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1 Introduction

These notes grew out of a mini-course given from May 13th to May 17th at
UQÀM in Montréal during a workshop on Diophantine Approximation and
Value Distribution Theory.

1.1 What Is in These Notes?

We start with an overview of Lang–Vojta’s conjectures on pseudo-hyperbolic
projective varieties. These conjectures relate various different notions of
hyperbolicity. We start with Brody hyperbolicity and discuss conjecturally
related notions of hyperbolicity in arithmetic geometry and algebraic geom-
etry in subsequent sections. We slowly work our way towards the most
general version of Lang–Vojta’s conjectures and provide a summary of all
the conjectures in Section 12.

After having explained the main conjectures with the case of curves and
closed subvarieties of abelian varieties as our guiding principle, we collect
recent advances on Lang–Vojta’s conjectures and present these in a unified
manner. These results are concerned with endomorphisms of hyperbolic
varieties, moduli spaces of maps into a hyperbolic variety, and also the
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behaviour of hyperbolicity in families of varieties. The results presented in
these sections are proven in [15, 49, 50, 55, 56].

We also present results on the Shafarevich conjecture for smooth hyper-
surfaces obtained in joint work with Daniel Litt [52]. These are motivated
by Lawrence–Venkatesh’s recent breakthrough on the non-density of integral
points on the moduli space of hypersurfaces [63], and are in accordance with
Lang–Vojta’s conjecture for affine varieties. Our results in this section are
proven using methods from Hodge theory, and are loosely related to Bakker–
Tsimerman’s chapter in this book [12].

In the final section we sketch a proof of the fact that being groupless
is a Zariski-countable open condition, and thus in particular stable under
generization. To prove this, we follow [55] and introduce a non-archimedean
notion of hyperbolicity. We then state a non-archimedean analogue of the
Lang–Vojta conjectures which we prove under suitable assumptions. These
results suffice to prove that grouplessness is stable under generization.

1.2 Anything New in These Notes?

The main contribution of these notes is the systematic presentation and
comparison between different notions of hyperbolicity, and their “pseud-
ofications”. As it is intended to be a broad-audience introduction to the
Lang–Vojta conjectures, it contains all definitions and well-known relations
between these. Also, Lang–Vojta’s original conjectures are often only stated
for varieties over Q, and we propose natural extensions of their conjectures
to varieties over arbitrary algebraically closed fields of characteristic zero.
We also define for each notion appearing in the conjecture the relevant
“exceptional locus” (which Lang only does for some notions of hyperbolicity
in [62]).

The final version of Lang–Vojta’s conjecture as stated in Section 12 does
not appear anywhere in the literature explicitly. Furthermore, the section
on groupless varieties (Section 4) contains simple proofs that do not appear
explicitly elsewhere. Also, we have included a thorough discussion of the a
priori difference between being arithmetically hyperbolic and Mordellic for a
projective variety in Section 7. This difference is not addressed anywhere else
in the literature.

1.3 Rational Points over Function Fields

We have not included any discussion of rational points on projective
varieties over function fields of smooth connected curves over a field k,
and unfortunately ignore the relation to Lang–Vojta’s conjecture throughout
these notes.
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1.4 Other Relevant Literature

Lang stated his conjectures in [62]; see also [23, Conjecture XV.4.3] and [1,
§0.3]. In [85, Conj. 4.3] Vojta extended this conjecture to quasi-projective
varieties. In [62] Lang “pseudofied” the notion of Brody hyperbolicity. Here
he was inspired by Kiernan–Kobayashi’s extension of the notion of Kobayashi
hyperbolicity introduced in [58].

There are several beautiful surveys of the Green–Griffiths and Lang–Vojta
conjectures. We mention [24–26, 31, 38, 86].

The first striking consequence of Lang–Vojta’s conjecture was obtained
by Caporaso–Harris–Mazur [19]. Their results were further investigated by
Abramovich, Ascher–Turchet, Hassett, and Voloch; see [1–4, 9, 42].

Campana’s conjectures provide a complement to Lang–Vojta’s conjectures,
and first appeared in [17, 18]; see also Campana’s chapter in this book [16].
In a nutshell, the “opposite” of being pseudo-hyperbolic (in any sense of
the word “hyperbolic”) is conjecturally captured by Campana’s notion of a
“special” variety.

Conventions. Throughout these notes, we will let k be an algebraically
closed field of characteristic zero. If X is a locally finite type scheme over C,
we let Xan be the associated complex-analytic space [39, Expose XII]. If K
is a field, then a variety over K is a finite type separated K-scheme.

If X is a variety over a field K and L/K is a field extension, then XL :=
X×SpecK SpecL will denote the base-change of X → SpecK along SpecL →
SpecK. More generally, if R → R′ is an extension of rings and X is a scheme
over R, we let XR′ denote X ×SpecR SpecR′.

If K is a number field and S is a finite set of finite places of K, then OK,S

will denote the ring of S-integers of K.

2 Brody Hyperbolicity

We start with the classical notion of Brody hyperbolicity for complex
varieties.

Definition 2.1. A complex-analytic space X is Brody hyperbolic if every
holomorphic map C → X is constant. A locally finite type scheme X over C
is Brody hyperbolic if Xan is Brody hyperbolic.

If X is a complex-analytic space, then a non-constant holomorphic map
C → X is commonly referred to as an entire curve in X. Thus, to say that
X is Brody hyperbolic is to say that X has no entire curves.

We recall that a complex-analytic space X is Kobayashi hyperbolic if
Kobayashi’s pseudo-metric on X is a metric [59]. It is a fundamental result
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of Brody that a compact complex-analytic space X is Brody hyperbolic if
and only if it is Kobayashi hyperbolic; see [59, Theorem 3.6.3].

Remark 2.2 (Descending Brody Hyperbolicity). Let X → Y be a
proper étale (hence finite) morphism of varieties over C. It is not hard to
show that X is Brody hyperbolic if and only if Y is Brody hyperbolic. (It is
crucial that X → Y is finite and étale.)

Fundamental results in complex analysis lead to the following classification
of Brody hyperbolic projective curves.

Theorem 2.3 (Liouville, Riemann, Schwarz, Picard). Let X be a
smooth projective connected curve over C. Then X is Brody hyperbolic if
and only if genus(X) ≥ 2.

More generally, a smooth quasi-projective connected curve X over C is
Brody hyperbolic if and only if X is not isomorphic to P1

C
, A1

C
, A1

C
\ {0}, nor

a smooth proper connected genus one curve over C.

Remark 2.4. It is implicit in Theorem 2.3 that elliptic curves are not Brody
hyperbolic. More generally, a non-trivial abelian variety A of dimension g
over C is not Brody hyperbolic, as its associated complex-analytic space is
uniformized by Cg. Since A even has a dense entire curve, one can consider
A to be as far as possible from being Brody hyperbolic. We mention that
Campana conjectured that a projective variety has a dense entire curve if
and only if it is “special”. We refer the reader to Campana’s article in this
book for a further discussion of Campana’s conjecture [16].

By Remark 2.4, an obvious obstruction to a projective variety X over C

being Brody hyperbolic is that it contains an abelian variety. The theorem of
Bloch–Ochiai–Kawamata says that this is the only obstruction if X can be
embedded into an abelian variety (see [57]).

Theorem 2.5 (Bloch–Ochiai–Kawamata). Let X be a closed subvariety
of an abelian variety A over C. Then X is Brody hyperbolic if and only if
IT does not contain the translate of a positive-dimensional abelian subvariety
of A.

Throughout these notes, we mostly focus on closed subvarieties of abelian
varieties, as in this case the results concerning Lang–Vojta’s conjectures are
complete; see Section 13 for details.

The theorem of Bloch–Ochiai–Kawamata has been pushed further by
work of Noguchi–Winkelmann–Yamanoi; see [76–78, 87, 88]. Other examples
of Brody hyperbolic varieties can be constructed as quotients of bounded
domains, as we explain now.

Remark 2.6 (Bounded Domains). Let D be a bounded domain in the
affine space CN , and let X be a reduced connected locally finite type
scheme over C. Then, any holomorphic map Xan → D is constant; see [55,
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Remark 2.9] for a detailed proof. In particular, the complex-analytic space
D is Brody hyperbolic (take X = A1

C
).

It follows from Remark 2.6 that a (good) quotient of a bounded domain
is Brody hyperbolic. This observation applies to locally symmetric varieties,
Shimura varieties, and thus moduli spaces of abelian varieties. We conclude
this section by recording the fact that the moduli space of abelian varieties
(defined appropriately) is a Brody hyperbolic variety.

Example 2.7. Let g ≥ 1 and let N ≥ 3 be integers. Then, the (fine)
moduli space of g-dimensional principally polarized abelian varieties with
level N structure is a smooth quasi-projective variety over C which is Brody
hyperbolic. Indeed, its universal cover is biholomorphic to a bounded domain
in Cg(g+1)/2, so that we can apply Remark 2.6. (As the coarse moduli space of
elliptic curves is given by the j-line A1

C
, we see that it is not Brody hyperbolic.

This is the reason for which we consider the moduli space of abelian varieties
with level structure.)

3 Mordellic Varieties

What should correspond to being Brody hyperbolic in arithmetic geometry?
Lang was the first to propose that a “Mordellic” projective variety over Q

should be Brody hyperbolic (over the complex numbers). Roughly speaking,
a projective variety over Q is Mordellic if it has only finitely many rational
points in any fixed number field. To make this more precise, one has to
choose models (see Definition 3.1 below). Conversely, a projective variety
over a number field which is Brody hyperbolic (over the complex numbers)
should be Mordellic. In this section we will present this conjecture of Lang.

Throughout this section, we let k be an algebraically closed field of
characteristic zero. We first clarify what is meant with a model.

Definition 3.1. Let X be a finite type separated scheme over k and let
A ⊂ k be a subring. A model for X over A is a pair (X , φ) with X → SpecA
a finite type separated scheme and φ : Xk

∼−→ X an isomorphism of schemes
over k. We will often omit φ from our notation.

Remark 3.2. What constitutes the data of a model for X over A? To
explain this, let X be an affine variety over C, say X = SpecR. Note that the
coordinate ring R of X is a finite type C-algebra. Suppose that X is given by
the zero locus of polynomials f1, . . . , fr with coefficients in a subring A, so
that R ∼= C[x1, . . . , xn]/(f1, . . . , fr). Then R := A[x1, . . . , xn]/(f1, . . . , fr) ⊂
R is a finitely generated A-algebra and R⊗AC = R. That is, if X = SpecR,
then X is a model for X over A. We will be interested in studying A-
valued points on X . We follow common notation and let X (A) denote the
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set HomA(SpecA,X ). Note that X (A) is the set of solutions in A of the
polynomial system of equations f1 = . . . = fr = 0.

With the notion of model now clarified, we are ready to define what
it means for a proper variety to be Mordellic. We leave the more general
definition for non-proper varieties to the end of this section.

Definition 3.3. A proper scheme X over k is Mordellic over k (or: has-
only-finitely-many-rational-points over k) if, for every finitely generated
subfield K ⊂ k and every (proper) model X over K, the set X (K) :=
HomK(SpecK,X ) is finite.

Remark 3.4 (Independence of Models). We point out that the finite-
ness property required for a projective variety to be Mordellic can also be
tested on a fixed model. That is, a proper scheme X over k is Mordellic over
k if and only if there is a finitely generated subfield K ⊂ k and a proper
model X for X over K such that for all finitely generated subfields L ⊂ k
containing K, the set X (L) := HomK(SpecL,X ) is finite.

We note that Mordellicity (just like Brody hyperbolicity) descends along
finite étale morphisms (Remark 2.2).

Remark 3.5 (Descending Mordellicity). Let X → Y be a finite étale
morphism of projective varieties over k. Then it follows from the Chevalley–
Weil theorem that X is Mordellic over k if and only if Y is Mordellic over k;
see Theorem 7.9 for a proof (of a more general result).

It is clear that P1
k is not Mordellic, as P1(Q) is dense. A deep theorem of

Faltings leads to the following classification of projective Mordellic curves. If
k = Q, then this theorem is proven in [32]. The statement below is proven
in [33] (see also [82]).

Theorem 3.6 (Faltings). Let X be a smooth projective connected curve
over k. Then X is Mordellic over k if and only if genus(X) ≥ 2.

Recall that abelian varieties are very far from being Brody hyperbolic
(Remark 2.4). The following remark says that abelian varieties are also very
far from being Mordellic.

Remark 3.7. It is not at all obvious that a smooth projective connected
curve of genus one over Q is not Mordellic. Indeed, it is not an obvious fact
that an elliptic curve over a number field K has positive rank over some finite
field extension ofK, although this is certainly true and can be proven in many
different ways. In fact, by a theorem of Frey–Jarden [36] (see also [49, §3.1]
or [41, §3]), if A is an abelian variety over k, then there is a finitely generated
subfield K ⊂ k and an abelian variety A over K with Ak

∼= A such that A(K)
is dense in A. This theorem is not hard to prove when k is uncountable but
requires non-trivial arguments otherwise. Thus, if dimA �= 0, then one can
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consider the abelian variety A to be as far as possible from being Mordellic.
This statement is to be compared with the conclusion of Remark 2.4.

By Remark 3.7, an obvious obstruction to a projective variety X over k
being Mordellic is that it contains an abelian variety. The following theorem
of Faltings says that this is the only obstruction if X can be embedded into
an abelian variety; see [34].

Theorem 3.8 (Faltings). Let X be a closed subvariety of an abelian variety
A over k. Then X is Mordellic over k if and only if X does not contain the
translate of a positive-dimensional abelian subvariety of A.

There are strong similarities between the statements in the previous section
and the current section. These similarities (and a healthy dose of optimism)
lead to the first version of the Lang–Vojta conjecture. To state this conjecture,
let us say that a variety X over k is strongly-Brody hyperbolic over k if, for
every subfield k0 ⊂ k, every model X for X over k0, and every embedding
k0 → C, the variety XC is Brody hyperbolic.

Conjecture 3.9 (Weak Lang–Vojta, I). Let X be an integral projective
variety over k. Then X is Mordellic over k if and only if X is strongly-Brody
hyperbolic over k.

As stated, this conjecture does not predict that, if X is a projective Brody
hyperbolic variety over C, then every conjugate of X is Brody hyperbolic.
We state this conjecture separately.

Conjecture 3.10 (Conjugates of Brody Hyperbolic Varieties). If X
is an integral variety over k. Then X is strongly-Brody hyperbolic over k if
and only if there is a subfield k0 ⊂ k, a model X for X over k0, and an
embedding k0 → C such that the variety XC is Brody hyperbolic.

Concretely, Conjecture 3.10 says that, if X is a Brody hyperbolic variety
over C and σ is a field automorphism of C, then the σ-conjugate Xσ of X is
again Brody hyperbolic.

We briefly discuss the notion of Mordellicity for quasi-projective (not
necessarily proper) schemes. We will also comment on this more general
notion in Section 7. This notion appears in this generality (to our knowledge)
for the first time in Vojta’s paper [86], and it is also studied in [56]. It is
intimately related to the notion of “arithmetic hyperbolicity” [49, 53]; see
Section 7 for a discussion.

In the non-proper case, it is natural to study integral points rather than
rational points. Vojta noticed in [86] that, in fact, it is more natural to study
“near-integral points”. Below we make this more precise.

Definition 3.11. Let X → S be a morphism of schemes with S integral. We
define X(S)(1) to be the set of P in X(K(S)) such that, for every point s in
S of codimension one, the point P lies in the image of X(OS,s) → X(K(S)).
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Vojta refers to the points in X(S)(1) as “near-integral” S-points. We point
out that on an affine variety, there is no difference between the finiteness of
integral points and “near-integral” points; see Section 7.

Definition 3.12 (Quasi-Projective Mordellic Varieties). A variety X
over k is Mordellic over k if, for every Z-finitely generated subring A ⊂ k
and every model X for X over A, the set X (A)(1) of near-integral A-points
is finite.

The study of near-integral points might seem unnatural at first. To
convince the reader that this notion is slightly more natural than the notion
of integral point, we include the following remark.

Remark 3.13 (Why “Near-Integral” Points?). Consider a proper
scheme X over Z with generic fibre X := XQ. Let K be a finitely generated
field of characteristic zero and let A ⊂ K be a regular Z-finitely generated
subring. Then, the set of K-rational points X(K) equals the set of near-
integral A-points of X . On the other hand, if K has transcendence degree at
least one over Q, then it is not necessarily true that every K-point of X is
an A-point of X . Thus, studying K-rational points on the proper variety X
over Q is equivalent to studying near-integral points of the proper scheme X
over Z.

With this definition at hand, we are able to state Faltings’s finiteness
theorem for abelian varieties over number rings as a statement about the
Mordellicity of the appropriate moduli space. The analogous statement on
its Brody hyperbolicity is Example 2.7.

Theorem 3.14 (Faltings, Shafarevich’s Conjecture for Principally
Polarized Abelian Varieties). Let k be an algebraically closed field of
characteristic zero. Let g ≥ 1 and let N ≥ 3 be integers. Then, the (fine)

moduli space A[N ]
g,k of g-dimensional principally polarized abelian varieties with

level N structure is a smooth quasi-projective Mordellic variety over k.

Example 2.7 and Theorem 3.14 suggest that there might also be an
analogue of Lang–Vojta’s conjecture for quasi-projective schemes. It seems
reasonable to suspect that an affine variety over k is Mordellic over k if
and only if it is strongly-Brody hyperbolic over k; see for example [46]
for a discussion of Lang’s conjectures in the affine case. However, stating
a reasonable conjecture for quasi-projective varieties requires some care, and
would take us astray from our current objective. We refer the interested
reader to articles of Ascher–Turchet and Campana in this book [8, 16] for a
related discussion, and the book by Vojta [85].

Remark 3.15 (From Shafarevich to Mordell). Let us briefly explain
how Faltings shows that Theorem 3.14 implies Faltings’s finiteness theorem
for curves (Theorem 3.6). Let X be a smooth projective connected curve of
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genus at least two over k. By a construction of Kodaira [69], there is a finite
étale morphism Y → X, an integer g ≥ 1, and a non-constant morphism

Y → A[3]
g,k. Since A[3]

g,k is Mordellic over k and Y → A[3]
g,k has finite fibres, it

follows that Y is Mordellic over k. As Mordellicity descends along finite étale
morphisms (Remark 3.5), we conclude that X is Mordellic, as required.

4 Groupless Varieties

To study Lang–Vojta’s conjectures, it is natural to study varieties which
do not “contain” any algebraic groups. Indeed, as we have explained in
Remark 2.4 (resp. Remark 3.7), a Brody hyperbolic variety (resp. a Mordellic
variety) does not admit any non-trivial morphisms from an abelian variety.
For projective varieties, it turns out that this is equivalent to not admitting
a non-constant map from any connected algebraic group (see Lemma 4.4
below).

As before, we let k be an algebraically closed field of characteristic zero.
We start with the following definition.

Definition 4.1. A variety X over k is groupless if every morphism Gm,k →
X (of varieties over k) is constant, and for every abelian variety A over k,
every morphism A → X is constant.

Remark 4.2. We claim that, for proper varieties, the notion of group-
lessness can be tested on morphisms (or even rational maps) from abelian
varieties. That is, a proper variety X over k is groupless if and only if, for
every abelian variety A over k, every rational map A ��� X is constant. To
show this, first note that a morphism Gm,k → X extends to a morphism
P1
k → X and that P1

k is surjected upon by an elliptic curve. Therefore, if
every morphism from an abelian variety is constant, then X is groupless and
has no rational curves. Now, if X is proper over k and has no rational curves,
every rational map A ��� X with A an abelian variety extends to a morphism
(see [50, Lemma 3.5]). Thus, if every morphism A → X is constant with A
an abelian variety, we conclude that every rational map A ��� X is constant.
This proves the claim. We also conclude that a proper variety is groupless if
and only if it is “algebraically hyperbolic” in Lang’s sense [62, p. 176].

Remark 4.3 (Lang’s Algebraic Exceptional Set). For X a proper
variety over k, Lang defines the algebraic exceptional set Excalg(X) of X
to be the union of all non-constant rational images of abelian varieties in X.
With Lang’s terminology at hand, as is explained in Remark 4.2, a proper
variety X over k is groupless over k if and only if Excalg(X) is empty.

Let us clear up why we refer to this property as groupless.
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Lemma 4.4 (Why Call This Groupless?). A variety X over k is
groupless if and only if for all finite type connected group schemes G over
k, every morphism G → X is constant.

Proof. This follows from Chevalley’s structure theorem for algebraic groups
over the algebraically closed field k of characteristic zero. A detailed proof is
given in [50, Lemma 2.5]. �	

The notion of grouplessness is well-studied, and sometimes referred to as
“algebraic hyperbolicity” or “algebraic Lang hyperbolicity”; see [43], [62,
page 176], [59, Remark 3.2.24], or [60, Definition 3.4]. We will only use
the term “algebraically hyperbolic” for the notion introduced by Demailly
in [29] (see also [15, 50, 56]). The term “groupless” was first used in [50,
Definition 2.1] and [55, Definition 3.1].

Example 4.5. A zero-dimensional variety is groupless. Note that P1
k, A

1
k,

A1
k \ {0} and smooth proper genus one curves over k are not groupless.

Much like Brody hyperbolicity and Mordellicity, grouplessness descends
along finite étale morphisms. We include a sketch of the proof of this simple
fact.

Lemma 4.6 (Descending Grouplessness). Let X → Y be a finite étale
morphism of varieties over k. Then X is groupless over k if and only if Y is
groupless over k.

Proof. If Y is groupless, then X is obviously groupless. Therefore, to prove
the lemma, we may assume that X is groupless. Let G be Gm,k or an abelian
variety over k. Let G → Y be a morphism. Consider the pull-back G′ :=
G ×Y X of G → Y along X → Y . Then, as k is algebraically closed and of
characteristic zero, each connected component of G′ is (or: can be endowed
with the structure of) an algebraic group isomorphic to Gm,k or an abelian
variety over k. Therefore, the morphism G′ → X is constant. This implies
that G → Y is constant. �	

We include an elementary proof of the fact that the classification of one-
dimensional groupless varieties is the same as that of one-dimensional Brody
hyperbolic curves.

Lemma 4.7. A smooth quasi-projective connected curve X over k is grou-
pless over k if and only if X is not isomorphic to P1

k, A
1
k, A

1
k \ {0}, nor a

smooth proper connected curve of genus one over k.

Proof. If X is groupless, then X is not isomorphic to P1
k, A

1
k, A

1
k \ {0}, nor a

smooth proper connected curve of genus one over k; see Example 4.5. Thus
to prove the lemma, we may (and do) assume that X is not isomorphic to
either of these curves. Let Y → X be a finite étale cover of X such that the
smooth projective model Y of Y is of genus at least two. (It is clear that
such a cover exists when X = Gm,k \ {1} or X = E \ {0} with E an elliptic
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curve over k. This is enough to conclude that such a cover always exists.) By
Lemma 4.6, the variety X is groupless if and only if Y is groupless. Thus,
it suffices to show that Y is groupless. To do so, assume that we have a
morphism Gm,k → Y . By Riemann–Hurwitz, this morphism is constant, as
Y has genus at least two. Now, let A be an abelian variety over k and let
A → Y be a morphism. To show that this morphism is constant, we compose
A → Y with the Jacobian map Y → Jac(Y ) (after choosing some point on
Y ). If the morphism A → Y is non-constant, then it is surjective. Since a
morphism of abelian varieties is a homomorphism (up to translation of the
origin), this induces a group structure on the genus > 1 curve Y . However, as
the automorphism group of (the positive-dimensional variety) Y is finite, the
curve Y cannot be endowed with the structure of an algebraic group. This
shows that A → Y is constant, and concludes the proof. �	

Bloch–Ochiai–Kawatama’s theorem (Theorem 2.5) and Faltings’s analo-
gous theorem for rational points on closed subvarieties of abelian varieties
(Theorem 3.8) characterize “hyperbolic” subvarieties of abelian varieties. It
turns out that this characterization also holds for groupless varieties, as we
explain now.

If X is a closed subvariety of an abelian variety A over k, we define
the special locus Sp(X) of X to be the union of the translates of positive-
dimensional abelian subvarieties of A contained in X.

Lemma 4.8. Let X be a closed integral subvariety of an abelian variety A
over k. Then X is groupless over k if and only if Sp(X) is empty.

Proof. Clearly, if X is groupless over k, then X does not contain the translate
of a positive-dimensional abelian subvariety of A, so that Sp(X) is empty.
Conversely, assume that X does not contain the translate of a non-zero
abelian subvariety of A. Let us show that X is groupless. Since the Albanese
variety of P1

k is trivial, any map Gm,k → X is constant. Thus, to conclude
the proof, we have to show that all morphisms A′ → X are constant, where
A′ is an abelian variety over k. To do so, note that the image of A′ → X
in A is the translate of an abelian subvariety of A, as morphisms of abelian
varieties are homomorphisms up to translation. This means that the image
of A′ → X is the translate of an abelian subvariety, hence a point (by our
assumption). �	
Remark 4.9. Let A be a simple abelian surface. Let X = A \ {0}. Then
X is groupless. This remark might seem misplaced, but it shows that
“grouplessness” as defined above does not capture the non-hyperbolicity of a
quasi-projective variety. The “correct” definition in the quasi-projective case
is discussed in Section 6 (and is also discussed in [56, 86]).

Although grouplessness does not capture the non-hyperbolicity of quasi-
projective varieties (Remark 4.9), Lang conjectured that grouplessness is
equivalent to being Mordellic and to being Brody hyperbolic (up to choosing
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a model over C) for projective varieties. This brings us to the second form of
Lang–Vojta’s conjecture.

Conjecture 4.10 (Weak Lang–Vojta, II). Let X be an integral projective
variety over k. Then the following are equivalent.

(1) The projective variety X is Mordellic over k.
(2) The variety X is strongly-Brody hyperbolic over k.
(3) The variety X is groupless over k.

5 Varieties of General Type

In this section we discuss the role of varieties of general type in Lang–Vojta’s
conjecture. Recall that a line bundle L on a smooth projective variety S over
k is big if there is an ample line bundle A and an effective divisor D such that
L ∼= A⊗OS(D); see [64, 65]. We follow standard terminology and say that an
integral proper variety X over k is of general type if it has a desingularization
X ′ → X with X ′ a smooth projective integral variety over k such that the
canonical bundle ωX′/k is a big line bundle. For example, if ωX′/k is ample,
then it is big. Moreover, we will say that a proper variety X over a field k
is of general type if, for every irreducible component Y of X, the reduced
closed subscheme Yred is of general type.

Varieties of general type are well-studied; see [64, 65]. For the sake of
clarity, we briefly collect some statements. Our aim is to emphasize the
similarities with the properties presented in the earlier sections.

For example, much like Brody hyperbolicity, Mordellicity, and group-
lessness, the property of being of general type descends along finite étale
morphisms. That is, if X → Y is a finite étale morphism of proper schemes
over k, then X is of general type if and only if Y is of general type. Moreover,
a simple computation of the degree of the canonical bundle of a curve implies
that, if X is a smooth projective connected curve over k, then X is of general
type if and only if genus(X) ≥ 2.

Kawamata and Ueno classified which closed subvarieties of an abelian
variety are of general type. To state their result, for A an abelian variety
over k and X a closed subvariety of A, recall that the special locus Sp(X) of
X is the union of translates of positive-dimensional abelian subvarieties of A
contained in X. Note that Bloch–Ochiai–Kawamata’s theorem (Theorem 2.5)
can be stated as saying that a closed subvariety X of an abelian variety A
over C is Brody hyperbolic if and only if Sp(X) is empty. Similarly, Faltings’s
theorem (Theorem 3.8) can be stated as saying that a closed subvariety of
an abelian variety A over k is Mordellic if and only if Sp(X) is empty. The
latter is also equivalent to saying that X is groupless over k by Lemma 4.8.
The theorem of Kawamata–Ueno now reads as follows.
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Theorem 5.1 (Kawamata–Ueno). Let A be an abelian variety and let X
be a closed integral subvariety of A. Then Sp(X) is a closed subset of X, and
X is of general type if and only if Sp(X) �= X.

Note that being of general type and being groupless are not equivalent.
This is not a surprise, as the notion of general type is a birational invariant,
whereas the blow-up of a smooth groupless surface along a point is no
longer groupless. The conjectural relation between varieties of general type
and the three notions (Brody hyperbolicity, Mordellicity, and grouplessness)
introduced above is as follows.

Conjecture 5.2 (Weak Lang–Vojta, III). Let X be an integral projective
variety over k. Then the following are equivalent.

(1) The projective variety X is Mordellic over k.
(2) The variety X is strongly-Brody hyperbolic over k.
(3) Every integral subvariety of X is of general type.
(4) The variety X is groupless over k.

Note that the notion of general type is a birational invariant, but hyper-
bolicity is not. What should (conjecturally) correspond to being of general
type? The highly optimistic conjectural answer is that being of general type
should correspond to being “pseudo”-Brody hyperbolic, “pseudo”-Mordellic,
and “pseudo”-groupless. The definitions of these notions are essentially the
same as given above, the only difference being that one has to allow for an
“exceptional locus”. In the following sections we will make this more precise.

6 Pseudo-Grouplessness

Let k be an algebraically closed field of characteristic zero. Roughly speaking,
a projective varietyX over k is groupless if it admits no non-trivial morphisms
from a connected algebraic group. Conjecturally, a projective variety X over
k is groupless if and only if every subvariety of X is of general type. To see
what should correspond to being of general type, we will require the more
general notion of pseudo-grouplessness.

Definition 6.1. Let X be a variety over k and let Δ ⊂ X be a closed
subset. We say that X is groupless modulo Δ (over k) if, for every finite type
connected group scheme G over k and every dense open subscheme U ⊂ G
with codim(G\U) ≥ 2, every non-constant morphism U → X factors over Δ.

Hyperbolicity modulo a subset was first introduced by Kiernan–Kobayashi
[58], and is thoroughly studied in Kobayashi’s book [59]. As we will see below,
it is quite natural to extend the study of hyperbolic varieties to the study of
varieties which are hyperbolic modulo a subset.
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For proper schemes, the notion of “groupless modulo the empty set”
coincides with the notion of grouplessness introduced before (and studied
in [49, 50, 55]). For the reader’s convenience, we include a detailed proof of
this.

Lemma 6.2. Let X be a proper scheme over k. Then the following are
equivalent.

(1) The scheme X is groupless modulo the empty subscheme ∅ over k.
(2) The scheme X is groupless.
(3) For every finite type connected group scheme G over k and every dense

open subscheme V ⊂ G, every morphism V → X is constant.

Proof. It is clear that (1) implies (2). To show that (2) implies (3), let G
be a finite type connected group scheme over k, let V ⊂ G be a dense open
subscheme, and let f : V → X be a morphism of schemes over k. Then,
as X is proper over k, there is an open subscheme U ⊂ G containing V
with codim(G \ U) ≥ 2 such that the morphism f : V → X extends to a
morphism f ′ : U → X. Since X is groupless and proper, it does not contain
any rational curves. Therefore, as the variety underlying G is smooth over k
[81, Tag 047N], it follows from [50, Lemma 3.5] (see also [27, Corollary 1.44])
that the morphism f ′ : U → X extends (uniquely) to a morphism f ′′ : G →
X. Since X is groupless, the morphism f ′′ is constant. This implies that f is
constant. Finally, it is clear (from the definitions) that (3) implies (1). �	
Definition 6.3. A variety X is pseudo-groupless (over k) if there is a proper
closed subset Δ � X such that X is groupless modulo Δ.

The word “pseudo” in this definition refers to the fact that the non-
hyperbolicity of the variety is concentrated in a proper closed subset. Note
that a varietyX is pseudo-groupless if and only if every irreducible component
of X is pseudo-groupless.

Example 6.4. Let C be smooth projective connected curve of genus at least
two and let X be the blow-up of C ×C in a point. Then X is not groupless.
However, its “non-grouplessness” is contained in the exceptional locus Δ of
the blow-up X → C × C. Thus, as X is groupless modulo Δ, it follows that
X is pseudo-groupless.

Let us briefly say that an open subset U of an integral variety V is big
if codim(V \ U) is at least two. Now, the reader might wonder why we test
pseudo-grouplessness on maps whose domain is a big open subset of some
algebraic group. The example to keep in mind here is the blow-up of a simple
abelian surface in its origin. In fact, as we test pseudo-grouplessness on big
open subsets of abelian varieties (and not merely maps from abelian varieties),
such blow-ups are not pseudo-groupless. Also, roughly speaking, one should
consider big open subsets of abelian varieties as far as possible from being
hyperbolic, in any sense of the word “hyperbolic”. For example, much like
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how abelian varieties admit a dense entire curve (Remark 2.4), a big open
subset of an abelian variety admits a dense entire curve. This is proven using
Sard’s theorem in [86]. Thus, big open subsets of abelian varieties are also
as far as possible from being Brody hyperbolic.

We now show that the statement of Lemma 4.6 also holds in the “pseudo”
setting, i.e., we show that pseudo-grouplessness descends along finite étale
morphisms. As we have mentioned before, this descent property also holds
for general type varieties.

Lemma 6.5. Let f : X → Y be a finite étale morphism of varieties over
k. Then X is pseudo-groupless over k if and only if Y is pseudo-groupless
over k.

Proof. We adapt the arguments in the proof of [55, Proposition 2.13]. First,
if Y is groupless modulo a proper closed subset ΔY ⊂ Y , then clearly X
is groupless modulo the proper closed subset f−1(ΔY ). Now, assume that
X is groupless modulo a proper closed subset ΔX � X. Let G be a finite
type connected (smooth quasi-projective) group scheme over k, let U ⊂ G
be a dense open subscheme with codim(G \ U) ≥ 2 and let φ : U → Y be
a morphism which does not factor over f(ΔX). The pull-back of G → Y
along the finite étale morphism f : X → Y induces a finite étale morphism
V := U ×Y X → U . Since U is smooth over k, by purity of the branch locus
[39, Théorème X.3.1], the finite étale morphism V → U extends (uniquely) to
a finite étale morphism G′ → G. Note that every connected component G′′ of
G′ has the structure of a finite type connected group scheme over k (and with
this structure the morphismG′′ → G is a homomorphism). Now, since smooth
morphisms are codimension-preserving, we see that codim(G′′ \ V ) ≥ 2. As
the morphism V → X does not factor over f−1(f(ΔX)), it does not factor
over ΔX , and is thus constant (as X is groupless modulo ΔX). This implies
that the morphism U → Y is constant, as required. �	
Remark 6.6 (Birational Invariance). Let X and Y be proper schemes
over k. Assume that X is birational to Y . Then X is pseudo-groupless over k
if and only if Y is pseudo-groupless over k. This is proven in [56]. Thus,
as pseudo-grouplessness is a birational invariant among proper varieties,
this notion is more natural to study from a birational perspective than
grouplessness.

Remark 6.7. Contrary to a hyperbolic proper variety, a proper pseudo-
groupless variety could have rational curves. For example, the blow-up of the
product of two smooth curves of genus two in a point (as in Example 6.4)
contains precisely one rational curve. However, a pseudo-groupless proper
variety is not covered by rational curves, i.e., it is non-uniruled, as all rational
curves are contained in a proper closed subset (by definition).

Remark 6.8. Let X be a proper scheme over k and let Δ ⊂ X be a closed
subset. It follows from the valuative criterion of properness thatX is groupless
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modulo Δ if and only if, for every finite type connected group scheme G over k
and every dense open subscheme U ⊂ G, any non-constant morphism U → X
factors over Δ.

Recall that Lemma 4.4 says that the grouplessness of a proper variety
entails that there are no non-constant morphisms from any connected
algebraic group. One of the main results of [56] is the analogue of Lemma 4.4
for pseudo-groupless varieties. The proof of this result (see Theorem 6.9
below) relies on the structure theory of algebraic groups.

Theorem 6.9. If X is a proper scheme X over k and Δ is a closed subset
of X, then X is groupless modulo Δ over k if and only if, for every abelian
variety A over k and every open subscheme U ⊂ A with codim(A \ U) ≥ 2,
every non-constant morphism of varieties U → X factors over Δ.

Theorem 6.9 says that the pseudo-grouplessness of a proper variety can be
tested on morphisms from big open subsets of abelian varieties (or on rational
maps from abelian varieties). A similar, but different, statement holds for
affine varieties. Indeed, if X is an affine variety over k, then X is groupless
modulo Δ ⊂ X if and only if every non-constant morphism Gm,k → X factors
over Δ.

Lang conjectured that a projective variety is pseudo-groupless if and only
if it is of general type. Note that, by the birational invariance of these two
notions, this conjecture can be reduced to the case of smooth projective
varieties by Hironaka’s resolution of singularities.

Conjecture 6.10 (Strong Lang–Vojta, I). Let X be an integral projec-
tive variety over k. Then X is pseudo-groupless over k if and only if X is of
general type over k.

Note that this conjecture predicts more than the equivalence of (3) and (4)
in Conjecture 5.2. Also, even though it is stated for projective varieties, one
could as well formulate the conjecture for proper varieties (or even proper
algebraic spaces). The resulting “more general” conjecture actually follows
from the above conjecture.

Example 6.11. By Kawamata–Ueno’s theorem (Theorem 5.1) and
Lemma 4.8, the Strong Lang–Vojta conjecture holds for closed subvarieties
of abelian varieties.

Remark 6.12. If X is a proper pseudo-groupless surface, then X is
of general type (see [56] for a proof). For higher-dimensional varieties,
Conjecture 6.10 predicts a similar statement, but this is not even known
for threefolds. However, assuming the Abundance Conjecture and certain
conjectures on Calabi–Yau varieties, one can show that every proper pseudo-
groupless variety is of general type (i.e., (1) =⇒ (2) in Conjecture 6.10).
Regarding the implication (2) =⇒ (1), not much is known beyond the one-
dimensional case. For example, if X is a proper surface of general type, then
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Conjecture 6.10 implies that there should be a proper closed subset Δ ⊂ X
such that every rational curve C ⊂ X is contained in Δ. Such statements are
known to hold for certain surfaces of general type by the work of Bogomolov
and McQuillan; see [30, 71].

7 Pseudo-Mordellicity and Pseudo-Arithmetic
Hyperbolicity

In the previous section, we introduced pseudo-grouplessness and stated Lang–
Vojta’s conjecture that a projective variety is of general type if and only if it
is pseudo-groupless. In this section, we explain what the “pseudo” analogue
is of the notion of Mordellicity, and explain Lang–Vojta’s conjecture that a
projective variety is of general type if and only if it is pseudo-Mordellic.

7.1 Pseudo-Arithmetic Hyperbolicity

As we have said before, Lang coined the term “Mordellic”. We will now
introduce the related (and a priori different) notion of arithmetic hyperbolic-
ity (as defined in [49, 52, 53]); see also [83, §2], and [10, 11]. In Section 3 we
ignored that the extension of the notion of Mordellicity over Q to arbitrary
algebraically closed fields can actually be done in two a priori different ways.
We discuss both notions now and give them different names. We refer the
reader to Section 3 for our conventions regarding models of varieties, and we
continue to let k denote an algebraically closed field of characteristic zero.

Definition 7.1. Let X be a variety over k and let Δ be a closed subset of
X. We say that X is arithmetically hyperbolic modulo Δ over k if, for every
Z-finitely generated subring A and every model X for X over A, we have
that every positive-dimensional irreducible component of the Zariski closure
of X (A) in X is contained in Δ.

Definition 7.2. A variety X over k is pseudo-arithmetically hyperbolic over
k if there is a proper closed subset Δ ⊂ X such that X is arithmetically
hyperbolic modulo Δ over k.

Remark 7.3. A variety X over k is arithmetically hyperbolic over k
(as defined in [49] and [53, §4]) if and only if X is arithmetically hyperbolic
over k modulo the empty subscheme.

Lemma 7.4 (Independence of Model). Let X be a variety over k and
let Δ be a closed subset of k. Then the following are equivalent.

(1) The finite type scheme X over k is arithmetically hyperbolic modulo Δ.
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(2) There is a Z-finitely generated subring A ⊂ k, there is a model X for X
over A, and there is a model D ⊂ X for Δ ⊂ X over A such that, for
every Z-finitely generated subring B ⊂ k containing A, the set

X (B) \ D(B)

is finite.

Proof. This follows from standard spreading out arguments. These type of
arguments are used in [53] to prove more general statements in which the
objects are algebraic stacks. �	
Remark 7.5. We unravel what the notion of arithmetic hyperbolicity
modulo Δ entails for affine varieties. To do so, let X be an affine variety over
k, and let Δ be a proper closed subset of X. Choose the following data.

• integers n, δ,m ≥ 1;
• polynomials f1, . . . , fn ∈ k[x1, . . . , xm];
• polynomials d1, . . . , dδ ∈ k[x1, . . . , xm];
• an isomorphism

X ∼= Spec(k[x1, . . . , xm]/(f1, . . . , fn));

• an isomorphism

Δ ∼= Spec(k[x1, . . . , xm]/(d1, . . . , dδ)).

Let A0 be the Z-finitely generated subring of k generated by the (finitely
many) coefficients of the polynomials f1, . . . , fn, d1, . . . , dδ. Now, the following
statements are equivalent.

(1) The variety X is arithmetically hyperbolic modulo Δ over k.
(2) For every Z-finitely generated subring A ⊂ k containing A0, the set

{a ∈ Am | f1(a) = . . . = fn(a) = 0}\{a ∈ Am | d1(a) = . . . = dδ(a) = 0}

is finite.

Thus, roughly speaking, one could say that an algebraic variety over k is
arithmetically hyperbolic modulo Δ over k if “X minus Δ” has only finitely
many A-valued points, for any choice of finitely generated subring A ⊂ k.

7.2 Pseudo-Mordellicity

The reader might have noticed a possibly confusing change in terminology.
Why do we not refer to the above notion as being “Mordellic modulo Δ”?
The precise reason brings us to a subtle point in the study of integral points
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valued in higher-dimensional rings (contrary to those valued in OK,S with S
a finite set of finite places of a number field K). To explain this subtle point,
let us first define what it means to be pseudo-Mordellic. For this definition,
we will require the notion of “near-integral” point (Definition 3.11).

Definition 7.6. Let X be a variety over k and let Δ be a closed subset
of X. We say that X is Mordellic modulo Δ over k if, for every Z-finitely
generated subring A and every model X for X over A, we have that every
positive-dimensional irreducible component of the Zariski closure of X (A)(1)

in X is contained in Δ, where X (A)(1) is defined in Definition 3.11.

Remark 7.7. Let X be a proper scheme over k and let Δ be a closed subset
of X. Then, by the valuative criterion of properness, the proper scheme X is
Mordellic modulo Δ if, for every finitely generated subfield K ⊂ k and every
proper model X over K, the set X (K) \Δ is finite.

Definition 7.8. A variety X over k is pseudo-Mordellic over k if there is a
proper closed subset Δ ⊂ X such that X is Mordellic modulo Δ over k.

Note that X is Mordellic over k (as defined in Section 3) if and only if X is
Mordellic modulo the empty subset. It is also clear from the definitions that, if
X is Mordellic modulo Δ over k, then X is arithmetically hyperbolic modulo
Δ over k. In particular, a pseudo-Mordellic variety is pseudo-arithmetically
hyperbolic and a Mordellic variety is arithmetically hyperbolic. Indeed,
roughly speaking, to say that a variety is arithmetically hyperbolic is to
say that any set of integral points on it is finite, and to say that a variety is
Mordellic is to say that any set of “near-integral” points on it is finite. The
latter sets are a priori bigger. However, there is no difference between these
two sets when k = Q. That is, a variety X over Q is arithmetically hyperbolic
modulo Δ if and only if it is Mordellic modulo Δ over Q.

Following the exposition in the previous sections, let us prove the fact that
pseudo-arithmetic hyperbolicity (resp. pseudo-Mordellicity) descends along
finite étale morphisms of varieties.

Theorem 7.9 (Chevalley–Weil). Let f : X → Y be a finite étale
surjective morphism of varieties over k. Let Δ ⊂ X be a closed subset. If X
is Mordellic modulo Δ over k (resp. arithmetically hyperbolic modulo Δ over
k), then Y is Mordellic modulo f(Δ) over k (resp. arithmetically hyperbolic
modulo f(Δ) over k).

Proof. We assume that X is Mordellic modulo Δ, and show that Y is
Mordellic modulo f(Δ). (The statement concerning arithmetic hyperbolicity
is proven similarly.)

Let A ⊂ k be a regular Z-finitely generated subring, let X be a model for
X over A, let Y be a model for Y over A, and let F : X → Y be a finite étale
surjective morphism such that Fk = f . Assume for a contradiction that Y is
not Mordellic modulo f(Δ). Then, replacing A by a larger regular Z-finitely
generated subring of k if necessary, for i = 1, 2, . . ., we may choose pairwise
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distinct elements ai of Y(A)(1) whose closure in Y is an irreducible positive-
dimensional subvariety R ⊂ Y such that R �⊂ f(Δ). For every i = 1, 2, . . .,
choose a dense open subscheme Ui of SpecA whose complement in SpecA has
codimension at least two and such that ai defines a morphism ai : Ui → X .
Consider Vi := Ui ×Y,F X → X , and note that Vi → Ui is finite étale.
By Zariski–Nagata purity of the branch locus [39, Théorème X.3.1], the
morphism Vi → Ui extends to a finite étale morphism SpecBi → A. By
Hermite’s finiteness theorem, as the degree of Bi over A is bounded by deg(f),
replacing ai by an infinite subset if necessary, we may and do assume that
B := B1

∼= B2
∼= B3

∼= . . .. Now, the bi : Vi → X define elements in X (B)(1).
Let S be their closure in X. Note that R ⊂ S. In particular, S �⊂ Δ. This
contradicts the fact that X is Mordellic modulo Δ. Thus, we conclude that
Y is Mordellic modulo f(Δ). �	
Corollary 7.10 (Pseudo-Chevalley–Weil). Let f : X → Y be a finite
étale surjective morphism of finite type separated schemes over k. Then X is
pseudo-Mordellic over k if and only if Y is pseudo-Mordellic over k.

Proof. Since f : X → Y has finite fibres, the fibres of f are Mordellic over k.
Therefore, if Y is pseudo-Mordellic over k, it easily follows that X is pseudo-
Mordellic over k. Conversely, if X is pseudo-Mordellic over k, then it follows
from Theorem 7.9 that Y is pseudo-Mordellic over k. �	
Corollary 7.11 (Pseudo-Chevalley–Weil, II). Let f : X → Y be a
finite étale surjective morphism of finite type separated schemes over k. Then
X is pseudo-arithmetically hyperbolic over k if and only if Y is pseudo-
arithmetically hyperbolic over k.

Proof. Similar to the proof of Corollary 7.10. �	
Remark 7.12 (Birational Invariance). The birational invariance of the
notion of pseudo-Mordellicity is essentially built into the definition. Indeed,
the infinitude of the set of near-integral points is preserved under proper
birational modifications. More precisely, let X and Y be proper integral
varieties over k which are birational. Then X is pseudo-Mordellic over k
if and only if Y is pseudo-Mordellic over k.

It is not clear to us whether the notion of pseudo-arithmetic hyperbolicity
over k is a birational invariant for proper varieties over k, unless k = Q.
Similarly, it is not so clear to us whether pseudo-arithmetically hyperbolic
proper varieties are pseudo-groupless. On the other hand, this is not so hard
to prove for pseudo-Mordellic varieties.

Theorem 7.13. If X is a pseudo-Mordellic proper variety over k, then X
is pseudo-groupless over k.

Proof. The fact that an arithmetically hyperbolic variety is groupless is
proven in [49, §3] using the potential density of rational points on an abelian
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variety over a field K of characteristic zero (Remark 3.7). The statement of
the theorem is proven in [56] using similar arguments. �	
Remark 7.14. Let X be a proper surface over k. If X is pseudo-Mordellic
over k, then X is of general type. To prove this, note that X is pseudo-
groupless (Theorem 7.13), so that the claim follows from the fact that pseudo-
groupless proper surfaces are of general type; see Remark 6.12.

Recall that a closed subvariety X of an abelian variety A is groupless
modulo its special locus Sp(X), where Sp(X) is the union of translates of
non-zero abelian subvarieties of A contained in X. (We are freely using here
Kawamata–Ueno’s theorem that Sp(X) is a closed subset of X.) This was
proven in Lemma 4.8. In [34] Faltings proved the arithmetic analogue of this
statement.

Theorem 7.15 (Faltings). Let A be an abelian variety over k, and let X ⊂
A be a closed subvariety. Then X is Mordellic modulo Sp(X).

Lang and Vojta conjectured that a projective variety over Q is pseudo-
Mordellic if and only if it is of general type. We propose extending this to
arbitrary algebraically closed fields of characteristic zero. As we also expect
the notions of pseudo-arithmetic hyperbolicity and pseudo-Mordellicity to
coincide, we include this in our version of the Lang–Vojta conjecture.

Conjecture 7.16 (Strong Lang–Vojta, II). Let X be an integral projec-
tive variety over k. Then the following statements are equivalent.

(1) The variety X is pseudo-Mordellic over k.
(2) The variety X is pseudo-arithmetically hyperbolic over k.
(3) The variety X is pseudo-groupless over k.
(4) The projective variety X is of general type over k.

This is a good time to collect examples of arithmetically hyperbolic
varieties.

Example 7.17. It follows from Faltings’s theorem [34] that a normal
projective connected pseudo-groupless surface X over k with h1(X,OX) > 2
is pseudo-Mordellic. Let us prove this claim. To do so, let Δ ⊂ X be a
proper closed subset such that X is groupless modulo Δ. Moreover, let A
be the Albanese variety of X, let p : X → A be the canonical map (after
choosing some basepoint in X(k)), and let Y be the image of X in A. Note
that dimY ≥ 1. If dimY = 1, then the condition on the dimension of A
implies that Y is not an elliptic curve. In this case, since dimX = 2 and
dimY = 1, the claim follows from Faltings’s (earlier) finiteness theorem for
hyperbolic curves. However, if dimY = 2, we have to appeal to Faltings’s
Big Theorem. Indeed, in this case, the morphism X → Y is generically finite.
Let X → X ′ → Y be the Stein factorization of the morphism X → Y ,
where X ′ → Y is a finite morphism with X ′ normal. Since X and X ′ are
birational, it suffices to show that X ′ is pseudo-Mordellic (by the birational
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invariance of pseudo-Mordellicity and pseudo-grouplessness). Thus, we may
and do assume that X = X ′, so that X → A is finite. If the rational points on
X are dense, then they are also dense in Y , so that Y is an abelian subvariety
of A, contradicting our assumption that h1(X,OX) = dimA > 2. Thus, the
rational points onX are not dense. In particular, every irreducible component
of the closure of a set of rational points on X is a curve of genus 1 (as X
does not admit any curves of genus zero). Since X is pseudo-groupless, these
components are contained in Δ.

Example 7.18. Let X be a smooth projective connected curve over k, let
n ≥ 1 be an integer, and let Δ be a proper closed subset of Symn

X . It follows
from Faltings’s theorem that Symn

X is groupless modulo Δ over k if and only
if Symn

X is arithmetically hyperbolic modulo Δ over k.

Example 7.19 (Moriwaki). Let X be a smooth projective variety over k
such that Ω1

X is ample and globally generated. Then X is Mordellic by a
theorem of Moriwaki [73]; see [7] for the analogous finiteness result in the
logarithmic case.

Example 7.20. For every Z-finitely generated normal integral domain A of
characteristic zero, the set of A-isomorphism classes of smooth sextic surfaces
in P3

A is finite; see [54]. This finiteness statement can be reformulated as
saying that the moduli stack of smooth sextic surfaces is Mordellic.

Example 7.21. Let X be a smooth proper hyperkaehler variety over k with
Picard number at least three. Then X is not arithmetically hyperbolic; see
[49].

7.3 Intermezzo: Arithmetic Hyperbolicity
and Mordellicity

Let k be an algebraically closed field of characteristic zero. In this section, we
show that the (a priori) difference between arithmetic hyperbolicity (modulo
some subset) and Mordellicity is quite subtle, as this difference disappears in
many well-studied cases.

The following notion of purity for models over Z-finitely generated rings
was first considered in [15] precisely to study the a priori difference between
arithmetic hyperbolicity and Mordellicity.

Definition 7.22 (Pure Model). LetX be a variety over k and let A ⊂ k be
a subring. A model X for X over A is pure over A (or: satisfies the extension
property over A) if, for every smooth finite type separated integral scheme T
over A, every dense open subscheme U ⊂ T with T \U of codimension at least
two in T , and every A-morphism f : U → X , there is a (unique) morphism
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f : T → X extending the morphism f . (The uniqueness of the extension f
follows from our convention that a model for X over A is separated.)

Remark 7.23. Let X be a variety over k, and let A ⊂ k be a subring. Let
X be a pure model for X over A, and let B ⊂ k be a subring containing A
such that SpecB → SpecA is smooth (hence finite type). Then XB is pure
over B.

Definition 7.24. A variety X over k has an arithmetically pure model if
there is a Z-finitely generated subring A ⊂ k and a pure model X for X
over A.

Remark 7.25. Let X be a proper variety over k which has an arithmetically
pure model. Then X has no rational curves. To prove this, assume that
P1
k → X is a non-constant (hence finite) morphism, i.e., the proper variety X

has a rational curve over k. Then, if we let 0 denote the point (0 : 0 : 1) in P2
k,

the composed morphism P2
k \ {0} → P1

k → X does not extend to a morphism
from P2

k to X. Now, choose a Z-finitely generated subring A ⊂ k and a model
X over A such that the morphism P1

k → X descends to a morphism P1
A → X

of A-schemes. Define U = P2
A \ {0} and T = P2

A, where we let {0} denote the
image of the section of P2

A → SpecA induced by 0 in P2
k. Since the morphism

Uk → Xk does not extend to a morphism Tk → Xk, we see that the morphism
U → X does not extend to a morphism T → X , so that X is not pure. This
shows that a proper variety over k with a rational curve has no arithmetically
pure model.

Remark 7.26. Let X be a proper variety over k. A pure model for X
over a Z-finitely generated subring A of k might have rational curves in
every special fibre (of positive characteristic). Examples of such varieties can
be constructed as complete subvarieties of the moduli space of principally
polarized abelian varieties.

Remark 7.27. Let X be a smooth projective variety over k. If Ω1
X/k is

ample, then X has an arithmetically pure model. Indeed, choose a Z-finitely
generated subring A ⊂ k with A smooth over Z and a smooth projective
model X for X over A such that ΩX/A is ample. Then, the geometric fibres of
X → SpecA do not contain any rational curves, so that [37, Proposition 6.2]
implies that X is a pure model for X over A.

Remark 7.28. Let k ⊂ L be an extension of algebraically closed fields
of characteristic zero, and let X be a variety over k. Then X has an
arithmetically pure model if and only if XL has an arithmetically pure model.

Theorem 7.29. Let X be a variety over k which has an arithmetically pure
model. Let Δ ⊂ X be a closed subset. Then X is Mordellic modulo Δ over k
if and only if X is arithmetically hyperbolic modulo Δ over k.
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Proof. We follow the proof of [15, Theorem 8.10]. Suppose that X is
arithmetically hyperbolic modulo Δ over k. Let A ⊂ k be a Z-finitely
generated subring and let X be a pure model for X over A. It suffices to
show that, for every Z-finitely generated subring B ⊂ k containing A, the set
X (B)(1) \Δ is finite. To do so, we may and do assume that SpecB → SpecA
is smooth in which case it follows from the definition of a pure model that
X (B)(1) = X (B). We conclude that

X (B)(1) \Δ = X (B) \Δ

is finite. This shows that X is Mordellic modulo Δ over k. �	
Lemma 7.30 (Affine Varieties). Let X be an affine variety over k. Then
X has an arithmetically pure model.

Proof. Affine varieties have an arithmetically pure model by Hartog’s Lemma.
�	

Lemma 7.31. Let X be a variety over k which admits a finite morphism to
some semi-abelian variety over k. Then X has an arithmetically pure model.

Proof. Let G be a semi-abelian variety and let X → G be a finite morphism.
It follows from Hartog’s Lemma that X has an arithmetically pure model if
and only if G has an arithmetically pure model. Choose a Z-finitely generated
subring and a model G for G over A such that G → SpecA is a semi-
abelian scheme. Then, this model G has the desired extension property by
[72, Lemma A.2], so that G (hence X) has an arithmetically pure model. �	
Remark 7.32. Let X be a projective integral groupless surface over k
which admits a non-constant map to some abelian variety. Then X has an
arithmetically pure model by [15, Lemma 8.11].

Corollary 7.33. Let X be an integral variety over k, and let Δ ⊂ X be a
closed subset. Assume that one of the following statements holds.

(1) The variety X is affine over k.
(2) There is a finite morphism X → G with G a semi-abelian variety over k.
(3) We have that X is a groupless surface which admits a non-constant

morphism X → A with A an abelian variety over k.

Then X is arithmetically hyperbolic modulo Δ over k if and only if X is
Mordellic modulo Δ over k.

Proof. Assume (1). Then the statement follows from Lemma 7.30 and
Theorem 7.29. Similarly, if (2) holds, then the statement follows from
Lemma 7.31 and Theorem 7.29. Finally, assuming (3), the statement follows
from Remark 7.32 and Theorem 7.29. �	
Remark 7.34. Let g ≥ 1 andN ≥ 3 be integers. Now, ifX is the fine moduli
space of g-dimensional principally polarized abelian schemes over k with level
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Q structure, then X has an arithmetically pure model. As is explained in
[68], this is a consequence of Grothendieck’s theorem on homomorphisms
of abelian schemes [40]. The existence of such a model is used by Martin-
Deschamps to deduce the Mordellicity of Xk over k from the Mordellicity of
X over Q (cf. Theorem 3.14).

8 Pseudo-Brody Hyperbolicity

The notion of pseudo-hyperbolicity appeared first in the work of Kiernan and
Kobayashi [58] and afterwards in Lang [62]; see also [59]. We recall some of
the definitions.

Definition 8.1. Let X be a variety over C and let Δ be a closed subset
of X. We say that X is Brody hyperbolic modulo Δ if every holomorphic
non-constant map C → Xan factors over Δ.

Definition 8.2. A variety X over C is pseudo-Brody hyperbolic if there is a
proper closed subset Δ � X such that X is Brody hyperbolic modulo Δ.

Green–Griffiths and Lang conjectured that a projective integral variety of
general type is pseudo-Brody hyperbolic. The conjecture that a projective
integral variety is of general type if and only if it is pseudo-Brody hyperbolic
is commonly referred to as the Green–Griffiths–Lang conjecture.

Note that the notion of pseudo-Brody hyperbolicity is a birational invari-
ant. More precisely, if X and Y are proper integral varieties over C which
are birational, then X is pseudo-Brody hyperbolic if and only if Y is pseudo-
Brody hyperbolic. Furthermore, just like the notions of pseudo-Mordellicity
and pseudo-grouplessness, the notion of pseudo-Brody hyperbolicity descends
along finite étale morphisms. That is, if X → Y is finite étale, then X is
pseudo-Brody hyperbolic if and only if Y is pseudo-Brody hyperbolic. Also,
it is not hard to show that, if a variety X is Brody hyperbolic modulo Δ,
then X is groupless modulo Δ.

Note that a variety X is Brody hyperbolic (as defined in Section 2) if
and only if X is Brody hyperbolic modulo the empty set. Bloch–Ochiai–
Kawamata’s theorem classifies Brody hyperbolic closed subvarieties of abelian
varieties. In fact, their result is a consequence of the following more general
statement (also proven in [57]).

Theorem 8.3 (Bloch–Ochiai–Kawamata). Let X be a closed subvariety
of an abelian variety A. Let Sp(X) be the special locus of X. Then Sp(X) is
a closed subset of X and X is Brody hyperbolic modulo Sp(X).

We now introduce the pseudo-analogue of Kobayashi hyperbolicity for
algebraic varieties. Of course, these definitions make sense for complex-
analytic spaces.
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Definition 8.4. Let X be a variety over C and let Δ be a closed subset of
X. We say that X is Kobayashi hyperbolic modulo Δ if, for every x and y in
Xan \Δan with x �= y, the Kobayashi pseudo-distance dXan(p, q) is positive.

Definition 8.5. A variety X over C is pseudo-Kobayashi hyperbolic if there
is a proper closed subset Δ � X such that X is Kobayashi hyperbolic
modulo Δ.

It is clear from the definitions and the fact that the Kobayashi pseudo-
metric vanishes everywhere on C, that a variety X which is Kobayashi
hyperbolic modulo a closed subset Δ ⊂ X is Brody hyperbolic modulo
Δ. Nonetheless, the notion of pseudo-Kobayashi hyperbolicity remains quite
mysterious at the moment. Indeed, we do not know whether a pseudo-Brody
hyperbolic projective variety X over C is pseudo-Kobayashi hyperbolic.

One can show that the notion of pseudo-Kobayashi hyperbolicity is a
birational invariant. That is, if X and Y are proper integral varieties over
C which are birational, then X is pseudo-Kobayashi hyperbolic if and
only if Y is pseudo-Kobayashi hyperbolic; see [59]. Moreover, just like the
notions of pseudo-Mordellicity and pseudo-grouplessness, pseudo-Kobayashi
hyperbolicity descends along finite étale morphisms.

Yamanoi proved the pseudo-Kobayashi analogue of Bloch–Ochiai–
Kawamata’s theorem for closed subvarieties of abelian varieties; see [88,
Theorem 1.2].

Theorem 8.6 (Yamanoi). Let X be a closed subvariety of an abelian
variety A. Let Sp(X) be the special locus of X. Then Sp(X) is a closed subset
of X and X is Kobayashi hyperbolic modulo Sp(X).

The Lang–Vojta conjecture and the Green–Griffiths conjecture predict
that the above notions of hyperbolicity are equivalent. To state this conjec-
ture, we will need one more definition. (Recall that k denotes an algebraically
closed field of characteristic zero.)

Definition 8.7. A variety X over k is strongly-pseudo-Brody hyperbolic
(resp. strongly-pseudo-Kobayashi hyperbolic) if, for every subfield k0 ⊂ k,
every model X for X over k0, and every embedding k0 → C, the variety X0,C

is pseudo-Brody hyperbolic (resp. pseudo-Kobayashi hyperbolic).

Conjecture 8.8 (Strong Lang–Vojta, III). Let X be an integral projec-
tive variety over k. Then the following statements are equivalent.

(1) The variety X is strongly-pseudo-Brody hyperbolic over k.
(2) The variety X is strongly-pseudo-Kobayashi hyperbolic over k.
(3) The projective variety X is pseudo-Mordellic over k.
(4) The projective variety X is pseudo-arithmetically hyperbolic over k.
(5) The projective variety X is pseudo-groupless over k.
(6) The projective variety X is of general type over k.
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As stated this conjecture does not predict that every conjugate of a pseudo-
Brody hyperbolic variety is again pseudo-Brody hyperbolic. We state this as
a separate conjecture, as we did in Conjecture 3.10 for Brody hyperbolic
varieties.

Conjecture 8.9 (Conjugates of Pseudo-Brody Hyperbolic Vari-
eties). If X is an integral variety over k and σ is a field automorphism of
k, then the following statements hold.

(1) The variety X is pseudo-Brody hyperbolic if and only if Xσ is pseudo-
Brody hyperbolic.

(2) The variety X is pseudo-Kobayashi hyperbolic if and only if Xσ is
pseudo-Kobayashi hyperbolic.

We conclude this section with a brief discussion of a theorem of Kwack on
the algebraicity of holomorphic maps to a hyperbolic variety, and a possible
extension of his result to the pseudo-setting.

Remark 8.10 (Borel Hyperbolicity). Let X be a variety over C and let
Δ ⊂ X be a closed subset. We extend the notion of Borel hyperbolicity
introduced in [51] to the pseudo-setting and say that X is Borel hyperbolic
modulo Δ if, for every reduced variety S over C, every holomorphic map f :
San → Xan with f(San) �⊂ Δan is the analytification of a morphism ϕ : S →
X. The proof of [51, Lemma 3.2] shows that, if X is Borel hyperbolic modulo
Δ, then it is Brody hyperbolic modulo Δ. In [61] Kwack showed that, if X is
a proper Kobayashi hyperbolic variety, then X is Borel hyperbolic (modulo
the empty set). It seems reasonable to suspect that Kwack’s theorem also
holds in the pseudo-setting. Thus, we may ask: if X is Kobayashi hyperbolic
modulo Δ, does it follow that X is Borel hyperbolic modulo Δ?

The reader interested in investigating further complex-analytic notions
of hyperbolicity is also encouraged to have a look at the notion of taut-
hyperbolicity modulo a subset introduced by Kiernan–Kobayashi [58]; see
also [59, Chapter 5].

9 Algebraic Hyperbolicity

In the following three sections we investigate (a priori) different function field
analogues of Mordellicity. Conjecturally, they are all equivalent notions. At
this point it is also clear that hyperbolicity modulo a subset is more natural
to study (especially from a birational perspective) which is why we will give
the definitions in this more general context.

The notion we introduce in this section extends Demailly’s notion of
algebraic hyperbolicity [29, 50] to the pseudo-setting.
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Definition 9.1 (Algebraic Hyperbolicity Modulo a Subset). Let X
be a projective scheme over k and let Δ be a closed subset of X. We say
that X is algebraically hyperbolic over k modulo Δ if, for every ample line
bundle L on X, there is a real number αX,Δ,L depending only on X, Δ, and
L such that, for every smooth projective connected curve C over k and every
morphism f : C → X with f(C) �⊂ Δ, the inequality

degC f∗L ≤ αX,Δ,L · genus(C)

holds.

Definition 9.2. A projective scheme X is pseudo-algebraically hyperbolic
(over k) if there is a proper closed subset Δ such that X is algebraically
hyperbolic modulo Δ.

We will say that a projective scheme X is algebraically hyperbolic over k
if it is algebraically modulo the empty subset. This terminology is consistent
with that of [50].

The motivation for introducing and studying algebraically hyperbolic
projective schemes are the results of Demailly stated below. They say that
algebraic hyperbolicity lies between Brody hyperbolicity and grouplessness.
In particular, the Lang–Vojta conjectures as stated in the previous sections
imply that groupless projective varieties should be algebraically hyperbolic,
and that algebraically hyperbolic projective varieties should be Brody
hyperbolic. This observation is due to Demailly and allows one to split the
conjecture that groupless projective varieties are Brody hyperbolic into two
a priori different parts.

Before stating Demailly’s theorems, we note that it is not hard to see that
pseudo-algebraic hyperbolicity descends along finite étale maps, and that
pseudo-algebraic hyperbolicity for projective schemes is a birational invariant;
see [56, §4] for details. These two properties should be compared with their
counterparts for pseudo-grouplessness, pseudo-Mordellicity, pseudo-Brody
hyperbolicity, and pseudo-Kobayashi hyperbolicity.

Demailly’s theorem for projective schemes reads as follows.

Theorem 9.3 (Demailly). Let X be a projective scheme over C. If X is
Brody hyperbolic, then X is algebraically hyperbolic over C.

A proof of this is given in [29, Theorem 2.1] when X is smooth.
The smoothness of X is, however, not used in its proof. We stress that
it is not known whether a pseudo-Brody hyperbolic projective scheme is
pseudo-algebraically hyperbolic. On the other hand, Demailly proved that
algebraically hyperbolic projective schemes are groupless, and his proof can
be adapted to show the following more general statement.
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Theorem 9.4 (Demailly + ε). Let X be a projective scheme over k and
let Δ ⊂ X be a closed subset. If X is algebraically hyperbolic modulo Δ, then
X is groupless modulo Δ.

Proof. See [50] when Δ = ∅. The more general statement is proven in [56].
The argument involves the multiplication maps on an abelian variety. �	

Combining Demailly’s theorems with Bloch–Ochiai–Kawamata’s theorem,
we obtain that a closed subvariety of an abelian variety over k is algebraically
hyperbolic over k if and only if it is groupless. The pseudo-version of this
theorem is due to Yamanoi (see Section 13 for a precise statement).

10 Boundedness

To say that a projective variety X is algebraically hyperbolic (Definition 9.1)
is to say that the degree of any curve C is bounded uniformly and linearly in
the genus of that curve. The reader interested in understanding how far we are
from proving that groupless projective schemes are algebraically hyperbolic
is naturally led to studying variants of algebraic hyperbolicity in which one
asks (in Definition 9.1 above) for “weaker” bounds on the degree of a map.
This led the authors of [50] to introducing the notion of boundedness. To
state their definition, we first recall some basic properties of moduli spaces
of morphisms between projective schemes.

Let S be a scheme, and letX → S and Y → S be projective flat morphisms
of schemes. By Grothendieck’s theory of Hilbert schemes and Quot schemes
[75], the functor

Sch/Sop → Sets, T → S �→ HomT (YT , XT )

is representable by an S-scheme which we denote by HomS(X,Y ). Moreover,
for h ∈ Q[t] a polynomial, the subfunctor parametrizing morphisms whose
graph has Hilbert polynomial h is representable by a quasi-projective
subscheme Homh

S(Y,X) of HomS(Y,X). Similarly, the subfunctor of
HomS(X,X) parametrizing automorphisms of X over S is representable
by a locally finite type group scheme AutX/S over S. It is imperative to note
that this group scheme need not be quasi-compact. In fact, for a K3 surface X
over C, the scheme AutX/C is zero-dimensional. Nonetheless, there are K3
surfaces with infinitely many automorphisms. Thus, the automorphism group
scheme of a projective scheme over k is not necessarily of finite type (even
when it is zero-dimensional).

If S = Spec k, d ≥ 1 is an integer, and X = Y = P1
k, let Homd

k(P
1
k,P

1
k)

be the subscheme of Homk(P
1
k,P

1
k) parametrizing morphisms of degree d. In

particular, we have that Hom1
k(P

1
k,P

1
k) = AutP1

k/k
= PGL2,k. For every d ≥ 1,
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the quasi-projective scheme Homd
k(P

1
k,P

1
k) is non-empty (and even positive-

dimensional). If we identity the subscheme of Homk(P
1
k,P

1
k) parametrizing

constant morphisms with P1
k, then

Homk(P
1,P1

k) = P1
k 	 PGL2,k 	

∞⊔

d=2

Homd
k(P

1
k,P

1
k).

It follows that the scheme Homk(P
1,P1

k) has infinitely many connected
components. It is in particular not of finite type.

It turns out that studying projective varieties X over k for which every
Hom-scheme Homk(Y,X) is of finite type is closely related to studying
algebraically hyperbolic varieties. The aim of this section is to explain the
connection in a systematic manner as is done in [15, 50, 56]. We start with
the following definitions.

Definition 10.1 (Boundedness Modulo a Subset). Let n ≥ 1 be an
integer, letX be a projective scheme over k, and let Δ be a closed subset ofX.
We say that X is n-bounded over k modulo Δ if, for every normal projective
variety Y of dimension at most n, the scheme Homk(Y,X) \ Homk(Y,Δ) is
of finite type over k. We say that X is bounded over k modulo Δ if, for every
n ≥ 1, the scheme X is n-bounded modulo Δ.

Definition 10.2. Let n ≥ 1 be an integer. A projective scheme X over k is
pseudo-n-bounded over k if there is a proper closed subset Δ such that X is
n-bounded modulo Δ.

Definition 10.3. A projective scheme X over k is pseudo-bounded over k if
it is pseudo-n-bounded over k for every n ≥ 1.

Remark 10.4. At the beginning of this section we discussed the structure
of the scheme Homk(P

1
k,P

1
k). From that discussion it follows that P1

k is not
1-bounded over k. In particular, if X is a 1-bounded projective variety over
k, then it has no rational curves. It is also not hard to show that P1

k is not
pseudo-1-bounded by showing that, for every x in P1(k), there is a y in P1(k)
such that the set of morphisms f : P1

k → P1
k with f(y) = x is infinite. We

refer the interested reader to Section 11 for a related discussion.

We say that X is bounded if it is bounded modulo the empty subset. We
employ similar terminology for n-bounded. This terminology is consistent
with that of [15, 50]. Let us start with looking at some implications and
relations between these a priori different notions of boundedness.

Boundedness is a condition on moduli spaces of maps from higher-
dimensional varieties. Although it might seem a priori stronger than 1-
boundedness, Lang–Vojta’s conjecture predicts their equivalence. In fact, we
have the following result from [50] which shows the equivalence of three a
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priori different notions. In this theorem, the implications (2) =⇒ (1) and
(3) =⇒ (1) are straightforward consequences of the definitions.

Theorem 10.5. Let X be a projective scheme over k. Then the following
are equivalent.

(1) The projective scheme X is 1-bounded over k.
(2) The projective scheme X is bounded over k.
(3) For every ample line bundle L and every integer g ≥ 0, there is an integer

α(X,L, g) such that, for every smooth projective connected curve C of
genus g over k and every morphism f : C → X, the inequality

degC f∗L ≤ α(X,L, g)

holds.

Proof. The fact that a 1-bounded scheme is n-bounded for every n ≥ 1 is
proven by induction on n in [50, §9]. The idea is that, if fi : Y → X is
a sequence of morphisms from an n-dimensional smooth projective variety
Y with pairwise distinct Hilbert polynomial, then one can find a smooth
hyperplane section H ⊂ Y such that the restrictions fi|H of these morphisms
fi to H still have pairwise distinct Hilbert polynomial.

The fact that a bounded scheme satisfies the “uniform” boundedness
property in (3) follows from reformulating this statement in terms of the
quasi-compactness of the universal Hom-stack of morphisms of curves of
genus g to X; see the proof of [50, Theorem 1.14] for details. �	

Studying boundedness is “easier” than studying boundedness modulo
a subset Δ. Indeed, part of the analogue of this theorem for pseudo-
boundedness (unfortunately) requires an assumption on the base field k.

Theorem 10.6. Let X be a projective scheme over k, and let Δ be a closed
subset of X. Assume that k is uncountable. Then X is 1-bounded modulo
Δ if and only if X is bounded modulo Δ.

Proof. This is proven in [15], and the argument is similar to the proof of
Theorem 10.5. We briefly indicate how the uncountability of k is used.

Assume that X is 1-bounded modulo Δ. We show by induction on n that
X is n-bounded modulo Δ over k. If n = 1, then this holds by assumption.
Thus, let n > 1 be an integer and assume that X is (n− 1)-bounded modulo
Δ. Let Y be an n-dimensional projective reduced scheme and let fm : Y → X
be a sequence of morphisms with pairwise distinct Hilbert polynomial such
that, for every m = 1, 2, . . ., we have fm(Y ) �⊂ Δ. Since k is uncountable,
there is an ample divisor D in Y which is not contained in f−1

m (Δ) for all
m ∈ {1, 2, . . .}. Now, the restrictions fm|D : D → X have pairwise distinct
Hilbert polynomial and, for infinitely many m, we have that fm(D) �⊂ Δ.
This contradicts the induction hypothesis. We conclude that X is bounded
modulo Δ over k, as required. �	
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The “pseudo” analogue of the equivalence between (2) and (3) in
Theorem 10.5 holds without any additional assumption on k; see [15].

Theorem 10.7. Let X be a projective scheme over k. Then X is bounded
modulo Δ over k if and only if, for every ample line bundle L and every
integer g ≥ 0, there is an integer α(X,L, g) such that, for every smooth
projective connected curve C of genus g over k and every morphism f : C →
X with f(C) �⊂ Δ, the inequality

degC f∗L ≤ α(X,L, g)

holds.

It is not hard to see that being pseudo-n-bounded descends along finite
étale maps. Also, if X and Y are projective schemes over k which are
birational, then X is pseudo-1-bounded if and only if Y is pseudo-1-bounded;
see [56, §4]. However, in general, it is not clear that pseudo-n-boundedness
is a birational invariant (unless n = 1 or k is uncountable).

It is shown in [15, 50] that pseudo-algebraically hyperbolic varieties are
pseudo-bounded. More precisely, one can prove the following statement.

Theorem 10.8. If X is algebraically hyperbolic modulo Δ over k, then X
is bounded modulo Δ.

Proof. This is proven in three steps in [15, §9]. First, one chooses an
uncountable algebraically closed field L containing k and shows that XL

is algebraically hyperbolic modulo ΔL. Then, one makes the “obvious”
observation that XL is 1-bounded modulo ΔL. Finally, as L is uncountable
and XL is 1-bounded modulo ΔL, it follows from Theorem 10.6 that XL is
bounded modulo ΔL. �	

Demailly proved that algebraically hyperbolic projective varieties are
groupless (Theorem 9.4). His proof can be adapted to show the following
more general statement.

Proposition 10.9 (Demailly + ε). If X is 1-bounded modulo Δ over k,
then X is groupless modulo Δ.

11 Geometric Hyperbolicity

In the definition of Mordellicity over Q one considers the “finiteness of
arithmetic curves” on some model. On the other hand, the notions of
algebraic hyperbolicity and boundedness require one to test “boundedness
of curves”. In this section we introduce a new notion in which one considers
the “finiteness of pointed curves”.
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Definition 11.1 (Geometric Hyperbolicity Modulo a Subset). Let X
be a variety over k and let Δ be a closed subset of X. We say that X is
geometrically hyperbolic over k modulo Δ if, for every x in X(k) \Δ, every
smooth connected curve C over k and every c in C(k), we have that the set
Homk((C, c), (X,x)) of morphisms f : C → X with f(c) = x is finite.

Definition 11.2. A variety X over k is pseudo-geometrically hyperbolic over
k if there is a proper closed subset Δ such that X is geometrically hyperbolic
modulo Δ.

We say that a variety X over k is geometrically hyperbolic over k if it is
geometrically hyperbolic modulo the empty subset. At this point we should
note that a projective scheme X over k is geometrically hyperbolic over k
if and only if it is “(1, 1)-bounded”. The latter notion is defined in [50,
§4], and the equivalence of these two notions is [50, Lemma 4.6] (see also
Proposition 11.4 below). The terminology “(1,1)-bounded modulo Δ” is used
in [15], and also coincides with being geometrically hyperbolic modulo Δ for
projective schemes by the results in [15, §9].

Remark 11.3 (Geometric Hyperbolicity Versus Arithmetic Hyper-
bolicity). Let us say that a scheme T is an arithmetic curve if there
is a number field K and a finite set of finite places S of K such that
T = SpecOK,S . Let X be a variety over Q. It is not hard to show that
the following two statements are equivalent.

(1) The variety X is arithmetically hyperbolic (or Mordellic) over Q.
(2) For every arithmetic curve C, every closed point c in C, every model X

for X over C, and every closed point x of X , the subset

HomC((C, c), (X , x)) ⊂ X (C)

of morphisms f : C → X with f(c) = x is finite.

Indeed, if (1) holds, then HomC(C,X ) is finite by definition, so that clearly
the set

HomC((C, c), (X , x))

is finite. Conversely, assume that (2) holds. Now, let C be an arithmetic curve
and let X be a model for X over C. To show that X (C) is finite, let c be a
closed point of C and let κ be its residue field. Then κ is finite and c lies in
C(κ). In particular, the image of c along any morphism C → X is a κ-point
of X . This shows that

X (C) ⊂
⋃

x∈X (κ)

HomC((C, c), (X , x)).
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Since X (κ) is finite and every set HomC((C, c), (X , x)) is finite, we conclude
that X (C) is finite, as required.

The second statement allows one to see the similarity between geometric
hyperbolicity and arithmetic hyperbolicity. Indeed, the variety X is geomet-
rically hyperbolic over Q if, for every integral algebraic curve C over Q, every
closed point c in C, and every closed point x of X, the set

Homk((C, c), (X,x)) = HomC((C, c), (X × C, (x, c)))

is finite.

Just like pseudo-grouplessness and pseudo-Mordellicity, it is not hard to see
that pseudo-geometric hyperbolicity descends along finite étale morphisms.
Also, if X and Y are projective varieties which are birational, then X is
pseudo-geometrically hyperbolic if and only if Y is pseudo-geometrically
hyperbolic.

The following proposition says that a projective scheme is geometrically
hyperbolic if and only if the moduli space of pointed maps is of finite type.
In other words, asking for boundedness of all pointed maps is equivalent to
asking for the finiteness of all sets of pointed maps.

Proposition 11.4. Let X be a projective scheme over k and let Δ be a
closed subset of X. Then the following are equivalent.

(1) For every smooth projective connected curve C over k, every c in C(k)
and every x in X(k)\Δ, the scheme Homk((C, c), (X,x)) is of finite type
over k.

(2) The variety X is geometrically hyperbolic modulo Δ.

Proof. This is proven in [15, §9]. The proof is a standard application of the
bend-and-break principle. Indeed, the implication (2) =⇒ (1) being obvious,
let us show that (1) =⇒ (2). Thus, let us assume that X is not geometrically
hyperbolic modulo Δ, so that there is a sequence f1, f2, . . . of pairwise distinct
elements of Homk((C, c), (X,x)), where C is a smooth projective connected
curve over k, c ∈ C(k) and x ∈ X(k) \ Δ. Since Homk((C, c), (X,x)) is
of finite type, the degree of all the fi is bounded by some real number
(depending only on X,Δ, c, x and C). In particular, it follows that some
connected component of Homk((C, c), (X,x)) has infinitely many elements.
As each connected component of Homk((C, c), (X,x)) is a finite type scheme
over k, it follows from bend-and-break [27, Proposition 3.5] that there is a
rational curve in X containing x. This contradicts the fact that every rational
curve in X is contained in Δ (by Proposition 11.7). �	

This proposition has the following consequence.

Corollary 11.5. Let X be a projective scheme over k and let Δ be a proper
closed subset of X. If X is 1-bounded modulo Δ, then X is geometrically
hyperbolic modulo Δ.
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Proof. If X is 1-bounded, then it is clear that, for every smooth projective
connected curve C, every c in C(k) and every x in X(k) \ Δ, the scheme
Homk((C, c), (X,x)) is of finite type over k. Indeed, the latter scheme is
closed in the scheme Homk(C,X), and contained in the quasi-projective
subscheme Homk(C,X) \ Homk(C,Δ). Therefore, the result follows from
Proposition 11.4. �	
Remark 11.6. Urata showed that a Brody hyperbolic projective variety
over C is geometrically hyperbolic over C; see [59, Theorem 5.3.10] (or the
original [84]). Note that Corollary 11.5 generalizes Urata’s theorem (in the
sense that the assumption in Corollary 11.5 is a priori weaker than being
Brody hyperbolic, and we also allow for an “exceptional set” Δ). Indeed,
as a Brody hyperbolic projective variety is 1-bounded (even algebraically
hyperbolic), Urata’s theorem follows directly from Corollary 11.5.

Demailly’s argument to show that algebraically hyperbolic projective vari-
eties are groupless (Theorem 9.4) can be adapted to show that geometrically
hyperbolic projective varieties are groupless; see [56] for a detailed proof.

Proposition 11.7. Let X be a projective variety over k and let Δ be a
closed subset of X. If X is geometrically hyperbolic modulo Δ over k, then
X is groupless modulo Δ over k.

12 The Conjectures Summarized

After a lengthy preparation, we are finally ready to state the complete version
of Lang–Vojta’s conjecture.

Conjecture 12.1 (Strong Lang–Vojta, IV). Let X be an integral projec-
tive variety over k. Then the following statements are equivalent.

(1) The variety X is strongly-pseudo-Brody hyperbolic over k.
(2) The variety X is strongly-pseudo-Kobayashi hyperbolic.
(3) The projective variety X is pseudo-Mordellic over k.
(4) The projective variety X is pseudo-arithmetically hyperbolic over k.
(5) The projective variety X is pseudo-groupless over k.
(6) The projective variety X is pseudo-algebraically hyperbolic over k.
(7) The projective variety X is pseudo-bounded over k.
(8) The projective variety X is pseudo-1-bounded over k.
(9) The projective variety X is pseudo-geometrically hyperbolic over k.

(10) The projective variety X is of general type over k.

Conjecture 12.1 is the final version of the Lang–Vojta conjecture for
pseudo-hyperbolic varieties, and also encompasses Green–Griffiths’s conjec-
ture for projective varieties of general type. We note that one aspect of the
Lang–Vojta conjecture and the Green–Griffiths conjecture that is ignored
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in this conjecture is whether the conjugate of a Brody hyperbolic variety is
Brody hyperbolic (see Conjectures 3.10 and 8.9).

The following implications are known. First, (6) =⇒ (7), (7) =⇒ (8),
(8) =⇒ (9), and (9) =⇒ (5). Also, (3) =⇒ (4), (3) =⇒ (5). Finally,
(2) =⇒ (1) and (1) =⇒ (5). The following diagram summarizes these
known implications. The content of the Strong Lang–Vojta conjecture is that
all the notions appearing in this diagram are equivalent.

pseudo-
algebraically
hyperbolic

=⇒ pseudo-bounded =⇒ pseudo-1-bounded =⇒ pseudo-
geometrically
hyperbolic

=⇒

pseudo-Mordellic =⇒ pseudo-
arithmetically
hyperbolic

=⇒ pseudo-groupless

=
⇒

strongly-pseudo-
Kobayashi
hyperbolic

=⇒ stongly-pseudo-
Brody hyperbolic

We stress that the Strong Lang–Vojta conjecture is concerned with
classifying projective varieties of general type via their complex-analytic or
arithmetic properties. Recall that Campana’s special varieties can be consid-
ered as being opposite to varieties of general type. As Campana’s conjectures
are concerned with characterizing special varieties via their complex-analytic
or arithmetic properties, his conjectures should be considered as providing
another part of the conjectural picture. We refer the reader to [16] for a
discussion of Campana’s conjectures.

The following conjecture is only concerned with hyperbolic varieties and
is, therefore, a priori weaker than the Strong Lang-Vojta conjecture. It is
not clear to us whether the Strong Lang–Vojta conjecture can be deduced
from the following weaker version, as there are pseudo-hyperbolic projective
varieties which are not birational to a hyperbolic projective variety.

Conjecture 12.2 (Weak Lang–Vojta, IV). Let X be an integral projec-
tive variety over k. Then the following statements are equivalent.

(1) The variety X is strongly-Brody hyperbolic over k.
(2) The variety X is strongly-Kobayashi hyperbolic over k.
(3) The projective variety X is Mordellic over k.
(4) The projective variety X is arithmetically hyperbolic over k.
(5) The projective variety X is groupless over k.
(6) The projective variety X is algebraically hyperbolic over k.
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(7) The projective variety X is bounded over k.
(8) The projective variety X is 1-bounded over k.
(9) The projective variety X is geometrically hyperbolic over k.

(10) Every integral subvariety of X is of general type.

Remark 12.3 (Strong Implies Weak). Let us illustrate why the strong
Lang–Vojta conjecture implies the Weak Lang–Vojta conjecture. To do so,
let X be a projective variety. Assume that X is groupless. Then X is pseudo-
groupless. Thus, by the Strong Lang–Vojta conjecture, we have that X is
Mordellic modulo some proper closed subset Δ ⊂ X. Now, since X is
groupless, it follows that Δ is groupless. Repeating the above argument shows
that Δ is Mordellic, so that X is Mordellic.

We know more about the Weak Lang–Vojta conjecture than we do about
the Strong Lang–Vojta conjecture. Indeed, it is known that (1) ⇐⇒ (2) by
Brody’s Lemma. Also, it is not hard to show that (2) =⇒ (5). Moreover,
we know that (3) =⇒ (4) and (4) =⇒ (5). Of course, we also have that
(6) =⇒ (7), (7) =⇒ (8), and (8) ⇐⇒ (9). In addition, we also have
that (1) =⇒ (6) and that (10) =⇒ (5). Figure 1 summarizes these known
implications.

Figure 2 below illustrates a projective variety which satisfies the Weak
Lang–Vojta conjecture. The picture shows that this variety has infinitely
many points valued in a number field (in orange), admits an entire curve
(in blue), admits algebraic maps of increasing degree from some fixed curve
(in red), and admits a non-constant map from an abelian variety (in green). It
is therefore a non-Mordellic, non-Brody hyperbolic, non-bounded, and non-
groupless projective variety.

12.1 The Conjecture on Exceptional Loci

We now define the exceptional loci for every notion that we have seen so far.
As usual, we let k be an algebraically closed field of characteristic zero.

Definition 12.4. Let X be a variety over k.

• We define Δgr
X to be the intersection of all proper closed subset Δ such that

X is groupless modulo Δ. Note that Δgr
X is a closed subset of X and that

X is groupless modulo Δgr
X . We refer to Δgr

X as the groupless-exceptional
locus of X.

• We define Δar−hyp
X to be the intersection of all proper closed subsets

Δ such that X is arithmetically hyperbolic modulo Δ. Note that X is
arithmetically hyperbolic modulo Δar−hyp

X . We refer to Δar−hyp
X as the

arithmetic-exceptional locus of X.
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fixed curve

complex plane abelian variety

maps of increasing degree

infinitely many points
over a number field

holomorphic map

Fig. 1 A projective variety satisfying the Weak Lang-Vojta conjecture

Kobayashi
hyperbolic ⇐⇒ Brody

hyperbolic=⇒

algebraically
hyperbolic =⇒ bounded ⇐⇒ 1-bounded =⇒ geometrically

hyperbolic=⇒

Mordellic =⇒ arithmetically
hyperbolic =⇒ groupless

Fig. 2 Known implications between notions of hyperbolicity
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• We define ΔMor
X to be the intersection of all proper closed subsets Δ such

that X is Mordellic modulo Δ. Note that X is Mordellic modulo ΔMor
X .

We refer to ΔMor
X as the Mordellic-exceptional locus of X.

Assuming X is a proper variety over k for a moment, it seems worthwhile
stressing that Δgr

X equals the (Zariski) closure of Lang’s algebraic exceptional
set Excalg(X) as defined in [62, p. 160].

Definition 12.5. Let X be a variety over C.

• We let ΔBr
X be the intersection of all closed subsets Δ such that X is Brody

hyperbolic modulo Δ. Note that ΔBr
X is a closed subset of X and that X is

Brody hyperbolic modulo ΔBr
X . We refer to ΔBr

X as the Brody-exceptional
locus of X.

• We let ΔKob
X be the intersection of all closed subsets Δ such that X is

Kobayashi hyperbolic modulo Δ. Note that ΔKob
X is a closed subset of X

and that X is Kobayashi hyperbolic modulo ΔKob
X . We refer to ΔKob

X as
the Kobayashi-exceptional locus of X.

We note that ΔBr
X coincides with Lang’s analytic exceptional set Exc(X)

(defined in [62, p. 160]). Indeed, Exc(X) is defined to be the Zariski closure
of the union of all images of non-constant entire curves C → Xan.

Definition 12.6. Let X be a projective scheme over k.

• We define Δalg−hyp
X to be the intersection of all proper closed subsets Δ

such that X is algebraically hyperbolic modulo Δ. Note that Δalg−hyp
X is a

proper closed subset of X and that X is algebraically hyperbolic modulo
Δalg−hyp

X . We refer to Δalg−hyp
X as the algebraic exceptional locus of X.

• For n ≥ 1, we define Δn−bounded
X to be the intersection of all proper closed

subsets Δ such that X is n-bounded modulo Δ. Note that Δn−bounded
X is

a proper closed subset of X and that X is n-bounded modulo Δn−bounded
X .

We refer to Δn−bounded
X as the n-bounded-exceptional locus of X.

• We define Δbounded
X to be the intersection of all proper closed subsets Δ

such that X is bounded modulo Δ. Note that Δbounded
X is a proper closed

subset of X and that X is bounded modulo Δbounded
X . We refer to Δbounded

X

as the bounded-exceptional locus of X.
• We define Δgeom−hyp

X to be the intersection of all proper closed subsets Δ

such that X is geometrically hyperbolic modulo Δ. Note that Δgeom−hyp
X

is a proper closed subset of X and that X is geometrically hyperbolic
modulo Δgeom−hyp

X . We refer to Δgeom−hyp
X as the geometric-exceptional

locus of X.

The strongest version of Lang–Vojta’s conjecture stated in these notes
claims the equality of all exceptional loci. Note that these loci are all, by
definition, closed subsets. This is to be contrasted with Lang’s definition of
his “algebraic exceptional set” (see [62, p. 160]).
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Conjecture 12.7 (Strongest Lang–Vojta Conjecture). Let k be an
algebraically closed field of characteristic zero. Let X be an integral projective
variety over k. Then the following three statements hold.

(1) We have that

Δgr
X = ΔMor

X = Δgeom−hyp
X = Δ1−bounded

X = Δbounded
X = Δalg−hyp

X .

(2) The projective variety X is of general type if and only if Δgr
X �= X.

(3) If k = C, then Δgr
X = ΔBr

X = ΔKob
X .

Remark 12.8 (Which Inclusions Do We Know?). Let X be a projec-
tive scheme over k. We have that

Δgr
X ⊂ Δar−hyp

X ⊂ ΔMor
X ,

and

Δgr
X ⊂ Δgeom−hyp

X ⊂ Δ1−bounded
X ⊂ Δbounded

X ⊂ Δalg−hyp
X .

If k is uncountable, then

Δ1−bounded
X = Δbounded

X .

If k = C, then

Δgr
X ⊂ ΔBr

X ⊂ ΔKob
X .

Remark 12.9 (Reformulating Brody’s Lemma). It is not known
whether ΔKob

X ⊂ ΔBr
X . Brody’s lemma can be stated as saying that, if

ΔBr
X is empty, then ΔKob

X is empty.

Remark 12.10 (Reformulating Demailly’s Theorem). It is not known

whether Δalg−hyp
X ⊂ ΔKob

X . Demailly’s theorem (Theorem 9.4) can be stated
as saying that, if ΔKob is empty, then Δalg−hyp is empty.

13 Closed Subvarieties of Abelian Varieties

We have gradually worked our way towards the following theorem which says
that the Strongest Lang–Vojta conjecture holds for closed subvarieties of
abelian varieties. Recall that, for X a closed subvariety of an abelian variety
A, the subset Sp(X) is defined to be the union of translates of positive-
dimensional abelian subvarieties of A contained in A. It is a fundamental



The Lang–Vojta Conjectures on Projective Pseudo-Hyperbolic Varieties 175

fact that Sp(X) is a closed subset of X. It turns out that Sp(X) is the
“exceptional locus” of X in any sense of the word “exceptional locus”.

Theorem 13.1 (Bloch–Ochiai–Kawamata, Faltings, Yamanoi,
Kawamata–Ueno). Let A be an abelian variety over k, and let X ⊂ A be
a closed subvariety. Then the following statements hold.

(1) We have that Sp(X) �= X of X equals if and only if X is of general type.
(2) We have that

Sp(X) = Δgr
X = ΔMor

X = Δar−hyp
X = Δgeom−hyp

X = Δ1−bounded
X

= Δbounded
X = Δalg−hyp

X .

(3) If k = C, then Δgr
X = ΔBr

X = ΔKob
X .

Proof. The fact that Sp(X) �= X if and only if X is of general type is due to
Kawamata–Ueno (see also Theorem 5.1). Moreover, an elementary argument
(see Example 6.11) shows that X is groupless modulo Sp(X), so that Δgr

X ⊂
Sp(X). On the other hand, it is clear from the definition that Sp(X) ⊂ Δgr

X .
This shows that Sp(X) = Δgr

X .
By Faltings’s theorem (Theorem 7.15), we have thatX is Mordellic modulo

Sp(X). This shows that ΔMor
X = Δar−hyp

X = Δgr
X = Sp(X). (One can also

show that Δar−hyp
X = ΔMor

X without appealing to Faltings’s theorem. Indeed,
as X is a closed subvariety of an abelian variety, it follows from Corollary 7.33
that X is arithmetically hyperbolic modulo Δ if and only if X is Mordellic
modulo Δ.)

It follows from Bloch–Ochiai–Kawamata’s theorem that ΔBr
X = Sp(X).

Yamanoi improved this result and showed that ΔKob
X = Sp(X); see The-

orem 8.6 (or the original [88, Theorem 1.2]). In his earlier work [87,

Corollary 1.(3)], Yamanoi proved that Δalg−hyp
X = Sp(X). Since

Δgeom−hyp
X ⊂ Δ1−bounded

X ⊂ Δbounded
X ⊂ Δalg−hyp

X ,

this concludes the proof. �	

14 Evidence for Lang–Vojta’s Conjecture

In the previous sections, we defined every notion appearing in Lang–Vojta’s
conjecture, and we stated the “Strongest”, “Stronger”, and “Weakest” ver-
sions of Lang–Vojta’s conjectures. We also indicated the known implications
between these notions, and that the Strongest Lang–Vojta conjecture is
known to hold for closed subvarieties of abelian varieties by work of Bloch–
Ochiai–Kawamata, Faltings, Kawamata–Ueno, and Yamanoi.
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In the following four sections, we will present some evidence for Lang–
Vojta’s conjectures. The results in the following sections are all in accordance
with the Lang–Vojta conjectures.

15 Dominant Rational Self-maps of
Pseudo-Hyperbolic Varieties

Let us start with a classical finiteness result of Matsumura [45, §11].

Theorem 15.1 (Matsumura). If X is a proper integral variety of general
type over k, then the set of dominant rational self-maps X ��� X is finite.

Note that Matsumura’s theorem is a vast generalization of the statement
that a smooth curve of genus at least two has only finitely many automor-
phisms. Motivated by Lang–Vojta’s conjecture, the arithmetic analogue of
Matsumura’s theorem is proven in [56] (building on the results in [49]) and
can be stated as follows.

Theorem 15.2. If X is a proper pseudo-Mordellic integral variety over k,
then the set of rational dominant self-maps X ��� X is finite.

Idea of Proof. We briefly indicate three ingredients of the proof of Theo-
rem 15.2.

(1) First, one can use Amerik’s theorem on dynamical systems [5] to show
that every dominant rational self-map is a birational self-map of finite
order whenever X is a pseudo-Mordellic projective variety.

(2) One can show that, if X is a projective integral variety over k such that
Autk(X) is infinite, then Autk(X) has an element of infinite order. (It is
crucial here that k is of characteristic zero.) This result is proven in [49].

(3) IfX is a projective non-uniruled integral variety over k such that Birk(X)
is infinite, then Birk(X) has a point of infinite order. To prove this, one
can use Prokhorov–Shramov’s notion of quasi-minimal models (see [79])
to reduce to the analogous finiteness result for automorphisms stated in
(2). The details are in [56].

Combining (1) and (3), one obtains the desired result for pseudo-Mordellic
projective varieties (Theorem 15.2). �	

There is a similar finiteness statement for pseudo-algebraically hyperbolic
varieties. This finiteness result is proven in [50] for algebraically hyperbolic
varieties, and in [56] for pseudo-algebraically hyperbolic varieties.

Theorem 15.3. If X is a projective pseudo-algebraically hyperbolic integral
variety over k, then the set of dominant rational self-maps X ��� X is finite.

In fact, more generally, we have the following a priori stronger result.
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Theorem 15.4. If X is a projective pseudo-1-bounded integral variety over
k, then the set of dominant rational self-maps X ��� X is finite.

Proof. For 1-bounded varieties this is proven in [50]. The more general
statement for pseudo-1-bounded varieties is proven in [56] by combining
Amerik’s theorem [5] and Prokhorov–Shramov’s theory of quasi-minimal
models [79] with Weil’s Regularization Theorem and properties of dynamical
degrees of rational dominant self-maps. �	

As the reader may have noticed, for pseudo-Mordellic, pseudo-algebraically
hyperbolic, and pseudo-1-bounded projective varieties we have satisfying
results.

What do we know in the complex-analytic setting? We have the following
result of Noguchi [59, Theorem 5.4.4] for Brody hyperbolic varieties.

Theorem 15.5 (Noguchi). If X is a Brody hyperbolic projective integral
variety over C, then BirC(X) is finite.

First Proof of Theorem 15.5. Since a Brody hyperbolic projective integral
variety over C is bounded by, for instance, Demailly’s theorem (Theorem 9.4),
this follows from Theorem 15.4. �	
Second Proof of Theorem 15.5. Let Y → X be a resolution of singularities
of X. Note that, every birational morphism X ��� X induces a dominant
rational map Y ��� X. Since X has no rational curves (as X is Brody
hyperbolic) and Y is smooth, by [50, Lemma 3.5], the rational map Y ��� X
extends uniquely to a surjective morphism Y → X.

Therefore, we have that

BirC(X) ⊂ SurC(Y,X)

Noguchi proved that the latter set is finite (see Theorem 16.1 below). He does
so by showing that it is the set of C-points on a finite type zero-dimensional
scheme over C. We discuss this result of Noguchi in more detail in the next
section. �	

It is important to note that, in light of Green–Griffiths’ and Lang–Vojta’s
conjectures, one expects an analogous finiteness result for pseudo-Brody
hyperbolic varieties (as pseudo-Brody hyperbolic varieties should be of
general type). This is, however, not known, and we state it as a separate
conjecture.

Conjecture 15.6 (Pseudo-Noguchi, I). If X is a pseudo-Brody hyper-
bolic projective integral variety over C, then BirC(X) is finite.

Remark 15.7 (What Do We Not Know Yet?). First, it is not known
whether the automorphism group of a groupless projective variety is finite.
Also, it is not known whether a pseudo-Kobayashi hyperbolic projective
variety has a finite automorphism group. Moreover, it is not known whether
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a geometric hyperbolic projective variety has only finitely many automor-
phisms. As these problems are unresolved, the finiteness of the set of
birational self-maps is also still open.

16 Finiteness of Moduli Spaces of Surjective
Morphisms

Our starting point in this section is the following finiteness theorem of
Noguchi for dominant rational maps from a fixed variety to a hyperbolic
variety (formerly a conjecture of Lang); see [59, §6.6] for a discussion of the
history of this result.

Theorem 16.1 (Noguchi). If X is a Brody hyperbolic proper variety over
C and Y is a projective integral variety over C, then the set of dominant
rational maps f : Y ��� X is finite.

In light of Lang–Vojta’s conjecture, any “hyperbolic” variety should satisfy
a similar finiteness property. In particular, one should expect similar (hence
more general) results for bounded varieties, and such results are obtained in
[50] over arbitrary algebraically closed fields k of characteristic zero.

Theorem 16.2. If X is a 1-bounded projective variety over k and Y is a
projective integral variety over k, then the set of dominant rational maps
f : Y ��� X is finite.

In particular, the same finiteness statement holds for bounded varieties
and algebraically hyperbolic varieties. Indeed, such varieties are (obviously)
1-bounded.

Corollary 16.3. If X is a bounded projective variety over k (e.g., alge-
braically hyperbolic variety over k) and Y is a projective integral variety over
k, then the set of dominant rational maps f : Y ��� X is finite.

We now make a “pseudo”-turn. In fact, the finiteness result of Noguchi
should actually hold under the weaker assumption that X is only pseudo-
Brody hyperbolic. To explain this, recall that Kobayashi–Ochiai proved a
finiteness theorem for dominant rational maps from a given variety Y to
a fixed variety of general type X which generalizes Matsumura’s finiteness
theorem for the group Birk(X) (Theorem 15.1).

Theorem 16.4 (Kobayashi–Ochiai). Let X be a projective variety over
k of general type. Then, for every projective integral variety Y , the set of
dominant rational maps f : Y ��� X is finite.

In light of Lang–Vojta’s conjectures and Kobayashi–Ochiai’s theorem, any
“pseudo-hyperbolic” variety should satisfy a similar finiteness property. For
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example, Lang–Vojta’s conjecture predicts a similar finiteness statement for
pseudo-Brody hyperbolic projective varieties. We state this as a conjecture.
Note that this conjecture is the “pseudo”-version of Noguchi’s theorem
(Theorem 16.1), and clearly implies Conjecture 15.6.

Conjecture 16.5 (Pseudo-Noguchi, II). If X is a pseudo-Brody hyper-
bolic proper variety over C and Y is a projective integral variety over C, then
the set of dominant rational maps f : Y ��� X is finite.

Now, as any “pseudo-hyperbolic” variety is pseudo-groupless, it is natural
to first try and see what one can say about pseudo-groupless varieties. For
simplicity, we will focus on surjective morphisms (as opposed to dominant
rational maps) in the rest of this section.

There is a standard approach to establishing the finiteness of the set of
surjective morphisms from one projective scheme to another. To explain
this, let us recall some notation from Section 10. Namely, if X and Y are
projective schemes over k, we let Homk(Y,X) be the scheme parametrizing
morphisms X → Y . Note that Homk(Y,X) is a countable disjoint union of
quasi-projective schemes over k. Moreover, we let Surk(Y,X) be the scheme
parametrizing surjective morphisms Y → X, and note that Surk(Y,X) is a
closed subscheme of Homk(Y,X).

The standard approach to establishing the finiteness of the set Surk(Y,X)
is to interpret it as the set of k-points on the scheme Surk(Y,X). This
makes it tangible to techniques from deformation theory. Indeed, to show that
Surk(Y,X) is finite, it suffices to establish the following two statements:

(1) The tangent space to each point of Surk(Y,X) is trivial;
(2) The scheme Surk(Y,X) has only finitely many connected components.

It is common to refer to the first statement as a rigidity statement, as
it boils down to showing that the objects parametrized by Surk(Y,X) are
infinitesimally rigid. Also, it is standard to refer to the second statement as
being a boundedness property. For example, if Y and X are curves and X is
of genus at least two, the finiteness of Surk(Y,X) is proven precisely in this
manner; see [70, §II.8]. We refer the reader to [60] for a further discussion
of the rigidity/boundedness approach to proving finiteness results for other
moduli spaces.

We now focus on the rigidity of surjective morphisms Y → X. The
following rigidity theorem for pseudo-groupless varieties will prove to be
extremely useful. This result is a consequence of a much more general
statement about the deformation space of a surjective morphism due to
Hwang–Kebekus–Peternell [44].

Theorem 16.6 (Hwang–Kebekus–Peternell + ε). If Y is a projective
normal variety over k and X is a pseudo-groupless projective variety over k,
then the scheme Surk(Y,X) is a countable disjoint union of zero-dimensional
smooth projective schemes over k.



180 A. Javanpeykar

Proof. As is shown in [56], this is a consequence of Hwang–Kebekus–
Peternell’s result on the infinitesimal deformations of a surjective morphism
Y → X. Indeed, since X is non-uniruled (Remark 6.7), for every such
surjective morphism f : Y → X, there is a finite morphism Z → X and a
morphism Y → Z such that f is the composed map Y → Z → X. Moreover,
the identity component Aut0Z/k of the automorphism group scheme surjects
onto the connected component of f in Homk(Y,X). Since X is pseudo-
groupless, the same holds for Z. It is then not hard to verify that Aut0Z/k is
trivial, so that the connected component of f in Homk(Y,X) is trivial. �	
Remark 16.7. There are projective varieties X which are not pseudo-
groupless over k, but for which the conclusion of the theorem above still
holds. For example, a K3 surface or the blow-up of a simple abelian surface
A in its origin. This means that the rigidity of surjective morphisms follows
from properties strictly weaker than pseudo-hyperbolicity. We refer to [56]
for a more general statement concerning rigidity of surjective morphisms.

When introducing the notions appearing in Lang–Vojta’s conjecture,
we made sure to emphasize that every one of these is pseudo-groupless.
Thus, roughly speaking, any property we prove for pseudo-groupless varieties
holds for all pseudo-hyperbolic varieties. This gives us the following rigidity
statement.

Corollary 16.8 (Rigidity for Pseudo-Hyperbolic Varieties). Let X be
a projective integral variety over k and let Y be a projective normal variety
over k. Assume that one of the following statements holds.

(1) The variety X is pseudo-groupless over k.
(2) The variety X is pseudo-Mordellic over k.
(3) The projective variety X is pseudo-algebraically hyperbolic over k.
(4) The projective variety X is pseudo-1-bounded over k.
(5) The projective variety X is pseudo-bounded over k.
(6) The variety X is pseudo-geometrically hyperbolic over k.
(7) The field k equals C and X is pseudo-Brody hyperbolic.

Then the scheme Surk(Y,X) is a countable disjoint union of zero-dimensional
smooth projective schemes over k.

Proof. Assume that either (1)–(6) or (7) holds. Then X is pseudo-groupless
(as explained throughout these notes), so that the result follows from
Theorem 16.6. �	

Proving the finiteness of Surk(Y,X) or, equivalently, the boundedness of
Surk(Y,X), for X pseudo-groupless or pseudo-Mordellic seems to be out of
reach currently. However, for pseudo-algebraically hyperbolic varieties the
desired finiteness property is proven in [56] and reads as follows.
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Theorem 16.9. If X is a pseudo-algebraically hyperbolic projective variety
over k and Y is a projective integral variety over k, then the set of surjective
morphisms f : Y → X is finite.

A similar result can be obtained for pseudo-bounded varieties. The precise
result can be stated as follows.

Theorem 16.10. If X is a pseudo-bounded projective variety over k and Y
is a projective integral variety over k, then the set of surjective morphisms
f : Y → X is finite.

To prove the analogous finiteness property for pseudo-1-bounded varieties,
we require (as in the previous section) an additional uncountability assump-
tion on the base field.

Theorem 16.11. Assume k is uncountable. If X is a pseudo-1-bounded
projective variety over k and Y is a projective integral variety over k, then
the set of surjective morphisms f : Y → X is finite.

We conclude with the following finiteness result for pseudo-algebraically
hyperbolic varieties. It is proven in [56] using (essentially) the results in
this section and the fact that pseudo-algebraically hyperbolic varieties are
pseudo-geometrically hyperbolic.

Theorem 16.12. If X is algebraically hyperbolic modulo Δ over k, then for
every connected reduced projective variety Y over k, every non-empty closed
reduced subset B ⊂ Y , and every reduced closed subset A ⊂ X not contained
in Δ, the set of morphisms f : Y → X with f(B) = A is finite.

Note that Theorem 16.12 can be applied with B a point or B = Y . This
shows that the statement generalizes the finiteness result of this section.

17 Hyperbolicity Along Field Extensions

In this section we study how different notions of pseudo-hyperbolicity
appearing in Lang–Vojta’s conjectures (except for those that only make sense
over C a priori) behave under field extensions. In other words, we study how
the exceptional locus for each notion of hyperbolicity introduced in Section 12
behaves under field extensions.

Let us start with X a variety of general type over a field k, and let k ⊂ L
be a field extension. It is natural to wonder whether XL is also of general
type over L. A simple argument comparing the spaces of global sections of
ωX/k and ωXL/L shows that this is indeed the case. This observation is our
starting point in this section. Indeed, the mere fact that varieties of general
type remain varieties of general type after a field extension can be paired
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with the Strong Lang–Vojta conjecture to see that similar statements should
hold for pseudo-groupless varieties, pseudo-Mordellic varieties, and so on.

The first three results we state in this section say that this “base-change”
property can be proven in some cases. For proofs we refer to [15, 50, 56].

Theorem 17.1. Let k ⊂ L be an extension of algebraically closed fields of
characteristic zero. Let X be a projective scheme over k and let Δ be a closed
subset of X. Then the following statements hold.

(1) If X is of general type over k, then XL is of general type over L.
(2) If X is groupless modulo Δ, then XL is groupless modulo ΔL.
(3) If X is algebraically hyperbolic modulo Δ, then XL is algebraically

hyperbolic modulo ΔL.
(4) If X is bounded modulo Δ, then XL is bounded modulo ΔL.

In this theorem we are missing (among others) the notions of 1-
boundedness and geometric hyperbolicity. In this direction we have the
following result; see [15, 46].

Theorem 17.2. Let k ⊂ L be an extension of uncountable algebraically
closed fields of characteristic zero. Let X be a projective scheme over k and
let Δ be a closed subset of X. Then the following statements hold.

(1) If X is 1-bounded modulo Δ, then XL is bounded modulo ΔL.
(2) If X is geometrically hyperbolic modulo Δ, then XL is geometrically

hyperbolic modulo ΔL.

If Δ = ∅, then we do not need to impose uncountability.

Theorem 17.3. Let k ⊂ L be an extension of algebraically closed fields of
characteristic zero. Let X be a projective scheme over k and let Δ be a closed
subset of X. Then the following statements hold.

(1) If X is 1-bounded, then XL is bounded.
(2) If X is geometrically hyperbolic, then XL is geometrically hyperbolic.

The reader will have noticed the absence of the notion of Mordellicity and
arithmetic hyperbolicity above. The question of whether an arithmetically
hyperbolic variety over Q remains arithmetically hyperbolic over a larger
field is not an easy one in general, as should be clear from the following
remark.

Remark 17.4 (Persistence of Arithmetic Hyperbolicity). Let
f1, . . . , fr ∈ Z[x1, . . . , xn] be polynomials, and let X := Z(f1, . . . , fr) =
Spec(Q[x1, . . . , xn]/(f1, . . . , fr) ⊂ An

Q
be the associated affine variety over

Q. To say that X is arithmetically hyperbolic over Q is to say that, for
every number field K and every finite set of finite places S of K, the set of
a = (a1, . . . , an) ∈ On

K,S with f1(a) = . . . = fr(a) = 0 is finite. On the other
hand, to say that XC is arithmetically hyperbolic over C is to say that, for
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every Z-finitely generated subring A ⊂ C, the set of a = (a1, . . . , an) ∈ An

with f1(a) = . . . = fr(a) = 0 is finite.

Despite the apparent difference between being arithmetically hyperbolic
over Q and being arithmetically hyperbolic over C, it seems reasonable to
suspect their equivalence. For X a projective variety, the following conjecture
is a consequence of the Weak Lang–Vojta conjecture for X. However, as it
also seems reasonable in the non-projective case, we state it in this more
generality.

Conjecture 17.5 (Persistence Conjecture). Let k ⊂ L be an extension
of algebraically closed fields of characteristic zero. Let X be a variety over k
and let Δ be a closed subset of X. If X is arithmetically hyperbolic modulo
Δ over k, then XL is arithmetically hyperbolic modulo ΔL over L.

Note that we will focus throughout on arithmetic hyperbolicity (as
opposed to Mordellicity) as its persistence along field extensions is easier
to study. The reader may recall that the difference between Mordellicity and
arithmetic hyperbolicity disappears for many varieties (e.g., affine varieties);
see Section 7.3 for a discussion.

This conjecture is investigated in [15, 46, 49, 52]. As a basic example, the
reader may note that Faltings proved that a smooth projective connected
curve of genus at least two over Q is arithmetically hyperbolic over Q in [32].
He then later explained in [33] that Grauert–Manin’s function field version
of the Mordell conjecture can be used to prove that a smooth projective
connected curve of genus at least two over k is arithmetically hyperbolic
over k.

In the rest of this section, we will present some results on the Persistence
Conjecture. We start with the following result.

Theorem 17.6. Let k ⊂ L be an extension of algebraically closed fields
of characteristic zero. Let X be an arithmetically hyperbolic variety over k
such that XL is geometrically hyperbolic over L. Then XL is arithmetically
hyperbolic over L.

Note that Theorem 17.6 implies that the Persistence Conjecture holds for
varieties over k which are geometrically hyperbolic over any field extension
of L.

Theorem 17.6 is inspired by Martin-Deschamps’s proof of the arithmetic
Shafarevich conjecture over finitely generated fields (see also Remark 7.34).
Indeed, in Szpiro’s seminar [82], Martin-Deschamps gave a proof of the
arithmetic Shafarevich conjecture by using a specialization argument on
the moduli stack of principally polarized abelian schemes; see [68]. This
specialization argument resides on Faltings’s theorem that the moduli space
of principally polarized abelian varieties of fixed dimension over C is
geometrically hyperbolic over C. We note that Theorem 17.6 is essentially
implicit in her line of reasoning.
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We will present applications of Theorem 17.6 to the Persistence Conjecture
based on the results obtained in [49, 52]. However, before we give these appli-
cations, we mention the following result which implies that the Persistence
Conjecture holds for normal projective surfaces with non-zero irregularity
h1(X,OX).

Theorem 17.7. Let X be a projective surface over k which admits a non-
constant morphism to some abelian variety over k. Then X is arithmetically
hyperbolic over k if and only if XL is arithmetically hyperbolic over L.

The proofs of Theorems 17.6 and 17.7 differ tremendously in spirit. In fact,
we cannot prove Theorem 17.7 by appealing to the geometric hyperbolicity
of X (as it is currently not known whether an arithmetically hyperbolic
projective surface which admits a non-constant map to an abelian variety
is geometrically hyperbolic). Instead, Theorem 17.7 is proven by appealing
to the “mild boundedness” of abelian varieties; see [15]. More explicitly: in
the proof of Theorem 17.7, we use that, for every smooth connected curve C
over k, there exists an integer n > 0 and points c1, . . . , cn in C(k) such that,
for every abelian variety A over k and every a1, . . . , an in A(k), the set

Homk((C, c1, . . . , cn), (A, a1, . . . , an))

is finite. This finiteness property for abelian varieties can be combined with
the arithmetic hyperbolicity of the surface X in Theorem 17.7 to show that
the surface X is mildly bounded. The property of being mildly bounded is
clearly much weaker than being geometrically hyperbolic, but it turns out
to be enough to show the Persistence Conjecture; see [49, §4.1]. Note that
it is a bit surprising that abelian varieties (as they are very far from being
hyperbolic) satisfy some “mild” version of geometric hyperbolicity. We refer
the reader to [49, §4] for the definition of what this notion entails, and to
[15] for the fact that abelian varieties are mildly bounded.

We now focus as promised on the applications of Theorem 17.6. Our first
application says that the Persistence Conjecture holds for all algebraically
hyperbolic projective varieties.

Theorem 17.8. Let X be a projective algebraically hyperbolic variety over k.
Then X is arithmetically hyperbolic over k if and only if, for every alge-
braically closed field L containing k, the variety XL is arithmetically
hyperbolic over L.

Proof. Since X is algebraically hyperbolic over k, it follows from (3) in
Theorem 17.1 that XL is algebraically hyperbolic over L. Since algebraically
hyperbolic projective varieties are 1-bounded and thus geometrically hyper-
bolic (Corollary 11.5), the result follows from Theorem 17.6. �	
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Our second application involves integral points on the moduli space of
smooth hypersurfaces. We present the results obtained in [52] in the following
section.

17.1 The Shafarevich Conjecture for Smooth
Hypersurfaces

We explain in this section how Theorem 17.6 can be used to show the
following finiteness theorem. This explanation will naturally lead us to
studying integral points on moduli spaces.

Theorem 17.9. Let d ≥ 3 and n ≥ 2 be integers. Assume that, for every
number field K and every finite set of finite places S of K, the set of
OK,S-isomorphism classes of smooth hypersurfaces of degree d in Pn+1

OK,S
is

finite. Then, for every Z-finitely generated normal integral domain A of
characteristic zero, the set of A-isomorphism classes of smooth hypersurfaces
of degree d in Pn+1

A is finite.

To prove Theorem 17.9, we (i) reformulate its statement in terms of
the arithmetic hyperbolicity of an appropriate moduli space of smooth
hypersurfaces, (ii) establish the geometric hyperbolicity of this moduli space,
and (iii) apply Theorem 17.6. Indeed, the assumption in Theorem 17.9 can
be formulated as saying that the (appropriate) moduli space of hypersurfaces
is arithmetically hyperbolic over Q and the conclusion of our theorem is then
that this moduli space is also arithmetically hyperbolic over larger fields.
To make these statements more precise, let Hilbd,n be the Hilbert scheme
of smooth hypersurfaces of degree d in Pn+1. Note that Hilbd,n is a smooth
affine scheme over Z. There is a natural action of the automorphism group
scheme PGLn+2 of Pn+1

Z
on Hilbd,n. Indeed, given a smooth hypersurface H

in Pn+1 and an automorphism σ of Pn+1, the resulting hypersurface σ(H) is
again smooth.

The quotient of a smooth affine scheme over Z by a reductive group (such
as PGLn+2) is an affine scheme of finite type over Z by Mumford’s GIT.
However, for the study of hyperbolicity and integral points, this quotient
scheme is not very helpful, as the action of PGLn+2 on Hilbd,n is not free.
The natural solution it to consider the stacky quotient, as in [13, 14, 47].
However, one may avoid the use of stacks by adding level structure as in
[48]. Indeed, by [48], there exists a smooth affine variety H ′ over Q with a
free action by PGLn+2,Q, and a finite étale PGLn+2,Q-equivariant morphism
H ′ → Hilbd,n,Q. Let Ud;n := PGLn+2,Q\H ′ be the smooth affine quotient
scheme over Q. To prove Theorem 17.9, we establish the following result.

Theorem 17.10. Let d ≥ 3 and n ≥ 2 be integers. Assume that Ud;n,Q is

arithmetically hyperbolic over Q. Then, for every algebraically closed field k
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of characteristic zero, the affine variety Ud;n,k is arithmetically hyperbolic
over k.

Proof. Let us write U := Ud;n,Q. The proof relies on a bit of Hodge theory.
Indeed, we use Deligne’s finiteness theorem for monodromy representations
[28], the infinitesimal Torelli property for smooth hypersurfaces [35], and
the Theorem of the Fixed Part in Hodge theory [80] to show that Uk is
geometrically hyperbolic over k. Then, as Uk is geometrically hyperbolic over
k, the result follows from Theorem 17.6. �	

We now explain how to deduce Theorem 17.9 from Theorem 17.10.

Proof of Theorem 17.9. Write U := Ud;n,Q. First, the assumption in The-
orem 17.9 can be used to show that U is arithmetically hyperbolic over
Q. Then, since U is arithmetically hyperbolic over Q, it follows from
Theorem 17.10 that Uk is arithmetically hyperbolic for every algebraically
closed field k of characteristic zero. Finally, to conclude the proof, let us
recall that arithmetic hyperbolicity descends along finite étale morphisms of
varieties (Remark 3.5). In [53], the analogous descent statement is proven
for finite étale morphisms of algebraic stacks, after extending the notion
of arithmetic hyperbolicity from schemes to stacks. Thus, by applying this
“stacky” Chevalley–Weil theorem to the finite étale morphism Ud;n,k →
[PGLn+2,k\Hilbd,n,k] of stacks, where [PGLn+2,k\Hilbd,n,k] denotes the quo-
tient stack, we obtain that the stack [PGLn+2,k\Hilbd,n,k] is arithmetically
hyperbolic over k. Finally, the moduli-interpretation of the points of this
quotient stack can be used to see that, for every Z-finitely generated normal
integral domain A of characteristic zero, the set of A-isomorphism classes
of smooth hypersurfaces of degree d in Pn+1

OK,S
is finite. This concludes the

proof. �	
Remark 17.11 (Period Domains). Theorem 17.10 actually follows from
a more general statement about varieties with a quasi-finite period map (e.g.,
Shimura varieties). Namely, in [52] it is shown that a complex algebraic
variety with a quasi-finite period map is geometrically hyperbolic. For other
results about period domains we refer the reader to the article of Bakker–
Tsimerman in this book [12].

18 Lang’s Question on Openness of Hyperbolicity

It is obvious that being hyperbolic is not stable under specialization. In fact,
being pseudo-groupless is not stable under specialization, as a smooth proper
curve of genus two can specialize to a tree of P1’s. Nonetheless, it seems
reasonable to suspect that being hyperbolic (resp. pseudo-hyperbolic) is in
fact stable under generization. The aim of this section is to investigate this
property for all notions of hyperbolicity discussed in these notes. In fact,
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on [62, p. 176] Lang says “I do not clearly understand the extent to which
hyperbolicity is open for the Zariski topology”. This brings us to the following
question of Lang and our starting point of this section.

Question 1 (Lang). Let S be a noetherian scheme over Q and let X → S
be a projective morphism. Is the set of s in S such that Xk(s) is groupless a
Zariski open subscheme of S?

Here we let k(s) denote the residue field of the point s, and we let
k(s) → k(s) be an algebraic closure of k(s). Note that one can ask similar
questions for the set of s in S such that Xk(s) is algebraically hyperbolic or
arithmetically hyperbolic, respectively.

Before we discuss what one may expect regarding Lang’s question, let us
recall what it means for a subset of a scheme to be a Zariski-countable open.

If (X, T ) is a noetherian topological space, then there exists another
topology T cnt, or T -countable, on X whose closed sets are the countable
union of T -closed sets. If S is a noetherian scheme, a subset Z ⊂ S is
a Zariski-countable closed if it is a countable union of closed subschemes
Z1, Z2, . . . ⊂ S.

Remark 18.1 (What to Expect? I). We will explain below that the locus
of s in S such that Xs is groupless is a Zariski-countable open of S, i.e.,
its complement is a countable union of closed subschemes. In fact, we will
show similar statements for algebraic hyperbolicity, boundedness, geometric
hyperbolicity, and the property of having only subvarieties of general type.
Although this provides some indication that the answer to Lang’s question
might be positive, it is not so clear whether one should expect a positive
answer to Lang’s question. However, it seems plausible that, assuming the
Strongest Lang–Vojta conjecture (Conjecture 12.1), one can use certain
Correlation Theorems (see Ascher–Turchet [8]) to show that the answer to
Lang’s question is positive.

One can also ask about the pseudofied version of Lang’s question.

Question 2 (Pseudo-Lang). Let S be a noetherian scheme over Q and let
X → S be a projective morphism. Is the set of s in S such that Xk(s) is
pseudo-groupless a Zariski open subscheme of S?

Again, one can ask similar questions for the set of s in S such that
Xk(s) is pseudo-algebraically hyperbolic or pseudo-arithmetically hyperbolic,
respectively.

Remark 18.2 (What to Expect? II). We will argue below that one
should expect (in light of the Strong Lang–Vojta conjecture) that the answer
to the Pseudo-Lang question is positive. This is because of a theorem of
Siu–Kawamata–Nakayama on invariance of plurigenera.

What do we know about the above questions (Questions 1 and 2)? The
strongest results we dispose of are due to Nakayama; see [74, Chapter VI.4].
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In fact, the following theorem can be deduced from Nakayama’s [74,
Theorem VI.4.3]. (Nakayama’s theorem is a generalization of theorems of
earlier theorems of Siu and Kawamata on invariance of plurigenera.)

Theorem 18.3 (Siu, Kawamata, Nakayama). Let S be a noetherian
scheme over Q and let X → S be a projective morphism of schemes. Then,
the set of s in S such that Xs is of general type is open in S.

Thus, by Theorem 18.3, assuming the Strong Lang–Vojta conjecture
(Conjecture 12.1), the answer to the Pseudo-Lang question should be positive.
Also, assuming the Strong Lang–Vojta conjecture, the set of s in S such that
Xk(s) is pseudo-algebraically hyperbolic should be open. Similar statements
should hold for pseudo-Mordellicity and pseudo-boundedness. Although
neither of these statements are known, some partial results are obtained in
[15, §9].

In fact, as a consequence of Nakayama’s theorem and the fact that the stack
of proper schemes of general type is a countable union of finitely presented
algebraic stacks, one can prove the following result.

Theorem 18.4 (Countable-Openness of Every Subvariety Being of
General Type). Let S be a noetherian scheme over Q and let X → S be a
projective morphism. Then, the set of s in S such that every integral closed
subvariety of Xs is of general type is Zariski-countable open in S.

The countable-openness of the locus of every subvariety being of general
type does not give a satisfying answer to Lang’s question. However, it does
suggest that every notion appearing in the Lang–Vojta conjecture should
be Zariski-countable open. This expectation can be shown to hold for some
notions of hyperbolicity. For example, given a projective morphism of schemes
X → S with S a complex algebraic variety, one can show that the locus of
s in S such that Xs is algebraically hyperbolic is an open subset of S in
the countable-Zariski topology; see [15, 29]. This result is essentially due to
Demailly.

Theorem 18.5. Let S be a noetherian scheme over Q and let X → S be
a projective morphism. Then, the set of s in S such that Xs is algebraically
hyperbolic is Zariski-countable open in S.

It is worth noting that this is not the exact result proven by Demailly, as it
brings us to a subtle difference between the Zariski-countable topology on a
varietyX over C and the induced topology onX(C). Indeed, Demailly proved
that, if k = C and Snot-ah is the set of s in S such that Xs is not algebraically
hyperbolic, then Snot-ah ∩ S(C) is closed in the countable topology on S(C).
This, strictly speaking, does not imply that Snot-ah is closed in the countable
topology on S. For example, if S is an integral curve over C and η is the
generic point of S, then {η} is not a Zariski-countable open of S, whereas
{η} ∩ S(C) = ∅ is a Zariski-countable open of S(C).
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In [15] similar results are obtained for boundedness and geometric
hyperbolicity. The precise statements read as follows.

Theorem 18.6 (Countable-Openness of Boundedness). Let S be a
noetherian scheme over Q and let X → S be a projective morphism. Then,
the set of s in S such that Xs is bounded is Zariski-countable open in S.

Theorem 18.7 (Countable-Openness of Geometric Hyperbolicity).
Let S be a noetherian scheme over Q and let X → S be a projective morphism.
Then, the set of s in S such that Xs is geometrically hyperbolic is Zariski-
countable open in S.

Remark 18.8 (What Goes into the Proofs of Theorems 18.5, 18.6,
and 18.7?). The main idea behind all these proofs is quite simple. Let
us consider Theorem 18.5. First, one shows that the set of s in S such
that Xs is not algebraically hyperbolic is the image of countably many
constructible subsets of S. This is essentially a consequence of the fact that
the Hom-scheme between two projective schemes is a countable union of
quasi-projective schemes. Then, it suffices to note that the set of s in S
with Xs algebraically hyperbolic is stable under generization. This relies on
compactness properties of the moduli stack of stable curves.

Concerning Lang’s question on the locus of groupless varieties, we note
that in [55] it is shown that the set of s in S such that Xs is groupless is
open in the Zariski-countable topology on S.

Theorem 18.9 (Countable-Openness of Grouplessness). Let S be a
noetherian scheme over Q and let X → S be a projective morphism. Then,
the set of s in S such that Xk(s) is groupless is Zariski-countable open in S.

We finish these notes with a discussion of the proof of Theorem 18.9.
It will naturally lead us to introducing a non-archimedean counterpart to
Lang–Vojta’s conjecture.

18.1 Non-archimedean Hyperbolicity
and Theorem 18.9

Let S be a noetherian scheme over Q and let X → S be a projective
morphism. Define Sn−gr to be the set of s in S such that Xk(s) is not

groupless. Our goal is to prove Theorem 18.9, i.e., to show that Sn−gr is
Zariski-countable closed, following the arguments of [55]. As is explained in
Remark 18.8, we prove this in two steps.

First, one shows that Sn−gr is a countable union of constructible subsets.
This step relies on some standard moduli-theoretic techniques. Basically, to
say that X is not groupless over k is equivalent to saying that, there is an
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integer g such that the Hom-stack HomAg
(Ug, X×Ag) → Ag has a non-empty

fibre over some k-point of Ag, where Ag is the stack of principally polarized
g-dimensional abelian schemes over k, and Ug → Ag is the universal family.
We will not discuss this argument and refer the reader to [55] for details on
this part of the proof.

Once the first step is completed, to conclude the proof, it suffices to
show that the notion of being groupless is stable under generization. To
explain how to do this, we introduce a new notion of hyperbolicity for rigid
analytic varieties (and also adic spaces) over a non-archimedean field K of
characteristic zero; see [55, §2]. This notion is inspired by the earlier work of
Cherry [20] (see also [6, 21, 22, 66, 67]).

If K is a complete algebraically closed non-archimedean valued field of
characteristic zero and X is a finite type scheme over K, we let Xan be
the associated rigid analytic variety over K. We say that a variety over K
is K-analytically Brody hyperbolic if, for every finite type connected group
scheme G over K, every morphism Gan → Xan is constant. It follows from
this definition that a K-analytically Brody hyperbolic variety is groupless.
It seems reasonable to suspect that the converse of this statement holds for
projective varieties.

Conjecture 18.10 (Non-archimedean Lang–Vojta). Let K be an alge-
braically closed complete non-archimedean valued field of characteristic zero,
and let X be an integral projective variety over K. If X is groupless over K,
then X is K-analytically Brody hyperbolic.

In [20] Cherry proves this conjecture for closed subvarieties of abelian
varieties. That is, Cherry proved the non-archimedean analogue of the Bloch–
Ochiai–Kawamata theorem (Theorem 2.5) for closed subvarieties of abelian
varieties.

In [55] it is shown that the above conjecture holds for projective varieties
over a non-archimedean field K, assuming that K is of equicharacteristic zero
and X is a “constant” variety over K (i.e., can be defined over the residue
field of K). This actually follows from the following more general result.

Theorem 18.11. Let K be an algebraically closed complete non-
archimedean valued field of equicharacteristic zero with valuation ring OK ,
and let X → SpecOK be a proper flat morphism of schemes. If the special
fibre X0 of X → SpecOK is groupless, then the generic fibre XK is K-
analytically Brody hyperbolic.

Proof. This is the main result of [55] and is proven in three steps. Write
X := XK .

First, one shows that every morphism Gan
m,K → Xan is constant by

considering the “reduction” map Xan → X0 and a careful analysis of the
residue fields of points in the image of composed map Gan

m,K → Xan → X0;
see [55, §5] for details. This implies that X has no rational curves.
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Now, one wants to show that every morphism Aan → Xan with A some
abelian variety over K is constant. Instead of appealing to GAGA and trying
to use algebraic arguments, we appeal to the uniformization theorem of
Bosch–Lütkebohmert for abelian varieties. This allows us to reduce to the
case that A has good reduction over OK . In this reduction step we use that
every morphism Gan

m,K → Xan is constant (which is what we established in
the first part of this proof); we refer the reader to [55, Theorem 2.18] for
details.

Thus, we have reduced to showing that, for A an abelian variety over K
with good reduction over OK , every morphism Aan → Xan is constant. To
do so, as A has good reduction over OK , we may let A be a smooth proper
model for A over OK . Note that the non-constant morphism Aan → Xan

over K algebraizes by GAGA, i.e., it is the analytification of a non-constant
morphism A → X. By the valuative criterion of properness, there is a dense
open U ⊂ A whose complement is of codimension at least two and a morphism
U → X extending the morphism A → X on the generic fibre. Now, since X0

is groupless, it has no rational curves. In particular, as A → SpecOK is
smooth, the morphism U → X extends to a morphism A → X by [37,
Proposition 6.2]. However, since X0 is groupless, this morphism is constant
on the special fibre. The latter implies (as A → SpecOK is proper) that the
morphism on the generic fibre is constant; see [55, §3.2] for details. We have
shown that, for every abelian variety A over K, every morphism A → X is
constant and that every morphism Gan

m → Xan is constant.
Finally, by adapting the proof of Lemma 4.4 one can show that the

above implies that, for every finite type connected group scheme G over K,
every morphism Gan → Xan is constant, so that X is K-analytically Brody
hyperbolic (see [55, Lemma 2.14] for details). �	

To conclude the proof of Theorem 18.9, we point out that a straightforward
application of Theorem 18.11 shows that being groupless is stable under
generization, as required. �	

An important problem in the study of non-archimedean hyperbolicity at
this moment is finding a “correct” analogue of the Kobayashi pseudo-metric
(if there is any at all). Cherry defined an analogue of the Kobayashi metric
but it does not have the right properties, as he showed in [21] (see also [55,
§3.5]). A “correct” analogue of the Kobayashi metric in the non-archimedean
context would most likely have formidable consequences. Indeed, it seems
reasonable to suspect that a K-analytic Brody hyperbolic projective variety
is in fact “Kobayashi hyperbolic” over K and that “Kobayashi hyperbolic”
projective varieties overK are bounded overK by some version of the Arzelà–
Ascoli theorem.
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4. Dan Abramovich and José Felipe Voloch. Lang’s conjectures, fibered powers, and
uniformity. New York J. Math., 2:20–34, electronic, 1996.

5. Ekaterina Amerik. Existence of non-preperiodic algebraic points for a rational
self-map of infinite order. Math. Res. Lett., 18(2):251–256, 2011.

6. Ta Thi Hoai An, W. Cherry, and Julie Tzu-Yueh Wang. Algebraic degeneracy of
non-Archimedean analytic maps. Indag. Math. (N.S.), 19(3):481–492, 2008.

7. K. Ascher, K. DeVleming, and A. Turchet. Hyperbolicity and uniformity of
varieties of log general type. arXiv:1807.05946.

8. K. Ascher and A. Turchet. Hyperbolicity of Varieties of Log General Type, chapter
in this book.

9. Kenneth Ascher and Amos Turchet. A fibered power theorem for pairs of log
general type. Algebra Number Theory, 10(7):1581–1600, 2016.
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pages 1–19. Birkhäuser Boston, Boston, MA, 1987.

29. Jean-Pierre Demailly. Algebraic criteria for Kobayashi hyperbolic projective
varieties and jet differentials. In Algebraic geometry—Santa Cruz 1995, volume 62
of Proc. Sympos. Pure Math., pages 285–360. Amer. Math. Soc., Providence, RI,
1997.

30. Mireille Deschamps. Courbes de genre géométrique borné sur une surface de type
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(127):261–273, 1985. Seminar on arithmetic bundles: the Mordell conjecture
(Paris, 1983/84).

70. B. Mazur. Arithmetic on curves. Bull. Amer. Math. Soc., 14(2):207–259, 1986.
71. Michael McQuillan. Diophantine approximations and foliations. Inst. Hautes
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