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1 Introduction

Diophantine Geometry aims to describe the sets of rational and/or integral
points on a variety. More precisely one would like geometric conditions on a
variety X that determine the distribution of rational and/or integral points.
Here geometric means conditions that can be checked on the algebraic closure
of the field of definition.

Pairs, sometimes called log pairs, are objects of the form (X,D) where X
is a projective variety and D is a reduced divisor. These objects naturally
arise in arithmetic when studying integral points, and play a central role in
geometry, especially in the minimal model program and the study of moduli
spaces of higher dimensional algebraic varieties. They arise naturally in the
study of integral points since, if one wants to study integral points on a quasi-
projective variety V , this can be achieved by studying points on (X,D), where
(X \ D) ∼= V , the variety X is a smooth projective compactification of V ,
and the complement D is a normal crossings divisor. In this case, (X,D) is
referred to as a log pair.
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The goal of these notes is threefold:

(1) to present an introduction to the study of rational and integral points on
curves and higher dimensional varieties and pairs;

(2) to introduce various notions of hyperbolicity for varieties and pairs, and
discuss their conjectural relations;

(3) and to show how geometry influences the arithmetic of algebraic varieties
and pairs using tools from birational geometry.

Roughly speaking, a k-rational point of an algebraic variety is a point
whose coordinates belong to k. One of the celebrated results in Diophantine
geometry of curves is the following.

Theorem 1.1. If C is a geometrically integral smooth projective curve over
a number field k, then the following are equivalent:

(1) g(C) ≥ 2,
(2) the set of L-rational points is finite for every finite extension L/k

[Faltings’ theorem; arithmetic hyperbolicity],
(3) every holomorphic map C → Can

C
is constant [Brody hyperbolicity], and

(4) the canonical bundle ωC is ample.

In particular, one can view the above theorem as saying that various
notions of hyperbolicity coincide for projective curves. One of the major open
questions in this area is how the above generalizes to higher dimensions.
The following conjecture we state is related to the Green–Griffiths–Lang
conjecture.

Conjecture 1.2. Let X be a projective geometrically integral variety over a
number field k. Then, the following are equivalent:

(1) X is arithmetically hyperbolic,
(2) XC is Brody hyperbolic, and
(3) every integral subvariety of X is of general type.

We recall that a variety is of general type if there exists a desingularization
with big canonical bundle. This conjecture is very much related to conjectures
of Bombieri, Lang, and Vojta postulating that varieties of general type
(resp. log general type) do not have a dense set of rational (resp. integral)
points. While Conjecture 1.2 is essentially wide open, it is known that if the
cotangent bundle Ω1

X is sufficiently positive, all three conditions are satisfied.
In particular, the latter two are satisfied if Ω1

X is ample, and the first is
satisfied if in addition Ω1

X is globally generated. We do note, however, that
there are examples of varieties that are (e.g. Brody) hyperbolic but for which
Ω1

X is not ample (see Example 6.11).
In any case, it is natural to ask what can be said about hyperbolicity

for quasi-projective varieties. One can rephrase Conjecture 1.2 for quasi-
projective varieties V , and replace (3) with the condition that all subvarieties
are of log general type. We recall that a variety V is of log general type if
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there exists a desingularization ˜V , and a projective embedding ˜V ⊂ Y with
Y \ ˜V a divisor of normal crossings, such that ωY (D) is big. It is then natural
to ask if positivity of the log cotangent bundle implies hyperbolicity in this
setting.

The first obstacle, is that the log cotangent sheaf is never ample. However,
one can essentially ask that this sheaf is “as ample as possible” (see
Definition 7.11 for the precise definition of almost ample). It turns out
that, with this definition, quasi-projective varieties with almost ample log
cotangent bundle are Brody hyperbolic (see [41, Section 3]). In recent joint
work with Kristin DeVleming [10], we explore, among other things, the con-
sequences for hyperbolicity that follow from such a positivity assumption. We
prove that quasi-projective varieties with positive log cotangent bundle are
arithmetically hyperbolic (see Theorem 8.1), and that all their subvarieties
are of log general type (see Theorem 7.14).

Theorem 1.3 ([10]). Let (X,D) be a log smooth pair with almost ample
Ω1

X(logD). If Y ⊂ X is a closed subvariety, then

(1) all pairs (Y,E), where E = (Y ∩ D)red, with Y �⊂ D are of log general
type.

(2) If in addition Ω1
X(logD) is globally generated, and V ∼= (X \ D) is a

smooth quasi-projective variety over a number field k, then for any finite
set of places S, the set of S-integral points V (Ok,S) is finite.

The main focus of these notes is to present, in a self-contained manner, the
proofs of these statements. In particular, we review the notions of ampleness,
almost ampleness, and global generation for vector bundles (see Section 7).
The proof of the second statement heavily relies upon the theory of semi-
abelian varieties and the quasi-Albanese variety, and so we develop the
necessary machinery (see Section 8).

Along the way, we discuss the related conjecture of Lang (see Conjec-
ture 5.1), which predicts that varieties of general type do not have a dense
set of rational points. We discuss the (few) known cases in Section 5.2. A
related, more general conjecture due to Vojta (see Conjecture 9.5) suggests
that one can control the heights of points on varieties of general (resp. log
general) type. We discuss this conjecture, and we introduce the theory of
heights in Section 9.1.

We are then naturally led to discuss what happens in the function field case
(see Section 10). In this setting, the analogue of Faltings’ Theorem is known
(see Theorem 10.10). Similarly, positivity assumptions on the cotangent
bundle lead to hyperbolicity results. In this context, we discuss a theorem of
Noguchi (see Theorem 10.16) and give insight into what is expected in the
quasi-projective setting.

We first got interested in studying positivity of the log cotangent bundle
to understand “uniformity” of integral points as it relates to the Lang–Vojta
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conjecture. Consequently, we end these notes with a short section discussing
and summarizing some key results in this area.

1.1 Outline

The road map of these notes is the following:

§2 Rational points with a focus on projective curves.
§3 Integral points with a focus on quasi-projective curves.
§4 Tools from positivity and birational geometry.
§5 Lang’s conjecture and some known cases.
§6 Hyperbolicity of projective varieties and positivity of vector bundles.
§7 Hyperbolicity for quasi-projective varieties.
§8 Semi-abelian varieties, the quasi-Albanese, and arithmetic hyperbolicity

of quasi-projective varieties.
§9 Vojta’s conjecture and the theory of heights.

§10 Diophantine geometry over function fields.
§11 Some known consequences of Lang’s conjecture.

1.2 Notation

We take this opportunity to set some notation.

1.2.1 Geometry

Divisors will refer to Cartier divisors, and Pic(X) will denote the Picard
group, i.e. the group of isomorphism classes of line bundles on X. We recall
that a reduced divisor is of normal crossings if each point étale locally looks
like the intersection of coordinate hyperplanes.

1.2.2 Arithmetic

Throughout k will denote a number field, i.e. a finite extension of Q. We
will denote by Mk the set of places of k, i.e. the set of equivalence classes of
absolute values of k. We will denote by Ok = {α ∈ k : |α|v ≤ 1 for every v ∈
Mk} the ring of integers of k, with O∗

k the group of units, and with Ok,S the
ring of S-integers in k, i.e. Ok,S = {α ∈ k : |α|v ≤ 1 for every v /∈ S}. We
will denote an algebraic closure of k by k.
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2 Rational Points on Projective Curves

Some of the main objects of study in Diophantine Geometry are integral
and rational points on varieties. An algebraic variety is the set of common
solutions to a system of polynomial equations with coefficients in R, where
R is usually a field or a ring. In these notes we will consider fields that are
finite extensions of Q, and rings that are finite extensions of Z.

If X is a variety defined over a number field k, i.e. defined by equations
with coefficients in k, then the set of k-rational points of X is the set of
solutions with coordinates in k. In a similar way, one can consider the set of
integral points of X as the set of solutions with coordinates that belong to
the ring of integers of k. However it is sometimes more convenient to take an
approach that does not depend on the particular choice of coordinates used
to present X.

Definition 2.1 (Rational Points). Let X be a projective variety defined
over k. If P ∈ X(k) is an algebraic point, then the residue field k(P ) is a
finite extension of k. We say that P is k-rational if k(P ) = k.

Remark 2.2. The above notion is intrinsic in the sense that it depends
only on the function field of X, which is independent of the embedding in
projective space. In this case a rational point corresponds to a morphism
Spec k → X (Exercise).

For a non-singular curve C defined over a number field k, the genus governs
the distribution of the k-rational points: if a curve is rational, i.e. it has genus
zero, then the set of k-rational points C(k) is dense, at most after a quadratic
extension of k. Similarly, if the curve has genus one, then at most after a
finite extension of k, the set of k-rational points C(k) is dense (see [37]
for a gentle introduction and proofs of these statements). In the genus one
case one can prove a stronger statement, originally proven by Mordell, and
extended by Weil to arbitrary abelian varieties, namely that the set of k-
rational points forms a finitely generated abelian group. We can summarize
this in the following proposition.

Proposition 2.3. Let C be a non-singular projective curve of genus g(C)
defined over a number field k.

• If g(C) = 0, then C(k) is dense, after at most a quadratic extension of k.
• If g(C) = 1, then C(k) is a finitely generated group of positive rank,

(possibly) after a finite extension of k.

In 1922, Mordell conjectured that a projective curve C of genus g(C) > 1
has finitely many k-points. This was proven by Faltings’ [45].

Theorem 2.4 (Faltings’ Theorem [45], Formerly Mordell’s Conjec-
ture). Let C be a non-singular projective curve C defined over a number field
k. If g(C) > 1, then the set C(k) is finite.
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The original proof of Faltings reduced the problem to the Shafarevich
conjecture for abelian varieties, via Parhsin’s trick. The argument uses very
refined and difficult tools like Arakelov Theory on moduli spaces, semistable
abelian schemes, and p-divisible groups, and therefore such a proof is outside
the scope of these notes. A different proof was given shortly after by Vojta
in [97] using ideas from Diophantine approximation while still relying on
Arakelov theory. Faltings in [46] gave another simplification, eliminating the
use of the arithmetic Riemann–Roch Theorem for arithmetic threefolds in
Vojta’s proof, and was able to extend these methods to prove a conjecture
of Lang. Another simplification of both Vojta and Faltings’ proofs was given
by Bombieri in [12] combining ideas from Mumford [78] together with the
ones in the aforementioned papers.

The above results leave open many other Diophantine questions: when is
the set C(k) empty? Is there an algorithm that produces a set of generators
for E(k), for an elliptic curve E defined over k? Is there an algorithm that
computes the set C(k) when it is finite (Effective Mordell)? We will not
address these questions in this notes, but we will mention the very effective
Chabauty–Coleman–Kim method that in certain situations can give answer
to the latter question (see [23, 25, 61, 62, 75]).

2.1 Geometry Influences Arithmetic

In order to generalize, at least conjecturally, the distribution of k-rational
points on curves to higher dimensional varieties, it is convenient to analyze
the interplay between the arithmetic and the geometric properties of curves,
following the modern philosophy that the geometric invariants of an algebraic
variety determine arithmetic properties of the solution set.

We start by recalling the definition of the canonical sheaf.

Definition 2.5. Let X be a non-singular variety over k of dimX = n. We
define the canonical sheaf of X to be ωX =

∧n
Ω1

X/k, where Ω1
X/k denotes

the sheaf of relative differentials of X.

If C is a curve, then ωX = Ω1
C is an invertible sheaf whose sections are the

global 1-forms on C. In this case, we call any divisor in the linear equivalence
class a canonical divisor, and denote the divisor by KC .

Example 2.6. Let C ∼= P
1, with coordinates [x : y]. In the open affine Ux

given by x �= 0 we can consider the global coordinate t = y/x and the global
differential form dt. We can extend dt as a rational differential form s ∈ Ω1

P1 ,
noting that it will possibly have poles. To compute its associated divisor we
note that in the locus Ux ∩ Uy, i.e. where x �= 0 and y �= 0, the section s is
invertible. In the intersection, the basic formula d (1/t) = −dt/t2 shows that
the divisor associated with s is −2P , where P = [0 : 1]. In particular, given
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that any two points are linearly equivalent on P
1, KP1 ∼ −P1 − P2 for two

points on P
1, and degKP1 = −2.

More generally, any divisor D on a smooth curve C is a weighted sum
of points, and its degree is the sum of the coefficients. In the case of the
canonical divisor, if C is a curve of genus g, then KC has deg(KC) = 2g − 2
(see [53, Example IV.1.3.3]).

Given Theorem 2.4 and Proposition 2.3, one can see that the positivity of
the canonical divisorKC determines the distribution of k-rational points C(k).
In particular, the set C(k) is finite if and only if deg(KC) > 0.

There is a further geometric property of curves that mimics the characteri-
zation of rational points given above. If C is a non-singular curve defined over
a number field k, holomorphic maps to the corresponding Riemann Surface
CC (viewed either as the set of complex points C(C) together with its natural
complex structure, or as the analytification of the algebraic variety C) are
governed by the genus g(C). If the genus is zero or one, the universal cover
of CC is either the Riemann sphere or a torus, and therefore there exist non-
constant holomorphic maps C → C with dense image. On the other hand,
if g(C) ≥ 2, the universal cover of CC is the unit disc and, by Liouville’s
Theorem, every holomorphic map to CC has to be constant, since its lift to
the universal cover is constant.

Varieties X where every holomorphic map C → X is constant play
a fundamental role in complex analysis/geometry so we recall here their
definition.

Definition 2.7. Let X be a complex analytic space. We say that X is Brody
Hyperbolic if every holomorphic map X → C is constant. We say that X is
Kobayashi hyperbolic if the Kobayashi pseudo-distance is a distance (see [63]
for definition and properties).

Remark 2.8. When X is compact the two notions are equivalent by [15]
and we will only say that X is hyperbolic. For more details about the various
notions of hyperbolicity and their connection with arithmetic and geometric
properties of varieties we refer to the chapter by Javanpeykar in this volume
[57].

Given a non-singular projective curve C defined over a number field, the
previous discussion can be summarized in the following table:

g(C) deg(KC) Complex hyperbolicity Density of k-points

0 −2 < 0 Not hyperbolic Potentially dense

1 0 Not hyperbolic Potentially dense

≥ 2 2g − 2 > 0 Hyperbolic Finite
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Remark 2.9. In the table, deg(KC) > 0 is equivalent to requiring that ωC

is ample, since for curves a divisor is ample if and only if its degree is positive
(see Section 4.1.1).

3 Integral Points on Curves

The previous section deals with the problem of describing the set C(k), which
we can think of the k-solutions of the polynomial equations that define C. An
analogous problem, fundamental in Diophantine Geometry, is the study of
the integral solutions of these equations, or equivalently of the integral points
of C. However, the definition of integral point is more subtle.

Example 3.1. Consider P
1
C
as the set {[x0 : x1] : x0, x1 ∈ C}; if k ⊂ C is

a number field, then the set of rational points, as defined in Definition 2.1,
is the subset P

1
C
(k) ⊂ P

1
C
consisting of the points [x0 : x1] such that both

coordinates are in k.

Remark 3.2. As points in P
n are equivalence classes, we are implicitly

assuming the choice of a representative with k-rational coordinates. For
example the point [

√
2 :

√
2] is a k-rational point, being nothing but the

point [1 : 1].

Let us focus on the case k = Q. We want to identify the integral points: it
is natural to consider points [x0 : x1] in which both coordinates are integral,
i.e. x0, x1 ∈ Ok = Z. In this case, by definition of projective space, this is
equivalent to considering points of the form [a : b] in which gcd(a, b) = 1.

Now consider the problem of characterizing integral points among Q-
rational points, i.e. given a point P = [ab : c

d ] ∈ P
1(Q), when is this point

integral (assuming we already took care of common factors)? One answer
is to require that b = d = 1; however, the point P can also be written as
P = [ad : bc], and since we assumed that we already cleared any common
factor in the fractions, we have gcd(ad, bc) = 1. So in particular, every
rational point is integral!

Example 3.3. Let us consider the affine curve A
1
C
⊂ P

1
C
, as the set {[a :

1] : a ∈ C}. Then A
1(k) = {[a : 1] : a ∈ k}. The integral points should

correspond to {[a : 1] : a ∈ Ok}. Now we can ask the same question as in
Example 3.1, specializing again to k = Q: namely how can we characterize
integral points on A

1 among its Q-rational points? Given a rational point
P = [ab : 1], we can require that b = 1. This is equivalent to asking that
for every prime p ∈ Z, the prime p does not divide b. In the case in which
p | b, we can rewrite P = [a : b] and we can see that the reduction modulo
p of P , i.e. the point whose coordinates are the reduction modulo p of the
coordinates of P , is the point [1 : 0] which does not belong to A

1! This shows
that one characterization of integral points is the set of k-rational points
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Fig. 1 An illustration of
a model (from [4])

Spec kSpec Ok,S

DD
P

σP

XX

whose reduction modulo every prime p is still a point of A1. More precisely,
let D = [0 : 1] ∈ P

1 \ A1 be the point at infinity: integral points A1(Ok) are
precisely the k-rational points A1(k) such that their reduction modulo every
prime of Ok is disjoint from D.

The previous example gives an intuition for a coordinate-free definition of
integral points. Note that, given an affine variety X ⊂ A

n defined over the
ring of integers Ok of a number field k one could try to mimic Definition 2.1 as
follows: define the ring Ok[X] to be the image of the ring Ok[T1, . . . , Tn] inside
the coordinate ring k[X] of X. Now given a rational point P = (p1, . . . , pn) ∈
X(k), it is integral when all the coordinates are in Ok. Therefore the point P
defines a specialization morphism ϕp : Ok[T1, . . . , Tn] → Ok which induces,
by passing to the quotient, a morphism ϕp : Ok[X] → Ok. The construction
can be reversed to show that indeed every such morphism corresponds to an
integral point. Note that this definition depends on the embedding X ⊂ A

n.
We will instead pursue a generalization that is based on Example 3.3.

Recall that the characterization we obtained of A
1(Ok) made use of the

reduction modulo primes of points. To give a more intrinsic and formal
definition we introduce the notion of models.

Definition 3.4 (Models). Let X be a quasi-projective variety defined over
a number field k. A model of X over the ring of integers Ok is a variety X
with a dominant, flat, finite type map X → SpecOk such that the generic
fiber Xη is isomorphic to X. See Figure 1 for an illustration taken from [4].

Over every prime p of Ok we have a variety X ×Ok
Spec kp defined over the

residue field kp which is the “reduction modulo p of X,” while the generic
fiber over (0) is isomorphic to the original X. This will make precise the
notion of reduction modulo p of a prime.

Given a rational point P ∈ X(κ), since X ∼= Xη, this gives a point in the
generic fiber of a model X of X. If the model X is proper, the point P , which
corresponds to a map Spec k → X, will extend to a section σP : SpecOk → X ,
therefore defining the reduction modulo a prime of P : it is just the point
Pp = σ(Ok) ∩ Xp. Therefore, given a proper model of X, there is a well-
defined notion of the reduction modulo a prime of k-rational points.
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The last ingredient we need to define integral points is the analogue of
the point D = [0 : 1] ∈ P

1 \ A
1 in Example 3.3. In the example we used

that the affine curve A
1 came with a (natural) compactification, namely P

1,
and a divisor “at infinity,” namely D. This motivates the idea that to study
integral points, the geometric objects that we need to consider are pairs of a
variety and a divisor, i.e. objects of the form (X,D) where X is a projective
variety (corresponding to the compactification of the affine variety) and D is
a divisor (corresponding to the divisor “at infinity”).

Definition 3.5. A pair is a couple (X,D) where X is a (geometrically
integral) projective variety defined over a field k and a normal crossing divisor
D. A model (X ,D) → SpecOk of the pair, is a proper model X → SpecOk

of X together with a model D → SpecOk of the divisor D such that D is a
Cartier divisor of X .

Remark 3.6. Given a non-singular affine variety Y defined over a field of
characteristic 0, combining the theorems of Nagata and Hironaka, we can
always find a non-singular projective compactification X ⊃ Y such that D =
X \ Y is a simple normal crossing divisor. Therefore we can identify (non-
canonically) every non-singular affine variety Y as the pair (X,D). This gives
a way to characterize the set of integral points on Y as the set of rational
points of X whose reduction modulo every prime does not specialize to (the
reduction of)D. Using models, this gives a formal intrinsic defining of integral
points.

Definition 3.7. Given a pair (X,D), the set of D-integral points of X, or
equivalently the set of integral points of Y = X \D, with respect to a model
(X ,D) of (X,D), is the set of sections SpecOk → X \D. We will denote this
set by X(Ok,D) or Y (Ok) for Y = X \D.

Remark 3.8.

• In the case in which Y is already projective, i.e. X = Y and D = ∅, then
the set of integral points coincide with the set of all sections SpecOk → X .
Since the model X → SpecOk is proper, this is equivalent to the set of
sections of the generic fiber, i.e. maps Spec k → X, which is exactly the set
X(k). This shows that for projective varieties, the set of rational points
coincide with the set of integral points.

• The definition of integral points depends on the choice of the model!
Different choices of models might give different sets of integral points (see
Example 3.9).

• When we consider an affine variety V given inside an affine space A
n as

the vanishing of a polynomial f with coefficients in Ok, this corresponds
to a pair (X,D) where X is the projective closure of V (i.e. the set
of solutions to the equations obtained by homogenizing f), and D the
boundary divisor. In this case there is a natural model of (X,D) given by
the model induced by the natural model of Pn over SpecOk, i.e. P

n
Ok

and
the closure of D inside it. Then one can show (exercise) that the set of
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integral points with respect to this model coincide with solutions of f = 0
with integral coordinates (see discussion before Definition 3.4).

The following example shows that the definition of integral points as above
truly depends on the choice of model.

Example 3.9 (Abramovich). Consider an elliptic curve given as E : y2 =
x3 + Ax + B with A,B ∈ Z, and as usual the origin will be the point at
infinity. Since E is given as the vanishing of a polynomial equation, the
homogenization defines a closed subset of P2

Q
. Moreover, since the coefficients

are all integers we get that the same equation defines a model E of E which
is the closure of E inside P

2
Z
, i.e. the standard model of P2

Q
over SpecZ. Let

P ∈ E(Q) be a rational point which is not integral with respect to D = {0E}.
This means that there exists a prime p ∈ SpecZ such that P reduces to the
origin modulo p. In particular, the section P : SpecZ → E intersects the zero
section over the prime p. Call Q the point of intersection.

Consider now the blow up π : E ′ → E of E at Q: by definition of the
blow up E ′ is also a model of E. To see this, observe that the composition
of π with the model map E → SpecZ is still flat and finite type; moreover
the point we blow up was in a special fiber so it did not change the generic
fiber, which is still isomorphic to E. In this new model the lift of the section
P : SpecZ → E ′ does not intersect the zero section over the prime p. We can
repeat this process for every point where the section P (SpecZ) intersects the
zero section, which will result in a different model for which the point P is
now an integral point! This shows that the notion of integral points depends
on the model chosen.

The following example motivates studying (S,D)-integral points, where S
is a finite set of places.

Example 3.10. Sometimes it is useful to consider rational points that fail
to be integral only for a specific set of primes in Ok. For example the equation
2x+2y = 1 does not have any integral solutions while having infinitely many
rational solutions. However, one sees that it has infinitely many solutions in
the ring Z[ 12 ], which is finitely generated over Z. A solutions in Z[ 12 ], e.g.
( 14 ,

1
4 ), fails to be integral only with respect to the prime 2. More precisely

consider the model of C : 2x + 2y − z = 0 in P
2
Z
and of the divisor D = [1 :

−1 : 0], then P = [1 : 1 : 4] is a Q-rational point of C but it is not integral,
since the reduction of P modulo 2 is the point P2 = [1 : 1 : 0] = [1 : −1 : 0]
over F2. On the other hand, for every prime p �= 2, the reduction modulo p
of P is disjoint from D.

Analogously, the rational point P gives rise, since the model is proper, to
a morphism P : SpecZ → C which is not disjoint from D, but such that the
intersection P (SpecZ) ∩ D is supported over the prime 2.

This motivates the following definition:
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Definition 3.11. Let S be a finite set of places of k, and let (X ,D) be a
model of a pair (X,D) defined over k. An (S,D)-integral point is an integral
point P : SpecOk → X such that the support of P ∗D is contained in S. We
denote the set of (S,D)-integral points of (X,D) as X(OS,D). If Y = X \D,
then we denote the set of (S,D)-integral points of Y as Y (OS).

Remark 3.12. One can also define the set of (S,D)-integral points as
sections SpecOk,S → X that do not intersect D, where Ok,S is the ring
of S-integers.

Now that we have an intrinsic definition for integral points we can
concentrate on the problem of describing the set of (S,D)-integral points
on affine curves. As in the case of rational points on projective curves,
the distribution of integral points will be governed by the geometry of
the affine curve, i.e. of the corresponding pair. For one-dimensional pairs, the
fundamental invariant is the Euler characteristic, or equivalently the degree
of the log canonical divisor.

Definition 3.13. Given a non-singular projective curve C and a pair (C, D),
the Euler Characteristic of (C, D) is the integer χD(C) = 2g(C) − 2 + #D,
which corresponds to the degree of the log canonical divisor KC +D.

The Euler Characteristic encodes information of both the genus of the
projective curve C and of the divisorD, and its sign determines the arithmetic
of the affine curve C \D.

Theorem 3.14. Given a pointed projective curve (C, D) defined over a
number field k and a finite set of places S the following hold:

• If 2g(C) − 2 + #D ≤ 0, then the set of (S,D)-integral points is dense,
possibly after a finite extension of k and/or S;

• If 2g(C) − 2 + #D > 0, then the set of (S,D)-integral points is finite
(Siegel’s Theorem).

We treat the case of non-positive Euler Characteristic in the following
example.

Example 3.15. When C is smooth projective, in order for χD(C) to be non-
positive, there are only four cases to consider: if g(C) = 0, then #D ≤ 2,
and if the g(C) = 1, then D = ∅. For projective curves, i.e. when D = ∅,
Proposition 2.3 shows that, up to a finite extension of k, the rational points
are infinite. We showed that for projective varieties, integral and rational
points coincide, which implies that in these cases the set of integral points is
dense, up to a finite extension of the base field.

If we consider affine curves, i.e. such that D �= ∅, then there are only two
remaining cases that we have to discuss, namely A

1 = (P1, P ) and Gm =
(P1, P +Q).
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We saw in Example 3.3 that integral points on A
1 are infinite, and more

generally we have that A
1(OS,D) ∼= Ok,S . In the case of the multiplicative

group Gm the integral points correspond to the group of S-units O∗
k,S . To see

this considerGm as the complement of the origin in A
1, i.e. P1\{[0 : 1], [1 : 0]}.

Then a point [a : b] ∈ Gm(k) is (S,D)-integral if, for every p in Ok,S , we
have that p does not divide neither a or b, i.e. a and b are both S-units.
Finally, Dirichlet’s Unit Theorem implies that the group of S-units is finitely
generated and has positive rank as soon as #S ≥ 2. In particular, for every
number field k, there exists a finite extension for which the rank of O∗

k,S is
positive, and therefore such that Gm(OS,D) is infinite.

In the following example, we show that the set of (S,D)-integral points on
the complement of three points in P

1 is finite.

Example 3.16 (P1 and Three Points). Consider the case of (P1, D)
where D = [0]+[1]+[∞] over a number field k. In this case deg(KP1+D) > 0,
therefore Siegel’s Theorem tells us that the number of (S,D)-integral points
is finite, for every finite set of places S of k. This can be deduced directly in
this case using the S-unit equation Theorem as follows.

Integral points in the complement of [∞] are integral points in A
1 with

respect to the divisor [0]+[1], i.e. u ∈ k such that u ∈ O∗
S (which corresponds

to integrality with respect to [0]) and such that 1−u ∈ O∗
S (which corresponds

to integrality with respect to [1]). Then if we define v = 1− u ∈ O∗
S , the set

of (S,D)-integral points correspond to solutions in S-units of x+ y = 1. The
S-unit Theorem (see e.g. [27, Theorem 1.2.4]) then implies that the set of
solutions is always finite, for every set of places S.

Siegel’s Theorem [90] (and for general number fields and set of places S in
[65, 72]) on the finiteness of the set of (S,D)-integral points is the analogue
of Faltings’ Theorem 2.4. We give here a brief sketch of the proof. For the
details we refer to [56, D.9].

Sketch of Proof of Siegel’s Theorem. We will focus on the case g(C) ≥ 1;
the case of genus zero can be treated via finiteness of solutions of S-unit
equations, see [56, Theorem D.8.4]. We can always assume that C has at
least one rational point, and use the point to embed C → Jac(C), in its
Jacobian.

Suppose that (xi) is an infinite sequence of integral points on C \D. Then
by completeness of C(kv), with v ∈ S, up to passing to a subsequence, (xi)
converges to a limit α ∈ C(kv). In the embedding C ⊂ Jac(C), we see that
for every positive integer m the sequence (xi) becomes eventually constant
in Jac(C)/m Jac(C), which is finite by the Weak Mordell–Weil Theorem. In
particular we can write xi = myi + z, for some fixed z ∈ Jac(C).

Let ϕm : Jac(C) → Jac(C) be the multiplication by m map and define
ψ(x) = ϕm(x)+z = m.x+z. Then (yi) are a sequence of integral points (since
ψ is unramified, and applying Chevalley–Weil Theorem, see [27, Theorem
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1.3.1]) on ψ∗(C) that converges to some β ∈ Jac(C) (eventually up to passing
to an extension).

By definition of the canonical height on Jac(C) (with respect to a fixed

symmetric divisor) one has that ĥ(ψ(yi)) � m2ĥ(yi). By increasing m one
gets very good approximations to α which eventually contradicts Roth’s
Theorem [56, Theorem D.2.1]. ��

The sketch of the proof illustrates a couple of very powerful ideas in
Diophantine Geometry: the use of abelian varieties (here played by Jac(C) as
ambient spaces with extra structure), the use of the so-called height machine,
and techniques from Diophantine approximation. A different proof that
avoids the use of the embedding in the Jacobian, thus allowing generalization
to higher dimensions, has been given more recently by Corvaja–Zannier in
[28], replacing Roth’s Theorem by the use of Schmidt’s Subspace Theorem
(see [103, Chapter 3] for more details).

Finally, we can ask about hyperbolicity properties of affine curves, as in
Definition 2.7; it is easy to see that both A

1 and Gm are not hyperbolic (via
the exponential map), while on the other hand the complement of any number
of points in a curve of genus one is hyperbolic (again applying Liouville’s
Theorem). Therefore, if (C, D) is a pair of a non-singular projective curve C
and a reduced divisor D, both defined over a number field k, and S is a finite
set of places containing the Archimedean ones, we can summarize the result
described in the previous sections in the following table:

χD(C) = deg(KC +D) Complex hyperbolicity (S,D)-integral points

≤ 0 Not hyperbolic Potentially dense

> 0 Hyperbolic Finite

4 Positivity of the Canonical Sheaf

As we saw for curves, hyperbolicity was governed by the positivity of the
canonical sheaf. In particular, we saw if g(C) ≤ 1, then degωC ≤ 0 (and C
is not hyperbolic), and if g(C) ≥ 2, then degωC > 0 (and C is hyperbolic).
Conjecturally, positivity of the canonical sheaf governs hyperbolicity of
algebraic varieties. Before introducing the conjectures, we give a few examples
of canonical sheaves on proper algebraic varieties. Recall we saw earlier that
for a curve C, the canonical sheaf degωC = 2g − 2.

Example 4.1 ( [53, Example II.8.20.1]). First consider the Euler
sequence
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0 → OPn → OPn(1)⊕(n+1) → TPn → 0,

where TPn denotes the tangent sheaf. Taking highest exterior powers, we see
that ωPn = OPn(−n− 1).

Example 4.2. If A is an abelian variety, then the tangent bundle of A is
trivial. In particular, ωX = OX .

A standard way to calculate the canonical sheaf of algebraic varieties is
via the adjunction formula, which relates the canonical sheaf of a variety to
the canonical sheaf of a hypersurface inside the variety.

If X is smooth and projective, and Y is a smooth subvariety, then there
is an inclusion map i : Y ↪→ X. If we denote by I the ideal sheaf of Y ⊂ X,
then the conormal exact sequence gives (where ΩX denotes the cotangent
sheaf on X)

0 → I/I2 → i∗ΩX → ΩY → 0.

In particular, taking determinants yields

ωY = i∗ωX ⊗ det(I/I2)∨.

If we let the subvariety Y to be a divisor D ⊂ X, then one obtains the
following.

Proposition 4.3 (Adjunction Formula). Let X be a smooth projective
variety with D a smooth divisor on X. Then

KD = (KX +D)|D.

Example 4.4. We can use the adjunction formula to calculate that the
canonical sheaf of X a smooth hypersurface of degree d in P

n is ωX
∼=

OX(d−n−1). We note one can do similar calculations in the case of complete
intersections.

Now that we have shown some examples of computing canonical sheaves;
we introduce the notions from birational geometry we will use to understand
positivity of the canonical sheaf and hyperbolicity. Our main reference is [69].

4.1 Notions from Birational Geometry

Let X be a projective variety and let L be a line bundle on X. For each
m ≥ 0 such that h0(X,L⊗m) �= 0, the linear system |L⊗m| induces a rational
map
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φm = φ|L⊗m| : X ��� PH0(X,L⊗m).

We denote by Ym = φm(X,L) the closure of its image.

Definition 4.5. Let X be normal. The Iitaka dimension of (X,L) is

κ(X,L) = max
m>0

{dimφm(X,L)},

as long as φm(X,L) �= ∅ for some m. Otherwise, we define κ(X,L) = −∞.

In particular, either κ(X,L) = −∞ or 0 ≤ κ(X,L) ≤ dimX.

Remark 4.6. If X is not normal, consider the normalization ν : Xν → X
and take κ(Xν , ν∗L).

Example 4.7 (Kodaira Dimension). If X is a smooth projective variety
and KX is the canonical divisor, then κ(X,KX) = κ(X) is the Kodaira
dimension of X.

The Kodaira dimension is a birational invariant, and the Kodaira dimen-
sion of a singular variety X is defined to be κ(X ′) where X ′ is any
desingularization of X. However, care needs to be taken in this case. When
X is not smooth, the dualizing sheaf ωX can exist as a line bundle on X, but
κ(X,ωX) > κ(X). This is the case, e.g. if X is the cone over a smooth plane
curve of large degree (see [69, Example 2.1.6]).

4.1.1 Positivity of Line Bundles

Definition 4.8. A line bundle L on a projective variety X is ample if for
any coherent sheaf F on X, there exists an integer nF such that F ⊗ L⊗n is
generated by global sections for n > nF . Equivalently, L is ample if a positive
tensor power is very ample, i.e. there is an embedding j : X → P

N such that
L⊗n = j∗(OPN (1)).

The following result is a standard way for checking if a divisor is ample.

Theorem 4.9 (Nakai–Moishezon). Let X be a projective scheme and let
D be a divisor. The divisor D is ample if and only if DdimY .Y > 0 for all
subvarieties Y ⊂ X.

Corollary 4.10. If X is a surface, then a divisor D is ample if and only if
D2 > 0 and D. C > 0 for all curves C ⊂ X.

Example 4.11. By Riemann–Roch, a divisor D on a curve C is ample if
and only if degD > 0.

Example 4.12. We saw in Example 4.1 that ωPn = OPn(−n−1). Therefore,
we see that ωPn is never ample for any n, as no power of ωPn will have nonzero
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sections. It is not so hard to see that −ωPn is ample for all n. This is referred
to as anti-ample.

Example 4.13. In Example 4.4 we computed the canonical sheaf for
hypersurfaces of degree d in P

n using the adjunction formula. From this we
see that

(1) If d ≤ n, then ωX is anti-ample.
(2) if d = n+ 1, then ωX = OX , and thus is not ample.
(3) If d ≥ n+ 2, then ωX is very ample (exercise using Serre Vanishing).

Definition 4.14. A line bundle L on a projective variety X is big if
κ(X,L) = dimX. A Cartier divisor D on X is big if OX(D) is big.

Remark 4.15. There are some standard alternative criteria for big divisors.
One is that there exists a constant C > 0 such that h0(X,OX(mD)) ≥ C ·mn

or all sufficiently large m (see [69, Lemma 2.2.3]). Another is that mD can
be written as the sum of an ample plus effective divisor (Kodaira’s Lemma,
see [69, Corollary 2.2.7]).

Definition 4.16. We say that X is of general type if κ(X) = dim(X), i.e.
ωX is big.

Example 4.17. We see immediately that ample implies big so that varieties
with ample canonical sheaves are of general type. In this case, some power
ω⊗m
X for m � 0 embeds X into a projective space.

Example 4.18. For curves big is the same as ample, so general type is
equivalent to g(C) ≥ 2.

Some examples of varieties of general type are high degree hypersurfaces
(in P

3 we require d ≥ 5) and products of varieties of general type (e.g.
product of higher genus curves). It is worth noting that projective space P

n

and abelian varieties are not of general type.

Remark 4.19. There exist big divisors that are not ample. One of the
standard ways to obtain examples is to note that bigness is preserved under
pullback via birational morphisms, but ampleness is not. Suppose X and Y
are proper, and f : X → Y is a birational morphism. A divisor D on Y is
big if and only if f∗D is big on X. This is easy to see using Definition 4.14,
since X and Y have isomorphic dense open subsets.

We now give an example to show that ampleness is not preserved. Suppose
H be a line in P

2, and let f : X → P
2 be the blowup of P2 at a point with

exceptional divisor E. Then f∗H is big by the above discussion, but f∗H
is not ample since the projection formula gives that (f∗H).E = 0, and thus
violates Theorem 4.9.
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4.2 Log General Type

As we saw for proper curves, hyperbolicity was essentially governed by the
positivity of the canonical sheaf. For affine curves, we saw that hyperbolicity
was governed by positivity of the log canonical divisor. As a result, we discuss
a mild generalization that will be needed later—the notion of log general type
for quasi-projective varieties. Recall that we saw in Remark 3.6 that given
a quasi-projective variety V , one can always relate it to a pair (X,D) of a
smooth projective variety and normal crossings divisor D.

Definition 4.20. We say that V (or the pair (X,D)) is of log general type
if ωX(D) is big.

Of course any pair (X,D) with X of general type will be of log general.
Perhaps more interesting examples are when X does not have its own
positivity properties.

Example 4.21 (Curves). A pointed curve (C,D =
∑

pi) is of log general
type if:

• g(C) = 0 and #(D) ≥ 3,
• g(C) = 1 and #(D) ≥ 1, or
• g(C) ≥ 2.

This is because degωC = 2g − 2 and so degωC(D) = 2g − 2 + #D.

Example 4.22. If X = P
2 and D is a normal crossings divisor, then the

pair (X,D) is of log general type if the curve D has deg(D) ≥ 4. Again, this
is because ωX(D) ∼= OP2(−3+ deg(D)). More generally, if X = P

n, then one
requires degD ≥ n+ 2.

As we will see in the next section, there are conjectural higher dimensional
analogues of Faltings’ Theorem which assert hyperbolicity properties of
projective varieties X which are of general type. In the quasi-projective
setting, there are also conjectural analogues that ask for log general type.

5 Lang’s Conjecture

We are now in a position to state the conjectural higher dimensional
generalization of Faltings’ Theorem. The main idea is that varieties of general
type should satisfy an analogous arithmetic behavior to curves of high genus.

The first conjecture that we mention is due to Bombieri (in the case
of surfaces) and Lang: Bombieri addressed the problem of degeneracy of
rational points in varieties of general type in a lecture at the University of
Chicago in 1980, while Lang gave more general conjectures centered on the
relationship between the distribution of rational points with hyperbolicity
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and Diophantine approximation (see [68] and [66]). The conjecture reads as
follows:

Conjecture 5.1 (Lang’s Conjecture, Bombieri–Lang for Surfaces).
Let X be a (projective) variety of general type over a number field k. Then
X(k) is not Zariski dense.

We note that one cannot expect that X(k) would be finite once dimX ≥ 2,
as varieties of general type can, for example, contain rational curves, which
in turn (potentially) contain infinitely many rational points.

5.1 Generalizations of Lang and Other
Applications

From the previous discussion we have seen that Conjecture 5.1 conjecturally
extends Faltings’ Theorem 2.4. It is natural to ask whether a similar extension
exists for Siegel’s Theorem 3.14. Indeed such a generalization exists: the role
of curves with positive Euler Characteristic is played now by pairs of log
general type. Then, the conjectural behavior of integral points is summarized
in the following conjecture due to Vojta, and, in the following reformulation,
using ideas of Lang.

Conjecture 5.2 (Lang–Vojta). Let X be a quasi-projective variety of log
general type defined over a number field k and let OS,k the ring of S-integers
for a finite set of places of k containing the Archimedean ones. Then the set
X(OS,k) is not Zariski dense.

As was with the Lang conjecture for projective varieties, the finiteness
result of Siegel becomes non-density. In higher dimensions, the positivity of
the log canonical divisor is not sufficient to exclude the presence of infinitely
many integral points. In particular, varieties of log general type of dimension
at least two can contain (finitely many) curves that are not of log general
type.

Example 5.3 (P2 and 4 Lines). We can considerD = x0x1x2(x0+x1+x2)
as a divisor in P

2
Q
, and S a finite set of places. Then (S,D)-integral points are

a subset of points of the form [x0 : x1 : x2] where x0, x1, and x2 are S-units.
This is equivalent to requiring that the points are integral with respect to the
three lines x0 = 0, x1 = 0, and x2 = 0. In particular we can consider points
of the form (x0 : x1 : x2) = (1 : x : y) with x, y ∈ O∗

S . The integrality with
respect to the fourth line implies that 1+ x+ y is not 0 modulo every p /∈ S.
So if we define z := 1 + x+ y, then z is a S-unit and we have that

z − x− y = 1



216 K. Ascher and A. Turchet

which is the classical S-unit equation to be solved in units. Then, as an
application of Schmidt’s subspace theorem [96, Theorem 2.2.1], one gets
that there are only finitely many solutions outside the three trivial families:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

z = 1

x = u

y = −u

⎧

⎪

⎪

⎨

⎪

⎪

⎩

z = u

x = −1

y = u

⎧

⎪

⎪

⎨

⎪

⎪

⎩

z = u

y = −1

x = u

These families correspond to curves in X with non-positive Euler character-
istic (since they intersect the divisor D in only two points—passing through
two of the singular points of D). In particular by Theorem 3.14, there will
be infinitely many (S,D)-integral points contained in these curves, up to a
finite extension of Q.

Conjecture 5.2 is a consequence of a more general conjecture, proposed by
Paul Vojta and related to his “landmark Ph.D. Thesis,” which gave the basis
for a systematic treatment of analogies between value distribution theory
and Diophantine geometry over number fields. Based on this analogy Vojta
formulated a set of far-reaching conjectures. For a detailed description we
refer to [96] as well as chapters in the books [13, 56, 83]. We will discuss this
in Section 10.

Finally we mention that more recently Campana has proposed a series of
conjectures based on a functorial geometric description of varieties that aims
at classify completely the arithmetic behavior based on geometric data. For
this new and exciting developments we refer to Campana’s chapter [19] in
this book.

5.2 Known Cases of Lang’s Conjecture

As noted above, Faltings’ second proof of the Mordell conjecture followed
from his resolution of the following conjecture of Lang.

Theorem 5.4 ([46, 47]). Let A be an abelian variety over a number field K
and let X be a geometrically irreducible closed subvariety of A which is not
a translate of an abelian subvariety over K. Then X ∩ A(K) is not Zariski
dense in X.

In particular, one has the following corollary.

Corollary 5.5 (Faltings). Let A be an abelian variety defined over a
number field K. If X is a subvariety of A which does not contain any
translates of abelian subvarieties of A, then X(K) is finite.

Using this result, Moriwaki proved the following result, whose generaliza-
tion is one of the main results in these notes.
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Theorem 5.6 ( [76]). Let X be a projective variety defined over a number
field k such that Ω1

X is ample and globally generated. Then X(k) is finite.

Sketch of Proof. Using Faltings’ Theorem 5.4, and the Albanese variety, one
can show that if X is a projective variety with Ω1

X globally generated,

then every irreducible component of X(k) is geometrically irreducible and
isomorphic to an abelian variety. We will see in Proposition 6.9, that if Ω1

X

is ample, then all subvarieties of X are of general type, and so X does not
contain any abelian varieties. Therefore by Corollary 5.5, the set X(k) is
finite. ��

For curves Ω1
C

∼= ωC , but for higher dimensional varieties X, assuming
positivity of the vector bundle Ω1

X is a stronger condition than assuming
positivity of ωX . In the following section, we will review positivity for vector
bundles.

5.3 Known Cases of the Lang–Vojta Conjecture

In the context of degeneracy of S-integral points, as predicted by Conjec-
ture 5.2, the analogue of Theorem 5.4 is the following result due to Vojta.
For the definition of semi-abelian varieties see Definition 8.2.

Theorem 5.7 ([98, 99]). Let X ⊂ A be an irreducible subvariety of a semi-
abelian variety A defined over a number field k. If X is not a translate of
a semi-abelian subvariety, then for every ring of S-integers Ok,S, the set of
integral points X(Ok,S) is not Zariski dense in X.

Corollary 5.8. In the above setting, if X does not contain any translate of
a semi-abelian subvariety of A, then X(OD,S) is a finite set.

In a parallel direction, the Lang–Vojta conjecture is known when the
divisor D has several components: we discussed one example of this in
Example 5.3. Such results arise from the higher dimensional extension of
a method developed by Corvaja and Zannier in [28] to give a new proof
of Siegel’s Theorem. In [29], Corvaja and Zannier prove a general result
that implies non-density of S-integral points on surface pairs (X,D) where
D has at least two components that satisfy a technical condition on their
intersection numbers. This result has been generalized by the same authors,
Levin, Autissier et al., extending the method both to higher dimensions as
well as refining the conditions on the divisorD; see e.g. [11, 30, 32, 35, 71]—we
refer to [27, 34] for surveys of known results.
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6 Hyperbolicity of Projective Varieties and Ample
Cotangent Bundles

The goal of this section is to understand the assumptions in Theorem 5.6—
namely ampleness and global generation for vector bundles. Recall that the
definition of ampleness for line bundles was given in Definition 4.8.

Definition 6.1. Let E be a vector bundle on a projective variety X and let
H be an ample line bundle. We say that

• E is globally generated if there exists a positive integer a > 0 and a
surjective map
Oa

X → E → 0.
• E is ample if there exists a positive integer a > 0 such that the sheaf

Syma(E)⊗H−1 is globally generated, and
• E is big if there exists a positive integer a > 0 such that the sheaf

Syma(E)⊗H−1 is generically globally generated.

Remark 6.2. These definitions are independent of the choice of ample line
bundle H (see [95, Lemma 2.14a].

We note that there are alternative ways to describe ampleness and bigness
for vector bundles (see [52]).

Proposition 6.3. A vector bundle E be on a projective variety X is ample
if and only if OP(E)(1) is ample on P(E).

Remark 6.4. One can try to make the above definition for big, namely
that E is big if and only if OP(E)(1) is big, but this definition does not always
coincide with the above definition (see Example 6.5). We will call E weakly
big if OP(E)(1) is big to distinguish the two notions.

Example 6.5. The vector bundle E = OP1 ⊕OP1(1) is weakly big, but not
big as in Definition 6.1. This is because any symmetric power will have a
OP1 summand, which will become negative when tensoring with H−1. In
particular, it will never be generically globally generated. The fact that E
is weakly big follows from the following calculation (or see Remark 4.19).
The nth symmetric power is Symn(E) = OP2 + OP1(1) + · · · + OP1(n) so
h0(Symn(E)) = 1 + 2 + · · · + (n + 1) = cn2 + . . . , and therefore grows like
a degree 2 polynomial. If X = P(E) then X = F1, the Hirzebruch surface.
Consider the natural map f : F1 → P

1 then f∗(O(n)) = Symn(E), and so
h0(F1,O(n)) = h0(P1, Symn(E)).

We will need the following fact repeatedly:

Proposition 6.6 ([52, Proposition 2.2 & 4.1]). Any quotient of an ample
vector bundle is ample. The restriction of an ample vector bundle is ample.
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Sketch of Proof of 6.6. We show the quotient result, the other result is
similar. If A → B is a surjective map of vector bundles, then Symn(A)⊗F →
Symn(B) ⊗ F is surjective. So if the former is globally generated, so is the
latter. ��
Example 6.7. Let X = P

1. Recall that any vector bundle of rank r on P
1

can be decomposed as the sum of r line bundles. Then OX ⊕OX is globally
generated (but not ample nor big). The vector bundle OX(1) ⊕ OX(1) is
ample.

Example 6.8. Let X = P
n. Then TX is ample by the Euler sequence

combined with Proposition 6.6, and TX(−1) is globally generated, but neither
ample nor big. To see it is globally generated, note that tensoring the Euler
sequence with OX(−1), we obtain

OX(−1) → O⊗(n+1)
X → TX(−1) → 0.

The fact that it is not ample follows since the restriction of TX(−1) to a

line l ⊂ P
n is Ol(1) ⊕ O⊗(n+1)

l . One can also show that TPn(−1) is not big
(see [55, Remark 2.4]).

We are now ready to prove the main result in this section.

Proposition 6.9 ([70, Example 6.3.28]). Let X be a smooth projective
variety with ample cotangent bundle Ω1

X . Then all irreducible subvarieties of
X are of general type.

Proof. Let Y0 ⊂ X be an irreducible subvariety of dimension d, and let
μ : Y → Y0 be a resolution of singularities. Then there is a generically
surjective homomorphism μ∗Ωd

X → Ωd
Y = OY (KY ). Since Ωd

X is ample, the
pullback μ∗Ωd

X is big (see Remark 4.19) and thus OY (KY ) is also big. ��
Remark 6.10.

(1) It is worth noting that the converse is not true, that is there are
hyperbolic varieties X such that the cotangent bundle Ω1

X is not ample,
see Example 6.11.

(2) In general, it is not so easy to find varieties X with ample cotangent
bundle Ω1

X (see [70, Section 6.3.B]).

We saw in Theorem 5.6, that if we also assume that Ω1
X is globally

generated, we can obtain finiteness of integral points (unconditionally with
respect to Lang’s conjecture). Finally, although we will not prove it, we
recall that Kobayashi proved (see [70, Theorem 6.3.26]) that if X is a
smooth projective variety with ample cotangent bundle Ω1

X , then X is Brody
hyperbolic (see also [41, Proposition 3.1]). Again, there are examples of Brody
hyperbolic varieties for which Ω1

X is not ample (see Example 6.11).
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Example 6.11 ( [70, Remark 6.3.27]). Let B be a curve of genus g(B) ≥
2 and consider the variety X = B × B. Then X is hyperbolic but Ω1

X is
not ample as its restriction to Y = B × {pt} has a trivial quotient. On
the other hand, consider a holomorphic map C → X = B × B. Since B is
hyperbolic, the map cannot be contained in a fiber. Consider the composition
C → B × B → B. This is a holomorphic map to a curve of genus ≥ 2 and
therefore by Liouville’s theorem must be constant.

Example 6.12 ([70, Construction 6.3.37]).

(1) Let X1, X2 be smooth projective surfaces (over C) of general type
with c1(Xi)

2 > 2c2(Xi). Then a complete intersection of two general
sufficiently positive divisors in X1 ×X2 is a surface X with Ω1

X ample.
(2) Let f : X → B be a non-isotrivial family of smooth projective curves of

genus g ≥ 3 over a smooth curve of genus g(B) ≥ 2. Then Ω1
X is ample.

These are called Kodaira surfaces.

Example 6.13 ([70, Example 6.3.38]). Let Y1, . . . , Ym be smooth pro-
jective varieties of dimension d ≥ 1 with big cotangent bundle (e.g. if Yi are
surfaces of general type with c1(Y )2 > c2(Y ) ) and let

X ⊆ Y1 × · · · × Ym

be a general complete intersection of sufficiently high multiples of an ample
divisor. Then if

dimX ≤ d(m+ 1) + 1

2(d+ 1)
,

then X has ample cotangent bundle Ω1
X .

Example 6.14 ([39]). If X is the complete intersection of e ≥ n sufficiently
ample general divisors in a simple abelian variety of dimension n + e, then
the cotangent bundle Ω1

X is ample.

Debarre conjectured that if X ⊂ P
r is the complete intersection of e ≥ r/2

hypersurfaces of sufficiently high degree, then the cotangent bundle Ω1
X is

ample [39]. This conjecture is now a theorem of Brotbek and Darondeau
[16] and independently, Xie [102]. We state one of the related results.

Theorem 6.15 ([16, 102]). In every smooth projective variety M for each
n ≤ dim(M)/2, there exist smooth subvarieties of dimension n with ample
cotangent bundles.

Remark 6.16. Brotbek–Darondeau prove Debarre’s conjecture without
providing effective bounds. Xie provides effective bounds, and the work of
Deng [42] improves these bounds. Work of Coskun–Riedl improves the bound
in many cases [36].

In the next section, we shift our focus to quasi-projective varieties.
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7 Hyperbolicity of Log Pairs

Using the ideas introduced in the above section, we now wish to understand
positivity conditions on a pair (X,D) that will guarantee hyperbolicity. We
first define what hyperbolicity means for quasi-projective varieties.

Definition 7.1. Let X be a projective geometrically integral variety over a
field k, let D be a normal crossings divisor on X, and let V = X \D.

• V = (X \D) is arithmetically hyperbolic if V (OD) is finite.
• VC is Brody hyperbolic if every holomorphic map C → VC is constant.

Then the conjectures in the spirit of Green–Griffiths–Lang–Vojta assert
that the above are equivalent, and are additionally equivalent to all subva-
rieties of V being of log general type. Recall that aside from the canonical
sheaf, the main player to study hyperbolicity was the cotangent sheaf Ω1

X .
We now consider the generalization to pairs.

Definition 7.2. Let X be a smooth projective variety and let D =
∑r

j=1 Dj

be a reduced normal crossings divisor on X. The log cotangent bundle
Ω1

X(logD) denotes the sheaf of differential forms on X with logarithmic poles
along D.

For example, if dimX = n and U ⊂ X is an open set such that D|U =
z1z2 · · · zk = 0 (with k < n), then

H0(U,Ω1
X(logD)) = Span{dz1

z1
, . . . ,

dzk
zk

, dzk+1, . . . , dzn}.

The natural idea would be to ask whether or not ampleness of the log
cotangent bundle Ω1

X(logD) implies the desired hyperbolicity properties. It
turns out that the log cotangent bundle Ω1

X(logD) is never ample. Indeed,
there are non-ample quotients coming from D which violate the quotient
property from Proposition 6.6.

Proposition 7.3 ( [10, 17]). Let X be a smooth variety of dimX > 1
and D �= ∅ a normal crossings divisor on X. Then the log cotangent sheaf
Ω1

X(logD) is never ample.

Proof. Suppose that the log cotangent bundle Ω1
X(logD) were ample.

Consider the following exact sequence (see [44, Proposition 2.3]):

0 → Ω1
X → Ω1

X(logD) → ⊕r
j=1Dj → 0,

where Dj are the components of D. Now consider the restriction of this
sequence to a component Di ⊆ D, and tensor with ODi

.
In this way one obtains a surjection

A → ODi
+Q → 0,
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where A is an ample sheaf (being the restriction of an ample sheaf), and Q is
a torsion sheaf supported at Di ∩Dj , whenever Di ∩Dj �= ∅. We note that if
there is no common point between any two irreducible components of D, in
particular if D is irreducible, then the second term of the sequence will just be
ODi

. Then, since ODi
⊕Q (and in particular ODi

) is not ample, there cannot
be a surjection from an ample sheaf (this would violate Proposition 6.6) and
thus the log cotangent bundle Ω1

X(logD) cannot be ample. ��
Instead, we can ask what happens if the log cotangent bundle Ω1

X(logD)
is, in a sense, as ample as possible. Before introducing our notion of almost
ample, we recall the definition of the augmented base locus. Let Bs(D) denote
the base locus of D.

Definition 7.4. The stable base locus of a line bundle L on a projective
variety X is the Zariski closed subset defined as

B(L) :=
⋂

m∈N

Bs(mL),

and the augmented base locus (aka non-ample locus) of L is

B+(L) :=
⋂

m∈N

B(mL−A),

where A is any ample line bundle on X.

Remark 7.5. If E is a vector bundle on X we define the augmented base
locus as π(B+(O(1)P(E)) where π : P(E) → X. Note that B+(L) is empty if
and only if L is ample, and that B+(L) �= X if and only if L is big (see [43,
Example 1.7].

Example 7.6 (Nef and Big Divisors). Let L be a big and nef divisor
on X. We define the null locus Null(L) ⊆ X to be the union of all positive
dimensional subvarieties V ⊆ X with (LdimV · V ) = 0. Then this is a proper
algebraic subset of X (see [70, Lemma 10.3.6]), and a theorem of Nakamaye
(see [70, Theorem 10.3.5]) says that

B+(L) = Null(L).

Example 7.7 (Surfaces). If X is a smooth surface and D is a big divisor
on X, then there exists a Zariski decomposition D = P +N , where P is the
nef part, and N is the negative part. In this case, one can prove (see [43,
Example 1.11]) that

B+(D) = Null(P ).
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Theorem 7.8 ( [14]). Let L be a big line bundle on a normal projective
variety X. The complement of the augmented base locus is the largest Zariski
open set such that the morphism φm(X,L) is an isomorphism onto its image.

Before giving our definition of almost ample, we recall the notion of
augmented base loci for coherent sheaves.

Definition 7.9 ( [14, Definition 2.4]). Let X be a normal projective
variety, let F be a coherent sheaf, and A an ample line bundle. Let r =
p/q ∈ Q > 0. The augmented base locus of F is

B+(F ) :=
⋂

r∈Q>0

B(F − rA),

where B(F − rA) = B(Sym[q] F ⊗A−p).

Remark 7.10.

(1) The augmented base locus does not depend on the choice of an ample
divisor A.

(2) By [14, Proposition 3.2], if F is a coherent sheaf and π : P(F ) =
P(SymF ) → X is the canonical morphism, then π(B+(OP(F)(1))) =
B+(F ), i.e. the non-ample locus of F .

Definition 7.11. Let (X,D) be a pair of a smooth projective variety and a
normal crossings divisor D. We say that the log cotangent sheaf Ω1

X(logD)
is almost ample if

(1) Ω1
X(logD) is big, and

(2) B+(Ω
1
X(logD)) ⊆ Supp(D).

Remark 7.12.

(1) We can define the above notion more generally for singular varieties
(see [10]), e.g. varieties with lc and slc singularities coming from moduli
theory. This is necessary to obtain the uniformity results in loc. cit.;
however, it is unnecessary for the proof of Theorem 8.1.

(2) When X is smooth, our notion does not quite coincide with almost ample
as in [17, Definition 2.1]. If the log cotangent sheaf is almost ample in
the sense of [17], then it is almost ample in our sense. However, our
definition is a priori weaker.

(3) Brotbek–Deng proved that for any smooth projective X there exists a
choice of D so that the log cotangent bundle Ω1

X(logD) is almost ample
(see Theorem 7.13).

(4) For a log smooth pair (X,D) with almost ample Ω1
X(logD), the

complement X \D is Brody hyperbolic by the base locus condition (see
e.g. [41, Proposition 3.3]).

We now state the above theorem of Brotbek–Deng.
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Theorem 7.13 ([17, Theorem A]). Let Y be a smooth projective variety
of dimY = n and let c > n. Let L be a very ample line bundle on Y . For
any m ≥ (4n)n+2 and for general hypersurfaces H1, . . . , Hc ∈ |Lm|, writing
D =

∑c
i=1 Hi, the logarithmic cotangent bundle Ω1

Y (logD) is almost ample.
In particular, Y \D is Brody hyperbolic.

We now present the proof that almost ample log cotangent implies that all
subvarieties are of log general type. We note that the proof of the statement
in full generality is outside the scope of these notes, and so we present a
simplified proof which works for log smooth pairs.

Theorem 7.14 ([10, Theorem 1.5]). Let (X,D) be a log smooth pair. If
(X,D) has almost ample log cotangent Ω1

X(logD), then all pairs (Y,E) where
E := (Y ∩ D)red with Y ⊂ X irreducible and not contained in D are of log
general type.

Proof. Consider a log resolution (˜Y , ˜E) → (Y,E), which gives a map φ :

(˜Y , ˜E) → (X,D). Since Y is not contained in D, by the definition of almost
ample, Y is not contained in the base locus of Ω1

X(logD). This gives a map

φ∗(Ω1
X(logD)) → Ω

˜Y (log
˜E). The image of this map is a big subsheaf of

Ω
˜Y (log

˜E), being a quotient of a big sheaf, and thus its determinant is also

big. By [20, Theorem 4.1] (see also [86, Theorem 1]) K
˜Y + ˜E is big, and so

(Y,E) is of log general type. ��
Remark 7.15. In the above proof, we used that the quotient of a big sheaf
is a big sheaf. We stress that this is not true for weakly big. The key idea is to
be big there is a generically surjective map, and this map remains generically
surjective when restricting to a subvariety not contained in the base locus
(in this case a subvariety contained in the divisor D).

In [10], we prove this statement in further generality. Namely, we prove
the result for pairs with singularities which arise from moduli theory (i.e. lc
and slc singularities). This is necessary for the proofs of uniformity in loc. cit.
We now show an alternative proof for Theorem 7.14 in the case dimX = 2,
which avoids the use of [20].

Alternative Proof of Theorem 7.14 If dimX = 2. By assumption, Ω1
X(logD)

is big and so its restriction to any subvariety Y �⊂ D is still big. Since Y is
a curve, big is equivalent to ample, and so the restriction is actually ample.
Consider the normalization φ : Y v → Y and denote by Ev the divisor
Ev = φ−1(E) ∪ { exceptional set of φ}. Since Ω1

X(logD)|Y is ample, its
pullback φ∗(Ω1

X(logD)|Y ) is big. There is a generically surjective map (see
[51, Theorem 4.3])

φ∗(Ω1
X(logD)|Y ) → Ω1

Y v (Ev) = OY v (KY v + Ev).
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Therefore we see that OY v (KY v + Ev) is big and so (Y,E) is of log general
type. ��

8 Semi-abelian Varieties and the Quasi-Albanese
Map

In this section we introduce semi-abelian varieties, and prove a generalization
of Moriwaki’s theorem. In particular, we show that the Lang–Vojta conjecture
holds for varieties which have almost ample and globally generated log
cotangent bundle.

Theorem 8.1 ([10]). Let V be a smooth quasi-projective variety with log
smooth compactification (X,D) over a number field K. If the log cotangent
sheaf Ω1

X(logD) is globally generated and almost ample, then for any finite
set of places S the set of S-integral points V (OK,S) is finite.

We begin with the definition of a semi-abelian variety. Our discussion
follows [48].

Definition 8.2. A semi-abelian variety is an irreducible algebraic group A
which, after a suitable base change, can be realized as an extension of an
abelian variety by a linear torus, i.e. the middle term of an exact sequence

1 → G
r
m → A → A0 → 1,

where A0 is an abelian variety.

Example 8.3. Immediate examples of semi-abelian varieties are tori and
abelian varieties. Any product of a torus with an abelian variety is a semi-
abelian variety called split.

By Vojta’s generalization of Faltings’ theorem (see Theorem 5.7 and
Corollary 5.8), one way to obtain finiteness of the set of integral points is
to consider varieties X \D that satisfy the following two conditions:

(1) X \D embeds in a semi-abelian variety as a proper subscheme;
(2) X \D does not contain any subvariety which is isomorphic to (a translate

of) a semi-abelian variety.

Clearly the two conditions imply that the set of D-integral points on X is
finite. This strategy has some similarity with the proof of Siegel’s Theorem
using the Roth’s Theorem, where one make use of the embedding of the curve
in its Jacobian.

To embed a pair in a semi-abelian variety we will use the theory of
(quasi-)Albanese maps. Recall that every variety admits a universal mor-
phism to an abelian variety, called the Albanese map. The same is true for
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quasi-projective varieties where the universal morphism instead maps to a
semi-abelian variety.

Definition 8.4 ([48, Definition 2.15]). Let V be a smooth variety. The
quasi-Albanese map

α : V → AV

is a morphism to a semi-abelian variety AV such that

(1) For any other morphism β : V → B to a semi-abelian variety B, there is
a morphism f : AV → B such that β = f ◦ α, and

(2) the morphism f is uniquely determined.

The semi-abelian variety AV is called the quasi-Albanese variety of X and
was constructed originally by Serre in [87, Théorème 7].

Remark 8.5.

• If V = C is a projective curve, then AV is the abelian variety Jac(C).
• If V = X \D is rational, then AV is a torus. (Exercise)
• There is no semi-abelian subvariety of AV containing α(V ).

8.1 Construction of AV

We briefly sketch the construction ofAV for a smooth quasi-projective variety
V defined over the complex numbers. More generally if V is defined over a
perfect field k one can define more abstractly the Albanese variety to be the
dual of the Picard variety of X. In what follows we use the standard notation
q(V ) = dimH0(X,Ω1

X(logD)) and q(X) = dimH0(X,Ω1
X).

Let {ω1, . . . , ωq(X), ϕ1, . . . , ϕδ} be a basis of H0(X,Ω1
X(logD)). The quasi-

Albanese variety of V is AV
∼= C

q(V )/L, where L is the lattice defined by the
periods, i.e. the integrals of the basis elements ofH0(X,Ω1

X(logD)) evaluated
on a basis of the free part of H1(V,Z). Then AV is a semi-abelian variety [48,
Lemma 3.8]. If 0 ∈ V is a point of V , then the map α : V → AV is defined as

P �→
(

∫ P

0

ω1, . . . ,

∫ P

0

ωq(X),

∫ P

0

ϕ1, . . .

∫ P

0

ϕδ

)

.

The map α is well defined [48, Lemma 3.9] and one can check that α is
an algebraic map [48, Lemma 3.10]. In particular dimAV = q(V ). We will
denote by d(V ) = dimα(V ).

We see now that in order to use the quasi-Albanese variety we will need
to impose some condition on the positivity of the sheaf Ω1

X(logD). The main
idea is that the geometric conditions on the log cotangent sheaf will ensure
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that we can embed V inside its quasi-Albanese as a proper subvariety and
then ensure that it does not contain any proper semi-abelian subvariety and
conclude using Vojta’s Theorem 5.7.

8.2 Proof of the Main Theorem

We begin with the following.

Proposition 8.6. Let V be a smooth quasi-projective variety over a number
field K. If d(V ) < q(V ), then the closure of V (OS,K) in V is a proper closed
subset.

Proof. Assume V (OS) �= ∅. Since d(V ) < q(V ), the quasi-Albanese map α
is not surjective. In particular α(V ) is a proper subvariety of a semi-abelian
variety AV . If V (OS) is dense in V , then so is its image α(V )(OS) in α(V ). By
Vojta’s Theorem (Theorem 5.7), the image α(V ) is a semi-abelian subvariety
of AV . This is a contradiction by Remark 8.5 (alternatively think about
α(V )(OS) generating AV (OS)). ��

Now we discuss the consequences of Ω1
X(logD) being almost ample and

globally generated.

Lemma 8.7. Let V be a smooth quasi-projective variety with log smooth
compactification (X,D) over a field k of characteristic zero. If the sheaf
Ω1

X(logD) is almost ample and globally generated, then q(V ) ≥ 2 dimV .

Proof. If P = Proj(Ω1
X(logD)) and L = OP (1), then since Ω1

X(logD) is
globally generated there is a morphism φ|L| : P → P

N where φ∗
|L|OPN (1) = L

and N = dimk H
0(P,L) − 1. Furthermore, by definition L is big. Then the

map φ|L| is generically finite which implies that

dimP = dimφ|L|(P ) ≤ N = dimk H
0(P,L)− 1.

Noting that dimP = 2dimV − 1 we obtain that

q(V ) = dimH0(X,Ω1
X(logD)) ≥ 2 dimV.

��
Theorem 8.8. Let V ∼= (X \D) be a log smooth variety over a number field
k, let AV be a semi-abelian variety, and let α : V → AV be a morphism.
If α∗(Ω1

AV
) → Ω1

V is a surjective map of sheaves, then every irreducible
component of V (OS) is geometrically irreducible and isomorphic to a semi-
abelian variety.
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Proof. Let Y be an irreducible component of V (OS). Since Y (OS) is dense
in Y , we see that Y is geometrically irreducible. We are thus left to show that
Y is isomorphic to a semi-abelian variety. For this we will use [48, Theorem
4.2] and so it suffices to show that Y is smooth and α|Y is étale.

Let B = α(Y ). Since Y (k) is dense in Y , so is B(k) in B. By Vojta’s
theorem (see Theorem 5.7), B is a translated of a semi-abelian subvariety
of AV . Consider the following diagram:

We know that h : (α|Y )∗(Ω1
B) → Ω1

Y is surjective. On the other hand,
rank(Ω1

B) ≤ rank(Ω1
Y ) and the former is locally free. Therefore h is actually

an isomorphism. Therefore Y is smooth over k and α|Y is étale. Thus we
conclude the result by [48, Theorem 4.2] ��
Corollary 8.9. Let V ∼= (X \ D) be a log smooth variety over a number
field k. If the log cotangent sheaf Ω1

X(logD) is globally generated, then

for every finite set of places S, every irreducible component of V (OS) is
geometrically irreducible and isomorphic to a semi-abelian variety.

Proof. Consider the quasi-Albanese map α : V → AV . Since Ω1
X(logD) is

globally generated and H0(V,Ω1
V ) ⊗ OAV

∼= Ω1
AV

by [48, Lemma 3.12] the
map α∗(Ω1

AV
) → Ω1

V is surjective. Therefore applying Lemma 8.7 gives the
desired result. ��
Proof 1 of Theorem 8.1. For a smooth variety V with log smooth completion
(X,D), assuming that Ω1

X(logD) is almost ample implies there are no
semi-abelian varieties inside V (see Theorem 7.14). Therefore, the set
V (OS) is finite when Ω1

X(logD) is globally generated and almost ample by
Corollary 8.9. ��

We now give a proof that does not use Theorem 7.14.

Proof 2 of Theorem 8.1. Assume that V (OS) has an irreducible component
Y of dimension dimY ≥ 1. Let (Y ,E) denote the completion of Y . Note
that Y is geometrically irreducible. Furthermore, Ω1

X(logD)|Y is almost
ample and globally generated. Therefore Ω1

Y
(logE) is almost ample and

globally generated as well. By Lemma 8.7, q(Y ) ≥ 2 dimY . Therefore, by
Proposition 8.6, Y (OS) is not dense in Y , which is a contradiction. ��
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9 Vojta’s Conjecture

The goal of this section is to introduce Vojta’s conjecture and the relevant
height machinery to present a result analogous to Theorem 8.1 in the function
field setting. This result gives a height bound for integral points that is
predicted by Vojta’s main conjecture (Conjecture 9.5). We will see in this
section that this “main” conjecture implies Conjecture 5.2.

9.1 Vojta’s Conjecture and the Theory of Heights

We will now recall the basic definition needed to state the main conjecture
whose specific reformulation will imply Conjecture 5.2. The main technical
tool is the concept of height, that plays a fundamental role in almost all results
in Diophantine Geometry. The idea is that a height function measures the
“arithmetic complexity” of points. In the classical case of Pn the logarithmic
height is defined as

H(x0 : · · · : xn) = max
i

(|xi|)

for a rational point (x0 : · · · : xn) ∈ P
n(Q) with integer coordinates

without common factors. Weil extended this notion to treat arbitrary height
functions on algebraic varieties defined over number fields. In this language,
the logarithmic height on P

n is the height associated with a hyperplane divisor
over Q.

Definition 9.1 (Weil’s Height Machinery). Let X be a smooth projec-
tive algebraic variety defined over a number field k. There exists a (unique)
map

hX, : Pic(X) → {functions X(k) → R}

well defined up to bounded functions, i.e. modulo O(1), whose image hX,D

for a class D ∈ Pic(X) is called a Weil height associated with D. The map
hX, satisfies

(a) the map D �→ hX,D is an homomorphism modulo O(1);
(b) if X = P

n and H ∈ Pic(Pn) is the class of some hyperplane in P
n, then

hX,H is the usual logarithmic height in the projective space;
(c) Functoriality: for each k-morphism f : X → Y of varieties and for each

D ∈ Pic(Y ) the following holds:

hX,f∗D = hY,D +O(1).

By abuse of notation, for a divisor D, we will denote the height
corresponding to the class O(D) ∈ Pic(X) with hX,D. The previous definition
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can be extended to non-smooth varieties (even non-irreducible ones) and over
any field with a set of normalized absolute values which satisfy the product
formula, see [68] for further details. From the previous definition one can
show the following properties for the height machinery:

Proposition 9.2 ( [56, 68]). With the above notation, the function hX,

satisfies

(d) Let D be an effective divisor in X then, up to bounded functions, hX,D ≥
O(1);

(e) Northcott’s Theorem: Let A be an ample divisor in X with associated
height function hX,A then, for all constants C1, C2, and every extension
k′ of k with [k′ : k] ≤ C2, the following set is finite:

{P ∈ X(k′) : hX,A(P ) ≤ C1}.

The second ingredient we need to introduce to formally state Vojta’s
conjecture is the notion of local height. Morally we want a function which
measures the v-adic distance from a point to a divisor D and such that a
linear combination of these functions when v runs over the set of places gives
a Weil height for the divisor D. This motivates the following:

Definition 9.3 (Local Height). Let X be a smooth projective variety
defined over a number field k. Then there exists a map

λ : Pic(X) → { functions
∐

v∈Mk

X \ suppD(kv) → R}

defined up to Mk-bounded functions, i.e. up to constant maps Ov(1) : Mk →
R that are nonzero for finitely many places v ∈ Mk, such that:

(a) λ is additive up to Mk bounded functions;
(b) given a rational function f on X with associated divisor div(f) = D.

Then

λD,v(P ) = v(f(P ))

up to Ov(1), for each v ∈ Mk where P ∈ U ⊂ X \ suppD(kv) with U
affine and max|P |v = 0 for all but finitely many v;

(c) Functoriality: for each k-morphism g : X → Y of varieties and for each
D ∈ Pic(Y ) the following holds:

λg∗D,v = λD,v ◦ g +Ov(1);

(d) if D is an effective divisor, then λD,v ≥ Ov(1);
(e) if hD is a Weil height for D, then
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hD(P ) =
∑

v∈Mk

dvλD,v(P ) +O(1)

for all P /∈ suppD, with dv = [kv : Qv]/[k : Q].

For the detailed construction and related properties of local height we
refer to [68] and [88]. One intuition behind the work of Vojta was the fact
that local heights are arithmetic counterparts of proximity functions in value
distribution theory: to see this consider a metrized line bundle L with a
section s and metric |·|v: the function P �→ log|s(P )|v is a local height at v.
Following Vojta [96] one can introduce arithmetic proximity and counting
functions for algebraic varieties over number fields in the same spirit.

Definition 9.4. Let S be a finite set of places of k, and let (X,D) be a pair
defined over k. Then the following functions are well defined:

mS,D(P ) =
∑

v∈S

dvλD,v(P )

NS,D(P ) =
∑

v/∈S

dvλD,v(P )

called the arithmetic proximity function and arithmetic counting function
respectively. By definition,

hD(P ) = NS,D(P ) +mS,D(P ).

With these definitions we can now state the main Vojta conjecture which
translates Griffiths’ conjectural “Second Main Theorem” in value distribution
theory.

Conjecture 9.5 (Vojta). Let X be a smooth irreducible projective variety
defined over a number field k and let S be a finite set of places of k. Let D
be a normal crossing divisor and A an ample divisor on X. Then for every
ε > 0 there exists a proper closed subset Z such that, for all P ∈ X(k) \ Z,

mS,D(P ) + hKX
(P ) ≤ εhA(P ) +O(1).

Vojta’s main conjecture 9.5 is known to imply most of the open conjectures
and fundamental theorems of Diophantine Geometry (Masser–Osterlé abc
conjecture, Faltings’ Theorem, . . . ).

We end this section by two propositions which show how the above stated
conjectured implies the Bombieri–Lang conjecture 5.1 and the Lang–Vojta
conjecture 5.2. For other implications and discussions we refer the interested
reader to [96] or [83].
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Remark 9.6. We recall that by Remark 4.15 (Kodaira’s Lemma), a big
divisor D has a positive multiple that can be written as the sum of an ample
and effective divisor. In the following proofs we will always assume that this
multiple is the divisor itself for simplifying the notation, as this can be done
without loss of generality.

Proposition 9.7. Vojta conjecture 9.5 implies Bombieri–Lang conjec-
ture 5.1.

Proof. If X is of general type, then KX is big, i.e. there exists a positive
integer n such that nKX = B+E with B ample and E effective, and we will
assume n = 1. Now Conjecture 9.5 with D = 0 and A = B gives

(1− ε)hB(P ) + hE(P ) ≤ O(1).

By Proposition 9.2, hE(P ) ≥ 0 and hence, by Northcott’s Theorem 9.2(e),
the set X(K) is not Zariski dense in X. ��

In order to prove that Vojta conjecture is stronger than the Lang–Vojta
conjecture we need the following reformulation of the property of being S-
integral in terms of the functions defined in Definition 9.4: a point P is
S-integral if NS,D(P ) = O(1) and in particular mS,D(P ) = hD(P ) + O(1).
Using the characterization of bigness mentioned above (Remark 4.15), we
prove the following.

Proposition 9.8. Vojta’s conjecture 9.5 implies the Lang–Vojta conjec-
ture 5.2.

Proof. For a log general type variety (X,D) one has

KX +D = B + E,

for B ample and E effective. Hence Vojta’s conjecture with A = B gives, for
S-integral points,

(1− ε)hB(P ) + hE(P ) ≤ O(1).

As before, hE(P ) ≥ 0; thus, using Northcott’s Theorem, the set of S-integral
points of (X,D) is not Zariski dense. ��

10 Function Fields

Function fields in one variable and number fields share several properties. This
deep analogy was observed in the second half of the 19th century; one of the
first systematic treatments can be found in the famous paper by Dedekind
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and Weber [40]. Further descriptions, due to Kronecker, Weil, and van der
Waerden, settled this profound connection which finally became formally
completed with the scheme theory developed by Grothendieck.

Definition 10.1 (Function Field). A function field F over an alge-
braically closed field k is a finitely generated field extension of finite
transcendence degree over k. A function field in one variable, or equivalently
a function field of an algebraic curve, is a function field with transcendence
degree equal to one.

Remark 10.2. With the language of schemes the function field of a curve
X, or more general of every integral scheme over an algebraic closed field,
can be recovered from the structure sheaf OX in the following way: given any
affine open subset of X, the function field of X is the fraction field of OX(V ).
Moreover, if η is the (unique) generic point of X, then the function field of
X is also isomorphic to the stalk OX,η.

The analogy between number fields and function fields of curves, also
known as algebraic function fields in one variable, comes from the fact
that one-dimensional affine integral regular schemes are either smooth affine
curves over a field k or an open subset of the spectrum of the ring of integers
of a number field. Formally, given a number field k with ring of integers Ok

the scheme SpecOk is one-dimensional affine and integral. From this analogy,
several classical properties of number fields find an analogue in the theory of
function field. In particular the theory of heights can be defined over function
fields.

Definition 10.3. Given a function field F in one variable of a non-singular
curve C, each (geometric) point P ∈ C determines a non-trivial absolute
value by

|f |P := e− ordP (f).

Moreover if Q �= P , then the absolute values |·|Q and |·|P are not equivalent.

Remark 10.4.

• The definition could have been given more generally for function fields of
algebraic varieties regular in codimension one (or rather for regular models
of higher dimensional function fields), replacing the point P with prime
divisors. Extensions exist also for function fields over non-algebraically
closed fields in which one should replace points with orbits under the
absolute Galois group.

• From the fact that any rational function f on a projective curve has an
associated divisor of degree zero, it follows that the set of absolute values
satisfy the product formula.
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Table 1 Number Fields
and Function Fields
analogy

Number Field Function Field

Z k[x]

Q k(x)

Qp k((x))

k finite extension of Q F function field of C
Place Geometric point

Finite set of places Finite set of points

Ring of S-integers Ring of regular functions

SpecOk,S Affine curve C \ S

Product formula deg principal divisor = 0

Extension of number fields Dominant maps

Extension of ideals Pullback of divisors

Given the set of absolute values MF for a function field in one variable F ,
normalized in such a way that they satisfy the product formula, heights can
be defined for F in the following way:

Definition 10.5. Let F = k(C) be as before. For any f ∈ F the height of
f is

h(f) = −
∑

P∈C
min{0, ordP (f)} =

∑

P∈C
max{0, ordP (f)}.

In the same way for a point g ∈ P
n(F ), g = (f0 : · · · : fn), its height is

defined as

h(g) = −
∑

P∈C
min
i
{ordP (fi)}.

From the definition it follows that a rational function on a regular curve
has no poles if and only if its height is zero if and only if it is constant on the
curve.

We end this subsection with Table 1, which illustrates the interplay and the
similarity between number fields and function fields. We stress in particular
how each geometric object in the right column, in particular dominant maps
and pullbacks, are analogous to purely arithmetic notions like extensions
of fields and extensions of ideals. This analogy can be further explored
using Arakelov Theory and extending the notion of divisors to number fields
by suitably compactifying the affine curve SpecOk,S ; in this framework an
intersection theory can be defined for such compactified divisors sharing many
analogous properties of intersection theory on the geometric side. We refer
to [67] for further details on this subject.
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10.1 Mordell Conjecture for Function Fields

Over function fields one cannot expect Faltings’ Theorem 2.4 to hold as shown
by the following examples.

Example 10.6. Let C be a curve with g(C) > 1 defined over C and consider
the trivial family C × P

1 → P
1. The family can be viewed as the curve C

(trivially) defined over the function field C(t) of P1. All fibers of the family,
being isomorphic to C have genus greater than one. The Mordell Conjecture
over function fields, without any other restriction, should imply that the set
of C(t)-rational points of C, i.e. there are finitely many sections P1 → C×P

1.
However this is easily seen to be false by considering constant sections P1 →
{P} × P

1 for each point P ∈ C(C). In particular, the general type curve C
defined over C(t) has infinitely many C(t)-rational points.

From the previous example one could guess that the problem relied on the
fact that the family was a product and the curve C was actually defined over
the base field C rather than on the function field C(t), i.e. the family was
trivial. However, as the following example shows, things can go wrong even
for non-trivial families.

Example 10.7 (Gasbarri [49]). Consider the curve C := (x+ty)4+y4−1
defined over C(t). It has an associated fibration C → P

1 whose generic fiber
Ct0 = (x + t0y)

4 + y4 − 1 is a smooth projective curve of genus g(Ct0) = 3.
Again if we consider the same statement of Theorem 2.4 only replacing the
number field with the function field C(t) we would expect that the number of
C(t)-rational points of C to be finite. However we claim that C(C(t)) is infinite;
to see this consider the equation α4 + β4 = 1 over C2: it has infinitely many
solutions. Each solution gives a C-point of Ct0 , namely (α − t0β, β) proving
the claim. Moreover the family is not trivial in the sense of the previous
example, i.e. C is not defined over C. Notice however that each fiber of the
family is isomorphic to the curve x4 + y4 = 1 via x+ ty �→ x and y �→ y.

Motivated by the previous examples we give the following:

Definition 10.8. Given a family of irreducible, smooth projective curves
C → B over a smooth base B, we say that the family is isotrivial if Cb is
isomorphic to a fixed curve C0 for b in an open dense subset of B. With
abuse of notation, we will say that a curve C defined over a function field F
is isotrivial if the corresponding fibration C → B is isotrivial, where B is a
curve with function field F .

Isotriviality extends the notion of (birational) triviality for family of
curves, i.e. a product of curves fibered over one of the factors is immediately
isotrivial. At the same time this notion encompasses many other families
that are not products, like the one defined in the previous example. However,
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after a cover of the base of the family, each isotrivial family becomes trivial;
in particular the following easy lemma holds:

Lemma 10.9. Given an isotrivial family C → B of smooth projective
irreducible curves, there exists a cover B′ → B such that the base changed
family C ×B B′ → B′ is a generically trivial family, i.e. is birational to a
product C ×C B0.

Lemma 10.9 implies that rational points for curves defined over function
fields will not be finite for isotrivial curves. The analogous form of Mordell
Conjecture for function fields thus asks whether this holds only for this class
of curves. We can then restate Theorem 2.4 in the following way:

Theorem 10.10. Let C be a smooth projective curve defined over a function
field F of genus g(C) > 1. If C(F ) is infinite, then C is isotrivial.

Theorem 10.10 was proved in the sixties by Manin [73] (although with a
gap fixed by Coleman [26]) using analytic arguments, and later by Grauert
[50] using algebraic methods. Samuel in [84] gave a proof in characteristic
p using ideas of Grauert. A detailed explanation of Grauert methods can be
found in Samuel’s survey [85]. In Mazur’s detailed discussion of Faltings’
proof of Mordell Conjecture [74], Mazur stresses the role of Arakelov [7]
and Zahrin’s [104] results which imply new proofs of the Geometric Mordell
Conjecture, using ideas of Parshin: this gives even more importance to the
geometric case.

One of the ideas of Grauert’s proof, which is central in some of the higher
dimensional extensions is the following: suppose C is a curve defined over a
function field F of a curve B, corresponding to a fibration π : X → B. Then
one can prove that almost all sections of the fibration, which correspond to
rational points, verify a first order differential equation, i.e. almost all sections
are tangent to a given horizontal vector field. Formally each section σ : B → X
can be lifted to the projective bundle B → P(Ω1

X) = Proj(Sym(Ω1
X)) via the

surjective map σ∗Ω1
X → Ω1

B. Grauert proves (in a different language) that
there exists a section φ of a suitable line bundle over P(Ω1) whose zero section
contains all but finitely many images of sections. Grauert then concludes
that if infinitely many sections exist, given the fact that they satisfy the
differential equation given by φ = 0, a splitting is provided for the relative
tangent sequence which implies that the family is isotrivial (via the vanishing
of the Kodaira–Spencer class).

In particular, Grauert’s construction gives first insights towards the theory
of jet spaces which occupy a central role in some degeneracy results in the
complex analytic setting. In this direction, recent analogues of Theorem 10.10
in higher dimension have been proved by Mourougane [77] for very general
hypersurfaces in the projective space of high enough degree using proper
extensions of the ideas briefly described above.
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10.2 Vojta Conjecture for Function Fields

Since function fields possess a theory of heights analogous to the theory over
number fields, one can translate Vojta’s Main Conjecture 9.5 to the function
field case. The main conjecture implies the following height bound for varieties
of log general type over function fields.

Conjecture 10.11. Let (X ,D) be a pair over a function field F = k(B)
whose generic fiber (X,D) is a pair of log general type. Then, for every ε > 0
there exists a constant C and a proper closed subvariety Z such that for all
P (∈ X \ Z)(F ) one has

hKX+D(P ) ≤ C(χ(P ) +N
(1)
D (P )) +O(1) (1)

where, given a point P ∈ X (L) corresponding to a cover BP → B of degree n,
corresponding to the field extension L ⊃ F , we have that χ(P ) = χ(BP )/n.

Moreover, the truncated counting function N
(1)
D (P ) is the cardinality of the

support of P ∗D.

Note that for varieties of log general type the height in (1) is associated
with a big divisor. In this case, if the set of points of bounded height is Zariski
dense, then the model is isotrivial. Moreover, if one considers only points
defined over F , then the characteristic of the point P reduces to 2(g(B))− 2
and one recovers the usual conjecture for (D,S)-integral points where #S ≥
N

(1)
D (P ).
In this latter case one can relate Conjecture 10.11 to hyperbolicity using

the following result of Demailly.

Theorem 10.12 (Demailly [41]). Let X be a projective complex variety
embedded in some projective space for a choice of a very ample line bundle.
Then if the associated manifold is Kobayashi hyperbolic the following holds:
there exists a constant A > 0 such that each irreducible curve C ⊂ X satisfies

deg C ≤ A(2g(˜C)− 2) = Aχ(˜C),

where ˜C is the normalization of C.
Following this result, Demailly introduced the following notion.

Definition 10.13. A smooth projective variety X is algebraically hyperbolic
if there exists a constant A such that for each irreducible curve C ⊂ X the
following holds:

deg C ≤ Aχ(˜C).
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Using strong analogies between hyperbolicity and degeneracy of rational
points Lang conjectured that a general type variety should be hyperbolic
outside a proper exceptional set and therefore one could also conjecture that
the variety should be algebraically hyperbolic outside that set (for more on
algebraically hyperbolic varieties we refer to [58, 59]). This allows one to
rephrase Conjecture 10.11 as follows.

Conjecture 10.14 (Lang–Vojta for Function Fields). Given an affine
variety X embedded as X \D for a smooth projective variety X and a normal
crossing divisor D, if X is of log general type, then there exists a proper
subvariety Exc (called the exceptional set) such that there exists a bound
for the degree of images of non-constant morphisms C → X from affine
curves whose image is not entire contained in Exc, in terms of the Euler
Characteristic of C.

By the previous remark it is easy to see that Conjecture 10.11 implies
Conjecture 10.14.

We note that most of the known techniques used for the number field case
can be used to prove analogous results in the function field setting. However,
due to the presence of tools that are not available over number fields, most
notably the presence of derivation, one can obtained stronger results that
lead to cases of Conjecture 10.14 and Conjecture 10.11 in settings that are
currently out of reach in the function field case. We refer to the articles
[18, 22, 24, 31, 33, 77, 81, 94, 100, 101] as some examples of results over function
fields along these lines.

Remark 10.15. For the sake of completion, we discuss briefly how algebraic
hyperbolicity fits in with our previous discussions on hyperbolicity (see [70,
Example 6.3.24].

• If X is algebraically hyperbolic, then X contains no rational or elliptic
curves.

• If X is algebraically hyperbolic, then there are no non-constant maps f :
A → X from an abelian variety A.

• Kobayashi (and thus Brody) hyperbolicity implies algebraic hyperbolicity
for projective varieties.

Furthermore, a theorem of Kobayashi (see [70, Theorem 6.3.26]) states that
if Ω1

X is ample, then X is algebraically hyperbolic.

10.3 Moriwaki for Function Fields

The analogue of Theorem 5.6 over function fields is the following theorem
due to Noguchi.
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Theorem 10.16 (Noguchi [79]). Let X be a smooth variety over a
function field F . If Ω1

X is ample, then the conclusion of Conjecture 10.11
holds.

It is therefore natural to consider the analogous question for pairs. As
pointed out several times in these notes, for a pair (X,D), the analogous
assumption on the positivity of the log cotangent, is to require that Ω1

X(logD)
is almost ample. In this setting the following was suggested to us by Carlo
Gasbarri.

Expectation 10.17. Let (XF , D) be a log smooth non-isotrivial pair
over F . If Ω1

XF /F (logD) is almost ample, then there exists a constant A

and a proper closed subset Z � XF such that for every p ∈ (XF \ Z)(F ) we
have that

hKX+D(P ) ≤ A(χ(P ) +N
(1)
D (P )) +O(1)

where P is a model of p over C.
The intuition is as follows: first one obtains a height bound for lifts of

sections over the projectivization of the model of the log cotangent sheaf.
Then using the almost ample hypothesis together with the non-isotriviality
of the pair, one shows that the base locus of the structure sheaf of the
projectivized bundle does not dominate the base.

11 Consequences of Lang’s Conjecture

For the sake of completeness, and due to our personal interests, we conclude
these notes with a few consequences of Lang’s conjecture.

11.1 Consequences of Lang’s Conjecture –
Uniformity

Caporaso–Harris–Mazur [21] showed that Conjecture 5.1 implies that #C(K)
in Faltings’ Theorem is not only finite, but is also uniformly bounded by a
constant N = N(g,K) that does not depend on the curve C.
Theorem 11.1 (See [21]). Let K be a number field and g ≥ 2 an integer.
Assume Lang’s conjecture. Then there exists a number B = B(K, g) such
that for any smooth curve C defined over K of genus g the following holds:
#C(K) ≤ B(g,K)
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Pacelli [80] (see also [1]), proved that N only depends on g and [K : Q].
Some cases of Theorem 11.1 have been proven unconditionally [60, 82, 92]
depending on the Mordell–Weil rank of the Jacobian of the curve and for
[82], on an assumption related to the Height conjecture of Lang–Silverman.
It has also been shown that families of curves of high genus with a uniformly
bounded number of rational points in each fiber exist [38].

Näive translations of uniformity fail in higher dimensions as subvarieties
can contain infinitely many rational points. However, one can expect that
after removing such subvarieties the number of rational points is bounded.
Hassett proved that for surfaces of general type this follows from Conjec-
ture 5.1, and that the set of rational points on surfaces of general type lie in
a subscheme of uniformly bounded degree [54].

The main tool used to prove the above uniformity results is the fibered
power theorem and was shown for curves in [21], for surfaces [54] and
in general by Abramovich [2]. In higher dimensions, similar uniformity
statements hold conditionally on Lang’s conjecture, and follow from the
fibered power theorem under some additional hypotheses that take care of
the presence of subvarieties that are not of general type [6].

11.1.1 Consequences of the Lang–Vojta Conjecture –
Uniformity

We saw above that Lang’s conjecture had far-reaching implications for
uniformity results on rational points for varieties of general type. One can
analogously ask if the Lang–Vojta conjecture implies uniformity results for
integral points on varieties of log general type. It turns out that such results
are much more subtle in the pairs case, but we review some of the known
results here.

This question was first addressed in [3] when Abramovich asked if the
Lang–Vojta conjecture implies uniformity statements for integral points.
Abramovich showed this cannot hold unless one restricts the possible models
used to define integral points (see Example 3.9). Instead, Abramovich defined
stably integral points, and proved uniformity results (conditional on the Lang–
Vojta conjecture), for stably integral points on elliptic curves, and together
with Matsuki [5] for principally polarized abelian varieties. While we do not
give a precise definition of stably integral points in these notes, we remark that
they are roughly integral points which remain integral after stable reduction.
We refer the interested reader to our paper [10].

In [10], we prove various generalizations of the work of Abramovich and
Abramovich–Matsuki. In particular, we prove that the Lang–Vojta conjecture
implies that the set of stably integral points on curves of log general type
is uniformly bounded. Additionally, we prove a generalization of Hassett’s
result, showing that the Lang–Vojta conjecture implies that (stably) integral
points on families of log canonically polarized surfaces lie in a subscheme
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whose degree is uniformly bounded. Finally, we prove, assuming the Lang–
Vojta conjecture, and under the assumption that the surfaces have almost
ample log cotangent, that the set of stably integral points on polarized
surfaces is uniformly bounded.

Finally, we note that results present in [10] have two key ingredients. One
is a generalization of the fibered power theorems mentioned in Section 11.1
to the case of pairs [8]. The other, is a generalization of Theorem 7.14, which
gives a condition so that subvarieties of a singular surface of log general type
are curves of log general type. It turns out that proving a result for stably
integral points requires the use of the compact moduli space of stable pairs,
and as such, we are forced to work with singular surfaces.

11.2 Consequences of Lang’s Conjecture – Rational
Distance Sets

A rational distance set is a subset S of R2 such that the distance between
any two points of S is a rational number. In 1946, Ulam asked if there exists
a rational distance set that is dense for the Euclidean topology of R2. While
this problem is still open, Shaffaf [89] and Tao [93] independently showed
that Lang’s conjecture implies that the answer to the Erdős-Ulam question is
“no.” In fact, they showed that if Lang’s conjecture holds, a rational distance
set cannot even be dense for the Zariski topology of R2, i.e. must be contained
in a union of real algebraic curves.

Solymosi and de Zeeuw [91] proved (unconditionally, using Faltings’ proof
of Mordell’s conjecture) that a rational distance contained in a real algebraic
curve must be finite, unless the curve has a component which is either a line or
a circle. Furthermore, any line (resp. circle) containing infinitely many points
of a rational distance set must contain all but at most four (resp. three)
points of the set. One can rephrase the result of [91] by saying that almost
all points of an infinite rational distance set contained in a union of curves
tend to concentrate on a line or circle. It is therefore natural to consider the
“generic situation,” and so we say that a subset S ⊆ R

2 is in general position
if no line contains all but at most four points of S, and no circle contains all
but at most three points of S. For example, a set of seven points in R

2 is in
general position if and only if no line passes through 7− 4 = 3 of the points
and no circle passes through 7− 3 = 4 of the points.

In particular, the aforementioned results show that Lang’s conjecture
implies that rational distance sets in general position must be finite. With
Braune, we proved the following result.

Theorem 11.2 ( [9, Theorem 1.1]). Assume Lang’s conjecture. There
exists a uniform bound on the cardinality of a rational distance set in general
position.
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We can rephrase this theorem as follows.

Corollary 11.3 ([9, Corollary 1.2]). If there exist rational distance sets
in general position of cardinality larger than any fixed constant, then Lang’s
conjecture does not hold.

We note that we are unaware of any examples of rational distance sets in
general position of cardinality larger than seven (the case of seven answered
a question of Erdős, see [64]).
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20. Frédéric Campana and Mihai Păun. Orbifold generic semi-positivity: an
application to families of canonically polarized manifolds. Ann. Inst. Fourier
(Grenoble), 65(2):835–861, 2015.

21. Lucia Caporaso, Joe Harris, and Barry Mazur. Uniformity of rational points. J.
Am. Math. Soc., 10(1):1–35, 1997.

22. Laura Capuano and Amos Turchet. Lang-Vojta Conjecture over function fields
for surfaces dominating G2

m. arXiv e-prints, Nov 2019.
23. Claude Chabauty. Sur les points rationnels des courbes algébriques de genre
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