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1 Introduction

Let X be a smooth connected projective manifold of dimension n defined over
a number field k, let k′ ⊃ k be a larger number field. We denote by X(k′)
the set of k′-rational points of X. Diophantine geometry aims at describing,
in terms of the ‘geometry’ of X(C), the qualitative structure of X(k′) when
k′ is sufficiently large, depending on X. When k is too small, the paucity of
X(k) may indeed be related not only to the geometry of X(C), but also to
the coefficients of the equations1 defining X, as seen on the rational curve
x2 + y2 + 1 = 0 for k = Q, and k′ = Q(

√−1).

Definition 1.1. We say that X/k is ‘potentially dense’ if X(k′) is Zariski
dense2 in X for some k′ ⊃ k, k′ depending on X.

1However, even when solving in Q the Fermat equations xn+yn = zn, the arithmetic
and analytic methods used during 3 centuries only gave partial answers. Its solution
by Wiles rests on the parametrisation of elliptic curves over Q by modular curves, a
geometric approach suggested only 23 years earlier in 1972 by Hellegouarch’s curve
y2 = x(x−ap)(x− bp), where (a

b
)p +( b

c
)p = 1 is a putative solution for p > 3 prime.

The reason why this curve is usually called the ‘Frey-curve’ (appeared only 14 years
later for the same purpose) is a mystery for me.
2One can also ask for density in the analytic topology, and expect that this will then
hold after a further finite enlargement of k.
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The opposite property is X being ‘Mordellic’,3 which means the existence
of a nonempty Zariski open subset U ⊂ X such that (X(k′)∩U) is finite for
any k′ ⊃ k.

A curve is thus either Mordellic or potentially dense, according to whether
X(k′) is finite for any k′/k, or infinite for some k′/k. A curve X/k of genus
g is potentially dense if and only if g = 0, 1, curves of genus g ≥ 2 being
‘Mordellic’, by Faltings’ theorem (=Mordell’s conjecture).

In higher dimension, X may be neither potentially dense nor ‘Mordellic’,
as seen from the (exceedingly simple) product X := F × C of two curves, if
g(F ) ≤ 1, g(C) ≥ 2, equipped with the projection c : X → C onto C: X(k′) is
concentrated on the finitely many fibres lying over C(k′), while the points in
these fibres coincide with those of F (k′), which are thus Zariski dense there
for k′/k large enough.

The aim of the present notes is to present, following [11], a conjectural
description ‘in geometric terms’ (the meaning will be made precise below),
for any X/k, of the qualitative structure of X(k′), similar to the previous
product of curves, by means of its ‘Core Map’ c : X → C, defined over k
and conjectured to split X into its ‘Potentially Dense’ part (the fibres), and
its ‘Mordellic’ part (the ‘Orbifold’ Base (C,Δc) of the Core Map c, which
encodes its multiple fibres). The expectation is that X(k′) is concentrated
on finitely many fibres of c outside of c−1(W ) for some fixed Zariski closed
W � C, and that X(k′) is Zariski dense in the fibres contained in c−1(W )
for k′ ⊃ k sufficiently large. In the previous example, the core map is simply
the projection c : F × C → C.

The core map indeed splits any X(C) geometrically, according to the
positivity/negativity of its cotangent bundle Ω1

X . The ‘Mordellicity’ of X
is conjecturally equivalent to the maximal positivity, called ‘Bigness’, of
its canonical bundle KX . The ‘Potential density’ of X/k is conjectured to
be equivalent to the ‘Specialness’ of X, a suitable notion of non-maximal
positivity of its cotangent bundle Ω1

X .

• Preservation by birational and étale equivalences.

Let us notice that the qualitative structure of X(k′) (and in particu-
lar being ‘potentially dense’ or ‘Mordellic’) is preserved under birational
equivalence and unramified covers (due to the Chevalley–Weil theorem).
The geometric properties conjectured to describe potential density and
Mordellicity must be birational and preserved by unramified covers. This
is indeed the case for their conjectural geometric counterparts: specialness,
general type and the core map.

• Positivity/negativity of the canonical bundle (§4, §5).

3The term is due to S. Lang.
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The fundamental principle of birational geometry, based on increasingly
convincing evidence, is that the qualitative geometry of a projective4

manifold Xn can be deduced from the positivity/negativity of its canonical
bundle KX . The birational and étale evaluation of this positivity is made by
means of the ‘Kodaira’ dimension κ(Xn) ∈ {−∞, 0, . . . , n} which measures
the rate of growth of the number of sections of K⊗m

X when m → +∞. For
curves, we have κ = −∞ (resp. κ = 0, resp. κ = 1) if g = 0 (resp. g = 1,
resp. g ≥ 2). In higher dimension n, curves of genus at least 2 generalise to
manifolds with κ = n, said to be of ‘general type’. The higher dimensional
generalisations of curves of genus 0, 1 are the ‘special’ manifolds, defined by
a suitable notion of non-positivity of their cotangent bundles.

The ‘core map’ then decomposes (see §8) anyX into these two fundamental
‘building blocks’: special vs general type.

• General type and Mordellicity (§8.6).

Mordell’s conjecture claiming that curves of genus at least 2 are not
potentially dense has been generalised in arbitrary dimension by S. Lang,
who conjectured in [36] that X/k is ‘Mordellic’ if and only if it is of ‘general
type’. Lang’s conjecture is still widely open, even for surfaces. It has been
subsequently extended to the quasi-projective case by Vojta, replacing the
canonical bundle by the Log-canonical bundle. Vojta also gave quantitative
versions of this conjecture, relating it in a precise manner to its Nevanlinna
analogues (see [47]). We propose in §8.6 an orbifold version of Lang’s
conjecture, Vojta’s conjecture being the particular case when the boundary
divisor is reduced.

• Specialness and Potential Density (§7).

We conjecture here (following [11]) that X/k is ‘potentially dense’ if and
only if it is ‘special’. This (new) ‘specialness’ property is defined by the
absence of ‘big’ line subbundles of the exterior powers of the cotangent bundle
of X. The two main classes of special manifolds are those which are either
rationally connected or with κ = 0, generalising, respectively, rational and
elliptic curves. Special manifolds are exactly the manifolds not dominating
any ‘orbifold’ of general type. They may have, however, any κ strictly smaller
than their dimension.

We conjecture that special manifolds have a virtually abelian5 fundamen-
tal group, which leads to the following conjectural topological obstruction to
potential density: ‘the (topological) fundamental group of a potentially dense
manifold X/k is virtually abelian’.

4Everything proved or conjectured here either extends, or should extend, to compact
Kähler manifolds, except of course for the arithmetic versions.
5Recall that ‘virtually abelian’ means that some finite index subgroup is Abelian.
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• The Core map (§8).

We show that any X admits a unique canonical and functorial fibration
(its ‘core map’) with ‘special’ fibres, and ‘general type’ ‘orbifold’ base.

The ‘orbifold base’ (Z,Δf ) of a fibration f : X → Z is simply its base
Z equipped with a suitable ‘orbifold divisor’ Δf of Z (Δf effective with
Q-coefficients), encoding the multiple fibres of f . This orbifold base can be
thought of as a ‘virtual’ ramified cover of Z eliminating the multiple fibres
of f by the base-change (Z,Δf ) → Z.

• ‘Building Blocks’ of projective manifolds (§8.4, §8.6).

It turns out that the ‘building blocks’ for constructing arbitrary X are
not only manifolds but, more generally, ‘orbifold pairs’ with a negative,
zero or positive canonical bundle KZ + Δf . In the birational category, this
translates, respectively, to: κ+ = −∞, κ = 0κ(X) = dim(X). The study of
geometric, arithmetic and hyperbolicity properties of any projective X thus
essentially reduces, but also requires, to extend the definition and study of
the corresponding invariants to orbifold pairs.

For this reason, we not only need to extend Lang’s conjectures to orbifold
pairs of general type but also to conjecture the potential density of orbifold
pairs having either κ+ = −∞ or κ = 0. Since such orbifolds are the building
blocks for all special manifolds, this justifies the expectation that all special
manifolds should be potentially dense.

• Orbifold pairs: geometry and integral points (§2, §3).

A (smooth) orbifold pair (X,Δ) consists of a smooth projectiveX together
with an effective Q-divisor Δ :=

∑
j(1 − 1

mj
).Dj for distinct prime divisors

Dj of X whose union D is of simple normal crossings, and ‘multiplicities’
mj ∈ (Z+ ∪ {+∞}). They interpolate between Δ = 0 and Δ = D,
corresponding, respectively, to the projective and quasi-projective cases.
The usual invariants of quasi-projective manifolds can be attached to them,
including the fundamental group and integral points if defined over Q. These
integral points are modelled after the notion of ‘orbifold morphisms’ h : C →
(X,Δ) from a smooth connected curve C to (X,Δ), obtained by imposing
conditions on the orders of contact between h(C) and the D′

js. These
conditions appear in two different versions (gcd or inf), according to whether
one compares positive integers according to divisibility or Archimedean order.
The first notion is the one used classically in stack and moduli theories, but
is not appropriate in birational geometry, and we thus consider the second
one, here. This ‘inf’ version of integral points leads, even for orbifold pairs
over X = P

1 to an orbifold version of Mordell’s conjecture which is presently
open, implied by the abc-conjecture, but possibly much more accessible. This
orbifold Mordell conjecture is in fact merely the one-dimensional case of the
orbifold version of Lang’s conjecture that we formulate in §8.6.
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• Link with hyperbolicity and entire curves (§9, §10, §11).

The Lang and Vojta conjectures establish an equivalence between geom-
etry, arithmetic and hyperbolicity of (quasi)-projective manifolds of general
type. We formulate an analogous equivalence for special manifolds first, and
then for all X’s via the Core map, in the last two sections. Since entire
curves are much easier to construct than infinite sets of k′-rational points,
we can show more cases of these conjectures for entire curves, especially for
rationally connected manifolds, for which analytic analogues of the Weak
Approximation Property and of the Hilbert Property can be obtained.

• The material in these notes mainly comes from [11]. Unpublished obser-
vations are: Proposition 9.1 proving the conditional equivalence between
entire curves and countable sequences of k′-rational points, and the last
section (qualitative description of the Kobayashi pseudodistance on any
X, using the ‘core map’).

These notes can be complemented by many texts, including: [1], the books
[31] and [41] for arithmetic notions and proofs, [42], [46] on the geometric
side and the references in [13] for more recent developments in birational
complex geometry. The reference [9], which contains everything needed on the
arithmetic side, including proofs and much more, deserves a special mention.

• These notes are an extended version of a mini-course given at UQÀM
in December 2018, and part of the workshop ‘Géométrie et arithmétique
des orbifoldes’ organised by M.H. Nicole, E. Rousseau and S. Lu. I thank
them for the invitation, and also K. Ascher, H. Darmon, L. Darondeau,
A. Turchet, J. Winkelmann for interesting discussions (and collaboration
in the case of L.D, E.R and J.W) on this topic. Many thanks also to P.
Corvaja for several exchanges and explanations he gave me on arithmetic
aspects of birational geometry. In particular, §10 originates from his joint
text with U. Zannier [23], the connection made there with the Weak
Approximation Property is due to him. Many thanks also to Lionel
Darondeau also for making my original drawings computer compatible.
Thanks to the referee who read carefully the text, suggesting improvements
and complementing references.

Conventions In the whole text, X will be a connected n-dimensional
projective (smooth) manifold defined either over C or over a number field
k, of which a finite extension will be denoted k′. A fibration f : X → Z is a
regular surjective map with connected fibres over another projective manifold
Z (of dimension usually denoted p > 0). A dominant rational map will be
denoted f : X ��� Z. We denote here always by KX the canonical line bundle
of X, which is the major invariant of the birational classification.
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2 Orbifold Pairs and Their Integral Points

This section is aimed at the definition of integral points on orbifolds for
potential readers with a complex geometric background. We thus try to avoid
the conceptual notions of schemes, and models. The readers familiar with
them can skip this section or alternatively consult either [1] or [2], where all
definitions are given in this language.

2.1 Integral Points Viewed as Maps from a Curve

We shall describe a standard geometric way of seeing rational points on an
n-dimensional manifold defined over a number field k as sections from an
‘arithmetic curve’ Spec(Ok) to the ‘arithmetic (n+1)-dimensional manifold’
X(Ok,S) fibred over Spec(Ok). This description is modelled after the cases,
which we describe first, of holomorphic maps from a curve, and then of
function fields, in which rational points are seen as sections of a suitable
fibration.

• Morphisms from a curve.

Let C be a smooth connected complex curve (the important cases here are
when C = C,P1,D (the complex unit disk), or a complex projective curve.
Let M be a smooth connected complex manifold. Let Hol(C,M) be the set
of holomorphic maps from C to M . When h ∈ Hol(C,M) is non-constant we
say that h is a (parametrized) rational (resp. entire) curve on M if C = P

1

(resp. C = C).
We may identify any h ∈ Hol(C,M) with its graph in X := C ×M , and

thus with a section of the projection f : X → C onto the first factor. More
generally, we can replace the product C × M with any proper holomorphic
map with connected fibres f : X → C from a complex manifold X. Manifolds
over a function field provide such examples.

• Function field version of integral points.

When X and C are projective, the preceding construction makes sense
over any field, not only C and leads to the ‘function field’ version.

Let f : X → C be a holomorphic fibration (i.e.: surjective with connected
fibres) from X onto C, where X is now a smooth complex projective manifold
of dimension (n+1). This is a ‘model’ of an n-dimensional manifold over the
field K := C(C), the field of rational (or meromorphic) functions on C, with
‘generic fibre’ Xc, if c is a generic point of C.

More precisely, X can be embedded in πN : PN × C = PN (K) → C,
the first projection, for some N ≥ n. The rational points of PN (K) are thus
the N + 1-tuples [f0, f1, . . . , fn] of elements of K, up to K∗-homothety, or
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equivalently, sections of πN . The elements of X(K) are then those of PN (K)
which are contained in X, hence those which satisfy the equations defining
X in PN (K) over K. Said differently: X(K) are the sections of f .

The set of points of C coincide with the set of inequivalent valuations (or
‘places’) of the field K with field of constants C. If S ⊂ C is any (nonempty)
finite set, C \S also coincide with the set of maximal ideals of the ring OK,S

of rational functions on C regular outside S.

• Integral points: the arithmetic version.

If X is defined over the number field k, the role of the curve C will be
played by Spec(Ok), the set of (non-archimedean) places of k.

Let k be a number field, Ok be its ring of integers and S a finite set of
non-archimedean ‘places’ (i.e.: prime ideals p of the ring of integers). Let
C := Spec(Ok,S) = Spec(Ok) \ S be the set of prime (=maximal) ideals p of
the ring Ok localised at S.

Let X be defined over k. Assume (in order to avoid the use of a ‘model’)
that X ⊂ PN is defined by homogeneous equations with coefficients in k.

An element x of PN (k) = PN (Ok,S) is an (N + 1)-tuple [x0, . . . , xN ] of
elements of either k, or equivalently Ok,S , not all zero, up to O∗

k,S-homothety
equivalence. The elements of X(k) are those satisfying the equations defining
X.

The ‘arithmetic projective N -space over Spec(Ok,S)’ is the map πN :
PN (Ok,S) → Spec(Ok,S), where for each prime ideal p of Ok,S , the fibre
of πN over p is PN (Fp), where Fp = Ok/p, the residue field of Ok by its
prime (i.e.: maximal) ideal p.

The above point x = [x0 : · · · : xN ] of PN (k) is identified with the section
of πN which sends, for each p ∈ Spec(Ok), x to its reduction xp modulo p,
which is the image of x by the map: PN (Ok) → PN (Fp). This map is well-
defined, since [x0 : · · · : xN ] may be chosen in such a way that no p divides
all xj simultaneously.

Then X(Ok,S) is the subset of PN (Ok,S) consisting of the sections of πN

which satisfy the equations defining X, or equivalently, which take, for each
p, their values in X(Fp), the reduction of X modulo p.

WhenX = X\D is quasi-projective, complement of a Zariski closed subset
D in the projective X, everything being defined over k, the set of S-integral
points of X is simply the subset of X(Ok,S) which do not take their values
in D(Fp), for each p ∈ Ok,S (Figure 1).

2.2 Orbifold Pairs

The birational classification requires the consideration of more general
objects: ‘orbifold pairs’, which interpolate between the projective and quasi-
projective cases.
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Section x = 10
21 of the arithmetic surface P

1
Z:

Intersections with: (0) (1) (∞)

SpecZ
2 3 5 7 11 . . .

(∞)

(1)

(0)

P
1
F2

P
1
F3

P
1
F5

P
1
F7

P
1
F11

Fig. 1 The arithmetic section 10
21

Definition 2.1. An orbifold pair (X,Δ) consists of an irreducible normal
projective variety together with an effective Q-divisor Δ :=

∑
j cj .Dj in which

the D′
js are irreducible pairwise distinct (Weil) divisors on X, and the cj ∈

]0, 1] are rational numbers of the form cj = 1 − 1
mj

for integers mj > 1 (or

mj = +∞ if cj = 1).
The support of Δ (denoted Supp(Δ), or �Δ) is ∪jDj.

The orbifold pair (X,Δ) is smooth if X is smooth and if Supp(Δ) is SNC
(i.e.: of simple normal crossings)
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The canonical bundle of (X,Δ) is KX +Δ (if KX +Δ is Q-Cartier, which
is the case if (X,Δ) is smooth). The Kodaira dimension of (X,Δ) is defined
as κ(X,KX +Δ)6 if KX +Δ is Q-Cartier.

When Δ = 0, the orbifold pair (X, 0) is identified with X. When Δ =
Supp(Δ) (i.e.: mj = +∞, ∀j, or equivalently, cj = 1, ∀j)), (X,Δ) is identified
with the quasi-projective variety (X \Δ).

The general case interpolates between the projective and quasi-projective
cases, and plays the rôle of a virtual ramified cover of X ramifying at order
mj over each Dj . These orbifold pairs appear naturally in order to encode
multiple fibres of fibrations (see Subsection 2.3).

The usual geometric invariants of manifolds (such as cotangent bundles,
jet differentials, fundamental group in particular) can be defined for orbifold
pairs as well. We shall define S-integral points on them when they are defined
over a number field k (i.e. when X and Δ are both defined over k, and thus
invariant under Gal(Q/k)).

Before defining S-integral points of an orbifold pair, we give our motiva-
tion7 for the notion of orbifold pairs.

2.3 The Orbifold Base of a Fibration

Let f : X → Z be a fibration, with X,Z smooth projective. Let E ⊂ Z be
an irreducible divisor, and let f∗(E) :=

∑
h th.Fh+R be its scheme-theoretic

inverse image in X, with codimZ(f(R)) ≥ 2. For each E, we define mf (E) :=
infh{th}. This is the multiplicity of the generic fibre of f over E. We next
define the ‘orbifold base’ of f as being (Z,Δf ) with Δf :=

∑
E(1− 1

mf (E) ).E.

• Notice that the sum is finite, since mf (E) = 1 if E is not contained in
the discriminant locus of f .

The pair (Z,Δf ) should be thought of as a virtual ramified cover u :
Z ′ → Z ramifying at order mf (E) over each of the components of Δf , so
as to eliminate in codimension 1 the multiple fibres of f by the base-change
u : Z ′ → Z.

We have, of course: dim(Z) ≥ κ(Z,KZ +Δf ) ≥ κ(Z)

• ‘Classical multiplicities’: denoted by m∗
f (E), they are defined by

replacing inf by gcd in the definition of mf (E) above, which leads to
the ‘classical orbifold base’ (Z,Δ∗

f ) of f , Δ
∗
f :=

∑
E(1− 1

m∗
f (E) ).E.

The difference between the two notions is quite essential in the sequel.

6See Definition 4.1 below (or any text, such as [46]).
7The Log Minimal Model Program introduced these very same objects for apparently
different reasons: adjunction formula and induction on the dimension.
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Remark 2.2. A birational base-change Z ′ → Z gives a new ‘orbifold base’
(Z ′Δf ′), with κ(Z ′,KZ′ + Δf ′) ≤ κ(Z,KZ + Δf ). The inequality is strict
in general. By flattening8 and desingularisation, one gets ‘neat birational
models’ of f for which the orbifold base has minimal κ. See [11] for details.

2.4 Orbifold Morphisms from Curves

We shall next define the two versions of orbifold morphisms from a smooth
connected curve C to an orbifold pair (Z,Δ). The main examples over C

are C = C,P1,D (the unit disk in C). The following example indicates a
necessary condition for the functoriality of the definition.

Let (Z,Δf ) (resp. (Z,Δ
∗
f )) be the orbifold base of a fibration f : X → Z

as above, with Z smooth. Let h : C → X be any holomorphic map. Consider
the composite map: f ◦ h : X → Z. One immediately checks the following
property:

Lemma 2.3. Let a ∈ C be such that f ◦ h(a) ∈ Dj. Let t > 0 be the order
of contact (or intersection multiplicity, see also [1], or [2]) of f ◦ h(C) with
Dj (i.e.: (f ◦h)∗(Dj) = t.{a}+R, where R is a divisor on C supported away
from a).

Then t ≥ mj (resp. mj divides t).

The following simple example shows that any m ≥ mj may occur:

Example 2.4. Let f : A2 → A1 be the fibration given by: f(x, y) = x2.y3 =
0. For any m ≥ 2, the map h : t → (x, y) := (ta, tb) is such that f ◦h(t) = tm,
if 2a + 3b = m, since (f ◦ h)∗(z) = t2a+3b. We may choose a := m

2 , b = 0 if
m is even, a := [m2 ]− 1, b := 1 if m is odd.

If the multiplicities 2 < 3 are replaced by p < q, then any t ≥ t0(p, q) may
occur, but in general t0(p, q) > p.

The preceding Lemma 2.3 shows that the functoriality of morphisms from
curves to orbifold pairs requires to define them as follows:

Definition 2.5. A non-constant regular map h : C → (X,Δ) is an orbifold
morphism (i.e.: a Δ-morphism) (resp. a ‘classical orbifold morphism’) if:

1. h(C) is not contained in the support of Δ.
2. For any a ∈ C, and any j such that h(a) ∈ Dj, we have: ta,j ≥ mj

(resp. ta,j is divisible by mj). Here ta,j is the order of contact at a ∈ C of
h(C) with Dj, as defined in Lemma 2.3, namely by the equality: h∗(Dj) =
ta,j .{a}+ . . . .

8This replaces f by a birational model with equidimensional fibres. We shall always
implicitly consider these models in order to avoid birational technicalities.
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We denote by Hol(C, (X,Δ)) (resp. Hol∗(C, (X,Δ)) the set of orbifold
morphisms (resp. of classical orbifold morphisms) from C to (X,Δ).

When C = C (resp. C = P
1), we say that h is a Δ-entire curve (resp. a Δ-

rational curve). When C = C, we allow h to be holomorphic transcendental
in the definitions.

The Δ-morphisms are thus the usual ones when Δ = 0, and are the
morphisms from C to (X\D) when Δ = D := Supp(Δ), with all multiplicities
equal to +∞.

In the general case, we have:

Hol(C, (X \D)) ⊂ Hol∗(C, (X,Δ)) ⊂ Hol(C, (X,Δ)) ⊂ Hol(C,X).

We now describe this notion in the case of function fields, and next in the
definition of Δ-integral points.

2.5 The Function Field Version

Let f : X → C be a regular map with connected fibres (a ‘fibration’) from
the connected projective manifold X onto the projective curve C. We present
here a geometric version of the notion of orbifold integral points. A more
conceptual approach based on the notion of schemes and models can be found
in [1] and [2], §2.3.

Let Δ =
∑

j(1 − 1
mj

).{Dj} be an orbifold divisor on X, with f(Dj) =

C, ∀j (i.e.: with horizontal support). The orbifold pair (X,Δ) has as generic
‘orbifold fibre’ the smooth orbifold pair (Xs,Δs) over s ∈ C generic,9 if Δs

is simply the restriction of Δ to Xs. Notice that (Xs,Δs) is indeed smooth
for s ∈ C generic.

Let S ⊂ C be a finite subset containing the points of ‘bad reduction’ of
(X,Δ) over C (i.e.: the finitely many points over which either (Xs,Δs) is not
smooth). In this situation, the integral points of X/(C \ S) are simply the
sections σ : C \ S → X of f (i.e.: such that f ◦ σ = id(C\S)).

We define the S-integral (resp. the ‘classical’ S-integral) points of
(X,Δ)/C to be the sections of f which are orbifold (resp. ‘classical’
orbifold) morphisms from (C \ S) to (X,Δ) over (C \ S). We denote this set

9Let us stress that we do not use here the language of schemes, so our points are
always ‘closed’ points, the generic point of a projective irreducible variety Z is any
(closed) point outside some Zariski closed strict subset of Z. A ‘general’ point lies in
a countable intersection of such open subsets if the base field is uncountable. We thus
use ‘general’ in the sense we already introduced in 1980, instead of the terminology
‘very general’ introduced much later with the same meaning.
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P
1

B

2 (0)

3 (1)

4 (∞)

Fig. 2 A function field ‘orbifold’ section (see below)

with (X,Δ)(OK,S) (resp. (X,Δ)∗(OK,S)), where K is the field of rational
functions on C (Figure 2).

When Δ = 0 and S = ∅, we thus recover the rational points of X over K,
and when Δ = Supp(Δ), we recover the sections of f avoiding Supp(Δ). In
the general case, we have:

(X \Δ)(OK,S) ⊂ (X,Δ)∗(OK,S) ⊂ (X,Δ)(OK,S) ⊂ X(OK,S).

2.6 Integral Points on Arithmetic Orbifolds

We will now model the definition of the S-integral points of the orbifold
(X,Δ) on their function field definition, replacing K by a number field k,
and the curve C , which is the set of ‘places’ (i.e., non-equivalent valuations
of K) by Spec(Ok), the ring of integers of k. The rôle of order of contact will
be played by arithmetic intersection numbers.

Let k be a number field, Ok be its ring of integers and S a finite set of
‘places’ (i.e.: prime ideals p of the ring of integers). Let B := Spec(Ok,S) =
Spec(Ok) \ S be the set of prime (=maximal) ideals of the ring Ok localised
at S.

Let f : Xk → Spec(Ok) be the arithmetic manifold (of dimension (n+ 1)
if dim(X) = n) whose fibre over each prime ideal p is the reduction in the
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quotient field Ok/p of X. The orbifold pair (X,Δ) being given, we define
similarly the fibres of the arithmetic orbifold (X ,D) over Spec(Ok)) to be
the reductions (Xp,Δp) of (X,Δ) mod p. Then (X,Δ) has good reduction
at p if the fibre of (X ,D) over p is a smooth orbifold pair.

• Arithmetic intersection numbers: Let fS : Xk,S → Spec(Ok,S) be
the ‘arithmetic manifold’ associated with X, as above, assuming S ⊂
Spec(Ok), finite and sufficiently large, so as to fulfil the conditions below.
Any x ∈ X(k) defines a section of f mapping any p /∈ S to the image
of xp in Xp. Assume that x /∈ Dj , ∀j. Let S be any finite set of ‘places’
of k containing those where (X,Δ) has ‘bad reduction’. For each j, there
thus exists on X a function gj generically defining Dj reduced, gj regular
and non-vanishing at x. The reduction of gj modulo p thus does not vanish
identically at xp. The arithmetic intersection number (x,Dj)p is the largest
integer t such that pt divides gj(x). This integer does not depend on the
choice of gj , which is well-defined up to a unit in the ring of rational
functions on X regular at x.

Notice that (x,Dj)p ≥ 1 if and only if xp ∈ (Dj)p, this happening only for
the finitely many p′s which divide gj(x). See [2], §2.3 for a more conceptual
definition.

Definition 2.6. Let (X,Δ) be a smooth orbifold pair defined over k, with
S a finite set of places of k containing those over which (X,Δ) has bad
reduction.

• A point x ∈ X(k) is (S,Δ)-integral if, for any j, x /∈ Dj, and if (x,Dj)p ≥
mj for each p /∈ S such that (x,Dj)p ≥ 1.

• A point x ∈ X(k) is a ‘classical (S,Δ)-integral’ if x /∈ Dj , ∀j, and if mj

divides (x,Dj)p for each p /∈ S such that (x,Dj)p ≥ 1.

We shall denote by (X,Δ)(k, S) (resp. (X,Δ)∗(k, S) the set of (S,Δ)-
integral points (resp. of ‘classical (S,Δ) integral’ points) of X.

Let D be the support of Δ, we have obvious inclusions and equalities:

(X,D)(k, S) ⊂ (X,Δ)∗(k, S) ⊂ (X,Δ)(k, S) ⊂ X(k, S).

Remark 2.7. See §5.3, §2.3 for some of the compelling reasons to introduce
non-classical versions of orbifold morphisms and integral points.

2.7 Examples of Orbifolds on P
1

We shall illustrate these definitions with two examples of integral points over
two orbifold structures on P

1, supported on 2 (resp. 3) points, with infinite
(resp. finite) multiplicities.
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In both cases, we shall choose k = Q, S = p1, . . . , ps for distinct primes
pj , so that OQ,S = Z[ 1

p1
, . . . , 1

ps
].

• P
1 minus two or three points: Assume now that Δ = {0,∞} reduced

(i.e.: with infinite multiplicities. An element of P1(Q) is of the form ±a
b ,

with a, b nonnegative coprime integers, not both zero. The ‘arithmetic
surface’ π : P1

Z → Spec(Z) has fibre P
1
Fp

(the projective line over the finite

field Fp) over each p ∈ Spec(Z) . We associate to a
b the section of this

projection which sends each p to the mod p-reduction of a
b . The 2 points

of Δ give similarly two sections {0} and {∞} of this projection. The section
a
b meets the section {0} exactly at the p’s dividing a, and meets the section
{∞} at the p’s dividing b.

The section a
b will thus be contained in the arithmetic surface (X \ Δ)Z

(that is: avoid the two sections {0} and {∞}) if and only if a and b are
invertible in Z, that is: if and only if ±a

b = ±1, i.e., a unit of Z.
If instead of the ring Z, we use the larger ring Z[ 1

p1
, . . . , 1

ps
] = OQ,S , where

S = {p1, . . . , ps} ⊂ Spec(Z), the set of sections a
b meeting the sections {0}

and {∞} only over S are again exactly the units of OQ,S , that is, quotients
a
b of two coprime integers, both coprime with p /∈ S.

If we remove now the 3 points 0, 1,∞, the integral points for OQ,S are
the solutions of the ‘S-unit equation’ a− b = c, in which all three terms are
S-units. Indeed, not only a and b should be S-units, but also a − b, since a

b
should not reduce to 1 modulo any p outside S. The ‘classical’ integral points
are then the same as their ‘non-classical’ version. The situation is different
for finite multiplicities, as we shall now see.

• P
1 with 3 orbifold points:We consider (P1,Δ), where Δ consists of the 3

points 0, 1,∞, respectively, equipped with the integral finite multiplicities
p, r, q, each at least 2.

In other words: Δ = (1− 1
p ).{0}+ (1− 1

r ).{1}+ (1− 1
q ).{∞}.

We take here the simplest situation: k = Q, S = ∅.
Let us first describe the ‘classical’ integral points x = ±a

c of (P1,Δ),
with a, c positive coprime integers, seen as a section of the arithmetic surface
π : P1

Z → Spec(Z). The section x meets the section 0 at the primes p which
divide a, with an intersection multiplicity equal to the exponent of p in the
prime decomposition of a. Similarly: the section x meets the section ∞ at the
p′s dividing c, with intersection multiplicity equal to the exponent of p in the
prime decomposition of c. The section x meets the section 1 at the primes
dividing x− 1 = a−c

c , that is, those appearing in the prime decomposition of
(c−a), with exponents equal to the corresponding intersection multiplicities.

There are now 2 different sets of orbifold integral points: the classical ones
and the ‘non-classical’ ones.

• Description of the ‘classical’ integral points of (P1,Δ): for such an x = a
c ,

each of the exponents of a must be divisible by p. Thus: a = αp for some
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positive integer α. Similarly: c = γq (resp. ±(c − a) := b = βr), for some
integers γ > 0, β > 0. In other words, the ‘classical’ integral points of
(P1,Δ) over Q, S = ∅ are (up to signs) the integral coprime solutions
(α, β, γ) of the equation: αp + βq = γr.

This is the construction used by Darmon-Granville in [25] to show the
finiteness of solutions in coprime integers of the generalised Fermat equation
Axp + Byq = Czr (A,B,C become indeed S-units if we add to S the finite
set consisting of the primes dividing ABC).

• Description of the integral points of (P1,Δ) (over k = Q, S = ∅): a similar
analysis shows that these are (up to signs, i.e.: units of Z) solutions of the
equation a+ b = c with: a a p-powerful integer, b a r-powerful integer and
c a q-powerful integer, according to the:

Definition 2.8. Let k > 1 be an integer. A positive integer m is said to be
k-powerful if the k-th power of each prime dividing m still divides m, that
is: if the k-th power of rad(m) divides m, where rad(m) (the ‘radical of m’)
is the product (without multiplicities) of the primes dividing m. Exact k-th
powers are k-powerful, but not conversely: 72 = 23.32 is 2-powerful, but not
a square.

Nevertheless, by a result of Erdös–Szekeres, [27],§2, p. 101, the number
of k-th powerful numbers less than a certain bound B is asymptotically, as
B → +∞, of the form C(k).B

1
k for a certain constant C(k) > 1, and so

comparable to the number B
1
k of exact k-th powers in the same range.

3 The Arithmetic of Orbifold Curves

3.1 Projective Curves

Let thus C = X be a connected smooth projective curve defined over k.
Its fundamental invariant is its genus g ≥ 0, also equal to h0(C,KC), the
number of its (linearly independent) regular differentials, and also equal to

g = 1 + deg(KC)
2 . The genus is also a topological invariant (the number of

‘handles’) of the set of complex points of C (and so purely ‘geometric’).
There are only 3 cases, according to the value of g, or equivalently to the

sign of deg(KC):

• g = 0: if C(k) is not empty, C is isomorphic to P
1 over k, and so C(k) ∼=

P
1(k) is infinite. There always exists a quadratic extension k′/k such that

C(k′) �= ∅.
• g = 1: after a finite extension k′/k (its degree depending on C), C(k′) �= ∅,

and C(k′) is thus an elliptic curve with a group structure. A suitable
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quadratic10 extension k′′/k′ gives a point ‘of infinite order’ in the group
C(k′′), and so C(k′′) is infinite.

• g ≥ 2. Faltings’ theorem (solving Mordell’s conjecture) says that C(k′) is
finite, however big k′ is.

• Conclusion: C is potentially dense if and only if deg(KC) ≤ 0. Notice
indeed that deg(KC) ≤ 0 if and only if g ≤ 1.

3.2 Quasi-Projective Curves

These are just projective curves C with a non-empty finite set D removed.
Here C and D are thus assumed to be defined over k (which means that D
is preserved by the action of Gal(Q̄/k).

The fundamental geometric invariant of the situation is now the sign of
the log-canonical bundle KC + D (which replaces KC when D = 0). The
conclusion is exactly the same as in the proper case (by a theorem essentially
due to C.L. Siegel).

• deg(KC + D) < 0: the set of S′-integral points relative to D is Zariski
dense for some k′, S′ sufficiently large. This case occurs only with C = P

1,
with 1 point deleted.

• deg(KC+D) = 0: again, the set of S-integral points relative to D is Zariski
dense for some k′, S′. This case occurs only with C = P

1, with 2 geometric
points deleted.

• deg(KC+D) > 0: the set of S-integral points relative to D is finite for any
k′, S′. This case occurs only with C = P

1, with 3 or more points deleted,
or if C is a curve of positive genus with at least 1 point deleted.

3.3 The Orbifold Mordell Conjecture

This is the one-dimensional special case of a more general conjecture to be
formulated later. It relates the arithmetic of a curve orbifold pair (C,Δ) to
the sign of its ‘orbifold canonical bundle’ KC + Δ, just as when Δ = 0 or
when Δ = D, the (reduced) support of Δ.

Conjecture 3.1. Let (C,Δ) be an orbifold pair defined over a number field
k. Let k′/k be a finite extension, and S′ a finite set of places of k′.

10This is easily seen from a Weierstrass equation and the finiteness of torsion points
of the group C(k).
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Then (C,Δ)(S′, k′) is finite for each (k′, S′) if and only if deg(KC +Δ) >
0. Equivalently: (C,Δ)(S′, k′) is infinite for some (k′, S′) if and only if
deg(KC +Δ) ≤ 0.

We have seen above that this conjecture is true when Δ = 0 and when
Δ = D, its reduced support.

We shall see next that it is solved also when one considers the ‘classical’
(S′,Δ) integral points (C,Δ)(S′, k′)∗, but that it is open for (C,Δ)(S′, k′).
By the former inclusion (C,Δ)(S′, k′)∗ ⊂ (C,Δ)(S′, k′), this shows that only
the ‘Mordell’ case deg(KC + Δ) > 0 remains open. Notice that if Δ < Δ′

in the sense that (Δ′ − Δ) is an effective Q-divisor, we have an inclusion
(C,Δ′)(S′, k′) ⊂ (C,Δ)(S′, k′). It is thus sufficient to deal with the ‘minimal’
orbifold pairs (C,Δ) with deg(KC +Δ) > 0 listed below in order to solve the
preceding conjecture.

Remark 3.2. The ‘minimal’ cases with deg(KC +Δ) > 0 not solved by the
preceding results are thus the following ones:

• C is elliptic, and Δ = (1− 1
2 ).{a}, a ∈ C(k).

• C = P
1 and s ≥ 3, where s is the cardinality of the support D of Δ. Let

(m1 ≤ m2 ≤ . . . ≤ ms) be the corresponding multiplicities. We have thus:∑
j(1− 1

mj
) > 2, or equivalently

∑
j

1
mj

< s− 2. This gives the following

possibilities, with s = 3, 4, 5 only:
• s = 3, and (m1,m2,m3) ∈ {(2, 3, 7), (2, 4, 5), (3, 3, 4)}.
• s = 4, and (m1, . . . ,m4) = {2, 2, 2, 3}.
• s = 5 and (m1, . . . ,m5) = {2, 2, 2, 2, 2}.

The ‘orbifold Mordell Conjecture’ thus reduces to showing finiteness of
(S,Δ)-integral points for (S,Δ) in the above short list. Notice that its solution
would imply in particular the finiteness of the infinite union of classical
integral points for the orbifolds ‘divisible’ by Δ, which are the ones deduced
from Δ by multiplying each of its multiplicities by an arbitrary positive
integer (without changing the support). The orbifold conjecture thus looks
much stronger than its ‘classical’ version.

Remark 3.3. The complex function field version of the orbifold Mordell
conjecture is solved in [13]. For function fields over finite fields, the solution
is much more involved and more recent: see [32]. The hyperbolic version of
the orbifold Mordell conjecture is also known (see §3.8).

3.4 Solution of the Classical Version

This classical version is solved by Darmon-Granville in [25], the idea being to
remove the orbifold divisor Δ by means of suitable ramified covers π : C ′ → C
which are étale in the orbifold sense. We briefly sketch their arguments.
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Definition 3.4. Let π : C ′ → C be a surjective (hence finite) regular map
defined over k between two smooth projective curves. Let Δ :=

∑
j(1− 1

mj
).Dj

be an orbifold divisor defined over k on C. We shall say that π is a ‘classical’
orbifold morphism if, for any j, and any x′ ∈ π−1(Dj), the ramification order
ex′ of π at x′ is a multiple of mj.

We shall say that π is ‘classically’ orbifold-étale over Δ if we have the
equality ex′ = mj for any such x′, j. This is easily seen to be equivalent to:
π∗(KC +Δ) = KC′ .

The use of such covers is based on the following:

Proposition 3.5. Let π : C ′ → C, k,Δ be as in the previous definition, and
let S be a finite set of places of k. Assume that π is classically orbifold-étale
over Δ. We then have the following two properties:

1. π(C ′(k) \R) ⊂ (C,Δ)(S, k′)∗, R being the ramification of π.
2. There is a finite extension k′/k such that π(C ′(k′)) ⊃ (C,Δ)(S, k).

Proof. The proof of Claim 1 is easy just by going through the definitions.
By contrast, Claim 2 is an orbifold version of the theorem of Chevalley–Weil,
which deals with the case Δ = 0 in any dimension. Claim 2 is established, by
reduction to this classical result, in [25], Proposition 3.2. ��

The rest of the argument is purely geometric, by constructing suitable
orbifold-étale covers.

• We first deal with the ‘easy’ case in which deg(KC + Δ) ≤ 0. In this
case C = P

1. The proof just consists in producing a suitable orbifold-étale
cover π : C ′ → P

1 over Δ and defined over Q̄, with C ′ either elliptic (if
deg(KC + Δ) = 0), or C ′ = P

1 (if deg(KC + Δ) < 0). This is classical
(and easy, except in the case where C = P

1, and Δ is supported on 3
points of multiplicities (2, 3, 5), where the Klein icosahedral cover solves
the problem). See [25], §6,7 and [3] for many more details. Only Claim 1
is needed here, together with the ‘potential density’ of rational and elliptic
curves.

• The second case deg(KC + Δ) > 0 requires much more. First one needs
an orbifold étale cover π : C ′ → C of (C,Δ). If C is elliptic, with Δ =
(1− 1

2 ).a, a ∈ C(k), this is given by a cover C ′ of C which ramifies at order
2 only over a, by first taking a double étale cover (still elliptic) π : C ′ → C
of C, and then a double cover of C ′ ramifying at order 2 over the two
points of the inverse image of a in C ′. Otherwise C = P

1, and the only
non-obvious cases are when s = 3 with 3 points 0, 1,∞ of multiplicities
p, q, r with 1

p + 1
q + 1

r < 1. The existence of such a cover C ′ follows from

the existence of finite quotients Qp,q,r of π1(P
1(C) − {0, 1,∞}), which is

a free group on two generators, and with Q a finite permutation group
containing 3 elements A,B,C of respective orders p, q, r, with C−1 = AB
(see [37], 1.2.13, 1.2.15). Applying claim 2 of Proposition 3.5, we see that
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π(C ′(k′)) ⊃ (S,Δ)(C). Since, by Faltings’ theorem, C(k′) is finite, so is
(S,Δ)(C).

Remark 3.6. The reason why the Orbifold Mordell Conjecture cannot be
proved by the same argument for ‘non-classical’ integral points is that
(above orbifold version of) the Chevalley–Weil theorem does not apply to
them: the lifting of integral Δ-points requires that the ramification orders
divide (and not only be smaller than) the corresponding multiplicities. More
precisely: contrary to what happens with the ‘classical’ integral points, the
arithmetic ramification can occur anywhere geometrically for non-classical
integral points. This is illustrated by the following simplest possible example.
Let (P1,Δ) where Δ is supported on {0,∞}, each of these two points being
equipped with the multiplicity 2. The classical integral points over Q, S = ∅,
are thus simply the squares of non-zero integers up to sign, while the non-
classical integral points are the non-zero 2-powerful numbers, which admit
odd arithmetic ramification at any prime, and are not the squares of a ring
of integer of the form Ok,S for any finitely generated extension of Q.

3.5 The abc-Conjecture

We state here its simplest form, for k = Q (a version for number fields has
been given by Elkies):

Conjecture 3.7. For each real ε > 0, there exists a constant Cε > 0 such
that for each triple (a, b, c) of positive coprime integers such that a + b = c,
one has: c ≤ Cε.rad(abc)

1+ε. Recall that rad(abc) is the product of the primes
dividing abc.

The rough meaning is that the exponents in the prime decompositions of
a, b, c cannot be ‘too’ large.

• The abc conjecture can be interpreted geometrically in terms of the number
of intersections counted without multiplicities of the section x = a

c with
the sections 0, 1,∞ on the arithmetic surface π : P1

Z → Spec(Z). It simply
says that the ‘height’, taken to exponent (1 − ε), of x is bounded by the
total number of intersection points (counted without multiplicities) of
this section with the 3 sections 0, 1,∞.

• Let us visualise the abc-conjecture, using the sections x, 0, 1,∞ of the
arithmetic surface π : P

1
Z → Spec(Z). The section x only gives the

intersection points of the section x with the 3 other sections, that is:
rad(a), rad(b), rad(c). To recover x, one needs additionally the arithmetic
intersection numbers. The abc-conjecture claims they are ‘small’ (with a
quantitative measure). The following exercise at least shows that they are
finite in numbers, that is: the radicals of a, b, c determine a, b, c = a+ b ‘up
to a finite ambiguity’ (Figure 3).



88 F. Campana

The two arithmetic sections x = 23
31 and x′ = − 22

32 meet the sections
(0), (1) and (∞) at the same points.

Intersections with: (0) (1) (∞)

SpecZ
2 3 5 7 . . .

(∞)

(1)

(0)

P
1
F2

P
1
F3

P
1
F5

P
1
F7

Fig. 3 Arithmetic sections are determined by their radicals at 0, 1,∞ up to finite
ambiguity

Remark 3.8. The abc-conjecture implies that there exists only a finite
number of triples of coprime integers (a, b, c) such that a + b = c, and
rad(abc) ≤ N . This is a special case of the finiteness of solutions of the S-unit
equation. It follows, for example, from the weak form of the abc-conjecture
proved in [44]. This finiteness is due to K. Mahler, originally. See [28] and
the references therein for more general statements. We illustrate below the
case where rad(abc) = 2.3.5 = 30.

Some of the solutions of the equation 2x ± 3y = ±5z are (x, y, z) =
(1, 1, 1), (2, 2, 1), (1, 3, 2), (4, 2, 2), (7, 1, 3). It is probably not easy to get a
complete list of all solutions, even over Z.
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3.6 abc Implies Orbifold Mordell

Since this is shown in [26] when Δ = 0, we only need to show this for the
remaining ‘minimal’ cases listed in Remark 3.2. We start with P

1 with 3
marked points.

• Let us show that abc implies the Mordell orbifold conjecture over Q for
(P1,Δ) with Δ as in Example 2.7 above. Indeed: if a (resp. b, resp. c) is

p-powerful (resp. q-powerful, resp. r-powerful), we have: rad(a) ≤ a
1
p ≤

c
1
p , and similarly rad(b) ≤ c

1
q , rad(c) ≤ c

1
r . We thus get: rad(abc) ≤

rad(a).rad(b).rad(c) ≤ c
1
p+

1
q+

1
r ≤ c1−

1
42 , since 1

p + 1
q + 1

r ≤ 1 − 1
42 for

each of the minimal orbifolds listed in Example 2.7, the minimum being
reached for the multiplicities (2, 3, 7). The conjecture abc implies that:

c1−
1
42 ≥ rad(abc) ≥ c1−ε

Cε
, for any ε > 0. Choosing ε < 1

42 gives: c
1
42−ε ≤

Cε, and so the claimed finiteness.11

• The Orbifold Mordell conjecture can be deduced from the abc-conjecture
also in the three remaining cases when either C = P

1, and Δ is supported
by 4 or 5 points on P

1 with multiplicities (2, 2, 2, 3) and (2, 2, 2, 2, 2),
respectively, or when C is elliptic and Δ is supported on a single point
with multiplicity 2. The derivation is, however, less direct less: one needs
to apply a variant of the method used by N. Elkies in [26] to derive
Faltings’ theorem from the abc-conjecture. One can proceed as follows:12

• First step (the same thus as in [41]):

Let f : C := P
1 → B := P

1 be a rational function f = F
G of degree d > 0,

quotient of polynomials F,G, defined over k, a number field. We shall use
the notations of [26]. Let P ∈ C(k), such that f(P ) /∈ {0, 1,∞}. Let H(P )
(resp. HP ) be the height of P (resp. of f(P )). We denote by N0(f(P )) the
radical of F (P ). We have: Log(H(f(P ))) = d.Log(H(P )) +O(1).

Elkies shows that Log(N0(f(P ))) ≤ (k0

d ).Log(H(P )) + O(1), where k0 is
the cardinality (without multiplicities) of f−1(0). (The proof just consists in
removing the ramifications on this fibre). One has then similar inequalities
over the fibres of f over 1 and ∞ replacing f by (f − 1) and 1

f . From

which he concludes (using the Riemann–Hurwitz formula) that (k0 + k1 +
k∞).Log(H(f(P ))) ≥ d.Log(N(f(P ))) + O(1), with N := N0 + N1 + N∞,
where N1, N∞ are defined as N0, but considering the fibres over 1,∞ instead
of 0.

11This observation has been communicated to me by Colliot-Thélène, who attributed
it to P. Colmez.
12The referee informed me that this approach was already sketched in [1],§4.4, and
treated completely in [43]. Abramovich’s approach is based on Belyi maps and deals
with all cases simultaneously. The proof given below is the same, but constructs Belyi
maps explicitly in the three remaining cases mentioned above.
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His argument easily extends to the case where C is equipped with an
orbifold divisor Δ supported on the union of the fibres of f over 0, 1,∞. Let,
for each point aj in this union, mj be its multiplicity in Δ, and tj be the order
of ramification of f at aj . Define the number d0 :=

∑
aj∈f−1(0)(mj − 1).tj .

Define similarly d1, d∞ for the fibres of f over 1 and ∞. Elkies argument then
shows that: k0.Log(H(f(P ))) ≥ (d + d0).Log(N0(f(P )) + O(1). Adding the
two other inequalities on the fibres of f over 1,∞, we get:

(k0 + k1 + k∞).Log(H(f(P ))) ≥ (d.Log(N(f(P )) + δ +O(1),

where: δ = d0.Log(N0(f(P ))) + d1.Log(N1(f(P ))) + d∞.Log(N∞(f(P )))
Assume now that f is unramified outside of the three fibres over 0, 1,∞.

We then have: (k0+k1+k∞) = d+2. Assume also that min{d0, d1, d∞} ≥ 3.
We obtain: (d+ 2).Log(H(f(P ))) ≥ (d+ 3).Log(N(f(P ))), an inequality

satisfied only for finitely many P ′s ∈ k, by the abc-conjecture. This implies
Mordell orbifold for (C,Δ).

• Second step (construction of Belyi maps):

In order to show that this applies to C = P
1, with Δ either of the

form (2, 2, 2, 3) or (2, 2, 2, 2, 2), we consider f : P
1 → P

1 defined by

f(x) := x2(x−1)(x−w)
ux−v . The fibre of f over 0 consists thus of 3 points,

one double (0), two simple (1, w). The fibre of f over ∞ consists of two
points: the triple point ∞ and the single point v

u . We now fix 2 further
points (distinct from the preceding ones): b, c, and notice that the equation:
x2(x− 1)(x−w) = (ux+ v) + (x− b)2(x− c)(x− t) with unknowns u, v, w, t
has a unique solution. This means that the fibre of f over 1 has 3 points: one
double (b) and two simple ones: (c, t).

In order to deal with Δ = (2, 2, 2, 3), we attribute to the points 0, 1, b,∞,
respectively, the multiplicities 2, 2, 3, 2 . An easy check shows that d1 =
4, d0 = d∞ = 3.

In order to deal with Δ = (2, 2, 2, 2, 2), we attribute to all of the 5 points
0, 1, b, c,∞ the multiplicity 2. One again easily checks that d0 = d1 = d∞ = 3.

The last remaining case is when C is elliptic, and Δ = (1 − 1
2 ).{a}, a ∈

C(k). It can be reduced similarly to abc by composing the above map f(x) :=
x2(x−1)(x−w)

ux−v with the double cover g : C → P
1 so that its 4 ramification

points are sent by f to 0, 1, b, c, and a to ∞, equipping again each of these 5
points with the multiplicity 2.

This concludes the proof that abc implies orbifold Mordell.
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3.7 Ramification of Belyi Maps

The question we would like to address here is whether the (non-classical)
orbifold Mordell conjecture for one single orbifold pair (P1,Δ) of general type:
P
1 with the 3 marked points 0, 1,∞ of multiplicities (3, 3, 4) (for example,

one could choose (2, 3, 7) or (2, 4, 5) instead) implies Mordell Conjecture=
Faltings’ Theorem, for every curve defined over Q. One may of course raise
this question for the other minimal orbifolds over P1 listed in Remark 3.2.

A positive answer to the following question implies this statement:

Question 3.9. Let C be a curve defined over Q. Does there exist:

1. An unramified cover u : C̃ → C.
2. A Belyi map β : C̃ → P

1 (unramified over the complement of {0, 1,∞})
such that each of its ramification orders over 0 (resp. 1, resp. ∞) are at
least 3, (resp. 3, resp. 4)?

The usual construction of Belyi maps cannot produce Belyi maps such as
in the preceding question. Assume indeed that g is already a Belyi map for
C, but has some unramified point over each of 0, 1,∞. In order that f ◦ g be
a Belyi map satisfying the condition 2 of 3.9, the map f itself should already
be a Belyi map satisfying this very same condition. The Riemann–Hurwitz
equality contradicts the existence of such an f .

Faltings’ Theorem would follow from a positive answer to Question 3.9 and
Orbifold Mordell. Indeed: fix k, a number field of definition of a given C, and
let u, β answering positively the Question 3.9. Let k′/k be a finite extension
such that u(C̃(k′)) ⊃ C(k) (using the Chevalley–Weil Theorem). Since β is
an orbifold morphism to (P1,Δ), we get a map with uniformly finite fibres
from C̃(k′) to (P1,Δ)(Ok′), the last set being finite by the Orbifold Mordell
conjecture for any k′. We thus get the finiteness of C(k).

Remark 3.10. The Question 3.9 bears a certain similarity with the notion
of universal curves introduced in [7] (although the étale covers there are over
the universal curve). I thank A. Javanpeykar for bringing this reference to
my knowledge.

3.8 Link with Complex Hyperbolicity

Let C be a connected smooth projective curve C. By the Poincaré–Koebe
uniformisation, there is a non-constant holomorphic map h : C → C if and
only if C is not uniformized by the unit disk D ⊂ C, that is: if g(C) ≤ 1.
Similarly, if C is defined over a number field k, the potential density of C(k)
holds if and only if there exists such a map h. It is very easy to check that
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this equivalence still holds for quasi-projective curves (C−D), again by their
uniformisation for the hyperbolic version.

We show in [18], using Nevanlinna’s Second Main Theorem with trun-
cation at order one, that the same thing is true for ‘orbifold curves’ (the
notion of morphism h : C → (C,Δ) being defined as in Definition 2.5 in
the two possible ways (‘classical’ and ‘non-classical’). The orbifold Mordell
Conjecture thus remains open only in its arithmetic version.

This link, initiated by S. Lang, will be studied in higher dimensions as
well.

4 The Kodaira Dimension

4.1 The Iitaka Dimension of a Line Bundle

Since, for projective curves, the invariant h0(C,KC) = g determines the
qualitative arithmetic, it is natural to consider it also in higher dimensions.
The invariant h0(X,KX) is birational, but no longer preserved by étale
covers in dimension 2 already, and one needs more information: the values
h0(X,m.KX) := pm(X),m > 0, the ‘plurigenera’ of Enriques. We shall even
abstract more (in order to get a birational invariant preserved by étale covers),
and only consider the asymptotic behaviour of the plurigenera as m goes to
+∞, for a given X. The notion actually makes sense, and is extremely useful,
more generally, for arbitrary line bundles L, not only for L = KX .

• Let X be a connected projective manifold of dimension n defined over a
field k of characteristic 0. Let L be a line bundle on X. Let h0(X,L) ∈ N

be the k-dimension of its space H0(X,L) of sections. If h0(X,L) > 0, let
ΦL = X ��� P(H0(X,L)∗) be the rational map which sends a generic
x ∈ X to the hyperplane of H0(X,L) consisting of sections vanishing at x.
We thus have: 0 ≤ dim(ΦL(X)) ≤ n. We denote either with m.L or with
L⊗m,m ∈ Z the m-th power of L.

Definition 4.1. We define κ(X,L) ∈ {−∞, 0, . . . , n} as being −∞ if
h0(X,mL) = 0, ∀m > 0. Otherwise, κ(X,L) := maxm>0{dim(ΦmL(X))}.

An alternative definition, not immediately, equivalent is:

κ(X,L) := limm→+∞
{Logh0(X,m.L)

Logm

}
,

roughly meaning that h0(X,m.L) grows like the κ(X,L)-th power of m as m
goes to +∞.
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Example 4.2.

• κ(X,L) = −∞ if L = OX(−D) for some effective divisor D. And also
when X is an elliptic curve, if c1(L) = 0, but L is not torsion in Pic(X).

• κ(X,L) = 0 iff h0(X,mL) ≤ 1, ∀m > 0, with equality for some m > 0, for
example, if L is torsion in Pic(X).

• κ(X,L) = n iff mL = A + E, for some m > 0, A ample and E effective.
Then L is said to be ‘big’.

• κ(X,L) = d ∈ {1, . . . ., n} if p : X → Z be regular onto, with d := dim(Z),
and L = p∗(A), A ∈ Pic(Z), ample. Indeed, one has:

• κ(X, p∗(M)) = κ(Z,M), for any line bundle M on Z.

The following theorem gives a weak analogue in general:

Theorem 4.3. If κ(X,L) = d ≥ 0, for any sufficiently large and divisible
integer m > 0, the rational map Φm.L has connected fibres, its image Zm = Z
has dimension d and its generic fibre Xz has κ(Xz, L|Xz

) = 0. Moreover, Zm

is birationally independent of m > 0 sufficiently large and divisible.
If d = n, ΦmL(X) is birational to X for m large enough.

Observe however that, in general, L will not be torsion on the general fibre
of ΦmL. Many more details and numerous examples can be found in [46].

The following Proposition gives an upper bound on κ(X,L):

Proposition 4.4 (‘Easy Additivity’). Let p : X → Z be a fibration, and
L ∈ Pic(X). Let Xz be the general fibre of p. Then:

κ(X,L) ≤ κ(Xz, L|Xz
) + dim(Z).

4.2 The Kodaira Dimension κ

The fundamental case is when L = KX := det(Ω1
X), the canonical line bundle

on X. One writes then: κ(X) := κ(X,KX).
The invariant κ(X) enjoys several properties:

• It is birational, and preserved by finite étale covers.
• Additive for products: κ(X := Y × Z) = κ(Y ) + κ(Z), since:

h0(X,mKX) = h0(Y,mKY )× h0(Z,mKZ), ∀m.

• In particular: κ(X) = −∞, ∀Z, if κ(Y ) = −∞ (e.g.: Y = P
1).

• Also: κ(X) = κ(Z) if κ(Y ) = 0.



94 F. Campana

4.3 First Examples: Curves and Hypersurfaces

For curves, κ(X) tells (almost) everything, qualitatively, it indeed describes
X, its topology, fundamental group, as well as hyperbolicity and arithmetic
properties.

κ g X X(k)

−∞ g = 0 P1 Potentially dense

0 g = 1 C/Λ Potentially dense

1 g ≥ 2 D/Γ Not potentially dense

The preceding trichotomy (according to the ‘sign’ of KX : positive, zero or
negative) still appears in the special case of smooth hypersurfaces in Pn+1.

• Hypersurfaces in Pn+1. Let Hd ⊂ Pn+1 be a smooth hypersurface of
degree d (defining by a homogeneous polynomial in (n + 2) variables of
degree d). The adjunction formula shows that KHd

= O(d − n + 2)|Hd
.

Thus KHd
is ample if d ≥ (n+ 3), trivial if d = (n+ 2) and anti-ample if

d ≤ (n+ 1). We thus have, in particular: κ(Hd) = n (resp. 0, resp.−∞) if
d > n+ 2 (resp. d = n+ 2, resp. d < n+ 2).

• Hypersurfaces in Pn+1−k × Pk. Let now H := Hd,d′ be a smooth
hypersurface of bidegree (d, d′) in this product (this means that H ∩ F
is a hypersurface of degree d′ (resp. d) when intersected with a generic
Pn+1−k × {a′} (resp. {a} × Pk). The adjunction formula now shows that
KH = O(d−(n+2−k), d′−(k+1))|H . One thus obtains that κ(H) = −∞
if d ≤ n+1−k, or if d′ ≤ k, that κ(H) = 0 if d = n+2−k and d′ = k+1,
that κ(H) = k if d = n + 2 − k, d′ ≥ k + 2, that κ(H) = n + 1 − k if
d > n+ 2− k, d′ = k + 1, and that κ(H) = n if d > n+ 2− k, d′ > k + 1.

• The smooth hypersurfaces in products of projective spaces show that
arbitrary κ may occur, which are not determined simply by those of base
and fibres.

4.4 The Iitaka–Moishezon Fibration

There are 3 fundamental cases (as for curves with g = 0, 1,≥ 2):

1. κ(X) = −∞.
2. κ(X) = 0.
3. κ(X) = n. In this third case, X is said to be ‘of general type’.

Let us briefly comment on these 3 classes:
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• κ = n is a large class (as for curves), it contains the smooth hypersurfaces
of degree at least (n+ 3) in Pn+1. This is the reason for the term ‘general
type’ introduced by B. Moishezon. They are conjectured to be Mordellic by
S. Lang. Examples of manifolds of general type are quotients of bounded
domains in C

n by discrete torsion-free groups of automorphisms, which are
higher dimensional analogues of curves of genus greater than 1. But many
manifolds of general type (such as hypersurfaces of dimension greater than
1) are simply connected.

• κ = 0 contains manifolds with trivial (or torsion) canonical bundle, the
structure of which is partially understood by means of the Beauville–
Bogomolov–Yau decomposition theorem. They are however classified only
in dimension 2. Even in dimension 3, it is unknown whether or not there
are finitely many deformation families.

We conjecture that the manifolds with κ = 0 are Potentially Dense. It is
expected that on suitable mildly singular birational models their canonical
bundle becomes torsion.

• κ = −∞: this class contains products P1 × Z, ∀Z. It is discussed below.

This class thus does not consist only of Potentially dense manifolds. We
define below the more restricted class of ‘rationally connected’ manifolds,
conjectured to be potentially dense, which permits to ‘split’ any manifold
with κ = −∞ by means of a single fibration into a rationally connected part
(the fibres), and a part (conjecturally) with κ ≥ 0 (the base).

• The structure of the intermediate cases when 1 ≤ κ(X) = d ≤ (n − 1)
‘reduces’ (to some extent) to the case of κ = 0 and lower dimension, by
means of the following ‘Iitaka–Moishezon fibration’ J .

Proposition 4.5. The map J := ΦmKX
: X ��� Z := Φm.KX

(X) = J(X),
for m > 0 suitably large and divisible is birationally well-defined, and
may thus be assumed to be regular. Its generic fibres Xz are then smooth
with κ(Xz) = 0, because κ(Xz,KX|Xz

) = 0, and KX|Xz
= KXz

(by the
‘Adjunction formula’).

J is defined over k, if so is X

Example 4.6. The fibration J is the projection onto the second (resp. first)
factor when Hd,d′ ⊂ Pn+1−k × Pk is a smooth hypersurface of bidegree (n +
2− k, d′) (resp. (d, k + 1) if d′ > k + 1 (resp. (d > n+ 1− k)).

When κ(X) = 0, Z is a point, and J does not give any information.
In the other extreme case, where κ(X) = n, J embeds birationally X in
the projective space P((H0(X,m.KX)∗), for appropriate m > 0. One thus
‘reconstructs’ X from its pluricanonical sections.

Caution In general, however, κ(Z) ≤ d := dim(Z) = κ(X) (and strict
inequality may occur, as shown by Example 4.6, since the base of J is then a
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projective space). The fibration J thus does not in general decompose X in
parts with κ(Xz) = 0 and κ(Z) = dim(Z).

• Notice also that J is not defined when κ(X) = −∞. This case κ(X) = −∞
requires a completely different treatment, which we briefly describe below.

4.5 Rational Curves and κ = −∞

In order not to overload the text with quotations, we have deleted them for
this section. The results in this section are mainly due to Mori, Miyaoka–
Mori, Campana, Kollár–Miyaoka–Mori, Graber–Harris–Starr.

Definition 4.7. A ‘rational curve’ on X is the image of a regular non-
constant map: P

1 → X. We say that X is uniruled if it is covered by
rational curves, or equivalently, if there exists a dominant rational map
P
1 × Tn−1 ��� X for some (n− 1) dimensional variety Tn−1.

If X is uniruled : κ(X) ≤ κ(P1 × T ) = −∞. Thus κ(X) = −∞. The
converse is a central conjecture of birational geometry, known up to dimension
3:

Conjecture 4.8 (‘Uniruledness Conjecture’). If κ(X) = −∞, X is
uniruled.

The decomposition of arbitrary X into parts with a ‘birationally signed’
canonical bundle depends on some or other form of this central conjecture.

4.6 Rational Connectedness and κ+ = −∞

Definition 4.9. X is ‘rationally connected’ (RC for short) if any two
generic points of X are joined by a rational curve.

Example 4.10.

1. Let X = P
1 × C, for C a projective curve of genus g: X is uniruled, but

it is rationally connected if and only if g = 0.
2. Unirational manifolds (those dominated by P

n) are RC.
3. Fano manifolds (those with −KX ample) are rationally connected.
4. Smooth hypersurfaces of degree at most (n+ 1) in P

n+1 are Fano.
5. Rationally connected manifolds are simply connected.
6. Although no rationally connected manifold is presently proved to be non-

unirational, it is expected that this is the case for most rationally connected
manifolds of dimension 3 or more. In particular, the (non) unirationality
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of the double cover of P3 ramified along a smooth sextic surface S6 is an
open problem.

Remark 4.11. If X is defined over a field k ⊂ C and is uniruled (resp.
rational, unirational, rationally connected over C) it is not difficult to see
that it has this property also over some finite extension of k.

Theorem 4.12. For any X, there is a unique fibration rX : X → RX such
that:

1. its fibres are rationally connected, and:
2. RX is not uniruled.

It is called the ‘rational quotient’, or the ‘MRC13 of X.
If X is defined over k, so is rX .

The fibration rX thus decomposes X into its antithetic parts: rationally
connected (the fibres) and non-uniruled (the base RX). The extreme cases
are when X = RX (i.e.: X is not uniruled), and when RX is a point (i.e.: X
is rationally connected).

Remark that the uniruledness conjecture implies that κ(RX) ≥ 0. This
leads to the following definition:

Definition 4.13. Define, for any projective X:

κ+(X) := max{κ(Y )|∃ dominant f : X ��� Y }

From Theorem 4.12, one gets:

Proposition 4.14. Assume the Uniruledness Conjecture 4.8. The following
are then equivalent:

1. X is rationally connected.
2. κ+(X) = −∞.

Moreover, the ‘rational quotient’ is also the unique fibration g : X → Z on
any X such that:

1. κ+(Xz) = −∞ for the general fibre Xz of g, and:
2. κ(Z) ≥ 0.

Note that these conjectural characterisations of rational connectedness and
of r do not rely on rational curves, but only on κ and its refinement κ+. The
rational quotient will also be constructed without mentioning rational curves,
conditionally on conjecture Cn,m, in §6.5.

Remark 4.15. We conjecture that manifolds with κ+ = −∞ are potentially
dense. Thus so should be the rationally connected manifolds. Much more

13Stands for ‘maximally rationally connected’.



98 F. Campana

generally, we conjecture that ‘special manifolds’ (defined later) are exactly
the potentially dense manifolds.

5 Surfaces

5.1 Classification of Surfaces

If S is a smooth projective surface, we have: κ := κ(S) ∈ {−∞, 0, 1, 2}. The
maps r and J permit to elucidate the structure of S when κ(S) �= 2.

When κ = −∞, the uniruledness conjecture is a classical result of
Castelnuovo, and we thus get a non-trivial rational quotient r : S → R,
where R is either a curve Cq of genus q = h0(S,Ω1

S) > 0, or a point (in which
case S is rationally connected, and even rational).

When κ = 1, one has the Iitaka–Moishezon fibration J : S → B, with
smooth fibres elliptic, and B a curve. One says that S is an elliptic surface
over B.

When κ = 0, a precise classification is known: S is covered by a blow-up of
either an abelian surface or of a K3 surface, where K3-surfaces are defined
by: q = 0,KS

∼= OS . They form a single deformation family containing the
smooth quartics in P3.

One thus gets the ‘Enriques–Kodaira–Shafarevich’ classification, displayed
in the table below (up to birational equivalence and finite étale covers), where
Cq denotes a curve of genus q, q := h0(S,Ω1

S) = 1
2b1(X). We indicate the

status of potential density for S defined over some large number field k. More
details below.

κ q S(up to bir, étale ∼=) S(k) potentially dense

−∞ q ≥ 0 P1 × Cq Yes iff q ≤ 1

0 0 K3 Yes in many examples

0 2 (C2/Λ) Yes, always

1 ≥ 0 Elliptic over Cq Yes in many examples if q ≤ 1

2 ≥ 0 No classification scheme No, in all known examples

5.2 Remarks on Potential Density

Our guiding principle here consists of the following 3 facts, for X a smooth
connected projective manifold defined over a number field k:

0. Potential density is a birational property.
1. Chevalley–Weil theorem: if X ′ → X is an étale covering, X ′(k) is

potentially dense if X(k) is (the converse is obvious).
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2. Lang’s conjecture:14 if X is ‘of general type’, then X(k) is not potentially
dense.

By Faltings’ theorem this holds for curves, but is open for surfaces.

Definition 5.1. We say that X (defined over C) is ‘weakly special’ if, for
any finite étale cover u : X ′ → X, there exists no dominant rational map
f : X ′ ��� Z, with Z of ‘general type’ and dim(Z) > 0.

Remark 5.2. The 3 facts above imply that if X is not weakly special, X(k)
is not potentially dense. The following claims the converse also:

Conjecture 5.3 ( [30, Conjecture 1.2]). A projective manifold X/k is
potentially dense if and only if X is ‘weakly special’.

Remark 5.4. This conjecture conflicts with other conjectures stated below15

when dim(X) ≥ 3, but both conjectures agree for surfaces (because specialness
and weak specialness coincide for them).

Let us check the known cases of this conjecture for surfaces, according to
κ(S) = κ, for S a surface defined over a number field k. Let r : S̃ → S be
any finite étale cover of S, and q̃(S) the supremum (possibly infinite) of q(S̃)
when S̃ ranges over all finite étale covers of S. For example, q̃(S) = +∞ if
some S̃ fibres over a curve of genus g ≥ 2. Recall that a Theorem of Y.T. Siu
shows that this happens if and only if some finite index subgroup of π1(S)
admits a quotient which is a ‘surface group’ (i.e.: of the form π1(C) with
g(C) ≥ 2). Notice that q̃(S) ≥ 2 and κ(S) �= 0, 2 imply that some S̃ fibres
over a curve of genus at least 2, and so that: q̃(S) = +∞.

• κ = 2. If q̃(S) ≥ 2, then S is Mordellic, by Faltings’ Theorem (and
Kawamata Theorem on the structure of ramified covers of Abelian
varieties) showing that a subvariety of general type of an Abelian variety is
Mordellic. If q̃(S) = 0, 1, S is Mordellic conditionally on Lang’s conjecture.

• κ = −∞. Then S = P
1 ×Cq. Thus S(k) is potentially dense if and only if

so is Cq: The conjecture is true.

• κ = 0. Some S̃ is either an Abelian surface, or aK3 surface. Both are easily
seen to be weakly special. If S is an Abelian surface, S(k) is potentially
dense, and the conjecture then holds.

The conjecture then claims that K3 surfaces are potentially dense. This
is unknown in general, but known for K3 surfaces which are Kummer, or
admit either an elliptic fibration, or an automorphism group of infinite order
[6], the main idea of which is: if f : S → C is an elliptic fibration onto the

14Also attributed to E. Bombieri in the case of surfaces, although not in written form,
even in [9].
15Where ‘weak specialness’ is replaced by ‘specialness’.
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curve C, and if S contains a rational or elliptic ‘non-torsion multisection’,
then S(k) is potentially dense.

A ‘non-torsion multisection’ is an irreducible curve D ⊂ C such that
f(D) = C, and moreover such that, over the generic point of C, the fibre
of D has two points the difference of which is not torsion in the group of
translations of this (elliptic) fibre.

It is shown in [6] (this is the hardest geometric part) that elliptic K3
surfaces always contain some rational or elliptic ‘non-torsion’ D.

• κ = 1. Let f : S → C be the (elliptic) Moishezon–Iitaka fibration. A
major rôle is played by the ‘multiple fibres’ of f . Let indeed, for s ∈ C,
f∗(s) := (

∑
h th.Fh) be the scheme-theoretic fibre of f over s. Define:

ms := gcdh{th}. This is the ‘classical’ multiplicity16 of the fibre of f over
s, and it is equal to 1, except for finitely many (possibly none) s ∈ C. We
define now the ‘orbifold base of f’ to be the orbifold curve (C,Δf ), with
Δf :=

∑
s∈C(1− 1

ms
).{s}, a finite sum since (1− 1

ms
) = 0 iff ms = 1.

In this situation, we now have the following (geometric):

Lemma 5.5. An elliptic projective smooth surface S is weakly special if and
only if deg(KC +Δf ) ≤ 0.

Proof. The proof has two steps. First step: show that there exists17 an
‘orbifold-étale’ cover u : C ′ → C over Δf . Then KC′ = u∗(KC +Δf ), so that
deg(KC′) ≤ 0 iff deg(KC +Δf ) ≤ 0.

Second step: the (normalised) base-change f ′ : S′ := ̂S ×C C ′ → C ′ has
the property that u : S′ → S is étale.

If deg(KC +Δf ) > 0, g(C ′) ≥ 2, and S is not weakly special in this case.
Notice that Faltings’ and Chevalley–Weil theorems imply that S(k) is not
potentially dense, and the conjecture is true unconditionally.

If deg(KC +Δf ) ≤ 0, C ′ is rational or elliptic, and since f ′ : S′ → C ′ has
no multiple fibre, there is an exact sequence of groups:

π1(F
′
s) → π1(S

′) → π1(C
′) → {1}

which implies that no étale cover of S′ has a fibration onto a curve C ′′ with
g(C ′′) ≥ 2 (since π1(C

′′) has the free group on 2 generators as a quotient,
and is not solvable). ��

The Conjecture 5.3 is thus equivalent to the fact that S(k′) is dense when
deg(KC +Δf ) ≤ 0, which is open, but verified on many examples.

16We shall introduce its ‘non-classical’ version in §5.3 below.
17Except in two quite simple cases of P1 with Δ supported on one or 2 points, which
can be dealt with directly. We shall ignore these simple cases here.



Arithmetic Aspects of Orbifold Pairs 101

5.3 Fibred Simply Connected Surfaces of General
Type

We shall give here examples of smooth projective simply connected surfaces S
of general type (defined over Q) which are not potentially dense, conditionally
on the Orbifold Mordell Conjecture.18 Presently (July 2019) no such example
is known unconditionally.19

Let f : S → C be a fibration (with connected fibres) from the smooth
connected projective surface S onto the smooth projective curve C. We do
not assume that the smooth fibres are elliptic.

Let s ∈ C, and f∗(s) :=
∑

h th.Fh be the scheme-theoretic fibre of f over
s. We define two notions of multiplicity for this fibre:

• The ‘classical’ (or ‘gcd’) multiplicity m∗
s(f) := gcdh{th}.

• The ‘inf’ multiplicity ms(f) := infh{th}.
Of course, m∗

s(f) divides ms(f), both are 1 except possibly on the finite set
of singular fibres.

We now define two ‘orbifold bases’ of f :

• The ‘classical’ orbifold base (C,Δ∗
f ), with Δ∗

f :=
∑

s∈C(1− 1
m∗

s(f)
).{s}

• The orbifold base (C,Δf ), with Δf :=
∑

s∈C(1− 1
ms(f)

).{s}
Remark 5.6.

1. If f is an elliptic fibration, Δf = Δ∗
f . As we shall see, they may differ,

but only if the smooth fibres of f have g ≥ 2.
2. If (C,Δ∗

f ) is of general type, there is always a base-change v : C ′ → C,
orbifold-étale over Δ∗

f , with g(C ′) ≥ 2, such that the resulting normalised
base-change u : S′ → S is étale. Thus π1(S

′), which is a finite index
subgroup of π1(S), maps onto π1(C

′), showing that π1(S) is a ‘big’
hyperbolic non-abelian group.

3. The map f induces natural group-morphisms f∗ : π1(S) → π1(C,Δ
∗
f ) and

π1(C,Δf ) → π1(C,Δ
∗
f ), but f∗ does not lift to a natural group-morphism

π1(S) → π1(C,Δf ). Here π1(C,Δ
∗
f ) is the quotient of π1(S \Δ∗

f ) by the
normal subgroup generated by the mj-th powers of a small loop winding
once around Dj, this for any j if Δ∗

f :=
∑

j(1− 1
mj

).{aj}.
We shall now construct fibrations f : S → C with (non-classical) orbifold

base (C,Δf ) of general type with S simply connected.

18The particular case of P1 with m ≥ 5 points of multiplicity 2 is sufficient.
19Unconditionally, quasi-projective examples are given in [24], and projective
examples over Fq(t), inspired by the ones given here, are proposed in [32]. The
Orbifold Mordell Conjecture over C(t) was previously established in [12].
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Proposition 5.7 ( [13]). Let f : S → C be a fibration from the smooth
projective connected surface S onto the projective curve C. Assume that
deg(KC +Δf ) > 0, and that S is simply connected. Then:

1. κ(S) = 2, the smooth fibres of f have g ≥ 2.
2. There exist such fibrations defined over Q. In this case:
3. If the orbifold Mordell conjecture is true, then S(k) is contained in a finite

number of fibres of f , for any number field k, and S(Q) is not potentially
dense.

Proof. Claim 1 follows from an ‘orbifold’ version of the Cn,m conjecture (see
below). We shall give examples of claim 2 below. For Claim 3, it suffices to
see that f(S(k)) is contained in (S,Δf )(C) (finite by the orbifold Mordell
conjecture) for any k and a sufficiently large finite subset S of the places of
k, determined by a ‘model’ of (C,Δf ) over OS,k, such that (C,Δf ) has good
reduction outside of S. Let thus x ∈ S(k), and t be a k-rational function
which gives a local coordinate on C at f(x). Let p be a place of k outside
S. Assume that x /∈ f−1(s), if s is in the support of Δf . If the p reduction
of x belongs to the p reduction (Fh)pof some component Fh of f−1(s), let th
be the multiplicity of Fh in f∗(s). Then th ≥ ms(f), by definition of ms(f).
On the other hand, the arithmetic intersection number of f(x)p with (s)p is
the product of th with the arithmetic intersection number of (x)p with (Fh)p,
and is thus a multiple of th, and thus at least ms(f). ��
Remark 5.8. In the quasi-projective case, Corvaja–Zannier have given the
first example of simply connected quasi-projective smooth surfaces with a
non-Zariski dense set of integral points over any number field (see [24]).
Their proof uses Schmidts’ subspace theorem. Their examples (blow-ups
of P2 on union of 4 lines, removing the strict transforms, not the total
transform, of these lines, which permit to realise the simple-connectedness
of the complement) are similar to the ones given in §8.7 below, using infinite
multiplicities, instead of finite ones.

Example 5.9. We now give some examples of fibrations f : S → P
1 with

orbifold base of general type, and S simply connected. Different examples
where initially constructed in [13]. They are quite complicated, with fibres
of high genus g = 13 (but relatively simple multiple fibres consisting of 5
rational curves meeting transversally in a single point, their multiplicities
being (2, 2, 2, 3, 3)). In [45], L. Stoppino used former work of Namikawa–
Ueno [38] to give much simpler explicit examples with fibres of (minimal
possible) genus 2. In these examples, as in the examples produced in [13],
the ‘non-classical’ multiple fibres have ‘inf ’-multiplicity 2. We describe here
the simplest example of [41], to which we refer for more details, and in
particular the (quite involved) description of the multiple fibres, which are
trees of rational curves (and so are simply connected) (Figure 4).
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m = 2
m∗= 1

S
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g = 2

2

6

3
3

42

Fig. 4 A non-classical double fibre of genus 2

• Take the ramified 2-cover π0 : S0 → P
1×P

1 of equation y2 = t(x6+t.x3+t2)
(with affine coordinates (t, x) on P

1 × P
1). Resolve by r : S → S0 the

singularities of S0 to get an isotrivial fibration f = q ◦ π0 ◦ r : S → P
1,

where q : P
1 × P

1 → P
1 is the first projection which sends (t, x) to t.

The fibration has then smooth fibres of genus 2 and two simply connected
fibres of ‘inf ’-multiplicity 2, over t = 0,∞. More precisely, each of these
fibres consists of 6 rational curves building a tree, their multiplicities being
(2, 6, 3, 3, 4, 2).

• The surface S so constructed is defined over Q, and is rational. It is thus
potentially dense. In order to get a fibration of general type, it is sufficient
to make a generic cyclic base-change u : P1 → P

1 of degree d ≥ 3 over the
base of q, and to normalise. The resulting surface S′ is then of general type,
simply connected, defined over Q, and the resulting fibration f ′ : S′ → P

1

has 2d ≥ 6 ‘non-classical’ double fibres, and no ‘classical’ multiple fibre.
The ‘orbifold Mordell Conjecture’ then implies that it is not potentially
dense. This would provide the first non-potentially dense simply connected
smooth surface defined over a number field.

5.4 Link with Hyperbolicity

A. In [18], Corollary 4, p. 208, based on Nevanlinna’s second main theorem
with truncation at level 1, it is shown that any entire curve h : C → S has
its image contained in a rational or elliptic component of some singular
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fibre of f , if S has a fibration on a curve such that its orbifold base is
of general type. This is the exact hyperbolicity analog of the conjectural
arithmetic statement of non-potential density.

B. It is shown in [10] that a complex projective surface S not of general
type admits a holomorphic map h : C

2 → S with dense image, if and
only if S is weakly special (with the possible exception of non-elliptic and
non-Kummer K3 surfaces). This leads to conjecture the equivalence of the
following three properties:

1. S is weakly special
2. S admit a dense entire curve20

3. S(k) is potentially dense (if S is defined over a number field k).

• Insufficiencies of the ‘weak specialness’:We shall see in §8.7 that from
dimension 3 on, the property of ‘weak specialness’ is too weak to imply
property 2 (and conjecturally also property 3) above. We shall replace it
by the ‘specialness’ property, defined below.

6 Decomposition of Arbitrary X’s

We have previously defined 3 classes of ‘primitive’ manifolds: those with κ+ =
−∞, κ = 0, or with κ = dim (i.e.: of general type), respective generalisations
of rational, elliptic, and hyperbolic curves. We now decompose any higher
dimensional X into ‘twisted products’ of manifolds of these 3 primitive types
by a suitable sequence of canonical and (birationally) functorial fibrations. We
first describe a decomposition by a canonically defined sequence of fibrations,
which is however conditional in the uniruledness Conjecture 4.8. We next
define a second decomposition by one single fibration which is unconditional
and also birationally functorial (while the steps of the first are not). The
abutments of both decompositions however agree (the first one existing only
conditionally).

6.1 The (J ◦ r)n Decomposition

Let X be arbitrarily be given, and let r : X → RX be its ‘rational quotient’.
Assuming the ‘uniruledness Conjecture’ 4.8, one gets that κ(RX) ≥ 0, so
that the Iitaka–Moishezon fibration J : RX → J(RX) is always birationally

20We do not conjecture the existence of a Zariski dense map h : C2 → S for any
non-elliptic and non-Kummer K3 surface S.
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defined.21 The composite map: J ◦ r : X → J(RX) is thus defined for every
X, and can be iterated. The following properties are easy:

1. X = J(RX) if and only if X is of general type. Thus:
2. Defining inductively the k-th iterate (J ◦ r)k : X → Xk = (J(RXk−1

)),
with X0 := X, we see that dk := dim(Xk) is decreasing. Next (by 1.),
dk+1 = dk if and only if Xk is of general type.

3. In particular, (J ◦ r)n : X → Xn is a fibration over a manifold Xn of
general type (possibly a point), with fibres towers of fibrations with fibres
alternatively either rationally connected, or with κ = 0.

We call this map c : (J ◦ r)n : X → Xn the ‘weak core map’ of X. It has
been constructed conditionally on Conjecture 4.8. We shall now give a (more
general) unconditional construction.

The ‘weak core map’ however fails to be preserved even by finite étale
covers (see Example 6.15). This is due to neglecting the multiple fibres of the
fibrations J . This will be corrected later (see §8.1) by introducing ‘orbifold
bases’ of fibrations.

The relevance to potential density will be explained in §8.4.

6.2 The Cn,m Conjecture

Let f : X → Z be a fibration between complex projective manifolds, denote
by Xz its generic (smooth) fibre.

Proposition 6.1 (‘Easy Addition’). κ(X) ≤ κ(Xz) + dim(Z).22

The following is a central conjecture of classification:

Conjecture 6.2 (‘Cn,m-conjecture’). κ(X) ≥ κ(Xz) + κ(Z).

Theorem 6.3 (E. Viehweg). κ(X) = κ(Xz)+dim(Z) when Z is of general
type. In particular, if Xz is of general type, so is X.

We shall formulate an ‘orbifold’ version of this conjecture in §7.4. This
orbifold version is known also when the ‘orbifold base’ of f is of general type.

Corollary 6.4. If κ(X) = 0, there is no rational fibration f : X → Z, with
Z of general type and dim(Z) > 0.

Indeed: 0 = κ(X) ≥ κ(Xz) + dim(Z) > κ(Xz) ≥ 0 (the last inequality is
easy).

21Note however that these maps are all almost holomorphic, that is: their indetermi-
nacy loci do not dominate their images.
22This inequality is true for any line bundle, not only KX .
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6.3 A Decomposition Criterion

Let C be a class of complex (connected) projective manifolds, stable by
birational equivalence. We denote by C⊥ the class of all (complex projective)
manifolds X which do not admit any dominant rational fibration onto any
Z ∈ C. We call C⊥ the ‘Kernel’ of C.
Definition 6.5. We say that the class C is ‘stable’ if the following two
properties E1 and E2 hold true.

(E1) If f : X → Z is a surjective regular fibration with general (smooth)
fibre Xz ∈ C, and Z ∈ C. Then X ∈ C.

(E2) If a connected projective manifold Y is equipped with two (surjective)
fibrations h : Y → Z, g : Y → T such that h : Yt → h(Yt) ⊂ Z is birational
for t ∈ T generic, and if Z ∈ C, then Yt ∈ C for t ∈ T generic. We abbreviate
this property by saying that the general member of a Z-covering family of
varieties is in C if Z ∈ C.
Theorem 6.6. Assume that C is stable. Then, for any complex projective
X, there exists a unique fibration γX : X → CX such that:

1. its general fibre Xz ∈ C⊥.
2. CX ∈ C.
If X is defined over k, so is γX .

We call γX the C-splitting of X.
The C-splitting is functorial: any rational dominant fibration f : X → Z

induces a unique rational fibration γf : CX → CZ such that γZ ◦f = γf ◦γX .

Proof. We proceed by induction on n := dim(X), the assertion being true for
n = 0 (in which case X ∈ C∩C⊥, by convention). Let g : X → Z be a rational
fibration with Z ∈ C, d := dim(Z) being maximal with this property. If d = 0,
we are finished since then X ∈ C⊥, by definition. Otherwise: (n−d) > 0, and
so the proposition holds for Xz. By uniqueness of the map γ for Xz, Chow
space theory shows the existence of fibration γX/Z : X → Y and h : Y → Z
such that h ◦ γX/Z = g, and such that the restriction γz : Xz → Yz is γXz

(already inductively existing) for Xz, z ∈ Z general. By property (E1), since
we have: Yz ∈ C, and Z ∈ C, we have Y ∈ C. The maximality of dim(Z)
implies that Y = Z, the fibres Xz of g thus coincide with those of γX/Z ,

which are in C⊥. The map g thus enjoys the two claimed properties.
The uniqueness follows from (E2). Let indeed k : X → Y be a second

fibration enjoying properties 1 and 2, with dim(Y ) maximal, thus dim(Y ) =
dim(Z) = d. Let y ∈ Y be general, Xy := k−1(y), and Zy := g(Xy) ⊂ Z.
By property E2, Zy ∈ C. Since Xy ∈ C⊥, Zy is a point. There thus exists
a map h : Y → Z such that g = h ◦ k. Since dim(Y ) = dim(Z), we have
Z = Y, g = k (birationally).

The functoriality follows from a similar argument: the fibres of γX , which
are in C⊥, are mapped by γZ ◦f to a covering family of subvarieties of CZ ∈ C;
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they are thus points, by E2. This implies the claimed factorisation of γZ ◦ f
through γX . ��
Remark 6.7. The existence of γX follows from E1, the uniqueness from E2.
The proof shows that the fibres of γX are the largest subvarieties of X in C⊥,
and that Z = CX dominates any member of C dominated by X.

Denoting with P the class of all (complex, connected) projective manifolds,
it is tempting to write the content of the C-splitting in the form of a short
exact sequence [C⊥] → P → C, to mean that any X ∈ P is in a unique way
an ‘extension’ of an element of C by a (deformation class) of C⊥, a fibration
being seen as an ‘extension’ of its base by its general fibre.

We shall now apply this criterion in two situations.

6.4 The Weak Core Map

Proposition 6.8. Let C := Kmax be the class of manifolds of general type.
It is stable, i.e. enjoys the properties E1,E2 of Theorem 6.6.

Proof. Property E1 follows directly from Theorem 6.3. Property E2 follows
from the ‘easy addition’ property (6.1). ��

Let now Sw be the smallest class of complex projective manifolds
containing those with κ = 0, κ+ = −∞, and stable by ‘extensions’ (i.e.:
such that X ∈ Sw whenever there is a fibration f : X → Z with Z ∈ Sw and
Xz ∈ Sw).

Lemma 6.9. Sw ⊂ (Kmax)⊥, the class of manifolds not dominating any
positive-dimensional manifold of general type.

Proof. (Kmax)⊥ is clearly stable by extensions, and contains the manifolds
with κ+ = −∞, by definition. It also contains those with κ = 0, by
Corollary 6.4. ��
Corollary 6.10. Let cX : Xn → CX be the ‘weak core map’ of an arbitrary
n-dimensional X = Xn. Assume Conjecture 4.8, so that the map (J ◦ r)n is
defined. Then cX = (J ◦ r)n, and Sw = (Kmax)⊥.

The weak core map is functorial: any fibration f : X → Z induces a
(rational, dominant) map cf : CX → CZ .

Proof. Both maps have a base in Kmax and general fibres in (Kmax)⊥,
they thus coincide by uniqueness of the weak core. Applying this to any
X ∈ (Kmax)⊥ shows that X ∈ Sw. The functoriality is a special case of
Theorem 6.6. ��
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Remark 6.11. Let us stress that the weak core map is defined uncondition-
ally, contrary to (J ◦ r)n. Also, the map J is not functorial, and so the
functoriality of (J ◦ r)n does not follow directly from its construction.

6.5 The κ-Rational Quotient

We show here how to construct the rational quotient map rX : X → RX

without mentioning rational curves (but assuming Cn,m and 4.8).
Let K≥0 be the class of projective manifolds X with κ(X) ≥ 0. The class

(K≥0)
⊥ thus consists, by definition, of all manifolds with κ+ = −∞.

Lemma 6.12. Assume Conjecture Cn,m. The class K≥0 then enjoys prop-
erties E1, E2 of Theorem 6.6.

Proof. Property E1 follows directly from Cn,m, property E2 is shown as for
the class Kmax (by ‘easy addition’). ��

Applying Theorem 6.6 and the same argument as in Corollary 6.10, we
get:

Proposition 6.13. Assume conjecture Cn,m. For any X, there is a unique
fibration ρX : X → R(X) such that:

1. κ+(Xz) = −∞ for its general fibre Xz, and:
2. κ(R(X)) ≥ 0.

We call ρX the ‘κ-rational quotient’ of X.

Remark 6.14. We cannot however here show that ρX coincides with the
‘true’ rational quotient rX : X → RX , because we do not know whether
all manifolds with κ+ = −∞ are rationally connected. We can only show
(assuming Cn,m) that we have a factorisation ϕ : RX → R(X) such that
ρX = ϕ ◦ rX . The fibres of ρX are indeed not uniruled with κ+ = −∞. The
Conjecture 4.8 thus implies that ρX = rX .

6.6 The Weak Core Is Not Preserved by étale
Covers

This is shown by the following (simplest possible) example. This implies
(among other things) that it is inappropriate for the description of X(k′).
We shall replace it later with the ‘true’ core map, which takes into account
the multiple fibres of fibrations, and is preserved by finite étale covers.
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Example 6.15. Let C be a hyperelliptic curve of genus g ≥ 2, h : C →
P
1 := C/ < τ > be the double cover induced by the hyperelliptic involution

τ of C. Let E be an elliptic curve, and t a translation of order 2 on E. Let
S′ := E×C, and ι := t×τ the fixed-point free involution on S′. Let u : S′ → S
be the quotient by ι.

The projections J : S → P
1 := C/ < τ > (resp. J ′ : S′ → C) are the Iitaka

fibrations of S, S′, and J ◦ u = h ◦ J ′. The weak core map cS := (J ◦ r)2 :
S → CS of S maps S to a point, but cS′ = (J ◦ r)2 : S′ → CS′ = C is simply
the fibration J ′ : S′ → C, since g(C ′) ≥ 2. The natural map cu : CS′ → CS

thus does not preserve the dimension.
The surface S has an ‘orbifold quotient’ of general type, revealed on its

double cover S′, but may be seen directly on S if one considers the ‘orbifold
base’ of J , which is indeed of general type.

The ‘orbifold base’ of J consists of the base B = P
1 := C/ < τ > of J , in

which the points pj over which the fibre is multiple (here double) are equipped
with the multiplicity (2, here) of the corresponding fibre. The points pj are
here obviously the 2g + 2 points images of the hyperelliptic points of C. We
obtain thus the ‘orbifold base’ (B,Δ) with Δ =

∑j=2g+2
j=1 (1− 1

2 ).{j}, in such
a way that h∗(KB + Δ) = KC , by the ramification formula. Which indeed
shows that the orbifold curve (B,Δ) is of general type.

A second way to see this quotient of general type is to consider not only
the line bundle J∗(KP1), but its saturation LJ in Ω1

S, which has κ = 1 (See
Example 7.8). As we shall see in Theorem 7.6, the two aspects (orbifold base,
saturation of f∗(KS)) actually coincide.

• The failure of the weak core map will be corrected by the introduction of
‘orbifold base’ of fibrations, as in the preceding example. One has then,
however, to work in the larger category of ‘orbifold pairs’. Even if one only
wants to decompose projective manifolds without orbifold structures, these
will appear, as in the preceding example, in general when considering the
Moishezon–Iitaka fibration. For surfaces, this can be dealt with by suitable
étale covers, but no longer in dimension 3 or more (see Example in §8.7
below).

7 Special Manifolds

7.1 Definition, First Examples and Properties

From now on, Xn is a smooth and connected complex projective manifold23

of dimension n. Our exposition here is very sketchy. Details can be found in
[11] and [13].

23Or compact Kähler, more generally.
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Definition 7.1. X is special24 if κ(X,L) < p for any line bundle L ⊂ Ωp
X ,

and for any p > 0.

Example 7.2.

1. If X is a curve, the unique p > 0 to consider is p = 1, and so L = KX =
Ω1

X . A curve is thus special if either rational or elliptic.
2. If X is rationally connected, it is special (since it satisfies the much

stronger vanishing: h0(X,⊗mΩ1
X) = 0, ∀m > 0). This generalises rational

curves.
3. If κ(X) = 0, X is special. (See 7.11 below). This generalises elliptic

curves. Much more is expected to be true: κ(X,L) ≤ 0 for any L ⊂
⊗m(Ω1

X), ∀m > 0, L of rank 1, if κ(X) = 0.
4. If X is of general type, it is not special, using L = KX = Ωn

X .
5. More generally: if there is a fibration f : X ��� Zp, with p = dim(Z) > 0,

and if Z is of general type, then X is not special (take L = f∗(KZ) =
f∗(Ωp

Z) ⊂ Ωp
X), then κ(X,L) = κ(Z,KZ) = p, contradicting the

specialness of X).
6. Being special is preserved by birational equivalence and finite étale covers.

Thus ‘special’ implies ‘weakly special’. The converse holds for curves and
surfaces, but no longer for threefolds (see §8.7 below). See Theorem 7.4
for a characterisation of specialness in this direction.

7. The Kodaira dimension does not characterise (non-)specialness (except
for k = 0, n): if n ≥ 1, k ∈ {−∞, 1, . . . , (n − 1)}, there exist both special
and non-special manifolds with dim = n, κ = k.

Non-special examples are given by obvious products.
‘Special’ examples are given, if k ≥ 0, by smooth divisors X in P

n−k+1×
P
k of bidegree (n− k + 2, k + 2).

8. If h : C
n ��� X is a meromorphic (possibly transcendental) non-

degenerate map, X is special. ‘Non-degenerate’ means that it has non-
vanishing Jacobian generically. This is an orbifold version of a result of
Kobayashi–Ochiai.

9. If S is a smooth projective weakly special surface, it is special. When
κ(S) = −∞, 0, it is easy from the classification and 7.11. When κ(S) = 1,
this follows from Lemma 5.5.

Special surfaces thus have a very simple characterisation: κ(S) ≤
1, and q̃(S) ≤ 2. Specialness is preserved by deformation (and even
diffeomorphism) for surfaces.

We conjecture that specialness is preserved by deformations and spe-
cialisation of smooth (compact Kähler) manifolds.

24The name is inspired from Moishezon’s definition of ‘general type’, and supposed
to convey the idea that these manifolds are in a precise sense ‘antithetic’ to those of
general type, as will be amply illustrated below.
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Remark 7.3. One could replace the condition κ(X,L) < p by the stronger
condition ν(X,L) < p for any rank-one L ⊂ Ωp

X , where ν(X,L) ≥ κ(X,L)
is the numerical dimension of L. It is an open question whether one obtains
the same class of manifolds. It has been shown by C. Mourougane and S.
Boucksom that ν(X,L) ≤ p,∀p, L,X, strengthening Bogomolov’s theorem.
Notice however that it may happen that κ(X,L) = −∞ if ν(X,L) = p for
L ⊂ Ωp

X , as observed by Brunella on surfaces covered by the bidisk. The
situation is similar to the one considered in the next §7.2.

7.2 The Birational Stability of the Cotangent
Bundle

Let X be a complex connected projective manifold.
The canonical algebra K(X) := ⊕m≥0H

0(X,m.KX), and so also κ(X)
are not (birationally) functorial in the sense that a dominant rational map
f : X → Z does not induce any natural (injective) morphism of algebras
f∗ : K(Z) → K(X), or inequality κ(X) ≥ κ(Z) when dim(X) > dim(Z).

The ‘cotangent algebra’ Ω(X) := ⊕m≥0H
0(X,⊗mΩ1

X) is, by contrast,
obviously functorial, as well as κ++(X) := max{κ(X,L)|L ⊂ (⊗mΩ1

X)
coherent of rank 1, ∀m > 0}. We obviously have: κ++ ≥ κ+ ≥ κ, where
κ+ is defined in 4.13, and also obviously functorial.

One can show25 that κ++(X) = κ++(RX), where rX : X → RX is
the rational quotient of X (the same holds easily for κ+). This permits to
reduce the study of κ++ to the case when KX is pseudo-effective (i.e.: X not
uniruled). Assuming Conjecture 4.8, one even reduces the study of κ++ to
the case when κ(X) ≥ 0.

A stronger version is obtained by replacing κ(X,L) by its ‘numerical’
version ν(X,L) ∈ {−∞, 0, 1, . . . , dim(X)} (as defined by N. Nakayama):

ν(X,L) := inf{k ∈ Z|limm→+∞
(h0(X,mL+A)

mk

)
> 0},

where A is a sufficiently ample line bundle on X, for example: KX + (2n +
2).H,H any ample line bundle on X. We have: ν(X,L) ≥ κ(X,L) for any
line bundle L on X.

We defined (in [17]) ν+(X) just as κ++(X), just replacing there κ by
ν, and showed that ν+(X) = ν(X,KX) when KX is pseudo-effective. This
is the ‘birational stability’ of the cotangent bundle: the positivity of its line
subsheaves is controlled by the canonical bundle (and similarly for its tensor
powers) when X is not uniruled.

25Using arguments in [14].
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If we now assume the conjecture that ν(X,KX) = κ(X) for any X
such that KX is pseudo-effective, we obtain in this case: ν+(X) = ν(X) =
κ++(X) = κ(X), and ν+(X) = κ++(X) = κ(RX) for any X. A particularly
important case is when κ(X) = 0, in which case the conjecture is that
ν(X) = 0, implying that ν+(X) = κ++(X) = 0, a statement considerably
stronger than the proved specialness.

Another consequence of the conjecture ν(X) = κ(X) for X non-uniruled
were that κ(X) ≥ κ(Z) for any dominant rational map f : X → Z between
non-uniruled manifolds: apply the equality ν++ = ν of [17] to X and Z
together with the equalities ν++ = κ+ implied by the conjecture, and the
obvious inequality κ+(X) ≥ κ+(Z).

Similar results and conjectures hold for smooth orbifold pairs (X,Δ) as
well (see [17], [14]). When Δ is reduced, one just has to consider Ω1

X(Log(Δ))
in place of Ω1

X .
Let us finally observe that the rate of growth of the spaces of sections of

the symmetric powers of the cotangent bundle is in general unrelated to the
‘Kodaira’ dimension, as shown by the smooth hypersurfaces of the projective
spaces (since their cotangent bundles are known to be non-pseudo-effective).

7.3 Specialness as Opposed to Base Orbifolds of
General Type

The following is due to F. Bogomolov:

Theorem 7.4 ( [4]). Let X be projective smooth, and L ⊂ Ωp
X a line bundle.

Then:

1. κ(X,L) ≤ p.
2. If κ(X,L) = p, there exists a fibration f : X ��� Zp such that L = f∗(KZ)

generically26 on X.

Line bundles as in 2) are called ‘Bogomolov sheaves’.

Remark 7.5.

1. Bogomolov sheaves are thus ‘maximally big’ line subsheaves of Ω•
X . And

X is special if Ω•
X does not contain such maximally big line subsheaves.

2. There are many examples of Bogomolov sheaves L = f∗(KZ) ⊂ Ωp
X ,

generically over Z, and such that κ(Z) = −∞. This is due to the multiple
fibres of f , encoded in the ‘orbifold base of f ’. Hence the geometric
characterisation of ‘specialness’ is given in 7.7.

26I.e.: on a nonempty Zariski open subset.
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Theorem 7.6. Let f : X → Zp = Z be a fibration.27 Let L := f∗(KZ)
sat ⊂

Ωp
X be the saturation28 of f∗(KZ) in Ωp

X .
Then: κ(X,L) = κ(Z,KZ +Δf ).

29

Thus Δf encodes the difference between f∗(KZ) and its saturation:
κ(X, f∗(KZ)

sat)−κ(X, f∗(KZ)) = κ(Z,KZ+Δf )−κ(Z,KZ). This fails for
the ‘classical’ orbifold base of f , and is the main reason for the introduction
of this ‘non-classical’ notion.

We thus get a geometric characterisation of ‘specialness’:

Corollary 7.7. X is special if and only if, for any fibration f : X ��� Z,
the orbifold base of any of its ‘neat models’ is not of general type.

Of course, this implies that (but turns out to be much stronger than) the
non-existence of fibrations f : X ��� Z with Z of general type.

Example 7.8. Let us give the concrete meaning of the saturation in a simple
example: let f : S → C be a fibration of the surface S onto the curve C, with
an irreducible smooth fibre F = f−1(s) of multiplicity t > 1, thus given
in local analytic coordinates (x, y)on S by: f(x, y) = u := xt. Then Δf =
(1− 1

t ).{s}+ . . . near s in C.
Thus f∗(KC) = f∗(du) = t.xt−1.dx near s, while: f∗(KZ + Δf ) =

f∗
(

du

u(1− 1
t
)

)
= t.dx, which is indeed the saturation of f∗(du) in Ω1

S.

7.4 The Orbifold Version of the Cn,m Conjecture

Conjecture 7.9 (Conjecture Corb
n,m). Let f : X → Z be a fibration, with

generic fibre Xz. Then κ(X) ≥ κ(Xz) + κ(Z,Δf ).

Without Δf , this conjecture is due to S. Iitaka. More general versions30

exist. The special case where (Z,Δf ) is of general type is known:

Theorem 7.10 (Viehweg). In the situation of 7.9, if κ(Z,Δf ) = dim(Z),
we have: κ(X) = κ(Xz) + dim(Z).

27Recall that we sometimes indicate with a subscript the dimension of a complex
manifold, writing thus Xn, Zp. Here Z is thus p-dimensional.
28This is the largest subsheaf of Ωp

X containing f∗(KZ), generically equal to it.
29(Z,Δf ) is here the (non-classical) orbifold base of f on any suitable birational ‘neat
model’ of f .
30One can, for example, consider an orbifold pair (X,Δ) instead of X, and increase
accordingly the orbifold base divisor.
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This result is due to Viehweg when Δf = 0. The proof extends with some
adaptations to cover this more general case. The range of applicability is
considerably extended by the adjunction of the orbifold term.

Corollary 7.11. X is special if κ(X) = 0.

Proof. 0 = κ(X) = κ(Xz) + dim(Z) ≥ dim(Z) since κ(Xz) ≥ 0. ��
This is one of the basic examples of special manifolds, generalising elliptic

curves.

8 The Core Map

8.1 A Splitting Criterion

We briefly explain that one can extend Theorem 6.6 to the orbifold category
(Figure 5).

Let C be a class of (smooth projective) orbifold pairs.31 We define the
class C⊥ of smooth orbifolds admitting no dominant fibration such that a
neat model of its orbifold base belongs to C.

ΔC

orbifold base C(X),ΔC of general type

X

C(X)

cX

special fibers

multiple
fibers

Fig. 5 The core map

31Also stable by birational equivalence (in a suitable sense, not defined here).
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If we assume that the class C possesses the properties E1, E2, then we
have a C-splitting theorem entirely similar to 6.6 with the same proof.

We shall apply this to the following 2 cases, already considered when
Δ = 0. For them, property E2 is elementary, proved as when Δ = 0.

1. C is the class of orbifold pairs of general type. Property E1 follows from
the orbifold version 6.3 of Viehweg’s Theorem 6.3. This leads to the ‘core
map’ described in Theorem 8.1 below.

2. C is the class of orbifold pairs with κ ≥ 0. Property E1 is conditional in
Corb

n,m. This gives the ‘κ-rational quotient’ of Proposition 8.7.

8.2 The Core Map

Theorem 8.1. For any X, there is a unique fibration cX : X → CX , called
the ‘core of X ′, such that:

1. Its general fibres are special.
2. Its ‘orbifold base’ (CX ,ΔcX ) is of general type.

Functoriality: any dominant g : Y ��� X induces cg : CY → CX with cX ◦g =
cg ◦ cY .

If X is defined over k, so is cX by its uniqueness.

The proof works by induction on dim(X), using Theorem 7.10, in a way
entirely similar to the proof of Theorem 6.6.

• We use the same notation cX : X → CX for both the core map and the
weak core map. From now on we shall only consider the ‘true’ core map
(of Theorem 8.1), this should thus not lead to any confusion.

Let us first note that the ‘true’ core map corrects the failure of its weak
version:

Corollary 8.2. If u : X ′ → X is étale finite, cu : CX′ → CX is generically
finite, (ramified, but orbifold-étale).

In particular: if X is special, so is X ′.

Indeed: we can assume that X ′ is Galois over X, by uniqueness of the core
map of X ′, it is defined by a Bogomolov subsheaf which is preserved by the
Galois group, and thus descends to X as a Bogomolov subsheaf, since X ′ is
étale over X.

Corollary 8.3. If X is special, it is weakly special.

Indeed: any finite étale cover X ′ of X is still special, and thus does not
fibre over any positive-dimensional manifold of general type.

Example 7.2.9 shows that for surfaces, these two properties are equivalent,
this is however no longer true in dimensions 3 or more (see §8.7).
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8.3 The Conjectures for Arbitrary Projective
Manifolds

We formulate here our main conjecture without using orbifold notions. Its
solution (if any) will however require the orbifold version in §8.6 below.

Conjecture 8.4.

1. If X is special, π1(X) is almost abelian.
2. Being special is preserved by deformations and specialisations of smooth

manifolds.
3. X is special if and only if it contains a dense entire curve.
4. Let cX : X → C(X) its core map. There exists a complex projective

subvariety W � CX such that any entire curve h : C → X has image
either contained in c−1

X (W ), or in some fibre of cX .
If X is defined over a number field k:

5. X(k) is potentially dense if and only if X is special.
6. Let cX : X → C(X) its core map. There exists a complex projective

subvariety W � CX such that, for any finite extension k′/k, cX(X(k′))∩
U , is finite, U := (CX \W ). The smallest such W ⊂ CX has to be defined
over k. Let U := X \W .

Moreover, there exists k′ such that for any k” ⊃ k′, X(k”) is Zariski dense
in each fibre of cX lying over cX(X(k”)) ∩ U .

8.4 The c = (j ◦ r)n Decomposition of the Core

The ‘orbifold version’ of the ‘decomposition’ (J ◦ r)n of the ‘weak core map’
mentioned in Remark 6.1 coincides with the core. We give a very succinct
description, here.

Theorem 8.5. Let cX : X → CX be the core map of a smooth connected
projective manifold of dimension n. Assume the orbifold version32 Corb

n,m of
conjecture Cn,m given in 7.9. Then cX = (j ◦r)n, where r, j are the fibrations
defined below.

Let (X,Δ) be a smooth orbifold pair.

• The orbifold Iitaka fibration j: This is just the Iitaka fibration of the
Q-line bundle (KX +Δ) on X if κ(X,KX +Δ) ≥ 0. It induces a fibration
j : (X,Δ) → (J,Δj,Δ) with dim(J) = κ(X,Δ) and κ(Xz,Δ|Xz

) = 0, if
Xz is the generic smooth fibre of j.

32One needs the version for an orbifold pair (X,Δ), not just for X.
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• The ‘κ-rational quotient’ r :

Definition 8.6. We say that κ+(X,Δ) = −∞ if some/any neat orbifold
base (Z,Δf,Δ) of any fibration f : (X,Δ) ��� Z has κ(Z,Δf,Δ) = −∞.

When Δ = 0, this is equivalent (under the ‘uniruledness conjecture’) to
X being rationally connected. We conjecture (see next subsection) that this
is still true for orbifolds (with the usual definition of rational connectedness,
replacing rational curves by ‘orbifold (or Δ)-rational curves’, as defined in
Definition 2.5). Similarly to 4.12, we have:

Proposition 8.7. Assume Corb
n,m as stated in 7.9. Any smooth (X,Δ) admits

a unique fibration r : (X,Δ) → (R,Δr,Δ) such that:

1. κ+(Xz,Δ|Xz
) = −∞ for the generic fibre Xz of r.

2. κ(R,Δr,Δ) ≥ 0.
r is called the ‘κ-rational quotient’ of (X,Δ).

Corollary 8.8. X is special if and only if it has a birational model which
is a tower of neat fibrations with orbifold fibres having either κ+ = −∞, or
κ = 0.

Notice that ‘orbifold divisors’ will in general appear when encoding
multiple fibres, as shown by Example 6.15.

Remark 8.9. It is sometimes said that the ‘building blocks’ for the con-
struction of arbitrary manifolds are (terminal or canonical) varieties with
canonical bundles either anti-ample (i.e.: Fano), or numerically trivial, or
ample. The birational version being: rationally connected, κ = 0, or of general
type, respectively. We show here that these ‘building blocks’ need to be chosen
in the larger category of orbifold pairs.

8.5 Rationally Connected Orbifolds and κ+ = −∞

Definition 8.10. Let (X,Δ) be a smooth orbifold pair, with X complex
projective. We say that (X,Δ) is rationally connected if any two generic
points of X are contained in an orbifold rational curve33 h : P1 → (X,Δ).

Remark 8.11. One may expect that, just as when Δ = 0, the above
properties are equivalent to the ‘chain-connected’ version, and also to the fact
that any finite subset of X \ Δ is contained in a single irreducible orbifold
rational curve.

33As defined in 2.5.
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Conjecture 8.12. Let (X,Δ) be a smooth orbifold pair with X projective.
The following are equivalent:

1. (X,Δ) is rationally connected.
2. κ+(X,Δ) = −∞.
3. h0(X, [Symm(∧p)](Ω1(X,Δ))) = 0, ∀m > 0, p > 0.

We refer to [14], §2.7, for the definition of the integral parts of orbifold
tensors [Symm(∧p)](Ω1(X,Δ)) appearing in 8.12.3, and more details on this
notion. This conjecture is solved (see [33]) in dimension 2 when Δ is reduced
(i.e.: with multiplicities infinite).

8.6 The Orbifold Version of the Conjectures

Conjecture 8.13. Let (X,Δ) be a smooth projective orbifold pair.

1. Assume first that (X,Δ) is of general type, then, there exists a Zariski
closed subset W � X such that:

1. H. Any orbifold entire curve34 h : C → (X,Δ) has image contained in
W .

1. A. If (X,Δ) is defined over k, for any model over k′, S′ ⊂ Spec(Ok′), the
set of (S′, k′) integral points of (X,Δ) contained in X \W is finite.

2. Assume that either κ(X,Δ) = 0 or that κ+(X,Δ) = −∞. Then:
2. H. There exists an orbifold entire curve h : C → (X,Δ) with dense image

in X.
2. A. There exists k′, S′ such that the (S′, k′) integral points of (X,Δ) are

Zariski dense in X

The decomposition c = (j◦r)n of the core and conjectures 8.13 (essentially)
imply the main conjectures 8.4. Here ‘essentially’ means that two further
properties are still needed: the (orbifold) birational invariance of Mordellicity
and potential density, together with the fact that if the generic orbifold fibres
and the orbifold base of a fibration f : (X,Δ) → (Z,Δf,Δ) are potentially
dense, then so is (X,Δ), when everything is defined over Q.

8.7 Examples of Weakly Special, But Non-special
Threefolds

From dimension 3 on, the two notions differ, due to the existence of smooth
and simply connected ‘orbifold surfaces’ of general type.

34See Definition 2.5 and subsequent lines.
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Lemma 8.14. Let F : X3 → S2 be an elliptic fibration from a simply
connected smooth projective threefold X onto a smooth surface S with κ(S) ≤
1.

Assume that all fibres of F have dimension 1, and that the orbifold base
(S,ΔF ) of f is smooth of general type (i.e.: κ(S,KS +ΔF ) = 2). Then:

1. X is weakly special, but not special: its ‘core map’ is F .
2. There exists such fibrations defined over Q.

Proof. Let us prove the first claim: since κ(S,KS+Δf ) = 2, X is not special,
and F is the core map of X. In order to show that X is weakly special, it
is sufficient (because X is simply connected) to see that there is no fibration
g : X ��� Z with Z of general type, and p := dim(Z) > 0. Indeed since g
had then to factorise through F , we had either p = 2 and Z = S, or p = 1,
and Z simply connected hence Z = P

1. Contradiction since both S and P
1

are not of general type.
We now prove the existence of such X ′s as in 8.14. The following

construction follows and extends slightly the one given in [8]. The recipe
to construct X needs two ‘ingredients’:

1. A projective elliptic surface f : T → P
1 with one simply connected fibre

T1 := f−1(1), and a multiple smooth fibre T0 = f−1(0) of multiplicity
m > 1. One can obtain such a surface from a Halphen pencil,35 which
allows to get examples defined over Q (Special cases of Halphen pencils of
index m > 0 are obtained by blowing up 9 points of a smooth cubic C in
Weierstrass form in P

2, whose sum is m-torsion on C; see [20] for details).
2. A surface g : S → P

1 with κ(S) ≤ 1 and smooth fibre S0 = g−1(0) such
that π1(S−S0) = {1}. This can be constructed from any simply connected
surface S′ with κ(S′) ≤ 1, by choosing on S′ a base-point free ample linear
system defined by a smooth ample divisor D′ ⊂ S′, and a second generic
member D′′ of this linear system which meets transversally D′ at d :=
(D′)2 distinct points, and such that, moreover, κ(S′,K ′

S+(1− 1
m ).D′) = 2.

For example, S′ = P2, and D′, D′′ two generic quartic curves satisfy these
conditions.

One then blows up all points of D′ ∩ D′′ to obtain S, and g : S → P
1 is

the map defined by the pencil generated by D′, D′′. One takes for D = S0

the strict transform of D′ in S. The simple-connectedness of (S − D) is a
consequence of a version of Lefschetz theorem.

We now choose X3 := S ×P1 T , and F : X → S the first projection.
We show that the orbifold base (S,DF ) of F : X → S is of general type.

Indeed: F ∗(D) = m.F−1(D), since D = g−1(0), and f−1(0) = m.T0.

35The use of Halphen pencils has been suggested to me by I. Dolgachev. It permits
to avoid the transcendental Logarithmic Transformations of Kodaira.
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Thus DF ≥ (1 − 1
m ).D, and an easy computation shows that κ(S, (1 −

1
m ).D) = κ(S′, (1− 1

m ).D′) = 2, since KS = b∗(KS′)+E, while D = b∗(D′)−
E, if b : S → S′ is the blow-up and E its exceptional divisor.

And so: KS + (1− 1
m ).D = b∗(KS′ + (1− 1

m ).D′) + 1
m .E ��

Remark 8.15. The Conjecture 5.3 of [30], conjecture 1.2, claims that any
X such as in 8.14 is potentially dense, while the Conjecture 8.4.(4) above
claims it is not. Vojta’s conjectural ‘arithmetic second main theorem’ implies
also that such an X is not potentially dense (using the core map). The
hyperbolic analogue claims that there are no Zariski dense entire curves on
such an X, and this is proved for some examples in [16].

9 Entire Curves on Special Manifolds

Recall that an entire curve in a complex manifold M is just a non-constant
holomorphic map h : C → M . Algebraic entire curves are simply rational
curves, and entire curves are thus seen as transcendental analogues of rational
curves. The following observations indicate that they can serve as testing
ground for arithmetic geometry.

9.1 Entire Curves and Sequences of k-Rational
Points

Let X be complex projective smooth, defined over a number field k.
In [49], an analogy and dictionary between entire curves and infinite

sequences in X(k) are described. Assuming the Conjecture 8.4, this becomes
an equivalence.

Proposition 9.1. Assume Conjecture 8.4. The following properties are then
equivalent:

1. There is an entire curve h : C → X.
2. X(k′) is infinite for some finite extension k′/k.
3. X contains a positive-dimensional special subvariety.

Proof. Assume that X(k′) is infinite. Let Z be the Zariski closure of X(k′).
Since Z(k′) is Zariski dense in Z (or in any of its resolutions), Z is special,
and thus admits a Zariski dense entire curve, and X has thus also an entire
curve.

Assume conversely that there is an entire curve h : C → X. Let Z be
the Zariski closure of h(C), and Z ′ → Z a resolution of singularities. Then
h lifts to a Zariski dense entire curve in Z ′. If Z, and so Z ′ is defined over
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k, Z ′ is thus special, and Z ′(k′) is Zariski dense in Z ′, and so infinite (since
dim(Z) > 0). Thus so is X(k′). In the general case, let Y be a resolution of
singularities of the smallest closed irreducible projective subset of X defined
over k and containing Z. Assume Y is not special, and let c : Y → C be its
core map (defined over k). Then c ◦ h(C) is contained in a strict algebraic
subset W ⊂ C defined over k. Contradiction. Thus Y is special, and Y (k′) is
Zariski dense in Y , hence infinite.

The equivalence with 3 has been shown in the course of the proof. ��
This motivates the study of the relationship between the distribution of

entire curves on projective (and more generally compact Kähler) manifolds
X and their core map.

9.2 Specialness and Entire Curves

Some variants of Conjecture 8.4 are:

Conjecture 9.2. The following are equivalent, for X compact Kähler
smooth:

1. X is special.
2. The Kobayashi pseudodistance36 dX of X vanishes identically.
2’. The infinitesimal Kobayashi pseudometric d∗X vanishes on TX.
3. Any 2 points of X are joined by an entire curve.
3’. Any 2 points of X are joined by a chain of entire curves.
4. Any countable subset of X is contained in some entire curve.
5. There exists a Zariski dense entire curve on X.
5’. There exists a metrically dense entire curve on X.

Remark 9.3.

1. Special manifolds are seen as generalisations of rationally connected
manifolds, rational curves replaced by entire curves.

2. Special manifold are not conjectured to be all Cn-dominable (i.e.: to admit
a non-degenerate meromorphic map H : Cn ��� X). See §9.6.

We shall mention some partial results, extracted from [19]. Although much
efforts have been devoted to the Green–Griffiths–Lang conjecture (asserting
that there are no Zariski dense entire curves if X is of general type), the
results below seem to be the first ones in the opposite direction: produce

36Defined as the largest pseudodistance δ on X such that h∗(δ) ≤ dD, for any
holomorphic map h : D → X, where dD is the Poincaré distance on the unit disk. See
[34] for this notion and its infinitesimal version.
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dense entire curves on X if it is special, beyond the obvious cases where X
is either (uni)rational or Abelian/Kummer.

9.3 Special Surfaces

From surface classification, approximability of K3 surfaces by Kummer ones,
a classical result by Mori–Mikai, and [10], one gets:

Proposition 9.4 ( [19]). Let S be a special compact Kähler surface.
Then:

1. dS vanishes on S.
2. S is C

2-dominable unless possibly when S is a K3-surface which is non-
elliptic and non-Kummer.

3. If S is projective, any 2 points are connected by a chain of 2 elliptic curves.
4. If S is not projective, it contains a Zariski dense entire curve.

The interesting remaining cases are thus K3-surfaces either of algebraic
dimension zero or projective ‘general’. It is far from clear whether the later
ones should be expected to be C

2-dominable.

9.4 Rationally Connected Manifolds

Theorem 9.5 ( [19]). Let X be projective, smooth, rationally connected. Let
A ⊂ X be algebraic of codimension at least 2, and let N ⊂ X be a countable
subset of X \A. There exists h : C → X \A holomorphic such that N ⊂ h(C).

A simplified version of the main step of the proof is the following:

Lemma 9.6. Let f : P1 → X be a very free rational curve going through
x1, . . . , xm, let R > 0 and ε > 0. If xm+1 is given, there exists a very
free rational curve g : P1 → X going through x1, . . . , xm+1 and such that
d(f(z), g(z)) ≤ ε if |z| ≤ R, if d is any Hermitian metric on X.

The proof rests on the ‘comb-smoothing’ technique of [35]. The lemma
consists in joining xn+1 := h(1) and f(∞) := h(0) by a very free rational
curve h : P1 → X, and approximating sufficiently closely the ‘comb’ f(P1) ∪
h(P1) by a family of rational curves gε which go through x1, . . . , xn+1.

The rest of the proof consists in constructing inductively on m a sequence
of very free rational curves fn going through the m-first points x1, . . . , xn of
the set N , in such a way that they converge uniformly on the disks of radii
m.
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Stronger versions are proved in [19], to which we refer. For example, the
following analog of the ‘Weak Approximation Property’37 on rationally con-
nected manifolds can be immediately derived from the proof of Theorem 9.5,
the fact that blown up rationally connected manifolds are still rationally
connected, and the Weierstrass products of entire functions:

Corollary 9.7. Let X be rationally connected smooth. Let M ⊂ X be a
countable set, and for each m ∈ M , let a jet jm of finite order km of
holomorphic function from C to X at m. There then exists an entire function
h : C → X going through each m ∈ M , and whose km-jet at m is jm.

The following ‘orbifold version’ follows from Theorem 9.5:

Example 9.8. Let S ⊂ P3 be a smooth sextic surface. There exists a dense
entire curve h : C → P3 which is tangent to S at each intersection point
of h(C) with S. Indeed: the double cover π : X → P3 ramified along S is
smooth Fano, hence rationally connected. Any (dense) entire curve h : C → X
projects to P3 tangentially along S.

We do not show the preceding statement directly on P3 without applying
Theorem 9.5 on the double cover, by lack of an orbifold comb-smoothing
technique on the Fano Orbifold Pair (P3, S6). Notice that it is unknown
whether X is unirational or not.

The following singular version can be obtained, using the MMP for
surfaces, [50], and applies to prove Proposition 9.11 below.

Theorem 9.9 ( [19]). Let S be a normal projective surface with only
quotient singularities. Assume there exists on S a non-zero Q-effective divisor
Δ such that (S,Δ) is Log-terminal and −KS = Δ. If F ⊂ S is a finite set
containing the singular locus of S, then S \ F contains a dense entire curve.

9.5 Manifolds with c1 = 0

The second fundamental class of special manifolds are those with κ = 0, in
particular those with c1 = 0. They decompose after an étale cover as products
with factors belonging to three subclasses: tori, hyperkähler and Calabi–Yau.

• Complex tori are easy to deal with: they admit dense affine entire curves,
for Abelian varieties, one can do more: construct entire curves (no longer
affine) going through any given countable set.

37This analogy was pointed to us by P. Corvaja, who also noticed that in arithmetic
geometry, the WAP implies the Hilbert Property, an implication also implicit in the
proof of Theorem 10.3.



124 F. Campana

By S.T. Yau’s solution of Calabi’s conjecture, a compact Kähler manifold
with c1 = c2 = 0 is covered by a complex compact torus, and thus satisfies
all statements of Conjecture 9.2.

• Hyperkähler manifolds. If X is compact Kähler and has no complex
analytic compact subvariety (except points and itself), then any entire
curve on X is obviously Zariski dense. Since such manifolds have algebraic
dimension zero, they are special, and the existence of a Zariski dense entire
curve should follow from Conjecture 9.2.

• Examples of such manifolds are:

1. General deformations of Hilbm(K3), for any m > 0 (by [47], [48]).
These contain at least an entire curve (by [47]), which is thus Zariski
dense.

2. All compact Kähler threefolds without subvariety (because they are
simple compact tori, by [15]), and thus contain dense entire curves.

Remark 9.10.

1. Conversely, we conjecture that any compact Kähler manifold without
subvariety is either Hyperkähler or simple tori.

2. It was interesting to get some information about the ‘size’ of the entire
curves constructed in the general deformations of Hilbm(K3)′s (as mea-
sured, for example, by the Hausdorff dimension of their topological
closures).

3. A much more difficult case is the one of compact Kähler manifolds without
subvariety through their general point. These have in particular algebraic
dimension zero. And we conjecture that they are either covered by a torus,
or have a holomorphic 2-form which is symplectic generically. The solution
of this conjecture in dimension 3 implies that any compact Kähler 3-fold
with algebraic dimension zero contains a Zariski dense entire curve. See
[19].

• Calabi–Yau manifolds are much harder to deal with.

A class for which Conjecture 9.2 can be solved is:

Proposition 9.11. Any elliptic Calabi–Yau Threefold contains dense entire
curves.

The proof combines Theorem 9.9, [29], [39] and [10] when c2 �= 0, and
follows from Yau’s solution of Calabi’s conjecture when c2 = 0.
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9.6 Remarks on C
n-dominability and Uniform

Rationality

We do not expect the Cn-dominability of special n-dimensional manifolds for
the following reasons:

1. The algebraic version of C
n-dominability is unirationality. And it is

expected that most rationally connected manifolds should be non-
unirational from dimension 3 on, starting with the double covers of
P3 branched over a smooth sextic, or standard conic bundles over P2 with
smooth discriminant of large degree.

2. Non-elliptic and non-Kummer K3 surfaces are covered by countably many
different families of elliptic curves. However, these families might be (and
are presumably) parametrised by hyperbolic curves.

The following questions concern the relations between unirationality and
C

n-dominability for rationally connected manifolds:

Question 9.12.

1. Are there C
n-dominable rationally connected manifolds which are not

unirational?
2. Special case: X is a smooth model of X0 = A/G, where A is an abelian

variety, and G a finite group acting holomorphically on A. If X is
rationally connected, is it unirational?

The answer is positive in the few cases where it is known. Note also
that these examples provide an interesting testing ground for the problem
of ‘uniform rationality’. Recall (see [5])

Definition 9.13. A smooth rational n-fold X is said to be ‘uniformly
rational’ if any point of X has a Zariski open neighbourhood algebraically
isomorphic to a Zariski open set of Cn.

When rational, the smooth models of quotients A/G, obtained by blowing
up A at the points of non-trivial isotropy, may fail to be uniformly rational
at the points of some of the exceptional divisors. For example:

Question 9.14. Let X be the Ueno threefold, smooth model of E3/Z4

obtained by blowing up each point of E3 of non-trivial isotropy, where
E := C/Z[i], i a primitive 4-th root of unity, is the Gauss elliptic curve, and
Z4 acts by multiplication by ik simultaneously on each factor. This manifold
is unirational [21], and even rational [22]. Is it uniformly rational? Note that
no explicit rational parametrisation of X is known. A similar question can be
raised for the similar example F 3/Z6, where F := C/Z[j], j a primitive 6-th
root of unity, for which an explicit parametrisation is known.
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10 The Nevanlinna Version of the Hilbert Property

10.1 The Hilbert Property and Its Nevanlinna
Version

Definition 10.1 ( [23, §2.2]). Let X/k be a (smooth) projective variety
defined over a number field k. Then X is said to have the ‘Weak Hilbert
Property’ over k (WHP for short)38 if (X(k) \ ∪jYj(k)) is Zariski dense in
X, for any finite set of covers πj : Yj → X defined over k, each ramified over
a non-empty divisor Dj of X.

Note that X(k) being Zariski dense, X has to be special, and its
fundamental group almost abelian, by Conjecture 8.4.

In [23], Corvaja–Zannier propose an analytic version of the WHP in the
following form [23, §2.4]:

Question-Conjecture 10.1 Let X be a special compact Kähler39 mani-
fold. For any finite cover π : Y → X ramified over a non-empty divisor, with
Y irreducible, there exists a dense entire curve h : C → X which does not lift
to an entire curve h′ : C → Y (i.e.: such that π◦h′ = h). We write NHP (X) if
X possesses this property, and say that X has NHP (for Nevanlinna–Hilbert
Property).

Notice that these NHP properties are preserved by finite étale covers and
smooth blow-ups.

A simple tool in checking the non-liftability is the following:

Proposition 10.2 ( [19]). Let h : C → X be an entire curve and H an
hypersurface of X such that there exists a regular point a ∈ H in which h(C)
and H intersect with order of contact t.

Let π : X1 → X be a finite Galois covering with branch locus containing
H, such that π ramifies at order s ≥ 2 over H at a. Then h cannot be lifted
to an entire curve h̃ : C → X1 if t does not divide s.

Thus, if h(C) meets H transversally at a, h does not lift to Y .

Proof. If π is Galois, it ramifies at order s at any point of Y over a ∈ H.
Since h(C) intersect at order s at a, if it lifted to Y , its order of contact with
H were a multiple of s. ��

38The classical Hilbert property does not require the covers Yj → X to be ramified.
By the Chevalley–Weil Theorem X is then algebraically simply connected.
39In [23], X is supposed to be complex projective and to contain a Zariski dense
entire curve. We extend their expectation to the compact Kähler case, and replace
the dense entire curve by the specialness of X.



Arithmetic Aspects of Orbifold Pairs 127

10.2 Rationally Connected and Abelian Manifolds

We have the following stronger form for rationally connected manifolds, in
which a fixed entire curve h does not lift to any Galois40 ramified cover
π : Y → X:

Theorem 10.3 ( [19]). Let X be a rationally connected complex projective
manifold or a complex compact torus.

Then there exists an entire curve f : C → X such that:

1. The image f(C) is dense.
2. f cannot be lifted to any ramified Galois covering τ : X ′ → X.

Proof. Combine (stronger forms proved in [19] of) Theorem 9.5 with
Proposition 10.2. The Abelian case is obtained similarly. ��

10.3 Special Surfaces

Theorem 10.4 ( [19]). Let f : S → B an elliptic surface with π1(S) is
almost abelian (or equivalently: S is special). For any irreducible cover π :
Y → X ramifying over a non-empty divisor R ⊂ S, there exists a dense
entire curve h : C → S which does not lift to Y .

Proof. Assume that R ⊂ S meets a regular point of some reduced component
of some fibre of f . From [10], one gets a submersive map H : C2 → S whose
image contains all smooth fibres of f , and the regular part of the component
of the fibre of f which meets R. This produces an entire curve h : C → C

2

which meets transversally H∗(R). We refer to [19] for the reduction to this
particular case. ��
Remark 10.5. The above result together with the simpler case of special
surfaces S with κ(S) = −∞ solves the Conjecture 10.1 for special surfaces
except for K3 surfaces which are neither Kummer nor elliptic.

11 The Kobayashi Pseudodistance

We explain here how to get from the core map a conjectural (qualitative)
description of the Kobayashi pseudodistance of any complex projective
(or compact Kähler) manifold X, using the notion of orbifold Kobayashi
pseudodistance.

40The Galois assumption can be removed using more delicate arguments.
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• Recall first that if M is a complex manifold, its Kobayashi pseudodistance
dM is the largest pseudodistance δ on M such that h∗(δ) ≤ pD, for any
holomorphic map h : D → M , where pD is the Poincaré metric on the unit
disc D ⊂ C. It enjoys the following properties:

1. dD = pD.
2. It is distance decreasing: f∗(dN ) ≤ dM , ∀f : M → N holomorphic.
3. It is preserved by Aut(M).
4. dC ≡ 0.
5. It is continuous wrt the metric topology on any M .
6. dM |h(C) ≡ 0 for h : C → M holomorphic, E the metric closure.
7. dM ≡ 0 if M = P

n, or M = a complex torus.
8. If M is compact, dM is a distance iff M does not contain any entire

curve (Brody Theorem).

We thus see that there is a close relationship between dM and the distribution
of entire curves on M . In particular, dM ≡ 0 if there exists a dense entire
curve on M , or if any two points in a dense subset of M can be joined by a
connected chain of entire curves. The reverse implications are however widely
open, even for K3 surfaces M , for which dM is known to vanish identically.

Entirely similarly to the case when Δ = 0, we define the Kobayashi
pseudodistance in the orbifold setting. Let thus (X,Δ) be a smooth orbifold
pair with X compact Kähler and Δ :=

∑
j(1 − 1

mj
).Dj an orbifold divisor

with SNC support D := (∪jDj).
Recall that Hol(D, (X,Δ)) (resp. Hol∗(D, (X,Δ)) denotes the set of

orbifold (resp. classical orbifold) morphisms from the unit disk D to (X,Δ)
as defined in 2.5.

Definition 11.1. The Kobayashi (resp. The Classical Kobayashi) Pseu-
dodistance d(X,Δ) (resp. d∗(X,Δ)) of the orbifold (X,Δ) is the largest pseu-

dodistance δ on X such that δ ≤ h∗(dD), ∀h ∈ Hol(D, (X,Δ) (resp. ∀h ∈
Hol∗(D, (X,Δ)). We thus have: d(X,Δ) ≤ d∗(X,Δ), but have equality if Δ = 0

or if Δ = Supp(Δ) (projective and quasi-projective cases, in which cases we
recover dX and dX\D, respectively). For orbifold curves, these pseudodistances
agree, but no longer for orbifold surfaces in general (see [18], Theorem 2, and
[40], Theorem 3.17).

We shall not use the ‘classical’ version here (except in the proof of 11.8,
for X = D. The example given in [40] however suggests the following:

Question 11.2.

1. Is there a continuous function c : X × X → [0, 1], positive outside of
A × A, for some Zariski closed subset A � X, such that d(X,Δ)(x, y) =
c(x, y).d∗(X,Δ)(x, y), ∀(x, y) ∈ X ×X?

2. Assume that (X,Δ) is smooth. If A ⊂ X is Zariski closed of codimension
at least 2 in X, is d(X,Δ)|X∗ = d(X∗,Δ∗), where X∗ := X \ A, and Δ∗ :=
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Δ ∩ X∗? When Δ = 0 and when Δ = Supp(Δ), this is true by [34],
Theorem 2.3.19.

Recall the general notion of orbifold morphism between orbifold pairs:

Definition 11.3. Let (X,Δ) and (Y,ΔY ) be orbifold pairs, Y smooth (or
Q-factorial) and h : X → Y be a holomorphic map such that h(X) is not
contained in Supp(ΔY ). Then h : (X,Δ) → (Y,ΔY ) is an orbifold morphism
if, for each irreducible divisor F ⊂ Y , and each irreducible divisor E ⊂ X
such that h(E) ⊂ F , one has: mΔ(E) ≥ tE,F .mΔY

(F ), where: mDelta(E)
is the multiplicity of E in Δ (and similarly for mΔY

(F ), while tE,F is the
scheme-theoretic multiplicity of E in h∗(F ) (i.e.: h∗(F ) = tE,F .E+R, where
r does not contain E in its support).

Clearly, orbifold morphisms can be composed. We have the following
obvious functoriality property: h∗(Hol(D, (X,Δ)) ⊂ Hol(D, (Y,ΔY )) if h is
an orbifold morphism, and so also the usual distance decreasing property:
h∗(d(Y,ΔY )) ≤ d(X,Δ).

We shall need the following birational invariance property also:

Proposition 11.4. Let X be smooth, and A ⊂ X a Zariski closed subset
of codimension at least 2. Let X∗ := (X \ A), and let μ : X ′ → X be a
bimeromorphic holomorphic map which is isomorphic over X∗. Let E be the
exceptional divisor of μ, and let Δ′ be an orbifold divisor on X ′ supported
on E. Then d(X′,Δ′) = μ∗(dX) (whatever large and possibly infinite are the
multiplicities on the components of Δ′).

Proof. From [34], Theorem 2.3.19, we know that dX∗ = dX|X∗ . We identify
X∗ with its inverse image in X ′, and extend by continuity dX∗ to X ′ and X,
with the same (abusive) notation. On the other hand, we also have: dX′ ≤
d(X′,Δ′) ≤ dX∗ on X ′. This implies the claim, since μ∗(dX∗) = dX∗ (where
the LHS is on X, and the RHS on X ′). ��
Theorem 11.5. Let f : X → Z be a fibration, with X a connected complex
compact manifold. Let f ′ : X ′ → Z ′ be a bimeromorphic ‘neat model’ of f ,
where μ : X ′ → X is bimeromorphic. Let (Z ′,Δ′) be the (smooth) orbifold
base of f ′. Then:

1. f∗(d(Z′,Δ′)) ≤ dX′ = μ∗(dX).
2. f∗(d(Z′,Δ′)) = dX′ if dXz

≡ 0, for a dense set of fibres Xz of f .

Corollary 11.6. Let c : X → CX be the core map of some compact Kähler
manifold X. Then: dX = c∗(d(CX ,Δc)).

Assume Conjecture 8.4, and Conjecture 11.7 below. Then: d(CX ,Δc) is a
metric on a non-empty Zariski open subset CX \W of CX .

The following is simply an orbifold version of the strong Lang’s generic
hyperbolicity conjecture for manifolds of general type.
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Conjecture 11.7. Let (Z,Δ) be a smooth orbifold pair of general type.
There exists a strict Zariski closed subset W � Z such that d(Z,Δ) is a metric
on Z \W . Moreover, the smallest such W is defined over k if so is Z.

Proof (of Theorem 11.5). Since f ′ : X ′ → (Z ′,Δ′) is a neat model of f , we
have the following properties: there exist two Zariski closed subsets B ⊂ Z ′

and A ⊂ X, A contained in the indeterminacy locus of μ−1, such that:
μ((f ′)−1(B)) ⊂ A, and f ′ : X∗ := X ′ \ (f ′)−1(B) → (Z ′,Δ′) has equidi-
mensional fibres and is an orbifold morphism. If we equip the components
of the exceptional divisor E of μ with sufficiently large multiplicities, we get
an orbifold divisor ΔX′ on X ′ such that all of f ′ : (X ′,ΔX′) → (Z ′,Δ′)
becomes an orbifold morphism. We thus get, from the definition of orbifold
Kobayashi pseudometrics, the inequality: (f ′)∗(d(Z∗,Δ∗)) ≤ dX∗ . We can thus
conclude from the continuity of these pseudometrics, and Proposition 11.4
that (f ′)∗(dZ′,Δ′)) ≤ dX∗ = dX′ . ��

Let us now prove the reverse inequality when the fibres all have a vanishing
Kobayashi pseudometric (which is the case if a dense subset of them have
this property, by the continuity of the Kobayashi pseudometric). We may, and
shall, assume here that X ′ = X and f ′ = f , we then write (Z ′,Δ′) = (Z,Δ)
to simplify notations. Notice that, due to Proposition 11.4 and the preceding
argument, it will be sufficient to show that (f ′)∗(d(Z∗,Δ∗)) ≤ dX∗ .

Proposition 11.8. Let g : M → D be a proper fibration from a complex
manifold to the unit disk. Assume that dMz

≡ 0 for all fibres of g, and that
Δg is supported on a finite set of D. Then dM = g∗(dD,Δg

).

Let us first show that the inequality 2 of Theorem 11.5 follows from
Proposition 11.8.

Let hi, i = 0, . . . , N, ai, bi be a Kobayashi chain in X∗ joining two points
a, b ∈ X, that is: a sequence of holomorphic disks hi : D → X, together with
points ai, bi ∈ D such that h0(a0) = a, hN (bN ) = b, and hi(bi) = hi+1(ai+1)
for i = 0, . . . , (N − 1). From the choice of A,B,X∗, Z∗, we deduce that
gi := f∗(hi) := f ◦ hi ∈ Hol(D, (Z∗,Δ∗). From Proposition 11.8 we deduce
that the Kobayashi lengths of the chains {hi, ai, bi} and {gi, ai, bi}, given
by

∑
i dX(hi(ai), hi(bi)) and

∑
i d(Z∗,Δ∗)(gi(ai), gi(bi)) coincide. Taking the

infimum (on either side) for given a, b ∈ X (or a′, b′ ∈ Z∗) gives the claimed
equality.

We now prove Proposition 11.8. It will be the consequence of the following
three lemmas:

Lemma 11.9. Let g : M → N be a surjective holomorphic map with
connected fibres between two connected complex manifolds. Assume that g
has everywhere local sections and that the fibres of g all have zero Kobayashi
pseudometric. Then dM = g∗(dN ).
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Proof (of Theorem 11.5). The Kobayashi lengths on M of any arc joining
a, b in M and of its image by g on N coincide, using local sections and the
vanishing of d along the fibres of g. ��
Lemma 11.10. If Δ :=

∑
i(1 − 1

mi
).{ai} is a finitely supported orbifold

divisor on D, there is a finite unfolding u : C → D from a complex smooth
curve C which ramifies at order mi over each point lying over ai, this for any
i, and unramified over the complement of the a′is.

Proof (of Theorem 11.5). The fundamental group of the complement D
∗ of

the a′is is a free group FN on N generators generated by small loops γi
winding once around ai, for each i = 1, . . . , N , if N is the cardinality of
the a′is. There is thus a natural surjective group morphism of FN onto
⊕iZmi

which induces a finite Galois cover C∗ → D
∗ which can be partially

compactified over the a′is so as to give the claimed unfolding. ��
The Kobayashi pseudodistance d(D,Δu) is obtained by integrating the

Kobayashi–Royden infinitesimal pseudometric dR(D,Δu)
, and similarly for

d∗(D,Δu)
and d∗,R(D,Δu)

, which are computed explicitly in [40] . By [40], Theorems

3.9, 3.13, we have: d∗,R(D,Δu)
= dR(D,Δu)

, and dRC = u∗(d∗,R(D,Δu)
).

Let gC : MC → C be the (desingularised) base change of g : M → D. It
has everywhere local sections (by the definition of the (non-classical) orbifold
base). We thus have: dRMC

= g∗C(d
R
C).

Let v : MC → M be the natural projection; we thus have:

v∗(dRM ) ≤ dRMC
= g∗(dRC) = g∗(u∗(dR(D,Δu

)) = v∗(f∗(dR(D,Δu
)).

Thus: dRM = f∗(dR(D,Δu)
), and also the claim: dM = f∗(d(D,Δu)).
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