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Abstract. As the length scale starts decreasing such that the inner
substructure of the material becomes dominant in material response, the
well-known theory of elasticity shows inadequacies. As a remedy, gen-
eralized mechanics is proposed leading to additional, inner substructure
related parameters to be determined. In order to acquire them, for a
so-called metamaterial with known substructure and material response
in the length scale of the substructure, we present how to apply a com-
putational approach based on the finite element method.
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1 Introduction

In continuum mechanics, conventional theory of elasticity fails to model struc-
tures, where the inner substructure starts affecting the material response. An
intuitive explanation for this phenomenon relies on the length scale of the geom-
etry, macroscale, ratio with respect to the inner substructure, microscale. As
this ratio approaches one and the length scales are in the same order, then
the effects of the substructure shall be incorporated and we call this structure
related material system metamaterial. This inner substructure might be simply
the molecular structure. For example, in the case of crystalline materials with
a lattice type substructure, the grain orientation leads to material anisotropy
or change in parameters like the yield stress, these phenomena have been stud-
ied among others also in Reuss (1929); Hashin and Shtrikman (1962); Sharo
and Kachanov (2000); Lebensohn et al. (2004). Such an inner substructure can
be generated by adhering different materials, which is the case in composite
materials and “effective” parameters read as a result of a homogenization pro-
cedure, see for example Levin (1976); Willis (1977); Kushnevsky et al. (1998);
Sburlati et al. (2018). A system with inclusions like a porous material can be
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seen as a metamaterial, where the voids affect the material properties at the
macroscale, we refer to Eshelby (1957); Mori and Tanaka (1973); Kanaun and
Kudryavtseva (1986); Hashin (1991); Nazarenko (1996); Dormieux et al. (2006).
Additive manufacturing—as in the case of 3D printing—is another prominent
example to build up a metamaterial as applied in Kochmann and Venturini
(2013); Placidi et al. (2016); Turco et al. (2017); Solyaev et al. (2018); Ganzosch
et al. (2018); Yang et al. (2018). Often it is assumed that the substructure is peri-
odic in a sense that the same cell is repeated for generating the structure at the
macroscale. This so-called representative volume element is useful for an anal-
ysis of effective parameters. All these approaches are based on the assumption
that the material response is modeled with the same phenomenological models
at both scales.

By using the homogenization approach as in Pideri and Seppecher (1997);
Bigoni and Drugan (2007); Seppecher et al. (2011); Abdoul-Anziz and Seppecher
(2018); Mandadapu et al. (2018), we understand that the assumption of hav-
ing the same material model can lead to inaccurate results such that a higher
order theory needs to be incorporated at the macroscale as developed by
Eringen and Suhubi (1964); Mindlin (1964); Eringen (1968); Steinmann (1994);
Eremeyev et al. (2012); Polizzotto (2013a; 2013b); Ivanova and Vilchevskaya
(2016); Abali (2018). Various times it has been observed that a generalized
mechanics description is necessary for modeling mechanical response accurately
as the thinner or smaller structure starts deviating from classical results as
detected in Namazu et al. (2000); Lam et al. (2003); McFarland and Colton
(2005); Gruber et al. (2008); Chen et al. (2010); dell’Isola et al. (2019). For a
simple beam bending problem, conventional theory of elasticity fails to estimate
the experimental results, as a remedy, for example the strain gradient theory
in Abali and Müller (2016) is capable of capturing this effect, as applied by
Abali et al. (2015), Abali et al. (2017); however, we need to know the additional
parameters introduced for incorporating higher order effects.

As the inner substructure and its material response is set, a detailed model
of the microscale can be used to determine the additional parameters at the
macroscale. Thus, the parameter determination in generalized mechanics is not a
new approach, see for example Forest et al. (1999); Pietraszkiewicz and Eremeyev
(2009); Giorgio (2016) or also by using the asymptotic analysis in Bensoussan
et al. (1978); Hollister and Kikuchi (1992); Chung et al. (2001); Temizer (2012)
with an application in Forest et al. (2001); Li (2011); Eremeyev (2016) Barboura
and Li (2018); Ganghoffer et al. (2018); Turco (2019). Often a representative
volume element has been used, we remark that it is difficult to justify that
the higher order theory has to inherit one, see the discussion in Rahali et al.
(2015). Thus, we search for a method without implementing a representative
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volume element at all. In this work we briefly show the second order theory and
the additional parameters occurring in this theory. Then we apply the general
algorithm proposed by Abali et al. (2019) and define the parameters for a specific
geometry.

2 Computational Approach

We strictly follow Abali et al. (2019) and use the equivalence of the stored energy
at the microscale,

mw =
1
2

mεij
mCijkl

mεkl, (1)

to the stored energy at the macroscale,

Mw =
1
2

Mεij
MCijkl

Mεkl + MεijGijklm
Mεkl,m +

1
2

Mεij,kDijklmn
Mεlm,n, (2)

such that we have∫
B

mw dv =
∫
B

Mw dv,

∫
B

mεij
mCijkl

mεkl dv =MCijkl

∫
B

Mεij
Mεkl dv + 2Gijklm

∫
B

Mεij
Mεkl,m dv

+ Dijklmn

∫
B

Mεij,k
Mεlm,n dv.

(3)
Consider that we assume that the macroscale material properties are appropriate
for an isotropic and centrosymmetric material

MCijkl = c1δijδkl + c2(δikδjl + δilδjk),
Dijklmn = c3(δijδklδmn + δinδjkδlm + δijδkmδln + δikδjnδlm) + c4δijδknδml

+ c5(δikδjlδmn + δimδjkδln + δikδjmδln + δilδjkδmn)
+ c6(δilδjmδkn + δimδjlδkn)
+ c7(δilδjnδmk + δimδjnδlk + δinδjlδkm + δinδjmδkl),

Gijklm = 0 ,
(4)

with the unknown material parameters, c = {c1, c2, c3, c4, c5, c6, c7}, which we
obviously intend to determine. By simply inserting the latter into the energy
equivalence and writing in a linear algebra fashion, as an example for one case
denoted by the index 1 as follows:

7∑
α=1

A1αcα = R1, (5)
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we observe that the coefficient matrix, A, as well as the right hand side, R, can
be computed

A11 =δijδkl

∫
B

Mεij
Mεkl dv

A12 =(δikδjl + δilδjk)
∫
B

Mεij
Mεkl dv

A13 =(δijδklδmn + δinδjkδlm + δijδkmδln + δikδjnδlm)
∫
B

Mεij,k
Mεlm,n dv

A14 =δijδknδml

∫
B

Mεij,k
Mεlm,n dv

A15 =(δikδjlδmn + δimδjkδln + δikδjmδln + δilδjkδmn)
∫
B

Mεij,k
Mεlm,n dv

A16 =(δilδjmδkn + δimδjlδkn)
∫
B

Mεij,k
Mεlm,n dv

A17 =(δilδjnδmk + δimδjnδlk + δinδjlδkm + δinδjmδkl)
∫
B

Mεij,k
Mεlm,n dv

R1 =
∫
B

mεij
mCijkl

mεkl dv,

(6)

for a problem with given, Mε, and computed, mε. By defining 7 distinct cases, the
system, Ac = R, with A of rank 7 provides a unique determination of unknowns
by c = A−1R.

These seven cases are the one of the key choices in the approach and we use
the following seven cases:

case1 : Mu =
(

y
2 , x

2 , 0
)

case2 : Mu =
(
x, 0, 0

)
case3 : Mu =

(
− xz, 0, xy

)

case4 : Mu =
(
xz, 0,−x2

2

)
case5 : Mu =

(
− yz, 0, xy

)

case6 : Mu =
(
0,−y, y2

2

)
case7 : Mu =

(
0, y2

2 , 0
)
,

(7)
where the only necessary condition seems to be such a choice generating a rank
7 coefficient matrix. It is challenging (if even possible) to suggest experimental
designs for constructing this given homogenized displacement on the structure.
If we use a linear strain measure,

Mεij =
1
2

(∂ Mui

∂Xj
+

∂ Muj

∂Xi

)
= Mu(i,j), (8)

we can easily calculate the coefficient matrix for one of the aforementioned cases.
For the right hand side, we compute mu for the detailed microscale of the con-
tinuum body, B, by applying the boundary conditions acquired from the given
Mu evaluated on boundaries. Solving mu at the microscale is established by
satisfying the weak form:

Form =
∫
B

mCijkl
mu(k,l)δui,j dV, (9)
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with the corresponding test functions, δu, from the same Hilbertian Sobolev
space as the unknown, mu, known as the Galerkin method,

V̂ =
{

mu, δu ∈ [Hn(Ω)]3 : mu, δu = given ∀x ∈ ∂B
}
. (10)

The construction is automatized by using open-source programs like Salome,
NetGen, and FEniCS (Alnaes et al. 2009; Logg et al. 2012), by using a Python
code, we refer to Abali (2017) for a standard introduction of this weak form as
well as the whole implementation.

3 Application

A pantographic structure has been studied for several systems, see for exam-
ple Misra et al. (2018); Turco et al. (2019); dell’Isola et al. (2018); Solyaev
et al. (2018); Harrison et al. (2018); Spagnuolo and Andreaus (2019); Greco
et al. (2019). We aim at determining effective parameters in a strain gradient
theory by applying the procedure from the last section for the pantographic
structure as shown in Fig. 1. We emphasize that no representative volume ele-
ment is used, instead, we simulate only a part of the whole structure as the
macroscale displacement is provided as a function applied on this part.

Fig. 1. Pantographic structure CAD model designed in Salome open-source platform.
Left: the whole structure. Right: part of the structure used for the computation with
the shown mesh generated by Netgen.

For a 3D printed pantographic structure out of ABS or PP, we may approx-
imate a linear elastic response with Young’s modulus of E = 400 × 106 Pa and
Poisson’s ratio of ν = 0.3 leading to the following Lame parameters:

λ =
Eν

(1 + ν)(1 − 2ν)
, μ =

E

2(1 + ν)
. (11)

They are used in the microscale material response

mCijkl = λδijδkl + μδikδil + μδilδjk, (12)
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which is simply the Hooke’s phenomenological model in isotropic linear elastic-
ity. We emphasize that we use this assumption for clarity and fail to know if the
material response of an additively manufactured polymer material is accurately
captured by this model. Especially in semi-crystalline materials like PP, fused
deposition modeling 3D printers may introduce extrusion orientation dependent
anisotropic response. Moreover, the polymer material may behave hyperelastic.
Another model is possible for obtaining the right hand side in Eq. (6) in order
to increase the accuracy. Herein we use linear elastic model for demonstrating
the methodology.

After solving 7 cases subsequently, computing the coefficient matrix, we have
determined the 7 material and structure related parameters as follows:

c1 = 231 × 106 Pa

c2 = 154 × 106 Pa

c3 = 287 × 10−6 N

c4 = 58 × 10−6 N

c5 = − 264 × 10−6 N

c6 = − 32 × 10−6 N

c7 = − 32 × 10−6 N

(13)

4 Discussion and Conclusion

A simple yet elegant computational approach has been applied for obtaining the
effective parameters as a result of a homogenization procedure in space in order
to reduce the complexity of the structure modeling greatly. As an expense of
additional parameters, we aim at incorporating the inner substructure effects
by using higher gradients in the displacement. These additional parameters
have been obtained by a purely computational methodology under the following
assumptions:

– At the microscale, the material model is linear elastic and isotropic.
– At the macroscale, the material model is linear strain gradient elastic and

isotropic as well as centrosymmetric.

Both assumptions are difficult to verify or falsify. We use these assumptions in
the modeling for simplicity, more sophisticated approaches can be implemented
as well, the general methodology remains still valid. The only possible validation
for a concrete structure relies on an experimental study, which is left to further
research endeavors.
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