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Influence of the Sperm Velocity on Fertilization
Capacity in the Oscillatory Model of Mouse
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Abstract. Considering the fertilization process as an oscillatory phenomenon,
based on mechanotransduction theory of sperm–oocyte interaction, influence of
sperm velocity and their specific arrangement on outer surface of oocyte- Zona
pellucida (ZP) relative to the oscillatory behavior of ZP was studied using
discrete continuum oscillatory spherical net model of mouse ZP. For the cal-
culated favorable impact angles of spermatozoa by using generalized Lissajous
curves, a parametric frequency analysis of oscillatory behavior of the knot
molecules in the mouse ZP spherical net model is conducted. In order to mimic
successful fertilization in physiological conditions in this numerical experiment,
velocities of the progressive and hyperactivated spermatozoa were used. The
resultant trajectories of knot molecules in mouse ZP (mZP) spherical net model,
in the form of generalized Lissajous curves, are presented. Influences of the
sperm velocity and its arrangement on the resultant trajectory of the corre-
sponding knot molecules are discussed. Component displacements in the
meridian and circular directions of the knot molecules of ZP are in the form of
multi-frequency oscillations. Symmetrical arrangements of spermatozoa having
effective velocities are more favorable for achieving a favorable oscillatory
multi-frequency state of mZP for a successful fertilization. Determining the
optimal parameters of spermatozoa impact that will induce a ZP favorable
oscillatory state opens the possibilities for more complete explanation of the
fertilization process.

Keywords: Zona pellucida � Discrete oscillatory spherical net model �
Oscillations � Lissajous curves � Sperm velocity � Sperm arrangement
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1 Introduction

This study utilizes the oscillatory model proposed for fertilization by [1, 2]. A cellular
response to a mechanical stimulus could be evaluated by cell-stretching device [3] as
well as by atomic force microscope [4] and micropipette aspiration technique [5] and
micro-tactile sensor [6].

Velocity of spermatozoa and their distribution on the ZP surface significantly affect
mice’s zona pellucida (ZP) oscillatory behaviour. Furthermore, since velocity is
directly related with success of fertilization, swimming velocity and parameters having
influence on it are considered in this study. A basic description of the ZP oscillatory
mechanical net model is presented in Sect. 1. along with a brief explanation on why
distribution of spermatozoa has effect on oscillatory behaviour of ZP.

1.1 Importance of Sperm Velocity for Fertilization Success

Mouse spermatozoa are very vulnerable cells. After ejaculation, their life span in
female reproductive tract is limited. During their chemotactical, rheotactical, and
thermotactical [7] movement in female reproductive tract, some of them will pass
through complex metabolic and structural changes, becoming fertilization-competent
[8]. As ejaculate contains spermatozoa of different stage of maturation, only a small
fraction (on average, about 10%) is chemotactically responsive and represents capac-
itated (mature) spermatozoa [9] “which maximum rate matched exactly the male
gonadosomatic index of the species” [10].

Sperm competition thus favors a larger population of spermatozoa that are com-
petent to fertilize, and spermatozoa that are more sensitive to the signals emitted by the
ovum and undergo the acrosome reaction during fertilization [11]. Centola et al. in [12]
confirm the declining tendency in sperm concentration, total count, and total motile
count in human semen over the then year period in sperm donors with stable or
improved demographic and lifestyle factors [12].

Capacitation process consists of several biochemical and functional modifications
of sperm cells that enable the sperm to undergo both the acrosome reaction and
hyperactivation (HA). HA is a functional change in the sperm movement pattern in a
form of relatively progressive motion with high-amplitude flagellar bending [13]. In
hyperactivated spermatozoa linearity, amplitude of lateral head displacement beat cross
frequency and average wavelength gradually change with time [14]. HA movement
pattern gives direct mechanical advantage to spermatozoa, permitting their penetration
through a viscous medium. HA also facilitates penetration of spermatozoa through the
zona pellucida (ZP) [10, 13] and could be influenced by different factors: cumulus cells
that enter the ampulla with the oocyte [15], progesterone (a dose-dependent stimulation
of HA) [13]. Acrosome reaction must be timed precisely, because both premature and
delayed acrosome reactions will prevent sperm from penetrating the cumulus oophorus
and adhering to the ZP [10].

The oviduct appears to influence the extracellular matrix properties of the sper-
matozoa as well as the Cumulus Oophorus Complex that is of interest in ZP-cumulus-
sperm interaction [16]. Spermatozoa that reach the ZP first will have a chance to
interact with ZP molecules and one of them will have a chance to fertilize the oocyte.

2 A. Hedrih et al.



Sperm swimming velocity is a key determinant of male fertilization success [17].
Sperm velocity is correlated with the ability to fuse with the oolemma [18, 19]. Many
factors are positively associated with maximum sperm swimming velocity like: mating
style, total sperm length [20–22], relative testis weight and sperm midpiece volume
[23], increase in the length of the sperm head and hydrodynamic shape of the sperm
head [21], shape of the head and the proportions between the components of the sperm
flagellum [17], content of functional mitochondria [24], and midpiece size [25].
Relation between sperm head shape and sperm motility is guided by genetic factors and
it is seem to be poligenetcly determined. Using both in mice and human models of
infertility, many gens, which mutations have repercussions on sperm motility as well as
sperm head shape were identified [26].

The ratio between head length and total flagellum length was significantly asso-
ciated with straight-line velocity so that as the proportion of the flagellum length in
relation to head length decreased, sperm velocity also decreased.

Kinetic parameters of spermatozoa are used for evaluation of fertility and differ for
healthy and unhealthy sperm cells [17]. The rotational speed of sperm cells from
infertile men is observed to be significantly less as compared to controls [27].
Hyperbaric oxygen treatment could improve vigility of spermatozoa from subfertile
man [28]. There are strain-dependent differences in sperm motility profiles [29]: at
early time points of capacitation, sperm motility patterns have largely progressive, but
in later time points tracks shift to more varied patterns of movement, including
hyperactivation [29]. For identifying sperm motility parameters by claster analysis a
Bayesian network could be used [30].

1.2 Bio-Mechanical Models of Sperm-Oocyte Interaction

There are attempts to explain the fertilization process in mammals from the biome-
chanical point of view. The purpose of these models is to identify biomechanical
parameters of importance for the fertilization process that are related with both ovum
and spermatozoa. The next step would be to interconnect biomechanical and bio-
chemical models of fertilization into a unique integrated model. One of the assumptions
is that the spermatozoa generating a higher contact pressure upon ZP surface would
have a better chance of penetration through ZP [31, 32]. That assumption was dis-
cussed in [2]. Kozlovsky and Gefen [32] show via numerical simulations that sper-
matozoa with sharper head generate a higher contact pressure on the ZP. Numerical
simulation carried out in [31] showed that contact pressure is more sensitive to sper-
matozoa’s’ motility than to spermatozoa’s’ head stiffness.

Although many molecules on sperm surface involved in sperm-oocyte interaction
have been determined, the precise molecular mechanism of mammalian fertilization is
still not known. An alternative theory for successful sperm–ZP binding events and
post-fertilization inhibition of sperm binding was proposed by [33] based on modifi-
cations of ZP2 and ZP3 and sperm binding affinity for these molecules. There are
several candidates for complementary molecules on the mammalian sperm surface
involved in the early interactions with the ZP [34].

Influence of the Sperm Velocity on Fertilization Capacity 3



In the oscillatory model of fertilization, it is not essential which individual mole-
cules are being involved in fertilization, but the way in which a specific structure
having certain biomechanical characteristics, oscillates.

In order to model the effect of spermatozoa impact on ZP, an oscillatory net model
of mouse ZP has been developed.

1.3 The Oscillatory Model of Fertilization – Basic Concept

It is well known that mechanical loading may change biological microstructure [35].
Theory of oscillations can be applied to biological systems at the macro (biorhythms,
oscillations in blood pressure, hormone level, and nervous system activities), micro
(cell), and nano (subcellular structures, e.g. movement of a molecule in a spermatozoid
flagellum) levels. In the course of accomplishing their own function, molecules of a cell
are moving-oscillating periodically (e.g. movement of myosin at muscular contraction)
or aperiodically. Each cell and all its structures exhibit oscillatory movement. The
characteristics of oscillatory movement (set of oscillatory frequencies, amplitude of
movement, etc.) of a cell will be dependent on its functional state (degree of metabolic
activity, healthy/unhealthy cell) and also on cell type (type of cell, size, structure …).
Oscillatory movement of a cell varies with its contact with other cells. From the
biomechanical and electrical points of view, receptor recognition is based on this
oscillatory movements. An oocyte exposed to surface actions of spermatozoa could be
considered as an oscillatory system oscillating in a forced regime under the influence of
an external force. The external force is generated by spermatozoa. Owing to the
character of movement of spermatozoa, it could be considered that this external force is
of periodic character [36]. In [36] is established that movement of spermatozoa had
oscillatory character. According to the experiments in [36], mouse spermatozoa have
twisted planar type of 3D waveform movement, clockwise roll direction, and clockwise
circling direction of movement.

The oscillatory movement of an oocyte depends also on the characteristics of the
external force (above all, on frequency). Since ZP is the first structure of the oocyte to
interact with spermatozoa (in in vitro conditions), our interest is to characterize ZP
oscillatory behaviour under the action of spermatozoa having different velocities.

Under the action of external force or initial perturbations of the ZP due to pulse
action of spermatozoa, molecules of the ZP will move-oscillate in certain manner. This
movement can be in the form of a straight line, periodic, aperiodic, resemble a
stochastic movement, or look like chaotic movement. Since straight line movement is
predictable, we assume that if a large number of ZP molecules (or of one compact part
of it) moves in this way, this will facilitate penetration (from the biomechanical point of
view) of spermatozoa through the ZP consequently resulting in fertilization. We also
assume, on the basis of theory of oscillations, that for initial penetration through the ZP
it is required that spermatozoa oscillate in a multi-frequency regime having at least one
part of the frequency range coinciding with that of the oscillations of the oocyte (or at
least the part of the ZP being acted upon). Then, the conditions exist for a resonance to
appear over the time interval where this ratio of frequencies is maintained, when
structures of the ZP and spermatozoa oscillate at the same frequency; then,

4 A. Hedrih et al.



theoretically, amplitudes of molecular movement tend towards infinity, i.e. they
increase during the time of existence of this regime which, from the biomechanical
point of view, could be the condition for breaking bonds of the ZP molecules and
consequent initial penetration of spermatozoa through the ZP. Aperiodic or chaotic
movements are hard to predict and certainly do not facilitate penetration through ZP’s
net structure. For this reason, it is important to know under which conditions ZP
molecules would move in a predictable way compatible with fertilization. Oocyte is a
dynamic structure changing in time through all the phases of its maturing, thus
changing the mechanical properties (e.g. outer shell of the ZP, cytoplasm) and struc-
ture. As already mentioned, this causes changes of its oscillatory state [37].

1.4 Sperm Arrangement on ZP Surface and ZP Oscillations

In the course of fertilization in both in vivo and in vitro conditions, oocyte is in contact
with spermatozoa of different quality (morphology, velocity, acrosome status). ZP is
mechanosensitive structure and response on mechanical stimulation that come from
sperm on its surface.

Acting upon the surface of ZP all these spermatozoa, each in its own way, con-
tribute to the change of oscillatory behaviour of the ZP and egg cell as a whole. Their
joint action contributes to the final result – fertilization. Action of spermatozoa having
different characteristics can be considered as action of external periodic forces having
different characteristics.

Different distributions of spermatozoa having the same/different kinetic parameters
result in different distributions of external forces acting on the ZP surface. Each
individual spermatozoid generates certain force which acts upon the ZP surface [38]
and their joint action will give specific distribution of force on the ZP surface. From
what has been said so far, it turns out that a symmetric or asymmetric distribution of
force produced by action of spermatozoa upon ZP surface will cause different oscil-
latory states of the ZP. Theoretically, there are combinations of the distribution of this
force resulting in the same or similar oscillatory states of the ZP. Examples of different
distributions of spermatozoa on the ZP surface are shown in Figs. 1A, B, and C. Since
it is universally acknowledge that the success of fertilization is measured by the quality
of spermatozoa, primarily by the percentage of progressively moving spermatozoa, it is
important to investigate on how the velocity of spermatozoa influences the oscillatory
behaviour of ZP molecules. For the analysis of oscillatory behaviour of ZP molecules,
we applied the model of oscillatory spherical net of mouse ZP. Detailed description of
the model is given in [2]. For the analysis only a small segment of the ZP model
retaining the molar ratio of mouse molecule ZP is used, Figs. 1D and E. The segment
consists of four crisscrossed orthogonal chains consisting of 11 ZP molecules, each
distributed in a specific way (molar ratio retained). Masses of the ZP molecules are
included in the model. At this stage, we are interested to know what will be the
behaviour of ZP1 molecules which represent nodal molecules in the model. They have
been selected for two reasons – their masses are the largest thus their contribution to the
oscillatory behaviour will be significant; upon fertilization, by creating disulphide
bridges between ZP1 molecules on one side and ZP2 and ZP3 on the other, followed by
a change of ZP structure, Young modulus of elasticity increases [5] and the conditions
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for a polyspermy block are created. In addition, according to the modified Wassarman
model of ZP [39], without the ZP1 bonding molecules the net structure of ZP does not
exist [40, 41].

1.5 Oscillatory Net Model of Mouse Zona Pellucida

Zona pellucida (ZP) is an acellular 3D matrix that surrounds all mammalian oocytes,
ovulated eggs, and embryos up to the early blastocyst stage of development is very
important structure in the process of oogenesis, fertilization, and preimplantation

Fig. 1. Hypothetical arrangement of spermatozoa on ZP surface: A Symmetrical arrangement of
spermatozoa having two different swimming velocities. B Asymmetrical arrangement of
spermatozoa having two different swimming velocities but the same impact angle. C Asymmet-
rical arrangement of spermatozoa having three different swimming velocities and different impact
angles arbitrarily arranged. Different colors of spermatozoa (pink, blue or green) denote their
different swimming velocities. D Model of ZP spherical surface that shows radial direction of
axis of constructive elements of the model - ZP proteins, E Part of the mZP network on a part of
the sphere (oocyte). Orange (ZP1), blue (ZP2) and green (ZP3) represent molecules of ZP
proteins. Chains of spherical net are identical in the circular and meridian directions. Each ZP
protein is connected to the sphere with elastic springs that can oscillate in radial direction. V1–V4
are sperm cell effective velocities. Red arrows denote sperm cell impact with a knot molecule.
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development and dynamically changes its mechanical properties during this processes
[5, 42]. In mice, ZP consists of 3 sulphated glycoproteins: ZP1, ZP2, and ZP3. ZP2 and
ZP3 have fibrillary structure. They are interchangeably connected making fibril
structures that are cross-linked with ZP1 [39].

In order to describe the oscillatory behaviour of ZP structure, an oscillatory
spherical net model of mouse ZP was created [1, 43–46] by using discrete continuum
method [47–50]. Discretization method is used in solving other problems in repro-
ductive biology and medicine. Time discretization method was also used in the
mathematical model in pattern formation during zebrafish embryo development [51].
Method of continuum mechanics is used for modeling the tumor growth [52], con-
tinuum modeling of growth and remodeling of living matter [35].

According to the model [1, 43, 45], the system of ZP oscillatory net oscillates in a
free regime after ovulation without presence of spermatozoa. If there is only an initial
perturbation by the kinetic and potential energy given to oscillatory structures, only free
vibration regimes of a vibrating discrete structure appear.

Under numerous vibro-impacts between spermatozoa and ZP, the ZP oscillatory net
starts to oscillate in a forced regime. The application of one or multi-frequency external
excitation forces to a ZP discrete net that oscillates in a free regime results in multi-
frequency forced regime oscillations. External excitation is presented as impact of
spermatozoa. As spermatozoa movement have oscillatory character [36], their impact
can be considered as repeated external forced oscillations. The molar ratio and the
masses of mouse ZP (mZP) glycoproteins [39] were included into the model. Material
particles in the ZP oscillatory spherical net model correspond to the ZP glycoproteins
(see Figs. 1D and 1E). Knot material particles correspond to the ZP1 glycoproteins and
are assigned as knot molecules. A detailed description of the ZP oscillatory model is
given in [2, 43, 45]. In Fig. 1B a part of the spherical net ZP model is presented. For
the purpose of making frequency and trajectory analysis of knot mass oscillations along
trajectory in the forced regime, we consider a small representative part of the discrete
spherical net that preserves the ratio ZP1:ZP2–ZP3 as 1:5 [39], Fig. 1E [1, 2, 43–46].

The oscillatory spherical net model of mZP allows analyzing movements of ZP
molecules from the biomechanical point of view. These movements will be affected by
sperm’s velocity, impact angle, arrangement or impact position. The present model can
assess to what extent ZP motion depends on each of the above mentioned factors.

The main goal of this study is to understand if different sperms’ effective velocities
affect the resultant trajectories of knot molecules. Effective velocities of progressive
and hyperactivated spermatozoa impacting the mZP net at certain favourable angles [2]
will be considered. The analysis will focus on the resulting movement of the knot
molecules in the plane tangential to the model surface. Resultant trajectories of knot
molecules, expressed as generalized Lissajous curves, have two displacement com-
ponents, circular and meridian displacements. These component trajectories drive the
open or closed paths of spermatozoa through the ZP.

The second goal of the study is to analyze if arrangements and ratio of sperm cells
with effective velocity affect the resultant trajectory motion of mZP knot molecules.
According to the shape of resultant trajectory motion of mZP knot molecules in the
oscillatory model of mZP, the following conclusions can be drawn:
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• If the resultant motion of knot molecules is synchronized, it will be easier for
spermatozoa to pass through ZP net. This ZP oscillatory state favours penetration
and fertilization.

• If trajectories are chaotic or stochastic like, probability that one of many sperma-
tozoa which are periodically “attacking” ZP will penetrate through it is very low.
This counteracts penetration and fertilization.

2 Methods

The analytical method used for modeling oscillatory behaviour of the mZP net [2, 45]
is based on the vibration theory of mechanical chain systems [53]. Chain systems are
hypothesized to be heterogeneous and formed by elements with ideal elastic bonds.
A small portion of the mZP spherical surface net with 11 molecules in the chain which
periodically repeat preserving the molar ratio of mZP glycoproteins (see Fig. 1E) is
considered. Therefore, molecules/mass particles of the chains are characterized by 11
free vibration modes [45]. In Figs. 1D and 1E, the knot molecules ZP1 are colored in
orange. Pulse action of spermatozoa gives some initial velocity to model knot mole-
cules. Here, we know the masses of ZP molecules (expressed in terms of mass units),
stiffness of springs (calculated with Eq. (1)), the c angle between the direction of
spermatozoa’s movements and the tangent plane to spherical net, the h angle between
direction of spermatozoa’s movements and the meridian direction of the tangent plane,
and distribution of spermatozoa in terms of effective velocity. Initial conditions are as
following: angles c and h are set equal to favourable values according to [2], the initial
movements of all points of the model are zero (as prior to action of spermatozoa), the
initial velocities of all points also are zero, except those of knot points (points 3 and 9
in the chain) to which spermatozoa transfer an initial velocity after the impact. Pulse
forces have high intensity but short interaction. In order to capture the effect of different
distributions of spermatozoa’s impact forces on the resultant trajectories of knot
molecules and cover all knot points in ZP model, the following cases where four
spermatozoids with effective velocity impact against four different neighboring knot
molecules are considered.

The following analyses of different combinations of spermatozoa’s effective
velocities were done:

• with four hyperactivated spermatozoa,
• with four progressive spermatozoa,
• with three hyperactivated and one progressive spermatozoa,
• with two hyperactivated and two progressive spermatozoa when the spermatozoa of

the same velocity are arranged in the diagonal up position,
• with two hyperactivated spermatozoa and two progressive when spermatozoa with

same velocity has impact on the neighboring knot molecule, and
• with one hyperactivated and three progressive spermatozoa.

The position of the hyperactivated spermatozoa is varied to evaluate if trajectories
of knot molecules are sensitive to this factor.
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Multi-frequency oscillatory motions of knot molecules when each of the four sperm
cells with effective velocity simultaneously impact with different neighboring knot
molecule were analyzed. See Fig. 1E.

Rigidities (Cm) of the massless elastic elements that interconnect the ZP molecules
are assumed to be equal and calculated according to the oscillatory motion formula:

cm ¼ E R2 � r2ð Þp
2R

ð1Þ

where E-is Young modulus of elasticity, R is radius of the mouse oocyte, r-is radius of
the oocyte minus approximate thickness of mZP. Data were taken from [6]:
E = 17.5 kPa, 2R = 56.5 lm-average diameter of the oocyte from [6], d = 4.94 lm-
approximate thickness of the oocyte, Cm = 0.253 N/m. Molecular masses of the cor-
responding ZP glicoproteins from kDa were transformed into standard units (kg). Data
for the mouse spermatozoa having an effective velocity were taken from [29].

Progressive and hyperactivated sperm cells were considered as sperm cells having
an effective velocity. Hyperactivation of sperm cells is necessary for capacitating the
process whereby sperm cells become competent to fertilize the oocyte. In physiological
conditions, these two types of sperm cells will be capable of reaching the oocyte
(progressive) and responding to specific stimuli from female reproductive tract (to be
hyperactivated in the process of capacitation). Slow and weakly motile sperm cells
would not survive in the mouse female reproductive tract; they are not capable of
reaching the oocyte, thus they were excluded from the analysis. For the numerical
experiment, the authors did not take into account the sperm cells of intermediate
velocities because agreement between visual and model-assigned tracks for this group
was 52.1% [29], due to the character of movement of spermatozoa of intermediate
velocities. For this numerical experiments the following VAP - average path velocity in
lm/s were taken: for progressive spermatozoa Vp = 146.9 lm/s and for hyperactivated
spermatozoa Vhp = 171.1 lm/s. According to the data for mass of bull spermatozoa
(1,82 � 10−14 kg) [54], the approximated mass for a mouse spermatozoon was taken
as 10−14 kg.

Velocity that spermatozoa transfer to the knot molecule at the moment of impact
was calculated according to the formula: V ¼ Vhp � msp=m3. Here, msp is the approxi-
mated mass of mouse spermatozoa; m3 is mass of ZP1 glycoprotein-knot molecule.

In order to find the resultant motion of knot molecules, it is necessary to determine
and then superpose displacement components in the circular and meridian directions in
the tangent plane to the spherical ZP net. Frequency analysis of mZP knot oscillation
trajectories for the case of four knot molecules impacted by spermatozoa with effective
velocities entails the following steps (for details see [2, 45]):

A. Define the system of eleventh ordinary differential equation of chains dynamics
with 11 material particles motion for each chain;

B. Add 22 initial conditions for each system of differential equations that describe
molecular chain dynamics. In the considered cases, for each chain 11 initial con-
ditions are related to initial displacements, and other 11 initial conditions are
related to initial velocities of the molecules;
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C. Each vibration mode is characterized by one frequency and unknown amplitudes
for each molecule. By introducing this solution into the system of differential
equations, a system of eleven homogenous algebraic equations in the eigen
amplitudes of mass particles oscillatory motion with coefficients depending on the
unknown/assumed frequency;

D. Obtain frequency equations. There is a system of eleven homogeneous algebraic
equations which admits the non-zero solution only if the determinant of this system
is equal to zero. Since the system contains 11 unknown amplitudes and one
unknown frequency, we obtain a polynomial equation of the eleventh order with
respect to the square of frequency. This equation has 11 roots each of which
corresponds to the square of one eigen circular frequency

E. Determination of the system of determinants and characteristic functions and the
characteristic numbers or the frequency equation of the system oscillatory
behaviour;

F. Determination of a set of eleven eigen circular frequencies as roots of the frequency
equation;

G. Determination of cofactors which correspond to each of the eleven eigen fre-
quencies and the corresponding eigen amplitudes which correspond to each of the
eleven eigen frequencies and eigen modes;

H. Analytical expressions for each of the eleven mass particles, eleventh frequency
oscillatory displacements in the chain direction and the corresponding integral con-
stants for the corresponding particular and defined initial conditions;

I. Numerical multi-parametric analysis of the system dynamics for certain initial
conditions.

When a sperm cell periodically impacts against a knot molecule, it gives an initial
velocity to the knot molecule perturbing its state. This generates the 11-modes oscil-
latory motion of chain molecules. According to the present model [2, 45], the resultant
displacements of each knot molecule in the circular u tð Þ and meridian v tð Þ directions
are obtained by summing the effect of three sperm cells on the neighbouring knot
molecules. It is possible to change velocity and sperm impact angle for each observed
spermatozoon.

Equations for displacement in the circular and meridian directions of the first knot
molecule are presented by formulas:

u1 tð Þ ¼ u3;N1 tð Þþ u9;N2 tð Þ ð2Þ

v1 tð Þ ¼ v3;N1 tð Þþ v9;N4 tð Þ ð3Þ

where: N1–N4 denotes positions of the knot molecules in the corresponding chain in
representative part of the spherical net; indexes 3 and 9 denote order of molecules in the
chain (see Fig. 1E). We introduced this notation so that different initial conditions
could be applied to each knot molecule.

Expressions for the second, third, and fourth knot molecule have the same form -
summing the effect of the neighbouring knot molecules. These formulas are generated
from the model.
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Displacements in the circular and meridian directions caused by an impact of the
sperm cell at the first knot molecule at initial moment, giving initial velocity to knot
molecule, are calculated according to the formulas:

u3;N1 tð Þ ¼ V1

X11

s¼1

K3sC
�
1s cos xstþ a1sð Þ ð4Þ

v3;N1 tð Þ ¼ V1

X11

s¼1

K3sD1s cos xstþ b1sð Þ ð5Þ

u9;N1 tð Þ ¼ V1

X11

s¼1

K9sC1s cos xstþ a1sð Þ ð6Þ

v9;N1 tð Þ ¼ V1

X11

s¼1

K9sD1s cos xstþ b1sð Þ ð7Þ

where V1 is ratio between the sperm effective velocity (velocity of the hyperactivated or
progressive mouse spermatozoa, taken from [29], and the velocity of the hyperactivated
sperms previously set as Vhp ¼ 171:1 lm/s. C1s and D1s are integral constants deter-
mined in step (E), from initial conditions (when the velocity is transferred only to the
third or ninth molecule in the chain in the equilibrium state and all other molecules did
not have any velocity at the initial moment after the spermatozoa’s impact), as and bs
are the phase and integral constants determined from initial conditions, xs s ¼
1; 2; 3. . .; 11 is the corresponding eigen circular frequency determined in steps (D) and
(F), K3s and K9s are cofactors of the system determinant defining the characteristic
(frequency) system equation for the corresponding value of s-th circular frequency
determined in steps (G) and (E). The above equations are derived from the theory of
oscillations of chain systems [53, 55]. Similar equations for displacements of the
corresponding knot molecules caused by the second, third, and fourth sperm cells can
be derived. The integral constants Cs and Ds are determined from initial conditions as
follows:

Ds ¼ V
L

Dsj j cos cð Þ sin hð Þ ð8Þ

Cs ¼ V
L

Dsj j cos cð Þ cos hð Þ ð9Þ

where c is an angle between direction of spermatozoa’s movements and the tangential
plane, and h is an angle between direction of spermatozoa’s movements and meridian
direction of the tangential plane, V is velocity that spermatozoa transfer to the knot
molecule at the moment of impact, L is determinant of the system and is specific
determinant.

System determinant s was determined in step (C).
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Eigen circular frequencies xs, s = 1, 2, 3, …, 11, were determined using the
appropriate software and the graphical method to represent the characteristic function
for each frequency equation by the formula: xs(xs) = √xs, xs = 1, 2, 3, … 11, where xs
is reduced chain eigen characteristic number (determined in steps (D) and (E) to a no
dimensional value of square of eigen circular frequency, read from the graphic. 106 is
factor of correction of roots obtained from the characteristic frequency equations. We
use the correction factor for two reasons: to harmonize the unit measures and because
we multiplied masses of molecules in MatCad by 1012.

The system of homogenous algebraic equations in terms of eigen amplitudes of
mass particles oscillatory motion was made by means of the matrix of inertia and
matrix of coefficient of elasticity in step (C). The system of differential equations of
chains dynamics with 11 material particles motion for each chain was defined in step A
according to the literature as well as by assuming their solutions [1].

By using appropriate software and graphical method for presenting the character-
istic function from frequency equations (the 11 frequencies equations) of the system,
11 zeros (roots) of the system characteristic function were determined. Eleven zeros
(roots) of the system characteristic function are the squares of the corresponding eigen
circular frequencies of the representative part of the discrete spherical surface net
model. All eleven material particles in the chain oscillate at these eleven circular
frequencies. These frequencies are characteristic of the system and its structure and do
not depend on initial conditions. They depend only on molecular masses and rigidity of
the spring elements in the system.

The analysis were done for certain favourable angles c and h (p/4 and p/4, p/6 and
p/4 and p/12 and p/4 respectively) established in studies of [2] and for favourable angle
of 5/12p and p/4.

3 Results

Knot molecules of the ZP net representative model excited by impacting spermatozoa
can oscillate in three directions: there will be eleven natural frequencies in the meridian
and circular directions and two forced vibrations in the radial direction. Component
displacements of knot molecules in circular and meridian directions are obtained for
each combination of impact angles. Resultant displacements of knot molecules are
presented on the same graph in the form of generalized Lissajous curves obtained by
composing two orthogonal eleven frequency component vibrations in the plane tan-
gential to the oscillatory spherical net model of mZP.

The resultant motion of the knot molecules in the tangential plane to the spherical
net are obtained for the initial moment as perturbation of the equilibrium state of the
representative part of the oscillatory spherical net model of mZP.

Knot molecule trajectories obtained for the case of four hyperactivated spermatozoids
V1 = V1 = V2 = V3 = V4 = Vhp. impacting against four neighbouring knot molecules
under different favorable angles c and h (p/4 and p/4, p/6 and p/4; p/12 and p/4 and 5/12p
andp/4 respectively) established in studies of [2] are shown in Fig. 2. It can be seen that all
trajectories are straight lines. This case corresponds to the full synchronization of the
component displacements of the knot molecules in the circular and meridian directions.
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Trajectories of knot molecules computed for the case of four progressive sperma-
tozoids V1 = V2 = V3 = V4 = Vp impacting against the ZP membrane under different
favourable angles c and h (p/4 and p/4, p/6 and p/4 and p/12 and p/4, and 5/12p and
p/4 respectively) are straight lines similar to that shown in Fig. 2(A, B, C, D). How-
ever, amplitudes and inclination of trajectories for different sperm impact angles are
slightly different from the previous case.

If three hyperactivated and one progressive spermatozoa in position V1 (see
Fig. 1c) impact against knot molecules under favourable angles, the resultant motion of
the knot molecules in the form of Lissajous curves are shown in Fig. 2A1–D1. Tra-
jectories at positions V1 and V3 are straight lines while resultant motions at positions
V2 and V4 are stochastic-like.

Figure 3(B, C, D, E) shows the trajectories obtained for the case with two
hyperactivated and two progressive spermatozoa arranged in the diagonal up position
(A). For all combinations of impact angles, trajectories are straight lines, only ampli-
tudes are different. Again, full synchronization of knot molecules motion is achieved.

Fig. 2. Resultant trajectories for all four knot mass particles in the corresponding tangent plane
to the spherical net when impact angles c and h: A and A1. c1 ¼ c2 ¼ c3 ¼ c4 ¼ p=4 and
h1 ¼ h2 ¼ h3 ¼ h4 ¼ p=4. B and B1. c1 ¼ c2 ¼ c3 ¼ c4 ¼ p=6 and h1 ¼ h2 ¼ h3 ¼ h4 ¼ p=4.
C and C1 c1 ¼ c2 ¼ c3 ¼ c4 ¼ p=12 and h1 ¼ h2 ¼ h3 ¼ h4 ¼ p=4. D and D1. c1 ¼ c2 ¼ c3 ¼
c4 ¼ 5p=12 and h1 ¼ h2 ¼ h3 ¼ h4 ¼ p=4. When four hyperactivated spermatozoa at the initial
moment, impact on the knot molecules with velocities Vhp ¼ 171:1 lm/s (A, B, C and D) and
when all three spermatozoa at the initial moment, impact on the knot molecules have velocity of
Vhp ¼ 171:1 lm/s and one (impacts first knot molecule) V1 has velocity of Vp ¼ 146:9 lm/s
(A1, B1, C1 and D1).
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The case of two hyperactivated (V1 = V4 = Vhp) and two progressive spermatozoa
impacting the ZP net on the same chain is illustrated in Fig. 4A1–E1. Amplitude of
Lissajous curves is smaller for the sperm impact angles c1 ¼ c2 ¼ c3 ¼ c4 ¼ 5=12p
and h1 ¼ h2 ¼ h3 ¼ h4 ¼ p=4 (see Fig. 3E and 3E1). Knot molecule resultant trajec-
tories in the tangent plane have stochastic-like form that is a less favourable state than
when two hyperactivated and two progressive spermatozoa are arranged in the diagonal
up position (see Fig. 3B–E.). This result indicates that specific arrangement of sper-
matozoa having effective velocities on ZP surface may generate different oscillatory
states of ZP.

The resultant trajectories of knot molecules obtained for the case of one hyperac-
tivated (for example, at node 1) and three progressive spermatozoa are shown in Fig. 4.
It can be seen that trajectories of knot molecules 1 and 3 are straight lines while
Lissajous curves for positions 2 and 4 have a stochastic-like shape.

Fig. 3. Resultant trajectories for all four knot mass particles in the corresponding tangent plane to
the spherical net when at the initial moment two impacting spermatozoa are hyperactivated and two
have progressive velocities. Spermatozoa having the same velocities are in diagonal up position
arrangement. A, B, C, D, E. And when Spermatozoa having the same velocities impact with knot
molecules in the same chainA1,- E1, and impact angles are B andB1 c1 ¼ c2 ¼ c3 ¼ c4 ¼ p=4 and
h1 ¼ h2 ¼ h3 ¼ h4 ¼ p=4: C and C1 c1 ¼ c2 ¼ c3 ¼ c4 ¼ p=6 and h1 ¼ h2 ¼ h3 ¼ h4 ¼ p=4.
D and D1 c1 ¼ c2 ¼ c3 ¼ c4 ¼ p=12 and h1 ¼ h2 ¼ h3 ¼ h4 ¼ p=4. E and E1. c1 ¼ c2 ¼ c3 ¼
c4 ¼ 5p=12 and h1 ¼ h2 ¼ h3 ¼ h4 ¼ p=4.
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In order to see if trajectories are affected by the position of the hyperactivated
spermatozoa, their impact position on the ZP net is varied. If hyperactivated sperma-
tozoa affected at position 2, the resultant trajectory of knot molecules in positions 2 and
4 are straight lines while trajectories of positions 1 and 3 are stochastic. The same
behaviour is observed for all examined favourable angles (see Fig. 4D1–D4).

4 Discussion and Conclusions

The discrete spherical net model of mouse ZP was used in this study to carry out
qualitative analyses of oscillatory behaviour of ZP knot molecules. By perturbing the
initial equilibrium state with pulses representing the impact of sperm cells against the
ZP membrane under certain angle, the following facts were observed:

• Component displacements in the meridian and circular directions of the knot
molecules represent multi-frequency (eleventh-frequency) oscillations;

• The resultant trajectories of ZP knot molecules in the tangent plane to the sphere net
are described by generalized Lissajous curves that could be of straight lines, peri-
odic, non-periodic, or stochastic like curves. This results from summing two
orthogonal multifrequency (11 modes) vibratory components;

Fig. 4. Resultant trajectories for all 4 knot mass particles in the corresponding tangent plane to
spherical net, at initial moment, for one hyperactivated sperm cell Vhp ¼ 171:1 lm/s impacting
ZP at nodal position 1 and three progressive Vp ¼ 146:9 lm/s sperm cells impacting the other
knot molecules under different favourable angles: A. c1 ¼ c2 ¼ c3 ¼ c4 ¼ p=4 and
h1 ¼ h2 ¼ h3 ¼ h4 ¼ p=4. B. c1 ¼ c2 ¼ c3 ¼ c4 ¼ p=6 and h1 ¼ h2 ¼ h3 ¼ h4 ¼ p=4. C. c1 ¼
c2 ¼ c3 ¼ c4 ¼ p=12 and h1 ¼ h2 ¼ h3 ¼ h4 ¼ p=4. D. c1 ¼ c2 ¼ c3 ¼ c4 ¼ 5p=12 and
h1 ¼ h2 ¼ h3 ¼ h4 ¼ p=4. For the case D: when hyperactivated sperm cell impacts knot
molecule in the first position D1 and D2. when hyperactivated sperm cell impacts with the knot
molecule in the second position D3, D4. D2. Knot molecules in first and third positions when
hyperactivated sperm cell impacts knot molecule in the first position. D4. Knot molecules in
second and forth positions when hyperactivated sperm cell impacts with knot molecule in the
second position.
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Under physiological conditions, slow spermatozoa would never reach the oocyte,
but in IVF conditions they could contribute to creation of a favourable oscillatory state
of mZP.

For the cases when a symmetric distribution of spermatozoa having the same
velocity exists, the resulting trajectories of the knot molecules in the plane tangential to
the spherical surface have the form of a straight line, i.e. they move synchronously,
only amplitudes of these movements are different depending upon the angle of impact
of the spermatozoa action, Figs. 2 and 3(A, B, C, D). Larger amplitude of movement of
molecules will, theoretically, cause larger deformations of the net and thus create
conditions for penetration of the spermatozoa. Under specific initial conditions, it is
possible that only individual knot molecules in the model move along a straight line in
the plane tangential to the sphere surface, while the others do not, Figs. 2(A1–D1), 3
(B1–E1) and 4(D1–D4). Only some of the possible initial conditions are presented in
this work. In a real biological system there are a large number of different combinations
of initial conditions which could produce favourable oscillatory states of ZP which
indicates that the process of fertilization could be treated as a stochastic process. On the
other hand, the possibility that some knot molecules oscillate synchronously while the
others do not, indicates that the fertilization phenomenon could have a local character,
indicating that the position of the initial penetration of spermatozoa through ZP could
be determined by local initial conditions which are of stochastic character while the
structure and composition of the ZP surface could be assuming as uniform.

This numerical experiment opens new questions:

• Is, in reality, sperm velocity related to the ZP sperm impact angle?

It is known that capacitated spermatozoa are capable of attaching to ZP [16]. The
oscillatory pattern is different for healthy spermatozoa and spermatozoa having mor-
phological defects [36]. The transversal force generated by a spermatozoid is higher
than the propulsive force [38, 56] indicating that kinetic parameters of sperm swim-
ming velocity may be related to sperm impact angle. This indicates that amplitude and
pattern of sperm velocity could affect the sperm impact angle.

• What is the ratio of hyperactivated sperm necessary to achieve favourable oscil-
latory state of mZP for successful fertilisation?

According to [29] about 22% are hyperactivated spermatozoa. It is possible to
assume that the 22% rate of hyperactivated spermatozoa is consistent with the findings
of the vibration analysis for the case with one hyperactivated spermatozoa (Fig. 4).

• Do sperm cells with effective velocity have stochastic like arrangements on the mZP
surface in real physiological conditions?

According to sperm velocity parameters for specific sperm types [29] and the
results presented in this paper, it is possible that progressive and hyperactivated sperm
interacts with ZP under more favourable angles than slow or weakly motile sperm in
‘in vitro’ conditions. If it is so, then weakly motile sperm could never generate Lis-
sajous curves of knot molecules in the form of a straight line. Lisssajous curves will
then be in a more chaotic-like form and with low amplitude, according to this oscil-
latory model. It could be that in reality specific arrangements and distribution of
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spermatozoa having different velocities on the mZP surface contribute to achieving the
oscillatory states of ZP favourable for sperm penetration. To answer these questions,
further analyses should be done.

Lefievre et al. [57] argue that the value of traditional semen parameters like con-
centration, motility, and morphology are not sufficient in the diagnosis and prognosis of
male infertility [57] and that there is no prognostic parameter and no adequate treatment
for male sub/(in) fertility. According to our oscillatory model, we are free to suggest a
new type of treatment for male sub fertility: we believe that adding adequate
mechanical stimulation in the medium with healthy oocyte and adequate number of
spermatozoa could improve fertilization. Mechanical simulation could be in the form of
a sound. The basic idea is that adding the mechanical stimulation with specific
parameters (intensity and set of oscillatory frequencies) could contribute to achieving
successful fertilization through creation of resonance in the oscillations between oocyte
and sperm. This method could be useful in subfertility cases (when there are not
enough spermatozoa with normal function and morphology to achieve fertilization in
physiological conditions). Since spermatozoa have a high degree of plasticity and
adaptability in their responses to the events which signal ovulation [57], we believe that
they could respond to the external mechanical stimulation. Adding the external
mechanical stimulation could influence the process of sperm hyperactivation. We
suppose that the parameters of external mechanical stimulation for achieving successful
fertilization will be species specific.

4.1 The Limitations of the Model

The present analysis had some limitations. In the first place, since the oscillatory
behaviour of a finite number of molecules in the representative part of the mZP
spherical net model (eleven) was analysed, a finite number of eigen circular frequencies
was obtained. In a real ZP there are numerous ZP molecules, consequently numerous
eigen circular frequencies. Non-linear properties of real ZP and limitations of the used
analytical method of solving a system of differential non-linear equations require using
numerical methods and approximations. Real ZP is a very complex oscillatory system
and very selective regarding sperm penetration. This ZP selectiveness provides con-
stant quantity of genetic material in each generation. One may speculate that in real
biological conditions, each spermatozoon that impacts with the ZP contributes in a
specific manner to the achievement of oscillatory state/s favourable for successful
fertilization.

Furthermore, our model is one-layer model. Real ZP is a multi-layer structure with
distinguishable inner and outer layers of different mechanical properties [4]. Our next
step in developing mZP biomechanical model that resembles more a realistic mZP will
be developing a system of a complex hybrid system dynamics which takes into account
the mechanical, physico-chemical, electro- and thermal coupled fields. With this
approach, it will be possible to create a spherical, multi-layered, discrete continuum
model that will be more suitable for investigating the mechanisms of spermatozoa
penetration through entire thickness.
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Abstract. As the length scale starts decreasing such that the inner
substructure of the material becomes dominant in material response, the
well-known theory of elasticity shows inadequacies. As a remedy, gen-
eralized mechanics is proposed leading to additional, inner substructure
related parameters to be determined. In order to acquire them, for a
so-called metamaterial with known substructure and material response
in the length scale of the substructure, we present how to apply a com-
putational approach based on the finite element method.

Keywords: Generalized mechanics · Metamaterials · Inverse
analysis · Finite element method

1 Introduction

In continuum mechanics, conventional theory of elasticity fails to model struc-
tures, where the inner substructure starts affecting the material response. An
intuitive explanation for this phenomenon relies on the length scale of the geom-
etry, macroscale, ratio with respect to the inner substructure, microscale. As
this ratio approaches one and the length scales are in the same order, then
the effects of the substructure shall be incorporated and we call this structure
related material system metamaterial. This inner substructure might be simply
the molecular structure. For example, in the case of crystalline materials with
a lattice type substructure, the grain orientation leads to material anisotropy
or change in parameters like the yield stress, these phenomena have been stud-
ied among others also in Reuss (1929); Hashin and Shtrikman (1962); Sharo
and Kachanov (2000); Lebensohn et al. (2004). Such an inner substructure can
be generated by adhering different materials, which is the case in composite
materials and “effective” parameters read as a result of a homogenization pro-
cedure, see for example Levin (1976); Willis (1977); Kushnevsky et al. (1998);
Sburlati et al. (2018). A system with inclusions like a porous material can be
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seen as a metamaterial, where the voids affect the material properties at the
macroscale, we refer to Eshelby (1957); Mori and Tanaka (1973); Kanaun and
Kudryavtseva (1986); Hashin (1991); Nazarenko (1996); Dormieux et al. (2006).
Additive manufacturing—as in the case of 3D printing—is another prominent
example to build up a metamaterial as applied in Kochmann and Venturini
(2013); Placidi et al. (2016); Turco et al. (2017); Solyaev et al. (2018); Ganzosch
et al. (2018); Yang et al. (2018). Often it is assumed that the substructure is peri-
odic in a sense that the same cell is repeated for generating the structure at the
macroscale. This so-called representative volume element is useful for an anal-
ysis of effective parameters. All these approaches are based on the assumption
that the material response is modeled with the same phenomenological models
at both scales.

By using the homogenization approach as in Pideri and Seppecher (1997);
Bigoni and Drugan (2007); Seppecher et al. (2011); Abdoul-Anziz and Seppecher
(2018); Mandadapu et al. (2018), we understand that the assumption of hav-
ing the same material model can lead to inaccurate results such that a higher
order theory needs to be incorporated at the macroscale as developed by
Eringen and Suhubi (1964); Mindlin (1964); Eringen (1968); Steinmann (1994);
Eremeyev et al. (2012); Polizzotto (2013a; 2013b); Ivanova and Vilchevskaya
(2016); Abali (2018). Various times it has been observed that a generalized
mechanics description is necessary for modeling mechanical response accurately
as the thinner or smaller structure starts deviating from classical results as
detected in Namazu et al. (2000); Lam et al. (2003); McFarland and Colton
(2005); Gruber et al. (2008); Chen et al. (2010); dell’Isola et al. (2019). For a
simple beam bending problem, conventional theory of elasticity fails to estimate
the experimental results, as a remedy, for example the strain gradient theory
in Abali and Müller (2016) is capable of capturing this effect, as applied by
Abali et al. (2015), Abali et al. (2017); however, we need to know the additional
parameters introduced for incorporating higher order effects.

As the inner substructure and its material response is set, a detailed model
of the microscale can be used to determine the additional parameters at the
macroscale. Thus, the parameter determination in generalized mechanics is not a
new approach, see for example Forest et al. (1999); Pietraszkiewicz and Eremeyev
(2009); Giorgio (2016) or also by using the asymptotic analysis in Bensoussan
et al. (1978); Hollister and Kikuchi (1992); Chung et al. (2001); Temizer (2012)
with an application in Forest et al. (2001); Li (2011); Eremeyev (2016) Barboura
and Li (2018); Ganghoffer et al. (2018); Turco (2019). Often a representative
volume element has been used, we remark that it is difficult to justify that
the higher order theory has to inherit one, see the discussion in Rahali et al.
(2015). Thus, we search for a method without implementing a representative
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volume element at all. In this work we briefly show the second order theory and
the additional parameters occurring in this theory. Then we apply the general
algorithm proposed by Abali et al. (2019) and define the parameters for a specific
geometry.

2 Computational Approach

We strictly follow Abali et al. (2019) and use the equivalence of the stored energy
at the microscale,

mw =
1
2

mεij
mCijkl

mεkl, (1)

to the stored energy at the macroscale,

Mw =
1
2

Mεij
MCijkl

Mεkl + MεijGijklm
Mεkl,m +

1
2

Mεij,kDijklmn
Mεlm,n, (2)

such that we have∫
B

mw dv =
∫
B

Mw dv,

∫
B

mεij
mCijkl

mεkl dv =MCijkl

∫
B

Mεij
Mεkl dv + 2Gijklm

∫
B

Mεij
Mεkl,m dv

+ Dijklmn

∫
B

Mεij,k
Mεlm,n dv.

(3)
Consider that we assume that the macroscale material properties are appropriate
for an isotropic and centrosymmetric material

MCijkl = c1δijδkl + c2(δikδjl + δilδjk),
Dijklmn = c3(δijδklδmn + δinδjkδlm + δijδkmδln + δikδjnδlm) + c4δijδknδml

+ c5(δikδjlδmn + δimδjkδln + δikδjmδln + δilδjkδmn)
+ c6(δilδjmδkn + δimδjlδkn)
+ c7(δilδjnδmk + δimδjnδlk + δinδjlδkm + δinδjmδkl),

Gijklm = 0 ,
(4)

with the unknown material parameters, c = {c1, c2, c3, c4, c5, c6, c7}, which we
obviously intend to determine. By simply inserting the latter into the energy
equivalence and writing in a linear algebra fashion, as an example for one case
denoted by the index 1 as follows:

7∑
α=1

A1αcα = R1, (5)
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we observe that the coefficient matrix, A, as well as the right hand side, R, can
be computed

A11 =δijδkl

∫
B

Mεij
Mεkl dv

A12 =(δikδjl + δilδjk)
∫
B

Mεij
Mεkl dv

A13 =(δijδklδmn + δinδjkδlm + δijδkmδln + δikδjnδlm)
∫
B

Mεij,k
Mεlm,n dv

A14 =δijδknδml

∫
B

Mεij,k
Mεlm,n dv

A15 =(δikδjlδmn + δimδjkδln + δikδjmδln + δilδjkδmn)
∫
B

Mεij,k
Mεlm,n dv

A16 =(δilδjmδkn + δimδjlδkn)
∫
B

Mεij,k
Mεlm,n dv

A17 =(δilδjnδmk + δimδjnδlk + δinδjlδkm + δinδjmδkl)
∫
B

Mεij,k
Mεlm,n dv

R1 =
∫
B

mεij
mCijkl

mεkl dv,

(6)

for a problem with given, Mε, and computed, mε. By defining 7 distinct cases, the
system, Ac = R, with A of rank 7 provides a unique determination of unknowns
by c = A−1R.

These seven cases are the one of the key choices in the approach and we use
the following seven cases:

case1 : Mu =
(

y
2 , x

2 , 0
)

case2 : Mu =
(
x, 0, 0

)
case3 : Mu =

(
− xz, 0, xy

)

case4 : Mu =
(
xz, 0,−x2

2

)
case5 : Mu =

(
− yz, 0, xy

)

case6 : Mu =
(
0,−y, y2

2

)
case7 : Mu =

(
0, y2

2 , 0
)
,

(7)
where the only necessary condition seems to be such a choice generating a rank
7 coefficient matrix. It is challenging (if even possible) to suggest experimental
designs for constructing this given homogenized displacement on the structure.
If we use a linear strain measure,

Mεij =
1
2

(∂ Mui

∂Xj
+

∂ Muj

∂Xi

)
= Mu(i,j), (8)

we can easily calculate the coefficient matrix for one of the aforementioned cases.
For the right hand side, we compute mu for the detailed microscale of the con-
tinuum body, B, by applying the boundary conditions acquired from the given
Mu evaluated on boundaries. Solving mu at the microscale is established by
satisfying the weak form:

Form =
∫
B

mCijkl
mu(k,l)δui,j dV, (9)
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with the corresponding test functions, δu, from the same Hilbertian Sobolev
space as the unknown, mu, known as the Galerkin method,

V̂ =
{

mu, δu ∈ [Hn(Ω)]3 : mu, δu = given ∀x ∈ ∂B
}
. (10)

The construction is automatized by using open-source programs like Salome,
NetGen, and FEniCS (Alnaes et al. 2009; Logg et al. 2012), by using a Python
code, we refer to Abali (2017) for a standard introduction of this weak form as
well as the whole implementation.

3 Application

A pantographic structure has been studied for several systems, see for exam-
ple Misra et al. (2018); Turco et al. (2019); dell’Isola et al. (2018); Solyaev
et al. (2018); Harrison et al. (2018); Spagnuolo and Andreaus (2019); Greco
et al. (2019). We aim at determining effective parameters in a strain gradient
theory by applying the procedure from the last section for the pantographic
structure as shown in Fig. 1. We emphasize that no representative volume ele-
ment is used, instead, we simulate only a part of the whole structure as the
macroscale displacement is provided as a function applied on this part.

Fig. 1. Pantographic structure CAD model designed in Salome open-source platform.
Left: the whole structure. Right: part of the structure used for the computation with
the shown mesh generated by Netgen.

For a 3D printed pantographic structure out of ABS or PP, we may approx-
imate a linear elastic response with Young’s modulus of E = 400 × 106 Pa and
Poisson’s ratio of ν = 0.3 leading to the following Lame parameters:

λ =
Eν

(1 + ν)(1 − 2ν)
, μ =

E

2(1 + ν)
. (11)

They are used in the microscale material response

mCijkl = λδijδkl + μδikδil + μδilδjk, (12)
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which is simply the Hooke’s phenomenological model in isotropic linear elastic-
ity. We emphasize that we use this assumption for clarity and fail to know if the
material response of an additively manufactured polymer material is accurately
captured by this model. Especially in semi-crystalline materials like PP, fused
deposition modeling 3D printers may introduce extrusion orientation dependent
anisotropic response. Moreover, the polymer material may behave hyperelastic.
Another model is possible for obtaining the right hand side in Eq. (6) in order
to increase the accuracy. Herein we use linear elastic model for demonstrating
the methodology.

After solving 7 cases subsequently, computing the coefficient matrix, we have
determined the 7 material and structure related parameters as follows:

c1 = 231 × 106 Pa

c2 = 154 × 106 Pa

c3 = 287 × 10−6 N

c4 = 58 × 10−6 N

c5 = − 264 × 10−6 N

c6 = − 32 × 10−6 N

c7 = − 32 × 10−6 N

(13)

4 Discussion and Conclusion

A simple yet elegant computational approach has been applied for obtaining the
effective parameters as a result of a homogenization procedure in space in order
to reduce the complexity of the structure modeling greatly. As an expense of
additional parameters, we aim at incorporating the inner substructure effects
by using higher gradients in the displacement. These additional parameters
have been obtained by a purely computational methodology under the following
assumptions:

– At the microscale, the material model is linear elastic and isotropic.
– At the macroscale, the material model is linear strain gradient elastic and

isotropic as well as centrosymmetric.

Both assumptions are difficult to verify or falsify. We use these assumptions in
the modeling for simplicity, more sophisticated approaches can be implemented
as well, the general methodology remains still valid. The only possible validation
for a concrete structure relies on an experimental study, which is left to further
research endeavors.
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Abstract. This work presents model of liquid rate and bottomhole
pressure computation in multistage hydraulic fractured horizontal well.
Model is based on a solution of transient fluid flow equation in porous
media with finite volume method. 3D formulation of the problem gives
an opportunity to model not only axisymmetric example as it is in 2D
models. Results are recorded with a second order time and space accu-
racy. The most innovate thing that this project can be used for is solution
of inverse problem – restoring reservoir parameters on a base of known
well production.
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1 Hydraulic Fracturing

At present, the priority direction of oil reserves growth in world oil production
is the development and industrial application of modern integrated methods for
increasing oil recovery, which can provide a synergistic effect in the development
of oil fields. One of the most effective methods of increasing oil recovery and
intensifying the flow of fluid and gas to wells is hydraulic fracturing. The tech-
nology consists in creating a highly conductive fracture in the target formation
under the action of a proppant-fed fluid under pressure to ensure the flow of
produced fluid to the bottom of the well. The fracture formed as a result of
hydraulic fracturing can be horizontal or vertical.

There are a lot of mathematical models that can determine the well with
hydraulic fracturing flow rate, but not all are applicable for assessing the energy
state of a formation (reservoir pressure) after hydraulic fracturing. To solve this
problem, 3D reservoir simulators in commercial software are used, which allow to
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complete tasks associated with assessing the effect of hydraulic fracturing. But
the time spent on preparing a large amount of initial data for the simulator and
the calculation time for these models does not allow to consider many options
for selecting candidate wells for hydraulic fracturing, as well as factor analysis
of hydraulic fracturing.

Thus, the goal of this work was to implement a three-dimensional model
of a horizontal well with multi-stage hydraulic fracturing to predict the well
fluid flow rate or bottomhole pressure after hydraulic fracturing, and also to
solve the inverse problem - to restore the hydraulic fracturing and formation
characteristics based on the known production dynamics.

2 Well Model Without Fracturing

As a preparatory phase a horizontal well model without fracturing is considered.
For a horizontal well in a formation, it has been assumed that it is all a drain
and that the same fluid volume flows into each unit of the well’s volume. In
AppendixA.1 a model is schematically depicted, a brown dotted line indicates
a well. Taking into account that the permeability coefficients can have different
values in different directions of coordinates Darcy’s law gives rise to the perme-
ability tensor, instead of the permeability coefficient. It is a tensor, on the main
diagonal of which there are permeability coefficients along the corresponding
axes. Thus, diffusivity equation will take the following form.
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Where M is the region under consideration, M ′ is the region in which there is a
source (sink). Bringing the equation to dimensionless form:
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Dimensioning constants: [L] = m, [qt] = m3

sec , [km] = Darcy, [Cm] = Pa−1.
In case of equality of the dimensionless constants to the reservoir characteristics,
the equation takes the following form:
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Next, a solution of the problem will be held in a dimensionless form, therefore,
it is possible to discard the indices D and redesignate the right side to reduce
further calculations:
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⎧⎨
⎩
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Discretize the second-order spatial derivatives at time n at the lattice position
with coordinates i, j, k and introduce a special notation for them.
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To solve equations of this type, Clark and Nicholson proposed taking the
average between the explicit and implicit schemes to preserve the advantages of
the implicit scheme - absolute convergence and improve accuracy. But according
to this scheme, at each time step, it is necessary to find 7 unknown pressure
values at neighboring points, which greatly complicates the algorithm. To solve
the equation, the method of variable directions (the Douglas-Gunn approach) is
used. The idea of this approach is to decompose the solution of the equation into
three substeps. On each of them, a tridiagonal matrix algorithm is used along
one of the coordinates.
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3 Well Model with Hydraulic Fracturing

After the preparatory phase, a transition to modeling of a horizontal well with
multi-stage hydraulic fracturing can be made. Fractures are rectangular areas
in a plane perpendicular to the well. Since the volume of production through
fractures is much larger than the volume of production in the well outside the
fractures, in this model we consider that sink is located only at the intersec-
tion of the fractures and the well. In AppendixA.1 the model in question is
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schematically depicted, the brown dotted line indicates the well, and the blue
one indicates the fracture.

Assuming that fluid flow in the hydraulic fractures obeys Darcy’s law, con-
stant pressure or non-flow boundary conditions can be used. The mathematical
model for hydraulic fractures is given by the next equations.
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Since permeability coefficients of a fracture and a formation can differ by a
factor of 106 the finite volume method was applied to solve this problem. In this
method, the above diffusivity equation is solved in an integrated form for the
formation and fractures.
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Dimensionless variables of fractured horizontal well are defined the same way
it was made in first model using fracture permeability coefficients.
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(9)

Next, solution of the problem is in a dimensionless form, therefore, the indices
D are discarded. In the finite volume method, the reservoir characteristics are
tied not to the grid nodes, but to the cells.
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A cube with the size of one cell is built around each node. Each eighth of this
cube lies in a separate cell and has its own physical characteristics. The final
equation for finding the value in the node lying in the cube is obtained as the
sum of all the equations for the eighths of the cube.

Considering one eighth of the control volume (Fig. 1), it was supposed that
it lies outside the fracture, and the equation obtained above was written for this
volume element in the form of an explicit scheme.
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Fig. 1. One eighth of the control volume
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Then, the final equation for the cell node located on the fracture boundary
along the x axis, in the case of an explicit scheme, will be written in the following
form.
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Due to the restrictions imposed by the explicit scheme on the space and
time step, it was decided to use an implicit scheme with time substeps, each of
which on the right side contains flows in only one spatial direction. As a result
of applying this scheme, after each time step, the pressure distribution remained
stretched along the last axis of the tridiagonal matrix algorithm, which was an
artifact of the selected scheme. Since such artifacts can have a strong influence
on the calculation of flow rate or borehole pressure, the Douglas-Gunn scheme
was tested. For the cell considered above, lying on the fracture boundary along
the x axis, it is represented in the form given in AppendixA.2. Results of a
computation in different time moments are presented on Fig. 2.
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Fig. 2. The result of the algorithm - the pressure field in the slice along the y axis

4 The “Infinite Permeability” Model

During the testing of the method, it was found that the calculations with using
the intersection of a well and a fracture as a drain will be stable only at time
steps of the order of a tenth of a second, which does not allow to use it for
industrial application. For this reason, it was decided to switch to the “infinite
permeability” model, in which each unit volume of a fracture becomes a drain
of a fixed power. To compare these two models in the fracture plane control
points were selected, the pressure values at which are compared with a time step
of the order of 10−2 s. The positions of this points are shown in the diagram
of AppendixA.3, the boundaries of the fracture are indicated by a blue dotted
line on it. The final relative deviation of the “infinite permeability” model from
the model with point drain at the intersection of the fracture and the well is
shown in the graph. The initial reservoir pressure is two times greater than the
bottomhole pressure, so this plot begins from a mark of 50%. The boundary
non-flow conditions are satisfied when using the finite volume method automat-
ically, because streams into the boundary cells flow only from the inside of the
volume under consideration. To use the boundary conditions of constant pres-
sure instead of the equation derived from tridiagonal matrix algorithm pressure
value in boundary nodes are set equal to boundary pressure. Thus, the pressure
distribution differs fundamentally only in the first second of the algorithm work,
which allows to use the model of “infinite permeability” if calculations with a
large time step are necessary. For this model tests with different time and spatial
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step were made, their results are presented in Appendix A.4. Optimal time step
is 15 min, optimal spatial step is half of meter.

5 Conclusions

As a result of the algorithm work the pressure distribution in the reservoir is
recorded in files with a user-defined time step, which allows to make factor anal-
ysis. In addition, depending on the formulation of the problem, the calculation
results are recorded:

• When solving the problem of calculating the pressure field at a given well
flow rate – the dependence of the bottomhole pressure on time;

• In solving the problem of determining the flow rate at predefined bottomhole
pressure – the dependence of the well flow rate on time.
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A Appendix

A.1 Appendix 1

(See Figs. 3 and 4)

Fig. 3. Scheme of model without fracturing
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Fig. 4. Scheme of model with hydraulic fracturing

A.2 Appendix 2

I : 1
2 (ϕfr0Cfr

ϕ0C + 1)ΔxΔyΔz
p
n+1

3
i,j,k −pn

i,j,k

Δt

= ΔyΔz
8Δx ((pn

i+1,j,k − pn
i,j,k)kx + (pn

i−1,j,k − pn
i,j,k)kfx))

+ΔyΔz
8Δx ((pn+ 1

3
i+1,j,k − p

n+ 1
3

i,j,k )kx + (pn+ 1
3

i−1,j,k − p
n+ 1

3
i,j,k )kfx)

+ΔxΔz
4Δy ((pn

i,j+1,k − pn
i,j,k) 1

2 (ky + kfy) + (pn
i,j−1,k − pn

i,j,k) 1
2 (ky + kfy))

+ΔxΔy
4Δz ((pn

i,j,k+1 − pn
i,j,k) 1

2 (kz + kfz) + (pn
i,j,k−1 − pn

i,j,k) 1
2 (ky + kfy))

II : 1
2 (ϕfr0Cfr

ϕ0C + 1)ΔxΔyΔz
p
n+2

3
I,j,k−pn

I,j,k

Δt

= ΔyΔz
8Δx ((pn

i+1,j,k − pn
i,j,k)kx + (pn

i−1,j,k − pn
i,j,k)kfx)

+ΔyΔz
8Δx ((pn+ 1

3
i+1,j,k − p

n+ 1
3

i,j,k )kx + (pn+ 1
3

i−1,j,k − p
n+ 1

3
i,j,k )kfx)

ΔxΔz
8Δy ((pn

i,j+1,k − pn
i,j,k) 1

2 (ky + kfy) + (pn
i,j−1,k − pn

i,j,k) 1
2 (ky + kfy))

+ΔxΔz
8Δy ((pn+ 2

3
i,j+1,k − p

n+ 2
3

i,j,k ) 1
2 (ky + kfy) + (pn+ 2

3
i,j−1,k − p

n+ 2
3

i,j,k ) 1
2 (ky + kfy))

+ΔxΔy
4Δz ((pn

i,j,k+1 − pn
i,j,k) 1

2 (kz + kfz) + (pn
i,j,k−1 − pn

i,j,k) 1
2 (ky + kfy))

III : 1
2 (ϕfr0Cfr

ϕ0C + 1)ΔxΔyΔz
pn+1
i,j,k−pn

i,j,k

Δt

= ΔyΔz
8Δx ((pn

i+1,j,k − pn
i,j,k)kx + (pn

i−1,j,k − pn
i,j,k)kfx)

+ΔyΔz
8Δx ((pn+ 1

3
i+1,j,k − p

n+ 1
3

i,j,k )kx + (pn+ 1
3

i−1,j,k − p
n+ 1

3
i,j,k )kfx)

+ΔxΔz
8Δy ((pn

i,j+1,k − pn
i,j,k) 1

2 (ky + kfy) + (pn
i,j−1,k − pn

i,j,k) 1
2 (ky + kfy))

+ΔxΔz
8Δy ((pn+ 2

3
i,j+1,k − p

n+ 2
3

i,j,k ) 1
2 (ky + kfy) + (pn+ 2

3
i,j−1,k − p

n+ 2
3

i,j,k ) 1
2 (ky + kfy))

+ΔxΔy
8Δz ((pn

i,j,k+1 − pn
i,j,k) 1

2 (kz + kfz) + (pn
i,j,k−1 − pn

i,j,k) 1
2 (ky + kfy))

+ΔxΔy
8Δz ((pn+1

i,j,k+1 − pn+1
i,j,k) 1

2 (kz + kfz) + (pn+1
i,j,k−1 − pn+1

i,j,k) 1
2 (ky + kfy))

(A.1)



40 I. Abramov and M. Simonov

A.3 Appendix 3

(See Figs. 5 and 6)

Fig. 5. Control points Fig. 6. Difference rate between point-
source and “infinite permeability” models
in percents

A.4 Appendix 4

(See Figs. 7 and 8)

Fig. 7. Flow rate with different time steps Fig. 8. Flow rate with different spatial
steps
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Abstract. The present study is an attempt to study the effect of double-aging
process and its relevant parameters (like time, temperature and quenching
media) on the mechanical properties of two types of aluminum alloys. AA7075
and AA6061 are selected in this study to examine their responses to the double-
aging. Fabricated specimens are heat treated, and tested for hardness using
micro-Vickers hardness test. They are then artificially aged at 150 °C for dif-
ferent aging periods. The specimens are then quenched in water and oil.
Hardness test are then repeated to determine the optimum time and cooling rate
that give the maximum (peak) hardness values. This procedure are repeated on
other sets of specimens, but with double aging at 185 °C to find out which alloy
has more significant response to double ageing. The outcomes of the study show
that the 7075 aluminum alloy demonstrates better results than those obtained for
the 6061 aluminum alloys. Increase in hardness from 135.66 HV to 150.61 HV
is reported for the 7075 aluminum alloy.

Keywords: Heat treatment � AA7075 and AA6061 � Hardness � Double-aging

1 Introduction

Aluminum is known as one of the non-ferrous metals that turned into a practical rival in
modern Engineering applications. This is because of the wide scope of physical and
mechanical properties of this material that can be created from a high unadulterated
aluminum to the most intricate alloys.

The most alluring properties of aluminum is its solidarity to weight proportion, low
density; (one-third of that for steel and copper), its obstruction for erosion fabric-ability
(formability), non-toxic, high heat and electrical conductivity, reflectivity for both heat
and light. Unadulterated aluminum has likewise two noteworthy burdens (limitations),
low melting point (about 660 °C) and its relatively low strength (about 10 MPa).

In order to improve the strength of the pure aluminum, the latter has to be mixed
with other agents by the method of alloying. Aluminum alloys are usually classified
into different series according to its alloying element, modification process, and the
purity of the alloy (percentage of aluminum) [1, 2]. Aluminum alloys that are used
cladding and for corrugated roofing are examples of non-heat-treatable alloys, which
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include 1–1.25% manganese and 2–7% magnesium, are of relatively high strength and
are used for. While those used as fasteners and as light structural members are
examples of heat-treatable alloys contain varying proportions of aluminum, magne-
sium, silicon, and sometimes copper. These have high strength and are, therefore, are
widely used. Casted aluminum alloys usually contain silicon, silicon and copper, or
silicon and magnesium [3]. A significant improvement in the alloy strength is achieved
by solution heat treatment of the alloys for 8 h at 465 °C. An example for such an
improvement, UTS is increased from about 250 MPa to 380 MPa [4]. Duplex aging
enhances corrosion resistance since the grain boundary zone is removed. The 7075
alloy also demonstrates a high response to age hardening [4, 5].

Arturo Abúndez et al. [6] studied the relation between ageing and retrogression
times and temperatures with Ultimate Tensile Strength (UTS) and hardness on Al6061
alloy. The outcomes of this study showed that a12% on UTS and 6% in hardness
increment was achieved for combination of 200 °C ageing temperature and 250 °C
retrogression temperature.

Rajaa et al. [7], have studied the effects of aging time on the mechanical properties
of 6061 Aluminum alloys. It is found that the strength is increased through a process of
artificial aging within two hours. An increase in the hardness value about 27.4% can be
achieved through a 2-h artificial aging process. More than two hours of artificial aging
time may cause a decrease in the hardness.

The research of Qing-Long Zhao et al. [8] has shown that the specimen of AA6061
preheated at a high temperature (540 °C) demonstrated a pronounced ageing hardening
response to short-term ageing. Also, the rolling rolled-quenched alloy aged for 1 h
exhibited high tensile strength (370 MPa), improved ductility and surface quality
compared to T6 and T8 tempered 6061 alloys.

Masoud et al. have shown that the maximum hardness of 137 HV is obtained after
aging the specimen at temperatures of 205 and 225 °C at 90 min and 120 min aging
respectively [9]. The optimum aged could be achieved from 175 C to 195 C between 2
to 6 h of ageing time. It showed that 6 h of ageing could exhibit a maximum strength of
432.84 MPa, at a temperature of 185 °C [10]. The goal of this work was to evaluate the
effects of double aging and parameters (i.e. time, temperature and quenching media) on
the mechanical properties of two aluminum alloys (i.e. AA7075 and AA6061), to find
out the differences in response to the double-aging.

2 Methodology

In the present study, two specimens of Aluminum Alloys (7075 and 6061) were
selected. They are considered as the most common and the most used in applications
among other types of Aluminum Alloys. Also, they both have the same alloying
components, but having different amount percentages as described in Table 1.
Therefore, a noticeable difference in their mechanical properties is reported. The 7075
Aluminum specimen has a circular cross section of a radius of 60 mm and a thickness
of 20 mm. whereas; the 6061 Aluminum specimen has a squared cross section with a
side length of 70 mm and a thickness of 20 mm. The details (shapes and dimensions)
of the specimens are shown Table 2. Both specimens were heat treated at 470 °C for
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two hours and then they were cooled using water to the room temperature. Hardness
tests were conducted on both specimens. The results were found to be 139.8 HV for the
7075 specimen, and 40.34 HV for the 6061 aluminum alloy specimen.

3 Heat Treatment of Aluminum Alloys

In many applications, alloying by itself is not sufficient to reach the needed strength of
aluminum alloys; hence, other processes may be applied to the alloys to increase its
strength and to produce more stable structure.

Quenching. This is a critical operation and must be carried out to precise limits if
optimum results are to be obtained. The objective of the quenching is to ensure that the
dissolved constituents remain in solution down to room temperature.

The usual quenching medium is water at room temperature. In some circumstances
slow quenching is desirable as this improves the resistance to stress corrosion cracking
of certain copper-free Al-Zn-Mg alloys.

Age Hardening. By the end of solution treatment and quenching processes, hardening
is achieved either at room temperature (natural ageing) or with a precipitation heat
treatment (artificial ageing). In some alloys sufficient precipitation occurs in a few days
at room temperature to yield stable products with properties that are adequate for many
applications. These alloys sometimes are precipitation heat treated to provide increased
strength and hardness in wrought and cast alloys. Other alloys with slow precipitation
reactions at room temperature are always precipitation heat treated before being used.

In some alloys, notably those of the 2xxx series, cold working of freshly quenched
materials greatly increases its response to later precipitation treatment. Mills take
advantage of this phenomenon by applying a controlled amount of rolling (sheet and
plate) or stretching (extrusion, bar and plate) to produce higher mechanical properties.
However, if the higher properties are used in design, reheat treatment must be avoided.

Table 1. chemical composition for 6061 and 7075 aluminum alloys

Alloy Alloying elements percentages (wt%)
Si Mn Zn Ni Ti Cu Mg Fe Cr Al

6061 0.73 0.08 0.01 0.015 0.03 0.31 1.51 0.18 0.08 97.0
7075 0.23 0.03 5.89 – 0.02 1.76 3.03 0.18 0.21 88.6

Table 2. Dimensions and shapes of aluminum alloys specimens

Alloy 7075 6061
Shape Disk Square plate
Dimensions Radius 60 mm Length * width 70 * 70 mm

Thickness 20 mm Thickness 20 mm
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Re-aging (Multi-aging). The hardness achieved by age hardening (either natural or
artificial) can be increased by re-aging; or in general; multi-aging process.

The multi-stage heat treatment known as: retrogression and re-ageing (RRA). This
type of heat treatment is the process that can be used to enhance the mechanical and
corrosion resistance properties of aluminum. RRA process was first developed by Cina
and Gan [11] and their results showed that 7xxx series of aluminum alloys are known
to respond to retrogression and re-aging thermal treatments [12].

RRA is accomplished in three major stages: Solutionization and Ageing, Retro-
gression, and Re-aging. Due to aging, a strength penalty of about 10%–20% may
occur. To compensate this, retrogression is required.

Retrogression consists of two stages. The first stage is the partial dissolution of the
hardening precipitates that result in a decrease in hardness/yield strength which is
regained in subsequent re-aging. The second stage is the coarsening of precipitates that
may occur, (for long time retrogression), which results in continuous decrease in
hardness/strength.

4 Experimental Data

Specimen’s Selection, Properties and Characteristics. Micro-Vickers testing
machine (Fig. 1) used to test the specimens. As stated earlier, the specimens that were
chosen for this study are 7075 (Fig. 2) and 6061 (Fig. 3) aluminum alloys because of
their wide usage in engineering applications. Although they contain the same alloying
elements (Si, Mg, Cr, Mn, Cu, Ti), however, there are differences in the weight per-
centage of each element, Therefore they may be considered as completely different
alloys because of the differences in their mechanical properties.

The 7075 Aluminum Alloy. The main alloying element in the 7075 aluminum alloy is
zinc (Zn) which gives the alloy its ability to resist stresses and its high strength
compared with that of steel. The 7075 aluminum alloy or (aerospace/aircraft aluminum)
as it called, has relatively high cost which limits its usage in that applications where the
cheaper alloys can be used. The most common applications of 7075 aluminum alloys
are in those where small weight to strength ratio is needed like aircrafts, marine and
transportations industries, military applications (rifles reserves), boats, bikes, and
climbing equipment [11].

The 6061 Aluminum Alloy. Silicon (Si) and magnesium (Mg) are the major alloying
elements in the 6061 aluminum alloy. Unlike the other aluminum alloys, this alloy
gives a superb wilding ability with a high machining and workability which make it
sustain to wild verity of applications like construction structures, trucks frames,
aerospace applications, vehicles and bikes frame and components. 6061 is also used in
salt-sensitive environments such as small boats, fishing reels and its wildly used in
SCUBA tanks (breathing air cylinders) [12].
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Chemical Compositions. The chemical compositions of the fabricated specimens
were obtained by a specialized Jordanian company (JAMCO). Results are shown in
Table 1 above.

Hardness Tests. The hardness of specimens was obtained using MITUTOYO appa-
ratus. It is a computerized micro- Vickers testing machine. Hardness specimens were
subjected to 100 g load for 15 s, and then the results were red from the device in HV
units.

Fig. 1. Micro-Vickers testing machine

Fig. 2. AA 7075 Fig. 3. AA 6061
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Furnace. The specimens were solution heat-treated and ageing using NOBER-
THERM (L5/c6) laboratory muffle furnace. The unit is a property metallurgical lab-
oratory of the faculty of Engineering Technology. It is capable of providing maximum
temperature of 1100 °C.

Quenching. Two groups of specimens were prepared for quenching process. Each
group contains three specimens of the 7075 aluminum alloy and three specimens of the
6061 aluminum alloy. The first group was water-quenched using tap water at room
temperature, whereas the other group was quenched using petroleum oil. The type of
cooling oil used in this study is similar to that usually used in power plants. The oil has
a density of about 400 g/L. The quenching time and specimen’s identification letters are
shown in Table 3.

• Solution heat-treatment (homogenizing): Both alloys (7075 and 6061) were soaked
in the furnace for 2 h at 470 °C, then they were quenched in tap water at room
temperature. It is known that the 6061 alloys are highly responsive to solution heat
treatment; however, this step is important to achieve a homogenous crystal structure
that is required for the precipitation hardening (ageing).

• Aging: All specimens were soaked at 150 °C for 2, 4 and 6 h, for the first aging,
quenched, and tested. The same procedure were repeated at 185 °C for re-aging.

5 Experimental Procedure

Specimen’s Preparation. The specimens were prepared with a high quality surface
finishing and then they were stamped by an identification letters (A, B, C, D, E, and F)
as listed in Table 4. The specimens are then tested for hardness.

Solution Heat-Treatment. The solution heat-treatment where performed for both
alloys at the same condition which is 470 °C for two hours. The 6061 alloy has shown
a lower response to solution heat treatment. This step, however, is important to achieve
the desired results. All specimens were water quenched with a maximum delay of 40 s.

Age Hardening (First Ageing). The first ageing was performed for both alloys at
constant temperature of 150 °C for 2, 4, and 6 h. The specimens were then immediately
quenched in water and oil.

Table 3. Quenching time and identification letters of specimens

Time (h) Water
quenched

Oil
quenched

7075 6061 6061 7075

2 A B A B
4 C C D D
6 F E F E
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Re-aging. The same procedure of the first ageing (described above) was repeated at
185 °C and for the same time periods.

6 Experimental Results

Solution Heat-Treatment. The hardness of the two types of alloys was examined
after treatment at 470 °C for two hours. The hardness was found to be 139.8 HV for the
7075 alloy, and 40.34 HV for the 6061 aluminum alloy.

Aging at 150 °C. Table 4, below, shows hardness results for both aluminum alloys
that are obtained after the first aging at 150 °C for the different specified time periods.
Figure 4, and Fig. 5, show the variation of hardness with time for both types of alloys
and for the different types of quenching processes.

Re-ageing. The hardness achieved by the re-ageing of the specimens at 185 °C for the
same time periods and the same quenching arrangement is shown in the Table 5.
Figure 6 and Fig. 7, show the variation of hardness values of the two alloys with time
for different quenching media (water and oil).

Table 4. Hardness of the specimens in (HV) aged at 150 °C for various aging times

Time (h) 6061 HV 7075 HV
Water quenched Oil quenched Water quenched Oil quenched

0 (as quenched) 40.34 40.34 139.8 139.8
2 78 40.56 115.46 90.23
4 70.9 60.06 120.4 157
6 113.36 62.57 135.66 141.13

Table 5. Hardness of the specimens in (HV) aged at 185 °C for various aging times

Time (h) 6061 HV 7075 HV
Water quenched Oil quenched Water quenched Oil quenched

0 (as quenched) 113.36 62.57 135.66 141.13
2 47.13 40.4 130.1 124.95
4 72.7 50.03 146.3 161.2
6 72.73 69.56 145.87 150.61
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7 Discussion of Results

Solution Heat-Treatment. The hardness of 7075 alloy increases from 136.57 HV to
139.8 HV after homogenizing (solution heat-treatment) where the hardness of 6061
alloy has a 32 HV drop in hardness; from 70.32 to 40.34 after homogenizing.

Aging at 150 °C. Water quenched 7075 alloy the hardness of 7075 aluminum alloy
decreases during the first two hours of treatment and then a considerable improvement
is noted for the rest of time until it is removed from the furnace and quenched. Note that
no peak values for hardness were reported.

Oil quenched 7075 Alloy. As in water quenching; the hardness was decreases during
the first two hours to a minimum value of 90.23 HV, after that a peak value of 157 HV
is recorded after four hours of treatment. The hardness then decreases slightly at the end
of the six hours.

Water Quenched 6061 Alloy. The hardness of 6061 aluminum alloy decreases for the
first two hours, a slight decrease in hardness for the period between two and four hours,
and then the hardness increases to a peak value of 113.36 HV at the end of the six hours
treatment.

Oil Quenched 6061 Alloy. For the first two hours of this process, no changes in
hardness were reported. An increase in the hardness value of 20 HV was reported
between two and four hours then the hardness keep constant until the end of the six
hour time period.

8 Re-aging at 1985 °C

Water Quenched 7075 Alloy. The hardness of the specimen remains constant during
the first two hours, and then it increases slightly to the value of 15 HV between two and
four hours. No change in hardness was reported till the end of the four hour time
period.

Oil Quenched 7075 Alloy. The hardness decreases during the first two hours then
increases until it reaches a peak value of 161.2 HV at four hours then it decreases to a
similar value to that of water quenched specimens discussed above.

Water Quenched 6061 Alloy. The hardness of this type of alloys decreases sharply
during the first two hours. It then increases slightly for the time period between two and
four hours and then remains constant for the rest of the time period.

9 Conclusions

From the present research work, following conclusions can be reported:

• 7075 aluminum alloy retract better for solution heat treatment (homogenizing) at
470 °C for 2 h.

Double Aging of Heat-Treated Aluminum Alloy 49



• Oil quenched 7075 aluminum alloy, demonstrates peak values of hardness, while
water quenched specimens show more stable hardness values for the same time
period.

• Just for AA6061, water quenching can achieve higher hardness than oil quenching
in both single-aging and double-aging processes.
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Fig. 4. Hardness verses time for the 7075 aluminum alloy aged at 150 °C
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Fig. 5. Hardness verses time for 6061 aluminum alloy aged at 150 °C
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Abstract. Under the action of relatively low stresses and high temperatures,
metallic materials become brittle and fractured with a small value of residual
deformations. This problem is known as a problem of thermal brittleness of
metals. To solve this challenge in the mechanics of materials the damage con-
ception was introduced. To describe the brittle region of the experimental long-
term strength curve, the system of simple kinetic equations for the damage
parameter and creep deformation was proposed, and the long-term strength
criterion was formulated.
In this work, we propose to determine the damage parameter changes

according to the experimental high-temperature creep curves. Only one kinetic
equation for creep rate for compressible medium, recorded using the damage
parameter is formulated. From this equation, the damage parameter is deter-
mined, depending on the creep rate and the creep deformation. Similarly, the
value of the damage parameter is determined according to the Rabotnov solu-
tion. To describe the experimental creep curves various empirical dependences
in the form of power, exponential, and mixed functions are used. Theoretical
damage curves are plotted. The corresponding theoretical long-term strength
curves are constructed.

Keywords: High-temperature creep � Damage parameter � Embrittlement �
Kinetic equation for creep rate � Creep curves � Long-term strength � Rabotvov
theory � Incompressible medium � Compressible medium

1 Introduction

The problem of thermal brittleness is considered, when under the action of relatively
low stresses and high temperatures, metallic materials become brittle and fractured with
a small value of residual deformation. The damage conception that was introduced in
the mechanics of materials to describe long-term strength under conditions of high-
temperature creep, have been developed in the fundamental works of Kachanov [1] and
Rabotnov [2]. In their works, to describe the brittle region of the experimental long-
term strength curve, the simple kinetic equation for the damage parameter was pro-
posed, and the long-term strength criterion was formulated. The question of the rela-
tionship of creep deformation and damage in these works was not discussed.
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The next stage on the creep and damage problem solution relates to the work of
Rabotnov [3], in which a system of two interrelated equations for creep deformation
and damage parameter was proposed.

In the scientific literature on this problem, the following possible variants of the
relationship of creep and damage are given. The processes of creep and damage
developed in parallel and in the first approximation are not related to each other.
Damage is the result of deformation, which creates fracture sources, leads to appear-
ance of places with a high stress concentration and is a producer of point defects that
are necessary for the development of slow fracture. Creep is a result of the micro-
fracture processes in the material volume.

Low strain rates and high temperatures contribute to intergranular creep fracture.
This fact let assume that damage and fracture could flow independent to plastic
deformation. This is also referred by numerous cases of slow fracture with a very small
value of the residual deformation. Studies of Ratcliffe and Greenwood [4], Betechtin
[5] on the density changes in creep conditions have shown that the pores healing by a
single and multiple application of hydrostatic pressure leads to a sharp creep defor-
mation braking. So the time to fracture significant increase. At the same time, the creep
rate practically does not changed. The processes of damage by density changes com-
pletely braking the development of fracture, which indicates the independence of the
creep rate from damage. Apparently, all three possible variants of the relationship
between creep and fracture are fair.

2 The Kachanov-Rabotnov Theory

Kachanov-Rabotnov criteria was developed to describe the brittle fracture region [1, 2].
In the Kachanov’s brittle fracture model [1] the parameter of continuity w (1�w� 0)
is introduced formally without giving to it a certain physical meaning. In the model of
Rabotnov brittle fracture [2, 3] the damage parameter x (0�x� 1) is introduced by
the ratio x ¼ FT=F0 (F0 is initial, FT is total pores area) and characterize the degree of
reduction of cross-section area of the specimen. From the relation F ¼ F0 � FT , it
follows that F ¼ F0 1� xð Þ (F is the current specimen cross section area).

In the Kachanov-Rabotnov model of brittle fracture, the rate of continuity
parameter changes is given by the following equation

dw
dt

¼ �A
r0
w

� �n

ð1Þ

where r0 is nominal stress, A, n are constants.
To take into account the deformation processes, Rabotnov introduced, in addition

to Eq. (1), a kinetic equation for the creep rate _e

de
dt

¼ _e ¼ Brm0 w
�beme ð2Þ

where B, m are constants.
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From (2) is follows

w ¼ rm0 Be
me

_e

� �1=b

ð3Þ

3 The Theory for Compressible Medium

When the interrelated creep and damage equations was formulated, the physical content
of the damage parameter should be given. In particular, irreversible changes in volume
(loosening) [6] or density [7] were considered as a damage parameter. This parameter is
the most representative characteristic of damage. In works [8, 9] the system of equa-
tions for creep rate and damage parameter for the compressible medium was
considered.

In this work only one kinetic equation for creep rate for compressible medium,
recorded using the damage parameter is formulated. From this equation, the damage
parameter is determined, depending on the creep rate and the creep deformation.

A compressible medium with a continuity parameter w ¼ q=q0 (q0 is initial, q is
current specimen density) is introduced. Taking into account the mass conservation
law, the kinetic equation for the creep rate is given as

de
dt

¼ _e ¼ Brm0 w
m�beme ð4Þ

where b is constant.
From Eq. (4) we can receive

w ¼ _ee�me

Brm0

� �1=m�b

ð5Þ

4 Deformation Creep Curves Description

Using formulas (3) and (5) it is possible to determine the time dependence of the
parameter w according to the experimental creep deformation curves [10]. These curves
are described by various empirical dependences in the form of power, exponential and
mixed functions [10, 11]. In the paper [12], the case of power dependence was con-
sidered. Next, we will used the following dependence

e ¼ ekt

ðf tþ cÞn þ b ð6Þ

where f , c, k, b are constants.
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On Fig. 1, the experimental creep deformation curves according [10] and the
empirical dependence in the form of function (6) are presented. In the calculations the
following coefficients are used: c ¼ 1 � 105, b ¼ 1 � 10�1, k ¼ 2; 6 � 10�5 h½ ��1,
n ¼ 0; 15, f ¼ 8 � 10�2 h½ ��1.

5 Continuity Parameter Changes

Introduced the relation (6) into (3) we can receive the following equation for continuity
parameter for Rabotnov solution

w ¼ Brm0 e
m ekt

ðf tþ cÞn þ b

� �
ðf tþ cÞn

ekt k � n f
f tþ c

� �
2
64

3
75

1
b

ð7Þ

Taking into account the relations (6) and (5) the equation for continuity parameter
for the case of compressible media can obtained

w ¼
ekt k � n f

f tþ c

� �
e
�m ekt

ðf tþ cÞn þ b

� �

ðf tþ cÞnBrm0

2
6664

3
7775

1
m�b

ð8Þ

The theoretical damage curves according to formulas (7) (curve 1) and (8) (curve 2)
are shown on Fig. 2. In the calculations the following values of coefficients are used:

Fig. 1. Theoretical deformation creep curve according to relation (6) and experimental points
[10].
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c ¼ 1 � 105, b ¼ 1 � 10�1, k ¼ 2; 6 � 10�5 h½ ��1, n ¼ 0; 15, f ¼ 8 � 10�2 h½ ��1, m ¼ 6,
b ¼ �2, r0 ¼ 120 MPa, B ¼ 3 � 10�19 MPa½ ��6.

From Fig. 2 it can be seen that for the compressible medium (curve 2) the damage
accumulation and, accordingly, the fracture processes are passed more intensive,
compared with Rabotnov solution (curve 1 and formula (7)).

6 Long-Term Strength Criterions

The long-term strength criterion can be obtained under the condition, when damage
parameter is reached the critical value. Taking in (7) the fracture condition in the form
t ¼ tf , w ¼ w�, we can obtain the following criterion of long-term strength

r ¼
wb
�e

kt k � n f
f tþ c

� �

Be
m ekt

ðf tþ cÞn þ b

h i
ðf tþ cÞn

2
664

3
775

1
m

ð9Þ

Taking in (8) the fracture condition in the form t ¼ tf , w ¼ w�, we can receive the
long-term strength criterion for compressible medium

r ¼
ekt k � nf

f tþ c

� �

ðf tþ cÞnem
ekt

ðf tþ cÞn þ b

h i
Bwm�b

�

2
664

3
775

1
m

ð10Þ

Fig. 2. Theoretical damage curves according to formulas (7) (curve 1) and (8) (curve 2).
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The long-term strength curves according the solutions (9) (curve 1) and (10) (curve
2) are shown on Fig. 3. In the calculations the following values of coefficients are used:
c ¼ 1 � 105, b ¼ 1 � 10�1, k ¼ 2; 6 � 10�5 h½ ��1, n ¼ 0; 15, f ¼ 8 � 10�2 h½ ��1, m ¼ 6,
b ¼ �2, r0 ¼ 120 MPa, B ¼ 3 � 10�19 MPa½ ��6, w� ¼ 0; 9.

7 Conclusions

The compressibility of metal materials is taken into account and the relative density
changes is considered as a continuity parameter. A method for determining the damage
value using experimental creep curves according to the theory of Rabotnov and the
theory for a compressible medium is proposed. To describe the experimental creep
curves empirical dependence in the form of mixed power and exponential functions is
used. Theoretical damage curves are plotted. The long-term strength criterion is
obtained under the condition, when damage parameter is reached the critical value. The
corresponding theoretical long-term strength curves are constructed. It is shown that for
the case of a compressible medium, a more intensive damage accumulation and,
accordingly, the fracture processes are observed, compared with the Rabotnov theory.
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Abstract. The paper is devoted to estimation on steels of the type of 12Cr and
8Cr in terms of efficiency. The criteria for wear resistance for these materials
have been studied. The quality estimation on basic feature was carried out. The
complex indicator of the quality level of investigated steels working under
friction conditions has been determined. It was found that materials with a
uniform distribution of carbides have the highest level of quality.

Keywords: 12Cr and 8Cr steels � Wear resistance � Quality level

1 Introduction

Currently, there is an increase in requirements for dimensional accuracy and quality of
machined parts, which leads to the preferential use of machining processes in the final
stages.

In modern machining production, more and more widespread use is found in
expensive automated machine tools with microprocessor control. The operation of such
equipment is characterized by a sharp increase in machine-minutes, toughening of the
working conditions of the cutting tool, an increase in the consumption of tools per unit
of output, which amounts to 5–10% of the total costs of cutting [1]. Thus, the role of
the cutting tool, which largely determines the efficiency of machining, increases
markedly.

The most important indicator of the operation of the cutting tool is the performance,
which characterizes the state of the tool in which it is able to perform its functions,
having a working surface wear that is less than the criteria value.

The following main consumer requirements for metal cutting tools can be distin-
guished: performance and reliability [2]. The performance depends on the processing
modes (feed, speed and depth of cut), the geometry of the cutting part of the tool, the
physicomechanical properties of the material of the workpiece and the tool material.
Indicators of reliability of metal-cutting tools is its durability and reliability.

In this paper it is considered the issues of assessing the quality of tool material, as
an important factor determining the performance of the cutting tool.
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2 Materials and Experiments

Tested samples of steel type X8 were [3]: steel 70H9F, 60H9M2VFTSCH and
105H8M2VFTSCH. Quenching of these steels was carried out in oil at a temperature:
1050 °C - for steel 70X9Ф, 1025 °C - for steel 60X9M2BФЦЧ and 1000 °C - for steel
105X8M2BФЦЧ. After quenching, the steel was subjected to low tempering at a
temperature of 150 °C for 1 h.

For steels of type X12 (50H12FBCHTS, 70H12FBCHTS, 110H12FBCHTS) heat
treatment consisted in quenching at a temperature of 1050 °C in oil and low tempering
at 150 °C for 1 h.

For comparison, in the same conditions, cutting tools made of tool steels X12Ф1
and 9XC (GOST 5950-73) and high-speed steel P6M5 (GOST 19265-73), heat-treated
according to the standard mode, were tested. For steel 9XC, heat treatment was carried
out according to the following mode: quenching at a temperature of 870 °C in oil and
tempering at 180 °C for 1 h. High-speed steel P6M5 was treated as follows: quenching
at a temperature of 1220 °C and three times tempering at a temperature of 560 °C for
1 h.

The main indicator of the material that determines the performance of the tool is its
wear resistance. Steel is called wear-resistant, if it well resists abrasion (wear) in
various conditions of service: during sliding and rolling friction, with friction on hard
and soft materials, with abrasive wear. Type X12 steels were tested on a heel friction
machine in a pair with steel 9XC (friction velocity— 0.65 m/s; specific pressure— 2.5
Mn/m2).

3 Results

As a rule, the wear resistance of steel is directly dependent on its hardness: the higher
the hardness, the better the resistance to wear of the steel. However, in some cases, in
addition to hardness, the structure of steel, for example, a large amount of hard and
strong carbides, the presence of graphite precipitates, and the ability of steel to harden
strongly (work hardening) during friction, have a great influence on wear resistance.

Such materials have the greatest wear resistance in which highly hard inclusions are
evenly distributed in a sufficiently plastic material of the tool. Tool wear resistant also
depends on the size of carbides. Carbides should be fine and evenly distributed in the
structure. With coarse clusters, that is, with non-uniformity of decay at the interface of
the carbide-matrix, cracks are possible. This impairs tool performance. In addition, with
the clusters of carbides, there is a probability that the carbide system rather than the
carbide – viscous matrix system, will come into contact with the metal being processed.
Due to its brittleness, it is possible to chipping the tool, accelerating its wear. In
addition, the surface of particles of the solid phase increases with the grinding of their
sizes.

Certain conditions apply to the metal base. It should be as viscous as possible to
prevent chipping of the working edge. Therefore, it is advisable to maintain a certain
amount of residual austenite. A significant part of austenite, in a thin surface layer,
under the action of microdeformations, arising during the operation of the tool, turns
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into martensite. This layer, with the formation of more hard areas, is located on a more
viscous martensitic austenitic basis.

Fragile failure is one of the main reasons for the low performance of the tool. The
brittle fracture of the tool is not due to the small initial strength and ductility of the
steel, but to changes in its structure during operation, which leads to the formation of
cracks at the interface of the carbide-matrix.

Wear resistance is the property of a material to resist wear under certain friction
conditions, as measured by the reciprocal of the wear rate or wear intensity [4]. The
wear rate is the ratio of the wear value to the time interval during which it occurred.
There are instant (at a certain point in time) and average wear rate (for a certain time
interval) [4, 5]. The wear intensity is the ratio of the wear value to the conditioned path
on which wear occurred, or the volume of work performed. There are instant and
average wear intensity [4, 5].

Wear is usually characterized by one of the following characteristics: linear wear
intensity Jh, weight Jg, or energy ones Jw [6]. The linear wear characteristic is the height
of the worn layer h, which falls on the friction path unit:

Jh ¼ h
L

ð1Þ

or

Jh ¼ V
LAa

; ð2Þ

where L is the friction path, V is the worn material volume, Aa is the nominal contact
area.

The weight characteristic of wear is the weight of a substance that is removed from
a unit of nominal contact area per unit of friction path:

Jg ¼ g
Aa � L ; ð3Þ

where g is the weight of the worn substance.
Energy intensity of wear, which determines the amount of worn material per unit of

work of the friction force, is expressed by the following relationship:

Jw ¼ V
WF

; ð4Þ

where WF is the work of the force of friction.
Figures 1 and 2 show the graphs of changes in weight and linear wear for steels of

type X12 when tested on a heel friction machine in pairs with steel 9XC (friction
velocity is 0.65 m/s, specific pressure 2.5 Mn/m2).

On the basis of the data obtained, it is possible to determine the quality level by the
most important material indicator using the formula
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к

base

РУ
Р

= ,      ð5Þ

where Pdet is the value of the main (determining) indicator of the property of the
product being evaluated, Pbase is the base value of the same main (determining)
indicator.

Weight, mg

Way, km

1.14% C

0.71% C

0.52% C

Fig. 1. Weight wear of steel type X12, depending on the path of friction and carbon content

L, μm

Way, km

1.14% C

0.71% C

0.52% C

Fig. 2. Linear wear of steel type X12, depending on the path of friction and carbon content
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The quality level with a friction path of 20 km in terms of linear wear is equal to:
Y0.52 = 0.33, Y1.14 = 0.79, Y0.71 = 1.

For a broader comprehensive assessment of the quality of tool materials, the fol-
lowing criteria can be distinguished: the average tool life (tool life in minutes corre-
sponds to the width of the chamfer of wear on the rear face, 0.5 mm), the coefficient of
variation of tool life, the time of trouble-free operation. The results of measurement of
these quality indicators are shown in Table 1.

However, in order to correctly assess the reliability of the instrument, it is necessary
to proceed from the minimum coefficient of variation of durability and the maximum
time of trouble-free operation, and not from the average tool life. Therefore, the expert
method determined the coefficients of significance for these indicators. For the indi-
cator of average tool life, the weight coefficient is equal to 0.25, for the variation of tool
life - 0.35, for the time of no-failure operation - 0.4.

Complex indicator of the quality of the material for the weighted average arithmetic
is determined by the formula.

Q ¼
Xn

i¼1

aq; ð6Þ

where a is the weight coefficient, q is a relative indicator of the property level, n is the
number of indicators of the properties.

Complex quality indicators for the evaluated materials are given in Table 2.

Table 1. Indicators of tool performance.

Steel Average tool life,
T , min

The coefficient of
variation, V

Trouble free time,
Tp min

50H12FBCHTS 184 0,08 165,8
70H12FBCHZ 206 0,08 133,9
110H12FBCHZ 254 0,07 231,6
X12F1 83 0,62 16,96
P6M5 265 0,30 163,2
70H9F 90 0,38 46,5
60H9M2VFTSCH 368 0,26 245,4
105X8M2BФЦЧ 46,8 0,13 38,8
9HS 189,5 0,34 107
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4 Conclusions

According to the results, it can be concluded that steels with a reduced carbon content
and a uniform distribution of carbides (50X12ФБЧЦ, 70X12ФБЧЦ, 110X12ФБЧЦ
and 60X9M2BФЦЧ with 1 and 2 carbide grade) have a higher level of quality. The
rather high quality level of high-speed steel R6M5 also with a 3 grade carbide
heterogeneity can be explained by higher heat resistance.

The reduced resistance of steel 70Kh9F can be explained by the fact that it contains
less quantity of carbides than in steel 60Kh9M2VFTSCH and they are less heat
resistant because steel 70KhF does not contain molybdenum and tungsten. The low
resistance of steel 105X8M2BФЦЧ is due to the fact that it contains a lot of carbides
and they form clusters.
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Abstract. The paper is devoted to the analysis of the axially travel-
ling web supported by a system of fixed rollers and submerged in axially
flowing gas medium. In order to accurately model the dynamics and sta-
bility of a lightweight moving web, the interaction between it and the
surrounding air is taken into account. The light weight of the moving
web leads to the inertial contribution of the surrounding air to the accel-
eration of the material becoming significant. In the context of this paper
we apply a Galerkin method for dynamic stability analysis of the moving
web based on developed added-mass model.

Keywords: Moving web · Aeroelastic vibrations · Instability

1 Basic Relations

The axially travelling thermoelastic web supported by a system of fixed rollers
and submerged in axially flowing hot gas medium is considered. Only one span
of the web is under consideration. To characterize the dynamics of the moving
web (panel) performing in its axial movement additional transverse vibrations
let us perform a numerical dynamic stability analysis. For numerical analysis a
discrete approximation will be used for the partial differential equation [1,2]

α2 (1 + rm)
∂2w

∂t2
+ 2αc0 (1 + rvrm)

∂2w

∂x∂t

+
(
c20 − 1 + c20r

2
vrm

) ∂2w

∂x2
+ β

∂4w

∂x4
= g(x, t),

(1)

with boundary conditions

(w)x=±1 = 0,

(
∂2w

∂x2

)

x=±1

= 0 (2)

and initial conditions

(w)t=0 = g1(x),
(

∂w

∂t

)

t=0

= g2(x), (3)
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where g, g1, g2 are given functions, w is the transverse displacement. We consider
in (1) - (3) the dimensionless variables x′ = x/l, t′ = t/τ (prime is omitted).
We denote by l, h, D, E, ν, T , m respectively half-length, thickness, bending
rigidity, Young’s modulus, Poisson’s ratio, tension, mass per unit area of the
panel, while V0, v∞ are axial velocities of the web and gas, D = Eh3/12(1−ν2),
T = Tm − Tθ, Tm = T0 is axial mechanical tension, Tθ is thermal compression
due to fixed positions of supports. We define also the dimensionless quantities

α =
l

τC
, β =

D

l2T
, rm =

ma

m
, rv =

v∞
V0

, c0 =
V0

C
, κ =

v∞
C

, γ =
l

m
ρf .

Here C =
√

T/m is critical velocity of a traveling web, ma =
π

4
lρf is added mass,

ρf is gas density, τ = l/C is a scaling factor. The Eq. (1) is based on added-mass
approximation and will be used to determine the dynamical behavior and loss
of stability.

We will perform space-discretization using the finite element Galerkin
method with C2 - continuous Hermite elements. We set the load as g ≡ 0 and
formulate the eigenvalue problem using the time-harmonic trial function

w(x, t) = exp(st)W (x) (4)

where s is the stability exponent (a complex number) and W (x) is the vibration
mode. We will solve the problem for eigenvalue-eigenfunction pairs (s, W ). Loss
of stability occurs at such values of the axial drive (transport) velocity V0 where
at least one eigenvalue s transits to the positive half-space (i.e., where the real
part Re s becomes positive). The critical velocity is the smallest positive V0 such
the stability is lost.

2 Dynamic Stability Analysis

We will represent the displacement as a Galerkin series

W (x) =
∞∑

n=1

cnΨn(x) (5)

where Ψn are the global shape functions and cn are the global degrees of freedom.
The basis functions Ψn(x) are defined piecewise.

Let us now develop the discrete eigenvalue problem. Inserting the time-
harmonic trial function (4) into (1) and setting g ≡ 0 we have

s2α2 (1 + rm) W + 2sαc0 (1 + rvrm)
dW

dx

+
(
c20 − 1 + c20r

2
vrm

) d2W

dx2
+ β

d4W

dx4
= 0.

(6)
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To obtain the weak form we multiply (6) by the test function Ψj(x) and integrate
over the dimensionless space domain Ω = {x ∈ (−1, 1)}:

s2α2 (1 + rm)
∫ 1

−1

WΨjdx + 2sαc0 (1 + rvrm)
∫ 1

−1

dW

dx
Ψjdx

+
(
c20 − 1 + c20r

2
vrm

) ∫ 1

−1

d2W

dx2
Ψjdx + β

∫ 1

−1

d4W

dx4
Ψjdx = 0.

Applying integration by parts (twice in the fourth order term) and the simply
supported boundary conditions (2) we have the weak form

s2α2 (1 + rm)
∫ 1

−1

WΨjdx + 2sαc0 (1 + rvrm)
∫ 1

−1

dW

dx
Ψjdx

− (
c20 − 1 + c20r

2
vrm

) ∫ 1

−1

dW

dx

dΨj

dx
dx + β

∫ 1

−1

d2W

dx2

d2Ψj

dx2
dx = 0.

(7)

Inserting the Galerkin series (5) into the weak form (7) we have the following
system:

nmax∑

n=1

{
s2α2 (1 + rm) Ajn + 2sαc0 (1 + rvrm) Bjn

+
[− (

c20 − 1 + c20r
2
vrm

)
Cjn + βDjn

]}
cn = 0.

(8)

Here j, n = 1, 2, 3, ..., and the matrices Ajn, Bjn, Cjn, and Djn are defined by

Ajn =
∫ 1

−1

Ψn(x)Ψj(x)dx, Bjn =
∫ 1

−1

dΨn(x)
dx

Ψj(x)dx,

Cjn =
∫ 1

−1

dΨn(x)
dx

dΨj(x)
dx

dx, Djn =
∫ 1

−1

d2Ψn(x)
dx2

d2Ψj(x)
dx2

dx.

(9)

Further, defining

M2 = α2 (1 + rm) Ajn, M1 = 2αc0 (1 + rvrm) Bjn,
M0 = − (

c20 − 1 + c20r
2
vrm

)
Cjn + βDjn

(10)

we obtain the (discrete) quadratic eigenvalue-eigenvector pairs (s, c0)
{
M2s

2 + M1s + M0

}
c0 = 0. (11)

Its companion form is the following twice large generalized linear eigenvalue
problem ∥

∥
∥
∥

−M1 − M0

I 0

∥
∥
∥
∥

∥
∥
∥
∥

sc0
c0

∥
∥
∥
∥ =

∥
∥
∥
∥

M2 0
0 I

∥
∥
∥
∥ s

∥
∥
∥
∥

sc0
c0

∥
∥
∥
∥ (12)

Equation (12) can be solved using a standard solver. Problem parameters val-
ues used in the numerical examples corresponding to paper materials are the
following: ρf = 1.225 [kg/m3], v∞ = 0 [m/s], T0 = 500 [N/m], m = 0.08 [kg/m2],
l = 1 [m], h = 10−4 [m], E = 109 [N/m2], ν = 0.3, τ = l/

√
T/m [s], αθ =

3 · 10−6 [1/K]. The value of the linear thermal expansion coefficient has been
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chosen from the range typical for paper materials according to [3]. Specifically,
it is valid for the machine direction (i.e. x-coordinate).

Consider a setup where the temperature is kept constant within the material.
In this case

Tθ =
Eh

1 − ν
εθ =

Eh

1 − ν
αθθ ≈ 0.42857θ.

The effect is rather small, but nevertheless if the system is already operating near
its stability limit, thermal expansion may reduce the critical velocity just enough
to make the system stability loss. As an example, let us consider a rather extreme
temperature difference between 20 ◦C and 90 ◦C, which may occur when a paper
web initially at room temperature enters the dryer section. The temperature
difference is θ = 70 ◦C, which yields Tθ = 30N/m. With a typical level of applied
axial tension T0 = 500N/m, the decrease in tension due to thermal expansion
from 500N/m to 470N/m is 6%.

In the reference setup, where θ = 0 and T = T0, the four pairs of s with the
smallest magnitude solved from Eq. (12) are shown in Fig. 1.

Fig. 1. Stability exponent s as a function of the dimensionless axial drive velocity c0.

Critical values of the dimensionless axial drive velocity c0 are listed in Table 1.
Based on the table, the lowest critical velocity is

V cr
0 = ccr

0 C = (1 + 0.009 · 10−4)
√

T/m ≈ 79.05701m/s.
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Table 1. Critical points where the real part of at least one solution enters or exists
the positive half-plane.

c0−1 [10−4]
with θ = 0

c0 − 1 [10−4]
with θ = 70K

Mode Type Note

0.009 0.009 1 Loss of stability Classic divergence gap

0.036 0.038 1 Gain of stability

0.051 0.054 1+2 Loss of stability

0.081 0.086 1+2 Gain of stability Other branch still unstable

0.145 0.153 1+2 Gain of stability End of unstable branch

0.145 0.153 2+3 Loss of stability

0.226 0.240 2+3 Gain of stability Other branch still unstable

0.285 0.303 3+4 Loss of stability

0.325 0.346 2+3 Gain of stability End of unstable branch

In the thermally expanded case when θ = 70K, we have T = 470N/m. Visually
the solution is not significantly different from Fig. 1 so the graph is omitted. The
critical points are listed in Table 1. The lowest critical velocity is

V cr
0 = ccr

0 C = (1 + 0.009 · 10−4)
√

T/m ≈ 76.64862m/s

showing a decrease of 3% with regard to the reference setup. Note the different
value of the normalization constant C, because the tension is now lower.

In both cases the presence of bending rigidity (D > 0) pushes the first critical
point above c0 = 1, but only by a small amount, because for paper materials, D
is small. We have

D =
Eh3

12(1 − ν2)
≈ 9.1575 · 10−5 Nm,

β =
D

l2T
≈ 1.8315 · 10−7.

Nevertheless, because β is the coefficient of the highest-order term in (1), the
presence of finite bending rigidity, no matter how small, introduces a singu-
lar perturbation to the equation, changing its qualitative behavior (on singular
perturbation, see [4]).

3 Conclusions

An effective partly-analytical and partly-numerical approach has been presented
to model a thermoelastic web moving at a constant velocity subjected to poten-
tial flow. An aerothermoelastic model based on a homogeneous temperature dis-
tribution and an added-mass approximation for the fluid reaction pressure was
developed and analyzed. This model was then applied to some particular cases
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of dynamic interaction. As a result, in the case of non-stationary behavior of
the web, the analysis was performed using the Galerkin method. The presented
approach has applications, for example, in elasticity, aeroelasticity, aerothermoe-
lasticity and axially moving materials.
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Abstract. Methods of finding of exact analytical solutions of nonlin-
ear nonautonomous Klein-Fock-Gordon (KFG) equation are proposed.
Solutions U(x, y, z, t) are sought in the form of compound function
U = f(W ). The argument W (x, y, z, t) is called ansatz. Function f(W )
and ansatz W are sought from the different equations. The function
f(W ) satisfies to nonlinear ordinary differential equation. Its solution is
received in the form of integral. Ansatz W is defined as a root of the spe-
cial algebraic equation. Different ansatzes W are proposed and different
solutions of the nonlinear nonautonomous KFG equation are found.

Keywords: Klein-Fock-Gordon equation · Nonautonomous equation ·
Exact solution · Ansatz

1 Introduction

The nonlinear nonautonomous Klein-Fock-Gordon equation

Uxx + Uyy + Uzz − Utt

v2
= p(x, y, z, t)F (U) (1)

is widely applied in modern fundamental science and its many applied sections.
Here v is a constant, p(x, y, z, t) and F (U) are arbitrary functions, and the
subscript means the derivative with respect to the corresponding variable.

Effective methods for solution of the autonomous equation (p(x, y, z, t) =
p0 = const) are developed and in literature there are practically no methods
of solution of nonautonomous (p(x, y, z, t) �= const) KFG equation. Ways of
construction of exact analytical solutions of the Eq. (1) for wide, but special type
functions p(x, y, z, t) are proposed in works [1–5]. In these works the solution of
the Eq. (1) is sought in the form of compound function

U = f(W ). (2)

Then the Eq. (1) will take a form

fWW

[
W 2

x + W 2
y + W 2

z − W 2
t

v2

]
+fW

[
Wxx + Wyy + Wzz − Wtt

v2

]
= pF [f ]. (3)
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The Eq. (3) can be solved if to impose restrictions for functions W (x, y, z, t) and
p(x, y, z, t). Let’s accept that W (x, y, z, t) and p(x, y, z, t) satisfy to the following
equations

1. W 2
x + W 2

y + W 2
z − W 2

t

v2
= 0, Wxx + Wyy + Wzz − Wtt

v2
= p(x, y, z, t), (4)

2. W 2
x + W 2

y + W 2
z − W 2

t

v2
= p(x, y, z, t), Wxx + Wyy + Wzz − Wtt

v2
= 0, (5)

3. W 2
x + W 2

y + W 2
z − W 2

t

v2
= q(x, y, z, t)P (W ),

Wxx + Wyy + Wzz − Wtt

v2
= q(x, y, z, t)Q(W ). (6)

Here q(x, y, z, t), P (W ), Q(W ) are arbitrary functions.
From (4)–(6) we can see that f(W ) will be the solution of the Eq. (3) if it

satisfies the following nonlinear ordinary differential equations

1. fW = F (f),
∫

df

F (f)
= W, (7)

2. fWW = F (f),
∫

df√
E + V (f)

= ±
√

2 W, (8)

3. P (W )fWW + Q(W )fW = F (f),
∫

df√
E + V (f)

= G(W ), (9)

G(W ) =
∫

dW

PQ
, p(x, y, z, t) =

q(x, y, z, t)
2A

P (W ) exp
(

−2
∫

Q

P
dW

)
. (10)

Here Vf = F (f) and (E,A) are constants of integration.
As it appears from (7)–(10) the function f(W ) can be found by integration

for arbitrary nonlinear function F (f) if the corresponding integrals exist. The
solution of f(W ) is found in an explicit form if the integrals allow inversion.
Thus, the proposed ways lead the solution of the Eq. (1) to finding of the ansatzes
W (x, y, z, t) from solutions (4)–(6).

2 Ansatzes and Methods of Their Construction

Ansatzes are possible to find from the Eqs. (4)–(6) if to use methods which
were developed for construction of functionally invariant solutions of the wave
equation [6–8]. Let’s assume that

W = Ψ(τ), (11)

Ψ(τ) are the arbitrary function and τ is a root of the algebraic equation

[x − ξ(τ)]2 + [y − η(τ)]2 + [z − ζ(τ)]2 = v2(t − τ)2. (12)
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The arbitrary functions ξ(τ), η(τ), ζ(τ) define the root τ(x, y, z, t) of the Eq. (12).
Let’s consider simple special cases:

1. ξ = η = ζ = 0, τ = t ± R

v
, R =

√
x2 + y2 + z2, (13)

2. ξ = vx1τ, η = vx2τ, ζ = vx3τ,

τ = −X ± ν1
vR0

, ν1 =
√

X2 + R0s2, (R0 �= 0), (14)

τ = − s2

2vX
, (R0 = 0), (15)

X = x1x+x2y+x3z−vt, s2 = x2+y2+z2−v2t2, R0 = 1−(x2
1+x2

2+x2
3). (16)

Root τ given by the formula (14) contains a square root. Radicand is a square
form of four variables x, y, z, t. Its Sylvester determinants are

Δ1 = 1 − x2
2 − x3, Δ2 = (1 − x2

3)R0, Δ3 = R2
0, Δ4 = 0,

and eigenvalue are

λ1 = 0, λ2 = R0, λ3 = R0, λ4 = 2 − R0.

Therefore, under a root a non-negative square form (if x2
1 + x2

2 + x2
3 ≤ 1), and

root τ is real.
It is possible to prove by direct calculations that

τ2
x + τ2

y + τ2
z − τ2

t

v2
= 0, (17)

τxx + τyy + τzz − τtt

v2
= − 2

vν1
, (18)

ν2
1,x + ν2

1,y + ν2
1,z − ν2

1,t

v2
= R0, (19)

ν1,xx + ν1,yy + ν1,zz − ν1,tt

v2
=

2R0

ν1
. (20)

The formulas
x1ν1,x + x2ν1,y + x3ν1,z +

ν1,t

v
= 0, (21)

xν1,x + yν1,y + zν1,z + tν1,t = ν1. (22)

were taking into account in receiving the Eqs. (17)–(20). From the Eqs. (4), (17)
and (18) one can see that if to construct ansatz W = Ψ(τ) then it is possible to
solve the Eq. (1) with

p(x, y, z, t) = −2
Ψτ

vν1
. (23)

An ansatz can be chosen as
W = Ψ(ν1). (24)
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Taking into account (19), (20) the Eqs. (3) can be written in the form

Ψ2
ν1

fWW +
(

Ψν1ν1 +
2
ν1

Ψν1

)
fW =

p

R0
F (f). (25)

The Eq. (25) can be solved on the basis of the proposition (5) if we assume that

p(x, y, z, t) =
1

R0Ψ2
ν1

, Ψ = a +
b

ν1
, (26)

where a, b are the integration constants.
In addition to functions τ and ν1 we will enter new function

λ(x, y, z, t) = vw(τ)ν1. (27)

Here w(τ) is an arbitrary function of the root τ(x, y, z, t). If to calculate private
derivative of the functions λ of the first and second orders, then one can prove
that

λ2
x + λ2

y + λ2
z − λ2

t

v2
= λσ, σ = 2wτ

(
vwR0

2ν1wτ
− 1

)
, (28)

λxx + λyy + λzz − λtt

v2
= 2σ. (29)

By direct calculations it is also possible to prove that function τ, ν1, λ satisfy to
the following equations

τxν1,x + τyν1,y + τzν1,z − τtν1,t

v2
= −1

v
, (30)

τxλx + τyλy + τzλz − τtλt

v2
= −w, (31)

λxν1,x + λyν1,y + λzν1,z − λtν1,t

v2
= vR0w − ν1wτ . (32)

The formulas
x1τx + x2τy + x3τz +

τt

v
=

1
v
, (33)

xτx + yτy + zτz + tτt = τ (34)

are taking into account for proof of Eqs. (30)–(32).
Introduction of function λ expands a set of ansatzes of W which can be

constructed on the basis of functions τ, ν1, λ. At first, ansatz

W = Ψ(λ) (35)

allows to write the Eq. (3) in the following form

λΨ2
λfWW + (λΨλλ + 2Ψλ) fW =

p

σ
F (f). (36)
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It is also solved on the basis of the proposition (5) if

p(x, y, z, t) =
P

λσΨ2
λ

, Ψ = a +
b

λ
, (a, b) = const. (37)

It is possible to prove that functions

W = Ψ(θ) (38)

with arguments which are the product of two functions (τ, λ, ν1,
√

w(τ))

θ =
{

τλ, τν1, ν1
√

w(τ)
}

(39)

will be ansatz W . For ansatzes (38), (39) the Eq. (3) coincides with (36)

θΨ2
θ fWW + (θΨθθ + 2Ψθ) fW = p̄ F (f) (40)

but with different p̄

p̄ =

{
p

2w(τd − 1)
,

p

2
v

(
τ

cν1
− 1

) ,
p

1
v

(
2d +

wτ

w

)
}

, c =
2

vR0
, d =

σ

2w
.

(41)
The Eq. (40) is solved also as (36), and allows to find solutions of the nonlinear
nonautonomous KFG equation for different functions p.

On the basis of functions τ, λ, ν1 it is possible to construct ansatz W which
depends on two variables

W = {Ψ(τ, λ), Ψ(τ, ν1), Ψ(λ, ν1)} . (42)

In the case of ansatzes (42)

W 2
x + W 2

y + W 2
z − W 2

t

v2
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2wΨλ [λΨλd − Ψτ ] ,

R0Ψν1 (Ψν1 − cΨτ ) ,[
R0

ν2
1

(ν1Ψν1 + λΨλ) − 2wτΨλ

]
(ν1Ψν1 + λΨλ),

(43)

Wxx + Wyy + Wzz − Wtt

v2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2w

λ

[
dλ

∂

∂λ
− ∂

∂τ

]
(λΨλ + Ψ),

R0

ν1

(
∂

∂ν1
− c

∂

∂τ

)
(ν1Ψν1 + Ψ),

[
R0

ν2
1

(
λ

∂

∂λ
+ ν1

∂

∂ν1

)
− 2wτΨλ

∂

∂λ

]

×(ν1Ψν1 + λΨλ + Ψ).

(44)
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From (43), (44) it is visible that ansatz W can be chosen as the root of different
equations. If to accept that

dλΨλ − Ψτ = 0, Ψ = Φ(ln λ − dτ), (45)

Ψν1 − cΨτ = 0, Ψ = Φ(cν1 + τ), (46)

λΨλ + ν1Ψν1 = 0, Ψ = Φ

(
λ

ν1

)
, (47)

then, as we can see from (43), W will satisfy the equation

W 2
x + W 2

y + W 2
z − W 2

t

v2
= 0 (48)

and, therefore, the Eq. (3) can be solved on a basis (4). For the cases

λΨλ + Ψ = 0, Ψ =
Φ(τ)

λ
, (49)

ν1Ψν1 + Ψ = 0, Ψ =
Φ(τ)
ν1

, (50)

λΨλ + ν1Ψν1 + Ψ = 0, Ψ =
1
λ

Φ

(
λ

ν1

)
, (51)

the ansatz W is the wave functions. Therefore, the Eq. (3) is solved on the basis
of the proposition (5). In (45)–(51) Φ(u) is an arbitrary function of u. Besides,
we used the simplest solution of the corresponding equation which defines the
ansatz W .

The number of wave functions can be increased if to pass to new coordi-
nates which allow to find new wave functions by using one wave function. So, if
f(x, y, z, t) is the wave function, then

1
s2

f

(
x

s2
,

y

s2
,

z

s2
,

t

s2

)
(52)

and
1

z − vt
f

(
x

z − vt
,

y

z − vt
,

s2 − 1
2(z − vt)

,
s2 + 1

2v(z − vt)

)
(53)

are the wave functions also [7].
The Eq. (40) can be solved also on the basis of the proposition (6). If to take

into account that

f ′ =
fθ

Ψθ
, f ′′ =

1
Ψ2

θ

(
fθθ − Ψθθfθ

Ψθ

)
, (54)

then the Eq. (40) takes the form

d

dθ

(
θ′′ f

2
θ

2

)
= p̄ θ3

dVf

dθ
, Vf = F (f). (55)
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If p̄θ3 = 1 then one has from (55)
∫

df√
E + V (f)

= ±
√

2
(

a − 1
θ

)
. (56)

Here E,A are integration constants.

3 Special Solutions

Below we consider as examples the cases when

F (U) = {sin U, sinh U, exp(mU)} . (57)

For these functions integrals (7) and (8) exist and can be inverted. Finally we
find

F (U) =
{

2 tan−1 eW , 2 tanh−1 eW ,
−1
m

log(E − mW )
}

, (58)
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the middle), t = 5 (below).
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U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 tan−1

[√
1 − r2 tn

(
W

r
, r

)]
,

2 tanh−1

[
sn

(
W√

1 − r2
, r

)]
,

2
m

log

⎡
⎣

√
Em

sinh
(
W m

√
E√
2

)
⎤
⎦ ,

. (59)

Here tn(u, r) = sn(u, r)/ cn(u, r), sn(u, r), cn(u, r) are elliptic sine and cosine,
r is module of the corresponding elliptic functions (0 ≤ r ≤ 1), E is a constant
of integration.
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Shown in Fig. 1 is the spatial variations of the amplitude of amplitude of
p(x, y, z, t) and solution U(x, y, z, t) are given for different times (t = 0, 2, 5) in
the case F (U) = sin U , W = Ψ(τ), w(τ) = τ2, τ = −(X + ν1)/(vR0), R0 �= 0
(see (14)). One can see that p(x, y, z, t) and U(x, y, z, t) represent the localized
waves whose shape vary in time. The same form is represented by p(x, y, z, t)
and U(x, y, z, t) on Fig. 2 for solution (49) with F (U) = exp U , W = Φ(τ)/λ,
w(τ) = τ , τ = −(X + ν1)/(vR0), R0 �= 0.

4 Conclusion

New ansatzes are proposed. They allowed to construct new exact solutions of the
nonlinear nonautonomous KFG equation. The nonautonomous KFG equation,
unlike autonomous, more adequately describes physical processes as it allows to
consider heterogeneity of real media in which the corresponding physical phe-
nomena take place. It is possible to hope that the found solutions will be useful
at the description and modeling of these phenomena and processes.
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8. Smirnov, V., Sobolev, S.: Sur une méthode nouvelle dans le problème plan des vibra-
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Abstract. This article describes the application of constructive solutions for the
modernization and calculation of the effects of loads on structural parts that hold
the lower limbs of a person who is undergoing treatment on a robotic walking
training device located at the St. Petersburg Research Institute of Phthisiopul-
monology of the Ministry of Health of the Russian Federation.
Considering the specifics of the training device that’s main task is to recover

walking function, it is important to pay particular attention to the convenience
and safety of the structure.
At the end of the research and manufacturing described hereunder, the

existing training device will be able to begin its work at the Central Research
Institute of Phthisiopulmonology, in particular it will provide free rehabilitation
for patients. At the moment, only a few simulators for locomotor therapy are
installed in St. Petersburg. Most of the treatment sessions are paid.
Support for solving the problem is provided by specialists of the Research

Institute of Phthisiopulmonology.
The project was fully implemented on the basis of the Center for Scientific

and Technical Creativity of Youth Fablab Polytech. The work on the project
described in the article also demonstrates the competencies of digital production,
obtained by the authors at Fablab Polytech helping to solve a wide variety of
technical problems. In the process of work, such production methods as com-
puter modeling, generative design, computational operations with the influence
of loads and CNC machines were used.

Keywords: Locomotor therapy � Rehabilitation � Fablab � Digital
manufacturing � Walking simulator

1 Disadvantages of the Locomotor Therapy System

When using the locomotor simulator, specialists of the Central Research Institute of
Phthisiopulmonology revealed a number of disadvantages that almost completely
exclude its operation (Fig. 1).
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Identified deficiencies:

• During operation there is a significant load on the knee joint when exposed to the
knee stop, in addition, there is no fixation of the knee by the straps provided by the
design;

• The padlock is not equipped with a mechanism for fixing belts and lifting the toe of
the foot, which causes discomfort and danger during operation;

• The aesthetic appearance of the simulator is inferior to world analogues;
• The simulator has a fairly large weight and steel structure (Fig. 2).

Fig. 1. Robotic walking training device
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2 Modification of the Knee Support

For the safe and efficient operation of the locomotion therapy device, it was decided to
carry out a number of improvements. First of all, it was necessary to unload the knee,
replacing the existing imperfect parts tofix it. The newmechanism,which is essentially an
orthosis, should eliminate the discomfort that occurs due to an incorrectly positioned
support, which serves as part of the knee fixation device. The whole structure must be
changed, the fulcrum should be moved to the thigh and ankle and should have a movable
connection with the bearing. This construction will allow the patient for the free knee-
bend.

Fig. 2. Knee and ankle support

Before

Fig. 3. Original knee support
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Figures 3 and 4 show the outline of the knee fixation mechanism before and after
modernization respectively.

After construction analysis, searching for ways to modernize it, preparing and
compiling project documentation, a model was created in computer-aided engineering
system (Fig. 5).

After

Fig. 4. Modified knee support

Fig. 6. Assembly in CAE

Fig. 5. Detail in CAE
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Figure 6 illustrates the assembly of the details of the prototype of the modernized
mechanism of fixation of the knee joint.

3 Topological Optimization

3.1 General Idea

Generative design is a workflow where an engineer can set conditions and restrictions
and the system will automatically generate optimal parameters. Many engineering
problems cannot be solved by analytical methods; therefore, numerical methods are
used to obtain satisfactory results. Due to the fact that part of the design calculation is
transferred to the software, the interaction between the engineer and the program is
carried out as between team members.

Generally, optimization is the process of searching and choosing the best version of
construction from the set of possible ones under given conditions and restrictions. The
end result of such process will be the optimal solution. Thus, it is possible to optimize
in any field that interests us, in compliance with two conditions:

• there is more than one compared option;
• There is one or more optimality criteria.

In particular, it is possible to optimize the geometric structure of an object -
properties of construction that remain unchanged during deformation. Such process is
important in the field of design.

In this chapter the basic concepts and methods of topological optimization will be
considered using the example of the modernization of the walking training device. In
subsequent work on the project, it will allow not only to use unique design solutions
but also to reduce the weight of the structure using less materials with more and more
popular methods for manufacturing parts. Example would be the manufacture of parts
by 3D printing and selective laser sintering.

The main difference between generative design and topological optimization is the
creation of an effective solution to an engineering problem that does not require further
improvement. For example, in generative design it is possible to solve a problem
without specifying an initial volume.

To solve the problems of topological optimization, a CAE system will be used in
the work. At the beginning, a model that should describe the shape of the future
product is created. Those structural elements that will not be modified are studied in
detail (for example, holes for fasteners). It is necessary to set the initial conditions for
the problem being solved. For example, for problems of linear-elastic statics, external
loads, material properties, and restrictions on the degrees of freedom of the structure are
specified. For structural problems, the finite element method is mostly often used.

3.2 Topological Optimization of Locomotor Therapy System Parts

Let’s consider the finite element method on the example of parts for the modernization
of the locomotor therapy system.
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Analytically, such a situation can be considered as an infinite number of points, for
each of them we try to find a solution. The analytical method is not suitable for
complex structures because it requires a lot of rather cumbersome calculations. The
solution of this problem can be discretization, in particular, replacing the problem with
an infinite number of indeterminates with a similar one with finite number of elements.

Concerning example, we will divide our part into points; the distance from one
point to another will be called the finite element.

Let’s consider the disadvantages of the method, and how to solve them. For
example, the calculation can be obtained only for the specified number of points and is
not accurate, it will be just approximate to the real solution.

Therefore, the number of finite elements should be increased in order to obtain
more accurate result. To represent the error of this method, let’s recall the approxi-
mation of a circle by a polygon.

Our part is fixed in the upper part, because it is firmly fixed to another detail. In this
case, we apply force of 500 N at the end to the lower part of the bearing bore. At this
point the load will be localized, which can be created by the weight of a person in case
of emergency. Remember that we must exclude any, even the most unlikely cause of
harm to the patient.

As shown in Fig. 7, due to the applied force, the part extended for 0.07 mm.

Fig. 7. Maximum deformation 0.7 mm
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With advances in technologies, the solution of constitutive equation was automated
using the finite element method which made it possible to achieve significant results in
the field of structural optimization. There were developed such strategies for the
description of the material as: homogenization approach, SIMP (Solid Isotropic Material
with Penalisation) method, ESO (Evolutionary Structural Optimization) method. One of
the modern strategies is the Level-sets approach to describing the structure topology.
Also, the SIMP method will be analyzed in more detail, as it is the most studied and
developed, it is used in most software to implement topological optimization (Fig. 8).

Fig. 8. Mises maximum stress 14.02 MPa
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Fig. 9. Deformation of the optimized part

Fig. 10. Mises stress optimized details
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Figures 9 and 10 show the result of calculations of the optimized part:

• Maximum deformation is 0.05 mm;
• Mises stress is 16.4 MPa.

In future topological optimization will make it possible to satisfy modern world
requirements for the aesthetic appearance of such simulators, which will make Russian
locomotor training device more competitive. Moreover, with the help of topological
optimization, the mass of the entire structure is significantly reduced, and with certain
manufacturing methods it is possible to reduce the cost of production by reducing the
consumption of materials.

4 Weld Joints Calculations

Since it was decided to use welding technology to connect some parts, the calculation
of the allowable load on these elements is required. In this calculation, as in the
topological optimization, which is described in detail in the previous chapter, the finite
element method is used.

5 Manufacturing

Technical support is fully provided by youth scientific and technical creativity center
Fablab Polytech. The center also granted access to CNC machines, which are one of the
main tools of digital production.

For milling parts from 2 mm sheet aluminum, the FlexiCAM S2 1525 milling and
engraving machine was used with a working field of 1540 * 2580 mm.

Parts from sheet aluminum with a thickness of 8 mm were manufactured using the
Ingro (First) MCV300 small-sized metalworking milling. The machine is designed for
processing products in small-scale production.

After 3D modeling, milling settings were made in the SolidCAM program.
SolidCAM is a program for creating control programs for milling and other CNC
machines. SolidCAM created a ready-made program (G-Code) for the final version of
the project. Further, the details were made on a metal-working CNC milling machine
MCV-300.

Before making the final version of the project using the similar technology, the
parts shown in Fig. 11 (left) were manufactured. After the tests construction was
modernized and the parts shown in Figs. 11 (right) were manufactured in the same
way.
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6 Futher Use

After the production of the first version, the prototype passed tests on locomotor
training device under the supervision of employees of the Central Research Institute of
Phthisiopulmonology (Fig. 12).

Fig. 11. Details manufactured using MCV-300 first and final version

Fig. 12. The first version of the device
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Next, a number of comments were collected, which was taken into account in the
final version.

The final version has passed all the stages of manufacture and is ready for testing
and further use (Fig. 13).

In this work, the full life cycle of the project on the modernization of the walking
training device was completed: from the preparatory stage and implementation, to
testing and providing the possibility of further use. The relevance of modernization was
analyzed with the study of the disadvantages of the current version of the device and
the advantages of world analogues. 3D models of parts in CAD were prepared, the
method of topological optimization and generative design was studied and applied. The
analysis of materials and calculation of the strength of the weld were made, various
welding technologies were studied and taken into account for the subsequent safe
operation of the device. The manufacture of the device parts was carried out according
to the drawings made during this work, on a CNC metalworking milling machine.

Calculations on the strength of the weld showed that even with the maximum
allowable loading mode, the displacement of parts and the strength coefficient are
several times lower than critical values. Nevertheless, the fact that the modernized
device will be further used in the treatment of people who have lost the walking
function makes it possible to completely eliminate possible problems during its
operation. Research of various aluminum welding technologies showed the relevance
of using TIG welding to solve the problem.

Fig. 13. Tests at the Central Research Institute
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In this paper, we studied and applied the method of topological optimization to the
details of the training device, which will make it possible to further use such advanced
manufacturing methods as 3D printing and selective laser sintering, while in mass
production, significantly saving materials and reducing weight. Also, the generative
design method applied to construction details can make decisions in the appearance of
domestic medical rehabilitation units, making them more aesthetic and at the same time
competitive in the market.

During the work, the project received support from:

• St. Petersburg Research Institute of Phthisiopulmonology of the Ministry of Health
of the Russian Federation.

• Center for Scientific and Technical Creativity of Youth Fablab Polytech.
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Abstract. The lattice deformation tensor for β1 ↔ β′
1 martensitic

transformation was found from available crystallographic data. This ten-
sor was used for modeling of the isothermal deformation of CuAlNi shape
memory alloys in the frames of a microstructural model. The simulated
stress-strain curves obtained for pseudoelastic austenitic and pseudoplas-
tic martensitic CuAlNi are in a good qualitative agreement with litera-
ture experimental data for single crystals with different orientations.

Keywords: CuAlNi · Single crystal · Microstructural model ·
β1 ↔ β′

1 · Martensitic transformation

1 Introduction

Mechanisms of shape memory and pseudoelasticity in Cu-based shape memory
alloys (SMA) were scrutinized by the end of the 20th century (see [1] and [2]).
At the same time, development of practical applications met a variety of difficul-
ties, mainly brittle fracture, fatigue and aging of these alloys [3]. However, rapid
development of materials science, new methods for grain size control [4], refine-
ment of single-crystal growth technique allowing production of single crystals
with preset parameters [5], design of complex quaternary alloying [6] aroused
new interest to Cu-based SMA in the recent decade [7]. It stimulated interest
to working out theoretical approaches for simulation of mechanical behavior of
these alloys.

An existing microstructural model (see [8,9] and [10]) provides a good
description of the functional properties of a TiNi SMA including the tension –
compression asymmetry of the phase deformation [11]. This model also secured
a good simulation of a vibration protection device comprising functional TiNi
parts (see [9,12]). A use of an alternative SMA demands adjusting of this model
by accounting of the specific features of the martensitic transformation. One of
the basic material constants in the model is the tensor of Bain’s deformation
transforming the crystallographic lattice of the parent austenitic phase into that
c© Springer Nature Switzerland AG 2020
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of the martensitic phase. This tensor for B2 - B19′ transformation in TiNi alloy
was calculated in the work of K. Knowles and R. Smith [13]. The type of the
martensitic transition in CuAlNi depends on temperature and stress conditions
as well as on the composition (see [1,2] and [14]). The austenitic phase, which
is usually referred as the β1 structure, can be ordered by the D03 or L21 ways
depending on the stage of the next-nearest neighbor ordering [14]. The object
of interest in this work is the β1(D03) ↔ β′

1 transformation occurring either
on loading above Ms or on cooling and heating under a stress exceeding some
critical level (see [15,16] and [17]). The crystallography of this transformation
is described in the work [2]. An analytic solution of the invariant plane problem
for cubic to 18R transformation was given in 1978 by De Vos, Aernoudt and
Delaey [18]. Later the non-invariant plane of the austenite-martensite interface
was experimentally identified (see [19] and [20]) and described by introduction
of an isotropic dilatation of the habit plane [21]. Better correspondence with
experimental data was obtained in the work [22] where the total β1 ↔ β′

1 tran-
sition was considered as a sequence of the transformation from parent β1 phase
to twinned γ′

1 phase and the transformation of the γ′
1 - phase to detwinned β′

1

- phase. This work also gives twelve deformation gradient matrices of the shear
during β1 ↔ β′

1 transformation.
In the present work the Bain’s deformation tensor for β1 ↔ β′

1 transformation
is calculated following the work [2] and then it is used for modeling of the stress-
strain diagrams and the transformation plasticity effect in CuAlNi single and
poly crystals.

2 Model

All calculations were carried out in the frames of the microstructural model (see
[9] and [10]). In this model two structural levels are considered. The representa-
tive volume of SMA consists of grains characterized by their crystallographic ori-
entations. Total deformation tensor of any grain is resolved into elastic, thermal
and phase (due to the phase transformation) components. Plastic deformation
also can be taken into account. The deformation of the representative volume
is calculated by averaging of the grain deformations. On the microscopic level
(inside a grain) the austenite phase and N domains (crystallographically equiv-
alent orientation variants) of the martensite phase are distinguished. The grain
deformation tensor is obtained by averaging

εgr = (1 − Φgr) εA + (1/N)
∑

N

ΦNε(n), (1)

where (1/N)Φn, εA and ε(n) are the volume fraction and the deformation tensors
of austenite and of the n-th variant of martensite, Φgr = (1/N)ΣnΦn the total
volume fraction of martensite in the grain.

The phase deformation of a grain is supposed to be the average over the
martensite variants:

εPh = (1/N)ΣnΦn(ω)Dn (2)
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were Dn is the Bain’s deformation of the n-th variant of martensite. The pro-
cedure for calculation of the evolution of internal variables Φn is expanded else-
where [9].

For calculation of matrix D for one of the variants we use the sheme of
D03 ↔ 18R transformation described in [2]. The transformation is considered
to consist of two steps. First step is a combination of tension and contraction
in the plane (110)p. On this step the austenitic (110)p plane transforms into the
martensitic (001)m plane by contraction along [001]p and elongation along [110]p
so that the indicated angle α changes from 70◦ 32′ to 60◦ typical for a close-
packed structure Fig. 1a. On the second step a shear on the plane (110)p occurs
by the vector s = 1

18 [110]. Figure 1b illustrates the shear and shuffle mechanism
to bring a D03 lattice into 18R martensite.

a) b)

Fig. 1. The structural change from austenitic DO3 phase into martensitic 18R: a -
deformation in (110)p; b - shear and shuffle (after [1] and [21]).

To find the deformation gradient (F (1))f on the 1-st step denote the relative
elongation along [110]p by ε1 and the relative contraction along [001]p by ε2
(ε1, ε2 > 0). Then we can write the deformation gradient matrix in the normal-

ized basis f =
{

1√
2
[110],

1√
2
[110], [001]

}
:

(F (1))f =

⎛

⎝
1 0 0
0 1 + ε1 0
0 0 1 − ε2

⎞

⎠ (3)
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Obviously, the matrix (A)fe realizing the transition from the austenitic basis
e = {[100], [010], [001]} to the basis f is:

A = (A)fe =
1√
2

⎛

⎝
1 −1 0
1 1 0
0 0

√
2

⎞

⎠ (4)

So we can calculate the matrix of the deformation gradient(
F (1)

)

e
= A

(
F (1)

)

f
A−1 in the basis e:

(
F (1)

)

e
=

1
2

⎛

⎜⎜⎝

2 + ε1 −ε1 0

−ε1 2 + ε1 0

0 0 2(1 − ε2)

⎞

⎟⎟⎠ (5)

Deformation F (1) transforms the basis e into a new basis g. In this basis the
vectors s and ñ describing the shear have the coordinates (s)g = 1

18 [110],
(ñ)g = (110). Since the deformation gradient of the shear is F (2) = I + s ⊗ ñ
find its matrix in the basis g (I is the unity tensor):

(
F (2)

)

g
=

⎛

⎜⎜⎝

17
18

1
18 0

− 1
18

19
18 0

0 0 1

⎞

⎟⎟⎠ (6)

Note that this matrix corresponds to the deformation gradient of the 5th variant
of the transformation in the enumeration used by Y. Zhang and Q. Sun [22].
Finally, we find the deformation gradient matrix in the parent phase basis e for
the DO3 ↔ 18R transformation:

(
F

)
e

=
(
F (1)

)

e

(
F (2)

)

g
=

1
18

⎛

⎝
17 + 9ε1 1 − 9ε1 0
−1 − 9ε1 19 + 9ε1 0

0 0 18(1 − ε2)

⎞

⎠ (7)

To find unknown values ε1 and ε2 we take into account that the angle α changes
from 70◦32′ to 60◦ and assume that the relative volume change θ = det

(
F

)−1 =
(1 − ε2)(1 + ε1) − 1 can be set equal to zero. These assumptions give:
ε1 ≈ 0.1067, ε2 ≈ 0.0964. Thus, the deformation gradient matrix for the β1 ↔ β′

1

transformation is
(
F

)
=

⎛

⎝
0.9978 0.0022 0

−0.1089 1.1089 0
0 0 0.902

⎞

⎠ (8)

and the matrix of Green-Lagrangian deformation tensor for the martensitic vari-
ant under consideration is

D =

⎛

⎝
0.0039 −0.0594 0

−0.0594 0.1149 0
0 0 −0.0932

⎞

⎠ (9)
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The deformation matrices for other crystallographic variants of the transforma-
tion can be obtained by rotation of the matrix (10) with rotations belonging to
the cube symmetry group.

3 Simulation

It is well known that the β1 austenitic structure in CuAlNi SMA demonstrates
strong anisotropy of elastic moduli [23]. Based on the experimental results [24],
the following matrix of the elastic moduli for austenite was calculated (all the
values are in GPa):

CA =

⎛

⎜⎜⎜⎜⎜⎜⎝

136 124.3 124.3 0 0 0
124.3 136 124.3 0 0 0
124.3 124.3 136 0 0 0

0 0 0 90 0 0
0 0 0 0 90 0
0 0 0 0 0 90

⎞

⎟⎟⎟⎟⎟⎟⎠
(10)

As direct measurements of the elastic moduli for a single variant of martensite
is of great difficulties and in the literature there are no theoretical estimations of
these characteristics, there was supposed that the martensitic phase is elastically
isotropic with the Young’s modulus Em = 24 GPa and the Poisson’s ratio νm
= 0.33. This assumption can be justified by the fact that during the direct
martensitic transformation several different variants of martensite appear, so
that their elastic properties can be described in terms of the average values.

For simulation of stress-strain tensile diagrams of single crystal at tempera-
ture above Af [23] the following values were used: the characteristic temperatures
of the transformation Mf = 207 K, Ms = 208 K, As = 211 K, Af = 216 K, the
latent heat of the transformation q0 = −45 MJ/m3. Plastic deformation was
not taken into account. The stress-strain curves are presented on Fig. 2. Tensile
direction orientations relative to crystallographic axis of the β1 phase are shown
on the stereographic triangle (Fig. 2c). One can see that results of modeling are
in a good qualitative agreement with experimental data.

Figure 3 demonstrates stress-strain tensile diagrams of a single crystal at
different temperatures. For this material the characteristics temperatures Mf =
117 K, Ms = 136 K, As = 159 K, Af = 178 K correspond to the experimental
values [1]. Here the experimental data argue that along with β1 ↔ β′

1, the
material undergoes the β1 ↔ γ′

1 martensitic transformation which is not directly
considered by our model. Still, if it is possible to interpret the γ′

1 phase as twinned
β′
1-phase, one can expect that the calculated stress-strain diagram for this alloy

in the martensitic state will reproduce the experimental one. This is the case
depicted on Fig. 3a the critical maximum values of stress and strain are in a
good correspondents with the experimental values.
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a) b)

c)

Fig. 2. Stress-strain diagrams of CuAlNi single crystals: a - orientation 1, b - orientation
2; c - tension direction orientations relative to crystallographic axis of the β1 phase.
Mf = 208K, Ms = 209 K, As = 211 K, Af = 216 K, temperature 293 K.

a) b)

Fig. 3. Stress-strain diagrams of CuAlNi single crystals at temperature 132 K (a) and
192 K (b). Mf = 117 K, Ms = 136 K, As = 159 K, Af = 178 K.

4 Conclusions

1. The considered microstructural model can correctly describe stress-strain dia-
grams of CuAlNi single crystals both in the austenitic and in the martensitic
state.

2. A good correspondence between modeling and experimental results provides
the evidence that the knowledge of the lattice deformation tensor (Bain’s
tensor) plays an important role for microstructural modeling of the mechan-
ical behavior of SMA. Another example of the crucial role of using the cor-
rect Bain’s deformation tensor is the description of the tension-compression
asymmetry in TiNi alloy [11]. For CuAlNi one can also expect a correct
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characterization of this asymmetry as well as of the mechanical behavior
at combined stress loading.

3. Since the microstructural model is appropriate to describe functional proper-
ties of CuAlNi single crystals, one can expect reliable results at its application
for simulation of the functional-mechanical behavior of devices and structures
with CuAlNi SMA parts.
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tion of Basic Research 19-01-000658.
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Abstract. In the recent past new experimental techniques have been
developed with the objective of linking generalized continuum theories
with technology. So-called pantographic structures, which can be char-
acterized as a meta-material, will be presented and investigated exper-
imentally: Samples of different materials and dimensions are subjected
to large deformation loading tests (tensile, shearing, and torsion) up to
rupture, while their response to loading is recorded by an optical mea-
surement system. 3D-digital image correlation is used to quantify the
deformation.

Results show that the deformation behavior is strongly non-linear and
that the structures are capable of performing large (elastic) deforma-
tions without complete failure. This extraordinary behavior makes pan-
tographic structures very attractive as engineering material in technical
applications for lightweight applications and in the medical industry.

Keywords: Experiment · Metamaterial · Digital image correlation ·
Additive manufacturing

1 Introduction

With the help of additive manufacturing fabrication of complex designed struc-
tures became cheaper over the last decades. Developments and implementations
of customized substructures in combination with specially tailored materials
became possible resulting in extraordinary macroscopic deformation behavior.
Such a man-made structure is also referred to as a meta-material. Pantographic
structures, which can be described as meta-materials with a substructure com-
posed of two orthogonal arrays of beams, connected by internal cylinders or
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joints (see Fig. 1), were manufactured by using additive manufacturing tech-
niques. Such meta-materials enable the fabrication of lightweight structures with
high degrees of complexity in combination with high stiffnesses. Effective prop-
erties are carefully designed by tailoring the so-called microscopic constituents
[3,17,18] in the substructure in order to achieve specially desired properties,
where the unit cells of the substructures are repeated periodically. Therefore
mechanical performance of meta-materials depends not only on the global struc-
ture, but also on the morphology of their subunits.

Fig. 1. Pantographic structure developed by [8]
made out of polylactide, manufactured at the Insti-
tute of Mechanics at Technische Universität Berlin
by means of fused deposition modeling technique.

Fig. 2. Two-dimensional cross-
section of an unit cell of a pan-
tographic substructure.

The design and manufacture of meta-materials for specific engineering appli-
cations requires us to predict their performance. This can be achieved by the
finite element method [5,35,39]. Normally the modeling of technical structures is
based on the equations of the traditional Cauchy-Boltzmann continuum. This
requires a very detailed mesh if details need to be analyzed, which leads to higher
computing time and associated higher costs. Alternatively, by using equations
developed from generalized continuum theories, a low-detail mesh can be used
to get the same results and, correspondingly, the computational costs are much
less. The classical first gradient Cauchy theories need to be improved by intro-
ducing either additional degrees of freedom, for example those of the Cosserat
medium [6,7], micropolar parameters [13,14,29,30], or additional higher order
gradients [1,2,9,24,25,27,31,32,36].

It is known that pantographic structures can be represented well by higher
gradient theory. In fact they were treated as a second gradient continuum [3,10].
Here, the bending stiffness of the fibers is described by a second-gradient depen-
dence (in displacement). However, new material parameters are introduced into
the constitutive laws and experiments have to be designed to calibrate and
determine these parameters [4,16]. By choosing a specially adjusted experimen-
tal setup in combination with an explicit theory it is possible to localize and
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to determine the unknown parameters [8,20–24,38]. On the one hand side one
may say that newly identified parameters gained from theory have to be mea-
sured and determined in experiments [23,24,26], and on the other hand side the
parameters obtained from theory or numerical analysis have to been validated
by experiments [8,25,37].

In this paper three types of experiments applied to meta-materials made
out of three different materials consisting of pantographic substructure will be
performed. In addition a non-invasive optical measurement technique, the so-
called Digital Image Correlation (DIC), will be used to detect and to measure
the deformation on the specimens’ surface. Pantographic metamaterials show a
highly resilient and non-linear elastic material behavior resulting in large defor-
mations.

2 Materials and Methods

Different materials and different experimental setups have been taken into
account in this work. Three different additive manufacturing procedures were
used to manufacture three differently sized samples, which will be described in
Subsect. 2.1. Standardized test-setups of three different experimental methods
will be presented in detail in Subsect. 2.2.

2.1 Manufacturing

Pantographic structures, consisting of rectangular beams and cylindrical piv-
ots/joints, were 3D-printed using three different additive manufacturing meth-
ods:

i) Fused Deposition Modeling (FDM) by means of an Ultimaker 3 Extended
(Ultimaker B.V., Geldermalsen, Netherlands) available at Technische Univer-
sität Berlin, Chair of Continuum Mechanics and Constitutive Theory, Ger-
many,

ii) Selective Laser Sintering (SLS) by means of EOS Formagia P 100 (EOS
GmbH, Munich, Germany) located at University of Technology Warsaw, Insti-
tute of Mechanics and Printing, Poland,

iii) Direct Metal Laser Sintering (DMLS) by means of EOS M 400 (EOS GmbH,
Munich, Germany) located at Fraunhofer Ernst-Mach-Institute Freiburg,
Germany.

Polylactic Acid (PLA - Ultimaker B.V., Geldermalsen, Netherlands) was used as
raw material for FDM (specimen PLA). In order to increase the printing quality
of the specimen, water-soluble Polyvinyl Acetate (PVA - Ultimaker B.V., Gel-
dermalsen, Netherlands) was used additionally as support-structure during the
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Fig. 3. Speckled pantographic structures made out of PLA (left), PA (middle), and
AlSi10Mg (right).

printing process and was washed off afterwards (for further informations see [19]).
Polyamide (PA2200 - EOS GmbH, Munich, Germany) was used as raw mate-
rial in SLS (specimen PA). For further informations see [4,15]. Aluminium alloy
(AlSi10Mg - EOS GmbH, Munich, Germany) was used as raw material using
DMLS (specimens ALU, ALU-H). A special support structure and a compli-
cated elaborated laser exposure strategy was employed in order to avoid thermal
distortions due to the higher laser powers and energy input. Furthermore, a heat
treatment was performed on sample ALU-H in order to reduce internal stresses
(for further informations see [16]). Since the microscopic substructures influence
the macroscopic deformation behaviors significantly [4,33], variations of speci-
mens with different geometries were investigated as well. Figure 3 shows three
types of specimens (sample PLA, PA, and ALU). In total four different speci-
mens were investigated:

1) sample PLA in extension,

2) sample PA under shear,

3) sample ALU torsion-test,

4) sample ALU-H torsion-test.
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Details of the inner and outer dimensions of all samples can be found in
Table 1.

Table 1. Outer dimensions in mm (L = width, l = height, t = depth) of all samples
as well as inner dimensions of the substructure of all samples corresponding to the
schematic in Fig. 2 (a = width of beam, b = height of beam, ød = diameter of pivot,
h = height of pivot).

Sample L l t a b ød h

PLA (extension) 140 70 3 1 1 1 1

PA (shear) 210 70 3 1 1 0.9 1

ALU (torsion) 210 70 5 1 1 0.9 3

ALU-H (torsion) 210 70 5 1 1 0.9 3

2.2 Experimental Setup

The experiments can be classified as extension, torsion and shearing tests. Exten-
sion tests have been performed on a MTS Tytron 250 testing device at Technis-
che Universität Berlin, Chair of Continuum Mechanics and Constitutive Theoriy
(CMCT). Torsion- and shearing-tests have been performed on a Zwick Z010 at
Charité Berlin, Julius Wolff Institute (JWI) respectively. Quasi-static standard
tests have been taken into account. The experimental setup of extension tests
performed on sample PLA at CMCT is shown in Fig. 6A; the experimental setup
of shearing-test performed at JWI is presented in Fig. 4. In this work we will also
focus on torsion tests applied to ALU and ALU-H specimens. The schematic
setup of torsion-test performed at JWI is shown in Fig. 5.

The MTS Tytron 250 testing-device controlled by the software Stationsman-
ager V 3.14 was used during extension tests on sample PLA. The applied force
was measured by a load cell attached to the device, which is able to record
axial forces in a range of F = ±250 N. The displacement, x, was imposed hor-
izontally on the right of the specimen with a loading rate of v = 15 mm/min
(displacement-controlled). It was measured and monitored by the device’s own
encoder unit. Almost frictionless movement was achieved by using an air-film-
bearing. External vibration was avoided by using a massive substructure and by
arranging the system horizontally. Additionally to force-displacement (stress-
strain) recording, pictures were taken (0.25 pictures/second) by means of a
commercial Canon EOS 1000D camera with a resolution of 4272× 2848 pixels.
Triggered pictures and force/displacement were synchronized with the help of a
TTL signal. 2D-DIC evaluation was performed in GOM Correlate 2017 software
(GOM GmbH, Braunschweig, Germany).

For investigating specimens made out of aluminum (samples ALU and ALU-
H), which need higher loads to generate measurable results, the Zwick Z010
testing-device, controlled by the software TestExpert was used. The shearing-
tests on the PA sample were also performed with this device. The resultant
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Fig. 4. Set-up of shear experiment of
sample PA performed on the Zwick
Z010 device at JWI (for further infor-
mations of experimental setup see [16]).

Fig. 5. Schematic set-up of extension and
torsion experiments performed on the
Zwick Z010 device.

applied axial force was measured by a device-own load cell (Zwick-Serie Xforce).
The force transducer is able to record axial forces in the range of about F =
±10000 N, where the accuracy at 20 N is about 0.1%. The displacement x was
controlled vertically. The upper traverse-part of the tensile-to-shear adaption
device is fixed horizontally and vertically, while the lower part can be linearly
moved in the vertical direction (see Fig. 5). The velocity of the shearing-test
was set to v = 15 mm/min, which is quite slow for such tests (displacement-
controlled and quasi-static). The displacement itself was recorded and monitored
by a device-own encoder unit with an accuracy of ±0.002 mm. For the torsion
tests a device-own torque sensor (Zwick-Serie M) was applied on the very fixed
bottom of the lower traverse, while the torsion was induced on the top of the
mounting with 1 degree/min on the upper traverse-part of the torque adaption-
device (see Fig. 5). The torsion transducer is able to record moments up to M =
20 Nm and resists maximal axial forces up to ±5 kN. Furthermore a non-invasive
optical measurement device Q-400 (Dantec Dynamics GmbH, Ulm, Germany)
was installed to record the state of three dimensional deformation of the surface
of a sheet by the help of two cameras. A more-than-one camera system is able to
recognize the 3D-motion within overlapping regions of the image sections. For
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enable the software of image correlation to separate small surface areas (so-called
facets) and due to lack of contrast, the surfaces of all specimens had to be sprayed
with a speckled pattern (see Fig. 3). During the deformation process, pictures
were taken via direct TTL-signal every 2 s by means of the afore mentioned
commercial camera system with a resolution of about 1600× 1200 pixels. This
way we were able to synchronize each picture to the related force-value in real
time. By means of a calibration procedure of the camera setup, the commercial
software Istra4D is able to re-calculate a three dimensional surface deformation.

3 Results

In order to obtain scalar results for an out-of-plane displacement of a sheet in
DIC, a reference point in a single facet (a sub-area of image correlation) was
selected for each sample. This point is located in the place where maximal out
of-plane movement could be assumed. Due to the large deformations some facets
moved out of the optical focus, which caused the image correlation to abort. Fur-
thermore, image correlation may also be aborted when a sudden rupture occurs
in between the shutter releases of the camera, so that the facets to be corre-
lated are displaced too much. For further informations see [16,19]. Torsion tests
applied to the aluminum specimens were performed on the same experimental
setup with identical loading conditions.

3.1 Extension

The extension test with the PLA sample was performed on a MTS Tytron
250 device located at Institute of Mechanics at Technische Universität Berlin,
Germany. Figure 7 shows the stress-strain relation of sample PLA in a biaxial
tension test. The marked points A, B, and C correspond to the sequence pictures
in Fig. 6, respectively. After linear elastic deformation (between points A - B),
plastic deformation occurs resulting in a first rupture shortly after an elongation
of about ε = 6%, which is a quite low elongation for pantographics (see [16,34]).
The pivot in the lower right corner breaks (Fig. 7C), but surprisingly total failure
can be avoided. The structure is even able to resist higher loads after a second
rupture. Necking, calculated by means of 2D-DIC in vertical direction, results in
a shortening in vertical direction of about Δy = 5 mm and is shown in the right
lower corner in Fig. 6. Obviously, high elastic performance as seen in previously
investigated experimental studies [4,8,11,15,16,34] has not been experienced
with this specimen because of the small height of the cylindric pivot/joint (see
[34]).

3.2 Shearing

Shearing tests with the PA sample were performed on a Zwick Z010 testing
device at the Julius Wolff Institute at Charité Berlin, Germany (see Fig. 4).
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Fig. 6. Image sequence of specimen PLA during extension load. Picture A - C cor-
respond to the marked points in Fig. 7. The picture in the lower right corner shows
exemplary the calculated necking in y-direction by means of 2D-DIC shortly before
first rupture occurs.

Fig. 7. Stress-strain curve of biaxial extension test of specimen PLA performed on
MTS Tytron 250 device at CMCT. Arrows pointing to points A, B, and C correspond
to pictures A, B, and C in Fig. 6, respectively.
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Fig. 8. 3D-DIC evaluation of specimen
PA during shearing test with posi-
tive (red, point P1) and negative (blue,
point P2) out-of-plane-movements.

Fig. 9. Shear-force-displacement relation
of specimen PA including asymmet-
ric out-of-plane-movements of points P1
(positive) and P2 (negative), respectively.

Figure 8 shows the out-of-plane movement of the surface of sample PA dur-
ing the shearing test. Because of the stiffness of pivots/cylinders (see [4,34]),
which connect the arrays of beams of the different planes, out-of-plane buck-
ling occurs, being in good agreement with previous investigations reported in
[4,15,16]. In Fig. 9 out-of-plane movements of the points P1 and P2 correspond-
ing to Fig. 8 and the force-displacement curve are shown. An almost linear elastic
deformation behavior can be observed until about y = 50 mm (shear elongation
of Δeyy = 71%). Surprisingly, strongly non-linear and non-symmetric out-of-
plane movements start at about y = 10 mm while being still in the linear elastic
deformation range (Δy < 50 mm). After reaching a maximal shear-displacement
at about ymax = 70 mm the out-of-plane buckling decreases. This is because of
the high plastic deformation in the structure. One may say that the “shearing
test becomes an elongation test” at this very point.

Furthermore, the first rupture occurs at about y = 127 mm of shear-
deformation (shear elongation of Δeyy = 181%) at almost 21N. The whole
metamaterial is able to resist even further loading without leading to total
failure resulting in a high resilient-kind deformation behavior. Even after the
fourth rupture at about y = 155 mm shear-displacement (shear elongation of
Δeyy = 221%), the whole structure does not fail and is able to resist higher
loads up to 5N before total failure.

3.3 Torsion

Torsion tests applied to sample ALU and sample ALU-H were performed on a
Zwick Z010 testing device at Julius Wolff Institute at Charité Berlin, Germany.
Figure 10 shows the heat-treated specimen sample ALU-H after one total rota-
tion (360◦). Figure 11 shows the out-of-plane buckling of the same specimen
right after first torque was applied at the upper mounting part. The points P1
and P2 show about ±14 mm out-of-plane movement before the facets got lost



110 G. Ganzosch et al.

and DIC-evaluation was aborted. In Fig. 12 moment-, angle-, and out-of-plane
movement-time relations are shown. Linear elastic as well as linear plastic defor-
mation behavior was observed. In order to investigate the plastic deformation of
both specimens, rotations with load cycles of 10◦ steps were imposed up to 60◦

(0◦ − 10◦ − 0◦ − 20◦ − 0◦ − ...− 60◦ − 0◦ − 2000◦). By reaching the negative area
(F < 0 Nm) after the 20◦ step plastic deformation clearly occurs. Furthermore,
non-linear deformation behavior can be recognized after 60◦ (at about 480 s).

Fig. 10. Sample ALU-H after one full
rotation during torsion test performed
on Zwick Z010 at JWI, Charité in
Berlin, Germany.

Fig. 11. Example of 3D-DIC evaluation of
specimen ALU-H during torsion test with
negative out-of-plane-movement (blue, point
P1) and positive out-of-plane-movement
(red, point P2).

By comparing the moment-time dependencies of the heat-treated specimen,
ALU-H, with the untreated one, ALU, in Fig. 13, considerable differences in
the deformation behavior can be observed. The specimen ALU reaches about
16% higher loads than the heat-threated one, ALU-H. But sample ALU-H
is able to resist further loads without leading to a single failure because of its
ductility. This is in contrast to sample ALU, in which local ruptures of beams
and pivots result in total failure. But still, ALU was able to resist even higher
torque-loads before total failure of the whole structure occurred. This resilient
deformation behavior was also observed in the aforementioned extension test
applied to specimen PLA and in the shearing test applied to specimen PA.
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Fig. 12. Diagram of moment-, angle-,
and out-of-plane movement over time
of torqued specimen ALU-H.

Fig. 13. Comparison of moment-time
dependences of specimens ALU-H and
ALU during a torsion test.

A reverse Poynting effect was observed and is further discussed in [28] and
[12]. It should also be mentioned that total failure of the heat-threated specimen
ALU-H did not occur during the whole experiment ending after 5.7 total rota-
tions (about 2000◦). This extraordinary deformation behavior is comparable to
investigations with cylindrical structures reported in [12].

4 Conclusion and Outlook

Pantographic structures made out of three different materials were additively
manufactured using three differently types of additive manufacturing techniques.
Polylactide was used as a raw material for 3D-printing of specimen PLA by
means of fused deposition modeling at Technical University Berlin, Germany.
Polyamide was used as a raw material for 3D-printing of specimen PA by means
of selective laser sintering at Polytechnica Warsaw, Poland. An Aluminum alloy
was used as raw material for 3D-printing of specimens ALU and ALU-H by
means of direct metal laser sintering at Fraunhofer Ernst Mach Institute in
Freiburg, Germany.

An extension test was performed on specimen PLA, a shearing test on spec-
imen PA, and torsion tests with specimens ALU and ALU-H. In parallel, an
image correlation procedure was performed. We were able to observe and to
measure out-of-plane movements for specimens PA, ALU, and ALU-H quali-
tatively as well as quantitatively.

Specimen PLA deformed in a linear elastic way, until a first local plastic
rupture occurred without resulting in total failure. This resilient deformation
behavior may be used in failure-safe systems in the future to secure stability
of mechanical systems, e.g., in aircraft or automobile applications. In contrast
to investigations that can be found in [34], out-of-plane buckling was observed
during shearing tests applied to specimen PLA, due to the non-perfect piv-
ots/joints. Independently, the aforementioned resilient deformation behavior was
also observed for this shearing test. The untreated specimen, ALU, was able to
carry 16% higher rotational loads during torsion tests then the heat-treated
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one, ALU-H. Nevertheless, specimen ALU failed after about one total rota-
tion in contrast to specimen ALU-H, which was able to resist total failure
during the whole experiment ending after 5.7 total rotations. Furthermore, a
reverse Poynting effect and extraordinary nonlinear deformation behavior was
observed and is further discussed in [28] and [12].

One may say that because this structure stays in the elastic range, even at
large deformations, it will play a crucial role in the future in different kind of
industrial applications. Its light weight in combination with its high resilient
deformation behavior makes this kind of meta-material very attractive to appli-
cations in industry (e.g., for protection shields in civil or defense industries,
damping or mounting device for aircraft or automobile industries).
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at Charité in Berlin, Germany, and Paul Zaslansky from the Zahnklinik at Charité in
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35. Tekoğlu, C., Onck, P.R.: Size effects in two-dimensional Voronoi foams: a compar-
ison between generalized continua and discrete models. J. Mecha. Phys. Solids 56,
3541–3564 (2008)

36. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Rational Mech. Anal.
11, 385–414 (1962)

37. Turco, E., dell’Isola, F., Rizzi, N.L., Grygoruk, R., Müller, W.H., Liebold, C.:
Fiber rupture in sheared planar pantographic sheets: numerical and experimental
evidence. Mech. Res. Commun. 76, 86–90 (2016)

38. Wei, Y., Wang, X., Wu, X., Bai, Y.: Theoretical and experimental researches of
size effect in micro-indentation test. Sci. China Ser. A: Math. 44, 74 (2001)

39. Yang, H., Ganzosch, G., Giorgio, I., Abali, B.E.: Material characterization and
computations of a polymeric metamaterial with a pantographic substructure. Z.
Angew. Math. Phys. 69, 105 (2018)



Fatigue Reliability of Structures:
Methodology of Assessment and Problems

Ruslan V. Guchinsky1(B) and Sergei V. Petinov2

1 TMH Engineering Ltd, Petrogradskaya nab., 34, St. Petersburg 197046, Russia
ruslan239@mail.ru

2 Institute for Problems of Mechanical Engineering,
Bolshoy pr., 61, V.O., St. Petersburg 199178, Russia

spetinov@mail.ru

Abstract. Fatigue reliability assessment of metallic structures in vari-
ous applications according current design codes is based mostly on S-N
criteria with uncertain characterization of fatigue properties of a par-
ticular material and the assumed damage. In case the crack is detected
residual service life as recommended may be estimated by applying the
Linear fracture mechanics techniques, again, with incomplete defining
conditions of the crack growth and exhaustion of life.

Proposed earlier procedure of simulation the fatigue process based
on the due finite element modeling of the affected area of a structure,
application of the damage summation technique and appropriate crite-
rion for fatigue failure of material allowed assessment of fatigue life from
the onset of service loading up to development of a critical state, e.g. of
the through crack in a structural component. Also, it was shown that
the simulation scheme was capable of account the heterogeneity of the
material structure fatigue resistance, the crack closure effects and elastic-
plastic material response when the Strain-life criterion for fatigue failure
was applied.

However, selection of the criterion for fatigue failure of material is but
a straightforward decision: it is shown that S-N criterion even attributed
to the same structural steel class as the Strain-life one does not provide
in analysis of the fatigue process even an approximate convergence. This
is mostly due to fairly indirect considering the inelastic properties of
fatigue damage in S-N criteria and the methodology of fatigue testing
specimens aimed at evaluation of S-N and Δε-N criteria.

Further, the approach would need in more comparisons of simulated
and test data in different structural applications.

1 Introduction

Proposed earlier procedure of simulation the fatigue process based on the due
finite element modeling of the affected area of a structure, application of the
damage summation technique and appropriate criterion for fatigue failure of
material allowed assessment of fatigue life from the onset of service loading up to
development of a critical state, e.g. of the through crack growth in a structural
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component [1,2], etc. Also, it was shown that the simulation scheme was capa-
ble of account the heterogeneity of the material structure fatigue resistance, the
crack closure effects and elastic-plastic material response when the Strain-life
criterion for fatigue failure was applied (e.g., [3]). Meanwhile, fatigue reliabil-
ity assessment of metallic structures subjected to intensive alternating service
loading in various applications according current design codes (e.g., [4]) is based
mostly on the Stress-life (S-N ) criteria which formally indicate the crack initia-
tion at critical locations. In case the crack is detected in a component the residual
service life as recommended may be estimated by applying the Linear fracture
mechanics techniques, however, with certain limitations in defining conditions of
the crack growth and exhaustion of life.

It was shown [5,6], that for the fatigue design purposes, in particular, applica-
tion of the S-N curves collected by testing �classed� specimens (including typ-
ified welded joints [7]) terminated at almost complete failure could not provide
identity of fatigue damage in structural details necessarily related to purposes
of the design. Apart from that, application of different models of fatigue process
(crack initiation defined by S-N criteria and crack growth assessed by the Linear
fracture mechanics model) mechanically continuous is leading to uncertainties
in defining fatigue life of structural components, partly, due to the uncertain
gap between the states of the fatigue process at the �crack initiation� and
�growth� assessed by different models.

However, the mentioned in above modeling of the fatigue process as a contin-
uous one which allowed assessment of fatigue process from initiation of service
loading up to development of a critical state may be applied for fatigue analy-
sis purposes using the unique S-N criteria to �close� the mentioned gap. At
the same time, application of the modeling principles in conjunction with the
Stress-life criteria offering a certain consistency would necessarily need in com-
paring with proven, although far but exhausting, modeling based on using the
Strain-life criteria.

The mentioned in above approaches and comparison of simulation results
are commented in more details in the below focused on problems of practical
application.

2 Description of the Approach

According the approach, the fatigue process in a structural component assess-
ment is based on application of the finite element model of the component
designed with the due attention to the mesh fineness in the area of expected
crack initiation and propagation. The finite elements with respect to the poly-
crystalline material structure are assumed the grain clusters with approximately
close (or, alternatively, random) slip resistance.

In the first procedure step the stress field at the expected crack extensions is
analyzed in the ascending and descending half-cycles of loading and the stress
range Si = 2σai is obtained in every i -th element.
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The cyclic elastic-plastic properties of material are characterized by
Ramberg-Osgood approximation; the kinematic hardening and von Mises’ crite-
rion for plasticity are applied. The strain amplitude in finite elements (considered
structural elements) is defined, respectively by:

εa = σa/E + (σa/K ′)1/n
′
, (1)

where E - elasticity modulus, n′ - cyclic strain hardening exponent and K ′ -
cyclic strength coefficient.

The number of load cycles prior to failure of elements at the initial step of
the procedure is obtained by applying the Strain-life criterion:

εa = (σ′
f/E)(2N)b + ε′

f (2N)c, (2)

where σ′
f - fatigue strength coefficient, ε′

f - fatigue ductility coefficient, b -
fatigue strength exponent, c - fatigue ductility exponent.

Further, when the Stress-life criterion is applied, the S-N curve is formulated
as:

σa =

{
σ′
f1(2N)b1 , 2N ≤ 2Ns

σ′
f2(2N)b2 , 2N > 2Ns

, (3)

where b1, b2 - fatigue strength exponent values in the bi-linear S-N curve,
σ′
f1, σ

′
f2 - fatigue strength coefficients in the curve model; 2Ns - is the “kink”

number of cycles of the two-slope curve.
In further analyses the criterion (2) with description of cyclic properties of

material (1) is presented in the form of Stress-life, N(S), as the criterion (3). The
damage accumulated at random loading estimated by the Palmgren-Miner rule
is assumed uniformly distributed within elements. The damage accumulation in
finite (structural) elements in the approach is provided by the loading history at
the crack initiation site and in elements located at the crack path; it results also
from the loading pre-history evolution in the course of failure (crack) extension
through the preceding elements (from the initiation location). The linear damage
accumulation rule, Bolotin’s version [8]):

D =
∑
i

ni(S)/Ni(S) = N∗
∫ Smax

Smin

(p(S)/N(S))dS, (4)

where p(S) = (S/σ2
s) exp(−S2/2σ2

s) - probability density function of the
Rayleigh distribution of the stress ranges, σs - stress scale parameter.

Number of cycles to failure of each element at the first step can be expressed
by equating the accumulated damage to unity:

N1
i (Si, σsi) = 1/

∫ Smax

Smin

(p(S, σsi)/N(S))dS, (5)

where Smin = 2 ·0.55σ−1 - minimum stress range in distribution, correspond-
ing to reduced fatigue limit σ−1 due to irregular loading; Smax = Si – maximum
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stress range in the distribution, corresponding to i -th element. Stress ranges
below Smin are assumed non-damaging. As mentioned in above, the Raleigh
stress range probability exceedance is defined by: Q(Si) = exp(−S2

i /2σ2
si).

Respectively, the scale parameter of stress in the stress probability distribu-
tion for each element is: σsi = Si/

√−2 ln(Q). Correspondingly, the number of
cycles in the form (5) takes into account the irregular loading of each element
at the first step of the procedure. Then the minimum number of cycles to failure
of first element at the first step of the fatigue simulation procedure is calculated:
N1

min = min{N1
i (Si, σsi)}.

According the damage linear summation rule when the damage in an ele-
ment reaches the critical unity, its compliance is artificially increased by several
decimal orders, and nodal forces are step-wise redistributed in the surrounding
elements. Damage of each element at the first step is defined as d1i = N1

min/Ni.
The damage calculation is repeated considering for the renewing stress

(stress-strain) state ahead the crack tip. Respectively, an element damage crite-
rion related to the critical load step number jcr:

djcri =
jcr−1∑
j=1

dji + N jcr
min/N jcr

i = 1. (6)

When this condition is attained at an element, its stiffness is decreased by
several decimal orders and �killed� by this procedure elements form the crack
front progress.

This idea was first suggested in pioneering studies of Glinka and Ellyin
focused on analysis of crack extensions in thin plates at the plane stress [9,10];
further analyses had shown that the procedure may be applied in assessment
of fatigue process including the crack initiation and growth of plane cracks in
arbitrary bodies [1–3], etc.

For the purposes of the present study the fatigue failure criteria parame-
ters, S-N and Strain-Life, should be in principle obtained by testing specimens
prepared from the same material, say, from the same rolled plate, the same loca-
tion in it (edge or the mid-part) to consider the peculiarities of the material
microstructure. What is essential for the purposes of the comparative study, the
means of evaluation of the failure may be different in experimental definition
of the criteria parameters: S-N testing of standard specimens (e.g. IIW recom-
mended [7]) is terminated typically prior to failure of specimens controlled by the
rapid acceleration of the crack growth while in the strain-controlled testing the
stress-strain diagram ascending part (in the tensile phase) distortion indicates
the crack initiation and is used to complete the test.

3 Results and Discussion

Implementation of the approach was illustrated by simulation of failure of a thin
plate with central elliptic hole fabricated from AlMg4.5Mn alloy (σy= 298 MPa;
(σu = 363 MPa). The quarter part of the plate with dimensions 2h = 800mm;
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2W = 400mm is shown in Fig. 1, hole dimensions: 2b = 50mm; 2R = 100mm.
Plate was loaded by pulsating tension with maximum stress σ in load cycle.
Two maximum nominal stress ranges in the random loading successions in the
illustrative example were assumed as 100 MPa and 110 MPa. Maximum stress
range probability exceedance was accepted Q = 0.0001 in both cases.

Material parameters for (1): E = 0.71 · 105 MPa, K′= 693 MPa, n ′ = 0.125,
σ′
u = 654 MPa. Strain-Life criterion (2) constants: ε′

f = 0.45, b = −0.089, c
= −0.755 [11]. Criterion (2) was approximated by two curves with minimal
interpolation error of 5%:

N =

{
0.5(0.1/(εa − 2.852 · 10−3))1/0.45, εa > 3.53 · 10−3

0.5(1.052 · 10−2/(εa − 3.92 · 10−4))1/0.11, εa ≤ 3.53 · 10−3
, (7)

where the Stress-life criterion (3) constants are: σ′
f1 = 526 MPa, σ′

f2 = 719
MPa, b1= −0.06, b2= −0.096, 2Ns= 5897 [11]. Fatigue limit of the alloy is:
σ−1 = 103.4 MPa.

The crack nucleates in stress concentration area and propagates in horizontal
direction following up the maximum principal stress plane. Finite-element mesh
was refined in the crack growth area; the minimal element size (crack propagation
increment) was designed equal to 0.3mm (Fig. 1). In this illustration of the
approach application the plane strain problem is considered and the course of
�failure� of material elements the nodes of finite-element mesh are uncoupled
to simulate the crack propagation.

The results of crack growth assesment are given in Figs. 2, 3 and 4. As seen,
the crack growth rate increases rapidly after the crack becomes 2mm long in
both loading schemes characterized by (maximum) stress ranges. Also, the crack
nucleation stage duration is practically identical in case of loading with maximum
stress range 100 MPa when the Stress-Life or the Strain-Life criteria are applied
(approximately 3.9 · 107 cycles).

In the case of more intensive loading (maximum stress range 110 MPa) the
crack initiation stage estimated by the Strain-life criterion occurs shorter than in
previous example. In both cases the crack propagation rate and stage duration
predicted by this criterion, as seen, are substantially different from those assessed
by the Stress-life scheme.

In Fig. 3 the crack growth is presented as related to the non-dimensional
number of load cycles. The number of load cycles is divided by the fatigue life
N0 corresponding to failure of the first mesh node, meaning the crack nucleation.
It is seen, that crack propapation stage in both examples is relatively short and
extends over 10–15% of the crack nucleation stage. Using crack propagation
extrapolation you can see that crack growth phase is no more than 25% of the
total fatigue life.

Figure 4 illustrates results of the crack propagation simulation from 0.3mm-
deep initial crack at the hole. It is seen that the crack growth stage assessed by
applying the Strain-Life criterion occures two times shorter than that obtained
when the Stress-Life criterion was used.
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Fig. 1. The FE-model of the quarter part of the plate

Fig. 2. Crack growth (initiation and propagation) vs the loading cycles number depen-
dence on the maximum nominal stress range in the Raleigh’s distribution: 100 MPa
(a) and 110 MPa (b)



Fatigue Reliability of Structures: Methodology of Assessment and Problems 121

Fig. 3. Crack extension (initiation and growth) depending on the non-dimensional
number of cycles and the maximum nominal stress range in the Raleigh’s distribution:
100 MPa (a) and 110 MPa (b)

Fig. 4. Crack extension (from initial 0.3 mm size) depending on the number of load
cycles and the maximum nominal stress range in the Raleigh’s distribution: 100 MPa
(a) and 110 MPa (b)

The discrepancies in the crack initiation and growth stages may be explained
by the difference of typical testing specimens procedures, as mentioned in above:
the S-N curve addressed testing is terminated when the compliance of the
cracked specimen and acceleration of the loading frame is rapidly increasing,
whereas when the parameters of Strain-Life criterion are obtained the test is
terminated when the ascending part of the cyclic stress-strain hysterezis loop is
distorted due to nucleation of macroscopic crack.

The further development of the FE modeling-based procedure of modeling
fatigue process in structural components would need in comparison of simulated
and observed fatigue damage in structural details with known loading histories
similarly to attempted in [11].
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4 Conclusions

The previously developed simulation of fatigue damage and crack growth based
on respective FE modeling of a structural component, Strain-life criterion for
fatigue and the damage accumulation procedure was extended into the same
scheme where the Stress-life criterion typically used in current design and fatigue
assessment codes was applied. The scheme of simulation fatigue process where
the loading was assumed a cyclic one was completed with the means of consid-
ering the random loading histories.

The both versions of the procedure were tested in example of the ran-
domly loaded plate with elliptic hole as the stress raiser and the fatigue damage
and crack growth initiator. The crack initiation and growth stages predictions
occurred different when the Strain-life and Strain-life criteria were applied. The
discrepancies of results may be explained partly by specifics of experimental eval-
uation of the Strain-life and Stress-life criteria parameters, considering mechan-
ics of material deformation and further studies are necessary in the prospect of
development the unified approach to model the fatigue process in actual metallic
structures.
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Abstract. In this paper, we consider a model of a uniform harmonic
chain of particles for the analysis of non-stationary thermal effects in an
ideal crystal system. The exact solution for the particle system is pre-
sented and the temperature is calculated as a measure of the average
kinetic energy of the particles. The corresponding energy averaging is
performed over the initial distribution of the displacements and veloci-
ties of the particles, provided that they obey the Boltzmann principle.
Simple analytical formulae are presented for all energy derivatives with
respect to time at the initial time and for the first derivative with respect
to the number of particles. Over a small time interval, the temperature
was shown to depend monotonically on the number of particles. This
means that the non-uniformity of thermal characteristics distribution,
i.e. dependence on the number of particles, occurs in the system without
additional assumptions about the structure of the initial conditions on a
macroscopic scale. The obtained formula for the distribution of kinetic
energy is presented through Bessel functions. The functional dependence
on the number of particles was shown to appear in the index of Bessel
functions, and the parity of the number of particles affects the tempera-
ture distribution. The distribution of the kinetic energy for a large time
was asymptotically analyzed as well.

Keywords: Harmonic crystal · Temperature · Boltzmann principle

1 Introduction

The results of numerical modeling of high-frequency oscillations of the parti-
cle kinetic and potential energies in an ideal crystal lattice are well known [1]:
if at the initial time the particles are ordered in the ideal crystal lattice and
their velocities are given randomly, then the transition of one type of energy to
another one is accompanied by a high-frequency oscillatory process with damped
amplitude. An approach to the theoretical analysis of this phenomenon was pro-
posed in the model of a one-dimensional harmonic crystal [2], for which the heat
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transfer process was simulated. In the method used to analyze the thermal char-
acteristics, the number of particles in the model is assumed to be n � 1. The
results obtained in [2] show that the spatial non-uniformity of the distribution
of characteristics in the crystal is determined by setting inhomogeneous initial
conditions on a macroscopic scale, in which limits the additional averaging is
performed over microscopic initial conditions.

In this paper, we remove the restriction n � 1 [2]. The result presented
below shows that the non-uniformity of thermal characteristics distribution, i.e.
dependence on the number of particles arises without additional assumptions
about the structure of the initial conditions on a macroscopic scale.

2 Dynamic Relations for the Model

A one-dimensional crystal is some ideal model that has a characteristic internal
spatial scale, for example, an equilibrium distance a between adjacent particles,
and an external scale L determined by the length of the particles chain. In
the general case, the ratio between the parameters L and a can be different, in
particular, the condition L � a is equivalent to a large number of particles n � 1
in the system. A harmonic crystal is considered as a chain of particles with the
equal mass m, connected by the identical linear stiffness springs k, the interaction
between which is set with the nearest neighbors., The coordinate xj for a j-
particle is representable in the form xj = ja + uj , where 0 ≤ x1 ≤ ... ≤ xn ≤ L
and the function uj sets the displacement of the particle from the equilibrium
position.

Formulate the force conditions for the first and last particles: we will assume
that they are connected by linear stiffness springs k with fixed points. Then the
Hamiltonian function of the particle system under consideration is

H = m
u̇2

i

2
+ k

u2
1

2
+ k

n−1∑

i=1

(uj+1 − uj)2

2
+ k

u2
n

2
. (1)

The equations of motion of the particles system, corresponding to the Hamilton
function (1), are given by the formulas:

mu̇i =
∂H

∂u̇i
, müi = −∂H

∂ui
,

müi = k(ui+1 − 2ui + ui−1), i = 2, ..., n − 1, (2)

mü1 = k(u2 − 2u1), mün = k(un−1 − 2un).

Let us pass in (2) to dimensionless variables, choosing the distance a as the scale
of length and assume the time scale to be equal

√
m/c. Then (2) is reduced to

the system

ü1 = (u2−2u1), üi = (ui+1−2ui+ui−1), i = 1, ..., n−1, ün = (un−1−2un) (3)
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with initial conditions: ui|t=0 = ui0, u̇i|t=0 = u̇i0.

The statement is true: the components ui are determined from the relations

ui =
n∑

j=1

αij

(
q0j cos ωjt +

p0j

ωj
sin ωjt

)
, (4)

zj =
πj

2(n + 1)
, ωj = 2 sin zj , αij =

√
2

n + 1
sin 2izj ,

q0i =
n∑

j=1

αij uj |t=0 , p0i =
n∑

j=1

αij u̇j |t=0 . (5)

Indeed, differentiating (4) by time, we obtain

üi = −
n∑

j=1

αijω
2
j

(
q0j cos ωjt +

p0j

ωj
sin ωjt

)
. (6)

Take into consideration that

α(i−1)j − 2αij +α(i+1)j =

√
2

n + 1
[sin 2(i − 1)zj − 2 sin 2izj + sin 2(i + 1)zj ]

= −4 sin2 zj ·
√

2
n + 1

sin 2izj = −ω2
j αij .

From here and from (6), the equations follow for particles with numbers i =
2, ..., n − 1 in (3):

ui+1 − 2ui + ui−1 =
n∑

j=1

(α(i−1)j − 2αij + α(i+1)j)
(

q0j cos ωjt +
p0j

ωj
sin ωjt

)

= −
n∑

j=1

ω2
j αij

(
q0j cos ωjt +

p0j

ωj
sinωjt

)
= üi, i = 2, ..., n − 1.

The validity of the first equation of the system (3) after substitution into it
the solution (4) is easy to verify by using the relations

ü1 = −
n∑

j=1

α1jω
2
j

(
q0j cos ωjt +

p0j

ωj
sin ωjt

)
,

α2j − 2α1j =

√
2

n + 1
(sin 4izj − 2 sin 2zj) = 2(cos 2izj − 1)

√
2

n + 1
sin 2zj

= −4 sin2 zj ·
√

2
n + 1

sin 2zj = −ω2
j α1j .



Inhomogeneous Distribution 127

Substituting solution (4) into the last equation of system (3), we get

ün = −
n∑

j=1

α1jω
2
j (−1)j

(
q0j cos ωjt +

p0j

ωj
sin ωjt

)
. (7)

On the other hand,

α(n−1)j − 2αnj = (−1)j

√
2

n + 1
(sin 2izj − 2 sin zj) = (−1)j(α2j − 2α1j)

= (−1)j+1ω2
j α1j .

Then

un−1 − 2un =
n∑

j=1

(α(n−1)j − 2αnj)(q0j cos ωjt +
p0j

ωj
sin ωjt)

−
n∑

j=1

(−1)jα1jω
2
j (q0j cos ωjt +

p0j

ωj
sinωjt).

From here and from (7) it can be seen that the constructed solution un

satisfies the last equation of system (3).
The fulfillment of the initial conditions (5) is ensured due to

orthogonality property of the matrix ‖αij‖:
n∑

j=1

αijαjk = δik, where δik is the

Kronecker symbol.
Relations (4) and (5) implement the general idea of constructing a solution

to the system of equations (3) in the basis formed by the eigenvectors of the
matrix of the difference operator of this system (see, for example, [3]). The
physical meaning of the definition given above is assumed that Hamiltonian (1)
is diagonalized by passing to the normal coordinates [4].

3 Kinetic Energy in a Small Time Interval

The kinetic energy of a particle is a measure of temperature. Local definition of
the kinetic energy is

T̄j =

〈
v2

j

2

〉

P

. (8)

The brackets 〈〉P denote averaging over the distribution P = P (u0, v0) of micro-
scopic initial displacements and velocities (u0, v0) = (u01, ..., u0n, v01, ..., v0n). In
accordance with Boltzmann’s principle [5], it is assumed that

P = C−1 exp
[
−H(u0, v0)

β

]
, (9)
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H(u0, v0) =
|v0|2

2
+ W (u0), C =

∫

Rn

du0dv0 exp
[
−H(u0, v0)

β

]
.

Here, the dimensionless parameter β is equal to the ratio of the particle energy
ka2/2 to the value kBT0, where kB is the Boltzmann’s constant, T0 has the
meaning of the average crystal temperature. We take into account the condi-
tions under which the model of an ideal crystal is being studied [2]: the initial
displacements of the particles are zero. Then the solution (4) is reduced to the
form:

ui =
n∑

j=1

αij
p0j

ωj
sin ωjt, u̇j = vi =

n∑

j=1

αijp0j cos ωjt.

From here and from (8), (9) it follows that

T̄j =
β

2(n + 1)

n∑

k=1

(sin 2jzk)2 (cos ωkt)2

=
β

8(n + 1)

n∑

k=1

(1 − cos 4jzk + cos 2ωkt − cos 4jzk cos 2ωkt) . (10)

Since
n∑

k=1

cos 2pzk = cos
πp

2

sin πpn
2(n+1)

sin πp
2(n+1)

=
{−1, if p − even,

0, if p − odd,
(11)

then

T̄j =
β

8(n + 1)

(
n + 1 +

n∑

k=1

(cos 2ωkt − cos 4jzk cos 2ωkt)

)
. (12)

Taking into account (11), we obtain that T̄j(0) = β/4, i.e., at the initial time, the
average kinetic energy of a particle does not depend on its number. Consider the
change of the average kinetic energy of a particle. For this purpose we calculate
the first and the second derivatives of the energy:

∂T̄j

∂t
=

β

4(n + 1)

n∑

k=1

(−ωk sin 2ωkt + ωk cos 4jzk sin 2ωkt) ,

∂2T̄j

∂t2
=

β

2(n + 1)

n∑

k=1

(−ω2
k cos 2ωkt + ω2

k cos 4jzk cos 2ωkt
)
.

From this follows that at the initial moment of time the rate of the energy change

is zero:
∂T̄j

∂t

∣∣∣∣
t=0

= 0. Taking into account the identity sin2 zk = (1 − cos 2zk)/2,
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we can write the second derivative at the initial moment of time as follows

∂2T̄j

∂t2

∣∣∣∣
t=0

= − β

n + 1

n∑

k=1

(1 − cos 4jzk − cos 2zk) − β

n + 1

n∑

k=1

cos 4jzk cos 2zk.

The first sum is equal to n + 1 by virtue of (11), and the second one is reduced
to

n∑

k=1

cos 4jzk cos 2zk =
1
2

n∑

k=1

(cos 2(2j − 1)zk + cos 2(2j + 1)zk) .

Using relation (11), it is easy to verify that each of the sums vanishes. Thus,
local behavior T̄j(t) is given by

T̄j(t) =
β

4
− βt2

2
+ ...

i.e. T̄j(t) is not dependent of j.
It is of interest to answer the question: how does the derivative of any order

of the function T̄j(t) depend on the number j at the initial moment of time?
From (12) it follows that only even derivatives of the energy are non-zero at the
initial moment of time:

∂2pT̄j

∂t2p

∣∣∣∣
t=0

= β
24p−3

n + 1

[
−

n∑

k=1

sin2p zk +
n∑

k=1

sin2p zk cos 4πjzk

]
. (13)

For further calculations, the equation

sin2p zk =
1

22p

{
2

p−1∑

r=0

(−1)p−r

(
2p
r

)
cos 2(p − r)zk +

(
2p
p

)}
. (14)

is useful. Using (11), from (14) we get

n∑

k=1

sin2p zk =
1

22p

{
2

p−1∑

r=0

(−1)p−r

(
2p
r

) n∑

k=1

cos 2(p − r)zk + n

(
2p
p

)}

=
1

22p

{
2

p−1∑

r=0

(−1)p−r

(
2p
r

)
cos[(n + 1)(p − r)z1]

sin n(p − r)z1
sin(p − r)z1

+ n

(
2p
p

)}
.

Since

sin nz1(p − r) cos[(n + 1)(p − r)z1] =
1

2
[− sin z1(p − r) + sin (π(p − r) − z1(p − r))]

= −1

2
sin z1(p − r)[1 + (−1)p−r],

the previous ratio may be rewritten as

n∑

k=1

sin2p zk =
1

22p

{
−

p−1∑

r=1

(1 + (−1)p−r)
(

2p
r

)
+ n

(
2p
p

)}
. (15)
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When calculating the second sum in (13), we will use the identity

n∑

k=1

cos 4jzk cos 2(p − r)zk =
1
2

[
n∑

k=1

cos 2zk(2j − (p − r)) + cos 2zk(2j + (p − r)

]
.

Applying (11) to this relation, we obtain

n∑

k=1

cos 2zk(2j − (p − r)) = cos[(n + 1)(2j − (p − r))z1]
sin n(2j − (p − r))z1
sin(2j − (p − r))z1

.

Usage of equality

sin nz1(2j − (p − r)) cos[(n + 1)z1(2j − (p − r))]

=
1
2

{− sin z1(2j − (p − r)) + sin[(2n + 1)z1(2j − (p − r))]}

= −1
2

sin z1(2j − (p − r))[1 + (−1)p−r],

allows us to write
n∑

k=1

cos 2zk(2j − (p − r)) = −1
2
[1 + (−1)p−r].

Therefore,

n∑

k=1

cos 4jzk cos 2(p − r)zk = −1
2
[1 + (−1)p−r],

and we obtain the following equation for the second sum (13):

n∑

k=1

sin2p zk cos 4πjzk =
1

22p

{
−

p−1∑

r=0

(1 + (−1)p−r)
(

2p
r

)
−

(
2p
p

)}
.

Combination this equation with (13) and (15) results in

∂2pT̄j

∂t2p

∣∣∣∣
t=0

= −22p−3

(
2p
p

)
β.

Thus, in the initial state, the derivative of energy T̄j(t) with respect to time
does not depend on the number of the particle j. This result is explained by
the fact that the function T̄j(t) is not continuous at the point (0, j) due to
(11). Therefore, we will use the exact representation (12) for the energy T̄j(t) to
calculate its derivative with respect to j at t = +0:

∂T̄j

∂j

∣∣∣∣
t=0

=
β

2(n + 1)

n∑

k=1

zk sin 4jzk =
πβ

4(n + 1)2

n∑

k=1

k sin
2πjk

(n + 1)
.
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The summation of this series is presented in reference books:

n∑

k=1

k sinx =
sin(n + 1)x

4 sin2 x
2

− (n + 1)
cos 2n+1

2 x

2 sin x
2

.

Inserting x = 2πj/(n + 1) gives

n∑

k=1

k sin
2πjk

(n + 1)
= −(n + 1)

cos (2n+1)πj
(n+1)

2 sin πj
(n+1)

= −n + 1
2

ctg
πj

(n + 1)
.

Hence, the derivative of energy T̄j(t) with respect to particle number is

∂T̄j

∂j

∣∣∣∣
t=0

= − πβ

8(n + 1)
ctg

πj

(n + 1)
. (16)

Since average kinetic energy is a measure of temperature, it is sufficient to set
microscopic inhomogeneous initial conditions for the occurrence of spatial non-
uniformity of temperature distribution.

4 General Presentation for Average Kinetic Energy

To analyze the behavior of the average kinetic energy over a finite time interval,
we should to calculate the sums in (12). We take into account the summation
formula for trigonometric functions and the representation obtained by Jacobi
[6]:

cos(2ωkt) = cos(4t sin zk) = J0(4t) + 2
∞∑

p=1

J2p(4t) cos(2pzk).

Then
n∑

k=1

(
− cos

2πjk

n + 1
+ cos 2ωkt

)
= 1 + nJ0(4t) − 2

∞∑

p=1

J4p(4t).

The sum of the Bessel functions is determined by the ratio:

∞∑

p=1

J4p(4t) =
1
2
[cos2 2t − J0(4t)]. (17)

After calculations, we get the following result for the first three sums in the right
part of (12):

n∑

k=1

(
1 − cos

2πjk

n + 1
+ cos 2ωkt

)
=

[
n + sin2 2t + (n + 1)J0(4t)

]
. (18)
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The sum generated by the last contribution to (12) is equal to:

n∑

k=1

cos
2πjk

n + 1
cos 2ωkt = −J0(4t) + 2

∞∑

p=1

CC · J2p(4t),

CC =
n∑

k=1

cos
2πjk

n + 1
cos

πpk

n + 1
(19)

=
1
2

n∑

k=1

cos
πk

n + 1
(p − 2j) +

1
2

n∑

k=1

cos
πk

n + 1
(p + 2j) .

If we apply the formula for the sum of the trigonometric series in (19), then

CC =
1
2

cos π(p−2j)
2 sin πn(p−2j)

2(n+1)

sin π(p−2j)
2(n+1)

+
1
2

cos π(p+2j)
2 sin πn(p+2j)

2(n+1)

sin π(p+2j)
2(n+1)

. (20)

It can be seen that, at a certain ratio between p and j, the value of the denomina-
tor may be small (sin π(p±2j)

2(n+1) → 0), however, it is compensated by the smallness

of the numerator sin πn(p±2j)
2(n+1) , what leads to the need to calculate expressions

(20) for such values of the parameters p and j. Therefore, we distribute the
numbers in (19) into four disjoint sets: (A), (B), (C), (D) - and write

∞∑

p=1

CC · J2p(4t) =
∞∑

p∈(A)

CC · J2p(4t) +
∞∑

p∈(B)

CC · J2p(4t) (21)

+
∞∑

p∈(C)

CC · J2p(4t) +
∞∑

p∈(D)

CC · J2p(4t).

We define the first set (A) from the condition that p − 2j, p + 2j are not
divided by n + 1, then for CC use (19), (17), and obtain:

∞∑

p∈(A)

CC · J2p(4t) = −
∞∑

N=1

J4N (4t) = −1
2
[cos2 2t − J0(4t)]. (22)

The second set (B) includes those p for which p − 2j is divided by n + 1 and
p+2j is not divided by n+1. In this case, p are parametrized by p = 2j+m(n+1),
where m is a integer number, and p+2j = 4j +m(n+1) is not divided by n+1,
if j �= (n + 1)/4. Then

CC =
n∑

k=1

cos
2πjk

n + 1
cos

πk

n + 1
[2j +m(n+1)] =

n∑

k=1

(−1)km

(
cos

2πjk

n + 1

)2

. (23)

Let m be even, then
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CC =
n∑

k=1

(
cos

2πjk

n + 1

)2

=
n

2
+

1
2

n∑

k=1

cos
4πjk

n + 1
=

{
n−1
2 , j �= n+1

2 ;
n, j = n+1

2 .

For odd m, we get

CC =
n∑

k=1

(−1)k

(
cos

2πjk

n + 1

)2

=
1
2

n∑

k=1

(−1)k

[
1 + cos

4πjk

n + 1

]

=

{
(−1)n−1

2 , j �= n+1
4 ;

n
2 + (−1)n−1

2 , j = n+1
4 .

After calculations, we can write for the set (B):

∞∑

p∈(B)

CC · J2p(4t) =
(
1 − δj,n+1

4

)
⎛

⎜⎝
∞∑

p=2j+m(n+1),
even m

CC · J2p(4t) +
∞∑

p=2j+m(n+1),
odd m

CC · J2p(4t)

⎞

⎟⎠

=
(
1 − δ

j,n+1
4

)
nδ

j,[n+1
2 ]δn+1

2 ,[n+1
2 ]

∞∑

even m

J2(1+m)(n+1)(4t)

+
n − 1

2

(
1 − δj,n+1

4

) (
1 − δj,n+1

2

) ∞∑

even m

J2(2j+m(n+1))(4t)

+
(−1)n − 1

2

(
1 − δj,n+1

4

) ∞∑

odd m

J2(2j+m(n+1))(4t). (24)

The third set (C) is given by the condition: p+2j is divisible by n+1 whereas
p−2j is not divisible by n+1. We parametrize p by p = −2j + q(n+1) with the
natural q, then the corresponding sum in (21) is calculated in a manner similar
to the set (B) and is equal to

∞∑

p∈(C)

CC · J2p(4t) =
(
1 − δj,n+1

4

)
nδj,[n+1

2 ]δn+1
2 ,[n+1

2 ]

∞∑

even m

J2(1+m)(n+1)(4t)

+
n − 1

2

(
1 − δj,n+1

4

) (
1 − δj,n+1

2

) ∞∑

even m

J2(−2j+m(n+1))(4t)

+
(−1)n − 1

2

(
1 − δj,n+1

4

) ∞∑

odd m

J2(−2j+m(n+1))(4t). (25)

The fourth set (D) is determined from the requirement that the numbers
p − 2j and p + 2j are divisible by n + 1. Then values p can be parametrized by
p = 2j + r(n + 1), p = −2j + s(n + 1) with natural r and s. As a consequence,
we have

p =
r + s

2
(n + 1), j =

s − r

4
(n + 1). (26)
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Since 1 ≤ j ≤ n, then from the last relation (26) there follow the restrictions on
r, s:

α) s − r = 1, β) s − r = 2, γ) s − r = 3. (27)

If the condition α) is fulfilled, we obtain from (26) the values p = r(n+1)+(n+
1)/2 and j = (n + 1)/4, i.e. solution for j exists only for n + 1, which is divisible
by 4. Value CC (19) is

CC =
n∑

k=1

cos
πk

2
cos

πk

n + 1
[r(n+1)+(n+1)/2] =

n∑

k=1

(−1)kr[cos(πk/2)]2. (28)

For even r the sum is calculated on the base of equation:

n∑

k=1

[
cos

πk

2

]2

=
1
2

n∑

k=1

(1 + cos πk) =
n

2
+

1
2

n∑

k=1

(−1)k =
n

2
+

(−1)n − 1
4

.

For odd r we get

n∑

k=1

(−1)k

[
cos

πk

2

]2

=
1
2

n∑

k=1

(−1)k +
1
2

n∑

k=1

cos kπ(−1)k =
(−1)n − 1

4
+

n

2
.

Therefore,

CC =
n

2
+

(−1)n − 1
4

. (29)

For the condition β) in (27) we find p = (r + 1)(n + 1), j = (n + 1)/2 and

cos
πpk

n + 1
= cos πk(r + 1) = (−1)k(r+1), cos

2πjk

n + 1
= cos πk = (−1)k.

Then and

CC =
n∑

k=1

(−1)kr =

{
n for even r,

(−1)n − 1
2

for odd r.
(30)

For the latter condition γ) in (27) we get p = (r + 3/2)(n + 1) and j =
3(n + 1)/4. Since

cos
πpk

n + 1
= cos[πk(r + 1) + πk/2] = (−1)k(r+1) cos

πk

2
, cos

2πjk

n + 1
= cos

πk

2
,

then from here and from (190, it follows that CC =
n∑

k=1

(−1)k(r+1) cos2
πk

2
and

coincides with (28), whose result is given by Eq. (29).
Basing on (28) - (300, we can consequently formulate the result for the set

(D):
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∞∑

p∈(D)

CC · J2p(4t) =

(
n

2
+

(−1)n − 1

4

)
δ
j,[n+1

4 ]δn+1
4 ,[n+1

4 ]

∞∑

r=1

J(1+2r)(n+1)(4t)

+ δ
j,[n+1

2 ]δn+1
2 ,[n+1

2 ]

[
n

∞∑

even r

J2(1+r)(n+1)(4t) +
(−1)n−1

2

∞∑

odd r

J2(1+r)(n+1)(4t)

]

+ δ
j,

[
3(n+1)

4

]δn+1
4 ,[n+1

4 ]

(
n

2
+

(−1)n − 1

4

) ∞∑

r=1

J2(r+3(n+1)/2)(4t). (31)

Summarizing the results of calculations given in this section, we write the
Eq. (12) for the temperature distribution in a crystal with an arbitrary number
of particles n:

T̄j =
β

8(n + 1)
(n + 1 + nJ0(4t)) +

β

8
Fj , Fj =

1
n + 1

Φj . (32)

The function Φj is defined by the equation

Φj = −2
∞∑

p∈(B)

CC · J2p(4t) − 2
∞∑

p∈(C)

CC · J2p(4t) − 2
∞∑

p∈(D)

CC · J2p(4t), (33)

in which the individual terms are given by Eqs. (24), (25), (31).

5 Reduction of the Obtained Equations

In the general case, the structure (33) is cumbersome; therefore, to analyze it,
we exclude from consideration points j that can take values (n+1)/4, (n+1)/2,
3(n + 1)/4. Then Fj (32) is

Fj = −n − 1
n + 1

∞∑

evenm

[
J2(2j+m(n+1))(4t) + J2(−2j+m(n+1))(4t)

]
. (34)

From the viewpoint of physics, it is of interest to consider the case of t �
1, which corresponds to times exceeding the time of particle oscillation in the
cell, while not taking into account the influence of the crystal boundaries. In
dimensionless variables, the time of the perturbation propagation through the
crystal τ ∼ n, therefore the effects of reflection from the boundaries do not affect
the temperature distribution, provided that t 
 τ . This means that n � 1 and
inequalities t 
 j + n + 1, t 
 −j + 2(n + 1) are valid for the functions in
(34) for all values j. Hence, the Bessel functions (34) can be replaced by their
asymptotic representations:

Jν

( ν

chα

)
∼ exp (νthα − να)√

2πνthα
∼ exp[−ν(α − 1)]√

2πν
,
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since ν/x = chα � 1. It is easy to show that the contribution of these terms in
(34) does not exceed 1√

n

 1√

t
. Then (32) can be written in the form

T̄j =
β

8
(1 + J0(4t) + ...) . (35)

A numerical analysis of the Eq. (12) was carried out. Plots of the time depen-
dent behavior of the kinetic energy normalized by β/2 are presented in Fig. 1.
The calculations were carried out with n = 500 and different values of j. The
graphs with j = 1 and j = 2 are indicated by a stroke and a short stroke con-
sequently. The continuous line corresponds to the case of j = 3. The absolute
value

∣∣∣ ∂T̄j

∂j

∣∣∣
t=0

∣∣∣ is seen to decrease (Fig. 1), which corresponds to the behavior

defined by formula (16). The amplitude of the presented functions decreases with
time, while their behavior becomes slightly different from each other for differ-
ent j. This means that the influence of particle number on temperature becomes
insignificant with time.

Fig. 1. Kinetic energy with time for j = 1 (stroke), j = 2 (short stroke), j = 3
(continuous line).

The following graphs illustrate the accuracy of the obtained formulae.
Figure 2 the continuous line is drawn by means of the formula (35), and the
stroke line is drawn on the base of the formula (12) for j = 2. Comparison of
graphs shows that the exact solution decreases with respect to time faster than
the approximate one, and the energy output to a stationary value occurs faster
as well.

In Fig. 3 we presented empty squares which correspond to the values obtained
on the formula (12) for j = 100. From here we can see that they lie on the
continuous line drawn by means of the formula (35).
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Fig. 2. Kinetic energy with time for j = 2.

Fig. 3. Kinetic energy with time for j = 100.
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Abstract. In this work we investigate nonlinear dynamics of an elec-
trostatically actuated microbeam resonator, located between two sta-
tionary electrodes, in the regime of supercritical compression. Longitu-
dinal movement of the elastic fastening creates a longitudinal force in
the elastic element of the microresonator. The equations of motion of
the resonator are supplemented by equations of electrical circuits con-
taining sources of electromotive force and capacitors of variable capaci-
tance formed by fixed electrodes and the elastic element of the resonator.
Equilibrium positions depending on the longitudinal displacement of the
elastic fastening mechanism are obtained for various configurations of the
electric field. With different switched on sources of constant electromo-
tive force either two or three critical values of the force are possible, which
differ from the Euler force. A numerical experiment demonstrating the
possibility of the occurrence of a self-oscillatory regime was performed.

Keywords: Microresonator · Electric field · Bifurcations of
equilibrium forms · Critical force · Self-oscillations

1 Introduction

At the moment, the development of MEMS is of great interest and has a wide
range of applications. The use of micromechanical systems in modern technol-
ogy is associated with high sensitivity to changes in system parameters: mass,
pressure, acceleration, temperature.

The problem of axial compression of a rod begins with the works of L. Euler
[1], who solved two static limit problems: the critical load and possible forms of
instability were found in the linear approximation, and with a nonlinear approach
all possible equilibrium forms of the rod loaded at the ends were found (Euler
elastics). In the work of M.A. Lavrenty’va and A.Yu. Ishlinsky [2], taking into
account the inertial forces of transverse motion, a compressive load, significantly
exceeding the Eulerian load, was considered, and it was established that the
c© Springer Nature Switzerland AG 2020
D. A. Indeitsev and A. M. Krivtsov (Eds.): APM 2019, LNME, pp. 139–151, 2020.
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greatest growth rate of the transverse deflection amplitude has a form with a
large number of waves in the longitudinal direction.

In [5,6], the finite velocity of propagation of longitudinal waves in the rod
is taken into account. A short-term longitudinal impact is considered under
the assumption that the impact time is shorter than the travel time of the
longitudinal wave along the doubled rod length and a prolonged impact [3].

In the article [7] the authors consider MEMS accelerometer based on double-
ended-tuning fork resonators. The dynamic performance was demonstrated by
single-frequency and hybrid-frequency vibration tests, and the results showed
that device is suitable for detecting low-frequency vibration (0.5–5 Hz). Device
showed its superiority in mixed acceleration measurement, which makes it a
potentially attractive option for geophone or seismometer applications.

In [8] proposes a resonant accelerometer with sensitivity enhancement and
adjustment mechanisms based on microelectromechanical systems (MEMS).
Accelerometer utilizes a fishbone-shaped resonator as sensing element to enhance
and adjust sensitivity. The preliminary tilt experiment verifies that this proto-
type has potential usage in tilt easurement.

In this work we research the dynamics of a microresonator consisting of an
elastic element in the form of a beam located between stationary electrodes under
the action of a compressive longitudinal force. When turning on the electric field,
the loss of stability occurs if a compressive longitudinal force greater than Euler
force was established. The free oscillations of the resonator under supercriti-
cal compressive loads are investigated, and a positive feedback scheme for the
excitation of self-oscillating regimes is proposed. When conducting numerical
experiments, the effect of variations of different parameters—the gain, the time
constant, and the limit level—on the frequency stability of the oscillator was
investigated.

2 The Scheme and Principle of Operation of the
Microresonator

The Fig. 1. presents the microresonator circuit.

Fig. 1. Microresonator
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The resonator consists of an elastic element in the form of a beam located
between the stationary electrodes. One end of the beam is rigidly clamped, and
the other one is elastically fixed in the longitudinal direction. The elastic element
and the electrodes form two capacitors with variable capacitance. In the space
between the elastic element and the fixed electrodes, an electric field is created
using an electromotive force (EMF) source.

3 Equations of Motion

Consider the oscillations of an elastic element located between two fixed elec-
trodes. In general case, these equations can be written as:

L(w) + Rẅ = Fe(w) (1)

where w – transverse deflection, L(w) – is the differential operator of elas-
ticity, R – is the inertia operator, Fe(w) – is the transverse force that is created
by the electric field.

The equations of motion of an elastic element are derived using the Galerkin
method. The solution is represented as a series expansion with respect to certain
coordinate functions Wk with time dependent coefficients xk(t):

w(x, t) = x1(t)W1 + x2(t)W2 + ... (2)

The eigenforms of the elastic element are taken as the coordinate functions,
without regard to its nonlinear elastic properties and in the absence of the electric
field, which satisfy the equation:

L0Wk − λ2RWk = 0, k = 1, 2, ... (3)

where L0(W ) – is the linearized operator L(W ).
Leaving in the decomposition only one addend corresponding to the first

form, we get:

w(x, t) = x1(t)W1 (4)

The application of the Galerkin method to Eq. (1) with regard to Eq. (4)
leads to the equation of the elastic element oscillations:

mẍ + bẋ + P (x) − 1
2

q21
C2

1

dC1

dx
+

1
2

q22
C2

2

dC2

dx
= 0 (5)

where C1 = C0
d0

d0−x , C2 = C0
d0

d0+x – capacitance on the respective capacitors,
q1 = C1v1, q2 = C2v2 – charges in respective contours, v1, v2 – voltage on the
respective capacitors, C0 – undeformed capacitor capacitance, P – longitudinal
compressive force, depending on the offset of the end of the spring and on the
deflection of the beam.

Equation (5) should be supplemented with the equations of the second Kirch-
hoff law for two electrical circuits:
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{
U + uout − Rq̇1 − v1 = 0

U − Rq̇2 − v2 = 0 (6)

The output signal of the amplifier depends on the input signal as follows:

uout = F (uin) = F (Rq̇2) = F (U − v2) (7)

The characteristic of the amplifier in general has the form:

F (u) = V0
2
π

arctg(
π

2
K

u

V0
) (8)

where K – gain at low input signals, V0 – voltage limiting signal at the output
of the amplifier. This characteristic makes it possible to take into account an
almost linear segment with small input signals, smooth nonlinearity with large
input signals and the limited output signal by some level depending on the
amplifier supply voltage.

Introducing dimensionless parameters: ξ = x
d0

– dimensionless deflection,
τ = λt – dimensionless time, η1 = v1

U and η2 = v2
U – dimensionless voltage,

respectively, on the first and second capacitors.
Then Eqs. (5) and (6) can be rewritten in dimensionless form:

⎧⎪⎨
⎪⎩

ξ′′ + 2nξ′ + (1 − α)ξ + γξ3 − β2η2
1

1
(1−ξ)2 + β2η2

2
1

(1+ξ)2 = 0
V0

2
π arctg(π

2K(1 − η2)) + δ( 1
1−ξ η̇1 − 1

(1−ξ)2 η1ξ̇) + η1 = 1
δ( 1

1+ξ η̇2 − 1
(1+ξ)2 η2ξ̇) + η2 = 1,

(9)

where the physical meaning of each of the introduced dimensionless factors
is the following:

1) β2 = 1
2

C0U2

md2
0λ2 - the ratio of the energy of the electric field to the maximum

energy of oscillations with an amplitude equal to the total gap.
2) δ = RC0λ = 2π RC0

T - the ratio of the capacitor charge time constant to the
period natural frequency. With a small value of this factor, we can not see
the signal at the output, and with a large value, the capacitor will not have
time to recharge in one oscillation period.

3) v0 = V0
U - the ratio of the limiting level of the output signal of the amplifier

to the voltage value of the sources of constant emf.
4) K - gain. By choosing a certain gain value, it is possible to obtain a buildup

of oscillations at small amplitudes.

4 Research of Equilibrium Positions

The motion of the resonator in a dimensionless form under the action of an
electric field only in one of the gaps:

ξ′′ + 2nξ′ + (1 − α)ξ + γξ3 − β2η2 1
(1 − ξ)2

= 0 (10)
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In Fig. 2 shows the bifurcation of the equilibrium positions described by the
Eq. (10)

Fig. 2. Bifurcation of equilibrium positions for different values of the electric field in
one gap β = 0 (1), β = 0.05 (2), β = 0.1 (3)

In the presence of an electric field, two or four equilibrium positions with
alternation of stable and unstable positions are possible. The equilibrium posi-
tion is stable with a small compressive load, remains stable even when the critical
value of the force is equal to unity is exceeded (Euler force in the absence of an
electric field). Two new critical force values appear on the diagram, both of which
are greater than Euler’s strength. With a longitudinal displacement less than the
first critical there are two equilibrium positions, a position with a smaller deflec-
tion is stable, with a large - is unstable. With a longitudinal displacement greater
than the first critical and less than the second critical equilibrium position - four,
two stable and two unstable. With a longitudinal displacement greater than the
second critical equilibrium position two, one with a smaller deflection is unstable,
the other with a large deflection is stable.

Now consider the situation when a symmetric electric field acts. The equation
of motion of the beam in this case is described by the equation:
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ξ′′ + 2nξ′ + (1 − α)ξ + γξ3 − β2η2 4ξ

(1 − ξ2)2
= 0 (11)

In Fig. 3 shows the bifurcation of the equilibrium positions described by the
Eq. (11)

Fig. 3. Bifurcation of equilibrium positions at various values of a symmetric electric
field β = 0 (1), β = 0.05 (2), β = 0.1 (3)

The bifurcation diagrams have a symmetrical appearance. Depending on the
compressive force, we have one, three or five equilibrium positions with alterna-
tion of stable and unstable positions. In the presence symmetric electric field in
each of the gaps critical values is two. The first value is close to the Euler force,
the second is of greater importance. The equilibrium position corresponding to
zero deflection exists at any value of the longitudinal displacement, it is stable at
the longitudinal displacement less than the first critical and unstable at a larger
longitudinal displacement. With a longitudinal displacement less than the first
critical, two equilibrium positions are added, both unstable. With a longitudinal
displacement greater than the first critical and less than the second critical there
are five equilibrium positions, two of them are stable, three are unstable. With a
longitudinal displacement greater than the second critical value, the equilibrium
position is only one, it corresponds to zero deflection and it is unstable.
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Finally, we consider the motion of a resonator, when the electric field acts on
both sides and with different strengths. The differential equation has the form:

ξ′′ + 2nξ′ + (1 − α)ξ + γξ3 − β2η2
1

1
(1 − ξ)2

+ β2η2
2

1
(1 + ξ)2

= 0 (12)

In Fig. 4. shows the bifurcation of the equilibrium positions described by the
Eq. (12)

Fig. 4. Bifurcation of equilibrium positions for different values of the electric field in
two gaps β = 0 (1), β = 0.05 (2), β = 0.1 (3)

Under the action of different electric field in each of the gaps, there are
three critical values. They are all greater than the value corresponding to Euler
force. With a longitudinal displacement less than the first critical there are three
equilibrium positions, one with a small deflection - stable, two with a large
deflection - unstable. With a longitudinal displacement greater than the first
critical and less than the second critical equilibrium position five, two stable
and three unstable. With a longitudinal displacement greater than the second
critical and less than the third critical equilibrium position three, one stable and
two unstable. With a longitudinal displacement greater than the third critical
equilibrium position is one and it is unstable.
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5 Analysis of Free Oscillations

The motion of the system under the action of a field in one gap is described by
the equation:

ξ′′ + (1 − α)ξ + γξ3 − β2η2 1
(1 − ξ)2

= 0 (13)

Writing the energy integral of the Eq. (13), we can get the phase portrait of
the system, which is shown in Fig. 5.

Fig. 5. Phase portrait with an included electric field in one of the gaps (α = 1.5)

In Fig. 5 it is clear that with a force exceeding the critical value (Euler’s
force), the system has four equilibrium positions, two of which are stable and two
unstable. With large initial conditions, it is possible to jump from the oscillatory
regime around three positions to the so-called “sticking” regime, that is, when
the beam touches the stationary electrode and remains there.

The movement of the system under the action of a symmetric field is
described by the equation:

ξ′′ + (1 − α)ξ + γξ3 − β2η2 4ξ

(1 − ξ2)2
= 0 (14)

Similarly, to obtain the phase portrait of the system (14), the energy integral
was written. Figure 6 shows the phase portrait.
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Fig. 6. Phase portrait with an included symmetric electric field (α = 1.5)

From Fig. 6 it can be seen that in the supercritical compression mode with the
symmetric electric field switched on there are five equilibrium positions, two of
which are stable and three are unstable. Equilibrium positions, both stable and
unstable, are symmetric about the zero position. Sticking mode is also possible.

Finally, the equation of motion under the action of a field in two gaps takes
the form:

ξ′′ + (1 − α)ξ + γξ3 − β2η2
1

1
(1 − ξ)2

+ β2η2
2

1
(1 + ξ)2

= 0 (15)

Figure 7 shows the phase portrait of the system (15).
According to Fig. 7, it can be seen that with a compressive force exceeding

the critical value, taking into account the effect of different electric fields in both
gaps of the resonator, there are five equilibrium positions, two of which are stable
and three unstable. It is possible to switch to the “sticking” regime in both gaps.
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Fig. 7. Phase portrait with an included electric field in two gaps (α = 1.5)

6 Self-oscillating Regime

In Fig. 8 shows the electromechanical system for the excitation of self-oscillations.

Fig. 8. Electromechanical system
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The electromechanical model consists of an elastic element in the form of a
beam located between two stationary electrodes. The elastic element and sta-
tionary electrodes form two parallel-plate capacitors. A voltage from a constant
electromotive source is applied to the capacitor plates. When the beam is bent,
the capacitance of the capacitor changes and, accordingly, a charge exchange
current arises, depending on the rate of change of the deflection. The upper elec-
trode is supplied through a resistor R with a voltage from a constant emf source
U . Through the resistor R, the sum voltage is fed to the lower electrode from a
source of constant emf U and the output signal of the amplifier uout.

The system of equations for the excitation of self-oscillations:
⎧⎪⎨
⎪⎩

ξ′′ + 2nξ′ + (1 − α)ξ + γξ3 − β2η2
1

1
(1−ξ)2 + β2η2

2
1

(1+ξ)2 = 0
V0

2
π arctg(π

2K(1 − η2)) + δ( 1
1−ξ η̇1 − 1

(1−ξ)2 η1ξ̇) + η1 = 1
δ( 1

1+ξ η̇2 − 1
(1+ξ)2 η2ξ̇) + η2 = 1,

(16)

The numerical experiment carried out in solving the system of Eqs. (16)
showed that a self-oscillatory regime is possible, corresponding to oscillations
around three equilibrium positions and around one equilibrium position (Fig. 9).

Fig. 9. Oscillogram of the self-oscillation process. 1 – oscillation amplitude, 2 – oscilla-
tion speed, 3 – voltage drop across the second resistor (input signal), 4 – voltage drop
across the first resistor (output signal)

Figure 9 shows the process of buildup of self-oscillations and the subsequent
exit to a limited level of the amplitude of oscillations.

7 The Influence of System Parameters on the Stability of
Self-oscillation Frequency

When conducting numerical experiments, the effect of different parameters
variations—the gain, the time constant, and the limit level—on the frequency
stability of the oscillator was investigated. Figure 10 shows these dependencies.
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Fig. 10. The dependence of the system parameters on the stability of self-oscillations

The gain must be taken large (5000) and its further increase will not lead to
a change in frequency. The time constant δ is better to take a small one. With
a small value of this multiplier, we can not see the signal at the output, but
we obtain the frequency stability of the oscillator, and with a large value the
capacitor will not have time to recharge over one oscillation period, therefore,
at large values of the time constant, the frequency stability of the oscillator
decreases. To ensure frequency stability, it is necessary to take small values of
v0.

Consider the effect of compressive force on the frequency and amplitude of
self-oscillations, which is shown in Fig. 11.

Fig. 11. Influence of compressive force on the frequency and amplitude of self-
oscillations

As can be seen from Fig. 11, with an increase in the compressive force,
the oscillation frequency decreases, but after the critical value of the force is
exceeded, the frequency begins to increase. With an increase in the compressive
force, the amplitude of the oscillations increases, but after exceeding the critical
value of the force, the amplitude begins to fall. For an asymmetric field, the value
of the critical force is slightly less than for a symmetric field. In the supercritical
zone, the slope of the graph is steeper than in the subcritical zone.
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8 Conclusions

A model of a microresonator consisting of an elastic element in the form of a
beam located between stationary electrodes under the action of a compressive
longitudinal force is proposed.

Equilibrium positions are obtained in the presence of a longitudinal compres-
sive force, switched on by one or two sources of constant emf depending on the
longitudinal displacement of the mechanism of elastic fastening. With different
switched on sources of constant electromotive force either two or three critical
values of the force are possible, which differ from the Euler force.

Phase portraits of systems with different field switching are built, using which
the number of equilibrium positions, as well as their stability, are analysed.

A positive feedback scheme for the excitation of self-oscillatory regime was
proposed. The possibility of the oscillation regime both around three equilibrium
positions and around one was shown. When conducting numerical experiments,
the effect of various parameters—gain, time constant, and limiting level—on the
frequency stability of the oscillator was considered. The influence of the compres-
sive force on the frequency and amplitude of self-oscillations was investigated.

The work was carried out at the support of RFBR Grant 17-01-00414.
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Abstract. Metamaterials are materials having artificially tailored inter-
nal structure and unusual physical and mechanical properties. Due to
their unique characteristics, metamaterials possess great potential in
engineering applications. This study proposes a tunable metamaterial
for the applications in vibration or acoustic isolation. For the state-of-
the-art structural configurations in metamaterial, the geometry and mass
distribution of the crafted internal structure is employed to induce the
local resonance inside the material. Therefore, a stopband in the disper-
sion curve can be created because of the energy gap. For the conven-
tional metamaterial, the stopband is fixed and unable to be adjusted in
real-time once the design is completed. Although the metamaterial with
distributed resonance characteristics has been proposed in the literature
to extend its working stopband, the efficacy is usually compromised. In
this study, the incorporation of tunable shape memory materials (SMM)
via phase transformation into the metamaterial plate is proposed. Its
theoretical finite element formulation for determining the dynamic char-
acteristics is established. The effect of the configuration of the SMM can-
tilever absorbers on the metamaterial plate for the desired stopband in
wave propagation is simulated by using finite element model. The result
demonstrates the tunable capability on the stopband of the metama-
terial plate under different activation controls of the SMM absorbers.
The result of this study should be beneficial to precision machinery
and defense industries which have desperate need in vibration and noise
isolation.

1 Introduction

Metamaterials are artificially designed and fabricated material structures which
demonstrate special and/or peculiar properties in contrast to conventional engi-
neering materials. Due to their special properties, such as negative reflectivity,
negative mass and negative Poisson’s ratio, they have potential applications in
electromagnetic wave cloaking, acoustic and vibration inhibition of structure
[1–4].
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The bandgap of the metamaterial in acoustic transmission presents a use-
ful tool for isolating the targeted acoustic wave. Several tunable mechanisms
for the bandgap of acoustic metamaterial have been proposed, such as the use
of piezoelectric actuator [5], the volume control of Helmholtz resonator [6], the
change in the size parameters of a kagome-sphere lattice [7], the use of distributed
vibration absorbers [8,9], and the incorporation of chiral elastic lattice [10], etc.
They all demonstrate the wide bandgap characteristics of their proposed designs.
Although by changing the frequency dispersion function of the structure or the
parameters of the electric circuits, the changeable bandgap can provide more
flexibility of the metamaterial to adapt to different design circumstances, the
time-varying excitation source presents another challenge to real-time adapt-
ability of the metamaterial. For example, the speed of the machine in opera-
tion can change which induces the variation in associated vibration and noise
excitation.

Smart materials, such as piezoelectric ceramics, magnetorheological fluid,
electrorheological fluid, shape memory materials, are a class of materials which
properties can be tuned according to the demand [11]. If smart material is incor-
porated into the metamaterial, the bandgap property can then be tuned by
controlling the property of its constituent smart material. In our previous study,
absorbers consisted of the shape memory material (shape memory alloy and
shape memory polymer) as the structural member were employed in the design
of an acoustic metamaterial beam [12–16]. The activation on the phase change
of the shape memory material by controlling the heating current tuned the fre-
quency of the bandgap and obtained the required isolation of the designated
excitation. As a continuation of the previous work, the SMM absorbers were
used in a plate structure. The design and dynamic characteristics of this acous-
tic metamaterial plate were simulated through finite element modeling.

2 Design of the SMM Absorber and Metamaterial Plate

Figure 1 presents the proposed tunable absorber made of SMM spring. The spring
can be in helical configuration or cantilevered beam configuration. The absorber
with helical spring is able to provide more structural flexibility and more vibra-
tion modes at low frequency range [14]. Therefore, it can present the acoustic
metamaterial plate with wide bandwidth of the stopband. Nevertheless, the fab-
rication of the helical spring is more complicated comparing with its cantilever
counterpart. The SMM cantilever is close to a single degree of freedom system
because its second natural frequency is nearly four times higher than its fun-
damental frequency [17]. For acoustic frequency, this SMM cantilever is easier
to design in the required frequency span. However, due to its lower mass, the
effect of vibration isolation can be limited [18]. As required by the design of
metamaterial, these absorbers should be arranged and attached to base plate
with lattice configuration.

The design of an exemplary SMM cantilever absorber is shown in Fig. 2. An
insulated fixture pad was employed to mount the cantilevers and to secure on the
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Fig. 1. The schematic diagram of the proposed design of SMM absorbers

Fig. 2. The design of an SMM cantilever absorber

base plate. The cantilevers were arranged in parallel and symmetric configura-
tion. The parallel cantilevers were to complete an electrical circuit for the heating
current and the symmetric arrangement was to minimize the rotation loading at
the fixture pad. On the sides of the fixture pad there were two conducting end
tabs for introducing the electric current and forming the control circuit for the
SMM absorbers. If a NiTinol cantilever with diameter d and length l was used,
the following material properties can be applied: mass density ρ = 6450 kg/m3,
Young’s modulus of martensite phase EM = 24GPa, and Young’s modulus of
austenite phase EA = 76GPa [11]. The fundamental frequency of this cantilever
absorber can be written as:

ωa = (1.875)2

√
EI

ρAl4

Accordingly, the fundamental frequencies at low temperature (martensite) and
elevated temperature (austenite) are 1499 Hz and 2668 Hz, respectively. For the
following numerical analyses, the fundamental frequencies for the SMM absorber
in the martensitic and austenitic phases were taken as 1500 Hz and 2500 Hz for
simplicity, respectively.

3 Theoretical Formulation

No matter it is helical SMM absorber or cantilever absorber, its simplification
into a single degree-of-freedom system can facilitate the theoretical formulation
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Fig. 3. Schematic diagram of a rectangular element used in this study

without losing the important physical nature. Starting from the base plate, a
rectangular plate element as shown in Fig. 3 with three degrees-of-freedom at
each corner node was used. An interpolation function w(x, y) for the transverse
deflection of the plate can be written as:

w(x, y) = α1 + α2x + α3y + α4x2 + α5y2 + α6xy + α7x3 (1)

+ α8y3 + α9x2y + α10xy2 + α11x3y + α12xy3

The plate element used has 3 degrees-of-freedom at each node and totally has
12 degrees-of-freedom. The derivation of the elemental stiffness matrix and con-
sistent mass matrix follows the finite element method and the results can be
found in related textbook [17]. Therefore, the detail was not presented herein.
If the damping of the base plate is to be considered, the structural damping
matrix can be obtained by assuming proportional damping for simplicity. With
the derived element matrices, the system matrices for the base plate can be
established by considering the connectivity of the elements. Using the Principle
of Virtual Work, the unconstrained system equations can be obtained as:

MsẌs + CsẊs + KsXs = Fs (2)

If the SMM absorber with single degree-of-freedom was attached to the ith

node, as schematically shown in Fig. 4, an additional degree-of-freedom of the
absorber’s displacement was added accordingly. Depending on the number of
attached absorbers, the system matrices augmented with the corresponding
dimensions. The following modifications were performed to consider the effect of
attached absorbers:

M = Ms + ΔMs, C = Cs + ΔCs, K = Ks + ΔKs (3)

ΔMs =

[
0 0

0 ma

]
, ΔCs =

[
ca −ca

−ca ca

]
, ΔKs =

[
ka −ka

−ka ka

]
(4)
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Fig. 4. The schematic diagram of the metamaterial plate installed with absorbers at
the nodes

In the above equations, the first degree-of-freedom corresponded to that of wi at
ith node of the base plate while the second degree-of-freedom related to added
degree-of-freedom of wai from the absorber. Figure 4 shows an example of the
base plate having absorbers attached to the nodes. After finishing the amend-
ment of the system matrices with all the attached absorber, the system equations
need to consider the boundary constraints on the base plate. By imposing the
boundary conditions on the corresponding nodes, the constrained system gov-
erning equation can be written as:

MẌ + CẊ + KX = F (5)

The frequency response of the system equation, Eq. (5), can be obtained by
performing sweep sine analysis. A sinusoidal input force function was applied at
certain input node and the corresponding response at designated output node
can be calculated. The frequency response of the system over a desired frequency
span can be calculated by increasing the sinusoidal frequency step-by-step. The
system characteristics can also be examined through the time response. In this
study, the following Newmark’s method [17] was adopted:

Ẋt+Δt = Ẋt +
[
(1 − δ)Ẍt + δẌt+Δt

]
Δt (6)

Xt+Δt = Xt + ẊtΔt +

[
(
1

2
− α)Ẍt + αẌt+Δt

]
Δt2 (7)

MẌt+Δt + CẊt+Δt + KXt+Δt = Ft+Δt (8)

In the above equations, α and δ are the parameters for controlling the integra-

tion accuracy and stability. In this study, a trapezoidal rule with α =
1

4
and

δ =
1

2
was employed as in usual practice. It should be mentioned that the pur-

pose of this study is mainly to simulate steady state system response as the
absorber is switched between two controllable phases- martensite and austenite.
The transient response and the physical model from the hysteresis of the phase
transformation was not modeled and considered herein.
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4 Results and Discussion

4.1 A Rectangular Plate in Simply-Supported Boundary Condition

A rectangular plate made of aluminium (Young’s modulus 72.4 GPa, Pois-
son’s ratio 0.33, mass density 2780 kg/m3) with 187.5 mm× 150 mm and thick-
ness of 3 mm was discretized into 4 × 5 elements. Firstly, consider the plate
was in simply-supported edges. The frequency response function of this simply-
supported plate was shown in Fig. 5. The first three natural frequencies were
extracted from the peaks of the frequency response function and listed in Table 1.
Along with these finite element results, the analytical ones calculated from the
formula of vibration textbook [18] were also included. The percentage errors of
these first three frequencies from the finite element simulation were all smaller
than 4%. Therefore, the accuracy of the finite element program was validated.
Also presented in Fig. 5 are the frequency response spectra of the simply-
supported plate with absorbers attached to each node inside the discretized
domain. There were 12 internal nodes inside the simply-supported boundary.

Table 1. The natural frequencies of a simply-supported rectangular plate

Mode 1st 2nd 3rd

Analytical results (Hz) 536.0 1163.6 1516.6

FEM results (Hz) 523.0 1117.0 1475.0

Error (%) −2.43 −4.00 −2.74

Fig. 5. The frequency response spectra of a rectangular plate in simply-supported
boundary condition with/without absorbers
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Fig. 6. The frequency response spectra of a cantilevered plate with 25 absorbers acti-
vated in different phase states

Therefore, 12 single degree-of-freedom absorbers were used in this metamaterial
plate. As mentioned previously, each absorber can be tuned in martensite state
(ωa = 1500 Hz) or austenite state (ωa = 2500 Hz). It can be clearly seen that
for each tuned state, the plate showed a stopband corresponding to the natural
frequency of the absorber. In other words, if the absorbers were excited from
martensite to austenite phase, the stopband frequency can be shifted from 1500
to 2500 Hz.

4.2 A Rectangular Plate in Cantilevered Boundary Condition

The same plate with the same finite element discretization but with cantilevered
boundary condition along the left edge was considered in the following. There
were 25 nodes for the installation of one absorber at each node. For the absorbers
activated in martensite or austenite state, the frequency response spectra, as seen
in Fig. 5, showed a bandgap at 1500 Hz and 2500 Hz, respectively. Similar stop-
band performance was observed for this plate in cantilevered configuration com-
paring with those in simply-supported configuration. If the absorbers were acti-
vated differently in two grouped regions, their frequency response spectra were
also presented in Fig. 5. In these cases, both stopbands at 1500 Hz and 2500 Hz
occurred but with less effectiveness. More absorbers at right frequency installed
could demonstrate more damping on the targeted signal. Figure 7 presents the
frequency response spectra of the cantilevered plate with the martensite and
austenite absorbers arranged in different configurations. The alternate config-
uration represented the 25 absorbers were activated in spatially alternating
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Fig. 7. The frequency response spectra of a cantilevered plate with 25 absorbers acti-
vated in different configuration states

nodes, i.e. one martensite absorber was surrounded by neighboring austenite
absorbers. On the other hand, the grouped configuration denoted the 13 marten-
site absorbers and 12 austenite absorbers were arranged in proximity neigh-
borhood. The same activated absorbers were placed in closer spacing for the
grouped configuration. It is clearly seen that both configurations still revealed
the bandgap at 1500 Hz. However, at higher frequency, the grouped configura-
tion showed better bandgap formation than its alternate counterpart. Therefore,
for inducing the bandgap at higher frequency, closer spacing of the installed
absorbers is required. The distribution effect of the absorbers on the stopband
characteristics were further explored in this cantilevered plate. With only 12
austenite absorbers installed at the discretized nodes, Fig. 8(a) presents the dis-
tribution of 6 different configurations. Their corresponding frequency response
spectra near the stopband were also shown in Fig. 8(b). Because only 12 out
of 25 available nodes were installed with absorbers, the stopband at designated
2500 Hz was not effective as that presented in Fig. 6 for all nodes installed. Nev-
ertheless, among the 6 different distribution configurations, the more grouped
arrangement demonstrated better stopband characteristics. For the alternate
arrangement of the absorbers, nearly no stopband was observed in the frequency
response spectrum, which was also mentioned in Fig. 7 previously. Figure 9
presents the time responses of the cantilevered plate with/without absorbers
installed and subjected to sinusoidal excitation at 2500 Hz. Without absorber,
the base plate vibrated in the same frequency as the excitation and showed no
decay in vibration amplitude with time because no damping for the base plate
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Fig. 8. A cantilevered plate with 12 absorbers installed in different distributions: (a)
the configurations of absorber distribution; (b) the corresponding frequency response
spectra

Fig. 9. The time responses of the cantilevered plate with and without absorbers
installed and subjected to sinusoidal excitation at 2500 Hz
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was assumed. As 12 absorbers were installed in grouped configuration, the sim-
ulated time responses at the measured locations before and after the grouped
absorber domain in the propagation path looked different in nature. Before the
absorbers in the propagation path, although a disturbance from the installed
absorbers altered the time response, a significant constituency of the input exci-
tation at 2500 Hz was clearly seen. Since a small damping was assumed in the
absorbers, slight reduction in the time response with time was observed. The
time response at node after the absorbers showed totally different result. The
constituent from the 2500-Hz excitation in the time response was barely seen.
The result demonstrates the tuned absorbers are able to trap the vibration at
the designed frequency and prevent it from propagating downstream.

5 Conclusion

A simulation on the design and dynamic characteristics of the proposed acoustic
metamaterial plate with installation of SMM absorbers was performed in this
study. The cantilevered beam configuration of the SMM absorber was easy to
implement on an existing structure. The simulation using finite element formu-
lation demonstrated the tunable stopband of this metamaterial plate in different
boundary conditions. In other words, by controlling the cantilever absorber in
martensite or austenite phase the working stopband frequency can be tuned in
lower or higher frequency domain. The arrangement of the SMM absorbers on
the base plate also plays an important role in demonstrating the function of this
metamaterial plate. A more grouped arrangement of the absorbers was better
in enforcing the stopband especially at higher design frequency. The experimen-
tal measurement on this tunable metamaterial plate can be subject for further
study.
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Abstract. For some structures under service loads there is a need of pre-
cise control of local boundary displacement and/or its tangential gradient
by an additional loading of one or two punches. Such problems exist in
design of robot grippers or mechanical tools used in element assembling
or in other mechanical processes. The punch interaction is assumed to be
executed by a discrete set of pins or by a continuously distributed contact
pressure. The optimal contact force and pressure distribution are defined
in terms of assumed control function, for which contact shape is specified
for both discrete and continuous punch action. For beam or plate struc-
tures three classes of control are considered. First, requiring by punch
action the fixed load FQ and displacement u∗

Q at a specified position,
second, requiring the load-displacement FQ = FQ(u∗

Q) evolution by the
varying punch load and third, provide deflection and slope control at a
specified position by a coordinated action of two punches. The reciprocal
motion of a transverse pin attached to the beam is induced by varying
punch forces. The punch position is specified by satisfying constraints
on maximum punch pressure and equivalent Mises stress on the contact
interface. Several illustrative examples are presented to illustrate punch
control for different boundary supports and three control classes.

Keywords: Contact problem · Displacement and slope control ·
Optimal pressure distribution · Optimal contact shape

1 Introduction

The design parameters in structural optimization are usually defined as material
moduli, structure size, shape and topology characteristic parameters, supports,
loads, inner links, reinforcement, cf. Banichuk [1]. The mathematical program-
ming technique has been used by many authors for shape optimization of struc-
tures. Referring to contact problems, usually the peak contact pressure and the
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interface stress concentration have been minimized by using special mathemat-
ical programming techniques and contact shape sensitivity analysis [2]. In [3],
and [4,5] several classes of contact optimization problems have been considered
with account for wear process.

A class of contact optimization problems for kinematical constraints has been
treated in the paper by Páczelt [6]. Several classes of optimization problems
have also been considered in the paper [5]: for axisymmetric punch shapes of
arbitrary meridian profile the contact shape optimization problems were treated
for specified punch displacement, prescribed punch load and for steady wear state
conditions. In some examples the effective Mises stress was required to be below
a prescribed ultimate stress. The numerical solutions have been obtained by
applying a special iteration process using also the concept of partially controlled
contact pressure [7]. The monographs of Goryacheva [3] and Wriggers [8] are
essential sources for analytical and numerical methods of solution of contact
problems, including wear analysis. The finite element analysis is useful for solving
contact problems, cf. Szabó and Babuska [9].

In work [10] a new class of optimization problems was formulated. It is
required that at the same boundary point (or points) of a structure, the dis-
placement and force are prescribed. To achieve this condition, the punch contact
pressure action is applied at some location on the structure boundary. Then, the
punch force and its location should be specified, combined with specified contact
pressure distribution and required contact shape, satisfying the constraint set on
the maximal contact pressure and the stress level at contacting material inter-
faces. In this paper the problem is extended. Namely, the beam is investigated
in a way, that the normal displacement, slope and normal force are prescribed
at the same section of the beam. In this case two punches execute action on the
beam. For specified geometry and material parameters an interval can be set, in
which the position of the punch/punches - at adequate loads - can ensure the
desired displacement and maximal/minimal slope value. The illustrative cases
can be seen in Example 2.2 and in Figs. 7, 9 in Sects. 3, 4 concerning the above
mentioned problems. The prescribed displacement and slope at the cross section
Q can be chosen at any time and they can be reached by adequate positioning
and punch action control. This fact ensures the existence and uniqueness of our
solution. This problem can exist in the design of robot elements, such as clip-
pers and gardening or plantation tools used for mechanical processing. In other
words, the problem is reduced to a local displacement and its slope control in a
structure subjected to service loads, such as an assembling robot gripper [11].

It is assumed that materials of the contacting bodies are linearly elastic, dis-
placements and strains are small. The supporting constraints set on a structural
element are most important in specifying a proper controlling punch action.

In mechanical engineering practice fairly abundant operation called “pick and
place” is related to lifting the cylinder and placing in a new position, Fig. 1a.
In this case, the cylinder is compressed along its diameter by two plates induc-
ing normal contact displacements u∗

Q nonlinearly related to contact forces FQ.
In the assembling process of mechanical elements a typical operation is to place
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Fig. 1. Typical robot gripper operations: a) compressing cylinder by required nor-
mal forces b) placing cylinder into a structural element hole. In both cases the load-
displacement relation FQ = FQ(u∗

Q) results from contact interaction. c) tool displace-
ment control.

one body (cylinder) into a hole of another body, Fig. 1b. In this case the cylinder
must execute translation u∗

Q under increasing axial force FQ induced by friction
between cylinder and hole. In both operations the prescribed force and displace-
ment values are required at the same point. In Fig. 1c the control of normal and
tangential tool displacement is presented.

In the paper three classes of displacement control problems will be discussed.
First, it is assumed that punch should apply the fixed loading assuring the
required values of FQ and u∗

Q at a specified position Q, where the interaction
of the gripper with an object occurs. The optimal punch action inducing such
control is discussed in Sect. 2. The second class of control requires the varying
punch load in order to follow the relation FQ = FQ(u∗

Q) resulting from gripper
interaction with a structural element. Such varying load control is considered
in Sect. 3 by assuming the action of two punches. In Sect. 4, the most advanced
control by two punches applying fixed or varying loads is considered by requir-
ing the control of both: normal displacement and its slope. Then a working
tool attached to the beam can execute not only normal displacement, but also
tangential displacement required by an executed technological process.

2 Control of Beam Deflection at Loading Point Q

Consider a beam shown in Fig. 2 with two support conditions at the left end A
and with free right end B. In the first case the cantilever beam is built-in at
its end A (it is referred to as Beam I ). In the second case, the beam is allowed
to slide vertically at its support A with constrained rotation (it is referred to
as Beam II ). In both cases the beam is loaded at point Q by the force FQ,
inducing the deflection u

(2)
n in the −z direction. To keep the deflection of Q at

the required value u∗
Q, the discrete or continuous punch action is applied within

the specified contact zone region Ω defined as an interval L1 ≤ x ≤ L4 of the
length lc = L4 − L1. The punch is allowed to translate in the normal direction
n to the beam and exert contact pressure.
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Fig. 2. Beam and punch system for transmission of load F0 interacting with the force
FQ to induce vertical displacement u∗

Q and slope θ∗
Q. Beam 2 is allowed for rigid body

displacement λ
(2)
F and elastic deformation, a) x0 ≤ xQ, b) x0 ≥ xQ.

The beam cross section area is Ab = abhb, inertia moment equals I =
abh

3
b/12, and Young modulus is denoted by E. Two schemes correspond to a)

x0 ≤ xQ and b) xQ ≤ x0. In our analysis the strength condition will be applied
in specifying beam heights. An alternative design of varying heights is also con-
sidered. The contact pressure distribution is assumed in the form

pn = c(x)pmax, c(x) ≤ 1, for x ∈ Ω (1)
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where c(x) is the control function and pmax is the maximal pressure. Usually the
control function is assumed and the constraint is set on the maximal pressure
which depends on punch position and the contact zone length. Determination of
the initial gap between punch and beam corresponding to pressure distribution
(1) constitutes the objective of numerical analysis. For the first class of control
problem two designs are considered. First, the punch center location is assumed
as fixed and second, specifying punch position with account for the beam stress
constraint σmax ≤ σu, where σu is the ultimate stress value. The problem is
solved in two main steps. First, using the stamp equilibrium condition at given
control function c(x) and constraint of normal displacement at the point Q. In
this way pmax is specified, see Eq. (3). Second, from contact condition between
the stamp and beam the initial gap between the contacting bodies is determined.

Consider first the case of punch action executed by a set of punch pins, as
shown in Fig. 2, with thickness a, width b and cross section area A = ab. The
forces between punch and beam are specified by Eq. (1), thus

Pj = Ac(xj)pmax, j = 1, 2, . . . , kont (2)

For Beam II under applied load F0 = FQ on the punch, the maximal pressure
results from the equilibrium condition

pmax =
F0

kont∑

j=1

c(xj)A
(3)

but for Beam I, using equation u∗
Q =

kont∑

j=1

H(2)(xQ, xj)PJ + u
(2)
n,load we find

pmax =
u∗
Q − u

(2)
n,load

kont∑

j=1

H(2)(xQ, xj)c(xj)A
(4)

where H(2)(x, s) is the influence Green function (see Appendix A), u
(2)
n,load < 0 is

the displacement at point Q induced by the load FQ. In the equation for u∗
Q the

first term provides the deflection due to load F0, and the second term provides
the deflection due to load FQ. The Beam II displacement in the normal direction
n along the axis −z equals

u∗
Q = λ

(2)
F +

kont∑

j=1

H(2)(xQ, xj)PJ + u
(2)
n,load (5)

because the beam end A executes the sliding displacement λ
(2)
F . Using the influ-

ence function for calculation of u
(2)
n,load, we can write

u
(2)
n,load = −H(2)(xQ, xQ)FQ = −H

(2)
Q,QFQ (6)
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and the support displacement can be determined from (5)

λ
(2)
F = u∗

Q −

⎛

⎜
⎜
⎜
⎝

kont∑

j=1

H(2)(xQ, xj)
c(xj)

kont∑

j=k

c(xk)
− H

(2)
Q,Q

⎞

⎟
⎟
⎟
⎠

FQ (7)

The contact condition (gap after deformation) between the punch and beam is

di = u
(2)
in − u

(1)
in + g

(0)
i = 0, i = 1, . . . , kont (8)

Using the influence Green functions, Eq. (8) can be expressed as follows

λ
(2)
F +

⎛

⎝
kont∑

j=1

H(xi, xj) − H
(2)
i,Q

⎞

⎠ FQ − λ
(1)
F + g

(0)
i = 0 (9)

where

H(xi, xj) =
(
H(1)(xi, xj) + H(2)(xi, xj)

) c(xj)
kont∑

k=1

c(xk)
(10)

Discretizing (8)–(10) we can write

d =
(
iterHe − h(2)

Q

)
FQ + eλ(2)

F − e(iter)λ(1)
F + (iter)g(0) = 0 (11)

where h(2),T
Q =

[
H

(2)
1,Q, H

(2)
2,Q, . . . , H

(2)
i,Q, . . . H

(2)
kont,Q

]
, eT = [1, . . . , 1, . . . , 1].

Because FQ and λ
(2)
F are known (see (7)), then iteru can be calculated, namely

iteru =
(
iterHe − h(2)

Q

)
FQ + eλ(2)

F (12)

and from the following equation

iteru − e (iter)λ
(1)
F + (iter)g(0) = 0 (13)

one can easily find (iter)λ
(1)
F . When specifying (iter)g(0), suppose (iter)g

(0)
1 = 0,

then (iter)λ
(1)
F =(iter)u1 and from (13) we determine the initial gap (iter)g(0).

2.1 Example: Beam I for the Discrete Punch Action

Geometric parameters: ab = 20mm, hb = 70mm, L = 950mm, xQ = 850mm,
L1 = 220mm, L4 = 280mm. Punch pins cross section A = ab = 5·20 = 100mm2,
li = 50mm, i = 1, . . . , kont, kont = 5. Material parameters: Young modulus
E = 2 · 105 MPa, σu = 150MPa. The punch centre position x0 = 250mm
corresponds to the position parameter ξ = x0/xQ = 0.556. The specified vertical
displacement at the point Q is u∗

Q = 2mm and the required force values are
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FQ = 4kN, FQ = 5kN, FQ = 6kN. The influence functions for punch are
calculated as H

(1)
i,j = li/AE and for the beam according to Appendix A.

In the starting position of the punch, at x0 = 250mm, lc = L4 −L1 = 60mm
the maximum stress is σmax = 536MPa. However, for the optimal solution the
punch should be moved in the right direction. The optimal deflection form, initial
gap form and σmax are presented in Fig. 3 for three values of force FQ. A special
“second type iteration” method [5] was used for solution of these optimization
problems. At the optimal solution the values of load F0 and pressure pmax,
position length L1, rigid body displacement λ

(1)
F are collected in Table 1. The

load factor efficiency now is f0 = F0/FQ ≈ 2–2.5.
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Fig. 3. Beam I deflection form for c(x) = 1, a) for prescribed forces FQ = 4 kN,
FQ = 5 kN, FQ = 6 kN, b) Initial contact gap, c) σmax distribution along beam length.
/Position of punch is denoted by o at FQ = 5 kN, see Fig. 3a/

2.2 Example: Beam II for the Continuous Punch Action

Geometric data and material parameters are the same before. It is also supposed
that c(x) = 1, that is contact pressure is constant, pn(x) = F0/(b(L4 − L1)) =
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Table 1. Punch loads, maximal contact pressures, punch positions, and rigid body
displacements for optimal design solutions.

FQ [kN] F0 [kN] pmax [MPa] L1 [mm]
x0 = L1 + lc/2

λ
(1)
F [mm]

4 10.99 21.98 502.12 1.57

5 11.87 23.74 534.59 1.68

6 12.78 25.56 560.76 1.76

4.1666MPa. The force at point Q is equal to FQ = 5kN, the required vertical
displacement is u∗

n = 2mm. The punch centre position is assumed at x0 =
250mm (for L1 = 220mm, L4 = 280mm). The plane stress state is assumed in
the elastic punch. The normal displacement u

(1)
n = (x, pn) was calculated by the

finite element method, using p-version technique, Szabó and Babuska [9]. Solving
the contact problem, it is found λ

(1)
F = 9.26mm, λ2

F = 9.9mm and the beam
maximal bending stress is σmax = 183.67MPa. Assuming the admissible stress
value σu = 150MPa, the punch action must be moved in the right direction.
Using the iteration method of Ref. [5] for solution of this optimization problem,
we obtain the punch centre position at x0 = 360mm, the contact zone length
lc = 60mm and the position factor ξc = x0/xQ = 0.4235. The rigid body
displacements are λ

(1)
F = 7.71mm, λ

(2)
F = 8.88mm. The deflection curves and

the maximal normal stresses of initial and optimized designs are shown in Fig. 4.
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Fig. 4. a) Beam II deflection forms of the initial and optimized designs, b) maximal
normal stresses along the beam axis x for two designs. The punch position is marked
by o or +.
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3 Control of Beam Deflection and Slope by the Action
of Two Concentrated Loads

Consider now the beam of Fig. 5 with the sliding support at left end, loaded by
two concentrated loads F−

0 = F−
Q and F+

0 = F+
Q at the distances x−

0 and x+
0 . The

specified contact force at Q located at the distance xQ now is FQ = F−
Q +F+

Q . At
the support the transverse force equals Fb = 0. Denote the load position factors
by ξ−

0 = x−
0 /xQ and ξ+0 = x+

0 /xQ. The case of concentrated loads can be treated
analytically and its solution provides an input to the analysis of distributed two
punches action.

Fig. 5. Beam II is loaded by two forces F −
0 , F+

0 inducing at the point Q the required
force FQ = F −

Q +F+
Q . The exact normal displacement value (deflection) at Q is required,

w = u∗
Q, also the slope at this point is required, θ = dw/dx = θ∗

Q.

The normal deflection at the point Q (along −z-axis) due to force FQ (can
be expressed from the formulae of Appendix A) equals wQ = − F0

3EI x3
Q = −|wQ|.

Deflection in the direction −z will be denoted by w. Consider first the case of
single force action at x−

0 ≤ xQ, or ξ−
0 ≤ 1. The deflection form now is expressed

as follows

w− = − F−
Q

2EI
(xQ − x−

0 )x2 + w−
b , 0 ≤ x ≤ x−

0 ,

w− = − F−
Q

2EI

[
[
xQx − (x−

0 )2
]
x +

1
3

[
(x−

0 )3 − x3
]
]

+ w−
b , x−

0 ≤ x ≤ xQ

w− = − F−
Q

2EI

[
[
x2
Q − (x−

0 )2
]
x +

1
3

[
(x−

0 )3 − x3
Q

]
]

+ w−
b , xQ ≤ x (14)

For the single force action at x+
0 ≥ xQ, or ξ+0 ≥ 1, we have

w+ =
F+
Q

2EI
(x+

0 − xQ)x2 + w+
b , 0 ≤ x ≤ xQ,
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w+ =
F+
Q

2EI

[

(x+
0 x − x2

Q)x − 1
3
(x3 − x3

Q)
]

+ w+
b , xQ ≤ x ≤ x+

0

w+ =
F+
Q

2EI

[
[
(x+

0 )2 − x2
Q

]
x − 1

3
[
(x+

0 )3 − x3
Q

]
]

+ w+
b , x+

0 ≤ x (15)

When two forces load the beam, then

w = w− + w+, FQ = F−
Q + F+

Q , wb = w−
b + w+

b (16)

where wb denotes the beam translation at the support. Supposing the contact
interaction load FQ to be attained by the combined two forces action, we can
write (Fig. 6)

FQ = F−
Q + F+

Q = k−(u∗
Q)m + k+(u∗

Q)m. (17)

Fig. 6. Contact of a rigid sphere with an elastic-plastic body: non-linear indentation
function FQ = FQ(u∗

Q) = k(u∗
Q)m.

Requiring w = u∗
Q at Q, the beam translation wb is then determined, thus

wb = u∗
Q +

k−(u∗
Q)m

3EI
x3
Q

[

1 − 1
2
(3(ξ−

0 )2 − (ξ−
0 )3)

]

− 1
2

k+(u∗
Q)m

EI
x3
Q(ξ+0 −1) (18)

If the separate load action is assumed, the beam deflections at the points x−
0 ,

x+
0 are

w−
0 = u∗

Q +
k−(u∗

Q)m

3EI
x3
Q

[
1 − 3(ξ−

0 )2 + 2(ξ−
0 )3

]
, ξ−

0 ≤ 1 (19)

and

w+
0 = u∗

Q +
k+(u∗

Q)m

3EI
x3
Q

[
(ξ+0 )3 − 3ξ+0 + 2

]
, ξ+0 ≥ 1. (20)



Contact Optimization 173

At force F−
Q = k−(u∗

Q)m and F+
Q = k+(u∗

Q)m deflection at the point Q is
∣
∣
∣w∓

Q

∣
∣
∣ =

k∓(u∗
Q)m

3EI
x3
Q (21)

Using (14) and (15) we can derive the formulae for displacements at the
points x−

0 , x+
0 due to two forces

w−
0 = w−

0 (u∗
Q) =

k−(u∗
Q)m

3EI
x3
Q

3
2

[
(ξ−

0 )3 − (ξ−
0 )2

]

+
k+(u∗

Q)m

3EI
x3
Q

3
2
(ξ−

0 )2(ξ+0 − 1) + wb (22)

w+
0 = w+

0 (u∗
Q) =

k−(u∗
Q)m

3EI
x3
Q

1
2

[
3ξ+0 (ξ−

0 )2 − 3ξ+0 − (ξ−
0 )3 + 1

]

+
k+(u∗

Q)m

3EI
x3
Q

1
2
(1 + 2(ξ+0 )3 − 3ξ+0 ) + wb (23)

If the k∓ = k∓(τ) are changing in time, then the forces FQ(τ) = F−
Q (τ) +

F+
Q (τ) = F0 and the deflection also varies in time, thus

w(τ) = w−(τ) + w+(τ) (24)

At the point Q the beam deflection is required to preserve the value u∗
Q(τ). This

value is reached through the varying displacements w−
0 (τ), w+

0 (τ). Alternatively,
the force-displacement relation FQ = FQ(u∗

Q) can be attained by one varying
force action.

Consider now the advanced beam control by requiring the specified deflec-
tion and slope value to be preserved at the interaction point Q. Such control
can be attained by the action of two punches at x+

0 and x−
0 . Considering the

concentrated load action, from Eqs. (14) and (15) we obtain the expression of
slope value

w′
Q =

dw

dx
= −F−

Q x2
Q

2EI

[
1 − (ξ−

0 )2
]
+

F+
Q x2

Q

2EI
2(ξ+0 − 1) = θ∗

Q (25)

Satisfying the condition FQ = F−
0 + F+

0 = F−
Q + F+

Q , from (25) the values of
two loads per unit beam width are obtained, thus

F−
0 =

2FQx2
Q(ξ+0 − 1) − 2EIθ∗

Q

x2
Q

[
2ξ+0 − (ξ−

0 )2 − 1
] , F+

0 =
FQx2

Q(1 − (ξ−
0 )2) + 2EIθ∗

Q

x2
Q

[
2ξ+0 − (ξ−

0 )2 − 1
] . (26)

Denoting the load fractions by f−
0 = F−

Q /FQ and f+
0 = F+

0 /FQ, the dia-
gram of evolution of the slope angle θ∗

Q on load fractions and their positions is
presented in Fig. 7. The relations (26) can now be written as follows

f−
0 =

2(ξ+0 − 1) − 2βθ∗
Q

2ξ+0 − (ξ−
0 )2 − 1

, f+
0 =

[
1 − (ξ−

0 )2
]
+ 2βθ∗

Q

2ξ+0 − (ξ−
0 )2 − 1

, β =
EI

FQx2
Q

. (27)

If we take account the influence on pin (see Fig. 8) for deflection and slope,
(EI)mod = EI − sFQxQ will be taken instead of EI.
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Fig. 7. Dependence of the beam slope θ∗∼
Q = 2βθ∗

Q on two load fractions f−
0 , f+

0 their
positions ξ−

0 , ξ+0 and beam stiffness–54load ratio β = EI/FQx2
Q, a) ξ−

0 = 0.70, b)
ξ−
0 = 0.95.

4 Control of Displacement and Slope in a Beam
with a Transverse Tool at Point Q

Consider now the beam with transversely attached rigid pin of length s, Fig. 8.
At the end of the pin only vertical force is supposed. The frictional case will be
investigated in a separate paper. Now the control of beam is aimed to induce a
required trajectory in the plane x−z. Assume that first the normal deflection u∗

Q

is attained at vanishing slope θ∗
Q = 0 and next the end of pin executes reciprocal

translation of amplitude 2ã along the x-axis at fixed value of deflection. The
derived formulae (26) or (27) allow us to execute such pin motion by varying
two loads. First, setting θ∗

Q = 0 in (26) the values of F−
0 and F+

0 are obtained
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Fig. 8. Beam II with a rigid transverse tool at Q loaded by two forces F −
0 , F+

0 such
that F −

0 + F+
0 = FQ. The control of displacement u∗

Q and slope θ∗
Q at Q provides the

control of tool end displacement.

and the value of FQ assures the transverse displacement value at Q. The ratio
of forces equals

f−
0

f+
0

=
F−
0

F+
0

=
2(ξ+0 − 1)
1 − (ξ−

0 )2
, f−

0 + f+
0 = 1. (28)

In the load diagram, Fig. 8b, the initial force state is represented by the point
A. Next, the loads vary following the loading path f−

0 +f+
0 = 1 in the force plane.

For the assumed symmetric sliding of the pin end relative to the initial position,
the force reversal states are represented by the points C+ and C− in Fig. 8b.
Note that AC−/AC+ = AB−/AB+. Then the maximal and minimal values of
the slope are reached at B− and B+ for the single load actions. From (27) it
follows that

(θ∗
Q)− = −f−

0

[
2ξ+0 − (ξ−

0 )2 − 1
] − 2(ξ+0 − 1)

2β
,

(θ∗
Q)+ =

f+
0

[
2ξ+0 − (ξ−

0 )2 − 1
] − (1 − (ξ−

0 )2)
2β

(29)

and the total slope equals θ∗
Q = (θ∗

Q)− + (θ∗
Q)+. The extreme slope values are

obtained for f−
0 = 1, f+

0 = 0 and f+
0 = 1, f−

0 = 0, thus

(θ∗
Q)min = −1 − (ξ−

0 )2

2β
, (θ∗

Q)max =
ξ+0 − 1

β
(30)

The related tool end displacements are Δx− = −(θ∗
Q)mins, Δx+ = −(θ∗

Q)maxs

and the maximal translation amplitude is (Δx)ã =
[
2ξ+0 − 1 − (ξ−

0 )2
]
s/β.

When the specified tool sliding amplitude is less than the maximal value,
the loading program is executed along the portion of the loading path shown in
Fig. 8b. Non-linear effects related to large beam deflections, large slope variation
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at Q and the effect of contact friction are not considered here. The slope depen-
dence on the parameter β is shown in Fig. 9 and the deflection curve is presented
in Fig. 10.
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Fig. 9. Minimum (a) and maximum (b) of the slope for varying parameter β.

The formulae presented are valid also for the case ξ−
c = 0, when the load F−

0

is applied at the sliding support. A similar design is used in the atomic force
microscope, where a cantilever beam with a sliding support at the left end and
a sharp transverse pin at the right end are used. The load is then applied at the
left support and its translation is controlled in order to generate proper contact
force of pin. The present design is more complex requiring the pulsating load
application of two punches in order to generate the reciprocal sliding motion
of pin. Such design and punch action can be used in developing a wear testing
apparatus at both micro and macro-scales.
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Fig. 10. Deflection of the beam II for loads F −
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0 , f−
0 = f+

0 = 0.5, β = 1.2271,
βmod = 1.1918.

5 Conclusions

The optimal design of punch action in order to control normal displacement at
a loaded boundary point in a structural element has been discussed in the paper
and illustrated by the specific examples of beam deflection control. A new class
of optimization problems has been analysed, when at one boundary point both
displacement and force are specified. It has been shown that support constraint
can affect essentially the punch load and the beam deflected form. The problem
formulation was also extended to control both the deflection and its slope at
a loaded boundary by the action of two punches. For varying punch loads the
control was aimed to induce reciprocal tool sliding on the contact surface.
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Appendix A

Using Betti theorem, the influence (Green) function for cantilever beam (Fig. 11)
has the form

H(2)(xi, xj) = H
(2)
i,j =

1
6EI

[
(3xjx

2
i − x3

i ) + 〈xi − xj〉3
]

where I is the inertia moment of cross section, E is the Young modulus,

〈xi − xj〉3 =
{

(xi − xj)3, if xi > xj ; and 0 if xi ≤ xj

}
.
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Fig. 11. Load for calculation of the influence function of the cantilever beam.
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Abstract. One of the effective approaches to the retardation of cracks in pipes
is based on thermal reinforcement of rolled sheet. For the manufacture of pipes it
was proposed to use thermally reinforced steel sheet with periodic strengthened
strips. These barriers in the crack path reduce the rate of its propagation and
change its trajectory. The direction of crack propagation may be controlled by
the configuration of these barriers. This paper presents experimental and theo-
retical results concerning the direction of crack propagation near the boundary of
a strengthened part of a steel sheet depending on the angles of inclination of this
boundary with respect to the initial crack trajectory. The competition between
deflection and penetration at the interface is investigated for different ratios of
the strength limits of the strengthened material and the matrix. The problem is
studied using known expressions for the stress components in the vicinity of
crack tips with non-singular terms associated with load biaxiality, and the
generalised maximum tensile stress criterion.

Keywords: Thermally reinforced sheet � Pipeline � Direction of crack
propagation

1 Introduction

The problems of safe and reliable operation of trunk oil and gas pipelines are of great
importance from different points of view. One of the most expensive types of accidents
on trunk pipelines is extended destruction when the length of a longitudinal crack in a
pipe can reach hundreds of meters [1]. The losses induced by cracks propagation in
pipelines may be minimized by creating conditions for cracks arrest and controlling
their trajectories. Many scientists have made significant contributions to the problems
of preventing cracks propagation in pipelines. Among the fundamental ways of pre-
venting cracks propagation is increasing the fracture toughness of pipe materials by
doping. However, with an increase in the number of alloying elements, the weldability
and affordability of the steel suffer [10]. Design solutions that can contribute to these
problems include, e.g., the use of linings, stiffeners and separately mounted couplings.
Another possible way to prevent extended destruction was developed by the authors of
[4] (see also [1]). They suggested the formation of annular ribs (corrugations) on tube

© Springer Nature Switzerland AG 2020
D. A. Indeitsev and A. M. Krivtsov (Eds.): APM 2019, LNME, pp. 179–184, 2020.
https://doi.org/10.1007/978-3-030-49882-5_17

http://orcid.org/0000-0002-7763-5130
http://orcid.org/0000-0003-4978-6238
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49882-5_17&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49882-5_17&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49882-5_17&amp;domain=pdf
https://doi.org/10.1007/978-3-030-49882-5_17


blanks by cyclic heat changes and shortening the pipe. Heat treatment can also
significantly improve the mechanical properties of steel. Based on these features,
A. Maksimov developed an approach to the retardation of cracks in pipes using thermal
reinforcement of rolled sheet [8]. For the manufacture of pipes it was proposed to use
thermally reinforced steel sheet with periodic strengthened strips. These barriers in
crack path reduce the rate of its propagation and change its trajectory. The direction of
crack propagation may be controlled by the configuration of such barriers. This paper
presents experimental and theoretical results concerning the prediction of the direction
of crack propagation near the boundary of a strengthened part of a steel sheet
depending on the angles of inclination of this boundary with respect to the initial crack
trajectory. The competition between deflection and penetration at the interface is
investigated. Crack behavior near the interface joining two materials with different
elastic properties was investigated earlier by a number of authors using the integral
equation methods [5]. Here, due to the specific of the considered thermally reinforced
material, the problem is studied using known closed-form expressions for the stress-
components in the vicinity of crack-tips with non-singular terms [3] and the generalised
maximum tensile stress criterion. The results can be adapted to other criteria [11].

2 Experimental Results

To study the ability to control the direction of crack propagation by thermal rein-
forcement of rolled sheets, a series of tensile tests of St3sp steel plane samples with
initial straight cuts were carried out [9, 10]. The samples were first heated to the
austenitization temperature, after that one part of each sample was rapidly cooled by
immersion in 7% aqueous solution of salt. The angle a between the immersion line and
the initial cut was 0, 20, 30, 45, 60 and 90°. As a result, two regions separated by the
immersion line were obtained, each with a homogeneous microstructure. These regions
differed in hardness about 1.7 times. The elastic moduli of the matrix and the thermally
strengthened material remained the same.

Tensile forces were applied perpendicularly and symmetrically to the initial cut.
Forces increased gradually until the sample ruptured. Tensile tests revealed that when
the initial cut was perpendicular to the phase boundary, or at a ¼ 60� the crack passed
to the strengthened area. At a smaller angle a of inclination, the crack did not pass
through the interface but traveled along it [9].

3 Calculation Model

3.1 Fracture Criterion

Consider the problem under study within the framework of linear fracture mechanics,
assuming that the crack approaches the interface quasistatically. Taking into account
dynamic effects may alter the results [2].
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To determine the direction of crack propagation we will use the maximum tensile
stress criterion in the following generalized form. The crack extends (originates)
perpendicular to the direction upon which the ratio of tensile stress to the strength limit
attains maximum value.

3.2 Stress Field in an Intact Pipe

Consider a linearly elastic long thin-walled pipe made of thermally reinforced rolled
sheet with periodic strengthened strips. The middle radius and thickness of the tube are
denoted by R and h, correspondingly. The angle of inclination of the strengthened strips
to the generatrix of the pipe is denoted by a. The elastic moduli of the matrix material
and the strengthened strips are the same, while the strength limits of the matrix, r�

M ,
and the strengthened material, r�

A, differ by k times: k ¼ r�
A=r

�
M (determined by their

hardness ratio). Therefore, up to the onset of destruction, conventional formulae of
linear elasticity for homogeneous materials can be applied.

The tube is subjected to internal pressure p. The action of the ends of the pipe is not
taken into account. Consider a cylindrical coordinate system ðq; h; zÞ with the z-axis
coincide with the axis of the tube. Since the elastic moduli of both strengthened and
virgin materials are the same, for a thin-walled pipe under internal pressure stress
components can be approximately defined by the well-known formulae

rhh ¼ pR=h;rzz ¼ empR=h ¼ emrhh;rqq ¼ oðrhh;rzzÞ; ð1Þ

ignoring the stress variation across the wall thickness (which can be essential under
mechanochemical corrosion conditions [12]). Here, em ¼ 1=2 for the tube with plugs,
em ¼ m (Poison’s ratio) in the case of plane strain, and em ¼ 0 if there is no longitudinal
stresses.

The fact that the hoop stress rhh is at least twice the longitudinal stress rzz explains
that the crack originates from a random microdefect in non-strengthened material along
the tube generatrix, i.e., perpendicular to the direction of the maximum ratio of tensile
stress to the corresponding strength limit.

3.3 Stress Field Near the Crack Tips

As a first approximation, it can be assumed that the stress state in the immediate
vicinity of the crack tips is plane and the remote loads parallel and perpendicular to the
crack edges are equal to the longitudinal rzz and hoop rhh stress-components in the
pipe (1), correspondingly. For definiteness, consider the right end of the crack. Since
the elastic constants of the matrix and strengthened parts of the material are the same,
we can apply formulae for homogeneous material [3]. Passing in Eqs. (30) from [3] to
the polar coordinates and using (1), we obtain the expression for the circumferential
stress around the crack tip

ruuðr;uÞ ¼ KI
ffiffiffiffiffiffiffiffi

2pr
p cos3

u
2
� r1

yy ð1� emÞ sin2 u; ð2Þ
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where ðr;uÞ are local polar coordinates with origin at the current crack-tip,
u 2 ð�p; pÞ; r1

yy is the remote stress perpendicular to the crack, while r1
xx ¼ emr1

yy is
the remote stress parallel to the crack; KI is the crack-tip stress intensity factor.

It can be verified that for em� 1=2, the circumferential stress ruu attains maximum
value at u ¼ 0. This corresponds to the observed straight-line crack growth in a
homogeneous material or at some distance from the interface. Therefore, the crack
extends straight along its original direction until it impinges the interface at an angle a.

Based on the foregoing, as a computational model for determining the direction of
propagation of the crack near the boundary of the strengthened region, consider a two-
component infinite plane with a rectilinear crack of length 2l located along the x-axis
and impinging the interface at an angle a. The plane is subjected to the biaxial tensile
loads r1

yy and r1
xx ¼ emr1

yy , where em� 1=2.

4 Deflection Versus Penetration

4.1 Deflection/ Penetration Criterion

In accordance with the accepted fracture criterion, it can be shown that, depending on
the angle a and the ratio k ¼ r�

A=r
�
M , there are two possible initial ways of the crack

extension near the interface. If at given a and k,

ruuðr; 0Þ=r�
A [ ruuðr; aÞ=r�

M

then the crack will pass through the interface, otherwise it will deflect along the
interface. Using (2), this criterion may be rewritten in the following form. Crack growth
direction is determined by comparing the values of the expressions

k and
1þ sin2 a ð1� emÞr1

yy=r
�
M

cos3ða=2Þ ¼ K: ð3Þ

If k\K then the crack will penetrate the strengthened material, otherwise it will deflect
along the interface.

These results are applicable to a single crack. With regard to effects of multiple
cracks interaction, the reader is referred to works of the authors of [6, 7] and others.

4.2 Calculation Results

Figure 1 shows the dependence of K defined by (3) on jaj (in degrees) for r1
yy=r

�
M = 0

(solid line), 0.5 (dashed lines), and 1 (dotted lines), at em ¼ 0; 0:25; 0:5 (lines A, B, C,
correspondingly). Dash-dotted horizontal line 1 corresponds to k ¼ 1:7 (observed in
the experimental samples) and line 2 to k ¼ 2. Let ja�j denote the abscissa of the point
of intersection of the curve KðjajÞ with the horizontal line k ¼ r�

A=r
�
M corresponding

to the given initial data. If jaj\ja�j then the crack will deflect along the boundary of
the strengthened material, otherwise it will penetrate the interface.
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To minimise the length of the destroyed part of a pipe, it is most reasonable to set
the angle jaj as large as possible, at which the crack will deflect along the interface.
This angle is determined by the value of ja�j with taking into account a certain safety
factor. As one can see, the greater the ratio k ¼ r�

A=r
�
M and/or the coefficient em, the

greater the angle ja�j. Curves A, corresponding to uniaxial tension, give the smallest
(i.e. guaranteed) value of ja�j among all possible for various em, other parameters being
equal. Dotted lines give the smallest (guaranteed) value of ja�j among all possible for
fixed k and em. The solid line can also be obtained by the formulae for a crack in an
infinite plane without non-singular terms entered in [3]. This curve yields the over-
estimated value of the optimal angle ja�j for any initial data.

The calculation results for k ¼ 1:7 are consistent with the results of experiments: at
jaj equal to 90� and 60� the crack penetrates the strengthened material, while at
jaj � 45� the crack deflects along the interface.

5 Conclusion

Thus, it has been shown that thermal reinforcement of rolled sheet can help to control
the main crack trajectory, causing it to deviate from the straight path. Ignoring the non-
singular terms in expressions for stress-components in the vicinity of the crack-tips can
lead to errors in the control of the crack trajectory.

Fig. 1. Dependence of K on jaj (in degrees) for r1
yy =r

�
M = 0 (solid line), 0.5 (dashed lines), and

1 (dotted lines), at em ¼ 0 (lines A), em ¼ 0:25 (lines B), and em ¼ 0:5 (lines C). Horizontal line 1
corresponds to k ¼ 1:7, line 2 to k ¼ 2.
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Abstract. Rock stress fields in the near wellbore of an oil well during perfo-
ration are modelled and studied numerically. The main parameters that influence
the stress field of rocks during perforation are identified. The dynamic stress
field formed in the near wellbore zone causes degradation of reservoir properties
and annular zones of rock fracture formed around a production wellbore. The
model of porous and permeable reservoir was built considering mechanical
parameters such as Poisson’s ratio, Young’s modulus, coupling along the crack
system, uniaxial compression strength and compressibility of cracks. The
dynamics of rock fracture and stress state change were simulated using Finite
Element Method. It is shown in the simulation that the type of perforation has a
strong influence on the mechanism of rock fracture and distance of fracturing
zone from the well. It is investigated in experiments that pressure drawdown
between reservoir and bottomhole zones affects the formation stress state and as
a result distribution of permeability and cracks opening.

Keywords: Rock � Oil well � Reservoir � Jet � Perforation � Modelling �
Fracture

1 Introduction

The stress state of reservoir rocks caused by the rock weight and the pressure of
saturating fluids is heterogeneous in the natural conditions. The stress in rock forma-
tions is generated mainly by the geostatic pressure, which is balanced by rock matrices
and pore pressures. Well drilling changes this stress field while rock formations are
replaced with fluid when a pressure field is created in a well. The change in pressure in
the pores of the rock surrounding the well can be explained by a difference between
reservoir and bottomhole pressures and softening of the rocks when wetted with
drilling fluids, which leads to redistribution of fluid pressure in pores of a reservoir and
to a change in the stress state of the entire matrix. Rock fracture in a near wellbore zone
causes softening of reservoirs and a change in reservoir properties. At the same time,
annular zones of rock fracture around the wellbore can appear. To assess resistance of
rocks to fracture, a relatively simple analytical method can be used, which is based on
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elastic models of rock media and various criteria for fracture of rocks. Description of
fracture of the porous media of such plastic rocks as clay, shale, weak unconsolidated
sandstone by an elastic model is not enough due to a significant plastic fracturing
during well drilling [1–4]. Therefore, when assessing the stability of the borehole walls
and slot channels in clays and weak layered rocks, an elastoplastic transversely iso-
tropic medium with a Coulomb-Mohr fracture criterion and considered shifts in
stratification layers are the most suitable. Modelling of a reservoir rock fracture can
show the dynamics in a stress state using various perforation techniques. During the
perforation of a naturally fractured formation rock fracture zones occur along fracture
systems. The nature of the fracture zones is associated with the redistribution of stresses
due to the formation of perforation slots, which is accompanied by a creation of large
tangential stresses and the removal of normal stresses from the slot surface. High
pressure drawdown (PD) created after the perforation jobs should act for a short time,
which is necessary to create fractured zones, after which the well should operate at low
PD. Otherwise, high pressure drop will lead to a significant decrease in the permeability
of the reservoir due to the closure of cracks. Created fracture zones connecting the ends
of a slot is an important geomechanical factor that contributes to an increase in
reservoir productivity. In case there are no fracture zones created slots have a positive
effect on the well productivity due to the creation of new channels in the bottomhole
formation zone. The radius of the zone of compressed cracks and the radius of the zone
of a sharp decrease in permeability are determined by the PD developed inside the
formation and the compressibility characteristics of cracks.

2 Modelling of Changes in the Stress State of an Oil Field

The solution for viscoplastic displacement rates described by Eq. (1) is computed by
the Finite Element Method (FEM),

dVPT
� � ¼

0 at Fs � 0
1
lFs

@Qs
@rT

n o

at Fs [ 0

(

; rTf g ¼ rn
sr

� �

; dVPT
� � ¼ dVPn

dVPs

� �

ð1Þ

where dVPT
� �

is a displacement vector on the fracture surface, VP is viscoplasticity
index, l is viscosity of the material filling the interface, Fs is fracture threshold in the
layer plane, Qs is plastic potential corresponding to Fs in the associated law of plastic
flow and rTf g is stress vector on fracture surface [5–7].

Separately, the magnitude of the opening of the fracture zone is calculated
depending on the initial stress state and the reservoir pressure determined by the PD. As
a result of the solution, the stress and deformation tensor is obtained at an arbitrary
point of the rock mass, taking into account its deformation due to an arbitrary number
of cracks, as well as the fractured reservoir zone. This determines the permeability
tensor of the fractured reservoir, which is the ultimate goal of the stress state calcu-
lations of the fractured reservoir. Note that the permeability in the direction of the crack
plane can be determined by width of cracks, average distance between them, and, in the
case of a vortex flow, the value of the relative roughness or the ideal crack width. The
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radii of the tubing, production casing are set in accordance with those used at the field.
Rock fracture is specified as a system of horizontal cracks or two orthogonal fracture
systems. The following Table 1 gives parameters input in the model.

After the model (cluster of a reservoir) was built, at the stage of simulation different
PDs were applied to the model for a certain period of time. During the experiment four
options for calculating the stress state of an oil field were investigated. The main
changing parameters in each simulation were PD at the bottom of the well, coupling of
a media, Young’s modulus of the array and type of perforation. In each scenario distant
(reservoir) pressure in the right-hand upper corner of the reservoir cluster (one of the
quarters with a production well in the center between them) (Fig. 1a–d) was greater
than near (well bottomhole) pressure in the left-hand bottom corner. The dynamics of a
rock fracture and reservoir stress state change was monitored. The downhole pressure
of the well taking into account the PD on the formation and lateral rock pressure on the
well circular contour were taken as boundary conditions. The stress states of the
fractured fluid-conducting reservoir were computed using the ANSYS software
package taking into account the distribution of reservoir pressure over the radius using
a multiprocessor system for high-performance computing.

It was found that occurrence of fracture zones in rocks is likely to be as shown in
Fig. 1a. During gun perforation, fracture zones are formed that are comparable in size
to the well radius. With a PD of 3 MPa, small zones of fracture appear. The larger PDs,
the larger the fracture zones as can been from Figs. 1b, c and d.

Table 1. Input parameters of experiment.

Parameter Symbol Units Value

Reservoir depth H m 2,080
Volume weight of rocks c MN/m3 0.022
Poisson’s ratio m – 0.25
Young’s modulus E MPa 6,000
Coupling along a crack system C MPa 1.0
Uniaxial compression strength rcompress MPa 29.6
Initial reservoir pressure Pres.i MPa 21.3
Azimuth strike of a crack system as deg. 0
Crack angle of incidence hs deg. 90
Angle of internal friction of a rock on a system of cracks us deg. 23
Residual angle of internal friction of a rock along a crack
system

uw deg. 25

Initial crack opening b0 lm 34
Compressibility of cracks bs MPa−1 0.028
Angle of dilatancy i0 deg. 20
Length of a perforation slot Lslot m 0.5
Width of a perforation slot Wslot m 0.04
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During the slot perforation small fracture zones occur at the ends of cracks with the
PD of 5 MPa. With the PD of 6–7 MPa the fracture zones are connected (Fig. 1b, c, d).
With further increase of the PD, the zones of fracture (in meters) become larger and
reach maximum sizes at 10 MPa [8].

The nature of the fracture zones is associated with the redistribution of stresses due
to the formation of perforation slots, which is accompanied by a creation of large
tangential stresses and the removal of normal stresses from the slot surface. The for-
mation of a fracture zone connecting the ends of the gap is an important geomechanical
factor that contributes to an increase in reservoir productivity. In the absence of frac-
tured zones, the created gaps have a positive effect on the well productivity due to the
creation of new channels in the near wellbore zone. It is noted in [8] that the formation
of annular zones of fractured rocks during slotted perforation is characteristic of a pore-
type reservoir.

In the following experiment the procedure was the same. The relationship between
distributions of permeability, crack opening and PD were investigated and corre-
sponding functions were plotted.

The image for different values of PD is one of the outcomes of the calculation of the
near wellbore zone. Crack permeability kperm depends on fracture opening bf, distance
between cracks sf, measured in m2 and is defined as

kperm ¼ b3f
12sf

: ð2Þ

A large PD decreases reservoir permeability due to closure of cracks as can be seen in
Fig. 2. Consequently, a high PD should act for a short time, which is necessary to
create the fractured zones, after which the well should work with a slight PD.

Fig. 1. Fracture zones around the production well; (a) gun perforation (PD of 5 MPa); (b, c, d)
slot perforation (PD of 5, 7, 10 MPa); – fracture zone; Lslot – slot length in the reservoir (m)
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The formation of annular fracture zones depends on the PD and on the value of
adhesion along the cracks grids. It means that a weak rock requires a small PD for
annular fracture zones to be formed. Annular fracture zones can be formed using
perforation and maintaining the necessary PD contributing to a steady increase in well
production.

It is worth noting however that simple analytical methods based on elastic rock
models and various criteria for rock fracture can be more difficult to assess the resis-
tance of rocks to fracture for such rocks as plastic clay, shale, weak unconsolidated
sandstone. For these rocks, the elastic model of the media is no longer accurate enough
due to the development of significant plastic deformations during the drilling of wells.
When assessing the stability of the borehole walls and slot channels in clays and weak
layered rocks, an elastoplastic transversely isotropic medium with a Coulomb-Mohr
fracture criterion and taking into account the possibility of shifts in stratification layers
is the most suitable and can be implemented in the software package ISAMGEO.
Plastic deformations can lead to overlap of the cross-section of perforation channels
after perforation and reduce its effectiveness to 0.

Perforation has a strong influence on the distribution of crack opening and change
in permeability. If the PD is large (pres << plat), there are extensive zones of com-
pression of cracks formed at the ends of the gap, and, accordingly, low permeability are
formed. If the PD is small (pres > plat) such zones do not arise, there are small zones of
compression of cracks adjacent to the well. However, the transition from the unloaded
media to the compressed one takes place very quickly and it is determined by the initial
reservoir pressure and crack parameters. Crack compression zones and low perme-
ability zones in the case of conventional perforations with pres > plat do not appear.

The radius of the zone of compressed cracks and the radius of the zone of a sharp
decrease in permeability are determined by the PD created and the compressibility
characteristics of the cracks. With the parameters adopted for calculations for a PD of
5 MPa, the area of compressed cracks is up to 1.8 m. With an increased PD, the cracks
close at a distance of 30 m from the well seen in Fig. 3a.

Fig. 2. Distribution of permeability (a, b) and crack opening (c, d) in the zone of slot perforation
with a PD of 3 MPa and 5 MPa; (a, b): −0,02 lm2; −0,06 lm2; −0,12 lm2; (c, d):

−2,9 lm; −19,3 lm; −35,7 lm
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3 Jet Perforation

In a jet perforation a liquid that carries an abrasive material (e.g. sand) outflow from a
nozzle which has a cone inner geometry and ensures pressure rise at the end of a nozzle
that can be equal to 30 MPa (see Fig. 4). Thanks to the abrasive influence of the liquid-
carrier the slots are cut in a casing, cement stone and the rock consequentially creating
a channel with height of up to 0.25 m, depth up to 0.4 m and width 0.04 m.

As a result, the hydrocarbon flow area increases from 17.8 to 107.2% of the area of
the open borehole, which increases the quality of the perforation of the reservoir (the
skin effect is improved). The increase in the size of the formed slotted channels in
height by the amount of stretching of the pipe string (with a simultaneous increase in

Fig. 3. Change in permeability (a) and crack opening (b) with distance from the well; 1, 2, 3, 4,
5 – PD of 3 MPa, 5 MPa, 7 MPa, 9 MPa, 12 MPa

Fig. 4. (a) Schematic of a jet perforation process, (b) cross-section of jet perforated well;
1 – impact surface; vpart – particle velocity; vmix – mixture velocity; p – pressure; a – impact
angle, l – jet length
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their depth) is ensured by the natural elongation of the pipe under the influence of the
abrasive fluid supplied through it exclusively by drawing the pipe without using any
additional engine or ground mechanism, which reduces material and labor costs. After
a pipe is divided by a slotted channel, its strength decreases, due to which the average
pressure at the contact of the cement ring and column decreases greatly with increasing
rigidity of the cement ring and rocks in the near wellbore zone [9–12].

To estimate the change in the elastic properties of the “environment-cement stone”
system, Winkler’s hypothesis is used, in which the strength factor is calculated as

K ¼ E
1� vð ÞR ; ð3Þ

where E is the Young’s modulus, m is the Poisson’s ratio and is R is the radius. In the
work it is assumed that the elastic modulus and the Poisson’s ratio of cement stone and
surrounding rocks are the same. If E > 1.3�105 N/cm2 (strong cement stone), the stress
in the pipe after the perforations does not exceed 3% of the initial, the gap length of the
channel does not affect the strength of the production tubing. In cases where the
reservoir strength is substantially lower, it is recommended not to create long slotted
channels. Longitudinal and transverse geometrical dimensions of the slotted channels
will depend on each other. Relative geometric dimensions l

R (relative length) of slot
channel should not exceed 0.3 for thin-wall pipes and 0.55 for thick wall pipes.

4 Conclusions

In this work the rock stress fields in the near wellbore of an oil well during perforation
have been modelled and computed numerically using the FEM. The following main
conclusions can be drawn from study.

The change in the stress state of the rock during drilling is influenced by
replacement of rock formations with a circulating mud, fluctuations in a circulating
fluid temperature and osmosis. The largest changes in the stress state of the rock are
observed at the boundary “well-reservoir”. The change in the stress state of rocks in the
near wellbore zone worsens reservoir properties of a formation and reduces an oil rate
of a well.

Numerical modelling using FEM showed that in the process of slot perforation
small rock fracture zones are formed and high permeability channels that create a
system “well-reservoir”, are formed. The nature of fracture zones associated with
redistribution of stresses due to perforation slots formed. Perforation reduces normal
and increases the tangential stresses at the surface of a crack. In such case, a high PD
should act for a short time. The formation of a fracture zone connecting ends of a gap is
an important geomechanical factor that contributes to an increase in reservoir
productivity.

The elastic model of the rock formation is insufficient in the analytical assessment
of the stability of plastic rocks (clay, shale, weak unconsolidated sandstone) due to
development of large plastic deformations. Numerical modelling of the stress state of
the plastic rock (clay) using an elastoplastic transversely isotropic medium with the
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Coulomb-Mohr fracture criterion taking into account the possibility of shifts in the
stratification layers showed an enlargement of the zone of plastic fracture of a rock in
the near wellbore zone over the time and overlapping of slot perforation channels.
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Abstract. This paper presents a parameter study of the flow of nematic
liquid crystals which possess both viscous and elastic properties. The
well-known Ericksen–Leslie theory is used. The underlying general
equations are stated and subsequently simplified for non-isothermal and
steady state conditions. The flow situation of a two-dimensional lid-
driven cavity is analyzed. Hence, the equations are specialized for the
case of two-dimensional flow. For numerical calculations, the complete
boundary value problem is formulated and then expressed in dimen-
sionless form. Several dimensionless parameters are identified and their
impact on the solution is analyzed. Furthermore, the temperature rise
due to viscous dissipation is studied, which is frequently ignored in the
mechanics community. The finite element method is employed using the
software package FEniCS. In particular, the numerical treatment of the
constraints required in the theory, is analyzed. A convergence analysis is
performed based on the constraints for rigid and incompressible nematic
liquid crystals.

Keywords: Nematic liquid crystals · Microstructured material ·
Lid-driven cavity problem · Forced convection

1 Introduction

This short note presents a numerical analysis of the flow of fluids with internal
rotational degrees of freedom, specifically nematic liquid crystals. These are com-
monly described in terms of the Ericksen–Leslie theory on which a detailed
overview is given in [16]. In this theory an additional degree of freedom of a con-
tinuum point is introduced by the vector d, the so-called director, which captures
the motion of the rigid rod-like molecules. Here, a two-dimensional cavity flow is
analyzed, which is a classical benchmark problem. Usually in the literature two-
dimensional problems of liquid crystal flows are analyzed, e.g., [2,10,11], and in
particular for cavity flow [1,14,18]. Most of these works focus on error estimates
or on the evolution of defects rather than specific solutions. For inextensible
nematics, which are customarily considered, the director field is of unit length,
i.e., ||d|| = 1, which is called unit sphere constraint. For numerical calculations,
c© Springer Nature Switzerland AG 2020
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this constraint is often enforced with a penalty parameter, see [1] and references
therein. However, this approach relies heavily on the appropriate choice of the
penalty factor. Therefore, we will make use of the Lagrange multiplier metod
instead as it was introduced in the original works of Ericksen and Leslie,
which is often neglected, see [3,9]. Furthermore, non-isothermal conditions are
considered. A general framework for the analysis of the temperature rise due to
viscous dissipation is given in [5] or [8], but the numerical analysis of specific
boundary value problems involving temperature are rarely found in literature,
e.g., [15].

2 Governing Equations

Mathematically speaking, our objective is to determine the fields of (a) linear
velocity, v(x, t), (b) the director field, d(x, t), and (c) the temperature field,
T (x, t), in all points, x, and at all times, t, within a region of space, B, through
which incompressible nematic crystal matter of constant mass density, ρ0, and
constant mass density of the director, ρd0 , (in units of kg/m) is flowing.

The determination of these fields relies on field equations for the primary
fields. The field equations are based on balance laws and need to be comple-
mented by suitable constitutive relations later. After introducing the substantial
time derivative (d/dt), the balances of mass, linear momentum, director force and
internal energy read as follows (see [9, pg. 268 and 276] or [12, pp. 354]):

0 = ∇ · v, ρ0
dv

dt
= ∇ · σ, ρd0

d2d

dt2
= ∇ · π + g,

ρ0
du

dt
= −∇ · q + σ ·· (∇ ⊗ v) + π ··

(
∇ ⊗ dd

dt

)
− g · dd

dt
,

(1)

where body force, body couple, and volumetric heat supply have been neglected.
The non-symmetric, second order Cauchy stress tensor is denoted by σ and π is
the so-called director stress tensor (in units of kg/s2, second order). The director
density ρd0 = d20ρ0 in units of kg/m includes an internal length parameter, d0,
which is characteristic to the length of the rod-shaped molecules. The symbol
“ ·· ” denotes a double contraction, C ··D = CijDij in Cartesian coordinates.
The vector g is known as the “director production density” or “intrinsic director
body force.” It is an additional constitutive quantity beyond the requirements
of the ordinary Boltzmann continuum with the unit N/m2 and subject to the
constraint [

σ + (∇ ⊗ d)T · π − d ⊗ g
]
× = 0, (2)

where the Gibbsian cross is defined by (a⊗b)× = a×b. Finally, u is the specific
internal energy, and q is the heat flux. Note that there is a connection between
Eq. (1) and the general balance of spin, e.g., [4, pg. 12], or [19, pp. 250]. This
has been analyzed in [12, Sec. 10.1].

Before we can turn to the flow problem, constitutive equations for the (non-
symmetric) stress tensor, σ, the director stress tensor, π, the director force
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vector, g, and for the heat flux, q, are required. It is assumed that the non-
equilibrium parts of the constitutive functions depend linearly on the objective
quantities m = ḋ−W ·d, D, and ∇T , where D and W are the symmetric and
skew symmetric part of the velocity gradient L = v ⊗ ∇, respectively. Then the
usual techniques of rational thermodynamics can be used to derive the following
explicit but lengthy non-linear constitutive relations (see [9] or [12] for details):

σ = −p1 + σel. + σvisc., σel. = −∂(ρ0f)
∂RT

· R,

π = β ⊗ d +
∂(ρ0f)
∂RT

, g = γd − R · β − ∂(ρ0f)
∂d

+ g′,

2ρ0f = k0(T ) + k22R ··R + (k11 − k22 − k24)(∇ · d)2

+ (k33 − k22)(RT · R) ·· (d ⊗ d) + k24R ··RT,

σvisc. = μ1(d · D · d)d ⊗ d + μ2d ⊗ m + μ3m ⊗ d

+ μ4D + μ5d ⊗ d · D + μ6d · D ⊗ d,

g′ = λ1m + λ2d · D, λ1 = μ2 − μ3 , λ2 = μ5 − μ6,

q = −[
κ‖d ⊗ d + κ⊥(1 − d ⊗ d)

] · (∇T ),

u = f − T
∂f

∂T
= −T 2 ∂

∂T

(
f

T

)
= f − T

2ρ0

∂k0
∂T

= û(T,d,R),

(3)

where R = (∇ ⊗ d)T is the director gradient and the abbreviations ∇d = ∂(·)
∂di

ei

as well as ∇RT = ∂(·)
∂di,j

ej ⊗ ei are used to represent derivatives with respect to
the director field and the director gradient, respectively. The symbols σ′ and
g′ refer to dissipative terms of the stress tensor and the director force vector,
respectively. Note that there is no dissipative term present in the director stress
tensor, π. The derivatives of the free energy are given by

∂ρ0f

∂d
= (k33 − k22)d · RT · R,

∂ρ0f

∂RT
= k22R

T + (k11 − k22 − k24)(∇ · d)1 + (k33 − k22)d ⊗ R · d + k24R.

(4)

The Ericksen–Leslie theory contains six different shear viscosities, μi, and
several elastic stiffnesses, kij , which were originally introduced in [17]. This shows
very clearly that the liquid crystals are at the borderline between fluids and
solids. The stiffnesses occur in the elastic part of the free energy density, ρ0f , and
they are related to deformation energy during splaying, bending, and twisting
of a gradually changing director field, similarly as a gradient of displacement
gives rise to the well known elastic energy in linear elastic Hookean solids (see
[16, pp. 16]). The additional coefficients λ1 and λ2 are expressed in terms of the
viscosities μi in order to satisfy the constraint in Eq. (2) identically, see [9]. The
quantities β and γ are arbitrary parameters, which are used to ensure additional
constraints, e.g., the inextensibility of the director. The arbitrary parameters γ
and β play a similar role as the pressure in an incompressible fluid, see also the
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discussion in [12, pp. 366]. Besides many constraints on the elastic and viscous
parameters shown in, e.g., [9,16], a famous constraint arises from the Onsager
relations and was found by Parodi, [13],

μ2 + μ3 = μ6 − μ5. (5)

3 Problem Statement and Simplified Field Equations

The two-dimensional problem of a lid driven cavity in Fig. 1 is analyzed. For
the velocity, no-slip conditions are employed such that the top plate velocity v0

is directly transferred to the liquid crystal and the velocity at the other rigid
walls vanishes. For the director, homeotropic strong anchoring is employed at the
horizontal walls, i.e., the director is perpendicular to the top and bottom plate. In
order to employ consistent boundary conditions, it is assumed that the director
points in vertical direction at the left and right wall such that it is vertical at
all surfaces, i.e., d = ey. For simplicity, Dirichlet boundary conditions are
used for the temperature and a constant reservoir temperature, Tres, is imposed.
Hence, the following boundary values are employed for the cavity:

Fig. 1. Setting of a quadratic cavity.

{
T (x) = Tres, d(x) = ey, v(x) = vrefex, x ∈ Γ3,

T (x) = Tres, d(x) = ey, v(x) = 0, x ∈ (Γ1 ∪ Γ2 ∪ Γ4),
(6)

From Eq. (3) it can be seen that u = û(T,d,R) and the substantial time
derivative of the internal energy reads

u̇ =
∂u

∂T
Ṫ +

∂u

∂d
· ḋ +

∂u

∂R
·· Ṙ = cvṪ +

∂f

∂d
· ḋ +

∂f

∂R
·· Ṙ.
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Therefore, the following set of equations is obtained,

ρ0L · v = ∇ · σ, (d · d − 1)2 = 0, 0 = ∇ · v,

0 = ∇ · (π − ρd
0v ⊗ R · v) + g,

ρ0cv(T∇) · v = −∇ · q + σ ·· LT + π ·· (∇ ⊗ (R · v)
)

−
([

ρ0
∂f

∂d
+ g

]
· R + ρ0

∂f

∂R
·· (R ⊗ ∇)

)
· v,

(7)

where the incompressibility constraint was used several times. In order to obtain
a simplified version of the system of equations, it is assumed that k24 vanishes
and all other elastic constants are equal, i.e., k11 = k22 = k33 =: k. Following
[1] and [10], most of viscosities are put to zero: μ1 = μ2 = μ5 = 0. Then, it
follows from Parodi’s relation (5) that μ3 = μ6 =: ξ. For stationary processes,
the constitutive relations simplify to read:

σ = −p1 − kRT · R + ξ
(
R · v + LT · d

) ⊗ d + μ4D, π = kRT,

g = γd − ξ
(
R · v + LT · d

)
, q = −[

κ⊥1 + (κ‖ − κ⊥)d ⊗ d
] · (∇T ),

(8)

where β is neglected. For the numerical analysis a normalization is introduced.
The primary normalizations x = 	ref x̃ and v = vref ṽ are employed, where the
reference velocity is the top plate velocity vref = v0. The following normalizations
are used

p = ρ0v
2
ref p̃, γ =

vrefξ

	ref
γ̃, T − Tres =

μv2
ref

κ‖
T̃ , q =

κ‖Tref

	ref
q̃. (9)

Then the dimensionless system of equations reads:

L̃ · ṽ + ∇̃p̃ = − 1
ErRe

(
[Δ̃d] · R̃ + R̃ ·· [R̃ ⊗ ∇̃]

)
+

M
Re

R̃ · (
R̃ · ṽ + L̃

T · d
)

+
M
Re

(
[∇̃ · R̃] · ṽ + R̃ ·· L̃T

+ [Δ̃ṽ] · d
)
d +

1
4Re

Δ̃ṽ,

∇̃ · (ṽ ⊗ R̃ · ṽ) =
1

ReErL2
Δ̃d +

M
ReL2

γ̃d − M
ReL2

(
R̃ · ṽ + L̃

T · d
)
,

Pr(T̃ ∇̃) · ṽ = − 1
Re

∇̃ · q̃ − 1
ErRe

(R̃
T · R̃) ·· L̃T − M

Re
d · L̃ · R̃ · ṽ

− M
Re

d · L̃ · L̃
T · d +

2
Re

D̃ ·· D̃ +
1

ErRe
R̃

T ·· (∇̃ ⊗ (R̃ · ṽ)
)

−
(
M
Re

[
d − (

R̃ · ṽ + L̃
T · d

)] · R̃ +
1

ErRe
R̃ ·· (R̃ ⊗ ∇̃)

)
· ṽ,

(10)

with the dimensionless numbers:

M =
ξ

μ
, Re =

ρ0vref�ref
μ

, Er =
μvref�ref

k
, L =

d0

�ref
, Pr =

μcv
κ‖

, κ =
κ⊥
κ‖

.

(11)
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Note that the fourth Leslie viscosity and the classical shear viscosity are con-
nected via μ4 = 2μ.

4 Results

For obtaining numerical solutions of the dimensionless partial differential equa-
tions the finite element method is employed using the software package FEniCS.
A spatial discretization based on the stable P2-P1 Taylor–Hood element for
velocity and pressure is employed, see [17]. Analogously, the director field and
the field γ are also discretized by using a P2-P1 element, and for the temperature
a P1 element.

In order to assess the quality of the numerical results, a comparison to an
analytical solution related to the considered problem is advantageous. In [15]
an analytical solution for the Couette flow with a specific parameter set was
derived. However, this parameter set is not consistent with the simplifications of
the last section. Due to the lack of an analytical solution, a convergence analysis
w.r.t. mesh refinement is performed. In particular, the volume averages of the
incompressibility and of the unit sphere constraint are analyzed:

ev =

∫
V

∣∣∣∇̃ · ṽ
∣∣∣ dV∫

V
dV

, ed =

∫
V

|d · d − 1| dV∫
V

dV
. (12)

These averages are shown in Fig. 2 for an increasing grid size n, where the total
number of grid points is n2. One can see that the constraints are fulfilled with
sufficient accuracy.

Fig. 2. Divergence of the velocity field (left) and the norm of the director field (right).
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(a) Streamline plot with dashed lines
for profiles.

(b) Streamline plot with dashed lines
for profiles.

Fig. 3. Cavity line plot scheme. In (a) and (b) stream tracer plots for the velocity
and the director field are shown, respectively. Note that the blue indications of the
director shown at the boundary of the cavity could also point downwards. The results
are obtained for the base parameter set. Colors indicate the magnitude of the fields.

For visualization, the components of the velocity field are plotted over two
lines through the cavity, cf. Fig. 3. For the director, the unit length is exploited.
Since only a planar problem is considered, the vector can be represented by one
angle,

d = sin ϑex + cos ϑey,

and the scalar field ϑ = ϑ̂(x̃, ỹ) is used for visualization instead of the whole
vector.

4.1 Parameter Study

The parameter study is performed starting from a base state for the dimension-
less numbers in Eq. (11):

M = 0.2, Re = 200, Er = 80, L = 10−4 Pr = 2, κ = 0.589, (13)

which is motivated by the parameters given in [6] for the material MBBA at room
temperature. Then, every dimensionless number is varied w.r.t. the base state.
In order to save computational costs, a parameter continuation is performed,
i.e., the solution of the previous parameter set is used as an initial guess for the
next simulation.

The first parameter to be varied is the Reynolds number in Fig. 4. From
Fig. 3a one can see that a nearly circular main vortex is developed near the
center in the upper right quadrant of the cavity. Therefore, in the line plots of
Fig. 4, zeros in the velocities indicate the position of the main vortex. With an



200 W. Rickert and W. H. Müller

Fig. 4. Velocity, director angle and temperature profiles for a variation of the
Reynolds number.

increasing Reynolds number the vortex starts to move downwards. This is also
reflected in the director angle profile: With an increasing Reynolds number
the maximal tilt increases and the maximal angle moves slightly towards the
center of the cavity. At first glance, the temperature rise behaves as expected. As
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Fig. 5. Director angle profiles for a variation of the Ericksen number.

expected the temperature profiles broaden with increasing Reynolds number.
However, the maximal temperature does not increase monotonically. The highest
local temperature rise is obtained for Re = 200 w.r.t. the analyzed Reynolds
numbers. Beyond this value the temperature forms plateau shaped profiles rather
than parabolic ones. A similar effect for the Couette flow is also reported in
[15].

Starting from the base state in Eq. (13), the variation of the Ericksen num-
ber strongly affects the director field and leaves the velocity and temperature
field almost unaffected. Therefore, in Fig. 5 only the variations in the director
angle are presented. The Ericksen number is the ratio of viscosity and elas-
ticity. For small values of this number, elastic effects dominate and almost no
flow alignment is visible. When the Ericksen number increases, the influence of
viscous effects increases and the director field starts to tilt, so that the angle ϑ
becomes larger. It is intuitively clear that the maximal rotation of the director is
located at the center point of the main vortex of the velocity field. Because the
velocity field is almost unaffected by the Ericksen number, the location of this
main vortex (and, therefore, the position of the maximum of the angle function)
is not affected.

In Fig. 6 the viscosity ratio M is varied over several orders of magnitude.
Variations of M below values of 10−3 have no influence on all three fields. Small
values of M correspond to the case of a dominating classical shear viscosity. As M
increases, the influence of the non-classical viscosity increases. After increasing
the viscosity ratio beyond the order of magnitude O(M ) = 10−3, the velocity
profiles change, but only slightly. In contrast to that, the director changes from
almost no tilt to almost 50◦. For the temperature (not shown here), the same
sudden but slight change (as with the velocity) were observed. It can be noted
that after the critical order of magnitude, no further changes in the fields can
be observed.
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Fig. 6. Velocity, director angle and temperature profiles for a variation of the viscosity
ratio.

The variations of the Prandtl number and the heat conductivity ratio are
shown in Fig. 7. Therein, only the temperature profiles are shown since Pr and
κ appear only in the energy balance which decouples from the mechanical equa-
tions and is solved separately. The effect of an increasing heat conductivity ratio
on the temperature rise is strongly coupled to the director field. From Fig. 3b
one can see that the director is almost vertical in the lower right quadrant. With
decreasing κ = κ⊥/κ‖, the heat conduction in the direction of the lower right
corner gains more influence and a boundary layer develops.
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Fig. 7. Temperature profiles for variations of the Prandtl number and the heat con-
ductivity ratio.

5 Conclusion and Outlook

In this work, the governing equations of the Ericksen–Leslie theory for the
description of incompressible and rigid nematic liquid crystals were stated for
non-isothermal conditions. They were simplified to the case of a two-dimensional
lid-driven cavity under steady-state conditions. Furthermore, customary restric-
tions on the parameter set were employed. It was found that the unit sphere
constraint for the director, i.e., ||d|| = 1, can be fulfilled by utilizing a field
γ which was obtained in [9] as a byproduct of the methods of rational ther-
modynamics. This is favorable compared the penalty approach which is often
employed in the literature.

The simplified equations are then reformulated in a dimensionless form and
subsequently analyzed numerically. The numerical solutions were obtained for
different sets of parameters. These sets were obtained by variation of one param-
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eter from a base set. From this parameter study it was found that the Reynolds
number has the biggest influence on all three analyzed fields, i.e., velocity, direc-
tor field and temperature rise due to viscous dissipation. In contrast to the
Reynolds number, the Ericksen number has almost no influence on the veloc-
ity and temperature. Similarly, the employed viscosity ratio influences mostly
the director field. For the simplified situation analyzed here, the energy balance
decouples from the other balances and can be solved separately. Therefore, the
thermal parameters solely influence the temperature rise.

The results obtained from the simplified equations with the restricted param-
eter set can be used as initial guesses for simulations with a non restricted param-
eter set. Then, it could be analyzed if the effects remain, e.g., if the influence of
the viscosity ratio M only depends on its magnitude and if other ratios such as
μ1/μ4 have similar effects.
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Abstract. The degrading effect of hydrogen on high strength steels is well
recognized, but this problem still does not have an exact solution. In the present
paper, we analyze two models that describe the mechanism of hydrogen
embrittlement: HEDE and inner pressure models. We considered the effects of
pre-stress load level and initial hydrogen concentration on the initiation time of
cracking instigated by hydrogen in the steel bar and on the critical load level.
We realized two important facts: (1) the HEDE model has several significant
drawbacks such as the distribution of hydrogen in the sample and the place of
initiation of the crack, as well as the ratio describing the relationship of stress
and hydrogen concentration; (2) the coefficient of diffusion expansion needs
research for the possible study of many phenomena in nature.

Keywords: Hydrogen embrittlement � HEDE model � FE simulation

1 Introduction

It is well known that hydrogen, which causes embrittlement and destruction of steel, is
a serious problem for the oil and gas, construction and transport industries. Suscepti-
bility to hydrogen embrittlement especially increases with increasing material strength
and makes significant adjustments in the application of high-strength steels. In a
hydrogen environment, metals lose their strength, ductility, toughness, and fail at much
lower loads than hydrogen-unsaturated materials. Hydrogen consumption of steel
occurs mainly in the process of its smelting (due to the presence of water in charge
materials, in ligature and other materials used in steel production) and because of its
being in a corrosive environment due to electrochemical reduction of water.

To date, several hypotheses have been proposed to describe the mechanism of
hydrogen embrittlement, but this process remains poorly understood. In this paper, two
models are analyzed: the hydrogen enhanced decohesion model (HEDE) and the model
proposed by the ANSYS software system for engineering finite element analysis.
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2 HEDE Model Review

According to the HEDE model, interstitial hydrogen expands the metal atomic lattice,
thereby reducing the cohesive strength of the atoms. Then the energy barrier for
cracking decreases, what leads to the grain boundary or cleavage-like decohesion. It is
assumed that it will occur in places of stress concentration, where the stress intensity
factor is particularly high. For example, in internal corners, holes, grooves, or on the
tips of a crack or notch. According to HEDE, hydrogen lowers the critical value of the
stress intensity factor in these areas below the local voltage level caused by the
application of a load. In other words, the concept of a critical hydrogen concentration is
postulated, at which the critical stress value necessary for the start of crack develop-
ment is equal to the applied stress, because of which destruction occurs.

Quite often, for numerical prediction and analysis of hydrogen embrittlement,
researchers use cohesive zone modeling (CZM), based on the FE modeling method
stated by Serebrinsky et al. [1] and Olden et al. [2, 3]. Y.F. Wang et al. [4] used this
model to describe the nucleation of a crack in the rods, performed by the finite element
method in the ABAQUS software package. A three-step process of finite element
modeling was proposed: structural stress analysis, hydrogen diffusion analysis, and
cohesive stress analysis.

A rectangular area with a spherical inclusion in the center r ¼ 200 lmð Þ with a
uniform distribution of hydrogen on it c ¼ 1; 1 ppmð Þ was taken as a two-dimensional
geometric model of the rod. Pre-stress load is r ¼ 650MPa. The critical value of the
stress intensity factor for the PSB1080 steel grade in question, obtained from experi-
ments, is Kic ¼ 71:5MPa

ffiffiffiffi

m
p

.
In the structural part, stress analysis was performed using the von Mises yield

criterion and the isotropic strain hardening law. Further, the processes of the diffusion
part were solved using the first and second Fick laws. In the cohesive stress analysis, in
addition to the ratios connecting the stress intensity factor and the critical separation
with the energy required for complete separation of cohesive surfaces, the researchers
used traction separation law proposed by Serebrinsky et al. [1] based on suggestion of
Jiang and Carter [5]:

c hð Þ ¼ 1� 1; 0467hþ 0; 1687h2
� �

c 0ð Þ ð1Þ

h ¼ c

cþ exp �Dg0b=RT
� � ð2Þ

r hð Þ ¼ 1� 1; 0467hþ 0; 1687h2
� �

r 0ð Þ ð3Þ

Here the first is relation linking hydrogen and surface energy with c hð Þ and without
c 0ð Þ hydrogen. In the second Dg0b is difference of Gibbs free energy in the hydrogen-
adsorbed and bulk standard states of metal. Based on these two and considering
decreasing effect of hydrogen on fracture energy the main relation (3) is deduced.
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Using the procedure described above, the researchers calculated the dependence of
the estimated time of onset of cracking and the critical hydrogen concentration the
radius of the inclusion, pre-stressed level and the initial hydrogen concentration.

This approach has several significant drawbacks. Firstly, in the work, crack
extension is modeled starting from the center of the bar. It is argued that according to
microstructure examination of destructed high-strength steel bars, the number and size
of inclusions near the center were much larger. The changes in the microstructure can
be associated not with hydrogen, but with the stresses that occur during charging. There
are studies [6–8] showing that with standard technology hydrogen charging its con-
centration inside the metal does not differ from the background. The next inaccuracy is
an equal distribution of hydrogen throughout the bar. It is experimentally established
that this is not the case [6–10]. Only a thin surface layer of the material up to 150 µm is
saturated with hydrogen. Furthermore, the validity of using the dependency (1)–(2),
proposed by Serebrinsky, is in doubts. This law is empirical, based on a numerical
experiment and has not fundamental research.

3 FE Simulations

3.1 FE Solution

Consider another mechanism - an equation embedded in the ANSYS engineering
complex. As in the procedure of HEDE modeling, in this case the FE simulation
consists of structural and diffusion part.

At the stage of the associated structural-diffusion analysis, the total deformation
consisted of two components: the elastic part that is familiar to all of us, described by
Hooke’s law, and the diffusion part, represented as follows:

ef g ¼ E½ ��1 rf gþ bf gDC ð4Þ

Here DC is concentration change, bf g – vector of coefficients of diffusion
expansion, which is a kind of analogue of the coefficient of thermal expansion.

In general, the essence of modeling is comparing the current stress intensity factor
with its critical value. It is claimed that as soon as critical is exceeded, the crack will be
initiated, which will lead to the destruction of the sample. And exactly relation (4)
determines the dependence of the stress intensity factor on the concentration of a
substance in this model. It should be noted that in the present work it is assumed that
the crack will be initiated on the outer metal layer. But the distribution of hydrogen is
also taken equal.

A cylindrical steel rod with a hub was taken as a sample. The geometric and
physical parameters of the model are presented in following Fig. 1 and Table 1.
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3.2 The Results of FE Simulation

Following the procedure described above, the initiation time of cracking instigated by
hydrogen in the bar was calculated for various values of pre-stress load level and initial
substance concentration. The appropriate graphs are presented below.

Fig. 1. The geometry and boundary conditions of the model.

Table 1. The physical conditions of the model.

Steel AISI 4135

Young’s modulus E ¼ 2 � 105 MPa
Poisson’s ratio m ¼ 0:32
Density q ¼ 7865 kg=m3

Diffusion coefficient D ¼ 4 � 10�11 m2=s
Coefficients of diffusion expansion b ¼ 2 � 104
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Figure 2 shows the effect of pre-stress load on the initiation time of cracking in the
bar. As the load on the stress concentrator increased from 603.5 to 608 MPa (which
corresponds to the general load level from 195 to 215 MPa), the time has decreased
from 74 to 59 h.

Figure 3 demonstrates that with increasing the initial hydrogen concentration, the
initiation time of cracking decreases. Thus, for concentration level of 1.3 ppm the crack
start time is 5 h, and for concentration of 0.9 ppm – around 98 h. It is interesting to
note that for the initial hydrogen concentration of 0.8 ppm the initiation time of
cracking did not manage to obtain (it exceeded hundreds of thousands of hours).

Additionally, the bars critical pre-stress load level was calculated for various values
of initial hydrogen concentration (Fig. 4). The resulting dependency also shows that
acceptable bars load level is inversely proportional to the initial hydrogen concentra-
tion, and with the increase of hydrogen in the metal, the load that the rod can withstand
significantly decreases.

The important fact is that, coefficient of diffusion expansion, on which the whole
model is based, has not yet been studied and, accordingly, there are no precise values
for steel. So, its value was chosen empirically, until a tangible contribution to the total
deformation of the model was obtained. During the study, it was found that for the local
value of the stress intensity factor to exceed the critical, the value of the diffuse
expansion coefficient must be of the order of 104 � 105, and it somewhat defies
common sense.

Fig. 2. The dependence of the initiation time of cracking on the pre-stress load level for the case
initial hydrogen concentration c ¼ 1:1 ppm (here is the load acting on the stress concentrator, that
is, at the site of the initiation of the crack.).
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Fig. 3. The dependence of the initiation time of cracking on initial hydrogen concentration for
the case pre-stress load level r ¼ 210MPa.

Fig. 4. The dependence of the pre-stress load level on initial hydrogen concentration for the case
task calculation time t ¼ 100 h.
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4 Conclusion

Thus, it was found that the current hypotheses describing the mechanism of hydrogen
embrittlement really allow us to simulate the growth and development of cracks in
samples, but they have significant drawbacks. For the first case, they are related to the
fact that the relations used in the calculation of the process are empirical and have no
physical justification. For the second model, we had to use parameters that have a
nonphysical value. Therefore, further research into the phenomenon of hydrogen
embrittlement is necessary.

Acknowledgments. This paper is based on research carried out with the financial support of the
grant of the Russian Science Foundation (project no. 18-19-00160).
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Abstract. The balcony greening of high-rise buildings is one of the vertical
greening strategies that have been tried in recent years due to the lack of green
space in urban areas. In this study, the influence of balcony greening of high-rise
building on wind speed and air temperature at different heights (1.75 m and
50 m) through two different variables including “balcony depth” (none, 3 m)
and “green cover ratio” (0%, 50%, 100%) of 3 m-balcony are discussed. The
key findings can be summarized as follows: 1. There are some differences in
wind speeds and air temperatures between the buildings with 3 m-balcony and
no balcony. 2. When the 3 m-balcony increased their green cover ratio (up to
50% or 100%), it was found to simultaneously achieve the effect of slowing
down the urban wind speed and reducing the urban temperature.

Keywords: High-rise building � Balcony greening � Computational fluid
dynamics (CFD)

1 Introduction

In recent years, with the rapid development of metropolitan areas around the world, in
the case of limited urban land but dense population, the urban area buildings have a
trend of high-rise and high-density development, thus the urban wind environment is
shielded, which in turn aggravates the urban heat island effect. Lin et al. [1] have
pointed out that urban ventilation paths have a mitigating effect on urban thermal
accumulation, while plantings have the functions of guiding wind, cooling, and puri-
fying air. At the same time, parks and large green spaces in urban areas also have a key
influence on easing the urban heat island effect. In urban areas where land is limited
and the area of green space and open space is insufficient, many cities have begun to
develop a vertical greening model that uses roofs, balconies, and walls to increase
greening space so as to achieve the purpose of energy conservation, carbon reduction
and to help release the urban heat island effect as a countermeasure.
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Among the vertical greening model, as to the greening part of the balcony, due to
the lack of space in the early built balconies (mostly within 2 m in depth), these
balconies mainly use potted plants to plant herbs or shrubs, but in recent years, there
have been a new trend to build balconies with over 3 m in depth and to plant trees (or
shrubs) on these balconies that covered with solid soil, such as the Parkroyal on
Pickering in Singapore and the vertical forests in Milan, Ruo-Shan Apartment I in
Taiwan and so on. According to Zheng et al. [2], planting trees helps in improving
thermal comfort; however, planting trees also has the effect of slowing wind speed.
When we comprehensively promote the balcony greening (planting trees) of the high-
rise buildings in the urban areas, what is the impact of the vertical greening of the
balconies on the urban wind environment and thermal environment? It is worth further
discussion.

2 Study Design and Verification

2.1 Basic Model and Environmental Setting

This study took an ideal city with high-rise buildings proposed by Hang et al. [3] as a
theoretical model. The model consisted of 66 high-rise buildings (each featuring a
volume measuring 30 m, 30 m, and 80 m in length, width, and height, respectively).
The model was tested using computational fluid dynamics (CFD) and by performing
wind tunnel tests, which confirmed that the deviations in wind speed data at measuring
points V1 and V6 were within the acceptable range. A basic model is rebuilt in this
study according to the above-mentioned ideal city model. As for the boundary con-
ditions of the computational domain, this study referred to the methods employed by
Hang et al. [3] (see Fig. 1).

Based on the abovementioned basic model, this study used two different variables
of the “balcony depth” (none, 3 m) and “balcony green cover ratio” (0%, 50%, 100%),

Fig. 1. Basic model and computational domain of the ideal city with high-rise buildings. Note.
Adapted from Hang et al. [3]
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and then used ANSYS Fluent 18.0 software to perform CFD numerical simulations to
investigate the impact of high-rise buildings’ balconies and their green cover ratio on
pedestrian wind field (height: 1.75 m) and urban wind field (height: 50 m). Among
them, the study first divided the architectural group of the ideal city into “upwind
zone”, “middle zone” and “downwind zone” according to the distances from the main
wind direction. According to the characteristics of urban regional development, the
buildings are divided into “central blocks” and “peripheral blocks” (also see Fig. 1).

For the mesh independence test, this study referred to the process utilized by Hang
et al. [3], testing three grid configuration types, i.e., coarse grids (number of grids:
6,588,060), medium grids (number of grids: 12,067,443), and fine grids (number of
grids: 28,907,122). Wind speed simulations were performed for the three grid types
using ANSYS Fluent v18, wherein the results were compared with the wind tunnel test
data obtained from a theoretical model employed by Hang et al. [3]. The mesh quality
assessment results are presented in Table 1.

Table 1 shows that the quality of the grids (i.e., coarse grids, medium grids, and
fine grids) used by the basic model of this study was acceptable, and that the overall
deviations generated by the medium and fine grids were within an acceptable range
(i.e., a deviation of less than 20%). Because of time limitations and because fine grids
could only improve grid quality and simulation result accuracy minimally, this study
used medium grids for subsequent CFD simulations.

2.2 Designing the Study Variables

This study set balcony depth (i.e., none and 3 m) and balcony green cover ratio (i.e.,
0%, 50%, and 100%) as the variables, producing four possible model types (i.e., none-
0%, 3 m-0%, 3 m-50%, 3 m-100%). Because planting trees required a growth space of
two floors, this study adopted split-level balconies, as shown in Table 2. By using the
aforementioned four model types, this study investigated the effects of balcony depths
and balcony green cover ratios on wind speeds and temperature in cities.

Table 1. Comparison between the wind speed simulation data obtained by a basic model
employed in this study and those obtained by a theoretical model used by Hang et al.

Measuring
point

Theoretical model
of Hang et al.
(Wind tunnel data)

Basic model of this study (CFD results)

Coarse grid
(grid: 6,588,060)

Medium grid
(gnd: 12,067,443)

Fine grid
(grid: 28,907,122)

Average wind speed Average
wind
speed

Error Average
wind
speed

Error Average
wind
speed

Error

VI 1.72 m/s 2.25 m/s 30.53% 2.00 m/s 16.23% 1.55 m/s −9.83%

V6 1.48 m/s 1.88 m/s 27.42% 1.68 m/s 13.65% 1.29 m/s −12.97%
Total – – 28.98% – 14.94% – −11.40%

Mesh quality assessment Value Result Value Result Value Result
Orthogonal quality (Min) 0.193 Acceptable 0.152 Acceptable 0.144 Acceptable
Skewness (Max) 0.854 Acceptable 0.848 Acceptable 0.856 Acceptable
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Table 2. Condition settings of the proposed model
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3 CFD Simulation Results and Analysis

This study is based on the analysis of wind speed and temperature simulation results of
urban high-rise buildings by the balcony depth and green cover ratio of the 3 m-
balcony. The main findings are as follows:

Adding a 3 m-balcony will reduce the wind speed of the X-axis street in the
central block, but increase the wind speed of the Y-axis street slightly.

After adding a 3 m-balcony to the high-rise building, the wind speed of the Y-axis
street (i.e., the street parallel to the wind direction) can be moderately increased at the
pedestrian height (1.75 m). However, there is no significant difference upon the depth
of balcony to the wind speed of the Y-axis street at the height of 50 m (see Fig. 2).
Viewing the vertical wind speed profile, the 3 m-balcony slightly reduces the wind
speed of the X-axis street in the central block; however, this phenomenon is not found
in the peripheral block (see Fig. 3). Therefore, the addition of a 3 m- balcony is more
helpful for increasing the wind speed of the Y-axis street (i.e. the main urban venti-
lation path), but the wind speed of the X-axis street (including the windward side and
leeward side of the buildings) of the central block may be slightly reduced.

Fig. 2. Simulation results of the horizontal wind speed for different models of balcony greening
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The above-mentioned phenomenon may be related to the addition of 3 m-balcony,
which reduced the street width to 24 m and increased the venture effect and in turn
slightly increased the Y-axis wind speeds in pedestrian (height: 1.75 m) wind fields. At
a height of 50 m, no considerable differences in wind speeds were observed between
none-balcony and 3 m-balcony. This may be resulted from wind speeds increase with
height. The inlet wind speed was weaker at 1.75 m in height, causing a shorter
extended length of the wind speed of 3.0 m/s (or higher) in Y-axis streets with none-
balcony. By contrast, because the inlet wind speed was stronger at a height of 50 m, the
extended length of the wind speed of 3.0 m/s (or higher) in Y-axis streets with none-
balcony was considerably longer. Even the street widths were diminished by 3 m-
balcony, the changes in extended length of the wind speed of 3.0 m/s (or above) in the
Y-axis street were negligible at the height of 50 m.

Increasing the green cover ratio of the balcony has the effect of slowing down the
urban wind speed of the high-rise buildings.

When the balcony green cover ratio is 50% and 100%, either at the height of
1.75 m or 50 m, the extension length of the Y-axis street wind speed of 3.0 m/s or over
is significantly shorter than that of the balcony green cover ratio of 0% (also see
Fig. 2). Obviously, the higher the balcony green cover ratio, the slower the wind speed
of the Y-axis street. According to the vertical wind speed profile, the wind speed of the
balcony with a green cover ratio of 0% may reach more than 3 m/s at a height of 80 m
or more in the central block or the peripheral block. Whereas while the balcony green
cover ratio is 50% and 100%, when at the height between 80 m and 105 m, the wind
speed is slowed down (even to 1.2 m/s) (also see Fig. 3). It shows that increasing the

Fig. 3. Simulation results of the vertical wind speed profile for different models of balcony
greening
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green cover ratio of the balcony may produce the effect of slowing down the wind
speed due to the evapotranspiration of the plant within about 25 m above the top floor
of the high-rise building. In summary, increasing the green cover ratio of the balcony
does have the effect of moderately slowing the urban wind speed. The effect of slowing
wind speed may be caused by planting trees, which is consistent with the findings of
Zheng et al. [2].

Adding a 3 m-balcony will cause the temperature of the farther urban area away
from the main wind direction to rise partially.

At the height of 1.75 m, the temperature of the 3 m-balcony on the leeward side of
the Y-axis street and the leeward side of the overall building group are significantly
higher than the temperature of none-balcony. As for the commonality between 3 m-
balcony and none-balcony at the height of 1.75 m, there is a common trend in the X-
axis street and Y-axis street that the temperatures are distributed from low to high as
follows: upwind zone < middle wind zone < downwind zone. However, at the height
of 50 m, there is no significant difference in temperature between 3 m-balcony and
none-balcony (see Fig. 4). According to the vertical temperature profile, whether in the
central block or in the peripheral block, it can be seen that in two row of farther
buildings with 3 m-balcony that are away from the main wind direction, their tem-
peratures in the windward side may be raised up to over 38 °C; however, there is no
such phenomenon in the buildings with no balcony (see Fig. 5). From this, it can be

Fig. 4. Simulation results of the horizontal air temperature for different models of balcony
greening
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seen that the addition of a 3 m-balcony does cause an increase in the temperature of the
urban area that is farther away from the main wind direction. This phenomenon may be
due to the obvious weakening of the wind speed in the downwind zone, and the
addition of 3 m-balcony will lead to the increase in the amount of heat absorbed by the
concrete, which will increase the accumulated heat. Meanwhile, there is not enough
wind speed to take away the heat, so that the 3 m-balcony will result in the phe-
nomenon of High temperature.

Adding the green cover ratio of the balcony can effectively reduce the urban
temperature.

As for the difference in temperature between different balcony green cover ratios,
whether at a height of 1.75 m or 50 m, the temperature of the original balcony which
has a green cover ratio of 0% is higher, whereas when green cover ratios of the balcony
increased to 50% and 100%, the temperature turns downward trend (also see Fig. 4). In
addition, according to the vertical temperature profile, the vertical temperature profile
of the X-axis street gradually decreases with the increase of the balcony green cover
ratio in the central block or the peripheral block (also see Fig. 5). This demonstrates
that an increase in balcony green cover ratio can decrease urban temperature; moreover,
this result is consistent with the findings of higher green cover ratios can lead to lower
temperature which is presented by Adams et al. [4].

Fig. 5. Simulation results of the vertical air temperature profile for different models of balcony
greening

220 Y.-M. Su and C.-J. Hsieh



4 Conclusions

Overall, the addition of a 3 m-balcony to urban high-rise buildings may result in a
slight increase in the wind speed on the streets parallel to the wind direction (i.e., Y-
axis street) and a slight decrease in the wind speed on the streets perpendicular to the
wind direction (i.e., X-axis street), and may cause a local increase in the temperature of
the farther urban area from the main wind direction. However, when the green cover
ratio of 3 m-balcony was increased (up to 50% or 100%), it was found to simultane-
ously achieve the obvious effect of slowing down the urban wind speed and reducing
the urban temperature. High-rise buildings may cause the problems of strong winds
around high-rise buildings and deteriorating the urban heat island effect. This study
found that adding the 3 m-balcony and increasing its green cover ratios (up to 50% or
100%) can moderately slow down the wind speed and lower the temperature, which is
helpful for improving the comfort of the overall urban environment. Therefore, it is
suggested that green cover ratio of the balcony should be at least a certain ratio (such as
50%, etc.), and it need to be included in the relevant building regulations, or to
establish incentive mechanisms in the future for improving the comfort of the building
environment, mitigating the urban heat island effect, and to help solve the problem of
strong winds around high-rise buildings.
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Abstract. The article is devoted to the applied problem solution of a contin-
uous medium inelastic deformation as applied to the description of the heaving
of rocks in the workings. This is the ubiquitous manifestation of rock pressure in
workings, both in coal and ore deposits. It is expressed in raising the soil, which
value reaches significant values compared with the size of mining working and
lead to the loss of its functional purpose. Heaving is a process stretched in time
for weeks, months, or even years.
In the article, the construction of the heaving problem solution is carried out

within the framework of the viscoplasticity theory. This approach can reflect the
time dependence of the deformation process, since the equations of state are
formulated in increments or strain rates. Creep strain is characterized by the
strain rate, which is generally a function of the stresses, time, and possibly
temperature.
The form of this function can be constructed for each particular material

experimentally as a result of numerous experiments on samples with subsequent
statistical processing of the results obtained. However, theoretical studies use a
variety of simplified analytical dependencies, mostly of a power type.
The article discusses options for the numerical calculation of viscoplastic

deformation both with a constant in time deformation rate, and with a decreasing
rate, when the total deformation after a certain period of time reaches a constant
level.
To preserve the excavation working capacity after a certain time, a “under-

mining” of the soil is produced, removing the layer of rock extruded into the
mining working. It is known that such actions are performed 2–4 times, after
which the heaving on this place completely stops. In addition, from the practice
is known such a phenomenon as a gap of the soil; a situation where, in addition
to raising the soil, a tension crack is formed in it, which runs along the workings
along its center line. Within the framework of the developed approach with the
use of a viscoplastic model, the main regularities of the course of such processes
are considered.
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1 Introduction

Heaving of rocks is ubiquitous manifestation of rock pressure in single mine workings,
both in coal and ore deposits. It is expressed in the form of raising the soil, which can
reach significant values comparable to the size of mine workings, leading to the loss of
its functional purpose. In order to preserve the working capacity of the mine, after a
certain time, the soil undermines, removing the layer of rock extruded into the mine.
This is quite a costly undertaking, but inevitable for the functioning of a mine.

For many years of work of mining enterprises in conditions of soil heaving,
numerous preventive measures have been developed and put into practice, designed to
reduce or completely eliminate this harmful manifestation. Almost all of them are
based on the generalization of numerous field observations inclusive some theoretical
considerations. This may include, in particular, fixing the contour of the mine with the
help of anchors, especially in the lower part of the mine, creating unloading slots,
loosening and hardening the soil rocks directly under the mine, etc. They all showed
their effectiveness in various mining conditions.

It should be noted that such a phenomenon could not pass by the attention of many
theoreticians who tried to build conceptual, mechanical and mathematical model, to
explain the mechanism of the deformation processes occurring in this process.

In the historical aspect, we note the works of K. Terzaghi, P.M. Tsymbarevich, V.
D. Slesarev, who tried to describe the soil heaving within the framework of the statics
of a granular medium. They could not be successful due to the fact that heaving is a
process stretched in time for weeks, months, and even years. Theories of elasticity,
plasticity, granular medium in their various versions and modifications do not include
in their relations the time parameter, and therefore are unacceptable in this situation.

The concept for solving the problem under consideration within the framework of
continuum mechanics, which is usually used in solving various problems of geome-
chanics, is a hereditary theory of creep. In this regard, it is necessary to mention a
number of researchers, who achieved definite results in description of the development
of temporal processes in a rock massif - among them prominent scientists in the field of
continuum mechanics Zh.S. Erzhanov, M.I. Rozovsky, L.Ya. Parchevsky, V.T.
Glushko, Yu.N. Rabotnov, G.L. Fisenko, K.V. Ruppenate, V.A. Lytkin, A.A. Ilyushin,
A.Yu. Ishlinsky, L.S. Leybenzon, N.A. Tsytovich, A.N. Stavrogin and many others.

It should be noted that so far it has not been possible to construct an adequate
description of the heaving process, as evidenced by the interest to this problem, which
has not been weakened up to now. Many possible mechanisms of this phenomenon
were built, among which two can be considered the most adequate: expansion of rocks
as a result of their swelling due to water and squeezing of rocks into workings under the
action of the reference pressure [1–6]. In addition, it is considered that the most
acceptable theoretical approach is the hypothesis about the loss of the elastic-plastic
stability of the rock massif in the vicinity of a single workings [7–9].

Nevertheless, we note that the deformation of the contour of workings is, as a rule,
quite complex in nature and is not associated only with the soil heaving. The deviation
of the sidewalls of the workings can also reach values in tens of centimeters, often
leading to a complete overlap of its clearance. At the level of loading existing in the
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massif, this kind of deformation is difficult to attribute to loss of stability with such a
complex shape of the deformed boundary. This indicates a different mechanism of
deformation during heaving.

Let us dwell in more detail on the possibility of applying the hereditary theory of
creep to describe the behavior of heaving rocks. Its main theoretical positions and the
corresponding equations are well known and are widely used for solving problems of
continuum mechanics, including some problems of geomechanics.

In the framework of this theory, the medium equation of state is represented by the
Boltzmann-Volterra integral equation, which in the general case of non-linear material
deformation has a form

e tð Þ ¼ 1
EM

r tð Þþ
Z t

0
K t; sð Þf rð Þds

� �
; ð1Þ

where t is time, EM is the instantaneous modulus of elasticity, K is the core of the
integral equation, e, r is the strain and stress at a point, f(r) is a certain stress function
characterizing the strain non-linearity.

Along with the usual equations of continuum mechanics, i.e. equilibrium, defor-
mation continuity, geometric equations and the corresponding boundary and initial
conditions, they completely define the problem and in principle allow us to obtain a
solution on the deformation of the rock massif in time at constant load, which occurs
during heaving.

It should be noted that the form of the kernel K and the function f could be written
out in an explicit form only for very simple rheological models, which, however, in
many cases are sufficient to obtain an acceptable solution. In these cases, the integral in
the above formula is taken in the final form and the final relations between the
deformations and stresses, which explicitly include time, are obtained.

Finally, the solution of the problem is the dependences of the distribution of
stresses, strains (strain rates) and displacements within the entire computational domain
on time. Note that, despite the final form of all the relations in the problem, the
acceptable result can be obtained only in a few cases. Nevertheless, the described
approach is quite acceptable.

2 The Use of Viscoplasticity Theory

Let us consider a slightly different approach for constructing a solution of the heaving
problem within the framework of the viscoplasticity theory. This approach may also
reflect the time dependence of the deformation process, since the equations of state are
formulated in increments or strain rates e. We characterize the deformation during
creep by the deformation rate e. Obviously, this value in the general case depends on
the effective stresses r, time t and, possibly, temperature T. Bearing in mind the
deformation of rocks, the last value can be ignored. In other words, the following
relation holds
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_e ¼ F r; tð Þ: ð2Þ

The form of this dependence can be constructed experimentally for each specific
material as a result of numerous experiments on samples with subsequent statistical
processing of the results obtained. Nevertheless, theoretical studies use a variety of
simplified analytical expressions for (2). Bearing in mind the use of the finite elemental
complex ANSYS for solving heaving problems, we note that various relations of the
form (2) are built in ANSYS for solving visco-plastic problems. Some of them are
shown in Table 1 in form they are used in ANSYS. Ci values are constants that
determine the nature of material deformation. The choice of a certain heaving equation
is based on a comparison of the calculation results for the deformation process with the
values obtained by measuring the corresponding parameters in natural conditions.

Thus, from now on, for solving the model problem of soil heaving in the workings,
Eq. 2 (Time hardening) was chosen as the simplest one, allowing one to take into
account the deceleration of the heaving process with time. In this case, it was con-
sidered that C2 = C4 = 0. The choice of C2 = 0 requires an explanation. It is obvious
that in places where the stress is greater, the strain rate should also be greater. If we
associate the increase in stresses with increasing depth, then at constant depth, the
influence of the term rC2 in the chosen ratio is equivalent to the influence of C1 due to

Table 1. Various expressions for strain rate

Creep
model

Name Equation

1 Strain
Hardening

_ecr ¼ C1rC2eC3cr e
C4=T C1 > 0

2 Time Hardening _ecr ¼ C1rC2tC3e�C4=T C1 > 0

3 Generalized
Exponential

_ecr ¼ C1rC2re�rt, r ¼ C5rC3e�C4=T C1 > 0,
C5 > 0

4 Generalized
Graham

_ecr ¼ C1rC2 tC3 þC4tC5 þC6tC7ð Þe�C8=T C1 > 0

5 Generalized
Blackburn

_ecr ¼ f 1� e�rtð Þþ gt;

f ¼ C1eC2r; r ¼ C3
r
C4

� �C5

; g ¼ C6eC7r

C1 > 0,
C3 > 0,
C6 > 0

6 Modified Time
Hardening

_ecr ¼ C1rC2 tC3 þ 1e�
C4
T = C3 þ 1ð Þ C1 > 0

7 Modified Strain
Hardening

_ecr ¼ C1rC2 C3 þ 1ð Þecr½ �f C3
o1= C3 þ 1ð Þ

e�C4=T C1 > 0

8 Generalized
Garofalo

_ecr ¼ C1 sinh C2rð Þ½ �C3e�C4=T C1 > 0

9 Exponential
form

_ecr ¼ C1er=C2e�C3=T C1 > 0

10 Norton _ecr ¼ C1rC2e�C3=T C1 > 0

11 Combined Time
Hardening

_ecr ¼C1rC2 tC3 þ 1e�
C4
T

C3 þ 1 þC5rC6 te�C7=T
C1 > 0,
C5 > 0
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r = const. Thus, it can be simply ignored in the presence of C1. If we connect the
increased stresses with the places of their concentration near the workings, then their
influence zones are small and confined to the corner (or similar) points of the contour. It
is possible that there is significant creep locally there, but in situ it may simply not be
noticed without making special observations.

Thus, relation (2) was taken as

_e ¼ C1tC3 : ð3Þ

Here, the constant C1 has the dimension of the strain rate and is equal to it at t = 1.
At the same time, C3 is a dimensionless quantity. Both of them are not material
constants, but depend on the used time unit. Initially it was thought that C3 = 0, i.e.
deformation with a constant strain rate was considered.

Figure 1 shows the main elements of the formulation of soil heaving problem. By
virtue of the symmetry of the problem with respect to the vertical line passing through
the center of the opening, the computational area was considered only for a half of
research domain. This vertical line was considered as a line of symmetry and the
conditions of symmetry were set on it, i.e. zero horizontal offsets. On the outer vertical
and on the upper horizontal boundaries, normal stresses were set, which magnitude was
equal to 12.5 MPa, which corresponds to the depth of the output in 500 m. At the same
time, the opening surface was free from stress.

Note that the creep properties in the considered variant have only soil rocks. It was
considered that C1 = 4 * 10−8. This value of the strain rate was chosen from the
consideration that the maximum rising of the soil for 1 month was *20 � 30 cm.

Fig. 1. Geometric model, with a finite element mesh, loads and boundary conditions, physical
and mechanical properties
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Figures 2, 3, 4, 5, 6 and 7 show some calculation results.
Figure 2 shows the total displacement vectors at the points of the computational

domain at the time point of 30 days after the opening has been created. They show the
values (the length of the arrows and the color) and the direction of the displacements
for the points of the array. It is seen that the rocks of the soil have received the greatest
displacement inside the opening, which can be interpreted as heaving of the soil.
Further, the amount of heaving will be characterized by the greatest displacement,
which is achieved at the average (“reference”) point of the opening soil, and which in
case under consideration is equal *0.21 m. From the figure, one can see the trajec-
tories of moving viscoplastic material, which are directed from the area of the vis-
coplastic layer into the opening.

It is of interest to develop heaving in time. Figure 3 shows the offset of the “ref-
erence” point in time. Note that this is a direct line over the entire time interval until the
end of the calculation. This is due to the fact that the strain rate was adopted as a
constant. In this case, the value of the final displacement is directly proportional to
value C1.

Fig. 2. Soil displacement vectors
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We note the following circumstance. Practice shows that in real conditions, there is
usually no such straightness. Over time, the growth rate of the “reference” point
decreases and the corresponding curve bends downwards, what is obvious in accor-
dance with a general physical point of view. Thus, the assumption C3 = 0 for large time
intervals turns out to be untenable. For a more adequate description of the heaving
process, it is necessary to determine two constants (C1 and C3) from the condition that
the maximum soil rise in 30 days, as before, is *0.2 m. Obviously, the value of C1,
previously defined, in this case is unacceptable. Actually, the values of these param-
eters themselves in this situation do not matter, since the study conducted is not tied to
any particular mining situation. The calculations performed only show that it is pos-
sible in principle to solve the inverse problem if there are relevant experimental data.
Gouging quickly develops in the first few (up to 10) days, and then the rate of increase
gradually drop.

Fig. 3. The offset of the “reference” point in time

Fig. 4. Soil raising at a “reference” point over time
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From practice it is known such a phenomenon as a break in the soil; a situation
where, in addition to raising the soil along its centerline, a crack with diverging shores
passes along the opening. Obviously, this is an expanding tensile crack.

This situation is also easily modeled within the framework of the stated approach.
An analysis of the stresses in the soil rocks shows that their horizontal component is
tensile, despite the compressive initial stresses in massif. This is due to the fact that
rising soil rocks form a “arch” (Fig. 5). The length of the generatrix of the “arch” AB is
significantly longer than the corresponding distance AC at the soil level, i.e. line AC
stretches to AB. This means that, even taking into account the compression initial
stresses, the occurrence of tensile horizontal stresses, leading to the formation of tensile
cracks, is possible.

If conditions are set on the BCD line with low tensile strength, then a discontinuity
in the calculations will be revealed, as shown in Fig. 6.

Returning to the development of contour convergence, consider the situation when
coal, like soil rocks, also has creep properties. Figure 7 shows the total displacements
of the rock mass in this case, where in addition to the heaving of soil rocks, there is a
significant deformation of the lateral walls of the opening. For seeing imagery, the scale
of the displacements of the points in rock massive in the figure is increased by 10 times.
It is also controlled by C1 and C3, but different from previous, namely for coal. By
choosing the appropriate values of the C1 and C3 parameters for each of the rocks in the
vicinity of the mine, a model can be built to evaluate the time development of the
deformation processes in the massif for a long period of time.

Fig. 5. Pattern of soil deformation in workings
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Fig. 7. Deformation of the contour of production in the presence of creeping rocks in the soil
and sides of the opening

Fig. 6. The distribution of horizontal stresses around the opening 30 days after its excavation
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And now consider the basic laws of the processes occurring during the undermining
of the soil in order to eliminate heaving. It is known that such actions are performed 2–
4 times, after which the heaving process at this place completely stops.

Let us proceed from the heaving curve obtained earlier and shown in Fig. 4. It is
also schematically shown in Fig. 8 (line 0abc), where z is the vertical distance from the
initial position of the soil at the beginning of heaving to the current position at time t.
When the rising reaches the maximum technologically permissible value hn, which is
determined by the conditions for the preservation of the possibility of functioning of the
mine, a bulging rock mass is removed. This layer of soil is removed and the soil passes
back to the state shown in Fig. 8 by point t1, i.e. to the initial level, z = 0.

The subsequent rising will occur along the curve t1d, which is obtained from the ab
by transferring it down by hn. Thus, it is considered that the speed of the process of
heaving is not influenced by the “undermining” and it continues, following the general
regularity of 0abc, but each time at a new level. When the heaving reaches again the
value of hn, i.e. point d everything repeats. It should be noted that the time intervals
between “undermining” gradually increase and already after the second (in this case),
the t2e curve (part of the curve of bc demolished down by 2hn) can no longer cross the
limit line z = hn. Rising at this step is already small and in the subsequent “demoli-
tions” will not be required. Thus, the shift of the “reference” point because of a series of
“undermining” will occur in accordance with the curve 0at1dt2e for given technological
rising hn.

Fig. 8. Pattern of consecutive soil “underminings’’
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3 Conclusions

In the mountain practice, there are often situations when the rocks over time experience
large deformations comparable to the size of the excavated workings, which can lead to
a complete loss of their functional purposes. In this case, the displacement of the
contour of the workings can be of the order of a meter in a relatively short period of
time - 1 � 2 months. These values vary greatly and depend primarily on the properties
of the rocks in which the excavations are completed. Largely, coal, salt rocks and other
so-called “pulling” rocks are subject to this.

The use of the theory of viscoplasticity makes it possible in many respects to solve
the problems associated with taking into account large displacements within the
framework of continuum mechanics and to obtain final results for various mining
engineering situations. Directly specifying the dependence of the strain rate on the
determining parameters—stresses, time, temperature—in the form of a particular
function, makes it possible to significantly simplify the solution. This approach allows
us to include in the solution the available experimental data for the selection of the
parameters of the functions used.
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Abstract. Different numerical implementations have been proposed in
the literature for computation in generalized mechanics. A computa-
tional benchmark problem is beneficial to highlight the differences or
even validate an approach. We briefly present the strain gradient elas-
ticity theory and its weak form. A relatively simple analytic solution in
strain gradient elasticity theory is shown. The closed-form solutions for
a plate under simple shearing in plane strain are investigated for differ-
ent boundary conditions. Moreover, IsoGeometric Analysis (IGA) within
the finite element method is used. By employing open source packages
developed under the FEniCS project, we develop a general framework
and use the analytical solution to verify the numerical implementation.
Comparison of the computation to the closed-form solutions shows that
the numerical implementation is accurate and reliable.

Keywords: Strain gradient elasticity · Finite element method ·
Isogeometric analysis

1 Introduction

Additive manufacturing techniques enable constructing designs with substruc-
tures of different length scales resulting in tailored macroscopic deformation
behaviors. Because the material response depends on the substructure, such
structures are called metamaterials. Pantographic structures, which have been
largely studied by dell’Isola et al. (2015, 2016, 2019); De Angelo et al. (2019);
Barchiesi et al. (2018, 2019a), are a special kind of metamaterials with a sub-
structure composed of two orthogonal arrays of fibers connected by pivots. Sim-
ilar structures cause unexpected deformation patterns (Leismann and Mahnken
2015; Kochmann and Bertoldi 2017) and experimental analysis is a valuable tool
to comprehend the behavior (Turco et al. 2017; Ganzosch et al. 2018; Barchiesi
et al. 2019b; Juritza et al. 2019). A direct finite element simulation involving
details of the microscopic substructures can also be employed to inspect the
deformation response, being able to capture the deformation behavior effected
by the substructure made of polyamide shown in Yang et al. (2018); Yang and
Müller (2019) or in textiles with twinning as in Böhlke et al. (2007); Placidi
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et al. (2016); Laudato and Barchiesi (2019). Nevertheless, such direct computa-
tion is quite time-consuming due to the enormous number of degrees of freedom
and the computational burden is still a challenge even for modern computers.
Hence, different types of reduced order models are suggested, for instance by
using Kirchhoff space rods (Greco and Cuomo 2016), Kirchhoff–Love shells pre-
sented in Greco et al. (2018) as well as plane-curved beams displayed in Cazzani
et al. (2016). The reduced models have limitations because they are designed and
tested for a particular substructure under only a few loading scenarios. A more
general approach is known as homogenization, which has been an active research
field for many years (Forest et al. 1999; Kochmann and Venturini 2013; Arabne-
jad and Pasini 2013; Rahali et al. 2015; Barboura and Li 2018; Ganghoffer et al.
2018; Solyaev et al. 2019). After a successful homogenization the metamaterial
is modeled directly on the macroscale by using generalized continuum mechan-
ics, which started with the works of Toupin (1962); Mindlin (1965); Eringen
(1968) and have been under investigation, especially in the last decade (Auffray
et al. 2009; Altenbach and Eremeyev 2009; Askes and Aifantis 2011; Polizzotto
2013a, 2013b; Auffray et al. 2015; Ivanova and Vilchevskaya 2016; Müller and
Vilchevskaya 2017; Abdoul-Anziz and Seppecher 2018; Barchiesi and Khakalo
2019).

Various finite elements implementations have been proposed in the literature
for the solution of boundary value problems involving the strain-gradient effect
(Jeong et al. 2009; Cuomo et al. 2014; Abali et al. 2015; Niiranen et al. 2016;
Reiher et al. 2016). In this paper, we present a numerical implementation of
strain gradient elasticity based on IsoGeometric Analysis (IGA), as studied in
details in Fischer et al. (2011); Rudraraju et al. (2014); Hughes et al. (2005);
Khakalo and Niiranen (2017); Makvandi et al. (2018). The geometric model
is discretized within patches (like the elements in the finite element method).
Within the patches the continuity of unknowns is chosen as high as necessary
by using NURBS shape functions. As the CAD model topology is represented
by NURBS, too, one of the advantages of IGA is that the geometric model is
built exactly by means of the shape functions generating the unknowns. In the
context of strain gradient elasticity this method is expected to provide accu-
rate results, because the displacement is the unknown with a necessarily higher
order continuity. In this paper the basic formulation of strain gradient elasticity
is summarized and the weak form of strain gradient elasticity is presented. A
simple analytic solution of a strain gradient elasticity problem and its numeri-
cal solutions using IGA are shown and compared. The IGA implementation is
based on making use of the FEniCS project and was developed by Kamensky
and Bazilevs (2019). FEniCS is an open-source computing platform for solving
partial differential equations (PDEs), it enables symbolic differentiation for lin-
earization, see Abali (2017) for more engineering applications solved by using
FEniCS.
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2 Strain Gradient Elasticity

Conventional continuum mechanics theories assume that the stress in a mate-
rial point is a function of strain of the same point. This local assumption has
long been proved to be frequently adequate. However, when the wavelength of a
deformation field is comparable to the micro-structural length scale of the mate-
rial, the assumption must be questioned, because the behavior of material at a
point is influenced by the deformation of the neighboring point. In other words,
in this case not only the strain εij = (ui,j + uj,i)/2 but also the strain gradient
εij,k = (ui,jk + uj,ik)/2 should be taken into account. Herein u is the displace-
ment field and a comma means a partial differentiation in space. All fields are
expressed in Cartesian coordinates.

In this section, the concepts of strain gradient elasticity will be briefly
repeated. We use the theory of classical analytical mechanics and define a
Lagrange density L, which depends on the primitive variables φA and its
derivatives. For details of the formulations and justification, we refer to Abali
et al. (2015, 2017). By neglecting the kinetic energy, body forces, and boundary
terms acting on edges according to least action principles, for a domain Ω, we
have the following integral form:

∫
Ω

( ∂L

∂φA
δφA +

∂L

∂φA,i
δφA,i

+
∂L

∂φA,ij
δφA,ij

)
dV +

∫
∂Ω

(∂Ws

∂φA
δφA +

∂Ws

∂φA,i
δφA,i

)
dA = 0,

(1)

where Ws refers to the external work done on the surface or edge; dV and dA
denote infinitesimal volume and surface elements, respectively. In strain gradient
elasticity theory, the primitive variable is the displacement φA = ui; for nonpolar
homogeneous materials, we propose the following Lagrange density:

L = −w. (2)

w is the stored deformation energy density and depends on the first and second
gradient of the primitive variable, or equivalently,

w = w(εij , εij,k). (3)

By inserting the Lagrange density Eq. (1) becomes

∫
Ω

( − ∂w

∂ui,j
δui,j − ∂w

∂ui,jk
δui,jk

)
dV +

∫
∂Ω

(∂Ws

∂ui
δui +

∂Ws

∂ui,j
δui,j

)
dA = 0. (4)
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Equation (4) is also known as a weak form. After applying integration by parts
and Gauss’s theorem, we obtain

∫
Ω

(
− ∂w

∂ui,j
+

( ∂w

∂ui,jk

)
,k

)
,j
δuidV

+
∫

∂Ω

(
nj

( ∂w

∂ui,j
− ( ∂w

∂ui,jk

)
,k

)
− ∂Ws

∂ui

)
δuidA

+
∫

∂Ω

(
nk

∂w

∂ui,jk
− ∂Ws

∂ui,j

)
δui,jdA = 0.

(5)

We assume that Ws on Neumann boundaries is given by the expression:

Ws = tiui + mijui,j , (6)

where ti and mij should fulfill the following conditions:

ti =
∂Ws

∂ui
= nj

( ∂w

∂ui,j
− (

∂w

∂ui,jk
),k

)
, mij =

∂Ws

∂ui,j
= nk

∂w

∂ui,jk
. (7)

These are also known as traction and double traction, respectively. From Eq. (5),
we can also obtain the governing equations, which read

( ∂w

∂ui,j
− ( ∂w

∂ui,jk

)
,k

)
,j

= 0. (8)

3 Analytical Solution

We present an analytical solution in the framework of strain gradient elasticity
which will be used for verifying the numerical implementations in the following.
The strain energy density w = w(εij , εij,k) for centro-symmetric and isotropic
materials are given by

w(εij , εij,k) =
1
2
εijCijklεkl +

1
2
εij,kDijklmnεlm,n. (9)

The fourth-order classical stiffness tensor Cijkl and the sixth-order strain gradi-
ent stiffness tensor Dijklmn read

Cijkl = c1δijδkl + c2(δikδjl + δilδjk),
Dijklmn = c3(δijδklδmn + δinδjkδlm + δijδkmδln + δikδjnδlm)

+ c4δijδknδml

+ c5(δikδjlδmn + δimδjkδln + δikδjmδln + δilδjkδmn)
+ c6(δilδjmδkn + δimδjlδkn)
+ c7(δilδjnδmk + δimδjnδlk + δinδjlδkm + δinδjmδkl)

(10)
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where c1, c2 are two Lamé constants, and c3, c4, c5, c6, c7 are five additional
material parameters. After inserting Eq. (9) into Eq. (8) and applying chain rule
we find

∂w

∂ui,j
=

∂w

∂εkl

∂εkl

∂ui,j
= Cijklεkl,

∂w

∂ui,jk
= Dijklmnεlm,n.

(11)

By using Eq. (10) and Eq. (11) we obtain

∂w

∂ui,j
= c1δijεkk + 2c2εij , (12)

∂w

∂ui,jk
= c3(δijεkm,m + δjkεmm,i + δijεnk,n + δikεnk,n) + c4δijεll,k

+ c5(δikεjn,n + δjkεli,l + δikεnj,n + δjkεim,m)
+ c6(εij,k + εji,k) + c7(εik,j + εki,j + εjk,i + εkj,i).

(13)

Fig. 1. Schematic of a plate under shear.

Consider the problem of simple shearing in plane strain of a plate of thick-
ness H, extending infinitely in the lateral direction, analogously to Zervos et
al. (2009). The infinite plate will be modeled with a finite length, L. In order
to eliminate boundary effects, the length is chosen suitably large, L = 100H.
The bottom boundary of the model is fixed in both directions (X and Y ), and
the lateral boundaries are free of constraints and traction or double traction.
Now we use a semi-inverse ansatz and reduce to a one-dimensional problem
with ux = u(y) such that only ux,y = u′ and ux,yy = u′′ are non-zero. In this
one-dimensional case, the non-zero quantities can be obtained (Fig. 1)

∂w

∂ux,y
= c2u

′, (14)
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∂w

∂ux,yy
= (c5 + c6 + c7)u′′. (15)

Substituting Eq. (14) and Eq. (15) into Eq. (8), we obtain the governing equation:

c2u
′′ − (c5 + c6 + c7)u′′′′ = 0. (16)

The general solution of the fourth order differential equation is

ux(y) = K1 + K2y + K3sinh(y/l) + K4cosh(y/l), (17)

where l =
√

(c5 + c6 + c7)/c2 and K1,K2,K3,K4 are four integration constants.
In order to determine the four integration constants, four boundary con-

ditions should be applied. Note that the boundary conditions should satisfy
Eq. (5). One can prescribe two classical boundary conditions for u(0) and u(H),
and two non-classical conditions by describing u′(0) and u′(H). Actually, in view
of Eq. (5), in the case of the classical boundary conditions, either displacements
ui or the traction ti should be prescribed. In the case of higher order boundary
conditions, the gradient of displacement ui,j or double traction mij should be
prescribed as shown in Tsepoura et al. (2002). In what follows, two specific cases
under different boundary conditions will be investigated.

3.1 Shear Test, Prescribed Displacement

Consider the following boundary conditions:

ux(0) = 0, ux(H) = up, mxy(0) = 0, u′(H) = 0. (18)

On its bottom the plate is fixed by setting u(0) = 0. A displacement up is
prescribed on the top of the plate along the x direction. As discussed above,
two more higher-order boundary conditions are needed to close the system of
equations. We intentionally specify the double traction mxy(0) = 0 as well as
displacement gradient u′(H) = 0. Using Eq. (17), Eq. (18) and by taking Eq. (7),
Eq. (14), Eq. (15) into account, we obtain

ux(0) = K1 + K4 = 0,

ux(H) = K1 + K2H + K3 sinh
(H

l

)
+ K4 cosh

(H

l

)
= up,

mxy(0) = (c5 + c6 + c7)
K4

l2
= 0,

u′(H) = K2H +
K3

l
cosh

(H

l

)
+

K4

l
sinh

(H

l

)
= 0.

(19)

After solving the four equations, the four integration constants read

K1 = 0, K2 =
up cosh(H/l)

H cosh(H/l) − l sinh(H/l)
,

K3 = − upl

H cosh(H/l) − l sinh(H/l)
, K4 = 0.

(20)
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Setting H = 0.1 mm, L = 10.0 mm, prescribed displacement, up = 0.01 mm,
Young’s modulus, E = 400 MPa, Poisson’s ratio, ν = 0.49, with additional
parameters, c5 + c6 + c7 = 0.2 N, the analytical (ua) and numerical solution (un)
are studied along the Y axis. It is shown in Fig. 2. A good agreement between
the analytic and numerical solutions indicates that the numerical solutions is
accurate and reliable.

In order to interpret the role of the additional parameters, different values of
c5 +c6 +c7 are specified and the results of displacements along Y axis are shown
in Fig. 3. It is observed that with increasing parameters the strain gradient effect
becomes more dominant.

Fig. 2. Comparisons of displacements along Y axis of the plate between the analytic
and IGA solutions.

Fig. 3. Comparisons of displacements for different values of the additional material
parameters in case of prescribed displacement.
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The numerical solution is also evaluated here by calculating the so-called L2

norm of error between the numerical and analytical results, given by

eL2 =
[ ∫

||un − ua||dV
] 1

2
. (21)

As shown in Table 1 with relatively small L2 errors for different cases of c5 +
c6 + c7, the numerical solutions are all convergent and have enough accuracy.

Table 1. The L2 errors calculated for different value of c5 + c6 + c7 in the case of
prescribed displacement boundary condition.

c5 + c6 + c7 0 N 0.1 N 0.2 N 2.0 N

L2 error 2.28 × 10−5 1.29 × 10−6 1.54 × 10−6 5.74 × 10−6

3.2 Shear Test Steered by Traction

In order to validate the numerical implementation further, another set of bound-
ary conditions is considered,

ux(0) = 0, tx(H) = t̂, u′(0) = 0, mxy(H) = 0. (22)

The bottom of the plate is fixed by setting u(0) = 0. A traction tx(H) = t̂ is
applied on the top of the plate along x direction. Moreover, the higher-order
boundary conditions u′(0) = 0 and mxy(H) = 0 are applied. Likewise, by using
Eq. (17) and Eq. (18) and by taking Eqs. (7), (14), (15) into account we obtain

ux(0) = K1 + K4 = 0,

tx(H) = c2

(
K2 +

K3

l
cosh

(H

l

)
+

K4

l
sinh

(H

l

))

− (c5 + c6 + c7)
(

K3

l3
cosh

(H

l

)
+

K4

l3
sinh

(H

l

))
= t̂,

u′(0) = K2 +
K3

l
= 0,

mxy(H) = (c5 + c6 + c7)
(

K3

l2
sinh

(H

l

)
+

K4

l2
cosh

(H

l

))
= 0.

(23)

After solving the equations, the four integration constants read

K1 = l3t̂ sinh
(H

l

)
ξ, K2 = −l2t̂ cosh

(H

l

)
ξ,

K3 = l3t̂ cosh
(H

l

)
ξ, K4 = −l3t̂ sinh

(H

l

)
ξ,

(24)
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with
ξ =

(
c2 cosh

(H

l

)
l2 − cosh2

(H

l

)(
c2l

2 − (c5 + c6 + c7)
)

+ sinh2
(H

l

)(
c2l

2 − (c5 + c6 + c7)
))−1

.

(25)

Setting H = 0.1 mm, L = 10.0 mm, with an applied traction t̂ = 1 MPa,
Young’s modulus E = 400 MPa, Poisson’s ratio ν = 0.49, and using addi-
tional parameters c5 + c6 + c7 = 0.3 N, a good agreement between analytical and
numerical solution is acquired as shown in Fig. 4. Different values of c5 + c6 + c7
are chosen, and the results of displacements along the Y axis are presented in
Fig. 5, which clearly indicates a strain gradient effect for increasing additional
material parameters c5 + c6 + c7. As shown in Table 2 with relatively small L2

norm of errors for different cases of c5 + c6 + c7, the accuracy of numerical
solutions is guaranteed.

Fig. 4. Comparisons of displacements along Y axis for the analytic and IGA solutions.

Table 2. The L2 errors calculated for different value of c5 + c6 + c7 in case of applied
traction.

c5 + c6 + c7 0 N 0.15 N 0.3 N 3.0 N

L2 error 1.94 × 10−6 3.33 × 10−7 3.60 × 10−7 1.62 × 10−7
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Fig. 5. Comparison of displacements for different values of the additional material
parameters in case of applied traction.

4 Discussion and Conclusion

In this paper the basic formulation of strain gradient elasticity and the weak form
was revisited. An analytic solution for a simple case of strain gradient elasticity
was presented in order to validate the numerical implementation of IGA for two
cases of different boundary conditions and different specifications of additional
parameters. All the numerical implementations are based on FEniCS projects
which provides a novel tool also for isogeometric analysis. Computational results
demonstrate the accuracy of the numerical implementation. We refer to Placidi
et al. (2015, 2017) for closed-form solutions of more sophisticated cases under
different boundary conditions, to be used for assessing the merits and shortcom-
ings of the implementation in terms of accuracy, simplicity and computational
efficiency. Such a study is left to future work.
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Abstract. Small amount of hydrogen concentration impact appears signifi-
cantly in material fatigue and cracks propagation. To simulate a significant
deterioration of the physicomechanical properties of the model, similar to what
is happening in the experiments, a model with varying bilinear elastic-plastic
properties is proposed, corresponding to the saturation of hydrogen after its
accumulation in the actual structure for several years. The finite element method
used to simulate the effect of degradation of the mechanical characteristics of the
entire sample caused by hydrogen saturation. The simulation carried out for the
case of cylindrical corset samples, for which there are extensive experimental
data. Analysis of the calculation results shows that the behavior of the material
under the influence of hydrogen occurs not only in the zone of elastic defor-
mations. It is noticed that the degradation of the mechanical characteristics of the
metal under the influence of hydrogen leads to a significant change in defor-
mation and strength. The material model used for the entire sample allows one to
describe experimentally observed effects.

Keywords: Hydrogen embrittlement � Tension model � FE simulation

1 Introduction

Hydrogen effect on high strength steel is well known problem due to the degradation of
mechanical properties caused by hydrogen accumulation.

The influence of small natural concentrations of hydrogen on material properties is
very considerable. It becomes observable at the level of about a single atom per 50000
atoms of matrix of the matter. On one hand, this influence of hydrogen cannot be
ignored since, in many cases, it is the only explanation of changes in material prop-
erties in time and under external loading. On the other hand, this influence is difficult to
describe due to smallness of this factor and variety of consequences. For example,
under change in the hydrogen concentrations by fifty times at the level of one atom per
1000 matrix atoms the mechanical properties of the material can change from brittle-
ness to superplasticity.

An important role is played by the bonding energy of hydrogen in material. It is
known that, inside the materials, hydrogen is found in traps with different bonding
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energies. In steels the total hydrogen content is 0.1–40 ppm, while it is only hydrogen
with a low binding energy that affects the strength, i.e. diffusively mobile hydrogen.
Quite the contrary, the hydrogen with low bonding energy tends to zones of tensile
stresses (Gorsky’s effect [1]).

Accumulation of hydrogen in the destruction zone occurs both by the input from
outside and by redistribution of natural hydrogen inside the material.

The well-known models of hydrogen influence for the materials properties are
based on the experimental dependences [2]. These models describe only degradation of
the material properties during hydrogen saturation. Moreover, complex models, which
explain uneven degradation of material properties, were created [3]. The well-
established point of view that the presence of hydrogen leads to the uniform deterio-
ration of the material properties this example points out that the hydrogen presence is
much more sophisticated. It affects the zones of the stress concentrations, especially
those of tensile stresses, and causes a certain chain reaction in these zones. Increasing
tensile stresses leads to higher concentration of hydrogen, which in turn, increases the
stresses etc. This results in local collapse of the structure.

Important part of such kind of feedback, during chain reaction, is that hydrogen,
which absorbed from the environment, are concentrated in the thin boundary layer of
metal. It were detected experimentally [4–6] and were confirmed by mathematical
modelling [7–9]. From a mechanical point of view, the problem arises of the influence
of a multitude of small measure—a thin surface layer on the strength of the entire metal
part or test specimen subjected to hydrogen absorption.

This task is very important for practice, as all modern methods of testing metals for
the hydrogen embrittlement are based on the man-made charging of samples with
hydrogen, described in [4–6]. These methods are standardized by ISO and ASME.
Tens of thousands of tests per month are conducted in industry and the results of these
tests are important for the further use of finished products made from these metals.

If we describe the degradation due to effect only in a thin surface layer, no critical
change in the properties of the metal sample is observed, according to the data of [10].
The application of the moment theory also does not allow to explain the phenomenon
of the influence of the surface layer on the entire sample, according [11]. The use of
generally accepted HELP hydrogen embrittlement models, as [12–15] and HEDE [16],
suggests the pre-definition of initiating destruction of a macrocrack, which can be
considered an artificial technique, since the conditions of destruction depend on its
parameters, according [15, 16].

Thus, there is a phenomenon of the influence of a thin, hydrogen-saturated surface
layer of a metal sample, on strength, according [7]. This phenomenon is widely meets
in practice, and there is no model describing the degradation of the properties of the
entire metal due to the surface layer.

To simulate a significant degradation in the physicomechanical properties of a
metal, similar to what is happening in experiments, we used a bi-continuum model of a
material containing hydrogen [17].
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2 Tension Model of Sample with Hydrogen

The objective of this study was to simulate the effect of a small, natural concentration
of hydrogen on the stress-strain state of cylindrical steel samples of a metal with a
groove.

The basis of our approach is the separation of all internal hydrogen in a metal into
“bound” and diffusely-mobile. The bi-continuum model describes mobile hydrogen as
an ideal fluid inside the diffusion channels, and bound hydrogen, as a metal-weakening
element of the rheological model [17].

The bi-continuum model is non-linear. Linearization will not allow to describe the
process of destruction, as in this case there may be significant local deformations. This
non-linearity does not allow direct use of commercial finite-element packages for the
calculation.

We conducted the following adaptation of the bi-continuum model for use in finite
element calculations.

The bi-continuum model describes the hydrogen redistribution in zones of tensile
stresses. We can develop a finite element model for real structures if we consider the
outside hydrogen saturation.

The stress-strain curve for steel is changing due to the hydrogen saturation
demonstrates the relaxation of the yield stress in steel with time in the presence of
hydrogen cf. [18–20]. The yield stress decreases which leads to the exponential
weakening of the material strength as time progresses, [17].

Hydrogen saturation time depends strongly on the temperature and varies in the
range of ten minutes at the temperatures about 900 °C up to several days at the
temperature near 20 °C (Fig. 1).

Fig. 1. The stress-strain curve for steel with different hydrogen concentration CH
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The algorithm of the calculation code is given in Fig. 3.

The calculation is considered to be completed when two sequential iterations yield
close fields of stresses and strains. This fact corresponds to total relaxation of stresses
under the hydrogen redistribution. The relaxation time depends on many factors and
can take up to several tens of years.

The proposed model follow algorithm with several iterations: in the first step, the
calculation is made without considering the influence of hydrogen. The stress-strain
state will be calculated and observed. In the next step, based on calculation result of
distribution of the hydrogen concentration within the strain field [3] for steal 20,
material properties will be modified to simulate hydrogen saturation. At the last step it
will represent 10 ppm saturation. This concentration and following material properties

Fig. 2. The relaxation of the yield stress in steel with time in the presence of hydrogen

Fig. 3. Algorithm of the FEM code
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are set for the entire model of the sample and corresponds to the bi-continuum model,
which describes the hydrogen redistribution in zones of tensile stresses. The stress-
strain state will be observed, which describe hydrogen redistribution in real structures
after few years.

Figure 4 shows a finite element model with an applied load.
2D model are meshed by 2D Solid 162 axisymmetric elements. The Fig. 4 are

show 3D revolving a section in 360° with specific mesh in stress concentrations area.

Boundary conditions (loads and constraints) are:
y = 0: Uy = 0,
y = L: Fy = 3.15 kN,
x = R: n∙r = 0.

The lowest edge of section is fixed. The force is applied to the upper edge witn
constant value 3.15 kN. Material properties are based on data from cf. [3] about steel
properties and hydrogen concentration and they are shown in the following Table 1.

Fig. 4. Longitudinal tension of the plate by the force of 3.15 kN. The finite element mesh, the
fixing (the lowest edge) and the force (the upper edge)

Table 1. Material properties.

Parameter Value

E 207 GPa
m 0.29
rmax 300 MPa
q 7850 kg/m3
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3 Results and Discussion

Hydrogen saturation effect on mechanical properties degradation in the maximum of
the stresses and the elastic strain were analyzed.

Fig. 5. Longitudinal tension of the plate by the force of 3.15 kN. The maximum von Mises
stress before the hydrogen saturation is 195 MPa.

Fig. 6. Longitudinal tension of the plate by the force of 3.15 MN. The maximum elastic strain
before the hydrogen saturation is 0.32%
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Figures 5 and 6 shows the von Mises stresses and the elastic strain resulting from
the calculation of the initial step. The initial calculation is done without the influence of
hydrogen.

After determining the initial strain the iterative process runs according to the
scheme shown in Fig. 3. At the first step, the following material parameters were used:
Young’s modulus 207 GPa, yield stress 300 MPa. These steel properties correspond
condition without hydrogen (*0 ppm). The maximum stress calculation result is
195 MPa and strain is 0.32% by the force of 3.15 kN. According to the next algorithm
step, the hydrogen concentration and material properties change were calculated based
on the stress-strain result. It was conducted in [3] and result is shown in Fig. 2.
Therefore, the last iteration material properties are Young’s modulus 69 GPa, yield
strength 145 MPa as it corresponds to the limit condition, when two sequential itera-
tions yield close fields of stresses and strains. The last iteration material properties
equal hydrogen saturation of 10 ppm. They are defined for the entire samples, which
allow us to study the stress-strain state in the zone of maximum stresses. This process
simulates the gradual redistribution of hydrogen inside the metal, which can occur in
real structures in a few years.

The final picture of the stresses and strains (after hydrogen saturation) is shown in
Figs. 7 and 8.

Fig. 7. Longitudinal tension of the plate of the force of 3.15 kN. The maximum von Mises
stress after hydrogen saturation is 149 Mpa.
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Analysis of the results of the calculation shows that the effect of hydrogen on the
deformation of the material is in contrast to the yielding. In the zones of tensile stress,
the hydrogen weakens the material and is stored at the same time which, in turn,
reduces the elasticity and yield stress. This results in the additional deformations in this
area and leads to greater saturation of the zones of tensile stress by the hydrogen, which
can lead to the local destruction.

4 Conclusion

A finite element model was constructed, showing that one of the leading weakening
factors of the structure is the accumulation of hydrogen concentrations from the
external environment under uniaxial loading of steel samples.

The analysis of the effect of hydrogen saturation on the stress-strain state of a
cylindrical sample of steel has been performed. Moreover, this particular example
shows that the influence of small “natural concentrations” of hydrogen on the structural
health is very considerable. In contrast to the well-established point of view that the
presence of hydrogen leads to the uniform deterioration of the material properties this
example points out that the hydrogen presence is much more sophisticated. It affects
the zones of the stress concentrations, especially those of tensile stresses, and causes a
certain chain reaction in these zones. Increasing tensile stresses leads to higher con-
centration of hydrogen, which in turn, increases the stresses etc. This results in local
collapse of the structure. These collapses can have the consequences which are hardly
observable (because of small size) but they can be much more dangerous.

Fig. 8. Longitudinal tension of the plate of the force of 3.15 kN. The maximum strain after
hydrogen saturation is 16.3%.
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The model used for the entire sample allows one to describe the experimentally
observed effects.
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Abstract. The most popular method for calculating activation energies of
hydrogen is the method of thermo-desorption spectra (TDS). The disadvantage
of this method is that it does not consider diffusion inside the metal. Essentially,
only surface sorption and desorption can be adequately studied using this
method. All this leads to large variations of experimentally evaluated activation
energies for the same materials.
The present paper proposes a method for calculation of the activation energies

of hydrogen based on experimental data. Measurements were carried out using
the industrial mass-spectrometric hydrogen analyzer AV-1, which uses the hot
vacuum extraction method. The authors of the paper realize a gradual heating in
a vacuum to measure the activation energies of hydrogen in titanium. The
mathematical model is based on the model of multichannel diffusion of
hydrogen. Calculation of hydrogen flows and their time integrals, which char-
acterize the integral experimental results on every temperature step, were per-
formed using a Fortran program. The parameters of the sample and the
experiment conditions were entered into the program. As a result, the activation
energies of hydrogen diffusion were calculated. Using these activation energies,
a graph of discrete thermo-diffusion spectrum was plotted, which was then
compared to the graph obtained during the experiment.

Keywords: Hydrogen � Activation energy � Hydrogen embrittlement

1 Introduction

High concentration of hydrogen in metals can cause various problems. Hydrogen can
cause bubbles in rolled metal products, problems during welding, microcracking in
monocrystalline parts and hydrogen embrittlement.

Titanium has gained widespread use in various fields: mechanical engineering,
aerospace, chemical, petroleum, marine and other industries. The reasons for its pop-
ularity are high corrosion resistance, low density to ultimate tensile strength ratio and
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cracking resistance. However, titanium is highly susceptible to hydrogen embrittlement
due to its ability to form hydrides.

A high corrosion resistance of titanium caused by its durable oxide layer, which
forms on the surface of titanium when it is exposed to the air. This oxide layer is
resistant to hydrogen, however, hydrogen can infuse into the material, when titanium
alloys are exposed to high temperatures, for example, during welding.

Additive technologies are increasingly used in recent years. They allow to reduce
the costs and time required to create complex parts, which otherwise require many
different manufacturing processes and the use of machines.

Additive manufacturing is a process of creating three-dimensional objects by
building the components layer-by-layer. One of the most popular types of additive
manufacturing is Selective Laser Melting (SLM). A part is created on a platform, which
can move along a vertical axis. A metal powder is evenly spread in a thin layer. After
that, a high-power laser melts (welds) the powder and it forms a solid cross-section of
the part. Then the platform moves down and the process repeats for the next layer.

Comparison of the experimental data shows that the concentration of hydrogen in
titanium powder is significantly higher than in titanium obtained by metallurgical
method.

This hydrogen can remain in the material after the powder was welded together to
form a part during SLM.

Other studies show fatigue cracks forming in pores in additive processed parts. The
porosity is explained by the absorption of gasses during the welding. A few of the
tested subjects failed at very early stages of testing cf. [1].

All this indicate the need for methods of accurate measurement of the concentration
of hydrogen and prediction of the hydrogen effect.

Hydrogen in metals is located in various traps of different nature cf. [2]. The
activation energy of the trap characterizes the interaction between hydrogen and the
metal and the mobility of hydrogen inside the material. This value is important because
hydrogen can concentrate locally and cause failures cf. [3–5].

One of the most widespread method for calculating these energies is the method of
thermo-desorption spectra or TDS, which is based on Kissinger model cf. [6]. How-
ever, this method can produce vastly different results for the same materials [7, 8]. This
is due to the fact that it can only account for sorption and desorption on the surface of a
material [9]. Despite this, almost all studies nowadays are still using this method.

These shortcomings of TDS have led us to use a new method for determining
binding energies for compact titanium samples, which takes into account the diffusion
of hydrogen in its model.

2 Method Description

2.1 Measurements

The measurements were carried out using the industrial hydrogen analyzer AV-1. Its
schematic is shown in Fig. 1.
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The apparatus consists of an extraction system, vacuum system, a mass spec-
trometer, an analog-to-digital converter and a PC. The extraction system consists of a
quartz glass extractor and an infrared heater. The extractor is made from three cham-
bers. The first one is used for storing multiple samples before the analysis. The second
(the hot part) one is used to carry out the analysis. The third one is used for storing
samples after the analysis. This construction allows one to analyze several samples
without breaking the vacuum and to heat up the samples much quicker than usual and
carry out the analysis at a constant temperature, because the hot part of the extractor can
be pre-heated up to a certain temperature. The vacuum system can pump a vacuum up
to 10−5 Pa.

Usually, the amount of hydrogen in a sample is estimated by heating the sample at a
constant rate and then evaluating the amount of hydrogen based on the temperature
dependence of the flow of hydrogen. However, with the increase in temperature,
background flows of hydrogen from the extraction system grow exponentially, thus
making increasing the uncertainty cf. [10, 11].

When an extraction system is maintained at a certain constant temperature, after
some time (usually about an hour) the background flows settle to a constant level. This
effect can be used to reliably subtract them from the total flow of hydrogen to calculate
the hydrogen flow from a sample. To use this effect to get a more precise measurement
a procedure of gradual heating was implemented. The algorithm of this procedure is
shown in Fig. 2. After all the samples are placed in the extraction system and the
vacuum is pumped, the extraction temperature is set lower, than usually needed to
extract all the hydrogen from a sample. When the background flows settle down, a
sample is dropped into the hot part of the extractor, where it quickly heats up to the
extraction temperature. When the sample heats up, the analysis is carried out by the
standard procedure of recording the extraction curve and calculating the amount of
hydrogen released at this temperature. After the flow of hydrogen from a sample stops,
the sample is moved back into the cold part of the extractor. Then, the empty extractor
is heated up to the next temperature step and the cycle continues.

As a result of this procedure, a discrete thermo-desorption spectra (DTDS) is
obtained. DTDS represents a temperature dependence of the amount of the extracted
hydrogen. The advantage of a discrete thermo-desorption spectra over a conventional

Fig. 1. The schematic of hydrogen analyzer
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thermo-desorption spectra is the fact that the background flows are subtracted and it
only represents the hydrogen extracted from a sample itself. There is a similar method
called “isotheral spectra”. However, in this method the temperature changes in the
extraction system, which doesn’t allow to account for the background flows as accu-
rately, as in case of the DTDS method.

2.2 Methods of Evaluation of the Activation Energies

Analysis of the Experiment Data
The sample was made out of 99.99% titanium. The hydrogen charging was done in
0,1 N NaOH solution with the current density of 1250 mA/cm2 during 30 min.

An extraction curve was recorded on each temperature step. The evaluation of the
amount of hydrogen extracted at each temperature step was performed by integration of
the area between the extraction curve and the background flows’ level in hydrogen
analyzer software. After that, the DTDS was plotted.

Modelling
The multichannel diffusion model is used [9]. We assume that in a compact titanium
sample hydrogen diffuses through several channels simultaneously. The equations for
time-dependent hydrogen diffusion in the channel with number i are as follows:

The hot part of the 
extractor is heated 

up to a certain 
temperature

The background 
flows settle down

A sample is 
dropped into the 

hot part of the 
extractor

The flow of 
hydrogen from the 
sample stops or the 

time runs out

The sample is 
moved into the 
cold part of the 

extractor

Fig. 2. The algorithm of step heating
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DCi ¼ 1
D0i

@Ci

@t
; ð1Þ

Cijs ¼ 0; Cijt¼0 ¼ Ci0; i ¼ 1; . . .; l;

where C0i is the initial concentration of hydrogen in a diffusion channel; D0i is a
diffusion constant in a diffusion channel; t is time.

According to the Arrhenius law, the dependence of the diffusion coefficient Di on
the absolute temperature of the sample T has the form

Di ¼ D0i exp � ui
kT

� �
;

where ui is the activation energy, k is the Boltzman constant, D0i is the diffusion
constant.

The equation for the heating of a sample is

dT
dt

¼ rS
cqV

� 0:2 T4
0 � T4� �

; ð2Þ

where T is the absolute temperature of the sample; T0 is the absolute temperature of the
heater, S is the surface area of the sample, C is the specific heat capacity; q is the
density of the sample; V is its volume, 0.2 is the infrared absorption coefficient for
titanium.

From these equations we get the equation for the flow of hydrogen from a sample:

q tð Þ ¼ 16
p2

1
a2

þ 1
b2

þ 1
l2

� �X
i
C0i � D0i exp � ui

kT

� �
fi t; ui;D0ið Þ ð3Þ

where q is flow of hydrogen in the vacuum extraction system; a, b, l are the dimensions
of a sample; ui – activation energy, fi ¼ fi t; ui;D0ið Þ is the solution of the Eq. (2) with
the initial condition T = 295 °K and Eqs. (4) for each diffusion channel:

_fi þD0i � exp � ui
kT

� �
p2
a2 þ p2

b2 þ p2
l2

� �
fi ¼ 0

fi 0; ui;D0ið Þ ¼ 1

(
ð4Þ

A Fortran program estimates the extraction curves for each temperature step using
the constants C0i; ui;D0i. These constants are determined by fitting the experimental
time dependences of the hydrogen flow from the sample on time at each temperature
step of DTDS (extraction curves). The number of diffusion channels is determined by
the number of peaks in the extraction curves. The known parameters of a sample were
inputted into the program. It is important that all constants are set equal for all tem-
perature steps. The whole process of DTDS is integrated with one initial condition, as a
process of stepwise change in temperature of the extraction system over time. For each
temperature step the model amount of the extracted hydrogen is calculated using
integration with an explicit fourth-order Runge-Kutta method. The quality of the fitting
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of the diffusion parameters is determined by the coincidence of the amount of hydrogen
extracted at each heating step from the temperature of the step (experimental and
model).

The activation energies and diffusion constants were determined as the result of
fitting the model extraction curves to real ones.

3 Results

As a result, activation energies and DTDS points were calculated (see Fig. 3). The
absolute amount of hydrogen is given in mass concentrations and the temperature is
given in degrees Celsius for the most useful representation.

According to the results shown in Fig. 3, the experimental and theoretical amounts
of hydrogen extracted at each stage coincidence almost perfectly.

The conducted comparison of the experimental data and theoretical results makes it
possible to estimate the activation energies of hydrogen. The activation energies cor-
responding to gray points in Fig. 3 are shown in Table 1.
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Fig. 3. DTDS step points. The DTDS points obtained by the experiment are black, the
calculated ones are grey.
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As a result, hydrogen can be divided into energy levels. This information allows
further estimating the mechanical properties and residual resource of the material.

4 Conclusion

A new method for calculation the activation energies of hydrogen based on direct
measurements was proposed.

The use of the DTDS method allow to obtain the results with a lower error, since
the effect of background hydrogen flows absent.

The values of the activation energies are within the range of previously known
values, although they are higher than for titanium manufactured by applying traditional
methods.

The experimental and analytical obtained DTDS points coincidence almost per-
fectly. Thus, the method is verified.

New data on the concentration of hydrogen and binding energy for titanium were
obtained.
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