the initial step of building the skeleton. These
include oxidations, cyclizations, methylations,
dehydrations, or reductions. Fungal genes that
are necessary for the biosynthesis of the final
secondary metabolites as well as genes encod-
ing proteins necessary for regulation of the
synthesis or transport of the final metabolite
product are usually, and similarly to genes for
specialized or accessory primary metabolism,
clustered together on one chromosomal locus
(Rokas et al. 2018). The gene clusters enable an
economical production of secondary metabo-
lites due to transcriptional co-regulation. Most
secondary metabolite biosynthetic gene clus-
ters are silenced and are only expressed under
very specific conditions. Especially under labo-
ratory conditions, where the fungus does not

8 Coordination of Fungal Secondary Metabolism and Development 177



naturally meet environmental triggers such as
stressors or nutrient limitations, the analysis of
secondary metabolism is difficult. The rapidly
growing number of genome studies has shown
that there are many more secondary metabolite
clusters in the genome of fungi than metabo-
lites have been identified so far (Andersen et al.
2013; Inglis et al. 2013; van der Lee andMedema
2016). In order to eliminate this discrepancy
and exploit the full potential of fungal metabo-
lite production, strategies have been developed
to activate silenced gene clusters and thus
enable their analysis in the laboratory (Gerke
and Braus 2014; Ren et al. 2017).

The easiest way to induce secondary metab-
olite production is to change the growth para-
meters as described by the OSMAC (one strain
many compounds) approach (Bode et al. 2002).
Parameters such as temperature, media compo-
nents, pH, air supply, and light can be varied to
force the fungus to adapt its secondary metab-
olite repertoire. Since secondary metabolites
are often used in nature for communication,
competition, and defense, their production
can also be stimulated by co-cultivation with
other microorganisms (Netzker et al. 2015).
Additionally, genes involved in the metabolite
biosynthesis can be heterologously introduced
and expressed in suitable hosts. Heterologous
expression systems for fungal biosynthetic
genes have been designed, e.g., for A. niger
(Gressler et al. 2015), A. nidulans (Chiang
et al. 2013), or A. oryzae (Sakai et al. 2012).
Silenced biosynthetic gene clusters can also be
awakened by manipulating the transcriptional
machinery, the epigenetic status, or the degra-
dation machinery of the cell.

In this chapter we focus on the molecular
regulatory links of the coordinated and specific
formation of secondary metabolites in different
phases of fungal developmental programs, with
a particular focus on the mold Aspergillus nidu-
lans. This includes the control and interaction
of different genetic networks, which can be
organized chronologically and hierarchically
and can contain several feedback functions.
Genetic transcriptional control is linked to
post-translational histone modifications as epi-
genetic control and specific signal transduction
pathways. Several additional post-translational

control mechanisms, such as the attachment
and removal of ubiquitin, link fungal differen-
tiation to the corresponding secondary metab-
olism by altering protein function and cellular
localization and by controlling protein stability
through the ubiquitin 26S proteasome as well as
autophagy degradation pathways.

II. Transcriptional Networks Linked
to Signal Transduction Pathways
Control Development and
Secondary Metabolism

Fungal growth and differentiation and the con-
comitant secondary metabolism occur in
response to internal and external signals that
are sensed through receptors and transported
by highly controlled signal transduction path-
ways. This leads to a choreography of changes
in transcription, translation, post-translational
histone modifications and protein stability fol-
lowed by proteomic changes. Several examples
of well-studied signal transduction pathways
and responding transcriptional regulatory cir-
cuits are summarized in the following section.

A. Transcriptional Networks Interact in
Fungal Morphogenic Transitions

Transcriptional reprogramming plays a crucial
role in the morphological transition from vege-
tative fungal growth to developmental pro-
grams. Besides chromatin modifications (see
Sect. III), changes in transcriptomes are
mediated by approximately 80 families of cur-
rently classified fungal DNA binding transcrip-
tion factors including a few examples of dual
factors with two distinct DNA binding
domains. Ascomycetous transcription factors
of the largest group carry a Zn2Cys6 zinc cluster
domain. This domain is generally found in all
fungi but also in a few additional non-fungal
organisms. In contrast, four types of transcrip-
tion factors carrying an APSES-type DNA bind-
ing domain (named after fungal developmental
transcription factors Asm1, Phd1, Sok2, Efg1,
and StuA), mating-type MAT a1, copper fist
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DNA-binding, or velvet domains are fungal
specific. Notably, the mating-type protein is
exclusively present in ascomycetes (Ahmed
et al. 2013; Shelest 2017). The velvet domain is
structurally similar to the immunoglobulin-like
Rel homology domain of the mammalian tran-
scription factor NF-kB p50 (Ahmed et al. 2013).
The four velvet domain proteins of Aspergilli
steer large hierarchical networks and intercon-
nect developmental programs with secondary
metabolism triggered by chemical, oxidative,
light, or temperature sensing and subsequent
signal transduction pathways (Bayram et al.
2008b; Bayram and Braus 2012; Lind et al.
2016).

1. Chemical Sensing and Oxidative Stress as
Developmental Signal: How Fungi Smell
Their Environment

Chemical sensing is accomplished by G
protein-coupled receptors (GPCRs) with a com-
mon seven transmembrane domain architec-
ture that initiate signal transduction through
binding to the heterotrimeric Ga, Gb, and Gg
protein complex. In Aspergilli, three different
Ga, one Gb, and one Gg protein exist (de Vries
et al. 2017; Brown et al. 2018). GPRCs are the
largest fungal group of surface receptors
important for sensing of pheromones, nutri-
ents, and host cells in pathogenic interactions.
For instance, the binding of a pheromone to the
receptor initiates GDP-GTP exchange on the Ga
protein that then dissociates from the bg dimer
and typically activates a three-step mitogen-
activated protein (MAP) kinase cascade, which
finally changes transcription. The result of this
well conserved cascade in fungi is a cell cycle
arrest and the cellular fusion of both mating
partners (Bahn et al. 2007). Further, similar
sensing systems through G protein-coupled
receptors with different transcriptional out-
comes exist for different macro- and micronu-
trients including glucose as main carbon energy
source. Glucose is sensed through the sugar
receptor Gpr1 (G protein-coupled receptor 1)
that stimulates Gpa2 resulting in increased
cyclic adenosinemonophosphate (cAMP) levels
through activation of adenylyl cyclase and pro-

tein kinase A (PKA). Active PKA inhibits the
Atg1 (autophagy-specific gene 1) initiation
kinase of autophagy degradation pathways
(see Sect. V.B). Specialized sugar transporters
such as yeast Snf3 (sucrose nonfermenting 3)
and Rgt2 (restores glucose transport 2) act as
sensors inducing signal transduction and
changed transcription (Bahn et al. 2007).

The regulation of the mycotoxin sterigma-
tocystin in A. nidulans works through a Ga-
PKA pathway. The Ga protein FadA (fluffy
autolytic dominant A) activates PkaA (protein
kinase A A), which in turn is a repressor of the
specific transcription factor of the sterigmato-
cystin biosynthesis cluster, AflR (aflatoxin reg-
ulator). The activation of the Ga protein FadA
is inhibited by the fluffy low brlA protein FlbA
(Shimizu et al. 2003; Fig. 8.2).

Reactive oxygen species (ROS) function as
signalling molecules in light perception and
redox biology and thereby induce fungal devel-
opment (Gessler et al. 2007). Therefore, an
impact on ROS homeostasis is often linked to
distorted development in filamentous fungi
(Nahlik et al. 2010; Kolog Gulko et al. 2018).
Fungi respond to oxidative stress induced by
ROS through activation of a MAP kinase path-
way (Yu and Fischer 2019). The MAP kinase
Hog1 (high osmolarity glycerol response 1) of S.
cerevisiae or its homologue SakA (stress acti-
vated kinase A) in A. nidulans are activated by
ROS and in turn induce transcription factors
needed for the induction of the oxidative stress
response, such as the A. nidulans AtfA (activat-
ing transcription factor A). These transcription
factors regulate different antioxidants, such as
superoxide dismutases, catalases, peroxidases,
glutathione peroxidases, peroxiredoxins, and
antioxidative secondary metabolites. The
stress-activated kinase SakA is not only
induced by ROS but also by light, mediated
through the red light photoreceptor FphA (fun-
gal phytochrome A), which represses fruiting
body formation in A. nidulans (Yu and Fischer
2019). SakA additionally mediates repression of
the A. nidulans NADPH oxidase gene noxA,
which is essential for different steps during
sexual fruiting body formation (Lara-Ortı́z
et al. 2003).
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2. Light Response: The Fungal Vision

Almost all fungi are able to perceive changes in
light or temperature conditions. Light is per-
ceived as a signal and also as a stressor and

induces a wide range of responses by inducing
different genetic networks resulting in changes
in development (photomorphogenesis), sec-
ondary metabolism, circadian clock, phototro-
pism, or DNA repair (Bayram et al. 2016; Cetz-

Fig. 8.2 Interconnection of genetic networks and sub-
networks for light and developmental control of A.
nidulans. Simplified model depicting examples of
major molecular control lines to support sexual or
asexual development and the appropriate secondary
metabolism. The velvet domain protein dimer VeA-
VelB supports sexual development in dark and VeA is
connected to blue (LreA, B) and red (FphA) light recep-
tors. VeA is controlled by epigenetic signal transduc-

tion (VapA, VipC-VapB) and bridges DNA binding
with epigenetic control of secondary metabolism
(LaeA: loss of aflR expression A). Velvet proteins
(VelB-VosA, VosA-VosA) as well as NsdD and different
signal transduction pathways (e.g., the cAMP PkaA
pathway) inhibit the expression of brlA as part of the
central conidiation pathway (with AbaA and WetA),
whereas different Flb factors, SclB, and the epigenetic
VapB-VipC support asexual development
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Chel et al. 2016; Fischer et al. 2016). The devel-
opmental light responses vary considerably
between different fungi. Blue or red light can
promote asexual spore formation in A. nidu-
lans (Fig. 8.1a) but inhibit sporulation in Botry-
tis cinerea (Tan 1974). Similarly, A. nidulans
sexual fruiting bodies are preferentially formed
in darkness, but Trichoderma reesei forms its
corresponding sexual structures in light (Pög-
geler et al. 2018).

Typical fungal photosensory systems
include light sensors specific for different wave-
lengths from 350 to 650 nm distributed into
four types of light receptor proteins. The
white collar proteins perceive blue light, phyto-
chromes sense red light, opsins are specific for
green light, and cryptochromes react to blue
and ultraviolet (UV) light. The light perception
occurs through binding of the photoreceptor to
a chromophore, which are flavin for blue and
UV light, linear tetrapyrrole for red light and
retinal for green light.

White collar (WC) proteins are blue-light
regulated transcription factors with a GATA-
type zinc finger DNA binding domain and
three PAS (Per, Arnt, Sim) domains directly
controlling gene expression. One of the PAS
domains is a LOV (light oxygen voltage)
domain, which is able to bind the chromophore
flavin. In Neurospora crassa, two WC proteins
are present, WC-1 and WC-2 (Wu et al. 2014).
They form a heterodimeric complex through
the PAS domains, which binds to light response
elements in the dark and activates light-
induced transcription after phosphorylation
and dissociation of WC-1. The complex regu-
lates approximately 20% of the N. crassa genes
encoding transcription factors as large hierar-
chical network responding to light and acting
downstream of the WC complex in light and
circadian clock control (Wu et al. 2014).
Besides the typical WC proteins, blue light
photoreceptors with only one LOV domain
(vivid, VVD) exist that act in fine-tuning the
light response (Malzahn et al. 2010).

N. crassa biosynthesis of carotenoid sec-
ondary metabolites and asexual spore forma-
tion are dependent on light and controlled by
the circadian clock (Rodriguez-Romero et al.
2010). WC-1 comprises a flavin mononucleo-

tide binding LOV domain for environmental
sensing of light, oxygen, and voltage. The WC-
1 and WC-2 zinc fingers dimerize to form the
white collar complex transcription factor for
DNA binding. WC-1 and WC-2 complexes are
conserved in numerous fungi with sometimes
several orthologs. WC-1 homologs of patho-
genic species are connected to virulence, prob-
ably through secondary metabolite production
(Idnurm et al. 2010; Fischer et al. 2016). The
white collar complex of Aspergilli, LreA/LreB
(light response), activates the expression of
the brlA (bristle A) gene encoding the central
transcription factor of the conidiation pathway
in response to light (Ruger-Herreros et al. 2011,
Fig. 8.2). The brlA promoter is repressed by
binding factors such as NsdD (never in sexual
development D) or the velvet domain protein
VosA (viability of spores A) (Ni and Yu 2007).
brlA must be activated through a complex cas-
cade of early genes for proteins which produce
small signal molecules (fluG: fluffy G) or act as
transcription factors (flbB-E: fluffy low brlA B-
E; sclB: sclerotia-like B). Activation of brlA by
light then activates the downstream pathway
with the genes abaA (abacus) and wetA (wet-
white; Fig. 8.2; Thieme et al. 2018).

Phytochromes are multi-domain photore-
ceptors that bind linear tetrapyrrole as chromo-
phore at their N-terminal photosensory domain
and have red/far-red light absorbance proper-
ties. The tetrapyrrole undergoes a conforma-
tional change upon red light induction and
thereby changes its spectroscopic properties
by shifting the absorption maximum toward
far-red light. The photosensory domain con-
sists of a PAS, a GAF (vertebrate cGMP-specific
phosphodiesterases, cyanobacterial adenylate
cyclases, transcription activator FhlA) and a
PHY (phytochrome-specific PAS-related)
domain. The further domains are a histidine
kinase domain and a response regulator
domain. Phytochromes seem to be absent
fromMucoromycotina fungi but might be pres-
ent in some Chytridiomycetes and have been
extensively studied in Aspergilli (Fischer et al.
2016). The A. nidulans phytochrome FphA
interacts with the white collar orthologs LreA
and LreB, corresponding to WC-1 and WC-2,
and the velvet transcription factor VeA (see
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Sect. II.B.2) that coordinates development and
secondary metabolism (Purschwitz et al. 2008;
Bayram et al. 2008b; Fig. 8.2). LreA binds to its
target sequences in the dark in dependency of
FphA while being released after illumination
with blue or red light (Blumenstein et al. 2005;
Hedtke et al. 2015). LreA modulates gene
expression together with FphA through modifi-
cation of histone H3 by interacting with the
acetyltransferase GcnE (general control non-
derepressible E) and the histone deacetylase
HdaA (Grimaldi et al. 2006; Hedtke et al.
2015). FphA of A. nidulans is a phytochrome
with light-driven histidine kinase activity and
presumably transmits the white collar and phy-
tochrome light signal directly to the velvet pro-
tein VeA by phosphorylation (Rauscher et al.
2016). This results in an enhancement of asex-
ual development in light and a delay in dark,
where sexual development is favored. After
30 min of illumination as minimum time
required to initiate conidiation, 19% of the
transcriptome of competent A. nidulans myce-
lia reacts to light (Bayram et al. 2010, 2016;
Hedtke et al. 2015; Macheleidt et al. 2016). Aus-
tinol and dehydroaustinol (see Sect. I.B.1) are
secondary metabolites connected to conidios-
pore production that are only produced in light
but not in dark (Rodrı́guez-Urra et al. 2012).

Cryptochromes are blue and UV light
receptors with similarities to blue light-
dependent DNA repairing photolyases, carry-
ing a photolyase domain (Idnurm et al. 2010;
Fischer et al. 2016). They bind non-covalently
to flavin adenine dinucleotide (FAD) as well as
other chromophores such as pterin or deaza-
flavin. The cryptochromes CryA of A. nidulans
and Cry1 of T. reesei are so far the only known
dual-function cryptochrome/photolyase pro-
teins. A. nidulans CryA inhibits sexual develop-
ment in UV light and has a DNA repair function
(Bayram et al. 2008a), whereas T. reesei Cry1 is
needed for light-induced transcription besides
its DNA repair function in conidia (Garcı́a-
Esquivel et al. 2016). In N. crassa, Cry1 acts as
transcriptional repressor of the white collar
blue light complex without photolyase activity
(Nsa et al. 2015).

Opsins, the green light receptors, are
membrane-bound proteins associated with a

retinal chromophore. They are related to bacte-
rial and archaeal rhodopsins that, in their acti-
vated form, channel ions across the membrane
(Yu and Fischer 2019). In filamentous fungi,
opsins are poorly characterized. In F. fujikuroi,
the opsin CarO (carotenoid O) was described as
green light-driven proton pump that is
involved in spore germination (Garcı́a-Martı́-
nez et al. 2015). In contrast, the N. crassa
NOP-1 (Neurospora opsin-1) lacks proton
pump activity but is involved in the regulation
of the switch between asexual and sexual devel-
opment in response to light and ROS levels
(Wang et al. 2018).

B. Gene Expression for Secondary Metabolite
Production Is Interconnected with
Morphological Differentiation

Environmental stimuli such as light, oxygen,
pH, and nutrients affect fungal morphological
programs as well as the tightly interconnected
specific secondary metabolite production.
Accordingly, defects in light control affect sec-
ondary metabolism. One example is Fusarium
fujikuroi, which is impaired in secondary
metabolite production when the white collar
blue light sensor WC-1 is defective, and which
uses its cryptochrome CryD to repress the pro-
duction of the antibiotic bikaverin during
growth in light (Estrada and Avalos 2008; Cas-
trillo et al. 2013).

1. Expression of Silenced Secondary Metabolite
Clusters by Specific and Global Regulators

Filamentous fungi are a vast reservoir of yet
undescribed secondary metabolites, carrying
dozens of usually clustered but only specifically
expressed biosynthetic gene clusters. Many of
these clusters are controlled by cluster-specific,
poorly conserved transcription factors (Alberti
et al. 2017; Keller 2018). In addition, there are
several master regulators of secondary metabo-
lism such as the originally in A. nidulans
described methyltransferase LaeA or the
multi-cluster regulator A (McrA). LaeA is
encoded by a conserved regulatory gene with
homologues in filamentous fungi such as Fusar-
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ium, Penicillium, Trichoderma, and Aspergillus
(Bok and Keller 2016). Absence of laeA or over-
expression ofmcrA results in silencing, whereas
laeA overexpression or mcrA deletion leads to
increased production of several secondary
metabolites (Bok and Keller 2016; Oakley et al.
2016). The fact that only some global regulators
are conserved, whereas the targets of individual
regulators differ considerably, correlates with
the finding that secondary metabolite genes
are more variable and significantly less con-
served than genes of the primary metabolism
(Lind et al. 2015).

2. The Fungal Velvet Complex Physically
Connects Transcriptional and
Heterochromatin Control to Coordinate
Secondary Metabolism and Development

Velvet proteins with their characteristic velvet
domain, such as VeA (velvet A), VelB (velvet-
like B) VelC (velvet-like C), and VosA in A.
nidulans, form complex regulatory networks
by direct DNA binding to thousands of target
gene promoters in numerous fungi (Ahmed
et al. 2013; Becker et al. 2016; Fig. 8.2). The
master regulator of secondary metabolism
LaeA is physically linked to the heterodimer
VeA-VelB to coordinate secondary metabolite
biosynthesis with developmental programs. It
was originally shown in A. nidulans that this
VelB-VeA-LaeA complex is required for the
appropriate formation of fruiting bodies and
concomitant production of the aflatoxin family
metabolite sterigmatocystin (Bayram et al.
2008b). LaeA is a methyltransferase and acts
as epigenetic control element by counteracting
the silencing heterochromatic lysine 9 methyla-
tion marks at histone H3 in secondary metabo-
lite clusters (Strauss and Reyes-Dominguez
2011; see Sect. III.A). VeA, which provides the
interphase of the trimeric complex, therefore
physically links transcription to post-
translational epigenetic control of histone mod-
ifications (Sarikaya-Bayram et al. 2015). Velvet
proteins and LaeA contribute to the virulence
of several fungi, possibly through mycotoxin
production (Wiemann et al. 2010; Kumar et al.
2016; López-Dı́az et al. 2018). The trimeric vel-

vet complex is conserved in the fungal kingdom
and can physically interact through VeA with
the phytochrome FphA as part of the light and
presumably temperature control machinery
(Lind et al. 2016; Yu and Fischer 2019). The
light reception through VeA-FphA-LreA-LreB
is presumably less stable and rather transient
in comparison to the velvet complex VelB-VeA-
LaeA (Bayram et al. 2010).

3. Velvet Domain Transcription Factors
Expand Their Transcriptional Networks
Through Formation of Sub-networks

Velvet domain proteins control several genetic
networks either acting as homo- or heterodi-
mers (Fig. 8.2). VelB does not only support as
VelB-VeA heterodimer sexual development
linked to its specific secondary metabolism
but also represses asexual development in com-
bination with the velvet protein VosA as VelB-
VosA together with VosA-VosA (Park and Yu
2012). Additionally, VelB-VosA is a positive
regulator for spore viability (Park and Yu
2012). How the formation of the different
VosA complexes is regulated is still unknown.
Velvet proteins bind to promoters of hundreds
of genes, including genes for additional tran-
scription factors, which in turn control their
own genetic network (Ahmed et al. 2013).

VosA directly represses the central asexual
regulator gene brlA and the gene for the
Zn2Cys6 zinc cluster domain transcriptional
activator SclB. The SclB network induces early
developmental genes including brlA to promote
asexual sporulation and to support spore via-
bility. SclB links asexual spore formation to its
specific secondary metabolism, including the
putative signal molecule dehydroaustinol, and
to the fungal oxidative stress response (Thieme
et al. 2018). This illustrates a convoluted sur-
veillance apparatus, including sub-networks
with feedback mechanisms and overlapping as
well as antagonistic functions, to perform fun-
gal development and its accurate linkage to the
appropriate secondary metabolism (Fig. 8.2).
Developmental functions of velvet domain pro-
teins are rewired in different fungi. Whereas
veA is dispensable for conidiation in A. nidu-
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lans, the veA homolog of N. crassa ve-1 regu-
lates asexual sporulation (Bayram et al. 2008c).
Rewiring of transcriptional regulation is pre-
sumably, together with gene mutations and
gene transfer, an important driving force to
evolve fungal divergences and to adapt to dif-
ferent lifestyles (Nocedal et al. 2017).

III. Epigenetics and Fungal Secondary
Metabolism and Development

Secondary metabolite gene clusters evolved
either from gene relocations with sometimes
prior gene duplication or, in rarer cases, by
horizontal gene cluster transfer from bacteria
to fungal ancestors (Rokas et al. 2018). Cluster-
ing offers the economic advantage that these

genes can be transcriptionally co-regulated by
changes in the chromatin structure through
covalent chromatin modifications (Fig. 8.3).
These chromatin regulations can be inherited
to the next generation of spores and are there-
fore epigenetic (epi-: “over, outside of”), which
describes heritable phenotypic changes that are
not caused by a change in the DNA sequence. In
chromatin, the DNA is wrapped twice around
eight histones (two H2A, two H2B, two H3, and
two H4) to form the nucleosome. With the help
of non-histone proteins, the nucleosomes are
tightly packed up to the chromatin fiber and
then condensed further yielding the chromo-
some structure. Two different types of chroma-
tin exist which can be distinguished by their
condensation state. Euchromatin is the less
condensed active form, which allows gene tran-
scription. Heterochromatin is the highly

Fig. 8.3 Epigenetic control of chromatin dynamics for
the coordination of fungal development and secondary
metabolism. Secondary metabolite gene clusters are
mostly silenced during vegetative growth by negative
histone tags (red) resulting in heterochromatin and
have to be activated by positive tags (green) to allow
transition to euchromatin. Methyltransferases (MT),
histone acetyltransferases (HAT), and histone deacety-
lases complexes (HDAC) add (writer) or remove

(eraser) these tags. Histone H3K4Me3 represents a
positive (euchromatin) and H3K9Me3 a negative (het-
erochromatin) example for a hallmark chromatin tag.
Fungal gene expression can be induced by methylation
of H3K4 (COMPASS), demethylation of H3K9 (VapB,
LaeA), methylation of H4R3 (RmtA), and acetylation of
H3K9 (SAGA/ADA) resulting in increased transcrip-
tion supporting fungal growth, development, and the
corresponding secondary metabolism
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condensed and transcriptionally inactive form
that can either be constitutive and serve as
structural element of the chromosomal centro-
and telomeres or be facultative and switch to
transcriptionally active euchromatin. Covalent
modifications of DNA or histones determine
whether hetero- or euchromatin is formed.
DNA can be reversibly modified by methyla-
tion, whereas lysine residues of histones can
be methylated, acetylated, ubiquitinated, or
sumoylated, and serine residues can be phos-
phorylated (Kouzarides 2007). Writers and era-
sers, which attach and remove modifications,
modify chromatin in different possible combi-
nations. This results in a histone code in a
certain genomic region, which is recognized
by readers. Readers induce the restructuring
of chromatin into the open euchromatin or
the closed heterochromatin form and by this
regulate fungal development and secondary
metabolism (Pfannenstiel et al. 2018; Keller
2018). In the following paragraphs, we will dis-
cuss some writers and erasers in more detail
with the focus on consequences of histone or
DNA modification on secondary metabolism
and development.

A. DNA and Histone Methylation and
Demethylation

Methylation of chromatin can occur at DNA
and histones. Cytosine modification of DNA is
conserved between plants, mammals, and the
fungus N. crassa, but has not been found in all
fungi. Histone methylations and demethyla-
tions at lysine and arginine residues are present
in plants, mammals, and fungi and important
for fungal development and the associated sec-
ondary metabolism (Liu et al. 2010a; Greer and
Shi 2012; Nie et al. 2018; Fig. 8.3). Arginines can
be mono- or dimethylated (symmetric or asym-
metric) and are less well studied than lysine
modifications, which include mono-, di-, or
trimethylations. Protein arginine (R) methyl-
transferases (PRMTs) are divided into four
major classes according to the methylation pat-
tern they provide (Bachand 2007; Stopa et al.
2015). Three of nine human PRMTs (PRMT1,
PRMT3, PRMT5) are conserved in yeast or fila-

mentous fungi (Bachand 2007). The
corresponding A. nidulans proteins RmtA and
RmtC possess H4R34 specificity, whereas RmtB
can methylate the histones H4, H3, and H2A
in vitro and all three methylate additional non-
histone substrates that affect transcriptional
regulation (Lee and Stallcup 2009; Bauer et al.
2010). RmtA and RmtC can affect mycelial
growth, oxidative stress response, develop-
ment, or secondary metabolism in different
Aspergilli, whereas the role and the non-histone
substrates of RmtB still remain unclear (Bauer
et al. 2010; Satterlee et al. 2016).

Lysine methylation usually occurs at his-
tones 3 and 4. The methyltransferase Set1 (SET
domain-containing 1) is part of the eight sub-
unit COMPASS (COMPlex ASsociated with
Set1) complex involved as writer in mono-, di-
, and trimethylation of histone H3K4 euchro-
matin marks in fungi and in humans. Whereas
dysfunction in humans has been linked to sev-
eral types of human cancer (Meeks and Shilati-
fard 2017), the degree of H3K4 methylation in
fungi has important implications on develop-
ment and secondary metabolism. Defects in
COMPASS subunits, which significantly reduce
H3K4Me35 euchromatin marks, change signifi-
cantly the secondary metabolite production
profile in Aspergillus and Fusarium, and the
development of Aspergillus (Palmer et al.
2013a; Studt et al. 2017). COMPASS-dependent
methylation of H3K4 is connected to the meth-
ylation of H3K79 by the non-Set domain-
containing enzyme Dot1 (disruptor of telo-
meric silencing 1) and dependent on histone
H2B ubiquitination (Shilatifard 2012). Dot1 is
to date the only non-SET domain-containing
enzyme for histone H3K79 methylation and
controls, e.g., production of aflatoxin, conidia-
tion, sclerotia formation, and pathogenicity of
A. flavus (Liang et al. 2017).

Another epigenetic mark commonly asso-
ciated with “active” chromatin is the trimethyla-
tion of H3K36 performed by the
methyltransferase Set2, which is able to mono-,

4H3R4 ¼ histone H4 modified at arginine residue 3 (R3).
5 H3K4Me3¼ histone H3 trimethylated (Me3) at lysine residue

4 (K4).
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di-, and trimethylate this residue (Wagner and
Carpenter 2012). Methylation of H3K36 controls
N. crassa development as well as vegetative
growth, fungal virulence, and secondary metab-
olism of F. verticillioides (Adhvaryu et al. 2005;
Gu et al. 2017). Ash1 (asymmetric synthesis of
HO 1) represents a second histone methyltrans-
ferase for H3K36 in N. crassa or F. fujikuroi. N.
crassa methyl tags deposited by Set2 mark
actively transcribed genes, whereas the H3K36
methylation by Ash1 occurs in inactive genes. F.
fujikuroi Ash1 is involved in developmental pro-
cesses and secondary metabolism (Janevska
et al. 2018; Bicocca et al. 2018).

Repressive marks associated with gene
silencing and heterochromatic regions include
the trimethylation of H3K9 or H3K27, which
are enriched in silenced fungal secondary
metabolite gene clusters. The H3K27 mark is
not used in A. nidulans, but in F. graminearum,
where the methyltransferase Kmt6 is responsi-
ble for the establishment of the H3K27Me3 and
regulates production of many secondary meta-
bolites as well as development (Connolly et al.
2013).

Lysine demethylation is performed by his-
tone demethylases, such as KdmA (lysine (K)-
demethylase A) and KdmB of A. nidulans. Both
are erasers that remove methyl marks from
histone H3. KdmA demethylates H3K36Me3
and has a dual role in transcriptional regulation
as co-repressor of primary metabolism genes
and activator of secondary metabolite genes.
KdmB demethylates H3K4Me3 and promotes
transcriptional downregulation as prerequisite
for accurate induction of A. nidulans secondary
metabolism (Gacek-Matthews et al. 2015, 2016).

One of the first described Aspergillus pro-
teins with a methyltransferase domain is LaeA,
a master regulator of secondary metabolism.
LaeA, which is part of the velvet complex
(see Sect. II.A.2), possesses automethylation
activity (Patananan et al. 2013). Additionally,
it counteracts H3K9Me3 marks in repressive
heterochromatin, activating many secondary
metabolite biosynthetic gene clusters (Reyes-
Dominguez et al. 2010, Fig. 8.3). However, the

exact molecular mechanism of LaeA function is
yet unknown. There are nine additional A.
nidulans LaeA-like methyltransferases (LlmA-
LlmG, LlmI, LlmJ) that share sequence similar-
ity with LaeA. LlmF interacts with VeA in the
cytoplasm and reduces its nuclear import,
resulting in altered development and secondary
metabolism, whereas the interaction of VeA
with LaeA takes place in the nucleus (Palmer
et al. 2013b, Fig. 8.2). VeA interacts with at least
two additional methyltransferases in both cel-
lular compartments, the VeA interacting pro-
tein C (VipC) and the VipC-associated protein
B (VapB). The nuclear heterodimeric methyl-
transferases VipC-VapB are, together with the
membrane tethering zinc finger domain protein
VapA (VipC associated protein A), part of a
novel type of epigenetic signal transduction
pathway (Sarikaya-Bayram et al. 2014,
Fig. 8.2). VapA can exclude VipC-VapB from
the nucleus by forming the membrane-bound
trimeric VapA-VipC-VapB complex. Release of
the VipC-VapB heterodimer from VapA is
induced by a yet elusive molecular trigger and
leads to its transport from the membrane to the
nucleus. VipC-VapB interaction with VeA in
the cytoplasm inhibits its nuclear accumula-
tion, resulting in decreased sexual development
and corresponding secondary metabolism.
Without VeA interaction, VipC-VapB enters
the nucleus and activates the light-promoted
brlA master regulatory gene of conidiation
and thereby the asexual differentiation pro-
gram, for instance, by decreasing heterochro-
matin through VapB, which was shown to
reduce H3K9Me3 marks (Sarikaya-Bayram
et al. 2014; Figs. 8.2 and 8.3).

B. Histone Acetylation and Deacetylation

Histone hyperacetylation at amino groups
of lysine residues is, in most cases, associated
with euchromatin, whereas deacetylation results
in heterochromatin formation (Fig. 8.3). Pro-
moter spreading of histone H3 or H4 acetylation
results in higher transcription and production of
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secondary metabolites of the aflatoxin family in
Aspergilli (Roze et al. 2007; Reyes-Dominguez
et al. 2010).

Histone acetylation is performed by type A
or type B histone acetyltransferases (HATs) as
writers. Cytoplasmic type B HATs acetylate
newly synthesized histones prior to their
assembly into nucleosomes, whereas nuclear
type A HATs acetylate nucleosomal histones.

A well-studied group of type A HATs are
the Gcn5-related N-acetyltransferases (GNAT).
They catalyze the transfer of acetyl groups to
lysine residues on the histones H2B, H3, or H4
from acetyl-CoA donors. Founding member of
the family is the yeast Gcn5 (general control
non-derepressed 5), a transcriptional cofactor
associating as HAT with several complexes (e.g.
SAGA: Spt-Ada-Gcn5-Acetyltransferase). The
A. nidulans SAGA complex acetylates the his-
tone sites H3K9 and H3K14 and regulates the
biosynthesis of penicillin, sterigmatocystin, ter-
requinone, and orsellinic acid (Nützmann et al.
2011). Gcn5 is important for the control of the
mycotoxin deoxynivalenol biosynthesis in
Fusarium graminearum (Kong et al. 2018).
Numerous homologs of S. cerevisiae Gcn5 in
filamentous fungi are involved in growth,
development, regulation of secondary metabo-
lite production, and pathogenicity.

The MYST (MOZ, Ybf2, Sas2, and Tip60)
family represents another type A HAT group
with a characteristic zinc finger in the highly
conserved MYST domain, which acetylates
H2A, H3, and H4 lysine residues. EsaA (essen-
tial SAS2-related acetyltransferase A), a MYST
HAT of A. nidulans, is an activator of second-
ary metabolism by acetylating H4K12 in the
sterigmatocystin, penicillin, terrequinone, and
orsellinic acid gene clusters (Soukup et al.
2012). MYST3 of A. parasiticus is required for
aflatoxin production (Roze et al. 2011b).

Histone deacetylation in fungi is per-
formed by erasers such as the classical histone
deacetylases (HDACs) of class I (Rpd3/Hos2-
type) or class II (HDA1-type), with a zinc ion in
their catalytic site, or by non-conventional class
III SIR2-type sirtuin HDACs, which require
NAD+ as cofactor (Brosch et al. 2008).

Yeast Rpd3 (reduced potassium depen-
dency factor 3) as name-giving class I HDAC

regulates transcription by RNA polymerases I
and II through chromatin silencing and con-
trols mitosis, meiosis, aging, or macroauto-
phagy (see Sect. V.B). The corresponding A.
nidulans RpdA deacetylates H3 and H4 and is
essential for growth and conidiation (Tribus
et al. 2010). Trichostatin A, an inhibitor of
classical HDACs such as RpdA, is a promising
anticancer drug (Bauer et al. 2016) and inhibits
appressorium formation and decreases patho-
genicity of the rice blast fungus Magnaporthe
oryzae (Izawa et al. 2009). A. nidulans HosA
(corresponding to yeast Hos2 (Hda One similar
2)) is another class I HDAC, which deacetylates
H4 and represses orsellinic acid production but
has inducing effects on other secondary meta-
bolites by overriding the regulatory effects of
other HDACs (Pidroni et al. 2018). The
corresponding A. oryzae protein (HdaD/Hos2)
is involved in the regulation of growth, asexual
development, stress response, and the biosyn-
thesis of the industrially important chelator
agent kojic acid (Kawauchi and Iwashita 2014).

The class II Hda1-type HDACs include
HdaA of A. nidulans, which represses sterigma-
tocystin and penicillin gene clusters as well as
additional clusters located close to telomeres.
HdaA, which can be overridden by class I
HDAC HosA, is therefore an antagonist of the
positive secondary metabolite gene cluster reg-
ulator LaeA (see Sects. II.B.2 and III.A). Analy-
sis of the corresponding proteins of Alternaria
alternata or Penicillium expansum further sup-
port HDAC-mediated repression of secondary
metabolism as conserved function in fungi. One
exception is the A. fumigatus gliotoxin cluster,
which is activated by HdaA. The protein is
additionally required for growth and germina-
tion but not for virulence in this fungus (Shwab
et al. 2007; Lee et al. 2009).

Class III SIR2-type sirtuins HDACs include
SirA, which deacetylates H4K16 in the promo-
tor regions of the sterigmatocystin and penicil-
lin gene clusters and controls together with the
sirtuin HstA (homolog of SIR Two A) the for-
mation of these metabolites. Some secondary
metabolite genes are repressed, whereas others
are activated, which reflects the complex con-
trol of histone modifications (Shwab et al. 2007;
Shimizu et al. 2012; Itoh et al. 2017). This is
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further illustrated by the Aspergillus oryzae sir-
tuin HstD, which controls the expression of the
velvet complex member LaeA and thus the kojic
acid production and conidiation (Kawauchi
et al. 2013).

C. Histone Phosphorylation, Ubiquitination,
and Sumoylation

In addition to methylation and acetylation, fur-
ther post-translational histone modifications
comprise phosphorylation, ubiquitination, or
sumoylation. These modifications were rather
analyzed in yeast than in filamentous fungi.
Histone phosphorylations by kinases that
transfer the phosphate group from ATP to the
hydroxyl group of the modified amino acid take
place at serines, threonines, or tyrosines and
are reversed by phosphatases. Phosphorylation
of H3S10 is crucial for yeast chromosome con-
densation and cell cycle progression during
mitosis and meiosis (Nowak and Corces 2004).

Ubiquitination of histones by ubiquitin
ligases is the covalent attachment of the small
modifier ubiquitin to lysine residues and is
reversed by deubiquitinating enzymes (DUBs,
see Sect. IV.B). Methylation of H3K4 is
mediated by the ubiquitination of H2BK123 in
yeast (Sun and Allis 2002). These concerted
histone modifications on distinct histone tails
are referred to as trans-tail regulation (Zheng
et al. 2010). Similar to ubiquitination, sumoyla-
tion is the covalent attachment of the small
ubiquitin-like modifier (SUMO) to lysines of
proteins through the activity of an E1-E2-E3
enzyme cascade. Sumoylation has been found
for all four histones and is associated with tran-
scriptional repression. SUMO, which is
required for multicellular fungal development
in A. nidulans, most likely blocks the histone
modification sites to prevent acetylation or ubi-
quitination (Nathan et al. 2006; Harting et al.
2013). Co-purification experiments identified
SUMO-associated proteins connected to the
ubiquitin network involved in A. nidulans his-
tone modification. They include one subunit of
the COMPASS complex required for histone
methylation as well as subunits of the SAGA
complex for histone acetylation (Harting et al.

2013). Like other post-translational modifica-
tions, ubiquitin and ubiquitin-like modifica-
tions do not only modify histones but also
other proteins and thereby can influence their
activity, function, localization, or stability and
affect fungal secondary metabolism and devel-
opment (see Sects. III and IV).

D. Epigenetic Tools to Activate Silenced Gene
Clusters

The crucial role of histone modifications such
as methylation or acetylation in the regulation
of secondary metabolism can be utilized in the
laboratory for the identification of new second-
ary metabolites. Epigenetically silenced clusters
can be reactivated by changes in chromatin
modifications. Deletion of the genes encoding
HDACs, which are generally associated with
transcriptional repression, can lead to dere-
pression of secondary metabolite gene clusters.
Accordingly, penicillin and sterigmatocystin
gene clusters of A. nidulans are activated
when the HDAC gene hdaA had been deleted
(Shwab et al. 2007). These types of experiments
have resulted in chemical epigenetics as an
emerging new research field (Okada and Seyed-
sayamdost 2017). The addition of HDAC or
methyltransferase inhibitors to fungal cultures
alters the epigenetic status of the cells to acti-
vate, identify, and study new secondary metab-
olite gene clusters and their products. The
advantage of this method is that the fungus
does not have to be genetically modified, and
it can therefore be applied to any organism.
Examples for such inhibiting chemicals are the
HDAC inhibitors valproic acid, trichostatin A
(see Sect. III.B) and its synthetic derivative sub-
eroylanilide hydroxamic acid (SAHA), or the
DNA methyltransferase inhibitor 5-azacytidine
(5-AZA). Successful chemical epigenetics
approaches were applied in many different
fungi, such as A. alternata and P. expansum
(Shwab et al. 2007), Cladosporium cladospor-
ioides and Diatrype disciformis (Williams et al.
2008), A. niger (Fisch et al. 2009; Henrikson
et al. 2009), and A. fumigatus (Magotra et al.
2017).
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IV. The Role of Ubiquitination and
Deubiquitination in Fungal
Development and Secondary
Metabolism

The importance of post-translational modifica-
tions for coordinated fungal development and
secondary metabolism is not restricted to his-
tone modifications such as the epigenetic con-
trol in connection with transcriptional
networks. Target protein modifications by
phosphate, ubiquitin, or ubiquitin-like proteins
are also essential for the accurate adjustment of
the fungal proteome. They alter the physical
and chemical properties of a protein in
response to external or internal stimuli in
order to regulate and control its activity, half-
life, transport, and subsequent cellular localiza-
tion. These processes, which include the highly
conserved ubiquitin-26S proteasome pathway
(UPP) for protein stability control, are prere-
quisites for accurate fungal differentiation and
physiology.

A. The Ubiquitin Attachment Machinery
Influences Fungal Development and
Secondary Metabolism on Several Layers

Ubiquitin is the most prominent modifier of the
family of ubiquitin-like proteins (UBL), which
includes SUMO, the cullin modifier neural pre-
cursor cell expressed, developmentally down-
regulated 8 (Nedd8) or autophagy-related
modifiers (Atg8, Atg12; see Sect. V). Ubiquitin
consists of 76 amino acids and is encoded as
fusion to ribosomal proteins or as head-to-tail
fusions of many ubiquitin moieties encompass-
ing two ubiquitin genes in filamentous fungi
such as A. nidulans or four in S. cerevisiae
(Noventa-Jordão et al. 2000; Lee et al. 2017).
These ubiquitin fusion proteins have to be
cleaved by deubiquitinating enzymes (DUBs)
to create a pool of ubiquitin monomers that
can be used for the actual ubiquitination reac-
tion (Grou et al. 2015). Ubiquitin is essential for
fungal growth, although single deletion strains
can grow but have strong defects in fungal
growth, stress response, and development
(Leach et al. 2011; Oh et al. 2012).

About 20% of all A. nidulans proteins are
ubiquitinated during hyphal growth and are
located in the nucleus, whereas in S. cerevisiae
the biggest portion is contained in the trans-
membrane protein fraction (Peng et al. 2003;
Chu et al. 2016). Ubiquitin itself contains seven
conserved lysine residues (K6, K11, K27, K29,
K33, K48, K63), which can be used for ubiquitin
chain formation. The attachment of ubiquitin
chains linked through a certain lysine residue
can alter activity, localization, or stability of the
substrate. The K48-linked polyubiquitin chains
are the most abundant in yeast and usually
mark the modified protein for degradation by
the 26S proteasome (Spasser and Brik 2012;
Zuin et al. 2014).

The attachment of ubiquitin as well as other
ubiquitin-like proteins involves an enzyme cas-
cade consisting of E1 activating, E2 conjugat-
ing, and E3 ligase enzymes (Fig. 8.4). An E1
enzyme activates ubiquitin in an ATP-
dependent reaction by formation of a thioester
bond. The corresponding E1 encoding UBA1
(ubiquitin activating 1) gene of S. cerevisiae is
essential for spore formation and vegetative
growth (McGrath et al. 1991). The activated
ubiquitin molecule is transferred to E2, which
can physically interact with E3 ubiquitin
ligases. Several yeast genes encoding E2
enzymes as well as the polyubiquitin encoding
locus are induced during heat stress or starva-
tion conditions (McGrath et al. 1991; Hiraishi
et al. 2006). E3 ubiquitin ligases are classified
into the cullin-RING ligase (CRLs) and the
HECT (homologous to E6AP carboxyl termi-
nus) ubiquitin ligase families.

Fungi such as A. nidulans express three
cullin proteins (CulA, CulC and CulD) and
humans even eight (Marı́n 2009; von Zeska
Kress et al. 2012). CulA, corresponding to
human cullin-1, is part of the largest group of
CRLs, the SCF (SkpA, CullinA, Fbox) com-
plexes. They are activated by the attachment
of Nedd8 to CulA, a process called neddylation.
Nedd8 and proteins of the neddylation cascade
and the SCF complex are essential for A. nidu-
lans, whereas SUMO-deficient mutants can
grow but are impaired in multicellular develop-
ment and secondary metabolite production
(von Zeska Kress et al. 2012; Harting et al.
2013). In S. cerevisiae, it is the other way
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Fig. 8.4 Protein degradation pathways and their
involvement in growth, development, pathogenicity,
and secondary metabolite production. Free ubiquitin
is generated from ubiquitin precursors and used to
post-translationally label substrates by the concerted
action of E1 activating, E2 conjugating, and E3 SCF
(SkpA-CulA-Fbox) ligase enzymes. E3 SCF is activated
by neddylation and disassembled by deneddylation.
Deneddylation is primarily catalyzed by the COP9 sig-
nalosome or in addition by DenA. Exchange of the
adaptor/receptor complex (SkpA/Fbox) requires bind-
ing of the CandA receptor exchange factor. E3 SCF

activity results primarily in K48 polyubiquitinated sub-
strates, which are tagged for degradation by the 26S
proteasome. Damaged proteasomes, organelles, or
aggregated cellular material of misfolded proteins are
enclosed by autophagosomes for vacuolar degradation.
Fungal proteins that are damaged, misfolded, or only
required for a certain timespan are targets for degrada-
tion by the 26S proteasome in the nucleus or cytosol.
Misfolded ER proteins are recognized by the unfolded
protein response (UPR) and the ER-associated degra-
dation (ERAD) pathway and exported to the cytoplasm
for proteasomal degradation. Signal transduction path-
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round, SUMO is essential but not Nedd8 (Lia-
kopoulos et al. 1998).

The active SCF complex requires at one
side of the post-translational neddylated cullin
scaffold a small RING protein RbxA, which
binds to E2-ubiquitin, and at the other side
the target substrate, which is connected to the
cullin by the general SkpA (suppressor of kinet-
ochore protein mutant A) adaptor. SkpA binds
the specific substrate receptors, the Fbox pro-
teins, which differ considerably to interact with
different substrates, but share a characteristic
N-terminal 40–50 amino acids F-box motif as
SkpA interaction domain. The genome of A.
nidulans encompasses approximately 70 differ-
ent Fbox proteins and the recruited target pro-
teins are often primed by phosphorylation
prior to ubiquitination (Draht et al. 2007). Fun-
gal adaptation to changing environmental con-
ditions requires the rapid exchange of Fbox
proteins at the SCF complexes in order to
label and degrade different substrates, what
requires the removal of Nedd8 from CulA
(Flick and Kaiser 2013). Several Fbox proteins
are involved in fungal development. Fbox pro-
tein GrrA (glucose repression-resistant A) is
needed for the induction of meiosis and thus
for the development of mature ascospores in A.
nidulans (Krappmann et al. 2006). The
corresponding orthologs of the fungal patho-
gens Cryptococcus neoformans F-box protein 1
(Fbp1) and Gibberella zeae FBP1 are also
involved in sexual reproduction and virulence
(Han et al. 2007; Liu et al. 2011). A. nidulans
Fbx15 is required for asexual and sexual and
Fbx23 for light-dependent development (von
Zeska Kress et al. 2012). The homologous
Fbx15 of the human pathogen A. fumigatus

represses the formation of the secondary
metabolite gliotoxin and provides a general
stress response and virulence to the fungus
(Jöhnk et al. 2016).

The disruption of the UPP leads to an
imbalanced protein degradation of, e.g., sec-
ondary metabolite cluster-specific or global
transcription factors. This can be used for the
identification of novel interesting secondary
metabolites (Gerke et al. 2012; Zheng et al.
2017). For instance, the deletion of csnE
(COP9 signalosome E), encoding the catalyti-
cally active subunit of the COP9 signalosome,
interferes with the deneddylation of cullins,
which mediate the ubiquitination of proteins
(Beckmann et al. 2015; see Sect. IV.B). In A.
nidulans, this deneddylation defect leads to
the accumulation of 100 metabolites and
resulted in the identification of the antimicro-
bial 2,4-dihydroxy-3-methyl-6-(2-oxopropyl)
benzaldehyde (DHMBA) (Nahlik et al. 2010;
Gerke et al. 2012).

B. Controlled Removal of Ubiquitin Family
Proteins from Substrates Is Important for
Fungal Growth and Development

The attachment of ubiquitin and UBLs such as
Nedd8 or SUMO to proteins is a reversible
process. Two desumoylating enzymes UlpA
and UlpB were characterized in A. nidulans,
which are required for asexual conidiospore
production and the formation of mature sexual
fruiting bodies (Harting et al. 2013).

The removal of Nedd8 (deneddylation)
from SCF complexes leads to a conformational
change of the cullin protein (Duda et al. 2008)

⁄�⁄�

Fig. 8.4 (continued) ways (e.g., the target of rapamycin
Tor kinase) inhibit the formation of the fungal Atg1
autophagy initiation complex for phagophore assembly
site (PAS) in the presence of nutrients. Atg1 is activated
by starvation or during development or interaction
with other organisms and results in coupling of the
ubiquitin-like Atg8 to the lipid phosphatidylethanol-
amine (PE). Atg8-PE is recruited to PAS, which pro-
motes nucleation and elongation of the phagophore.
The phagophore engulfes proteins, protein aggregates
or organelles like mitochondria or ribosomes resulting
in the double membraned autophagosome. Autophago-

somes fuse with the vacuole. The membrane of the
resulting autophagic body is degraded by Atg15 lipase
and the contents by vacuolar hydrolases. Permeases
such as Atg22 can release degraded material back to
the cytoplasm for recycling. The budding of vesicles
from mitochondria is called mitophagy and the bud-
ding from peroxisomes is called pexophagy. Aflatoxin
producing secondary metabolite enzymes and their
substrates can be transported by cytoplasm-to-vacuole
transport (Cvt) vesicles and exported from the vacuole
out of the fungal cell by aflatoxisomes
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and is performed by deneddylases such as the
COP9 signalosome (constitutive photomorpho-
genesis 9, CSN) (Beckmann et al. 2015). In most
fungi, plants or in humans, it is a highly con-
served complex consisting of eight CSN subu-
nits including an intrinsic JAMM motif with
Nedd8 isopeptidase activity in one subunit.
Neurospora crassa and S. pombe possess
seven- and six-subunit CSNs, respectively, and
in S. cerevisiae there is only the conserved
deneddylase subunit as part of an alternative
CSN complex. Dysfunction of CSN results in
lethality in plants or mammals but not in
fungi, which makes them an attractive model
organism to study CSN complex assembly and
the function of the different subunits (Braus
et al. 2010). CSN recognizes substrate free
CRLs (Lingaraju et al. 2014) and physically
interacts within the nucleus with a second
deneddylase Den1/A. This interaction is found
in A. nidulans as well as in human cells (Christ-
mann et al. 2013; Schinke et al. 2016). Fungal
CSN is composed of an inactive seven-subunit
pre-complex, which incorporates the deneddy-
lase subunit in a final step, resulting in a cata-
lytically active complex (Beckmann et al. 2015).
In N. crassa, CSN mutant strains result in stabi-
lization of the circadian clock regulator FRQ,
defects in light control (see Sect. II.A.2), and
impaired asexual development (Wang et al.
2010). Loss of any of the eight CSN subunits
of A. nidulans leads to impaired light control, a
block in sexual development and a brownish
colony with more than a hundred accumulated
secondary metabolites including orsellinic acid
derivatives (Busch et al. 2003, 2007; Nahlik et al.
2010).

COP9-mediated deneddylation of CulA
deactivates E3 SCF ubiquitin ligases and results
in disassembly. Cand1 (cullin associated Nedd8
dissociated 1) acts as Fbox receptor exchange
factor by blocking the neddylation site of CulA.
Multiple cycles of disassembly and assembly
ensure the appropriate exchange of different
Fbox proteins to degrade different target pro-
teins in different environments or during devel-
opment (Choo et al. 2011; Wu et al. 2013).
Cand1/A is encoded as single protein in higher
eukaryotes and fungi like N. crassa, Verticillium
dahliae, or the opportunistic pathogen C. albi-

cans, whereas the A. nidulans gene has been
split into two separate genes, which encoded
proteins are interacting (Helmstaedt et al.
2011; Sela et al. 2012). Deletion of one or both
cand genes in A. nidulans leads to impaired
conidiospore and fruiting body formation and
to a similarly altered secondary metabolism
with a brownish colony color as for the defec-
tive CSN (Helmstaedt et al. 2011; Nahlik et al.
2010). The deneddylation of cullins, the disso-
ciation of the SkpA adaptor/Fbox receptor
complex, the binding of the Cand protein, and
the following reactivation of the SCF complex
are highly dynamic processes that require tight
regulation (Liu et al. 2018).

Deubiquitinases (DUBs) are required for
the processing of ubiquitin precursors and for
the removal of ubiquitin molecules from target
proteins in order to generate the free ubiquitin
pool for E1 ubiquitin-activating enzymes
(Fig. 8.4). DUBs are classified into seven differ-
ent families (Komander et al. 2009; Rehman
et al. 2016). (1) The JAMM domain metallopro-
tease DUBs, such as the Rpn11 (regulatory par-
ticle non-ATPase 11) of the proteasomal lid,6

contain anMPN+ domain and are similar to the
deneddylase subunit of CSN (Meister et al.
2016). All other DUBs are cysteine proteases:
(2) ubiquitin C-terminal hydrolases (UCH); (3)
Machado-Joseph domain (Josephin-domain)
containing proteases (MJD), which are missing
in some yeasts (Hutchins et al. 2013); (4) ovar-
ian tumor proteases (OTU); (5) ubiquitin-
specific proteases (USP); (6) the motif interact-
ing with Ub-containing novel DUB family
(MINDY) (Rehman et al. 2016); and (7) the
zinc finger with UFM1-specific peptidase
domain protein/C6orf113/ZUP1 (ZUFSP) fam-
ily (Haahr et al. 2018).

The DUB distribution to the different
families is quite conserved between fungi and
humans with most members in the ubiquitin-
specific proteases family with 17 USPs in S.
cerevisiae and more than 50 in humans (Hutch-
ins et al. 2013). Any single deletion of the genes
for the 17 USP DUBs of S. cerevisiae is viable

6 lid ¼ removable or hinged cover of a container, here: the

cover of the proteasome core.
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with only partially moderate growth defects
(Amerik et al. 2000). The ubiquitin-specific
protease Doa4 (degradation of Alpha 4) is asso-
ciated to the 26S proteasome and recycles ubi-
quitin chains from proteins that were targeted
for degradation to the 26S proteasome or from
membrane proteins that are targeted to the
vacuole (Swaminathan et al. 1999). The ubiqui-
tin-specific protease Ubp14 hydrolyzes rather
free polyubiquitin chains, which are not
degraded by the 26S proteasome as its unfold-
ing would require too much energy (Amerik
et al. 2000). The C. neoformans ubiquitin-
specific protease Ubp5 is required for virulence
and controls melanin and capsule formation
(Fang et al. 2012).

V. Protein Degradation Pathways

Clearance of misfolded, damaged, or no longer
needed proteins and organelles directs time con-
trolled developmental transitions, multicellular
development, pathogenicity, and secondary
metabolism in filamentous fungi and leads to
recycling of building bricks for the synthesis of
new proteins and organelles. Protein degrada-
tion is mediated through different pathways
(Fig. 8.4) including the nuclear and cytoplasmic
ubiquitin-26S proteasome pathway (UPP) and
autophagy pathways, which target defective cel-
lular compartments and 26S proteasomes for
degradation in the fungal vacuole. Misfolded
proteins of the endoplasmic reticulum (ER) acti-
vate the unfolded protein response and the ER
associated degradation (ERAD) pathway, which
finally results in degradation of these proteins in
26S proteasomes of the cytoplasm. The plant
pathogenic fungus Ustilago maydis requires the
unfolded protein response of the ER for patho-
genicity (Heimel et al. 2013; Hampel et al. 2016).

A. Protein Degradation by the 26S Proteasome

The conserved 2.5 MDa 26S proteasome is one
of the major degradation machineries in eukar-
yotes and has approximately half the size of a
ribosome. This multi-protease complex con-
sists of the 20S barrel-like core particle and on

one or both sides associated 19S regulatory par-
ticles consisting of lid and base subcomplexes
(Tomko and Hochstrasser 2013). The lid
receives ubiquitinated substrates and the base,
containing six subunits with ATPase activity,
unfolds substrates by ATP hydrolysis, and trans-
locates them into the barrel of the core particle,
while the JAMM domain metalloprotease DUB
Rpn11 cleaves the ubiquitin chains (Lander et al.
2012; de la Peña et al. 2018). The core particle
contains four rings. Each ring is built of seven
subunits providing gate and catalytic activity
with different trypsin-, chymotrypsin-, or
caspase-like peptidases. These degrade sub-
strates processively, resulting in recyclable
amino acids (Budenholzer et al. 2017).

26S proteasomal-mediated degradation is
initiated by the recognition of K48-
polyubiquitinated substrates by Rpn1, Rpn10,
or Rpn13, which possess ubiquitin-binding
domains (Finley 2009). After capturing these
substrates, ubiquitin tags are released by the
intrinsic lid Rpn11 deubiquitinase, which is
embedded in a similar protein subunit archi-
tecture as the intrinsic deneddylase of the COP9
signalosome (Meister et al. 2016; see Sect. IV.
A). The eight CSN subunits correspond to eight
Rpn (Rpn3, 5–9, 11, 12) subunits of the lid of
the regulatory particle. The lid contains as
ninth additional subunit the versatile small
multifunctional and intrinsically disordered
Sem1/Dss1 (suppressor of exocyst mutations 1;
deletion of split hand/split foot 1), and a ninth
COP9 signalosome subunit (CSN acidic pro-
tein) is also present in metazoa and some plants
and fungi (Barth et al. 2016).

Sem1 stabilizes the assembly of 26S protea-
somes by recruiting the receptors Rpn13 and
Rpn10 as well as the tethering factor Ecm29
(extracellular mutant 29) to support complex
formation. The A. nidulans sem1 deletion strain
is delayed in conidiophore development, has
less conidiospores, and produces immature
fruiting bodies without ascospores. Sem1 of A.
nidulans links fungal stress response to devel-
opment and controls secondary metabolism
similar to CSN or CandA (Kolog Gulko et al.
2018; see Sect. IV.A).

A link between the 26S proteasome of fila-
mentous fungi and development and control of
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secondary metabolism is further corroborated
by the application of proteasome inhibitors
such as bortezomib. Proteasome inhibitors
delay germination, appressoria formation, and
host infection processes of the rice blast fungus
M. oryzae (Wang et al. 2011; Oh et al. 2012).
Inhibition of the proteasome resulted in the
identification of several new compounds in
Pleosporales or in the plant pathogen Pestalo-
tiopsis sydowiana (VanderMolen et al. 2014; Xia
et al. 2016). Although the targets of the 26S
proteasome, which coordinate fungal develop-
ment and secondary metabolism in these spe-
cific cases, are still unknown, it seems likely
that they include regulatory proteins with a
limited half-life that interconnect different cel-
lular pathways.

B. Degradation by Autophagy

High protein turnover results in damaged fun-
gal proteasomes, which are degraded in yeasts
and presumably also in filamentous fungi by
self-eating autophagy (Waite et al. 2016; Hoel-
ler and Dikic 2016). This is, besides the protea-
somal degradation, the second major
eukaryotic degradation system. It is a highly
organized membrane-trafficking pathway,
specialized for long-lived proteins as well as
quality control for large and heterogeneous cel-
lular material including protein aggregates or
organelles. Malfunction of this conserved pro-
cess is, e.g., associated to neurodegenerative
diseases in humans as well as impairment of
accurate fungal secondary metabolism and dif-
ferentiation. Autophagy provides nutrients
during stress conditions, starvation, or transi-
tion phases of developmental programs (Voigt
and Pöggeler 2013; Popova et al. 2018, Fig. 8.4).
Fungi produce secondary metabolites, which
directly affect autophagy such as the beneficial
rasfonin from Talaromyces, which reduces dif-
ferent cancer cells by inducing autophagy (Xiao
et al. 2014; Sun et al. 2016).

The targeted engulfment of cellular mate-
rial by membrane invaginations of the vacuole
is termed microautophagy. Macroautophagy
corresponds to the sequestration of bulk cellu-
lar material such as damaged organelles or pro-

tein aggregates by de novo formed phagophore,
e.g., during yeast starvation (Li et al. 2012;
Reggiori et al. 2012). Cargo proteins are
engulfed during this process by the double
membrane phagophore, which closes to form
the autophagosome. This compartment fuses
with the fungal vacuole at its outer membrane,
while the inner autophagic body is digested by
the hydrolytic vacuolar milieu. Autophagy can
be either non-selective or selective. Selective
autophagy for the degradation of different cel-
lular organelles, e.g., the pexophagy for defec-
tive peroxisomes in Sordaria macrospora,
requires specific cargo receptors (Werner et al.
2019).

Instead of degradation, selective autophagy
pathways can also be used for hydrolytic
enzyme transportation to the vacuole as the
yeast cytoplasm-to-vacuole transport (Cvt)
pathway (Lynch-Day and Klionsky 2010). Fun-
gal secondary metabolism takes place in differ-
ent cellular compartments such as the
cytoplasm, the peroxisomes, vesicles, or
vacuoles. The transport of enzymes and meta-
bolic compounds or precursors is therefore
often mediated through autophagic pathways.
For instance, aflatoxin production requires a
complex interplay of different autophagic pro-
cesses. Vesicles bud from mitochondria and
peroxisomes, which deliver precursors and
enzymes to Cvt vesicles containing other
enzymes of the biosynthetic pathway to form
the aflatoxisomes. Aflatoxisomes mediate the
biosynthesis by the transport of active enzymes
as well as compartmentalization by storing dif-
ferent aflatoxin intermediates and the aflatoxin
export to the cell exterior (Chanda et al. 2009;
Roze et al. 2011a).

Autophagy-associated atg genes were first
identified in the unicellular fungus S. cerevisiae.
Until 2016, 42 yeast atg genes were identified
including 18 core genes for autophagosome
formation, which are mostly conserved in fila-
mentous fungi (Wen and Klionsky 2016; Par-
zych et al. 2018).

In the initiation phase, starvation-induced
autophagy requires an active Atg1 Ser/Thr
kinase complex, which is inhibited under non-
starvation conditions by the active Tor (target
of rapamycin) kinase complex, sensing nitro-
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gen sources, and the cAMP-dependent protein
kinase A complex, sensing glucose (Budovs-
kaya et al. 2004; González and Hall 2017). In
the following nucleation phase, Atg1 complex
kinase activity results in the assembly of several
other Atg proteins and the phosphatidylinositol
kinase Vps34, which action recruits transmem-
brane protein Atg9-containing vesicles for the
transport to the phagophore assembly site (He
et al. 2008; Stjepanovic et al. 2017). Phagophore
expansion as the third phase includes two
ubiquitin-like conjugation systems (Atg8,
Atg12), which cooperate to transfer Atg8 to
the lipid phosphatidylethanolamine (PE). Con-
jugation of Atg8 to Atg8-PE requires a similar
mechanism of E1 activating, E2 conjugating,
and E3 ligase cascade as previously described
for other ubiquitin-like proteins (Liu et al.
2010b; see Sect. IV.A). After the fusion of the
outer phagosomal membrane with the vacuolar
membrane, vacuolar lipases such as Atg15
degrade the membrane of the released autopha-
gic body. The permease Atg22 exports the deg-
radation products into the cytoplasm for
recycling (Sugimoto et al. 2011; Ramya and
Rajasekharan 2016; Fig. 8.4).

Numerous fungal atg genes are essential for
growth or are required for development, path-
ogenicity, or the formation of secondary meta-
bolites. An A. fumigatus atg1 deletion strain is
impaired in vegetative growth in the presence
of different nitrogen sources and produces less
asexual spores, but is not affected in pathoge-
nicity (Richie et al. 2007; Richie and Askew
2008). A Penicillium chrysogenum atg1 mutant
strain shows increased penicillin production
due to an increased number of peroxisomes as
a result of impaired pexophagy (Bartoszewska
et al. 2011). Penicillin production takes place in
the cytosol and in peroxisomes (Meijer et al.
2010). The relocation of AcvA, the first enzyme
of the penicillin biosynthesis (d-(L-a-aminoadi-
pyl)-L-cysteinyl-D-valine synthetase), from the
cytosol to the peroxisomes significantly
increased the penicillin production of A. nidu-
lans by more than three-fold (Herr and Fischer
2014).

The genes for the ubiquitin-like Atg12 from
different yeasts are required for ascosporogen-
esis under nitrogen starvation, and the
corresponding gene of N. crassa supports effi-
cient fruiting body formation (Mukaiyama
et al. 2010; Chinnici et al. 2014). In contrast, a
M. oryzae atg12-deficient strain can undergo
sexual development but is impaired in host
infection. Whereas the atg genes participating
in selective autophagy are dispensable, 22 non-
selective M. oryzae atg genes are required for
pathogenicity (Kershaw and Talbot 2009). This
includes non-selective autophagy mutants,
which are unable to transport the cellular con-
tent from the conidiospore into the appres-
soria, impairing leaf penetration.

Defects in the UBL encoding gene atg8 as
well as in several other atg genes result in
impaired vegetative growth and a block in sex-
ual development in S. macrospora (Nolting et al.
2009; Voigt and Pöggeler 2013). Both autop-
hagy UBLs are involved in aging of hyphae,
which change in their thickness from young
thin to old thick hyphae. Deletion of atg8 for
the UBL or of atg10 encoding the E2 conjugat-
ing enzyme for the Atg12 UBL shortened this
aging process in A. niger (Nitsche et al. 2013).
Aging of hyphae by autophagy might be due to
degradation of organelles in older hyphae,
which provides nutrients and building bricks
for tip growth (Shoji et al. 2010). The degrada-
tion by mitophagy of damaged mitochondria
increases presumably also fungal life span,
because it prevents the accumulation of ROS
or proapoptotic factors (Tyler and Johnson
2018).

Autophagy ensures survival during starva-
tion, mediates nutrient supply for ascospore
formation, and transports hydrolytic enzymes
into the vacuoles in yeast. Autophagy protects
cells against toxic metabolites or macromole-
cules and damaged organelles by their degrada-
tion and export. In ascomycetes, autophagy is
required for development under starvation and
nutrient-rich conditions. Furthermore, patho-
genicity and secondary metabolism rely on
autophagy.

8 Coordination of Fungal Secondary Metabolism and Development 195



VI. Conclusion

The burden of infectious diseases caused by
bacteria and fungi, which are resistant to the
usual antibiotics or antimycotics such as azoles,
is growing (Cassini et al. 2019; Lestrade et al.
2019). Filamentous fungi form a vast reservoir
of yet unknown beneficial or toxic secondary
metabolites, which are only produced as
responses to environmental biotic or abiotic
stimuli. A more comprehensive picture of the
complex and subtle control of transcriptional
networks, which are nested within each other,
are more and more emerging. They intercon-
nect distinct fungal developmental programs
with the production of specific secondary meta-
bolites. This includes the genetic networks of
the fungal velvet domain proteins and their
sub-networks, which link transcriptional to
epigenetic control of gene expression, but also
protein degradation machineries like the 26S
proteasome and the autophagy membrane traf-
ficking pathway. They control maintenance or
changes of fungal proteomes as well as cellular
localization and transport of proteins as addi-
tional levels of coordinating secondary metab-
olite production in response to environmental
parameters or during development, aging, or
pathogenesis. Manipulation of gene expression
including chemical epigenetics as well as
genetic or chemical reprogramming of fungal
protein degradation are promising approaches
to find new biologically active secondary meta-
bolites acting as antibiotics or as antifungal
drugs.
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Barth E, Hübler R, Baniahmad A, Marz M (2016) The
evolution of COP9 signalosome in unicellular and
multicellular organisms. Genome Biol Evol
8:1279–1289

Bartoszewska M, Kiel JAKW, Bovenberg RAL, Veenhuis
M, van der Klei IJ (2011) Autophagy deficiency
promotes beta-lactam production in Penicillium
chrysogenum. Appl Environ Microbiol 77:1413–
1422

Bauer I, Graessle S, Loidl P, Hohenstein K, Brosch G
(2010) Novel insights into the functional role of
three protein arginine methyltransferases in Asper-
gillus nidulans. Fungal Genet Biol 47:551–561

Bauer I, Varadarajan D, Pidroni A, Gross S, Vergeiner
S, Faber B, Hermann M, Tribus M, Brosch G,
Graessle S, Turgeon EBG (2016) A class 1 histone
deacetylase with potential as an antifungal target.
MBio 7:e00831–e00816
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Beckmann EA, Köhler AM, Meister C, Christmann M,
Draht OW, Rakebrandt N, Valerius O, Braus GH
(2015) Integration of the catalytic subunit activates
deneddylase activity in vivo as final step in fungal
COP9 signalosome assembly. Mol Microbiol
97:110–124

Bicocca VT, Ormsby T, Adhvaryu KK, Honda S, Selker
EU (2018) ASH1-catalyzed H3K36 methylation
drives gene repression and marks H3K27me2/3-
competent chromatin. Elife 7:e41497

Blumenstein A, Vienken K, Tasler R, Purschwitz J,
Veith D, Frankenberg-Dinkel N, Fischer R (2005)
The Aspergillus nidulans phytochrome FphA
represses sexual development in red light. Curr
Biol 15:1833–1838
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Mulé G, Ngan CY, Orejas M, Orosz E, Ouedraogo
JP, Overkamp KM, Park H-S, Perrone G, Piumi F,
Punt PJ, Ram AFJ, Ramón A, Rauscher S, Record
E, Riaño-Pachón DM, Robert V, Röhrig J, Ruller R,
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